
Learning Module 24:
Programmable Logic Controllers (PLCs)

10

1 B
as

ic
 S

er
ie

s



Programmable Logic Controllers (PLCs)
What You Will Learn In this module, we’ll step through each of the following topics in detail:

A Brief History 5

PLC/Relay Comparison 7

Review 1 9

How a PLC Works 10
Example 10

PLC Components: The Contents of “The Box” 12
What Each Part Does 12
An Outside View 12
Block and Block I/O with Expanders 12
Rack Mounted I/O 13

How a PLC Thinks 13
Basic Instructions 15
Creating a Ladder Diagram 15

Inputs and Outputs (I/O) 16
A Sample Program 16

Review 2 18

Counters 19

Timers 20

Review 3 21

How PLCs Gather Data 22
PLC Registers 22
How the Program is Scanned 23
Getting and Moving Data 25

Review 4 28

Math Instructions 29

Boolean Math 30

PLC Communications 32
Communication Between the CPU Module and I/O Devices 32
Communication Between Multiple PLCs and Other Devices 33
A Note about Electronic Operator Interface Products 34

Summary 34

Review 5 35

Glossary 36
Page 2



Programmable Logic Controllers (PLCs)
Review 1 Answers 38

Review 2 Answers 38

Review 3 Answers 39

Review 4 Answers 39

Review 5 Answers 39
Page 3



Programmable Logic Controllers (PLCs)
Welcome Welcome to Module 24, which covers Programmable Logic Controllers, or 
PLCs. The Programmable Logic Controller (PLC) was invented in the 1960s to 
replace the sequential Relay Circuits traditionally used in machine control. A PLC 
is a solid-state, electronic device that controls the operation of a machine. It uses 
Logic functions, which are programmed into its memory via programming soft-
ware.

Almost any “real world” application that needs electrical control needs a PLC. In 
fact, whether you work in machining, packaging, material handling, automated 
assembly, or countless other industries, you are probably already using a PLC.

Figure 1. A Programmable Logic Controller

Like the other modules in this series, this one presents small, manageable sec-
tions of new material followed by a series of questions about that material. Study 
the material carefully, then answer the questions without referring back to what 
you’ve just read. You are the best judge of how well you grasp the material. 
Review the material as often as you think necessary. The most important thing is 
establishing a solid foundation to build on as you move from topic to topic and 
module to module.

A Note on Font Styles Key points are in bold.

Glossary items are italicized and underlined the first time they appear.

Viewing the Glossary Printed versions have the glossary at the end of the module. You may also browse 
the Glossary by clicking on the Glossary bookmark in the left-hand margin.
Page 4



Programmable Logic Controllers (PLCs)
A Brief History PLCs were introduced in the late 1960s to take on the role previously played 
by sequential relays in machine control. Relays are placed onto a single panel 
to provide a special control circuit referred to as logic or relay logic. The purpose 
of a logic circuit is to allow an event, such as the starting of a motor, to occur only 
if predetermined conditions are met.

Figure 2. A Relay Panel

Although relay circuits performed their job well, they could be very expensive to 
install and maintain. In fact, the primary reason for designing PLCs was eliminat-
ing the large cost of replacing complicated relay-based machine control 
systems. Picture a machine control panel that included hundreds or thousands of 
individual relays. The size could be mind boggling. How about the complicated ini-
tial wiring of so many individual devices? These relays would be individually wired 
together to yield the desired outcome. As you can imagine, such a complicated 
system brought with it many problems.

When production requirements changed, the control system had to be updated. If 
frequent changes were required, system updates became very expensive. 
Because relays are mechanical devices, they also have a limited lifetime, 
requiring strict adhesion to maintenance schedules. Troubleshooting was 
also time consuming with so many relays involved.

To be a cost- and time-efficient replacement for relays, PLCs needed to be easy 
for maintenance and plant engineers to program, their lifetime had to be long, and 
they had to survive the harsh industrial environment. That's a lot to ask! The 
answers lay in using a programming technique—Relay Ladder Logic—based on 
the relay technology people were already familiar with, and replacing mechani-
cal parts with solid-state ones.

Figure 3. Traditional Relay Logic
Page 5



Programmable Logic Controllers (PLCs)
Figure 4. PLC Logic

In the early 1970s, the dominant PLC technologies were sequencer-state 
machines and the Bit-slice based Central Processing Unit (CPU). Initially, 
conventional microprocessors lacked the power to solve PLC logic quickly in all 
but the smallest PLCs. However, as conventional microprocessors evolved, larger 
and larger PLCs were based upon them.

Communications abilities began to appear around 1973. The PLC could now talk 
to other PLCs and could be far away from the machine it was controlling. Because 
PLCs could also now be used to send and receive varying voltages, they were 
able to enter the Analog world. But despite these advances, lack of standardiza-
tion coupled with continually changing technology still made PLC communications 
a nightmare of incompatible protocols and physical networks. The 1980s, how-
ever, saw an attempt to standardize communications. PLCs also got smaller in 
size and became software programmable through symbolic programming on per-
sonal computers (previously, PLCs had required dedicated programming termi-
nals or handheld programmers). Today, the world's smallest PLC is about the size 
of a single control relay!

The 1990s have seen a gradual reduction in the introduction of new proto-
cols, and the modernization of the physical layers of some of the more popular 
protocols that survived the 1980s. The latest standard (IEC 1131—3) has tried 
to merge PLC programming languages under one international standard. 
We now have PLCs that are programmable in function block diagrams, instruction 
lists, C, and structured text all at the same time. Personal Computers (PCs) are 
also being used to replace PLCs in some applications. What will the future bring? 
Only time will tell.
Page 6



Programmable Logic Controllers (PLCs)
PLC/Relay 
Comparison

To see how far we have progressed since the time of the relay, consider the chart 
below. It summarizes the value of the PLC over the relay.

Relays PLCs
• Large complicated systems that 

take up a lot of space
• One PLC can control a large sys-

tem. Takes up less floor space than 
a relay-based system.

• Hard wired devices used to config-
ure relay ladder

• Only the input and output devices 
are hard wired. The inner working 
of the PLC are solid-state

• Difficult to modify or update pro-
gram

• With the programming software it is 
simple to write a new program (or 
modify an existing one) and then 
download it into the PLC

• Limited mechanical life • The PLC, itself, is a solid-state 
device. It has a very long life and 
requires little maintenance

• Require separate hard wired timers 
and counters

• Counters and timers are internal, 
solid-state, devices
Page 7



Programmable Logic Controllers (PLCs)
In the Workplace
To see the real-world benefits of using a PLC, let’s look at a batch plant operation where two ingredi-
ents (A and B) are added into a tank in a specified proportion and properly mixed and conveyed to 
another area of the process.

