Advanced C

CCC
CCC
CCC

Advanced C

Peter D. Hipson

s A Division of Prentice Hall Computer Publishing
PUBLISHING 201 W. 103rd St., Indianapolis, Indiana 46290 USA

© 1992 by Sams Publishing

All rights reserved. Printed in the United States of America. No part of this book may be used or
reproduced in any form or by any means, or stored in a database or retrieval system, without prior
written permission of the publisher except in the case of brief quotations embodied in critical articles
and reviews. Making copies of any part of this book for any purpose other than your own personal
use is a violation of United States copyright laws. For information, address Sams Publishing, 201 W.
103rd St., Indianapolis, IN 46290

International Standard Book Number: 0-672-30168-7
Library of Congress Catalog Card Number: 92-061304
96 95 94 93 92 876543

Interpretation of the printing code: the rightmost double-digit number is the year of the book’s
printing; the rightmost single-digit number, the number of the book’s printing. For example, a
printing code of 92-1 shows that the first printing of the book occurred in 1992.

Composed in AGaramond and MCPdigital by Prentice Hall Computer Publishing.

Screen reproductions in this book were created by means of the program Collage Plus,
from Inner Media, Inc., Hollis, NH.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Publisher
Richard K. Swadley

Acquisitions Manager
Jordan Gold

Managing Editor
Neweleen A. Trebnik

Acquisitions Editor
Stacy Hiquet

Production Editor
Mary Corder

Technical Reviewer
Timothy C. Moore

Editorial Assistants

Rosemarie Graham
Lori Kelley

Formatter
Pat Whitmer

Production Director
Jeff Valler

Production Manager
Corinne Walls

Imprint Manager
Matthew Morrill

Proofreading/Indexing Coordinator

Joelynn Gifford

Production Analyst
Mary Beth Wakefield

Book Design
Michele Laseau

Cover Art

Tim Amrhein

Graphic Images Specialist
Dennis Sheehan

Production

Katy Bodenmiller
Christine Cook
Lisa Daugherty

Denny Hager
Carla Hall-Batton
John Kane
Roger Morgan
Juli Pavey
Angela Pozdol
Linda Quigley
Michele Self
Susan Shepard
Greg Simsic
Alyssa Yesh

Index
Hilary Adams

About the Author

Peter Hipson and his wife live and work in New Hampshire. He has worked with
computers since 1972, in hardware design and software development. He has
developed numerous software programs for both PCs and larger systems. He holds
patents in the field of CPU design and has been involved with microcomputers since
their inception. Peter isthe developer of the Windows applications STARmanager and
STARmanager A/E.

You can contact Peter Hipson at P.O. Box 88, West Peterborough, NH, 03468.
Enclosing an SASE greatly enhances the likelihood of a reply.

To Bianca, who has shown me what great fun it is having a granddaughter.

Overview

Part |

Part Il

Part I

INErOAUCTION ..o s XXiii
Honing Your C Skills 1
1 The C PhiloSOPNY ..cc.voiiiiiiie e 3
2 Data Types, Constants, Variables, and Arrayscccccevvenen. 19
3 Pointers and INdireCtionccoveviniiiiiiinecece e 65
4 Special Pointers and Their Usagecccccccoevivviencciieeceieiee e 99
5 Decimal, Binary, Hex, and Octalccccccceeiiieiinieniieeens 139
6 Separate Compilation and Linkingccccceovvvirieiieninnnnns 161
Managing Data in C 189
7 C SIUCTUIES ..ot 191
8 Dynamic Memory AHOCatioNcccevvie e 227
9 Disk Filesand Other 1/0 ..o 249
10 Data Management: Sorts, Lists, and INdexescccccceeueeens 321
Working with Others 433
11 Cand Other LangauagesSccevverueeriirrieesieeieenees e 435
12 Cand Databasescccooeviiiiiiiiiiicc e 467

13 All About Header Files.......ocoooeeiieeeeeeeeeeeeeeeee e 497

Part IV Documenting the Differences 519

14 ANSI C’s Library FUNCEIONScccooviiieiiiiiie e 521

15 Preprocessor DIreCtiVESccevvveiviieeiie e 621

16 Debugging and EffiCiencyccccovveiieiiiini e 641

PartV Appendixes 677
A The ASCII Character Setccovvieiiniiiie e 679

B Compiler Variationsccccoiiieieeiieiin e 681

C INtroduction 0 CH ..o 695

D Function/Header File Cross Referencecccccooeevvvveninnns 723

Contents

INTFOUCTION ..o xxiii
Part 1: HONING YOUTr C SKillSooviiiiii e 1
1 The C PhiloSOPNY ..cc.viiiiiiiiie e 3
A Brief History of C and the Standardcccccooevviviieveiecnee 3

A Programming StYIEcooov v 11
MEMOrY MOTEIS ..o 17
SUMIMANY ...t ne e 18

2 Data Types, Constants, Variables, and Arraysccccccevvenen. 19
DA TYPES c.vveivveitresieisieeseesiee et e et sra e sra e b sreennee e 19
CONSTANTS ...t 25
Definitions versus Declarationscccccooveverieneneneeiene e 29
DECIArAtIONSeveeieceeeeeee e e 30
DEfINITIONS ..o e 33
VariabIES ..oovveieice e 35
Variable Types and Initializing Variablesccoccevevvivennnnn. 35

Scope (Or 1 Can SEe YOU) .ccvvcveiieviieieieesie ettt sre e 37

Life Span (Or How Long Is It Going To Be Here?)c......... 39

TYPE CASLING .ot 41
ATTAYS .ot e 46
Declaration Of AITaYScoeieireieieisenereese e 46
Definition of an Arraycccvoveve e 47

AITay INAEXING ..vvoviiececcce e 48

Using Array Names as POINTErSccccvevveveeiie e 55
Strings: CharaCter ArTaysS.......coeoeeveeereneseeee e seeeeee e e eneas 56

Using Arrays of POINTEIScooeieieiiiinencese s 58

Advanced C

Pointers and INAireCtionc.coeveevivininiieiicsiee e 65
Pointers, Indirection, and Arraysccccccveveieeveevesese s 65
POINTELS ... e 66
INAIFECTION ...t 69
An Example of Pointers, Indirection,

AN ATTAYS <.ttt 69
Character Arrays and StHNGSc.coevevveieere e 74
Indirection to Access Character Stringscccoeveveveveveeeeiieseineas 79
Protecting Strings iN MEMOTYc.cccvvieiierie e e see e see e 90
Ragged-Right STring Arraysccooeeeereeieerene e 92
SUMIMAIY .. 98
Special Pointers and Their USeccccccovvviiviviivei v 99
Command Line ArgumMENTSccecvveveieseeiese e e 99
FUNCLION POINTEISoviiicvieieee e 114
Menus and POINTEIS..........coiiieieie e 120
State MaChiNeScooiiiiie s 135
SUMIMAIY ..o 137
Decimal, Binary, Hex, and Octalccccovcviiiniveenieenne, 139
DECIMAL ...t 139
BINAIY e e 141
HEX o 142
OCTAl ... 144
LoOKING At @ Fileooieieiciiee e 146
Bit OPEIrAtOrSovieeiieiieiesieiee e 154
Bt FIBIAS ... 155
SUMIMANY ..ottt srae e snaeennee s 158
Separate Compilation and Linkingccccccovvveevviecvieneene, 161
Compiling and Linking Multiple Source Files..........ccccooervnnnee. 162
Compiling Multifile Programsccccoceiereininineisinnciene 164
Linking Multifile Programsccccooreiiniinneneescsese 164
USING FNCIUTE ..o 166
External Variables..........cooviiiiiiiiiiseee e 171
Using an Object Library Managercccccceveveveeieeiieereeneeseeennes 181
USING MAKE FilESoveeeieeeeee e 182

Table of Contents C

Part I1: Managing Data in C 189
T C STIUCTUIES ..ttt et 191
Using the struct KeYyWordccooeveiiininiiese e 191
ATrays Of STIUCTUIESvecvveie e 195
SErUCLUIES OF AFTAYS .ovveieiieciececie e e 200
SErUCtUres Of STFUCKUIESooveieeie e 203

Bit Fields in STrUCTUIESoeveieie e 206
Using the typedef Keywordcoeoiiiiniieiineceee 208
Using the offsetof() Macro ..o, 213
POINTErS 10 STIUCTUTIESo.vevieiieiiieieeeees e 216
Understanding UNIONScoeveiecieieie e 219
SUMIMANY ..ttt st et eenre e e nneeeneas 226

8 Dynamic Memory AHOCAtioNccooeeiiiieiie e 227
Using the malloc() FUNCEIONooeviiiiiic e 228
Using the calloc() FUNCEIONooeiviiiiiicce e 232
Using the free() FUNCLIONcccooviieecececeee e, 235
Using the realloc() FUNCLIONcoovviiiiiciccce e, 237
ALOCALING ATTAYS .oveveeieecie et e s ste e se e e sre e te e see e e sre e 244
Global Memory versus Local Memoryccccooevveeeencinnnene, 247
SUMIMANY ...ttt 248

9 Disk Filesand Other I/Occcooveiiiiieiii e, 249
File 1/O BaSICSvvvieieieieieieeie e 250
Text Files and Binary Filesc.ccccovvivevciiiiircecece e 251
Creating and Using Temporary Work Files..........ccccccvvvvivennnnne. 256
Stream Files and Default File Handles............ccooovioviiiiiivinnne 268
The SEAIN File.....ooeieece e 271

The stdout File ...coveeieeeee e 272

The SEAErr Filecc.ooveiiiiicicee 272

The StAaUX Filec.ooveieii e 273

The stdprn File ..o 274
Low-Level 1/0 and File Handlesccooveoieieniiiiiereenee, 278
Standard Low-Level File Handlesccccovovivviienieiieie e 280
Console and POrt /Occvoiiiiiiecece e 280

(DT A Lo o A 1 LT 288

Advanced C

Xii

The PC PriNter POITS.......cccveieviireee e 289
The PC Communications POITSccocooereevineneieise e 296
SUMIMANY ...ttt snaeesnne s 318
10 Data Management: Sorts, Lists, and Indexesccccccecvnenne 321
R 0] (] TSR 322
IMIBIGING e 329
PUIGING .ottt 336
Sorting, Merging, and Purging All in One........cccccvvvvveveviesnnene 343
LINKEA LISES ...ttt 344
Using Dynamic MEMOIYccecveveeieeie e eie e see e 345
DisK-BaSed LiStS........eevererririeeiiieriesce e see e 346
Double LinKed LiStS......cccvvveiieiireseeie e 346
INOEXING ..t 367
Fixed-field Disk FilES..........cccovriiiiniieieece e 392
BTrBES .. 392
SUMIMANY ...ttt e snaeennne s 430
Part H: Working With OThersccovviiiie e 433
11 C and Other LaNQUAGEScoueerernreriieeieeris e 435
OTher LANQUAGEScoverveeeiiriiriirieiee st 436
ASSEMDIY ..o 438
FORTRAN ..ottt 441
PASCAL ... s 442
BASIC .o s 443
Calling Other Languages from C..........ocooeiiiiiinineneineseienae 443
Calling Assembly from Cccoooiiiiiiiiee 447
Calling FORTRAN and Pascal from C..........cccccovevvvvevieiinnnnn, 449
Calling C Functions from Other Languagesccceevvevvevverneane. 450
Calling C from ASSEMDBIYcooveiiiiieiecee e 451
Calling C from FORTRAN and Pascalccccceeevrveirnnnnnnn 462
All the Things that Can GO WIONgcccevvrireneieieninenee 462
LOOKING At DALAc.eeveiiiiiiiieieicie e 463
Names and LIMitSccoovvirireininineeesese e 465
SUMIMANY ..ottt srae e snaeennee s 465

Table of Contents C

12

13

C and Databasesccoeviiiiiieeiii e 467
Interfacing with dBASE-Compatible Programsccoveue.e. 468
Using dBASE Files DIrectly......c.ccccevoeviviieiiivec e 468

Reading dBASE and dBASE-Compatible Files...........c.cc....... 474

Creating dBASE and dBASE-Compatible Filescc........ 484

Updating dBASE and dBASE-Compatible Files...................... 494
SUMMIAIY 1ttt nre e 494
All About Header Files........ccoovvviiiieiiiiiniie e 497
FUNCLION ProtOtYPeS ...ccvveiveiiee et 497
The ANSI C Header Filesoooviviieiiiiieeeee e 500
The assert.h File (ANSI)cooooviiiieee e 501
The ctype.h File (ANSI) oo 502
The errno.h File (ANSI) .cvooeeiee e 504
The float.h File (ANSI) c.oooviiieece e 506
The 10N File .o 508
The limits.h File (ANSI) .o 508
The locale.h File (ANSI) ...oooiiiiieeeee e 509
The MalloC.n File ..ocvvieeee e 510
The math.h File (ANSI) ..ccoovieec e 510
The memory.n File ... 511
The search.N File ..o 511
The setjmp.h File (ANSI) ...ooeiee e 512
The signal.h File (ANSI) ...ccoooviiiiieeee e 512
The stdarg.h File (ANSI) ...oooviiiiecee e 513
The stddef.h File (ANSI)ocveieieieceee e 515
The stdio.h File (ANSI) ...ccooviiecceceee e 515
The stdlib.h File (ANSI) ..o 516

SENG CONVEISION ..o 516

Memory AlIOCALIONc.ccooveieieiiie e 516

Random NUMDEKScccoviiiiiiiciee e 516

Communications with the Operating System..............cccccevee. 516

SEArCh FUNCLIONSviviiiieiiiic e 517

Integer Math ..o 517

Multibyte CharaCterscccovoveieeiere e 517
The string.h File (ANST) ..o 517
The time.n File (ANSI) c.ooooiiieee e 518
The varargs.n Fileccoooeivieiee e 518
SUMIMANY 1.ttt ettt et e e nbeeenbeeenreas 518

Xiii

Advanced C

X1V

Part IV: Documenting the Differences 519
14 ANSI C’s Library FUNCLIONScooveeiiieeie e 521
FUNCLIONS ...ttt 522
10T o) SRS 522
ADS() cvvereie et 522
Yoo 1] SRS 523
L0 1 LT) TS 523
ASIN() coveeeete e 524
ASSEIE() vvveeerrere ettt e 524
ALAN() ©ovvevecie e e 524
ALANZ2() veveiee e e 525
ALEXIT() +ovvereeeeee e 525
Y 0]) TSRS 526
ALON() ceveveeree e 526
ALON() oo 526
BSEAICN() v.vvevecee e s 527
(01| [0 ot (ISR 528
00T SR 528
0T g o S 528
ClOCK() 1.ttt 529
COS() +verrereereerentet ettt 529
COSN() caveir et s 530
CHIME() oo 530
AIFFEIME() wovvereeece e 531
AIV() coveeieee e 531
BXIE() crverrerereie ettt 532
BXP() covverereeree e 532
FADS() v 533
(0[] ISR 533
FEOT() vovveee e 533
LT 0] (RS 534
FEIUSR() oo 534
FOELC() wvvveeeeeie et 535
FOBLPOS() c.vevrerrereie sttt 535
L1015 SRR 536
{00!) IS 536

Table of Contents C

FMOA() v 537
FOPEN() v s 537
TRFINEF() oo 538
L] 010 1o T 538
FPUES() v 539
FrEAC() vt 539
L1 SRS 540
FrEOPEN() oo 540
L2201 SRR 541
FSCANT() vt 542
FSBEK() e 542
FSEEPOS() +vveverrereeeiieie et 543
FERII) oo 544
FWEIE() v 544
(0L (o]) 545
0] (ol g T) P 545
GEES() vttt 546
OMEIME() v 546
ISAINUM() vveveeiecie e e 547
ISAIPNA() ©eveeereiie e 547
1) SR 547
[0 10T SRS 548
ISGFAPN() vt 548
ISTOWET () -t 549
(1011 (SRS 549
ISPUNCE() +.veevreie ettt st sre s 549
1 0 oL) S 550
(0] o o) SRR 551
ISXATIGIT() et 551
1ADS() - 551
[0 [c o SRS 552
TAIV() o 552
LoToF:1=Tolo] 1V SR 553
[OCAITIME() .o 553
10G() vttt 554
[OGLO() +vvvevereeeneeie et 554
[ONGIMP() cveevveie e 554
MAIOC() veveeveiiece e 556

XV

Advanced C

XVI

....................... 556
oo 557
MDBIOWS() v o
MOOWC) v oo
MEMONT() v oo
MEMOMP0) v o
MEMEPY() v oo
e 561
MMSELD) v o
MR s o
OG0 v o
OMSEION) v o
PEITOT) v o
Dy 564
PN v oo
PUICD v oo
PUITTAND) e o
UL v o
(RO v o
) 567
A0 o o
FORNOC) v oo
FOMOVE() v oo
FONAMEL) s oo
(MO0 v o
gy 569
BEIUI) v o0
e o
P o
setvbuf() o
O o
g 575
I v o
(PPAI0 v o
N o
e o
BSOAMN0) cor o0
R 577
SEICAI() v

Table of Contents C

Y (111 o] SRR 578
SEICOMI() cvreieie e 579
(010 () PSSR 580
0t] o TS 580
SEFEITON() oottt 581
SEFFEIME() vt 581
SEIIEN() vt 583
Y [0 L) SRR 584
L 10010 o) PSRN 584
1 1000V S 585
SEFPOIK() c.veeveeeeeeee e 586
SEITCAN() vt 586
SEISPN() weveeeeeiese e e 587
SEESEF() coveiveee et 588
L (oo) S SUSRRN 588
(0] () IR 589
SEFEON() c.vevee e 590
SEFTOUI() vt 591
SEXFIM() e 592
Y)] 01 SRR 593
TAN() eeee e 594
TANN() e 594
TIME() oo 595
EMPFIHE() v 596
IMPNAM() oo 596
L00] (01T USRI 597
L0 U] o] o 1<1 (SRR 597
8] 0o o (PSR 597
VA AIG() vvvverereresee ettt 598
VA ENA() vttt 600
1V I L SRS 601
VEPFINEF() oo 601
VPFINEF() o 602
VSPFINEE() oo 604
WESEOMDS() ... 605
WCEOMID() vt 606
printf() FOrmMat CodeSccvevveriereieeie e 606
C ettt ekttt bRt E R bt Rt R b ettt r e e 607

XVII

Advanced C

XVili

15

LI L1 I 608
O 609
AN G oo s 610
0 USRI 610
(o RSP 610
P AN P s 611
OO OPRRN 612
U oottt et e bt e e b e e b e e b b e e e e e e b e s e b e e e be s e b e s e aree e s beesrbeeaaeean 612
D11 1 G 613
scanf() fOrmat COOESccocveueriiieiere e 614
C ettt ettt bbb ataaaaaaaeas 615
o TR 615
Lo SRR 615
D R 616
ettt ettt e e e e e e e ab— e e e e e e b e e et e e et e e s besebesearaeares 616
U ettt ettt et et e e bt e e bt e b e e e b b e e e be e e b e s e b e e abaseebaeesrereshbeesbeesaee e 617
B, F, AN G i 617
3 618
O PSSP 618
S ettt e e e e e e i —e e e e —e e e b e e e e s e e s e e e e e s e er e s beeabeearaes 618
Lo e 619
SUMMEAIY ..t bbb bbb e see e 619
Preprocessor DIreCtiVESccveviveerieie e 621
The Macro Continuation Operator (\)ccccoovvvreiernienienenenn 622
The Stringize OPErator ()covvevivieriviiese e 622
The Characterize Operator (@)ccovevvvvveveveeeeiese e 623
The Token Paste Operator (FH)cccccvveevienieninsieesieeseesee e 624
The Defined Identifier Operator (defined())cccooevevrverennnnnnn 624
The #define DITECTIVEveviiiviii et 625
The #error DIrECHIVEveviicieiie ettt 628
The #include DIreCHIVEcoocveviiiicce e 629
The #if DIFECLIVEveeieee et 629
The #ifdef DIFECLIVEvvevi i 630
The #fndef DIFECLIVEveviiveiie s 631
The #elSe DIrECLIVEcovveei et 632
The #elif DITECTIVE ..oviivveee et 633
The #endif DIFECTIVE ...ooecveeiciii s 633

Table of Contents C

16

The #IiNe DIreCtiVE ...c.ocveiviieieicere e 634
The #pragma DireCtiVeccovcvveie e 635
The mMessage PragMmacccccveeieereeieeiieeieeie e see e seesseesnne e 635
The pack Pragmac.oocovviieiienee e 636
The #UNdef DIFECTIVE ...cooivvieeeece e 637
Predefined MACr0S........oiveieie e 637
The DATE_ _MAaCIO ..cecveiecieiieie e 637
The TIME__MAaCIO ..cccocviiiiiiiiiie e 637
L 1 = Y- To] o 638
The LINE_ MAaCrO...ccccvciiece e 638
The_ _STDC_ _MACIO ..ooveieieieriieie e 638
NULL e srae e 638
The offsetof() MaCrOccveveiiicice e, 638
SUMIMANY ..ttt ettt sae e srae e st et eenbe e e b e enreas 639
Debugging and EffiCIENCYc.cccevviiiieiiiee e 641
DEDUGYING e 641
COMMON BUGS ...t 642
Rules for DeDUGYINGcoveveiriiriiieieesee e 649
Using the assert() Macroccccvvvvevevesesieie e eee e 650
Debug Strings and MESSAgESc.coveveieeriereiiie e, 652
[1] T oo =TSP 655
EFfICIBNCY et 657
32-Bit Programscceoveirirenieieesese e 658
Compiler OptiMIzationcccceoviiineieeee e 660
DireCt Video 1/Oocvoiiiiiiiiee e 667
Floating-Point Optimizationcccccevveieie i 667
INline ASSEMDBIYooiviiiiee 669
Linking for Performanceccoooveioeienens e 670
Pascal and cdecl Calling Conventionscccoceveveieinnenes 671
Precompiled HEAUENSc.ccvviriiiiiiiiiieeee e 671
Using 80286/80386/80486 Instruction Setscccccevvrveennn. 671
Using a Source Profiler ... 672
Using INtrinsic FUNCLIONS.........ccoivvviieiierec e 672
Using Memory Models ... 673
SUMIMANY ...ttt 675

XIX

Advanced C

XX

Part V: Appendixes

A

677

The ASCII
Character SEtvveeicee e 679
Compiler Variationsccccceevvveeiviee s e 681
Borland’s C++ 3.1 ...ciiicici e 682
Y Lol (010 686
CICHET.0 oot 686
QUICKC for WIindows 1.0cccoevveriiiiieir e 690
Watcom C/386 9.01covviiiiiiiece e e 692
INtroduction t0 CH++ oeviiiiice e 695
Obiject-Oriented Programming (OOP)cccccccvveveveieiiie e 696
ADSIFACTION ... 696
ENCAPSUIALION ..o s 696
HIErarchiBs.......oocvv i s 697
LEarning CH ..o 697
Overloading FUNCLIONScovvivviiee e 701
Declaring Variables When Neededcccooeevveviiiiinicecciciennan, 704
Default Function Argument Valuescccccovevvevveiecieeie e, 706
=]] =1 [0 710
References as RetUrn ValUesccooovvviiereie s 711
CIASSES ..ttt ettt ettt et et e be e be et e b b e re e e 714
Function /Header File Cross Reference..........ccccocevvvevieeinenn, 723
Lo 1= SRR 741

el

Acknowledgments

I would like to offer my thanks to the following organizations and people for their
support, help, guidance, and enthusiasm.

The Samseditorial and production staff, especially Gregory Croy, Stacy Hiquet, Susan
Pink, Mary Corder, and Rebecca Whitney, all who put enormous effort into making
this agood book. I would also like to thank Timothy C. Moore, who did the technical
editing.

Borland International Inc., Microsoft Corporation, and Watcom Products, Inc., have
provided valuable support and assistance.

Thanks to William Colley, 111, and the C User’s Group, for the Highly Portable
Utilities (CUG-236) files that are included on the sample source diskette.

Eric Jackson (“Eric in the Evening”) and public radio station WGBH for providing all
the jazz.

Thank you all.

el

Introduction

C has become one of the most frequently used computer languages. The first C
language was developed by Dennis Ritchie at Bell Laboratories in 1972 and ran on a
DEC PDP-11. The ANSI standard for C, which replaced the standard written by
Kernighan and Ritchie in 1978, is only a few years old.

C’s structure is similar to PL/I (a popular language used on IBM’s mainframe
computers), FORTRAN, Pascal, and BASIC. C is a simple language. It has only a
small group of keywords and no support for I/O or advanced math. The power
of C comes from its simplicity and its use of a standard library of functions.

Who Should Read This Book?

Advanced C is for the programmer who has some experience writing applicationsin C
or a similar language, such as PL/I or Pascal. Regardless of whether you are an
intermediate or experienced programmer, this book is intended to improve your skills
as easily as possible.

What Is in This Book?

This book has several purposes. First, it introduces advanced parts of the C language.
It also describes changes in the ANSI standard, which is the only true definition of the
C language. In addition, the book contains much of what I have learned (often the
hard way) about C programming.

Advanced C is divided into five parts, and each part can be used by itself. Part |
gets you started and lays the groundwork for the rest of the book. In Part I1, you learn
how to manage data and files when programming in C. Part I11 introduces integrating
C with other languages and interfacing with other environments such as database
programs. Part IV is a reference section that covers the header files, the intrinsic
functions, the preprocessor, and some performance and debugging techniques. Part vV

Advanced C

(the appendixes) contains an ASCII table, information about different compilers, an
introduction to C++, and a cross-reference of functions and their header files.

Many chapters contain example programs. In some chapters, a single example
program is used to demonstrate several topics in the chapter.

For a platform to develop C software, | recommend at least a 386/25, and
preferably a 386/33 or 486. A 286 will do, but most linkers and some compilers are
noticeably slower when you do not have a fast CPU. | suggest that you have at least a
100M hard disk. The compiler | use most frequently is QuickC for Windows. It is
powerful and easy to use (because it has an integrated debugging environment), and
supports both ANSI C and Microsoft’s extensions.

Conventions Used in This Book

I used the following conventions in the book:
* All program listings and code fragments are in monospace.
« All function names are in monospace.
» ANSI C keywords are in monospace.

« All function names appearing in text (not in the code) are followed by an
empty set of parentheses, for example, sprintf().

» Something that must be substituted (such as a filename or a value) is in
monospace italic.

« When a listing title shows a filename in uppercase, that file is usually found on
the sample diskette. If a filename is not given or it is in lowercase, then it is not
a separate source file on the diskette, but probably part of another file on the
sample diskette. The text usually indicates which file the code fragment is
from.

A Note on Practicing C

You can read, attend lectures, or discuss a subject, but as the saying goes, “practice
makes perfect.”

XXIV

Introduction C

Do not be afraid to practice with the programs in this book. But practice does
not mean copying a program from the diskette, compiling it, and running it. Change
the example programs. Make them do things they weren’t intended to do and learn
from your mistakes. Make backups often and program away. Because C is a powerful
language and many of us are programming on PCs using DOS (which has very poor
memory protection), be careful; it is easy to trash the disk.

Good luck improving your C programming skills, have fun writing your software,
and remember Peter’s rule: Back up your disk frequently!

XXV

Part |

Honing
Your C Skills

The C Philosophy

C probably wasn’t your first computer language. Mine was FORTRAN, and many
other people began their study of computer language with either BASIC or PASCAL.
No matter which language was your first, you probably will spend much time
programming in C from now on. This chapter covers a number of introductory topics.

A Brief History of C and the Standard

Until the past few years, no absolute standard for the C language existed. The C
Programming Language, by Kernighan and Ritchie, served as a standard, but most
compiler manufacturers added extensions and did not follow all the specifications
presented by Kernighan and Ritchie. As C became one of the most popular computer
languages for programming small computers, the need for a true standard became
apparent.

Part | « Honing Your C Skills

The American National Standards Institute (ANSI) produced standards that
help keep each of the compilers working in the same manner. These standards, which
are very exacting, spell out exactly what the language should do and what should not
happen. Specified limits and definitions exist also.

C is an interesting language. Because its syntax is simple, it’s not the most
powerful language, and it has only a few operations. Most of C’s power comes from
these attributes:

» C can address and manipulate memory by direct address. A program can obtain
the memory address of any object (both data objects and functions) and
manipulate without restriction the contents of the memaory specified by the
address. This capability is good to have because it allows flexibility. However,
you have no protection from the program overwriting critical parts of the
operating system when you are programming a PC using DOS.

 C has a powerful library of functions. This library of functions enables program-
mers to perform 1/O, work with strings (which are arrays of characters), and
perform many other tasks.

There is a lot of talk (much I consider to be blown out of proportion) about
portability. Generally, for each program, you should consider whether it is likely to be
needed on a different system, and how much effort must be dedicated to planning the
move to a future system. Some C programming is never portable. Programs written for
Microsoft Windows, for example, don’t move well to the Apple Macintosh or IBM’s
OS/2 Presentation Manager (a system much like Windows). The decision to maintain
portability is one that you must make—sometimes the effort to maintain portability
far exceeds what is required if later parts of the program must be rewritten.

The ANSI standard specified a number of language limits (see Table 1.1). Many
of these limits are really compiler limits; however, because they affect the language, you
sometimes must take them into consideration. These limits are not usually a problem;
in the ten years that I've been writing C programs, I’ve run into problems with these
limits only once or twice.

Data Types, Constants,
Variables, and Arrays

The C language offers a number of data types, which can be used for constants,
variables, and arrays. This chapter helps you become more familiar with data objects
and how to use them.

Data Types

The C language supports a number of data types, all of which are necessary in writing
programs. Because most CPUs generally support these data types directly, it is
unnecessary for the compiler to convert the data types into the types the CPU
understands. In addition to the standard types, new data types are needed, which are
often unique to a given application, and C provides the mechanisms to create and use
types of data created by the programmer.

19

Part | « Honing Your C Skills

The basic data types as they are defined by the ANSI standard are listed in Table
2.1. They are all that are needed when simpler applications are created (and are
generally adequate for many of the more complex programs).

Table 2.1. C’s data types.

Type Size Description

char 1 byte Used for characters or integer variables.
int 2 0r 4 bytes Used for integer values.

float 4 bytes Floating-point numbers.

double 8 bytes Floating-point numbers.

In addition to these data types, some of them may be used with a modifier that affects
the characteristics of the data object. These modifiers are listed in Table 2.2.

Table 2.2. C’s data type modifiers.

Modifier Description

long Forces a type int to be 4 bytes (32 bits) long and forces a type
double to be larger than a double (but the actual size is imple-
mentation defined). Cannot be used with short.

short Forces a type int to be 2 bytes (16 bits) long. Cannot be used
with 1ong.

unsigned Causes the compiler (and CPU) to treat the number as con-
taining only positive values. Because a 16-bit signed integer can
hold values between —32,768 and 32,767, an unsigned integer
can hold values between 0 and 65,535. The unsigned modifier
can be used with char, 1ong, and short (integer) types.

Each of the data types (and their modifiers) has a minimum and maximum value
(see Table 2.3). Check your compiler documentation because some compilers extend

20

Data Types, Constants, Variables, and Arrays 2

these values. Be careful not to assume that a variable created as int is either 16 bits or
32 bits. Different compilers, on different computers, may default the size of an int
variable to either size, depending on the CPU’s default integer size. If you must know
the size of the variable, be sure you specify either 1ong or short When you create it.

When you are entering constants, determining the value to use can be difficult.
For instance, if the following line isin your program, the results probably are not going
to be what you expected:

#define INT_MAX 0x8000 /* Really not a good idea! */

In this example, you expect INT_max to contain the value (-32768); the compiler
promotes the constant to unsigned, however, and the value of INT_wmaX, 32,768, is
probably not what you expect.

A much easier solution exists. A number of useful identifiers are defined in the
limits.h header file in ANSI C (see Table 2.3). Use limits.h so that predefined
identifiers can define the limits for the integer data types. The values shown in Tables
2.3 through 2.5 represent the ANSI limits, although many compilers exceed the values
shown.

Table 2.3. C’s int limits identifiers, from limits.h.

Identifier Value Description

char types
CHAR_BIT 8 Number of bits in a char type
SCHAR_MIN =127 Minimum signed char type
SCHAR_MAX 127 Maximum signed char type
UCHAR_MAX 255 Maximum unsigned char type

CHAR_MIN SCHAR_MIN Minimum char value, if characters
are unsigned

CHAR_MAX SCHAR_MAX Maximum char value, if characters
are unsigned

CHAR_MIN 0 If characters are signed

continues

Part | « Honing Your C Skills

22

Table 2.3. continued

Identifier Value Description
CHAR_MAX UCHAR_MAX If characters are signed
MB_LEN_MAX 1 Maximum number of bytes in
multibyte char
short int types
SHRT_MIN -32767 Minimum (signed) short type
SHRT_ MAX 32767 Maximum (signed) short type
USHRT_MAX 65535 Maximum unsigned short type
INT_MIN -32767 Minimum (signed) int type
INT_MAX 32767 Maximum (signed) int type
UINT_MAX 65535 Maximum unsigned int type
long int types
LONG_MIN —2147483647 Minimum (signed) 1ong type
LONG_MAX 2147483647 Maximum (signed) 1ong type
ULONG_MAX 4294967295 Maximum unsigned 1ong type

Three different-size variables can be defined for floating-point variables (see
Table 2.4). The identifiers for floating-point numbers are subdivided into three parts.
The first three letters indicate the size of the floating-point object: DBL_ for adouble,
FLT_ for a float, and LDBL_ for a 1ong double.

Table 2.4. C’s floating-point limits identifiers, from float.h.

Identifier Value Description

DBL_DIG 15 Number of
decimal digits of
precision

Data Types, Constants, Variables, and Arrays

ccll

Identifier

Value

Description

DBL_EPSILON

DBL_MANT DIG

DBL_MAX
DBL_MAX_10_EXP

DBL_MAX_EXP

DBL_MIN

DBL_MIN_10_EXP

DBL_MIN_EXP

DBL_RADIX
DBL_ROUNDS

FLT DIG

FLT_EPSILON

2.2204460492503131e-016

53

1.7976931348623158e+308
308

1024

2.2250738585072014e-308

(-307)

(-1021)

N

1.192092896e-07F

Smallest value
that, added to
1.0, makes the
result no longer
equal to 1.0

Number of bits in
mantissa

Maximum value

Maximum
decimal exponent

Maximum binary
exponent
Minimum
positive value
Minimum
decimal exponent

Minimum binary
exponent

Exponent radix
Addition round-
ing: near

Number of
decimal digits of
precision

Smallest value
that, added to
1.0, makes the
result no longer
equal to 1.0

continues

23

Part | « Honing Your C Skills

24

Table 2.4. continued

Identifier Value Description
FLT_MANT DIG 24 Number of bits in
mantissa
FLT_MAX 3.402823466e+38F Maximum value
FLT_MAX_ 10 EXP 38 Maximum
decimal exponent
FLT_MAX_EXP 128 Maximum binary
exponent
FLT_MIN 1.175494351e-38F Minimum

FLT_MIN_10_EXP

FLT_MIN_EXP

FLT_RADIX
FLT_ROUNDS

LDBL_DIG

LDBL_EPSILON

LDBL_MANT _DIG

LDBL_MAX

(-37)

(-125)

=N

5.4210108624275221706e-020

64

1.189731495357231765e+4932L

positive value

Minimum
decimal exponent

Minimum binary
exponent

Exponent radix

Addition round-
ing: near

Number of
decimal digits of
precision

Smallest value
that, added to
1.0, makes the
result no longer
equal to 1.0

Number of bits in
mantissa

Maximum value

Data Types, Constants, Variables, and Arrays 2

Identifier Value Description
LDBL_MAX_10_EXP 4932 Maximum
decimal exponent
LDBL _MAX EXP 16384 Maximum binary
exponent
LDBL_MIN 3.3621031431120935063e-4932L Minimum
positive value
LDBL_MIN_10_EXP (-4931) Minimum
decimal exponent
LDBL_MIN_EXP (-16381) Minimum binary
exponent
LDBL_RADIX 2 Exponent radix
LDBL _ROUNDS 1 Addition

rounding: near

Other identifiers generally are defined in float.h; however, they usually are either
CPU- or compiler-dependent. Refer to your compiler manual for a description of these
other identifiers, or print float.h to see whether comments in the file help you
understand the purpose of the identifiers.

