

PHP 5 Social Networking

Create a powerful and dynamic social networking
website in PHP by building a flexible framework

Michael Peacock

 BIRMINGHAM - MUMBAI

http://www.zshareall.com

PHP 5 Social Networking

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010

Production Reference: 1181010

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-38-1

www.packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail.com)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Credits

Author
Michael Peacock

Reviewers
Jason Mayes

Sérgio Serra

Deepak Vohra

Acquisition Editor
Sarah Cullington

Development Editor
Wilson D'souza

Technical Editors
Chris Rodrigues

Ajay Shanker

Indexers
Hemangini Bari

Tejal Daruwale

Rekha Nair

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Priya Mukherji

Project Coordinator
Srimoyee Ghoshal

Proofreader
Aaron Nash

Graphics
Nilesh R. Mohite

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

About the Author

Michael Peacock (http://www.michaelpeacock.co.uk) is a web developer and
Zend Certified Engineer from Newcastle, UK with a degree in Software Engineering
from the University of Durham. After meeting his business partner while studying
at Durham, he co-founded Peacock Carter Limited (http://www.peacockcarter.
co.uk), a creative agency based in Newcastle, where he helps run the business and
manages the development team. Michael presented some of his thoughts on one
particular web application architecture at the PHPNW 2010 conference.

Michael loves working on web-related projects and new business ideas and
has interests in several companies. At the moment he is working on his latest
venture, Central Apps, and its flagship product Invoice Central (http://www.
invoicecentral.co.uk/). He also takes part in amateur dramatics in his spare time,
volunteering through Juniper Productions (http://www.juniperproductions.org.
uk) in Newcastle.

He has been involved with a number of books, having written five books: PHP 5
Social Networking, PHP 5 E-Commerce Development, Drupal 6 Social Networking,
Selling online with Drupal e-Commerce, Building websites with TYPO3, and acted
as technical reviewer for two others, Mobile Web Development and Drupal for
Education & E-Learning.

You can follow Michael on Twitter: www.twitter.com/michaelpeacock.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.zshareall.com

Acknowledgement

I'd like to thank everybody at Packt Publishing, in particular: Douglas Paterson
and Sarah Cullington for working with me on building the idea of this book into
a suitable structure, Srimoyee Ghoshal for helping to keep the book on track, and
Wilson D'souza, the development editor, and of course the technical reviewers, Jason
Mayes, Sérgio Serra, and Deepak Vohra who helped improve the quality of the book.

My thanks also go to my friends and family, in particular my fiancée Emma for her
support while working on the book.

Finally, I'd like to thank you, the reader; I hope that you enjoy this book and produce
a fantastic social network of your own. I look forward to hearing your feedback and
seeing what you come up with!

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

About the Reviewers

Jason Mayes is a Web Developer, Programmer, Technical Consultant, and
Strategist, with a creative twist based in the UK.

With a background in Computer Science, it was here that Jason discovered he fitted
in to a rare breed of what he likes to call "hybrid developers"—those who equally
enjoy being both creative and technical. Combining these two qualities he produces
bespoke, usable, and well-implemented digital solutions in a number of areas.

Jason holds a first class MEng degree in Computer Science from The University of
Bristol, and is a member of the BCS (British Computing Society). His final year thesis
"Reality mining using mobile devices and pseudonymous social networks" was
novel in its implementation, and Jason went on to be shortlisted to the final three
candidates in the UK for the "Best IT Student" category in the national SET Awards,
which was judged by the IET. The SET awards are established as Britain's most
important awards for science and engineering undergraduates.

At the time of writing, Jason is Director of Pure42.com—his own company
specializing in areas such as web development and design, digital marketing,
usability, user experience, graphic design, digital advertising, social media,
and technical consultancy.

Jason is also a Senior Web Development Engineer at a global semiconductor
company looking after their online developments, implementations, and digital
strategy. During his time there he has helped to build the company's successful
online presence as it stands today. He has also worked with world leading
companies such as Akamai (see http://bit.ly/d7utAT) in his quest for optimal
solutions, and has been featured in a Computer World article related to "how to
improve your website's uptime" (see http://bit.ly/a3dnPs).

When not pursuing a new technology or idea, Jason loves taking flying lessons,
travelling, or practicing his DSLR photography skills, which he uploads to Flickr.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

You can follow Jason on the following sites:

Website: http://www.jasonmayes.com/

Twitter: http://twitter.com/jason_mayes

I would like to thank all of the staff and lecturers at the University
of Bristol Computer Science Department, colleagues, friends, and
family who have inspired and stuck with me over the years and
contributed to making me the person who I am today.

Sérgio Serra is a software engineer and an expert in business-related applications,
especially ERPs.

He started working in software in 1999, first as a developer and later as a systems
analyst. Over the years his work has been focused on development and deployment
of large industrial applications like ERPs and production planning software. In 2004
he started developing web applications, mainly with PHP and JavaScript. He aims to
someday build his own web ERP and put it into the market. In 2010 he, along with a
colleague from his Computer Science Graduation, founded their own web company
named Sysactum. In the same year they launched a web application for veterinary,
which they have called Actumvet.

Deepak Vohra is a consultant and a principal member of the NuBean.com
software company. He is a Sun Certified Java Programmer and Web Component
Developer, and has worked in the fields of XML, Java programming, and J2EE for
over five years. Deepak is the co-author of the Apress book Pro XML Development
with Java Technology and was the technical reviewer for the O'Reilly book WebLogic:
The Definitive Guide. He was also the technical reviewer for the Course Technology
PTR book Ruby Programming for the Absolute Beginner and the technical editor for the
Manning Publications book Prototype and Scriptaculous in Action. He is also the author
of the Packt Publishing books JDBC 4.0 and Oracle JDeveloper for J2EE Development
and Processing XML Documents with Oracle JDeveloper 11g.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Table of Contents
Preface 1
Chapter 1: PHP Social Networking 7

Introduction to social networks 7
Business logic to social networks 8

Examples: Businesses making use of existing social networks and their own
social networks 9

Existing social networks 10
Facebook 10
LinkedIn 10
MySpace 11
Twitter 11

Existing social networking software 12
Drupal 12
Elgg 12
Joomla! 12
Hybrid approaches 12

Rolling your own 13
Why roll your own? 13

Easier to update and maintain 14
Licensing 14
Enhance knowledge 14
Provide a service 14
Improve business 15
Improve communication 15

Why use PHP? 16
When to use something else 16

Our site: DinoSpace 16
Feature list 18

Limitations 19
Summary 20

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Table of Contents

[ii]

Chapter 2: Planning and Developing the Core Framework 21
Designing the framework 22

Patterns—making life easier 22
MVC: Model-View-Controller 22
The Front Controller pattern 24
Registry 24
Folder structure 26

Building the framework 28
Registry 28

The registry object 28
Registry objects 31

Front Controller: single point of access 56
index.php 56
.htaccess 58

Summary 59
Chapter 3: Users, Registration, and Authentication 61

Privacy policies 62
Users 63

Our user object 63
Our authentication registry object 65

POST authentication 67
SESSION authentication 68

Structuring the database 69
Registration 70

Standard details 70
Hooking additional fields on 76
Processing the registration 80

Creating the profile 80
Putting it all together: registration constructor 81

CAPTCHA 82
General CAPTCHA 83
reCAPTCHA 83

Where do I sign up? 83
E-mail verification 86

Sending e-mails 86
Sending the e-mail verification e-mail 90

Authentication with our authentication object 90
Logging in 90
Are we logged in? 91
Logging out 91
Remember me 92

Help! I've forgotten! 92
Username 92

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Table of Contents

[iii]

Password 94
Let them reset the password 96

Summary 98
Chapter 4: Friends and Relationships 99

Inviting friends 99
Manually inviting friends 100

Invitation controller 101
Automatically inviting friends 101

Google Friend Connect 101
Windows Live contacts 102
Yahoo! 102
Gmail contacts 102

Automatically connecting with friends 102
Members 102

Listing users 103
Pagination 103
Paginated members 110
Paginated users by letter 113

Searching for users 117
Custom relationships 121

Relationship types 121
Relationships 122

Adding friends 122
Forming a relationship 122

Relationship model 125
Relationship controller 129

Mutual relationships—accepting or rejecting a request 131
Pending requests 131
Accepting a pending request 133
Rejecting a pending request 134

Listing friends 134
Our friends 134
Their friends 136

Mutual friends 136
Friends in your profile 137
Summary 137

Chapter 5: Profiles and Statuses 139
User profiles 139

Extendable profile 140
Profile controller 140

Core shared information 142
Static profile 151

Viewing the profile 151

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Table of Contents

[iv]

Relationships—some improvements 155
Editing the profile 157

Statuses 170
Statuses database table 170

Statuses types database table 170
Different types of status 171

Template improvements 171
Listing statuses 173

Templates 175
In action 176

Likes, dislikes, and comments 176
Comments 176

Summary 180
Chapter 6: Status Stream 181

What is a status stream? 181
Stream model 182

Building the stream 182
Relationships—get the IDs! 184
Friendly times 185
The rest… 188

Stream controller 189
Generating the stream 190
Comments, likes, and dislikes 193

Comments 193
Likes and dislikes 194

Views 195
Main template 195
Status type templates 196

In action 196
Room for improvement 196
A system stream for administrators 197
Summary 198

Chapter 7: Public and Private Messages 199
Public messages 199

Controller 199
Displaying profile messages 200
Displaying the post message box 201

Displaying a confirmation message 207
View 208
In action 209

Private messages 210
Database 210

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Table of Contents

[v]

Message model 211
Messages model 217
Controllers and views 218

Listing messages 219
Reading a message 220
Deleting a message 223
Composing a new message 224
Creating a message template 227

In action 228
Room for improvement? 228

Sent items 228
Replies 229
Group messages 229

Summary 229
Chapter 8: Statuses—Other Media 231

Why support other media types? 231
Changes to the view 232

Template 232
jQuery to enhance the user experience 233

View in action 234
Images 234

Database table 234
Model 235

Class, variable, and constructor 235
Processing the image upload 236
Saving the status 244

Video (via YouTube) 244
Database 244
Model 245

Links 246
Database 246
Model 247

Extending the profiles 248
Processing the new status posts 249
Altering our profile status' query 250
Status views 250

Images 250
Video 250
Links 251

In action 251
Images 251
Videos 252
Links 252

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Table of Contents

[vi]

Repeat! 252
Summary 253

Chapter 9: Events and Birthdays 255
Let's plan 255

Calendars: what do we need to be able to do? 256
Calendar library 256

Generating the month 259
Days in the month 262
Ordered days 264
Previous month 264
Next month 265

Displaying a calendar 265
Generate and output 266
Multiple calendars 271
With events 272

Birthdays 272
Getting relationship IDs 273
Setting up the calendar 273
Getting the birthdays 275
Passing them to the calendar 275
The results 276

Events 277
Event model 277
Events model 284
Attendees, invitations, and RSVPs 288

RSVPs 290
Controller 290

Creating an event 290
Calendar of events 294
Viewing an event 294
Upcoming events 297

Reminders 298
On-site notifications 298
E-mail notifications 298
SMS notifications 298

Summary 299
Chapter 10: Groups 301

Some planning 301
Group information 302
Types of groups 302
Ownership 303

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.zshareall.com

Table of Contents

[vii]

Membership 303
Features 303

A group 303
Discussion 303

Database 304
Post 305
Topic 308

The group itself 315
Group table 315
Model 315

Creating a group 321
Controller 321
View 323
Creating a group—in action 324

Viewing a group 324
Membership 324
Controller 331
View 334
In action 335

Discussing within a group 335
Group controller additions 336
View 338
Discussion in action—viewing a topic 340

Joining a group 340
Joining (public) groups 340

Groups 342
Listing groups 342

Group controller addition 342
Template 344
In action 344

My groups 345
Addition to the group's controller 345
Template file 345
In action 346

Summary 346
Chapter 11: Developing an API 347

What is an API and why should we create one? 347
APIs in social networks 348

Facebook 348
MySpace 348
OpenSocial 349

Some planning 349
What should it do, and who should be able to do what? 349
How should it work? 350

How could it work? 351

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Table of Contents

[viii]

Let's go with REST 352
Further reading 354

Implementation 354
Data format 354
API controller 355

Wait—no models? 359
Authentication 359

Delegating control: API controllers for our features 363
Profile's delegate 363

An Application Framework API 368
One solution: use OpenSocial 369

Consuming 369
POSTing data to our API with cURL 371

Summary 371
Chapter 12: Deployment, Security, and Maintenance 373

Deploying the site 373
Choosing a domain name 374
Registering a domain name 374

Popular domain name registrars 374
Signing up with a hosting provider 375

Choosing a web hosting provider 375
Considerations for hosts of social networking websites 377
Popular web hosting providers 377

Setting the nameservers for the domain 378
Creating a database on the hosting account 378

With cPanel hosting control panel 378
With appropriate privileges on phpMyAdmin 380

Exporting our local database 381
Importing our local database to the hosting account 382
Changing some of our database records 383
Changing our database configuration options 384
Uploading the files 384
Testing 385

Automating deployment 385
Security 386

Server Security 387
Software 387
Securing the site with a firewall 388
Shared hosting precautions 388

Passwords 388
Error reporting 389
Directory listings 390
SPAM 390

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Table of Contents

[ix]

Maintenance 390
Backing up and restoring your social network 390

With cPanel 391
Using the command line 392
Do they work? 393

Access logs and statistics 393
Summary 394

Chapter 13: Marketing, SEO, User Retention,
and Monetization Strategies 395

Marketing 396
Online advertising 396

Pay-Per-Click 396
Advertising space 398
Newsletter advertising 400

Newsletters 401
Social marketing 401

Viral marketing campaigns 402
Twitter 402
RSS feeds 402

Search engine optimization 403
On-site SEO 403

Headings 403
Links 404
Up to date, relevant content 404
Page metadata 404
Site speed 405
Search engine goodies—sitemaps and tools 405

Off-site SEO 406
What to look for in an SEO company 407

User retention 407
E-mails for the user's action 407
User feedback 408
Hello there! 408

Monetization options 408
Final tips: web stats 408
Summary 409

Chapter 14: Planning for Growth 411
Code performance 412

Code profiling 412
Slow queries 412
Compression 413
Useful tools and resources 413

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Table of Contents

[x]

Server performance 414
Apache 414
MySQL 415
Alternative web servers 415

Scaling 415
VPS Cloud Hosting 415
Additional servers 416

Caching systems 416
Memcached 417
Available caching systems 417

Redundancy 417
Content Delivery Networks 418
Message queues 419

Message queue versus database table 419
What can we queue? 419
Processing queued tasks 419

No SQL 420
Learn from the experts 420
Farm it out 421
Summary 421

Index 423

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Preface
Social networking has quickly become a very popular activity on the Internet,
particularly with sites such as Facebook and MySpace. When it comes to creating
social networks there are many options to chose from, including off-the-shelf
systems, making use of existing social networks (for example, building a Facebook
application or creating a Facebook page), or building something yourself. While
it may be easy to find existing solutions, the only way to have one looking and
behaving exactly as you want is to build it yourself.

By initially developing a light-weight Model-View-Controller-style framework
with PHP, which can easily be extended to give us a stable and solid platform
to work with making common tasks easier and giving us a structure for our
social networking code, we can rapidly develop a custom, powerful social
networking website.

Within the first few chapters, you will have a suite of files that deal with template
management, database management, user authentication management, and e-mail
sending. Once this is in place, social networking-centric features can be rapidly
developed and plugged into the framework, including user registration and
dealing with forgotten details, user profiles, building connections with users,
sending messages, sharing information, forming groups, a Developer API,
and events and birthday calendars.

At the end of this book, you will have a powerful social networking platform that
can take the user all the way from the signup process to forming relationships and
creating groups of users. The platform is developed in a very flexible way, so the
needs of any social networking site can be met, with new features easily and quickly
added in as the needs of the site change.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Preface

[2]

This book doesn't just stop with how to develop a social networking platform; there
are many other topics, which any developer should consider such as marketing,
search engine optimization, backing up and restoring the site, and how to deal with
scaling problems when the site gets popular. All of these topics are discussed too,
leaving you not only with a solid social network, but with hints, tips, and advice
on how to maintain it in the long term and deal with any challenges on the way.

What this book covers
Chapter 1, PHP Social Networking, looks into the growing popularity of social
networking, including popular social networks, different ways to create or utilize
social networks, and discusses what we will be creating throughout the course of
the book.

Chapter 2, Planning and Developing the Core Framework, discusses several architectural
and design patterns, including Model-View-Controller, Registry and Factory, the
planning and subsequent development of our skeleton MVC-style framework with
template, database, and e-mail management.

Chapter 3, Users, Registration, and Authentication, extends our development framework
with user authentication classes, and then walks through development of registration
and login features for users, as well as reminders for forgotten details.

Chapter 4, Friends and Relationships, looks at allowing users to connect with one
another, either by adding them as friends or establishing custom relationships
with one another such as a co-worker or family member.

Chapter 5, Profiles and Statuses, walks through the development of profiles for
our users as well as a flexible status system so users can update their friends
and contacts with what they are doing.

Chapter 6, Status Stream, discusses how to collate user statuses and activities to
show a useful stream of status updates for a user's particular network, as well
as for administrators to see how the network is growing.

Chapter 7, Public and Private Messages, enables users to communicate with one
another by implementing a simple message system.

Chapter 8, Statuses—Other Media, allows users to share media such as images
and videos with other users in their network as status updates and profile posts.

Chapter 9, Events and Birthdays, integrates a calendar to manage and display events
created by our users and birthday notifications.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Preface

[3]

Chapter 10, Groups, allows users to create and maintain groups related to specific
topics with their own lists of members, who opt in to be part of the group.

Chapter 11, Developing an API, discusses the development of an API to allow
third-party websites and developers to interact with the social network,
so that it can gain popularity through other applications too.

Chapter 12, Deployment, Security, and Maintenance, looks at steps to make the
framework more secure and protect it from spam, as well as looking at how
to back up the site and restoring it from a backup.

Chapter 13, Marketing, SEO, User Retention, and Monetization Strategies, advises
on how to market and promote the social network, and gives useful tips to
help develop search engine-friendly websites.

Chapter 14, Planning for Growth, goes through a number of potential issues that will
occur when the social network becomes more popular, and advises on scalability,
deployment and hosting options, caching, and content delivery networks.

What you need for this book
During the course of this book, you will need the following software to try out the
various code examples:

•	 Apache 1.3 or above (2 recommended)
•	 mod_rewrite module for Apache
•	 MySQL 5.0 or above
•	 PHP 5.0 or above (5.2 or above recommended)

When working locally on your own computer, a package such as WampServer 2 for
Windows is recommended, as this will install PHP, Apache, and MySQL in one, and
make enabling extensions easy.

A text editor is all that is required for editing the code. However, one with syntax
highlighting would be beneficial (such as Crimson Editor or Notepad++).

For deployment, an FTP application such as FileZilla will be required, and
an SSH client such as PuTTY for some of the backup and restoration options
would be useful.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Preface

[4]

Who this book is for
This book is primarily aimed at PHP developers, but is suitable for any web
developer looking to expand their knowledge and understanding of social
networking concepts. Intermediate knowledge of PHP and object-oriented
programming is assumed, along with a basic knowledge of MySQL.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The delegateControl method checks
that the delegate controller is within the allowed delegates."

A block of code is set as follows:

/**
 * Is the profile valid
 * @return bool
 */
 public function isValid()
 {
 return $this->valid;
 }

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<form action="relationship/create/{ID}" method="post">
<select name="relationship_type">
<!-- START relationship_types -->
<option value="{type_id}">{type_name}</option>
<!-- END relationship_types -->
</select>
<input type="submit" name="create" value="Connect with {name}" />
</form>

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Now if we click on the Connect with button on the relationship form, our
relationship is created and we are shown a confirmation message".

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.zshareall.com

PHP Social Networking
Welcome to PHP social networking! During the course of this book, we are going
to build a flexible social networking site and framework using PHP, which we can
easily extend to meet the needs of our social network.

In this chapter, you will learn:

•	 More about social networks
•	 About existing social networks
•	 Existing social networking software
•	 Why and when to roll your own system

We will also discuss the social networking website that we will create during
the course of this book: DinoSpace—a social network for keepers of pet dinosaurs.

Introduction to social networks
Social networks are now one of the most widely used aspects of the Web and
have really taken off over the past few years. Many businesses, organizations,
communities, and families are using social networking to promote themselves,
to communicate better with others, and to engage with their audience.

Social networking relies upon users building up their own network of contacts on the
site. This, in turn, introduces them to new contacts and—on many social networking
websites—allows them to be found more easily. Also, this allows new contacts to be
recommended or introduced, helping to grow the user's network.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

PHP Social Networking

[8]

Let's look at an example of how a user's network of contacts can be built up:

This social network representation shows the connections between contacts. It
also illustrates how a user may be able to discover friends of a friend and friend
recommendations (based on friends in common). This makes it easy for the users
to build up their social network, to communicate with new people, or reconnect
with lost contacts.

Social networks generally serve two primary functions. Firstly, they allow users
to connect with each other and build a contact network, as we have just discussed.
They provide a community with collaboration and contribution features as well.
This allows the content and information within the social network to be grown by
the users themselves. Later in this chapter, we will discuss some of the features
available in existing social networks and social networking software, to build
up a list of key features we will need to include as well as things we might like
to include.

Business logic to social networks
There is some very powerful business logic to using both existing and custom
social networks. Creating your own social network or social network tools gives a
dedicated customer area, where feedback on products and services can be obtained,
for instance, use of support forums to discuss and resolve problems. Areas that
allow customers to share tips, resources, and product care tips help promote those
products and services.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 1

[9]

Examples: Businesses making use of existing
social networks and their own social networks
There are some examples of businesses making great use of existing social networks
and their own social networking type websites to improve their businesses. Let's
have a look at three specific examples.

NameCheap: Twitter
NameCheap is a domain name registrar, and they use Twitter (http://twitter.
com/namecheap) for two purposes. Firstly, they collect and respond to feedback
from customers mentioning their company, and more prominently, they run various
competitions giving away free domain names. These viral competitions encourage
more users to follow them, and promote the competition, therefore increasing their
brand awareness.

Dell: Twitter
Recently, Dell announced that their Twitter presence (http://twitter.com/delloutlet)
generated $6.5 million in revenue, with orders being placed as a result of the links or
discounts placed on their Twitter feed. More information is available on the Mashable
website: http://mashable.com/2009/12/08/dell-twitter-sales/.

BT: Twitter
British Telecom uses Twitter (http://twitter.com/btcare) to help improve
customer service and manage their reputation. In the most instances I've seen this
used, it has primarily been in response to customer complaints, to try and assist
them with their problems, and escalate matters such as fault testing and engineer call
out. This makes them seem more caring (also emphasized by their choice of Twitter
username), increases customer satisfaction by resolving problems more quickly.

Netgear: custom
While not strictly a social network, Netgear have various social aspects to their
website, both through a dedicated community area (http://www.netgear.com/
community/) and the support section of their website (http://kb.netgear.com/
app/). The support section integrates community generated content from their
discussion forums and brings this into product pages, making it easier for customers
to find answers to questions staff have not answered directly. Discussion forum
software is also quickly becoming social networking software to an extent, in its
own right.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

PHP Social Networking

[10]

Existing social networks
There are many existing social networks available, some of which are already very
popular and have some excellent features. Let's take a look at the most prominent
features of some of these more popular sites.

Facebook
Facebook (www.facebook.com) is very much a global social networking website
for everyone over the age of 13. It started out for students at Harvard University,
branching out to all the universities, and now available for everyone. Features
available include:

•	 A customizable profile
•	 Users can update their statuses
•	 Users can connect with other users by adding them as "friends"
•	 Statuses of friends can be commented upon and users can indicate that they

like a particular status
•	 Friends can post messages to each other's profiles
•	 Photos can be posted and shared
•	 Events can be posted and shared, with attendees sending their RSVPs online
•	 Groups can be created and joined, promoting specific activities or interests
•	 Topics can be discussed
•	 Third-party developers can create their own applications for Facebook, to

add more to the platform

LinkedIn
LinkedIn (www.linkedin.com) is a social networking site for business contacts,
colleagues, and classmates, which primarily encourages business contacts to
connect. Features available on LinkedIn include allowing the users to:

•	 Customize their profile
•	 Connect with colleagues
•	 See how users are connected to other
•	 Recommend other users with respect to a job
•	 Integrate Twitter with their account profiles
•	 Create and view business profiles
•	 Third-party developers can create their own applications too

(http://developer.linkedin.com/index.jspa)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 1

[11]

MySpace
MySpace (www.myspace.com) is a social networking website used primarily by a
younger audience. It is very popular with bands, particularly because of how much
profiles can be customized with HTML and how music can be embedded within
profiles. Features available include:

•	 Customizable profiles, complete with:
	° HTML customization: allowing users to customize the colors,

look, and feel of MySpace
	° Music integration
	° The user's current mood
	° Comments

•	 Groups: small subsets of users
•	 MySpace TV: video sharing
•	 Integration and development of third-party applications via an (a suite of)

API(s). We will discuss these further in Chapter 11, Developing an API.
•	 Forums: for discussions.
•	 Polls: to get user opinion.

Twitter
Twitter (www.twitter.com) is a micro-blogging social networking website, which
primarily deals with very short messages of 140 characters or less. Despite this,
it has a large number of prominent features, including:

•	 Profiles can be customized, both in terms of colors and background image
•	 Users can update their status
•	 Users can reply to each other's status updates
•	 Users can repost another user's status update, using the ReTweet function
•	 Powerful searching based on users replying to each other (@replies) and

tagging of tweets with #hashtags

The ease of use and small set of core features have made Twitter very popular.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

PHP Social Networking

[12]

Existing social networking software
Just like there a number of fantastic social networking sites, there are a number
of software systems available as well. These can be used to develop unique social
networking sites.

Drupal
Drupal (http://drupal.org/) is a popular, freely available, open source
content management system. On its own, Drupal can be used to create easy-to-use,
easy-to-update websites. By extending this through the thousands of modules that
the communities have developed or by creating new modules, we could create
almost any type of website we want, ranging from e-commerce to social
networking websites.

Drupal does make an excellent candidate for social networking websites,
and Packt Publishing has a book published on this subject: Drupal 6 Social Networking
(http://www.packtpub.com/build-social-networking-website-with-
drupal-6/book).

Elgg
Elgg (http://elgg.org/) is an open source social networking platform, complete
with functionality for setting up profiles, sharing files, adding friends, blogging,
aggregating RSS, content tagging, and social graphs. Elgg also has an API, allowing
developers to extend Elgg by adding additional functionality as well as a RESTful
API to allow other applications to interact with the platform.

Joomla!
Joomla! (http://www.joomla.org/) is another open source content management
system, with a range of built-in social networking features. There is also a
commercial add-on, the Jomsocial component (http://www.jomsocial.com/
overview.html), which turns Joomla! into a truly social network.

Hybrid approaches
There are, of course, options available which combine using an off-the-shelf system
and a custom system. However, these mainly facilitate extending the functionality of
the existing social networking platform or by integrating some of those social aspects
with our own website. Such approaches include:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.joomla.org/

Chapter 1

[13]

•	 Facebook applications: creating applications that are accessed via Facebook's
main site, providing additional features to users. For example, a map of
dinosaur-friendly restaurants, which are hosted externally by the developer.

•	 Facebook connect: Allows websites to interact with Facebook, using it as an
authentication protocol, pulling friend data from it, as well as pushing, and
pulling status updates to and from Facebook.

•	 Out-of-the-box hosted solutions, such as Ning (http://www.ning.com/),
that allow users to create and maintain a social network community direct
from their web browser.

•	 Google OpenSocial: A set of common APIs that make applications for social
networks interoperable with supporting social networking sites. It also
enables site developers to integrate the API so that other developers can
build applications for that site, as well.

Rolling your own
Throughout the course of this book, we are going to create our own social networking
site from scratch (sometimes referred to as rolling your own) using PHP, as opposed
to using an existing system, product, or platform (such as Drupal and its social
networking modules, Elgg, or leveraging existing social networks such as Facebook).

Why roll your own?
There are a number of very popular and successful social networking websites and
social networking products out there, so why would we want to create our own?
Some of the benefits for us using our own social networking system are as follows:

•	 Easier to update and maintain: As we built it, we will know exactly how
it works and so we can easily extend and maintain it.

•	 Licensing: Other products and options have different licenses, which dictate
how the software can be used, extended, and shared with our own system.
We can decide that for ourselves.

•	 Enhance knowledge: We can build our own system in order to learn from
the process.

•	 Efficient code: Some existing software packages make use of third-party
add-ons, which are not always well optimized for lots of users. By writing
our own code, we can ensure we develop in a scalable, efficient way.

•	 Provide a service.
•	 Improve business.
•	 Improve communication.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.ning.com/

PHP Social Networking

[14]

Easier to update and maintain
Developers who create their own platforms are generally much more familiar
with them than with other platforms. As they build them, they know exactly how
the platforms work, how to improve, extend, and enhance them. With existing
platforms, there is an additional learning curve to developing with them and
complications, should the platforms update. With sites such as Facebook, API
changes are frequently rolled out, though with existing products, such as Drupal,
installing updates is optional.

Licensing
Depending on the platform or product used, there may be different licenses
associated with them. Licenses restrict what can and can't be done with the product,
how improvements, extensions or modifications can be released, enforcing specific
copyright notices or design guidelines, and of course, with many commercial
licenses, costing money.

With self-built platforms, the license is up to us. If we want to release our
social networking site code to the public, we can, and we can use the license
terms we choose.

Enhance knowledge
By creating a social networking website from scratch, you can enhance your
knowledge of PHP, social networking, and work with various other third-party
APIs along the way to create a fantastic platform.

Provide a service
There are many ways in which websites and social networks provide additional
services that are relevant to the social network or the target audience, though these
are often through third-party applications. For example, there are features for both
Facebook and LinkedIn that can provide a list of books which a user has read. These
provide links to book retailers so more information can be discovered, and the books
can be purchased. Additionally, some social networks contain knowledge bases of
information, which can be improved by the user.

With existing social networks, any additional service provided either directly
through the social network or through third-party applications and plugins would,
or could, be restricted in a number of ways. The terms and conditions of the social
network would be the main restriction, followed by how the features themselves
can be added.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 1

[15]

For example, if we wanted to add a map of dinosaur-friendly restaurants to an
existing social network, it would rely upon:

•	 Data collection: Use provisions with the social networks terms of service
•	 Promotion within that social network, which can be a challenge
•	 Provisions for third-party applications, which would most likely limit

and restrict the functionality and design
•	 Design and user interface guidelines enforced by the social network

Improve business
By tapping into the existing user base of established social networks, we can
communicate with a new group of users, increasing awareness, and hopefully,
improving business. One slight flaw with existing social networks is providing
extra enhancements.

Taking Facebook as an example, third-party developers create additional features and
embed them as applications, and some of these applications add business functionality.
One example allowed users to book a table at a restaurant. The limitation with using
Facebook is that before the information is sent to the application, the user is subjected
to several dialogues asking for their confirmation. These dialogues are important to
prevent abuse and to ensure user data is used properly. However, it is an obstacle for
developers. As more and more applications are available, there is more competition
for users' attention, which recently has lead to applications requesting that users invite
their friends to use it. These mass invitations have the opposite effect, and discourage
users from the applications in question.

With our own social network, the data and functionality would be hosted by
ourselves. This gives us the freedom to extend the functionality of the social
network to help us improve business as we see fit, leading to a more relevant
and user friendly social network!

Improve communication
Social networks remove most barriers to communication, such as geographical
location (the only barrier which remains, is Internet access). This is the case for both
existing and custom social networks. The primary advantage over using our own
system is we are less restricted in how we can communicate with users. With existing
social networks, you must be connected to the user and restrictions may be imposed
over which communication methods you use within the social network or which
external communication details are shown to you.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

PHP Social Networking

[16]

Why use PHP?
PHP is a popular, open source programming language. Also, unlike some other
languages, it isn't a framework in its own right, which means we can structure
our application however we wish.

Most modern web hosts support PHP and the database platform we will be using
with it (MySQL) and although some other languages are gaining popularity (such
as the Ruby on Rails framework), hosting for this isn't as common. Facebook, the
world's largest social networking website, is written using PHP (albeit with countless
customizations, improvements, and extras), as does Yahoo!, which operates a search
engine, news portal websites, and various social websites too. Yahoo! also, until
recently, employed Rasmus Lerdorf, the creator of the original PHP engine.

This book assumes we have a reasonable understanding of PHP and some
knowledge of object-oriented programming, so another good reason for using
PHP is skill level.

When to use something else
As we have discussed earlier, there are already a number of fully featured social
networking platforms and products available, written in a variety of different
programming languages. Sometimes, it is more appropriate to use one of these,
such as:

•	 When the project has a tight deadline and a base framework isn't already
in place. In the interest of time, it would be more appropriate to leverage
something else.

•	 When there are lots of developers on the project with varying skill levels, a
project or platform with plenty of existing documentation available would
allow the whole team to be able to get started right away.

•	 If the project is for a client and they have a preferred platform.
•	 If an existing product has the required features and works in the way

required for the project.

Our site: DinoSpace
Throughout the course of this book we are going to develop a social networking site
for keepers of pet dinosaurs (of course nobody owns a real pet dinosaur, it would
be too expensive, but for the sake of this book, let's pretend!), which we will call
DinoSpace. The social network will enable:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.zshareall.com

Chapter 1

[17]

•	 Keepers of pet dinosaurs to connect with one another
•	 Friendships and other custom relationships (for example, walking buddy)

to be maintained with other members of the site
•	 Users to share stories about their pets
•	 Profiles of pet dinosaurs to be created:

	° Statuses to be updated

•	 Dinosaur-friendly places to visit to be promoted:
	° Non-keepers of dinosaurs to use the site to promote

businesses and events that dinosaur keepers may find useful
or interesting

•	 Help and support to be provided to fellow Dinosaur keepers in an
interactive way

At the end of this book, we will have a flexible social network for owners of pet
dinosaurs. Some screens of the final product are shown. First, we have a basic
profile page:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

PHP Social Networking

[18]

Complete with a customizable user status stream:

As well as a range of other features, which we will discuss now.

Feature list
From looking at the features available in existing social networking platforms and
products, the following features seem standard throughout most of them, and so we
shall try and incorporate them into our social networking website:

•	 Status updates: So that users can update their network with their
current status

•	 Commenting on status updates: So that friends and connections can
comment on these status changes

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 1

[19]

•	 Status stream: So that changes to many contacts statuses can be viewed
at a glance

•	 Friends and relationships: So that users can connect with one another and
define the context of the connection, for example, friend, colleague, or even
Dino-walking partner

•	 Customizable profiles: So that users can build a profile of themselves with
custom information about them

•	 Groups: So that smaller subsets can be created and nurtured within the site,
focusing on specific interests or discussions

•	 Messages: So that users can keep in touch with one another
•	 Discussions: Encouraging open discussion amongst users
•	 Image sharing
•	 Video integration and sharing
•	 Calendars, events and birthdays: So that users can see upcoming events,

create events, and invite friends, perhaps to promote a local T-Rex
immunization day at a health center

Limitations
Users of large social networks such as Facebook typically have a large network of
friends (or contacts) and subsequently a large number of updates, particularly when
combined with the third-party applications, which can also post status updates
on their behalf. To ensure that feeds of updates don't become too cluttered, these
updates go through a special service that they have developed, which allows certain
applications to be filtered out and tries to ensure the user's stream is more relevant.

This is something we won't be able to implement ourselves. However, Facebook
has released a number of their components as open source projects, which could
be integrated into our framework, should we wish to make use of some of their
solutions to large scale social networking problems.

More information can be found on the Facebook open source page:
http://developers.facebook.com/opensource.php.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

PHP Social Networking

[20]

Summary
In this chapter, we have looked into what social networking is and why we might
wish to use it. Also, we discussed why we created our own site from scratch, as
opposed to using an existing system. We have also discussed various existing
systems and looked at their features to build a list of features, which we want to
use in our site, DinoSpace!

In Chapter 2 we will plan and develop our basic development framework, which
we will slowly expand over the course of the book to create a powerful social
networking website.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.zshareall.com

Planning and Developing the
Core Framework

Now that we know exactly what we are going to do in this book, and why we are
going to do it, we can start building our social networking site. To ensure a speedy
development process, we are going to invest some time in this chapter to carefully
plan and develop a micro-framework, which will take the hassle out of many
common development tasks. This will be a small, light-weight framework, as our
focus is on social networking, and the purpose of the framework is purely to help
us do this.

In this chapter, you will learn:

•	 About some common design and architectural patterns that solve common
programming problems, including:

	° MVC: The Model-View-Controller architecture
	° The Registry pattern
	° The Factory pattern
	° The Front Controller pattern

•	 How to effectively structure files within a development framework
•	 How to build the framework, including:

	° How to handle user authentication
	° How to abstract database access functions
	° Template management

•	 Providing a single point of access to the site

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[22]

Designing the framework
Before we jump in and start programming, it is important that we take some time
to plan and properly design the framework.

Patterns—making life easier
Design and architectural patterns are solutions to common programming problems,
and their appropriate use can help ensure that a system is well-designed, easy to
build upon, and easy for others to work with.

MVC: Model-View-Controller
The Model-View-Controller pattern is an architectural design pattern designed
to separate the user interface from the business logic of an application. The user
interface (view) uses the controller to interact with the logic and data of the
application (model).

Let's think about our Dino Space social networking site, to see how this will work.
If a user adds another user as a friend—they see the Add as a friend view. When
they click the appropriate button to add the user as a friend, the controller processes
this request from the user, and passes the request to the model, which updates the
user's friends list, and where appropriate, sends any notifications. The view then
updates, via instructions from the controller, to inform the user of the outcome of
their request.

The following figure shows the components of the MVC architectural design pattern:

Our use of MVC won't be a religions implementation of the pattern. However, it
will be an MVC style; there are numerous debates and discussions within the
industry about exactly what MVC is within websites and web-frameworks, and
if it is even truly applicable to web-based applications.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[23]

Model
Within our framework, the models will be PHP classes that store, manage, and
process data and business logic. Access to the underlying database of data will be
handled by a database access layer, which the model will make use of. The models
will link closely with the database behind our social networking site, representing
the data in a more suitable way, which is easier to access and manipulate than
accessing the database directly.

View
In our framework, the view will be made up of a combination of template files
(which will contain HTML and placeholders for dynamic data), images, CSS files,
and JavaScript. The templates will be merged and outputted to the user's browser
on the fly by the controller.

Controller
The controllers will be a series of PHP classes, which process the user's request,
and interact with the model, as well as generate views. Technically, some of our
JavaScript (particularly where AJAX is used) also makes up a part of the controller,
as it interacts between the view, and the model; these instances are extensions of
the controller.

Because we are using the MVC pattern in a web-based environment, the
architecture shown earlier can be illustrated in more detail with its interaction
with the web-browser and the database. The following figure shows how the web
browser and the database fit into the MVC architecture (extended MVC architecture
interacting with the browser and the database):

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[24]

The Front Controller pattern
The Front Controller pattern is a single file, through which all requests are routed
(in our case, using Apache's mod_rewrite). In our case, this will almost definitely
be the index.php file. This file will process the user's request, and pass the request
to the appropriate controller.

By using a single front controller, our core includes files, core settings, and other
common requirements that can all be performed, so that we know regardless of the
user request these will have taken place.

If we used specific files for users to request, for example friends.php for friend
actions, we would either have to "copy and paste" these standard features, functions,
and settings, or ensure that we included a specific file that does this for us, which can
be an issue if we need to re-factor the code and remove or rename this file—as we
would need to ensure that we updated all the references to it.

Registry
Within most web application frameworks, there are numerous core objects, or objects
containing core functionality that every aspect of the application will need to have
access to. The registry pattern provides us with a means to store all of these core
objects within one central object, and access them from within.

Dependency injection
The registry pattern also makes dependency injection easier, as
instead of making the object, or the objects it contains globally
available—for example, through being a Singleton (which is often seen
as a bad practice)—we would need to pass these objects to each of our
models and controllers when we instantiate them. By storing all of the
core objects within a single registry object, we only need to pass the
registry object to these other objects, as opposed to having to pass six
or seven objects, along with arrays of system-wide settings.

Within our social networking website, there are going to be a number of tasks that
we frequently need to do, such as:

•	 Check to see if a user is logged in
•	 Get the logged in user's data
•	 Query the database, and perform other database-related functions
•	 Send e-mail notifications, for example, when a user adds another user

as a friend

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[25]

•	 Manage templates, by sending data to the views to be outputted to the
user's browser

•	 Process the URL the user is accessing the site through, to determine which
action should be performed, which controller should be used, and which
method should be called

These functions will be abstracted into their own object that will be stored centrally
within our registry. The rest of our social networks code can access all of these
objects and features directly from our registry. The architecture of the registry is
illustrated in the following screenshot:

Factory within our registry
Another design pattern that we will make use of is the Factory pattern. To save the
need of creating all of the objects that our registry is going to manage, and passing
them to the registry, we will simply tell the registry the name of the object we
wish to create. The registry will then include the necessary class for us, and create
(instantiate) the object for us. The registry then stores the newly created object in
its array of objects. It is called a factory because the factory object (in our case, the
registry) creates other objects.

A note on the Singleton pattern
Another pattern worth discussing is the Singleton pattern. This pattern generally
involves creating a static object, for which only one instance is ever created within
the application. Generally, the static nature of the Singleton means that it can be
called from anywhere within our social networks code.

Using a Singleton for this purpose is bad practice, as it would mean our code
and other objects would need to know details of the Singleton object itself. As we
discussed earlier, our registry object should be passed directly to the objects in our
social networks code, through their constructors, eliminating the need for the object
to be globally available.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[26]

Although the registry would be useful as a Singleton, as we would only want one
instance of the object to exist, we don't need to worry about this because with PHP 5
by default objects are passed by reference. This means if we pass an object to another
object, instead of getting a new copy of the object (as with PHP 4), a reference to the
single instance of the object is created, updating the central object, unless we were to
clone the object or create a new instance of the registry class.

This is akin to pointers in the C programming language, where a pointer
simply points to the space in memory used by an object or variable.
When the object or variable needs to be updated, it is accessed via the
pointer, saving concern for updating copies or clones of the variable or
object by mistake.

Registry + MVC
By combining the MVC architecture with the registry and front controller pattern,
we now have a framework where all the requests come through a central file,
which creates the registry, and creates the necessary controllers. The controllers
create various models where appropriate, and in some cases, pass control to other
controllers, before generating and manipulating the templates to generate the
views as appropriate. The following diagram shows all of these components
working together:

Folder structure
Another important part of the system planning process is the directory structure that
we are going to use. This will help us ensure that our files are properly organized, so
that when we want to find or edit a particular file, we know exactly where to look.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[27]

Our proposed use of the MVC and Registry patterns give us a way to separate
certain files, by classifying them as models, views, controllers or related to the
registry; so, let's start with those folders:

•	 Controllers
•	 Models
•	 Registry
•	 Views

Within the views folder, we will have some template files, some images, some
CSS, and some JavaScript. We may also allow users to switch between designs,
so we would want to keep all of these, for one particular design, within a particular
sub-folder. We may also utilize JavaScript libraries, as well as specific JavaScript
within a particular view, so we would want to keep these separate too. If we bring
this together, we get:

•	 Controllers
•	 Models
•	 Registry
•	 Views:

	° MainView
	° CSS
	° Images
	° JavaScript
	° Templates

We are also likely to have two types of uploaded files; files that we, as the
administrator, upload to the site once it is live (resources), and files that users
upload (uploads)—different aspects of the social network may utilize user
uploads, so we should categorize this further:

•	 Controllers
•	 Models
•	 Registry
•	 Resources:

	° Images
	° Small
	° Large

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[28]

	° Original:
	° Files

•	 Uploads:
	° ProfilePics

	° Small
	° Large:

	° Photos
	° Small
	° Large:

	° Files

•	 Views:
	° MainView
	° CSS
	° Images
	° JavaScript
	° Templates

Building the framework
Now that we know the best practices to use when building the framework for our
social network, we can start to build it!

Registry
Let's start with our registry as this will be a very important aspect to our framework.
The registry is made up of the registry object itself, and the various objects that we
will store within it.

The registry object
The registry object itself is very straightforward; it needs to contain two arrays, one
to store any settings and data we wish to centrally store within the registry, and one
to store the core objects that we wish to access via the registry.

<?php
/**
 * PHP Social Networking

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[29]

 * @author Michael Peacock
 * Registry Class
 */
class Registry {

/**
 * Array of objects
 */
private $objects;

/**
 * Array of settings
 */
private $settings;

 public function __construct() {
 }

For each of these two arrays, we need two methods: one to store data or an object
within the relevant array, and another to retrieve the data or object. Because we are
going to use a Factory Method for storing objects, this code will be different from the
code for storing settings.

/**
 * Create a new object and store it in the registry
 * @param String $object the object file prefix
 * @param String $key pair for the object
 * @return void
 */
public function createAndStoreObject($object, $key)
{
 require_once($object . '.class.php');

As we discussed earlier, most of our objects require access to the registry object, and
this includes objects stored within the registry. To provide it access, we pass the
registry object as a parameter to the objects constructor. Remember: this allows that
object to reference this instance of the registry (as per the notes on Singleton earlier).

 this->objects[$key] = new $object($this);
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[30]

When storing settings, however, we simply need to take the data and store it directly
in the array.

/**
 * Store Setting
 * @param String $setting the setting data
 * @param String $key the key pair for the settings array
 * @return void
 */
public function storeSetting($setting, $key)
{
 $this->settings[$key] = $setting;
}

Retrieving data or objects from the registry both work in the same way, as illustrated
by the getSetting and getObject methods; they consist of the same code, acting on
their respective arrays.

/**
 * Get a setting from the registries store
 * @param String $key the settings array key
 * @return String the setting data
 */
public function getSetting($key)
{
 return $this->settings[$key];
}

/**
 * Get an object from the registries store
 * @param String $key the objects array key
 * @return Object
 */
public function getObject($key)
{
 return $this->objects[$key];
}
}

?>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[31]

Registry objects
The registry object itself is the easy bit; its purpose is to hold data and other objects.
It is the objects that will be held in here that will be more complicated. The objects
that the registry will use will include:

•	 Database access
•	 User authentication
•	 Template management
•	 E-mail sending
•	 URL processing

Database
Our database access class (registry/mysqldb.class.php) should provide us with a
basic level of abstraction when accessing the database; this also allows us to simplify
certain tasks such as inserting records into a database, performing updates, and if we
wanted to, even tasks such as creating and editing database tables.

The class needs to be able to:

•	 Connect to at least one database
•	 Manage connections to multiple databases where more than one have been

connected to
•	 Execute queries
•	 Return result sets from executed queries
•	 Return information from executed queries, such as the ID of the record that

was last inserted into the database
•	 Cache the results of queries (the main use of this is to integrate a result set

with the view; this would be done by caching the results, and associating it
with a section in the templates)

Many of the functions of this class will be simple wrappers for existing MySQL
database functions, with some additions, and allow us to include more error
handling should we wish.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[32]

Connecting to the database and managing connections
In order to connect to multiple databases, we need to maintain a record of the
different connections. This can be done by storing each connection resource in
an array, keeping a record as to which of the items in this array is the active
connection. When a query is executed, it will perform the query against the
currently active connection.

<?php
/**
 * Database management / access class: basic abstraction
 *
 * @author Michael Peacock
 * @version 1.0
 */
class Mysqldb {

 /**
 * Allows multiple database connections
 * each connection is stored as an element in the array, and the
 active connection is maintained in a variable (see below)
 */
 private $connections = array();

 /**
 * Tells the DB object which connection to use
 * setActiveConnection($id) allows us to change this
 */
 private $activeConnection = 0;
 /**
 * Queries which have been executed and the results cached for
 later, primarily for use within the template engine
 */
 private $queryCache = array();

 /**
 * Data which has been prepared and then cached for later usage,
 primarily within the template engine
 */
 private $dataCache = array();

 /**
 * Number of queries made during execution process
 */
 private $queryCounter = 0;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[33]

 /**
 * Record of the last query
 */
 private $last;

 /**
 * Reference to the registry object
 */
 private $registry;

 /**
 * Construct our database object
 */
 public function __construct(Registry $registry)
 {
 $this->registry = $registry;
 }

To connect to the database, we pass the database server host, username, and
password and of course the name of the database we wish to connect to. The
resulting connection is stored in our connections array, and the connection ID
(Array key) is returned.

/**
 * Create a new database connection
 * @param String database hostname
 * @param String database username
 * @param String database password
 * @param String database we are using
 * @return int the id of the new connection
 */
public function newConnection($host, $user, $password, $database)
{
 $this->connections[] = new mysqli($host, $user, $password,
 $database);
 $connection_id = count($this->connections)-1;
 if(mysqli_connect_errno())
 {
 trigger_error('Error connecting to host. '.$this-
 >connections[$connection_id]->error, E_USER_ERROR);
 }

 return $connection_id;
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[34]

When we need to swap between connections, for example, to look up data from
an external source, or authenticate against another system, we need to tell the
database object to use this different connection. This is achieved through the
setActiveConnection method.

/**
 * Change which database connection is actively used for the next
 operation
 * @param int the new connection id
 * @return void
 */
public function setActiveConnection(int $new)
{
 $this->activeConnection = $new;
}

Executing queries
After a query is executed, we may wish to get the rows from the result of the query;
to allow us to do this, we simply store the result of the query in the classes $last
variable, so that it can be accessed by other methods.

/**
 * Execute a query string
 * @param String the query
 * @return void
 */
public function executeQuery($queryStr)
{
 if(!$result = $this->connections[$this->activeConnection]-
 >query($queryStr))
 {
 trigger_error('Error executing query: ' . $queryStr .' -
 '.$this->connections[$this->activeConnection]->error,
 E_USER_ERROR);
 }
 else
 {
 $this->last = $result;
 }

}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[35]

When we do need to get the results from a query, we simply call the MySQLi fetch_
array method on the result stored in the last variable.

/**
 * Get the rows from the most recently executed query, excluding
 cached queries
 * @return array
 */
public function getRows()
{
 return $this->last->fetch_array(MYSQLI_ASSOC);
}

Simplifying common queries
Common queries such as INSERT, UPDATE, and DELETE are often very repetitive;
however, they are quite easy to abstract the basics of into our database management
class. This won't work for all situations, but should make our lives easier for the
bulk of these operations. We can abstract select queries to this class too. However,
these are much more complicated, particularly, as we will more often than not, need
to utilize more complicated logic, such as sub-queries, joins, and aliases. This more
complicated logic would need to be developed into the code.

Deleting records can be done simply using the table name, conditions, and a limit. In
some cases, a limit may not be required, so if a non-empty string is passed, we need
to add the LIMIT keyword to the query.

/**
 * Delete records from the database
 * @param String the table to remove rows from
 * @param String the condition for which rows are to be removed
 * @param int the number of rows to be removed
 * @return void
 */
public function deleteRecords($table, $condition, $limit)
{
 $limit = ($limit == '') ? '' : ' LIMIT ' . $limit;
 $delete = "DELETE FROM {$table} WHERE {$condition} {$limit}";
 $this->executeQuery($delete);
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[36]

Updating and inserting records are tasks I find to be the most cumbersome; however,
we can easily abstract these simply by passing the table name, an array of field
names and field value pairs, and in the case of update operations, a condition.

/**
 * Update records in the database
 * @param String the table
 * @param array of changes field => value
 * @param String the condition
 * @return bool
 */
public function updateRecords($table, $changes, $condition)
{
 $update = "UPDATE " . $table . " SET ";
 foreach($changes as $field => $value)
 {
 $update .= "`" . $field . "`='{$value}',";
 }

 // remove our trailing ,
 $update = substr($update, 0, -1);
 if($condition != '')
 {
 $update .= "WHERE " . $condition;
 }
 $this->executeQuery($update);

 return true;

}

/**
 * Insert records into the database
 * @param String the database table
 * @param array data to insert field => value
 * @return bool
 */
public function insertRecords($table, $data)
{
 // setup some variables for fields and values
 $fields = "";
 $values = "";

 // populate them

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Chapter 2

[37]

 foreach ($data as $f => $v)
 {

 $fields .= "`$f`,";
 $values .= (is_numeric($v) && (intval($v) == $v)) ?
 $v."," : "'$v',";

 }

 // remove our trailing ,
 $fields = substr($fields, 0, -1);
 // remove our trailing ,
 $values = substr($values, 0, -1);

 $insert = "INSERT INTO $table ({$fields}) VALUES({$values})";
 //echo $insert;
 $this->executeQuery($insert);
 return true;
}

Sanitizing data
Depending on the exact PHP setup, data needs to be sanitized slightly differently,
to prevent characters being escaped too many times. This is often the result of
magic_quotes_gpc setting. To make things easier, and to provide a single place
for changes to be made depending on our server's configuration, we can centralize
our data sanitization.

/**
 * Sanitize data
 * @param String the data to be sanitized
 * @return String the sanitized data
 */
public function sanitizeData($value)
{
 // Stripslashes
 if (get_magic_quotes_gpc())
 {
 $value = stripslashes ($value);
 }

 // Quote value
 if (version_compare(phpversion(), "4.3.0") == "-1")
 {
 $value = $this->connections[$this->activeConnection]-

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[38]

 >escape_string($value);
 }
 else
 {
 $value = $this->connections[$this->activeConnection]-
 >real_escape_string($value);
 }
 return $value;
}

Wrapping other MySQLi functions
This leaves us with a few other common MySQLi functions to wrap into our class,
including fetching the data from the executed query, fetching the number of rows
returned by a query, and getting the number of rows affected by a query.

/**
 * Get the rows from the most recently executed query, excluding
 cached queries
 * @return array
 */
public function getRows()
{
 return $this->last->fetch_array(MYSQLI_ASSOC);
}

public function numRows()
{
 return $this->last->num_rows;
}

/**
 * Gets the number of affected rows from the previous query
 * @return int the number of affected rows
 */
public function affectedRows()
{
 return $this->last->affected_rows;
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[39]

Disconnecting
When the database object is no longer required, we should disconnect from all of the
connections we have made to various databases. This can be done through a simple
foreach loop in the deconstructor.

/**
 * Deconstruct the object
 * close all of the database connections
 */
public function __deconstruct()
{
 foreach($this->connections as $connection)
 {
 $connection->close();
 }
}
}
?>

Template management
Template management is another set of core tasks that will need to be accessed by
almost every aspect of our social network code. Every page request needs to display
something to the user, and for each user the page will normally be different, and
contain dynamic data from our database.

For example, when any user views their friends list, they will all see the same page
layout; however, the list of friends will be different. When they view a profile, all
profiles will have the same layout, with different data, and in some cases, some
additional sections to the page, depending on how complete their profile is.

Our template manager should take a series of template files, which contain the
HTML to be sent to the browser, and manage data, which should be inserted
into it, as well as process this dynamic replacement of data.

Additional templates should be able to be included within a template, should they
be required—for instance when viewing the profile of a user who has comments
enabled, a comments list and form should be displayed, whereas a user without this
would not see a list of a comments form.

The data and template contents will be stored in a Page object; the management of
this object and its processing will be handled by the template object. Let's go through
what we need in our template class (registry/template.class.php).

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[40]

Firstly, we need to create the object, which involves assigning our registry to a
variable, including the page class, and instantiating a page object.

/**
 * Include our page class, and build a page object to manage the
 content and structure of the page
 * @param Object our registry object
 */
public function __construct(Registry $registry)
{
 $this->registry = $registry;
 include(FRAMEWORK_PATH . '/registry/page.class.php');
 $this->page = new Page($this->registry);
}

Since the views are made up of a number of template files, we need to be able to
include these files and send them to our page object. Certain pages might be made
up of two templates, others may be made up of three or more. To make this flexible,
instead of defining parameters for this method, we instead take however many
templates are passed as parameters and include them, in order, to our page object.

/**
 * Set the content of the page based on a number of templates
 * pass template file locations as individual arguments
 * @return void
 */
public function buildFromTemplates()
{
 $bits = func_get_args();
 $content = "";
 foreach($bits as $bit)
 {

 if(strpos($bit, 'views/') === false)
 {
 $bit = 'views/' . $this->registry->getSetting('view') . '/
 templates/' . $bit;
 }
 if(file_exists($bit) == true)
 {
 $content .= file_get_contents($bit);
 }

 }
 $this->page->setContent($content);
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[41]

Within our template files, we may need to insert other templates. For instance, as
we mentioned earlier, if one user has comments enabled on their profile, and another
doesn't, then they will use the same main template, however, different templates will
be inserted dynamically into them.

We can do this by taking a $tag (which is something contained within the template
already included), and a template $bit, which is included and placed within the
main template where the $tag was found.

/**
 * Add a template bit from a view to our page
 * @param String $tag the tag where we insert the template e.g.
 {hello}
 * @param String $bit the template bit (path to file, or just the
 filename)
 * @return void
 */
public function addTemplateBit($tag, $bit)
{
 if(strpos($bit, 'views/') === false)
 {
 $bit = 'views/' . $this->registry->getSetting('view') . '/
 templates/' . $bit;
 }
 $this->page->addTemplateBit($tag, $bit);
}

These templates bits that we insert into our page object need to actually be replaced
into the current page, which is where the replaceBits method comes in. This iterates
through the list of template bits, and performs the replacement. The replacement is
done in order, so if we wanted to insert a template into a page, and then insert another
template into that one, we can do, so long as they were added in order.

The replacement is a simple str_replace to find the tag, and replace it with the
contents from the template.

/**
 * Take the template bits from the view and insert them into our page
 content
 * Updates the pages content
 * @return void
 */
private function replaceBits()
{
 $bits = $this->page->getBits();
 // loop through template bits

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[42]

 foreach($bits as $tag => $template)
 {
 $templateContent = file_get_contents($template);
 $newContent = str_replace('{' . $tag . '}', $templateContent,
 $this->page->getContent());
 $this->page->setContent($newContent);
 }
}

Data that we wish to have placed into our templates works in a similar way to
template bits, except that we can simply replace the tag with the data passed, as
opposed to the contents of another file.

There are two exceptions, which require a little more work from us, both of which
involve iterating through data. If we have a list of friends of a user for instance,
which we have found via a database query, we would want to loop through and
place these in the page. Similarly, if we were to build our own array of custom data,
we may wish to iterate through these and place them on the page.

To facilitate this, the replaceTags method also accepts data as an array; if it is an
array, the first item of the array indicates the type of data (Query or Array) and
the second array points to a cache reference, which indicates where it is stored in
the database object. Control is then passed to a suitable method to perform more
advanced replacements.

The $pp parameter indicates whether we are processing "Post Parse Tags"; these
are tags that only appear after we have performed our first set of tag replacements
(for example, tags defined within database content that is placed into the template).
We may wish to insert data into this, so we can perform the replaceTags function a
second time, instructing it to use the array of Post Parse tags as opposed to standard
tags. To review:

•	 Our templates use template tags (such as {heading}) to indicate where
dynamically generated data should be inserted.

•	 Sometimes, these template tags are placeholders for other files.
•	 Templates are parsed by the replaceTags method.
•	 Templates are inserted into template tags via the replaceBits method.
•	 If the replacement for a template tag contains another tag (for example, if we

have data in the database for a "CMS" style page, where we wish to insert the
username), there may be some template tag replacements that we need to do
after the first replacements. These tags are defined as post parse tags, and are
replaced by the replaceTags method, with a true parameter to indicate that
it should use the post parse tags array.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[43]

/**
 * Replace tags in our page with content
 * @return void
 */
private function replaceTags($pp = false)
{
 // get the tags in the page
 if($pp == false)
 {
 $tags = $this->page->getTags();
 }
 else
 {
 $tags = $this->page->getPPTags();
 }

 // go through them all
 foreach($tags as $tag => $data)
 {
 // if the tag is an array, then we need to do more than a
 simple find and replace!
 if(is_array($data))
 {
 if($data[0] == 'SQL')
 {
 // it is a cached query...replace tags from the database
 $this->replaceDBTags($tag, $data[1]);
 }
 elseif($data[0] == 'DATA')
 {
 // it is some cached data...replace tags from cached
 data
 $this->replaceDataTags($tag, $data[1]);
 }
 }
 else
 {
 // replace the content
 $newContent = str_replace('{' . $tag . '}', $data, $this-
 >page->getContent());
 // update the pages content
 $this->page->setContent($newContent);
 }
 }
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[44]

When replacing a part of a template with a loop of data, the replacement is shown in
the template slightly differently, normally starting with <!-- START tagname -->
and ending with <!-- END tagname -->, containing a number of {tags} within.
An additional feature included here is APD—this stands for additional parsing
data. This is particularly useful in drop-down lists. If we generate a drop-down list
from a list of data, we may wish to set one of them as selected. This is done through
additional parsing data, for a particular block of template replacements; we can set a
particular tag, and indicate that if it equals a certain value, another tag should be set.

An example of this in use would be viewing a list of a user's friends: we can use
APD to highlight ourselves in the list. We would inform the APD array that within
the friends loop we wish to compare the user_id of the friend, to our user_id, and
if they match, set another tag to "this is you!". We will go through some code
examples of this feature later in the book.

Loops of data that are processed by the template engine fall into one of
three categories:

•	 The (cached) results of a database query—and we want to loop through the
results, putting them into the template.

•	 The (cached) results of some data processing stored in an array. More often
than not, this would be if we query the database, and then modify the data
afterwards. We would cache it, and send it to the template engine.

•	 An array of data.

•	 If a template tag is to be replaced with the contents of a cached database
query, then the replaceDBTags method will be called. This method takes the
tag (denoting the loop, that is, tagname from <!--START tagname --> from
above), and the ID of the cached results set.

/**
 * Replace content on the page with data from the database
 * @param String $tag the tag defining the area of content
 * @param int $cacheId the queries ID in the query cache
 * @return void
 */
private function replaceDBTags($tag, $cacheId)
{
 $block = '';
 $blockOld = $this->page->getBlock($tag);
 $apd = $this->page->getAdditionalParsingData();
 $apdkeys = array_keys($apd);
 // foreach record relating to the query...

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[45]

The code iterates through the results of the database cache, and processes it.

 while ($tags = $this->registry->getObject('db')-
 >resultsFromCache($cacheId))
 {
 $blockNew = $blockOld;

Checking to see if the loop relates to any "additional parsing data" we might have
set, if it does, then it performs some checks on the data to see if the relevant field in
the current record relates to the condition set in the APD.