Figure 5. Batch Plant Operation

Two additional input lines are required, one for cleaning solution and one for air. All 4 lines are valve-
controlled into one common pipe with a flow meter (1 pulse output per gallon). The other side of the 
flow meter connects to a Y pipe configuration, where each leg has a valve. One leg goes to the mixing 
tank, and the other goes to a runoff (or wastewater) area. As an example, let’s assume that the goal is 
to mix 420 gallons of A with 280 gallons of B and send the mixture to the next process area. As in any 
process of this type, there needs to be a safety level float switch in the tank to shut down the process 
and sound an alarm if a certain level is exceeded. With a relay-based system, the sequence of events 
to control might look like something like this:

1. Open valve for cleanser, other 3 closed, tank inlet valve closed, run-off valve open.
2. Start pump, measure 50 gallons flow of cleanser.
3. Turn off cleanser valve, turn on air flow for 5 seconds.
4. Open valve for A, open tank inlet valve, close run-off valve.
5. Start pump, measure 420 gallons flow of A.
6. Turn off valve A, close tank inlet valve, open run-off valve.
7. Open cleanser valve, start pump, and measure 50 gallons flow of cleanser.
8. Turn off cleanser valve, turn on air flow for 5 seconds.
9. Open valve for B, open tank inlet valve, close run-off valve.
10. Start pump, measure 280 gallons flow of B.
11. Turn off valve B, close tank inlet valve, open run-off valve.
12. Start the tank mixer motor and run for 5 minutes.
13. Open cleanser valve, start pump, and measure 50 gallons flow of cleanser.
14. Turn off cleanser valve, turn on air flow for 5 seconds.
15. Once mixing is complete, open valve at tank outlet to allow discharge of mixture.
Pretty complicated and time consuming, wouldn’t you say? With a relatively small, inexpensive PLC, 
on the other hand, all of this process can be controlled with the following I/O configuration:

1. 10 digital outputs (one for each of the 7 valves, 1 for the pump motor, 1 for the mixer motor, 
and 1 for the alarm)

2. 2 digital inputs (1 as a counter input from the flow meter and 1 as a safety level float switch 
in the tank).

15 steps with relays, or two steps with a PLC. Guess why most businesses prefer to use PLCs 
instead of relay-based systems.
Page 8



Programmable Logic Controllers (PLCs)
Review 1 Answer the following questions without referring to the material just presented. 
Begin the next section when you are confident that you understand what you’ve 
already read.

1. Put these developments in the history of PLCs in the correct order:
_______ A. Standardized communications
_______ B. Programmable mechanical devices with limited lifetime
_______ C. Ability to communicate
_______ D. International standards
_______ E. Introduction of microprocessors

2. List three benefits of using PLC control instead of relay control.
_______________________________________
_______________________________________
_______________________________________
Page 9



Programmable Logic Controllers (PLCs)
How a PLC Works A PLC works by continually scanning a program. We can think of this scan cycle 
as consisting of 3 important steps: checking input status, executing the program, 
and updating output status.

Step 1—CHECK INPUT STATUS—The PLC takes a look at each input to 
determine if it is on or off. In other words, is the Sensor connected to the first 
input on? How about the second input? How about the third? etc. It records this 
data into its memory to be used during the next step.

Step 2—EXECUTE PROGRAM—The PLC executes your program one 
instruction at a time. Maybe your program said that it should turn on the first out-
put if the first input was on. It already knows which inputs are on/off from the previ-
ous step. Therefore, it will be able to use the state of the first input to decide 
whether the first output should be turned on. It will store the execution results for 
use later during the next step.

Figure 6. A Typical Scan

Step 3—UPDATE OUTPUT STATUS—Finally, the PLC updates the status of 
the outputs based on which inputs were on during the first step and the 
results of executing your program during the second step. Using the example 
in step 2, it would turn on the first output because the first input was on and your 
program said to turn on the first output when this condition is true. After the third 
step, the PLC goes back to step one and repeats the steps continuously.

One scan time is defined as the time it takes to execute the 3 steps listed 
above.

Example Let's say that we have the following program in our PLC, where M is a motor 
Starter that controls a conveyor motor.

Figure 7. Example Program
Page 10



Programmable Logic Controllers (PLCs)
Action: The operator pushes the start button to start the conveyor.

Step One: The PLC will see that the Start button, an input, has been activated. 
(The diagram below illustrates the status of the system after this action.)

Figure 8. Status of the System After Step One

Step Two: The PLC will run the logic and see that if the Start button has been 
pushed, there is a complete path to the motor starter.

Step Three: Because there is now a complete path or circuit to the motor starter, 
the PLC turns the motor starter (an output) on.

Figure 9. Status of the System When Start Pushbutton is Released

(Because the Start pushbutton is traditionally a momentary pushbutton, a latching 
contactor maintains a closed circuit path.)

When the Stop button is pushed, the PLC will see that the path to it is broken and 
turn the motor starter off.
Page 11



Programmable Logic Controllers (PLCs)
PLC Components: 
The Contents of 
“The Box”

The PLC mainly consists of a CPU, memory areas, and appropriate circuits to 
receive input and output data. We can consider the PLC to be a box full of hun-
dreds or thousands of separate relays, counters, timers and data storage loca-
tions. These counters, timers, etc. don’t “physically” exist but instead are 
simulated and can be considered software counters, timers, etc. These internal 
relays are simulated through bit locations in Registers (more on that later).

Figure 10. The Contents of the Box

What Each Part Does The Central Processing Unit (CPU) is the most important part of the PLC. It holds 
the processor that defines what the PLC can and cannot do. The Processor’s 
functions are preset so that the PLC has certain fixed limits. These limits are usu-
ally the maximum number of inputs and/or outputs (I/O) available, but they can 
also include the maximum number of timers, counters, and registers, as well as 
type of functions the PLC can perform.

INPUT RELAYS are connected to the outside world. They physically exist and 
receive signals from switches, sensors, etc. Typically they are not relays, but are 
transistors.

INTERNAL UTILITY RELAYS do not receive signals from the outside world, nor 
do they physically exist. They are simulated relays and are what enables a 
PLC to eliminate external relays.

COUNTERS do not physically exist. They are simulated counters and they can 
be programmed to count pulses. What does the term “pulse” mean in this con-
text? Well, one example of a pulse would be a bottle passing by a sensor. Typi-
cally these counters can count up, down, or both up and down. Because they are 
simulated they are limited in their counting speed. Some manufacturers also 
include high-speed hardware based counters.