Rather than code constants for these values into your program, you should use
one of the predefined identifiers shown in Tables 2.3 and 2.4. These identifiers allow
for better portability and make the meaning of your program clear.

Constants

All' homes are buildings, but not all buildings are homes. All literals are constants, but
not all constants are literals. Maybe this example is not clear, but with the const
modifier applied to a variable, it becomes nonmodifiable—a constant. Let’s look at a
few constants. Constants can come in any data type that the C compiler supports. A
special constant, the string, can be used to either initialize a character array or be
substituted for one. Table 2.5 shows a number of constants.

25

Part | « Honing Your C Skills

Table 2.5. Constants in C.

Constant Description Comments
123 int, in the smallest Never a decimal point; a unary is
size and type that allowed if the value is negative.
will hold the value Be careful not to specify a value
specified too large for the data type for which it
is being used. The C compiler may
change the size (or to an unsigned
integer) if necessary to fit the value into
the specified data type.

123U unsigned int, in the Never a decimal point; a unary is

smallest size and not allowed because the value

type that will hold must be positive. Be careful not

the value specified to specify a value too large for
the data type for which it is being used.
The C compiler may change the size if
necessary to fit the value into the
specified data type.

123L long int, Signed Never a decimal point; a unary is
allowed if the value is negative.

123UL long int, UNsigned Never a decimal point; a unary is not
allowed because the value must be
positive.

‘A’ Character constant A single character, enclosed within
single quotes. For nonprintable
characters, you can use \xnN, where NN
are valid hex digits.

“ABCDE” Character string One or more characters (to the

26

constant

limit of 509) enclosed in double
guotes. For nonprintable characters,
you can use \xnN, Where nn are valid
hex digits.

Data Types, Constants, Variables, and Arrays 2

Constant Description Comments
1.23 double—floating- Always a decimal point; both leading
point constant and trailing zeros are optional, but for

readability, at least one digit should
precede and follow the decimal point.

1.23F float—Tfloating- Always a decimal point; both leading
point constant and trailing zeros are optional, but for
readability, at least one digit should
precede and follow the decimal point.

1.23L long double— Always a decimal point; both leading
floating-point and trailing zeros are optional, but for
constant readability, at least one digit should

precede and follow the decimal point.

The suffixes shown in Table 2.5 can be in either upper- or lowercase. | prefer
uppercase because a lowercase | is difficult to distinguish from the number 1. If a
number that does not fit in the default size is presented to the compiler, it either is
changed to an unsigned type or its size is increased. As an example, when the value
45000 is encountered, the compiler assumes that is an unsigned value; 500000, which
is too large for either a signed or unsigned 16-bit value, is promoted to a 32-bit 1ong
value.

String constants present several unique situations. First, unlike numeric con-
stants, it’s possible to obtain the address of a string constant. This capability is necessary
because string functions use addresses (see Listing 2.1).

Listing 2.1. BADSTR.C.

/* BADSTR, written 12 May 1992 by Peter D. Hipson */
/* An example of changing a string constant. */

#include <stdio.h> // Make includes first part of file
#include <string.h>

int main(void); // Declare main() and the fact that this program doesn’t
// use any passed parameters.

continues

27

Part | « Honing Your C Skills

28

Listing 2.1. continued

int mainQ)

{
char szMyName[] = “John Q. Public”;
char szYourName[50];

szYourName[0] = “\0”;

strcpy(szYourName, szMyName); // szYourName is now the same as
// szMyName.

printf(“MyName “%s” YourName “%s” \n”,
szMyName,
szYourName);

strcpy(szMyName, “My New Name™); // strcpy() actually receives the
// address of the constant
// “My New Name”

printf(“MyName “%s” YourName “%s” \n”,
szMyName,
szYourName) ;

printf(“Before: MyName “%s” Constant “%s” \n”,
szMyName,
“My New Name’);

strcpy(“My New Name”, // strcpy() actually receives the address
szYourName); // of the constant “My New Name”
// This will fail and destroy the constant!

printf(“After: MyName “%s” Constant “%s” \n”,
szMyName,
“My New Name”); // The result can be seen because QuickC
// for Windows keeps identical strings
// constants with only a single copy in
// memory, and they are not read-only.

Data Types, Constants, Variables, and Arrays 2

return (0);

InListing 2.1, strepy (O receives two addresses—a destination string and a source
string. When the prototype for strcpy () is examined by the compiler, it sees that the
second parameter is a constant and that it will not be modified. The first parameter,
however—the destination—is not a constant and can be modified. Compiling the
example in the listing enables you to determine whether your compiler keeps separate
copies of strings that are identical or keeps only one copy (in an attempt to conserve
memory). You cannot depend on the compiler to store identical strings either once in
memory or separately for each occurrence. Nor can you depend on the compiler (or
the CPU) to make a string constant read-only. On some systems, this attempt causes
an error (at execution time); on others, the program generally fails.

Except for string constants, obtaining the address of a constant or modifying the
constant is not possible. Using the address of operator (&) on a constant isn’t allowed.

Because a string literal can be more than 500 characters long, and because it is
difficult (or even impossible) to edit source lines that are that long, you can concatenate
string literals. The process is easy because no operator is used—you simply follow one
string literal with a second (or third):

char szMyAddress[] =
“John Q. Public\n”
123 Main Street\n”
“Our Town, NH 03458\n”’;

In this code fragment, the variable szmyAddress prints as three lines (because of
the embedded \n newline character). The initialization is easier to read because it’s not
spread out on a single line; rather, it is formatted the way it should look.

Definitions versus Declarations

There is a difference between defining an object and declaring it. This section looks
at the differences and the information that should be provided to the compiler in
defining and declaring objects.

29

Part | « Honing Your C Skills

30

Both data objects (variables) and functions are defined or declared. This chapter
discusses only variables; however, the concepts are the same for a function also.

The difference between defining and declaring a data object is that, when a data
object is declared, only its attributes are made known to the compiler. When an object
is defined, not only are its attributes made known, but also the object is created. For
a variable, memory is allocated to hold it; for a function, its code is compiled into an
object module.

Because this chapter deals with data objects, this section looks at both declara-
tions and definitions.

Declarations

The simplest declaration of a variable is shown in the following code fragment:

void OurFunction(
int nType)

{

int nTest;
nTest = nType;

3

In the fragment, an integer variable is defined. That is, both its attributes (the
variable is an integer) were made known to the compiler, and storage was allocated.
Because the variable is located in a function, its scope is limited and its life is auto (by
default, you can change it). This means that each time ourrFunction() is called, the
storage for the variable ntest is reallocated automatically (using C’s stack). Notice that
nTest wasn’t initialized when it was declared. This isn’t good programming style. To
prevent your using an uninitialized variable, | recommend that you initialize all auto
variables.

The following fragment shows a declaration for a static variable. The difference
is that the static variable’s storage space is allocated by the compiler when the program
is compiled; and because the storage space is never reallocated, it remembers its
previous value.

Data Types, Constants, Variables, and Arrays 2

void OurFunction(
int nType)

{
static int nTest;

nTest += nType;

You do not initialize this declaration either. Fortunately, however, because the
compiler initializes static variables (to zero), the preceding function works and adds
nType t0 nTest every time the function is called. If the function were called enough
times, it is likely that nTest would not be capable of holding the constantly increasing
sum, and that an integer overflow would occur.

A fatal error? Perhaps, but on most implementations, integer overflow isn’t
caught as an error, and on these systems (and compilers), this error doesn’t cause any
warning messages to be displayed to the user. The only solution is to make sure that
nType, Wwhen added to nTest, doesn’t overflow.

Whenever a variable is defined within a function, it has local scope. WWhenever a
variable is defined outside any functions, it is said to have global scope.

In each of the preceding examples, you have created a variable that is known
within the function and that cannot be referenced by any other function. Many
programmers (almost all of whom are very good programmers) will argue that a
variable should be known within a single function, and for any external data objects
to be known, the objects should be passed as parameters.

Experience has shown, however, that this viewpoint can be idealistic. You often
will want to share variables between a number of functions, and these variables may
be unknown to the caller. Common uses include common buffers, storage areas, flags,
indexes, tables, and so on.

To enable a variable to be used by more than one function, it must be declared
outside any function—usually very near the top of the source file (see Chapter 1, “The
C Philosophy™). An example is shown in Listing 2.2.

31

Part | « Honing Your C Skills

32

Listing 2.2. An example of a global variable, in a single source file.

long int 1Sum; // Using “int” is optional.
long int 1Count;

void Sumlnt(
int nltem)

ISum += (long)nltem;
++I1Count;

}

void Sublnt(
int nltem)

ISum -= (long)nltem;
—ICount;

}

int Average()

{

int nReturn = 0;

nReturn = (int)(ISum 7/ ICount);

return (nReturn);

The preceding code fragment has a set of two functions that add to a sum and
count (used to create an average), and return an average.

If you look at the average() function, you may wonder why | thought that |
could divide two 1ong (32-bit) integers and be sure that | would get a returned value
that fit in a short (16-bit) integer. The answer is easy because | know that I've never
added to the sum a value that was larger than would fit into a short integer, and that

Data Types, Constants, Variables, and Arrays 2

when the sum was divided by the count, the result had to be smaller than (or equal to)
the largest value added. Or, will it? No. I made a bad assumption because sumint() can
add a large number, and subint() then could remove a smaller number.

Again, in the preceding example, all three of the functions are located in a single
source file. What if each of these functions is large and you need to have three source
files? For that, you must use both declarations and definitions.

Definitions

Assume that your three functions are larger than they really are, and that each one
therefore has its own source file. In this case, you must declare the variables (butin only
one file) and then define them in the other files. Let’s look at what this declaration
would look like. Listing 2.3 shows each of the files.

Listing 2.3. An example of a global variable, in three source files.

/* SUMINT.C routines to sum integers and increment a counter. */
/* Declare the variables that will be shared between these functions. */

long int 1Sum; // Using “int” is optional.
long int 1Count;

void Sumlnt(
int nltem)

ISum += (long)nltem;
++1Count;

/* Declare the variables that will be shared between these functions. */

continues

33

Part | « Honing Your C Skills

34

Listing 2.3. continued

extern long int 1Sum; // Using “int” is optional.
extern long int ICount;

/* SUBINT.C routines to de-sum integers and decrement a counter. */

void Sublnt(
int nltem)

ISum -= (long)nltem;
--I1Count;

/* AVERAGE.C routines to return the average. */
/* Declare the variables that will be shared between these functions. */

extern long int 1Sum; // Using “int” is optional.
extern long int ICount;

int Average()

{
i

nt nReturn = O;
nReturn = (int)(ISum 7/ ICount);

return (nReturn);

Notice that the two variables 1sumand 1countinthe SUBINT.Cand AVERAGE.C
files are defined—using the extern attribute. This definition tells the compiler what
the variables’ attributes are (1ong int), and tells the compiler not to allocate any
memory for these variables. Instead, the compiler writes special information into the
object module to tell the linker that these variables are declared in a different module.

Data Types, Constants, Variables, and Arrays 2

In both files, this information constitutes a definition of the variable, but not a
declaration (which would have allocated the storage for the variable three times—once
for each file).

You might ask what would happen if the variables never were declared in any
module. The linker (not the compiler) usually is the one to complain, by displaying
an error message. The typical error message is that an object was undefined (the
message provides the name of the object). Don’t confuse the linker’s use of the word
defined with the C compiler’s use of it: The linker doesn’t use the word defined in
exactly the same way as the compiler uses it.

When ANSI C uses the modifier static, its meaning changes depending on the
context of how itis used. To help you understand the differences, the following section
describes variables and their scope and life span.

Variables

Variables make it all happen. Unlike constants, a variable data object can be modified.
C’s use of variables can be rather complex when you consider its capability to modify
any variable either directly or by using its address. Any data object that can be defined
asasingular variable can be defined also as an array. The definition (and use) of arrays
is discussed later in this chapter.

Variable Types and Initializing Variables

A variable can be of any type that C supports: an integer or character, or composed of
compound data objects—structures or unions. This section discusses some examples.

In the following declaration, ncount is an integer:
int nCount; /* An integer of default size, uninitialized */

On most PCs, it is a short int; when it is compiled with one of the 32-bit
compilers (or under a different operating system), however, it can be a 32-bit 1ong
integer.

long ICount = 0; /* An integer of long size, initialized */

This declaration leaves no doubt about the size of the object. First, because 1ong
and short are defaulted to integer types (to create a 1ong double, you must specify 1ong

35

Part | « Honing Your C Skills

36

double in your declaration), the keyword int is optional. It might be better style to
include it (1 usually try to). The variable 1count is initialized explicitly; if it were a static
variable, this initialization would be optional, but by including it, you can be sure of
its value.

char cKeyPressed = “\07;

This declaration is interesting: Because the data type is character, it must be
initialized with the correct type. Because character constants are enclosed in single
quotes, this initialization works well. I don’t recommend it, but you can use

char cKeyPressed = (char)NULL;

Because the nuLL identifier is intended for use as a pointer value, the cast to type
char isn’t a smart idea. This hasn’t prevented much C code from being written in
exactly this way.

Look at the following floating-point number:
float fTimeUsed = 0.0F;

If this code had been written before the ANSI C standard was written, the
initialization probably would look like this:

float fTimeUsed = (float)0.0;

It was necessary to cast the double t0 a float because there was no other way to
specify a float value.

Because the default floating-point constant size is double, the following initial-
ization is fine.

double dTimeUsed = 0.0;

ANSI introduced the 1ong double, a data type that was not often found in various
C implementations:

long double fTimeUsed = 0.0L;

Again, because the default floating-point constantisa double, the size is specified
in the initializer. This specification definitely is much easier than specifying a cast of
(long double), unless you like to type.

This chapter discusses character string declaration later, in the “Arrays” section.
In all cases, C creates strings using arrays of type char because there is no distinct data
type for strings.

Data Types, Constants, Variables, and Arrays 2

Scope (Or I Can See You)

Thescope of avariable is often one of the things programmers don’t understand at first.
Depending on where they are declared, variables can be either visible or not visible.

Let’s look at an example of scope that shows some poor programming practices.
SCOPE.C is created in Listing 2.4. Because the program has two variables with the
same name, it can be difficult to know which variable is being referred to.

Listing 2.4. SCOPE.C.

/* SCOPE, written 15 May 1992 by Peter D. Hipson */
/* An example of variable scope. */

#include <stdio.h> /* Make includes first part of file */
#include <string.h>

int main(void); /* Declare main() and the fact that this program doesn’t
use any passed parameters. */
int mainQ)

{
int nCounter = 0;

do
{

int nCounter = 0; /* This nCounter is unique to the loop. */
nCounter += 3; /* Increments (and prints) the loop’s nCounter */
printf(“Which nCounter is = %d?\n”, nCounter);

3

while (++nCounter < 10); /* Increments the function’s nCounter */

printf(“Ended, which nCounter is = %d?\n”, nCounter);

return (0);

37

Part | « Honing Your C Skills

This is the result of running SCOPE.C:

Which nCounter is = 3?
Which nCounter is = 3?
Which nCounter is = 3?
Which nCounter is = 3?
Which nCounter is = 3?
Which nCounter is = 3?
Which nCounter is = 3?
Which nCounter is = 3?
Which nCounter is = 3?
Which nCounter is = 3?

Ended, which nCounter is = 10?

Notice that ncounter was never greater than three inside the loop. The reason is
that the variable is being reallocated from within the do{3 block, and, because it is
initialized, it is set to zero when it is reallocated. To create a variable that can be used
intheloop and still not have scope outside the loop, you have to create a dummy block:

{

int nCounter = 0; /* This nCounter is unique to the loop */

do

{
nCounter += 3; /* Increments (and prints) the loop’s nCounter */
printf(“Which nCounter is = %d?\n”’, nCounter);

3

while (++nCounter < 10); /* Increments the function’s nCounter */

Thisexample doesn’t work, however, because thewhi1e()’s use of ncounter then
uses the wrong ncounter. Only one solution exists: Use unique names for variables
when you are declaring them from within a block in a function. Resist the urge, if you
are using the style shown in Chapter 1, “The C Philosophy,” to redefine the for () loop
index variables—i, j, and so on. Listing 2.5 shows the successful implementation of
SCOPE.C.

Listing 2.5. SCOPEL.C.

/* SCOPE1, written 15 May 1992 by Peter D. Hipson */
/* An example of variable scope that works. */

Data Types, Constants, Variables, and Arrays 2

#include <stdio.h> /* Make includes first part of file */
#include <string.h>

int main(void); /* Declare main() and the fact that this program doesn’t
use any passed parameters. */
int mainQ)

{

int nCounter = 0;

-

nt nCountLoop = 0; /* This nCounter is unique to the loop */

do
{

nCountLoop += 3; /* Increments (and prints) the loop’s
nCounter */

printf(“nCountLoop is = %d?\n”’, nCountLoop);
b

while (++nCounter < 10); /* Increments the function’s nCounter */

T
printf(“Ended, nCounter is = %d?\n”, nCounter);

return (0);

Using unique variable names is the only way to guarantee that there will be no
confusion over which variable is being used. This is a good case of “the language lets
you do something, but you really don’t want to.”

Life Span (Or How Long Is It Going To Be Here?)

Determining how long a variable will be kept is another problem that perplexes
aspiring programmers. Let’s look at the keyword modifier static. This modifier has
several purposes that, unfortunately, are related.

39

Part | « Honing Your C Skills

40

When static is used on a variable found within a function or block, it tells the
compiler never to discard or reallocate the variable. The variable is created at compile
time and is initialized to zero. The opposite of static in this situation is auto (the
default). That variable, found inside a function or block, is reallocated every time the
function or block is entered.

When staticisused onavariable that is defined outside any functions or blocks,
its meaning is that the variable is known to only those functions contained in the
specified source file, and are not known outside the source file. When a variable is
known outside the source file, it is called an external variable. (Don’t confuse this with
the keyword extern.) The extern keyword tells the compiler that the variable is being
defined (and not declared). Because extern and static conflict, they cannot be used
together. The program LIFETIME.C, in Listing 2.6, shows a variable’s lifetime.

Listing 2.6. LIFETIME.C.

/* LIFETIME, written 15 May 1992 by Peter D. Hipson */
/* An example of variable lifetime. */

#include <stdio.h> // Make includes first part of file
#include <string.h>

int nLife = {56}; // Initialize to 5, default is O.

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

void DisplayLife(void); // Define DisplayLife()
int mainQ)
{
int nCounter = 0;
do
{

int nCountLoop = 0; /* This nCounter is unique to the loop */

nCountLoop += 3; /* Increments (and prints) the loop’s
nCounter */

Data Types, Constants, Variables, and Arrays 2

nLife += nCounter;
printf(““nCountLoop is = %d\n”, nCountLoop);
3
while (++nCounter < 10); /* Increments the function’s nCounter */
DisplayLife();
printf(“Ended, nCounter is = %d\n”, nCounter);
return (0);
3
void DisplayLife()

{

printf(“DisplayLife(), nLife = %d?\n”, nLife);

INnLIFETIME.C, thevariable nLife isknowntoboth main() andpisplayLife().
This sharing of the variable is an acceptable programming practice and is commonly
used as outlined previously.

In the preceding example, if the declaration of nLife had been the following:
static int nLife = {5}; // Initialize to 5, default is zero.

the result would have been the same. The reason is that only one source file is in this
program; therefore, nLife had to be visible in only one file. Whenever possible,
remember to make your external variables static: If they are known in only one source
file, they are much less likely to be modified unintentionally by another functionina
different source file.

Type Casting

This chapter has referred to type casting, but what is a cast? A cast is C’s way of
converting a variable of one type to another type. This topic is very important when

41

Part | « Honing Your C Skills

42

errorsand misuse of a variable’s types occur. Nothing is more disastrousina C program
than inadvertently assigning a pointer to an integer using a cast and not catching the
error.

Won't the compiler give a message? No. If you cast one type of variable to a
different type, the compiler assumes that you know what you are doing, and it says
nothing. There is a time and a place for a cast. Before using one, however, be sure to
look carefully at your code and determine that the effect of the cast (or the lack of the
cast) is what you want and expect.

Listing 2.7 shows the CASTS.C program. A number of variables, all initialized,
are in this program. First, the initialized values of each variable are printed, a few
assignments are made, and then the result of these assignments is printed.

Listing 2.7. CASTS.C.

/* CASTS, written 15 May 1992 by Peter D. Hipson */
/* Using casts to change a data type. */

#include <stdio.h> // Make includes first part of file
#include <string.h>

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

int mainQ)

{
float fvalue = 123.0F;
double dvalue = 987.0;

long double ddvalue = 123123123123.0L;

int ninteger = 12345;

int nintegerAgain = 12345;
long ILong = 987;

unsigned long ulLong = 987;

char cChar = “A”;

printf(* fvalue %f \n dvValue %If \n ddvalue %LFf \n *
“ninteger %d \n ILong %ld \n ulLong %lu \n cChar %c\n”,
fvalue,

Data Types, Constants, Variables, and Arrays

/*

/*

dvalue,
ddvalue,
ninteger,
ILong,
ulLong,
cChar);

These assignment statements generate a warning message
about type conversion. */

ninteger = dValue;

ILong = ddvalue;

ulLong = ddvalue;

cChar = nintegerAgain;

printf(*“\n fvalue %f \n dvalue %If \n ddvalue %Lf \n

“ninteger %d \n ILong %ld \n ulLong %lu \n cChar %c\n”,
fvalue,

dvalue,

ddvalue,

ninteger,

ILong,
ulLong,
cChar);

With a cast, there is no warning message;
however, the conversion is the same */

ninteger =
ILong =
ulLong =
cChar

(int)dvalue;
(long)ddvalue;
(unsigned long)ddValue;
(char)nlintegerAgain;

printf(*\n fvalue %f \n dvalue %If \n ddvalue %Lf \n
“ninteger %d \n ILong %ld \n ulLong %lu \n cChar %c\n”,

fvalue,
dvalue,

ddvalue,
ninteger,

ILong,
ulLong,

continues

43

Part | « Honing Your C Skills

Listing 2.7. continued

cChar);

printf(*“\nNotice that “lLong” and “ulLong’”
“both have the wrong value.\n);

return (0);

After compiling and running CASTS.C, you get the following result:

fvalue 123.000000

dvalue 987.000000

ddvValue 123123123123.000000
ninteger 12345

ILong 987

ulLong 987

cChar A

fvalue 123.000000

dvalue 987.000000

ddValue 123123123123.000000
ninteger 987

ILong -1430928461

ulLong 2864038835

cChar 9

fvalue 123.000000

dvalue 987.000000

ddValue 123123123123.000000
ninteger 987

ILong -1430928461

ulLong 2864038835

cChar 9

Notice that “lILong” and “ulLong’ both have the wrong value.

You may want to know how ulLong managed to get such a strange value. Your
first guess probably is that it should have received the least-significant digits from
ddvalue; there seems to be no relationship, however, between the value 123123123123

Data Types, Constants, Variables, and Arrays 2

and the result held in uiLong of 2864038835. The difference is easy to explain, though,
when you look at the hex values of the converted number. The value 123123123123 is
too largetostore inasingle 32-bit unsigned (or signed) integer. The hex representation
of 123123123123 is 1c AA B5 €3 B3, a value that requires five bytes to store. Because
ulLong has only four bytes, the leading digits, 1c, are truncated, leaving the result that
is assigned to ulLong: AA B5 c3 B3 (2864038835 in decimal).

This same type of truncation happens when a short int is assigned a value that
wasstored ina 1ong intthatwastoo large. For example, if the value 123123123 is stored
inulLong, When it isassigned to an unsigned integer the result is 46515 (see Table 2.6).

Table 2.6. Examples of conversions of C data types.

Original Original Original Result Result
data type in decimal in hex Conversion in hex in decimal

longint 123123123 0x756B5B3 To short 0xB5B3 46515
int, by
truncating
(the leading
0x756 is
dropped).

short 12345 0x3039 Tochar by 0x39 ‘9’
int truncating

and type

change (the

leading 0x30

is dropped).

long 123123123123 0x1CAAB5C3B3 Convert to 0xAAB5C3B3 2864038835
double integer,

and truncate

(the leading

0x1Cis

dropped).

Asshown in Table 2.6, it’simportant to remember that truncation occurs using
the internal format of the number, not the number you see and use. It is easy to lose
the number you had, and if you are changing types (such as from integer to char), the
result can be difficult to predict.

45

Part | « Honing Your C Skills

46

Casts have their place in C programming. Because your goal should be to have
your program compile with no warning messages, a cast can sometimes be the only
way to suppress a warning.

When a castisused onaparameter used in a function call, the effect is predictable:
First, the variable is converted to the correct type, and then it is passed. If you have
prototyped the function correctly, the compiler knows the data types of the parameters
and ensures that the conversions are completed, giving whatever warnings are
appropriate. If no parameter types are provided with the prototype or the prototype
is missing, the compiler doesn’t know the correct types, makes no conversions for you,
and issues only a missing prototype message.

Arrays

Arrays are collections of identical data objects, known by a common name and
addressable either as a group or as a single object. Any data object that can be defined
can be defined as an array.

Declaration of Arrays

Like a single data object, arrays have to be declared. The process of declaring an array
is not difficult. You must, however, provide the compiler with some more information.
You must tell how many of the desired data objects will be found in the array. For
example, an array of int may be defined as

int nArray[15];

In this declaration, an array of integers has been created (remember that a
declaration allocates memory). Thefirst member in the array isaddressed as nArray[o],
and the final member is addressed as narray[14]. Here’s an example of one of the most
common coding errors:

#define MAX_SIZE 20

int nArray[MAX_SIZE];
int i;

/* Other lines of code */

Data Types, Constants, Variables, and Arrays 2

for (i = 1; 1 <= MAX_SIZE; i++)
{

nArray[i] = i;
3

In the preceding fragment, the array element nArray[15] is initialized. Your
program crashes because there is no element 15. The probable result is that some part
of the program (often much later past the loop) that probably is not related to the failed
part either produces incorrect results or simply crashes and dies. Also, the array element
nArray[0] is never initialized because the loop starts with the second element in the
array.

When a for() loop is used to initialize an array, always make sure that the
following two statements are true:

1. The initial index value is zero (unless there is a valid reason for some other
starting value).

2. When the array is being tested to the end, the test does not exceed the number
of elements defined.

An example of the preceding loop being written correctly shows that the first
elementisinitialized correctly and that the loop ends with the last element, nArray[14]:
for (i = 0; i < MAX_SIZE; i++)
{
nArray[i] = i;
}

Working with arrays can be difficult, especially when their bounds are exceeded.
Many C implementations have little or no array bound checking. Generally, you
should be sure that you have not exceeded the bounds of any arrays in your program.

Definition of an Array

An array can be declared with the following line:
int nArray[15];

When an array is external (defined in a different source file), it must be defined
inany other source files that may need to access it. Because you don’t want the compiler
to reallocate the storage for an array, you must tell the compiler that the array is

47

Part | « Honing Your C Skills

48

allocated externally and that you want only to access the array. To do this, you use an
array definition, which might look like this:

extern int nArray[];
This statement tells the compiler two important things:
1. The array has been declared (and storage allocated) in a different source file.
2. The size of the array is unknown.

Because the compiler knows only what you tell it (the compiler doesn’t search
your source files to find where narray[] was declared), it needs at least the name of the
array and its type (so that the array can be indexed properly). Although it’s not
necessary, especially in dealing with single-dimensional arrays, to tell the compiler the
number of elements in an array, the compiler has no way of knowing where the end
of the array is. You must make sure the array is used properly and you don’t exceed the
bounds of the array.

If you choose to use the following definition:
extern int nArray [MAX_SI1ZE];

you will tell the compiler at least the number of elements in the array. This is a good
startin being able to ensure that you have not exceeded the bounds of the array. Again,
note that the majority of C compilers (whether ANSI or not) do not check array (or
string) bounds.

Array Indexing

When C stores an array in memory, it uses a rather complex set of pointers. Generally,
you have to consider only that ablock of memory has been allocated for the array. Then
you can work with this memory and let C do the address computations for you.

At times, however, it’s necessary to work with the array as a single object. The
most common time is when the array must be passed to a function. The most common
occurrence of arrays passing to functions is when you pass a string to a character
function, such as C’s strien() function.

Let’s look at a simple program that creates one-, two-, and three-dimensional
strings. ARRAY1, in Listing 2.8, creates three arrays, initializes them using the
standard C array-subscripting techniques, and then accesses the members in the string
using an alternative array indexing method. (I'm not saying that you should use this
method.)

Data Types, Constants, Variables, and Arrays 2

Listing 2.8. ARRAY1.C.

/* ARRAY1, written 18 May 1992 by Peter D. Hipson */
/* A program that demonstrates multidimensional arrays. */

#include <stdio.h> // Make includes first part of file
#define MAX_COMPANIES 3
#define MAX_CARS 5

#define MAX_MODELS 10

// This is a 10-element array.
int nArrayl[MAX_CARS];

// This is a 10-by-5 array.
int nArray2[MAX_CARS][MAX_MODELS];

// This is a 10-by-5-by-3 array.
int nArray3[MAX_CARS][MAX_MODELS][MAX_COMPANIES];

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

int main(Q)

{

int i;
int i;
int k;

for (i = 0; 1 < MAX_CARS; i++)
{
nArrayl[i] = i;

for (j = 0; j < MAX_MODELS; j++)
{
nArray2[i1[J] = G * 10) + i;

for (k = 0; k < MAX_COMPANIES; k++)
{

continues

49

Part | « Honing Your C Skills

50

Listing 2.8. continued

nArray3[i][J1I[k] = (i * 100) + (J * 10) + k;

}
}
}
for (i = 0; i < MAX_CARS; i++)
{
printf(“%3.3d “, *(nArrayl + i));
}

printf(*\n™);

for (i = 0; i < (MAX_CARS * MAX_MODELS); i++)

{
if ((i % MAX_MODELS) == 0)
{
printf(*\n”);
}
printf(“%3.3d “, *(*(nArray2) + i1));
}

printf(*\n™);

for (i = 0; i < (MAX_COMPANIES * MAX_CARS * MAX_MODELS); i++)

{
if ((i % MAX_COMPANIES) == 0)
{
printf(*\n”);
}
printf(“%3.3d “, *(*(C*(nArray3)) + i));
}

printf(*\n™);

// Notice that string concatenation makes the printf() format
// string more readable. Also note the blank line between the
// format string and the other arguments to printf().

Data Types, Constants, Variables, and Arrays 2

printf(
“&nArray3 %4.4X \n”
“&nArray3[0][0]1[0] %4.4X \n”
“nArray3 %4.4X \n”
“*(nArray3) %4.4X \n”
“*(*(nArray3)) %4.4X \n”
“*C*(*(nArray3))) %d \n”,

&nArray3,
&nArray3[0][O][0],
nArray3,
*(nArray3),
((nArray3)),
**(*(nArray3))));

printf(*\n”);

printf
“&nArray3 %4.4X \n”
“&nArray3[0][0]1[0] %4.4X \n”
“nArray3 + 1 %4.4X \n”
“*(nArray3 + 1) %4.4X \n”
“*(*(nArray3 + 1) + 1) %4.4X \n”
“CC*(nArray3 + 1) + 1) + 1) %d \n”
- (nArray3)) + (1 * (10 * 3)) + (1 * 3) + (1))) %d \n”
“nArray3[1][1]1[1]1 %d\n”",

&nArray3,

&nArray3[0][O][0],

nArray3 + 1,

*(nArray3 + 1),

((nArray3 + 1) + 1),

**(*(nArray3 + 1) + 1) + 1),

*C*C(nArray3d)) + ((1 * (10 * 3)) + (1 * 3) + (1)),
nArray3[11[1]1[1]

)

printf(*\n”);

return (0);

o1

Part | « Honing Your C Skills

52

In ARRAY1, notice the three printf() statements. Each of the three arrays is
accessed in a slightly different manner. This difference, due to the different number
of dimensions in each array, dictates how you access them.

The single-dimensional array is the simplest type of array in C. To initialize the
single-dimensional array, narray1[1, you use a simple loop, which sets each element
equal to its index:

for (i = 0; i < MAX_CARS; i++)

{
nArrayl[i] = i;
}

Next, to initialize the two-dimensional array, nArray2[], you use a pair of loops,
one for each index. To initialize the elements, you add a simple math statement that
computes the initializer value based on the indexes:

for (i = 0; 1 < MAX_CARS; i++)

{
for (J = 0; j < MAX_MODELS; j++)
{
nArray2[i1[J] = 4 * 10) + i;
¥
}

This array, which is more complex than a single-dimensional array, is still easy
to use because it has only two indexes.

Next, to initialize the three-dimensional array, narray3[1, you use three loops,
one for each index. To initialize the elements, you use a simple math statement that
computes the initializer value based on the indexes:

for (i = 0; 1 < MAX_CARS; i++)

{
for (J = 0; j < MAX_MODELS; j++)
{
for (k = 0; k < MAX_COMPANIES; k++)
{
nArray3[i][J][k] = (i * 100) + (J * 10) + k;
}
}
}

Data Types, Constants, Variables, and Arrays 2

This array, still more complex than either a single- or two-dimensional array, is
still easy to use, even with its three indexes. When you are using arrays with a large
number of dimensions, you must make sure that the correct values are being applied
to each of the indexes. Errors, which usually occur in transposing an array index
position, can lead to innumerable problems and can be very difficult to find and
correct.

This discussion leads to how an array is stored in memory. The methods of
accessing an array, if you simply use C’s array indexing, are of no great importance. If
you are writing a program, however, that needs to access the array in ways other than
the simple index method that C supports, you can benefit from an understanding of
how C accesses the array.

First, let’s look at a single-dimensional array. In memory, the array’s name is a
pointer to the first element in the array. If this pointer is incremented, you can point
to successive elements in the array. Figure 2.1 is an example of a single-dimensional
array and how it is accessed.

Il adsyE]; ™ Dalee allarey| e 11 siembem, B Graugh 10 %

niyzy mirmy seamam e » golete i the e vt jn diesswy. This el
=) mlemeid mn be mid rmred un g sk Sach wuccsrpive shvmpen
| '.“'-I By S nicewind by |Beteninlieg ik, 82 i Ynlnsgs 4 & shieh
&l mecess B 8™ alainand ln iy, T8 okl tha il of Hhs
Beabalurrraid fa lbs array, e Enfnai].