 // Do we have APD tags?
 if(in_array($tag, $apdkeys))
 {
 // YES we do!
 foreach ($tags as $ntag => $data)
 {
 $blockNew = str_replace("{" . $ntag . "}", $data,
 $blockNew);
 // Is this tag the one with extra parsing to be done?
 if(array_key_exists($ntag, $apd[$tag]))
 {
 // YES it is
 $extra = $apd[$tag][$ntag];
 // does the tag equal the condition?
 if($data == $extra['condition'])
 {

If the field in the record relates to the APD data, then we add the extra parsing data
to the template, but only for this loop. For example, this could be to indicate that the
current item in a drop-down list (generated from a database query) is the one that
should be selected.

 // Yep! Replace the extratag with the data
 $blockNew = str_replace("{" . $extra['tag'] . "}",
 $extra['data'], $blockNew);
 }
 else
 {
 // remove the extra tag - it aint used!
 $blockNew = str_replace("{" . $extra['tag'] . "}",
 '', $blockNew);
 }
 }
 }
 }
 else
 {
 // create a new block of content with the results replaced
 into it

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[46]

If there isn't any APD set for this loop, we simply take each field in the record, find
the tags in the template loop that relate to it, and replace them with the fields value.

 foreach ($tags as $ntag => $data)
 {
 $blockNew = str_replace("{" . $ntag . "}", $data,
 $blockNew);
 }
 }

Each iteration through the database cache is added to a variable, which is then, once
all the processing is completed, replaced directly into the template, as shown in the
highlighted code below:

 $block .= $blockNew;
 }
 $pageContent = $this->page->getContent();
 // remove the seperator in the template, cleaner HTML
 $newContent = str_replace('<!-- START ' . $tag . ' -->' .
 $blockOld . '<!-- END ‚ . $tag . ‚ -->', $block, $pageContent);
 // update the page content
 $this->page->setContent($newContent);
}

Replacing data from cached (non-database) data works in the same way; the only
differences here are that APD isn't accounted for, and that the cache reference
relates to cached data not a cached query.

/**
 * Replace content on the page with data from the cache
 * @param String $tag the tag defining the area of content
 * @param int $cacheId the datas ID in the data cache
 * @return void
 */
private function replaceDataTags($tag, $cacheId)
{

 $blockOld = $this->page->getBlock($tag);
 $block = '';
 $tags = $this->registry->getObject('db')->dataFromCache($cacheId
);

 foreach($tags as $key => $tagsdata)
 {
 $blockNew = $blockOld;
 foreach ($tagsdata as $taga => $data)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[47]

 {
 $blockNew = str_replace("{" . $taga . "}", $data,
 $blockNew);
 }
 $block .= $blockNew;
 }

 $pageContent = $this->page->getContent();
 $newContent = str_replace('<!-- START '.$tag.'-->'.
 $blockOld.'<!-- END '.$tag.' -->', $block, $pageContent);
 $this->page->setContent($newContent);
}

If we had a single row of data from a database, or an array of data fields from one
of our models, such as a user's profile data, we would probably want to be able to
quickly convert all of this data into template tag variables. The following method
does this for us, and to prevent overlap with existing tags, we can also pass a prefix
that is added to the tag.

/**
 * Convert an array of data into some tags
 * @param array the data
 * @param string a prefix which is added to field name to create the
 tag name
 * @return void
 */
public function dataToTags($data, $prefix)
{
 foreach($data as $key => $content)
 {
 $this->page->addTag($prefix.$key, $content);
 }
}

Because the title of a page is a variable within our page object, we need to extract
this and replace it within our template when required.

/**
 * Take the title we set in the page object, and insert them into
 the view
 */
public function parseTitle()
{
 $newContent = str_replace('<title>', '<title>'. $this->page-
 >getTitle(), $this->page->getContent());
 $this->page->setContent($newContent);
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[48]

Finally, just before sending the output to the browser, we need to perform all of
our replacements.

/**
 * Parse the page object into some output
 * @return void
 */
public function parseOutput()
{
 $this->replaceBits();
 $this->replaceTags(false);
 $this->replaceBits();
 $this->replaceTags(true);
 $this->parseTitle();
}

This templating system replaces template tags formatted as {templatetag}, as
opposed to $templatetag, {$templatetag}, or {$template->tag}. The main
reason for this comes down to personal preference, though there are methods
that can make taking data stored in an array and pushing it into the PHP variables
defined within the template.

Personally, I prefer to have the views not do any processing themselves (the template
engine instead has to push them to the template, as opposed to the template file being
executed). There are also alternative template engines available, such as Smarty, which
is used in a range of applications, and works in a different way. If you find that this
method doesn't suit your requirements, feel free to experiment with other template
engines, or alternatively, modify this system to better match your needs.

Page
The actual content from the templates and replacement data will be stored in
our page object, so let us see what we need in our page class (registry/page.
class.php).

Firstly, we need some variables to store the replacement data, such as tags,
post-parse tags, additional parsing data, and of course, the content of the
page as defined by the templates it is built from.

// page title
private $title = '';
// template tags
private $tags = array();
// tags which should be processed after the page has been parsed
// reason: what if there are template tags within the database
 content, we must parse the page, then parse it again for post parse

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.zshareall.com

Chapter 2

[49]

tags
private $postParseTags = array();
// template bits
private $bits = array();
// the page content
private $content = "";
private $apd = array();

/**
 * Create our page object
 */
function __construct(Registry $registry)
{
 $this->registry = $registry;
}

We need to set our page title variable and get it, so we need a getter and setter
for this.

/**
 * Get the page title from the page
 * @return String
 */
public function getTitle()
{
 return $this->title;
}

/**
 * Set the page title
 * @param String $title the page title
 * @return void
 */
public function setTitle($title)
{
 $this->title = $title;
}

We need to be able to update the content variable, for instance, after adding a new
template bit, or performing some replacement on the content.

/**
 * Set the page content
 * @param String $content the page content
 * @return void

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[50]

 */
public function setContent($content)
{
 $this->content = $content;
}

We need to be able to add tags to our replacement array.

/**
 * Add a template tag, and its replacement value/data to the page
 * @param String $key the key to store within the tags array
 * @param String $data the replacement data (may also be an array)
 * @return void
 */
public function addTag($key, $data)
{
 $this->tags[$key] = $data;
}

If through some conditional logic in our code, we no longer use a tag or group of
tags, and there are no placeholders for them in the content, we will want to remove
it from the array.

public function removeTag($key)
{
 unset($this->tags[$key]);
}

We also need to get the tags we wish to replace, so that our template object can
perform the replacements.

/**
 * Get tags associated with the page
 * @return void
 */
public function getTags()
{
 return $this->tags;
}

In addition to adding and getting tags from above, we also need to add and get Post
Parse tags.

/**
 * Add post parse tags: as per adding tags
 * @param String $key the key to store within the array
 * @param String $data the replacement data

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Chapter 2

[51]

 * @return void
 */
public function addPPTag($key, $data)
{
 $this->postParseTags[$key] = $data;
}

/**
 * Get tags to be parsed after the first batch have been parsed
 * @return array
 */
public function getPPTags()
{
 return $this->postParseTags;
}

/**
 * Add a template bit to the page, doesnt actually add the content
 just yet
 * @param String the tag where the template is added
 * @param String the template file name
 * @return void
 */
public function addTemplateBit($tag, $bit)
{
 $this->bits[$tag] = $bit;
}

This addAdditionalParsingData method sets when additional parsing data
lookups should be performed, by defining the $block of code within the template
where the parsing should be done, the $tag to compare the $condition. The
$extratag that is replaced with $data should $tag equal $condition.

/**
 * Adds additional parsing data
 * A.P.D is used in parsing loops. We may want to have an extra bit
 of data depending on on iterations value
 * for example on a form list, we may want a specific item to be
 "selected"
 * @param String block the condition applies to
 * @param String tag within the block the condition applies to
 * @param String condition : what the tag must equal
 * @param String extratag : if the tag value = condition then we have
 an extra tag called extratag

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[52]

 * @param String data : if the tag value = condition then extra tag
 is replaced with this value
 */
public function addAdditionalParsingData($block, $tag, $condition,
 $extratag, $data)
{
 $this->apd[$block] = array($tag => array('condition' => $condition,
 'tag' => $extratag, 'data' => $data));
}

We will want to get a list of all the template bits we need to process into the page
(processing is done by the template object).

/**
 * Get the template bits to be entered into the page
 * @return array the array of template tags and template file names
 */
public function getBits()
{
 return $this->bits;
}

We also need to get our array of additional parsing data for the template handler
to process.

public function getAdditionalParsingData()
{
 return $this->apd;
}

We often need to just access a specific loop block within our page; this method
makes this easy, by searching for us using regular expressions, and returning it.

/**
 * Gets a chunk of page content
 * @param String the tag wrapping the block (<!-- START tag -->
 block <!-- END tag -->)
 * @return String the block of content
 */
public function getBlock($tag)
{
 //echo $tag;
 preg_match (‚#<!-- START ‚. $tag . ‚ -->(.+?)<!-- END ‚.
 $tag . ‚ -->#si', $this->content, $tor);
 $tor = str_replace (‚<!-- START ‚. $tag . ‚ -->', „", $tor[0]);
 $tor = str_replace (‚<!-- END ‚ . $tag . ‚ -->', „", $tor);

 return $tor;
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[53]

Obviously, we need to get the content from the page, so we use the
getContent method.

public function getContent()
{
 return $this->content;
}

Finally, when we are ready to output the content to the browser, we do some final
replacements. These are of template tags that we want to have in a template, but may
not always replace. One example is a registration form; if the submission has errors,
we would replace the form fields with the user's submission attempt. If, however,
the user is viewing the form for the first time, they wouldn't want to see anything, so
we would either have to explicitly remove the template tags, or instead, prefix them
with form_, and any leftovers are auto removed.

Once this is done, the content is returned to be output to the browser.

public function getContentToPrint()
{
 $this->content = preg_replace ('#{form_(.+?)}#si', '',
 $this->content);
 $this->content = preg_replace ('#{nbd_(.+?)}#si', '',
 $this->content);
 $this->content = str_replace('</body>', '<!-- Generated by our
 Fantastic Social Netowk -->
</body>', $this->content);
 return $this->content;
}

Authentication
In Chapter 3, Users, Registration, and Authentication, we will discuss how our user's
database will be structured, how we will manage the login and sign up process,
and how user authentication will work in general.

For now, we will leave this aspect out of our registry, and come back to it in the
next chapter.

URL processing
Since we are using a single frontend controller, we need to process the incoming
URL, in particular the page $_GET variable, to work out how to handle the users
request. This is generally done by breaking the variable down in parts, separated
by a forward slash.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[54]

Manually setting the URL path is something we may need to do, so a simple setter
method is needed.

/**
 * Set the URL path
 * @param String the url path
 */
public function setURLPath($path)
{
 $this->urlPath = $path;
}

The getURLData method processes the incoming URL, and breaks it down into parts,
building up an array of "URL bits".

/**
 * Gets data from the current URL
 * @return void
 */
public function getURLData()
{
 $urldata = (isset($_GET['page'])) ? $_GET['page'] : '' ;
 $this->urlPath = $urldata;
 if($urldata == '')
 {
 $this->urlBits[] = '';
 $this->urlPath = '';
 }
 else
 {
 $data = explode('/', $urldata);
 while (!empty($data) && strlen(reset($data)) === 0)
 {
 array_shift($data);
 }
 while (!empty($data) && strlen(end($data)) === 0)
 {
 array_pop($data);
 }
 $this->urlBits = $this->array_trim($data);
 }
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[55]

The rest of our social networks code needs to access the URL bits to determine what
they need to do, so we need a suitable get method.

public function getURLBits()
{
 return $this->urlBits;
}

Similarly, we may need to have easy access to a specific bit. For example, if the
request is friends/view/ID, the first bit would indicate that we use the friend's
controller; the friends controller would then use a switch statement against the
second URL bit, to work out what it needs to do.

public function getURLBit($whichBit)
{
 return (isset($this->urlBits[$whichBit])) ?
 $this->urlBits[$whichBit] : 0 ;
}

Another getter we need is to get the URL path.

public function getURLPath()
{
 return $this->urlPath;
}

If we need to generate a URL, for instance, to build a link, or redirect the user, we
can make this easier with a helper function, which takes an array or URL $bits, any
additional information to go in the query string of the URL, $qs, and if the URL is an
administrative URL, $admin, (if it is, then it appends the administration directory to
the URL).

public function buildURL($bits, $qs, $admin)
{
 $admin = ($admin == 1) ? $this->registry->getSetting('admin_
 folder') . '/' : '';
 $the_rest = '';
 foreach($bits as $bit)
 {
 $the_rest .= $bit . '/';
 }
 $the_rest = ($qs != '') ? $the_rest . '?&' .$qs : $the_rest;
 return $this->registry->getSetting('siteurl') . $admin . $the_rest;

}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[56]

Extending the registry: potential new objects
There are many other features that we could add to our registry if we needed to
make it more powerful, including:

•	 Accessing the file system
•	 Enhancing security:

	° Checking against a banned list
	° Checking the format of certain data

•	 Generating and processing RSS feeds

Front Controller: single point of access
As we discussed earlier, we are going to implement the Front Controller pattern. This
will provide us with a single point of access to the framework powering Dino Space.

index.php
Our front controller is our index.php file. The first thing we should do is call
session_start, as this needs to be done before anything is sent to the browser,
so by calling it first, we know this will be the case.

session_start();

We should also define a framework path constant, so if we are in another file
elsewhere, and we need to access a file relative to the framework path, we can
use this constant. Overuse of constants isn't recommended, however, and we
are only going to use them on occasions where appropriate.

DEFINE("FRAMEWORK_PATH", dirname(__FILE__) ."/");

Next, we need to build our registry, and tell it which objects to create. As you can
see, the authenticate object is commented out, until we discuss this in Chapter 3.

require('registry/registry.class.php');
$registry = new Registry();
// setup our core registry objects
$registry->createAndStoreObject('template', 'template');
$registry->createAndStoreObject('mysqldb', 'db');
//$registry->createAndStoreObject('authenticate', 'authenticate');
$registry->createAndStoreObject('urlprocessor', 'url');

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Chapter 2

[57]

Next, we can include our configuration file, and connect to the database.

// database settings
include(FRAMEWORK_PATH . 'config.php');
// create a database connection
$registry->getObject('db')->newConnection($configs['db_host_sn'],
 $configs['db_user_sn'], $configs['db_pass_sn'],
 $configs['db_name_sn']);

Now that we are connected to the database, we can look up any settings we have
in a suitable settings table, and store them in our registries settings array. This
should be for things like: administrators notification e-mail address, default view,
if certain features are enabled, and any API keys that we may need if we connect
to third-party services.

// store settings in our registry
$settingsSQL = "SELECT `key`, `value` FROM settings";
$registry->getObject('db')->executeQuery($settingsSQL);
while($setting = $registry->getObject('db')->getRows())
{
 $registry->storeSetting($setting['value'], $setting['key']);
}

The next stage would be to check if the user is logged in, build the default template,
and include the appropriate controller. We don't have any controllers at the moment,
and we haven't discussed how our models and controllers will work, so we will
leave those commented out for now, and return to them in Chapter 3.

// process authentication
// coming in chapter 3

/**
 * Once we have some template files, we can build a default template
$registry->getObject('template')->buildFromTemplates('header.tpl.php',
 'main.tpl.php', 'footer.tpl.php');

$registry->getObject('template')->parseOutput();
print $registry->getObject('template')->getPage()-
>getContentToPrint();
*/

?>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning and Developing the Core Framework

[58]

.htaccess
We are routing all of our requests through our index.php file, and by passing
further information as the page $_GET parameter, this results in URLs which look
like: http://test.com/?page=friends/view/1/Michael_Peacock. This isn't a
particularly nice looking URL, so we use the Apache mod_rewrite module (which
most hosts have installed by default—if you use WAMPServer for development, you
may need to enable it in the Apache Modules menu), to take a nicer URL such as
http://test.com/friends/view/1/Michael_Peacock, which eliminates the
need for ?page=, and translates it into the other format. This is rewritten by
defining a rewrite rule in a .htaccess file within our code.

ErrorDocument 404 /index.php
DirectoryIndex index.php
<IfModule mod_rewrite.c>
 RewriteEngine on
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 RewriteRule ^(.*)$ index.php?page=$1 [L,QSA]
</IfModule>

Let's go through this file, line by line.

1. First, we tell Apache that the index.php file should deal with any 404 errors
(file not found).

2. The index.php file is the default file in the directory, so if someone visits the
folder on the web server with our site in, and doesn't specify a file, index.
php is called automatically.

3. The IfModule block is conditional: the rules only apply if the module
mod_rewrite is installed.

4. If it is installed, we enable the rewrite engine.
5. If the user is trying to request a file, don't follow the rewrite rule (without

this, uploaded files and images wouldn't be displayed as even these requests
would be routed through our index.php file).

6. If the user is trying to access a directory that exists, then the rule isn't
followed again.

7. Finally, we have the rewrite rule, which takes the users request, and
interoperates it as the page $_GET parameter for our index.php file to
process. The rule takes everything from the URL (apart from the domain,
and any folders our site may be stored within) and appends it to the page get
variable. This line also takes any user-specified query strings (for example,
&somefield=somevalue) and appends it to the URL (QSA), and then ignores
other rules if that rule was used (L).

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 2

[59]

Summary
In this chapter, we have discussed a number of best practice techniques for designing
a framework to facilitate rapid development of our social networking website. This
included the Model-View-Controller architectural design pattern, the Registry
pattern, the Front Controller pattern, the Factory pattern, and we also discussed
the Singleton pattern.

We also discussed a suitable directory structure for our social networking site to use,
before building the core objects for our registry, and our front controller.

We now have a simple, lightweight framework that can help us rapidly develop
the rest of our social networking site. In the next chapter, we will look at
user registration, logging in, authentication (which will involve creating our
authentication registry object), and a controller to facilitate user registration.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.zshareall.com

Users, Registration, and
Authentication

With our basic framework in place, we are now able to start developing our social
networking site. The most important aspect of a social networking website is the
users; without users, we don't have a social network. In order to have users who
can use the site (overlooking marketing, and getting users to the site for the
moment), we need to be able to allow users to sign up, log in, and get the details
of a user who is currently logged in. We will also want to be able to manage
permissions of users, to see what they are permitted to do, and what they are
prohibited from doing on the site.

In this chapter, you will learn:

•	 Why privacy policies are important
•	 What core user data to store in the database
•	 How to extend user data to include profile data, without interfering

too much with our users table in the database
•	 Why you would want to implement a CAPTCHA system to prevent

automated signups
•	 The importance of privacy policies
•	 How to verify a user's e-mail address to prevent users signing up with

invalid e-mail addresses
•	 How to process user sign ups and logins, and to check whether a user

is a logged in user
•	 What to do when a user forgets their username or password

With this in place, we will have the first major building block to our social
networking website—users!

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Users, Registration, and Authentication

[62]

Privacy policies
When users sign up to any website, they generally agree to the terms and conditions
of the website, and the privacy policy. While the terms and conditions generally set
out information about liability, conduct on the site, and so on, the privacy policy
explains what will be done with the users' data.

It is important to be clear and honest with users about their data, and reassuring
about the security of their data. Facebook has had a lot of bad press recently relating
to its privacy policy and the tools available to their users to protect their data. In
particular, one of their recent changes resulted in a document that was over 5,800
words long—something that most users won't read or understand (http://www.
huffingtonpost.com/2010/05/12/facebook-privacy-policy-s_n_574389.
html). When stating your privacy policies:

•	 Be clear and concise
•	 Make it clear who can access the data they add to the site:

	° Are all profiles public?
	° How much information is available to what type of user?
	° How can the information be restricted?

•	 Explain who owns the data—does the user retain ownership or do they grant
a licence of use to us?

It is also important for us to think about how we might allow users to change their
own privacy settings, including which profile information they would like to make
public, public only to their network, or completely private—particularly with
regards to contact details and dates of birth.

Some countries also have legislation in place governing the management of user
data, such as the Data Protection Act in the UK. This covers issues such as:

•	 Security—ensuring data is held securely, and isn't easy for others to access,
unless the user's permission has been given

•	 Relevancy—ensuring data held is kept up to date and is relevant
•	 Removal—allowing users to request full removal of their data
•	 Access—allowing users to request copies of all data held about them

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[63]

Users
At their core, users can be represented by a few simple pieces of information:

•	 A unique identifier such as a user ID
•	 A unique identifier that the user themselves can easily remember, such as

their chosen username or their e-mail address
•	 A password, which is used to authenticate the user—to prove they are who

they say they are

As far as our authentication system is concerned, this will be a user. We will of
course extend this with a user profile, but in terms of authentication, this is all the
information we need.

Our user object
Our user object is created when a user tries to log in, either based on submitting
a login form supplying their username and password, or based on session data
for the user ID.

If username and password are supplied, then it checks the credentials and populates
its variables if such a user exists. If only an ID is supplied, then it populates based on
whether there is a user of that ID. Since the authentication class controls whether the
current user is logged in or not, we can use this object to view or perform actions on
other users if we wished, as by separating the two we won't be automatically logged
in as the user populated within this object. As a result, we can extend this object to
reset the user's password, edit the user, deactivate the user, and so on.

The constructor takes four arguments, the registry (dependency injection, so it
can communicate with the rest of the framework), a user ID, a username, and a
password, the latter three being optional, and used as described above.

public function __construct(Registry $registry, $id=0,
 $username='', $password='')
 {
 $this->registry = $registry;

If we haven't set a user ID (that is, $id is 0) and we have set a username and a
password, we should look up the user to see whether these are valid credentials:

 if($id=0 && $username != '' && $password != '')
 {
 $user = $this->registry->getObject('db')-
 >sanitizeData($username);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[64]

As our passwords are hashed in the database, we need to hash the password we
were supplied. We can hash the password directly in the query (by using the MySQL
function MD5), however, this exposes the password in plain text more than required,
as it would be processed and accessed by both PHP and the MySQL server
(which may be stored on a remote machine):

 $hash = md5($password);
 $sql = "SELECT * FROM users WHERE username='{$user}' AND
 password_hash='{$hash}' AND deleted=0";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {

We have a record in the database, so the user is valid, so we set the various
properties of our user object:

 $data = $this->registry->getObject('db')->getRows();
 $this->id = $data['ID'];
 $this->username = $data['username'];
 $this->active = $data['active'];
 $this->banned = $data['banned'];
 $this->admin = $data['admin'];
 $this->email = $data['email'];
 $this->pwd_reset_key = $data['pwd_reset_key'];
 $this->valid = true;
 }
 }
 elseif($id > 0)
 {

If we supplied a user ID, then we look up the user with that ID and populate the
object with their details. As discussed above, we don't want to set them as logged-in
here, because we may use this object to edit, delete, and create users, and integrating
authentication would log out the administrator and log them in as someone else if
they tried to edit an existing user.

 $id = intval($id);
 $sql = "SELECT * FROM users WHERE ID='{$id}' AND deleted=0";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 $this->id = $data['ID'];
 $this->username = $data['username'];
 $this->active = $data['active'];
 $this->banned = $data['banned'];

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[65]

 $this->admin = $data['admin'];
 $this->email = $data['email'];
 $this->pwd_reset_key = $data['pwd_reset_key'];
 $this->valid = true;
 }
 }

 }

Our authentication registry object
One of the first things our framework needs to do, once it is connected to the
database, and some core settings are loaded, is to check whether the current user
is logged in. This is simply done by checking for an active session, and if one exists,
building the user object from that, or checking to see if a username and password
have been supplied, and building the user from that.

This will make up part of our authentication object (registry/authentication.
class.php), which will reside in our registry and interact with the user object.

The checkForAuthentication method checks both for an active session and user
credentials being passed in POST data, and calls additional methods to build the
user object if appropriate.

public function checkForAuthentication()
 {

Initially, we remove any error template tags on the page (which we would use to
inform the user of an invalid login):

 $this->registry->getObject('template')->getPage()-
 >addTag('error', '');

 if(isset($_SESSION['sn_auth_session_uid']) && intval($_
 SESSION['sn_auth_session_uid']) > 0)
 {

If session data is set, we call the sessionAuthenticate method:

 $this->sessionAuthenticate(intval($_SESSION['sn_auth_
 session_uid']));

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[66]

The sessionAuthenticate method then sets the loggedIn property to indicate
whether the user is logged in or not:

 if($this->loggedIn == true)
 {
 $this->registry->getObject('template')->getPage()-
 >addTag('error', '');

 }
 else
 {

If the user is not logged in, and we have a valid session, then something went wrong
somewhere, so we should inform the user their login attempt was not successful:

 $this->registry->getObject('template')->getPage()-
 >addTag('error', '<p>Error: Your username or
 password was not correct,
 please try again</p>');
 }
 }

If session data was not set, we check for post data, and call the postAuthenticate
method if appropriate, following the same steps as above.

 elseif(isset($_POST['sn_auth_user']) &&
 $_POST['sn_auth_user'] != '' && isset(
 $_POST['sn_auth_pass']) && $_POST['sn_auth_pass'] != '')
 {
 $this->postAuthenticate($_POST['sn_auth_user'] , $_
 POST['sn_auth_pass']);
 if($this->loggedIn == true)
 {
 $this->registry->getObject('template')->getPage()-
 >addTag('error', '');

 }
 else
 {
 $this->registry->getObject('template')->getPage()-
 >addTag('error', '<p>Error: Your username or
 password was not correct,
 please try again</p>');
 }
 }
 elseif(isset($_POST['login']))
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[67]

If the login post variable has been set, but neither session data or POST login data
has been submitted, then the user didn't enter a username or a password, so we
should tell them this:

 $this->registry->getObject('template')->getPage()-
 >addTag('error', '<p>Error:
 Your must enter a username and a password</p>');
 }

 }

This method also sets suitable template tag variables for standard errors if there was
a problem authenticating the user.

POST authentication
In the code above, if the user has tried to log in by submitting a login form, the
postAuthenticate method is called. This method is shown below. It utilizes the
user object to query the database, if the user exists and is logged in, then it sets the
appropriate session data, as highlighted below:

private function postAuthenticate($u, $p)
 {
 $this->justProcessed = true;
 require_once(FRAMEWORK_PATH.'registry/user.class.php');
 $this->user = new User($this->registry, 0, $u, $p);

 if($this->user->isValid())
 {
 if($this->user->isActive() == false)
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'inactive';
 }
 elseif($this->user->isBanned() == true)
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'banned';
 }
 else
 {
 $this->loggedIn = true;
 $_SESSION['sn_auth_session_uid'] = $this->user-
 >getUserID();
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[68]

 }
 else
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'invalidcredentials';
 }
 }

SESSION authentication
If the user hasn't tried to log in by submitting a form, but has some session data set,
we try and authenticate them based on the session data:

private function sessionAuthenticate($uid)
 {
 require_once(FRAMEWORK_PATH.'registry/user.class.php');
 $this->user = new User($this->registry, intval($_SESSION['sn_
 auth_session_uid']), '', '');

 if($this->user->isValid())
 {
 if($this->user->isActive() == false)
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'inactive';
 }
 elseif($this->user->isBanned() == true)
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'banned';
 }
 else
 {
 $this->loggedIn = true;
 }

 }
 else
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'nouser';
 }
 if($this->loggedIn == false)
 {
 $this->logout();
 }

 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[69]

Salt your passwords!
Our passwords are stored in the database as an MD5 one-way hash.
This means we don't keep a copy of the user's password; instead, we
hash the password when they try to log in, and compare the hash to
the password in the database. If our database was compromised, our
users' passwords should be safe. This hashing cannot be reversed, but
there are dictionaries available for common words or phrases, which
means it is possible to work out some passwords from the hashes. We
can prevent this further by salting the password; this involves adding
a "salt" to the password and then hashing it. This is typically done by
creating a random string for each user and storing it in their row in the
users table. Passwords in the Dino Space code are currently not salted,
to make it easier should you wish to change how the passwords are
hashed, or integrate with other login systems.

Structuring the database
For our users table (without social profile data), we need the following fields:

Field Type Description
ID Integer, Primary

Key, Auto-increment
The unique user ID

Username Varchar The username
Password_hash Varchar The MD5 hash of the user's password
Password_salt Varchar(5) If we decide to salt our passwords
Email Varchar The user's e-mail address
Active Bool Defines whether the user account is active or not
Admin Bool Defines whether the user account is an

administrator or not
Banner Bool Defines whether the user account has been

banned
reset_key Varchar Random string used for resetting the password

when the user forgets it
Reset_expires Timestamp Time at which that reset string expires—

preventing someone spamming a user by
constantly requesting a new key

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[70]

Registration
We currently have two primary database tables for our users. A users table,
containing the core user data, and a users_profile table, containing other
(non-essential) information.

Standard details
Our core registration fields are defined in our registration controller; they
are stored as array pairs, referencing the field name with a more descriptive
name (the more descriptive name is used for error messages).

 /**
 * Standard registration fields
 */
 private $fields = array('user' => 'username', 'password' =>
 'password', 'password_confirm' => 'password confirmation',
 'email' => 'email address');

 /**
 * Any errors in the registration
 */
 private $registrationErrors = array();

 /**
 * Array of error label classes - allows us to make a field a
 different color, to indicate there were errors
 */
 private $registrationErrorLabels = array();

 /**
 * The values the user has submitted when registering
 */
 private $submittedValues = array();

 /**
 * The santized versions of the values the user has submitted -
 these are database ready
 */
 private $sanitizedValues = array();

 /**
 * Should our users automatically be "active" or should they
 require email verification?
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[71]

 private $activeValue = 1;
private function checkRegistration()
 {

We set an allClear variable, to indicate that the values submitted are all acceptable.
Each time an error is encountered, this is set to false, so that we can report the error
back to the user:

 $allClear = true;

The first stage is to check whether the user has actually submitted all of the required
fields, if any of them are blank, then we flag these errors to the user.

 // blank fields
 foreach($this->fields as $field => $name)
 {
 if(! isset($_POST['register_' . $field]) ||
 $_POST['register_' . $field] == '')
 {

If any are blank, our allClear variable is set to false, and we generate error strings,
and store them in our errors array:

 $allClear = false;
 $this->registrationErrors[] = 'You must enter a ' . $name;
 $this->registrationErrorLabels['register_' . $field . '_
 label'] = 'error';
 }
 }

Next, we can check the values in more detail. Let's start with the password!

We will want the password to be at least seven characters, to help ensure it is secure.
To prevent issues of a user not knowing their password because they entered it
incorrectly, we ask the user to verify their password, so we must also check the
password and its verification match:

 // passwords match
 if($_POST['register_password']!= $_POST['register_password_
 confirm'])
 {
 $allClear = false;
 $this->registrationErrors[] = 'You must confirm your
 password';
 $this->registrationErrorLabels['register_password_label'] =
 'error';
 $this->registrationErrorLabels['register_password_confirm_
 label'] = 'error';

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[72]

 }

 // password length
 if(strlen($_POST['register_password']) < 6)
 {
 $allClear = false;
 $this->registrationErrors[] = 'Your password is too short, it
 must be at least 6 characters';
 $this->registrationErrorLabels['register_password_label'] =
 'error';
 $this->registrationErrorLabels['register_password_confirm_
 label'] = 'error';
 }

Next, we have the e-mail address—we need to check it for header injection, and
that the format of the e-mail address is correct. The first highlighted section of code
shows the header injection check, and the second shows the format check.

 // email headers
 if(strpos((urldecode($_POST['register_email'])), "\r")
 === true || strpos((urldecode($_POST['register_email']
)), "\n") === true)
 {
 $allClear = false;
 $this->registrationErrors[] = 'Your email address is not
 valid (security)';
 $this->registrationErrorLabels['register_email_label'] =
 'error';
 }

 // email valid
 if(! preg_match("^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-
 z0-9-]+)*(\.[a-z]{2,4})^", $_POST['register_email']))
 {
 $allClear = false;
 $this->registrationErrors[] = 'You must enter a valid email
 address';
 $this->registrationErrorLabels['register_email_label'] =
 'error';

 }

To help protect us from a legal perspective, we should get legal advice on the policies
and terms and conditions we need to enforce on our social network. When we have
such terms in place, we will want our users to accept these before allowing them to
join—let's ensure they ticked the appropriate box on our registration form template:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[73]

 // terms accepted
 if(! isset($_POST['register_terms']) || $_POST['register_
 terms'] != 1)
 {
 $allClear = false;
 $this->registrationErrors[] = 'You must accept our terms and
 conditions.';
 $this->registrationErrorLabels['register_terms_label'] =
 'error';
 }

If a user signs up with the e-mail address or username of an existing user, we will
have some problems—particularly when they come to log in, or request an e-mail to
reset their password. To prevent this, we need to check that the username and e-mail
address are not currently in use by another user, which can be done with a simple
database query:

 // duplicate user+email check
 $u = $this->registry->getObject('db')->sanitizeData($_
 POST['register_user']);
 $e = $this->registry->getObject('db')->sanitizeData($_
 POST['register_email']);
 $sql = "SELECT * FROM users WHERE username='{$u}' OR
 email='{$e}'";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 2)
 {
 $allClear = false;
 // both
 $this->registrationErrors[] = 'Both your username and email
 address are already in use on this site.';
 $this->registrationErrorLabels['register_user_label'] =
 'error';
 $this->registrationErrorLabels['register_email_label'] =
 'error';
 }
 elseif($this->registry->getObject('db')->numRows() == 1)
 {
 // possibly both, or just one
 $u = $this->registry->getObject('db')->sanitizeData($_
 POST['register_user']);
 $e = $this->registry->getObject('db')->sanitizeData($_
 POST['register_email']);
 $data = $this->registry->getObject('db')->getRows();
 if($data['username'] == $u && $data['email'] == $e)
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[74]

 $allClear = false;
 $this->registrationErrors[] = 'Both your username and
 password are already in use on this site.';
 $this->registrationErrorLabels['register_user_label'] =
 'error';
 $this->registrationErrorLabels['register_email_label'] =
 'error';
 // both
 }
 elseif($data['username'] == $u)
 {
 $allClear = false;
 // username
 $this->registrationErrors[] = 'Your username is already
 in use on this site.';
 $this->registrationErrorLabels['register_user_label'] =
 'error';

 }
 else
 {
 $allClear = false;
 // email address
 $this->registrationErrors[] = 'Your email address is
 already in use on this site.';
 $this->registrationErrorLabels['register_email_label'] =
 'error';
 }
 }

Finally, before we go onto profile fields, we check to see if we have enabled
CAPTCHA. If we have, then we should do a check that the user is a human
and not an automated spam bot. We will discuss CAPTCHA implementation
later in this chapter.

 // captcha
 if($this->registry->getSetting('captcha.enabled') == 1)
 {
 // captcha check
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[75]

Now that we have checked all of the core fields, we pass control to our registration
extension, which will process all of the profile related fields:

 // hook
 if($this->registrationExtention->checkRegistrationSubmission()
 == false)
 {
 $allClear = false;
 }

If all is clear (that is, there were no errors either from this function, or the registration
controller extension), then we store our sanitized data, and return true—so that
another method can create the user account and profile:

 if($allClear == true)
 {
 $this->sanitizedValues['username'] = $u;
 $this->sanitizedValues['email'] = $e;
 $this->sanitizedValues['password_hash'] = md5($_
 POST['register_password']);
 $this->sanitizedValues['active'] = $this->activeValue;
 $this->sanitizedValues['admin'] = 0;
 $this->sanitizedValues['banned'] = 0;

 $this->submittedValues['register_user'] = $_POST['register_
 user'];
 $this->submittedValues['register_password'] = $_
 POST['register_password'];
 return true;
 }
 else
 {
 $this->submittedValues['register_user'] = $_POST['register_
 user'];
 $this->submittedValues['register_email'] = $_POST['register_
 email'];
 $this->submittedValues['register_password'] = $_
 POST['register_password'] ;
 $this->submittedValues['register_password_confirm'] = $_
 POST['register_password_confirm'] ;
 $this->submittedValues['register_captcha'] = (isset($_
 POST['register_captcha']) ?
 $_POST['register_captcha'] : '');
 return false;
 }

 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[76]

Hooking additional fields on
Depending on the social network we were developing, we will have different
profile fields. To make our code flexible, these fields are abstracted to a registration
extension, so if we reuse our code, we simply need to change this one file to process
these additional fields, and we know that it won't interfere with our core fields. In
Dino Space land, citizens are only permitted to keep one Dinosaur, after all, who
could cope with looking after more than one! This would need to be tweaked slightly
if we wanted to extend our registration form to accept any number of a particular
set of fields. There is some JavaScript available to help with such a situation
(http://www.michaelpeacock.co.uk/blog/entry/add-another-item-with-
php-and-jquery and http://www.michaelpeacock.co.uk/blog/entry/add-
another-the-jquery-plugin should get you started if you want to try it).

For Dino Space, there are going to be certain profile fields we want, and some
examples include:

•	 Dinosaur's name
•	 Dinosaur's breed
•	 Dinosaur's gender
•	 Dinosaur's date of birth

The registry extension works in a similar way to the core registration controller,
except the data validation is more dynamic, based on how the additional profile
fields are defined. For example, to create the four additional profile fields from
above, we would define the following:

 private $registry;
 private $extraFields = array();
 private $errors = array();
 private $submittedValues = array();
 private $sanitizedValues = array();
 private $errorLabels = array();

 public function __construct($registry)
 {
 $this->registry = $registry;
 $this->extraFields['dino_name'] = array('friendlyname' =>
 'Pet Dinosaurs Name', 'table' => 'profile', 'field' =>
 'dino_name', 'type' => 'text', 'required' => false);
 $this->extraFields['dino_breed'] = array('friendlyname' =>
 'Pet Dinosaurs Breed', 'table' => 'profile', 'field' =>
 'dino_breed', 'type' => 'text', 'required' => false);
 $this->extraFields['dino_gender'] = array('friendlyname' =>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[77]

 'Pet Dnosaurs Gender', 'table' => 'profile', 'field' =>
 'dino_gender', 'type' => 'list', 'required' => false,
 'options' => array('male', 'female'));
 $this->extraFields['dino_dob'] = array('friendlyname' => 'Pet
 Dinosaurs Date of Birth', 'table' => 'profile', 'field' =>
 'dino_dob', 'type' => 'DOB', 'required' => false);
 }

Let's take a look at why we structure our extraFields like this. To do this, we need
to look at how the extension validates the registration submission.

public function checkRegistrationSubmission()
 {

We set a $valid variable (just like our allClear variable in the registration
controller). If there are errors, we set this to false.

 $valid = true;

We now iterate through the fields to process them individually:

 foreach($this->extraFields as $field => $data)
 {

Firstly, we check to see whether the field is required (from the required element of
the data array). If it is, we check that the user has submitted a value. If they haven't,
we store the necessary errors.

 if((! isset($_POST['register_' . $field]) ||
 $_POST['register_' . $field] == '')
 && $data['required'] = true)
 {
 $this->submittedValues[$field] = $_POST['register_' .
 $field];
 $this->errorLabels['register_' . $field .'_label'] =
 'error';
 $this->errors[] = 'Field ' . $data['friendlyname'] . '
 cannot be blank';
 $valid = false;
 }

If the field isn't required, and hasn't been set, then we note that, and move on.

 elseif($_POST['register_' . $field] == '')
 {
 $this->submittedValues['register_' . $field] = '';
 }
 else
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[78]

If our field is set, we then validate it depending on the type of data we are expecting.
By default, there are three options:

•	 Text—text inputs
•	 Int—integers
•	 List—list of predefined options

However, it has been designed to allow other types to be plugged in, for instance,
dates. The type also dictates how the data should be sanitized.

 if($data['type'] == 'text')
 {
 $this->sanitizedValues['register_' . $field] = $this-
 >registry->getObject('db')->sanitizeData($_
 POST['register_' . $field]);
 $this->submittedValues['register_' . $field] = $_
 POST['register_' . $field];
 }
 elseif($data['type'] == 'int')
 {
 $this->sanitizedValues['register_' . $field] =
 intval($_POST['register_' . $field]);
 $this->submittedValues['register_' . $field] = $_
 POST['register_' . $field];
 }
 elseif($data['type'] == 'list')
 {

If the data type is a list, we simply check to see whether the value is in the array of
options, if it isn't we have an error, if it is—everything is OK.

 if(! in_array($_POST['register_' . $field],
 $data['options']))
 {
 $this->submittedValues[$field] = $_
 POST['register_' . $field];
 $this->errorLabels['register_' . $field .'_label'] =
 'error';
 $this->errors[] = 'Field ' . $data['friendlyname'] .
 ' was not valid';

 $valid = false;
 }
 else
 {
 $this->sanitizedValues['register_' . $field] =
 intval($_POST['register_' . $field]);
 $this->submittedValues['register_' . $field] = $_
 POST['register_' . $field];

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[79]

 }
 }
 else
 {

Finally, for non-standard cases, we call a custom method, which we would create for
each such type:

 $method = 'validate_' . $data['type'];
 if($this->$method($_POST['register_' . $field]) ==
 true)
 {
 $this->sanitizedValues['register_' . $field] =
 $this->registry->getObject('db')->sanitizeData(
 $_POST['register_' . $field]);
 $this->submittedValues['register_' . $field] = $_
 POST['register_' . $field];
 }
 else
 {
 $this->sanitizedValues['register_' . $field] =
 $this->registry->getObject('db')->sanitizeData(
 $_POST['register_' . $field]);
 $this->submittedValues['register_' . $field] = $_
 POST['register_' . $field];
 $this->errors[] = 'Field ' . $data['friendlyname'] .
 ' was not valid';
 $valid = false;
 }
 }
 }
 }

Once all the processing has been done, and sanitized data has been stored, we simply
return whether there were errors or not:

 if($valid == true)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[80]

Processing the registration
Once we have processed all of the fields submitted and checked that they are all
valid, we are then ready to create our user account and our profile. Creating the user
is a simple case of inserting the serialized values into the users table. Then, we pass
control to the extension so that it can process the profile fields.

/**
 * Process the users registration, and create the user and users
 profiles
 * @return int
 */
 private function processRegistration()
 {
 // insert
 $this->registry->getObject('db')->insertRecords('users',
 $this->sanitizedValues);
 // get ID
 $uid = $this->registry->getObject('db')->lastInsertID();
 // call extension to insert the profile
 $this->registrationExtention->processRegistration($uid);
 // return the ID for the frameworks reference - autologin?
 return $uid;
 }

Creating the profile
Within our extra fields array, we noted the table and field that the submitted value
should be inserted into. This method goes through the array, and groups the values
for each table, to ensure that only one insert is performed per additional table.

The advantage of this means if we added fields for another table (perhaps
subscription information for paid user accounts), we can do this without
needing to add more functionality to our extension.

/**
 * Create our user profile
 * @param int $uid the user ID
 * @return bool
 */
 public function processRegistration($uid)
 {
 $tables = array();
 $tableData = array();

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[81]

 // group our profile fields by table, so we only need to do one
 insert per table
 foreach($this->extraFields as $field => $data)
 {
 if(! (in_array($data['table'], $tables)))
 {
 $tables[] = $data['table'];
 $tableData[$data['table']] = array('user_id' => $uid,
 $data['field'] => $this->sanitizedValues['register_' .
 $field]);
 }
 else
 {
 $tableData[$data['table']] = array('user_id' => $uid,
 $data['field'] => $this->sanitizedValues['register_' .
 $field]);
 }
 }
 foreach($tableData as $table => $data)
 {
 $this->registry->getObject('db')->insertRecords($table,
 $data);
 }
 return true;
 }

Putting it all together: registration constructor
So, we have gone through our registration controller, and our registration controller
extension to see how they process data to create our user account and user profile.
We now just need to bring this all together in the constructor.

Firstly, we assign our registry object:

$this->registry = $registry;

Next, we include the extension file, and create the object:

 require_once FRAMEWORK_PATH . 'controllers/authenticate/
 registrationcontrollerextention.php';
 $this->registrationExtention = new
 Registrationcontrollerextention($this->registry);

We then check to see if the user has tried to submit the registration form:

 if(isset($_POST['process_registration']))
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[82]

If they have submitted the form, we check the registration, to see if the values are valid:

 if($this->checkRegistration() == true)
 {

If the form was completed properly, we can then process the registration and create
the user account and the profile:

 $userId = $this->processRegistration();
 if($this->activeValue == 1)
 {

If we have set all users to be active by default, we log the user in automatically:

 $this->registry->getObject('authenticate')-
 >forceLogin($this->submittedValues['register_
 user'], md5($this->submittedValues['register_
 password']));
 }
 $this->uiRegistrationProcessed();
 }
 else
 {

If the registration attempt wasn't successful, we display the user interface, passing a
parameter to indicate that errors need to be displayed.

 $this->uiRegister(true);
 }

 }

Finally, if the user is just viewing the registration form, we simply show them that
(courtesy of the uiRegister method).

 else
 {
 $this->uiRegister(false);
 }

CAPTCHA
We don't want our social network to get clogged up with automated signups that
aren't going to add anything to our site. We can use a CAPTCHA (Completely
Automated Public Turing test to tell Computers and Human Apart) challenge to
test that the sign up is a genuine person. A CAPTCHA challenge is often a series
of words embedded in an image, many computer systems can't automatically pick
up the text from this image, whereas a human can, helping to tell which signup is a
human and which is an automated computer.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Chapter 3

[83]

General CAPTCHA
Generally, CAPTCHA systems work by:

•	 Generating a random phrase or string.
•	 Storing this phrase in the user's session (so they can't see it, but we have a

persistent copy as they move from the registration form, to process their
registration. This is also useful as the image is generally generated by a
separate HTTP request—so the session is needed to maintain the value).

•	 Displaying a slightly distorted version of the phrase on the registration form
within an image.

•	 The user enters the text from the image into a text box.
•	 When they submit the registration form, we compare this value

to the value of the appropriate session field—if they match, it passes.

reCAPTCHA
reCAPTCHA is a widely used CAPTCHA solution, we will look at implementing
this in Chapter 12, Deployment, Security, and Maintenance.

Where do I sign up?
So we have all of this excellent sign up functionality, however, we need a template
for our view! Below is code for our views/default/templates/authenticate/
register/main.tpl.php file. This code contains HTML fields for all of the fields
we have set in the registration controller and its extension:

<div id="main">

 <div id="rightside">
 </div>

 <div id="content">
 <h1>Join DINO SPACE!</h1>

If the user makes a mistake, we need to list any issues. To allow this, we have a
template tag that is replaced with the errors list if there are errors. If there are no
errors, the tag is removed:

 {error}
 <form action="authenticate/register" method="post">

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[84]

The values for these fields are then set to what the user had typed in when they
submitted the form, saving them the need to re-enter all of the data that was actually
correct. We can also add a tag to change the style of the label to indicate a problem if
we wish:

<label for="register_user">Username</label>

<input type="text" id="register_user" name="register_user"
value="{register_user}" />

<label for="register_password">Password</label>

<input type="password" id="register_password" name="register_password"
value="" />

<label for="register_password_confirm">Confirm password</label>

<input type="password" id="register_password_confirm" name="register_
password_confirm" value="" />

<label for="register_email">Email</label>

<input type="text" id="register_email" name="register_email"
value="{register_email}" />

<label for="register_dino_name">Name of dinosaur</label>

<input type="text" id="register_dino_name" name="register_dino_name"
value="{register_dino_name}" />

<label for="register_dino_breed">Breed of dinosaur</label>

<input type="text" id="register_dino_breed" name="register_dino_breed"
value="{register_dino_breed}" />

<label for="register_dino_gender">Gender of dinosaur</label>

<select id="register_dino_gender" name="register_dino_gender">
<option value="male">male</option>
<option value="female">female</option>
</select>

<label for="register_dino_dob">Dinosaurs Date of Birth (dd/mm/yy)</
label>

<input type="text" id="register_dino_dob" name="register_dino_dob"
value="{register_dino_dob}" />

<label for="">Do you accept our terms and conditions?</label>

<input type="checkbox" id="register_terms" name="register_terms"
value="1" />

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[85]

<input type="submit" id="process_registration" name="process_
 registration" value="Create an account" />
</form>

 </div>

 </div>

Now, assuming we have added authenticate as a controller in our controllers
table in the database (so the framework knows to pass control to it), we can go to
http://ourwebsite/authenticate/register to create an account, and we are
presented with the following registration screen:

As well as this template, we need an error template, for any error messages to be
inserted into, and a complete template, to thank the user for joining. These templates
(views/default/templates/authenticate/register/*.tpl.php), as well as the
header and footer, are included in the code accompanying this chapter.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[86]

E-mail verification
With CAPTCHA implemented, we know that our user is a human, however, we
should still try and verify their e-mail address; there are a number of reasons for
this, including:

•	 Preventing a user from signing up multiple times.
•	 Ensuring our records are up to date—particularly useful if a user forgets

their password or e-mail address.
•	 If the user is troublesome, we have more ability to prevent repeat-sign ups

(unless they have multiple e-mail addresses), and most ISP's have an abuse
e-mail account we can contact to report such users.

•	 Adding value—when users build relationships through our site, or send
messages to each other, they may want to receive e-mail notifications. If we
don't have their valid e-mail address, then they won't get these, and they
may lose interest in the site, when their own network is expanding without
their knowledge.

Sending e-mails
As we are developing a social network, we will need to frequently send e-mails, not
just for e-mail verification, but also for reminding users of their details, informing
them of users who are connecting with them, and sending news updates. To make
this easier, we should create a simple class to manage e-mail sending.

The code for this class is in the mailout.class.php file in the code that accompanies
this chapter; however, let's have a look at some of the code. This class is based on the
template manager class, in that it includes a template file, and replaces certain tags
with the data that we supply. The main difference is we don't have a page object, and
instead of being output to the browser, it is e-mailed to our user.

Another difference with our template handler is that once we have sent a series of
templates to the browser, the handler has completed its job. With the e-mail object,
we may wish to send more than one e-mail during a single execution of the script.
To accommodate this, we use the startFresh() method. This method contains code
that would be more suited to the constructor, but is called before each new e-mail we
send, wiping the e-mail contents.

public function startFresh()
 {
 // not in constructor because object is reused, so this is done
 on each "new email"
 $this->lock = false;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[87]

 $this->error = 'Message not sent because: ';
 $this->message = '';
 }

When sending an e-mail, we are more often than not, going to be sending it to a user
of the site, or to the contact of a user. One concern with an e-mailing code, is sending
automated spam. We can detect for this, by searching for text designed to create new
headers (that is, setting new recipients, or recipients to be carbon-copied in on the
e-mail).

/**
 * Sets the recipient
 * @param String the recipient
 * @return bool
 */
 public function setTo($to)
 {

If the e-mail address contains header characters, it is rejected:

 if(eregi("\r",(urldecode($to))) || eregi("\n",(urldecode($to))))
 {

 // bad - header injections

 $this->lock();
 $this->error .= ' Receipient Email header injection attempt,
 probably caused by spam attempts';
 return false;

 }

If the e-mail address does not meet the standard format of an e-mail address, it is
also rejected:

 elseif(! eregi("^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-
 z0-9-]+)*(\.[a-z]{2,3})$", $to))
 {
 // bad - invalid email

 $this->lock();
 $this->error .= ' Recipient Email address no valid';
 return false;

 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[88]

Otherwise, we can send our e-mail:

 else
 {
 //good - let's do it!
 $this->to = $to;
 return true;

 }

 }

The content of the e-mail is built from a number of e-mail templates:

public function buildFromTemplates()
 {
 $bits = func_get_args();
 $content = "";
 foreach($bits as $bit)
 {

 if(strpos($bit, 'emailtemplates/') === false)
 {
 $bit = 'emailtemplates/' . $bit;
 }
 if(file_exists($bit) == true)
 {
 $content .= file_get_contents($bit);
 }

 }
 $this->message = $content;
 }

Template tags are replaced within the e-mail templates, in a similar way to the
template manager:

public function replaceTags($tags)
 {
 // go through them all
 if(sizeof($tags) > 0)
 {
 foreach($tags as $tag => $data)
 {
 // if the tag is an array, then we need to do more than
 a simple find and replace!

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[89]

 if(! is_array($data))
 {
 // replace the content
 $newContent = str_replace('{' . $tag . '}', $data,
 $this->message);
 // update the pages content
 $this->message = $newContent;
 }
 }
 }

 }

When it comes to sending the e-mail, we simply check that there are no "locks"
caused by errors we have encountered, and then perform a simple mail() call to
send the e-mail:

/**
 * Sends the email using Send Mail
 * @return void
 */
 public function sendWithSendmail()
 {
 if($this->lock == true)
 {
 return false;
 }
 else
 {
 if(! @mail($this->to, $this->subject, $this->message,
 $this->headers))
 {
 $this->error .= ' problems sending via PHP\'s mail
 function';
 return false;
 }
 else
 {
 return true;
 }
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[90]

True or false is returned, so we know if our mail object was successful in its e-mail
attempt, allowing us to either inform the user, or store a log of the error somewhere
for the administrator, if we wish.

Room for improvement
As with everything, there is room for improvement in this code, for instance:

•	 The only mail delivery method it uses is PHP's mail() function
•	 Mails are sent instantly—if our system is sending lots of e-mails frequently,

we may wish to integrate this with a queuing system
•	 Only plain text e-mails are sent (HTML e-mails can be sent using this, but

this is a messy way to send HTML e-mails)

Sending the e-mail verification e-mail
With suitable functionality in our framework to send e-mails, how would we go
about sending a verification e-mail to our new user?

1. Set the user to inactive.
2. Generate a random string, and assign it to the user. This is the

verification key.
3. E-mail the user a link that includes their user ID and the verification key.
4. When they click on the link, we verify the verification key, and if appropriate,

update their user account.

Authentication with our authentication
object
With our user authentication object in place in our registry, we are now able to link
into this to determine whether the current user is a logged in user, or not, and if they
are we can also log them out.

Logging in
One of the first things our framework should do, once it has connected to the
database, is perform authentication checks. This should do one of two things; it
should either check the current user's session data to see if we potentially have a user
who is already logged in. If this is the case, it should perform checks to see if they
are a valid user, and build up the user object as appropriate. If this is not the case,
it should check to see if certain form fields have been submitted (such as username

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[91]

and password); if they have been, it should check to see if these are valid, and if
appropriate, authenticate the user:

$registry->getObject('authenticate')->checkForAuthentication();

This isn't part of the objects constructor, because we need to connect to the database
(which is done after we instantiate the authentication object) first.

Are we logged in?
After calling our main authentication method within the authentication object, we
now probably want to know whether our user is logged in or not. If they are not, we
will give them an overview page about Dino Space, and why they should join, and
give them access to the login page, the signup page, and some other generic pages
of content, such as terms and conditions, contact us, privacy policy, and so on. If they
are logged in, we will probably want to take them to their profile, from which they
can check for recent activity and communicate with their contacts.

if($registry->getObject('authenticate')->isLoggedIn())
{
 //
}
else
{
 //
}

Logging out
When a user is done with the site for the time being, we want them to be able to
log out to prevent anyone else who shares their computer from being able to log
in as them. This problem is often illustrated by many student users of Facebook,
who leave their account signed in and their computer switched on in shared
accommodation, only to find their profiles have been vandalised.

Checking for a logout request can be handled by our authentication controller. This
can simply check the URL to see if it contains a logout request, and if it does, it can
logout the user, and redirect them to the homepage:

private function logout()
 {
 $this->registry->getObject('authenticate')->logout();
 $this->registry->getObject('template')-
 >addTemplateBit('userbar', 'userbar-guest.tpl.php');
 $this->registry->getObject('template')-
 >buildFromTemplates('header.tpl.php', 'login.tpl.php',
 'footer.tpl.php');
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[92]

Remember me
Our current implementation of an authentication system relies on SESSION data,
which expires at the end of a user's session (either a specific time-limit set by the
server, or when the user closes their browser, whichever occurs first). Many users
want to be remembered when they log in to certain sites they use on a regular basis,
to save the trouble of continually logging in every day, or even several times a day.

This can be achieved by combining sessions with cookies. However, as cookies last
for longer periods of time and are stored on the user's computer (whereas sessions
are stored on the server) cookie authentication will need to be more advanced. One
option would be to store a random salted hash of the time the user logged in, within
the cookie. If we simply relied on the user ID being stored in the cookie, it would be
easy for users to create fake cookies, and thus take control of other users accounts.

Help! I've forgotten!
Some of our users will probably forget their login details, particularly if they haven't
used our site for a while. If we don't have provisions for this, then we will lose users.

There are three types of reminder we should include:

•	 Username reminder
•	 Password reminder
•	 Resend e-mail verification message

Let's look at implementing these features in our authentication controller.

Username
If the user forgets his/her username, they simply supply their e-mail address, and
we e-mail them a reminder:

 private function forgotUsername()
 {
 if(isset($_POST['email']) && $_POST['email'] != '')
 {
 $e = $this->registry->getObject('db')->sanitizeData($_
 POST['email']);
 $sql = "SELECT * FROM users WHERE email='{$e}'";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 // email the user
 $this->registry->getObject('mailout')->startFresh();

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[93]

 $this->registry->getObject('mailout')->setTo($_
 POST['email']);
 $this->registry->getObject('mailout')->setSender($this-
 >registry->getSetting('adminEmailAddress'));
 $this->registry->getObject('mailout')->setFromName($this-
 >registry->getSetting('cms_name'));
 $this->registry->getObject('mailout')->setSubject(
 'Username details for ' .$this->registry-
 >getSetting('sitename'));
 $this->registry->getObject('mailout')-
 >buildFromTemplates('authenticate/username.tpl.php');
 $tags = $this->values;
 $tags['sitename'] = $this->registry-
 >getSetting('sitename');
 $tags['username'] = $data['username'];
 $tags['siteurl'] = $this->registry->getSetting('site_
 url');
 $this->registry->getObject('mailout')-
 >replaceTags($tags);
 $this->registry->getObject('mailout')-
 >setMethod('sendmail');
 $this->registry->getObject('mailout')->send();

 // tell them that we emailed them
 $this->registry->errorPage('Username reminder sent',
 'We have sent you a reminder of your username, to the
 email address we have on file');

 }
 else
 {
 // no user found
 $this->registry->getObject('template')-
 >buildFromTemplates('header.tpl.php', 'authenticate/
 username/main.tpl.php', 'footer.tpl.php');
 $this->registry->getObject('template')-
 >addTemplateBit('error_message', 'authenticate/username/
 error.tpl.php');
 }
 }
 else
 {
 // form template
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'authenticate/username/main.tpl.php',
 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()-
 >addTag('error_message', '');
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[94]

Password
If the user forgets his/her password, they enter their username, and we generate a
password reset key, and e-mail them a link to reset the password:

private function forgotPassword()
 {
 if(isset($_POST['username']) && $_POST['username'] != '')
 {
 $u = $this->registry->getObject('db')->sanitizeData($_
 POST['username']);
 $sql = "SELECT * FROM users WHERE username='{$u}'";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 // have they requested a new password recently?
 if($data['reset_expires'] > date('Y-m-d h:i:s'))
 {
 // inform them
 $this->registry->errorPage('Error sending password
 request', 'You have recently requested a password
 reset link, and as such you must wait a short while
 before requesting one again. This is for security
 reasons.');
 }
 else
 {
 // update their row
 $changes = array();
 $rk = $this->generateKey();
 $changes['reset_key'] = $rk;
 $changes['reset_expires'] = date('Y-m-d h:i:s',
 time()+86400);
 $this->registry->getObject('db')->updateRecords(
 'users', $changes, 'ID=' . $data['ID']);
 // email the user
 $this->registry->getObject('mailout')->startFresh();
 $this->registry->getObject('mailout')->setTo($_
 POST['email']);
 $this->registry->getObject('mailout')->setSender(
 $this->registry->getSetting('adminEmailAddress'));
 $this->registry->getObject('mailout')->setFromName(
 $this->registry->getSetting('cms_name'));
 $this->registry->getObject('mailout')->setSubject(
 'Password reset request for ' .$this->registry-
 >getSetting('sitename'));

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Chapter 3

[95]

 $this->registry->getObject('mailout')-
 >buildFromTemplates('authenticate/password.tpl.php');
 $tags = $this->values;
 $tags['sitename'] = $this->registry-
 >getSetting('sitename');
 $tags['username'] = $data['username'];
 $url = $this->registry->buildURL('authenticate',
 'reset-password', $data['ID'], $rk);
 $tags['url'] = $url;
 $tags['siteurl'] = $this->registry->getSetting('site_
 url');
 $this->registry->getObject('mailout')->replaceTags(
 $tags);
 $this->registry->getObject('mailout')-
 >setMethod('sendmail');
 $this->registry->getObject('mailout')->send();

 // tell them that we emailed them
 $this->registry->errorPage('Password reset link sent',
 'We have sent you a link which will allow you to
 reset your account password');
 }

 }
 else
 {
 // no user found
 $this->registry->getObject('template')-
 >buildFromTemplates('header.tpl.php', 'authenticate/
 password/main.tpl.php', 'footer.tpl.php');
 $this->registry->getObject('template')-
 >addTemplateBit('error_message', 'authenticate/password/
 error.tpl.php');
 }
 }
 else
 {
 // form template
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'authenticate/password/main.tpl.php',
 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()-
 >addTag('error_message', '');
 }
 }

The link is used to verify the user (as it is sent to their e-mail address) where they can
reset the password.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[96]

Let them reset the password
The password is then reset by the user entering a new password, assuming their
reset key is correct. Control is passed from the framework to our authentication
controller, which calls the resetPassword method. This method takes two
parameters, the user's ID and the reset key. This is used to perform a basic
form of user authentication, to allow them to reset the password:

private function resetPassword($user, $key)
 {
 $this->registry->getObject('template')->getPage()->addTag(
 'user', $user);
 $this->registry->getObject('template')->getPage()->addTag('key',
 $key);
 $sql = "SELECT * FROM users WHERE ID={$user} AND reset_
 key='{$key}'";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 if($data['reset_expiry'] > date('Y-m-d h:i:s'))
 {

We can have a problem with either a user repeatedly requesting password reset
links maliciously for another user, as when the user tried to reset their password a
new key would be generated. Similarly, a user could use trial and error (brute force
attacking) to try and guess a reset key and subsequently reset the user's password.
To prevent these issues, only one key should be issued in a 24 hour period, and it
should expire after this time. If the key they have supplied has expired, we need to
tell them that.