TIMERS do not physically exist. They come in many varieties and increments. 
The most common type is an On-Delay Timer. Others include Off-Delay Timers, 
Retentive and Non-retentive. Increments vary from 1ms (millisecond) through 1s 
(second).

OUTPUT RELAYS are connected to the outside world. They physically exist 
and send on/off signals to Solenoids, lights, etc. They can be Transistors, relays, 
or Triacs, depending upon the model chosen.

DATA STORAGE. They are typically registers assigned simply store to data. 
They are usually used as temporary storage for math or data manipulation. They 
are also often used for retentive data storage.

An Outside View Now that we have discussed the inner workings of the PLC, let’s take a look at the 
outward appearance of the device. There are two basic forms that a PLC comes 
in: “block” and “rack mounted” I/O.

Block and Block I/O with 
Expanders

The block I/O is a design more common to PLCs that communicate with small 
amounts I/O. (“Small amount” refers to a quantity less than 60 I/O.) The input and 
output terminals are where the user would hard wire the devices to be controlled 
by the PLC. Each terminal has a unique “address.” (We will discuss addressing in 
greater detail in the next section.) The CPU is located inside of the block. The 
Page 12



Programmable Logic Controllers (PLCs)
communication ports allow the PLC to be connected to a computer or hand held 
programmer. They may also be used to connect special modules or Expanders. 
Expander blocks do not contain a CPU. They merely “expand” the number of I/O 
controlled by the CPU. Based on the manufacturer, each expander could allow a 
different type of input or output to be used. For example, the base unit could con-
trol Digital I/O and the first expander may control analog outputs only.

Figure 11. Block I/O

Figure 12. Block I/O with Expanders

Rack Mounted I/O Rack mounted I/O is composed of several printed circuit board I/O cards that are 
mounted on a “rack” or metal back plate. Generally, the “rack” is designed to hold 
4, 6, 8, or more cards. Hundreds of inputs and output devices can be controlled 
with rack I/O. Like the block I/O, each terminal on each card has a specific PLC 
address. Unlike the block I/O, based on the end user’s needs, each card can con-
trol different types of I/O. For example, a digital, an analog input, and a triac output 
can all be mounted on the same rack. It is also possible for many rack mounted 
PLC products to support additional racks of I/O modules located as much as hun-
dreds or thousands of feet from the CPU. In this configuration, there is a “master” 
CPU attached to “remote” I/O. (A brief discussion of this set-up is covered in the 
last section of the module.)

Figure 13. Rack Mounted I/O

How a PLC Thinks To make the adjustment to PLCs easier for end users accustomed to wiring relay 
controlled systems, the programming software for PLCs was modeled after relay 
wiring schematics. The resulting programming language, Relay Ladder Logic 
Page 13



Programmable Logic Controllers (PLCs)
(ladder), utilizes basic relay wiring symbols to create the logic needed to control a 
machine or process.

When you consider Relay Ladder Logic, it may be useful to think of a street map. 
A street map is like a relay panel; the city blocks are like relays, and the inter-
sections are similar to the relay’s poles. The city streets are the connecting wires. 
As an example, let’s say we know the address of a store where we want to shop. 
However, because of the number of one-ways, detours and winding streets, you 
cannot go in a straight line. Trace the route on the map from your house to the 
store. This route is like a hand-wired circuit in a relay panel.

The installed wires in a relay panel are called the circuit path. The intersec-
tions represent the poles or contacts on the relays. You will only arrive at your 
destination without having to stop if all the traffic lights at the intersections are 
green. A circuit path will be complete only if all the contacts are in a closed 
state. A circuit path will be interrupted if any one of the contacts in the path is 
open.

The street map design to wire a relay panel is called an installation or wiring dia-
gram. A simple design of the same instruction is called a Ladder Diagram. We 
must first create a ladder diagram to apply a PLC. A ladder diagram consists of 
individual rungs just like on a real ladder. Each rung must contain one or 
more inputs and one output. The first instruction on a rung must always be 
an input instruction and the last instruction on a rung should always be an 
output (or its equivalent).

We have to create a ladder diagram because a PLC can't understand a sche-
matic diagram. It only recognizes code. Fortunately, most PLCs have software 
that converts ladder diagrams into code and saves us from having to learn the 
PLCs code.
Page 14



Programmable Logic Controllers (PLCs)
Basic Instructions The table below contains the symbols you are likely to see and use most fre-
quently.

Creating a Ladder 
Diagram

First step—We have to translate all of the items we're using into symbols 
the PLC understands. The PLC doesn't understand terms such as switch, relay, 
and bell. It prefers input, output, coil, contact, etc. It doesn't care what the input 
or output device is. It only cares that it’s an input or an output.

Figure 14. Creating a Ladder Diagram

Second step—We must tell the PLC where everything is located. In other 
words, we have to give all the devices an address. Where is the pushbutton 
going to be physically connected to the PLC? How about the light? We start with a 
blank road map in the PLC’s town and give each item an address. Could you find 
your friends if you didn't know their address? You know they live in the same town 
but which house? The PLC town has a lot of houses (inputs and outputs) but we 
have to figure out who lives where (what device is connected where). For now, 
let’s say that our input will be called “0000” and our output will be called “0500”. 
(Please note that each PLC manufacturer uses different addressing methods.)

Final step—We have to convert the schematic into a logical sequence of 
events. This is much easier than it sounds. The program we're going to write tells 
the PLC what to do when certain events take place. In our example, we have to 
tell the PLC to make the light illuminate when the operator presses the button. The 
picture below is the final converted diagram.

Symbol Definition
Normally Open Contact (Input)

Normally Closed Contact (Input)

or

Coil (Output)
Page 15



Programmable Logic Controllers (PLCs)
Figure 15. Completed Ladder Diagram

Inputs and Outputs 
(I/O)

A Sample Program Now let's compare a simple ladder diagram with its real world external physically 
connected relay circuit and SEE the differences.

Figure 16. A Simple Circuit

In the above circuit, the coil will be energized when there is a closed loop between 
the + and — terminals of the battery. We can simulate this same circuit with a lad-
der diagram. Remember, a ladder diagram consists of individual rungs just like on 
a real ladder. Each rung must contain one or more inputs and one output. 
The first instruction on a rung must always be an input instruction and the 
last instruction on a rung should always be an output (or its equivalent).