Sl oy Ty Tnfinmg inA e infimag Ty i oy
l-l-. I-|| 11-? I-l-i If.‘ l-l-u 11-:"
L] f . . —1
= L L JTal T |
z i . 3 i = z u

Figure 2.1. A single-dimensional array in memory.

Figure 2.1 shows that a single-dimensional array is simply a pointer that points
to the first element in the array. Each successive array element is accessed by
incrementing the pointer by the size of the array’s elements.

In Figure 2.2, you can see that a two-dimensional array is a set of pointers that,
when unmodified by the array index values, point to the firstelement in thearray. Each
successive array element isaccessed by incrementing the pointers by the size of the array
and the array elements.

53

Part | « Honing Your C Skills

o4

Int ey [S0]; & dediing m hen dirssnedonsd ey, 5 by 18 aleavests fa alee Y

eaerwy e ssimine & polmier 42 e Seef elament in B vy, which iz
moremesedad By tho meder mises.

bty

D 7 niarmy o (axind raed) o (desinect aolym)

Eddress:] 2 4 H ¥ | 1%
00 | OE | M0 | EEE | WS | D FifE
v | omn | o | e | o || o
ow || g | men | o || |
s [om | o | pen | o | e | | P
B | MM | CNCE | S| BEER | RN 1]

Figure 2.2. A two-dimensional array in memory.

Figure 2.2 shows that a three-dimensional array is a set of pointers that, when
unmodified by the array index values, point to the first element in the array. This
situation is exactly the same as in a two-dimensional array, except that this array has
anadditional address pointer. Each successivearray elementis accessed by incrementing
the pointers by the size of the array and the array elements.

Most array accesses are either for the entire array (usually to pass it asa parameter)
or for an individual array element. You can treat a multidimensional array as an array
of arrays.

Seeing is believing. Compile the program ARRAY1, and run it. Print the results
if you cannot see all of the program’s output on the screen at one time. Notice how the
final two printf() calls reference the array narray3. This addressing is important to
understand if you must access an array using indirection.

Why use indirection? | really can’t answer that. With ANSI C, I suspect that there
are few reasons for using this technique. Because programming is an art, however, |
have no doubt that someone will come up with a good reason to use indirection
addressing for array elements.

Data Types, Constants, Variables, and Arrays 2

Using Array Names as Pointers

In the ARRAY1 program in Listing 2.8, you used indirection to index an array. This
indirection tells you that the array name narrayz is in fact a pointer. One of the nice
things about ANSI C is it improved the accessing of arrays. Part of the change is that
Nnow you can obtain a pointer to an array, and you can specify to C the dimension of
an array, which enables you to declare a dynamically allocated array and use simple
array indexing on that array.

An example of a dynamically allocated multidimensional array is shown in
Listing 2.9, ARRAY2.C. In this program, an array is created that has more than one
dimension, using malloc().

Listing 2.9. ARRAY2.C.

/* ARRAY2, written 18 May 1992 by Peter D. Hipson */
/* A program that demonstrates multidimensional arrays. */

#include <stdio.h> // Make includes first part of file
#include <malloc.h> // For memory allocation.

#define MAX_COMPANIES 3
#define MAX_CARS 5
#define MAX_MODELS 10

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

int mainQ)

{

int (*nPointer) [MAX_MODELS] ;
int i;

int J;

int k;

nPointer = (int (*) [MAX_MODELS])

continues

55

Part | « Honing Your C Skills

56

Listing 2.9. continued

malloc(MAX_CARS * sizeof(*nPointer));

for (i = 0; i1 < MAX_CARS; i++)

{
for (J = 0; j < MAX_MODELS; j++)
{
nPointer[i][j] = (1 * 100) + j;
}
}
for (i = 0; i1 < MAX_CARS; i++)
{
for (J = 0; j < MAX_MODELS; j++)
{
printf(“nPointer[%d] [%d] = %4d\n,
i,
i.
nPointer[i][J1);
}
}

free(nPointer);

return (0);

The technique shown in ARRAY2 is not limited to two-dimensional arrays, nor
do you have to “preallocate” the nrointer variable. The variable could have been
allocated using other techniques also. In ARRAY2, it was allocated using a standard
declaration statement.

Strings: Character Arrays

You should be aware by now that C doesn’t support strings. Many people consider this
shortcoming to be serious; because so much of C’s power is in the library functions,
however, the lack of basic string functionality is not a serious shortcoming.

Data Types, Constants, Variables, and Arrays 2

The definition of a string is an array of type char. This definition can be mod-
ified, however; because the library string functions assume that strings are arrays of
type char, it is best to use the default definition.

A string constant such as “This is a string” can be considered a pointer to a
character array.

Because the C compiler cannot generate code that knows how long a string is (a
string’s length is never saved), the end of the string must be marked with a special
character. The character used to mark the end of a string is nuLL (0x00). Don’t confuse
this use of nuLL with the keyword of the same name. In a character string, the nuLL
character is the first character of the 256 ASCII character set. It has a numeric value
of 0 (the lowercase a hasa numeric value of 98, which means that it is the 98th character
in the ASCII character set).

Note that ANSI C doesn’t assume any specific character set. Most of the time,
on the IBM PC family of computers, you use the IBM PC character set, and on most
other computers you access one of the ANSI character sets. Both the PC character set
and the ANSI character set are shown in Appendix A, “The ASCII Character Set.”

If you look at character string declarations, you can see that they may be sized
(and initialized) in several different ways.

The following declaration creates an uninitialized string with space to hold 19
characters plus the terminating NnuLL. Remember that this string is uninitialized, and
can contain any characters, many of which might be unprintable.

char szString[20];

In the following example, the string initializes with the characters This is the
time., and the C compiler adds the nuLL automatically.

char szString[20] = “This is the time.”;

Whenever a double quoted string constant is specified, the compiler always
provides a terminating NuLL. It is unnecessary to provide this nuLL explicitly, as in

char szString[20] = “This is the time.\0”;

In this string, the string is terminated with two nuLLS. This error is not serious,
but it is not necessary, either. Because the initializing string is less than 20 characters
long, the remaining characters in the string are undefined with most C implementa-
tions. You should not assume the string will be padded with nuLLs or any other
character.

S7

Part | « Honing Your C Skills

58

In the following example, the length of the string is determined by the length of
the initializing string.

char szString[] = “This is the time.”;

This determination can be tricky because, if you change the contents of the
string, you must be careful not to exceed the length, which you either must know in
advance or compute. This type of string declaration generally is used only for string
constants. Therefore, | recommend that you use the const type modifier:

const char szString[] = “This is the time.”;

Using const helps retain the string’s integrity because you can modify it only by
creating a new pointer to the string or by passing the string as a parameter to a function
that modifies the string. Using const is helpful in preventing unintended modification
of a string; it is not absolute insurance, however, that the string’s contents will not be
changed.

The following example doesn’t work.
char szString[30] = {“T”’his is the time””_."};

I can think of no reason to try to mix char and string constants in an initializer,
because you can simply write the following:

char szString[30] = {“T”’his is the time””."};

The example is “pushing it” a little, but as shown in Listing 2.9, sometimes you
can format strings using concatenation to make their final printed format more
obvious. Notice that when you are concatenating strings, you don’t use commas or
any other nonwhitespace separator (to the compiler, a comment is a whitespace
separator).

Weall know that the most serious weakness of strings under C is that they cannot
be manipulated directly. You cannot assign, test, or compare strings without using one
of the library functions, such as strcpy() or stremp(Q).

Using Arrays of Pointers

Justasyou can have arrays of type int, you can have arrays of pointers. The use of arrays
of pointersisa handy C feature. This section does not discuss pointers themselves, but
they are described in Chapter 3, “Pointers and Indirection.”

Data Types, Constants, Variables, and Arrays 2

Let’s look at an example of a program called REPEAT.C that reads in strings,
places them inan array, and prints them to a terminal. This program, shown in Listing
2.10, forms the basis for the sort program you write in a later chapter.

Listing 2.10. REPEAT.C.

/* REPEAT, written 19 May 1992 by Peter D. Hipson */
/* Prints, in the same order, the strings that are entered. */

/* On PCs with memory models, you can compile with LARGE model */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

#define MAX_CHARACTERS 32767 /* Total maximum characters */

#define MAX_LINES 1000 /* Total maximum lines */
#define BIGEST_LINE 128 /* The longest line readable from keyboard
*/

/* Although these variables are defined as external, they can

* be defined inside the function or be allocated dynamically,
* depending on the program”s needs and memory available.
*/

char szInput[BIGEST_LINE];
char szBuffer [MAX_CHARACTERS];
char *pBuffer [MAX_LINES];

int nBufferPointer = {0};

int nLine = O;

int main()

continues

59

Part | « Honing Your C Skills

60

Listing 2.10. continued

printf(
“Enter lines, when last one is entered\n”
“provide a End-Of-File (ctrl-Z on most systems)\n”
“to print the entered text\n\n”);

while (gets(szlnput))

{
iT ((nBufferPointer + strlen(szlnput)) > MAX_CHARACTERS)
{ 7/ The line won’t fit! End input loop.
break;
}
pBuffer[nLine] = &szBuffer[nBufferPointer];
// The strcpy() could have been written as:
// strcpy(&szBuffer[nBufferPointer], szlnput);
strcpy(pBuffer[nLine], szlnput);
// the + 1 skips over the terminating NULL in each string.
nBufferPointer += strlen(szlnput) + 1;
if (++nLine >= MAX_LINES)
{ 7/ Too many lines! End input loop.
break;
}
}
//
// Later, you add a sort to provide sorted output.
//
for (i = 0; 1 < nLine; i++)
{
printf(“String %d “%s>\n”, i, pBuffer[i]);
}
printf(*\n”);
return (0);
}

Data Types, Constants, Variables, and Arrays 2

This program allocates space for as much as 32,767 bytes of strings, and a
maximum of 1,000 strings. These limits may not be reasonable for a program that will
be used. Also, when either limit is exceeded, REPEAT.C simply assumes that the end
of the input file has been reached. In reality, a (meaningful) message to the user isin
order.

Following the #define statements that define your limiting parameters, you
allocate storage for the necessary variables. As the commentsin the C program indicate,
these variables can be defined inside the main () function; because an external (or static)
variable is automatically initialized to zero (or zeroes), however, you don’t have to
initialize the variables. Again, the way your program (or function) is used dictates how
or where you allocate the storage.

In allocating storage, you create first acharacter array called szBuffer thatis used
to hold the strings as they are read in. The next variable, pBuffer, an array of pointers
to type char, is declared. The first member in this array points to the first string stored
in szBuffer, the second member in pauffer points to the second string stored, and so
on.

A count of the number of strings entered by the user iskept in nLine. Thisvariable
isinitialized to zero (the first string) and is incremented until the user finishes entering
strings. It then is used in the for() loop that is used to print the user’s strings.

An index pointing to the character position in szsuffer in which the next string
will be placed is kept in nBufferrointer. This variable is initialized to zero (the first
character position in szBuffer) and is incremented by the number of charactersin each
of the user’s strings until the user finishes entering strings.

The program’s input is handled using a white() loop, which calls getsQ, a
C library function that reads a line from stdin (the keyboard).

while (gets(szlnput))

{
it ((nBufferPointer + strlen(szlnput)) > MAX_CHARACTERS)

{ 7/ The line won’t fit! End input loop.
break;

3
pBuffer[nLine] = &szBuffer[nBufferPointer];

// The strcpy() could have been written as:
// strcpy(&szBuffer[nBufferPointer], szlnput);

61

Part | « Honing Your C Skills

62

strcpy(pBuffer[nLine], szlnput);

// The + 1 skips over the terminating NULL in each string.
nBufferPointer += strlen(szlnput) + 1;

if (++nLine >= MAX_LINES)
{ 7/ Too many lines! End input loop.
break;

}
}

In the input white(loop, first you check to see whether szsuffer has enough
room for this line, and then abort the input if there is no more room. Then you add
the line to szBuffer and update the pointers. If no more input line pointers remain in
pBuffer, you end the input phase as well. This error checking is not the best, but this
program is intended to show a usage for an array of pointers—not to show error
checking.

When the user signals the end of input, the program then can process the lines.
This program alludes only to the fact that perhaps you sort the lines, or count
characters, lines, and words, or justify the text or change its case. Who knows, and for
now, who cares? You have a program that reads lines in and writes them out.

To write the lines out, a simple for () loop has been used. This loop simply uses
printf() to print the user’s inputted lines:
for (i = 0; 1 < nLine; i++)
{
printf(“String %d “%s’\n”, i, pBuffer[i]);
3

In the call to printf(), you use the pointer to the string in the buffer rather than
try to use an array index—again, to show the use of an array of pointers.

summary

C provides the basic data types necessary to create most programs. C’s flexibility is due
in part to its capability to create new data types as they are needed. The limits of each
type of variable were described in this chapter.

Data Types, Constants, Variables, and Arrays 2

« Using constants in C is much like using a constant in any other computer
language. The only different situation is that in C you can modify a character
constant (even though it’s an error).

« There is a difference between a variable’s declaration (which allocates storage
and defines the variable’s attributes) and a variable’s definition (which only
defines the variable’s attributes and does not allocate storage).

« The use and initialization of variables were discussed, along with arrays,
including using indirection as a method to access an array’s members. The
chapter discussed multidimensional arrays and how they are stored in memory,
with a demonstration of one-, two-, and three-dimensional arrays provided by
an example program.

The last part of the chapter described arrays of pointers and a simple program
demonstrated their use.

63

The C Philosophy 1

Table 1.1. ANSI compiler minimums.

Minimum Item

6 Significant characters in an external name
8 #include Nnesting
8 #if, #ifndef, #ifdef and #elif
12 O, [1, or *in a declaration
15 Nested compound statements
15 Levels of struct Or union nesting
31 O declarators within a declaration
31 Significant characters in a macro or identifier
31 Parameters passed to a function or macro (important for
printf(), scanf(), and so on)
32 Levels of nested parentheses
127 Local identifiers in a block
127 Members in a single struct, union Or enum
257 case Statements in a switch() Statement
509 Characters in a literal string (after any concatenation)
511 External identifiers in a single source file
1024 Simultaneously defined macros
32767 Bytes in a single data object

Of course, nothing prevents a compiler producer from extending these limits;
however, you should review the documentation supplied with your compiler to see
whether any (or all) limits are different from the ANSI standard. If your compiler does
extend these limits and you use the extensions, you can be sure that when your
program is compiled with another compiler, it will either not compile correctly or not
execute correctly.

Part | « Honing Your C Skills

Some of these limits will change (soon, | hope) with future revisions of the ANSI
specification. One of the most bothersome limits, six significant characters in an
external name, was issued because some linkers cannot use more than the first six
characters in an external name. As noted by the ANSI standards committee, this limit
is a rather poor one and probably will change soon. If your compiler doesn’t have a
published limit on the number of significant characters in an external name, you can
test it. Compile and link the programs shown in Listing 1.1 (it has two source files).
As noted in the listing, changing the names of the functions called (and the missing
one) can be used to indicate the number of characters that are significant (13 in this
example) in an external name.

Listing 1.1. External name lengths for FILEONE.C and FILETWO.C.

FILEONE.C

void sixchrl234567(void);
void sixchrl234567(void);

int mainQ

{
sixchrl234567Q);
sixchr12345678(); /* Will be unresolved external if more than */
/* 13 characters are significant. */
}
FILETWO.C

void sixchrl234567(0)
{

return;

}

Another significant factor in external names is that most linkers ignore case. You
should be very careful, therefore, not to have two functions that differ only in the case
of their names, such asin the following example (in which both functions are external):

OurPrinter(); /* Print, using initial caps. */
OURPRINTERQ); /* Print, using all caps. */
ourprinter(); /* Print, using only lowercase. */

The C Philosophy 1

In this fragment, the three different names will be linked to the same function
by the linker. Some linkers have the option to retain case, which solves this problem,
but many don’t. Be careful: I got burned by this one once, and it took a long time to
determine why the wrong function was being called. (I didn’t know about the other,
different-case function).

A number of keywords are reserved in ANSI C (see Table 1.2). You must be
careful not to use these names (all of the ANSI keywords are in lowercase) as identifiers
in your program. Generally, the compiler “complains” when you incorrectly use any
reserved keyword.

Table 1.2. ANSI C reserved identifiers.

Keyword Usage
asm Begins assembly code and is not part of the ANSI standard.
FORTRAN The entry follows FORTRAN calling conventions; FOR-

TRAN may be in lowercase for some implementations and
is not part of the ANSI standard.

PASCAL The entry follows PASCAL calling conventions; PASCAL
may be in lowercase for some implementations and is not
part of the ANSI standard. Generally, the PASCAL conven-
tions are identical to FORTRANs.

const The variable will be used as a constant and will not be
modified.
volatile The compiler may make no assumptions about whether the

variable’s value is current. This keyword limits optimization,
and possibly slows program execution.

signed The variable is a signed integer (with the actual size
unspecified).

auto The variable is created when the function is called, and is
discarded when the function exits. An auto variable is not
initialized by the compiler.

continues

Part | « Honing Your C Skills

Table 1.2. continued

Keyword

Usage

break

case

char

continue

default

do

double

else

enum

extern

float

Ends the enclosing do(), for(), switch()/case Of while()
statement and is used most often to end a case Statement.
Using break outside of a switch()/case block may be
considered to be unstructured programming, in the same
way that embedded return statements are considered by
some programmers.

Used with the switch() statement to mark the beginning of
a group of statements that are executed when the case’s
value matches the switch(statement’s value. Execution
continues until a break statement is encountered or no more
statements are in the switch() statements.

A character variable that may be either signed or unsigned.

Passes control to the next iteration of a do(), for(), or
whileQ statement.

Used with a switch() statement, the statements following
the default statement are executed until the first break
statement if no case statement value matches the switchQ)
statement’s expression.

Used with the while() statement, the statement or state-
ments between the do and the closing while() are executed
until the white() condition evaluates to false. The state-
ments between are executed at least one time.

An eight-byte floating point variable.

Used with the ifQ statement, the statement or statements
within the else block are executed if the if() expression
evaluates to false.

An integer defining a range of values. The actual internal
representation of the value is not significant.

The object is defined in a different source file.

A four-byte floating point variable.

The C Philosophy 1

Keyword Usage

for The iterative loop statement for C. Enables one (or more)
identifiers to be initialized, tested, and modified.

goto Causes an unconditional branch (change flow of execution).
(Many programmers consider using goto to be one step
short of sacrilege).

if Causes execution of a block of statements depending on the
logical evaluation of the if(Q) statement’s expression.

int The object is defined as an integer (with a default size
dependent on the CPU’s default integer size.

long The object is defined as a 1ong (four-byte) integer.

register The object (usually an integer) is retained in one of the

CPUF s registers whenever possible. The compiler often is
forced to remove the variable from the register to perform
various other tasks, however. This keyword can help speed
program execution when a variable must be accessed
frequently.

return Causes a function to return to its caller. Most programmers
insist that there be only one return statement at the end of a
function. The return statement may specify a value to be
returned to the caller if the called function was defined as
returning a value.

short A two-byte integer.

sizeof Returns the size of a specified data object, which can be a
simple data type, structure, union, or other complex data
object.

static A data object created when the program is linked and

initialized (to zero), and retains its value throughout the
program’s execution. The opposite of an auto variable.

struct Used to define or declare a complex data type, which can
consist of a number of different data types.

continues

Part | « Honing Your C Skills

Table 1.2. continued

Keyword Usage

switch Used with an expression (that must yield either a long or
short integer), which used with the case statement, allows
for conditional execution of code based on the current value
of the expression.

typedef Allows creation of a specific data type that is not part of C’s
provided data types. Usually (but not always) used with
either struct Or union to create complex data types.

union Creates a complex data type in which two or more variables
occupy the same data memory at the same time. Often used
to enable the reading of different types of records into a
common buffer, which then can be referred to with the
correct type variables.

unsigned An unsigned integer (either long or short) always can
contain only positive values.

void Defines a function that either doesn’t return a value or has
no parameters, or defines a pointer to a variable of an
unspecified type. An object pointed to by a void pointer
cannot be directly modified.

while Used either alone or with the do statement to conditionally
execute statements until the white()’s conditional statement
evaluates as false.

Even with the ANSI set of reserved keywords, you can generally expect that a
specific compiler may reserve, as necessary, other words as well. A number of key-
words are reserved also for library names, for example. Table 1.3 lists these reserved
names.

Table 1.3. ANSI C reserved names.

Name Usage

% Used in a printf(Q)/scanf() format string; to create a
literal percent sign, use %%

The C Philosophy 1

Name Usage

is... O to... Lowercase function names beginning with either is or to,
where the next character also is a lowercase letter

str..., mem..., Lowercase function names beginning with either

Or wcs... str, mem, Or wes, Where the next character also
is a lowercase letter

E Macros that begin with an uppercase e

SIG... Or si6_... Macros that begin with either an uppercase siG or siG_

.For..l Existing math library names with a trailing £ or 1

LC_ Macros that begin with an uppercase Lc_

As you can see from Table 1.3, there are a number of reserved prefixes and
postfixes; it isn’t difficult, however, to find a suitable name, because all these reserved
names are either all uppercase or all lowercase—just using mixed-case names should
enable you to avoid conflicts with the reserved names in ANSI C (remember that some
linkers ignore case).

A Programming Style

I know that at least half of all C programmers use a formatting style different from the
one I'm going to propose. | can’t resist, however—I've used this style for years (longer
even than I've programmed in C), and I can (and will) justify why you should consider
using it.

Let’s look at the style in which all the example code in this book is presented. The
following list shows a few simple rules.

1. Each tab stop is indented four characters.
2. Lines should be a maximum of 80 characters if at all possible.

3. Comments can use either the ANSI standard /= comment =/ or the newer /7
single line comment (Supported by many compilers even though it’s not part
of the ANSI standard).

11

Part | « Honing Your C Skills

12

10.
11.

12.

13.

14.

When variables are defined or declared, only one variable is allowed per
definition or declaration.

All functions are prototyped, either in the header include file, or if there is
none, at the top of the file.

All data objects (variables) use Hungarian notation (see Table 1.4) and are
mixed case.

All function names are mixed case and should be descriptive of what the
function does. If the return is not clear, use Hungarian notation for the
function name.

Opening and closing braces are on their own lines, aligned in the same
column. In either case, a comment (one or more lines) may be used to
describe what the particular block of code is doing.

Document why, not what, you are doing. For example, you always can see that
you are incrementing the variable, but you can’t always see why you had to
increment it. Comments are just notes to yourself (and perhaps others)
reminding you of what you did. It’s almost painful to go back to a complex
piece of code and find that you no longer understand it. It's easier to rewrite
poorly documented code than to try to figure it out.

Use blank lines wherever necessary to make the code readable.

Use the variables i, j, k, 1, m, and n as for() loop indexes, and use them in
order. Using this rule saves many hours of trying to figure out which index is
changing faster. Avoid using these variables for scratch variables.

Avoid “cute” code. You may think that it makes you look like you're the
world’s greatest programmer; however, you will have unreadable source code
that is difficult to maintain. If you must create a relatively strange piece of
code, don’t forget to document what it’s doing and why you needed to create
it. Don’t make yourself have to go back and ask, “Why did | do that?” when
you might realize that there was an easier way to get the job done.

Use parentheses liberally. When in doubt, use them. Then you can be sure in
what order things will be done.

Use the “new”-style function headers. This style, as shown in the code frag-

ment later in this section, is much easier to read because the variables and their
types and order are clearly defined. The fact that you can’t assume that the old
style will remain in future releases of the standard is a good incentive to switch.

The C Philosophy 1

Hungarian notation prefixes a variable name with a letter or letters to tell the
programmer what data type the variable contains (see Table 1.4). This type of notation
is very helpful when you must maintain the program later. Hungarian notation helps
to prevent assigning the wrong data type to a variable, and helps you understand why
you are using a particular data object.

Table 1.4. Hungarian notation prefixes.

Prefix Description

c char

by BYTE (unsigned char)

n short int

X Usually a short int, used for x coordinate in graphics
y Usually a short int, used for y coordinate in graphics
i int

b BOOL (int)

W WORD (unsigned int)

h HANDLE (WORD)

dw DWORD (unsigned long int)

fn Function, usually used with function pointers

S Character array (not necessarily NnuLL terminated)

sz Character string (must be nuLL terminated)

Modifier Description

p Pointer
Ip long (Or far) pointer
np short (Or near) pointer

Although it often is recommended that programmers use these same prefixes for
functions, 1 do so only if the function’sreturn type is not obviousand it does not return
an int.

13

Part | « Honing Your C Skills

When you are writing a function, you must have a function declaration. The
new-style function declaration (the header, as it sometimes is called) looks like the
following example, when it is formatted as | have suggested:

int MyFunction(
int nFirstParameter,
char szString[],
char chMode)

{ /7 Function’s opening brace

The preceding example is basically the new ANSI C style, with each of the
function’s parameters coded on a separate line for readability. The same examplein the
old style (I do not recommend this method) looks like this:

int MyFunction(nFirstParameter, szString[], chMode)
int nFirstParameter;
char szString[];
char chMode;

{ // Function’s opening brace
If for no other reason, you should use the new style because it requires less typing.

Let’s look at a piece of well-formatted code. Listing 1.2 is a simple program that
prints on the screen a message that is an implementation of the standard HELLO.C.
Comments about the formatting are in italic type to highlight them, but these
comments are not necessary in the program.

Listing 1.2. HELLO.C.

/* HELLO, written 12 May 1992 by Peter D. Hipson */
/* A source formatting example. */

#include <stdio.h> // Make includes first part of file

int main(void); // Declare main() and the fact that this program doesn’t
// use any passed parameters
int mainQ)

{ // First opening brace for each function is at the left margin

int i; // Used as a for loop index

The C Philosophy

int nCount = 0; // Always initialize your auto variables
char szString[] = “We want to impress you %d\n’’;

for (i = 0; 1 < 5; i++) // Spaces around operators

{ // Brace on its own line
nCount += printf(szString, i + 1);

}y /> for (i...) */

return (nCount); // Brackets around all return values

} 7/ Closing brace for a function is at left margin also.

Notice in Listing 1.2 that if you draw a vertical line from any opening brace, you
eventually can connect with its closing brace. Therefore, you can easily see the various
blocks that are part of the code. When you place the opening brace at the end of the
preceding line (for in the example), it’sdifficult to move up fromaclosing braceand

find its opening counterpart.

All the variables declared in the function, except for the loop counter, are
initialized. Neglecting to initialize a variable is perhaps the most problematic error that
C programmers make. It seems that, at some point, we make an assumption that the

contents of a variable are valid, we use it, and the program crashes.

I recommend that you order your C source files in this order:

1. Use a one-line file description with the filename (it can be handy when it is

printed), the entire project’s name, and perhaps the initial date written and the
programmer’s name.

. Add #include statements. Remember to comment include files that are not
part of ANSI C and tell what is in the file. It’s not unusual for a large project
to have five or more include files. I usually have an include file with typedefs,
one with prototypes, one (or more) with defines, and an include file with
external definitions.

. Following the #include statements, I recommend a full program header block.
In the example I use (see Listing 1.2), you can see what information usually is
included with a typical source file.

. After the program header, put the definitions and declarations used in this file
(and that are not found in the header files).

15

Part | « Honing Your C Skills

16

5.

List the file’s functions. The order of functions in a source file is generally not
critical. 1 often reorder the files and place at the top (or end, if I am working
on two functions at one time) the function on which I am working. This
ordering makes the function easy to find. | don’t recommend that you have
each 20- or 30-line function in its own source file or that your project consist
of two or three source files of 10,000 (or more) lines. When a source file is
more than about 1,000 lines, I break it into two files, if possible. You can load
the source file into the editor faster, and compile faster most of the time.

Listing 1.3 shows a typical header block comment used in creating a C source file.

Using a header such as this one is helpful when you work on the program again later
(perhaps years later). The more comments you have, the easier it is to fix the program.
Remember that no one will have sympathy for you if you don’t understand your own
programming, even if it’s been a while since you worked on it.

Listing 1.3. A typical source file header block.

/

%

%

%

%

%

%

%

%

%

%

%

**

**

**

**

**

**

**

**

PROJECT: The project’s name goes here.

TITLE: The FILE’S title (not the project title).

FUNCTION: What the function(s) in this file does.
More than one line if necessary.

INPUTS: What generally is passed to the functions.

OUTPUTS: What the functions return.

RETURNS: Some functions don’t return normally; say so if necessary.

WRITTEN: When the file was created.

CALLS: Significant calls to other parts of program.

CALLED BY: Who (generally) calls these functions.

The C Philosophy 1

*x

*x AUTHOR: Your name.

*x

*x NOTES: Modifications, special considerations, and so on.
*x
*x COPYRIGHT 1992: By whomever. All rights reserved. All wrongs

*x deserved.
*x

Here’s a final comment about programming style. Always correct all the
problems that create compiler warning messages. Doing so may seem to be a bother;
the messages wouldn’t be there, however, if they were not important. Make it a goal
to have your program (no matter how large) compile with no warnings or errors. Make
sure that the error-message level is set as high as possible. In Microsoft compilers, use
either /W3 or /W4; with other compilers, use the equivalent. It can be done—I’ve
written programs with hundreds of thousands of lines and no compiler messages.

Memory Models

If you’re not programming on an IBM PC (or other computer that uses the Intel
segmented architecture), skip this part of this chapter. You have enough to fill your
head without having to add the information in this section.

ThePC, whenrunning inreal mode, isable toaddress only 64K at any time using
16-bitaddresses, referred toas near pointers. This limitation isa problem because many
programs and their data are larger than 64K. To address more than 64K it is necessary
to use segments and offsets, which are forms of 24-bit addresses. If the compiler is told
to use segments, it generally creates two problems: Segment arithmetic will cause your
application to be slightly slower, and the size of the program will be larger. Using
segments and offsets is referred to as far pointers. Because you can choose to use far
pointers for function calls, or for data references or both, there are four combinations
of models, as shown in Table 1.5.

17

Part | « Honing Your C Skills

18

Table 1.5. PC segmented architecture models.
Model Addressing Used

Small Near addresses for both data and function calls, where functions
and data each have one segment allocated to them.

Compact Near pointers for the function calls and far pointers for data;
used for small programs that use large amounts of data memory.

Medium Far pointers for the function calls and near pointers for data; for
larger programs that don’t have more than 64K of data allocated.

Large Far pointers for the function calls and far pointers for data; for
larger programs that have more than 64K of data allocated.

On the positive side, using a memory model larger than necessary isn’t always a
serious problem. The size of the program often isn’t increased much (less than 10
percent), and the differences in execution speed may be slight. It is possible to
benchmark your compiler and determine the execution times and executable program
size differences.

When in doubt, use the large model when you are writing your
. applications. Using this model enables you to develop any size
program. If you find later that the program wasn't as large as you

expected, you can change to one of the other models and not have to change
compiler memory models in the middle of the project.

summary

In this chapter, you learned about subjects that will assist you in writing better C
programs:

e The history of the C language, and the ANSI standard.
» Programming style, and commenting and formatting your source code.

» The use of the PC’s memory models; how and why to select a specific memory
model.

T~
CCC
CcC

Pointers and Indirection

You probably couldn’t write anything except the simplest program without arrays.
Having worked with programming languages that don’t support arrays, | know how
difficult it can be to create meaningful applications using only singular variables.

The C language provides programmers with an additional tool to access mem-
ory, for both arrays and singular variables. This method, using pointers, seldom is
found in higher-level languages, which often “protect” the programmer from direct
memory manipulation.

With pointers, you use the technique of indirection, which is the method of
obtaining the value of the memory object to which the pointer is pointing.

Pointers, Indirection, and Arrays

The concept of pointers, indirection, and arrays is an advanced idea. You can write
programs (very good programs) without using pointers or indirection, and you can
write good programs using only direct array accessing, without using pointers or
indirection. Let’s look at each—pointers, indirection, and arrays.

Part | « Honing Your C Skills

66

Pointers

A pointer is a variable (or constant) that contains the address (in memory) of a specific
object. It has the following qualities:

1. A pointer can hold the address of any valid data object, including an array, a
singular variable, a structure, and a union.

2. A pointer can hold the address of a function.

3. A pointer cannot hold the address of a constant, with one possible exception: A
string constant has an address, which can be stored in a pointer variable
indirectly (usually as the result of being passed as a function call parameter).

Pointers enable you to access any block of memory you want, but there are
restrictions, of course:

* You must have the operating system’s permission to access the memory (the
memory accessed must have been allocated to your program).

* You must know where the block of memory you want to access is located. For
many applications, knowing this information is easy because the memory will
have been allocated for the program, and the program will have been given the
address of the memory. If the memory is a common block, such as a video
buffer, either the memory will be found in a fixed location or a pointer to the
memory will be found in a known location.

Let’s review the C address of operator &. To obtain the address of a singular
variable and an array, or the element in an array, simply prefix the variable’s name with
the & operator. This section has several examples of using the & operator.

When you use pointers, you must tell the compiler the size of the object the
pointer will be used with. What does size have to do with it? If a pointer variable can
point to only one thing at atime, why do you have to tell the compiler that the variable
is @ pointer to type char, or type int? If you remember that a pointer variable can be
modified, you begin to get the idea that there is nothing wrong with incrementing a
pointer, adding to its value, or decrementing it. Because a char is an 8-bit-wide value
(1 byte), an int is a 16-bit-wide value (2 bytes), and a 1ong is a 32-bit-wide value
(4 bytes), the compiler must know how many bytes are between the data objects to
which the pointer will point.

Pointers and Indirection 3

Figure 3.1 shows how the memory for both the integer array and a pointer to a
variable of type int typically is allocated. The figure shows also the memory allocated
to szstring and the pointer to a variable of type char.

Address: 0 1 2 3 4 6 6 7

int nArray[5]; ——— +00
+08
char szString[12]; 4
+10
int “pnArray; 4
[Y. +18
char *pszString; 7
P g +20

Note: This example assumes that the size of an int is 2 bytes, and that
the size of a pointer is 2 hytes.

Figure 3.1. char and int pointers to arrays.

Always remember that when a pointer is incremented, its value is increased by
the sizeof() the pointer’s type. When a pointer is decremented, its value is decreased
by the sizeof() the pointer’s type.

You use the pointer declaration type modifier to tell the compiler that a variable
will be a pointer to a variable type rather than being that variable type. Let’s look at
some identifiers, both variables that hold data and pointer variables:

int nCounter = 0;
int *pnCounter;

pnCounter = &nCounter;

Two variables have been created in this code fragment. The first, an int called
nCounter, holds a simple counter that your program may use. The second variable,
pnCounter, hasthe address of ncounter assigned to it. Thisassignment could have been
done as an initialization also.

Notice that both the pointer and the variable whose address will be stored in it
have similar names. This naming is important when you need some way to know the
purpose of the pointer. If you had named the pointer prointer, you wouldn’t know
its purpose.