 $this->registry->errorPage('Reset link expired', 'Password
 reset links are only valid for 24 hours. This link is
 out of date and has expired.');

 }
 else
 {

If their key is valid, we then check to see whether they have completed the form and
submitted a new password:

 if(isset($_POST['password']))
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 3

[97]

If they have completed the form, we need to check that the password is at least seven
characters long, and that it has been confirmed:

 if(strlen($_POST['password']) < 6)
 {
 $this->registry->errorPage('Password too short',
 'Sorry, your password was too short, passwords
 must be greater than 6 characters');
 }
 else
 {
 if($_POST['password'] != $_POST['password_confirm']
)
 {
 $this->registry->errorPage('Passwords do not
 match', 'Your password and password
 confirmation do not match, please try again.');
 }
 else
 {

We then hash the password, and update the user's database record:

 // reset the password
 $changes = array();
 $changes['password_hash'] = md5($_
 POST['passowrd']);
 $this->registry->getObject('db')->updateRecords(
 'users', $changes, 'ID=' . $user);
 $this->registry->errorPage('Password reset',
 'Your password has been reset to the one you
 entered');

 }
 }
 }
 else
 {

If the key is valid, and the user hasn't submitted the new password form, we show
them the form:

 // show the form
 $this->registry->getObject('template')-
 >buildFromTemplates('header.tpl.php', 'authenticate/
 password/reset.tpl.php', 'footer.tpl.php');

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Users, Registration, and Authentication

[98]

 }
 }
 }
 else
 {

Finally, if they key was invalid, we tell them that:

 $this->registry->errorPage('Invalid details', 'The password
 reset link was invalid');
 }
 }

I've lost my e-mail verification message
If we verify our users' e-mail addresses, we would also want to be able
to resend this verification message, in case they delete the original. Why
not try and implement this feature in our authentication controller?

Summary
In this chapter, we looked at allowing users to sign up to Dino Space, by developing
registration logic to create a user account and their custom social profile. A user
account on its own isn't enough—our users need to be able to log in to the user
account, so that they can benefit from the site. To facilitate this we also created
an authentication registry class.

Because e-mail sending is going to be a task we need to do frequently, as illustrated
by the four use cases in this chapter, we also developed a simple e-mail sending
class, to make it easy for us to generate and send e-mails as and when we need to.

Now that we can have users on our social network, and they can log in to access
our social network, let's start developing some social features for it!

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships
We now have a social networking site, where the only feature is that users can sign
up, log in, and log out. This is, of course, the first step to any such site, as we need
users. Now that we have users, we need some way for them to be able to connect to
one another. For this to be possible, we need to be able to see the users on the site,
search the users on the site, and subsequently request to connect to them.

In this chapter, you will learn:

•	 How to allow users to invite their friends to the site
•	 How to automatically invite a user's contacts to befriend them on the site,

by connecting to other websites
•	 How to list users on the site
•	 How to search for users on the site and display the resulting users
•	 How to allow users to connect with one another as friends or other types

of relationship (for example, as colleagues)

Let's get started.

Inviting friends
Although users of Dino Space are going to sign up and connect with other users on
the site, to help them build up their profile on the site more quickly and to help us
increase our user base, we can allow our users to invite friends and contacts who
they know from outside of the social network to join and connect with them. At the
same time, we can also see if these people have already signed up to the site, and
inform the user of this.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[100]

There are two main ways we can do this:

•	 Asking our users to enter a friend's name and e-mail address
•	 Asking our users to enter their details for their webmail, connecting

to their address book, and obtaining a list of their contacts

Once we have a name and an e-mail address we can either:

•	 Send the user an e-mail inviting them to join Dino Space to connect with
their friend

•	 Inform the user that someone with that e-mail address has already signed
up and suggest they connect with them directly, or automatically connect
them (this is another reason e-mail verification from Chapter 3 is useful,
otherwise it could be any user with our friends e-mail address, and not
actually our friend)

A note on privacy
When a user gives us details of a friend who isn't on their site, their
credentials or access to their online contacts, or a list of their contacts,
we shouldn't keep a copy of this without their explicit permission. A
suitable privacy policy should be clear on the website, indicating what
happens with any data they enter into the website.

Manually inviting friends
If John thinks his friend Bill, who keeps a pet pterodactyl, would benefit from using
Dino Space, he may want to recommend the site to him. To allow users to invite
other users we need to:

1. Request John to enter Bill's name and e-mail address.
2. Check to see if Bill's e-mail address exists in the website (that is, is Bill

already a member).
3. If Bill is already a member, we suggest that John connect with him and show

him Bill's profile.
4. If Bill hasn't already joined Dino Space, we want to validate this data and

display a template message to John showing the invitation message, which
he can edit and personalise.

5. We allow John to edit the message.
6. Once John clicks on Send, we e-mail the invitation to Bill dynamically

inserting John's details so Bill knows who it was that invited him.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[101]

Invitation controller
To manually invite friends, we need an invitation controller to take and process the
user's requests. This controller would then present the user with an invitation form,
for the user to enter their friend's details. On submitting the form, the controller
will check to see if the friend is already a member (by looking up the friend's e-mail
address in the user's table). If the friend isn't a member, the personalized invitation
message will have the friend's details inserted into it, and will then be e-mailed to
the friend.

If you do implement this feature, you will also need a number of template files to
make up the view, and an e-mail template for sending the invitation to the friend.

Automatically inviting friends
Most social networking websites offer the user the chance to enter their details for
their webmail login, to have the site automatically invite their contacts to use the site.
In the past, this would be done by scripts that would connect to the various websites
using libraries such as cURL, pretending to be a user, to obtain the contacts list. This
technique isn't ideal, as the code obviously needs to be updated each time the site
changes how it works.

Thankfully, most e-mail providers realise this is a useful feature, and so they have
provided APIs that developers can interact with to obtain a list of contacts to e-mail.
Of course, APIs change, but changes are generally announced in advance, and there
is normally a wealth of resources for developers.

Google Friend Connect
Google has a service that aims to allow users to invite their friends from a number of
social networking sites (currently Orkut and Plaxo) as well as contacts from Google
Talk and friends with a known e-mail address.

This service also provides a number of other "gadgets" that can add social
functionality to your site, including commenting and rating content, as well
as providing some interesting reporting tools.

More information on this is available on the Google Friend Connect website:
http://www.google.com/friendconnect.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[102]

Windows Live contacts
Microsoft has developer documentation and a RESTful Contacts API for Windows
Live contacts that gives developers access to a user's contacts from Hotmail,
Messenger, and Mobile contacts.

More information is available on their developer website: http://dev.live.com/
contacts/.

Yahoo!
Yahoo! has a Contacts API that can be used to look up a user's address book
contacts. More information is available from the Yahoo! Developer Network:
http://developer.yahoo.com/social/rest_api_guide/contact_api.html.

Gmail contacts
Gmail has a Data API for accessing contacts from other applications. More
information on this is available at: http://code.google.com/apis/contacts/.

Automatically connecting with friends
Don't forget, if the e-mail address already exists in the database, we wouldn't want
to send them an e-mail inviting them to join. Instead, we would either want to
automatically create a relationship between the two users (e-mailing the recipient
friend that they have a new pending friend request), or once the invitations had been
sent, we would list all of the contacts from their address book(s) that already exist on
the site, allowing them to view their profiles and connect with them if they wish.

Members
Once our site has a few members, we need to be able to view and search for
members, so that we can connect and communicate with them. Let's look at
creating a member list and basic member search.

We will do this by creating a model and a controller for members. The model
should be a class Members, and saved as members.php in the models folder, and
the controller should be a class Memberscontroller saved as controller.php
in the controllers/members folder.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[103]

Listing users
User lists have a limitation with large social networks—they end up being large
lists of users that are irrelevant to the user viewing the list. This can be overcome
by listing a subset of users; for instance, those in a particular group, contact sphere,
or network. For example, when Facebook started, users joined up to two networks,
which was generally their university, school, workplace, or city. This could be used
to segregate groups of users when listing them; obviously we wouldn't want to
segregate users from each other, but this could make lists more meaningful.

At this stage we don't have this concern; we can simply provide a paginated list
of our users.

Pagination
In order for us to display a nice paginated list, we need some way to easily paginate
through results of a query. To save this from getting repetitive, we could encapsulate
the functionality within a class, and use this each time we need a paginated list.

Because this isn't really a core class, and we may need to create more than one during
an execution of the framework, we shouldn't have this as a registry object. Instead,
we should have this in a libraries folder. Generally, I prefer to keep self-contained
libraries in a libraries folder, which require no framework interaction; however,
I think this is a suitable exception.

Let's look through the code for a suitable /lib/pagination/pagination.class.
php file:

<?php
/**
 * Pagination class
 * Making pagination of records easy(ier)
 */
class Pagination {

We should define a number of properties for the object, including:

•	 The query we wish to paginate:
 /**

 * The query we will be paginating

 */

 private $query = "";

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[104]

•	 The query that we actually execute to give us the paginated results
(as we will need to dynamically add limits to the initial query):
 /**
 * The processed query which will be executed / has been
 executed
 */
 private $executedQuery = "";

•	 A limit to define how many results should be displayed on a page
(default 25):
 /**
 * The maximum number of results to display per page
 */
 private $limit = 25;

•	 An offset that indicates which page of results we are on, and which results
should be returned:
 /**
 * The results offset - i.e. page we are on (-1)
 */
 private $offset = 0;

•	 The method we wish to generate the pagination data with:
 /**
 * The method of pagination
 */
 private $method = 'query';

•	 The cache reference for the results of the query (if we opted to cache
the results):
 /**
 * The cache ID if we paginate by caching results
 */
 private $cache;

•	 The results of the query (if we didn't opt to cache the results):
 /**
 * The results set if we paginate by executing directly
 */
 private $results;

•	 The number of rows there are in the original query (used within the class to
calculate page numbers):
 /**
 * The number of rows there were in the query passed
 */
 private $numRows;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[105]

•	 The number of rows on the current page. Although we limit the results, on
the last page we may actually have less results than this:
 /**

 * The number of rows on the current page (main use if on last
 page, may not have as many as limit on the page)

 */

 private $numRowsPage;

•	 The number of pages there are:
 /**

 * Number of pages of results there are

 */

 private $numPages;

•	 If the current page is the first page:
 /**

 * Is this the first page of results?

 */

 private $isFirst;

•	 If the current page is the last page:
 /**

 * Is this the last page of results?

 */

 private $isLast;

•	 The current page the user is on:
 /**

 * The current page we are on

 */

 private $currentPage;

We construct our object by passing the registry and assigning it to a variable:

 /**
 * Our constructor
 * @param Object registry
 * @return void
 */
 function __construct(Registry $registry)
 {
 $this->registry = $registry;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[106]

We also need a number of setter methods to set some of the variables, including:

•	 Setting the query:

 /**

 * Set the query to be paginated

 * @param String $sql the query

 * @return void

 */

 public function setQuery($sql)

 {

 $this->query = $sql;

 }

•	 Setting the limit of how many results are to be displayed:
 /**

 * Set the limit of how many results should be displayed per
 page

 * @param int $limit the limit

 * @return void

 */

 public function setLimit($limit)

 {

 $this->limit = $limit;

 }

•	 Setting the offset:
 /**

 * Set the offset - i.e. if offset is 1, then we show the next
 page of results

 * @param int $offset the offset

 * @return void

 */

 public function setOffset($offset)

 {

 $this->offset = $offset;

 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[107]

•	 Setting the method of pagination we wish to use:
 /**

 * Set the method we want to use to paginate

 * @param String $method [cache|do]

 * @return void

 */

 public function setMethod($method)

 {

 $this->method = $method;

 }

With our data set, we need a method to call to perform the pagination, and generate
the results:

 /**
 * Process the query, and set the paginated properties
 * @return bool
 */
 public function generatePagination()
 {
 $temp_query = $this->query;

The first thing this method does is performs the query we passed it, to get the
number of results. This is used later to determine which page we are on, and
how many pages there on, by combining it with the limit:

 // how many results?
 $this->registry->getObject('db')->executeQuery($temp_query);
 $this->numRows = $this->registry->getObject('db')->numRows();

We then add to the query a limit that is based off the offset, and the limit of how
many results we wish to display. If the limit is 25, and the offset is 1, this would
generate results 26 – 50:

 // limit!
 $limit = " LIMIT ";
 $limit .= ($this->offset * $this->limit) . ", " .
 $this->limit;
 $temp_query = $temp_query . $limit;
 $this->executedQuery = $temp_query;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[108]

Depending on the method of pagination, we either cache the query or execute it:

 if($this->method == 'cache')
 {
 $this->cache = $this->registry->getObject('db')->
 cacheQuery($temp_query);
 }
 elseif($this->method == 'do')
 {
 $this->registry->getObject('db')->
 executeQuery($temp_query);
 $this->results = $this->registry->getObject('db')->getRows();
 }

The final work for this method is to calculate the number of pages, the current page,
and if we are on the first and/or last page of results:

 // be nice...do some calculations - so controllers don't have
 to!

 // num pages
 $this->numPages = ceil($this->numRows / $this->limit);

 // is first
 $this->isFirst = ($this->offset == 0) ? true : false;

 // is last

 $this->isLast = (($this->offset + 1) == $this->numPages) ?
 true : false;

 // current page
 $this->currentPage = ($this->numPages == 0) ? 0 : $this->offset
 +1;
 $this->numRowsPage = $this->registry->getObject('db')->numRows();
 if($this->numRowsPage == 0)
 {
 return false;
 }
 else
 {
 return true;
 }

 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[109]

Finally we require some getter methods, to return the values of some of the
objects properties:

 /**
 * Get the cached results
 * @return int
 */
 public function getCache()
 {
 return $this->cache;
 }

 /**
 * Get the result set
 * @return array
 */
 public function getResults()
 {
 return $this->results;
 }

 /**
 * Get the number of pages of results there are
 * @return int
 */
 public function getNumPages()
 {
 return $this->numPages;
 }

 /**
 * Is this page the first page of results?
 * @return bool
 */
 public function isFirst()
 {
 return $this->isFirst;
 }

 /**
 * Is this page the last page of results?
 * @return bool
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[110]

 public function isLast()
 {
 return $this->isLast;
 }

 /**
 * Get the current page within the paginated results we are
 viewing
 * @return int
 */
 public function getCurrentPage()
 {
 return $this->currentPage;
 }
}
?>

Now we have a simple class, which we can include, instantiate, and use when we
need to paginate the results of a query.

Paginated members
Within our members model we need a method to generate the paginated list of
members. This simply involves including our pagination class, creating a pagination
object, setting some variables through the appropriate setter methods, calling the
generatePagination method, and returning the pagination object to the controller
(which calls the listMembers method).

The query to paginate is simply a list of members, a join of the users table, and the
profile table. The offset is detected by the controller and passed to the listMembers
method, which in turn passes this to the pagination object:

/**
 * Generate paginated members list
 * @param int $offset the offset
 * @return Object pagination object
 */
 public function listMembers($offset=0)
 {
 require_once(FRAMEWORK_PATH .
 'lib/pagination/pagination.class.php');
 $paginatedMembers = new Pagination($this->registry);
 $paginatedMembers->setLimit(25);
 $paginatedMembers->setOffset($offset);
 $query = "SELECT u.ID, u.username, p.name, p.dino_name,

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[111]

 p.dino_gender, p.dino_breed FROM users u, profile p WHERE
 p.user_id=u.ID AND u.active=1 AND u.banned=0 AND u.deleted=0";
 $paginatedMembers->setQuery($query);
 $paginatedMembers->setMethod('cache');
 $paginatedMembers->generatePagination();
 return $paginatedMembers;

 }

Our controller needs to detect that the user is viewing a list of members, take the
offset, and pass this to the model, receiving a pagination object in return. With the
pagination object it can then determine if it should display the members' list view or
a view indicating that there are no members, or no members with the offset specified.

If there are members, it can build the pagination links with data from the pagination
object, and take the results database cache and assign it to a template variable, which
displays the list in the page.

private function listMembers($offset)
 {
 require_once(FRAMEWORK_PATH . 'models/members.php');
 $members = new Members($this->registry);
 $pagination = $members->listMembers($offset);
 if($pagination->getNumRowsPage() == 0)
 {
 $this->registry->getObject('template')->
 buildFromTemplates('header.tpl.php', 'members/invalid.tpl.php'
 , 'footer.tpl.php');
 }
 else
 {
 $this->registry->getObject('template')
 ->buildFromTemplates('header.tpl.php', 'members/list.tpl.php'
 , 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()->
 addTag('members', array('SQL', $pagination->getCache()));

 $this->registry->getObject('template')->getPage()->
 addTag('page_number', $pagination->getCurrentPage());
 $this->registry->getObject('template')->getPage()->
 addTag('num_pages', $pagination->getNumPages());
 if($pagination->isFirst())
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', '');
 $this->registry->getObject('template')->getPage()->

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[112]

 addTag('previous', '');
 }
 else
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', "First page");
 $this->registry->getObject('template')->getPage()->
 addTag('previous', "<a href='members/list/" . (
 $pagination->getCurrentPage() - 2) . "'>Previous page"
);
 }
 if($pagination->isLast())
 {
 $this->registry->getObject('template')->getPage()->
 addTag('next', '');
 $this->registry->getObject('template')->getPage()->
 addTag('last', '');
 }
 else
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', "<a href='members/list/" .
 $pagination->getCurrentPage() . "'>Next page");
 $this->registry->getObject('template')->getPage()->
 addTag('previous', "<a href='members/list/" . (
 $pagination->getNumPages() - 1) . "'>Last page");
 }
 }
 }

To actually display the results of the lookup to the user, we need a template to form
our members' list view. This is essentially a copy of the main template file, with a
template loop for the members' information. This is saved in the views/default/
templates/members/list.tpl.php file:

 <div id="main">

 <div id="rightside">
 </div>

 <div id="content">
 <h1>DINO SPACE! Members List</h1>
 <!-- START members -->
 <p>{name}</p>
 <p>Keeper of {dino_name} a
 {dino_gender} {dino_breed}</p>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[113]

 <hr />
 <!-- END members -->
 <p>Viewing page {page_number} of {num_pages}</p>
 <p>{first} {previous} {next} {last}</p>
 </div>

 </div>

This then displays our users list, which currently only contains me, as shown below!:

Paginated users by letter
As the site grows, but before we have such a large user base we need to consider
listing more relevant users, we are going to end up with a paginated list, which isn't
particularly easy to navigate. For example, if we have 20 users listed on each page
and 100 pages of results, if our user wants to quickly jump to users with a surname
beginning with P, it may take them several attempts. To make this easier, we can also
provide filtering by alphabetical character, so the user can click on P and be taken to
a list of users with surnames beginning with P. These lists may also be long, so they
too should be paginated.

The required model method to do this takes an additional parameter, which is
the letter the surname should start with. This is sanitized and then passed to the
query—the query works slightly differently by searching for spaces in the user's
name, then taking the word before the final space and comparing the first letter of
this word to the letter passed:

/**
 * Generated paginated members list by surname
 * @param String $letter
 * @param int $offset the offset
 * @return Object pagination object

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[114]

 */
 public function listMembersByLetter($letter='A', $offset=0)
 {
 $alpha = strtoupper($this->registry->getObject('db')->
 sanitizeData($letter));
 require_once(FRAMEWORK_PATH .
 'lib/pagination/pagination.class.php');
 $paginatedMembers = new Pagination($this->registry);
 $paginatedMembers->setLimit(25);
 $paginatedMembers->setOffset($offset);
 $query = "SELECT u.ID, u.username, p.name, p.dino_name,
 p.dino_gender, p.dino_breed FROM users u, profile p WHERE
 p.user_id=u.ID AND u.active=1 AND u.banned=0 AND u.deleted=0
 AND SUBSTRING_INDEX(p.name,' ', -1)LIKE'".$alpha."%' ORDER BY
 SUBSTRING_INDEX(p.name,' ', -1) ASC";
 $paginatedMembers->setQuery($query);
 $paginatedMembers->setMethod('cache');
 $paginatedMembers->generatePagination();
 return $paginatedMembers;
 }

Let's take a look at how this code fits together in our controller. The only real
difference is the method we call in our model:

private function listMembersAlpha($alpha='A', $offset=0)
 {

Require and create our members model:

 require_once(FRAMEWORK_PATH . 'models/members.php');
 $members = new Members($this->registry);

Call the listMembersByLetter method to get our pagination object:

 $pagination = $members->listMembersByLetter($alpha, $offset);
 if($pagination->getNumRowsPage() == 0)
 {

If there are no members, show that view:

 $this->registry->getObject('template')->
 buildFromTemplates('header.tpl.php', 'members/invalid.tpl.php'
 , 'footer.tpl.php');
 }
 else
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[115]

If there are members, show that view, and insert the appropriate data into the view:

 $this->registry->getObject('template')->
 buildFromTemplates('header.tpl.php', 'members/list.tpl.php',
 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()->
 addTag('members', array('SQL', $pagination->getCache()));
 $this->registry->getObject('template')->getPage()->
 addTag('letter', " - Letter: " . $alpha);

 $this->registry->getObject('template')->getPage()->
 addTag('page_number', $pagination->getCurrentPage());
 $this->registry->getObject('template')->getPage()->
 addTag('num_pages', $pagination->getNumPages());
 if($pagination->isFirst())
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', '');
 $this->registry->getObject('template')->getPage()->
 addTag('previous', '');
 }
 else
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', "First
 page");
 $this->registry->getObject('template')->getPage()->
 addTag('previous', "<a href='members/alpha/".$alpha."/" .
 ($pagination->getCurrentPage() - 2) . "'>Previous
 page");
 }
 if($pagination->isLast())
 {
 $this->registry->getObject('template')->getPage()->
 addTag('next', '');
 $this->registry->getObject('template')->getPage()->
 addTag('last', '');
 }
 else
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', "<a href='members/alpha/".$alpha."/" .
 $pagination->getCurrentPage() . "'>Next page");
 $this->registry->getObject('template')->getPage()->
 addTag('previous', "<a href='members/alpha/".$alpha."/" .
 ($pagination->getNumPages() - 1) . "'>Last page");
 }
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[116]

We need to slightly update our members' list template; it needs a template
variable to display the currently active letter, and the letters A – Z as links
to filter down the list:

 <div id="main">

 <div id="rightside">
 </div>

 <div id="content">
 <h1>DINO SPACE! Members List {letter}</h1>
 <!-- START members -->
 <p>{name}</p>
 <p>Keeper of {dino_name} a
 {dino_gender} {dino_breed}</p>
 <hr />
 <!-- END members -->
 <p>Viewing page {page_number} of {num_pages}</p>
 <p>{first} {previous} {next} {last}</p>
 <p>
 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[117]

 Y
 Z
 </p>
 </div>

 </div>

Now if we go to http://ourwebsite/members/ we should see the following:

Searching for users
The user lists in themselves are primarily useful if a user spots someone they know
of, or if the results display some information about them that the user can relate to,
for example, the breed of their dinosaur, which may make them think "they also
have a T-Rex, I'll connect with them!".

We should also have a search feature, so that our users can search for other users:

/**
 * Search for members based on their name
 * @param String $filter name
 * @param int $offset the offset
 * @return Object pagination object
 */
 public function filterMembersByName($filter='', $offset=0)
 {
 $filter = ($this->registry->getObject('db')->
 sanitizeData(urldecode($filter)));
 require_once(FRAMEWORK_PATH .
 'lib/pagination/pagination.class.php');
 $paginatedMembers = new Pagination($this->registry);
 $paginatedMembers->setLimit(25);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[118]

 $paginatedMembers->setOffset($offset);
 $query = "SELECT u.ID, u.username, p.name, p.dino_name,
 p.dino_gender, p.dino_breed FROM users u, profiles p WHERE
 p.user_id=u.ID AND u.active=1 AND u.banned=0 AND u.deleted=0
 AND p.name LIKE'%".$filter."%' ORDER BY p.name ASC";
 $paginatedMembers->setQuery($query);
 $paginatedMembers->setMethod('cache');
 $paginatedMembers->generatePagination();
 return $paginatedMembers;
 }

Our controller now needs a method to process the search request. One important
thing to note is that if we have performed a search, we can paginate because the
search field is encoded with urlencode and passed in the URL, whereas when we
first search, the name is in the name POST field. We need to detect which is which,
and process accordingly. We can use an extra parameter in the method to indicate
where the name data is:

private function searchMembers($search=true, $name='', $offset=0)
 {
 require_once(FRAMEWORK_PATH . 'models/members.php');
 $members = new Members($this->registry);

 if($search == true)
 {

If we are searching, take the name from the POST data:

 // we are performing the search
 $pagination = $members->filterMembersByName(urlencode(
 $_POST['name']), $offset);
 $name = urlencode($_POST['name']);
 }
 else
 {

If we are not searching, take the name from the URL (passed to this method directly):

 // we are paginating search results
 $pagination = $members->filterMembersByName($name, $offset);
 }
 if($pagination->getNumRowsPage() == 0)
 {
 $this->registry->getObject('template')->
 buildFromTemplates('header.tpl.php', 'members/invalid.tpl.php'
 , 'footer.tpl.php');
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[119]

 else
 {
 $this->registry->getObject('template')->
 buildFromTemplates('header.tpl.php', 'members/search.tpl.php'
 , 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()->
 addTag('members', array('SQL', $pagination->getCache()));
 $this->registry->getObject('template')->getPage()->
 addTag('public_name', urldecode($name));
 $this->registry->getObject('template')->getPage()->
 addTag('encoded_name', $name);

 $this->registry->getObject('template')->getPage()->
 addTag('page_number', $pagination->getCurrentPage());
 $this->registry->getObject('template')->getPage()->
 addTag('num_pages', $pagination->getNumPages());

Our pagination links require a reference to the name we are searching for:

 if($pagination->isFirst())
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', '');
 $this->registry->getObject('template')->getPage()->
 addTag('previous', '');
 }
 else
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', "<a href='members/search-results/".
 $name."/'>First page");
 $this->registry->getObject('template')->getPage()->
 addTag('previous', "<a href='members/search-results/".
 $name."/" . ($pagination->getCurrentPage() - 2) .
 "'>Previous page");
 }
 if($pagination->isLast())
 {
 $this->registry->getObject('template')->getPage()->
 addTag('next', '');
 $this->registry->getObject('template')->getPage()->
 addTag('last', '');
 }
 else
 {
 $this->registry->getObject('template')->getPage()->
 addTag('first', "<a href='members/search-results/".

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[120]

 $name."/" . $pagination->getCurrentPage() .
 "'>Next page");
 $this->registry->getObject('template')->getPage()->
 addTag('previous', "<a href='members/search-results/"
 .$name. "/" . ($pagination->getNumPages() - 1) .
 "'>Last page");
 }
 }
 }

In our controllers constructor, we need to perform our detection (if a search
is being performed or not) and pass a suitable $search parameter to the
searchMembers method:

case 'search':
 $this->searchMembers(true, '', 0);
 break;
case 'search-results':
 $this->searchMembers(false, $urlBits[2] , intval(isset(
 $urlBits[3]) ? $urlBits[3] : 0));
 break;

We also need a search box in our main members' list page, and a new template
showing the results of the search:

<form action="members/search" method="post">
 <h2>Search for a member</h2>
 <label for="name">Their name</label>

 <input type="text" id="name" name="name" value="" />

 <input type="submit" id="search" name="search" value="Search" />
</form>

We now have a fully working search feature, as shown below:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[121]

Custom relationships
Before we can connect to a user as a friend, we need to define the types of
relationship our social network will support. Within Dino Space, we should
have relationships for:

•	 Friends: For users who are friends with one another
•	 Colleagues: For users who are colleagues with one another
•	 Jogging buddies: For users who take their dinosaurs to the same morning

jogging group

We may, of course, wish to extend this as the site grows and changes as time goes on.

To facilitate these relationships we are going to need two database tables, one to
maintain a list of types of relationships, and one to maintain a list of relationships
between users.

Relationship types
To represent the relationship types in the database, we could use the following
database structure, for a relationship_types table:

Field Type Description
ID Integer, Auto Increment,

Primary Key
A unique ID for the relationship type

Name Varchar The name of the relationship type, for
example, friend

Plural_name Varchar Plural version of the relationship type,
for example, friends

Active Boolean If this relationship type is active, and
should users be able to form such
relationships?

Mutual Boolean Does this relationship require it to be a
mutual connection, or can users connect
without the permission of the other?

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[122]

Relationships
Our relationships table needs to relate two users together, as well as record the type
of relationship. Since some relationships require mutual consent, we need to indicate
if the non-requesting user accepted the request to connect. The following is a suitable
structure for our relationships table:

Field Type Description
ID Integer, Primary Key, Auto

Increment
A unique ID for the relationship between
the two users

Type ID The type of relationship (a reference to the
relationship_types table)

Usera Integer The user who initiated the relationship, a
relation to the users table

Userb Integer The user who usera initiated a relationship
with, a relation to the users table

Accepted Boolean Indicates if this is a mutual relationship
(which is only used if the relationship type
is a mutual relationship)

Adding friends
Our users can see other users on the site, either by searching for them or viewing
a list of users; from here we can add a link to enable the user to form a relationship.
We have a suitable database structure to facilitate this, but we now need
functionality to connect our users together.

Forming a relationship
Let's walk through what the process should be for our users to form relationships
with each other:

1. View the listing of the user they wish to connect with.
2. Click on a link, or select a relationship type from a list and click on Submit.
3. Check for pre-existing relationships.
4. Check if the relationship type selected is active.
5. Create the relationship in the database.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[123]

6. If the relationship type is mutual, e-mail the other user an approval request
message asking them to confirm the relationship.

7. If the relationship type isn't mutual, e-mail the other user a message
informing them that someone has connected with them.

We already have step one set up—the list of members. For step two, we either need
a link on the user's name or a list of relationship types (which are links or part of a
form submission). Since we have a number of relationship types, let's list the types
of relationships in a drop-down list next to each member as part of a form the user
can submit to create a relationship of that type.

We should create a relationships model for listing relationships, and while we don't
need to do this yet, we could use it to display lists of relationship types too.

A simple method in the model that we can call from the controller to give us a list of
relationship types will suffice. The method below can return a database cache of the
results provided we instruct it to with the $cache parameter.

public function getTypes($cache=false)
 {
 $sql = "SELECT ID as type_id, name as type_name, plural_name as
 type_plural_name, mutual as type_mutual FROM relationship_types
 WHERE active=1";
 if($cache == true)
 {
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }
 else
 {
 $types = array();
 while($row = $this->registry->getObject('db')->getRows())
 {
 $types[] = $row;
 }
 return $types;
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[124]

With a list of types at our disposal, we now need to get them and send them to the
template, but only if we are logged in. This should be a new method in our members
controller, which is called after the paginated list is generated (to prevent it being
called when there are no results, and to ensure the code isn't duplicated in the
different listing methods in the controller).

private function formRelationships()
 {
 if($this->registry->getObject('authenticate')->isLoggedIn() ==
 true)
 {
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $types = $relationships->getTypes(true);

If the user is logged in, then a template bit containing a form is placed next to each
member listing, and within there a list of relationship types is dynamically inserted.

 $this->registry->getObject('template')->addTemplateBit(
 'form_relationship', 'members/form_relationship.tpl.php');
 $this->registry->getObject('template')->getPage()->addPPTag(
 'relationship_types', array('SQL', $types));
 }
 else
 {

If the user isn't logged in, then we don't want to show them a form, so we set the tag
to either nothing, or a placeholder comment.

 $this->registry->getObject('template')->getPage()->addTag(
 'form_relationship', '<!-- relationship types dropdown -->'
);
 }
 }

We now need to change our member listing template to have a
{form_relationship} tag within the members list loop.

<!-- START members -->
 <p>{name}</p>
 <p>Keeper of {dino_name} a {dino_gender}
 {dino_breed}</p>
 {form_relationship}
 <hr />
<!-- END members -->

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[125]

Finally, we need a template that is inserted into the template variable when the user
is logged in (views/default/templates/members/form_relationship.tpl.php).
This has a template loop within it, into which the relationship types are inserted.

<form action="relationship/create/{ID}" method="post">
<select name="relationship_type">
<!-- START relationship_types -->
<option value="{type_id}">{type_name}</option>
<!-- END relationship_types -->
</select>
<input type="submit" name="create" value="Connect with {name}" />
</form>

Now if we are logged in and take a look at our members list, we see a form next
to each member allowing us to connect with them.

This is a good start, but of course if we or a user clicks on the button, nothing is
going to happen. We now need to create the relationship. To do this we are going
to need a relationship model and a relationship controller.

Relationship model
This needs to encapsulate the data from the relationships table for a specific
relationship, as well as delete, approve, and update existing relationships,
and create new relationships.

<?php
class Relationship{

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[126]

As usual, we start with a number of class variables for the data the model represents
to be stored in, and one for our registry too.

 private $registry;
 private $usera;
 private $userb;
 private $approved;
 private $id = 0;
 private $type;

Our constructor needs to create a new relationship for us, if no ID is passed;
otherwise, it needs to look up an existing relationship in the database. If an ID is
passed, it simply queries the database and populates the class variables accordingly.

 /**
 * Relationship constructor
 * @param Registry $registry the registry
 * @param int $id the relationship ID
 * @param int $usera the id of user a
 * @param int $userb the id of user b
 * @param bool $approved if the relationship is approved
 * @param int $type the ID of the relationship type
 * @return void
 */
 public function __construct(Registry $registry, $id=0, $usera,
 $userb, $approved=0, $type=0)
 {
 $this->registry = $registry;
 // if no ID is passed, then we want to create a new relationship
 if($id == 0)
 {
 $this->createRelationship($usera, $userb, $approved, $type);
 }
 else
 {
 // if an ID is passed, populate based off that
 $sql = "SELECT * FROM relationships WHERE ID=" . $id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 $this->populate($data['ID'], $data['usera'], $data['userb'],
 $data['type'], $data['approved']);
 }
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[127]

When creating a new relationship, there are a number of checks that must be
done first:

•	 It must check to ensure there isn't a pre-existing relationship; if there is, we
can't create a new one!

•	 If one doesn't exist, then it must check the type of relationship:
	° If the relationship type is "mutual", then we set the approved

field to 1, to indicate that the recipient friend must approve
the relationship

	° The relationship is then created in the database

 /**

 * Create a new relationship where one currently doesn't exist,
 if one does exist, populate from that

 */

 public function createRelationship($usera, $userb, $approved=0,
 $type=0)

 {

 // check for pre-existing relationship

 $sql = "SELECT * FROM relationships WHERE (usera={$usera} AND
 userb={$userb}) OR (usera={$userb} AND userb={$userc})";

 $this->registry->getObject('db')->executeQuery($sql);

 if($this->registry->getObject('db')->numRows() == 1)

 {

 // one exists: populate

 $data = $this->registry->getObject('db')->getRows();

 $this->populate($data['ID'], $data['usera'], $data['userb'],
 $data['type'], $data['approved']);

 }

 else

 {

 // one doesnt exist

 if($type != 0)

 {

 // check type for mutual

 $sql = "SELECT * FROM relationship_types WHERE ID=" . $type;

 $this->registry->getObject('db')->executeQuery($sql);

 if($this->registry->getObject('db')->numRows() == 1)

 {

 $data = $this->registry->getObject('db')->getRows();

 // auto approve non-mutual relationships

 if($data['mutual'] == 0)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[128]

 {

 $approved = 1;

 }
 }
 // create the relationsip
 $insert = array();
 $insert['usera'] = $usera;
 $insert['userb'] = $userb;
 $insert['type'] = $type;
 $insert['approved'] = $approved;
 $this->registry->getObject('db')->insertRecords(
 'relationships', $insert);
 $this->id = $this->registry->getObject('db')->lastInsertID();
 }
 }
 }

The model also requires a setter method to update the approved status
of the relationship.

 /**
 * Approve relationship
 * @return void
 */
 public function approveRelationship()
 {
 $this->approved = true;
 }

A delete method is also useful to delete the relationship.

 /**
 * Delete relationship
 * @return void
 */
 public function delete()
 {
 $this->registry->getObject('db')->deleteRecords('relationships',
 'ID=' . $this->id, 1);
 $this->id = 0;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[129]

We have our standard save method that either creates a new record or updates an
existing one depending on whether the relationship is being created or saved.

 /**
 * Save relationship
 * @return void
 */
 public function save()
 {
 $changes = array();
 $changes['usera'] = $this->usera;
 $changes['userb'] = $this->userb;
 $changes['type'] = $this->type;
 $changes['accepted'] = $this->accepted;
 $this->registry->getObject('db')->updateRecords('relationships',
 $changes, "ID=" . $this->id);
 }

 /**
 * Populate relationship object
 * @param int $id the user id
 * @param int $usera user a
 * @param int $userb user b
 * @param int $type the type
 * @param bool $approved
 * @return void
 */
 private function populate($id, $usera, $userb, $type, $approved)
 {
 $this->id = $id;
 $this->type = $type;
 $this->usera = $usera;
 $this->userb = $userb;
 $this->approved = $approved;
 }
}
?>

Relationship controller
With a relationship model in place to make creating, updating, and deleting
relationships easy, we need a controller to process the user's request to create,
approve, or reject a relationship.

private function createRelationship($userb)
 {
 if($this->registry->getObject('authenticate')->isLoggedIn())
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[130]

If we are logged in, then we take our user ID, the ID of the user we wish to connect
with, and the relationship type, and create our relationship.

 $usera = $this->registry->getObject('authenticate')->
 getUser()->getUserID();
 $type = intval($_POST['relationship_type']);
 require_once(FRAMEWORK_PATH . 'models/relationship.php');
 $relationship = new Relationship($this->registry, 0, $usera,
 $userb, $type, 0);
 if($relationship->isApproved())
 {

If the relationship is automatically approved, we can e-mail the user to tell them they
have a new connection, and then display a message to the logged in user.

 // email the user, tell them they have a new connection
 /**
 * Can you remember how the email sending object works?
 */
 $this->registry->errorPage('Relationship created', 'Thank
 you for connecting!');
 }
 else
 {

If the relationship isn't automatically approved, we can e-mail the user to tell them
they have a new pending connection, and display a message to the logged in user.

 // email the user, tell them they have a new pending
 connection
 /**
 * Can you remember how the email sending object works?
 */
 $this->registry->errorPage('Request sent', 'Thanks for
 requesting to connect!');
 }
 }
 else
 {

If the user isn't logged in, we display an error message.

 $this->registry->errorPage('Please login', 'Only logged in
 members can connect on this site');
 // display an error
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[131]

Now if we click on the Connect with button on the relationship form, our
relationship is created and we are shown a confirmation message. This could
be expanded in the future to use AJAX to display the notification on the previous
page, without causing the page to reload.

Mutual relationships—accepting or rejecting
a request
If a relationship type is mutual, we need users to be able to see, accept, and reject
these requests.

•	 View list of requests
•	 Accept: Update the database record
•	 Reject: Remove the database record

Pending requests
Pending requests can be found by querying the database for relationships where the
userb column is the current logged in user, and the relationship isn't approved. This
query should be in our relationships model.

New model method
Our model method should take parameters for usera, userb, and approved, and
if either of the user parameters are set, filter based on those users, returning
a cached query.

public function getRelationships($usera, $userb, $approved=0)
 {
 $sql = "SELECT t.name as type_name, t.plural_name as

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[132]

 type_plural_name, uap.name as usera_name, ubp.name as
 userb_name FROM relationships r, relationship_types t,
 profile uap, profile ubp WHERE t.ID=r.type AND
 uap.user_id=r.usera AND ubp.user_id=r.userb AND
 r.accepted={$approved}";
 if($usera != 0)
 {
 $sql .= " AND r.usera={$usera} ";
 }
 if($userb != 0)
 {
 $sql .= " AND r.userb={$userb} ";
 }
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

New controller method
The controller needs to check if the user is logged in, include our relationships
model, get the pending requests, and display them to the user in the view.

private function pendingRelationships()
 {
 if($this->registry->getObject('authenticate')->isLoggedIn())
 {
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $pending = $relationships->getRelationships(0,
 $this->registry->getObject('authenticate')->
 getUser()->getUserID(), 0);
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'friends/pending.tpl.php',
 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()
 ->addTag('pending', array('SQL', $pending));
 }
 else
 {
 $this->registry->errorPage('Please login', 'Please login to
 manage pending connections');
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[133]

The result
Now if we navigate to http://oursite/relationships/pending, we see a list of
pending requests!

Accepting a pending request
We simply check that we are logged in, that we are permitted to accept the request,
then we call the accept method, and save the relationship. This is within the
relationship model.

private function approveRelationship($r)
 {
 if($this->registry->getObject('authenticate')->isLoggedIn())
 {
 require_once(FRAMEWORK_PATH . 'models/relationship.php');
 $relationship = new Relationship($this->registry, $r, 0,
 0, 0, 0);
 if($relationship->getUserB() == $this->registry->getObject(
 'authenticate')->getUser()->getUserID())
 {
 // we can approve this!
 $relationship->approveRelationship();
 $relationship->save();
 $this->registry->errorPage('Relationship approved', 'Thank
 you for approving the relationship');
 }
 else
 {
 $this->registry->errorPage('Invalid request', 'You are not
 authorized to approve that request');
 }
 }
 else
 {
 $this->registry->errorPage('Please login', 'Please login to
 approve this connection');
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://oursite/relationships/pending

Friends and Relationships

[134]

Rejecting a pending request
To do this we need to check if we are logged in, check if we can reject the request,
and delete the relationship record. This is within the relationship model.

private function rejectRelationship($r)
 {
 if($this->registry->getObject('authenticate')->isLoggedIn())
 {
 require_once(FRAMEWORK_PATH . 'models/relationship.php');
 $relationship = new Relationship($this->registry, $r, 0, 0,
 0, 0);
 if($relationship->getUserB() == $this->registry->getObject(
 'authenticate')->getUser()->getUserID())
 {
 // we can reject this!
 $relationship->delete();
 $this->registry->errorPage('Relationship rejected', 'Thank
 you for rejecting the relationship');
 }
 else
 {
 $this->registry->errorPage('Invalid request', 'You are not
 authorized to reject that request');
 }
 }
 else
 {
 $this->registry->errorPage('Please login', 'Please login to
 reject this connection');
 }
 }

Listing friends
So far thanks to this chapter we already have lists of users and the functionality for
our users to build relationships. Now we need to combine these to build a friends list
for our users. This would either be a user viewing their own friends, or viewing the
friends of another user.

Our friends
To view our own friends, we would visit http://oursite/relationships. This
would call our relationship controller's default method, which needs to get our
friends and display them on the page.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[135]

In our model, we need a query that looks up all relationships where we are either
usera or userb, and depending on which we are, looks up the details of our
connection from the other user field. This is done with a simple IF statement
within the query.

public function getByUser($user)
 {
 $sql = "SELECT t.plural_name, p.name as users_name, u.ID FROM
 users u, profile p, relationships r, relationship_types t
 WHERE t.ID=r.type AND r.accepted=1 AND (r.usera={$user}
 OR r.userb={$user}) AND IF(r.usera={$user},u.ID=
 r.userb,u.ID=r.usera) AND p.user_id=u.ID";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

Our controller simply needs to check we are logged in, call this method, and generate
the view.

private function myRelationships()
 {
 if($this->registry->getObject('authenticate')->isLoggedIn())
 {
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $relationships = $relationships->getByUser($this->registry
 ->getObject('authenticate')->getUser()->getUserID());
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'friends/mine.tpl.php', 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()->addTag(
 'connections', array('SQL', $relationships));
 }
 else
 {
 $this->registry->errorPage('Please login', 'You need to be a
 logged in user to see your friends');
 }
 }

Finally, we need a suitable friends/mine.tpl.php template to generate our view.
This needs to contain a loop for the connections.

 <div id="main">
 <div id="rightside">
 </div>
 <div id="content">

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Friends and Relationships

[136]

 <h1>Your connections</h1>
 <p>You are...</p>

 <!-- START connections -->
 {plural_name} with {users_name}
 <!-- END connections -->

 </div>
 </div>

Now if we visit the URL mentioned earlier in this section, we get our list
of connections.

Pagination
This list isn't paginated. Don't forget to use the pagination object
to break up big lists.

Their friends
The principles we have used to generate our list of friends can be used to create a
friends list for other users, so that once users have viewable profiles, we can click
to see their friends list.

Mutual friends
We may have friends in common with some of the users on the site. We should show
this as it will help enforce the "network" aspect of our social network, and if the two
users aren't connected already, a number of friends in common may encourage them
to connect.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 4

[137]

Within our friends model, we would want to set if we are viewing our own friends,
or friends of another user. If we opted to list the friends of another user, then the
model should build a different query to list friends, and mark any which are in
common between the two users.

Friends in your profile
Like most social networking sites, we will want to show a selection of a user's
connections within their profile. We will discuss this in Chapter 5, Profiles and
Statuses, as to do this, we need to have a profile controller and a profile model,
which we will create in Chapter 5.

Summary
In this chapter, we have looked at allowing our users to invite friends and contacts
to participate in the site and connect with them. If their friends are already members
of the site, we inform them of this so that they can connect, instead of sending an
unnecessary e-mail to the user. We also looked at listing and performing basic searches
in our user list, so that users can see other users, to enable them to connect with one
another. To facilitate their connections, we set up a number of types of connection,
and enabled users to connect to one another, forming online relationships.

Now that we have users on our site who can connect to one another, we should
move onto the user profile and status updates, so that users can see more about
each other, and see what it is that they are up to.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses
With users able to join Dino Space, and befriend one another, we can now look at
displaying detailed information on our users so that they can find out about each
other, and be encouraged to befriend each other through the site. Once we have the
profiles in place, we can then allow our users to update their own status to inform
their friends what they are doing, and allow their friends to post messages and
comments onto their profiles.

In this chapter, you will learn:

•	 How to create a customizable profile for our users
•	 How to display a random sample of a user's friends on all aspects

of the profile
•	 How to display the user's name and profile picture on all aspects

of their profile
•	 How to allow users to update their status as well as:

	° Allowing others to comment on statuses
	° Allowing others to indicate whether they like or dislike

a status

User profiles
When our users signed up to the site, they provided some profile information that
they wanted to form a part of their user profile. Obviously, not all of this information
is intended for their profile, such as their password, e-mail address, and perhaps
their date of birth depending on the privacy policy of the site. All of the information
related to their pet dinosaur, however, would be for their profile.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[140]

Extendable profile
If we look at most social networking websites, their user profiles are generally
multi-purpose; they show a stream of status updates, often with comments and
additional features too; they show general information about the user, and they
often show photographs of, or taken by, the user. As the social network grows,
the profiles generally do more and more, often with sections displaying information
from third-party applications.

With this in mind, we need to build an extendable profile system, which allows us
to easily add-in new features as and when they are developed, and keeps the code
for features we are going to develop, such as profile information, photographs, and
user updates, separate.

Profile controller
The easiest way for us to separate the aspects of the profile, is through the profile
controller. The controller should act in a way similar to our main index.php file,
passing control to additional controllers such as a profile information controller,
or a profile statuses controller. This also means we can simply slot in new child
controllers to the profile controller in the future, bringing new features to
the profile.

Below we have the code for the controllers/profile/controller.php file, which
as you can see, depending on the user's request, delegates control to either the profile
information controller or the profile statuses controller. A switch statement is used to
process the first part of the user's request, to work out what aspect of the profile they
are trying to view. The function which is then called includes the controller file and
instantiates the controller object.

<?php

/**
 * Profile controller
 * Delegates control to profile controllers to seperate the distinct
 profile features
 */
class Profilecontroller {

The constructor calls an appropriate delegator method depending on the structure
of the URL.

 /**
 * Constructor
 * @param Object $registry the registry

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[141]

 * @param bool $directCall - are we directly accessing this
 controller?
 */
 public function __construct($registry, $directCall=true)
 {
 $this->registry = $registry;

 $urlBits = $this->registry->getObject('url')->getURLBits();
 switch($urlBits[1])
 {
 case 'view':
 $this->staticContentDelegator(intval($urlBits[2]));
 break;
 case 'statuses':
 $this->statusesDelegator(intval($urlBits[2]));
 break;
 default:
 $this->profileError();
 break;
 }
 }

The delegator methods simply require the appropriate sub-controller, and instantiate
it, passing control to it.

 /**
 * Delegate control to the static content profile controller
 * @param int $user the user whose profile we are viewing
 * @return void
 */
 private function staticContentDelegator($user)
 {
 require_once(FRAMEWORK_PATH . 'controllers/profile/
 profileinformationcontroller.php');
 $sc = new Profileinformationcontroller($this->registry, true,
 $user);
 }

 /**
 * Delegate control to the statuses profile controller
 * @param int $user the user whose profile we are viewing
 * @return void
 */
 private function statusesDelegator($user)
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[142]

 require_once(FRAMEWORK_PATH . 'controllers/profile/
 profilestatusescontroller.php');
 $sc = new Profilestatusescontroller($this->registry, true,
 $user);
 }

If the user tried to access a sub-controller that doesn't exist, we would display an error.

 /**
 * Display an error - you cannot access profiles simply by visiting
 /profile/ !
 * @return void
 */
 private function profileError()
 {
 $this->registry->errorPage('Sorry, an error has occured',
 'The link you followed was invalid, please try again');
 }

}

?>

Core shared information
Although the user's profile is going to be broken down into different areas, which
are accessed through different links showing different pages, there will be some
information that should be common throughout all of these aspects, such as:

•	 The name of the user whose profile we are viewing
•	 Their photograph
•	 A sample of their friends

This core shared information is something we can generate from within the profile
controller, which is called regardless of which sub controller control is subsequently
delegated to. This information can be generated and sent to the template handler
ready for when the page is outputted to the user's browser.

Name, ID, and photograph
To get the name, ID, and photograph of a user, we are going to require a profile
model to access and manage the data from a user's profile. We are also going to
need to add a new field to our profile table, one for a user's profile picture (as we
didn't consider that when the user signed up to Dino Space). While we are creating
this model, we should also create a field in the database for the users' biography
information, for them to tell everyone about themselves.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[143]

Profile model
We need to create a profile model (models/profile.php), which we will need to do
the following things:

•	 Populate its fields based on a user's profile in the database
•	 Update its fields based on changes to a user's profile
•	 Update the corresponding database record for the profile, provided the user

updating the profile is either an administrator or the user themselves
•	 Generate template tags for the data within
•	 Return certain information on demand—for us, we want to get the user's

name and the user's photograph

The code for such a model is as follows:

<?php

/**
 * Profile model
 */
class Profile{

 /**
 * The registry
 */
 private $registry;

 /**
 * Profile ID
 */
 private $id;

 /**
 * Fields which can be saved by the save() method
 */
 private $savable_profile_fields = array('name', 'dino_name',
 'dino_dob', 'dino_breed', 'dino_gender', 'photo', 'bio');

 /**
 * Users ID
 */
 private $user_id;

 /**

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[144]

 * Users name
 */
 private $name;

 /**
 * Dinosaurs name
 */
 private $dino_name;

 /**
 * Dinosaurs Date of Birth
 */
 private $dino_dob;

 /**
 * Dinosaurs breed
 */
 private $dino_breed;

 /**
 * Dinosaurs gender
 */
 private $dino_gender;

/**
 * Users bio
 */
 private $bio;

 /**
 * Users photograph
 */
 private $photo;

Upon construction, if an ID has been passed, the database should be queried, and the
fields of the object populated with the result from the query.

 /**
 * Profile constructor
 * @param Registry $registry the registry
 * @param int $id the profile ID
 * @return void
 */
 public function __construct(Registry $registry, $id=0)
 {
 $this->registry = $registry;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[145]

 if($id != 0)
 {
 $this->id = $id;
 // if an ID is passed, populate based off that
 $sql = "SELECT * FROM profile WHERE user_id=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 // populate our fields
 foreach($data as $key => $value)
 {
 $this->$key = $value;
 }
 }

 }
 }

As usual, we have a number of setter methods:

 /**
 * Sets the users name
 * @param String $name
 * @return void
 */
 public function setName($name)
 {
 $this->name = $name;
 }

 /**
 * Sets the dinosaurs name
 * @param String $name the name
 * @return void
 */
 public function setDinoName($name)
 {
 $this->dino_name = $name;
 }

 /**
 * Sets the users bio
 * @param String $bio the bio
 * @return void

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[146]

 */
 public function setBio($bio)
 {
 $this->bio = $bio;
 }

The dinosaur date of birth setter method also accepts a formatted parameter, which
indicates that the date being passed has already been formatted appropriately, or
that it hasn't and additional processing is necessary.

 /**
 * Set the dinosaurs data of birth
 * @param String $dob the date of birth
 * @param boolean $formatted - indicates if the controller has
 formatted the dob, or if we need to do it here
 */
 public function setDinoDOB($dob, $formatted=true)
 {
 if($formatted == true)
 {
 $this->dino_dob = $dob;
 }
 else
 {
 $temp = explode('/', $dob);
 $this->dob = $temp[2].'-'.$temp[1].'-'.$temp[0];
 }
 }

 /**
 * Sets the breed of the users dinosaur
 * @param String $breed
 * return void
 */
 public function setDinoBreed($breed)
 {
 $this->dino_breed = $breed;
 }

 /**
 * Set the gender of the users dinosaur
 * @param String $gender the gender
 * @param boolean $checked - indicates if the controller has
 validated the gender, or if we need to do it
 * @return void

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[147]

 */
 public function setDinoGender($gender, $checked=true)
 {
 if($checked == true)
 {
 $this->dino_gender = $gender;
 }
 else
 {
 $genders = array();
 if(in_array($gender, $genders))
 {
 $this->dino_gender = $gender;
 }
 }
 }

 /**
 * Sets the users profile picture
 * @param String photo name
 * @return void
 */
 public function setPhoto($photo)
 {
 $this->photo = $photo;
 }

If the user or administrator saves the profile, we take each of the values from the
savable profile fields, add them to an update array, and then pass this to the database
object's updateRecords method to save the profile, provided that the user is either
the administrator or changing their own profile.

 /**
 * Save the user profile
 * @return bool
 */
 public function save()
 {
 // handle the updating of a profile
 if($registry->getObject('authenticate')->isLoggedIn() &&
 ($registry->getObject('authenticate')->getUser()-
 >getUserID() == $this->id || $registry-
 >getObject('authenticate')->getUser()->isAdmin() == true))
 {
 // we are either the user whose profile this is, or we are
 the administrator

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[148]

 $changes = array();
 foreach($this->saveable_profile_fields as $field)
 {
 $changes[$field] = $this->$field;
 }
 $this->registry->getObject('db')->updateRecords('profile',
 $changes, 'user_id=' . $this->id);
 if($this->registry->getObject('db')->affectedRows() == 1)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 else
 {
 return false;
 }
 }

Next, we have a method to convert the data from the model into template tags
to make it easy to populate the view:

 /**
 * Convert the users profile data to template tags
 * @param String $prefix prefix for the template tags
 * @return void
 */
 public function toTags($prefix='')
 {
 foreach($this as $field => $data)
 {
 if(! is_object($data) && ! is_array($data))
 {
 $this->registry->getObject('template')->getPage()-
 >addTag($prefix.$field, $data);
 }
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[149]

Finally, we have a number of getter methods to retrieve data from the model:

 /**
 * Get the users name
 * @return String
 */
 public function getName()
 {
 return $this->name;
 }

 /**
 * Get the users photograph
 * @return String
 */
 public function getPhoto()
 {
 return $this->photo;
 }

/**
 * Get the users ID
 * @return int
 */
 public function getID()
 {
 return $this->user_id;
 }

}

?>

Sample of friends
Our relationships model (models/relationships.php) contains a method to return
a cached query of a user's friends and contacts. We can extend this method to, if we
request, return a random sample of these friends. We can do this by adding two
additional parameters to the method, one to indicate if the results should be random,
and another to limit the result set, and by checking the values of these parameters
and modifying the query appropriately, as highlighted in the code below:

/**
 * Get relationships by user
 * @param int $user the user whose relationships we wish to list
 * @param boolean $obr should we randomly order the results?
 * @param int $limit should we limit the results? (0 means no, > 0
 means limit to $limit)
 * @return int the query cache ID

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[150]

 */
public function getByUser($user, $obr=false, $limit=0)
{
 // the standard get by user query
 $sql = "SELECT t.plural_name, p.name as users_name, u.ID FROM users
 u, profile p, relationships r, relationship_types t WHERE t.ID=r.
 type AND r.accepted=1 AND (r.usera={$user} OR r.userb={$user})
 AND IF(r.usera={$user},u.ID=r.userb,u.ID=r.usera)
 AND p.user_id=u.ID";
 // if we are ordering by random
 if($obr == true)
 {
 $sql .= " ORDER BY RAND() ";
 }
 // if we are limiting
 if($limit != 0)
 {
 $sql .= " LIMIT " . $limit;
 }
 // cache and return
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
}

Currently, this query will give us a list of friend's names and the type of relationship
the user has with them. We may wish to extend this in the future to pull in profile
pictures and other information to make the sample of friends more interesting to the
user viewing the profile.

Pulling the core shared information together
By using the relationships model and the profile model, we can get the core
shared information we need. We now need a method in our profile controller
(controllers/profile/controller.php) to get the data, and assign it to
appropriate template variables.

/**
 * Set common template tags for all profile aspects
 * @param int $user the user id
 * @return void
 */
private function commonTemplateTags($user)
{
 // get a random sample of 6 friends.
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[151]

 $cache = $relationships->getByUser($user, true, 6);
 $this->registry->getObject('template')->getPage()->addTag(
 'profile_friends_sample', array('SQL', $cache));

 // get the name and photo of the user
 require_once(FRAMEWORK_PATH . 'models/profile.php');
 $profile = new Profile($this->registry, $user);
 $name = $profile->getName();
 $uid = $profile->getID();
 $photo = $profile->getPhoto();
 $this->registry->getObject('template')->getPage()->addTag(
 'profile_name', $name);
 $this->registry->getObject('template')->getPage()->addTag(
 'profile_photo', $photo);
$this->registry->getObject('template')->getPage()->addTag('profile_
user_id', $uid);
// clear the profile
 $profile = "";
}

This method should be called before we pass control to the various other controllers.

Static profile
Let us now look at providing functionality for the user's "static profile", that is,
the information about them, interests, hobbies, facts, and other information that
is unlikely to change on a regular basis.

Our profile model that we created earlier in the chapter should make accessing
and displaying profile information much easier.

Viewing the profile
What do we need to do to facilitate viewing a user's profile:

•	 We need to put a profile link in the members list, and the member's search
results pages, so users can actually get to these profiles!

•	 We need to create a profile information controller, which:
	° Gets profile data from the profile model, and sends it to the

template engine

•	 We need to create a template, which includes provisions for both profile
information, and the common profile information

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[152]

Profile link
The link to view a user's profile will simply be: profile/view/userid,. This
enacts the profile controller, which in turn passes control to the profile information
controller. We need to add this link to the following templates we already have:

•	 Views/default/templates/members/list.tpl.php

•	 Views/default/templates/members/search.tpl.php

The link is shown below:

<h1>DINO SPACE! Members List {letter}</h1>
<!-- START members -->
<p>{name}</p>
<p>Keeper of {dino_name} a {dino_gender}
{dino_breed}</p>
{form_relationship}
<hr />
<!-- END members -->

Controller
The profile information controller (controllers/profile/
profileinformationcontroller.php) needs to communicate with the model,
to get the data for the profile, and have the data assigned to template variables.
We already have a method in the controller to do this, so it should be a fairly trivial
task: include the model, and call the toTags method to push the profile information
to template tags, as highlighted in the code below:

<?php

/**
 * Profile information controller
 */
class Profileinformationcontroller {

 /**
 * Constructor
 * @param Registry $registry
 * @param int $user the user id
 * @return void
 */
 public function __construct($registry, $user)
 {
 $this->registry = $registry;
 $this->viewProfile($user);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[153]

 }

 /**
 * View a users profile information
 * @param int $user the user id
 * @return void
 */
 private function viewProfile($user)
 {
 // load the template
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'profile/information/view.tpl.php', 'footer.
 tpl.php');
 // get all the profile information, and send it to the template
 require_once(FRAMEWORK_PATH . 'models/profile.php');
 $profile = new Profile($this->registry, $user);
 $profile->toTags('p_');
 }

}

?>

Template
The template for this aspect of the profile is shown below (views/default/
templates/profile/information/view.tpl.php); the highlighted aspects
show the common template information shared by all aspects of the profile
(including aspects we may add in the future).

<div id="main">

<div id="rightside">
 <div style="text-align:center; padding-top: 5px;">

 </div>
 <div style="padding: 5px;">
 <h2>Friends</h2>

 <!-- START profile_friends_sample -->
 {users_name}
 <!-- END profile_friends_sample -->
 View all</
 a>
 View
 mutual friends

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[154]

 <h2>Rest of my profile</h2>

 Status updates

 </div>
</div>

<div id="content"><h1>{profile_name}</h1>
 <p>{p_bio}</p>
 <h2>My Dinosaur</h2>
 <table>
 <tr>
 <th>Name</th>
 <td>{p_dino_name}</td>
 </tr>
 <tr>
 <th>DOB</th>
 <td>{p_dino_dob}</td>
 </tr>
 <tr>
 <th>Breed</th>
 <td>{p_dino_breed}</td>
 </tr>
 <tr>
 <th>Gender</th>
 <td>{p_dino_gender}</td>
 </tr>

 </table>
</div>
</div>

In action
If we now visit a user's profile (http://localhost/folder-containing-
socialnetwork/profile/view/1), we see the user's profile on the screen as
shown in the following screenshot:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[155]

Relationships—some improvements
At present, our relationships controller is only set to either list our relationships with
other users, or pending relationship requests. It isn't set up to show all of the contacts
of a user, or all of the mutual contacts we have in common with a user. Let's extend
our relationships controller to facilitate these; after all, we have placed a link to them
on our profile pages.

All contacts
To get a list of all the contacts of a user, we simply require the relationships
model, and call the getRelationships method, passing the user whose profile
we were viewing:

/**
 * View all users connections
 * @param int $user
 * @return void
 */
private function viewAll($user)
{
 if($this->registry->getObject('authenticate')->isLoggedIn())
 {
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $all = $relationships->getByUser($user, false, 0);
 $this->registry->getObject('template')-

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[156]

 >buildFromTemplates('header.tpl.php', 'friends/all.tpl.php',
 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()->addTag('all',
 array('SQL', $all));
 require_once(FRAMEWORK_PATH . 'models/profile.php');
 $p = new Profile($this->registry, $user);
 $name = $p->getName();
 $this->registry->getObject('template')->getPage()->addTag(
 'connecting_name', $name);

 }
 else
 {
 $this->registry->errorPage('Please login', 'Please login to
 view a users connections');
 }
}

Template
We need a template file called views/default/templates/friends/all.tpl.php
to act as the template for viewing all of a user's friends.

<div id="main">

 <div id="rightside">
 </div>

 <div id="content">
 <h1>Connections of {connecting_name}</h1>

 <!-- START all -->
 {plural_name} with {users_name}</p>
 <!-- END all -->

 </div>

</div>

In action
Now, if we click the view all contacts link on a user's profile, we are shown a list
of all of their contacts as shown in the following screenshot:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[157]

Editing the profile
Again, our model will make things much easier for us here, as it allows us to get all
of the information from the profile (to populate the edit form fields) and includes
provisions for saving changes to a profile. It won't, however, deal with a user
requesting to change their password or update their e-mail address; we will
discuss that separately.