Figure 17. Circuit Converted to Ladder Diagram

Inputs Outputs
Pushbutton Indicating Light
Selector Switch Alarm Horn
Analog Signal Analog Signal
Photoeye Sensor Motor Starter
Limit Switch Solenoids
Temperature Sensor Triacs
Floating Switch Relays
Operator Interfaces Transistors
Page 16



Programmable Logic Controllers (PLCs)
Notice in this simple one rung ladder diagram we have recreated the external cir-
cuit above with a ladder diagram. Here we used the Normally Closed and Output 
instructions. Some manufacturers require that every ladder diagram include an 
END instruction on the last rung. Some PLCs also require an ENDH instruction on 
the rung below the END rung.
Page 17



Programmable Logic Controllers (PLCs)
Review 2 Answer the following questions without referring to the material just presented. 
Begin the next section when you are confident that you understand what you’ve 
already read.

1. How does a PLC work?
____________________________________________________________

2. What is a CPU?
____________________________________________________________

3. How is one scan time defined?
____________________________________________________________

4. What is the purpose of each part of a PLC? Which ones physically exist?
Counters _______________________________________
Timers _______________________________________
Input Relays _______________________________________
Internal Utility Relays _______________________________________
Output Relays _______________________________________
Data Storage _______________________________________

5. Why is it necessary to create ladder diagrams when working with PLCs?
____________________________________________________________

6. What does a ladder diagram consist of?
____________________________________________________________

7. Outline the three main steps involved in creating a ladder diagram.
____________________________________________________________

8. Draw the symbol for a Normally Open contact.

9. Draw the symbol for a Normally Closed contact.
Page 18



Programmable Logic Controllers (PLCs)
Counters A counter is a simple device intended to do one simple thing: count. Using 
them, however, can sometimes be a challenge because every manufacturer 
seems to use them a different way.

What kinds of counters are there? Well, there are up-counters (they only count 
up 1,2,3...). There are down counters (they only count down 9,8,7,...). There are 
also up-down counters (they count up and/or down 1,2,3,4,3,2,3,4,5,...)

Typically a high-speed counter is a “hardware” device. The normal counters 
listed above are typically “software” counters. In other words, they don't phys-
ically exist in the PLC but instead are simulated in software. Hardware counters 
do exist in the PLC and are not dependent on scan time.

To use them we must know 3 things:

1. Where the pulses that we want to count are coming from. Typically this is 
from one of the inputs (a sensor connected to input 0000, for example).

2. How many pulses we want to count before we react. Let's count 5 widgets 
before we box them, for example.

3. When/how we will reset the counter so it can count again. After we count 
5 widgets let’s reset the counter, for example.

When the program is running on the PLC, the program typically displays the cur-
rent or “accumulated” value for us so we can see the current count value.

Typically, counters can count from 0 to 9999, -32,768 to +32,767 or 0 to 65535. 
Why the weird numbers? Because most PLCs have 16-bit counters. 0—9999 is 
16-bit BCD (binary coded decimal) and —32,768 to 32767 and 0 to 65535 is 16-
bit binary.

In this counter we need 2 inputs. One goes before the reset line. When this input 
turns on the current, (Accumulated) count value will return to zero. The second 
input is the address of the pulses we are counting.

Figure 18. Counter Symbol

For example, if we are counting how many widgets pass in front of the sensor that 
is physically connected to input 0001 then we would put normally open contacts 
with the address 0001 in front of the pulse line.

C is the name of the counter. If we want to call it counter 000 then we would put 
“C000” here. V is the number of pulses we want to count before doing something. 
If we want to count 5 widgets before turning on a physical output to box them we 
would put 5 here. If we wanted to count 100 widgets then we would put 100 here, 
etc. When the counter is finished, it will turn on a separate set of contacts that we 
also label C.

Note that the counter—Accumulated value ONLY—changes at the off to on transi-
tion of the pulse input.
Page 19



Programmable Logic Controllers (PLCs)
Timers Let's now see how a timer works. What is a timer? It’s exactly what the word says: 
an instruction that waits a set amount of time before doing something.

As always, different types of timers are available with different manufacturers. 
Here are brief descriptions of the most common:

• On-Delay timer—This type of timer simply “delays turning on.” In other 
words, after our sensor (input) turns on, we wait x-seconds before activating a 
solenoid valve (output). This is the most common timer.

• Off-Delay timer—This type of timer is the opposite of the on-delay timer 
listed above. This timer simply “delays turning off.” We hold the solenoid on 
for x-seconds before turning it off. It is less common than the on-delay type 
listed above.

• Retentive or Accumulating timer—This type of timer needs 2 inputs. One 
input starts the timing event (i.e., the clock starts ticking) and the other resets 
it. The on/off delay timers above would be reset if the input sensor wasn't on/
off for the complete timer duration. This timer, however, holds or retains the 
current elapsed time when the sensor turns off in mid-stream. For example, 
we want to know how long a sensor is on during a 1 hour period. If we use 
one of the above timers they will keep resetting when the sensor turns off/on. 
This timer, however, will give us a total or accumulated time.

Let's now see how to use them. We typically need to know 2 things:

1. What will enable the timer. Typically this is one of the inputs (a sensor con-
nected to input 0000, for example).

2. How long we want to delay before we react. Let's wait 5 seconds before we 
turn on a solenoid, for example.

When the instructions before the timer symbol are true, the timer starts “ticking.” 
When the time elapses, the timer will automatically close its contacts. When the 
program is running on the PLC the program typically displays the elapsed or 
“accumulated” time for us so we can see the current value. Typically, timers tick 
from 0 to 9999 in 10 and 100 msec increments.

Shown below is a typical timer instruction symbol we will encounter (depending on 
which manufacturer we choose) and how to use it. Remember that, although they 
may look different, they are all used basically the same way. If we can setup one, 
we can setup any of them.

Figure 19. Timer Symbol

This timer is the on-delay type and is named T. When the enable input is on the 
timer starts to tick. When it ticks Y (the preset value) times, it will turn on its con-
tacts that we will use later in the program. Remember that the duration of a tick 
(increment) varies with the vendor and the time-base used (i.e., a tick might be 
1ms or 1 second etc.).

It’s important to note that, in most PLCs, counters and timers can't have the 
same name because they typically use the same registers.
Page 20



Programmable Logic Controllers (PLCs)
Review 3 Answer the following questions without referring to the material just presented. 
Begin the next section when you are confident that you understand what you’ve 
already read.