67

Part | « Honing Your C Skills

68

Two variables are allocated again in the following lines of code. First, a character
string called szstring is created (and initialized) and then a pointer to that string is
created.

char szString[20] = {“This is a string.”};
char *pszString;

pszString = szString;
pszString = &szString;
pszString = &szString[0];

In all three of the following assignment statements, pszstring contains the same
value and always contains a pointer to the first character in szstring. Subtle differences
exist in these assignments, however.

pszString = szString;
pszString = &szString;
pszString = &szString[0];

The firstassignment assigns the address of the array to pszstring. Thisyields the
address of the first element in the array.

In the second statement, the compiler assigns the address of the array to
pszstring. Generally, this also yields the address of the first element in the array. The
primary difference is that, with an array of more than one dimension, you can have the
C compiler take care of indexing.

The third statement has a pointer to the specified element in the array (or string).
Some compilers (not all of them) check to see whether the element specified is within
the bounds of the array; you should not count on the compiler to catch this error,
however.

Here’s a difficult issue: An array name is not a pointer, but an array name can be
assigned to a pointer variable to create a pointer to the array, it can be passed to a
function as though it is a pointer to the array, and so on. I've had few problems
considering the name of an array as a pointer to the first element in the array; however,
only experience (and the compiler, I hope) can tell when this is not true.

Pointers and Indirection 3

Indirection

Now that you have a pointer, what do you do with it? Because it’s part of your program,
you can’t write your address on it and nail it to a tree so that your friends can find your
home. You can, however, assign to a pointer the address of a variable and pass it to a
function, and then the function can find and use the variable (just as some of your
friends might find and use your home).

The C operator = is called the indirection operator. It tells C to use whatever the
pointer variable is pointing to and use the value contained in the memory that the
pointer is pointing to.

An Example of Pointers, Indirection,
and Arrays

It took a while for me to understand the relationship between pointersand indirection
(and arrays), but tables, pictures, and example programs can help you understand it
too. The program in Listing 3.1 is a useless program. It does nothing except assign
values to variables and test the values and addresses of the variables.

Listing 3.1. POINTERS.C.

/* POINTERS, written 20 May 1992 by Peter D. Hipson */
/* Demonstration of pointers and indirection. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

int mainQ)

{

continues

69

Part | « Honing Your C Skills

70

Listing 3.1. continued

int nCounter = 33;
int *pnCounter = (int *)NULL;

char szSaying[] {
“Firestone’s Law of Forecasting:\n”

Chicken Little only has to be right once.\n\n"};

char *pszSaying = (char *)NULL;

printf(

“nCounter | pnCounter | *(pnCounter) | pszSaying | “

“szSaying[0] | szSaying[0-20]\n"");

printf(“%8d | %8p | %8d | %8p | %c
nCounter,
pnCounter,
*(pnCounter),
pszSaying,
*(pszSaying),
szSaying);

printf(*pnCounter = &nCounter; \n”);
pnCounter = &nCounter;

printf(“%8d | %8p | %8d | %8p | %c
nCounter,
pnCounter,
*(pnCounter),
pszSaying,
*(pszSaying),
szSaying);

printf(“pszSaying = szSaying; \n”);
pszSaying = szSaying;

printf(“%8d | %8p | %8d | %8p | %c
nCounter,
pnCounter,
*(pnCounter),

| %20.20s\n”,

| %20.20s\n”,

| %20.20s\n”’,

Pointers and Indirection 3

pszSaying,
*(pszSaying),
szSaying);

printf(“pszSaying = &szSaying; \n);
pszSaying = &szSaying; // Different levels of indirection!
// A cast (char *) will work here.

printf(“%8d | %8p | %8d | %8p | %C | %20.20s\n”",
nCounter,
pnCounter,
*(pnCounter),
pszSaying,
*(pszSaying),
szSaying);

printf(“pszSaying = &szSaying[0]; \n™);
pszSaying = &szSaying[0];

printf(“%8d | %8p | %8d | %8p | %C | %20.20s\n”",
nCounter,
pnCounter,
*(pnCounter),
pszSaying,
*(pszSaying),
szSaying);

printf(“*(pnCounter) = 1234; \n”);
*(pnCounter) = 1234;

printf(“%8d | %8p | %8d | %8p | %C | %20.20s\n”",
nCounter,
pnCounter,
*(pnCounter),
pszSaying,
*(pszSaying),
szSaying);

return (0);

71

Part | « Honing Your C Skills

Running POINTERS.C in Listing 3.1 produces the output shown in Listing
3.2. This output shows what happens when each of the pointer variables is modified
and as the value pointed to by pncounter is changed using the pointer.

Listing 3.2. The output from POINTERS.C.

nCounter | pnCounter | *(pnCounter) | pszSaying | szSaying[0] |
szSaying[0-20]

33 | 0000 | 0 | 0000 | |
Firestone’s Law of F
pnCounter = &nCounter;

33 | 24F6 | 33 | 0000 | |
Firestone’s Law of F
pszSaying = szSaying;

33 | 24F6 | 33 | 24A6 | F |
Firestone’s Law of F
pszSaying = &szSaying;

33 | 24F6 | 33 | 24A6 | F |
Firestone’s Law of F
pszSaying = &szSaying[0];

33 | 24F6 | 33 | 24A6 | F |
Firestone’s Law of F
*(pnCounter) = 1234;

1234 | 24F6 | 1234 | 24A6 | F |

Firestone’s Law of F

Pointersare most commonly used when a called function must modify a variable.
This process usually happens when a function returns two different values and
therefore cannot use normal function-value returning mechanisms. A pointer is passed
to a variable, and the called function changes the contents of the variables as required
(see Listing 3.3). In Listing 3.3, ADDER.C, a function is called to add two numbers,
and the result is placed in the third. This function then returns TRUE if the two
numbers fit in the sum, or false if overflow occurs.

Listing 3.3. ADDER.C.

/* ADDER, written 20 May 1992 by Peter D. Hipson */
/* Calling functions with passed pointers. */

Pointers and Indirection 3

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.
#include <limits.h> // For integer value limits.

#define TRUE 1
#define FALSE 0

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

int DoAdd(int * nResult, int nFirstValue, int nSecondValue);

int mainQ)

{

int nFirst = 3000;
int nSecond = 700;
int nSum = 0;

printf(“BEFORE: nSum = %4d nFirst = %4d nSecond = %4d\n”,
nSum,
nFirst,
nSecond) ;

if (1DoAdd(&nSum, nFirst, nSecond))

{
printf(“%d + %d don’t fit in an int\n”,
nFirst,
nSecond) ;
3

printf(“AFTER: nSum = %4d nFirst = %4d nSecond = %4d\n”,
nSum,
nFirst,
nSecond) ;

return (0);

continues

73

Part | « Honing Your C Skills

Listing 3.3. continued

int DoAdd(
int * nResult,
int nFirstvalue,
int nSecondValue)

{
it ((ong)nFirstvalue + (long)nSecondValue > (long) INT_MAX)
{
return(FALSE);
}
else
{
*nResult = nFirstValue + nSecondValue;
}
return(TRUE) ;
}

You should notice two interesting things about ADDER.C:

1. The function is called with a pointer to an integer that will receive the results
of the addition. Also, before the numbers are summed, the program checks to
make sure that the results will fit in an int without overflow. If the result
doesn’t fit, the numbers are not summed and the function returns FALSE, if
the result fits, the sum is saved at the address pointed to by nresult, and the
function returns TRUE.

2. The test is made using casts to type 1ong because the result of adding two
shortS can never be larger than a 1ong. You cannot use int types here because
the test isn’t meaningful if an overflow occurs.

Running ADDER.C with both nrirst and nsecond set to a large value (30,000,
for example) shows how the test for overflow works.

Character Arrays and Strings

C stores strings as arrays of type char. Note that no operators work on strings directly.
You cannot copy a string using the assignment (equal sign) operator, nor can you
compare two strings using logical operators.

Pointers and Indirection 3

To make up for the shortcomings in C’s character handling, a large number of
string functions are in the standard library (see Chapter 14, “ANSI C Library
Functions”). Because the particular functionality your application requires might not
be present in one of the C library functions, you can write a function to do whatever
you want.

Thissection doesn’t show you how to count words inastring (the demo program
does that), but it does show you how easy it is to work with strings and manipulate
pointers to strings.

By now, you should not still be writing programs that compare strings using
logical operators, as in the following example:

char szFirst[] = {“This is a string”};
char szNext[] = {“Before this one”);

ifT (szFirst > szNext)

{

/* the test was meaningless! */

}

This comparison simply evaluates the addresses of the two strings, not their
contents. The result of the test is undefined because you cannot predict where in
memory the strings will be located, nor are their contents related to their memory
address.

The correct way to compare two strings is to call the library function strcmp(),
which returns a value based on the logical relationship between the two strings:

char szFirst[] = {“This is a string”};
char szNext[] = {“Before this one”);

iT (strecmp(szFirst, szNext) > 0)
{

/* szFirst is before szNext! */

}

This relationship is much more useful to your programs than are the string’s
addresses. NUMWORD.C counts the number of words in a sentence that are entered
from the keyboard (see Listing 3.4).

75

Part | « Honing Your C Skills

Listing 3.4. NUMWORD.C.

/* NUMWORD, written 20 May 1992 by Peter D. Hipson */
/* Program to count words in sentences. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#define TRUE 1
#define FALSE 0

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

int NumberWords(char * pString);

#define BIGEST_LINE 256 /* The biggest line readable from keyboard */
/* Though these variables are defined as external, they can be

* defined inside the function or be allocated dynamically,

* depending on the program®s needs and the amount of memory available */
char szInput[BIGEST_LINE];

int mainQ)
{

int

printf(
“Enter lines, when last one is entered\n”
“provide a End-Of-File (ctrl-Z on most systems)\n”
“to end the program.\n\n’);

while (gets(szlnput))
{

Pointers and Indirection

printf(“Words = %2d “%.50s’\n”,
NumberWords(szlnput),
szlnput);
T

printf(*\n”);

return (0);

h

int NumberWords(
char szString[])

{

int i;

int nBlank = TRUE;

int nCount = 0O;

for (i = 0; szString[i]; i++)

{
if (szString[i] = ©)
{
if (nBlank)
{
++nCount;
b
nBlank = FALSE;
3
else
{
nBlank = TRUE;
3
3

return(nCount);

77

Part | « Honing Your C Skills

/8

NUMWORD has a very simple loop that calls gets() until the end-of-file is
reached. After gets() returns, the loop itself calls printf(), which has as one of its
parameters a call to the Numberwords() function.

printf(“Words = %2d “%.50s”’\n”,
NumberWords(szlnput),
szlnput);

C first calls Numberwords () and then passes to printf() the returned value, along
with the other parameters.

for (i = 0; szString[i]; i++)

{
if (szString[i] = © ©)
{
if (nBlank)
{
++nCount;
3
nBlank = FALSE;
3
else
{
nBlank = TRUE;
3
¥

NumberWords () hasaloop that looks at the passed string and parses out the words.
The format for this loop is a for() loop; white() can be used, however. This loop
moves through the character string and increments an index to the passed string. When
the loop starts, it is assumed that a blank has been encountered already. This
assumption is made by setting the blank flag (ne1ank) on so that you can count the first
word regardless of whether it’s preceded by blanks. Also, the word count (ncount) is
set to zero, which indicates that no words have been counted.

When the first nonblank character is found, the word counter is incremented (a
word has been found), and the blank flag is turned off. The loop continues searching
for the next blank; when it is found, the blank flag is set to on and the process continues
until the end of the string is found.

Pointers and Indirection 3

Indirection to Access Character Strings

To change NUMWORD to use indirection to access the string, the loop in
NumberwWords() must change slightly (see Listing 3.5).

Listing 3.5. NUMWORDL1.C.

/* NUMWORD1, written 21 May 1992 by Peter D. Hipson */
/* Program to count words in sentences. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#define TRUE 1
#define FALSE 0

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

int NumberWords(char * pString);
#define BIGEST_LINE 256 /* The biggest line readable from keyboard */
/* Although these variables are defined as external, they can be

* defined inside the function or be allocated dynamically,
* depending on the program’®s needs and memory available. */

char szInput[BIGEST_LINE];

int main()

printf

continues

79

Part | « Honing Your C Skills

80

Listing 3.5. continued

“Enter lines, when last one is entered\n”
“provide a End-Of-File (ctrl-Z on most systems)\n”
“to end the program.\n\n’’);

while (gets(szlnput))

{
printf(*“Words = %2d “%.50s”\n”’,
NumberWords(szlnput),
szlnput);
}

printf(*\n”);

return (0);

3
int NumberWords(
char * pString)
{
int nBlank = TRUE;
int nCount = 0;
do
{
if (*(pString) && *(pString) != < <)
{
it (nBlank)
{
++nCount;
}
nBlank = FALSE;
}
else
{
nBlank = TRUE;
}

Pointers and Indirection 3

} while(*(pString++));

return(nCount);

NumberWords() again has a loop that looks at the passed string and parses out the
words. The format for this loop is doQ) . . .while (). Astraight while() or even a for()
loop, however, can be used:

do
{
if (*(pString) && *(pString) != © ©)
{
if (nBlank)
{
++nCount;
3
nBlank = FALSE;
¥
else
{
nBlank = TRUE;
¥

} while(*(pString++));

You no longer need to use an index variable, because you are using the pointer
that was passed to keep track of where you are in the string. One possible advantage
to this method is that by incrementing the pointer rather than an index to a string, the
function generally is both faster and smaller.

This loop moves through the character string and increments the passed pointer.
Remember that this passed pointer is a private copy for this function and can be
modified. It isassumed that a blank has been encountered already, by setting the blank
flag on so that you can count the first word regardless of whether it is preceded by
blanks. Also, the word count is set to zero so that no words are counted. When the first
nonblank character is found, the word counter isincremented (a word has been found)
and the blank flag is turned off. The loop continues searching for the next blank; when
itisfound, the blank flag is set to on and the process continues until the end of the string
is found.

81

Part | « Honing Your C Skills

Listing 3.6 shows the assembly listing for the version of Numberwords() that uses
pointer indexing. The compiler produces this machine code, commented with the
original source lines, when the function is compiled.

Listing 3.6. NUMWORD3.COD, the assembly listing for the pointer
version of NumberWords().

; Edited for size.

; Static Name Aliases
TITLE numword3.c
NAME numword3

.8087
_TEXT SEGMENT WORD PUBLIC <CODE~
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC <“DATA~
_DATA ENDS

CONST ~ SEGMENT WORD PUBLIC “CONST”
CONST ENDS
_BSS SEGMENT WORD PUBLIC “BSS”
_BSS ENDS
DGROUP ~ GROUP CONST, _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP

EXTRN -—acrtused:ABS
EXTRN --chkstk:NEAR
_TEXT SEGMENT

ASSUME CS: _TEXT
;1*** /* NUMWORD3, written 21 May 1992 by Peter D. Hipson */
o
;1*** #include <stdio.h> // Make includes first part of file
;1*** #include <string.h> // For string functions

N
s

;1*** #define TRUE 1

;1*** #define FALSE O

- I***

- I***

;1F** iInt NumberWords(char * pString);

N
s

;1F** iInt NumberWords(

Pointers and Indirection 3

) Relale char * pString)
d
Bl el |
; Line 15
PUBLIC _NumberWords
_NumberWords PROC NEAR
*** 000000 55 push bp
*** 000001 8b ec mov bp,sp
*** 000003 b8 06 00 mov ax,6
*** 000006 e8 00 00 call __chkstk

; pString = 4
N nBlank = -2

; nCount = -4
d
;1F** int nBlank = TRUE;
; Line 17
*** 000009 c7 46 fe 01 00 mov WORD PTR [bp-2],1
;nBlank
;1F** int nCount = O;
; Line 18
*** 00000e c7 46 fc 00 00 mov WORD PTR [bp-4].0
;nCount
d
;I do
; Line 20
$D239:
e
; Line 21
o falaied it (*(pString) && *(pString) != “ *)
; Line 22
*** 000013 8b 5e 04 mov bx,WORD PTR [bp+4] ;pString
*** 000016 8a 07 mov al ,BYTE PTR [bx]
*** 000018 88 46 fa mov BYTE PTR [bp-6],al
*** 00001b Oa cO or al,al
*** 00001d 74 15 Jje $1242
*** 00001F 3c 20 cmp al,32
*** 000021 74 11 Jje $1242
e €
; Line 23
N oiaiad if (nBlank)

continues

83

Part | « Honing Your C Skills

Listing 3.6. continued

; Line 24
*** 000023 83 7e fe 00 cmp WORD PTR [bp-2],0 ;nBlank
*** 000027 74 03 je $1243
S e €
; Line 25
i Ralaiad ++nCount;
; Line 26
*** 000029 ff 46 fc inc WORD PTR [bp-4] ;nCount
S e ¥
; Line 27
Sl
i Ralaiad nBlank = FALSE;
; Line 29
$1243:
*** 00002c c7 46 fe 00 00 mov WORD PTR [bp-2],0
;nBlank
S e ¥
; Line 30
i Ralaiad else
; Line 31
*** 000031 eb 06 Jjmp SHORT $1244
*** 000033 90 nop
$1242:
S e €
; Line 32
i Ralaiad nBlank = TRUE;
; Line 33
*** 000034 c7 46 fe 01 00 mov WORD PTR [bp-2],1
;nBlank
S e ¥
; Line 34
$1244:
Sl
Hl Raieiel } while(*(pString++));
; Line 36
*** 000039 8b 5e 04 mov bx,WORD PTR [bp+4] ;pString
*** 00003c ff 46 04 inc WORD PTR [bp+4] ;pString
*** 00003F 80 3f 00 cmp BYTE PTR [bx].,0

*** 000042 75 cf Jjne $D239

Pointers and Indirection 3

d
N Nadaled return(nCount) ;
; Line 38
*** 000044 8b 46 fc mov ax,WORD PTR [bp-4] ;nCount
*** 000047 8b e5 mov sp,bp
*** 000049 5d pop bp
*** 00004a c3 ret
*** 00004b 90 nop

_NumberWords ENDP
_TEXT ENDS
END

B Ralaall <

Listing 3.7 is the assembly listing for the version of Numberwords() that uses an
index to the passed array. As in the preceding example, the compiler produces this
machine code, commented with the original source lines, when the function is
compiled.

Listing 3.7. NUMWORDA4.COD, the assembly listing for the array
indexed version of NumberWords().

; Edited for size.

; Static Name Aliases
TITLE numword4 .c
NAME numword4

.8087
_TEXT SEGMENT WORD PUBLIC “CODE”
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC “DATA”
_DATA ENDS

CONST SEGMENT WORD PUBLIC “CONST”
CONST ENDS
_BSS SEGMENT WORD PUBLIC *“BSS”
_BSS ENDS
DGROUP ~ GROUP CONST, _BSS, DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP

continues

85

Part | « Honing Your C Skills

Listing 3.7. continued

EXTRN --acrtused: ABS
EXTRN --chkstk:NEAR
_TEXT SEGMENT

ASSUME CS: _TEXT
;1*** /* NUMWORD, written 20 May 1992 by Peter D. Hipson */
- I***
;1*** #include <stdio.h> // Make includes first part of file
;1*** #include <string.h> // For string functions

g

;1*** #define TRUE 1

;1*** #define FALSE 0

o

g

;1F** iInt NumberWords(char * pString);

o

g

;1F** iInt NumberWords(

i Radaiel char szString[])

g

s {

; Line 16
PUBLIC _NumberWords

_NumberWords PROC NEAR
*** 000000 55 push bp
*** 000001 8b ec mov bp,sp
*** 000003 b8 08 00 mov ax,8
*** 000006 e8 00 00 call —--chkstk
*** 000009 56 push si

; szString = 4

; i=-6

; nBlank = -2

; nCount = -4

g

;1F** iInt i;

;1** int nBlank = TRUE;

; Line 19
*** 00000a c7 46 fe 01 00 mov WORD PTR [bp-2].1

;nBlank

;1F** iInt nCount = 0O;

Pointers and Indirection 3

; Line 20
*** 00000F c7 46 fc 00 00 mov WORD PTR [bp-4].0
;nCount
d
N oiaiad for (i = 0; szString[i]; i++)
; Line 22
*** 000014 c7 46 fa 00 00 mov WORD PTR [bp-6],0 ;i
*** 000019 eb 09 Jjmp SHORT $F240
*** 00001b 90 nop
$1243:
e
o falaied it (szString[i] != * ©)
d €
N Nadaled if (nBlank)
d €
) Relale ++nCount;
d 3
d
N Rakaiad nBlank = FALSE;
d 3
) Relale else
e €
; Line 34
N Rakaiad nBlank = TRUE;
; Line 35
*** 00001c c7 46 fe 01 00 mov WORD PTR [bp-2],1
;nBlank
e 3
; Line 36
ey
; Line 37
$FC241:
*** 000021 f 46 fa inc WORD PTR [bp-6] si
$F240:
*** 000024 8b 5e fa mov bx,WORD PTR [bp-6] o |
*** 000027 8b 76 04 mov si,WORD PTR [bp+4] ;szString
*** 00002a 8a 00 mov al, [bx][si]
*** 00002c 88 46 f8 mov BYTE PTR [bp-8],al
*** 00002F Oa cO or al,al
*** 000031 74 15 Jje $FB242

continues

87

Part | « Honing Your C Skills

Listing 3.7. continued

e
; Line 23
i Radaiel if (szString[i] '= © ©)
; Line 24
*** 000033 3c 20 cmp
*** 000035 74 €5 je
ol {
Line 25
| *** if (nBlank)
Line 26
*** 000037 83 7e fe 00 cmp
*** 00003b 74 03 je
ol {
Line 27
| *** ++nCount;
Line 28
*** 00003d ff 46 fc inc
I***
Line 29
g
i Radaiel nBlank = FALSE;
; Line 31

(o)

$1244:
*** 000040 c7 46 fe 00 00
;nBlank
;I*** }
; Line 32
i Radaiel else
; Line 33
*** 000045 eb da Jjmp
*** 000047 90 nop
$FB242:
;I*** {
i Radaiel nBlank = TRUE;
;I*** }
;I*** }

;I***

88

al,32
$1243

WORD PTR [bp-2],0 ;nBlank

$1244

WORD PTR [bp-4] ;nCount

mov WORD PTR [bp-2],0

SHORT $FC241

Pointers and Indirection

N Nadaled return(nCount) ;
; Line 39
*** 000048 8b 46 fc
*** 00004b 5e
*** 00004c 8b e5
*** 00004e 5d
*** 00004F c3
_NumberWords ENDP
_TEXT ENDS
END
el

m
pop

pop
ret

oV

mov

si

bp

ax,WORD PTR [bp-4]

sp,bp

;nCount

3

The assembly listings show the major differences from what the original C
version shows; you should consider several factors, however, when you are deciding
whether to use indexing or to modify pointers:

« Functions that use indexing often are easier to read and understand.

 Functions that use indexing often generate more machine code than functions
that use pointer modification. This situation is more prevalent in functions
that have many references to the variable (or variables) accessed with pointers.

« Functions that use indexing often are slower than functions that use pointer
modification. This situation is more prevalent in functions that have many
references to the variable (or variables) accessed with pointers, and occurs
because the functions usually must add the index to the array base for each

access.

« Functions with array indexing require local variables that require stack space.

This consideration usually is a minor one, but it may be a factor when stack
usage must be either minimized or eliminated.

You should note that even though the example program used a string (which is
acharacter array), the concepts are the same in other arrays, such as int, long, Of float.
The important thing with nonstring arrays is that the function the string is being
passed to must know how many elements are found in the array, because only strings

have a meaningful end marker, NULL.

89

Part | « Honing Your C Skills

90

Protecting Strings in Memory

If I could find a way to protect strings in memory, | would be rich. Seriously, the only
thing that protects strings in memory is careful programming. Although many
operating environments offer some forms of memory protection and some compilers
offer bounds checking, this protection is limited and easily circumvented—often
unknowingly by programmers.

A number of dangerous functions in the C language’s library don’t know how
long astring is and easily can overwrite a string’s memory allocation without notifying
the programmer. Even functions that tell you how much of the string they used have
possibly already destroyed valuable memory when they write past the end of the string.

Two of the worst offenders are input/output functions and the various string
functions. The input/output functions are often given a buffer in order to read in the
desired information. The problem is that they don’t know how long the buffer is. In
the following example fragment, the programmer made the assumption that a user
never would enter a line longer than 80 characters:

char szBuffer[80]; /7 You’ll never read more than 80 characters
// (ha-ha).

if (gets(szBuffer))

{
// Process the buffer inputted.

}

The programmer might have thought, for example, that the terminal to be used
allowed only 80 characters per line. The user first used I/O redirection to provide input
to the program, though, and the lines in the user’s file were about 200 characters long.
Of course, the program crashed.

This problem doesn’t really have a fix that always works. The fix most often
consists of putting a realistic maximum on the buffer size, which means that the buffer
must be capable of holding a very large string. In the preceding example, it would not
be unreasonable to define the input buffer to be several thousand bytes long. I usually
create in my programs a generic buffer (called szTempBuffer), which is used for places
where | don’t want to experience buffer overflow.

In the following example, a set of two strings has been defined and then
concatenated, when necessary.

Pointers and Indirection 3

char szMyName[] = {“Peter D. Hipson™);
char szMyAddress[1= {“New Hampshire™);

// bFullAddress says that the user wants my full address:

if (bFullAddress)

{
strcat(szMyName, szMyAddress);

}

The only problem is that szmyname is not large enough to hold both strings.
Crash—it’s over! Again, the fix is to be sure that the destination for the library string
functions is large enough. One possible fix is to use szTempBuffer to hold the result of
the concatenation and then test to see whether it fits into the final destination, as in
this example:

strcpy(szTempBuffer, szMyName);
strcat(szTempBuffer, szMyAddress);

if (strlen(szTempBuffer) > sizeof(szMyName))
{ // Truncate the result to fit.
szTempBuffer[sizeof(szMyName) - 1] = “\0~;
printf(“String “%s” won’t fit into buffer\n”, szTempBuffer);

}

strcpy(szMyName, szTempBuffer);

Or if the preceding example doesn’t require that the operation take place if the
number of characters being assigned to a string doesn’t fit, you can simply test and
perform the operation if it fits:

if (strlen(szMyName) + strlen(szMyAddress) < sizeof(szMyName))

{
strcat(szMyName, szMyAddress);
}
else
{
printf(“String “%s%s’ won’t fit into buffer\n”,
szMyName,
szMyAddress) ;
}

The primary difference is that the first example copies as many characters as will
fit, and the second does not. For either example to work, the compiler must know how

91

Part | « Honing Your C Skills

large the strings are. It knows how large when the strings are declared in the source file,
or when they are defined with sizes. Because you often define arrays by specifying their
size, you can get into trouble when an error message tells you that the size of the object
is unknown.

When you are using sprint() to print to a string, the function can cause
innumerable problems because most format specifiers for floating-point numbers,
when given an invalid value, print some rather strange results. Often, you assume that
your numbers are always correct; that assumption is a weak one, however, because the
majority of the numbers the program works with are provided by the user. In this case
also, I try to use a large buffer, such as my sztempBuffer, to hold the results of
sprintfQ until I can be sure that the resulting string is not too large for the intended
destination.

Ragged-Right String Arrays

There is a problem with using strings. Suppose that you have a program with a large
number of strings, such as list of common sayings. Each line of the sayings is placed
in a string buffer. If these strings are used as constants (they won’t be modified), you
may well want to pack the strings together, with no wasted space.

A more common way of storing strings is shown in the program FIXSTR.C. It
allocates an array of 25 lines, each of which is 80 characters long. The total storage
required for this array is 2,000 bytes (see Listing 3.8).

Listing 3.8. FIXSTR.C.

/* FIXSTR, written 20 May 1992 by Peter D. Hipson */
/* Fixed-length strings in a program. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

#define MAX_LINES 25
#define MAX_LENGTH 80

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

Pointers and Indirection 3

int mainQ)
{
int i;

char szSaying[MAX_LINES][MAX_LENGTH] =

{
“Firestone’s Law of Forecasting:”,
“ Chicken Little only has to be right once.”,
“Manly’s Maxim:”,
“ Logic is a systematic method of coming to”,
“ the wrong conclusion with confidence.”,
“Moer”s truism:”,
“ The trouble with most jobs is the job holder’s”,
“ resemblance to being one of a sled dog team. No one”,
“ gets a change of scenery except the lead dog.”,
“Cannon’s Comment:”,
“ IFf you tell the boss you were late for work because you”,
“ had a flat tire, the next morning you will have a flat tire.”
};
printf

“Number of lines is %d\n”

“size of item is %d\n”

“size of (char) is %d\n”,

sizeof(szSaying) / sizeof(szSaying[0]), // Number of elements.
sizeof(szSaying[0]), // Size of char *
sizeof(szSaying[0]1[01)); // Size of char

switch (sizeof(char *))

{

case 2: // Near pointers
printf(“Addr len saying\n”);
break;

continues

93

Part | « Honing Your C Skills

94

Listing 3.8. continued

case 4: // Far pointers, 808x segmented pointers.
printf(“Address len saying\n”);

break;
}
for (i = 0; i < sizeof(szSaying) 7/ sizeof(szSaying[0]); i++)
{

printf(“%p %3d “%s’\n”,

szSaying[i],

strlen(szSaying[i]),

szSaying[il]);
}

return (0);

Figure 3.2 shows an example of how the memory for FIXSTR.C’s szsaying is
allocated and used. In this program, szsaying is a single, two-dimensional character

array.
cngs 1) (1 CLTTTTTTEETERR T EEFEEE) T

sziayings[] [] J>
HﬂxﬁﬁD]Firestone's L= |off] [Flo|ricd| j
[11 | |dhlijckde] Miftklle] [only] b 2
[2] >
[3] i
[4]palnfih"ls] plafdif: 2

[51 | [telgild 1=l [/ [eetlemat]ild
] -
[6]] | [tlhel mrolnial |dojncliusliloln| oA
[71] !
[8] >
[9] Molelr el ftlrpulilsh: »

[101] | The] ftlofubillel Witk mlolsit]
n ; Sk
[11] H1lanlce] ftlo| Helifngl |of ¢

[12]] | |deftlz| & |ghlainjage| |off |sldenle
I

[13]

[14] P
[15]1|dainnjon e [Clomtme{nit|: i
[16]| | T e el el Holsls| >
[hiald (3] [Ellat] tlinel, | thel &

Note: Columns 25 through 72 are not shown.

Figure 3.2. szsaying in FIXSTR.C.

Pointers and Indirection 3

In Listing 3.9, RAGSTR.C shows a different way of allocating the strings. In this
program, C has been told to allocate an array of string pointers, and then give constants
as initializers. This technique wastes no space, and with two allocated arrays (one is the
pointer to a string array, and the other is the string array that’s being pointed to), only
521 bytes of storage are required.

Listing 3.9. RAGSTR.C.

/* RAGSTR, written 20 May 1992 by Peter D. Hipson */
/* Non-fixed-length strings in a program. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

int main(void); // Define main() and the fact that this program doesn’t
// use any passed parameters.

int mainQ)

char *szSaying[] =

“Firestone’s Law of Forecasting:”,
“ Chicken Little only has to be right once.”,

I3l
’

I3l
’

“Manly’s Maxim:"",
“ Logic is a systematic method of coming to”,
“ the wrong conclusion with confidence.”,

I3l
’

I3l
’

“Moer’s truism:”,

“ The trouble with most jobs is the job holder’s”,

“ resemblance to being one of a sled dog team. No one”,
“ gets a change of scenery except the lead dog.”,

I3l
’

continues

95

Part | « Honing Your C Skills

96

Listing 3.9. continued

“Cannon”s Comment:”,
1T you tell the boss you were late for work because you”,
had a flat tire, the next morning you will have a flat tire.”

};

printf(
“Number of lines is %d\n”
“size of item is %d\n”
“size of (char) is %d\n”,
sizeof(szSaying) / sizeof(szSaying[0]), 7/ Number of elements.
sizeof(szSaying[0]), // Size of char *
sizeof(szSaying[0]1[0])); // Size of char

switch (sizeof(char *))

{
case 2: // Near pointers
printf(“Addr len saying\n”);
break;
case 4: // Far pointers, 808x segmented pointers.
printf(“Address len saying\n”);
break;
}
for (i = 0; i < (sizeof(szSaying) 7/ sizeof(szSaying[0])); i++)
{
printf(“%p %3d “%s’\n”,
szSaying[i],
strlen(szSaying[i]),
szSaying[i]);
}

return (0);

Notice that the main body of the program, especially the for () loop used to print
the strings, is identical in each program, despite the fact that each program has two
different types of array addressing.

Pointers and Indirection 3

Figure 3.3 shows an example of how the memory for RAGSTR.C’S szsaying i$
allocated and used. Inthis program, szsaying isasingle-dimensional array of character
pointers. Each pointer then is initialized to point to the correct initializing character
string.

i
[i7]
=
o]
[]
=
]
5]
n1
[¥]
o]

sz Sayings[0]—[Fli[delsftlofr]
szSayings[1]—| | [dhlildkleln| ikl |on1lp [Hal
sz8avings[2]
szSayings[3]
szSayings[4] a1 ™=l Mapdi
szSayings[5]—| | [Loldlild
szSayings[6]—| | itfHe| pdofnld] [Holrc1fuls(ijo/]
szSayings[7]
szSayvings[8]

=
(]
]
i
T
(]
[ui
0
=
&
=]
[¥]

sz8ayvings[9] Jole|el el [E|ojulilet:
szSayings[101l———| | [TlHe| [t{clofulle| it o]
szfayings[1ll]l—3 Hllainice| [tlo| [Heling |o
sz8ayings[12]—| | |deltle| & [dhlanlde| |off |=ldelnle]
szSayings[13]

szSayings[14] |
szSayvings[15— dalnnjor =] [Hokuke/rit]:

szfayings[16]——3 | [T/f Flom el tiel Hoss [
szSayings[17]1—— | [Wad |9 (Lt [tlidel | Eklel |

Note: Columns after 24 are not shown.
Each element in szSayings polnts to a string
constant.

Figure 3.3. szsaying in RAGSTR.C.

Don’t be concerned if this discussion leaves you confused—certain parts of the
C language, and the way it is used, can confuse anyone. The important factors in the
preceding two programs include the following:

1. A two-dimensional array of type char, accessed with only one subscript,
effectively returns a pointer to a character string.

2. Asingle-dimensional array of type char * can be initialized with a set of string
constants.

3. If asingle-dimensional array of type char = is initialized with a set of string
constants, you should be careful about modifying them. The process of
modifying a string constant is undefined under ANSI C, and many compilers
keep only one copy of a set of identical strings (also legitimate under ANSI C).

4. Asingle-dimensional array of type char =, initialized with a set of string
constants, uses less memory than a two-dimensional array of type char.

97

Part | « Honing Your C Skills

98

5.

A two-dimensional array of type char can be initialized and effectively modi-
fied by a program.

When you are working under the constraint that character strings stored in a

ragged-right format are difficult—if not impossible—to modify, this format can save
a large amount of wasted storage space.

summary

In this chapter, you learned about pointers and indirection.

Pointers are generally variables whose contents are the address of a memory
object.

Indirection is the modification of the memory object pointed to by a pointer.

Strings are arrays of type char. The end of a string is indicated by the nuLL
character.

Indirection is used often in functions that must modify one (or more) of the
parameters that was passed to the function.

Strings are best protected by good programming style: Be sure all buffers and
string variables can hold the objects placed in them.