Controller additions
Our controller needs to have a new method added to display an edit page, and
process the form submission when a user edits their profile. This will then interact
with the model, calling the save method to save the profile changes in the database.

Uploading a photograph—an image handler
As we are going to be uploading and scaling a user's photograph to act as their
profile picture, we should consider developing an image handler class, which can
process uploads, save images, and deal with resizing, keeping all of our image
related code in a single place.

Following is the code for such a file (lib/images/imagemanager.class.php).
Some important aspects are highlighted and discussed within.

<?php

/**
 * Image manager class
 * @author Michael Peacock
 */
class Imagemanager
{
 private $type = '';

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[158]

We define extensions and file types that we wish to allow users to upload.

 private $uploadExtentions = array('png', 'jpg', 'jpeg', 'gif');
 private $uploadTypes = array('image/gif', 'image/jpg', 'image/
 jpeg', 'image/pjpeg', 'image/png');
 private $image;
 private $name;

 public function __construct(){}

If we load the image from the file system, we need to know the type of image it is,
so we can use the correct imagecreate function, we can get the type of image from
the getimagesize function. . This requires the GD image library to be enabled
with PHP.

 /**
 * Load image from local file system
 * @param String $filepath
 * @return void
 */
 public function loadFromFile($filepath)
 {
 $info = getimagesize($filepath);
 $this->type = $info[2];
 if($this->type == IMAGETYPE_JPEG)
 {
 $this->image = imagecreatefromjpeg($filepath);
 }
 elseif($this->type == IMAGETYPE_GIF)
 {
 $this->image = imagecreatefromgif($filepath);
 }
 elseif($this->type == IMAGETYPE_PNG)
 {
 $this->image = imagecreatefrompng($filepath);
 }
 }

This class can also wrap the imagesx and imagesy functions to provide a nice way
to get the width and height of the image.

 /**
 * Get the image width
 * @return int
 */
 public function getWidth()

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[159]

 {
 return imagesx($this->image);
 }

 /**
 * Get the height of the image
 * @return int
 */
 public function getHeight()
 {
 return imagesy($this->image);
 }

Using imagecopyresampled, we can resize the image.

Imagecopyresampled allows us to resize the image without distorting
the image, whereas imagecopyresized does result in some distortion.

 /**
 * Resize the image
 * @param int $x width
 * @param int $y height
 * @return void
 */
 public function resize($x, $y)
 {
 $new = imagecreatetruecolor($x, $y);
 imagecopyresampled($new, $this->image, 0, 0, 0, 0, $x, $y,
 $this->getWidth(), $this->getHeight());
 $this->image = $new;
 }

In most cases, we, or the user, won't know the exact dimensions to resize an
image to. To get around this, we can resize one dimension based on a set amount
(for example , a thumbnail width) and scale the other dimension to match.

 /**
 * Resize the image, scaling the width, based on a new height
 * @param int $height
 * @return void
 */
 public function resizeScaleWidth($height)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[160]

 {
 $width = $this->getWidth() * ($height / $this->getHeight());
 $this->resize($width, $height);
 }

 /**
 * Resize the image, scaling the height, based on a new width
 * @param int $width
 * @return void
 */
 public function resizeScaleHeight($width)
 {
 $height = $this->getHeight() * ($width / $this->getWidth());
 $this->resize($width, $height);
 }

Similar to the two methods above, we can also scale both dimensions
by a percentage.

 /**
 * Scale an image
 * @param int $percentage
 * @return void
 */
 public function scale($percentage)
 {
 $width = $this->getWidth() * $percentage / 100;
 $height = $this->getheight() * $percentage / 100;
 $this->resize($width, $height);
 }

The display method can be used to display the image in the user's browser.

 /**
 * Display the image to the browser - called before output is sent,
 exit() should be called straight after.
 * @return void
 */
 public function display()
 {
 $type = '';
 if($this->type == IMAGETYPE_JPEG)
 {
 $type = 'image/jpeg';
 }
 elseif($this->type == IMAGETYPE_GIF)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[161]

 {
 $type = 'image/gif';
 }
 elseif($this->type == IMAGETYPE_PNG)
 {
 $type = 'image/png';
 }

 header('Content-Type: ' . $type);

 if($this->type == IMAGETYPE_JPEG)
 {
 imagejpeg($this->image);
 }
 elseif($this->type == IMAGETYPE_GIF)
 {
 imagegif($this->image);
 }
 elseif($this->type == IMAGETYPE_PNG)
 {
 imagepng($this->image);
 }

 }

The most useful aspect for our current requirements is this loadFromPost method;
the postfield is passed so the method can check to see if a file has been uploaded,
checks the type of file, and then uploads it to the moveto location.

 /**
 * Load image from postdata
 * @param String $postfield the field the image was uploaded via
 * @param String $moveto the location for the upload
 * @param String $name_prefix a prefix for the filename
 * @return boolean
 */
 public function loadFromPost($postfield, $moveto, $name_prefix=''
)
 {
 if(is_uploaded_file($_FILES[$postfield]['tmp_name']))
 {
 $i = strrpos($_FILES[$postfield]['name'], '.');
 if (! $i)
 {
 //'no extention';

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[162]

 return false;
 }
 else
 {
 $l = strlen($_FILES[$postfield]['name']) - $i;
 $ext = strtolower (substr($_FILES[$postfield]
 ['name'], $i+1, $l));

 if(in_array($ext, $this->uploadExtentions))
 {
 if(in_array($_FILES[$postfield]['type'], $this-
 >uploadTypes))
 {

 $name = str_replace(' ', '', $_FILES[
 $postfield]['name']);
 $this->name = $name_prefix . $name;
 $path = $moveto . $name_prefix.$name;
 move_uploaded_file($_FILES[$postfield]
 ['tmp_name'] , $path);
 $this->loadFromFile($path);
 return true;

 }
 else
 {
 // 'invalid type';
 return false;
 }
 }
 else
 {
 // 'invalid extention';
 return false;
 }
 }

 }
 else
 {
 // 'not uploaded file';
 return false;
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[163]

 /**
 * Get the image name
 * @return String
 */
 public function getName()
 {
 return $this->name;
 }

When we have finished processing an image, the save method finds the appropriate
image function for the format of the image, and then saves the file.

 /**
 * Save changes to an image e.g. after resize
 * @param String $location location of image
 * @param String $type type of the image
 * @param int $quality image quality /100
 * @return void
 */
 public function save($location, $type='', $quality=100)
 {
 $type = ($type == '') ? $this->type : $type;

 if($type == IMAGETYPE_JPEG)
 {
 imagejpeg($this->image, $location, $quality);
 }
 elseif($type == IMAGETYPE_GIF)
 {
 imagegif($this->image, $location);
 }
 elseif($type == IMAGETYPE_PNG)
 {
 imagepng($this->image, $location);
 }
 }
}

?>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[164]

Back to the controller
Now, we have an excellent class available to process our profile image uploads,
which should make things much easier for us; let's look at actually allowing the
user to edit their profile page, with a new function in our profile information
controller (controllers/profile/profileinformationcontroller.php).

/**
 * Edit your profile
 * @return void
 */
private function editProfile()
{
 if($this->registry->getObject('authenticate')->isLoggedIn() ==
 true)
 {

We first check that the user is logged into the site, and if they are, we get their
user ID.

 $user = $this->registry->getObject('authenticate')->getUser()-
 >getUserID();
 if(isset($_POST) && count($_POST) > 0)
 {

If the edit form has been submitted, include the model and set the new values.

 // edit form submitted
 $profile = new Profile($this->registry, $user);
 $profile->setBio($this->registry->getObject('db')-
 >sanitizeData($_POST['bio']));
 $profile->setName($this->registry->getObject('db')-
 >sanitizeData($_POST['name']));
 $profile->setDinoName($this->registry->getObject('db')-
 >sanitizeData($_POST['dino_name']));
 $profile->setDinoBreed($this->registry->getObject('db')-
 >sanitizeData($_POST['dino_breed']));
 $profile->setDinoGender($this->registry->getObject('db')-
 >sanitizeData($_POST['dino_gender']), false);
 $profile->setDinoDOB($this->registry->getObject('db')-
 >sanitizeData($_POST['dino_dob']), false);

If a profile picture was uploaded, call the image manager, check that the image
is an image, upload it, resize it, and set the profile picture field.

 if(isset($_POST['profile_picture']))
 {
 require_once(FRAMEWORK_PATH . 'lib/images/imagemanager.
 class.php');

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[165]

 $im = new Imagemanager();
 $im->loadFromPost('profile_picture', $this->registry-
 >getSetting('uploads_path') .'profile/', time());
 if($im == true)
 {
 $im->resizeScaleHeight(150);
 $im->save($this->registry->getSetting('uploads_path')
 .'profile/' . $im->getName());
 $profile->setPhoto($im->getName());
 }
 }

We then save the profile, and redirect the user back to the edit page after informing
them that the profile has been saved.

 $profile->save();
 $this->registry->redirectUser(array('profile', 'view',
 'edit'), 'Profile saved', 'The changes to your profile
 have been saved', false);
 }
 else
 {

If the user hasn't submitted the edit form, show them the form and populate it with
profile data from the profile model.

 // show the edit form
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'profile/information/edit.tpl.php',
 'footer.tpl.php');
 // get the profile information to pre-populate the form
 fields
 require_once(FRAMEWORK_PATH . 'models/profile.php');
 $profile = new Profile($this->registry, $user);
 $profile->toTags('p_');
 }
 }
 else
 {

If the user isn't logged in, they shouldn't be trying to edit a profile, so show them
an error message.

 $this->registry->errorPage('Please login', 'You need to be
 logged in to edit your profile');
 }
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[166]

We also need a switch statement at the top of our profile information controller, to
either call the viewProfile method or the editProfile method, depending on the
user's request.

$urlBits = $this->registry->getObject('url')->getURLBits();
 if(isset($urlBits[3]))
 {
 switch($urlBits[3])
 {
 case 'edit':
 $this->editProfile();
 break;
 default:
 $this->viewProfile($user);
 break;
 }
 }
 else
 {
 $this->viewProfile($user);
 }

Template
Next, we need a template file for our edit page. This needs to contain a form, with
template variables as the values for the form fields, to be pre-populated with the
user's profile information.

The template file
The template file should be similar to that of the view profile template, as the name,
picture, and selection of friends will still be generated and inserted into the view.
The code for the template (views/default/templates/profile/information/
edit.tpl.php) is below, with the form highlighted:

<div id="main">

 <div id="rightside">
 <div style="text-align:center; padding-top: 5px;">

 </div>
 <div style="padding: 5px;">
 <h2>Friends</h2>

 <!-- START profile_friends_sample -->
 {users_name}
 <!-- END profile_friends_sample -->

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[167]

 View all

 View mutual
 friends

 <h2>Rest of my profile</h2>

 Status updates

 </div>
 </div>

 <div id="content"><h1>{profile_name}: Edit Profile</h1>
 <form action="profile/view/{p_user_id}/edit" method="post"
 enctype="multipart/form-data">
 <label for="name">Name</label>

 <input type="text" id="name" name="name" value="{p_name}"
 />

 <label for="profile_picture">Photograph</label>

 <input type="file" id="profile_picture" name="profile_
 picture" />

 <label for="bio">Biography</label>
 <textarea id="bio" name="bio" cols="40" rows="6">{p_bio}</
 textarea>
 <label for="dino_name">Dinosaur Name</label>

 <input type="text" id="dino_name" name="dino_name" value="
 {p_dino_name}" />

 <label for="dino_breed">Dinosaur Breed</label>

 <input type="text" id="dino_breed" name="dino_breed"
 value="{p_dino_breed}" />

 <label for="dino_dob">Dinosaur Date of Birth</label>

 <input type="text" id="dino_dob" class="selectdate"
 name="dino_dob" value="{p_dino_dob}" />

 <label for="dino_gender">Dinosaur Gender</label>

 <select id="dino_gender" name="dino_gender">
 <option value="">Please select</option>
 <option value="male">Male</option>
 <option value="female">Female</option>
 </select>

 <input type="submit" id="" name="" value="Save profile" />
 </form>

 </div>
</div>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[168]

Datepicker
The date format is something users are likely to get confused with, being unsure of
how to format the date correctly or putting in incorrect details. To make this easier,
we should use the jQuery datepicker plugin, which can take a textbox, and present
the user with a nice calendar popup to select the date from.

We will need jQuery, jQuery UI, and the datepicker plugin, which can be
downloaded from: http://jqueryui.com/download.

With the files downloaded and placed suitably within our framework, we need
to edit our views/default/templates/header.tpl.php file to include the files,
and assign certain textboxes with the datepicker plugin. The code below shows
referencing the new files, and some JavaScript that links textboxes with a class of
selectdate to the datepicker plugin:

<link type="text/css" href="external/ui-lightness/jquery-ui-
 1.7.1.custom.css" rel="stylesheet" />
 <script type="text/javascript" src="external/jquery-1.3.2.min.
 js"></script>
 <script type="text/javascript" src="external/jquery-ui-
 1.7.2.custom.min.js"></script>
 <script type="text/javascript">
 $(function() {
 $('.selectdate').datepicker({
 numberOfMonths: 1,
 showButtonPanel: false
 });
 $('.selectdate').datepicker('option', 'dateFormat', 'dd/mm/
 yy');

 });
 </script>

In action
If we now take a look at the edit screen, we have our form as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[169]

And if we click the date, a datepicker is displayed as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[170]

Statuses
If we assume for the moment that statuses are not the only things we would
want to display on our users profiles, this can help us plan out this feature
more appropriately.

Because of this, we would want to have a single database table that keeps
a central record of all the different types of content, and the profiles it relates to.

Statuses database table
Below is a suitable structure for the statuses database table.

Field Type Description
ID Integer, Primary Key,

Auto-increment
ID of the status

Update Longtext The content of the update
Type Integer Reference to the status types table
Creator Integer The ID of the poster
Created Timestamp Time status was posted
Profile Integer Profile the status was posted on
Approved Boolean If the status is approved or notIf the status is

approved or not

Statuses types database table
We also need a status types table, to relate to the type field, giving a name of the
type of status update (for example, if it is a posted URL, an image, and so on), and
a reference for the template bit to be used for that status update (we will discuss
that shortly).

Field Type Description
ID Integer, Primary Key,

Auto-increment
ID of the status type

Type_name Varchar The name of the type of status
Type_reference Varchar A machine readable name for the type, used

as the file name of template bits (that is, no
spaces or punctuation)

Active Boolean Indicates whether the status type is active
or not

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[171]

Different types of status
Each type of profile update, if appropriate, would have its own database table to
store data specific to that type of update. For instance, if the user posted a URL we
would use the status text as a description of the URL and include the user's comment
about it, but we would also want to store the URL itself; this is where we would use
another table to extend the status. This keeps a central table of statuses that we can
query to provide our status list, while allowing us to have specialist tables to contain
only the data required for different types of status.

We will look into different types of status, in Chapter 8, Statuses—Other Media.

Template improvements
Depending on posted comments, messages, and statuses on a user's profile, we may
need to insert different template bits to the page, for instance one for a status update,
one for a public post, one for an image posted on the profile and so on. And, for each
of these, we may need to display a number of comments, a number of likes, and a
number of dislikes.

To facilitate this, we would need to upgrade our template system. For instance, the
first stage would be to create a template loop of updates to a user's profile, then each
of these would require a new template bit to be inserted within. However, since
we may have more than one of each type, for example, three status updates, the
template bit would need to have a unique template tag within there, for example,
status-message-1, status-message-2. Otherwise, the three statuses will all be the
same. We need to allow the template system to dynamically update some of its
template variables on the fly, as it is inserted into the page.

To do this, we simply add a new optional parameter to the addTemplateBit method,
which is an array of template variables assigned specifically with that instance of the
template bit.

This new parameter, $replacements, needs to be passed to the appropriate
addTemplateBit method in the page object too.

/**
 * Add a template bit from a view to our page
 * @param String $tag the tag where we insert the template e.g.
 {hello}
 * @param String $bit the template bit (path to file, or just the
 filename)
 * @param Array $replacements template bit specific replacements
 * @return void
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[172]

public function addTemplateBit($tag, $bit, $replacements=array())
{
 if(strpos($bit, 'views/') === false)
 {
 $bit = 'views/' . $this->registry->getSetting('view') . '/
 templates/' . $bit;
 }
 $this->page->addTemplateBit($tag, $bit, $replacements);
}

As mentioned above, we need to take this parameter in the method in the page
object; this method also needs to be changed to assign both the template bit and the
replacements array with the template tag, and not just assign the template bit with
the template tag, as it previously did. This can be achieved by putting the template
bit and replacements array into an array, and assigning them with the template tag
in the bits array. This is highlighted in the code below:

/**
 * Add a template bit to the page, doesnt actually add the content
 just yet
 * @param String the tag where the template is added
 * @param String the template file name
 * @param Array the replacements array
 * @return void
 */
public function addTemplateBit($tag, $bit, $replacements=array())
{
 $this->bits[$tag] = array('template' => $bit,
 'replacements' => $replacements);
}

Now that we have the additional information being stored where we need it, we
need to process it when we actually insert the template bit into the page. This simply
involves iterating through the tags, and performing a simple find and replace on
the content of the template bit (importantly, only on the template bit), then placing
the content generated into the main template as before. The highlighted code below
illustrates the changes:

/**
 * Take the template bits from the view and insert them into our page
 content
 * Updates the pages content
 * @return void
 */
private function replaceBits()
{

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[173]

 $bits = $this->page->getBits();
 // loop through template bits
 foreach($bits as $tag => $template)
 {
 $templateContent = file_get_contents($template['template']);
 $tags = array_keys($template['replacements']);
 $tagsNew = array();
 foreach($tags as $taga)
 {
 $tagsNew[] = '{' . $taga . '}';
 }
 $values = array_values($template['replacements']);
 $templateContent = str_replace($tagsNew, $values,
 $templateContent);
 $newContent = str_replace('{' . $tag . '}', $templateContent,
 $this->page->getContent());
 $this->page->setContent($newContent);
 }
}

Listing statuses
As discussed earlier, we are going to extend this system to include more types of
statuses, and also show activity by the user on the profiles of others, but for now,
we are just focusing on the users own status updates. Here is what we need to do:

1. Query the statuses.
2. Cache the statuses, and send them to the template. This populates a loop of

status updates, and for each update, we get a template tag such as {update-1}
based off a template variable of {update-{ID}}.

3. For each status update, we add a template bit (as we may have different
types of update shortly, they will use different templates).

4. Along with each template bit, we pass the status details, so the template bit
can be populated too.

/**
 * List recent statuses on a users profile
 * @param int $user the user whose profile we are viewing
 * @return void
 */
 private function listRecentStatuses($user)
 {
 // load the template
 $this->registry->getObject('template')->buildFromTemplates(

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[174]

'header.tpl.php', 'profile/statuses/list.tpl.php', 'footer.tpl.php');
 $updates = array();
 $ids = array();

 // query the updates
 $sql = "SELECT t.type_reference, t.type_name, s.*, p.name as
 poster_name FROM statuses s, status_types t, profile p WHERE
 t.ID=s.type AND p.user_id=s.poster AND p.user_id={$user}
 ORDER BY s.ID DESC LIMIT 20";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() > 0)
 {
 // populate the updates and ids arrays with the updates
 while($row = $this->registry->getObject('db')->getRows())
 {
 $updates[] = $row;
 $ids[$row['ID']] = $row;
 }
 }

 // cache the updates to build the loop which gives us a template
 tag for each status updates, for a template bit to go in
 $cache = $this->registry->getObject('db')->cacheData($updates
);

Add the updates to the template:

 $this->registry->getObject('template')->getPage()->addTag(
 'updates', array('DATA', $cache));

Add the template bits:

 foreach($ids as $id => $data)
 {
 // iterate through the statuses, adding the update template
 bit, and populating it with the status information.
 // remember: the idea is we can extend the query to include
 other updates, which include different template bits
 $this->registry->getObject('template')->addTemplateBit(
 'update-' . $id, 'profile/updates/' . $data['type_
 reference'] . '.tpl.php', $data);
 }

 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[175]

Templates
We need a status list template (views/default/templates/profile/statuses/
list.tpl.php).

 <div id="main">

 <div id="rightside">
 <div style="text-align:center; padding-top: 5px;">

 </div>
 <div style="padding: 5px;">
 <h2>{profile_name}</h2>
 <h2>Friends</h2>

 <!-- START profile_friends_sample -->
 {users_name}

 <!-- END profile_friends_sample -->

 View all
 <a href="relationships/mutual/{p_user_
 id}">View mutual friends

 <h2>Rest of my profile</h2>

 Status updates

 </div>
 </div>

 <div id="content"><h1>Recent updates</h1>
 <!-- START updates -->
 {update-{ID}}
 <!-- END updates -->
 </div>
 </div>

And, we need a standard update template (views/default/templates/updates/
update.tpl.php).

<p>{poster_name}: {update}</p>
<!-- START comments-{ID} -->
<!-- we will put comments here! -->
<!-- END comments-{ID} -->

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[176]

In action
If we add some test status updates to the database and take a look, this is what we
have now:

Likes, dislikes, and comments
In addition to showing statuses, messages, and other profile posts, we would
want to allow friends to comment on these and indicate whether they like
or dislike the posts.

Comments
There are two main options for comments:

•	 Class all comments on a status as a direct reply to the status
•	 Have a hierarchical structure of comments, allowing users to comment

on comments

For Dino Space, we will look at the first option, as this is simpler, and will leave us
with a more focused profile where comments focus on the user whose profile we are
viewing. After creating the table, we should create some test comments that we will
be able to see in the template shortly.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[177]

Field Type Description
ID Integer, Primary Key,

Auto-increment
ID of the comment

Comment Longtext The comment
Profile_post Integer The profile post the comment relates to
Creator Integer The creator of the comment
Created Timestamp The date the comment was posted
Approved Boolean If the comment is approved

We need to query the comments table for any related comments, cache them, and
assign them to the appropriate status update.

Template
The update template needs to be extended to include comments posted
on that update.

<p>{poster_name}: {update}</p>
<!-- START comments-{ID} -->
<p> Comments:</p>
<p> {comment} by {commenter}</p>
<!-- END comments-{ID} -->

Code
The code to generate the comments goes in the listRecentStatuses method
before we cache the updates. It needs to check whether there are status updates,
and if there are:

1. Query the comments table for comments related to any of the updates
that have happened.

2. Iterate through the comments, sorting them into arrays related to the
profile update.

3. Iterate through the profile updates, and for each of them cache an empty
array and assign it to the comments loop for that update—this ensures if
there are no comments, the template tags don't display to the user.

4. Iterate through the profile updates that have comments, and cache the
comments array associated with it, and send it to the template.

$post_ids = array_keys($ids);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[178]

Check whether there are status updates:

 if(count($post_ids) > 0)
 {
 $post_ids = implode(',', $post_ids);
 $pids = array_keys($ids);

Cache an empty array for each update—blanking out comments by default:

 foreach($pids as $id)
 {

 $blank = array();
 $cache = $this->registry->getObject('db')-
 >cacheData($blank);
 $this->registry->getObject('template')->getPage()-
 >addPPTag('comments-' . $id, array('DATA', $cache));
 }

Query the comments table for comments related to any of the updates that
have happened:

 $sql = "SELECT p.name as commenter, c.profile_post, c.comment
 FROM profile p, comments c WHERE p.user_id=c.creator AND
 c.approved=1 AND c.profile_post IN ({$post_ids})";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() > 0)
 {

Iterate through the comments, putting them into appropriate arrays:

 $comments = array();
 while($comment = $this->registry->getObject('db')-
 >getRows())
 {
 if(in_array($comment['profile_post'], array_keys(
 $comments)))
 {
 $comments[$comment['profile_post']][] = $comment;
 }
 else
 {
 $comments[$comment['profile_post']] = array();
 $comments[$comment['profile_post']][] = $comment;
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 5

[179]

Cache the comments:

 foreach($comments as $pp => $commentlist)
 {
 $cache = $this->registry->getObject('db')->cacheData(
 $commentlist);
 $this->registry->getObject('template')->getPage()-
 >addPPTag('comments-' .
 $pp, array('DATA', $cache));
 }
 }

 }

In action
If we now take a look at our status updates, we have a comment!

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Profiles and Statuses

[180]

Try it yourself
Now that we have got this far, why not try and implement the following yourself. If
you have difficulties, the code for the next chapter includes suitable implementations
of the following features:

•	 Posting comments
•	 Liking and disliking a post
•	 Displaying likes and dislikes
•	 Posting profile updates

Summary
In this chapter, we created a profile screen for our members to display information
about themselves to other members, as well as basic provisions for them to manage
who has access to that information. We also created a profile status and message
system, so that our users can update their network with what they are currently
doing, and their network of contacts can respond by commenting on the status,
indicating that they like or dislike it, or by writing their own message on that
users profile.

With profiles, statuses, and public messages in place, the next stage for us is to
allow users to see a stream of activity from their network, showing new updates
from their contacts.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream
With users on Dino Space able to create profiles and post their statuses, we need to
provide a way for users to see the statuses of their contacts at a glance.

In this chapter, you will learn:

•	 How to create a stream of status updates for users to see what their personal
network is up to at any given time. The system will need to be extendable to
allow users to see a stream of other content as we extend the site.

•	 How to make the times these statuses were posted more relevant to the user.

With more of an idea of the functionality we are going to create in this chapter, let's
get started.

What is a status stream?
Most social networks provide functionality for their users to see the buzz of activity
which is happening within the user's own network of contacts. This is typically a list
of status updates, posts on other users' profiles, and the sharing of media such as
images, videos, and links.

At this stage, Dino Space only has support for simple status updates, though we
will look at this again in Chapter 7 and extend it to include other media, such as
images, links, and video. This means that our user's status stream, at present, only
needs to include:

•	 Status updates
•	 Statuses posted by users on another user's profile
•	 Comments on these statuses
•	 Likes and dislikes of these statuses

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream

[182]

The concept is very similar to the statuses section of a user's profile we created in
Chapter 5 except that instead of relating to one specific user, this should combine
the activity of all users directly connected to the logged-in user.

Although at this stage it is primarily simple statuses, this will involve some logic
to determine the context of the status. There will, after all, be five different types of
status to list in the stream, all of which will require different wording to present to
the user:

•	 The user's own status update
•	 The logged-in user posting a status update on the profile of another user
•	 A contact posting a status update on the profile of the logged-in user
•	 A contact updating their status
•	 A contact posting a status update on the profile of another contact

Stream model
We will require a stream model to build the status stream from the database.
The functionalities required are:

•	 Looking up an activity in the user's network
•	 Formatting the time of these updates to make them more relevant;

for example, 5 minutes ago
•	 Retuning the stream
•	 Knowing if the stream is empty

Code for the model is saved in the models/stream.php file.

Building the stream
Let's walk through the logic of how building a stream of updates would work:

1. We will need to get the IDs of users the current user is connected to.
2. As the IDs will be imploded and used as part of an IN condition, the list of

IDs cannot be empty. So in case it is, we should add an ID of zero to the list.
3. We then need to query the database, pulling in the 20 most recent statuses

that have been posted by the user, posted onto the user's profile, or posted
between two contacts of the user.

4. If there are rows, we update our empty variable to false, so the object
knows if the stream is empty or not.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 6

[183]

5. We then iterate through the results making the time the status was posted
more friendly and relevant, and store them in the object's stream variable.

6. Since the IDs of the status updates will be required to build our initial
template loop, we should add the IDs to a separate array, which can be
retrieved from outside the object (via a getter method).

The following code does this for us:

/**
 * Build a users stream
 * @param int $user the user whose network we want to stream
 * @param int $offset - useful if we add in an AJAX based "view more
statuses" feature
 * @return void
 */
public function buildStream($user, $offset=0)
{
 // prepare an array
 $network = array();

Step 1: Get the ID's of connected users.

 // use the relationships model to get relationships
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $network = $relationships->getNetwork($user);
 // Add a zero element; so if network is empty the IN part of the
 query won't fail

Step 2: Add an extra element to the array for safety.

 $network[] = 0;
 $network = implode(',', $network);

Step 3: Query the database. The offset variable the method takes is used here. So if
we were to have a "view more" link at the bottom of the status stream, we could get
the previous 20 statuses by providing a suitable offset.

 // query the statuses table
 $sql = "SELECT t.type_reference, t.type_name, s.*,
 UNIX_TIMESTAMP(s.posted) as timestamp, p.name as poster_name,
 r.name as profile_name FROM statuses s, status_types t,
 profile p, profile r WHERE t.ID=s.type AND p.user_id=s.poster
 AND r.user_id=s.profile AND (p.user_id={$user} OR
 r.user_id={$user} OR (p.user_id IN ({$network}) AND r.user_id
 IN ({$network}))) ORDER BY s.ID DESC LIMIT {$offset}, 20";
 $this->registry->getObject('db')->executeQuery($sql);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246www.zshareall.com

http://www.zshareall.com

Status Stream

[184]

Step 4: If there are rows, we set the empty variable to false, so the object knows
the stream isn't empty, as the default for this variable is true.

 if($this->registry->getObject('db')->numRows() > 0)
 {
 $this->empty = false;

Steps 5 and 6: Iterate through the results getting a friendly version of the time
(from another method within the object, which we will discuss shortly), and
add the status ID to the status' variable.

 // iterate through the statuses, adding the ID to the IDs array,
 making the time friendly, and saving the stream
 while($row = $this->registry->getObject('db')->getRows())
 {
 $row['friendly_time'] = $this->generateFriendlyTime(
 $row['timestamp']);
 $this->IDs[] = $row['ID'];
 $this->stream[] = $row;
 }
 }
}

This simple method does most of the work we need to get a status stream from
the database, requiring the help of two additional methods, one to get the IDs of
connected users (a modification to the relationships model) and another to make
the time string more friendly and relevant. Let's look now at creating those methods,
and complete the groundwork for this feature.

Relationships—get the IDs!
Our relationships model (models/relationships.php) is currently used to query
the database when it relates to user connections and relationships on the site. At
present however, the queries this object performs are more complex than we require,
and are cached, with the cache returned. Since this object is related purely with
relationships, it makes sense for us to add a new method to this object to retrieve
only the IDs of users who are connected to another user. We will call this method
getNetwork, as it essentially gets the network of contacts related to a user.

Very simply, this method queries the database, puts the IDs of the users the user is
connected to into an array, and returns the array. Since the user the logged-in user is
connected to could be stored in either of two fields (with the currently logged-in user
being stored in the other), there is some additional logic in the query (as with the other
queries in this model) to ensure it returns the correct field, resulting in the users the

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 6

[185]

user is connected to. This is illustrated by the if statement within the query. If usera is
the current user, then we join the query against userb to ensure we don't end
up listing the current user instead of the user they have a relationship with.

/**
 * Get relationship IDs (network) by user
 * @param int $user the user whose relationships we wish to list
 * @return array the IDs of profiles in the network
 */
public function getNetwork($user)
{
 $sql = "SELECT u.ID FROM users u, profile p, relationships r,
 relationship_types t WHERE t.ID=r.type AND r.accepted=1 AND
 (r.usera={$user} OR r.userb={$user}) AND IF(
 r.usera={$user},u.ID=r.userb,u.ID=r.usera) AND p.user_id=u.ID";
 $this->registry->getObject('db')->executeQuery($sql);
 $network = array();
 if($this->registry->getObject('db')->numRows() > 0)
 {
 while($r = $this->registry->getObject('db')->getRows())
 {
 $network[] = $r['ID'];
 }
 }
 return $network;
}

We now have a method that gives us the data behind a user's contact network
on the site!

Friendly times
The time that a status update or profile status post is made is recorded in the
database. If we simply convert this time to a date and time, it doesn't really provide
much context for the user, as they simply see the date and time. This is especially
true with a social networking site, as we would expect the status stream to be
updated frequently, with most of the most recent updates being from the same day.
We could make this more user friendly, by taking any updates from the last 24 hours
(which as mentioned, should hopefully be the majority of any user's status stream)
and making them relative to the current time.

For example:

•	 Posted less than a minute ago
•	 Posted 7 minutes ago

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream

[186]

•	 Posted just over an hour ago
•	 Posted 5 hours ago

Times like these mean the user can make more sense out of when the statuses
were posted.

A method to make the times more user friendly is quite straightforward and, for
now, can be stored within the stream model. We simply take the time (as a UNIX
timestamp, which is simply the number of seconds since the UNIX epoch) and add
a specific time interval to it (as illustrated by the code) and compare the result to
the current time (again a UNIX timestamp), depending on what we have added.
If it exceeds the current time, then we know what to display.

If the time the status was posted plus 60 seconds is a larger number than the current
time, then we know the status was posted within the last minute, and can return
that accordingly.

/**
 * Generate a more user friendly time
 * @param int $time - timestamp
 * @return String - friendly time
 */
private function generateFriendlyTime($time)
{
 $current_time = time();
 if($current_time < ($time + 60))
 {
 // the update was in the past minute
 return "less than a minute ago";
 }

If the above wasn't true, then if we add 120 seconds to the time the status was posted,
and this is greater than the current time, we know that it was posted between 1 and
2 minutes ago. This isn't too useful, except for the fact that any number of minutes
other than 1 would be written as x minutes; with 1, we write 1 minute. We can
make this time more friendly by returning "just over a minute ago".

 elseif($current_time < ($time + 120))
 {
 // it was less than 2 minutes ago, more than 1, but we don't want
 to say 1 minute ago do we?
 return "just over a minute ago";
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 6

[187]

If the above wasn't true, and we add an hour worth of seconds to the time it was
posted, and this is greater than the current time, then we know it was within the
last hour, but not within the last 1 minute 59 seconds, so we can say "x minutes ago".

 elseif($current_time < ($time + (60*60)))
 {
 // it was less than 60 minutes ago: so say X minutes ago
 return round(($current_time - $time) / 60) . " minutes ago";
 }

If the above isn't true but adding two hours to the time makes it greater than the
current time, we can say "just over an hour ago". Again, this is the same reason for
"just over a minute ago".

 elseif($current_time < ($time + (60*120)))
 {
 // it was more than 1 hour ago, but less than two, again we dont
 want to say 1 hourS do we?
 return "just over an hour ago";
 }

If the status was posted within the last day, work out how many hours ago, and
return that.

 elseif($current_time < ($time + (60*60*24)))
 {
 // it was in the last day: X hours
 return round(($current_time - $time) / (60*60)) . " hours
 ago";
 }

Otherwise, we simply return a nice format of the date, which isn't as useful, but
hopefully these statuses will be old and buried in the user's stream.

 else
 {
 // longer than a day ago: give up, and display the date / time
 return "at " . date('h:ia \o\n l \t\h\e jS \o\f M',$time);
 }
}

We now have a really handy function that makes the time more friendly for
our users.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream

[188]

Save some CPU cycles
In the above calculations, the time offset is broken down as multiples
of a minute, to make them clearer. If these pages become popular, these
additional calculations can add to our servers load. You may wish to
replace them with their actual values.

The rest…
Finally, our stream model requires a few extra methods so that we can interact
with it more easily, including:

•	 A getter method for the stream array
•	 A getter method for the IDs array
•	 A check to see if the stream is empty

Following is the required code:

/**
 * Get the stream
 * @return array
 */
public function getStream()
{
 return $this->stream;
}

/**
 * Get the status IDs in the stream
 * @return array
 */
public function getIDs()
{
 return $this->IDs;
}

/**
 * Is the stream empty?
 * @return bool
 */
public function isEmpty()
{
 return $this->empty;
}

With our model complete, we can create our controller to tie the data to the
user interface.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 6

[189]

Stream controller
What does our stream controller need to do? Let's walk through how we can take
our model and turn it into a stream for the user to see.

1. Require the stream model class, and instantiate the object.
2. If the stream is empty, display an empty stream template.
3. If the stream isn't empty, we display the main template and carry on.
4. We take the status IDs and turn them into an array we can cache and send

to the template. This gives us a list in the template of status IDs. In itself, this
isn't useful, but it will be used to duplicate the template tag (where we will
insert the status itself), the comments list, and the like / dislike list for each
of the statuses, ready for the data to be pushed to the template later.

5. We then need to iterate through the stream, and depending on the type of
status we have to add a specific template to the page (so a status update and
a status post by someone on someone else's post show up differently in the
list), and the stream data needs to be pushed directly into that template.

6. Comments, likes, and dislikes can then be looked up and inserted into the
template too.

However, before we implement these features, we need a constructor. This needs to
check if the user is a logged-in user, and if so, call the method we are going to create.
If the user isn't an authenticated user, then we should show them an error page. This
is the first bit of code for our controllers/stream/controller.php file.

/**
 * Controller constructor - direct call to false when being embedded
 via another controller
 * @param Registry $registry our registry
 * @param bool $directCall - are we calling it directly via the
 framework (true), or via another controller (false)
 */
public function __construct(Registry $registry, $directCall)
{
 $this->registry = $registry;
 if($this->registry->getObject('authenticate')->isLoggedIn())
 {
 $this->generateStream();
 }
 else
 {
 $this->registry->errorPage('Please login', 'You need to be
 logged in to see what is happening in your network');
 }
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream

[190]

Generating the stream
With the constructor in place, let's look at creating the generateStream method.

private function generateStream($offset=0)
{

We start by requiring the stream model class and instantiating the object.

 require_once(FRAMEWORK_PATH . 'models/stream.php');
 $stream = new Stream($this->registry);

We then build the stream, based off the user's ID, and any offset that has
been defined.

 $stream->buildStream($this->registry->getObject('authenticate')-
 >getUser()->getUserID(), $offset);
 if(! $stream->isEmpty())
 {

If the stream isn't empty, we use the main stream template.

 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'stream/main.tpl.php', 'footer.tpl.php');

We then retrieve our stream data and status IDs from the model.

 $streamdata = $stream->getStream();

 $IDs = $stream->getIDs();

Since we need to cache the IDs to make a loop of template tags, we need to
restructure them into a new, cacheable array, which we then cache and send
to the template engine.

 $cacheableIDs = array();
 foreach($IDs as $id)
 {
 $i = array();
 $i['status_id'] = $id;
 $cacheableIDs[] = $i;
 }

 $cache = $this->registry->getObject('db')->cacheData(
 $cacheableIDs);
 $this->registry->getObject('template')->getPage()->addTag(
 'stream', array('DATA', $cache));

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 6

[191]

We then begin iterating through the stream of data.

 foreach($streamdata as $data)
 {

We prepare the data from the status to go into the template shortly.

 $datatags = array();
 foreach($data as $tag => $value)
 {
 $datatags['status' . $tag] = $value;
 }

Depending on the type of update this is we use different templates, as defined by the
status type itself. This should make adding in new media types in Chapter 7 much
easier. Also, depending on the context of the status, that is who made the update and
on whose profile was the update, we need to use a different template for these too.
We then add the stream data directly into the template bit, and assign the template
bit to one of the template tags generated by the loop of cached IDs earlier. The
following is a handy bit of re-use from our template engine extensions in Chapter 5.

 // your own status updates
 if($data['profile'] == $this->registry-
 >getObject('authenticate')->getUser()->getUserID()
 && $data['poster'] == $this->registry->getObject('
 authenticate')->getUser()->getUserID())
 {
 // it was a present...from me to me!
 // http://www.imdb.com/title/tt0285403/quotes?qt0473119
 $this->registry->getObject('template')->addTemplateBit(
 'stream-' . $data['ID'], 'stream/types/' .
 $data['type_reference'] . '-Spongebob-Squarepants-Costume-
 gift.tpl.php', $datatags);
 }
 elseif($data['profile'] == $this->registry-
 >getObject('authenticate')->getUser()->getUserID())
 {
 // updates to you
 $this->registry->getObject('template')->addTemplateBit(
 'stream-' . $data['ID'], 'stream/types/' .
 $data['type_reference'] . '-toself.tpl.php', $datatags);
 }
 elseif($data['poster'] == $this->registry-
 >getObject('authenticate')->getUser()->getUserID())
 {
 // updates by you
 $this->registry->getObject('template')->addTemplateBit(

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream

[192]

 'stream-' . $data['ID'], 'stream/types/' .
 $data['type_reference'] . '-fromself.tpl.php', $datatags);
 }
 elseif($data['poster'] == $data['profile'])
 {
 $this->registry->getObject('template')->addTemplateBit(
 'stream-' . $data['ID'], 'stream/types/' .
 $data['type_reference'] . '-user.tpl.php', $datatags);
 }
 else
 {
 // network updates
 $this->registry->getObject('template')->addTemplateBit(
 'stream-' . $data['ID'], 'stream/types/' .
 $data['type_reference'] . '.tpl.php', $datatags);
 }
 }
 }
 else
 {

If there were no updates, we display the none template.

 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'stream/none.tpl.php', 'footer.tpl.php');
 }
}

So, if we had our templates in place at this stage, bringing all of this together,
adding the controller to our database, and viewing /stream what would we see?

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 6

[193]

This is the basics of our status stream. We can now look at adding comments, likes,
and dislikes to the stream.

Comments, likes, and dislikes
The functionality behind adding comments, likes, and dislikes is very similar to the
work we did in Chapter 5 in developing the statuses on a user's profile.

The concept to adding these to the stream is fairly straightforward. Firstly, we
create an empty array of comments / likes / dislikes for each status. This way,
if a post has no comments, likes, or dislikes, then by caching the empty array and
sending it to the template, we don't see a blank list where comments should be.
If there are comments, they are added to the empty array (making it non-empty),
cached, and sent to the template.

Although the method is the same for the three aspects, comments require one
database query, whereas likes and dislikes combined require another, so let's
add in support one at a time.

Comments
Take the status IDs we retrieved earlier, and create empty arrays for each of them.

$status_ids = implode(',', $IDs);
$start = array();
foreach($IDs as $id)
{
 $start[$id] = array();
}

Copy our new array of empty arrays to be used for comments.

// comments
$comments = $start;

Query the database for comments.

$sql = "SELECT p.name as commenter, c.profile_post, c.comment FROM
 profile p, comments c WHERE p.user_id=c.creator AND c.approved=1
 AND c.profile_post IN ({$status_ids})";
$this->registry->getObject('db')->executeQuery($sql);
if($this->registry->getObject('db')->numRows() > 0)
{

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream

[194]

If there are comments, iterate through them and add them to the appropriate bucket
(or array) for the status it relates to.

 while($comment = $this->registry->getObject('db')->getRows())
 {
 $comments[$comment['profile_post']][] = $comment;
 }
}

For each of the comments arrays, we cache the data and send them to the
template engine.

foreach($comments as $status => $comments)
{
 $cache = $this->registry->getObject('db')->cacheData($comments);
 $this->registry->getObject('template')->getPage()->addTag(
 'comments-' . $status, array('DATA', $cache));
}

Likes and dislikes
Likes and dislikes are stored in the same table. So we query it, and depending
on the result, put the result in a different array.

$likes = $start;
$dislikes = $start;
$sql = "SELECT i.status, p.name as iker, i.iker as iker_id, i.type as
 type FROM profile p, ikes i WHERE p.user_id=i.iker AND i.status IN
 ({$status_ids}) ";
$this->registry->getObject('db')->executeQuery($sql);
if($this->registry->getObject('db')->numRows() > 0)
{
 while($ike = $this->registry->getObject('db')->getRows())
 {
 if($ike['type'] == 'likes')
 {
 $likes[$ike['status']][] = $ike;
 }
 else
 {
 $dislikes[$ike['status']][] = $ike;
 }
 }
}
foreach($likes as $status => $likeslist)
{

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 6

[195]

 $cache = $this->registry->getObject('db')->cacheData($likeslist);
 $this->registry->getObject('template')->getPage()->addTag('likes-'
 . $status, array('DATA', $cache));
}
foreach($dislikes as $status => $dislikeslist)
{
 $cache = $this->registry->getObject('db')->cacheData(
 $dislikeslist);
 $this->registry->getObject('template')->getPage()->addTag(
 'dislikes-' . $status, array('DATA', $cache));
}

Views
Now we need our template files to provide us with the view.

Main template
The main template contains an outer template loop, which is populated based on
the cached status IDs. Once this is populated, we have a unique template tag for
each status, ready for the status template to be inserted. It also generates three
inner loops—one for comments, one for likes, and one for dislikes.

<div id="main">

<div id="rightside">
</div>

<div id="content">
<h1>Updates in your network</h1>
<!-- START stream -->
 {stream-{status_id}}
 <!-- START comments-{status_id} -->
 <p> {comment} by {commenter}</p>
 <!-- END comments-{status_id} -->
 <!-- START likes-{status_id} -->
 <p>{iker} likes this</p>
 <!-- END likes-{status_id} -->
 <!-- START dislikes-{status_id} -->
 <p>{iker} dislikes this</p>
 <!-- END dislikes-{status_id} -->
<!-- END stream -->
</div>
</div>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream

[196]

Status type templates
For each status type (we have only one at the moment) we need a template for each
context (user's own status, user posting on someone else's profile, someone posting
on a user's profile, and two users in a contact's network posting on their profile).
These templates are stored in the views/default/templates/stream/types folder.
Below is the template used when showing the status the logged-in user posted on the
profile of another user:

<p>You posted on {statusprofile_name}'s profile: {statusupdate}</p>
<p class="postedtime">Posted {statusfriendly_time}</p>

In action
Now that we have the model, controller, and views in place, all that leaves us
to do is create a controller record in the database for stream, and visit /stream
as a logged-in user.

Room for improvement
We have developed a powerful status stream in this chapter, but as with anything
there is always room for improvement. Let's discuss how this might be improved
and extended.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 6

[197]

Firstly, there is some overlap in terms of logic and queries with the user's profile
and the status' delegator within the profile. It may be possible for us to centralize
this functionality and use it in both these instances, perhaps generating a stream
for a profile or generating a stream for a network, depending on methods called
in the object.

Secondly, we are doing a few small queries in the controller. This is generally best
avoided, and instead models should be used to generate the comments, likes, and
dislikes. We could create models for these, which this and the user's profile could
make use of.

Plural names are currently hardcoded within the templates. So if Bill posts on Ben's
profile, the text is generated by adding 's to the user's name. Some names may only
require an apostrophe, so we could look at making this more dynamic.

The final obvious area for improvement is the data it pulls in; it currently pulls in
the 20 most recent updates, taking an offset into account. We may wish to detect
more recent updates since then, so a user could load in (perhaps through AJAX)
more recent status updates that have occurred while they have been viewing the
stream page.

A system stream for administrators
While not as straightforward, as these events won't be centrally stored, we could
also create a stream of system events for the administrator. These could include:

•	 Logins / logouts / signups
•	 Statuses
•	 Relationship formations
•	 When passwords are sent
•	 When e-mails are sent via the site, and so on

This isn't an essential feature, but could be a nice feature to have depending on
the size of the network and the size of the administrative team running the site.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Status Stream

[198]

Summary
In this chapter we have taken the statuses that users were able to update and post
thanks to our work in Chapter 5 and created a stream of these statuses that the user
can see, based on the activity and contacts within their network on Dino Space.
This includes:

•	 Status updates
•	 Posting on other user's profiles
•	 Comments relating to these updates
•	 Likes / dislikes related to these updates

We've also looked at potential ways to improve and enhance this feature, as well
as what we might wish to consider adding for administrators to see an overview
of the system.

With all of this now in place, let's move on to supporting new types of media on
the site, with images, videos, and links being posted onto the profiles of our users!

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages
On Dino Space, we have a new status stream for our users to display the activity
happening in their network. One of the things included in the stream was postings
on other users' wall posts, something which our database supports, but at the
moment, our site doesn't!

In this chapter, you will learn:

•	 How to allow users to post messages on each other's profiles
•	 How to allow users to post private messages to each other

Most social networking sites support two types of messages: public and private
messages. Private messages are generally sent in a similar fashion to e-mails, and
public messages being posted on user's profiles for other users to see.

Let's get started with extending our profiles and the status stream!

Public messages
Our status stream from Chapter 6 fully supports public messages and streaming
them to the Dino Space members. What we don't yet have, however, is support
for users to post messages on the profiles of other users, so, let's add that in now.

Controller
A user should only be able to post a message on another user's profile if they
are connected. The post message form should only be displayed if the users are
connected. Similarly, a public message post should only be processed if the two
users are connected. The controller also needs to display messages that have
been posted on a user's profile too.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[200]

Displaying profile messages
If we look at our Profilestatusescontroller (controllers/profile/
profilestatusescontroller.php), in the listRecentStatuses method,
we have our query for listing recent profile statuses:

$sql = "SELECT t.type_reference, t.type_name, s.*, p.name as
 poster_name FROM statuses s, status_types t, profile p
 WHERE t.ID=s.type AND p.user_id=s.poster AND p.user_id={$user}
 ORDER BY s.ID DESC LIMIT 20";

At the moment, this query pulls in any posts on a user's profile by the user whose
profile it is. If that user has made a post on someone else's profile, the message
instead shows on the user's own profile, which we don't want.

We need to change this to pull in the profiles table twice, once for the user who
made the post, and again for the user whose profile is being viewed. We will also
want to only pull in posts made on the user's profile, and not posts made by the user
on another user's profile (though this is something we can expand on in the future,
perhaps to indicate that a user has made a post on the profile of another user).
The following query should meet our requirements nicely:

$sql = "SELECT t.type_reference, t.type_name, s.*, pa.name as
 poster_name FROM statuses s, status_types t, profile p,
 profile pa WHERE t.ID=s.type AND p.user_id=s.profile
 AND pa.user_id=s.poster AND p.user_id={$user}
 ORDER BY s.ID DESC LIMIT 20";

Now, if we view a user's profile, we see their own status updates, and messages
posted on their profile by other users, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[201]

Displaying the post message box
The listRecentStatuses method we were just editing is the method we need to
edit to display the post message box. This box should only be displayed if the user is
logged in, and is connected to the user. If the user is viewing their own profile, then
they should see a box to update their own status:

// post status / public message box
if($this->registry->getObject('authenticate')->isLoggedIn() == true)
{
 $loggedInUser = $this->registry->getObject('authenticate')-
 >getUser()->getUserID();

If the logged in user is viewing their own profile, then we add the update template
to the view, so they can update their status:

 if($loggedInUser == $user)
 {
 $this->registry->getObject('template')->addTemplateBit('status_
 update', 'profile/statuses/update.tpl.php');
 }
 else
 {

If the user isn't viewing their own profile, but is logged in, we get any connections
the user has:

 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $connections = $relationships->getNetwork($user, false);
 if(in_array($loggedInUser, $connections))
 {

If the user is connected to the user whose profile they are viewing, then we allow
them to post a message on the users profile with the post template:

 $this->registry->getObject('template')->addTemplateBit(
 'status_update', 'profile/statuses/post.tpl.php');
 }
 else
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[202]

If the user isn't connected to the user, or isn't logged in, then we simply remove the
template tag from the view so they don't see any update or post box on the page:

 $this->registry->getObject('template')->getPage()-
 >addTag('status_update', '');
 }
 }
}
else
{
 $this->registry->getObject('template')->getPage()-
 >addTag('status_update', '');
}

Now, we need to process status updates and profile posts, and create the templates
that make up the final aspect of our view.

Process a new message
The same logic that we used to determine whether the user should see a post form
is what we need to use to determine if we should process a status update, or public
message submission.

Status model
To save the status update or public profile post in the database, we will need a status
model; as with our previous models, this simply needs to represent the fields from
the database, with setter methods for these fields, and a save method to insert a new
record into the database. In the future, we may wish to extend this to pull in statuses
from the database, and save changes to them, as well as deleting statuses, perhaps
if the owner of the message or the owner of the profile the message was posted on
wishes to edit or delete it.

The following is suitable code for our status model (models/status.php):

<?php
/**
 * Status model
 */
class Status {

 /**
 * The registry object
 */
 private $registry;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[203]

 /**
 * Statuses ID
 */
 private $id;

 /**
 * Poster of the status update / profile message
 */
 private $poster;

 /**
 * The profile the status update / profile message was posted on
 */
 private $profile;

 /**
 * Type of status
 */
 private $type;

 /**
 * The update / profile message itself
 */
 private $update;

 /**
 * Reference for the type of status
 */
 private $typeReference = 'update';

 /**
 * Constructor
 * @param Registry $registry the registry object
 * @param int $id ID of the status update / profile message
 * @return void
 */
 public function __construct(Registry $registry, $id=0)
 {
 $this->registry = $registry;
 $this->id = 0;
 }

 /**
 * Set the poster of the status / profile message

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[204]

 * @param int $poster the id of the poster
 * @return void
 */
 public function setPoster($poster)
 {
 $this->poster = $poster;
 }

 /**
 * Set the profile that the message / status is posted on
 * @param int $profile the profile ID
 * @return void
 */
 public function setProfile($profile)
 {
 $this->profile = $profile;
 }

 /**
 * Set the status / profile message itself
 * @param String $status
 * @return void
 */
 public function setStatus($status)
 {
 $this->status = $status;
 }

 /**
 * Set the type of status / profile message
 * @param int $type
 * @return void
 */
 public function setType($type)
 {
 $this->type = $type;
 }

 /**
 * Set the type reference, so we can get the type ID from the
 database
 * @param String $typeReference the reference of the type
 * @return void
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[205]

 public function setTypeReference($typeReference)
 {
 $this->type = $typeReference;
 }

 /**
 * Generate the type of status based of the type reference
 * @return void
 */
 public function generateType()
 {
 $sql = "SELECT * FROM status_types WHERE
 type_reference='{$this->typeReference}'";
 $this->registry->getObject('db')->executeQuery($sql);
 $data = $this->registry->getObject('db')->getRows();
 $this->type = $data['ID'];
 }

 /**
 * Save the status / profile message
 * @return void
 */
 public function save()
 {
 if($this->id == 0)
 {
 $insert = array();
 $insert['update'] = $this->status;
 $insert['type'] = $this->type;
 $insert['poster'] = $this->poster;
 $insert['profile'] = $this->profile;
 $this->registry->getObject('db')-
 >insertRecords('statuses', $insert);
 $this->id = $this->registry->getObject('db')->lastInsertID();
 }
 }
}

?>

Now that we have some functionality to easily insert the status into the database,
we need to update our profile controller to process the new status update.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[206]

Controller additions
As we discussed earlier, we need to take the same logic we used for displaying the
status form, to determine whether we should process a status submission. We can
then combine our new status model to insert the status.

Within the listRecentStatuses method in the profilestatusescontroller,
under the authentication check line, we can check for any $_POST data being
submitted, and if there is, we can call a new method to process the submission:

// post status / public message box
if($this->registry->getObject('authenticate')->isLoggedIn() == true)
{
 if(isset($_POST) && count($_POST) > 0)
 {
 $this->addStatus($user);
 }

Since we have placed this within our listRecentStatuses method, once any
processing has been done, the user is presented with the list of statuses and public
profile messages for that user.

The addStatus method only inserts the status into the database if the user is
posting the status either to their own profile, or the profile of one of their contacts:

/**
 * Process a new status submission / profile message
 * @param int $user the profile the message is being posted on
 * @return void
 */
private function addStatus($user)
{
 $loggedInUser = $this->registry->getObject('authenticate')-
 >getUser()->getUserID();
 if($loggedInUser == $user)
 {
 require_once(FRAMEWORK_PATH . 'models/status.php');
 $status = new Status($this->registry, 0);
 $status->setProfile($user);
 $status->setPoster($loggedInUser);
 $status->setStatus($this->registry->getObject('db')-
 >sanitizeData($_POST['status']));
 $status->generateType();
 $status->save();
 // success message display
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[207]

 else
 {
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $connections = $relationships->getNetwork($user, false);
 if(in_array($loggedInUser, $connections))
 {
 require_once(FRAMEWORK_PATH . 'models/status.php');
 $status = new Status($this->registry, 0);
 $status->setProfile($user);
 $status->setPoster($loggedInUser);
 $status->setStatus($this->registry->getObject('db')-
 >sanitizeData($_POST['status']));
 $status->generateType();
 $status->save();
 // success message display
 }
 else
 {
 // error message display
 }
 }
}

Displaying a confirmation message
Once the user has posted their message on another user's profile, they are redirected
to the profile. Although the profile now has their message on it, there isn't a direct
confirmation message to the user, so let's look at adding a notification to confirm to
the user that their post was successful.

As we won't always wish to display a message, such as if the user hasn't submitted
the form, then we either need to clear the template tag, or simply place it within
some HTML comments, for example:

<!—{status_update_message} -->

If we do this, we simply need to start the contents of the message template with -->
and end it with <!-- to ensure the message itself isn't commented out. Since we
have used the same logic to process the form as we used to display the form, we
can also customize the message based on the context of the submission, for example,
You have updated your status, or You have posted on John's wall.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[208]

We can then add the message to the view, like so:

$this->registry->getObject('template')->addTemplateBit('status_
 update_message', 'profile/statuses/update_confirm.tpl.php');

View
We need to add two template tags to our statuses list file (views/default/
templates/profile/statuses/list.tpl.php), one for the status update/profile
message submit form, and the other (wrapped in HTML comments) for the success
or error message to use:

{status_update}
<!-- {status_update_message} -->

Five small new templates are required, for:

•	 Form to update your own status
•	 Form to post a message on someone else's profile
•	 Success confirmation message when your own status is updated
•	 Success confirmation message when you post on someone else's profile
•	 Error message, if you try to post on the profile of someone you are

not connected to (although the lack of a form for this should prevent
this happening)

Updating your own status: views/default/templates/profile/statuses/
update.tpl.php.

<p>Tell your network what you are up to</p>
<form action="profile/statuses/{profile_user_id}" method="post">
<textarea id="status" name="status"></textarea>

<input type="submit" id="updatestatus" name="updatestatus"
value="Update" />
</form>

Posting on someone else's profile: views/default/templates/profile/statuses/
post.tpl.php.

<p>Post a message on {profile_name}'s profile</p>
<form action="profile/statuses/{profile_user_id}" method="post">
<textarea id="status" name="status"></textarea>

<input type="submit" id="postmessage" name="postmessage"
value="Update" />
</form>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[209]

Success message after updating your own status: views/default/templates/
profile/statuses/update_confirm.tpl.php.

-->
<p style="border: 1px solid #000; padding: 5px;">Your status
 has been saved</p>
<!--

Success message after posting on someone else's profile: views/default/
templates/profile/statuses/post_confirm.tpl.php.

-->
<p style="border: 1px solid #000; padding: 5px;">Your message
 has been posted on {profile_name}'s profile</p>
<!--

Error message after trying to post on the profile of an unconnected user: views/
default/templates/profile/statuses/error.tpl.php.

-->
<p style="border: 1px solid #000; padding: 5px;">You are not
 connected to {profile_name}, so your message was not saved.</p>
<!--

In action
With the new logic and templates in place, let's try updating our own status. We now
have a form to allow us to update our status as shown in the following screenshot:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[210]

After submitting the form, we have a new status in our updates stream, and
a confirmation message is displayed as shown in the following screenshot:

Private messages
We obviously need to keep private messages separate from the rest of the site, and
ensure that they are only accessible to the sender and the receiver. While we could
alter the public messages feature developed earlier, this would raise a few issues,
such as being more difficult to tell whether the message being sent or read was
private, and when using the Internet in a public area, the message would be shown
on the area of the social network the user would most likely be visiting, which isn't
ideal for private information.

Because private messages will be separate from statuses, and won't need to make use
of other media types to make them more interesting (though, we could set them up
to make use of other media if we wanted), it makes sense for us to also use separate
database tables and models for this feature.

Database
Our database needs provisions for the sender of the message, the recipient of the
message, the subject of the message, and of course the message itself. We should also
provide for if the message has been read, when the message was sent, and an ID for
the message.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[211]

The following illustrates a suitable structure for a messages table in our database:

Field Type Description
ID Integer, Auto-

increment,
Primary Key

Reference ID for the message

Sender Integer The sender of the message
Recipient Integer The recipient of the message
Subject Varchar The subject the message relates to
Sent Timestamp When the message was sent
Message Longtext The contents of the message itself
Read Boolean Indicates whether the message has been read or not

More than one recipient?
This database structure, and the code that follows, only supports one
recipient per message. Our users might want to send to more than one
recipient—feel free to add this functionality if you wish.

Message model
As with the majority of our database access, we require a model (models/message.
php) to create, update, and retrieve message-related data from the database and
encapsulate it within itself.