1. What three things do you need to know before using a counter?
________________________________________________________
________________________________________________________
________________________________________________________

2. High speed counters are typically ___________________ devices.

3. Typical counters are _______________ counters and therefore do not physi-
cally exist.

4. Define the following terms:
On-delay timer: _________________________________________
Retentive or Accumulating timer: ___________________________
Off-delay timer: _____________________________________________

5. What two things do you need to know before using a timer?
________________________________________________________
________________________________________________________

6. Generally, timers tick from ________ to ______ in ______ and _______ msec 
increments.
Page 21



Programmable Logic Controllers (PLCs)
How PLCs Gather 
Data
PLC Registers PLC Registers are storage locations within the device. The numbering system 

computers and PLCs use to manipulate this information is the binary system. The 
binary system uses the same basic principles as the decimal system. In decimal 
we have 10 digits. (0-9) In binary we only have 2 digits (0 and 1). The 0 or 1 indi-
cate whether an instruction is False or True.

Obviously, it is far easier to design a system in which only 2 numbers (0 and 1) are 
manipulated (i.e. used). In decimal we count: 0,1,2,3,4,5,6,7,8,9, and instead of 
going back to zero, we start a new digit and then start from 0 in the original digit 
location. Binary works the same way. We start with 0 then 1. Because there is no 
2 in binary we must create a new digit.

Let’s refer back to a ladder diagram that we used earlier:

Figure 20. Ladder Diagram

We now also give each symbol (or instruction) an address. This address sets 
aside a certain storage area in the PLC’s data files so that the status of the 
instruction (i.e. true/false) can be stored. Many PLCs use 16 slot or bit storage 
locations. What PLC Registers store is ons and offs. In the example above we are 
using two different storage locations or registers.

In the tables above we can see that in register 00, bit 00 (i.e. input 0000) was a 
logic 0 and bit 01 (i.e. input 0001) was a logic 1. Register 05 shows that bit 00 (i.e. 
output 0500) was a logic 0. Remember, the logic 0 or 1 indicates whether an 
instruction is False or True.

REGISTER 0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0

REGISTER 0500
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Page 22



Programmable Logic Controllers (PLCs)
Although most of the items in the register tables above are empty, they should 
each contain a 0. They were left blank to emphasize the locations we were con-
cerned with.

The PLC will only energize an output when all conditions on the rung are 
TRUE. So, looking at the table above, we see that in the previous example SW1 
has to be logic 1 and SW2 must be logic 0. Then and ONLY then will the coil be 
true (i.e. energized). If any of the instructions on the rung before the output (coil) 
are false then the output (coil) will be false (not energized).

Let's now look at a truth table of our previous program to further illustrate this 
important point. Our truth table will show ALL possible combinations of the status 
of the two inputs.

Notice from the chart that as the inputs change their states over time, so will the 
output. The output is only true (energized) when all preceding instructions on the 
rung are true.

How the Program is 
Scanned

Now that we've seen how registers work, let's process a program like PLCs do to 
enhance our understanding of how the program gets scanned.

Let's consider the following application. We are controlling lubricating oil being 
dispensed from a tank. This is possible by using two sensors. We put one near the 
bottom and one near the top, as shown in the picture below.

Logical Condition of Symbol

Logic Bits Input 1
SW1

Input2
SW2

Out
Coil

Logic 0 False True False
Logic 1 True False True

Inputs Outputs

SW1
(Input 1)

SW2
(Input2)

Coil
(Out)

False True False
False False False
True True False
True False True

Register Logic Bits

SW1
(Input 1)

SW2
(Input2)

Coil
(Out)

0 0 0
0 1 0
1 0 1
1 1 0
Page 23



Programmable Logic Controllers (PLCs)
Figure 21. Dispensing Oil from a Tank

We want the fill motor to pump lubricating oil into the tank until the high level sen-
sor turns on. At that point we want to turn off the motor until the level falls below 
the low level sensor. Then we should turn on the fill motor and repeat the process.

Here we have a need for 3 I/O (i.e. Inputs/Outputs). 2 are inputs (the sensors) and 
1 is an output (the fill motor). Both of our inputs will be NC (normally closed) fiber 
optic level sensors. When they are NOT immersed in liquid they will be ON. When 
they are immersed in liquid they will be OFF.

We will give each input and output device an address. This lets the PLC know 
where they are physically connected. Please note that each manufacturer uses a 
different addressing format. (Check the PLC manufacturer's manuals for details 
on their addressing methods.) The addresses for this example are shown in the 
following table:

Below is what the ladder diagram will look like.

Figure 22. The Completed Level Control Ladder Diagram

Notice that we are using an internal utility relay in this example. You can use the 
contacts of these relays as many times as required. Here they are used twice to 
simulate a relay with 2 sets of contacts. Remember, these relays DO NOT physi-
cally exist in the PLC but are bits in a register that you can use to SIMULATE a 
relay.

Inputs Address Output Address Internal Utility Relay
Low 0000 Motor 0500 1000
High 0001
Page 24



Programmable Logic Controllers (PLCs)
The program is continuously scanned from left to right and top to bottom. 
The time it takes to scan the program is called scan time. Scan time depends on 
the size of the program being scanned; it also varies from manufacturer to manu-
facturer, and computer to computer.

We should always remember that replacing real-world relays is the most common 
reason for using PLCs in our applications. The internal utility relays make this 
action possible. It’s impossible to indicate how many internal relays are included 
with each brand of PLC. Some include hundreds, others include thousands, while 
still others include tens of thousands. Typically, PLC size (not physical size, but I/
O size) is the deciding factor. If we are using a micro-PLC with a few I/O we don’t 
need many internal relays. However, if we are using a large PLC with hundreds or 
thousands of I/O, we’ll certainly need many more internal relays.

If ever there is a question as to whether or not the manufacturer supplies enough 
internal relays, consult their specification sheets. In all but the largest of large 
applications, the supplied amount should be MORE than enough.

Getting and Moving Data Let's now start working with some data. This can be considered as among the 
“advanced” functions of a PLC. This is also the point where we'll see some 
marked differences between PLCs in functionality and implementation.

Why do we want to get or acquire data? The answer is simple. Let’s say that we 
are using one of the manufacturer’s optional modules. Perhaps it’s an A/D mod-
ule. This module acquires analog signals from the outside world (a varying voltage 
or current) and converts the signal to something the PLC can understand (a digital 
signal; i.e., 1s and 0s). Manufacturers automatically store this data in memory 
locations for us. However, we have to get the data out of there and move it some 
place else. If we don’t, the next analog sample will replace the one we just took. In 
other words, move it or lose it! Other things we might want to do include store a 
constant (a fancy word for a number), get some binary data off the input terminals 
(maybe a thumb-wheel switch is connected there, for example), or do some math 
and store the result in a different location.