Strings can be stored in a ragged-right format that saves memory. Generally,
such strings are difficult to modify.

Special Pointers and
Their Use

Chapters 2 and 3 described pointers as they pertain to data objects. This chapter
discusses pointers that point to objects other than data. Just as you can have a pointer
that points to a data object, you can also have a pointer that points to a function.
Pointers have several special uses in programming, too. One such use is to obtain the
program’s name and any parameters that have been entered by the user and passed to
the program by the operating system.

Command Line Arguments

Command line arguments are vital to many programs you create. Command line
arguments are used for options, input and output data sources, and to enable the user
to pass parameters to the program.

99

Part | « Honing Your C Skills

100

The operating system processes the arguments the user enters, and places each
one in astring that is pointed to by a pointer that you can access. Suppose that the user
enters the following command line:

WONDER /Why Ask.dat

The program can access not only the program’s name, but also the command line
arguments. These are passed to the main() function as parameters. Until now, the
main() function has taken no parameters; in reality, however, three parameters are
passed to main() when it is called. The function prototype for the main() function is

int main(
int argc,
char *argv[],
char *envp[]

D)

The arge parameter, an integer, contains the number of elements in the passed
array of argv[]. Because the first member of argv[] is the program’s name (usually this
isa fully qualified name, complete with the drive and directory information), the value
of argc is always at least 1. Some compilers and operating systems don’t provide the
program name, but have argv[o] point instead to some predefined string constant,
such as "c".

The > argv[] parameter is an array of char pointers. The first element in argv[]
always points to the program’s name, and each subsequent member points to a
parameter. Each parameter is separated by the operating system’s default parameter
separator, usually a blank or comma. Under the PC’s DOS operating system, only a
blank is used as a separator. The end of this list of parameters can be determined by
either using arge or testing the pointer, which is nuLL to signify the end of the list.

The > envp[] parameter is an array of char pointers. The first element in argv[]
points to the first environment string (when you are using DOS on the PC). Each
subsequent member points to a succeeding environment string. Each environment
string looks just like it does when you enter the DOS command SET, where you have
anenvironmentvariable, anequal sign, and astring. The end of this list of environment
strings can be determined by testing each envp[] pointer, when NuLL is encountered,
signifying the end of the environment list.

Listing 4.1 is a simple program that prints both the passed parameters and the
environment strings to the screen. This program’s output depends somewhat on which
operating system it runs; however, it shouldn’t fail when it is run under different
operating systems.

Special Pointers and Their Use 4

Listing 4.1. MAINARGS.C.

/* MAINARGS, written 22 May 1992 by Peter D. Hipson */
/* This program prints a program®s arguments. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

int main(// Define main() and the fact that this program uses
int argc, // the passed parameters.
char *argv[],
char *envp[]

)

int main(
int argc,
char *argv[],
char *envp[]

D)
int i;
printf(*'\n"");

printf(*'Program name is "%s"\n\n",
argv[0]);

// argc includes the program name, so decrement for actual
// passed parameters.

printf(*'Number of parameters %d \n\n",
argc - 1);

// 1t"s just as valid is to use:
// for (i = 1; i < argc; i++)

for (i = 1; argv[i]; i++)

continues

101

Part | « Honing Your C Skills

102

Listing 4.1. continued

{
printf(*'Passed parameter %2d is "%.50s"\n",
i,
argv[il):;
}

printf(''\n");

// Environment variables may not be meaningful for all
// operating systems. Check the compiler®s documentation.
// 1T this information is not available on your system,
// delete the below for() loop.

for (i = 0; envp[i]; i++)
{
printf("Environment string %2d is "%.50s"\n",
i,
envp[i]);
}

return (0);

As the MAINARGS program shows, the command line parameters are easy to
access—the operating system does all the work for you. Almost all the work, at least.
You still have to process the arguments and do whatever is required of your program.

Programs generally accepts three types of information:
1. Input or output filenames
2. Options, generally preceded by either a hyphen (-) or a slash (/)
3. Parameters, which may or may not be in any given format

Let’swrite a program that expects two filenames (both input and output), several
options, and a parameter. This program reformats the lines of the input to the number
of characters specified by the parameter. Possible options are to justify the lines or make
them flush left or flush right. For simplicity, you don’t write the program to actually
do this work; however, you process the program’s command line, and set flags,
filenames, and the line width. Listing 4.2, JUSTIFY.C, is the basis for this program.

Special Pointers and Their Use

Listing 4.2. JUSTIFY.C.

/* JUSTIFY, written 22 May 1992 by Peter D. Hipson */

/* This program justifies text files (shell only). It assumes

* and uses Microsoft"s extensions to C. Readers with other

* compilers may have to change the program to use the calls

* that their compiler supplies to perform the same functions. */

/* This program assumes the command line syntax shown in
* the GiveHelp() function. */

#include
#include
#include
#include

#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

<stdio.h>
<string.h>
<stdlib.h>
<process.h>

LEFT 1
RIGHT 2
JUSTIFY 3

INNAME 1
OUTNAME 2
WIDTH 3
LAST_THING 4

ARG_LEFT
ARG_RIGHT
ARG_JUSTIFY
ARG_SLASH
ARG_DASH
ARG_HELP

NO INNAME
NOOUTNAME
BAD_WIDTH
BAD_PARM
BAD_OPTION
NAME_MISSING

// Make includes first part of file
// For string functions.

// Standard include items.

// For exit() etc.

r
J
/e

o

continues

103

Part | « Honing Your C Skills

Listing 4.2. continued

int main(// Define main() and the fact that this program uses
int argc, // the passed parameters.
char *argv[],
char *envp[]

)
void GiveHelp(
int nLevel,
char *psltem);
int main(
int argc,

char *argv[],
char *envp[]

))
{
char *pszTemp;
char szBuffer[129]; // Temporary work buffer.
char szProgram[30];

char szInputFile[132]; // Make large enough for your OS.
char szOutputFile[132]; // Make large enough for your OS.

/* strings for _splitpath() (which parses a filename) */
char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME] ;

char szExt[MAX_EXT];

int i;

int J;

int nCurrentParameter = INNAME;
int nTempWidth = 0;

int nLineWidth = 80;

int nJustification = LEFT;

104

Special Pointers and Their Use 4

if (argc <= 2)

{
GiveHelp(argc, NULL);
return(16);

_splitpath(argv[O0],
szDrive,
szDir,
szFname,
SzExt);

strncpy(szProgram, szFname, sizeof(szProgram) - 1);

for (i = 1; argv[i]; i++)
{
it (argvlil[0] == "/~ || argv[i][0] == "-")
{ /* You have an argument, convert to lowercase, and test. */
pszTemp = striwr(argv[il);

for (j = 1; j < strlen(pszTemp); j++)
{
switch(pszTemp[i1)
{
case ARG_LEFT:
nJustification = LEFT;
break;

case ARG_RIGHT:
nJustification = RIGHT;
break;

case ARG_JUSTIFY:
nJustification = JUSTIFY;
break;

case ARG_HELP:
GiveHelp(NOINNAME, NULL);
exit(4);
break;

continues

105

Part | « Honing Your C Skills

Listing 4.2. continued

case ARG_SLASH:
case ARG_DASH:

break;
default:
GiveHelp(BAD_OPTION, &pszTemp[j]):
break;
¥
}
¥
else

{ /* Either a filename or width. */
switch(nCurrentParameter)

{
case INNAME:

strcpy(szlnputFile, argv[il);
nCurrentParameter = OUTNAME;
break;

case OUTNAME:
strcpy(szOutputFile, argv[i]);
nCurrentParameter = WIDTH;
break;

case WIDTH:
sscanf(argv[i], "%d", &nTempWidth);

iT (nTempWidth < 20 || nTempWidth > 128)

{
GiveHelp(BAD_WIDTH, NULL);
3
else
{
nLineWidth = nTempWidth;
3

nCurrentParameter = LAST_THING;

break;

106

Special Pointers and Their Use 4

default:
GiveHelp(BAD_PARM, NULL);
break;

}

if (nCurrentParameter < WIDTH)

{ /* Didn"t get two filenames! */
GiveHe lp(NAME_MISSING, NULL);
return(16);

printf(''\n"");

printf
"%s would read the file "%s" and write the file "%s"\n\n",
szProgram,
szlnputFile,
szOutputFile);

switch(nJustification)
{
case LEFT:
printf(""The lines would be %d characters long, left \
aligned\n",
nLineWidth);
break;

case RIGHT:
printf(""The lines would be %d characters long, right \
aligned\n",
nLineWidth);
break;

case JUSTIFY:
printf(""The lines would be %d characters long, justified\n",

nLineWidth);
break;

continues

107

Part | « Honing Your C Skills

108

Listing 4.2. continued

/* In the final version of this program, the files would
* be opened next and the input file would be read into a buffer,
* formatted according to the wishes of the user, and written
* to the output file. At the end, the files would be closed,
* and perhaps some statistical information could be
* presented to the user.

return (0);

void GiveHelp(
int nLevel,
char *psltem)

printf(''\n"");

switch(nLevel)
{
case NOINNAME:
case NOOUTNAME: // Not enough parameters!
printf(
"FORMAT [-r|-1]-J] inputfile outputfile width\n"
where \n"
Options - -r (or /r) to right align \n"
-1 (or /1) to left align \n"
-j (or /j3) to justify\n"
“pe
inputfile - is the input file name \n"
outputfile - is the output file name \n"
“pe
width is the desired output width (20 to 128)\n"
(default is 80 characters).\n"
“pe
Note: lines are concatenated, paragraph breaks are\n"
signaled with a blank line\n\n");

break;

Special Pointers and Their Use 4

case BAD_WIDTH:
printf(
"The width parameter must be between 20 and 128!\n"
"the width is ignored\n');
break;

case BAD_PARM:
printf("'Excessive parameters have been entered\n');

/* Force a display of full help! */

GiveHelp(NOINNAME, NULL);
break;

case BAD_OPTION:
printf(""%c" is an invalid option! (Use only -1, -r or -j)\n",
*psltem);

break;

case NAME_MISSING:
printf("'One or both of the required file names is missing!\n');

/* Force a display of full help! */

GiveHelp(NOINNAME, NULL);
break;

defaul t:
printf(
"An unspecified error occurred! FORMAT has ended!\n"
);
exit(16);

break;

109

Part | « Honing Your C Skills

110

Thisisn’t so hard, is it? You have three possible options in JUSTIFY. You don’t
check to see whether one of these options has been entered—you just accept the last
one entered. You can set a flag, and if too many options are entered or there are
conflicting options, warn the user. The syntax of JUSTIFY shows the following:

1. The filenames (input and then output) and the width must be entered in that
order.

2. The options must be preceded by either a slash (/) or a dash (-) option flag.
One or more options can follow the option flag.

3. The options can be entered anywhere in the command line, before, after, or
interspersed with other parameters.

4. The filenames must be entered; the width, however, is optional.

5. The GiveHelp() function is recursive—it calls itself to give the command
syntax for some errors.

You can use JUSTIFY as a shell to create almost any simple utility program by
changing what it expects for files, parameters, and options.

So that you have a better understanding of what JUSTIFY does with the
command line arguments, let’s look at several parts of the program in detail. First, you
check tosee that there are at least two command line arguments. Because both an input
and an output filename are required, if there are not two arguments, one (or both) of
these is missing. This test isn’t exhaustive—you must test again later to make sure that
you have received two filenames and not just a lot of options. The test for the number
of arguments is simply:

if (argc <= 2)

{
GiveHelp(argc, NULL);
return(16);

The return’s value is passed back to the operating system, and if this program
was run under DOS, the value can be tested using the DOS BATCH command if
errorlevel command.

After you have checked to see that you have the minimum number of command
line arguments, rather than hard-code the name of the program, you then extract the
program’s name. You do this extraction so that, if the user has renamed your program,
you present the user with the correct program name. It's confusing to rename a

Special Pointers and Their Use 4

command and have the error messages continue to give the old name. You then loop
through the list of command line arguments, using a simple for() loop:

for (i = 1; argv[i]; i++)
{

You test for the terminating nuLL command line argument pointer that signifies
the end of the list. For each parameter, you look at the first character. If it is either a
slash or a dash, the command line argument is an option:

if (argv[i][0] == "/~ || argv[i][0] == "-")
{ /* You have an argument, convert to lowercase, and test. */
pszTemp = striwr(argv[il);

You convert options to lowercase (to minimize the testing) because you don’t
have case-sensitive options in this program. Because in some programs the options
-pand -p have different meanings, it’s unlikely that users will remember the difference
between the two. Make your program user-friendly by ignoring case if possible.

After changing the case, you simply loop through the option’s string. Start with
the second character because you know that the first character is the slash or dash.
Using a switch, you check each valid letter option, and when there is a match, you set
that option as required. Some programs have used the slash as the option prefix flag,
and a dash to turn the option off; however, | suggest that you turn an option on with
one letter, and off with another. Two-letter options (common with compilers and
other complex programs) can be processed by looking at the first letter, and then the
second, simply by adding a second nested switch() statement where needed:

for (j = 1; j < strlen(pszTemp); j++)
{
switch(pszTemp[j1)

{
case ARG_LEFT:

nJustification = LEFT;
break;

case ARG_RIGHT:
nJustification = RIGHT;
break;

case ARG_JUSTIFY:

nJustification = JUSTIFY;
break;

111

Part | « Honing Your C Skills

112

case ARG_HELP:
GiveHelp(NOINNAME, NULL);
exit(4);
break;

case ARG_SLASH:
case ARG_DASH:
break;

default:
GiveHelp(BAD_OPTION, &pszTemp[il):;
break;

Inthe preceding switch() block, you ignore imbedded slashes and dashes. Users
commonly enter a set of options with a slash or dash before each option and with no
intervening spaces.

You also process correctly the /2 option, the relatively standard syntax for help.
You can also process /h for help.

Notice the default: in this block: If the user has entered an unrecognized option
letter, you provide a message that indicates the invalid option letter.

Inthe following block, you have either one of the filenames or the width specifier.

else
{ /* Either a filename or width. */

These three items are positional; that is, the input filename is always the first of
thethree, the output filename is the second, and the width (which is optional) is always
the third. There are numerous reasons for this order: One reason is that a filename can
be a number (and therefore, width cannot be first if it is to be optional); another reason
is that the two filenames must be provided in a known order because they are
indistinguishable to the program.

You keep track of which of these three items you are processing by using the
variable ncurrentrarameter. This variable works as a state machine (see the “State
Machines” section, later in this chapter), and changes its state every time a parameter
is encountered:

Special Pointers and Their Use 4

switch(nCurrentParameter)

{

case INNAME:
strcpy(szlnputFile, argv[il);
nCurrentParameter = OUTNAME;
break;

case OUTNAME:
strcpy(szOutputFile, argv[i]);
nCurrentParameter = WIDTH;
break;

case WIDTH:
sscanf(argv[i], "%d", &nTempWidth);
iT (nTempWidth < 20 || nTempWidth > 128)
{

GiveHelp(BAD_WIDTH, NULL);
¥
else
{
nLineWidth = nTempWidth;

¥
nCurrentParameter = LAST_THING;
break;

default:
GiveHelp(BAD_PARM, NULL);
break;

b

The width parameter is tested, and the variable nLinewidth is updated only if the
width is within the program’s bounds of 20 to 128. (I'm not saying that these bounds
are realistic—just that they can be.) You know that the user entered at least two
parameters, but you don’t know whether two of them were filenames. A confused user

113

Part | « Honing Your C Skills

114

might have entered the command name, with no filenames, and with all three option
letters as separate command line parameters:

JUSTIFY /j /1 -r

This command line syntax has the minimum number of command line
parameters; however, you don’t have any filenames. You test for this with the following
code:

if (nCurrentParameter < WIDTH)

{ /* Didn"t get two Ffilenames! */
GiveHelp(NAME_MISSING, NULL);
return(16);

Again, the state machine variable, ncurrentparameter, lets you know how many
filenames the user entered. If the state machine variable isn’t at least to the wipTH state,
you didn’t get the required filenames.

The remainder of the program is simple because I didn’t write the text-
formatting part of this program. It has minimal error checking and a simple error-
message function that receives an error message code and an optional character pointer.
The character pointer can point to either asingle character or astring. You must make
sure that the message’s printf() statements know what the pointer is pointing to.

One of the interesting things about the error message processor is that it is
recursive: It calls itself when the user needs to have the full command syntax. The
following syntax is accepted: /1r. That is, more than one option can follow the slash
or dash option flag. If the user has entered a number of options following the slash or
dash, and one of the options is invalid, do you stop processing this command line
parameter? Probably not, but you must consider all possible situations and program
accordingly.

Function Pointers

Function pointers can be used to do almost anything you can do with afunction name.
You can still pass parameters to a function that is being called with a pointer.

Sometimes, using pointersto functionsis the only way to do something. A classic
example is the library function gsort(), which takes a pointer to a function. This
pointer often is coded as a constant; you might, however, want to code it as a function
pointer variable that gets assigned the correct function to do gsort()’s compare.

Special Pointers and Their Use 4

The program FUNPTR.C, in Listing 4.3, has an example of one use of function
pointers. This program calls a different function for each character in an input string.
Although initializing the array of function pointers may take some time (and effort)
in most programs, this time factor is not as significant as the effort to program separate
calls, even if the separate calls are in a function by themselves.

Listing 4.3. FUNPTR.C.

/* FUNPTR, written 22 May 1992 by Peter D. Hipson */
/* An array of function pointers. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit() etc.

int main(// Define main() and the fact that this program uses
int argc, // the passed parameters.
char *argv[],
char *envp[]

)
void NonPrint(const char chChar);
void Letter(const char chChar);
void Number(const char chChar);
void Space(const char chChar);
int main(

int argc,

char *argv[],
char *envp[]

)

{

void (*function[256]) (const char);

char *pszTemp;
char szBuffer[512]; // Your input buffer.

continues

115

Part | « Honing Your C Skills

Listing 4.3. continued

int i;

/* First initialize your array of function pointers. Notice that,
* because you have specified what the function pointed to by this
* pointer requires for a parameter, all the functions assigned to
* this array require the same number and types of parameters.

* The parameters could have been omitted, but then you don"t
* benefit from type checking on parameters. */

for (i = 0; i < 256; i++)

{
if ((unsigned char)i < * %)
{
function[i] = NonPrint;
3
else
{
if ((unsigned char)i >= 0" &&
(unsigned char)i <= "9%)
{
function[i] = Number;
3
else
{
if ((unsigned char)i == " %)
{
function[i] = Space;
b
else
{
function[i] = Letter;
b
3
3
3

while (gets(szBuffer))

{
for (i = 0; szBuffer[i]; i++)

116

Special Pointers and Their Use

{
/* Now, this is nice syntax: */
function[(int)szBuffer[i]] (szBuffer[i]);
b
T
return(0);

}

void NonPrint(
const char chChar)

{
/* Make it printable by adding a "@" to it.*/

printf(""CTRL - "%c"\n", chChar + "@%);

void Space(

const char chChar)
{

printf(*'Space "%c*"\n", chChar);
h
void Letter(

const char chChar)
{

printf(*"'Letter "%c*"\n", chChar);
h

void Number(
const char chChar)

printf(*'"Number "%c*"\n", chChar);

117

Part | « Honing Your C Skills

118

(Remember, | didn’t promise that FUNPTR does anything significant.)

I've shown that function prototypes are important, but, in aprogram that is using
function pointers, they are vital. Notice that each of the functions that will be assigned
to the function pointer has identical prototypes—their return types are the same and
their parameters match equally.

Let’s look at some of the fun parts of FUNPTR. The declaration of the array of
function pointers has a number of critical parts:

void (*function[256]) (const char);

The void tells C that these functions don’t return anything. If the functions
return a value, use that value’s type. Because the order and positioning of the
parentheses are critical, the name of the function pointer is next. If this were not an
array declaration, the declaration would be

void (*function)(const char);

Following the function pointer name are the function’s parameters (again, the
parentheses are important). Keep it simple—try to avoid having functions assigned
that take different types or counts of parameters. Having functions with different
parameters weakens the compiler’s capability to check for errors, although it is
possible.

After declaring the function pointer array, you initialize it. When you assign a
function’s address to a function pointer, do not use the function’s parentheses.

for (i = 0; i < 256; i++)

{
if ((unsigned char)i < * %)
{
function[i] = NonPrint; /* NOTICE: No (), just the name */
3
else
{

if ((unsigned char)i >= "0" &&

(unsigned char)i <= "9%)
{

function[i] = Number; /* NOTICE: No (), just the name */
3

else

{
if ((unsigned char)i == ")

Special Pointers and Their Use 4

{

function[i] = Space; /* NOTICE: No (), just the name */
¥
else
{

function[i] = Letter; /* NOTICE: No (), just the name */
¥

Because FUNPTR has an array of 256 possible functions to call, you initialize
all of them. Because you potentially call adifferent function for each of the possible 256
characters in the character set and because (with a few exceptions) the user can enter
any character, you must make sure that all the members of the function pointer array
are initialized.

After you have initialized the function pointer array, you can continue with the
rest of the program. Use a simple loop to get a line from the keyboard, and then for
each character in the line, call the appropriate function:

while (gets(szBuffer))

{
for (i = 0; szBuffer[i]; i++)
{
/* Now, this is nice syntax: */
function[(int)szBuffer[i]] (szBuffer[i]);
}
}

Notice the strange call function[1() (using an array of function pointers doesn’t
always look good). It eliminates a large i£()...e1se block that saves valuable program-
ming time if this letter-by-letter parsing of the string is done often (more than once)
in a program. A second important factor is that the white(loop runs faster because
many if() statements are eliminated.

Using a function pointer as a parameter in a function call is not unusual. As
mentioned, the library function gsort() does this.

Look at the following prototype for gsort(). The prototype is in the standard
header file stdlib.h and in search.h, if your compiler has such a header file.

119

Part | « Honing Your C Skills

120

void _FAR_ _ cdecl gsort(
void _FAR_ *, /* array to be sorted */
size_t, /* number of elements in the array */
size_t, /* size of each array element */
int (_FAR_ __cdecl *)(const void _FAR_ *, const void _FAR_ *));

gsort()’s first three parameters are as expected: an array pointer, two integers
showing the number of elements in the array, and the size of the elements.

The final parameter in the call to gsort() is the most interesting one. It specifies
that the parameter is the address of a function that returns an int value and takes two
far pointers. Both of these pointers are declared as type void so that any type of pointer
can be passed; the function being called, however, must know the pointer’s type. Because
each call to gsort() is generally for a specific type of array, the function being called
will know about the array’s types. gsort() is discussed in detail in Chapter 10, “Data
Management: Sorts, Lists, and Indexes.”

Menus and Pointers

Peter’s programming rule number 6: Don’t reinvent the wheel. OK, it’snotan original
rule, but even with Peter’s rules, | didn’t want to reinvent the rule.

There are several easy ways to put menus in a program without writing them all
yourself. The first and by far the best is to use Windows. No kidding, Windows is an
effective way to create slick user interfaces. Don’t be put off by the learning curve of
Window’s programming—it is much less than writing the user interface yourself.

If you are determined not to use Windows, systems are available that enable
almost any type of program to have extensive menu support, such as pull-down menus,
pop-up dialog menus, and so on.

It'swell beyond the scope of thisbook to write an entire pull-down menu system.
One simple text-only system requires many thousands of lines of code. This book can,
however, cover many of the basics.

A pull-down menu might, for example, call a different function for each of the
menu items. The function call to the menu system might include such parameters as
an array for each menu item’s text and an array of function pointers to call for each
menu item.

Special Pointers and Their Use 4

You can look at the top bar menu separately and use a rather simple call to a
function suchas getch) to process the keystrokes entered. Part of MENU1.C assumes
that the program is running under DOS on a PC, that the ANSI.SYS device driver
(used for screen control) is installed, and that the compiler supports the functions this
program calls.

In Listing 4.4, the program MENU1.C implements a simple pull-down menu
that has a simple dialog box to enable the user to enter a filename.

Listing 4.4.MENUL1.C.

/* MENUl, written 23 May 1992 by Peter D. Hipson */
/* A simple menu program. */

/* This program assumes and uses Microsoft"s extensions to C.
* Readers with other compilers may have to change the program
* to use the calls that their compiler supplies to perform
* the same functions. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit(), etc.

#include <conio.h> // For getch() and other console 1/0.
#include <ctype.h> // For char functions (_toupper()...)

/* ANSI.SYS screen control #define®s below:

*/

#define BOLD "\x1B[1m"
#define NORMAL "\x1B[Om"
#define RED "\x1B[31m"
#define BLACK "\x1B[30m"
#define GREEN "\x1B[32m"

#define CLEAR_SCREEN '"\x1B[2J"
#define CLEAR_EOL "\x1B[K"

#define MOVE_CURSOR ""\x1B[%d;%df""

continues

121

Part | « Honing Your C Skills

122

Listing 4.4.continued

char szTopBar[] = {/* Must be 80 characters long MAX. */

CLEAR_SCREEN

BOLD"'F""NORMAL"iles

BOLD"E""'NORMAL"dit

BOLD"V""NORMAL" iew

BOLD"'P""NORMAL"roject "

BOLD"R""NORMAL""un

BOLD"'D"'NORMAL""ebug

CLEAR_EOL

}:

/* Line-drawing characters for the PC =" | 4 4 L L ¢ |} =4 [{"*/
void MenuBar(); /* Never called! Make the array look good. */
char *szFiles[] = {

" o
"'BOLD""N"*"NORMAL""ew ",
"'BOLD"0""NORMAL""pen ",
"'BOLD""C""NORMAL "' lose ",
"'BOLD""'S""NORMAL ""ave ",

" |save "BOLD"A"NORMAL"s ",

0 in’

'|""BOLD"'P""NORMAL"rint [,

-,

'|e"BOLD"X""NORMAL" it [,

NULL};

DoFilesNew();
DoFilesOpen();
DoFilesClose();
DoFilesSave();
DoFilesSaveAs();
DoFilesPrint();
DoFileseXit();

Special Pointers and Their Use

void

void

int

{

char

(*FilesFunctions[]) (void) = {
MenuBar,
DoFilesNew,
DoFi lesOpen,
DoFilesClose,
DoFilesSave,
DoFilesSaveAs,
MenuBar,
DoFilesPrint,
MenuBar,
DoFilesEXit,
MenuBar,

NULL

¥

main(// Define main() and the fact that this program uses

int argc, // the passed parameters.
char *argv[],
char *envp[]

)

PullDown(char **, int, void (__cdecl **)(void));
main(

int argc,

char *argv[],
char *envp[]

)
chEntered;
while (1)
{
printf(szTopBar);

chEntered = (char)getch(Q);

continues

123

Part | « Honing Your C Skills

Listing 4.4. continued

iT (chEntered == "\0" || chEntered == "\xEO")
{ // PC Extended character (function key etc.)
chEntered = (char)getch();

}
printf(MOVE_CURSOR, 10, 10); /* Using printf() fully here! */

switch (_toupper((int)chEntered))
{
case "F":
PullDown(szFiles, 1, FilesFunctions);
break;

case "E":
printf("Edit submenu called" CLEAR_EOL);
break;

case "V©:
printf(*'View submenu called" CLEAR_EOL);
break;

case "P":
printf("'Project submenu called" CLEAR_EOL);
break;

case "R":
printf(*'Run submenu called" CLEAR_EOL);
break;

case "D":
printf(*'Debug submenu called” CLEAR_EOL);
break;

default:

printf("'Invalid key!" CLEAR_EOL);
break;

124

Special Pointers and Their Use

return(0);
h

void Pul IDown(
char * szMenu[],
int nColumn,
void (__cdecl *pFunctions[])(void))

{

int i;

int nMenultem = -1;
char chEntered;

for (i = 0; szMenu[i]; i++)
printf(MOVE_CURSOR, 1 + 1, nColumn);
printf(szMenu[i]);

while (nMenultem < 0)

{
chEntered = (char)getch();

if (chEntered == "\0" || chEntered == "\xEO")

{ 7/ PC Extended character (function key etc.)
chEntered = (char)getch();

b

chEntered = (char)_toupper((int)chEntered);
/* find the correct menu item index */

if (isalnum((int)chEntered))

{

for (i = 0; szMenu[i]; i++)

{

continues

125

Part | « Honing Your C Skills

Listing 4.4. continued

it (strchr(szMenu[i], chEntered))

{
nMenultem = i;
break;
}
}
}
it (nMenultem >= 0)
{
pFunctions[nMenultem](Q);
}
}
}
void DoFilesNew()
{
printf(MOVE_CURSOR, 20, 10);
printf("Files, new');
printf(MOVE_CURSOR, 24, 10);
printf(""Any key to continue');
(void)getch();
}
void DoFilesOpen()
{

/* Presents to the user a simple get a filename dialog box,
* enabling character string to be entered. Basic editing supported.
*/

int i;
/* These hard-coded constants, for placement of dialog box,
* normally would be passed.

126

Special Pointers and Their Use

void

nColumn = 15;
nRow = 15;
ninputColumn = 2;
ninputRow = 4;

szFileName[132];
*szFilesOpen[] = {

"[Enter the name of the file to open: ",

for (i = 0; szFilesOpen[i]; i++)
{
printf(MOVE_CURSOR, i + nRow, nColumn);

printf(szFilesOpen[i]);
T

printf(MOVE_CURSOR,
nlinputRow + nRow,
ninputColumn + nColumn);

scanf("'%s', szFileName);

printf(MOVE_CURSOR, 24, 10);

printf(""NAME: "%s®" Any key to continue", szFileName);

(void)getch();

DoFilesClose()

printf(MOVE_CURSOR, 20, 10);

printf("Files, close selected™); continues

127

Part | « Honing Your C Skills

128

Listing 4.4. continued

printf(MOVE_CURSOR, 24, 10);

printf(""Any key to continue'™);

(void)getch();

}

void DoFilesSave()

{
printf(MOVE_CURSOR, 20, 10);
printf("'Files, save selected™);
printf(MOVE_CURSOR, 24, 10);
printf(""Any key to continue'™);
(void)getch();

}

void DoFilesSaveAs()

{
printf(MOVE_CURSOR, 20, 10);
printf("'Files, save as selected”
printf(MOVE_CURSOR, 24, 10);
printf("'Any key to continue'™);
(void)getch();

}

void DoFilesPrint()

{

printf(MOVE_CURSOR, 20, 10);

Special Pointers and Their Use

printf("Files, print selected™);

printf(MOVE_CURSOR, 24, 10);

printf(""Any key to continue');

(void)getch();

h

void DoFileseXit()

{
printf(MOVE_CURSOR, 20, 10);
printf("Files, exit selected");
exit(0);

h

void MenuBar ()

{

/* This function is never called! */

h

4

MENUL.C is the most complex program this book has discussed. It shows
several important features, including passing an array of function pointers and using

screen control and—of course—menus.

One of the first things you do in MENUL1 is define some string identifiers. These
identifiers are used to format the menu items, position the cursor, and perform other

screen-management functions:

/* ANSI.SYS screen control #define"s below: */

#define BOLD "\x1B[1m"
#define NORMAL "\x1B[Om"
#define RED "\x1B[31m"
#define BLACK "\x1B[30m"

129

Part | « Honing Your C Skills

130

#define GREEN "\x1B[32m"

#define CLEAR_SCREEN '\x1B[2J"
#define CLEAR_EOL "\x1B[K"

#define MOVE_CURSOR "\x1B[%d;%df""

Notice the identifier move_cursor. Used with printf() and a set of integer
parameters specifying cursor row and column, you can position the cursor using the
following statement:

printf(MOVE_CURSOR, 10, 20);

The definition of the program’s top menu bar makes heavy use of string constant
concatenation and ANSI screen control.

char szTopBar[] = {/* Must be 80 characters long MAX. */

CLEAR_SCREEN

BOLD"'F"'NORMAL"iles "

BOLD"E"'NORMAL"dit "

BOLD"V"'NORMAL"iew "

BOLD"'P""NORMAL"roject "

BOLD"'R"'NORMAL"'un "

BOLD"'D"'NORMAL""ebug "

CLEAR_EOL

¥

The maximum true length of the screen’s title bar is equal to the screen’s width.
Counting these characters can be difficult; if you remove the ANSI screen-control
identifiers and the string concatenation quotes, however, you can see the length of the
menu bar more easily.

After the top menu-bar string definition, you define for the Fites menu a pull-
down that offers a number of common operations:

char *szFiles[] = {

"'BOLD"'N"*NORMAL"'ew ",
"'BOLD"O"'"NORMAL""pen ",
"'BOLD"'C""NORMAL" lose ",
"'BOLD"'S"'"NORMAL "ave ",
save "'BOLD"A"NORMAL"s ",

Special Pointers and Their Use 4

** |*BOLD"P*'NORMAL"rint [,
" |e""BOLD"X""NORMAL" it [,
NULL};

After you know what the Fi les pull-down menu will contain, you then build the
function pointer array. You first define the functions, and then the array, and then
initialize it with the functions that perform each task.

void DoFilesNew();
void DoFilesOpen();
void DoFilesClose();
void DoFilesSave();
void DoFilesSaveAs();
void DoFilesPrint();
void DoFileseXit();

void (*FilesFunctions[1) (void) = {
MenuBar,
DoFilesNew,
DoFi lesOpen,
DoFilesClose,
DoFi lesSave,
DoFilesSaveAs,
MenuBar,
DoFilesPrint,
MenuBar,
DoFi lesEXit,
MenuBar,
NULL
};

Notice that you have allowed the number of initializers to define how many
elementsare found in thisarray, and that you have set the final member to nuLL so that
you can test for the end of the array if necessary. Setting the last element of an array
of pointers to NuLL is a good idea because you don’t have to pass the length of the array
to functions that use it.

Finally, just before you start the main() function, you define the function that
controls the pull-down menus. This function’s prototype is

void PullDown(char **, int, void (__cdecl **)(void));

131

Part | « Honing Your C Skills

132

Notice how an array of pointers (usually written as *array[]) is described as an
array of pointers to pointers (type). This description is necessary because you don’t
specify the name of the actual array in this prototype. The array of function pointers
must be specified with both the return values and parameters. In this program, both
are simply void.

The main program has justa large loop that reads the keyboard and processes the
characters. This program uses getch() to get a character (without echoing it to the
screen); because this program runs on a PC, you test (and process) special keypresses,
suchasthe function keys. Other computers with different keyboards may require some
other changes to this part of the program.

while (1)

{
printf(szTopBar);

chEntered = (char)getch();

if (chEntered == "\0" |] chEntered == "\xEO0%)
{ // PC Extended character (function key etc.)
chEntered = (char)getch();

}

After a character is read in, it is converted to uppercase (so that it can be tested),
and then you use a case statement to find which of the top bar menu items has been
selected.

switch (_toupper((int)chEntered))
{
case "F":
PullDown(szFiles, 1, FilesFunctions);
break;

case "E":
printf("Edit submenu called"™ CLEAR_EOL);
break;

case "V":
printf(*"'View submenu called"™ CLEAR_EOL);
break;

Special Pointers and Their Use 4

case "P":
printf(""Project submenu called" CLEAR_EOL);
break;

case "R":
printf("'Run submenu called" CLEAR_EOL);
break;

case "D":
printf(*'Debug submenu called"” CLEAR_EOL);
break;

default:
printf("Invalid key!" CLEAR_EOL);
break;

When a top bar menu item is selected (Files in this example), the Pul1Down ()
function is called. This generic function is provided with the starting column for the
pull-down menu (the starting row is always 2), an array of char pointers pointing to
each menu item, and an array of function pointers pointing to the functions that will
be called when a specific menu item is called. Except for Fites, none of the top menu
items are implemented.