It would also be helpful if the model pulled in a little more information from the
database, including:

•	 A more user friendly representation of the date (we can get this via the
MySQL DATE_FORMAT function)

•	 The name of the sender, by joining the messages table to the profile table
•	 The name of the recipient, by joining the messages table to the profile

table again

The first part of our model simply defines the class variables:

<?php
/**
 * Private message class
 */
class Message {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[212]

 /**
 * The registry object
 */
 private $registry;

 /**
 * ID of the message
 */
 private $id=0;

 /**
 * ID of the sender
 */
 private $sender;

 /**
 * Name of the sender
 */
 private $senderName;

 /**
 * ID of the recipient
 */
 private $recipient;

 /**
 * Name of the recipient
 */
 private $recipientName;

 /**
 * Subject of the message
 */
 private $subject;

 /**
 * When the message was sent (TIMESTAMP)
 */
 private $sent;

 /**
 * User readable, friendly format of the time the message was sent
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[213]

 private $sentFriendlyTime;

 /**
 * Has the message been read
 */
 private $read=0;

 /**
 * The message content itself
 */
 private $message;

The constructor takes the registry and ID of the message as parameters, if the ID has
been defined, then it queries the database and sets the class variables. The database
query here also formats a copy of the date into a friendlier format, and looks up the
names of the sender and recipient of the message:

 /**
 * Message constructor
 * @param Registry $registry the registry object
 * @param int $id the ID of the message
 * @return void
 */
 public function __construct(Registry $registry, $id=0)
 {
 $this->registry = $registry;
 $this->id = $id;
 if($this->id > 0)
 {
 $sql = "SELECT m.*, DATE_FORMAT(m.sent, '%D %M %Y') as
 sent_friendly, psender.name as sender_name, precipient.name
 as recipient_name FROM messages m, profile psender, profile
 precipient WHERE precipient.user_id=m.recipient AND
 psender.user_id=m.sender AND m.ID=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() > 0)
 {
 $data = $this->registry->getObject('db')->getRows();
 $this->sender = $data['sender'];
 $this->recipient = $data['recipient'];
 $this->sent = $data['sent'];
 $this->read = $data['read'];
 $this->subject = $data['subject'];
 $this->message = $data['message'];

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[214]

 $this->sentFriendlyTime = $data['sent_friendly'];
 $this->senderName = $data['sender_name'];
 $this->recipientName = $data['recipient_name'];

 }
 else
 {
 $this->id = 0;
 }
 }
 }

Next, we have setter methods for most of the class variables:

 /**
 * Set the sender of the message
 * @param int $sender
 * @return void
 */
 public function setSender($sender)
 {
 $this->sender = $sender;
 }

 /**
 * Set the recipient of the message
 * @param int $recipient
 * @return void
 */
 public function setRecipient($recipient)
 {
 $this->recipient = $recipient;
 }

 /**
 * Set the subject of the message
 * @param String $subject
 * @return void
 */
 public function setSubject($subject)
 {
 $this->subject = $subject;
 }

 /**

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[215]

 * Set if the message has been read
 * @param boolean $read
 * @return void
 */
 public function setRead($read)
 {
 $this->read = $read;
 }

 /**
 * Set the message itself
 * @param String $message
 * @return void
 */
 public function setMessage($message)
 {
 $this->message = $message;
 }

The save method takes the class variables that directly relate to the messages table in
the database and either inserts them as a new record, or updates the existing record:

 /**
 * Save the message into the database
 * @return void
 */
 public function save()
 {
 if($this->id > 0)
 {
 $update = array();
 $update['sender'] = $this->sender;
 $update['recipient'] = $this->recipient;
 $update['read'] = $this->read;
 $update['subject'] = $this->subject;
 $update['message'] = $this->message;
 $this->registry->getObject('db')->updateRecords('messages',
 $update, 'ID=' . $this->id);
 }
 else
 {
 $insert = array();
 $insert['sender'] = $this->sender;
 $insert['recipient'] = $this->recipient;
 $insert['read'] = $this->read;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[216]

 $insert['subject'] = $this->subject;
 $insert['message'] = $this->message;
 $this->registry->getObject('db')->insertRecords('messages',
 $insert);
 $this->id = $this->registry->getObject('db')->lastInsertID();
 }
 }

One getter method that we need, is to return the user ID of the recipient, so we
can check that the currently logged in user has permission to read the message:

/**
 * Get the recipient of the message
 * @return int
 */
 public function getRecipient()
 {
 return $this->recipient;
 }

We should also provide a method to delete the message from the database,
should the user wish to delete a message:

/**
 * Delete the current message
 * @return boolean
 */
public function delete()
{
 $sql = "DELETE FROM messages WHERE ID=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->affectedRows() > 0)
 {
 $this->id =0;
 return true;
 }
 else
 {
 return false;
 }
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[217]

Finally, we have a toTags method, which converts all of the non-object and
non-array variables into template tags, so when we create a view message
method in the controller, we simply need to construct the message object
and call the toTags method:

 /**
 * Convert the message data to template tags
 * @param String $prefix prefix for the template tags
 * @return void
 */
 public function toTags($prefix='')
 {
 foreach($this as $field => $data)
 {
 if(! is_object($data) && ! is_array($data))
 {
 $this->registry->getObject('template')->getPage()->addTag(
 $prefix.$field, $data);
 }
 }
 }

}

?>

Messages model
Similar to how we have a model for representing a single relationship and another
for representing a number of relationships, we also need a model to represent a
number of messages within the site. This is to handle the lookup of a user's private
message inbox.

<?php

/**
 * Messages model
 */
class Messages {

/**
 * Messages constructor
 * @param Registry $registry
 * @return void

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[218]

 */
 public function __construct(Registry $registry)
 {
 $this->registry = $registry;
 }

/**
 * Get a users inbox
 * @param int $user the user
 * @return int the cache of messages
 */
 public function getInbox($user)
 {
 $sql = "SELECT IF(m.read=0,'unread','read') as read_style,
 m.subject, m.ID, m.sender, m.recipient, DATE_FORMAT(m.sent, '%D
 %M %Y') as sent_friendly, psender.name as sender_name FROM
 messages m, profile psender WHERE psender.user_id=m.sender AND
 m.recipient=" . $user . " ORDER BY m.ID DESC";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;

 }
}
?>

Controllers and views
Our controller needs functionality for:

•	 Listing a user's private messages
	° Indicating which messages have been read, and which ones

are unread

•	 Reading a message
•	 Deleting a message
•	 Composing a new message

And we need three templates, for:

•	 Our inbox
•	 Viewing a message
•	 Creating a new message

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[219]

Listing messages
To list our messages, we simply require our messages controller, call the getInbox
method, and send the cache to the template engine. The read_style field in the
results of the query can be used to highlight rows in the messages table (HTML
table in the view), which represent unread messages:

/**
 * View your inbox
 * @return void
 */
private function viewInbox()
{
 require_once(FRAMEWORK_PATH . 'models/messages.php');
 $messages = new Messages($this->registry);
 $cache = $messages->getInbox($this->registry-
 >getObject('authenticate')->getUser()->getUserID());
 $this->registry->getObject('template')-
 >buildFromTemplates('header.tpl.php', 'messages/inbox.tpl.php',
 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()-
 >addTag('messages', array('SQL', $cache));

}

Inbox
The inbox template (views/default/templates/messages/inbox.tpl.php))
simply requires a table with a template loop to contain the messages. Notice that
the class of the table row is set based on whether the message has been read or not:

<div id="main">

 <div id="rightside">

 Create a new message

 </div>

 <div id="content">
 <h1>Your inbox</h1>
 <table>
 <tr>
 <th>From</th>
 <th>Subject</th>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[220]

 <th>Sent</th>
 </tr>
 <!-- START messages -->
 <tr class="{read_style}">
 <td>{sender_name}</td>
 <td>{subject}</td>
 <td>{sent_friendly}</td>
 </tr>
 <!-- END messages -->
 </table>
 </div>

</div>

The following screenshot shows the Inbox feature:

Reading a message
To read a message we need to require our message model, construct the message
object with the registry and message ID, check that the recipient is the currently
logged in user, load the template, and send the message information to the template:

/**
 * View a message
 * @param int $message the ID of the message
 * @return void
 */
private function viewMessage($message)
{
 require_once(FRAMEWORK_PATH . 'models/message.php');
 $message = new Message($this->registry, $message);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[221]

 if($message->getRecipient() == $this->registry-
 >getObject('authenticate')->getUser()->getUserID())
 {
 $this->registry->getObject('template')-
 >buildFromTemplates('header.tpl.php', 'messages/view.tpl.php',
 'footer.tpl.php');
 $message->toTags('inbox_');
 }
 else
 {
 $this->registry->errorPage('Access denied', 'Sorry, you are not
 allowed to view that message');
 }
}

View message template
The view message template (views/default/templates/messages/view.tpl.
php) simply contains template tags for the message properties, and a few
additional links:

<div id="main">

 <div id="rightside">

 Your inbox

 Reply to this message

 Delete this message
 Create a new message

 </div>

 <div id="content">
 <h1>View message</h1>
 <table>
 <tr>
 <th>Subject</th>
 <td>{inbox_subject}</td>
 </tr>
 <tr>
 <th>From</th>
 <td>{inbox_senderName}</td>
 </tr>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[222]

 <tr>
 <th>Sent</th>
 <td>{inbox_sentFriendlyTime}</td>
 </tr>
 <tr>
 <th>Message</th>
 <td>{inbox_message}</td>
 </tr>
 </table>
 </div>

</div>

Mark as read
Once a user has read a message, we should update the database to indicate that the
message has been read, so that the user can see at a glance which of their messages
are new and unread, and which ones have already been read. However, for privacy
reasons, we shouldn't show this information to the sender of the message.

To do this, we simply set the read property on the model to 1, and save the record,
as illustrated by the changes to viewMessage highlighted below:

/**
 * View a message
 * @param int $message the ID of the message
 * @return void
 */
private function viewMessage($message)
{
 require_once(FRAMEWORK_PATH . 'models/message.php');

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[223]

 $message = new Message($this->registry, $message);
 if($message->getRecipient() == $this->registry-
 >getObject('authenticate')->getUser()->getUserID())
 {
 $this->registry->getObject('template')-
 >buildFromTemplates('header.tpl.php', 'messages/view.tpl.php',
 'footer.tpl.php');
 $message->toTags('inbox_');
 $message->setRead(1);
 $message->save();
 }
 else
 {
 $this->registry->errorPage('Access denied',
 'Sorry, you are not allowed to view that message');
 }
}

Now once the user reads a message, the database records the message as having
been read.

Deleting a message
To delete a message, we simply call the model's delete method, provided the
message was sent to the logged in user of course!

What about the sender?
These deletes will remove the message completely, even from the
sender, but what if we want to have the sender keep their copy, or
have the sender be able to delete their copy? Feel free to extend this
to have an additional field to indicate whether the message has been
deleted by the sender, and add the functionality in.

/**
 * Delete a message
 * @param int $message the message ID
 * @return void
 */
private function deleteMessage($message)
{
 require_once(FRAMEWORK_PATH . 'models/message.php');
 $message = new Message($this->registry, $message);
 if($message->getRecipient() == $this->registry-

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[224]

>getObject('authenticate')->getUser()->getUserID())
 {
 if($message->delete())
 {
 $url = $this->registry->getObject('url')->buildURL(array(),
 'messages', false);
 $this->registry->redirectUser($url, 'Message deleted',
 'The message has been removed from your inbox');
 }

If the message wasn't sent to the logged in user, or if there was a problem deleting
the message, we should display an appropriate error message to the user:

 else
 {
 $this->registry->errorPage('Sorry...', 'An error occured
 while trying to delete the message');
 }
 }
 else
 {
 $this->registry->errorPage('Access denied',
 'Sorry, you are not allowed to delete that message');
 }
}

Composing a new message
Composing a new message is the most complicated aspect for the feature, as there
are a number of aspects to consider (and change, depending on the needs of the
social network). Let's discuss these as we walk through the code:

/**
 * Compose a new message, and process new message submissions
 * @parm int $reply message ID this message is in reply to [optional]
 only used to pre-populate subject and recipient
 * @return void
 */
private function newMessage($reply=0)
{
$this->registry->getObject('template')->buildFromTemplates('header.
 tpl.php', 'messages/create.tpl.php', 'footer.tpl.php');

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[225]

The two strands of this feature (displaying the new message form, and processing
the new message) require knowing a list of members that the message can be sent to
(provided we wish to restrict sending to contacts only). As this is the case, it makes
sense for us to require the relationships model, and instantiate it before progressing:

 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);

 if(isset($_POST) && count($_POST) > 0)
 {

If the user has submitted a new message, we need to check that the recipient
they have selected is in their network (that is, that they are allowed to send
them a message):

 $network = $relationships->getNetwork($this->registry-
 >getObject('authenticate')->getUser()->getUserID());
 $recipient = intval($_POST['recipient']);
 if(in_array($recipient, $network))
 {

If the recipient is in the user's network, then we create an instance of the message
model, populate it with the data the user has submitted, and then save the message
and redirect the user after displaying a confirmation message:

 // this additional check may not be something we require for
 private messages?
 require_once(FRAMEWORK_PATH . 'models/message.php');
 $message = new Message($this->registry, 0);
 $message->setSender($this->registry-
 >getObject('authenticate')->getUser()->getUserID());
 $message->setRecipient($recipient);
 $message->setSubject($this->registry->getObject('db')-
 >sanitizeData($_POST['subject']));
 $message->setMessage($this->registry->getObject('db')-
 >sanitizeData($_POST['message']));
 $message->save();
 // email notification to the recipient perhaps??

 // confirm, and redirect
 $url = $this->registry->getObject('url')->buildURL(array(),
 'messages', false);
 $this->registry->redirectUser($url, 'Message sent', 'The
 message has been sent');
 }
 else
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[226]

If the recipient isn't in their network, we display an error page. Alternatively, we
could check the recipient's privacy settings to see if they allow messages from any
user—something to consider when implementing privacy controls:

 $this->registry->errorPage('Invalid recipient',
 'Sorry, you can only send messages to your recipients');
 }
 }
 else
 {

If the user hasn't submitted the form, then we need to display the new message form
to them. We can get the list of potential recipients (to go in a drop down) from the
relationships model, which we associate with a template variable.

 $cache = $relationships->getByUser($this->registry-
 >getObject('authenticate')->getUser()->getUserID());
 $this->registry->getObject('template')->getPage()-
 >addTag('recipients', array('SQL', $cache));
 if($reply > 0)
 {

If the message is in reply to another message, then we can provide some basic
support for this, such as pre-selecting the recipient, and pre-completing the
subject line based off the message this is in reply to:

 require_once(FRAMEWORK_PATH . 'models/message.php');
 $message = new Message($this->registry, $reply);
 if($message->getRecipient() == $this->registry-
 >getObject('authenticate')->getUser()->getUserID())
 {
 $this->registry->getObject('template')-> getPage()-
 >addAdditionalParsingData('recipients', 'ID',
 $message->getSender(), 'opt', "selected='selected'");
 $this->registry->getObject('template')->getPage()-
 >addTag('subject', 'Re: ' . $message->getSubject());
 }
 else
 {
 $this->registry->getObject('template')->getPage()-
 >addTag('subject', '');
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[227]

 }
 else
 {
 $this->registry->getObject('template')->getPage()-
 >addTag('subject', '');
 }
 }

}

Creating a message template
For the new message template (views/default/templates/messages/create.
tpl.php), we have a template loop for possible recipients. If the message is a reply,
the recipient is selected via the additionalParsingData set in the controller. The
subject is also pre-populated for us:

<div id="main">

 <div id="rightside">

 Your inbox

 </div>

 <div id="content">
 <h1>Compose message</h1>
 <form action="messages/create" method="post">
 <label for="recipient">To:</label>

 <select id="recipient" name="recipient">
 <!-- START recipients -->
 <option value="{ID}" {opt}>{users_name}</option>
 <!-- END recipients -->
 </select>

 <label for="subject">Subject:</label>

 <input type="text" id="subject" name="subject"
 value="{subject}" />

 <label for="message">Message:</label>

 <textarea id="message" name="message"></textarea>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Public and Private Messages

[228]

 <input type="submit" id="create" name="create" value="Send
 message" />
 </form>

 </div>

</div>

In action
If we visit our message centre /messages, we can see our inbox (once the controller
is added to the controllers table in the database!), as shown in the screenshots earlier
in the chapter.

If we click reply, we are taken to the same screen as with creating a new message,
except the recipient is pre-selected and the subject is the subject of the previous
message prefixed with Re:.

Room for improvement?
There are three particular areas that can be improved significantly:

•	 Sent items
•	 Replies
•	 Group messages

Sent items
At the moment, we can't see sent items, and while in principle this could be added
easily, the problem lies if a user deletes the message. We would need to add two
columns to the database, one indicating that the recipient has deleted it from their
inbox, and one indicating the sender has deleted it from their sent items, as we
discussed earlier in the chapter.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 7

[229]

Replies
Our replies are not linked together; they are all stored as standalone messages,
which is something we could improve.

Group messages
At the moment, private messages are only between two users, but we may wish
to extend this in the future to support any number of users.

Summary
In this chapter, we have taken extended statuses on our users' profiles to support
public messages between users. These public messages can use the comments system
we have in place to form public conversations. We have also created a private
messages area that allows users to communicate with one another in private.

Next, we can look at further extending the statuses system to support more types
of message.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media
With our status stream now supporting simple-text updates from the profile owner,
and public messages from other users, it is time for us to integrate other types of
media into these statuses.

In this chapter, you will learn how to integrate other types of media in profile
posts, including:

•	 Images
•	 Videos
•	 Links

The core information to our current statuses is held within the statuses table. We will
keep this the same. However, depending on the type of status update, we may call
upon other database tables to extend the information available to us.

Since different status types will use different status tables, we should use a left join
to connect the tables, so we can keep just a single query to look up the statuses.
It also pulls in the extra information when it is required.

Let's get started with extending our profiles and the status stream!

Why support other media types?
The following are the potential uses of supporting other media types for Dino
Space users:

•	 Sharing videos of their pet dinosaurs
•	 Sharing photographs with other users
•	 Sharing relevant links with their contacts

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[232]

Changes to the view
Since all of the media types we are going to support require at least one additional
database field in a table that extends the statuses table, we are going to need to
display any additional fields on the post status form. The standard type of status
doesn't require additional fields, and new media types that we haven't discussed,
which we may wish to support in the future, may require more than one additional
field. To support a varying number of additional fields depending on the type, we
could use some JavaScript (in this case, we will use the jQuery framework) to change
the form depending on the context of the status. Beneath the main status box, we can
add radio buttons for each of the status types, and depending on the one the user
selects, the JavaScript can show or hide the additional fields, making the form
more relevant.

Template
Our update status template needs a few changes:

•	 We need to set the enctype on the form, so that we can upload files (for
posting images)

•	 We need radio buttons for the new types of statuses
•	 We need additional fields for those statuses

The changes are highlighted in the following code segment:

<p>Tell your network what you are up to</p>
<form action="profile/statuses/{profile_user_id}" method="post"
 enctype="multipart/form-data">
<textarea id="status" name="status"></textarea>

<input type="radio" name="status_type" id="status_checker_update"
 class="status_checker" value="update" />Update
<input type="radio" name="status_type" id="status_checker_video"
 class="status_checker" value="video" />Video
<input type="radio" name="status_type" id="status_checker_image"
 class="status_checker" value="image" />Image
<input type="radio" name="status_type" id="status_checker_link"
 class="status_checker" value="link" />Link

<div class="video_input extra_field">
<label for="video_url" class="">YouTube URL</label>
<input type="text" id="" name="video_url" class="" />

</div>
<div class="image_input extra_field">

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[233]

<label for="image_file" class="">Upload image</label>
<input type="file" id="" name="image_file" class="" />

</div>
<div class="link_input extra_field">
<label for="link_url" class="">Link</label>
<input type="text" id="" name="link_url" class="" />

<label for="link_description" class="">Description</label>
<input type="text" id="" name="link_description" class="" />

</div>
<input type="submit" id="updatestatus" name="updatestatus"
 value="Update" />
</form>

These changes also need to be made to the post template, for posting on another
user's profile.

jQuery to enhance the user experience
For accessibility purposes, we need this form to function regardless of whether the
user has JavaScript enabled on their browser. To that end, we should use JavaScript
to hide the unused form elements. So, even if the user has JavaScript disabled, they
can still use all aspects of the form. We can then use JavaScript to enhance the user
experience, toggling which aspects of the form are hidden or shown.

<script type="text/javascript">
$(function() {

First, we hide all of the extended status fields.

 $('.extra_field').hide();
 $("input[name='status_type']").change(function(){

When the user changes the type of status, we hide all of the extended fields.

 $('.extra_field').hide();

We then show the fields directly related to the status type they have chosen.

 $('.'+ $("input[name='status_type']:checked").val() +
 '_input').show();
 });
});
</script>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[234]

View in action
If we now take a look at our status updates page for our profile, we have some radio
buttons that we can use to toggle elements of the form.

Images
To process images as a new status type, we will need a new database table and a new
model to extend from the main status model. We will also need some new views,
and to change the profile and status stream controllers (though we will make those
changes after adding the three new status types).

Database table
The database table for images simply needs two fields:

Field Type Description
ID Integer, Primary key To relate to the main statuses table
Image Varchar The image filename

These two fields will be connected to the statuses table via a left join, to bring in the
image filename for statuses that are images.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[235]

Model
The model needs to extend our statuses model, providing setters for any new fields,
call the parent constructor, call the parent setTypeReference method to inform that
it is an image, call the parent save method to save the status, and then insert a new
record into the image status table with the image information.

Class, variable, and constructor
Firstly, we define the class as an extension of the status class. We then define a
variable for the image, and construct the object. The constructor calls the parent
setTypeReference method to ensure it generates the correct type ID for an image,
and then calls the parent constructor so it too has reference to the registry object.
This file is saved as /models/imagestatus.php.

<?php
/**
 * Image status object
 * extends the base status object
 */
class Imagestatus extends status {
 private $image;

 /**
 * Constructor
 * @param Registry $registry
 * @param int $id
 * @return void
 */
 public function __construct(Registry $registry, $id = 0)
 {
 $this->registry = $registry;
 parent::setTypeReference('image');
 parent::__construct($this->registry, $id);
 }

To call a method from an object's parent class, we use the parent
keyword, followed by the scope resolution operator, followed by the
method we wish to call.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[236]

Processing the image upload
When dealing with image uploads, resizing, and saving, there are different PHP
functions that should be used depending on the type of the image. To make this
easier and to provide a centralized place for dealing with image uploads and other
image-related tasks, we should create a library file (lib/images/imagemanager.
class.php) to make this easier.

Let's discuss what an image manager library file should do to make our lives easier:

•	 Process uploading of an image from $_POST data
	° Verify the type of file and the file extension

•	 Process images from the file system so that we can modify them
•	 Display an image to the browser
•	 Resize an image
•	 Rescale an image by resizing either the x or y co-ordinate, and scaling

the other co-ordinate proportionally
•	 Get image information such as size and name
•	 Save the changes to the image

The following is the code required to perform the above-mentioned tasks:

<?php
/**
 * Image manager class
 * @author Michael Peacock
 */
class Imagemanager
{
 /**
 * Type of the image
 */
 private $type = '';

 /**
 * Extensions that the user can upload
 */
 private $uploadExtentions = array('png', 'jpg', 'jpeg', 'gif');

 /**
 * Mime types of files the user can upload
 */
 private $uploadTypes = array('image/gif', 'image/jpg',
 'image/jpeg', 'image/pjpeg', 'image/png');

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[237]

 /**
 * The image itself
 */
 private $image;

 /**
 * The image name
 */
 private $name;

 public function __construct(){}

We need a method to load a local image, so that we can work with images saved
on the servers file system.

 /**
 * Load image from local file system
 * @param String $filepath
 * @return void
 */
 public function loadFromFile($filepath)
 {

Based on the path to the image, we can get information on the image including
the type of image (getimagesize gives us an array of information on the image;
the second element in the array is the type).

 $info = getimagesize($filepath);
 $this->type = $info[2];

We can then compare the image type to various PHP constants, and depending
on the image type (JPEG, GIF, or PNG) we use the appropriate imagecreatefrom
function.

 if($this->type == IMAGETYPE_JPEG)
 {
 $this->image = imagecreatefromjpeg($filepath);
 }
 elseif($this->type == IMAGETYPE_GIF)
 {
 $this->image = imagecreatefromgif($filepath);
 }
 elseif($this->type == IMAGETYPE_PNG)
 {
 $this->image = imagecreatefrompng($filepath);
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[238]

We require a couple of getter methods to return the height or width of the image.

 /**
 * Get the image width
 * @return int
 */
 public function getWidth()
 {
 return imagesx($this->image);
 }

 /**
 * Get the height of the image
 * @return int
 */
 public function getHeight()
 {
 return imagesy($this->image);
 }

We use a simple resize method that resizes the image to the dimensions we request.

 /**
 * Resize the image
 * @param int $x width
 * @param int $y height
 * @return void
 */
 public function resize($x, $y)
 {
 $new = imagecreatetruecolor($x, $y);
 imagecopyresampled($new, $this->image, 0, 0, 0, 0, $x, $y,
 $this->getWidth(), $this->getHeight());
 $this->image = $new;
 }

Here we use a scaling function that takes a height parameter to resize to and scales
the width accordingly.

 /**
 * Resize the image, scaling the width, based on a new height
 * @param int $height
 * @return void
 */
 public function resizeScaleWidth($height)
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[239]

 $width = $this->getWidth() * ($height / $this->getHeight());
 $this->resize($width, $height);
 }

Similar to the above method, this method takes a width parameter, resizes the width,
and rescales the height based on the width.

 /**
 * Resize the image, scaling the height, based on a new width
 * @param int $width
 * @return void
 */
 public function resizeScaleHeight($width)
 {
 $height = $this->getHeight() * ($width / $this->getWidth());
 $this->resize($width, $height);
 }

The following is another scaling function, this time to rescale the image to a
percentage of its current size:

 /**
 * Scale an image
 * @param int $percentage
 * @return void
 */
 public function scale($percentage)
 {
 $width = $this->getWidth() * $percentage / 100;
 $height = $this->getheight() * $percentage / 100;
 $this->resize($width, $height);
 }

To output the image to the browser from PHP, we need to check the type of the
image, set the appropriate header based off the type, and then use the appropriate
image function to render the image. After calling this method, we need to call
exit() to ensure the image is displayed correctly.

 /**
 * Display the image to the browser - called before output is sent,
 exit() should be called straight after.
 * @return void
 */
 public function display()
 {
 if($this->type == IMAGETYPE_JPEG)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[240]

 {
 $type = 'image/jpeg';
 }
 elseif($this->type == IMAGETYPE_GIF)
 {
 $type = 'image/gif';
 }
 elseif($this->type == IMAGETYPE_PNG)
 {
 $type = 'image/png';
 }

 header('Content-Type: ' . $type);

 if($this->type == IMAGETYPE_JPEG)
 {
 imagejpeg($this->image);
 }
 elseif($this->type == IMAGETYPE_GIF)
 {
 imagegif($this->image);
 }
 elseif($this->type == IMAGETYPE_PNG)
 {
 imagepng($this->image);
 }
 }

To load an image from $_POST data, we need to know the post field the image is
being sent through, the directory we wish to place the image in, and any additional
prefix we may wish to add to the image's name (to prevent conflicts with images
with the same name).

 /**
 * Load image from postdata
 * @param String $postfield the field the image was uploaded via
 * @param String $moveto the location for the upload
 * @param String $name_prefix a prefix for the filename
 * @return boolean
 */
 public function loadFromPost($postfield, $moveto,
 $name_prefix='')
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[241]

Before doing anything, we should check that the file requested is actually a file that
has been uploaded (and that this isn't a malicious user trying to access other files).

 if(is_uploaded_file($_FILES[$postfield]['tmp_name']))
 {
 $i = strrpos($_FILES[$postfield]['name'], '.');
 if (! $i)
 {
 //'no extention';
 return false;
 }
 else
 {

We then check that the extension of the file is in our allowed extensions array.

 $l = strlen($_FILES[$postfield]['name']) - $i;
 $ext = strtolower (substr($_FILES[$postfield]['name'],
 $i+1, $l));
 if(in_array($ext, $this->uploadExtentions))
 {

Next, we check if the file type is an allowed file type.

 if(in_array($_FILES[$postfield]['type'],
 $this->uploadTypes))
 {

Then, we move the file, as it has already been uploaded to our server's temp folder,
to our own uploads directory and load it into our image manager class for any
further processing we wish to make.

 $name = str_replace(' ', '', $_FILES[
 $postfield]['name']);
 $this->name = $name_prefix . $name;
 $path = $moveto . $name_prefix.$name;
 move_uploaded_file($_FILES[$postfield]['tmp_name'] ,
 $path);
 $this->loadFromFile($path);
 return true;
 }
 else
 {
 // 'invalid type';
 return false;
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[242]

 else
 {
 // 'invalid extention';
 return false;
 }
 }
 }
 else
 {
 // 'not uploaded file';
 return false;
 }
 }

The following getter method is used to return the name of the image we are
working with:

 /**
 * Get the image name
 * @return String
 */
 public function getName()
 {
 return $this->name;
 }

Finally, we have our save method, which again must detect the type of image,
to work out which function to use.

 /**
 * Save changes to an image e.g. after resize
 * @param String $location location of image
 * @param String $type type of the image
 * @param int $quality image quality /100
 * @return void
 */
 public function save($location, $type='', $quality=100)
 {
 $type = ($type == '') ? $this->type : $type;
 if($type == IMAGETYPE_JPEG)
 {
 imagejpeg($this->image, $location, $quality);
 }
 elseif($type == IMAGETYPE_GIF)
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[243]

 imagegif($this->image, $location);
 }
 elseif($type == IMAGETYPE_PNG)
 {
 imagepng($this->image, $location);
 }
 }
}
?>

Using the image manager library to process the file upload
Now that we have a simple, centralized way of processing file uploads and resizing
them, we can process the image the user is trying to upload as their extended status.

 /**
 * Process an image upload and set the image
 * @param String $postfield the $_POST field the image was uploaded
 through
 * @return boolean
 */
 public function processImage($postfield)
 {
 require_once(FRAMEWORK_PATH .
 'lib/images/imagemanager.class.php');
 $im = new Imagemanager();
 $prefix = time() . '_';
 if($im->loadFromPost($postfield, $this->registry-
 >getSetting('upload_path') . 'statusimages/', $prefix))
 {
 $im->resizeScaleWidth(150);
 $im->save($this->registry->getSetting('upload_path') .
 'statusimages/' . $im->getName());
 $this->image = $im->getName();
 return true;
 }
 else
 {
 return false;
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[244]

Saving the status
This leaves us with the final method for saving the status. This calls the parent
object's save method to create the record in the statuses table. Then it gets the ID,
and inserts a new record into the images table with this ID as the ID.

 /**
 * Save the image status
 * @return void
 */
 public function save()
 {
 // save the parent object and thus the status table
 parent::save();
 // grab the newly inserted status ID
 $id = $this->getID();
 // insert into the images status table, using the same ID
 $extended = array();
 $extended['id'] = $id;
 $extended['image'] = $this->image;
 $this->registry->getObject('db')->insertRecords(
 'statuses_images', $extended);
 }
}
?>

Video (via YouTube)
To support video (via YouTube), we need one additional field on the form for the
user to paste in the YouTube URL. From the URL, we can automatically generate
code to play the video, and we can also look up the thumbnail image of the video
from YouTube, from the data contained within the URL.

Database
As with our image's status type, we only require two fields in our new table:

Field Type Description
ID Integer, Primary key To relate to the main statuses table
Video_id Varchar The YouTube video ID

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[245]

Model
The model needs to be very similar to our image's model. Firstly, the class
extends the status class. Then, we have our variable for the video ID, after
which we construct the object by calling the parent object's setTypeReference
and __construct methods.

<?php
/**
 * Video status object
 * extends the base status object
 */
class Videostatus extends status {
 private $video_id;

 /**
 * Constructor
 * @param Registry $registry
 * @param int $id
 * @return void
 */
 public function __construct(Registry $registry, $id = 0)
 {
 $this->registry = $registry;
 parent::__construct($this->registry, $id);
 parent::setTypeReference('video');
 }

We then have a setter method to set the video ID (assuming we know what the
video ID is).

 public function setVideoId($vid)
 {
 $this->video_id = $vid;
 }

Then, we have a useful setter method that parses the YouTube URL, extracts the
video ID from it, and sets the class variable accordingly. In this case, if no video ID
is found in the URL, it uses a clip from the TV series "Dinosaurs" as a default video.

 public function setVideoIdFromURL($url)
 {
 $data = array();
 parse_str(parse_url($url, PHP_URL_QUERY), $data);
 $this->video_id = $this->registry->getObject('db')-
 >sanitizeData(isset($data['v']) ? $data['v']
 : '7NzzzcOWPH0');
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[246]

Finally we have our save method, which works in the same way as the image model.

 /**
 * Save the video status
 * @return void
 */
 public function save()
 {
 // save the parent object and thus the status table
 parent::save();
 // grab the newly inserted status ID
 $id = $this->getID();
 // insert into the video status table, using the same ID
 $extended = array();
 $extended['id'] = $id;
 $extended['video_id'] = $this->video_id;
 $this->registry->getObject('db')->insertRecords(
 'statuses_videos', $extended);
 }
}
?>

Links
When sharing links with other users we need to at least store the URL itself. We
could also store a brief description of the link or even an image from the site. If we
wished, we could automatically populate this information from the link. However,
for the moment, we will stick to just storing the link and a brief description of it.

Database
Our video statuses table requires three fields: an ID, the URL of the link, and the
name or description of the link.

Field Type Description
ID Integer, Primary key To relate to the main statuses table
URL Varchar The link itself
Description Varchar Description of the link

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[247]

Model
As with the video and image types, we require a simple model to extend our statuses
model (models/videostatus.php).

<?php
/**
 * Link status object
 * extends the base status object
 */
class Linkstatus extends status {

 private $url;
 private $description;

Our constructor needs to set the registry, call the parent class' constructor, and
then set the type of status by calling the parent's setTypeReference method.

 /**
 * Constructor
 * @param Registry $registry
 * @param int $id
 * @return void
 */
 public function __construct(Registry $registry, $id = 0)
 {
 $this->registry = $registry;
 parent::__construct($this->registry, $id);
 parent::setTypeReference('link');
 }

We then have setters for the variables we are extending onto the class.

 /**
 * Set the URL
 * @param String $url
 * @return void
 */
 public function setURL($url)
 {
 $this->url = $url;
 }

 /**
 * Set the description of the link
 * @param String $description

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[248]

 * @return void
 */
 public function setDescription($description)
 {
 $this->description = $description;
 }

Finally, our save method needs to call the parent object's save method, to save
the status record. It then gets the ID of the status and creates a record in the
statuses_links table, relating the core status with the custom link data.

 /**
 * Save the link status
 * @return void
 */
 public function save()
 {
 // save the parent object and thus the status table
 parent::save();
 // grab the newly inserted status ID
 $id = $this->getID();
 // insert into the link status table, using the same ID
 $extended = array();
 $extended['id'] = $id;
 $extended['URL'] = $this->url;
 $extended['description'] = $this->description;
 $this->registry->getObject('db')->insertRecords(
 'statuses_links', $extended);
 }
}
?>

Extending the profiles
With new database tables, status forms, and models in place for the new status types
of Dino Space, we need to extend our profiles to save these new statuses, and also
to include the information from these additional tables in the profile's statuses.
We already have provisions for including different templates depending on the
type of the status (as per Chapter 6), so we just need to alter our status stream query.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[249]

Processing the new status posts
In our profile statuses controller (controllers/profile/
profilestatusescontroller.php) in the addStatus method, in the two instances
where we construct the status object, we instead need to check which type of status
is being posted, and if it is a different status type, we must also include that file, and
instead construct that object.

if(isset($_POST['status_type']) && $_POST['status_type'] !=
 'update')
 {
 if($_POST['status_type'] == 'image')
 {
 require_once(FRAMEWORK_PATH . 'models/imagestatus.php');
 $status = new Imagestatus($this->registry, 0);
 $status->processImage('image_file');
 }
 elseif($_POST['status_type'] == 'video')
 {
 require_once(FRAMEWORK_PATH . 'models/videostatus.php');
 $status = new Videostatus($this->registry, 0);
 $status->setVideoIdFromURL($_POST['video_url']);
 }
 elseif($_POST['status_type'] == 'link')
 {
 require_once(FRAMEWORK_PATH . 'models/linkstatus.php');
 $status = new Linkstatus($this->registry, 0);
 $status->setURL($this->registry->getObject('db')-
 >sanitizeData($_POST['link_url']));
 $status->setDescription($this->registry->getObject('db')-
 >sanitizeData($_POST['link_description']));
 }
 }
 else
 {
 $status = new Status($this->registry, 0);
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[250]

Altering our profile status' query
Our updates query (in the profile statuses controller) needs to be altered to left join
onto the various extended statuses tables, pulling in additional information where
appropriate, like the following code:

$sql = "SELECT t.type_reference, t.type_name, s.*, pa.name as
 poster_name, i.image, v.video_id, l.URL, l.description FROM
 status_types t, profile p, profile pa, statuses s LEFT JOIN
 statuses_images i ON s.ID=i.id LEFT JOIN statuses_videos v ON
 s.ID=v.id LEFT JOIN statuses_links l ON s.ID=l.id WHERE t.ID=s.type
 AND p.user_id=s.profile AND pa.user_id=s.poster AND
 p.user_id={$user} ORDER BY s.ID DESC LIMIT 20";

Status views
Next, we need to create the various template files to be included to display the
relevant status information.

Images
It is saved as views/default/templates/profile/updates/image.tpl.php.

<p>{poster_name}: posted an image "{update}"</p>

<!-- START comments-{ID} -->
<p> Comments:</p>
<p> {comment} by {commenter}</p>
<!-- END comments-{ID} -->

Video
It is saved as views/default/templates/profile/updates/video.tpl.php.

<p>{poster_name}: posted an video "{update}"</p>
<object width="200" height="164"><param name="movie"
 value="http://www.youtube.com/v/{video_id}&hl=en_GB&fs=1?
 rel=0&border=1"></param><param name="allowFullScreen"
 value="true"></param><param name="allowscriptaccess"
 value="always"></param><embed
 src="http://www.youtube.com/v/{video_id}&hl=en_GB&fs=1?rel=
 0&border=1" type="application/x-shockwave-flash"
 allowscriptaccess="always" allowfullscreen="true" width="200"
 height="164"></embed></object>
<!-- START comments-{ID} -->
<p> Comments:</p>
<p> {comment} by {commenter}</p>
<!-- END comments-{ID} -->

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[251]

Links
It is saved as views/default/templates/profile/updates/link.tpl.php.

<p>{poster_name}: posted an link "{update}"</p>
{description}
<!-- START comments-{ID} -->
<p> Comments:</p>
<p> {comment} by {commenter}</p>
<!-- END comments-{ID} -->

In action
Let's now take a look at our profile with these new status types on!

Images
After posting a status update with an image, the image is resized and displayed
beneath the status.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Statuses—Other Media

[252]

Videos
A nice YouTube player is embedded with the video we selected when we posted a
new video.

Links
If we post a status with a link attached, the link is shown beneath our status.

Repeat!
We also need to extend our status stream to work in the same way as our profiles,
pulling in extended data from the extended status types. As we have discussed
thoroughly how to update the profile view, you should be able to tackle the status
stream on your own, applying the knowledge from this chapter.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 8

[253]

Summary
In this chapter we have taken our simple status stream and user profiles and
extended them to support statuses and messages that make use of other media
including images, videos, and links.

Next up, is creating calendars and providing provisions for creating and displaying
events and birthdays.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays
Our social network is nearing completion; we now have not only a status stream
of updates for our users, but also support for a number of different types of media,
including video and images. One of the two main remaining features (the other
being groups) is events. No social network would be complete without support for
events and of course, birthdays.

In this chapter, you will learn:

•	 How to dynamically generate innovative calendars
•	 How to use these calendars to display specific dates
•	 How to re-use this calendar feature in other areas of the site
•	 How to notify users of the birthday of their contacts
•	 How to manage event invitations and RSVPs
•	 How to send reminders via the site, e-mail, and SMS

Let's plan
So, we want to store, manage, and display user-organized events and the birthdays
of our members on the site. In itself, this is fairly trivial; we can simply list any
events occurring within the next X days, and allow our users to paginate through
the results. This of course, isn't a very user friendly approach; a more user friendly
approach would be to display the events within a calendar, which is somewhat
more complicated.

Because a calendar is something we will most likely want to reuse throughout our
network, and because of the complexities that come with it, it is important for us to
plan what we need it to do. We will create a calendar library file, a class that can be
re-used throughout Dino Space, while we will also create controllers to display the
primary calendar. The library file will do most of the work for us, so that we can
re-use it in any number of other controllers we need.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[256]

Calendars: what do we need to be able to do?
We need our calendar library to:

•	 Generate a friendly interface for the current month
•	 Be capable of generating a friendly interface for other months
•	 Be aware of the next and previous months, and their years if they differ from

the current year, as in most cases, a user will browse through months starting
at the current month, moving forward or backwards a month at a time

•	 Be capable of indicating which day is the current day, and days with events
within them

•	 Work out how many days there are in a particular month

Calendar library
We will save our calendar library file as /lib/calendar/calendar.class.php. The
first thing for us to do in our file, is create a number of variables, and the constructor.

We need variables for:

•	 The year the calendar represents
•	 The day the calendar represents
•	 The month the calendar represents
•	 The day of the week we want our calendar to start with
•	 Days of the week, ordered so we can change them using our start day

of the week as an offset
•	 Days of the week ordered with respect to our offset
•	 The name of the month represented by the calendar
•	 Dates of the month
•	 Styles associated with each of the days of the month
•	 Data associated with each of the days of the month, that is, the events

on those days

<?php

/**

 * Calendar object

 */

class Calendar{

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[257]

/**

 * The year represented within the calendar
 */
 private $year;

 /**
 * The current day being represented within the calendar, if
 appropriate
 */
 private $day;

 /**
 * The current month being represented within the calendar
 */
 private $month;

 /**
 * Tells the calendar which day of the month weeks start at.
 Sunday is standard for UK calendars.
 */
 private $startDay = 0;

 /**
 * Array of days...as if we didn't already know...
 */
 private $days = array('Sun','Mon','Tue','Wed','Thu','Fri', 'Sat');

 /**
 * Array of months
 */
 private $months = array(0=> '',
 1 => 'January',
 2 => 'February',
 3 => 'March',
 4 => 'April',
 5 => 'May',
 6 => 'June',
 7 => 'July',
 8 => 'August',
 9 => 'September',
 10 => 'October',
 11 => 'November',
 12 => 'December'
);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[258]

 /**
 * Days of the week, ordered by our chosen start day
 */
 private $orderedDays;

 /**
 * Name of the current month
 */
 private $monthName;

 /**
 * Dates of the month
 */
 private $dates=array();

 /**
 * Styles for each day of the month
 */
 private $dateStyles=array();

 /**
 * List of days with events associated with them
 */
 private $daysWithEvents = array();

 /**
 * Data to associate with dates
 */
 private $data=array();

 /**
 * Data associated with dates, in corresponding 42 record array
 */
 private $datesData = array();

With our variables in place, we now need a constructor that takes the day, month,
and year, which we wish to represent in calendar form, and then set the appropriate
values of our object. If an empty string is passed for any of the values, they default
to today's date.

 /**
 * Calendar constructor
 * @param int $day selected day in the calendar

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[259]

 * @param int $month month being represented in calendar
 * @param int $year the year being represented in the calendar
 * @return void
 */
 public function __construct($day, $month, $year)
 {
 $this->year = ($year == '') ? date('y') : $year;
 $this->month = ($month == '') ? date('m') : $month;
 $this->day = ($day == '') ? date('d') : $day;
 $this->monthName = $this->months[ltrim($this->month, '0')];
 }

Generating the month
From a computational perspective, and with the way our template engine works, it is
best to think of a month as a grid of 42 squares. No month has 42 days in it; however,
if a month starts on the last day of the week, then the grid may need to have 42
squares, 31 for the month itself, and the remaining 11 for the un-used grids on the
first week, and last week of the month.

With this in mind, all we need our calendar library to do, is iterate 42 times and work
out if the current grid is for a valid date for that month, and also, whether the date
has any events associated with it, or if the date is the current date.

This method in itself won't return anything; instead, it will set various variables
within the object that we can use, including:

•	 An ordered list of days of the week (ordered based off the desired start day
of the week, allowing for US users to have weeks starting on Monday, and
UK users to have weeks starting on Sunday)

•	 The name of the current month
•	 The days of the month, in an array corresponding to the 42 square grid

for the calendar
•	 The styles (CSS classes to be used) of the days of the month, also

in a corresponding array
•	 The data for each calendar day, also in a corresponding array

 /**

 * Builds the month being represented by the calendar object

 * @return void

 */

 public function buildMonth()

 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[260]

First, we generate a list of the days in order, with respect to our chosen first day
of the week. Then, we look up the string representation of the current month
and set that:

 $this->orderedDays = $this->getDaysInOrder();

 $this->monthName = $this->months[ltrim($this->month, '0')];

Since we need to know the day of the first of the month, so we know which of our 42
boxes is to contain data for the first, we need to look up which day of the week the
first of the month is:

 // start of whichever month we are building
 $start_of_month = getdate(mktime(12, 0, 0, $this->month, 1,
 $this->year));

 $first_day_of_month = $start_of_month['wday'];

With the day of the first of the month looked up, we now need to work out an offset
with respect to the first day of the week, so we know after how many days the first
of the month appears. For example, if our calendar is set to display Sunday as the
first of the week, and the 1st of the month is Wednesday, the first three boxes in
the calendar will be empty, so we need to know how many to "pass over":

 $days = $this->startDay - $first_day_of_month;

 if($days > 1)
 {
 // get an offset
 $days -= 7;

 }

 $num_days = $this->daysInMonth($this->month, $this->year);
 // 42 iterations
 $start = 0;
 $cal_dates = array();
 $cal_dates_style = array();
 $cal_events = array();

Next, we loop 42 times, for each of the boxes in our calendar grid. Using the offset
($days), we skip the first empty boxes, setting an appropriate class for them:

 while($start < 42)
 {
 // off set dates

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[261]

 if($days < 0)
 {
 $cal_dates[] = '';
 $cal_dates_style[] = 'calendar-empty';
 $cal_dates_data[] = '';
 }
 else
 {

Once we have passed the offset dates, the next "number of days in the month"
cycles are valid dates in the calendar, so we look to see if we have events assigned
to the dates, and if so, we put them in the appropriate array and set an appropriate
class for the day. We also put the day of the month in an array of calendar dates.
We created empty values for the previous iterations, so we know the dates will be
appropriately offset.

 if($days < $num_days)
 {
 // real days
 $cal_dates[] = $days+1;
 if(in_array($days+1, $this->daysWithEvents))
 {
 $cal_dates_style[] = 'has-events';
 $cal_dates_data[] = $this->data[$days+1];
 }
 else
 {
 $cal_dates_style[] = '';
 $cal_dates_data[] = '';
 }

 }
 else
 {

After the offset days, and the days of the month, we set an appropriate
class indicating that the current box is not an actual date in the month:

 // surplus
 $cal_dates[] = '';
 $cal_dates_style[] = 'calendar-empty';
 $cal_dates_data[] = '';
 }

 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[262]

 // increment and loop
 $start++;
 $days++;
 }

 // done
 $this->dates = $cal_dates;
 $this->dateStyles = $cal_dates_style;
 $this->dateData = $cal_dates_data;
 }

Days in the month
Calculating the days in a month is a fairly simple task; all months have a set number
of days in them, except for February, so for February, we simply need to check
whether the current year is a leap year:

/**
 * How many days are in a month?
 * @param int $m month
 * @param int $y year
 * @return int the number of days in the month
 */
 function daysInMonth($m, $y)
 {

If we have been passed a month that isn't valid, simply return zero:

 if($m < 1 || $m > 12)
 {
 return 0;
 }
 else
 {

September, April, June, and November have 30 days—so for these months,
return 30:

 // 30: 9, 4, 6, 11
 if($m == 9 || $m == 4 || $m == 6 || $m == 11)
 {
 return 30;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[263]

For any remaining month that isn't February (all the rest have 31), we return 31:

 else if($m != 2)
 {
 // all the rest have 31
 return 31;
 }
 else
 {

A year isn't a leap year if the year isn't divisible by 4, so in this instance,
we return 28:

 // except for february alone
 if($y % 4 != 0)
 {
 // which has 28
 return 28;
 }
 else
 {

If a year isn't divisible by 100, then it is a leap year, so we return 29:

 if($y % 100 != 0)
 {
 // and on leap years 29
 return 29;
 }
 else
 {

If the year isn't divisible by 400, then it isn't a leap year, so we return 28:

 if($y % 400 != 0)
 {
 // deja vu: which has 28
 return 28;
 }
 else
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[264]

If it is divisible by 400, then we return 29, as it is a leap year:

 // deja vu: and on leap years 29
 return 29;
 }
 }
 }
 }
 }
 }

And there we have a very handy function, as part of our calendar library, to
determine the number of days in any given month.

Ordered days
As discussed earlier, our calendar is set to be customizable in terms of which day of
the month is the start date. Because of this, our array of days (private $days = ar
ray('Sun','Mon','Tue','Wed','Thu','Fri', 'Sat');) needs to be re-ordered
based on the chosen first day of the week:

/**
 * Get days in order
 * @return array array of days (as strings)
 */
 function getDaysInOrder()
 {
 $ordered_days = array();
 for($i = 0; $i < 7; $i++)
 {
 $ordered_days[] = $this->days[($this->startDay + $i) % 7
];
 }
 return $ordered_days;
 }

Previous month
Most calendars display links to the next and previous month, making it easy for the
user to navigate between months. For this to be done, we need to know the month
and if appropriate, year, of the next month and previous month.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[265]

We can easily get this information in integer form, by incrementing or decrementing
the current month, unless we are at an edge case, such as month 1, where we go to
12, and then decrease the year. To make this as flexible as possible, we can simply
create a new calendar object, representing the previous month, and whichever
controller requires it can simply look up the month, month name, and year from
the object and display that to the user:

/**
 * Get previous month
 * @return Object calendar object
 */
 public function getPreviousMonth()
 {
 $pm = new Calendar('', (($this->month > 1) ?
 $this->month - 1 : 12), (($this->month == 1) ?
 $this->year-1 : $this->year));
 return $pm;
 }

Next month
As with the previous month, a method to return a calendar object for the next month:

/**
 * Get next month
 * @return Object calendar object
 */
 public function getNextMonth()
 {
 $nm = new Calendar('', (($this->month < 12) ?
 $this->month + 1 : 1), (($this->month == 12) ?
 $this->year + 1 : $this->year));
 return $nm;
 }

Displaying a calendar
With our calendar library in place, we now need to look at how a controller would
leverage the power of the library to generate a particular month, and display it to
the user.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[266]

Generate and output
To actually display a calendar, we need some code which:

•	 Requires the calendar library
•	 Instantiates the object
•	 Generates the month
•	 Sends various bits of data to the template
•	 Outputs the template

We also need a template file with our 42 boxes in a calendar grid.

The following code can be used to generate a calendar (this isn't for a specific feature,
you can find the code in the testOutput() method in the calendar controller):

// require the class
 require_once(FRAMEWORK_PATH . 'lib/calendar/calendar.class.php'
);
 // set the default month and year, i.e. the current month and
 year
 $m = date('m');
 $y = date('Y');
 // check for a different Month / Year (i.e. user has moved to
 another month)
 if(isset($_GET['month']))
 {
 $m = intval($_GET['month']);
 if($m > 0 && $m < 13)
 {

 }
 else
 {
 $m = date('m');
 }
 }
 if(isset($_GET['year']))
 {
 $y = intval($_GET['year']);
 }
 // Instantiate the calendar object
 $calendar = new Calendar('', $m, $y);
 // Get next and previous month / year
 $nm = $calendar->getNextMonth()->getMonth();

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[267]

 $ny = $calendar->getNextMonth()->getYear();
 $pm = $calendar->getPreviousMonth()->getMonth();
 $py = $calendar->getPreviousMonth()->getYear();

 // send next / previous month data to the template
 $this->registry->getObject('template')->getPage()-
 >addTag('nm', $nm);
 $this->registry->getObject('template')->getPage()-
 >addTag('pm', $pm);
 $this->registry->getObject('template')->getPage()-
 >addTag('ny', $ny);
 $this->registry->getObject('template')->getPage()-
 >addTag('py', $py);
 // send the current month name and year to the template
 $this->registry->getObject('template')->getPage()-
 >addTag('month_name', $calendar->getMonthName());
 $this->registry->getObject('template')->getPage()-
 >addTag('the_year', $calendar->getYear());
 // Set the start day of the week
 $calendar->setStartDay(0);
 // Get how many days there are in the month

 // build the month, generate some data
 $calendar->buildMonth();
 // days
 $this->registry->getObject('template')->dataToTags($calendar-
 >getDaysInOrder(),'cal_0_day_');
 // dates
 $this->registry->getObject('template')->dataToTags($calendar-
 >getDates(),'cal_0_dates_');
 // styles
 $this->registry->getObject('template')->dataToTags($calendar-
 >getDateStyles(),'cal_0_dates_style_');
 // data
 $this->registry->getObject('template')->dataToTags($calendar-
 >getDateData(),'cal_0_dates_data_');

 $this->registry->getObject('template')->buildFromTemplates(
 'test-calendar.tpl.php');

In terms of the template, we need a grid of 42 potential calendar dates, each with a
template tag for a class, and a template tag for the date, and a template tag for any
potential data within.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[268]

The days of the week are also template tags, as we may wish to dynamically generate
them based off an individual user's preference, as highlighted below:

<html>
<body>

 <h1> {month_name} {the_year} </h1>
 <p>Next
 Previous</p>

 <div>
 <table id="ccc">
 <tr>
 <th class="weekend">{cal_0_day_0}</th>
 <th class="">{cal_0_day_1}</th>
 <th class="">{cal_0_day_2}</th>
 <th class="">{cal_0_day_3}</th>
 <th class="">{cal_0_day_4}</th>
 <th class="">{cal_0_day_5}</th>
 <th class="weekend">{cal_0_day_6}</th>
 </tr>
 <tr>

If we take a look at how an individual week (highlighted below) needs to be
represented, you can see that we prefix the template tag with cal_0_ (more on
that later), and that they range from 0 to 41 (42 boxes):

 <td class="weekend {cal_0_dates_style_0}">
 {cal_0_dates_0} {cal_0_dates_data_0}</td>
 <td class="{cal_0_dates_style_1}">{cal_0_dates_1}
 {cal_0_dates_data_1}</td>
 <td class="{cal_0_dates_style_2}">{cal_0_dates_2}
 {cal_0_dates_data_2}</td>
 <td class="{cal_0_dates_style_3}">{cal_0_dates_3}
 {cal_0_dates_data_3}</td>
 <td class="{cal_0_dates_style_4}">{cal_0_dates_4}
 {cal_0_dates_data_4}</td>
 <td class="{cal_0_dates_style_5}">{cal_0_dates_5}
 {cal_0_dates_data_5}</td>
 <td class="weekend {cal_0_dates_style_6}">{cal_0_dates_6}
 {cal_0_dates_data_6}</td>
 </tr>
 <tr>
 <td class="weekend {cal_0_dates_style_7}">{cal_0_dates_7}
 {cal_0_dates_data_7}</td>
 <td class="{cal_0_dates_style_8}">{cal_0_dates_8}
 {cal_0_dates_data_8}</td>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[269]

 <td class="{cal_0_dates_style_9}">{cal_0_dates_9}
 {cal_0_dates_data_9}</td>
 <td class="{cal_0_dates_style_10}">{cal_0_dates_10}
 {cal_0_dates_data_10}</td>
 <td class="{cal_0_dates_style_11}">{cal_0_dates_11}
 {cal_0_dates_data_11}</td>
 <td class="{cal_0_dates_style_12}">{cal_0_dates_12}
 {cal_0_dates_data_12}</td>
 <td class="weekend {cal_0_dates_style_13}">
 {cal_0_dates_13} {cal_0_dates_data_13}</td>
 </tr>
 <tr>
 <td class="weekend {cal_0_dates_style_14}">
 {cal_0_dates_14} {cal_0_dates_data_14}</td>
 <td class="{cal_0_dates_style_15}">{cal_0_dates_15}
 {cal_0_dates_data_15}</td>
 <td class="{cal_0_dates_style_16}">{cal_0_dates_16}
 {cal_0_dates_data_16}</td>
 <td class="{cal_0_dates_style_17}">{cal_0_dates_17}
 {cal_0_dates_data_17}</td>
 <td class="{cal_0_dates_style_18}">{cal_0_dates_18}
 {cal_0_dates_data_18}</td>
 <td class="{cal_0_dates_style_18}">{cal_0_dates_19}
 {cal_0_dates_data_19}</td>
 <td class="weekend {cal_0_dates_style_20}">
 {cal_0_dates_20} {cal_0_dates_data_20}</td>
 </tr>
 <tr>
 <td class="weekend {cal_0_dates_style_21}">
 {cal_0_dates_21} {cal_0_dates_data_21}</td>
 <td class="{cal_0_dates_style_22}">{cal_0_dates_22}
 {cal_0_dates_data_22}</td>
 <td class="{cal_0_dates_style_23}">{cal_0_dates_23}
 {cal_0_dates_data_23}</td>
 <td class="{cal_0_dates_style_24}">{cal_0_dates_24}
 {cal_0_dates_data_24}</td>
 <td class="{cal_0_dates_style_25}">{cal_0_dates_25}
 {cal_0_dates_data_25}</td>
 <td class="{cal_0_dates_style_26}">{cal_0_dates_26}
 {cal_0_dates_data_26}</td>
 <td class="weekend {cal_0_dates_style_27}">
 {cal_0_dates_27} {cal_0_dates_data_27}</td>
 </tr>
 <tr>
 <td class="weekend {cal_0_dates_style_28}">
 {cal_0_dates_28} {cal_0_dates_data_28}</td>
 <td class="{cal_0_dates_style_29}">{cal_0_dates_29}
 {cal_0_dates_data_29}</td>
 <td class="{cal_0_dates_style_30}">{cal_0_dates_30}
 {cal_0_dates_data_30}</td>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[270]

 <td class="{cal_0_dates_style_31}">{cal_0_dates_31}
 {cal_0_dates_data_31}</td>
 <td class="{cal_0_dates_style_32}">{cal_0_dates_32}
 {cal_0_dates_data_32}</td>
 <td class="{cal_0_dates_style_33}">{cal_0_dates_33}
 {cal_0_dates_data_33}</td>
 <td class="weekend {cal_0_dates_style_34}">
 {cal_0_dates_34} {cal_0_dates_data_34}</td>
 </tr>
 <tr>
 <td class="weekend {cal_0_dates_style_35}">
 {cal_0_dates_35} {cal_0_dates_data_35}</td>
 <td class="{cal_0_dates_style_36}">{cal_0_dates_36}
 {cal_0_dates_data_36}</td>
 <td class="{cal_0_dates_style_37}">{cal_0_dates_37}
 {cal_0_dates_data_37}</td>
 <td class="{cal_0_dates_style_38}">{cal_0_dates_38}
 {cal_0_dates_data_38}</td>
 <td class="{cal_0_dates_style_39}">{cal_0_dates_39}
 {cal_0_dates_data_39}</td>
 <td class="{cal_0_dates_style_40}">{cal_0_dates_40}
 {cal_0_dates_data_40}</td>
 <td class="weekend {cal_0_dates_style_41}">
 {cal_0_dates_41} {cal_0_dates_data_41}</td>
 </tr>

 </table>

</body>
</html>

If we now go to /calendar/test/, we should see the following:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[271]

Multiple calendars
As our calendar returns information as arrays, we simply send it to the template
manager using the dataToTags method, with a prefix of our choice. If we have
multiple instances of a calendar object, we can send them to different parts of a
template by changing the prefix. For example, if we have a template with a large
calendar display for the current month (prefixed with cal_0_), a small calendar for
the previous month (prefixed with cal_1_) and a small calendar for the next month
(prefixed with cal_2_), we can put the three on the calendar with code such as
the following:

$calendar = new Calendar('', $m, $y);
 // build the month, generate some data
 $calendar->buildMonth();
 // days
 $this->registry->getObject('template')->dataToTags($calendar-
 >getDaysInOrder(),'cal_0_day_');
 // dates
 $this->registry->getObject('template')->dataToTags($calendar-
 >getDates(),'cal_0_dates_');
 // styles
 $this->registry->getObject('template')->dataToTags($calendar-
 >getDateStyles(),'cal_0_dates_style_');
 // data
 $this->registry->getObject('template')->dataToTags($calendar-
 >getDateData(),'cal_0_dates_data_');

 $calendarPrevious = $calendar->getPreviousMonth();
 // build the month, generate some data
 $calendarPrevious->buildMonth();
 // days
 $this->registry->getObject('template')->dataToTags(
 $calendarPrevious->getDaysInOrder(),'cal_1_day_');
 // dates
 $this->registry->getObject('template')->dataToTags(
 $calendarPrevious->getDates(),'cal_1_dates_');
 // styles
 $this->registry->getObject('template')->dataToTags(
 $calendarPrevious->getDateStyles(),'cal_1_dates_style_');
 // data
 $this->registry->getObject('template')->dataToTags(
 $calendarPreviousndar->getDateData(),'cal_1_dates_data_');

 $calendarNext = $calendar->getNextMonth();
 // build the month, generate some data

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[272]

 $calendarNext->buildMonth();
 // days
 $this->registry->getObject('template')->dataToTags(
 $calendarNext->getDaysInOrder(),'cal_2_day_');
 // dates
 $this->registry->getObject('template')->dataToTags(
 $calendarNext->getDates(),'cal_2_dates_');
 // styles
 $this->registry->getObject('template')->dataToTags(
 $calendarNext->getDateStyles(),'cal_2_dates_style_');
 // data
 $this->registry->getObject('template')->dataToTags(
 $calendarNext->getDateData(),'cal_2_dates_data_');

With events
To display event information alongside dates in the calendar, we simply need to pass
an array of data to our calendar library, indicating which days have events, and we
can also pass the data itself for inclusion in the calendar:

// pass data to the calendar for inclusion
$calendar->setData($data);
// tell the calendar which days should be highlighted
$calendar->setDaysWithEvents($days);

We simply pass an array of dates that have events, and an array of event data.
Both arrays use the day of the month as the key.

Birthdays
Birthdays should be a fairly straightforward feature for us to implement. We need to:

•	 Add an additional profile field for the user's birthday
•	 Look up the date of birth of our user's contacts
•	 Calculate their age
•	 Send the data to the calendar
•	 Generate the calendar view
•	 Display a list of upcoming birthdays to our users

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[273]

Getting relationship IDs
For us to quickly look up the birthdays of a user's connections, we need to quickly
gain access to the IDs of users another user is connected to. We have some similar
functionality in our relationships model (models/relationships.php); however,
the following method will give us a query returning IDs. We can then use this as a
sub query in our birthdays lookup query:

/**
 * Get IDs of users a user has a relationship with
 * @param int $user the user in question
 * @param bool $cache - cache the results, or return the query?
 * @return String / int
 */
 public function getIDsByUser($user, $cache=false)
 {
 $sql = "SELECT u.ID FROM users u, profile p, relationships
 r, relationship_types t WHERE t.ID=r.type AND r.accepted=1 AND
 (r.usera={$user} OR r.userb={$user}) AND IF(r.usera={$user},u.
 ID=r.userb,u.ID=r.usera) AND p.user_id=u.ID";
 if($cache == false)
 {
 return $sql;
 }
 else
 {
 $cache = $this->registry->getObject('db')-
 >cacheQuery($sql);
 return $cache;
 }
 }

Setting up the calendar
As we have done before, we need to set up the calendar (controllers/calendar/
controller.php); this simply involves requiring the class, instantiating the object,
and setting the current date and month:

// require the class
 require_once(FRAMEWORK_PATH . 'lib/calendar/calendar.class.php');
// set the default month and year, i.e. the current month and year
 $m = date('m');
 $y = date('Y');
// check for a different Month / Year (i.e. user has moved to
 another month)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[274]

 if(isset($_GET['month']))
 {
 $m = intval($_GET['month']);
 if($m > 0 && $m < 13)
 {

 }
 else
 {
 $m = date('m');
 }
 }
 if(isset($_GET['year']))
 {
 $y = intval($_GET['year']);
 }
 // Instantiate the calendar object
 $calendar = new Calendar('', $m, $y);
 // Get next and previous month / year
 $nm = $calendar->getNextMonth()->getMonth();
 $ny = $calendar->getNextMonth()->getYear();
 $pm = $calendar->getPreviousMonth()->getMonth();
 $py = $calendar->getPreviousMonth()->getYear();

 // send next / previous month data to the template
 $this->registry->getObject('template')->getPage()-
 >addTag('nm', $nm);
 $this->registry->getObject('template')->getPage()-
 >addTag('pm', $pm);
 $this->registry->getObject('template')->getPage()-
 >addTag('ny', $ny);
 $this->registry->getObject('template')->getPage()-
 >addTag('py', $py);
 // send the current month name and year to the template
 $this->registry->getObject('template')->getPage()-
 >addTag('month_name', $calendar->getMonthName());
 $this->registry->getObject('template')->getPage()-
 >addTag('the_year', $calendar->getYear());
 // Set the start day of the week
 $calendar->setStartDay(0); // require the class

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[275]

Getting the birthdays
With the calendar setup, and a method in our relationships model for us to get
the IDs of connected users, we can get the birthdays.