There are typically 2 common instruction “sets” for gathering and manipulating 
data. Some manufacturers use a single instruction to do the entire operation while 
others use two separate instructions. The two are used together to accomplish the 
final result. Let's now look briefly at each instruction.

The single instruction is commonly called MOV (move). Some vendors also 
include a MOVN (move not). It has the same function of MOV but it transfers the 
data in inverted form. (i.e. if the bit was a 1, a 0 is stored/moved or if the bit was a 
0, a 1 is stored/moved). The MOV typically looks like:

Figure 23. MOV Symbol

The paired instruction typically is called LDA (Load Accumulator) and STA 
(Store Accumulator). The accumulator is simply a register inside the CPU where 
the PLC stores data temporarily while its working. The LDA and STA instructions 
typically look like those in Figures 24 and 25.
Page 25



Programmable Logic Controllers (PLCs)
Figure 24. LDA Symbol

Figure 25. STA Symbol

The one symbol and two symbol instruction set work the same way—we have no 
control over which we use; it depends on whose PLC we use.

Let's see the single instruction first. The MOV instruction needs to know two 
things from us: Source and Destination.

• Source—This is where the data we want to move is located. We could 
write a constant here (2222, for example). This would mean our source data is 
the number 2222. We could also write a location or address for where the 
data we want to move is located. If we wrote DM100, this would move the 
data that is located in data memory 100.

• Destination—This is the location to which the data will be moved. We 
write an address here. For example, if we write DM201, the data would be 
moved into data memory 201. We could also write 0500 here. This would 
mean that the data would be moved to the physical outputs. 0500 would have 
the least significant bit, 0501 would have the next bit, and so on. This would 
be useful if, for example, we had a binary display connected to the outputs 
and we wanted to display the value inside a counter for the machine operator 
at all times.

Figure 26. MOV Ladder Diagram (Single Symbol)

The ladder diagram to do this would look similar to that shown above.

The two symbol instruction works in the same way but, as you can see from the 
diagram below, looks different.
Page 26



Programmable Logic Controllers (PLCs)
Figure 27. LDA/STA Ladder Diagram (Two Symbol)

To use the two symbol instruction we must also supply two things, one for each 
instruction:

• LDA—This instruction is similar to the source of a MOV instruction. This is 
where the data we want to move is located.

• STA—This instruction is similar to the destination of a MOV instruction. 
We write an address here.
Page 27



Programmable Logic Controllers (PLCs)
Review 4 Answer the following questions without referring to the material just presented. 
Begin the next section when you are confident that you understand what you've 
already read.

1. What is a PLC register?
___________________________________________

2. Why would you use a binary system instead of a decimal system for data stor-
age?

3. For a Normally Open contact, a 0 value is _________ and a 1 value is 
___________.

4. In an initialized register, the default setting for each bit is zero, unless other-
wise programmed.
TRUE FALSE

5. Complete the Truth Table and Register for the following circuit:

Truth Table

Register

6. Complete the following sentence so it explains the manner in which ladder is 
scanned. Ladder is scanned is from _____________ to _____________ and 
____________________ to ____________________.

Inputs Outputs

SW1 SW2 Coil
True True
True False

True False
False False

Inputs Outputs

SW1 SW2 Coil
0 0

1 0
1 1
1 1
Page 28



Programmable Logic Controllers (PLCs)
Math Instructions In our applications we often must execute some type of mathematical formula on 
our data. In fact, it’s a rare occurrence when our data is actually exactly what we 
needed.

As an example, let’s say we are manufacturing widgets. We don't want to display 
the total number we've made today. Instead, we want to display how many more 
we need to meet our daily quota of 1000 pieces. We'll say X is our current produc-
tion. Therefore, we can figure that 1000-X = widgets left to make. To implement 
this formula we obviously need some math capability.

In general, PLCs almost always include these math functions:

• Addition—The capability to add one piece of data to another. It is commonly 
called ADD.

• Subtraction—The capability to subtract one piece of data from another. It is 
commonly called SUB.

• Multiplication—The capability to multiply one piece of data by another. It is 
commonly called MUL.

• Division—The capability to divide one piece of data by another. It is com-
monly called DIV.

As we saw with the MOV instruction, some manufacturers use a single instruction 
to do the entire operation while others use two separate instructions. The single 
instruction method typically requires the following few key pieces of information:

• Source A—This is the address of the first piece of data we will use in our 
formula. In other words, it’s the location in memory of where the first “num-
ber” is that we use in the formula.

• Source B—This is the address of the second piece of data we will use in 
our formula. In other words, it’s the location in memory of where the second 
“number” is that we use in the formula.

NOTE: Typically we can only work with 2 pieces of data at a time. In other words, 
we can't work directly with a formula like 1+2+3. Instead, we would have to break 
it up into pieces; for example, 1+2=X, then X+3= our result.

• Destination—This is the address where the result of our formula will be 
put. For example, if 1+2=3, the 3 would automatically be put into this destina-
tion memory location.

The instructions above typically have a symbol that looks like the one on the right. 
Of course, the word ADD could be replaced by SUB, MUL, DIV, etc. In this sym-
bol, the source A is DM100, the source B is DM101, and the destination is 
DM102. Therefore, the formula is simply whatever value is in DM100 + whatever 
value is in DM101. The result is automatically stored into DM102.

Figure 28. Add Symbol
Page 29



Programmable Logic Controllers (PLCs)
Many PLCs also include other math capabilities. Some of these functions could 
include: Square roots, Scaling, Absolute value, Sine, Cosine, Tangent, Natural 
logarithm, Base 10 logarithm, X^Y (X to the power of Y), Arcsine (tan, cos), and 
more. Check with the manufacturer to be sure.

Boolean Math Let's now take a look at some simple Boolean Math. Boolean Math lets us do 
some basic functions with the bits in our registers. These basic functions 
typically include AND, OR and XOR functions. Each is described below.

• AND—This function enables us to use the truth table below. As you can see, 
the only time the Result is true (i.e. 1) is when both operators A AND B are 
true (i.e. 1) (1 AND 1 = 1, 0 AND 0= 0) Result = A AND B

• OR—This function is based on the truth table below. As you can see, the only 
time the Result is true (i.e. 1) is when operator A OR B is true (i.e. 1). Obvi-
ously, when they are both true the result is true. Result = A OR B

• XOR—This function enables us to use the truth table below. An easy way to 
remember the results of this function is to think that A and B must be oppo-
sites of each other. When they are both the same (i.e. A=B) the result is false 
(i.e. 0). This function can be useful when you want to compare bits in 2 regis-
ters and highlight which bits are different.