Pul 1Down () has the code to display the pull-down menu. A better program would
save the screen at the location where the pull-down menu is displayed and restore it
when the function returns; thissimple program, however, doesn’t “clean up” after itself
well:

for (i = 0; szMenu[i]; i++)

{
printf(MOVE_CURSOR, 1 + 2, nColumn);
printf(szMenu[i]);

The menu items are printed, one to a line, until the end of the list (signified by
the NnuLL pointer) is encountered. After the pull-down menu is displayed, you read the
keyboard until a valid key is pressed, and then perform the requested action. Because
this is a simple program, you again require the user to select a menu item before you
let the user return to the main menu.

133

Part | « Honing Your C Skills

while (nMenultem < 0)

{
chEntered = (char)getch();
if (chEntered == "\0" || chEntered == "\xEO")

{ // PC Extended character (function key etc.)
chEntered = (char)getch();

}

chEntered = (char)_toupper((int)chEntered);
/* find the correct menu item index */

if (isalnum((int)chEntered))

{
for (i = 0; szMenu[i]; i++)
{
if (strchr(szMenu[i], chEntered))
{
nMenultem = i;
break;
3
T
h

To check the keys pressed by the user, you get the character pressed, convert it
to uppercase, and then scan each menu item for the key character. Because each menu
item is allowed only one capitalized character (the desired character for this action),
you can use strchr() to look at each of the menu lines. If no match is found, you wait
for the user to press a new key; if a match is found, you call the appropriate function:

if (nMenultem >= 0)
{

pFunctions[nMenultem]Q;

}

Calling the correct function is as easy as indexing the array of function pointers.

MENU1 isarelatively crude program, yet it exceeds 300 lines of source code and
doesn’t do anything. Remember my comments about reinventing the wheel at the
beginning of the chapter? Now you can see why. | could write this program (and make

134

Special Pointers and Their Use 4

it work properly) under Windows in less time than it took to write the entire thing
myself. | had to write it, though, to provide the example of both menus and the use
of arrays of pointers. Now you can decide what you want to do.

State Machines

You might think that state machines are part of your state government, but not for the
purposes of this book. The example program JUSTIFY is a state machine (refer to
Listing 4.1). Most state machines consist of a controlling variable (the state variable),
whose value indicates the current operating status of the function (or program). The
state variable generally is an integer value, and depending on its current state, can be
changed to another state.

Generally, in most state machines the state of the controlling variable does not
need to be incremented (or decremented) in single steps. For example, it may change
directly from one state to another. States generally can be considered to be unique but
equal. When you are writing a state machine, you must consider the process and what
needs to be done (see Figure 4.1).

BITOr MEssage

Figure 4.1. An example of a state machine’s state transitions.

135

Part | « Honing Your C Skills

136

Figure 4.1 shows that the program has a number of “states.” The state machine
part of JUSTIFY is the processing of the three parameters: the input filename, the
output filename, and the output width you want.

Listing 4.5 shows the way the state machine works. The major part of this
machine isa simple switch() loop, with a case to handle each state. At the end of each
state’s case Statement is the code necessary to update the status of the state variable,
nCurrentParameter. The next time the switch() statement is executed, this new state
of ncurrentParameter controls which case: statement is executed. As usual with a
switch() statement, only one case Statement block is executed (you don’t allow case
statements to fall through, into the following case statement, in this state machine).

One important factor limits JUSTIFY’s state machine: You allow the state
variable to change to only the next state, and you don’t allow states to be skipped. The
only way to get to thewipTH state, therefore, is from the outname state, and the only way
to get to the ouTnamE state is from the INnaME State. After the wipTH state has been
achieved, any further changes in the state are errors because you have nothing else to
get. The result is that the next state from the wipTH state is the error state, LAST_THING,
which, if processed, gives the user an error message. Listing 4.5 is the parameter
processor from the JUSTIFY program.

Listing 4.5. State machine from JUSTIFY.C.

switch(nCurrentParameter)
{
case INNAME:
strcpy(szlnputFile, argv[il);
nCurrentParameter = OUTNAME;
break;

case OUTNAME:
strcpy(szOutputFile, argv[i]);
nCurrentParameter = WIDTH;
break;

case WIDTH:
sscanf(argv[i], "%d", &nTempWidth);

iT (nTempWidth < 20 || nTempWidth > 128)

{
GiveHelp(BAD_WIDTH, NULL);

}

Special Pointers and Their Use 4

else

{
nLineWidth = nTempWidth;

}

nCurrentParameter = LAST_THING;
break;
default:

GiveHelp(BAD_PARM, NULL);
break;

State machines can prove valuable in helping to organize your programs. The use
of a state variable was a logical choice as a method to keep track of where | was in the
program’s command line and to track which parts of the required command param-
eters had been processed.

Summary

In this chapter, you learned about command line arguments, pointer arrays, function
pointers, and state machines.

* Each program is passed, as parameters to the main() function, the command
line parameters.

« Command line parameters are processed by the operating system, by being
parsed into separate tokens.

 You can obtain the name of your program (the executable file’s name) using
the parameters passed to main().

* Like data objects, functions can have pointers to them.

« Like any other pointer, a function pointer can be placed in an array and
indexed using an index variable.

 Function pointers can be passed as parameters to other functions, which then
can call these functions.

137

Part | « Honing Your C Skills

138

 Properly designed menu-driven programs can offer an excellent user interface.

« |t generally is not worth the effort to design your own menu system. Using
Windows, OS/2, the Macintosh, XWindows, or some other commercially
available menuing system is a much better choice.

 Using state machines enables you to efficiently design a program that must
process data in either a fixed or random format.

-
CcC
CcC

Decimal, Binary, Hex,
and Octal

By now, you probably have realized that computers don’t save numbers in memory in
the same format as humans do. The CPU converts a number that the computer’s user
provides to a format that the CPU better understands. This conversion, transparent
to both the user and the programmer, enables the computer to work efficiently.

Decimal

We work with decimal (base 10) numbers. Decimal numbers have become popular
primarily because we, as humans, usually have ten fingers. Yes, it’s true, our number
system is based on counting on our fingers. Why, then, don’t we use base 5, (the fingers
on one hand), or base 20 (both hands and feet)?

139

Part | « Honing Your C Skills

140

Decimal numbers have become so natural to use that we no longer stop to think
about the concept of what we are doing. We add, carry, subtract, multiply, and divide
with ease (most of us do, anyway) and don’t stop to consider any other based number
systems; when we are asked whether we use any of these other systems, most people
reply “No.” The next most common system, however, is base 60—time, where 60
seconds make a minute, and 60 minutes make an hour. We don’t get shaken when we
are presented with time computations; when we have to convert to or work in number
systems other than decimal, however, our palms sweat and we get the shakes.

Let’s review the decimal number system. First, decimal numbers have the
characters to represent items. Figure 5.1 shows the first ten digits and what they
represent.

Character Value

0
1 &

2 |67

3 eee

I

I e

6 066666

I 00 od

S 6646646666
9 oo ddéééér

©

Figure 5.1. Decimal numbers 0 through

The first use of numbers was probably to count food stocks, livestock, and other
objects encountered daily. As shown in Figure 5.1, a problem begins when you have
more than nine objects. Things get difficult then: Should new digits be created, or a
new system?

When the decimal system was developed, someone decided that ten characters
(or digits) were sufficient and that a system had to be created to indicate how many
hands there were to represent the object being counted—the tens column was created.
It then was possible to write, using two digits, numbers that were ten times as large as
before. No one realized that there would ever be a need for a number larger than 99.
(After all, the greatest number of fish ever caught at a single time probably was only
18). The decimal number system was born, capable of representing as many as 99
objects.

Decimal, Binary, Hex, and Octal 5

Then Joe came along. Brighter than most, he invented the fishing net. He forgot
to patent the fishing net, and soon anumber of cheap but usable clone fishing nets were
available. Bob, who bought one of the better clones, managed one day to catch much
more than 99 fish. He went home and proudly announced that his catch was “99 and
many more,” to which his loving wife wanted to know how many more. The hundreds
column then was created. Bob’s wife simply carried the concept of the tens column out
to a new column. And so it went—soon thousands, millions, and (when government
was created) billions were only a short way off.

All of this math, using the decimal number system, could be done with the help
of the oldest digital computer, the hand.

Binary

Digital computers, invented later, didn’t have hands. They used memory to store
numbers. This memory, which lacked fingers, could hold only a zero (nothing) or a
one (something). Any number greater than one couldn’t be represented within asingle
computer memory location. (I'm ignoring the analog computer, which could store
more than zero and one in a single memory location—they never became popular and
are not widely available today).

After the first few hours of working with zero and one, it was apparent that a way
to represent numbers larger than one had to be developed. This task wasn’t difficult
because designers and engineers are bright folks, and a scheme of using consecutive
locations in memory was quickly developed.

Because only two states existed in a single memory location, the representation
of numbers with computers was called binary. The use of this word is common with
computers: Computers sometimes are referred to today as binary computers. To a
computer, binary is as natural as decimal is to humans. Computers have no problems
counting, doing math, storing, and performing I/O using binary numbers. The
representation of binary numbers, however, left much to be desired. For instance, the
year 1992 can be represented using only four digits with the decimal number system;
in binary, itis represented as 11111001000 (11 digits). This number is not nearly as easy
for humans to work with, write, or understand.

Lookat Figure 5.2 to see how the binary value for 1992 is determined. Thisfigure
shows the binary value, the value of each bit, and the decimal result.

141

Part | « Honing Your C Skills

l0z24 = 1 = 1024
Sl&: * 1 = ;512
256 * 0. = 256
128 # 1 = 128

64 * 1 = 64
32 * 0 = 0
16 * 0 = 0
B * 1 = 8
4 * 0 = 0
2. % 0 = 0
L * 0 = 0
(decimal) 1992

1711110010 0 O winary)
Figure 5.2 The year 1992 in decimal and binary.

Hex

Computers did not always have an 8-bit block of memory defined. Early computers
used 10, 11, and 16 bits, and other computers probably were developed that had every
other possible number of bits.

Hex is the compromise that enables both computers and people to understand
number representation. The hex number system is based on 16. My guess is that the
word hex was adopted because the base was 6 greater than base 10. Hex adds a new
wrinkle: Binary uses only 2 digits, 0 and 1; decimal uses 10, 0 to 9; hex, however, uses
16 numeric digits. Because you don’t have 16 digits, either 6 new characters must be
created to represent the new numbers, or you must use 6 existing characters.
Introducing 6 new characters into the currently used character set isn’t easy, but
reusing 6 other characters is easy.

The developers of hex notation chose to use the characters A through F for the
new digits (see Figure 5.3). No standard exists for whether the digits are represented
in upper- or lowercase; | prefer uppercase, however, because numeric characters give
the appearance of being uppercase (or larger) characters.

142

Decimal, Binary, Hex, and Octal 5

Character|Bit positions Value
0 0000
1_| 0001 |&*
2 | 0010 [¢"@*
3 | 0011 |@"@ @
4 0100 (@ @ & &~
5 | 0101 @& @@
s o110 _[eereerecer
7_| 0111 676 66 6 66"
8 | 1000 666 6 ¢ 666"
9 | 1001 666666666
A 11010 606666 éééé
B 11011 66606 6éeééé
C_| 1100 [6"6"¢ ¢ ¢ 66 ¢ ¢ ¢ ¢
D | 1101 6" 6 6" 6" 6 66666 éé
E [1110 6666 6 6 ¢ 6ééé6ééd
F 1111 ‘r&‘ﬁ-‘r&&ﬁ-‘ﬁ-&&‘1&‘1&&&&&‘1&&&‘1&&@&&

Figure 5.3. Hex numbers 0 through F.

Because most of the development of computers was done in countries that used
the Roman alphabet, the choice of the number of bits in a computer’s word general-
ly was determined by the number of characters the computer could recognize. As the
computer was being developed, a number of systems to organize the characters and
assign each to a numeric value already were in existence. The minimum number of
characters was fairly large: It was necessary to have letters—both upper- and lowercase
(52), numbers (10), punctuation and symbols (about 20), which brought the total to
between 80 and 90 characters.

In binary number systems, the number of bits increases in the following
progression: 1, 2, 4, 8, 16, 32, 64, 128, 256, and so on. Most people quickly realized
that 64 (a 6-bit word) was too small, 128 (a 7-bit word) was much better, and that 256
(an 8-bit word) was all that would ever be needed. Obviously, this artificial limit was
based on current needs, with no consideration of the future. Sixteen bits now are used
to represent characters in some applications.

Eight bits generally was accepted for the size of the basic block of computer
memory. This amount was referred to as a byte; the origins of this word, however,
escape me.

143

Part | « Honing Your C Skills

144

Hex might have been developed as a compromise between binary, required for
the computer, and decimal, required for programmers. Two hex digits can be held in
the standard-size computer memory, which is eight bits.

The example of 1992 becomes 7cg when it is represented in hex. This number,
which is not as long as its decimal equivalent (it has only three digits), is almost as
indecipherable as the binary. It isn’t necessary to be able to read hex numbers to be a
good programmer, but it helps.

To see how the hex value for 1992 is determined, look at Figure 5.4. It shows the
hex value, the value of each digit, and the decimal result.

1 g
decimal) 1992

0 *# 4096 = 0
7 * 256 = 1782
12 * 16 = 182
* =
(

07 C 8 ten
Figure 5.4. The year 1992 in decimal and hex.

Octal

Octal, the base 8 number system, enjoyed great popularity on a number of DEC
computers, primarily the PDP-8. Trust me, though, octal isdead. Don’t use it, because
no one else uses it anymore. Some computers used word lengths that were not 8 bits
(abyte) long. Rather, they used a 12-bit word that easily was divided into 4 octal digits
of 3 bits each. Unlike hex, which has more than 10 characters, octal has only 8, which

Decimal, Binary, Hex, and Octal 5

makes the decimal-number characters fully usable. Octal is used for DEC minicom-
puters, and C was developed on DEC minicomputers—therefore, the support for
octal. Figure 5.5 shows a representation of the octal numbers, which are similar to the
ones in the decimal-based systems; octal, however, doesn’t have numbers 8 or 9.

Character Bit pattern Value

000

001 |@*

010 |@“®*
011 | ® @~

100 |66 6 @

101 66" 6 6" ¢
110 60 6 ¢ @ 6
111 ‘r @‘1@‘\@‘1@‘1@‘1@

Figure 5.5. Octal numbers 0 through 7.

~[@A| AW = O

When the 1992 example is represented in octal, it becomes 3710. This rather
misleading number is as long as its decimal equivalent (and could have been longer).
Without some form of prefix (or postfix) notation, you have no way to determine
whether any number is octal- or decimal-based (3710 is a legitimate number).

Look at Figure 5.6 to see how that octal value for 1992 is determined. This figure
shows the octal value, the value of each digit, and the decimal result.

1536
448
8

0
(decimal}l992

3 7 1 O {octal)
Figure 5.6. The year 1992 in decimal and octal.

145

Part | « Honing Your C Skills

146

Looking at a File

In any program that writes a file that is not pure text, you must able to look at the file
and determine whether the program has written the file properly. When you run the
DEBUG utility, a crude debugger, on the PC, it enables you to dump programs and
data files. Because the program is difficult to use, however, it is not used often.

One solution is to have a program that dumps files and provides both a hex and
ASCII listing of the file’s contents (see Listing 5.1,). DUMP is a simple program that
reads files of any length and lists their contents in an easy-to-use format.

Listing 5.1. DUMP.C.

/* DUMP, written 23 May 1992 by Peter D. Hipson */
/* A program that dumps files in hex and ASCIl. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit(), etc.

#include <time.h> // For time information.

#define ARG_HELP “?”
#define ARG_SLASH </’
#define ARG_DASH ‘-7

int main(// Define main() and the fact that
int argc, // this program uses the passed parameters.
char *argv[],
char *envp[]
);
int main(
int argc,

char *argv[],
char *envp[])

{

FILE *fpFilePointer;

Decimal, Binary, Hex, and Octal 5

long IPosition;

int i;

int J;

int nNumberBytesRead ;
unsigned int nHexNumber;
char *pszTemp;

/* strings for _splitpath() (which parses a file name) */
char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME] ;

char szExt[MAX_EXT];

char szInputFile[128];

char szProgram[132];

char szBuffer[132];

char sBuffer[257];

time_t tTime;
struct tm *pTM;

_splitpath(argv[O0],
szDrive,
szDir,
szFname,
SzExt);

strncpy(szProgram, szFname, sizeof(szProgram) - 1);

if (argc <= 1)
{

printf(“%s: - No file name given.\n”, szProgram);
exit(4);
}

for (i = 1; argv[i]; i++)
{

continues

147

Part | « Honing Your C Skills

148

Listing 5.1. continued

if (argv[il[0] == “/” || argv[i][0] == “-7)

{ /* You have an argument, convert to lowercase, and test.

pszTemp = strilwr(argv[i]);

for (J = 1; j < strlen(pszTemp); j++)
{
switch(pszTemp[j])
{
case ARG_HELP:
printf(“Usage: %s filename.ext \n”,
szProgram);
exit(4);
break;

case ARG_SLASH:
case ARG_DASH:
break;

default:
printf(“%s: - Invalid option “%c”.\n”,
pszTemp[ij],
szProgram);
break;

}

else
{ /* Either a filename or width. */
strcpy(szlnputFile, argv[i]);

}
}
it ((fpFilePointer = fopen(szlnputFile, “r+b’)) == NULL)
{

printf(“%s: Unable to open file: %s\n”,
szProgram,
szlnputFile);

*/

Decimal, Binary, Hex, and Octal

exit(16);
T

IPosition = Ol;
printf(*\n”);
time(&tTime);
pT™M = localtime(&tTime);
/* format a time string, using strftime() (new with ANSI C) */
strftime(szBuffer,
sizeof(szBuffer),

“%A %B %d, WY at %H:%M:%S”,
pT™) ;

printf(“Dump of %s, %s\n\n”,
szlnputFile,
szBuffer);

while((nNumberBytesRead = fread((char *)sBuffer,
sizeof(char), 16, fpFilePointer)) > 0)

{
printf(*“ %8.8X -, IPosition);

for (i = 0; i < 16 i++)

{
if (i == 8)
{
printf(* - “);
3
else
{
if (i ==0 ||
i==41]
i == 12)
{

continues

149

Part | « Honing Your C Skills

Listing 5.1. continued

printf(“ “);

}
}
if (i < nNumberBytesRead)
{
nHexNumber = (unsigned char)sBuffer[i];
printf(“%2.2X”, (unsigned int)nHexNumber);
}
else
{
printf(* “);
}
}
for (i = 0; i < nNumberBytesRead; i++)
{
if (sBuffer[i] < © “ ||
sBuffer[i] == “\xFF~)
{
sBuffer[i] = “.7;
}
}

sBuffer[[nNumberBytesRead] = “\0~;
printf(*“ : %s”, sBuffer);
printf(* \n”);

IPosition += 16;

}

return(0);

150

Decimal, Binary, Hex, and Octal 5

DUMP.C has few unusual parts. The first part of the program is the same
command line arguments parser from Chapter 4, “Special Pointers and Their Use,”
with a test for the help option (standardized as /2> under DOS on the PC). DUMP has
no other options and simply requires the name of the file to dump.

The file is opened and read in 16 bytes at a time (or less, if fewer than 16 bytes
remain in thefile). The buffer, with 16 bytes, iswritten out, first in hex format and then
in ASCII format (with control characters, and a . character substituted for DEL.

DUMP enables you to look at a file’s output; you still must understand what the
output means, however.

There are two ways to store integers in memory. The first method, in which the
high-order bits are stored in the low byte or bytes, makes dumps easy to read; in the
second method, the low-order bits are stored in the low byte or bytes. One method
makes it easier for you to look ata dump and determine an integer’s value, and the other
method makes you work a little harder. The PC, of course, makes you work harder;
supposedly, it makes the CPU faster, but we’ll never know. Figure 5.7 shows both a
16-bit integer and a 32-bit integer, as they are stored in the PC’s format.

'
|DD|DD|C8‘D?|DD|48|65|6C|6C|6F|DD 48|EC|2F|01|DD|

n¥Year = 1992 (or DXD?CB;D

szHello[] = "Hello"; (with NULL at end)

l¥YearYear = 199219092 (or 0Ox012FFC48)

Notice that the text strings are not byte swapped,
even if integers are.

Figure 5.7. Integers in memory (16 and 32 bits).

The method your CPU uses to store integers must always be considered
whenever you are viewing memory directly. If you do not know the order of the bits
in storage, the simple program in Listing 5.2 tells you which method is being used.

151

Part | « Honing Your C Skills

Listing 5.2. WCHBYTE.C.

/* Program WCHBYTE, written 25 May 1992 by Peter D. Hipson */
/* Program that shows byte swapping (if present) by the CPU. */

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit() etc.

int main(// Define main() and the fact that this program uses
int argc, // the passed parameters.
char *argv[],
char *envp[]

)
void NonPrint(const char chChar);
void Letter(const char chChar);
void Number(const char chChar);
void Space(const char chChar);
int main(

int argc,

char *argv[],
char *envp[]

D)

{

unsigned char cTemp[10];
unsigned char *pcTemp;

int nYear = 1992;

long int lYearYear = 19921992;

char szHello[] = “Hello;
pcTemp = (unsigned char *)&nYear;

cTemp[O0] *(pcTemp++);
cTemp[1] = *(pcTemp);

152

Decimal, Binary, Hex, and Octal 5

printf(“nYear = %d decimal, %4.4X hex, in memory %2.2X %2.2X\n”,
nYear,
nYear,
cTemp[O],
cTemp[1]);

pcTemp = (unsigned char *)&lYearYear;
cTemp[0] = *(pcTemp++);

cTemp[1] = *(pcTemp++);

cTemp[2] = *(pcTemp++);

cTemp[3] = *(pcTemp);

printf(“lIYearYear = %ld decimal %8.81X hex, in memory %2.2X %2.2X \
%2 .2X %2.2X\n”",
IYearYear,
IYearYear,
cTemp[0],
cTemp[1],
cTemp[2],
cTemp[31);

pcTemp = (unsigned char *)&szHello[0];
cTemp[0] = *(pcTemp++); // H

cTemp[1] = *(pcTemp++); // e

cTemp[2] = *(pcTemp++); /7 1

cTemp[3] = *(pcTemp++); /7 1

cTemp[4] = *(pcTemp++); // o

cTemp[5] = *(pcTemp++); // \O (NULL)

printf(“szHello = “%s” (string), in memory “%c” “%c” “%c” “%c” “%c” \
“%c” \n”,

szHello,

cTemp[0],

cTemp[1],

cTemp[2],

cTemp[3],

cTemp[4],

cTemp[51);

return(0);

153

Part | « Honing Your C Skills

154

If the hex representation and the memory view of the variables are the same when

you run WCHBYTE, dumps made using DUMP will be correct. If they are different,
however (which is the case for all PCs), you have to swap the bytes manually when you
are using a DUMP listing.

Bit Operators

Bit operators form the basis for C’s powerful bit-manipulation capabilities. Never
confuse these operators with their logical counterparts, which work on different
principles. In Table 5.1, the keyword TRUE signifies a true bit (or bits) that is set to one,
and FALsE signifies a bit (or bits) that is set to zero.

Table 5.1. Bitwise operators.

Operator

Description

&

<<

>>

Performs a bitwise AND operation. If both operands are TRUE, the
result is TRUE; otherwise, the result is FALSE.

Performs a bitwise OR operation. If either operand is TRUE, the
result is TRUE; otherwise, the result is FALSE.

Performs a bitwise exclusive OR operation. If both operands are
TRUE Or both operands are FALSE, the result is FALSE. The result is
TRUE if one operand is TRUE and the other is FaLse. Exclusive OR is
used to test to see that two operands are different.

Shifts the X operand, Y operand bits to the left. For example, (1 <<
4) returns a value of 8. In bits, (0001 << 4) results in 1000. New
positions to the left are filled with zeroes. This is a quick way to
multiply by 2, 4, 8, and so on.

Shifts the X operand, Y operand bits to the right. For example, (8
>> 4) returns a value of 1. In bits, (1000 >> 4) results in 0001. New
positions to the right are filled with ones or zeroes, depending on
the value and whether the operand being shifted is signed. This is a
quick way to divide by 2, 4, 8, and so on.

Returns the 1's complement of the value. The 1's complement is
defined as setting all bits that are 1 to 0, and all bits that are 0 to 1.

Decimal, Binary, Hex, and Octal 5

Do not confuse the bitwise operators with the logical operators. The misuse of
these operators can cause problems that are difficult to repair, such as those in the
following program fragment:

int X = 1;
int y = 2;

// Using a logical AND:

if(x & y)
{

// With x == 1, and y == 2, this will ALWAYS be TRUE.
}

// Using a bitwise AND:

it x&y)
{

// With x == 1, and y == 2, this will NEVER be TRUE.
}

Why does the bitwise test fail in this fragment? The answer iseasy, but only if you
look at the bits themselves. The bit pattern for x is 0ooo 0001, and the bit pattern for
y IS 0000 00010. Doing a bitwise Anp shows the following:

0000 0001 & 0000 0010 = 0000 0000

Practice is one of the best teachers—practice using these operators to get a better
feel for how they work. The following section discusses the use of these operators,
including some example code fragments.

Bit Fields

A bit field is a data object being accessed at the bit level. These fields, which may be
only one bit long, have for each bit a defined meaning that may or may not be related.
Agood programming practice is to make all the bitsin asingle bit field variable-related
sothatmanagement of the bit field is easier. When you are using ANSI C, you generally
can have a maximum of 16 bits in a bit-mapped variable. There are two ways to use
bit fields:

155

Part | « Honing Your C Skills

1. Assign a meaning to each of the bits of any integer variable.

2. With a structure, you may create a bit field that is any length (to a maximum
of 16 bits).

Let’s look first at user-defined bit fields. When you declare an integer variable,
such as the following:

unsigned short int nFlag = 0;

the compiler allocates a 16-bit short integer and initializes it to zero. This example is
less than meaningful for bit flags. To harness the power of a bit flag, you have to define
each bit position and be able to test, set, and reset each bit without regard to the other
bits. You know that you have 16 bits to work with, but you don’t know how to address
them. This processisn’tas difficultas it might seem, because each bit hasa logical value,
and working with these values is easy.

Figure 5.8 shows the bits in the variable. You can easily determine (and assign)
a meaningful flag for each of these bits, such as shown.

unsigned short int nFlags = 0OxFFFF;

{bit position)
1 1 1 1 1 1 1 1 I[blT VQ'U@)

01
I 02
04

08

10
20
40
80

Figure 5.8. Bit values in a 16-bit integer.

Figure 5.8 shows that you use the value 4 to access the third bit from the right.
Assume that if this bit is set, it tells you the user has a middle name, and if it is not
set, the user doesn’t have a middle name. You first make a defined identifier so that your
program is manageable:

#define MIDDLE_NAME 0x04

156

Decimal, Binary, Hex, and Octal 5

You use the hex value because it’s easiest to remember and use. The decimal
equivalentsare not that usable. Assign the first bit from the left to tell you that the user’s
middle name is just an initial:

#define MIDDLE_INITIAL 0x80

Now thatyou have some defines, let’s look at how to use them. First, you canclear
all flags in the flag variable nF1ag by simply assigning a zero to it:

nFlag = O;

Toset the flag so that you know that the user has a middle name, you can use the
following line:

nFlag |= MIDDLE_NAME;

This statement uses one of C’s bit operators. These operators seldom are used by
most programmers, primarily because they are not well understood. This is a shame
because they make management of logical information much easier.

Next, suppose that the person’s middle name is only an initial. You set both the
miDDLE_NAME flagand the mipoLe_iniTiAL flag. You can use one assignment or combine
both:

nFlag |= (MIDDLE_NAME | MIDDLE_INITIAL);
This statement could have been written as
nFlag = (MIDDLE_NAME | MIDDLE_INITIAL | nFlag);

If the flag bits were already set for some reason, they don’t change. After they are
set, performing a bitwise or on them doesn’t change their state.

Now assume that you set the middle-name flag, but later you must change it to
indicate that there is no middle name (or initial). Because the or only sets (and doesn’t
reset), you have to do something different:

nFlag &= (~MIDDLE_NAME & ~MIDDLE_INITIAL);

This statement introduces both the one’s complement operator ~ and the bitwise
AND operator &. You have used the oNES coMPLEMENT operator to invert the identifier’s
bits. For example, if the identifier’s bit pattern (as MmiDDLE_NAME’S) iS

0000 0100
the result of the ~ is

1111 1011

157

Part | « Honing Your C Skills

158

This bit flag, when it is combined using the bitwise &, enables you to turn off a
bitin the nF1ags variable. This effect is important because setting and resetting the bits
IS a common operation.

Finally, you must test bits. You want to test only those bits that are significant
for whatever we are testing. For example, to see whether there is a middle name (the
MIDDLE_NAME flag is set), you can use the following test:

if ((nFlag & MIDDLE_NAME))

Inthistest, several thingsare important. You must be careful not to use the logical
AND operator (&&) when you intend to use the bitwise one. Also, you should use
parentheses around each bitwise operation so that the order of precedence is clear. In
the preceding test, the expression yields a nonzero value if the bit is set, or a zero if it
is not. You can test two bits at one time using either

if ((nFlag & (MIDDLE_NAME | MIDDLE_INITIAL))
or

if ((nFlag & MIDDLE_NAME) &&
(nFlag & MIDDLE_INITIAL))

Because either expression is correct, which one you use is probably more a matter
of programming style rather than efficiency. Just make sure that you are clear about the
order in which the expression is evaluated; when in doubt, use parentheses.

summary

In this chapter, you learned about decimal, hex, binary, and octal notation. You
learned also about bit field usage.

» Decimal (base 10) is the number base we use in everyday life.

e Hex (base 16) most commonly is used by programmers in writing software.
Some programmers can do hex addition and subtraction without the aid of a
calculator.

e Binary (base 2) is the only base the CPU understands directly. All other
number systems must be converted to binary for the CPU’s use.

Decimal, Binary, Hex, and Octal

 Octal, originally developed for DEC’s PDP-8 computers, seldom is used by
today’s programmers, primarily because octal worked best with 12-bit-word
computers.

» C supports six bitwise operators, enabling direct manipulation of bits by the
programmer.

 Using bit fields, programmers can store much information by using individual
bits.

159

C
C
C

By
C
C

Separate Compilation
and Linking

Not all programs are as simple as the examples in this book. Rarely do you write a
significant program that has only a single source file; if you do, it usually is too large
to be maintained easily. Whether your program is huge, with hundreds of thousands
of lines, or is a smaller one, with only a few thousand lines of code, you can benefit
from using separate source files.

Some of the information in this chapter is based on Microsoft’s tools, such as its
MAKE utility and the LIB program. If you are not using Microsoft’s products or are
not even using a PC, much of the discussion in this chapter will be very helpful
because it is information that is new to you.

161

Part | « Honing Your C Skills

162

Compiling and Linking Multiple Source Files

There are a number of reasons to have more than one source file. The most important
reason is to help keep your program’s source organized. Without this organization, as
the program grows larger, it becomes increasingly more difficult to maintain.

Because there are few rules regarding the subdivision of source code between files,
how do you determine what to put in each file? First and foremost, the majority of the
programs written don’t start out large. Most software developers create a shell for their
programs (using the main() function) and then build the user interface and the
program’s functionality using calls from main(). This process allows the developer to
test and debug small parts of the program with the hope of not creating new problems
for other parts of the program.

Prototyping is a technique for writing larger (and smaller) programs. Don’t
confuse this use of prototyping with C’s use of it. Prototyping a program requires that
you do (and have) a number of things, including the following:

1. Establish the program’s basic functionality. You must do this by working with
the program’s final users.

2. Select an operating environment—whether it’s a standard character-based
application (becoming increasingly rare) or a graphical user interface (GUI)
Windows-based program such as Microsoft Windows or IBM Presentation
Manager. Pay particular attention to whether the program will use graphics (a
GUI interface is a necessity), whether it will be mass marketed (or is intended
for a very small vertical market), and whether the users with whom you are
working will be the same users that use the program later.

3. After the program’s basic functionality and operating environment have been
selected, the user interface then is developed. The user interface is the most
important part of the program. In a GUI program, follow standards that
already have been established, including Microsoft’s guidelines and IBM’s
book Systems Application Architecture Common User Access Advanced Interface
Design Guide. Resist the urge (and pressure from others) to do your own thing
when you are writing GUI Windows applications. A prime example is a
program for Microsoft Windows that, although it’s a good application, has a
nonstandard user interface that makes using it nearly impossible if you are an
experienced Windows user.

Separate Compilation and Linking 6

4. After the basics of the user interface are developed (at this point there probably
won'’t be much functionality), potential users should review the interface and
suggest additional functionality.

5. Create and implement the standard parts of the user interface, such as the
capability to open, close, and save files. Create the help access. Create the look
and feel of the application’s screen. You probably won't ever face a “look and
feel” lawsuit, and the standards make it easier for users to become familiar with
your program. The fewer unique things the user must learn, the less support
you have to provide.

6. Add each of the functionalities, one at a time, that the program requires. Each
can have its own source file and should be fully self-contained. Don’t use too
many shared supporting functions: Wanting to change a supporting function
is common, but problems occur when some calls to these functions then fail.
Utility functions—the building blocks of your programs—should be as simple
as possible.

Suppose that you have a large program, which therefore is divided into several
source files. How do you put the pieces of the program together and create a single
program that runs? The process of creating a large, multisource file program is shown
in Figure 6.1. It shows generically what you must do (at a minimum) to create a
multisource file program. You first compile all of your source files and then link them.

{ Start)

Compile a
source file.

yes

Figure 6.1. A multisource file program.

163

Part | « Honing Your C Skills

164

Compiling Multifile Programs

Compiling a multifile program isn’t much more difficult than compiling a single-file
program. Many compilers can perform the compile and link using a single command,
usually either cc or cL; other variations exist, however. You must tell the compiler that
it should not link the program when it does the compiling. You tell it (with the
Microsoft compilers) by using the 7c option, which simply specifies that you want only
a compile.

A couple of things are necessary in creating a functioning multisource file
program:

» Be sure that you have properly defined each variable that will be shared
between different parts of the program, using the extern keyword.

» Be sure that all functions have a single sharable prototype the compiler can use.
Never create more than one copy of the prototypes: Make a single copy and
place it in a shared header file (this subject is discussed in this section).

Because function parameters and shared variables (to a lesser extent) are the
primary methods of passing information among different functions in the program,
by defining them properly you increase the likelihood that the program will run
properly.

Because you don’t yet have an automated system to control which of the source
files is compiled (don’t try to remember “I changed this one, but not that one™), you
must compile each source file. For projects that have only a few source files, compiling
each one isn’t as bad as it seems; if you have several hundred source files, however,
compiling all of them every time a change is made is a little excessive. Later, the “Using
MAKE Files” section discusses automated project systems and how to make your
program creation more efficient.