First, we need to require the relationships model, instantiate the object, and get
the IDs SQL:

require_once(FRAMEWORK_PATH . 'models/relationships.php');
$relationships = new Relationships($this->registry);
$idsSQL = $relationships->getIDsByUser($this->registry-
 >getObject('authenticate')->getUser()->getUserID());

Next, we query the profile table, only selecting profiles that are in the result set of
the IDs query. We look for users with birthdays in the currently selected month,
and calculate the age by subtracting the year of birth from the current year:

$sql = "SELECT DATE_FORMAT(pr.user_dob, '%d') as profile_dob,
 pr.name as profile_name, pr.user_id as profile_id, ((YEAR(
 CURDATE())) - (DATE_FORMAT(pr.user_dob, '%Y')))
 as profile_new_age FROM profile pr WHERE pr.user_id IN
 (".$idsSQL.") AND pr.user_dob LIKE '%-{$m}-%'";
$this->registry->getObject('db')->executeQuery($sql);

Passing them to the calendar
We then iterate through our results from the query, building an array of dates
with events, and an array of event data:

$dates = array();
 $data = array();
 if($this->registry->getObject('db')->numRows() > 0)
 {
 while($row = $this->registry->getObject('db')->getRows())
 {
 $dates[] = $row['profile_dob'];
 $data[intval($row['profile_dob'])] = "
".
 $row['profile_name']." (". $row['profile_new_age'] .
 ")
";
 }
 }

The data is then passed to the calendar:

 $calendar->setData($data);
 // tell the calendar which days should be highlighted
 $calendar->setDaysWithEvents($dates);

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[276]

With everything passed to the calendar, we can now build the month and pass
everything to the template:

 $calendar->buildMonth();
 // days
 $this->registry->getObject('template')-
 >dataToTags($calendar->getDaysInOrder(),'cal_0_day_');
 // dates
 $this->registry->getObject('template')-
 >dataToTags($calendar->getDates(),'cal_0_dates_');
 // styles
 $this->registry->getObject('template')-
 >dataToTags($calendar->getDateStyles(),'cal_0_dates_style_');
 // data
 $this->registry->getObject('template')-
 >dataToTags($calendar->getDateData(),'cal_0_dates_data_');

 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'bd-calendar.tpl.php', 'footer.tpl.php');

The results
If we now visit our birthdays calendar (calendar/birthdays), we have a calendar
with the birthdays of our contacts shown, along with their age on that date.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[277]

Events
With calendar functionality and birthday lookups in place, adding event
functionality should be straightforward. Let's take a look at what we will need:

•	 An event model
	° To generate data from an event
	° To create and edit an event

•	 Integration with our calendar controller
•	 An event controller to display the event details, manage the creation of

the event, and manage attendees and RSVPs

Event model
As with all of our models, the first stage is to define the variables, which relate to the
registry, the fields for the event in the database, and an array of invitees to the event:

<?php

/**
 * Event model
 */
class Event{

 /**
 * The registry
 */
 private $registry;

 /**
 * Event ID
 */
 private $ID;

 /**
 * Creators ID
 */
 private $creator;

 /**
 * Event name
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[278]

 private $name;

 /**
 * Description
 */
 private $description;

 /**
 * Event date
 */
 private $event_date;

 /**
 * start time
 */
 private $start_time;

 /**
 * End time
 */
 private $end_time;

 /**
 * Type
 */
 private $type;

 /**
 * Active
 */
 private $active;

 /**
 * Invitees
 */
 private $invitees = array();

Next, we have our constructor, which sets the registry, and if an ID is passed,
looks up the event and populates the model's fields with those from the database:

 /**
 * Event constructor
 * @param Registry $registry the registry
 * @param int $ID the event ID
 * @return voID

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[279]

 */
 public function __construct(Registry $registry, $ID=0)
 {
 $this->registry = $registry;
 if($ID != 0)
 {
 $this->ID = $ID;
 // if an ID is passed, populate based off that
 $sql = "SELECT * FROM events WHERE ID=" . $this->ID;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 // populate our fields
 foreach($data as $key => $value)
 {
 $this->$key = $value;
 }
 }

 }
 }

Next, we have setters for all of our fields, except for the ID:

 /**
 * Sets the events name
 * @param String $name
 * @return voID
 */
 public function setName($name)
 {
 $this->name = $name;
 }

 /**
 * Sets the creator
 * @param int $creator the creator
 * @return voID
 */
 public function setCreator($ID)
 {
 $this->creator = $ID;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[280]

 public function setInvitees($invitees)
 {
 $this->invitees = $invitees;
 }

 /**
 * Set the events description
 * @param String $description the description
 */
 public function setDescription($description)
 {
 $this->description = $description;
 }

Our setDate method takes an additional parameter to check whether the controller
formatted the date, if it didn't then we assume it was passed in a format such as the
default jQuery datepicker format, and format it here:

 /**
 * Set the event date
 * @param String $date the date
 * @param boolean $formatted - indicates if the controller has
 formatted the date, or if we need to do it here
 */
 public function setDate($date, $formatted=true)
 {
 if($formatted == true)
 {
 $this->event_date = $date;
 }
 else
 {
 $temp = explode('/', $date);
 $this->event_date = $temp[2].'-'.$temp[1].'-'.$temp[0];
 }
 }

 /**
 * Sets the start time of the event
 * @param String $time
 * return voID
 */
 public function setStartTime($time)
 {
 $this->start_time = $time;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[281]

 }

 /**
 * Sets the end time of the event
 * @param String $time
 * return voID
 */
 public function setEndTime($time)
 {
 $this->end_time = $time;
 }

The setType method takes an additional parameter to check whether the
controller validated the type or not; if it didn't, then we check it against our
list of allowed types:

 /**
 * Set the type of the event
 * @param String $type the type
 * @param boolean $checked - indicates if the controller has
 valIDated the type, or if we need to do it
 * @return voID
 */
 public function setType($type, $checked=true)
 {
 if($checked == true)
 {
 $this->type = $type;
 }
 else
 {
 $types = array('public', 'private');
 if(in_array($type, $types))
 {
 $this->type = $type;
 }
 }
 }

 /**
 * Sets if the event is active
 * @param bool $active
 * @return voID
 */
 public function setActive($active)
 {
 $this->active = $active;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[282]

Next, we have our save method, which depending on whether an ID is set or not,
either inserts a new record into the database or updates an existing one. If we are
inserting a new record, it also iterates through the invitees, and adds them to the
attendees table as an invitee. This would be where we may wish to add an e-mail
notification to the user to inform them that they have been invited to the event:

 /**
 * Save the event
 * @return bool
 */
 public function save()
 {
 // handle the updating of a profile
 if($this->registry->getObject('authenticate')->isLoggedIn() &&
 ($this->registry->getObject('authenticate')-
 >getUser()->getUserID() == $this->creator || $this->registry-
 >getObject('authenticate')->getUser()->isAdmin() == true ||
 $this->ID == 0))
 {
 // we are either the user created the event, or we are the
 administrator, or the event is being created
 $event = array();
 foreach($this as $field => $data)
 {
 if(! is_array($data) && ! is_object($data)
 && $field != 'ID')
 {
 $event[$field] = $this->$field;
 }

 }
 if($this->ID == 0)
 {
 $this->registry->getObject('db')->insertRecords('events',
 $event);
 $this->ID = $this->registry->getObject('db')-
 >lastInsertID();
 if(is_array($this->invitees) && count($this-
 >invitees) > 0)
 {
 foreach($this->invitees as $invitee)
 {
 $insert = array();
 $insert['event_id'] = $this->ID;
 $insert['user_id'] = $invitee;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[283]

 $insert['status'] = 'invited';
 $this->registry->getObject('db')->insertRecords(
 'event_attendees', $insert);
 }
 }
 $insert = array();
 $insert['event_id'] = $this->ID;
 $insert['user_id'] = $this->creator;
 $insert['status'] = 'going';
 $this->registry->getObject('db')->insertRecords('event_
 attendees', $insert);
 return true;
 }
 else
 {
 $this->registry->getObject('db')->updateRecords('events',
 $event, 'ID=' . $this->ID);
 if($this->registry->getObject('db')->affectedRows() == 1)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 }
 else
 {
 return false;
 }
 }

Next, we have the standard toTags method, which takes a prefix, and converts all
of the data that isn't an object or an array to template tags:

 /**
 * Convert the event data to template tags
 * @param String $prefix prefix for the template tags
 * @return voID
 */
 public function toTags($prefix='')
 {
 foreach($this as $field => $data)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[284]

 {
 if(! is_object($data) && ! is_array($data))
 {
 $this->registry->getObject('template')->getPage()-
 >addTag($prefix.$field, $data);
 }
 }
 }

Finally, we have any getter methods that we may require:

 /**
 * Get the event name
 * @return String
 */
 public function getName()
 {
 return $this->name;
 }

 /**
 * Get the users ID
 * @return int
 */
 public function getID()
 {
 return $this->ID;
 }

}

?>

Events model
Now, let's look at creating the events model to generate a list of events that a user
may be interested in (models/events.php):

<?php
/**
 * Events model
 * - builds lists of events
 */
class Events{

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[285]

We need to define our registry, and construct the object:

 /**
 * Registry object
 */
 private $registry;

 /**
 * Events constructor
 * @param Registry $registry
 * @return void
 */
 public function __construct(Registry $registry)
 {
 $this->registry = $registry;
 }

To list events by connected users in a certain month, we simply use the relationships
model, call the getIDsByUser method, and then query the events table, filtering by
the results from the getIDs query, where the date is in a specific month and year:

 /**
 * List events by connected users in specified month / year
 * @param int $connectedTo events of users connected to this user
 * @param int $month
 * @param int $year
 * @return int database cacehe
 */
 public function listEventsMonthYear($connectedTo, $month, $year)
 {
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $idsSQL = $relationships->getIDsByUser($connectedTo);
 $sql = "SELECT p.name as creator_name, e.* FROM events e,
 profile p WHERE p.user_id=e.creator AND e.event_date LIKE
 '{$year}-{$month}-%' AND e.creator IN ($idsSQL) ";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[286]

Similar to the above query, here we use the DATE_ADD MySQL function to add
X days to the current date, and return any events within the range between
now and X days time:

 /**
 * List events by connected users in specified time period
 * @param int $connectedTo events of users connected to this user
 * @param int $days days in the future
 * @return int database cacehe
 */
 public function listEventsFuture($connectedTo, $days)
 {
 require_once(FRAMEWORK_PATH . 'models/relationships.php');
 $relationships = new Relationships($this->registry);
 $idsSQL = $relationships->getIDsByUser($connectedTo);
 $sql = "SELECT p.name as creator_name, e.* FROM events e,
 profile p WHERE p.user_id=e.creator AND e.event_date >=
 CURDATE() AND e.event_date <= DATE_ADD(CURDATE(),
 INTERVAL {$days} DAY) AND e.creator IN ($idsSQL) ";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

This method lists any events X days in the future that were created by a specific
user. This might be used on a user's profile, or for a user to see which events they
had created:

 /**
 * List events by a specific user within next X days
 * @param int $user user whose events to list
 * @param int $days
 * @return int database cache
 */
 public function listEventsUserFuture($user, $days)
 {
 $sql = "SELECT p.name as creator_name, e.* FROM events e,
 profile p WHERE p.user_id=e.creator AND e.event_date >=
 CURDATE() AND e.event_date <= DATE_ADD(CURDATE(),
 INTERVAL {$days} DAY) AND e.creator={$user} ";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[287]

Finally, we have methods to return events that the current user was either invited to,
is attending, isn't attending, or is maybe attending:

 /**
 * List events in the future user is invited to
 * @param int $user the user
 * @return int database cache
 */
 public function listEventsInvited($user)
 {
 $sql = "SELECT p.name as creator_name, e.* FROM events e,
 profile p WHERE p.user_id=e.creator AND e.event_date >=
 CURDATE() AND (SELECT COUNT(*) FROM events_attendees a
 WHERE a.event_id=e.ID AND a.user_id={$user} AND
 a.status='invited') > 0";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

 /**
 * List events in the future user is attending
 * @param int $user the user
 * @return int database cache
 */
 public function listEventsAttending($user)
 {
 $sql = "SELECT p.name as creator_name, e.* FROM events e,
 profile p WHERE p.user_id=e.creator AND e.event_date >=
 CURDATE() AND (SELECT COUNT(*) FROM events_attendees a
 WHERE a.event_id=e.ID AND a.user_id={$user} AND
 a.status='going') > 0";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

 /**
 * List events in the future user is not attending
 * @param int $user the user
 * @return int database cache
 */
 public function listEventsNotAttending($user)
 {
 $sql = "SELECT p.name as creator_name, e.* FROM events e,
 profile p WHERE p.user_id=e.creator AND e.event_date >=
 CURDATE() AND (SELECT COUNT(*) FROM events_attendees a
 WHERE a.event_id=e.ID AND a.user_id={$user} AND

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[288]

 a.status='not going') > 0";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

 /**
 * List events in the future user is maybe attending
 * @param int $user the user
 * @return int database cache
 */
 public function listEventsMaybeAttending($user)
 {
 $sql = "SELECT p.name as creator_name, e.* FROM events e,
 profile p WHERE p.user_id=e.creator AND e.event_date >=
 CURDATE() AND (SELECT COUNT(*) FROM events_attendees a
 WHERE a.event_id=e.ID AND a.user_id={$user} AND
 a.status='maybe') > 0";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

}

?>

Attendees, invitations, and RSVPs
To list who is attending, invited, maybe attending, and not attending an event,
we can add some new methods to our event model (models/event.php). These
methods query the database for users who are attending, not attending, maybe
attending or invited, cache the results, and return the cache.

/**
 * Get users attending the event
 * @return int cache id
 */
 public function getAttending()
 {
 $sql = "SELECT p.* FROM profile p, event_attendees
 WHERE p.user_id=a.user_id AND a.status='attending' AND
 a.event_id=" . $this->ID;
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[289]

 /**
 * Get users not attending the event
 * @return int cache id
 */
 public function getNotAttending()
 {
 $sql = "SELECT p.* FROM profile p, event_attendees WHERE
 p.user_id=a.user_id AND a.status='not attending' AND
 a.event_id=" . $this->ID;
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

 /**
 * Get users maybe attending the event
 * @return int cache id
 */
 public function getMaybeAttending()
 {
 $sql = "SELECT p.* FROM profile p, event_attendees WHERE
 p.user_id=a.user_id AND a.status='maybe' AND
 a.event_id=" . $this->ID;
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

 /**
 * Get users invited to the event
 * @return int cache id
 */
 public function getInvited()
 {
 $sql = "SELECT p.* FROM profile p, event_attendees WHERE
 p.user_id=a.user_id AND a.status='invited' AND
 a.event_id=" . $this->ID;
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[290]

RSVPs
To allow a user to change their attendance preference for an event, we need a
method in our event controller (controllers/event/controller.php), which we
are going to create in the next section. This takes the event ID as a parameter, and
POST data is submitted indicating the user's new choice for the event:

private function changeAttendance($event)
 {
 $sql = "SELECT * FROM event_attendees WHERE event_id={$event}
 AND user_id=" . $this->registry->getObject('authenticate')-
 >getUser()->getID();
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 $changes = array();
 $changes['status'] = $this->registry->getObject('db')-
 >sanitizeData($_POST['status']);
 $this->registry->getObject('db')->updateRecords('event_
 attendees', $changes, 'ID=' . $data['ID']);
 $this->registry->redirectUser($this->registry-
 >buildURL(array('home'), '', false), 'Attendance
 updated', 'Thanks, your attendance has been updated for
 that event', false);
 }
 else
 {
 $this->registry->errorPage('Attendance not logged',
 'Sorry, we could not find any record of your attendance
 for that event, please try again');
 }
 }

Controller
With our event and events models in place, we now need a controller to allow
the user to create, edit, view, and accept attendance of events.

Creating an event
To create an event, we need to see whether the user is submitting the form; if they are,
we instantiate the event object, set the details, look for any invitees the user has added,
set those, and create the event before redirecting them to the view event page. If no post
data was submitted, we simply show the user the form. We may also want to provide
a list of the users' connections on this page, so they can invite them to the event. After
creating an event, you may wish to add functionality to e-mail those invitees:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[291]

/**
 * Create an event
 * @return void
 */
 private function createEvent()
 {
 // if post data is set, we are creating an event
 if(isset($_POST) && count($_POST) > 0)
 {
 require_once(FRAMEWORK_PATH . 'models/event.php');
 $event = new Event($this->registry, 0);
 $event->setName($this->registry->getObject('db')-
 >sanitizeData($_POST['name']));
 $event->setDescription($this->registry->getObject('db')-
 >sanitizeData($_POST['description']));
 $event->setDate($this->registry->getObject('db')-
 >sanitizeData($_POST['date']), false);
 $event->setStartTime($this->registry->getObject('db')-
 >sanitizeData($_POST['start_time']));
 $event->setEndTime($this->registry->getObject('db')-
 >sanitizeData($_POST['end_time']));
 $event->setCreator($this->registry->getObject('authenticate')-
 >getUser()->getID());
 $event->setType($this->registry->getObject('db')-
 >sanitizeData($_POST['type']));
 if(isset($_POST['invitees']) && is_array($_POST['invitees'])
 && count($_POST['invitees']) > 0)
 {
 // assumes invitees are added to a table using javascript,
 with a hidden field with name invitees[] for the ID of
 invitee
 $is = array();
 foreach($_POST['invitees'] as $i)
 {
 $is[] = intval($i);
 }
 $event->setInvitees($is);
 }
 $event->save();
 $this->registry->redirectUser($this->registry-
 >buildURL(array('event', 'view', $event->getID()), '',
 false), 'Event created', 'Thanks, the event has been
 created', false);
 }
 else
 {
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'events/create.tpl.php', 'footer.tpl.php');
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[292]

Template for a new event
Our "Create event" template simply needs fields for the name, date, start time, end
time, description, and checkboxes for all of the user's friends. We can give the date
field a class of selectdate, to make use of the jQuery datepicker plug-in we used
for profiles. We may also wish to use the time picker plug-in too, to make time
selection easier. The friends loop is highlighted in the following code:

 <div id="main">

 <div id="rightside">
 </div>

 <div id="content">
 <h1>Create an event</h1>
 <form action="event/create" method="post">
 <label for="">Name</label>

 <input type="text" name="name" />

 <label for="">Type of event</label>

 <select name="type">
 <option value="public">Public event</option>
 <option value="private">Private event</option>
 </select>

 <label for="">Date</label>

 <input type="text" class="selectdate" name="date"
 />

 <label for="">Start time</label>

 <input type="text" class="selecttime" name="start_
 time" />

 <label for="">End time</label>

 <input type="text" class="selecttime" name="end_
 time" />

 <label for="">Description</label>

 <textarea name="description" cols="45" rows="6">
 </ textarea>

 <h2>Invite friends?</h2>
 <p>Select any friends you would like to invite to
 the event.</p>
 <!-- START all --><input type="checkbox"
 name="invitees[]" value="{ID}" />{users_name}
 <!-- END all -->

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[293]

 <input type="submit" name="" value="Create event" />

 </form>
 </div>

 </div>

Now, if we visit the create event page (event/create), we see the form:

This makes use of the very helpful datepicker plugin:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[294]

Calendar of events
We looked earlier at integrating the calendar library with birthdays, so why not try
and integrate the events with the calendar too? The code is in the download bundle
for this book if you need help.

Viewing an event
To view an event, we simply call the toTags method on the model, and build the
template. We should also list users who have been invited, are attending, are not
attending, and who are maybe attending:

/**
 * View an event
 * @param int $id
 * @return void
 */
 private function viewEvent($id)
 {
 require_once(FRAMEWORK_PATH . 'models/event.php');
 $event = new Event($this->registry, $id);
 $show = true;
 if($event->getType() == 'private')
 {
 // you may wish to add to support for private events here!
 $show = false;
 }
 if($show == true)
 {
 $event->toTags('event_');
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'events/view.tpl.php', 'footer.tpl.php');
 $attendingCache = $event->getAttending();
 $this->registry->getObject('template')->getPage()->addTag(
 'attending', array('SQL', $attendingCache));
 $notAttendingCache = $event->getNotAttending();
 $this->registry->getObject('template')->getPage()->addTag(
 'notattending', array('SQL', $notAttendingCache));
 $maybeAttendingCache = $event->getMaybeAttending();
 $this->registry->getObject('template')->getPage()->addTag(
 'maybeattending', array('SQL', $maybeAttendingCache));
 $invitedCache = $event->getInvited();
 $this->registry->getObject('template')->getPage()->addTag(
 'invited', array('SQL', $invitedCache));

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[295]

 $sql = "SELECT * FROM event_attendees WHERE event_id={$id}
 AND user_id=" . $this->registry->getObject('authenticate')-
 >getUser()->getUserId();
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 if($data['status'] == 'going')
 {
 $s = 'attending';
 }
 elseif($data['status'] == 'not going')
 {
 $s = 'notattending';

 }
 elseif($data['status'] == 'maybe')
 {
 $s = 'maybeattending';
 }
 else
 {
 $s = 'unknown';
 }
 $this->registry->getObject('template')->getPage()-
 >addTag($s . '_select', "selected='selected'");
 }
 else
 {
 $this->registry->getObject('template')->getPage()-
 >addTag('unknown_select', "selected='selected'");
 }

 }
 else
 {
 // error handling
 }

 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[296]

Event template
The template for viewing the event contains tags for the event, and template loops
for the different types of attendee status:

 <div id="main">

 <div id="rightside">
 </div>

 <div id="content">
 <h1>{event_name}</h1>
 <p>{event_description}</p>
 <p>{event_date}: {event_start_time} until
 {event_end_time}</p>
 <h2>Your attendance</h2>
 <p>You are currently recorded as:</p>
 <form action="event/change-attendance/{event_id}"
 method="post">
 <select name="status">
 <option value="" {unknown_select}>Unknown -
 Please select...</option>
 <option value="going" {attending_
 select}>Attending</option>
 <option value="not going" {notattending_
 select}>Not attending</option>
 <option value="maybe" {maybeattending_
 select}>Maybe attending</option>
 </select>
 <input type="submit" name="" value="Update
 attendance" />
 </form>
 <h2>Attending</h2>

 <!-- START attending -->{name}
 <!-- END attending -->

 <h2>Invited / Awaiting Reply</h2>

 <!-- START invited -->{name}
 <!-- END invited -->

 <h2>Maybe attending</h2>

 <!-- START maybeattending -->{name}
 <!-- END maybeattending -->

 <h2>Not attending</h2>

 <!-- START notattending -->{name}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[297]

 <!-- END notattending -->

 </div>
 </div>

Viewing an event in action
If we now view an event (event/view/1), we are presented with the view
event screen:

Upcoming events
Thanks to the listUpcomingInNetwork method in our events model, we can easily
build a list of events in our user's network:

private function listUpcomingInNetwork()
 {
 require_once(FRAMEWORK_PATH . 'models/events.php');
 $events = new Events($this->registry);
 $cache = $events->listEventsFuture($this->registry-
 >getObject('authenticate')->getUser()->getID(), 30);
 $this->registry->getObject('template')->getPage()-
 >addTag('events', array('SQL', $cache));
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'events/upcoming.tpl.php',
 'footer.tpl.php');
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Events and Birthdays

[298]

Reminders
We may wish to remind users about specific events, either events created by their
contacts, or events that they have indicated they wish to attend. We can easily
remind them of the event either through:

•	 Notices on the site reminding them
•	 E-mails reminding them
•	 Text/SMS messages

Off-site reminders would need to work via a task-based system, for example a
CRON job that is run each night, which looks up events a user is attending or may
be attending X days in the future (those queries in the events model are looking
extra handy now!) and sends them a reminder.

On-site notifications
On-site reminders would simply call the appropriate method in the events model, to
see whether there are any events the user may be attending within the next X days,
and if there are, list them on the screen.

E-mail notifications
We have an e-mail sending object in our registry; we can use this to e-mail out
reminders to our users.

SMS notifications
For us to send SMS notifications, we need to use a mobile gateway, such as:

•	 Clickatell: Large international SMS/mobile gateway - http://www.
clickatell.com/

•	 Intellisoftware: UK based SMS gateway—http://www.intellisoftware.
co.uk/

Such gateways provide simple APIs where a text message can be sent via a simple
HTTP request containing API credentials, sender number, recipient number, and the
message. We can create a library to talk to the API, and use this to send messages to
our users.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 9

[299]

Packt have published a book called Mobile Web Development by Nirav Mehta
(https://www.packtpub.com/mobile-web-development/book), which includes
lots of great examples of clickatell, and well worth a read if you are considering
implementing SMS integration. The Clickatell website and Intellisoftware websites
both have in-depth information on working with their APIs too.

Summary
In this chapter, we have looked at developing a flexible calendar library to integrate
calendar functionality into various aspects of our site. We created a calendar
controller to display birthdays of our users' connections, along with their ages.

We then moved on to events, creating models and controllers for creating events,
viewing events, listing events, and inviting connections to the events. With our
calendar library, we are now able to integrate these events into the calendar.

Following from events, we looked at inviting contacts to events, and how they can
update us on their intention to attend the event, and with a little extra development,
we can integrate reminders too.

Now, we can move onto the final core feature of any social network—groups!

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups
We only have one user-facing feature left to implement for our Dino Space website,
and that is groups within the social network. Most social networking websites have
the ability for users to form their own sub-groups, a small sub-set of users discussing
or sharing information about specific things. Within our site, this could be to allow
groups of users to privately discuss matters, or for users who share common interests
to discuss things without cluttering up everyone else's network with information
that may not interest them.

In this chapter you will learn:

•	 How to create a group area
•	 How to allow users to create groups
•	 How users can be invited to join these groups
•	 How to deal with the "ownership" of a particular group

Let's get started and add groups to our social network!

Some planning
Before we can start implementing this feature, we need to think about what
information it needs to manage, how it will work, and what it will offer to our users.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[302]

Group information
There will need to be standard information saved for each group, so that groups
have meaning to other users, and if appropriate can be found through the search
feature. At a minimum, we need to store the following information:

•	 Name of the group
•	 Creator / owner of the group: So we know who has permission to manage it
•	 Description of the group: So users know what the group is about, in a little

more detail than its name
•	 Permission structure of the group: So that the group can be shown if

appropriate, and so that it is clear if and how new members can join
that group

•	 Date the group was created: We could also store the creation date, so if one
group becomes old and isn't participated in very often, a newer one may take
priority in the search results

This information is what would be stored in the groups table in the database.

Types of groups
To make the groups system flexible, there need to be various types of groups
available, with different permissions relating to who can have access to them.
Typically, most social networks tend to provide the following options:

•	 Global / public groups: Open to everyone on the site
•	 Network specific: Only open to a section of the social network. For

example, those from a particular geographical region, or working
for one particular institution

•	 Private, with these options:
	° Only available to those who have been explicitly invited by

the group's creator
	° Semi-private: Only available to those who have been

explicitly invited by another member of the group
	° Invite-only: Private groups where users can request

membership (similar to friend requests), which is then
decided by the group's creator or administrator

As our Dino Space network doesn't, in its current form, have any provisions for
subsidiary networks, such as users based in the US or the UK, or users who work
at a specific company, we will not look to implement this feature. The other types
of groups seem appropriate, so we will look to implement those.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[303]

Ownership
There are a number of ways we could facilitate the ownership or management of
a community group on our social network. Primarily there are two options:

•	 The creator is the owner / administrator of the group
•	 The creator can appoint owner / administrator(s) of the group

We will implement the first of these options. However, it shouldn't be too difficult to
extend this to support appointed administrators, should you wish to extend this for
your own social network.

In this sense, the creator of the group will be listed on the group's page, and they
alone will have full control of the group.

Membership
Finally, we need to plan how membership will be organized, particularly in light of
the types of groups that we may support. We need to be able to store and manage
membership lists, lists of invited users who can become members of protected
groups should they wish, and also users who have requested to be members of a
group, but have not yet been granted access.

Features
Groups need to offer users a dedicated area where they can communicate
and collaborate on specific topics related to the purpose of the group,
including discussions.

A group
With an idea of what our group needs to do, the information it needs to contain,
and how it will work, let's now create the functionality. This, as with other features,
will involve creation of a model, a controller, and a series of template files to form
the view.

Discussion
In order to facilitate communication and collaboration, groups require some new
functionality that we don't yet have in Dino Space—discussion forum style topics.
Let's create models for topics and discussion forum posts. Initially, we will tie these
with groups; however, it would be easy for us to extend them to other areas of the
social network should we wish.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[304]

We won't create controllers at this stage, as topics (for now) will only be accessed via
groups. So either the group's controller will handle this, or the group's controller will
delegate control to a group topic controller.

Discussion forums can be very complicated systems; there are numerous open
source and commercial forum software products available with a wealth of features.
Creating a fully-featured discussion forum would be the series of a number of
books in itself. For the purposes of Dino Space, we are going to create a very simple
discussion-style feature to plug into our social network.

Database
This discussion feature will require two new database tables, one for topics
themselves, and one for the posts they relate to.

Topics
Topic records in the database will simply contain a name, who created it and when,
and the group they are related to, as illustrated by the table below:

Field Type Description
ID Integer, Auto-increment,

Primary Key
Internal reference for the topic of conversation

Name Varchar The name of the topic
Creator Integer The user who created the topic
Created Timestamp The time the topic was created
Group Integer The group the topic was created within

Posts
Posts will contain the content of the post, who created it and when, and the topic that
it relates to, as illustrated by the table below.

Field Type Description
ID Integer, Auto-increment,

Primary Key
Internal reference for the post within a topic

Topic Integer The topic the post is part of
Post Longtext The post itself
Creator Integer The user who created the post
Created Timestamp The time the post was created

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[305]

Post
When a topic is created, in most cases so is the first post. Hence, we should link our
post and topic models so that both are created at the same time. Since the topic will
create the post, we should create the post model first.

Model
The post model (models/post.php) only needs to be basic: various properties for the
object, a constructor to get the post from the database, some setter methods to update
the properties, and a save method to create a new post or update an existing post.

<?php
/**
 * Post model object
 */
class Post{

As usual we start with our class variables; these include a reference to the registry
object itself, and the variables required for a post.

 /**
 * Registry object
 */
 private $registry;

 /**
 * ID of the post
 */
 private $id;

 /**
 * ID of the creator of the post
 */
 private $creator;

 /**
 * Name of the creator of the post
 */
 private $creatorName;

 /**
 * Timestamp of when the post was created
 */
 private $created;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[306]

 /**
 * Friendly representation of when the post was created
 */
 private $createdFriendly;

 /**
 * ID of the topic the post relates to
 */
 private $topic;

 /**
 * The post itself
 */
 private $post;

The constructor takes the registry object as a parameter and, optionally, an ID for
the post. If a post ID is supplied, then it queries the database for the post, and if a
record exists, it populates the class variables with the results.

 /**
 * Post constructor
 * @param Registry $registry the registry object
 * @param int $id the ID of the post
 * @return void
 */
 public function __construct(Registry $registry, $id=0)
 {
 $this->registry = $registry;
 $this->id = $id;
 if($this->id > 0)
 {
 $sql = "SELECT p.*, DATE_FORMAT(p.created, '%D %M %Y') as
 created_friendly, pr.name as creator_name FROM posts p,
 profile pr WHERE pr.user_id=p.creator AND p.ID=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() > 0)
 {
 $data = $this->registry->getObject('db')->getRows();
 $this->creator = $data['creator'];
 $this->creatorName = $data['creator_name'];
 $this->createdFriendly = $data['created_friendly'];
 $this->topic = $data['topic'];
 $this->post = $data['post'];
 }
 else

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[307]

 {
 $this->id = 0;
 }
 }
 }

We have our setter methods to set the private class variables from outside the object.

 /**
 * Set the creator of the post
 * @param int $c the creator
 * @return void
 */
 public function setCreator($c)
 {
 $this->creator = $c;
 }

 /**
 * Set the topic the post relates to
 * @param int $t the topic ID
 * @return void
 */
 public function setTopic($t)
 {
 $this->topic = $t;
 }

 /**
 * Set the post content
 * @param String $p the post itself
 * @return void
 */
 public function setPost($p)
 {
 $this->post = $p;
 }

Finally, we have our save method. If an ID is set, it updates an existing record; if no
ID is set, then it inserts a record into the database.

 /**
 * Save the post in the database
 * @return void
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[308]

 public function save()
 {
 if($this->id > 0)
 {
 $update = array();
 $update['topic'] = $this->topic;
 $update['post'] = $this->post;
 $update['creator'] = $this->creator;
 $this->registry->getObject('db')->updateRecords('posts',
 $update, 'ID=' . $this->id);
 }
 else
 {
 $insert = array();
 $insert['topic'] = $this->topic;
 $insert['post'] = $this->post;
 $insert['creator'] = $this->creator;
 $this->registry->getObject('db')->insertRecords('posts',
 $insert);
 $this->id = $this->registry->getObject('db')->lastInsertID();
 }
 }
}
?>

Topic
Our topic model needs to link into the post model. So we should create a method
that creates a new instance of the post model and stores it publicly within the topic
model, so that our controllers can update the properties of both of these objects.
When it comes to saving the topic, if the post was created, it should pass the topic
ID to indicate the topic the post relates to.

Model
Because of what we discussed above, this model (models/topic.php) will be
slightly more complicated than the post model, but not by much.

<?php
/**
 * Discussion topic class
 */
class Topic {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[309]

As usual, we have various properties within the object.

 /**
 * The registry object
 */
 private $registry;

 /**
 * ID of the topic
 */
 private $id=0;

 /**
 * ID of the creator
 */
 private $creator;

 /**
 * Name of the creator
 */
 private $creatorName;

 /**
 * Name of the topic
 */
 private $name;

 /**
 * When the topic was created (TIMESTAMP)
 */
 private $created;

 /**
 * Friendly reference for the date the topic was created
 */
 private $createdFriendly;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[310]

A few of these properties are of more than just data from the topics table. We also
have the numPosts property, which is for the number of posts within a topic; we
have a Boolean field, which determines if the topic should also save the first post,
and in that instance, we also have a post object.

 /**
 * Number of posts in the topic
 */
 private $numPosts;

 /**
 * If we are also saving the first post
 */
 private $includeFirstPost;

 /**
 * Post object - if saving the first post too
 */
 private $post;

 /**
 * Group the topic was posted within
 */
 private $group;

We have our standard constructor, populating fields if the ID is valid.

 /**
 * Topic constructor
 * @param Registry $registry the registry object
 * @param int $id the ID of the topic
 * @return void
 */
 public function __construct(Registry $registry, $id=0)
 {
 $this->registry = $registry;
 $this->id = $id;
 if($this->id > 0)
 {
 $sql = "SELECT t.*, (SELECT COUNT(*) FROM posts po WHERE
 po.topic=t.ID) as posts, DATE_FORMAT(t.created, '%D %M %Y')
 as created_friendly, p.name as creator_name FROM topics t,
 profile p WHERE p.user_id=t.creator AND t.ID=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() > 0)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[311]

 {
 $data = $this->registry->getObject('db')->getRows();
 $this->creator = $data['creator'];
 $this->creatorName = $data['creator_name'];
 $this->createdFriendly = $data['created_friendly'];
 $this->name = $data['name'];
 $this->numPosts = $data['posts'];
 $this->group = $data['group'];
 }
 else
 {
 $this->id = 0;
 }
 }
 }

 /**
 * Get query of the posts in the topic (i.e. collection of posts ==
 topic)
 */
 public function getPostsQuery()
 {
 $sql = "SELECT p.*, DATE_FORMAT() as friendly_created_post,
 pr.name as creator_friendly_post FROM posts p, profile pr WHERE
 pr.user_id=p.creator AND p.topic=" . $this->id;
 return $sql;
 }

We have a method to set if we are including the first post. If we are, we include the
class, instantiate the object, and assign it to the post property in the topic object.

 /**
 * Set if this save should also save the first post
 * @param bool $ifp
 * @return void
 */
 public function includeFirstPost($ifp)
 {
 $this->includeFirstPost = $ifp;
 require_once(FRAMEWORK_PATH . 'models/post.php');
 $this->post = new Post($this->registry, 0);
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[312]

If we are setting the first post, our controllers can access this post object by calling
the getFirstPost method, and then calling the appropriate public methods on the
post object.

 /**
 * Return the object for the first post, for setting fields
 * @return Object
 */
 public function getFirstPost()
 {
 return $this->post;
 }

We have a number of setter methods, as standard.

 /**
 * Set the group this topic should be part of
 * @param int $group
 * @return void
 */
 public function setGroup($group)
 {
 $this->group = $group;
 }

 /**
 * Set the creator of the topic
 * @param int $creator
 * @return void
 */
 public function setCreator($creator)
 {
 $this->creator = $creator;
 }

 /**
 * Set the name of the topic
 * @param String $name
 * @return void
 */
 public function setName($name)
 {
 $this->name = $name;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[313]

We have our save method, which if appropriate, also saves the post once the topic
has been created.

 /**
 * Save the topic into the database
 * @return void
 */
 public function save()
 {
 if($this->id > 0)
 {
 $update = array();
 $update['creator'] = $this->creator;
 $update['name'] = $this->name;
 $update['group'] = $this->group;
 $this->registry->getObject('db')->updateRecords('topics',
 $update, 'ID=' . $this->id);
 }
 else
 {
 $insert = array();
 $insert['creator'] = $this->creator;
 $insert['name'] = $this->name;
 $insert['group'] = $this->group;
 $this->registry->getObject('db')->insertRecords('topics',
 $insert);
 $this->id = $this->registry->getObject('db')->lastInsertID();
 if($this->includeFirstPost == true)
 {
 $this->post->setTopic($this->id);
 $this->post->save();
 }
 }
 }

Next, we have a getter for the name property, and also a toTags method, which
is now almost a standard for most of our models.

 /**
 * Get the name of the topic
 */
 public function getName()
 {
 return $this->name;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[314]

 /**
 * Convert the topic data to template tags
 * @param String $prefix prefix for the template tags
 * @return void
 */
 public function toTags($prefix='')
 {
 foreach($this as $field => $data)
 {
 if(! is_object($data) && ! is_array($data))
 {
 $this->registry->getObject('template')->getPage()->addTag(
 $prefix.$field, $data);
 }
 }
 }

 /**
 * Get the group this topic was posted within
 * @return int
 */
 public function getGroup()
 {
 return $this->group;
 }

Finally, we have a delete method, which in addition to deleting the current
topic from the database, also removes any posts related to it in the posts table.

 /**
 * Delete the current topic
 * @return boolean
 */
 public function delete()
 {
 $sql = "DELETE FROM topics WHERE ID=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->affectedRows() > 0)
 {
 $sql = "DELETE FROM posts WHERE topic=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 $this->id =0;
 return true;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[315]

 else
 {
 return false;
 }
 }
}
?>

The group itself
With the models for topics and posts (which we will be using shortly) in place, we
can now focus our attention on the group itself, as the group will need to make use
of these models so that users of the groups can communicate and collaborate with
one another.

Group table
The first stage, as with the other aspects of our social network, is the database table.
We've already discussed what information the group needs to store; the following
database structure simply formalizes that:

Field Type Description
ID Integer, Auto-increment,

Primary Key
Internal ID / reference for the group

Name Varchar Name of the group
Description Longtext Detailed description of the group
Type ENUM The type of the group
Creator Integer The user who created the group
Created Timestamp The time the group was created
Active Boolean If the group is active, gives us the ability to

de-activate groups later without deleting them

Model
The model required for groups (models/group.php) is fairly standard with a few
minor additions. We have some validation on the type of group, and we also have
a method to cache a query of topics posted in the group.

<?php
/**
 * Group model object
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[316]

class Group {
 /**
 * Types of group that are available
 */
 private $types = array('public', 'private', 'private-member-
 invite', 'private-self-invite');

 /**
 * The registry object
 */
 private $registry;

 /**
 * ID of the group
 */
 private $id;

 /**
 * The name of the group
 */
 private $name;

 /**
 * Description of the group
 */
 private $description;

 /**
 * The creator of the group
 */
 private $creator;

 /**
 * Name of the creator of the group
 */
 private $creatorName;

 /**
 * Time the group was created
 */
 private $created;

 /**
 * Friendly representation of when the group was created

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[317]

 */
 private $createdFriendly;

 /**
 * Type of group
 */
 private $type;

 /**
 * If the group is active or not
 */
 private $active=1;

 /**
 * If the selected group is valid or not
 */
 private $valid;

 /**
 * Group constructor
 * @param Registry $registry the registry
 * @param int $id the ID of the group
 * @return void
 */
 public function __construct(Registry $registry, $id=0)
 {
 $this->registry = $registry;
 if($id > 0)
 {
 $this->id = $id;
 $sql = "SELECT g.*, DATE_FORMAT(g.created, '%D %M %Y') as
 created_friendly, p.name as creator_name FROM groups g,
 profile p WHERE p.user_id=g.creator AND g.ID=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 $this->name = $data['name'];
 $this->description = $data['description'];
 $this->creator = $data['creator'];
 $this->valid = true;
 $this->active = $data['active'];
 $this->type = $data['type'];
 $this->created = $data['created'];

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[318]

 $this->createdFriendly = $data['created_friendly'];
 $this->creator = $data['creator'];
 $this->creatorName = $data['creator_name'];
 }
 else
 {
 $this->valid = false;
 }
 }
 else
 {
 $this->id = 0;
 }
 }

 /**
 * Set the name of the group
 * @param String $name
 * @return void
 */
 public function setName($name)
 {
 $this->name = $name;
 }

 /**
 * Set the description of the group
 * @param String $description the description
 * @return void
 */
 public function setDescription($description)
 {
 $this->description = $description;
 }

 /**
 * Set the creator of the group
 * @param int $creator
 * @return void
 */
 public function setCreator($creator)
 {
 $this->creator = $creator;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[319]

When setting the type of the group, it is validated against an array of available
group types.

 /**
 * Set the type of the group
 * @param String $type
 * @return void
 */
 public function setType($type)
 {
 if(in_array($type, $this->types))
 {
 $this->type = $type;
 }
 }

 /**
 * Save the group
 * @return void
 */
 public function save()
 {
 if($this->id > 0)
 {
 $update = array();
 $update['description'] = $this->description;
 $update['name'] = $this->name;
 $update['type'] = $this->type;
 $update['creator'] = $this->creator;
 $update['active'] = $this->active;
 $update['created'] = $this->created;
 $this->registry->getObject('db')->updateRecords('groups',
 $update, 'ID=' . $this->id);
 }
 else
 {
 $insert = array();
 $insert['description'] = $this->description;
 $insert['name'] = $this->name;
 $insert['type'] = $this->type;
 $insert['creator'] = $this->creator;
 $insert['active'] = $this->active;
 $this->registry->getObject('db')->insertRecords('groups',
 $insert);
 $this->id = $this->registry->getObject('db')->lastInsertID();
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[320]

With the above code, we can easily populate our group page with topics related to it.
We also have a method to cache a suitable query and return the cache.

 /**
 * Get a list of topics assigned to this group (we could paginate
 this if we wanted to later)
 * @return int (database cache)
 */
 public function getTopics()
 {
 $sql = "SELECT t.*, (SELECT COUNT(*) FROM posts po WHERE
 po.topic=t.ID) as posts, DATE_FORMAT(t.created, '%D %M %Y')
 as created_friendly, p.name as creator_name FROM topics t,
 profile p WHERE p.user_id=t.creator AND t.group=" .
 $this->id . " ORDER BY t.ID DESC";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 return $cache;
 }

 /**
 * Get the ID of the group
 */
 public function getID()
 {
 return $this->id;
 }

 /**
 * Convert the group data to template tags
 * @param String $prefix prefix for the template tags
 * @return void
 */
 public function toTags($prefix='')
 {
 foreach($this as $field => $data)
 {
 if(! is_object($data) && ! is_array($data))
 {
 $this->registry->getObject('template')->getPage()->addTag(
 $prefix.$field, $data);
 }
 }
 }
}
?>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[321]

Creating a group
With our model in place, we now need to work on our group's controller, firstly to
facilitate the creation of new groups. We will shortly also create a group controller,
for viewing a group and performing tasks within a group.

Controller
Since we are creating a new controller (controllers/groups/controller.php),
we need to put some skeleton code in there, in addition to our create group code.
We need a constructor that detects if the user is logged in, and if they are not, reverts
to displaying a list of public groups. If the user is logged in, the default still lists
public groups, but they can also create a group (and shortly, also search groups).

The highlighted section of code shows how the group is created:

<?php
class Groupscontroller {

 /**
 * Controller constructor - direct call to false when being
 embedded via another controller
 * @param Registry $registry our registry
 * @param bool $directCall - are we calling it directly via the
 framework (true), or via another controller (false)
 */
 public function __construct(Registry $registry, $directCall)
 {
 $this->registry = $registry;
 $urlBits = $this->registry->getObject('url')->getURLBits();

 if($this->registry->getObject('authenticate')->isLoggedIn())
 {
 if(isset($urlBits[1]))
 {
 switch($urlBits[1])
 {
 case 'create':
 $this->createGroup();
 break;
 default:
 $this->listPublicGroups(0);
 break;
 }
 }
 else
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[322]

 $this->listPublicGroups(0);
 }
 }
 else
 {
 if(isset($urlBits[1]))
 {
 $this->listPublicGroups(intval($urlBits[1]));
 }
 else
 {
 $this->listPublicGroups(0);
 }
 }
 }

 /**
 * Create a new group
 * @return void
 */
 private function createGroup()
 {
 if(isset($_POST) && is_array($_POST) && count($_POST) > 0
)
 {
 require_once(FRAMEWORK_PATH . 'models/group.php');
 $group = new Group($this->registry, 0);
 $group->setCreator($this->registry->getObject('authenticate')-
 >getUser()->getUserID());
 $group->setName($this->registry->getObject('db')-
 >sanitizeData($_POST['name']));
 $group->setDescription($this->registry->getObject('db')-
 >sanitizeData($_POST['description']));
 $group->setType($_POST['type']);
 $group->save();
 $this->registry->errorPage('Group created', 'Thank you, your
 new group has been created');
 }
 else
 {
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'groups/create.tpl.php', 'footer.tpl.php');
 }
 }
}
?>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[323]

View
The template for creating a group (views/default/templates/groups/create.
tpl.php) is simply a form, with a text box for name and description and a
drop-down list of types.

 <div id="main">

 <div id="rightside">
 </div>

 <div id="content">
 <h1>Create a new group</h1>
 <form action="groups/create" method="post">
 <label for="name">Name</label>

 <input type="text" id="name" name="name" value="" />

 <label for="description">Description</label>

 <textarea id="description"
 name="description"></textarea>

 <label for="type">Type</label>

 <select id="type" name="type">
 <option value="public">Public Group</option>
 <option value="private">Private Group</option>
 <option value="private-member-invite">Private (Invite
 Only) Group</option>
 <option value="private-self-invite">Private (Self-Invite)
 Group</option>
 </select>

 <input type="submit" id="create" name="create"
 value="Create group" />
 </form>
 </div>

 </div>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[324]

Creating a group—in action
If we navigate to groups/create, we see the create group form and are able
to successfully create a new group.

Viewing a group
For us to view a group (and also participate in a group), we will need:

•	 A controller for the group
•	 A way of maintaining membership lists for groups, including:

	° A database table
	° A model

•	 A way of determining if a user is either a member of a group or the creator,
and thus has permission to view the group

Membership
Maintaining a list of memberships is important so we know that a user can view
a group, and more importantly, we know if a user is a member of a group, not a
member of a group, or if they have requested to join or have been invited to join.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[325]

The following database structure would be a suitable group_memberships table for
our site:

Field Type Description
ID Integer, PK, Auto-increment Internal reference for the membership
Group Integer The ID of the group
User Integer The ID of the user
Approved Boolean Indicates if the user's membership has

been approved
Invited Boolean Indicates if the user has been invited

to join
Requested Boolean Indicates if the user has requested to

join
InvitedDate Timestamp Date the user was invited
RequestedDate Timestamp Date the user requested to join
JoinDate Timestamp Date the user joined
Inviter Integer The user who invited the user

Membership model
We also need a model (models/groupmembership.php) to represent a user's
membership, pending membership, or lack of membership of a group. This model
will be used to create memberships, create requests to join a group, and to create
invites to a group. It will also be used to determine if a user has access to a group.

<?php
/**
 * Group membership model
 */
class Groupmembership{

Our model starts with our class variables, including a reference to the registry
object itself, and the properties related to an individual's membership of a group.

 /**
 * ID of the membership record
 */
 private $id;

 /**
 * ID of the user
 */
 private $user;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[326]

 /**
 * ID of the group
 */
 private $group;

 /**
 * Indicates if the membership is active / approved
 */
 private $approved = 0;

 /**
 * Indicates if the user was invited
 */
 private $invited;

 /**
 * Indicates if the user has requested to join
 */
 private $requested;

 /**
 * Date user was invited to join
 */
 private $invitedDate;

 /**
 * Date user requested to join
 */
 private $requestedDate;

 /**
 * Join date
 */
 private $joinDate;

 /**
 * User who invited the user to join the group
 */
 private $inviter;

The constructor takes the registry object and an optional ID as a parameter. If the
ID is passed, it queries the database, and if records are found, it assigns the relevant
fields to the class variables.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[327]

 /**
 * Constructor
 * @param Registry $registry
 * @param int $id
 * @return void
 */
 public function __construct(Registry $registry, $id=0)
 {
 $this->registry = $registry;
 if($id > 0)
 {
 $sql = "SELECT * FROM group_membership WHERE ID={$id} LIMIT 1";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 $this->approved = $data['approved'];
 $this->invited = $data['invited'];
 $this->requested = $data['requested'];
 $this->invitedDate = $data['invited_date'];
 $this->requestedDate = $data['requested_date'];
 $this->joinDate = $data['join_date'];
 $this->inviter = $data['inviter'];
 }
 }
 else
 {
 $this->id = 0;
 }
 }

If part of our code needs to look up a user's group membership but doesn't know
the ID of the membership, we can instead call the following method, passing the
user ID and group ID as parameters. The method will populate the class variables
with results from the query:

 /**
 * Get membership information by user and group
 * @param int $user
 * @param int $group
 * @return void
 */
 public function getByUserAndGroup($user, $group)
 {
 $this->user = $user;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[328]

 $this->group = $group;
 $sql = "SELECT * FROM group_membership WHERE user={$user} AND
 `group`={$group} LIMIT 1";
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $data = $this->registry->getObject('db')->getRows();
 $this->approved = $data['approved'];
 $this->invited = $data['invited'];
 $this->requested = $data['requested'];
 }
 }

We have some of our standard getter methods to return some of the private
properties to other objects within the framework.

 /**
 * Get if the membership is approved
 * @return boolean
 */
 public function getApproved()
 {
 return $this->approved;
 }

 /**
 * Get if the user was invited
 * @return boolean
 */
 public function getInvited()
 {
 return $this->invited;
 }

 /**
 * Get if the user requested to join
 * @return boolean
 */
 public function getRequested()
 {
 return $this->requested;
 }

 /**
 * Get the user who invited this user to the group
 * @return int
 */

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[329]

 public function getInviter()
 {
 return $this->inviter;
 }

Next, we have our setter methods, which set the relevant private properties
of the class.

 /**
 * Set membership to approved
 * @param boolean $approved
 * @return void
 */
 public function setApproved($approved)
 {
 $this->approved = $approved;
 }

 /**
 * Set membership status to requested
 * @param boolean $requested
 * @return void
 */
 public function setRequested($requested)
 {
 $this->requested = $requested;
 }

 /**
 * Set if the user was invited
 * @param boolean $invited
 * @return void
 */
 public function setInvited($invited)
 {
 $this->invited = $invited;
 }

 /**
 * Set the inviter
 * @param int $inviter
 * @return void
 */
 public function setInviter($inviter)
 {
 $this->inviter = $inviter;
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[330]

Finally, we have our save method, which either creates a new record in the database,
or updates an existing one.

 /**
 * Save the membership record
 * @return void
 */
 public function save()
 {
 if($this->id > 0)
 {
 $update = array();
 $update['user'] = $this->user;
 $update['group'] = $this->group;
 $update['approved'] = $this->approved;
 $update['requested'] = $this->requested;
 $update['invited'] = $this->invited;
 $update['invited_date'] = $this->invitedDate;
 $update['requested_date'] = $this->requestedDate;
 $update['join_date'] = $this->joinDate;
 $update['inviter'] = $this->inviter;
 $this->registry->getObject('db')->updateRecords(
 'group_memberships', $update, 'ID=' . $this->id);
 }
 else
 {
 $insert = array();
 $insert['user'] = $this->user;
 $insert['group'] = $this->group;
 $insert['approved'] = $this->approved;
 $insert['requested'] = $this->requested;
 $insert['invited'] = $this->invited;
 $insert['invited_date'] = $this->invitedDate;
 $insert['requested_date'] = $this->requestedDate;
 $insert['join_date'] = $this->joinDate;
 $insert['inviter'] = $this->inviter;
 $this->registry->getObject('db')->insertRecords(
 'group_memberships', $insert);
 $this->id = $this->registry->getObject('db')->lastInsertID();
 }
 }
}
?>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[331]

Controller
Our group controller (controllers/group/controller.php) needs to do a fair bit
of logic to work out what it should do, even if the request is simply to view a group,
as we want to do now.

<?php
class Groupcontroller {

 /**
 * Controller constructor - direct call to false when being
 embedded via another controller
 * @param Registry $registry our registry
 * @param bool $directCall - are we calling it directly via the
 framework (true), or via another controller (false)
 */
 public function __construct(Registry $registry, $directCall)
 {
 $this->registry = $registry;
 $urlBits = $this->registry->getObject('url')->getURLBits();

Firstly, the controller checks that the current user is logged in.

 if($this->registry->getObject('authenticate')->isLoggedIn())
 {

Secondly, the controller checks that there is at least one bit in the URL. The first bit of
the URL should be the group ID.

 if(isset($urlBits[1]))
 {`

The group model is then included and instantiated, to determine if the requested
group is valid / active.

 require_once(FRAMEWORK_PATH . 'models/group.php');
 $this->group = new Group($this->registry, intval(
 $urlBits[1]));
 $this->groupID = intval($urlBits[1]);
 if($this->group->isValid() && $this->group->isActive())
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[332]

If the group is active, the next stage is to check that the currently logged in user is
either the creator of the group, or is a member of the group.

 require_once(FRAMEWORK_PATH .
 'models/groupmembership.php');
 $gm = new Groupmembership($this->registry);
 $user = $this->registry->getObject('authenticate')-
 >getUser()->getUserID();
 $gm->getByUserAndGroup($user, $this->groupID);
 if($this->group->getCreator() == $user || $gm-
 >getApproved())
 {

If the currently logged in user is a member of the group, or its creator, then the
controller looks up the full details of the user's request, and passes control to the
appropriate method.

 if(isset($urlBits[2]))
 {
 switch($urlBits[2])
 {
 case 'create-topic':
 $this->createTopic();
 break;
 case 'view-topic':
 $this->viewTopic(intval($urlBits[3]));
 break;
 case 'reply-to-topic':
 $this->replyToTopic(intval($urlBits[3]));
 break;
 case 'membership':
 $this->manageMembership(intval($urlBits[3]));
 break;
 default:
 $this->viewGroup();
 break;
 }
 }
 else
 {
 $this->viewGroup();
 }
 }
 else
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[333]

If the user isn't a member of the group, control is passed to a secondary controller
(we will create it shortly) which, if appropriate, will provide a mechanism for the
user to join the group.

 require_once(FRAMEWORK_PATH .
 'controllers/group/membership.php');
 $membership = new Membershipcontroller($this->registry,
 $this->groupID);
 $membership->join();
 }
 }
 else
 {
 $this->registry->errorPage('Group not found', 'Sorry, the
 group you requested was not found');
 }
 }
 else
 {
 $this->registry->errorPage('Group not found', 'Sorry, the
 group you requested was not found');
 }
 }
 else
 {
 $this->registry->errorPage('Please login', 'Sorry, you must be
 logged in to view groups');
 }
 }

If the user's request was to view a group, then the group model data is sent to the
template engine, the template is built, and the cache of topics from the group is
generated and also sent to the template engine.

 private function viewGroup()
 {
 $this->group->toTags('group_');
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'groups/view.tpl.php', 'footer.tpl.php');
 $cache = $this->group->getTopics();
 $this->registry->getObject('template')->getPage()->addTag(
 'topics', array('SQL', $cache));
 }

 private function viewTopic($topic)
 {

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[334]

 // next part of this chapter
 }

 private function replyToTopic($topic)
 {
 // next part of this chapter
 }

 private function manageMembership()
 {
 if($group->getCreator() == $this->registry-
 >getObject('authenticate')->getUser()->getUserID())
 {
 require_once(FRAMEWORK_PATH .
 'controllers/group/membership.php');
 $membership = new Membershipcontroller($this->registry, $this-
 >groupID);
 $membership->manage();
 }
 else
 {
 $this->registry->errorPage('Permission denied', 'Only the
 gorup creator can manage membership');
 }
 }
}
?>

View
The template (views/default/templates/groups/view.tpl.php) for viewing a
group is fairly straightforward, containing some information on the group and the
topics within it.

 <div id="main">

 <div id="rightside">

 Create new
 topic

 </div>

 <div id="content">
 <h1>{group_name}</h1>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[335]

 <p>{group_description}</p>
 <h2>Topics</h2>
 <table>
 <tr>
 <th>Topic</th><th>Creator</th>
 <th>Created</th><th>Posts</th>
 </tr>
 <!-- START topics -->
 <tr>
 <td><a href="group/{group_id}/view-
 topic/{ID}">{name}</td><td>{creator_name}</td>
 <td>{created_friendly}</td><td>{posts}</td>
 </tr>
 <!-- END topics -->
 </table>
 </div>

 </div>

In action
Let's take a look at viewing a group in action (group/1/):

We have our group information displayed, with the topics listed underneath.

Discussing within a group
Now that we can create and view groups, we need to integrate the discussion
features which will be facilitated thanks to our topic and post models.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[336]

Group controller additions
Most of this functionality can be added in by adding suitable code to our
group controller.

Creating a topic
To create a topic, we simply add the following method to the controller:

/**
 * Create a new topic within the group
 * @return void
 */
 private function createTopic()
 {
 if(isset($_POST) && is_array($_POST) && count($_POST) >
 0)
 {
 require_once(FRAMEWORK_PATH . 'models/topic.php');
 $topic = new Topic($this->registry, 0);
 $topic->includeFirstPost(true);
 $user = $this->registry->getObject('authenticate')->getUser()-
 >getUserID();
 $topic->setCreator($user);
 $topic->setGroup($this->groupID);
 $topic->setName($this->registry->getObject('db')-
 >sanitizeData($_POST['name']));
 $topic->getFirstPost()->setCreator($user);
 $topic->getFirstPost()->setPost($this->registry-
 >getObject('db')->sanitizeData($_POST['name']));
 $topic->save();
 $this->registry->redirectUser($this->registry->buildURL(array(
 'group', $this->groupID), '', false), 'Topic created',
 'Thanks, the topic has been created', false);
 }
 else
 {
 $this->group->toTags('group_');
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'groups/create-topic.tpl.php',
 'footer.tpl.php');
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[337]

Viewing a topic
To view a topic, we simply add the following method to our controller:

/**
 * View a topic within the group
 * @return void
 */
 private function viewTopic($topic)
 {
 $this->group->toTags('group_');
 require_once(FRAMEWORK_PATH . 'models/topic.php');
 $topic = new Topic($this->registry, $topic);
 if($topic->getGroup() == $this->groupID)
 {
 $topic->toTags('topic_');
 $sql = $topic->getPostsQuery();
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 $this->registry->getObject('template')->getPage()-
 >addTag('posts', array('SQL', $cache));
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'groups/view-topic.tpl.php',
 'footer.tpl.php');
 }
 else
 {
 $this->registry->errorPage('Invalid topic', 'Sorry, you tried
 to view an invalid topic');
 }
 }

Replying to a topic
To reply to a topic we simply add the following method to our controller:

/**
 * Reply to a topic within a group
 * @param int $topic
 * @return void
 */
 private function replyToTopic($topici)
 {
 $this->group->toTags('group_');
 require_once(FRAMEWORK_PATH . 'models/topic.php');
 $topic = new Topic($this->registry, $topici);
 if($topic->getGroup() == $this->groupID)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[338]

 {
 require_once(FRAMEWORK_PATH . 'models/post.php');
 $post = new Post($this->registry, 0);
 $user = $this->registry->getObject('authenticate')->getUser()-
 >getUserID();
 $post->setPost($this->registry->getObject('db')->sanitizeData(
 $_POST['post']));
 $post->setCreator($user);
 $post->setTopic($topici);
 $post->save();
 $this->registry->redirectUser($this->registry->buildURL(array(
 'group', $this->groupID, 'view-topic', $topici), '',
 false), 'Reply saved', 'Thanks, the topic topic reply has
 been saved', false);
 }
 else
 {
 $this->registry->errorPage('Invalid topic', 'Sorry, you tried
 to view an invalid topic');
 }
 }

View
For each of the three methods we have created, we now need to create template files
for them (only two, as reply and view use the same template).

Creating a topic
This template file (Views/default/templates/groups/create-topic.tpl.php) is
simply a form with fields for the name of the topic and the contents of the first post.

 <div id="main">

 <div id="rightside">

 {group_name}

 </div>

 <div id="content">
 <h1>Create a new topic</h1>
 <form action="group/{group_id}/create-topic" method="post">
 <label for="name">Topic Name</label>

 <input type="text" id="name" name="name" value="" />

 <label for="post">First Post</label>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[339]

 <textarea id="post" name="post"></textarea>

 <input type="submit" id="create" name="create"
 value="Create topic" />
 </form>
 </div>

 </div>

Viewing a topic
This template file (Views/default/templates/groups/view-topic.tpl.php)
simply contains a loop of template tags representing the posts within the topic, as
well as information on the topic itself.