Result = A XOR B

As we saw with the MOV instruction, some manufacturers use a single instruction 
to do the entire operation while others use two separate instructions. The single 
instruction method typically requires the following few key pieces of information:

• Source A—This is the address of the first piece of data we will use. In other 
words, it’s the location in memory of where the A is.

• Source B—This is the address of the second piece of data we will use. In 
other words, it’s the location in memory of where the B is.

A B Result
0 0 0
1 0 0
0 1 0
1 1 1

A B Result
0 0 0
1 0 1
0 1 1
1 1 1

A B Result
0 0 0
1 0 1
0 1 1
1 1 0
Page 30



Programmable Logic Controllers (PLCs)
• Destination—This is the address where the result will be put. For example, if 
A AND B = 0 the result (0) would automatically be put into this destination 
memory location.

The instructions above typically have a symbol like Figure 29. Of course, the word 
AND could be replaced by OR or XOR. In this symbol, the source A is DM100, the 
source B is DM101 and the destination is DM102. Therefore, we have simply cre-
ated the equation DM100 AND DM101 = DM102. The result is automatically 
stored into DM102.

Figure 29. And Symbol

The Boolean functions on a ladder diagram are shown below.

Figure 30. And Ladder Diagram

Note that, once again, we are using a one-shot instruction. As we've seen before, 
if we didn't use it, we would execute the instruction on every scan. The odds are 
good that we'd only want to execute the function one time when input 0000 
becomes true.

Figure 31. And Symbol

The dual instruction method would use a symbol similar to the one in Figure 31. If 
we use this method, we give this symbol only the Source B location. The Source A 
location is given by the LDA instruction. As the ladder diagram below shows, the 
Destination would be included in the STA instruction.
Page 31



Programmable Logic Controllers (PLCs)
Figure 32. And Ladder Diagram

The results are the same as with the single instruction method. Although the sym-
bol and ladder diagram above show the AND instruction, OR or XOR can be used 
as well. Simply replace the word “AND” within the instruction with either “OR” or 
“XOR.”

PLC 
Communications

The great majority of installed PLCs “service” a moderate amount of I/O (probably 
less than 128 I/O points). Furthermore, most of the I/O devices are wired onto 
PLC I/O modules that are installed in a “local” rack or chassis structure. In that 
arrangement, the I/O modules can communicate directly to the CPU module 
(which runs the PLC logic) via a wired backplane structure that connects all mod-
ules within the chassis.

Communication 
Between the CPU 
Module and I/O Devices

But, what if the input and output devices need to be at great distances (thousands 
of feet) from the CPU module? In such cases, major PLC manufacturers such as 
Allen-Bradley, General Electric and Groupe Schneider have created proprietary, 
high-speed networks to connect their PLC’s CPU module to chassis units contain-
ing I/O modules, which may be thousands of feet away. These proprietary PLC 
networks are sometimes referred to as “remote I/O networks,” which provide a 
reasonable description of their purpose. It is also possible to use new nonpropri-
etary networks such as DeviceNet to allow a PLC to service I/O devices located at 
a distance. At the present time, the PLC acts as a “master” to the distantly-located 
“slave” devices in both of these categories of networks.

Figure 33. Master to Slave Communications

This simply means that the CPU always initiates and controls all communication 
to remote racks or other devices on the Network. The communication details of 
such networks are beyond the scope of this PLC overview.
Page 32



Programmable Logic Controllers (PLCs)
Communication 
Between Multiple PLCs 
and Other Devices

Major PLC manufacturers have also created proprietary networks to permit multi-
ple PLCs of their own brand, plus certain other devices, such as PCs and operator 
stations, to share data. Examples of such networks include Allen-Bradley’s Data 
Highway Plus and Groupe Schneider’s Modbus Plus. Unlike the “remote I/O net-
works” mentioned earlier, there are not racks of I/O devices directly on these net-
works. Instead, these networks exist to connect the CPUs of multiple PLCs to 
each other and to PCs and other devices. These networks permit sharing and 
exchanging data collected by each individual PLC.

Because the CPU on each PLC may need to exchange data with any one of a 
dozen (or more) other PLCs on the network, each network must have a method of 
managing the communication traffic. Data must be sent between multiple PLCs or 
other devices without data “collisions” or confusion. Each network type has a 
unique protocol that establishes the “rules” of how communication will take place. 
If all devices on the network have the ability to initiate the transmission of data, the 
network is referred to has having “peer to peer” communication, rather than the 
“master/slave” arrangement that characterizes remote I/O networks.

Figure 34. Peer to Peer Communications

Many types of devices (PLCs, PCs, programming devices, Operator Interface (O/
I)) can operate simultaneously on these types of networks. These networks are 
often used to report data from PLCs “up” to computers that are collecting plant-
wide information. Many other types of “bridging” can exist between these net-
works and other networks or devices, but the discussion of those details is beyond 
the scope of this overview.
Page 33



Programmable Logic Controllers (PLCs)
A Note about Electronic 
Operator Interface 
Products

PLCs can communicate with operator personnel via an electronic operator inter-
face device (O/I). O/I products function just as their name implies - they allow the 
“operator” of a machine to “interface” with the PLC. This interface may include 
seeing the status of a counter, changing the set point on a timer, converting 
numerical data from Fahrenheit to Celsius, or any number of other operations.

Figure 35. Operator Interface Product

Electronic O/Is can also replace standard control devices like pushbuttons, lamps 
and selector switches, thus decreasing the number of input and output devices 
that have to be wired to the PLC. Operator interface products are available to con-
nect to the PLC via a wide variety of communication options, including connection 
to:

• a port on the PLCs CPU module

• a general-purpose proprietary network like Data Highway Plus

• a PLC remote I/O network

• a non-proprietary network like DeviceNet

The only wiring required for PLC-to-O/I communication is a single cable that links 
a port on the O/I to a port or node connection on the PLC or the network.

Summary This module has provided you with a brief introduction to PLC history, application, 
and operation. It is important that you grasp the theories that have been pre-
sented to you. Once you have mastered the basics, it will be possible for you to 
use anybody’s PLC. The manufacturer’s documentation will provide the details to 
assist you with a specific PLC application.
Page 34



Programmable Logic Controllers (PLCs)
Review 5 Answer the following questions without referring to the material just presented.