Linking Multifile Programs

When you are linking a program, the linker requires a minimum (other than options)
of the name of the compiler output .OBJfile. This name then is used for the executable
program’s name (which has an EXE extension under DOS on the PC). If more than
one object file is specified, the first file’s name is used if no executable filename is
specified.

Separate Compilation and Linking 6

The linker, whose command line can be lengthy, accepts a multiline command
line. You type the first line and end it with a plus sign (+) and a return. The linker then
prompts for the next part of the command line. This process of continuing the
command line can continue for as long as necessary.

The following short code fragment shows a typical larger multisource file
program’s link command. (You shouldn’t have multiple lines with comments in a real
command).

link /linenumbers /al:16 /nod /map
mainprog.obj file2.obj file3.obj,
mainprog,

/* Linker options */

/* Compiler output obj */

/* Executable file’s name */
/* No map file specified */
/* Libraries */

+ o+ o+ 4+ o+

MLIBCEW LIBW STARBOTH STARAE

The 1ink command has a number of options (all of which probably will be
different for other linkers). These options tell the linker to include line number
information for the debugger (/1inenumbers), align objects on 16-byte boundaries
(7a1:16), not use the default libraries (/nod) that the compiler inserts in the OBJ files,
and create a load map used for debugging (/map).

After the options are the input OBJ files. You can generally omit the OBJ
extension. You can specify as many OBJ files, separated by blanks, as you want. If
several OBJ files are needed, you may have to use the multiline command format.

Then the name of the output file is specified. This filename receives the EXE
extension if no extension is specified. If no output filename is provided, the executable
filename is derived from the name of the first OBJ file.

The next parameter is the name of the linker map file. This file (see Chapter 16,
“Debugging and Efficiency,” for an example) is useful for debugging your program and
for certain performance considerations. If you don’t specify a filename and the /map
option is specified, the map filename is derived from the executable file’s name.

The final parameters are the libraries. This parameter (like the input OBJ files)
can have more than one name, separated by blanks. If you have specified the /nod
option, you must specify all the necessary libraries; otherwise, it is necessary to specify
only the libraries that are special to this program. It is not an error to specify a library
that is not needed, and the linker does not load extra code if an unneeded library is
specified.

165

Part | « Honing Your C Skills

166

Using #include

The preprocessor’s #include statement is a powerful part of creating a C program. You
cannot create a program that compiles without warnings if you do not use at least one
#include statement. Aset of include filesissupplied with every C compiler. These files
always have the .h extension, which is shorthand for headers. The ANSI C definitions,
prototypes, and other necessary information the compiler needs to function properly
are contained in these files (see Chapter 13, “All About Header Files™).

The #include Statement can be coded in two formats. Each is slightly different;
the differences, however, are easy to understand. The first format is

#include “stdio.h”

In this format, the file to be included is delimited by the « character. The
delimiter in this #include statement means: “When the compiler searches for the file
to be included, the search starts with the current directory of the file that has the
#include; if thefile is not found and the file containing the #inciude isalso an included
file, then it’s a parent.” This process continues recursively until all directories in the
chain of included files have been searched. If the file still has not been found, the search
continues as though the second format has been specified. The second format is

#include <stdio.h>

Inthisformat, thefile to be included is delimited by the <and > characters. When
the compiler searches for the file to be included, the search starts with the directories
specified on the compile command line (using the /1 option) and then the directories
specified using the environment variable include. The current directory is not
searched unless it has been specified in one of these two places. If the file cannot be
found, the compiler issues an error message and the compile ends.

You know that you must include C’s header files because they have the function
prototypes and other defined identifiers needed to write your program. What else can
be included? An include file can contain anything that could have been putin a source
file. You can have preprocessor statements, C source code, and so on, and the compiler
treats the information as though it all were in the same file. The only difference is that
whenanerror isin an include file, the compiler’s error message provides the necessary
name and line number of the include file.

Separate Compilation and Linking 6

For large projects, I generally recommend that you have the following custom
include files. Although some projects do not need all these files, you can create and
include them at any time.

 The first file is named with the same name as the program. This file has only
include statements and looks like Listing 6.1. It contains only #include
statements to include the other include files.

« The second file, defines.h, contains all common #define statements. Using a
single, included file for a define helps prevent the use of the same identifier
being defined for two purposes.

e The next file, typedef.h, contains the program’s typedef statements. By placing
all typedef statements in a single include file, all parts of the program can
access them. There is no possibility of the same name being used for two
different types if a single include file is used.

« The vars.h file contains all the variable definitions (and declarations). To see
how a single file can contain both, see Listing 6.4, later in this chapter.

 The final file, prototyp.h, contains the function prototypes for each of the
program’s functions. Always keep prototypes in a single file, using the format
shown in Listing 6.5, later in this chapter.

Listing 6.1 shows the main include file for a multisource file program.

Listing 6.1. An example of a main include file for a large project.

#include “defines.h”
#include “typedef.h”
#include “vars.h”
#include “prototyp.h”

Listing 6.2 shows the defines.h file. You should document each #define’s use as
shown in this example.

Listing 6.2. An example of the defines.h include file.

#ifndef DEFINES_H
#define DEFINES_H

continues

167

Part | « Honing Your C Skills

168

Listing 6.2. continued

#define MAX_SI1ZE
#define USER
#define MAXFONT

#ifndef MIN
#define MIN(a, b)
#endif /* MIN */

#ifndef MAX
#define MAX(a, b)
#endif /* MAX */

#ifndef TRUE
#define TRUE
#endif /* TRUE */

#ifndef FALSE
#define FALSE
#endif /* FALSE */

123 /* Maximum size of array */
“l AM USER” /* The user’s name */
50 /* Maximum number of fonts available */

W@ <) ? @ : ()

W@ > (1)) ? @ : ()

1 /* LOGICAL TRUE */

0 /* if not TRUE, must be FALSE */

#endif /* DEFINES_H */

Listing 6.3 shows the typedef.h file. As in other include files, you should
document each typedef’s use as the example shows.

Listing 6.3. An example of the typedef.h include file.

#ifndef TYPEDEF_H
#define TYPEDEF_H

typedef struct
{

char FontList[MAXFONT][LF_FACESIZE]; // MAXFONT is 50. LF_FACESIZE

// is in windows.h file.

BYTE CharSet[MAXFONT] ; // The font’s character set
BYTE PitchAndFami ly[MAXFONT]; // The font’s pitch and

// family
BYTE VectorOrRaster [MAXFONT] ; // The font’s type

Separate Compilation and Linking 6

BYTE FontType [MAXFONT]; // RASTER FONTTYPE,
// DEVICE_FONTTYPE, or
// TRUETYPE_FONTTYPE
// (windows.h)

int nSizelndex; // Index to the font size.
int nFontlindex; // Index to the font.
int nSizeList[MAX_SIZE]; // List of font’s sizes.

} FONTSPECS;
typedef FONTSPECS *PFONTSPECS ;

typedef FONTSPECS NEAR *NPFONTSPECS;
typedef FONTSPECS FAR *LPFONTSPECS;

#endif /* TYPEDEF_H */

Thetypedef.hfileincludes not only a typedef for the structure, but also typedefs
for various pointers that may point to this structure. This inclusion makes it easy to
create prototypes and to define the necessary structures and pointers later in the
program.

Listing 6.4, the vars.h file, includes all the global variables. It does not contain
any of the static variables because they are known in only the current source file. Notice
the use of the defined identifier exTern. This identifier is defined to the C keyword
extern if the file that is including the vars.h file is not the main file. The variables then
can be either declarations (done only once) or definitions (done in each file). For any
initialized variable, you must check the exTern identifier and process each one as
necessary. As in the other inciude files, you should document each variable’s use as the
example shows.

Listing 6.4. An example of the vars.h include file.

#ifndef VARS_H
#define VARS_H

#ifndef EXTERN
#define EXTERN /*NULL, do variable declarations */

continues

169

Part | « Honing Your C Skills

Listing 6.4. continued

#define INITIALIZE_EXTERN
#endif /* EXTERN */

EXTERN char szBuffer[257]; /* Scratch buffer, contents undefined */
EXTERN char szFileName[129]; /* Input filename */

EXTERN int nErrorCount; /* How many errors so far? */

EXTERN int nErrorVvalue

#iT defined(INITIALIZE_EXTERN) /* Do the initialization */
= {NO_ERROR} /* Initialized */

#endif

#if defined (INITIALIZE_EXTERN)
#undef INITIALIZE_EXTERN
#endif

#endif /* VARS_H */

Notice that vars.h uses the identifier exTern and defines a new identifier called
iNIT1ALIZE_EXTERN. Whenever you are declaring a variable that you want to initialize,
you can use this example to make sure that the variable is not declared twice.

Listing 6.5, the prototyp.h file, includes all the function prototypes for the
various functions in the program. This file should be the last of the group of included
files because it uses the typedefs created in typedef.h. As with the other inciude files,
you should document each function’s use and the file in which it is found, as the
example shows.

Listing 6.5. An example of the prototyp.h include file.

#ifndef PROTOTYP_H
#define PROTOTYP_H

/* source file return name(parameters); */

/* ADDARRAY.C */ int ArrayAdd(LPARRAY, LPARRAY);
/* SUBARRAY.C */ int ArraySubtract(LPARRAY, LPARRAY);

170

Separate Compilation and Linking 6

/* UTILITY.C */ void ErrorMessage(LPSTR szSubString, WORD wError,
long ISomething);

#endif /* PROTOYTP_H */

The prototyp.h file has enough information for you to know each function’s
parameters, what the function returns, and where it is located (so that you can fix it
when it breaks).

By using these include files for your project, you can be confident that you have
much of the project under control. You will not have duplicate external variables with
the same name and different usage, and you won’t have functions defined with one set
of parameters and declared with another. You must work at keeping the include files
in order; however, in the long run, the result is worth the effort.

External Variables

This chapter has discussed using a set of standard include files. These files enable you
to control the way objects are defined in your programs, preventing duplicate
identifiers with different meanings. Chapter 2, “Data Types, Constants, Variables,
and Arrays,” discussed variables, including external variables, and this chapter has
discussed using a single include file to create both a definition and a declaration for
an external variable. Now let’s look at a “real” program that shows how external
variables work for you.

The TWOFILE program, shown in Listings 6.6 through 6.14, is a simple
program with two source C files and a full set of inciude files that uses shared external
(global) variables to share data. TWOFILE doesn’t do much; however, it has the
framework to enable you to build a more meaningful application.

Listing 6.6. TWOFILE1L.C.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson
* A multisource file program.
* This is the first source file for TWOFILE.

*/ .
continues

171

Part | « Honing Your C Skills

172

Listing 6.6. continued

/* This program assumes and uses Microsoft’s extensions to C.
* Readers with other compilers may need to change the program
* to use the calls their compiler supplies to perform the
* same functions.

*/
#define EXTERN extern

#include “twofile.h” /* TWOFILE”s include has all other #includes.
int main(
int argc,

char *argv[],
char *envp[]

)
{
char *pszTemp;
char szBuffer[129]; /* Temporary work buffer. */
char szProgram[30];

char szIlnputFile[132]; /* Make large enough for your 0S. */
char szOutputFile[132]; /* Make large enough for your 0S. */

/* strings for _splitpath() (which parses a file name) */
char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME];

char SzEXt[MAX_EXT];

int i;

int i;

int nCurrentParameter = INNAME;
int nTempWidth = 0O;

int nLineWidth = 80;

int nJustification = LEFT;

if (argc <= 2)

{
GiveHelp(argc, NULL);
return(16);

*/

Separate Compilation and Linking 6

_splitpath(argv[O0],
szDrive,
szDir,
szFname,
SzExt);

strncpy(szProgram, szFname, sizeof(szProgram) - 1);

for (i = 1; argv[i]; i++)
{
it (argv[il[0] == “/7 || argv[i][0] == “-7)
{ /* You have an argument, convert to lowercase, and test. */
pszTemp = striwr(argv[il);

for (j = 1; j < (int)strlen(pszTemp); j++)
{
switch(pszTemp[i1)

{
case ARG_LEFT:

nJustification = LEFT;
break;

case ARG_RIGHT:
nJustification = RIGHT;
break;

case ARG_JUSTIFY:
nJustification = JUSTIFY;
break;

case ARG_SLASH:
case ARG_DASH:
break;

default:

GiveHelp(BAD_OPTION, &pszTemp[i]);
break;

else

continues

173

Part | « Honing Your C Skills

Listing 6.6. continued

{ /* Either a filename or width. */
switch(nCurrentParameter)

{

case INNAME:
strcpy(szlnputFile, argv[i]);
nCurrentParameter = OUTNAME;
break;

case OUTNAME:
strcpy(szOutputFile, argv[i]);
nCurrentParameter = WIDTH;
break;

case WIDTH:
sscanf(argv[i], “%d”, &nTempWidth);
if (nTempWidth < 20 || nTempWidth > 128)
{

GiveHelp(BAD_WIDTH, NULL);
3
else
{
nLineWidth = nTempWidth;

3
nCurrentParameter = LAST_THING;
break;

default:
GiveHelp(BAD_PARM, NULL);
break;

}

}

if (nCurrentParameter < WIDTH)

{ /* Didn’t get two file names! */
GiveHelp(NAME_MISSING, NULL);
return(16);

174

Separate Compilation and Linking 6

printf(*\n”);

printf
“%s would read the file “%s” and write the file “%s’\n\n”,
szProgram,
szlnputFile,
szOutputFile);

switch(nJustification)
{
case LEFT:
printf(“The lines would be %d characters long, left \
aligned\n”,
nLineWidth);
break;

case RIGHT:
printf(“The lines would be %d characters long, right \
aligned\n”,
nLineWidth);
break;

case JUSTIFY:
printf(“The lines would be %d characters long, justified\n”,
nLineWidth);
break;

}

/* In the final version of this program, the files next

* are opened, and the input file is read into a buffer,

* formatted according to what the user wants, and written

* out to the output file. At the end, the files are closed,
* and perhaps some statistical information can be presented
* to the user.

*/

return (0);

175

Part | « Honing Your C Skills

Listing 6.7 is TWOFILE2.C, the second source file. It contains the help
function.

Listing 6.7. TWOFILE2.C.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson
* A multisource file program.
* This is the second source file for TWOFILE: TWOFILE2.C.
*
/

/* This program assumes and uses Microsoft’s extensions to C.
* Readers with other compilers may need to change the program
* to use the calls their compiler supplies to perform the
* same functions.

*/

#include “twofile.h” // TWOFILE”s include has all other #includes.

void GiveHelp(
int nLevel,
char *psltem)

printf(*“\n™);

switch(nLevel)
{
case NOINNAME:
case NOOUTNAME: // Not enough parameters!
printf(
“FORMAT [-r|-1]-J] inputfile outputfile width\n”
where \n”
Options - -r (or /r) to right align \n”
-1 (or /1) to left align \n”
-j (or /j3) to justify\n”
c\p”
inputfile - is the input file name \n”
outputfile - is the output file name \n”
c\p”
width is the desired output width (20 to 128)\n”

176

Separate Compilation and Linking 6

“ (default is 80 characters).\n”
“\p”
“ Note: lines are concatenated, paragraph breaks are\n”
N signaled with a blank line\n\n”);
break;

case BAD_WIDTH:
printf(
“The width parameter must be between 20 and 128!\n”
“the width is ignored\n™);
break;

case BAD_PARM:
printf(“Excessive parameters have been entered\n”);

/* Force a display of full help! */

GiveHelp(NOINNAME, NULL);
break;

case BAD_OPTION:
printf(““%c” is an invalid option! (Use only -1, -r or \
-i)\n”,
*psltem);

break;

case NAME_MISSING:
printf(“One or both of the required file names is \
missing!\n);

/* Force a display of full help! */

GiveHelp(NOINNAME, NULL);
break;

defaul t:
printf(
“An unspecified error occured! FORMAT has ended!\n”

)

continues

177

Part | « Honing Your C Skills

178

Listing 6.7. continued

exit(16);

break;

Listing 6.8 is TWOFILE.H, the main include file for TWOFILE.

Listing 6.8. TWOFILE.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson
* A multisource file program”s main include file.

* This
*/

is TWOFILE’s include file.

/* This program assumes and uses Microsoft’s extensions to C.
* Readers with other compilers may need to change the program
* to use the calls their compiler supplies to perform the
* same functions.

*/

/* First

#include
#include
#include
#include

/* Next,

#include
#include
#include
#include

include the C language’s include files: */

<stdio.h> // Make includes first part of file
<string.h> // For string functions.

<stdlib.h> // Standard include items.
<process.h> // For exit(), etc.

include TWOFILE’s include files */

“define.h”
“typedef.h”
“vars.h”
“prototyp.h”

/* End of this include file; put nothing but #include statements
* in this header!

*/

Separate Compilation and Linking 6

Listing6.9is DEFINE.H, theidentifier identification includefile for TWOFILE.

Listing 6.9. DEFINE.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson
* A multisource file program’s #define include file.

* This is TWOFILE’s DEFINE.H include file.

*/

/* This program assumes and uses Microsoft’s extensions to C.
* Readers with other compilers may need to change the program
* to use the calls their compiler supplies to perform the
* same functions.

*/

#define LEFT 1
#define RIGHT 2
#define JUSTIFY 3

#define [INNAME 1
#define OUTNAME 2
#define WIDTH 3
#define LAST_THING 4

#define ARG_LEFT ‘1’
#define ARG_RIGHT ‘r-
#define ARG_JUSTIFY “j~”
#define ARG_SLASH </’
#define ARG_DASH -7

#define NOINNAME 1
#define NOOUTNAME 2
#define BAD_WIDTH 3
#define BAD_PARM 4
#define BAD_OPTION 5
#define NAME_MISSING 6

Listing 6.10 is TYPEDEF.H, the identifier identification inciude file for
TWOFILE.

179

Part | « Honing Your C Skills

Listing 6.10. TYPEDEF.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson */
* A multisource file program®s #define include file.
/* This is TWOFILE’s TYPEDEF.H include file. */

/* This program assumes and uses Microsoft’s extensions to C.
* Readers with other compilers may need to change the program
* to use the calls their compiler supplies to perform the
* same functions.

*/

/* This program uses no typedefs. */

Listing 6.11 is VARS.H, the external variables include file for TWOFILE.

Listing 6.11. VARS.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson */
* A multisource file program®s external variables include file.
/* This is TWOFILE’s VARS.H include file. */

/* This program assumes and uses Microsoft’s extensions to C.
* Readers with other compilers may need to change the program
* to use the calls their compiler supplies to perform the
* same functions.

*/

/* This program uses no external variables. */

Listing 6.12 is PROTOTYP.H, the function prototypes’ include file for
TWOFILE.

Listing 6.12. PROTOTYP.H.

/* Program TWOFILE, written 22 May 1992 by Peter D. Hipson
* A multisource file program®s prototypes” include file.
* This is TWOFILE’s PROTOTYP.H include file.

*
/

180

Separate Compilation and Linking 6

/* This program assumes and uses Microsoft’s extensions to C.
* Readers with other compilers may need to change the program
* to use the calls their compiler supplies to perform the
* same functions.

*/

/* TWOFILE1.C */ int main(int argc, char *argv[l, char *envp[]);

/* TWOFILE1.C */ void GiveHelp(int nLevel, char *psltem);

For a simple project that has only one source file, having five include files may
seem like overkill. Perhaps it is, but for larger projects (with two or more source files),
it isn’t long before you thank yourself for the organization these files offer.

One of the keys to success is organization. Another is planning. Plan your
program, and be sure it is organized. Disarray and chaos have no place in program-
ming. Let’s look at how you can keep your compiler output files better organized.

Using an Object Library Manager

When a large program is created with many source files, the process of creating the
program is called building. This process consists of the following steps (refer to Fig-
ure 6.1):

1. Compile each of the source files. The compiler’s output usually is referred to as
an object module and often has an .obj extension.

2. Combine all the object modules the compiler has produced with the C
language’s libraries to create an executable program.

3. In this optional step, you create symbol files that your debugger uses. Because
each debugger is different, program creation is not discussed here.

Everything’s OK so far, but problems lurk. First, if your program is large, the
linker’'s command-line input can get huge, even if the linker is driven by a file
containing the necessary filenames. | have seen linker command lines that are several
hundred lines long, but they’re not pretty.

181

Part | « Honing Your C Skills

182

You can have a group of object modules in which your project isn’t a program,
but is just a collection of functions that perform a specific purpose and that (usually)
is used with more than one program. The various C library functions are an example.

Grouping a number of functions together is called creating a library. Utility
programs (supplied with your compiler and usually called L1B) perform various tasks
with libraries. Let’s look at Microsoft’s LIB utility. This program enables you to
maintain your object code libraries and performs the following functions:

» Adds an object module to the library
¢ Deletes an existing object module from the library

» Replaces an existing object module in the library by performing a delete
followed by an add

 Extracts an object module from the library

» Maps a library and provides a listing of the library’s contents, the sizes of the
library’s members, and the member’s entry points and other external names

In all cases, if the library doesn’t exist, you have the option of creating it. An
empty library can exist; however, it doesn’t have much value. When Microsoft’s LIB
program runs, it creates a backup copy of the library and enables you to recover easily
from errors.

You can group functions in an object library by what they do. This capability is
handy because you can, for example, create a library of functions that read database
files and a library of special math functions and keep them separate.

Using MAKE Files

Suppose that you have a program that consists of 35 source files. As you are editing
them, you note on paper which onesyou have changed so that you can recompile them.
How long before you forget to compile one of the changed source files, and what are
the effects? The answer is “not long and the problems are difficult to find.”

Now suppose that you compile the entire program every time. How long until
you finish your program, and do you have any friends when you finish? The answer
is “forever, and your friends have left you long ago.”

Separate Compilation and Linking 6

There has to be a better way—that’s why we have computers. Many program-
mers are faced with the dilemma of whether it is faster to do it by hand or to figure out
how to make the computer do it. In this case, it’s always preferable to let the computer
do the work. This is where MAKE (also known by other names, such as NMAKE)
comes in handy.

The MAKE utility has one purpose: It looks at the date on which one file was
created or last modified and compares it to the date of another file. If the first file is older
than the second, the MAKE performs some specified action, such as compiling,
linking, or another command that can be called from the command prompt.

Some of the more advanced compilers have a utility that creates the MAKE files
for you. If your compiler has one, use it. (Creating a MAKE file by hand involves some
work, but it can be done.) Listing 6.13 is a simple MAKE file that compiles
TWOFILE, the example program discussed earlier.

Listing 6.13. TWOFILE.MAK, a MAKE file to compile TWOFILE.

includes = twofile.h define.h typedef.h vars.h prototyp.h

twofilel.obj: twofilel.c $(includes)
cl -c -u -as -gsw -os -zpe twofilel.c

twofile2.obj: twofile2.c $(includes)
cl -c -u -as -gsw -os -zpe twofilel.c

twofile.exe: twofilel.obj twofile2.obj
link clockdat;

In Listing 6.13, the variable includes is defined first (yes, MAKE has variables).
It contains the following string:

twofile.h define.h typedef.h vars.h prototyp.h

You use thistechnique to reference the inciude filesina MAKE file to save typing
and make it easy to update the list (if you need to add a new include file later). A defined
variable in a MAKE file can be referenced by enclosing it within parentheses and
preceding the opening parenthesis with a dollar sign. If the variable is undefined, the
result is a blank, and no error is generated. This capability can come in handy because
you can define variables on the MAKE command line to change compiler options,
linker options, or almost anything else.

183

Part | « Honing Your C Skills

184

Not listing the include file prototyp.h in the MAKE file is not uncommon;
however, | recommend that you reference every file that makes up part of your project.

The following line is called a dependency line:
twofilel.obj: twofilel.c $(includes)

It tells MAKE that the file twofilel.obj might change if any of the files following the
: change. In this case, twofilel.obj may change if twofile.c or any of the include files
changes. There is a limit to what MAKE can see: It looks only at the files’ time stamp.
If twofilel.c or any of the include files is newer than twofilel.obj, the dependency is
true, and MAKE performs whatever commands immediately follow the dependency
line:

cl -c -u -as -gsw -os -zpe twofilel.c

These commands, however, must start in a column other than the first one (I
recommend that you indent them four spaces).

In a MAKE file, the # character is the comment delimiter. If you want to
comment your MAKE file (I recommend it), simply use the comment delimiter (see
Listing 6.14). MAKE continues to process the MAKE file until one of the commands
returns a nonzero return code or until the MAKE file ends. Rarely do you want to
continue to run MAKE after an error has been detected. Listing 6.13 is a simple
MAKE file. Listing 6.14 is a more advanced MAKE file, again written for TWOFILE.

Listing 6.14. TWOFILE, an advanced MAKE file for the TWOFILE
program.

#it## Module Macro #####

NAME = twofile

SRCS = twofilel.c twofile2.c
0BJS =

#iHHH C7 Macro (if you have Microsoft C-7) ###H##
c7 =1

#iHHH# Library Macros (if programming under Windows) #####
LIBS = libw mlibcew
MOD = -AM

#HHH Include Macro ##H#HH#H
INCLS = $(NAME) .h define.h typedef.h vars.h prototyp.h

Separate Compilation and Linking 6

DEBUG Defined ###HH
DEBUG =1

##HHE Builld Option Macros ####
1if $(DEBUG)

DDEF = -DDEBUG
CLOPT = -Zid -0d
MOPT = -Zi

LOPT = /CO /L1 /MAP
Telse

DDEF =

CLOPT = -0Os

LOPT =

Tendif

#i##H General Macro ##Ht
DEF =

#i## Tool Macros #i#Ht

ASM = masm -Mx $(MOPT) $(DDEF) $(DEF)

cC = cl -nologo -c $(MOD) -G2sw -Zp -W3 $(CLOPT) $(DDEF) $(DEF)
LINK = link /NOD /NOE $(LOPT)

RC = rc $(DDEF) $(DEF)

HC = hc

#i## Inference Rules #t#HH
.c.obj:
$(CC) $*.c

.asm.obj:
$(ASM) $*.asm;

.rc.res:
$(RC) -r $*.rc

#HHE Main (default) Target ###H#H#
goal: $(NAME).exe

###H: Dependents For Goal and Command Lines #####
$(NAME) .exe: $(SRCS:.c=.0bj)

continues

185

Part | « Honing Your C Skills

186

Listing 6.14. continued

$(LINK) @<<
$(SRCS:.c=.0bj) $(OBJIS),
$(NAME) . exe,
$(NAME) .map,
$(LIBS),
$(NAME) . def
<<
1if $(DEBUG)
1if 1$(C7)
cvpack -p $(NAME).exe
Tendif
mapsym $(NAME) .map
Tendif

#iHHH Dependents ###H#H#H
$(SRCS:.c=.obj): $(INCLS)

#iHHH Clean Directory ##H##H#H
clean:

-del *.obj

-del *_exe

Thisexample of a MAKE file does little more than the first, simpler example, but
it does have the capability to quickly add new source (.C) files, to switch between debug
mode and a final production version, and to handle Microsoft C 7’s differences.

In all, MAKE is one of the most important tools you have to help you produce
your program. Without it, you have to do most of the work in creating your program,
such as calling the compiler and linker.

summary

This chapter described programs made up of more than one source file and how to
manage larger, multisource file projects.

e The compiler is used to compile each source file.

Separate Compilation and Linking 6

When all the source files are compiled (successfully), they are combined, using
a linker, to produce the final executable program.

The #include Statement causes the C compiler to read in the named file as
though it were part of the original file.

When the included file ends, the compiler continues with the original file.

External variables, identified with the extern keyword, can be used to share
information between functions, even when the functions reside in different
source files.

The object library utility (LIB) is used to maintain library files.

MAKE files are used to help automate the process of creating a large program
that has more than one source file.

187

Part |1

Managing Data in C

C Structures

A computer language would be ineffective if it did not offer a way to create complex
dataobjects. Cstructuresare objects that contain more than one item. A structure often
contains data objects grouped according to their usage, but a structure can contain
unrelated data objects as well.

Using the struct Keyword

You use the struct keyword to define a structure. A structure definition consists of
several parts, as the following shows:

struct tag_name {
type member_name;
type member_name;
type member_name;
} structure_name =
{initializer_values};

191

Part Il « Managing Data in C

192

Although the formatting is up to the programmer, | suggest that you use the preceding
format for easy readability.

The first line contains the struct keyword, then the optional tag_name:
struct tag_name {

The tag_name can be used to create a copy of the structure (asshown in STRUCTA4.C,
one of the example programs in this chapter). An opening brace follows the tag_name
(or the struct keyword, if the tag_name is not used). This brace signals to the compiler
that the next lines are member definitions. Each member definition consists of a
variable type and a name. The members can be any valid variable type, including arrays,
structures, and unions, as follows:

type member_name;
type member_name;
type member_name;

Following the last member nameisaclosing brace and the optional structure_name,
as follows:

} structure_name =

When using the structure_name and the tag_name, you can choose any of the
following:

* If astructure_name is not specified and a tag_name is specified, the structure is
being defined but not declared.

e If a structure_name is specified and a tag_name is not specified, the structure is
being declared but not defined.

¢ If a structure_name and a tag_name are provided, the structure is being both
defined and declared.

« |f neither a structure_name NOr a tag_name is provided, a compile-time error
will result.

If you want to initialize the structure, you must have a structure_name because
it signals the compiler that this is a declaration. The structure_name is also necessary
if you want to refer to the structure.

After the structure_name are optional initializers:

{initializer_values};

C Structures 7

The following is a simple structure:

struct

{
char szSaying[129];
int nLength;

} MySaying;

This structure definition provides a data object that can be referenced with a single
name, Mysaying. Each member of mysaying provides different information.

Structures offer us a number of important advantages, including the following:
You can refer to the entire data object using a single name.

You can use the structure name as a parameter to a function. For example,
you could pass the address and the length of the structure name to read)
to read the structure’s contents from a disk file.

Structures can be assigned directly. You cannot assign strings (you must use
the strcpy(library function), but you can assign two structures simply by
using an assignment statement.

A function can return a structure.

Asimple program thatallocates and initializes a structure is shown in Listing 7.1.

Listing 7.1. STRUCTL1.C.

/* STRUCT1, written 1992 by Peter D. Hipson
* This is a simple structure program.
*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

int main(void); // Define main() and the fact that this
// program doesn’t use any passed parameters

int mainQ)

{

continues

193

Part Il « Managing Data in C

194

Listing 7.1. continued

int i;
struct
{
char szSaying[129];
int nLength;
} MySaying =

{“Firestone’s Law of Forecasting:”,
strien(MySaying.szSaying)};

printf(“sizeof(MYSaying) = %d\n”, sizeof(MySaying)):;
printf(*“MySaying %p %3d “%s’\n”’,

&MySaying.szSaying,

MySaying.nLength,

MySaying.szSaying);

printf(*\n\n”’);

return (0);

In STRUCTY, you can see the definition of the mysaying structure. This
structure has two members: a character string (with a length of 129) called szsaying
andan integer variable called nLength. Thestructure isinitialized with aline of textand
anumber. The program then initializes the nLength member to the length of the string
in the szsaying member. (Using a function call to initialize a data object is permitted
but uncommon.)

Notice how the program refers to each member in the structure. The shorthand
for a structure reference is the structure name followed by a period and the member
name:

structure.member

If the member is also a structure (more on this later), the member name is
followed by a period and its member name:

structure.memberstructure.member

C Structures 7

Arrays of Structures

As mentioned, an array can consist of any data type. In this section, you look at an
example of a program that usesan array of type struct. Listing 7.2, STRUCT2, creates
a structure, makes it an array, and initializes it.

Some compilers will not compile Listing 7.2 correctly, even
Q§ though it is legitimate ANSI code.

Listing 7.2. STRUCT2.C.

/* STRUCT2, written 1992 by Peter D. Hipson

* This program creates an array of type struct
*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

int main(void); // Define main() and the fact that this
// program doesn’t use any passed parameters

int mainQ)

{
int i
struct
{
char szSaying[129];
int nLength;

} MySaying[l = {
“Firestone’s Law of Forecasting:”, O,

continues

195

Part Il « Managing Data in C

196

Listing 7.2. continued

Chicken Little has to be right only once.”, O,
7, 0,
7, 0,
“Manly’s Maxim:”, O,
Logic is a systematic method of coming to”, O,
the wrong conclusion with confidence.”, O,
7, 0,
7, 0,
“Moer’s truism:”, O,
The trouble with most jobs is the job holder’s”, O,
resemblance to being one of a sled dog team. No one”, O,
gets a change of scenery except the lead dog.”, O,
7, 0,
7, 0,
“Cannon’s Comment:”, O,
If you tell the boss you were late for work because you”, O,

had a flat tire, the next morning you will have a flat tire.”,

0,

}:
for (i = O;

i < (sizeof(MySaying) / sizeof(MySaying[0]));

i++)
{

MySaying[i]-nLength = strlen(MySaying[i]-szSaying);
¥

printf(“sizeof(MySaying) = %d\n”, sizeof(MySaying)):;

printf(“Number of elements = %d\n”,
(sizeof(MySaying) 7/ sizeof(MySaying[0])));

for (i = O;
i < (sizeof(MySaying) / sizeof(MySaying[0]));
i++)

printf(“*MySaying[%2d] %p %3d “%s’\n”,
i,
&MySaying[i].szSaying,
MySaying[i]-nLength,

C Structures 7

MySaying[i]-szSaying);
}

printf(*\n\n”);

return (0);

Let’s look at how the structure is declared. In the first few lines, the structure
members and the structure’s name are established:

struct

{
char szSaying[129];
int nLength;

¥ MySaying[] = {

In the last line of this code fragment, brackets indicate that an array is being defined.
(A nonstructure array is declared in this way also.) Following are the array brackets,
which do not have a size. This tells the compiler to compute the number of elements
in mysaying from the initializers.

I have not specified the number of elements; instead, the compiler computes this
number. While the program is executing, it calculates the number of members using
a simple formula:

nNumberOfMembers = (sizeof(MySaying) / sizeof(MySaying[0]))

The total size of the structure is divided by the size of the first member. (Remember
that all members must be the same size.) This gives us the number of elements in the
structure array. Computing the number of elements in this way is handy. If you want
to change the initializers to add a new saying, for example, you won’t have to change
the program.

You can write a macro to compute the number of elements as follows:
#define NUMBER_ELEMENTS(array) (sizeof(array) / sizeof(array[0]))

If you give this macro the name of an array (of any type), it returns the number
of elementsin the array. An example isshown in Listing 7.3, the STRUCTA program.
The macro makes it easy to use loops to index an array whose number of elements has
been determined by the initializers (or by any other means).

197

Part Il « Managing Data in C

Listing 7.3. STRUCTA.C.

/* STRUCTA, written 1992 by Peter D. Hipson

* A program showing a macro to determine the
* number of elements in an array.

*

/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

/* The NUMBER_ELEMENTS(array) macro returns the number of

* elements found in array. Array can be any array, including
* an array of type struct.