 <div id="main">

 <div id="rightside">

 {group_name}
 Create
 topic

 </div>

 <div id="content">
 <h1>{topic_name}</h1>
 <!-- START posts -->
 <p>{post}</p>
 <p>Posted by {creator_friendly_post} on
 {friendly_created_post}</p>
 <hr />
 <!-- END posts -->
 <h2>Reply to this topic</h2>
 <form action="group/{group_id}/reply-to-topic/{topic_id}"
 method="post">
 <textarea id="post" name="post">
 </textarea>
 <input type="submit" id="np" name="np" value="Reply" />
 </form>
 </div>

 </div>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[340]

Discussion in action—viewing a topic
Let's now take a look at viewing a topic from within one of our
newly-created groups.

Joining a group
Now that our users can create groups, view groups, and communicate within
groups, we need to provide users the ability to join groups, request admission to
groups, or allow group members to send out invitations to join a group.

In this chapter we will simply look at members joining public groups. Feel free
to extend this to meet the needs of your social network, and similarly include
membership management options.

Joining (public) groups
Our group controller automatically passes control to a secondary controller if the
user was not a member of the group, or was not the group's creator. This secondary
controller can detect the type of group, and then display information regarding
joining, or in the case of public groups, automatically sign them up.

This secondary controller is controllers/group/membership.php.

<?php
class Membershipcontroller {
 private $registry;

 private $groupID;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[341]

 private $group;

 public function __construct(Registry $registry, $groupID)
 {
 $this->registry = $registry;
 $this->groupID = $groupID;
 require_once(FRAMEWORK_PATH . 'models/group.php');
 $this->group = new Group($this->registry, $this->groupID);
 }

 public function join()
 {
 $type = $this->group->getType();
 switch($type)
 {
 case 'public':
 $this->autoJoinGroup();
 break;
 }
 }

 private function autoJoinGroup()
 {
 require_once(FRAMEWORK_PATH . 'models/groupmembership.php');
 $gm = new Groupmembership($this->registry, 0);
 $user = $this->registry->getObject('authenticate')->getUser()-
 >getUserID();
 $gm->getByUserAndGroup($user, $this->groupID);
 if($gm->isValid())
 {
 $gm = new Groupmembership($this->registry, $gm->getID());
 }
 $gm->setApproved(1);
 $gm->save();
 $this->registry->errorPage('New membership', 'Thanks, you have
 now joined the group');
 }
}
?>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[342]

Groups
Now that we have functionality for groups in place, we need a facility to allow our
users to be able to find and join groups. After all, if users can't find groups then there
isn't much point in them being there. This can be enabled through two methods:

•	 Listing groups (where they are public)
•	 Searching groups (again, where they are public)

To facilitate this, we will need a new model and a new controller: groups. This will
manage the listing and searching of groups.

Listing groups
Let's look at how we can list public groups, and also list our own group
memberships to make it possible to find groups and easily access groups
we are members of.

Group controller addition
We need to complete a method we referenced earlier in the chapter, to list public
groups. As it takes an offset as a parameter, it should build a paginated list of
public groups.

private function listPublicGroups($offset)
 {
 $sql = "SELECT * FROM groups WHERE active=1 AND type <>
 'private' ";
 require_once(FRAMEWORK_PATH .
 'lib/pagination/pagination.class.php');
 $pagination = new Pagination($this->registry);
 $pagination->setQuery($sql);
 $pagination->setOffset($offset);
 $pagination->setLimit(20);
 $pagination->setMethod('cache');
 $pagination->generatePagination();
 if($pagination->getNumRowsPage() == 0)
 {
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'groups/no-public.tpl.php',
 'footer.tpl.php');
 }
 else
 {
 $this->registry->getObject('template')->buildFromTemplates(

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[343]

 'header.tpl.php', 'groups/public.tpl.php',
 'footer.tpl.php');
 $this->registry->getObject('template')->getPage()->addTag(
 'groups', array('SQL', $pagination->getCache()));
 $this->registry->getObject('template')->getPage()->addTag(
 'page_number', $pagination->getCurrentPage());
 $this->registry->getObject('template')->getPage()->addTag(
 'num_pages', $pagination->getNumPages());
 if($pagination->isFirst())
 {
 $this->registry->getObject('template')->getPage()->addTag(
 'first', '');
 $this->registry->getObject('template')->getPage()->addTag(
 'previous', '');
 }
 else
 {
 $this->registry->getObject('template')->getPage()->addTag(
 'first', "First page");
 $this->registry->getObject('template')->getPage()->addTag(
 'previous', "<a href='groups/" . ($pagination-
 >getCurrentPage() - 2) . "'>Previous page");
 }
 if($pagination->isLast())
 {
 $this->registry->getObject('template')->getPage()->addTag(
 'next', '');
 $this->registry->getObject('template')->getPage()->addTag(
 'last', '');
 }
 else
 {
 $this->registry->getObject('template')->getPage()->addTag(
 'first', "getCurrentPage()
 . "'>Next page");
 $this->registry->getObject('template')->getPage()->addTag(
 'previous', "<a href='groups/" . ($pagination-
 >getNumPages() - 1) . "'>Last page");
 }
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[344]

Template
The template file for this list is views/default/templates/groups/public.tpl.
php.

 <div id="main">

 <div id="rightside">

 Create a new group

 </div>

 <div id="content">
 <h1>Public groups</h1>
 <!-- START groups -->
 <h2>{name}</h2>
 <p>{description}</p>
 <hr />
 <!-- END groups -->
 {first}{previous}{next}{last}
 </div>
 </div>

In action
Let's look at the group's listing in action (/groups).

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 10

[345]

My groups
We now need an area in our social network where users can view groups which they
are members of, so that they can quickly go into their groups.

Addition to the group's controller
Our final addition to the group's controller is a method listing our group
memberships, either where we are a member (via the sub-query) or where we
created the group.

private function listMyGroups()
 {
 $user = $this->registry->getObject('authenticate')->getUser()-
 >getUserID();
 $sql = "SELECT * FROM groups WHERE creator={$user} OR ID IN
 (SELECT m.group FROM group_membership m WHERE m.user={$user}
 and m.approved=1) ";
 $cache = $this->registry->getObject('db')->cacheQuery($sql);
 $this->registry->getObject('template')->getPage()->addTag(
 'my-groups', array('SQL', $cache));
 $this->registry->getObject('template')->buildFromTemplates(
 'header.tpl.php', 'groups/mine.tpl.php', 'footer.tpl.php');
 }

Template file
The template file (Views/default/templates/groups/mine.tpl.php) simply
contains a template loop of group names, descriptions, and links to the group itself.

 <div id="main">

 <div id="rightside">

 Create a new group

 </div>

 <div id="content">
 <h1>My groups</h1>
 <!-- START my-groups -->
 <h2>{name}</h2>
 <p>{description}</p>
 <hr />
 <!-- END my-groups -->
 </div>
 </div>

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Groups

[346]

In action
Let's take a look at this in action.

Summary
In this chapter, we have created a groups system that allows users of our social
network to create either private or public sections for a sub-set of users to collaborate
and communicate within on a number of different issues. We looked at permissions
and features available to the creator of the group, as well as the ways in which other
members could join the group, either by making them public, private, or private
except for member's invitees.

With the final of our user-facing features in place on Dino Space, we can now create
an API to allow other services and developers to interact with our social network,
and the wealth of features it has to offer.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API
In order to extend and enhance social networks, most of them provide a suite of APIs
that provide developers access to some of the functionality behind the site. We will
create our own API to allow developers to interact with Dino Space.

In this chapter you will learn:

•	 What an API is
•	 What other social networks expose through their APIs
•	 What we should expose through our API, and who we should expose it to
•	 Methods of creating APIs
•	 How to develop a RESTful API
•	 How to deal with authentication through the API
•	 About the implications of creating an Applications API

Let's get started and add an API to our social network!

What is an API and why should we create
one?
An Application Programming Interface (API) is an interface that allows developers
and other applications to interact with the application, exposing data and facilitating
certain operations (such as create, edit, and delete) on data.

By providing an API, we offer a number of benefits to our users:

•	 Reducing their concerns about "Vendor lock in"—if, for whatever reason,
they choose to leave Dino Space for a competitor, the API provides access
to their data

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[348]

•	 Other developers and websites can enhance what we offer by extending
our functionality or providing additional benefits to our users on their sites

•	 If we develop an application framework API, we could even allow
third-party developers to directly extend what is available on our site

APIs in social networks
Let's take a look at what APIs other social networks offer developers, and what
they do.

Facebook
Facebook provides a range of APIs to allow different types of applications to interact
with their platform. This includes:

•	 Website Integration: Integrating Facebook with your own website, including
authentication, Single Sign-On, liking external content, and displaying
Facebook network information within a page

•	 Mobile Integration: Incorporating Facebook into mobile applications
•	 Facebook Applications: Extending the functionality of Facebook by

developing third-party applications, which operate from within the
Facebook site

The range offered by Facebook is used not only to enhance what is available on
the Facebook site, but also by integrating Facebook across other websites, it helps
increase its popularity, almost making it an essential tool to get the best experience
out of other websites that make use of its website integration APIs.

More information is available on the Facebook developer's site:
http://developers.facebook.com/docs/.

MySpace
With a similar API offering to Facebook, MySpace provides APIs to:

•	 Develop games and applications for integration within MySpace using
the Games and Apps APIs

•	 Allow MySpace users to log in to your website using the MySpace ID APIs
•	 Share third-party content with their MySpace network using the Share on

MySpace APIs

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[349]

•	 Integrate with the stream with the Real Time Stream API

More information can be obtained from the MySpace developer website:
http://developer.myspace.com/wordpress/.

OpenSocial
While not technically a social network, this is a suite of APIs used on a number
of different social networks.

Google, MySpace, and a number of other social networks worked together to
develop OpenSocial (http://www.opensocial.org/), a collection of common
APIs for use on social networking sites. The idea behind it was to make it easier for
developers to create applications for many social networks, with them only having
to develop with one API. It also provides an easy way for social networks to allow
developers to interact with their sites.

Sites which support third-party applications written using the OpenSocial API
are called OpenSocial Containers. More information about developing containers
is available on the OpenSocial website: http://www.opensocial.org/page/
building-an-opensocial.

Some planning
Before we can start implementing this feature, we need to think about what
information it needs to be able to return, access, view, edit, and delete. We also
need to think about who can do what with the API, as well as how we will
structure the API.

What should it do, and who should be able to
do what?
Let's look at the main areas of functionality within Dino Space, and list the
operations within that we may wish to open up to our API. Depending
on the operation, it may be restricted either by:

•	 User: The user themselves—editing data they themselves created
•	 Users: Any users within the site

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[350]

•	 Connections: Connections of the user the data relates to

Area of Dino
Space

Feature Description Who

Profiles List List user profiles Users
View View details of a specific user's profile Connections
Search Search for user profiles Users
Edit Edit your own user profile User

Statuses List List the statuses of your connections Connections
Create Create a new status User

Stream List List the stream from your network User
Relationships List List relationships from your

connections
Connections

Create Create a new connection with another
user

User

Delete Delete a connection with another user User
Events List List events within your network User

View View details of a specific event User
Edit Edit the details of an event you

created
User

Create Create a new event User
Attend Change your attendance status on an

event
User

Groups List List groups you are a member of, or
all public groups

Users

View Get details about a specific group Users
Join Join a group Users

Messages List List your inbox messages User
View View a message User
Create Create a new message Connections
Reply Reply to a message User
Delete Delete a message User

How should it work?
Now that we have an idea of what information and which features we would like to
expose to our API, we need to think about how it can work; in particular, what sort
of architecture or standard should we use when developing our API.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[351]

How could it work?
There are three commonly-used methods for an API to work:

•	 REST: Representational State Transfer
•	 RPC: Remote Procedure Call
•	 SOAP: Simple Object Access Protocol

Let's look into what these are.

REST
Representational State Transfer (REST) is an architectural style, when used in an
HTTP application; it utilizes existing HTTP features (URIs, response codes, and
request methods—GET, POST, PUT, and DELETE) to work out what the API user
(consumer) is trying to do.

REST: The quick pitch
David Megginson has posted a useful definition and overview about
REST on his blog: http://quoderat.megginson.com/2007/02/15/
rest-the-quick-pitch/.

RPC / RMI
Remote Procedure Call (RPC) or Remote Method Invocation (RMI) is a way of
remotely executing specific functions (or methods) on a remote server. This generally
works by the client application calling a stub, a local version of the method accepting
appropriate parameters. The stub then calls the server's version of this method and
the response is then passed to the local stub, and back to the caller of the stub.

There is a library available for the PHP implementation of XML-RPC:
http://phpxmlrpc.sourceforge.net/.

SOAP
Simple Object Access Protocol (SOAP) is a stateless, one-way message exchange
system that uses XML to transfer data between the client and server, confirming to
certain specifications. A brief tutorial on using SOAP with PHP is available on the
Apple developer website: http://developer.apple.com/internet/webservices/
soapphp.html.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[352]

Let's go with REST
REST is now a very popular API architecture, with most social networks providing
REST-based APIs. The way RESTful APIs rely on descriptive URIs for providing access
to data makes them very easy for consumers to utilize, as the URIs provide information
on what the request does, and what data it will return. Some implementations, such
as the Twitter API even make it possible to change the format of the data returned,
simply by changing a part of the URI.

Requests
Requests to a RESTful API use HTTP verbs to describe what the consumer is trying
to do. The API requests are made to specific URIs, which define the resource that the
consumer is trying to perform the action (determined by the verbs) upon.

HTTP verbs
The HTTP verbs and their usage are described as follows:

Verb Description
GET Retrieve information
POST Create records
PUT Update records
DELETE Delete records

Resources
RESTful APIs relate URIs to resources. Below are some examples:

•	 http://ourdomain.com/profiles: To list or create profiles
•	 http://ourdomain.com/profiles/1: A specific user's profile

Our RESTful API will be based within an API controller, thus
prefixing all URLs with api/, which goes slightly against the REST
concept of a resource.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[353]

Resources and verbs—the requests
Let's look at how resources and verbs combined result in API requests.

API operation HTTP verb Resource
Creating a user POST http://ourdomain.com/api/profiles

Listing users GET http://ourdomain.com/api/profiles

Viewing a user's profile GET http://ourdomain.com/api/profiles/1

Updating a profile PUT http://ourdomain.com/api/profiles/1

Deleting a profile DELETE http://ourdomain.com/api/profiles/1

In the above resources, the number 1 represents the
ID of a user's profile.

Responses
The response to an API request is generally made up of two parts. The first part
of the response is the HTTP header containing an appropriate status code. Some
examples of HTTP status codes are below:

HTTP status code Meaning
200 OK
201 Created
400 Bad request
404 Not found

Within PHP, HTTP status codes are set as follows:

header("HTTP/1.0 404 Not Found");

The second part of the response is the data itself; for instance, if the API request was
for a list of users, the response would be the list of users. Commonly, response data
is sent as XML or JSON. Some APIs allow the consumer to request the format of the
response by supplying the format to the API. We are going to use JSON. If we have
an array of data that we want to return as JSON, we simply do the following:

echo json_encode($users_list_array);
exit();

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[354]

Further reading
There are numerous resources available regarding web services and REST.
Following are the resources you may find particularly useful.

RESTful PHP Web Services
Packt has a book dedicated to creating RESTful APIs in PHP—RESTful PHP Web
Services, by Samisa Abeysinghe, https://www.packtpub.com/restful-php-web-
services/book. This book details the concepts of a REST architecture, how
to make use of existing RESTful APIs in your framework, how to create a RESTful
API for other applications to interact with, as well as debugging information and
case studies.

Conference talks
Lorna Jane Mitchell (http://www.lornajane.net), a widely-respected developer
and conference speaker on PHP-related topics, has recently spoken at a number
of conferences on the subject of web service design. Slides from related talks are
available online: http://www.slideshare.net/lornajane/best-practices-in-
web-service-design, http://www.slideshare.net/lornajane/php-and-web-
services-perfect-partners.

Implementation
Now that we know what sort of API we are going to develop, we can move onto the
implementation. In this chapter we will only implement a small sub-set of the API's
functionality. Feel free to extend this to match the entire functionality of Dino Space,
if you wish.

Data format
Most commonly, RESTful APIs either return their data in XML format or as JSON.
Some APIs allow the consumer to specify the return type by adding .xml or .json
to the end of the URL. For the purposes of our implementation, let's stick to JSON,
as it is simpler to convert data to JSON (simply by passing the data to the
json_encode function).

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[355]

API controller
Our API controller itself won't do very much; instead it will pass control to
delegate controllers, which contain logic specific to the various sections of
the site.

<?php
/**
 * API Controller
 */
class Apicontroller{

To indicate which files are available for control to be delegated to, we should
maintain an array of allowable API controllers. For our work in this chapter,
we will create the profiles delegate.

 /**
 * Allowable API Controllers, for control to be delegated to
 */
 private $allowableAPIControllers = array('profiles');

 /**
 * Request data
 */
 private $requestData = array();

The object's constructor simply sets the registry object, gets the value of the API
delegate that should be used, and calls the delegator method (delegateControl).

 /**
 * API Controller Constructor
 * @param Registry $registry the registry
 * @param boolean $directCall
 * @return void
 */
 public function __construct(Registry $registry, $directCall=true)
 {
 $this->registry = $registry;
 $apiController = $registry->getObject('url')->getURLBit(1);
 $this->delegateControl($apiController);
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[356]

The delegateControl method checks that the delegate controller is within the
allowed delegates. If it is, then it includes the appropriate controller, instantiates
it, and passes the registry and the API controller object to it. There are a number of
methods that will be common to all API delegates. These methods are stored in this
object, and called by the delegate referencing this object. If the requested controller
is not allowable, then we generate an appropriate HTTP status code; in this case:
404 Not Found.

 /**
 * Pass control to a delegate
 * @param String $apiController the delegate
 * @return void
 */
 private function delegateControl($apiController)
 {
 if($apiController != '' && in_array($apiController,
 $this->allowableAPIControllers))
 {
 require_once(FRAMEWORK_PATH . 'controllers/api/' .
 $apiController . '.php');
 $api = new APIDelegate($this->registry, $this);
 }
 else
 {
 header('HTTP/1.0 404 Not Found');
 exit();
 }
 }

A shared method is required by our delegates. This is called if a delegate requires the
API user to be an authenticated user on the site. It generates a basic authentication
prompt (this is presented to users viewing the site in their browsers, but for API
users the username and password are passed as part of the HTTP request).

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[357]

Alternatives to basic authentication
Basic authentication isn't the best option in terms of security, especially
if many websites begin offering services utilizing our API. Our users'
passwords could be stored (with their permission) within these websites,
putting reliance on the integrity and security of those sites and their
owners. An alternative is OAuth, where the API provider deals with the
authentication, and provides consumers with an API key for their users. If
a user then wishes to stop a third-party service utilizing their account via
the API, they can simply revoke access. We will discuss this option more
in the security section of this chapter.

If the authentication fails, then the 401 Unauthorized status code is issued.

 /**
 * Request authentication for access to API methods, called by
 delegates
 * @return void
 */
 public function requireAuthentication()
 {
 if(!isset($_SERVER['PHP_AUTH_USER']))
 {
 header('WWW-Authenticate: Basic realm="DinoSpace API Login"');
 header('HTTP/1.0 401 Unauthorized');
 exit();
 }
 else
 {
 $user = $_SERVER['PHP_AUTH_USER'];
 $password = $_SERVER['PHP_AUTH_PW'];
 $this->registry->getObject('authenticate')->postAuthenticate(
 $user, $password, false);
 if(! $this->registry->getObject('authenticate')-
 >isLoggedIn())
 {
 header('HTTP/1.0 401 Unauthorized');
 exit();
 }
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[358]

PUT and DELETE data (technically, there should never be DELETE data sent on a
DELETE request) cannot be accessed through super globals as POST and GET data
can ($_POST and $_GET), so we need a mechanism to get the request data, regardless
of the type of request.

 /**
 * Get the type of request
 * @return array
 */
 public function getRequestData()
 {
 if($_SERVER['REQUEST_METHOD'] == 'GET')
 {
 $this->requestData = $_GET;
 }
 elseif($_SERVER['REQUEST_METHOD'] == 'POST')
 {
 $this->requestData = $_POST;
 }
 elseif($_SERVER['REQUEST_METHOD'] == 'PUT')
 {
 parse_str(file_get_contents('php://input'),
 $this->requestData);
 }
 elseif($_SERVER['REQUEST_METHOD'] == 'DELETE')
 {
 parse_str(file_get_contents('php://input'),
 $this->requestData);
 }
 return $this->requestData;
 }
}
?>

php://input
php://input is an input stream wrapper in PHP, which allows us to
read raw request data. More detailed information is available on the PHP
website: http://php.net/manual/en/wrappers.php.php/.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[359]

Wait—no models?
That's right; we don't need to create any models for our API. All of the functionality
our API needs to provide already exists through the various models we have created.
So instead of creating API-specific models, we will create some additional API
controllers, which work with the pre-existing models to get the data and present
it to the consumer.

Authentication
Keeping with the RESTful way of leveraging HTTP, we can make use of HTTP
authentication to authenticate the user. This is where authentication details are
passed as part of the HTTP request from our API consumer. You will have seen
examples of this if you have ever visited a web page, and your browser has opened
a pop up prompting for authentication details before loading the page. In this case,
your browser reads the server's request for authentication, and then requests login
details before sending the authentication request to the server.

More information
You can read more about HTTP authentication with PHP here:
http://php.net/manual/en/features.http-auth.php

Sessions lead to unREST!
REST is a stateless architecture, which means all of the information required for a
particular operation or request should be included within that request. It shouldn't
rely on information from a previous request or other information such as sessions
and cookies. To that end, we should amend our authenticate registry object and
our index.php file.

Amending the authenticate registry object
We need to amend the authenticate registry class (registry/authenticate.
class.php) to only set $_SESSION data if that is required, so that we can indicate,
from our API controller, that we don't want $_SESSION data to be created.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[360]

We should add an optional parameter to the postAuthenticate method to indicate
if $_SESSION data should be set, with a default value of true so it doesn't impact on
other aspects of our site, which we have already implemented.

public function postAuthenticate($u, $p, $sessions=true)
 {
 $this->justProcessed = true;
 require_once(FRAMEWORK_PATH.'registry/user.class.php');
 $this->user = new User($this->registry, 0, $u, $p);
 if($this->user->isValid())
 {
 if($this->user->isActive() == false)
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'inactive';
 }
 elseif($this->user->isBanned() == true)
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'banned';
 }
 else
 {
 $this->loggedIn = true;

If the sessions parameter for this method has been set to true, then we set the
appropriate session. If it has been set to false (for example, by our API controller),
then it is not set.

 if($sessions == true)
 {
 $_SESSION['sn_auth_session_uid'] = $this->user->getUserID();
 }
 }
 }
 else
 {
 $this->loggedIn = false;
 $this->loginFailureReason = 'invalidcredentials';
 }
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[361]

Amending index.php
Our index.php file by default checks for SESSION data for authentication.

See Chapter 2, or take a look at the index.php file to
refresh your memory.

<?php

session_start();
DEFINE("FRAMEWORK_PATH", dirname(__FILE__) ."/");
require('registry/registry.class.php');
$registry = new Registry();
// setup our core registry objects
$registry->createAndStoreObject('template', 'template');
$registry->createAndStoreObject('mysqldb', 'db');
$registry->createAndStoreObject('authenticate', 'authenticate');
$registry->createAndStoreObject('urlprocessor', 'url');
$registry->getObject('url')->getURLData();
// database settings
include(FRAMEWORK_PATH . 'config.php');
// create a database connection
$registry->getObject('db')->newConnection($configs['db_host_sn'],
 $configs['db_user_sn'], $configs['db_pass_sn'],
 $configs['db_name_sn']);

Firstly, we need to move the line that sets the controller variable to just before
authentication is checked. We then wrap the authentication check line in an IF
statement, so that it is only executed if the controller being requested isn't the
API controller.

$controller = $registry->getObject('url')->getURLBit(0);
if($controller != 'api')
{
 $registry->getObject('authenticate')->checkForAuthentication();
}

// store settings in our registry
$settingsSQL = "SELECT `key`, `value` FROM settings";
$registry->getObject('db')->executeQuery($settingsSQL);
while($setting = $registry->getObject('db')->getRows())
{
 $registry->storeSetting($setting['value'], $setting['key']);
}

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[362]

$registry->getObject('template')->getPage()->addTag('siteurl',
 $registry->getSetting('siteurl'));
$registry->getObject('template')-
 >buildFromTemplates('header.tpl.php', 'main.tpl.php',
 'footer.tpl.php');

$controllers = array();
$controllersSQL = "SELECT * FROM controllers WHERE active=1";
$registry->getObject('db')->executeQuery($controllersSQL);

Next, we need to change the code that gets active controllers from the database.
Previously, it set the $controller variable for temporary use. This wasn't a problem
initially, because we reset the variable to the active controller after this. However,
now it is overriding our default controller. This is simply altered by changing
$controller to $cttrlr.

while($cttrlr = $registry->getObject('db')->getRows())
{
 $controllers[] = $cttrlr['controller'];
}

The final change is to only add authentication-related template bits to the view,
if the active controller isn't API.

if($registry->getObject('authenticate')->isLoggedIn() && $controller
 != 'api')
{
 $registry->getObject('template')->addTemplateBit('userbar',
 'userbar_loggedin.tpl.php');
 $registry->getObject('template')->getPage()->addTag('username',
 $registry->getObject('authenticate')->getUser()->getUsername());
}
elseif($controller != 'api')
{
 $registry->getObject('template')->addTemplateBit('userbar',
 'userbar.tpl.php');
}

if(in_array($controller, $controllers))
{
 require_once(FRAMEWORK_PATH . 'controllers/' . $controller .
 '/controller.php');
 $controllerInc = $controller.'controller';
 $controller = new $controllerInc($registry, true);
}
else

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[363]

{
 // default controller, or pass control to CMS type system?
}

$registry->getObject('template')->parseOutput();
print $registry->getObject('template')->getPage()-
 >getContentToPrint();
?>

Delegating control: API controllers for our
features
With the basic API controller in place, we can now add delegate controllers for the
features on our site. As discussed earlier, in this chapter we will only look at adding
support for profiles; however, it is easy to extend should you wish to.

Profile's delegate
Our delegate controller simply needs to store the registry and caller objects, and then
depending on the nature of the user's request, either output a list of data, output the
data from one instance of a model, update a record via a model, or delete a record
via a model.

In this instance, we can't process create or delete requests, as creating a profile is
done on signup, and this feature requires a logged-in user. Deleting a user has lots
of implications, and shouldn't be done easily—it should be something the user can
do via the site itself, after a number of confirmations.

<?php
/**
 * API Delegate: Profiles
 * Proof of concept
 */
class APIDelegate{

 private $registry;
 private $caller;

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[364]

The constructor sets the registry and caller objects if a profile ID has been passed,
and then it calls the aProfile method. If no profile ID has been passed, it calls the
listProfiles method.

 public function __construct(Registry $registry, $caller)
 {
 $this->caller = $caller;
 $this->registry = $registry;
 $urlBits = $this->registry->getObject('url')->getURLBits();
 if(isset($urlBits[2]))
 {
 $this->aProfile(intval($urlBits[2]));
 }
 else
 {
 $this->listProfiles();
 }
 }

The listProfiles method first calls the APIController's requireAuthentication
method. If authentication fails, that method will exit, preventing the rest of the
method from being executed. Since we can't create a profile, we should prohibit
submission of POST data. If the request is valid (and there isn't any POST data), then
we can query the profiles table, convert it to JSON, and display it for the consumer.
This method should either be optimized to allow pagination or filtering (based on
searching for a user's name) or just to show members a user has a connection with
(otherwise it could return a lot of data).

 private function listProfiles()
 {
 $this->caller->requireAuthentication();
 if($_SERVER['REQUEST_METHOD'] == 'POST')
 {
 // we can't create a profile as we already have one!
 header('HTTP/1.0 405 Method Not Allowed');
 exit();
 }
 else
 {
 // ideally, we would paginate this, and/or put some filtering
 in i.e. filter by name starting with A,B,C, etc.
 $sql = "SELECT user_id, name FROM profile";
 $this->registry->getObject('db')->executeQuery($sql);
 $r = array();

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[365]

 while($row = $this->registry->getObject('db')->getRows())
 {
 $r[] = $row;
 }
 header('HTTP/1.0 200 OK');
 echo json_encode($r);
 exit();
 }
 }

If the URL dictates that the consumer is doing something with a specific user profile,
then the aProfile method is called. As with the listProfiles method, it first
requires authentication, and then includes the profile model path.

 private function aProfile($pid)
 {
 $this->caller->requireAuthentication();
 require_once(FRAMEWORK_PATH . 'models/profile.php');
 if($_SERVER['REQUEST_METHOD'] == 'PUT')
 {

If the request method is PUT, it assumes the consumer is trying to update the profile.
It verifies the logged-in user owns the profile, and if they don't the appropriate
HTTP response code is issued. If they do own the profile, the validity of the profile
is checked, and then the profile is updated based on the PUT data.

 if($pid == $this->registry->getObject('authenticate')-
 >getUser()->getUserID())
 {
 $profile = new Profile($this->registry, $pid);
 if($profile->isValid())
 {
 $data = $this->caller->getRequestData();
 $profile->setName($this->registry->getObject('db')-
 >sanitizeData($data['name']));
 $profile->setDinoName($this->registry->getObject('db')-
 >sanitizeData($data['dino_name']));
 // etc, set all appropriate methods
 $profile->save();
 header('HTTP/1.0 204 No Content');
 exit();
 }
 else
 {
 header('HTTP/1.0 404 Not Found');
 exit();

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[366]

 }
 }
 else
 {
 header('HTTP/1.0 403 Forbidden');
 exit();
 }
 }
 else
 {

If the request method isn't PUT, then it simply checks that the profile is valid, and
returns the profile data to the consumer. Depending on privacy settings, and the
relationship between the logged-in user and the user profile, we may want to
restrict the data that is presented.

 $profile = new Profile($this->registry, $pid);
 if($profile->isValid())
 {
 header('HTTP/1.0 200 OK');
 echo json_encode($profile->toArray());
 exit();
 }
 else
 {
 header('HTTP/1.0 404 Not Found');
 exit();
 }
 }
 }
}
?>

Tweaking the profiles model: validity and data
One thing our profile model doesn't do at the moment is provide any indication
if a particular profile was found within the database. This can be changed with a
new variable, a change to the constructor, and a getter method to return if it is
valid or not.

It also doesn't have a simple method for returning all of the properties in an array,
which can return to the consumer from our API.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[367]

Revised controller
The additions to the model are highlighted in the code below:

/**
 * Profile constructor
 * @param Registry $registry the registry
 * @param int $id the profile ID
 * @return void
 */
 public function __construct(Registry $registry, $id=0)
 {
 $this->registry = $registry;
 if($id != 0)
 {
 $this->id = $id;
 // if an ID is passed, populate based off that
 $sql = "SELECT * FROM profile WHERE user_id=" . $this->id;
 $this->registry->getObject('db')->executeQuery($sql);
 if($this->registry->getObject('db')->numRows() == 1)
 {
 $this->valid = true;
 $data = $this->registry->getObject('db')->getRows();
 // populate our fields
 foreach($data as $key => $value)
 {
 $this->$key = $value;
 }
 }
 else
 {
 $this->valid = false;
 }
 }
 else
 {
 $this->valid = false;
 }
 }

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[368]

New getter: isValid()
We use a simple getter method to return the value of the valid variable.

/**
 * Is the profile valid
 * @return bool
 */
 public function isValid()
 {
 return $this->valid;
 }

New getter: toArray()
This is almost a copy of the toTags() method:

/**
 * Return the users data
 * @return array
 */
 public function toArray($prefix='')
 {
 $r = array();
 foreach($this as $field => $data)
 {
 if(! is_object($data) && ! is_array($data))
 {
 $r[$field] = $data;
 }
 }
 return $r;
 }

Depending on privacy settings, we may want to filter the
information that is returned to the consumer, depending on
their status.

An Application Framework API
The API we have developed allows other websites and web services to interact with
our social network; it doesn't allow any provisions for our users to interact with
third-party applications within our site. Let's briefly discuss what would be involved
in creating such an API, and the practical implications it presents.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[369]

To allow third-party developers to build functionality that runs on our social
network, we would either need to provide a mechanism for them to upload code
to our servers (which is a big security risk, and should never be done), or a way for
them to host their code externally, but for our site to interact with it, communicating
login information between the two systems, taking the output generated and
rendering it through the Dino Space social network.

Even by having the code hosted externally, there are still security implications:
we would have to ensure no sensitive data (such as passwords) was passed to the
application. This would require an alternative method of authentication within the
API, either one using API keys or something like the OAuth standard. The developer
could also add in malicious HTML or JavaScript, such as code to trigger download
of a virus on the user's computer, something to trick the user into entering their
password, or any number of other things.

Social networks like Facebook get around this problem by allowing two methods
of integration:

•	 iFrame: The application is embedded through an iFrame. However,
the use of JavaScript is restricted.

•	 Alternatively, the code is written to generate special markup, which
Facebook then parses (ensuring it is clean).

The other problem with providing such a system is that developers would only use
it when the site starts to become popular. Until the site has proven itself developing
applications for it will be seen as a waste of developer's time, as there is no guarantee
that the site would be successful.

One solution: use OpenSocial
One potential solution is to use the OpenSocial API we discussed earlier. Because the
API is standard across all sites which use it, developers only need to develop their
application once, allowing it to be installed and used on any website that makes use
of the API. The API also provides a common way to authenticate and access data.

Consuming
As we have learned from this chapter, creating an API is a very large topic, one
which is covered in greater detail in a number of books dedicated to the subject.
Let's look at how we can quickly consume our new API using cURL
(http://www.php.net/manual/en/intro.curl.php).

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Developing an API

[370]

With cURL, we can pass our username and password, and it will handle passing the
appropriate values to authenticate against the basic authentication we have in place.

<?php

First, we need to set our username, password, and the URL we wish to connect to.

 $username = 'michael';
 $password = 'password';
 $url = "http://localhost/api/users";

Next, we initialize a connection to the URL.

 $ch = curl_init($url);

We then set a number of options, including the username and password, and if we
wish to have the headers returned to us.

 curl_setopt($ch, CURLOPT_USERPWD, $username.':'.$password);
 curl_setopt($ch, CURLOPT_VERBOSE, 1);
 curl_setopt($ch, CURLOPT_NOBODY, 0);
 curl_setopt($ch, CURLOPT_HEADER, 1);
 curl_setopt($ch, CURLOPT_FOLLOWLOCATION,1);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_HTTPHEADER, array());

We then execute the cURL request and assign the data returned to a variable.

 $response = curl_exec($ch);

We then store any additional information and close the cURL connection.

 $responseInfo=curl_getinfo($ch);
 curl_close($ch);
?>

In the code above, we have chosen to store the returned headers. For us to be able to
process the data returned from the API, we would need to strip out the headers and
process them accordingly. Since we use mod_rewrite to make search engine-friendly
URLs, we have a redirect header set before the API's header. So we would want to
ignore the first header, and then process the second header. Everything after this
would be the response data to the request.

If we just want to work with the data returned, we can change the CURLOPT_HEADER
option to 0.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 11

[371]

POSTing data to our API with cURL
To send POST data to our API using cURL, we simply build an array of the POST
data we wish to submit, convert the array into a suitable string, and then pass
these variables to our cURL request, as illustrated by the following code.

First, we set our POST fields:

$fields = array('field' => urlencode('some data');
$fields_string = '';
foreach($fields as $key => $value)
{
 $fields_string .= $key.'='.$value.'&';
}
rtrim($fields_string,'&');

We then pass the POST fields to our cURL request:

curl_setopt($ch,CURLOPT_POST,count($fields));
curl_setopt($ch,CURLOPT_POSTFIELDS,$fields_string);

Summary
In this chapter we have looked into the APIs that other social networks offer, and
discussed the advantages in providing APIs to our users. We then discussed the
various types of APIs available, before settling on REST as an API architecture
and developing our API in a RESTful way. Finally, we discussed the implications
involved in creating a third-party application API and how OpenSocial, an API we
discussed earlier in the chapter, could be used to integrate third-party applications.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and
Maintenance

With Dino Space complete and functional, we are now ready to put the site online so
that we can begin to attract users, and grow our website. As well as putting the site
online, we need to keep the security and maintenance provisions in mind, to ensure
our site stays secure and well maintained should anything go wrong.

In this chapter, you will learn:

•	 How to deploy Dino Space to the Internet, including looking at domain
names, hosting providers, and the manual deployment process

•	 How we might automate the deployment of our site
•	 How to keep our site secure
•	 How to maintain our site
•	 How to back up our site, and restore it should the worst happen

Let's get started by deploying Dino Space to the Web!

Deploying the site
There are quite a number of stages to go through to put Dino Space online, so that it
can be accessed on the Internet. Typically, this will involve:

•	 Choosing and registering a domain name
•	 Signing up with a hosting provider
•	 Setting the nameservers for the domain
•	 Creating a database on the hosting account

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[374]

•	 Exporting our local database
•	 Importing our local database to the hosting account
•	 Changing some of our database records
•	 Changing our database configuration options
•	 Uploading the files for our site
•	 Testing

Choosing a domain name
Hopefully, by this stage, you will have already decided on the domain name you
wish to use. With a site such as Dino Space, we could either combine the two names
as one word, or we could hyphenate the name, this gives us more options should the
TLD (top level domain for example, .com) for our name be taken.

Sites such as DomainTools.com have whois lookup tools on them, which allow
you to check whether a particular domain name has been taken. Most domain
name registrars also have these. They are an ideal starting point to check domain
name availability.

Some website owners have taken advantage of international TLDs to form a part
of their web address, for example, dinospa.ce (.ce isn't a valid TLD, however), so
this is another option if there is a relevant TLD, though for country-specific TLDs,
sometimes, there are restrictions on who can register a domain through them.

Registering a domain name
Once we have found a domain name that suitably represents our site, and is
available, we can register it through a domain name registrar.

For around 10 dollars, you should be able to register a .com domain name for a year,
or a .co.uk domain for two years.

Popular domain name registrars
There are a number of popular domain name registrars, including:

•	 NameCheap (www.namecheap.com)
•	 GoDaddy (www.godaddy.com)
•	 123-reg (www.123-reg.co.uk)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[375]

Signing up with a hosting provider
Signing up with a hosting provider generally involves choosing a hosting provider,
selecting a suitable hosting package from their offering, supplying personal
information, and supplying billing information to pay for the hosting.

Once signed up, most hosts send over a welcome e-mail including login details
within an hour or so, once they have activated the account.

Choosing a web hosting provider
Hosting is a very big market on the Internet, and there are a large number of hosting
providers available. There are also a number of different types of hosting providers
available, including:

•	 Shared hosting—lots of customers have space and resources on a single
server, for example, A Small Orange.

•	 Virtual Private Servers—a small number of customers have access to
dedicated resources on a single server, in the form of a dedicated virtualized
instance of the server, giving the customer complete control, for example,
SliceHost.

•	 Cloud Hosting—Similar to VPS hosting, in that it is a virtualized server,
except that the resources are generally spread over many machines, and
the resources are not dedicated, allowing the hosting to use as much or as
little resources as required, by making use of more physical machines, for
example, Amazon EC2.

•	 Dedicated Servers—an entire machine dedicated to one customer/website,
with complete control to the customer, for example, Rackspace.

•	 Co-location—the same as dedicated servers, but where the customer
purchases their own equipment, and rents space in a data centre to house
the servers and connect them to the Internet, for example, The Planet.

As our social network will be starting off small, it is advisable to start with either
a shared hosting package, a small VPS, or a cloud hosting. These should allow
us to start with a small amount of server resources, for a low cost, and increase
the resources as our site becomes more popular. Normally, with shared hosting,
accounts can be upgraded to include more space or bandwidth, though not
additional processing power; with VPS and cloud providers, the specification
of the server, and the processing power allocated can often be upgraded and
downgraded as necessary.

We will discuss VPS and cloud hosting in more detail in Chapter 14, Planning
for Growth.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[376]

When looking at potential web hosting providers, the following factors should be
taken into account:

•	 The amount of web space offered—we need to at least cover the space for
our files, and have a reasonable amount left over for user uploads.

•	 For VPS/Dedicated servers, the amount of dedicated memory we have
access to is also important, because when all of the RAM is used up,
servers make use of the SWAP space on the disk, which is much slower.

•	 The amount of bandwidth required (data transferred from the web server to
customers and other visitors per month)—the amount we need will depend
on the traffic to our site, but it's important to see what happens when you
exceed your bandwidth. We also need to check whether this bandwidth
is for upload and download—some providers include unlimited upload
bandwidth, so updating our site won't use any of our bandwidth limit.

•	 Any service level agreements in place, such as a guaranteed uptime,
or turn-around time for hardware replacement.

•	 Minimum contract term—how long are you tied in for?
•	 Acceptable usage policy, to ensure they don't prohibit any of the functions

of our social networking website—some hosts limit outgoing e-mail traffic
to prevent spam, this could affect some of our notification e-mails.

•	 To have software installed on the server, we obviously require PHP, MySQL,
sendmail, and Apache with the mod_rewrite module.

•	 If we have full SSH root access (essential for VPS/dedicated servers so that
they can be fully managed).

•	 What level of support they offer (some hosts even lend a hand if a script isn't
playing nicely on their servers).

•	 Cost and any benefits for paying monthly or annually.

Web-based control panels, such as cPanel or Plesk are included with most standard
web hosting accounts. This makes many administrative tasks easier, including:

•	 Setting up and managing e-mail accounts
•	 Setting up and managing databases
•	 Viewing statistics, access, and error logs
•	 Performing backups, restoring from backups, and so on

One of the most common control panels is cPanel, and is included with most shared
hosting and Virtual Private Server (VPS) providers. Some aspects of this chapter
contain instructions specific for cPanel (manual deployment, and backing up and
restoring), as well as alternative instructions for power users using the command

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[377]

line (assuming SSH access is enabled on the hosting account; this can normally be
requested for shared hosting accounts, as for VPS/Dedicated servers, check that you
are given full root access via SSH).

Packt Publishing has a book available specifically for cPanel, should you be
interested in learning more about it: cPanel User Guide and Tutorial by Aric Pedersen
(www.packtpub.com/cPanel/book).

Considerations for hosts of social networking
websites
Here are a few additional considerations worth keeping in mind, specifically for
social networking websites:

•	 Are websites backed up regularly, automatically? If they are not, you could
always write your own backup cron job script (SSH access would be helpful
for this).

•	 What security measures are in place?
•	 Do the hosting accounts scale nicely?
•	 Can you pre-purchase additional bandwidth in advance of exceeding a limit?
•	 How many concurrent users can the hosting account cope with?

Popular web hosting providers
Some popular web hosting providers include:

•	 Slicehost (www.slicehost.com) is a Virtual Private Server provider,
designed for developers with functionality to easily upgrade and
downgrade server capacity.

•	 A Small Orange (www.asmallorange.com), also provides shared hosting
accounts, virtual servers, and dedicated servers.

•	 MediaTemple (www.mediatemple.net) is a provider of scalable virtual
servers, with a control panel to make things as simple as with standard
shared hosting accounts.

•	 VPS.Net (www.vps.net)
•	 1&1 Internet Inc. (www.1and1.com), provides shared hosting accounts,

virtual servers, and dedicated servers for larger websites and web
applications. However, be careful as their lower-end shared hosting
accounts don't support databases, such as MySQL.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.1and1.com/

Deployment, Security, and Maintenance

[378]

Research hosting providers
Web Hosting Talk (www.webhostingtalk.com) is a popular
discussion forum focused on discussing the web hosting industry,
containing many reviews and comparisons. It is worthwhile taking
some time to research for the different providers before signing up
with one.

Setting the nameservers for the domain
Once we have our domain name registered, and a hosting account set up, we need to
change the nameservers of our domain to those of our hosting provider. This ensures
that any traffic to our domain name is directed to our hosting account.

When signing up to a hosting provider, their welcome e-mail will generally include a
reference of their nameservers; these are the addresses to servers that translate DNS
requests for that particular domain name, into IP addresses of the servers the site is
hosted on. They are typically of the form ns1.hostingproviderabc.com and ns2.
hostingproviderabc.com. Some domain registrars require the IP address of the
servers as well as the hostname.

Full information on how to set the nameservers can be obtained from your
domain name registrar, and changes made to nameservers can take up
to 24 hours to take effect.

Creating a database on the hosting account
Let's look at the two most common ways to create databases on a hosting account;
firstly using the popular control panel cPanel, and secondly using phpMyAdmin
when logged in as a user with suitable permissions (permissions to create users
and databases, such as the root user).

With cPanel hosting control panel

This section assumes that a hosting account with
cPanel is installed.

The first stage is to log in to our control panel (this is usually, www.yourdomain.com/
cpanel), and within the Databases section click on the MySQL® Database Wizard
icon. This will allow us to create a database and a user with permissions to access
this database.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[379]

Next, we enter a name for the new database; this is normally then combined with
the hosting account's username, so the database name network would become
dinospac_network. Once we have entered a name, we need to click on Next Step,
to move on to the next stage of the database wizard.

Then, we need to create a user within MySQL, who will connect to the database
server to access the database we have just created. It is important to use a secure
password; for this, we'll use the Generate Password button to have cPanel
automatically generate a secure password for us.

Once we have entered the username and password, we need to click on the Next
Step button.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[380]

Now that we have a database and a database user, we need to grant permissions
for that user to be able to manage the database. Let's check the ALL PRIVILEGES
checkbox and click on the Next Step button again.

We now have a database on the server and a database user who can access
the database. These are the details we will need for our configuration file.

With appropriate privileges on phpMyAdmin
Assuming we have suitable permissions, allowing us to create a database and
a database user, we can use phpMyAdmin to create a new database and a user
with permissions to use it. We will create a new user for MySQL, and set it to
have its own database. We need to click the Privileges tab first, as shown in
the following screenshot:

On the privileges screen, we need to click the Add a new User link, as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[381]

From here, we give the user a username, select the host from which the user can
connect (normally, localhost), and set a password (or we can use the Generate
button to generate a secure password randomly for us).

We should select the Create database with same name and grant all
privileges option under Database for user; this will create a database called
dinospacenetwork, and give the dinospacenetwork user privileges to use it.
The following screenshot shows the create new user form:

Once we submit the form, we have our new database and our database user. The
reason we want a new database user, as well as a new database, is that should we
have a vulnerability in our code, which would allow a user to access our database,
it would only allow them access to this one database. Similarly, if there was a
vulnerability in another application, they couldn't get to our database (unless of
course, we used the root database details).

Exporting our local database
With our database set up on the server, we now need to export the database we have
on our local development installation. This can be done by selecting the database and
then clicking on the Export tab in phpMyAdmin.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[382]

From here, we can select which tables we wish to download, and have the option of
either exporting the database as SQL, or as a download containing SQL, as shown in
the following screenshot:

Importing our local database to the hosting
account
With a copy of our local development database exported, we can import it into
our hosting account using the Import tab on the server's phpMyAdmin, where
we simply upload the SQL file (if we exported as text, we would use the SQL tab
to paste the SQL into it and import the database).

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[383]

In most cases, there is a 2 MB limit on file uploads. This can cause
problems when importing a large active site, however, we are only
importing our skeleton database—so, this shouldn't be a problem.
For importing and exporting large databases, you should use SSH,
as discussed later in this chapter.

We now have our database set up and working on the production server!

Changing some of our database records
Some of our database records might have been specific to our local development
version of Dino Space. Most of these should be contained in the settings table, such
as the siteurl setting, which at present points to our local installation. We will need
to update this record to reflect our live site.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[384]

Changing our database configuration options
As the production database is on the production server, we will also need to update
our config.php file to point to the database on the server, as opposed to the
database on our local machine. The details required for this file were established
when we created the database and database user on the server earlier in this chapter.

<?php

$configs = array();
$configs['db_host_sn'] = 'localhost';
$configs['db_user_sn'] = 'dinospacenetwork';
$configs['db_pass_sn'] = 'dinospacenetwork';
$configs['db_name_sn'] = 'Ac932w4dheJDbFfd';

?>

Uploading the files
With the configuration file updated, and the live database set up, we can now
upload all of our files to the server. To upload the website files from our
development environment to our production environment, we need to use
an FTP client. One such example of an FTP client is FileZilla, a free FTP client
available for download.

Within FileZilla, we simply enter the web address of the site, and our FTP username
and password and then click on Quickconnect.

Secure FTP
If you have SSH access, instead of leaving the port field blank, you can
supply port number 22. This would force the connection to be secure,
using SSH.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[385]

Once the FTP client is connected, we simply drag the files from the relevant folder on
our development environment in the Local site pane on the left to the relevant folder
within the Remote site pane on the right. Commonly, the folder on the server would
be either public_html or htdocs, and files within these folders are generally made
accessible to the public through a web browser.

Permissions on certain folders, such as the uploads folder, will need to be changed
to allow write access.

Testing
We now have a domain name, a suitable hosting environment, our codebase in our
hosting environment, and a live database. The next stage for us is to visit the live site
in our browser to check whether everything is working as intended.

Automating deployment
When we next update our social network, we won't have to do most of the
initial deployment process again; however, we will be presented with a new
challenge—downtime.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[386]

If we take our website offline to make an update, we lock out our users, which may
cause them to go elsewhere, and put off any user who is new to the site. One solution
is to automate the deployment process; this can get rid of the downtime problem,
and because it is automated, the deployment process will be fast.

To make use of automated deployment, we would need to make use of version
control, to keep a centralized copy of our code, which the deployment system can
access, and within the version control, we would need copies of our development
configuration (that is, files pointing to our local database) and production settings.
We would then have a deployment script which:

•	 Moves the live site to a new location and updates the Apache virtual host
to point to the new location.

•	 Exports the sites code from version control (for example., from a
Subversion repository).

•	 Places the code where we previously had the live site.
•	 Removes development configurations and updates them to

live configurations.
•	 Updates file permissions.
•	 Updates the Apache virtual host so that new visitors to the site go to the

new codebase.
•	 The old codebase shouldn't be deleted just yet, as some users who visited the

site before the virtual host change, will be using that codebase. Instead, we
should set our deployment script to remove old copies before running, which
means we always have the live site, and the previous iteration, on the server
at any one time.

The exact setup of this is beyond the scope of this book, however, the above
information should provide a good starting point. I've discussed this topic in more
detail on my personal blog, which provides an example shell script for automatic
deployment, which may be of use if you are considering automated deployment,
http://www.michaelpeacock.co.uk/blog/entry/svn-deploy-script.

Security
Security is a very important aspect with any website, though with a social
networking website it is extra important, as we will store personal information
of lots of users, so we need to ensure we keep this data secure.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[387]

Data Protection legislation
It may be worth investigating the Data Protection legislation in the
country you reside in, and in the country your website is hosted in. As
well as mandating how data must be kept secure, some countries, such
as the UK, also have a register of Data Controllers who are responsible
for data protection in a particular organization.

Server Security
The security of the server itself is one aspect that needs consideration. This can
be broken down into two primary areas:

•	 Server software
•	 Firewall and network traffic

With shared hosting environments, there are some other considerations that we
will discuss.

Software
Almost all software contains security vulnerabilities; once a vulnerability has been
discovered, it is important to ensure that the software is upgraded or patched to
prevent malicious users from exploiting these vulnerabilities. With managed hosting,
we don't need to concern ourselves with server installed software, as our hosting
provider should keep that up to date. However, if we want to concern ourselves
with the software on our server (and check our provider is up to date), or if we are
operating on unmanaged virtual or dedicated servers, we need to keep updated on
security developments with:

•	 PHP
•	 MySQL
•	 Apache
•	 The FTP server software
•	 The SSH server-side software
•	 Operating system versions and kernel updates

This could be done by subscribing to any mailing lists found on the sites for
those projects.

Any other software we install, such as bulletin board systems, chat rooms, and so on,
will also need to be regularly checked for available upgrades and security updates.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[388]

It is important to check with your hosting provider that they update
and patch software quickly, to ensure it is secure.

Securing the site with a firewall
Software and hardware firewalls can help protect our website from attack; these
generally work by blocking access to certain parts of the server from certain
computers (for example, allow anyone to access the website stored on the server,
except users we explicitly banned, but disallow anyone to access aspects such as
FTP or SSH unless explicitly permitted). Most web hosts can advise on their firewall
setup, and documentation is available for firewalls that can be used on virtual and
dedicated servers.

Shared hosting precautions
With shared hosting, there are other considerations, in that other hosting customers
have access to the same machine; it is worth checking if the following security
provisions are in place when using shared hosting:

•	 Open_basedir restrictions—these ensure that code (for example, PHP code)
only interacts with code in a customer's home directory, and certain shared
areas, preventing another customer's code from interfering with ours

•	 Jailed Shell—this prevents a user from leaving their home directory when
connecting to the server via SSH

•	 Jailed FTP—this prevents a user from leaving their home directory when
connecting to the server via FTP

Passwords
As the website owner or administrator of a site, our passwords unlock not only
administrative areas of websites we manage, but also hosting accounts, databases,
e-mail systems, statistics systems, and in some cases root access to servers. Because
of this, it is important we use a range of secure passwords.

Passwords that are not secure can be obtained by users' guessing, automated
dictionary attacks where a computer goes through a list of words trying them
as the password, or by social engineering.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[389]

Strong passwords are one of the easiest ways to prevent user accounts from being
compromised, or guessed by dictionary or social engineering attacks. These involve
either going through a list of common passwords until the system logs the hacker
in, or by researching the user and trying to guess passwords based off memorable
information, such as dates of birth, names of friends and family, and so on. Some
suggestions for making a strong password are as follows:

•	 Use both letters and numbers
•	 Make use of special characters, such as @, /, \, #, *, &, and so on
•	 Make all of your passwords unique, otherwise, if someone guesses your

administrator password, they may be able to gain access to your personal
e-mail, other websites you are a member of, and so on if the passwords are
all the same

•	 Include spelling mistakes to make the word harder to guess
•	 Don't include personal information such as dates of birth, names of family,

and so on
•	 Make the password as long as possible, longer passwords require more

combinations for dictionary style attacks
•	 Consider using numbers in place of some letters

Error reporting
If we have errors in our code, these will be displayed to the user when they view
our site and it encounters the error. Depending on the level of error reporting set,
the error could reveal information about our site that we don't want to make public,
such as folder structures, database structures, potential vulnerabilities, and so on.

To prevent this, we can set the error_reporting directive using the
error_reporting function; we simply call the function and pass 0 as
a parameter, and this disables error reporting. We would simply set this
in our index.php file.

error_reporting(0);

More information on error reporting in PHP can be found on the PHP website:
http://php.net/manual/en/function.

 error-reporting.php.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[390]

Directory listings
We would also want to disable directory listings; this is where if a user visits the
URL of a directory, they can see a list of the files and folders within. In particular,
we wouldn't want this on folders containing user uploads, photographs, and
profile pictures.

We can disable directory listings by adding the following line to our .htaccess file:

Options -indexes

SPAM
With SPAM becoming increasingly common on the Internet, we would want to
take precautions to prevent this. SPAM can clog up our database with thousands
of fake comments and fake user profiles, as well as making our social network less
appealing to search engines and other users. We can prevent this by implementing
a CAPTCHA system, which helps determine whether it is a genuine person and not
a machine trying to access the site.

There are a number of SPAM protection APIs that we can send user submitted
content such as comment forms, through to check if they are SPAM. Two popular
services are Akismet (http://akismet.com/) and Mollom (http://mollom.com/),
both of which are well documented and have PHP implementations available.

Maintenance
There are a number of maintenance options for us to consider and implement once
our site is online.

Backing up and restoring your social network
Backing up and restoring our site is one of the most important maintenance tasks to
do, because if something goes wrong with our site, server or host, we would want
to be able to restore the site quickly. Ideally, backing up should be automated, if
you have purchased backup provisions with your hosting account, you may have
automated backup options available in addition to the ones listed below.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[391]

With cPanel
Within the main cPanel interface, in the Files section, there is a link to the
Backups area:

We can download a copy of our Home Directory (all of the files and most of
our settings), and also a copy of the database from this section. Simply clicking
on the relevant backup buttons will prompt us to download the backup files from
the server.

It is essential that we keep these files stored somewhere safe and secure.

Restoring the site and database
To restore from a backup we need to ensure we are logged into cPanel, and then
click on the Backups button to go to the backups section, as we did when backing
up the site.

On the right-hand side of this screen are the options to Restore a Home Directory
Backup and to Restore a MySQL Database.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[392]

To restore from the backups, all we need to do is browse for the file we wish to
restore from, and then click on Upload.

When restoring, any existing database or home directory content will be
removed, so only do this if you really need to. If you need to gain access
to a specific file that you need to back up, decompress the home directory
backup, look for the file, and upload it to your site using an FTP client.

Using the command line
An alternative method to back up and restore our site is by using the command line.

Command Line Access and PuTTY
Most shared hosting accounts won't provide command line (SSH) access by default,
but many will enable it on request for your account. Simply file a support ticket with
your host to request this, and if they allow it, they will provision it for you.

To connect to the server using SSH, you can either use the terminal interface on
a Mac or Linux, or on Windows use a program such as PuTTY, a free SSH client
available from: http://www.chiark.greenend.org.uk/~sgtatham/putty/.

Backing up the site and database
Once connected through SSH to the server, we need to navigate to the location
of our site. In most cases, this will be /home/ourusername.

cd /home/dinospac/

Then, we can compress the public_html folder to a single file, using:

tar cvzf backup.tar.gz public_html

With the folder compressed, we need to move it to within the public_html folder,
so we can download it by visiting oursite.com/backup.tar.gz:

mv backup.tar.gz public_html/backup.tar.gz

The following command exports our database to a web-accessible location on our
server, where we can download it using a web browser:

mysqldump –u username –p databasename > /home/dinospac/public_html/
backup.sql

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 12

[393]

After executing this command, we will be prompted for our password, and then we
can download the file from our browser.

Once downloaded, it is important that we remove the database and site downloads
immediately, so that it is not downloaded by anyone else.

Restoring the site and the database
Assuming we upload the tar.gz file into our server, we can decompress it with the
following command:

tar –xvf backup.tar.gz

Assuming we upload the SQL file onto our server, we can import it with the
following command:

mysql –u username –p databasename < /home/dinospac/backup.sql

Do they work?
Backing up the site, and knowing how to restore it in an emergency is only half of
the battle; we also need to ensure that our backups work! We can test our backups
by extracting them and setting them up on a localhost machine; this should be done
regularly to test the integrity of backups.

Access logs and statistics
We should regularly keep an eye on our access logs and statistics, particularly for
things like:

•	 Errors generated by our site
•	 404 (file not found) requests—to allow us to fix broken links on the

site, or put in suitable redirects, making the experience better for our
users—reducing the amount of broken links they find

•	 Examining bounce rates and leaving pages, so we can improve the content,
design and structure of certain pages to reduce the number of users who
leave the site.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Deployment, Security, and Maintenance

[394]

Summary
In this chapter, we took our development code, and set up a suitable production
environment so that our site can be accessed on the Internet by the public. Along
the way, we looked at hosting accounts and domain name registrars, how we might
automate our deployment process, and the fiddly settings that needed to be changed
so our code would work in a production environment.

We then looked at security options and provisions, to ensure our site stays secure,
before looking at maintenance options, focusing on backing up, restoring and testing
backups of our site, to ensure we are prepared should something go wrong. We are
now ready to look at generating traffic for our site, through marketing and search
engine optimization.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Marketing, SEO, User
Retention, and Monetization

Strategies
With Dino Space up and running, we now need to get members to our site, because
without members our social network will fail (unless we were setting up Dino Space
for a select group of people whom we know). Let's look at useful marketing, search
engine optimization, and user retention concepts, to help us increase our user base,
and keep our users.

In this chapter, you will learn:

•	 How to promote sites online using:
	° Pay Per Click campaigns
	° Advertising space
	° Newsletters
	° Social marketing

•	 How to keep the search engines happy
•	 On-site and off-site search engine optimization
•	 Some customer retention tips
•	 Some tips to help make money from the site

It is important to note that this isn't a technical chapter, and the contents covered can
(and do) fill several books. The purpose of this chapter is to give you some valuable
insight, hints, and tips, which can help you increase the performance of your website
in the search engines, and to promote the site through other ways, to help ensure it is
a success.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Marketing, SEO, User Retention, and Monetization Strategies

[396]

Marketing
Marketing can range from some simple online marketing, advertising, or PPC
campaigns. Let's take a look at some of the marketing methods available to us.

Online advertising
There are a number of different online advertising techniques available for us to take
advantage of, including:

•	 Pay-Per-Click advertisements
•	 Purchasing advertising space
•	 Newsletter advertising

Pay-Per-Click
Pay-Per-Click (PPC) advertising only costs us each time a visitor clicks on an advert
and goes through to our site. When looking at or negotiating cost-per-click rates with
advertisers, it is important to work out how many of these visitors are likely to join
Dino Space (our conversion rate), so we can decide how much we wish to invest in a
PPC campaign.

If we had a monetization strategy in place for our site, for example, paid
advertisements on the site, we could work out how much each user earns us, which
would help us to establish how much we could invest in PPC, combined with our
conversion rate, to ensure we don't lose money. Of course, with this type of site, in
the early stages, it is essential to build up the user base, even if it doesn't earn us any
money initially.

Most PPC services allow us to set daily and monthly budgets, so that when a daily
maximum is reached, our advert is no longer displayed until the next day, when a
new daily limit is in effect.

Let us now take a look at how most PPC services work:

•	 We sign up to a PPC network.
•	 We provide information about our site, and some personal information.
•	 We provide billing information, either a credit card number, or we make

payments in advance.
•	 We select the keywords we wish to target (for example "dinosaur breeding

tips". These are words that visitors may type into a search engine, or the page
may have content related to these keywords for adverts displayed on pages,
triggering our adverts), as well as any information on the visitors we want to
target (for example, UK users).

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 13

[397]

•	 Finally, we set a budget for how much we would be willing to pay for each
click, the maximum we would be happy spending in a day, and so on.

Once the campaign is up and running, we can generally log in to a control panel
and see how much of our budget has been spent, and how much we are paying
on average per click. The monthly budgets mean if we don't pre-pay, and instead
provide credit card information, we are never billed more than we have agreed to.

One thing that advertisers are often concerned about is the possibility of fraudulent
clicks. For example, a competitor can perform a search to find our advert, and then
repeatedly click our advert. This would cost our campaign budget, and not give us
a return, because the clicking was not by a potential new sign up. To prevent this
from affecting advertisers, and ruining the reputation of advertising networks, most
of them have systems in place: tracking duplicate clicks and crediting the accounts
of advertisers when this occurs. It is important to ensure that the PPC network we
chose has provisions for detecting fraudulent clicks, so our money isn't wasted!