1. List the four math functions common to most PLCs.
__________________
__________________
__________________
__________________

2. Complete the following tables:
Result = A AND B

Result = A OR B

Result = A XOR B

A B Result
0 0
1 0
0 1
1 1

A B Result
0 0

1 1
0 1
1 1

A B Result
0 0

0 1
0 1
1 1
Page 35



Programmable Logic Controllers (PLCs)
Glossary
Analog Any type of input or output that has more than two 

states; on and off (see Digital). An analog signal can 
vary in magnitude from “off” to a high-end value or 
between two non-zero values. An example of an analog 
device would be a level sensor that returns a voltage 
somewhere between 0 and 10 V that can vary over time.

Bit A single digit that only has two possible values – 0 or 1. 
Multiple bits can be combined to form bytes or words.

Boolean Math A general term used to describe several different types 
of comparative logic functions. Specific Boolean Math 
functions include, but are not limited to, AND, OR, XOR, 
etc.

Central Processing 
Unit (CPU)

The main processor of information in your computer. 
This single chip performs all of the logic and math 
operations of the PLC.

Digital Any type of input or output signal that has exactly two 
states, on and off. An example of a digital device would 
be a pushbutton, which can either be pressed (ON) or 
released (OFF).

Expander A module connected to block I/O via a cable connection 
that increases the number of I/O controlled by a CPU. 
Expanders do not contain a CPU and therefor are often 
called “dumb I/O blocks.”

I/O Inputs and Outputs
Ladder Diagram The result of ladder programming used to control a PLC. 

The ladder language is modeled after relay wiring 
schematics. The fundamental theories behind ladder are 
consistent among all manufacturers. However, each 
PLC manufacturer generally has a proprietary ladder 
software package.

Logic A series of directives or boundaries created to allow a 
process to be controlled. Logic can be programmed via 
hard wiring (as is the case with relay logic) or via a PC 
(as is the case with a PLC).

Network Several devices connected together, through electrical 
means, for data acquisition and/or control.

Non-retentive All values are resent to zero after powering down the 
unit.

Off-Delay Timer Will turn an output OFF after X amount of seconds has 
passed.

On-Delay Timer Will turn an output ON after X amount of seconds has 
passed.

Operator Interface (O/
I)

A device that allows the operator of a machine to 
monitor and control devices attached to a PLC.

Register A storage area, within the PLC, for information. 
Registers can have a one or two (or more) word 
capacity.
Page 36



Programmable Logic Controllers (PLCs)
Relays A type of switch that can control AC or DC loads.
Relay Circuits Devices often used in control. Can be opened and 

closed electronically to complete logic circuits.
Retentive Will store data in memory so that it remains intact after 

powering down the unit.
Sensor A sensing element. The basic element that usually 

changes some physical parameter to an electrical 
signal.

Solenoid A type of output device and a specific type of coil. Both 
coils and solenoids utilize voltage to convert electrical 
energy to mechanical energy via magnetic fields. A 
solenoid is an actual physical device, where as a coil is 
a generic description for any type of electrical output.

Starter A control device usually consisting of a contact and 
overload. With DeviceNet, it will also contain a 
communication module used for starting and stopping 
loads.

Transistors A solid-state, electronic switch. It is fast, switches a 
small current, has a long lifetime, and works with DC 
only.

Triacs Or silicon controlled rectifiers (SRCs) act as a mediator 
between the PLC and the AC output device. The triac or 
SCR functions as a switch that responds to the 
commands of the PLC logic.
Page 37



Programmable Logic Controllers (PLCs)
Review 1 Answers 1. 4A, 1B, 3C, 5D, 2E

2. Any three of the following:
PLCs take up less space
PLCs have fewer hard wired devices and their inner workings are solid state
With PLCs it's simpler to write and modify programs
PLCs have a longer life
PLCs require less maintenance

Review 2 Answers 1. A PLC works by continually scanning a program.

2. A CPU, or Central Processing Unit, holds the processor that defines what the 
PLC can and cannot do.

3. One scan time is the time it takes to check the input status, execute the pro-
gram, and update the output status.

4. Counters count pulses. They do not physically exist.
Timers are instructions that wait a specified time before doing something. 
They do not physically exist.
Input relays receive signals from switches, sensors, etc. They physically exist. 
Internal Utility Relays are simulated relays that enable a PLC to external 
relays. They do not physically exist.
Output Relays send On/OFF signals to solenoids, lights, etc. They physically 
exist.
PLCs contain registers assigned to store data. They do not physically exist.

5. Because PLCs can't understand schematic diagrams; they only understand 
code.

6. A ladder diagram consists of individual rungs, each of which must contain one 
or more inputs and one or more outputs.

7. a. Translate all the items being used into symbols the PLC understands.
b. Tell the PLC where everything is located by giving the devices addresses.
c. Convert the schematic into a logical sequence of events.

8.

9.
Page 38



Programmable Logic Controllers (PLCs)
Review 3 Answers 1. a. Where the pulses we want to count are coming from
b. How many pulses we want to count before we react
c. When and how we will reset the counter so it can count again

2. hard wired

3. software

4. a. A timer that delays turning a device on
b. A timer that holds the current elapsed time when a device turns off mid-
stream
c. A timer that delays turning a device off

5. a. What will enable the timer
b. How long we want to delay before we react

6. 0, 9999, 10, 100

Review 4 Answers 1. A PLC register is a storage location within the device.

2. Because it's easier to design systems in which only two numbers have to be 
manipulated.

3. False, True

4. True

5. Left to right and top to bottom: False, True, True or False, False, 0, 1, 0, 0

6. Left, right, top, bottom

Review 5 Answers 1. Addition, Subtraction, Multiplication, Division

2. a. 0, 0, 0, 1
b. 0, 0 or 1, 1, 1
c. 0, 1, 1, 0
Page 39


	Programmable Logic Controllers (PLCs)
	What You Will Learn
	Welcome
	A Note on Font Styles
	Viewing the Glossary

	A Brief History
	PLC/Relay Comparison
	Review 1
	How a PLC Works
	Example

	PLC Components: The Contents of “The Box”
	What Each Part Does
	An Outside View
	Block and Block I/O with Expanders
	Rack Mounted I/O

	How a PLC Thinks
	Basic Instructions
	Creating a Ladder Diagram

	Inputs and Outputs (I/O)
	A Sample Program

	Review 2
	Counters
	Timers
	Review 3
	How PLCs Gather Data
	PLC Registers
	How the Program is Scanned
	Getting and Moving Data

	Review 4
	Math Instructions
	Boolean Math
	PLC Communications
	Communication Between the CPU Module and I/O Devices
	Communication Between Multiple PLCs and Other Devices
	A Note about Electronic Operator Interface Products

	Summary
	Review 5
	Glossary
	Review 1 Answers
	Review 2 Answers
	Review 3 Answers
	Review 4 Answers
	Review 5 Answers