Search engine PPC networks
Many search engines also provide their own PPC advertising network, three of
which are listed below. The algorithms employed by many of these search engines
determine how much a click is likely to cost, based on the site itself, and its position
in the natural search engine rankings.

A site that is completely unrelated to dinosaurs (and more specifically unrelated to
supplies, breeding tips, health care tips, and so on for keepers of dinosaurs), would
probably need to pay more than a relevant site for the same (dinosaur-related)
keywords with search engines.

Three of the most popular Search Engine Advertisement Networks are:

•	 Google: (http://www.google.co.uk/intl/en/ads/)
•	 Yahoo!: (http://sem.smallbusiness.yahoo.com/

searchenginemarketing/index.php)
•	 Microsoft: (http://advertising.microsoft.com/search-

advertising?s_int=277)

Most search engines also allow their advertising networks to be used on third-party
sites, so apart from appearing as a sponsored link on search engine results pages, the
site will also display on websites, which decide to display adverts from that particular
advertisement network, and also contain relevant content to the advertisement.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.google.co.uk/intl/en/ads/
http://sem.smallbusiness.yahoo.com/searchenginemarketing/index.php
http://advertising.microsoft.com/search-advertising?s_int=277

Marketing, SEO, User Retention, and Monetization Strategies

[398]

One important thing to remember about competing sites is that most PPC networks
allow us to enter sites where we don't want our advert to appear, so if a competitor
displays adverts, and ours appear on theirs, we can detect this through their control
panel, and add them to the list to prevent our advert displaying, hopefully increasing
our return on investment.

Pay Per Action—a look to the future
Pay-Per-Action is a new scheme being investigated by a number of PPC networks,
where you only pay when a visitor performs a certain action on your site. This can
involve registering for an account, entering their e-mail address in a newsletter box,
or making a purchase. This is still very much at the research and development stage
for most networks; however, it is worth keeping an eye on the progress in this area.

For Dino Space, the bonus for us would be that we only paid each time a user
registered on our site and created a profile. Of course, we would pay more per action
than we would pay per click, but in theory, we should only pay when we get results,
giving us guaranteed return on investment.

The downside to PPA schemes, is for sites that display such advertisements, they
may not necessarily make as much money (for example, sites currently displaying
Google Adwords) because there may not be any actions performed, despite a large
number of clicks.

Advertising space
A number of websites offer advertisement space, generally, on a monthly basis,
which can often be a great way to generate new traffic and bring new customers to
a site. There are a few simple points to take into account when considering renting
advertising space from a site:

•	 Does the site you are looking to advertise on compete directly with your
own site? If so, they probably wouldn't accept your advert, nor would it be
an ideal place to advertise. The visitors have already clicked through to their
site, and would probably not be inclined to go elsewhere. Thinking back to
our Dino Space social network, this means we wouldn't want to advertise on
fictitious sites such as:

	° Dino Net
	° Dino Planet

•	 Is the site relevant to ours? If the site is relevant (but non-competing),
then we are more likely to get clicks through to our site, as visitors will
be interested in the area we work in.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 13

[399]

•	 Is the site we are advertising on reputable? If the site has a bad reputation,
that reputation will come to us by association. Visitors will see we are
associated with the site, and that will affect their view of our site. It is
important to spend some time checking a site's reputation; it may even
be worth contacting the owner of the site to find out some background
or history about the site and the owner.

•	 What are the statistics for the site like? If the site does not get many visitors,
then it isn't worth us advertising on it. It is important to find out statistics
from the website owner, including visitor numbers and preferably some
information on the demographics of user. If the site has a small number of
visitors, then it would be important to ensure that payment is for a certain
number of impressions or clicks, as opposed to a set period of time. Services
such as Google Analytics provide this information; however, there are many
providers available who can process the raw log files on the hosting server,
and generate statistics from that.

Warning: keep the search engines happy!
Search engines hold a lot of power when it comes to promoting websites, as they
run a number of advertisement networks, and list websites organically in their
search results pages. We need to ensure we stay on their good side, and keep them
happy, otherwise, we will feel their wrath and have our rankings in their results
pages penalized.

Getting penalized by the search engines
Page listings in Search Engine Results Pages (SERPs) are determined by search
engines by a number of different metrics, including age of domain name, content on
the site, and also the number of incoming links to a site. With Google, this link factor,
along with some other metrics, makes up a page rank. Depending on a site's page
rank, the links the site has to other sites (outbound links) can gain page rank from
this. Links from one site to another are classed as a vote, and it assumes that the site
owner was happy to display that link, and that they approve of the site, and wish
to attribute a vote to it, improving its page rank.

In some cases, paid advertisements are seen as a way to buy increased page rank,
which search engines see as a way of "spamming" their search index. Many search
engines, including Google, have anonymous online reporting tools, where users
can report paid links on websites, which are then investigated. The sites involved
are penalized with regards to their rankings in the SERPs.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Marketing, SEO, User Retention, and Monetization Strategies

[400]

Keeping them happy
The sale and purchase of links and adverts isn't wrong on the Internet—it is just the
sale or purchase of links to adjust page rank that is, so most search engines take into
account some additional information within a link that indicates that the site owner
does not wish for the link to receive their "vote" when calculating page rank. This
attribute should be used for any paid advertisements or links, to ensure neither the
site selling nor the site buying the adverts are penalized for this. The solution is to
add rel="nofollow" to the link, so we would end up with a link such as this:

Packt Publishing

This does not mean that we need to add this attribute to all of our outbound links,
only links that are paid for.

Here are some useful tips to ensure you stay in the good books of the most popular
search engines:

•	 Don't buy or sell links; only buy advertising space from reputable sites
(and ensure the advert has the rel="nofollow" attribute)

•	 Ensure that all adverts on your own site contain the rel="nofollow"
attribute

•	 Be wary of e-mails offering to place advertisements on your site

Hopefully, by following these tips, and taking a common sense approach, you won't
jeopardize your search engine rankings.

Newsletter advertising
There are a large number of online newsletters available, many of them targeting
specific niche markets. It would be useful to advertise our stores within e-mail
newsletters that are relevant to our store; for instance, an e-mail newsletter that
is sent to all prop managers at theatre companies.

This method involves quite a lot of research, finding suitable newsletters, and
discussing with the owners of the newsletters to negotiate advertising pricing.

Don't forget to consider the points we discussed earlier, with regards
to advertising space, when looking at advertising on newsletters. The
tips apply to both forms of advertising quite well.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 13

[401]

Newsletters
There are a number of newsletter systems available, which we can use to send
newsletters to our customers or interested parties. Visitors to our site can leave their
e-mail address to indicate they are interested in our site, but are perhaps not ready or
convinced enough to join our site, and instead would like for us to e-mail them every
now and then with new information on what is happening with our social network.

One particularly popular newsletter system is Campaign Monitor; this not only
makes it easy to manage many lists of subscribers, but also provides advanced tools
to track the success and performance of newsletter campaigns, with metrics such as:

•	 How many users opened the e-mail?
•	 How many times users opened the e-mail?
•	 Which links were clicked on, by whom, and how many times?
•	 Which e-mail clients were used?
•	 Who, or how many users, unsubscribed from the newsletter, forwarded

it to a friend, or reported it as spam?

These metrics are not accurate, as the techniques used to detect how many times
an e-mail has been opened rely on images within the newsletter, thus requiring the
user to set their e-mail client to display images. However, they are useful as a basic
indication of minimum statistics.

It is also possible to integrate the newsletters with stats programs such as Google
Analytics. One final feature worth mentioning is that Campaign Monitor,
MailChimp, and many other newsletter systems, also allow us to preview the
contents of the newsletter in various different e-mail clients to ensure the newsletter
will look as intended. For all of our subscribers, along with this, it can also run the
e-mails through spam filters to detect if they are likely to be flagged as spam.

Social marketing
While it may seem contradictory, it makes sense to also make use of other, non-
competing, social networks to promote Dino Space. Most existing social networks
have provisions for user and business information as well as profile data including
website addresses. Examples of this include creating a Facebook fan page for our
site, adding the site's URL to our Facebook and MySpace profiles, and to our Twitter
accounts. These extra links can help with additional promotion, and even if they only
bring one or two new members, it is still worthwhile.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Marketing, SEO, User Retention, and Monetization Strategies

[402]

It is important, however, to not use competing social networking sites to promote
our site on, as such promotion is likely to be removed, and does not help our
reputation. Sites such as Facebook are large and generic, so provided we are
promoting a site such as Dino Space, which is specific and targets a niche market,
we would be encouraging users to also join our site, and not encouraging them
to abandon the site for ours.

Viral marketing campaigns
Viral marketing is a relatively new marketing concept, which revolves around
utilizing social networks. One particular example of viral marketing is utilizing
video sharing websites such as YouTube and promoting videos within which we
advertise our site, for instance spoof or gimmicky videos that engage the viewer,
and encourage them to either join our site or help us promote our site.

This technique is probably more suited to large social networking sites with large
marketing budgets who are trying to promote a brand. Information on using
YouTube in particular was recently posted on a technology blog called TechCrunch,
and can be found at http://www.techcrunch.com/2007/11/22/the-secret-
strategies-behind-many-viral-videos/.

Twitter
We can use Twitter, a social network that aims to tell your friends and followers
what you are doing, to keep up to date with our users. One potential method is to
create an announcement Twitter account to post news, updates, and feature releases,
in addition to keeping an eye out for comments or feedback from customers on the
social network, and responding to them, perhaps taking into account their ideas or
suggestions for new features for us to implement.

RSS feeds
Many websites offer content to their users through Really Simple Syndication
(RSS), which allows them to read the content, such as blog articles, latest products,
recommendations, and reviews and so on, off-site in their favorite RSS reader.

For Dino Space, we can use this to display the latest public content that has been
posted to our site, or a list of new updates to the site, or if we wanted to be really
clever, we can give each user a custom RSS feed link that contains the latest additions
to their status feed, though this could hinder any monetization options that involve
on-site advertisements. One potential counter to this is displaying advertisements
within RSS feeds, something that is slowly becoming more common, and is certainly
worth investigating.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 13

[403]

Services such as Google's FeedBurner allow us to monitor our users' usage of RSS
feeds, and gather statistics from them.

Search engine optimization
One way to increase traffic to our website is through Search Engine Optimization
(SEO). This involves ensuring that the content and the structure of our site are well
optimized for search engines, making it easier for them to access our sites, and digest
the important content. The other aspect is with regards to inbound links to our site.

Therefore, search engine optimization can be broken down into two primary areas:

•	 On-site search engine optimization, focusing on changes to the actual
website itself

•	 Off-site search engine optimization, focusing on building up a reputation
for the website through reputable, high quality, inbound links

Let us take a brief look at these two methods.

On-site SEO
On-site SEO requires us to ensure that the website itself is suitably structured,
and the content is appropriate and up to date, encouraging search engines to index
the site, and helping them realize which content is most relevant within the site.

Headings
Properly structured pages make use of appropriate headings to break down the
content of the document into sections. The content within these headings is also
considered highly by search engines. It is important that we don't fill them with too
much content—three to seven words should be sufficient, keeping with the feel of a
heading. The different levels of headings indicate their importance within the page
(heading level one is most important, level two less so, and so on). There is much
discussion on the web design community about what a first level heading should
contain—either the name of the site, or the name of the page. Personally, I find the
name of the page more appropriate and more relevant in terms of optimization too.
There should only be one instance of the h1 tag on a page, however, there can be
any number of lower level headings.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Marketing, SEO, User Retention, and Monetization Strategies

[404]

Links
Having links to other pages within the site is a very simple and useful way to
improve search engine performance. The trick is to make use of relevant sentences,
using the relevant keywords as hyperlinks, and also ensuring that the titles of the
link are suitably optimized. Take the example of a novelty hat category page.
A poorly optimized link would be:

To see Dino friendly restaurants our members have
 reviewed click here

The link has no context to search engines, and contains no meaningful information.
A more meaningful, and therefore, search engine friendly link would be:

Why not view our members reviews of <a href="reviews/
 dinosaur-friendly-restaurants/" title="Reviews of Dinosaur
 friendly Restaurants made by our members">Dinosaur
 friendly restaurants

All these small changes do make a difference!

Up to date, relevant content
One of the most important things about a website is its content. Visitors like
content to be fresh and up to date. By the same token, search engines also like
this, as it shows the site is related to the user's search, and that it is relevant
because it is regularly updated.

Page metadata
An older method for search engine optimization was to take advantage of the
Meta tags within an HTML document. Because this was widely abused, it isn't
as effective as it once was; however, it is still a useful technique. Some sites have
their description text in search engine results pages showing as the text from their
description Meta tags.

The two important Meta tags are keywords and description. The keywords tag
allows us to associate a number of keywords with our content, and the description
tag allows us to associate a friendly, easy-to-read description to the page. Because
search engines penalize sites that hide some content from their users (with the
purpose of it being shown only to the search engines, to make the search engines
think the site was more relevant for certain phrases or keywords), this technique was
abused as a legitimate way to have text that was unrelated to the page (or repetitions
of related content) to try and boost rankings, and as such the search engines don't
put as much emphasis on these now.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 13

[405]

The Meta tags are contained within the <head> section of an HTML document.
Example of the keywords and description tags in use is as follows:

<meta name="description"
 content="Dino Space is a vibrant, buzzing community for keepers of
 Dinosaurs, sharing health-care, breeding and leisure tips" />
< meta name="keywords"
 content="dinosaur, keepers, help, community, health, reviews,
 friendly, leisure, supplies" />

While the search engines don't take these into account too much, it is still important
not to overuse them, as that indicates to the search engines that the site is trying to
abuse the Meta tags and their purpose.

Site speed
One very new edition to the list of factors to a sites ranking in search engines is the
speed of the site, as announced by Google in April 2010. Sites that take a while to
load are penalized. More information can be found on the Google blog:
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-
in-web-search-ranking.html.

There are a number of tools available to help monitor and improve the speed of your
website. Some potential tools include:

•	 YSlow from Yahoo!: http://developer.yahoo.com/yslow/
•	 Page Speed browser plugin: http://code.google.com/speed/

page-speed/

•	 Articles on speeding up your site: http://code.google.com/speed/
articles/

Search engine goodies—sitemaps and tools
Many search engines provide a number of tools to help webmasters improve the
performance of their sites in the search engines, and to help webmasters with the
best practices. Google has a number of webmaster tools—a collection of tools geared
towards helping webmasters manage the errors within their site, and see how
Google sees their website—has been developed by Google, and is available for use,
freely. Webmasters can also create a sitemap in XML format, to tell Google of all of
the pages within our site, their importance within the scheme of the site as a whole,
and how frequently they are updated, to help them decide when to return to
re-index the updated content.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Marketing, SEO, User Retention, and Monetization Strategies

[406]

The webmaster tools in general, outline errors such as duplicate content, duplicate
metadata within pages in the same site, as well as broken or forbidden links. More
information can be found on the following pages:

•	 https://www.google.com/webmasters/tools/home?hl=en

•	 http://www.google.com/support/webmasters/bin/answer.
py?hl=en&answer=40318

Off-site SEO
Off-site SEO relies on promoting the website on various other websites through
inbound links, which is why it is referred to as off-site SEO. This is a particularly
large area, and some companies spend very large amounts of money on this, though
of course, this is all relative to the amount of return they get on their SEO investment.
Off-site SEO is particularly useful for gaining rankings for specific keywords within
the search engines.

Inbound links are, as we discussed earlier, an important metric in determining the
ranking of websites within the SERPs. One of the easiest ways to generate inbound
links, is with existing social networks, or social websites (forums in particular), by
adding a link to the website within our personal signatures on discussion forums.
This needs to be done carefully and considerately. If we were to sign up just to
promote our link, we would be seen as a spammer, and most sites would deactivate
our accounts. Posting comments on relevant blog entries or articles with a link back
to our site is also useful, provided the comments are appropriate, relevant, and our
own site does not compete with the article or blog in question.

Some examples of services which SEO agencies offer as part of an off-site
campaign include:

•	 Writing articles for relevant blogs or article networks with links back to
our site

•	 Guest blog posts on other blogs
•	 Online distributed press releases
•	 Link baiting (articles, content, or applications designed to generate many

comments, blog trackbacks, forwarding, and linking to; often, this is done by
posting on controversial topics within a specific niche, or by viral marketing)

•	 Link building (building high-quality, relevant inbound links)

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

https://www.google.com/webmasters/tools/home?hl=en
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=40318

Chapter 13

[407]

What to look for in an SEO company
Search engine optimization is very much an art as opposed to a science. Here
are some useful tips to consider if you do wish to use a company to manage
SEO strategy:

•	 Nobody can guarantee results—so watch out for companies that claim
they do.

•	 SEO is a long term investment. However, watch out for minimum terms
imposed by the companies; but by the same token you should appreciate
that results take time, so small (3-6 month) minimum terms are acceptable.

•	 SEO and PPC are not the same—some companies claim to offer SEO, when
all they do is set up Google Adwords.

•	 Find out about their link-building campaigns to ensure they build relevant
links, which won't have a negative effect in the long term.

•	 Audit trails—do they provide a log of work they do, links they acquire,
webmasters they contact, on-site changes? Most won't give much
information, as it is what is paid for, but make sure you get some
indication of work performed.

•	 Reports—ensure you are updated regularly with search engine performance,
and the effect their work is having on the rankings.

User retention
Another important aspect of marketing, is marketing with existing users, keeping
them coming back to the site to make the site more useful and relevant for other users.

E-mails for the user's action
Regular e-mails can remind users about the site, if they have forgotten about it,
or not had time to visit for a while. We don't want to send them lots of emails to
nag them into returning; however, we can e-mail them with relevant updates. For
example, when someone tries to connect with them on the site, or when they receive
a message through the site, we e-mail the user to notify them of this.

This also doubles as a reminder to our users, and if the user connecting with them is
of interest to them, it may help members who have lapsed in their interaction with
the site, to return.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Marketing, SEO, User Retention, and Monetization Strategies

[408]

User feedback
By asking the user for feedback and ideas for improvement, they can feel more
engaged and involved in the site. This also gives us feedback to use, ideas to discuss,
and new features to implement.

Hello there!
As we discussed earlier, newsletters are a great way to remind a user that our site is
still around, without there being a specific reason. Perhaps just to tell them what they
have been missing out on, or to ask for feedback on why they haven't participated in
a while, or to tell them about new developments and features on the site.

Monetization options
One other important consideration is how to monetize our site. While Dino Space
hasn't been designed to make a profit, it may be useful to try and recuperate
expenses such as hosting fees. Some simple options to get you started:

•	 Cafepress.com/Spreadshirt—create merchandise with your site's logo
on, and earn a percentage from sales. This can be prominently promoted
on the site.

•	 Google Adsense—Advertisement blocks from Google on the site earn
money on a per-click basis; alternatively, integrating a Google search
feature provides a less obtrusive form of advertising.

•	 Affiliate Marketing—Become an affiliate of sites such as Amazon, where
relevant products can be promoted on the site and a commission earned.

Final tips: web stats
We can monitor the statistics and performance of our site, using a number of stats
tools that are available. One such product is a very powerful statistics and analytics
package called Google Analytics, available from Google, completely free of charge.
This is useful for us to see which pages our visitors are using, and which pages are
being ignored, allowing us to either promote them more heavily, or to focus on the
more popular areas of the site.

There are also ways to integrate Google Analytics with e-commerce installations,
to try and help us to determine average income per visitor—this is particularly
useful when making use of PPC marketing, as it links in with Google's own PPC
network, AdWords.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 13

[409]

We can sign up for Google Analytics on http://analytics.google.com/, where
we are supplied some HTML code to insert into our site's footer template, so that it
can begin tracking our statistics.

We can also use tools like this to monitor Bounce Rates, to see how and why our
users leave our site and from which pages they decide to leave. We can also see
where the visitors come from, so we know which advertising sites or sites we have
links on are helping us. Statistics on error pages can be useful to help us find links
that are broken, or incoming links that are outdated, so we can either correct the
broken link, or put a redirect in from an outdated inbound link to the new location
of a moved page.

Summary
In this chapter, we looked into effectively marketing and promoting websites
and social networking websites with online marketing techniques, search engine
optimization, and user retention strategies. We also looked briefly into how we
may wish to monetize our site.

Now, not only do we have a great framework to use for our projects, but we are
placed to market and promote them effectively, hopefully generating a great
return on investment for ourselves with our own projects, and for client projects.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning for Growth
Thanks to the groundwork from Chapter 13, Marketing, SEO, User Retention, and
Monetization Strategies, we are well on the way to making Dino Space a success.
However, as we get more and more users, and our site becomes more and more
popular, we have a new set of challenges: growth and scalability.

As site usage increases, more resources are consumed on the server—depending on
the hosting provisions and resources we have at our disposal, this can lead to slower
experiences for some of our users, server failure, or some users being unable to
access the site. We can rectify this by looking at how we can get the most out of our
hardware by improving our site, and how we can scale by adding more resources
(not just by adding more servers).

In this chapter, you will learn:

•	 Why code performance is important, and how you can improve
code performance

•	 How to scale websites using cloud hosting solutions and adding additional
servers to your infrastructure

•	 What caching systems are and how they can help get the most out of
our hardware

•	 About Content Delivery Networks
•	 How to use message queues to process tasks behind the scenes
•	 When to use third-party services to make things easier

Let's look at how we can improve performance, get more out of our resources,
and plan for growth! The information contained within this chapter should either
provide a starting point for improvements and options available, or provide some
food for thought for further research.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning for Growth

[412]

Code performance
One of the most important factors when it comes to the speed, performance, and
scalability of our site, is our code. By improving the performance of our code, it
consumes fewer resources, allowing us to get more out of our current hardware.
Thankfully, because we have used the Model-View-Controller architecture, our
code is already maintainable, extendable, and flexible, which is a big advantage,
particularly with regards to plugging in new features further down the line.

So, what can we do to improve our code performance?

•	 We can profile our code to look for problems
•	 We can look for slow MySQL queries that we can optimize
•	 We can compress our output

Code profiling
We can profile our code to find bottlenecks in our code, so that we know
which aspects need improving or refactoring. Profiling tools, such as xdebug
(http://xdebug.org/index.php), are integrated into PHP to run as our scripts
run, logging performance information to a file, which we can analyze using
another suitable tool (with xdebug, we can use tools such as KCacheGrind or
WinCacheGrind).

Slow queries
MySQL can be configured to log slow queries, so that we can see which queries
are taking too long to run, so that we can investigate them, improve the queries
or improve the database scheme itself, that is, by adding more suitable indexes.
To enable the slow query log, we simply add the following line to our MySQL
configuration file (my.ini file):

log-slow-queries = dinospace_slow_queries.log

Once enabled, the query log by default logs queries that take longer than 10
seconds to complete; we can change this by adding the following line to our
configuration file:

set-variable = long_query_time = 2

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 14

[413]

Compression
By compressing our website's output, we can reduce network latency between the
server and the user, and reduce bandwidth usage, making the site load faster. While
the code won't be generated any quicker, it should be received by the user faster.

This can be done either with some Apache configuration, or by tweaking our PHP
installation. The Apache option involves installing and enabling the mod_deflate
Apache extension. More information on this can be found online, see http://httpd.
apache.org/docs/2.0/mod/mod_deflate.html and http://www.howtoforge.
com/apache2_mod_deflate.

The PHP option involves using zlib (http://php.net/manual/en/book.zlib.php),
this isn't installed with PHP by default on Linux installations, but can be installed
fairly easily—contact your web host for further information.

Once installed, there are a number of different ways in which it can be enabled to
compress the output; we can either enable it directly in our PHP.INI file, or if we
have suitable access, we can dynamically set/override the ini file's value in our PHP
script, with the following line of code at the top of our index.php file:

ini_set('zlib.output_compression', '1');

alternatively, if we are not able to set INI file values, we can use object buffering to
not send anything to the browser initially, buffering the output instead. Once all the
output has been buffered, the compression handler is called to compress the output
and send it to the browser. To do this, we simply put the following line of code at the
top of our index.php file:

ob_start('ob_gzhandler');

Useful tools and resources
Mainly related to improving client-side performance, Yahoo! YSlow is an add-on
for the Firebug extension for the Firefox web browser, which offers suggestions for
improving the performance and speed of the page load, as well as providing tools,
information, and statistics relating to the page to help us improve the speed of
the page.

http://developer.yahoo.com/yslow/

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/

Planning for Growth

[414]

As part of the Yahoo! Developer Network, they also have a number of helpful
hints and tips for improving page performance, http://developer.yahoo.com/
performance/rules.html. Some of the hints include:

•	 Putting JavaScript at the bottom of the page
•	 Cache information in AJAX calls
•	 Don't use HTML to scale images
•	 Minimize HTTP requests

There are also some useful tips in the following ComputerWorld article:
http://www.computerworld.com/s/article/9140234/Five_ways_to_improve_
Web_site_uptime_.

Server performance
So far, we have looked at improving the performance of our code. Our code runs
on services that are highly configurable, including Apache and MySQL, our PHP
installation can also be customized through various configuration files. We can
change the settings of these services too.

Apache
Our Apache configuration file (name and location depend on the setup of the server)
contain settings related to how many connections can be accepted, timeout period,
and so on.

The maximum number of clients who can connect to the server at any one time is set
by the MaxClient Directive in the configuration file; this can be increased to allow
more connections to the server, provided we have sufficient resources to allow this of
course. More information is available here: http://httpd.apache.org/docs/2.0/
mod/mpm_common.html#maxclients.

The length of time a process can take before Apache times out the request is set in
the Timeout Directive, and we can reduce this to prevent processes that are likely
to time out from consuming as much processing time. More information is available
here: http://httpd.apache.org/docs/2.2/mod/core.html#timeout.

Apache has some useful performance tuning information on their website to help get
a higher performance out of the server. More information can be found on:
http://httpd.apache.org/docs/2.0/misc/perf-tuning.html

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 14

[415]

MySQL
We can optimize MySQL for high availability and performance. Packt have
published a book on this topic, High Availability MySQL Cookbook, by Alex Davies,
https://www.packtpub.com/high-availability-mysql-cookbook/book.

Alternative web servers
An alternative to increase the performance of our web server is to use a different web
server, such as lighttpd or nginx, which are light-weight web servers, designed for
speed and performance:

•	 http://nginx.org/

•	 http://www.lighttpd.net/

Scaling
With our code optimized, and our server's resources being utilized as best as they
can, we now need to look into how we can scale our systems to easily provision
more resources as and when we need them. Options available include:

•	 VPS Cloud Hosting, which generally involves either:
	° Adding more resources to a virtualized server, or
	° Paying for only the resources we use

•	 Adding additional servers for certain functions

VPS Cloud Hosting
Cloud hosting is generally a form of VPS (Virtual Private Server) hosting, where one
or more physical machines have one or more virtual servers running on top of them.
In most cases, a high specification server has a number of virtualized servers running
on top of it, each with dedicated and guaranteed resources available, acting as far as
the customer is concerned, as their own dedicated server. When we start our website,
we won't need too many resources, so we can happily share the resources with other
users on the same server; as the site grows, we can upgrade our account to use more
resources. Some cloud solutions also allow a VPS instance to run on several physical
machines, either for redundancy (should one go down, others kick in), or to provide
more resources. By virtualizing the server, we don't need to spend money on new
hardware when we need to upgrade, or wait while a technician upgrades or
replaces hardware.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

http://www.lighttpd.net/

Planning for Growth

[416]

A number of cloud hosting providers offer ways to upgrade the resources required
dynamically, so should the site experience a spike in traffic, more resources would
be provisioned. Two examples of such providers are Amazon with their EC2 service
(Amazon Elastic Compute Cloud) and VPS.NET.

With Amazon EC2, we will only be charged for the resources our website uses,
be it storage space, bandwidth, or CPU time, which has the advantage of growing
and shrinking to meet our needs. VPS.NET has auto-provisioning functionality,
so that if load, storage space, or memory usage exceeds certain thresholds, it can
automatically, add more resources. The main difference here is that you are charged
based on a set dedicated amount of resources.

By starting with a scalable VPS provider, we can have our website up and running
with generous resources at a low cost, and can add and remove resources as and
when required easily, and if we wish, automatically.

Additional servers
Either in addition to VPS/Cloud hosting, or with dedicated servers, we can add
additional servers to the infrastructure, with each server performing certain
operations, for instance, a dedicated MySQL database server, a dedicated Apache
server, a dedicated server for sending outgoing e-mails, a Memcached server, and
so on. The advantage is that each server can be specially optimized for the services
running on it, as well as providing more resources for each aspect. The downside is
that it introduces network latency, as database query results and so on, will have to
be transferred over a network to the web server, and then sent to the user. If MySQL
is hosted on a separate server, then it should be located on the same network with a
low latency link (hardware and data center permitting).

Caching systems
Caching systems can reduce the number of database and file system calls our code
needs to make, by caching (creating a more easily accessibly copy of) commonly
used data in the systems memory.

When we needed to access the contents of a commonly used file or frequently
accessed database record, we would have the information cached, and simply check
the cache when we need to access the data. For example, static pages (such as the
about page, contact page, policies, and so on), as well as some of the templates used
for these pages, are not going to change frequently.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 14

[417]

We can adjust our system to update the cache every time we make a change to
the page or template, and have the code that accesses the data simply check for it
in the cache.

Memcached
Memcached is a popular caching system, and with some minor configuration, can be
integrated with PHP. Below is some example code showing how you would connect
to a memcached server, and get content associated with the home_page_content
key. If there was no content, then we fall back and perform a database query.

$m = new Memcached();

$m->addServer('localhost', 11211);

If(! ($pageContent = $m->get('home_page_content')))

{
 $sql = "SELECT * FROM pages WHERE reference='home_page_content' ";
 $this->registry->getObject('db')->executeQuery($sql);
 $data = $this->registry->getObject('db')->getRows();
 $pageContent = $data['content'];
}

Available caching systems
There are a number of other caching systems available, including:

•	 XCache
•	 Memcache
•	 APC—which supports PHP Opcode caching; this means our PHP code

itself doesn't need to be interpreted each time a page is loaded

Redundancy
As Dino Space becomes more popular, the consequences of downtime become more
severe. Each second of downtime is time that new users are turned away from the
site, leading them to potentially look elsewhere. It is also a time when existing users
may be put off from the site, and may look into alternative sites that may be more
reliable. This point is emphasized by the media coverage and public reaction each
time a popular social website, such as Twitter or Facebook, goes offline.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning for Growth

[418]

Redundant systems should help reduce or eliminate downtime, by providing
backups of everything, including:

•	 Replicated database servers—so if our primary database server goes offline,
a back up server kicks in. The data on this backup is up to date because it
would constantly replicate from the primary server.

•	 Redundant network connections to the data centre, so should one particular
connection become congested, or suffer failure, another provider's connection
can be used.

•	 Redundant web servers should one suffer an outage.

Most redundancy options are dependent on the services available from the data
centre the servers are hosted within. Provided we have access to shared IP addresses,
provided by the server provider/data centre, we can set up a fallback server using
Heartbeat—the primary server sends a heartbeat to the secondary server; if the
secondary server doesn't receive a heartbeat in a certain time limit, then it activates
and traffic is routed to the secondary machine instead. More information is available
on the project's website at http://www.linux-ha.org/wiki/Main_Page.

Slicehost has an excellent tutorial on setting up Heartbeat (the only slicehost-specific
aspect is requesting a failed over IP address) at http://articles.slicehost.
com/2008/10/28/ip-failover-slice-setup-and-installing-heartbeat.

Content Delivery Networks
A content delivery network is a network of servers with a number of different
geographic locations. When a user visits a website that uses a CDN, static files such
as user downloads, images, stylesheets, and JavaScript libraries are downloaded
from the visitor's closest server on the Content Delivery Network. This reduces the
number of connections to our primary web server, and increases the speed at which
the site loads for the user (while, in most cases, it won't speed up the PHP processing
or the HTML transfer, the images, and other supporting files, are usually larger and
take longer to download).

Akamai (www.akamai.com) is one CDN provider that offers more than just a content
delivery network. The following case study shows some of the benefits in a real
world situation: http://www.akamai.com/html/about/press/releases/2009/
press_071509.html.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 14

[419]

Message queues
Message queues can be used to make a record of any non-critical processing that
needs to be done, so that either another server can perform the processing, or we
can process it when resources are available.

A message queue stores a list of messages being sent either between computers or
servers, or between services running on a server. Example message queue systems
include RabbitMQ and Beanstalkd.

Message queue versus database table
If we have the need to store and retrieve a lot of messages in a queue, this can cause
table locking if a database table was used (though this can be prevented using the
InnoDB storage engine), whereas a message queue system is designed specifically
for this sort of thing, as well as providing extra support for distributing the work
from the queues across physical nodes.

What can we queue?
So, how can we benefit from a message queue? There are a number of tasks and
processes that our website does which are not critical. Examples include:

•	 Resizing images—when a user uploads a photograph, we may resize it to a
number of sizes, such as a thumbnail, profile picture size, standard size, and
keep a copy of the original

•	 Sending e-mails—when a user signs up, invites a friend, or initiates a
relationship, we send them an e-mail

•	 Deleting data—if a user removes themselves from the site, we would need
to remove their profile, and any references to them, such as relationships,
images, comments, and so on. This would involve a number of queries,
and file system processes (to remove images, and so on.)

Processing queued tasks
When we come to a situation where we need to add something to our queue, such as
a resize operation, e-mail sending, or SQL query, we can either store it as a URL that
we will call, such as: /resize/image-file-name/new-x-size/new-y-size, some text, or
some serialized data.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Planning for Growth

[420]

If we store a URL, the processes we have running to process the queue simply
needs to call the URL, which would handle that specific request. If we are sending
e-mails, we probably need to pass a fair amount of information, so it would be best
to serialize the data, and have our process detect that it needs to send an e-mail, and
use the serialized data to construct and send the e-mail.

These tasks can be performed by servers that are not busy serving pages to
our visitors.

No SQL
There are a number of database systems available that are schema-less, useful for
storing large amounts of data that doesn't need to relate to other data, such as logs,
pages, documents, and so on. Examples of systems available include MongoDB and
CouchDB. Generally, each individual record defines its own structure and fields,
allowing such systems to be flexible to the data they are needed to store.

It may be useful for us to bear this type of system in mind as we extend our site, as
we may add features that would benefit from such a system, in addition to using
MySQL for the rest of our site's functionality.

A large number of companies, including a number of social website companies,
make use of MongoDB and have listed on the MongoDB website what they
use such a database system for, http://www.mongodb.org/display/DOCS/
Production+Deployments.

Learn from the experts
Facebook and other social networking websites develop their own systems for
certain situations they encounter, either to work faster than existing solutions, be
more flexible, or because there wasn't anything available that fit their requirements.
With Facebook, a number of these have been released to the community as Open
Source projects at http://developers.facebook.com/opensource/.

One such project that has recently been launched is HipHop for PHP,
http://wiki.github.com/facebook/hiphop-php/, which converts PHP
source code into optimized C++ to help make the code execute faster. For most
uses, the performance difference won't be very noticeable, but for a very popular
site, even a small saving of CPU time means we can get more from the
same resources.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Chapter 14

[421]

Farm it out
Where possible, we can look to use third-party services for non-essential functions.
For instance, we are going to want to have e-mails at our Dino Space domain name.
By managing and receiving these e-mails on our server, we are taking resources
from our primary function—the website. We can either offload e-mails onto another
server, though this is adding additional cost, or we can look at utilizing a third-party
service, such as Google Apps—their hosted e-mail solution.

By doing this, we no longer need incoming e-mail services running on our server,
and additional resources are freed.

We don't have to just farm out non-web services, we can make use of various
APIs—as we discussed in Chapter 12, Deployment, Security, and Maintenance,
SPAM is an common problem for websites. We can either build functionality
into the site to check content against SPAM filters, and build CAPTCHA systems
to generate images for users to read to verify they are human, or we can make use
of existing APIs to do this for us, making use of their processing resources, and
reducing the work our own hardware does.

Summary
In this chapter, we have looked at how we can improve the performance of our code
and our servers to get more out of our hardware. We have also looked into a number
of hosting and scaling options to give us more resources when needed, should our
site become more popular, or have a temporary traffic spike. Caching systems can
be used to reduce database and file system calls, by keeping some information in
memory, and as we saw, this can be integrated into a PHP application. We also
looked at speeding things up for the user with Content Delivery Networks, and
queuing processes into a message queue, which can be processed when convenient,
or by another server with resources available.

We now have our social network developed with a wealth of features, hosted online,
optimized for search engines, and attracting traffic through online marketing, and
finally, optimized in terms of performance and scalability. Where our social network
goes next is really up to you; extend it to meet your needs, improve it, and hopefully,
your site will prosper. I look forward to seeing your new social networking sites on
the Web!

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Index
Symbols
$_GET variable 53
$last variable 34
1&1 Internet Inc.

about 377
URL 377

123-reg
URL 374

.htaccess file 58

A
access logs 393
addTemplateBit method 171
administrators

system events stream 197
advertising spaces

purchasing 398-400
affiliate marketing 408
Akamai

about 418
URL 418

Akismet
URL 390

Amazon EC2 416
Amazon Elastic Compute Cloud. See Ama-

zon EC2
Apache 414
APC 417
API

about 347
adding, to social networks 348
benefits 347, 348

API controller
about 355
example 355, 356

API, implementing
API controller 355
data format 354

API, methods
REST 351
RMI 351
RPC 351
SOAP 351

Application Programming Interface. See
API

A Small Orange
about 377
URL 377

authenticate registry object
amending 359, 360

authentication
404 Unauthorized status code 357
about 357
POST authentication 67
registry object 65, 67
SESSION authentication 68

authentication controller
password reminder, implementing 94, 95
username reminder, implementing 92, 93

authentication object
about 90
authentication method, calling 91
database, connecting 90
logout request, verifying 91
remember me option 92
user status, verifying 91

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[424]

B
birthdays calendar

about 272
birthdays, getting 275
birthdays, passing to calendar 275, 276
calendar, setting up 273, 274
relationship IDs, getting 273
results 276

British Telecom
about 9
URL 9

BT. See British Telecom
business logic, social networks

about 8
British Telecom 9
Dell 9
NameCheap 9
Netgear 9

C
caching systems

about 416
APC 417
Memcached 417
XCache 417

calendar, displaying
event information 272
multiple calendars 271
output, generating 266-269

calendar library
about 256
considerations 256
days in a month, calculating 262, 263
diaplaying 265
month, generating 259-261
next month 265
ordered days 264
previous month links 264
variables, creating 256-258

CAPTCHA system
about 82, 390, 421
reCAPTCHA 83
working 83

checkForAuthentication method 65
Clickatell 298
cloud hosting 375
cloud hosting, VPS 415
code performance

code, profiling 412
improving, guidelines 412
MySQL queries, optimizing 412
need for 412
resources 413
tools 413
website output, compressing 413

comments
adding, to status stream 193

comments, statuses
code, using 177, 179
posting, ways 176
update template 177

Completely Automated Public Turing test
to tell Computers and Human Apart.
See CAPTCHA system

Controller, MVC component 23
ComputerWorld article

tips, URL 414
conference talks 354
connections

managing 32-34
content delivery network (CDN) 418
controller

event, creating 290, 291
new event template 292, 293

controller, private messages
messages, composing 224-226
messages, deleting 223, 224
messages, listing 219
messages, reading 220

controller, public messages
about 199
post message box, displaying 201
profile messages, displaying 200

CouchDB 420
cPanel 376

site, backing up 391
site, restoring 391

cPanel hosting Control Panel
database, creating 378, 380

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[425]

cURL
data, posting to API 371
using 370

CURLOPT_HEADER option 370

D
data

sanitizing 37
database

configuration options, changing 384
connecting, to 32-34
creating, on hosting account 378
creating, with cPanel hosting control panel

378, 380
creating, with privileges on phpMyAdmin

380
local database, exporting 381
records, changing 383
structuring 69

database access class
functions 31

database, discussion forums
about 304
posts 304
topics 304

database table
versus message queue 419

database table, statuses
status, types 171
structure 170
types 170

data format 354
Data Protection Act

issues, covering 62
data protection legislation 387
dataToTags method 271
dedicated servers 375
delegateControl method 356
Dell

about 9
URL 9

description tag 404
Dino Net 398
Dino Planet 398
DinoSpace

about 7, 16

additional profile fields, creating 77-79
features 16
friends, adding 122
friends, listing 134
functionality areas 349, 350
media type, need for 231
members 102
profile fields 76
profile friends 137
relationships 121, 122
relationships table, structure 122
relationship, types 121
statuses 170
status stream 181, 182
user profiles 139
users, connecting with 99

discussion forums
about 304
database 304
post 305
post model 305-307
topic 308-313
topic model 308- 313

discussion, within group
group controller additions 336
implementing 340
view 338

domain
nameservers, setting for 378

domain name
registering 374
registrars 374
selecting, for site 374

domain name registrars
123-reg 374
GoDaddy 374
NameCheap 374

Drupal
about 12
URL 12

E
Elgg

about 12
URL 12

e-mail notifications, reminders 298

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[426]

e-mails
sending, for verification 86-89

event
viewing 294, 295
viewing, in action 297

event model 277-284
events

about 277
attendees 288, 289
controller 290
integrating, with calendar library 294
invitations 288, 289
RSVPs 290
upcoming events 297

events model
creating 284-287

event template
for, viewing event 296

exit() method 239

F
Facebook

about 10, 348
applications 348
features 10
URL 10

Facebook applications 13
Facebook connect 13
fetch_array method 35
files

uploading 384
file upload

processing, image manager library used
243

firewall
site, securing 388

folder structure 26, 27
foreach loop 39
framework

building 28
designing 22

friends, adding
relationship, forming 122-125

friends, automatic invitation
about 101
Gmail contacts 102

Google Friend Connect 101
Windows Live contacts 102
Yahoo! 102

friends, inviting
automatically 101
connecting, automatically 102
direct contact 100
manually 100
manually, invitation controller used 101
via e-mail 100
ways 100

friends, listing
for other users 136
steps 134, 135

Front Controller pattern
.htaccess file 58
about 24
index,php file 56, 57

G
generatePagination method 110
generateStream method

creating 190, 191
getIDsByUser method 285
getimagesize function 158
getimagesize method 237
getNetwork method 184
getObject method 30
getRelationships method 155
getSetting method 30
getter method 368
getURLData method 54
GoDaddy

URL 374
Google Adsense 408
Google Adwords 407
Google Analytics 401, 408
Google OpenSocial 13
group

controller, creating 321, 322
creating 321, 324
discussing within 335
discussion 303
group itself 315
joining 340
public groups, adding 340, 341

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[427]

template, creating 323
viewing 324

group controller additions
about 336
topic, creating 336
topic, replying to 337, 338
topic, viewing 337

group discussion 303
group model 315, 320
groups

adding 301
features 303
global/public groups 302
listing 342
membership 303
my groups 345
network specific groups 302
ownership 303
private groups 302
standard information 302
types 302

groups, listing
groups controller addition 342, 343
implementing 344
template 344

group table 315
group, viewing

controller 331, 333
group_memberships table 325
implementing 335
membership 324
membership model 325-330
view 334

H
home_page_content key 417
hosting

about 375
shared hosting 375

hosting provider
cloud hosting 375
co-location 375
dedicated servers 375
shared hosting 375
signing up, with 375

VPS 375
HTTP authentication 359
HTTP verbs 352

I
iFrame application 369
if statement 185
imagecreatefrom function 237
imagecreate function 158
image manager library

file upload, processing 243
image manager library file

working 236
image, processing

about 234
database table 234
model 235

image upload
processing 236-242

index.php file
about 24, 56, 57
amending 361, 362

InnoDB storage engine 419
Intellisoftware 298
international TLDs 374
isValid() method 368

J
Jailed FTP 388
Jailed Shell 388
JavaScript

user experience, enhancing 233
Jomsocial component

URL 12
Joomla!

about 12
URL 12

json_encode function 354

K
KCacheGrind 412
keywords tag 404

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[428]

L
lighttpd

URL 415
LIMIT keyword 35
LinkedIn

about 10
features 10
URL 10

links, sharing
about 246
database 246
model 247, 248

listMembersByLetter method 114
listMembers method 110
listRecentStatuses method 177
listUpcomingInNetwork method 297
loadFromPost method 161
local database

exporting 381
importing, to hosting account 382

M
magic_quotes_gpc setting 37
MailChimp 401
mail() function 90
mailout.class.php file 86
marketing

methods 396
marketing, methods

about 396
newsletters 401
online advertising 396
social marketing 401, 402

MaxClient Directive 414
MD5 one-way hash 69
MediaTemple

about 377
URL 377

media types
need for 231

members
creating 102
users, listing 103
users, searching 117-120

memcached 417

message queue
about 419
benefits 419
versus database table 419

method
addTemplateBit 171
generatePagination 110
getRelationships 155
listMembers 110
listMembersByLetter 114
listRecentStatuses 177
loadFromPost 161
searchMembers 120
updateRecords 147

mobile integration 348
Model, MVC component 23
Model-View-Controller (MVC) architecture

about 22
components 22

Model-View-Controller (MVC) architecture,
components

controller 23
model 23
view 23

mod_rewrite module 24, 58, 370, 376
Mollom

URL 390
monetization

options 408
MongoDB

URL 420
mutual relationships

about 131
pending requests, accepting 133
pending requests, finding 131
pending requests, rejecting 134

my groups
groups controller addition 345
implementing 346
template file 345

MySpace
about 11, 348
features 11
URL 11

MySQL 415
MySQLi functions 38

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[429]

N
NameCheap

about 9
URL 9

nameservers
setting, for domain 378

Netgear 9
newsletter advertising 400
newsletters 401
Ning

URL 13
nginx

URL 415
NoSQL 420

O
OAuth 357
object

constructing 235
Off-site SEO

about 406
examples 406

online advertising
techniques 396-400

online advertising, techniques
advertising spaces, purchasing 398-400
newsletter advertising 400
Pay-Per-Click (PPC) advertising 396, 397

on-site notifications, reminders 298
On-site SEO

about 403
headings 403
page metadata 404, 405
sitemaps 405
site speed 405
tools 405

Open_basedir restrictions 388
OpenSocial

about 349
URL 349
using 369

P
passwords

about 388, 389

resetting 96, 97
password reminder feature

implementing, in authentication controller
94

Pay Per Action (PPA) 398
Pay-Per-Click (PPC) advertising

about 396
Pay Per Action (PPA) 398
search engine 397, 398
services, working 396, 397

pending requests, finding
controller method, using 132
model method, using 131
results 133

php
//input 358

PHP
about 16
need for 16

phpMyAdmin privileges
database, creating 380

postAuthenticate method 67
POST authentication 67
POST data

sending, to API 371
post, discussion forums

about 305
post message box, public messages

controller additions 206, 207
displaying 201
new message, processing 202
status model 202-205

post model, discussion forums
about 305-307

privacy policies
guidelines 62
need for 62

private messages
about 210
database 210
implementing 228
inbox template 219
mark as read 222
message model 211-217
messages model 217, 218
message template 221
message template, creating 227

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[430]

profile
creating 80, 81
extending 248
statuses query, altering 250
status posts, processing 249

profile controller
core shared information, obtaining 150
friend sample, adding 149, 150
profile model, creating 143-149
shared information 142
user ID, obtaining 142
user name, obtaining 142
user photograph, obtaining 142

profile model
tweaking 366

profiles delegate 355-366
profile statuses query

altering 250
public messages

about 199
confirmation message, displaying 207
controller 199
implementing 209, 210
post message box, displaying 201
profile messages, displaying 200
view 208

PuTTY 392

Q
queries

executing 34, 35

R
Really Simple Syndication feeds. See RSS

feeds
redundancy 417
registration

about 70
constructor 81, 82
e-mail, verifying 86
fields 70-75
processing 80
sign up functionality 83-85

registration constructor 81, 82
registry object 28, 29, 65, 67

registry, objects
authentication 53
database access class 31
template management 39-44
URL processing 53-55

registry pattern
about 24
combining, with MVC pattern 26
dependency injection 24

relationship, forming
controller, using 129, 130
creating, checks 127
delete method, using 128, 129
model, defining 125, 126
mutual relationships 131
process 122-125

relationships model 184, 185
reminders

about 298
e-mail notifications 298
o-site notifications 298
SMS notifications 298

Remote Method Invocation. See RMI
Remote Procedure Call. See RPC
Representational State Transfer. See REST
resetPassword method 96
resize method 238
REST

about 351-359
authentivate registry object, amending 359,

360
index.php file, amending 361, 362
requests 352
response 353

RESTful PHP Web Services
URL 354

REST requests
about 352
HTTP verbs 352
resources 352, 353

RMI 351
room for improvement, messages

group messages 229
replies 229
sent items 228

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[431]

RPC 351
RSS feeds 402, 403
RSVPs 290

S
scaling

about 415
VPS cloud hosting 415

search engine optimization (SEO)
about 403
off-site SEO method 406
on-site SEO method 403-406
tips 407

Search Engine Results Pages (SERPs) 399
searchMembers method 120
security

about 386
directory listings 390
error reporting 389
passwords 388, 389
server security 387
SPAM protection APIs 390

server performance
about 414
Apache configuration file 414
MySQL 415

server security
software 387

sessionAuthenticate method 66
SESSION authentication 68
setActiveConnection method 34
setDate method 280
setReferenceType method 245
setType method 281
setTypeReference method 235
shared hosting

precautions 388
Simple Object Access Protocol. See SOAP
Singleton pattern 25
site

backing up 390
deploying 373, 374
deployment, automating 385
domain name, registering 374
domain name, selecting for 374
maintenance options 390

restoring 390
securing, with firewall 388
security 386

site, deploying
about 373
database configuration options, changing

384
database, creating on hosting account 378
database records, changing 383
domain name, registering 374
domain name, selecting 374
files, uploading 384
hosting provider 375
local database, exporting 381
local database, importing to hosting

account 382
nameservers, setting for domain 378
testing 385

siteurl setting 383
Slicehost

about 377, 418
URL 377

SMS notifications, reminders 298
SOAP 351
social marketing

about 401
RSS feeds 402, 403
Twitter 402
viral marketing campaigns 402

social networking software
about 12
Drupal 12
Elgg 12
Joomla! 12

social networking website
about 10
building, benefits 13-15
Dinospace 16
Facebook 10
features 19
guidelines 377
groups, adding 301
limitations 19
LinkedIn 10
MySpace 11
privacy policies 62
private messages 210

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[432]

public messages 199
registration 70-75
tasks 24
Twitter 11
users 63

social networks
about 7
API, adding 348
business logic 8, 9
functions 8
status stream 181, 182

SPAM 390
startFresh() method 86
static profile

about 151
contact list, obtaining 155
editing 157
relationships, improving 155
template for viewing 156
viewing 151

static profile, editing
date picker 168
profile page, editing 164-166
steps 168, 169
template file, adding 166, 167
user photograph, uploading 157-163

static profile, viewing
profile information controller 152
profile link 152
steps 154

statuses
about 170
database table, structure 170
listing 173, 174
saving 244
template improvements 171-173
types database table 170

statuses, listing
comments, options 176, 177
status list template 175
steps 176

status posts
processing 249

status stream
about 181, 182
comments, adding 193
updating 185, 186

status views
images 250
links 251
video 250

stream
building 182-184
generating 190, 191

stream controller
functions 189
generateStream method 190, 191
stream, generating 190, 191

stream model
about 182
code 182
methods, requisites 188
stream, building 182-184

system events stream
creating, for administrators 197

T
TechCrunch

URL 402
template

update status template 232, 233
template management 39-44
template manager 39
testOutput() method 266
Timeout Directive 414
toArray() method 368
topic model, discussion forums

about 308-313
toTags method 152, 283, 368
Twitter

about 11, 402
features 11
URL 11

U
URL

processing 53-55
username reminder feature

implementing, in authentication
controller 92

user object
about 63
creating 63, 64

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

[433]

user profiles
about 139
extendable profile system 140
features 139
profile controller 140-142
static profile 151

user retention
concepts 407, 408

users
about 63
user object 63, 64

users listing, members
paginated members 110-113
paginated users, listing alphabetically

113-117
pagination 103-110

V
variable

defining, for image 235
verification e-mail

sending 90
video

about 244
database 244
model 245

view
changing 232
main template 195
status type templates 196

view, discussion within group
about 338
topic, creating 338
topic, viewing 339

View, MVC component 23
viewProfile method 166

view, public messages
about 208
status, updating 208

viral marketing campaigns 402
Virtual Private Server. See VPS
VPS

about 375
cloud hosting 415

VPS cloud hosting 415

W
web hosting provider

1&1 Internet Inc. 377
A Small Orange 377
MediaTemple 377
selecting 375
selecting, guidelines 376
Slicehost 377

Web Hosting Talk
about 378
URL 378

website integration 348
WinCacheGrind 412

X
XCache 417
xdebug

URL 412

Y
Yahoo! 102
Yahoo! Developer Network

URL 414
YSlow

about 413
URL 413

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

Thank you for buying
PHP 5 Social Networking

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

ASP.NET 3.5 Social Networking
ISBN: 978-1-847194-78-7 Paperback: 580 pages

An expert guide to building enterprise-ready social
networking and community applications with ASP.
NET 3.5

1. Create a full-featured, enterprise-grade social
network using ASP.NET 3.5

2. Learn key new ASP.NET topics in a practical,
hands-on way: LINQ, AJAX, C# 3.0, n-tier
architectures, and MVC

3. Build friends lists, messaging systems, user
profiles, blogs, message boards, groups, and
more

PHP 5 E-commerce Development
ISBN: 978-1-847199-64-5 Paperback: 356 pages

Create a flexible framework in PHP for a powerful
ecommerce solution

1. Build a flexible e-commerce framework using
PHP, which can be extended and modified for
the purposes of any e-commerce site

2. Enable customer retention and more business
by creating rich user experiences

3. Develop a suitable structure for your
framework and create a registry to store
core objects

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

PHP 5 CMS Framework
Development - 2nd Edition
ISBN: 978-1-84951-134-6 Paperback: 416 pages

This book takes you through the creation of a
working architecture for a PHP 5-based framework
for web applications, stepping you through the
design and major implementation issues, right
through to explanations of working code examples

1. Learn about the design choices involved in
the creation of advanced web oriented PHP
systems

2. Build an infrastructure for web applications
that provides high functionality while avoiding
pre-empting styling choices

3. Implement solid mechanisms for common
features such as menus, presentation services,
user management, and more

Drupal 6 Social Networking
ISBN: 978-1-847196-10-1 Paperback: 312 pages

Build a social or community web site, with friends
lists, groups, custom user profiles, and much more

1. Step-by-step instructions for putting together a
social networking site with Drupal 6

2. Customize your Drupal installation with
modules and themes to match the needs of
almost any social networking site

3. Allow users to collaborate and interact with
each other on your site

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by RAYMOND ERAZO on 25th October 2010

3146 KERNAN LAKE CIRCLE, JACKSONVILLE, 32246

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: PHP Social Networking
	Introduction to social networks
	Business logic to social networks
	Examples: businesses making use of existing social networks and their own social networks

	Existing social networks
	Facebook
	LinkedIn
	MySpace
	Twitter

	Existing social networking software
	Drupal
	Elgg
	Joomla!
	Hybrid approaches

	Rolling your own
	Why roll your own?
	Easier to update and maintain
	Licensing
	Enhance knowledge
	Provide a service
	Improve business
	Improve communication

	Why use PHP?
	When to use something else

	Our site: DinoSpace
	Feature list
	Limitations

	Summary

	Chapter 2: Planning and Developing the Core Framework
	Designing the framework
	Patterns—making life easier
	MVC: Model-View-Controller
	The Front Controller pattern
	Registry
	Folder structure

	Building the framework
	Registry
	The registry object
	Registry objects

	Front Controller: single point of access
	Index.php
	.htaccess

	Summary

	Chapter 3: Users, Registration, and Authentication
	Privacy policies
	Users
	Our user object
	Our authentication registry object
	POST authentication
	SESSION authentication

	Structuring the database

	Registration
	Standard details
	Hooking additional fields on
	Processing the registration
	Create the profile
	Putting it all together: registration constructor

	CAPTCHA
	General CAPTCHA
	reCAPTCHA

	Where do I sign up?
	E-mail verification
	Sending e-mails
	Sending the e-mail verification e-mail

	Authentication with our authentication object
	Logging in
	Are we logged in?
	Logging out
	Remember me

	Help! I've forgotten!
	Username
	Password
	Let them reset the password

	Summary

	Chapter 4: Friends and Relationships
	Inviting friends
	Manually inviting friends
	Invitation controller

	Automatically inviting friends
	Google Friend Connect
	Windows Live contacts
	Yahoo!
	Gmail contacts

	Automatically connecting with friends

	Members
	Listing users
	Pagination
	Paginated members
	Paginated users by letter

	Searching for users

	Custom relationships
	Relationship types
	Relationships

	Adding friends
	Forming a relationship
	Relationship model
	Relationship controller

	Mutual relationships—accepting or rejecting
a request
	Pending requests
	Accepting a pending request
	Rejecting a pending request

	Listing friends
	Our friends
	Their friends
	Mutual friends

	Friends in your profile
	Summary

	Chapter 5: Profiles and Statuses
	User profiles
	Extendable profile
	Profile controller
	Core shared information

	Static profile
	Viewing the profile
	Relationships—some improvements
	Editing the profile

	Statuses
	Statuses database table
	Statuses types database table
	Different types of status

	Template improvements
	Listing statuses
	Templates
	In action

	Likes, dislikes, and comments
	Comments

	Summary

	Chapter 6: Status Stream
	What is a status stream?
	Stream model
	Building the stream
	Relationships—get the IDs!
	Friendly times
	The rest…

	Stream controller
	Generating the stream
	Comments, likes, and dislikes
	Comments
	Likes and dislikes

	Views
	Main template
	Status type templates

	In action
	Room for improvement
	A system stream for administrators
	Summary

	Chapter 7: Public and Private Messages
	Public messages
	Controller
	Displaying profile messages
	Display the post message box

	Displaying a confirmation message
	View
	In action

	Private messages
	Database
	Message model
	Messages model
	Controllers and views
	Listing messages
	Reading a message
	Deleting a message
	Composing a new message
	Creating a message template

	In action
	Room for improvement?
	Sent items
	Replies
	Group messages

	Summary

	Chapter 8: Statuses—Other Media
	Why support other media types?
	Changes to the view
	Template
	jQuery to enhance the user experience

	View in action

	Images
	Database table
	Model
	Class, variable, and constructor
	Processing the image upload
	Saving the status

	Video (via YouTube)
	Database
	Model

	Links
	Database
	Model

	Extending the profiles
	Processing the new status posts
	Altering our profile statuses query
	Status views
	Images
	Video
	Links

	In action
	Images
	Videos
	Links

	Repeat!

	Summary

	Chapter 9: Events and Birthdays
	Let's plan
	Calendars: what do we need to be able to do?

	Calendar library
	Generating the month
	Days in the month
	Ordered days
	Previous month
	Next month

	Displaying a calendar
	Generate and output
	Multiple calendars
	With events

	Birthdays
	Getting relationship IDs
	Setting up the calendar
	Getting the birthdays
	Pass them to the calendar
	The results

	Events
	Event model
	Events model
	Attendees, invitations, and RSVPs
	RSVPs

	Controller
	Create an event
	Calendar of events
	View an event
	Upcoming events

	Reminders
	On-site notifications
	E-mail notifications
	SMS notifications

	Summary

	Chapter 10: Groups
	Some planning
	Group information
	Types of group
	Ownership
	Membership
	Features

	A group
	Discussion
	Database
	Post
	Topic

	The group itself
	Group table
	Model

	Creating a group
	Controller
	View
	Creating a group—in action

	Viewing a group
	Membership
	Controller
	View
	In action

	Discussing within a group
	Group controller additions
	View
	Discussion in action—viewing a topic

	Joining a group
	Joining (public) groups

	Groups
	Listing groups
	Groups controller addition
	Template
	In action

	My groups
	Addition to the groups controller
	Template file
	In action

	Summary

	Chapter 11: Developing an API
	What is an API and why should we create one?
	APIs in social networks
	Facebook
	MySpace
	OpenSocial

	Some planning
	What should it do, and who should be able to do what?
	How should it work?
	How could it work?
	Let's go with REST
	Further reading

	Implementation
	Data format
	API controller
	Wait - no models?
	Authentication

	Delegating control: API controllers for our features
	Profiles delegate

	An Application Framework API
	One solution: use OpenSocial

	Consuming
	POSTing data to our API with cURL

	Summary

	Chapter 12: Deployment, Security, and Maintenance
	Deploying the site
	Choosing a domain name
	Registering a domain name
	Popular domain name registrars

	Signing up with a hosting provider
	Choosing a web hosting provider
	Considerations for hosts for social networking websites
	Popular web hosting providers

	Setting the nameservers for the domain
	Creating a database on the hosting account
	With cPanel hosting control panel
	With appropriate privileges on phpMyAdmin

	Exporting our local database
	Importing our local database to the hosting account
	Changing some of our database records
	Changing our database configuration options
	Uploading the files
	Testing

	Automating deployment
	Security
	Server Security
	Software
	Securing the site with a firewall
	Shared hosting precautions

	Passwords
	Error reporting
	Directory listings
	SPAM

	Maintenance
	Backing up and restoring your social network
	With cPanel
	Using the command line
	Do they work?

	Access logs and statistics

	Summary

	Chapter 13: Marketing, SEO, User Retention, and Monetization Strategies
	Marketing
	Online advertising
	Pay-Per-Click
	Advertising space
	Newsletter advertising

	Newsletters
	Social marketing
	Viral marketing campaigns
	Twitter
	RSS feeds

	Search engine optimization
	On-site SEO
	Headings
	Links
	Up to date, relevant content
	Page metadata
	Site speed
	Search engine goodies—sitemaps and tools

	Off-site SEO
	What to look for in an SEO company

	User retention
	E-mails for the user's action
	User feedback
	Hello there!

	Monetization options
	Final tips: web stats
	Summary

	Chapter 14: Planning for Growth
	Code performance
	Code profiling
	Slow queries
	Compression
	Useful tools and resources

	Server performance
	Apache
	MySQL
	Alternative web servers

	Scaling
	VPS Cloud Hosting
	Additional servers

	Caching systems
	Memcached
	Available caching systems

	Redundancy
	Content Delivery Networks
	Message queues
	Message queue vs database table
	What can we queue?
	Processing queued tasks

	NoSQL
	Learn from the experts
	Farm it out
	Summary

	Index