*

/

#define NUMBER_ELEMENTS(array) (sizeof(array) / sizeof(array[0]))

int main(void); // define main(), and the fact that this program doesn’t
// use any passed parameters.

int mainQ)
{
int i;
struct
{
char szSaying[129];
int nLength;

} MySaying[] = {

“Firestone’s Law of Forecasting:”, O,
Chicken Little has to be right only once.”, 0,

7, 0,

7, 0,

“Manly’s Maxim:”, O,
Logic is a systematic method of coming to”, O,
the wrong conclusion with confidence.”, O,

7, 0,

7, 0,

“Moer’s truism:”, O,

198

C Structures 7

The trouble with most jobs is the job holder’s”, O,
resemblance to being one of a sled dog team. No one”, O,

gets a change of scenery except the lead dog.”, O,

“, 0,

“, 0,

“Cannon’s Comment:”, O,

“ IFf you tell the boss you were late for work because you”, O,
had a flat tire, the next morning you will have a flat tire.”,

0,
};
for (i = 0; i < NUMBER_ELEMENTS(MySaying); i++)
{
MySaying[i]-nLength = strlen(MySaying[i]-szSaying);
}
printf(/* String literal concatenation makes formatting lists easy
*/
“sizeof(MySaying) = %d\n”

“Number of MySaying elements = %d\n”
“sizeof(MySaying[0]-szSaying) = %d\n”,
sizeof(MySaying),
NUMBER_ELEMENTS(MySaying),
NUMBER_ELEMENTS(MySaying[0] -szSaying));

for (i = O;
i < NUMBER_ELEMENTS(MySaying);
i+

+)
{
printf(“MySaying[%2d] %p %3d “%s’\n”,
i,
&MySaying[i]-szSaying,
MySaying[i]-nLength,
MySaying[i]-szSaying);
}

printf(*\n\n”);

return (0);

199

Part Il « Managing Data in C

200

As Listing 7.3 shows, creating arrays of structures is simple and straightforward.
Under ANSI C, you can initialize an auto structure as both a singular entity and an
array, which makes it easier to use structures.

Listing 7.3 has some problems, however. Note the size of the structure when you
run the program. It is huge! Because the size of the largest initializing string cannot be
determined easily, | made the szstring member large enough for all (or almost all)
strings, 129 characters. The compiler adds a byte to pad this length to aword boundary,
making the length 130. The total length of the structure—including the integer length
member, nLength—is 132 bytes. There are 18 members in the array of structures.
When | compiled and executed the program, the total length was 2376 bytes. Perhaps
there is a better way.

Structures of Arrays

If you can make an array from astructure, can a structure contain an array? Of course!
The process of defining an array in a structure was demonstrated in Listing 7.3, in
which the szstring variable is a string variable, and string variables are made up of
arrays of type char.

Anadvanced version of STRUCTA isshown in STRUCTS3.C, Listing 7.4. This
program stores pointers to a ragged-right array of character initializers. Because the
program does not allocate additional space, this version is useful when the saved strings
will not be modified. If you have to modify the saved strings, STRUCTA is a better
choice.

Listing 7.4. STRUCT3.C.

/* STRUCT3, written 1992 by Peter D. Hipson
* A structure containing an array (or two).
*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#define NUMBER_ELEMENTS 35

int main(void); // define main(), and the fact that this program doesn’t
// use any passed parameters.

C Structures 7

int mainQ)
{
int i;
struct
{
char *szSaying[NUMBER_ELEMENTS] ;
int nLength[NUMBER_ELEMENTS];

} OurSaying = {
“Firestone’s Law of Forecasting:”,
“ Chicken Little has to be right only once.”,

“Manly’s Maxim:,
“ Logic is a systematic method of coming to”,
“ the wrong conclusion with confidence.”,

“Moer”s truism:”,

“ The trouble with most jobs is the job holder’s”,

“ resemblance to being one of a sled dog team. No one”,
“ gets a change of scenery except the lead dog.”,

“Cannon’s Comment:”,

“ IFf you tell the boss you were late for work because you”,

“ had a flat tire, the next morning you will have a flat tire.”,
NULL /* Flag to mark the last saying */

3
for (i = 0; OurSaying.szSaying[i]; i++)
{

OurSaying.nLength[i] = strlen(OurSaying.szSaying[il);
}

printf(“sizeof(OurSaying) = %d\n”, sizeof(OurSaying));

for (i = 0; OurSaying.szSaying[i]; i++)

continues

201

Part Il « Managing Data in C

202

Listing 7.4. continued

{
printf(*OurSaying %p %3d “%s’\n”,
&OurSaying.szSaying[i],
OurSaying.nLength[i],
OurSaying.szSaying[i]);
}

printf(*\n\n”’);

return (0);

Because | do not want to count by hand how many strings will be used to initialize
the structure and cannot (in this context) let the compiler compute the number, | have
a problem. I must specify the number explicitly. I chose a value of 35 (the identifier
is called NnumBER_ELEMENTS) because | knew that there would not be more than 35 lines
of sayings.

Although the number of elements is fixed at 35, all of them are not initialized.
Therefore, the program needs a way to know when the end of the list has been reached.
This isaccomplished by adding a pointer with the nuLL value as the last initializer. The
program can test for the end of the array using a conditional test, such as

for (i = O; OurSaying.szSaying[i]; i++)

Because ANSI C has defined nuLL as a pointer that is never used, and because the value
of NnuLL is usually zero when programming under DOS, this test always works.

If you are unwilling to assume that nuLL is always defined as a zero value, the test
could be rewritten as

for (i = 0; OurSaying.szSaying[i] !'= NULL; i++)

This conditional comparison of the pointer and nuLL makes the test more explicit. |
did not test for a zero-length string because the blank lines between sayings have a
length of zero.

C Structures 7

Structures of Structures

It is common to have members of a structure be structures themselves. The maximum
level of nesting is 15 according to the ANSI C standard. (You are unlikely to reach this
limit.)

Listing 7.5, STRUCT4, has nested structure definitions. This program (built
from STRUCT) has Murphy’s sayings and a few others I have collected over the years.

Listing 7.5. STRUCTA4.C.

/* STRUCT4, written 1992 by Peter D. Hipson
* A program with nested structures.
*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

int main(void); // Define main(), and the fact that this program doesn’t
// use any passed parameters.

int mainQ)

struct SAYING

{
char *szSaying[35];
int nLength[35] ;
}:
struct
{

struct SAYING Murphy;
struct SAYING Peter;
} OurSaying = {{
“Firestone’s Law of Forecasting:”,

continues

203

Part Il « Managing Data in C

Listing 7.5. continued

Chicken Little has to be right only once.”,

“Manly’s Maxim:”",
Logic is a systematic method of coming to”,
the wrong conclusion with confidence.”,

“Moer’s truism:”,
The trouble with most jobs is the job holder’s”,
resemblance to being one of a sled dog team. No one”,
gets a change of scenery except the lead dog.”,

“Cannon’s Comment:”,
If you tell the boss you were late for work because you”,
had a flat tire, the next morning you will have a flat tire.”,
NULL /7* Flag to mark the last saying */
3 {
“David’s rule:”,
Software should be as easy to use as a Coke machine.”,

“Peter’s Maxim:”,
To be successful, you must work hard, but”,
Hard work doesn’t guarantee success.”,

“Teacher’s truism:”,
Successful people learn.”,

“Player’s Comment:”,
If you don’t play to win,”,
you don’t win.”,
NULL /7* Flag to mark the last saying */

3}

for (i = 0; OurSaying.Murphy.szSaying[i]; i++)
{

204

C Structures 7

OurSaying.Murphy.nLength[i] =
strlen(OurSaying-Murphy.szSaying[i]);

}

printf(“sizeof(OurSaying.Murphy) = %d\n”, sizeof(OurSaying.Murphy));

for (i = 0; OurSaying-Murphy.szSaying[i]; i++)

{
printf(“OurSaying.-Murphy %p %3d “%s’\n”,
&OurSaying.Murphy.szSaying[i],
OurSaying.-Murphy.nLength[i],
OurSaying.-Murphy.szSaying[i]);
3

printf(*\n\n”);
for (i = O0; OurSaying.Peter.szSaying[i]; i++)
{
OurSaying.Peter.nLength[i] = strlen(OurSaying.Peter.szSaying[i]);
3

printf(“sizeof(OurSaying.Peter) = %d\n”, sizeof(OurSaying.Peter));

for (i = O0; OurSaying.Peter.szSaying[i]; i++)

{
printf(“OurSaying.Peter %p %3d “%s’\n”,
&OurSaying.Peter.szSaying[i],
OurSaying.Peter.nLength[i],
OurSaying.Peter.szSaying[i]);
3

printf(*\n\n”);

return (0);

STRUCT4 is the first program in this book that has used the structure tag. The
definition of the structure is

struct SAYING
{

205

Part Il « Managing Data in C

206

char *szSaying[35];
int nLength[35];
¥

I create a definition of a structure, but | do not declare the structure (that is, I do not
allocate storage). | assign the name sAyInG to the optional tag position. This name can
be referred to in future declarations of structures of the same type.

Next, | declare the structure, which has two members: Mmurphy and peter. The
structure is then initialized:

struct

{
struct SAYING Murphy;
struct SAYING Peter;

} Oursaying = {{-..}.{-..}};

Note the use of initialization braces: the entire initializer is enclosed with aset of braces,
then each of the nested structure’sinitializers is enclosed in a set of braces. By grouping
the initializers into two blocks, these braces tell the compiler which initializer goes with
which nested structure.

Then the structure is accessed using the same syntax shown in the previous
examples, except a name (either murphy or Peter) is added to tell the compiler which
member to use:

for (i = 0; OurSaying.-Murphy.szSaying[i]; i++)
{

OurSaying.-Murphy.nLength[i] = strlen(OurSaying.-Murphy.szSaying[i]);
}

A saying or length in the murphy part of the structure is accessed with
OurSaying.-Murphy.
and a saying or length in the peter part of the structure is accessed with

OurSaying.Peter.

Bit Fields In Structures

Inascalar data object, the smallest object that can be addressed directly is usually a byte.
In a structure, you can define data objects from 1 to 16 bits long.

C Structures 7

Suppose your program contains a number of TRUE/FALSE variables grouped
in a structure called status, as follows:

struct {
unsigned int blsvalid;
unsigned int blsFullSize;
unsigned int blsColor;
unsigned int b1sOpen;
unsigned int blsSquare;
unsigned int blsSoft;
unsigned int blsLong;
unsigned int blsWide;
unsigned int blsBoxed;
unsigned int blsWindowed;

} Status;

This structure requires 20 bytes of storage, which is a lot of memory for saving
a few TRUE/FALSE variables. It would be better to save each variable using only one
bit. Perhaps you could use a single, bit-mapped variable (described in Chapter 5,
“Decimal, Binary, Hex, and Octal”). Sometimes, however, your flags must keep the
identity that a unique name offers.

C offersthe capability to define the width of avariable, but only when the variable
isinastructure calledabit field. Forexample, you could rewrite the definition of status
as follows:

struct {
unsigned int blsvalid:1;
unsigned int blsFullSize:1;
unsigned int blsColor:1;
unsigned int blsOpen:1;
unsigned int blsSquare:1;
unsigned int blsSoft:1;
unsigned int blsLong:1;
unsigned int blsWide:1;
unsigned int blsBoxed:1;
unsigned int blsWindowed:1;

} Status;

The :1 that appears after each variable’s name tells the compiler to allocate one
bit to the variable. Thus, the variable can hold only a 0 or a 1. This is exactly what is
needed, however, because the variables are TRUE/FALSE variables. The structure is
only two bytes long (one tenth the size of the previous example).

207

Part Il « Managing Data in C

208

A bit field can hold more than a single bit. For example, it can hold a definition
of a structure member, such as

unsigned int nThreeBits:3;
In this example, nThreeBits can hold any value from 0 to 7.

The most critical limitation to using bit fields is that you cannot determine the
address of a bit field variable. If you use the address of operator, a compile-time error
results. This means that you cannot pass a bit-field’s address as a parameter to a
function.

When the compiler stores bit fields, it packs them into storage without regard to
alignment. Therefore, storage is used most efficiently when all your bit fields are
grouped together in the structure. You can force the compiler to pad the current word
so that the next bit field starts on a word boundary. To do so, specify adummy bit field
with a width of 0, for example:

struct {
unsigned int blsvalid:1;
unsigned int blsFullSize:1;
unsigned int bReservedl1:0;
unsigned int blsBoxed:1;
unsigned int blsWindowed:1;
} Status;

The breserved1 bit field tells the compiler to pad to the next word boundary,
which results in the bi1sBoxed bit field starting on a known boundary. This technique
is useful when the compiler is packing structures and you need to know that the
alignment is as optimal as possible. (Some computers access objects faster when the
objects are aligned on word or double word boundaries.)

Using the typedef Keyword

I think that the typedef keyword is one of the best parts of the C language. It enables
you to create any data type from simple variables, arrays, structures, or unions.

The typedef keyword is used to define a type of variable, just as its name implies.
You can define any type from any other type. A variable created with typedef can be
used just like any other variable. Listing 7.6, CREATEDB.C, is a simple example of
using typedef With structures.

Listing 7.6. CREATEDB.C.

C Structures 7

/* CREATEDB, written 1992 by Peter D. Hipson
* This program demonstrates typedef. The program

* has minimal error checking; it will fail if

* you enter a field value that is too long for
* the structure member that holds the value.
* Use with caution!

*/

#include
#include
#include
#include
#include

#define CUSTOMER_RECORD 1
#define SUPPLIER_RECORD 2

<string.h>
<ctype.h>
<stdio.h>
<process.h>
<stdlib.h>

/* Define the structure for the customer database */

typedef struct

int
char
char
char
char
char
int
int
doub

nRecordType;
szName[61];
szAddri[61];
szAddr2[61];
szCity[26];
szState[3];
nzZip;

nRecordNumber ;

le dSalesTotal;

} CUSTNAME;

typedef
typedef

void

_CUSTNAME {

7/
7/
7/
7/
//
7/
//
7/
7/

1 == Customer record

60 chars for name; 1 for null at end

60 chars for address; 1 for null at end
60 chars for address; 1 for null at end
25 characters for city; 1 for null at end
2-character state abbrev. plus null

Use integer. Print as %5.5d for leading O
Which record number?

Amount customer has purchased

CUSTNAME near *NPCUSTNAME;
CUSTNAME *PCUSTNAME ;

main()

continues

209

Part Il « Managing Data in C

Listing 7.6. continued

{
FILE *DataFile;
CUSTNAME Customer ;

char szFileName[25];
char szBuffer[129];

int i;
int nResult;

double dSales = 0.0; // Forces loading of floating-point support
printf(“Please enter customer database name: “);
gets(szFileName);
DataFile = fopen(szFileName, “wb”);
if (DataFile == NULL)
{

printfF(“ERROR: File “%s” couldn’t be opened.\n”, szFileName);

exit(4);
¥

Customer .szName[0] = “A”; // To get past while() the first time

1 = 0;
Customer .nRecordNumber = 0;

while (strlen(Customer.szName) > 0)
{
memset(&Customer, 0, sizeof(CUSTNAME));

printf(*“Enter the Customer’s name: “);
gets(Customer.szName);

210

C Structures 7

it (strlen(Customer.szName) > 0)

{

Customer .nRecordNumber = i;

do
{
printf(“Enter 1 for customer, 2 for supplier “);
gets(szBuffer);
sscanf(szBuffer, “%d”, &Customer .nRecordType);
3
while (Customer.nRecordType != CUSTOMER_RECORD &&
Customer .nRecordType != SUPPLIER_RECORD);

printf(“Enter address line 1: “);
gets(Customer.szAddrl);

printf(“Enter address line 2: “);
gets(Customer.szAddr2);

printf(“Enter City: “);
gets(Customer.szCity);

printf(“Enter state postal abbreviation: “);
gets(Customer.szState);

printf(“Enter ZIP code: “);

gets(szBuffer);

sscanf(szBuffer, “%d”, &Customer.nZip);
printf(“Enter total sales: “);
gets(szBuffer);

sscanf(szBuffer, “%f”, &Customer .dSalesTotal);

nResult = fwrite((char *)&Customer, sizeof(CUSTNAME), 1,
DataFile);

if (nResult 1= 1)

{
printf(“ERROR: File “%s”, write error.\n”,
szFileName);
fclose(DataFile);
exit(4);
b

continues

211

Part Il « Managing Data in C

212

Listing 7.6. continued

++1i ;

}

fclose(DataFile);

In Listing 7.6, the lines that define the structure that holds the customer’s name
and address use the typedef keyword. This enables us to define the data object using
only one line of code:

CUSTNAME Customer ;

This line creates a structure named customer. As many different structures as needed
could have been created using the name CUSTNAME.

You access a structure created by a typedef in the same way as you access a
structure created by any other method. However, now the compiler hasa datatype that
it canwork with, so you can obtain the size of the structure type by referring to its name.
This is valuable when you must allocate memory for the structure—you cannot get the
size from the object because it doesn’t exist yet!

The program clears the structure’s contents to 0 by using sizeof() with the
name:

memset(&Customer, 0, sizeof(CUSTNAME));

Inthe call tomemset (), you must pass the address of the structure (scustomer), the value
that you are setting all the bytes to (0), and the size of the structure (sizeof(CUSTNAME)).
The memset() C library function then stores the specified value in all the bytes in
Customer.

The rest of CREATEDB is straightforward. The program reads from the
keyboard each field in the structure. Fields that are not character fields (such as
.dsalesTotal) are converted to the correct type for the field before being saved in the
structure.

C Structures 7

Listing 7.6 does not check the size of the input, so the program
may fail if an input line is too long.

Using the offsetof() Macro

ANSI C introduced a new macro, called offsetof(), that you use to determine the
offset of a member in a structure. There are many reasons for wanting to know the
location of a member in a structure. You might want to write part of a structure to a
disk file or read part of a structure in from the file.

Using the offsetof() macro and simple math, it is easy to compute the amount
of storage used by individual members of a structure. An example use of the offsetof)
macro is shown in Listing 7.7.

Listing 7.7. OFFSETOF.C.

/* OFFSETOF, written 1992 by Peter D. Hipson
* This program illustrates the use of the
* offsetof() macro.
*/
#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions
#include <stddef.h> // For offsetof()
#define MAX_SIZE 35

int main(void); // Define main(), and the fact that this program doesn’t
// use any passed parameters

int main()
{
int i;

continues

213

Part Il « Managing Data in C

Listing 7.7. continued

typedef struct

{
char *szSaying[MAX_SIZE];
int nLength [MAX_SIZE];

} SAYING;

typedef struct

{
SAYING Murphy;
SAYING Peter;
SAYING Peterl;
SAYING Peter2;
SAYING Peter3;
SAYING Peter4;

3} OURSAYING;

OURSAYING OurSaying = {{
“Firestone’s Law of Forecasting:”,
“ Chicken Little has to be right only once.”,

“Manly’s Maxim:”",
“ Logic is a systematic method of coming to”,
the wrong conclusion with confidence.”,

“Moer’s truism:”,

“ The trouble with most jobs is the job holder’s”,
resemblance to being one of a sled dog team. No one”,
gets a change of scenery except the lead dog.”,

“Cannon’s Comment:”,

“ If you tell the boss you were late for work because you”,

had a flat tire, the next morning you will have a flat tire.”,
NULL /7* Flag to mark the last saying */

3 {

“David’s rule:”,

“ Software should be as easy to use as a Coke machine.”,

214

C Structures 7

“Peter’s Maxim:”,
“ To be successful, you must work hard, but”,
“ Hard work doesn’t guarantee success.”,

“Teacher’s truism:”,
“ Successful people learn.”,

“Player’s Comment:”,

“ If you don’t play to win,”,
“ you don’t win.”,

NULL /* Flag to mark the last saying */

3

printf(
“sizeof(SAYING) = %d (each member’s size)\n”
“offsetof(OURSAYING, Peter) %d (the second member)\n”
“offsetof(OURSAYING, Peter3) = %d (the fifth member)\n”,
sizeof(SAYING),
offsetof(OURSAYING, Peter),
offsetof(OURSAYING, Peter3l));

return (0);

To use the offsetof() macro, you supply both the structure and the member
name. In addition, the structure name must be created using typedef because the
offsetof() Macro must create the pointer type with a value of 0, and an identifier—
not a variable name—is required.

Here is another use of the offsetof() macro. Suppose that a structure has 75
members that consist of strings, structures, and scalar variables. You want to save the
middle 30 members in a file. You have to know the starting address and how many
bytes to write to the file.

You could use the sizeof() keyword to compute the size of the block of memory
towrite, but thiswould be difficultand complex. You would have to get the size of each
member that you want to save to the file, then add the results. Also, serious problems
would result if members contained packing bytes (to align them on word boundaries).

215

Part Il « Managing Data in C

A better solution is to take the offsetof() of the first member to write and the
offsetof() Of the member just after the last member to write. Subtract one from the
other, and you have the number of bytes to save. As you can see, this method is quick
and easy.

Pointers to Structures

A pointer toastructure is handled in the same way as a pointer to any other data type,
except the syntax of the structure pointer operator differs. You can have a pointer to
a structure, and use the pointer to access any member in the structure.

When calling functions that have structures as parameters, it is more efficient to
pass a pointer to a structure rather than pass the entire structure. See Listing 7.8,
STRUPTR.C.

Listing 7.8. STRUPTR.C.

/* STRUPTR, written 1992 by Peter D. Hipson
* Pointers and structures
*
/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#define MAX_SIZE 35

int main(void); // Define main(), and the fact that this program doesn’t
// use any passed parameters.

int mainQ)
{

int i;
typedef struct

{
char *szSaying[MAX_SIZE];

216

C Structures 7

int nLength[MAX_SI1ZE];
} SAYING;

typedef struct

{
SAYING Murphy;
SAYING Peter;
} OURSAYING;

OURSAYING OurSaying = {{
“Firestone’s Law of Forecasting:”,
“ Chicken Little has to be right only once.”,

“Manly’s Maxim:,
“ Logic is a systematic method of coming to”,
“ the wrong conclusion with confidence.”,

“Moer”s truism:”,

“ The trouble with most jobs is the job holder’s”,

“ resemblance to being one of a sled dog team. No one”,
“ gets a change of scenery except the lead dog.”,

“Cannon’s Comment:”,

“ IFf you tell the boss you were late for work because you”,

“ had a flat tire, the next morning you will have a flat tire.”,
NULL /* Flag to mark the last saying */

A

“David’s rule:”,

“ Software should be as easy to use as a Coke machine.”,

“Peter’s Maxim:”,
“ To be successful, you must work hard, but”,
“ Hard work doesn’t guarantee success.”,

“Teacher’s truism:”,

continues

217

Part Il « Managing Data in C

Listing 7.8. continued

Successful people learn.”,

“Player’s Comment:”,
If you don’t play to win,”,
you don’t win.”,
NULL /7* Flag to mark the last saying */

3}

OURSAYING * pOurSaying;
SAYING * pSaying;

pOurSaying = &OurSaying;

pSaying = &OurSaying.Peter;

printf(
“sizeof(OURSAYING) = %d\n”
“sizeof(OurSaying) = %d\n”
“sizeof(SAYING) = %d\n”

“sizeof(pOurSaying->Murphy) = %d\n”
“sizeof(pOurSaying->Peter) = %d\n”

“sizeof(pSaying) = %d\n”
“sizeof(*(pSaying)) = %d\n”,
sizeof(OURSAYING),
sizeof(OurSaying),

sizeof(SAYING),

sizeof(pOurSaying->Murphy),
sizeof(pOurSaying->Peter),
sizeof(pSaying),
sizeof(*(pSaying)));

for (i = 0; pOurSaying->Murphy.szSaying[i]; i++)
pOurSaying->Murphy.nLength[i] = strlen(pOurSaying-
>Murphy.szSaying[i]);

}

for (i = 0; pOurSaying->Murphy.szSaying[i]; i++)
{

218

C Structures 7

printf(“pOurSaying->Murphy %p %3d “%s’\n”,
&pOurSay ing->Murphy.szSaying[i],
pOurSaying->Murphy.nLength[i],
pOurSaying->Murphy.szSaying[il);
3

printf(*\n\n”);

for (i = 0; pSaying->szSaying[i]; i++)

{
pSaying->nLength[i] = strlen(pSaying->szSaying[i]);
3
for (i = 0; pSaying->szSaying[i]; i++)
{
printf(“pOurSaying->Peter %p %3d “%s>\n”,
&pSaying->szSaying[i],
pSaying->nLength[i],
pSaying->szSaying[i]);
3

printf(*\n\n”);

return (0);

Whenastructure isaccessed with a pointer, the usual method of obtaining avalue
from memory (using the = operator) is unsatisfactory. To access a member of a
structure pointed to by a pointer, you use the -> structure pointer operator rather than
the . structure member operator. The -> operator is used as shown in Listing 7.8. You
use the address of operator to assign the address of the structure to the pointer.

Understanding unions

If a structure is a group of related data objects, what is a union?

In a structure, each member is stored separately. Modifying one member of a
structure does not change the contents of any other member.

219

Part Il « Managing Data in C

220

In aunion, all the members share the same block of storage. The block of storage
is large enough to hold the largest member; smaller members use only as much storage
as necessary. If you change what is stored in one member of a union, all other members
are changed too.

Figure 7.1 shows the relationship between a structure and a union in memory.
This figure shows the relationship between allocated memory and the members that
are part of the data object.

(LTI T T tengthis 24 bytes.

MNote; with a structure, each member has its

struct : !
int { g own storage. Changing the member nTime
it nDay will not change the member nDay's value.

char szMessage[20] },

LTI vengthis 20 bytes.

MNote: with @ union, each member shares the

union {) union's memaory with all the other members.
int. nTime; Changing the member nTime will change
int nDay, member nDay's value

char szMessage[20]},
Figure 7.1. A structure and a union in memory.

The UNION.C program in Listing 7.9 reads the database file created with the
CREATEDB.C program (Listing 7.6). UNION.C places the result of the read into a
union. It then checks what type of record was read and calls the correct function to
process the record.

Listing 7.9. UNION.C.

/* UNION, written 1992 by Peter D. Hipson

* This program reads the CREATEDB.C database. The

* program has minimal error checking; it will fail

* 1f you provide a field value that is too long for the
* structure member that holds it. Use with caution!

C Structures 7

#include <string.h>
#include <ctype.h>
#include <stdio.h>
#include <process.h>
#include <stdlib.h>

#define CUSTOMER_RECORD 1
#define SUPPLIER_RECORD 2

// Define the structure for the customer database.

typedef struct _CUSTNAME {
int nRecordType;
char szName[61]; // 60 chars for name; 1 for null at end
char szAddri[61]; // 60 chars for address; 1 for null at end
char szAddr2[61]; // 60 chars for address; 1 for null at end
char szCity[26]; // 25 characters for city; 1 for null at end

char szState[3]; // 2-character state abbreviation + null
int nzZip; // Use integer; print as %5.5d for leading O
int nRecordNumber; // Which record number?

double dSalesTotal; // Amount the customer has purchased
} CUSTNAME;

typedef CUSTNAME near *NPCUSTNAME;
typedef CUSTNAME *PCUSTNAME;

typedef struct _SUPPLIERNAME {
int nRecordType;
char szName[61]; // 60 chars for name; 1 for null at end
char szAddri[61]; // 60 chars for address; 1 for null at end
char szAddr2[61]; // 60 chars for address; 1 for null at end
char szCity[26]; // 25 characters for city; 1 for null at end

char szState[3]; // 2-character state abbreviation + null
int nzZip; // Use integer. Print as %5.5d for leading O
int nRecordNumber; // Which record number?

double dSalesTotal; // Amount the customer has purchased

} SUPPLIERNAME;

continues

221

Part Il « Managing Data in C

Listing 7.9. continued

typedef SUPPLIERNAME near *NPSUPPLIERNAME;
typedef SUPPLIERNAME *PSUPPLIERNAME;

typedef union _DBRECORD {
CUSTNAME Customer;

SUPPL IERNAME Supplier;
} DBRECORD;

/* Local prototypes (use the typedef’ed names,
* so must follow typedefs):
*/

SUPPLIERNAME ProcessSuppl ier (NPSUPPLIERNAME) ;
CUSTNAME ProcessCustomer (NPCUSTNAME) ;

// main() function, the called functions
void main(Q)

{

DBRECORD dbRecord;

FILE *DataFile;

char szFileName[25];
char szBuffer[129];

int i;
int nResult[3];

double dSales = 0.0; // Forces loading of floating-point support

printf(*“Please enter customer database name: “);
gets(szFileName);

DataFile = fopen(szFileName, “rb”);

222

C Structures 7

if (DataFile == NULL)

{
printf(“ERROR: File “%s” couldn’t be opened.\n”, szFileName);

exit(4);
b

nResult[0] = 1;
while (nResult[0] == 1)
{
nResult[0] = fread((char *)&dbRecord, sizeof(DBRECORD), 1,

DataFile);

if (nResult[0] != 1)

{
if (1feof(DataFile))
{
printf(“ERROR: File “%s”, read error.\n”, szFileName);
fclose(DataFile);
exit(4);
3
else
{
printf(“End of database file “%s”.\n”, szFileName);
3
b
else
{

// You could test dbRecord.Supplier.nRecordType, or
switch(dbRecord.Customer .nRecordType)

{
case CUSTOMER_RECORD:
ProcessCustomer(&dbRecord.Customer) ;

break;

case SUPPLIER_RECORD:

continues

223

Part Il « Managing Data in C

Listing 7.9. continued

ProcessSupplier(&dbRecord.Supplier);
break;
default:

printf(*“ERROR: Invalid record type read from \
database \n”);

break;

}

fclose(DataFile);

SUPPLIERNAME ProcessSupplier(
NPSUPPL I ERNAME npSupplier)

{
SUPPLIERNAME WorkSupplier;
WorkSupplier = *npSupplier;
printf(“Supplier name: %s\n”, npSupplier->szName);
// Do other processing for Supplier...
//
//
//

// Return WorkSupplier to caller.

return(WorkSupplier);
}

CUSTNAME ProcessCustomer (
NPCUSTNAME npCustomer)

224

C Structures 7

{

CUSTNAME WorkCustomer ;

WorkCustomer = *npCustomer;

printf(“Customer name: %s\n”, npCustomer->szName);

// Do other processing for customer. ..
//

//

// .

// Return WorkCustomer to caller.

return(WorkCustomer) ;

An integer that determines the record type is the first field of each of the two
structures that make up the union. Another common way to refer to a field like this is
to code the definitions as

typedef union _DBRECORD {
int nRecordType;
CUSTNAME Customer;
SUPPLIERNAME Supplier;
} DBRECORD;

In this definition, you also have a record type variable as part of the union. You
can check the value of the record type variable by simply using the following format,
rather than customer Or Supplier:

DBRECORD dbRecord;
/* Read a database record into dbRecord */

switch(dbRecord.nRecordType) // Rather than //
// dbRecord.Customer._nRecordType

{

With this format, the first field of each structure must still be an integer that will
hold the record type. However, you can refer to the first field directly, which makes the
code easier to read.

225

Part Il « Managing Data in C

summary

In this chapter, you learned about structures and unions.

« Astructure is a group of related data objects that are stored in a contiguous
block of memory and can be referred to collectively by a given name.

e Aunion is a group of (related) data objects that share a single block of memory
and can be referred to collectively by a given name.

* Inaunion, usually only one member at a time contains valid data.

¢ The typedef keyword enables the programmer to define new data types. These
new data types can be simple variables, arrays, structures, or unions.

» Abit field is defined as part of a structure. It consists of a named variable
whose length is defined as a specific number of bits.

¢ The offsetof() Macro returns the offset of a structure’s member, from the
beginning of the structure.

226

Dynamic Memory
Allocation

Allocating large data objects at compile time is seldom practical—especially if the data
objects are used infrequently and for a short time. Instead, you usually allocate these
data objects at runtime.

To make more memory available to the programmer, ANSI C offers a num-
ber of memory allocation functions, including maltocQ), realloc(), calloc(), and
free(). Many compiler suppliers complement these functions with similar functions
that optimize the allocation of memory based on the specifics of your computer’s
architecture. In this chapter, you look at these four functions and Microsoft’s enhanc-
ed versions of them.

227

Part Il « Managing Data in C

Using the malloc() Function

The memory allocation functions in Table 8.1 include both the ANSI C standard
mallocQ) functions and Microsoft’s extensions.

Table 8.1. Microsoft C malloc() functions.

Function Description

void * malloc(size_t size); The ANSI C standard memory
allocation function.

void __based(void) *_bmalloc Does based memory allocation.

(__segment seg, size t size); The memory is allocated from the

segment you specify.

void __far *_fmalloc(size_tsize); Allocates a block of memory
outside the default data segment,
returning a far pointer. This
function is called by mattocQ
when the 1arge Or compact
memory model is specified.

void __near *_nmalloc Allocates a block of memory inside

(size_t size); the default data segment, returning
a near pointer. This function is
called by mal1oc() When the small
or medium memory model is
specified.

ThemattocQ library function allocates a block of memory up to the size allowed
by size_t. To use malloc(), you must follow a few simple rules:

e The mallocQ) function returns a pointer to the allocated memory or nuLL if the
memory could not be allocated. You should always check the returned pointer
for nuLL.

e The pointer returned by mat1oc() should be saved in a static variable, unless
you are sure that the memory block will be freed before the pointer variable is
discarded at the end of the block or the function.

228

Dynamic Memory Allocation 8

 You should always free a block of memory that has been allocated by malloc()
when you are finished with it. If you rely on the operating system to free the
block when your program ends, there may be insufficient memory to satisfy
additional requests for memory allocation during the rest of the program’s run.

« Avoid allocating small blocks (that is, less than 25 or 50 bytes) of memory.
There is always some overhead when mal1oc() allocates memory—216 or more
bytes are allocated in addition to the requested memory.

The malloc() function requires only one parameter: the size of the block of
memory to allocate. As mentioned, the length of this parameter is size_t, which on
many systems is a short int (16 bits).

You could assume that you cannot allocate a block of memory larger than the
ANSI C maximum of 32,767 bytes. Another method is to check the defined identifier
(usually in maltoc.h) for the maximum for the particular system. With Microsoft C
compilers, for example, the maximum is approximately 65,500 bytes. If you assume
the worst case (the ANSI C value), however, your program has a better chance of
working if the limit changes.

The constraint on the size of a data object may seem unreasonable, but you will
rarely reach the 32K limit imposed by ANSI C. If you have large data objects, it is
always possible (and desirable) to break them into smaller, more manageable pieces.

If you are determined to define a data object larger than the allowed size (some-
thing I do not recommend) and are using a Microsoft C compiler, you can use the
halloc() function. This function allocates an array that can be any size (up to the
amount of available free memory). You must define the array element size as a power
of two, which is not an issue if the array is type char, int, Or long. If the array is a
structure, type union, or a floating-point long double, this constraint may need to be
addressed with padding. If you use the hattoc() function, your code will not be
portable, but you could probably create a workaround if necessary.

When you use the mattoc() function, remember that the block of allocated
memory is not initialized. If you want initialized memory, use memset() after the
memory is allocated or use cal 1oc() (discussed in the next section). I recommend that
you always initialize any memory allocated with the malloc() function.

Listing 8.1, MALLOC2.C, allocates blocks of memory. There is no way to
determine the size of the largest available block, so the program begins with the largest
size (32,767). If matrocQ fails, the program reduces this size by 50 percent; this

229

Part Il « Managing Data in C

continues until the requested size is less than 2 bytes. The program stops when there
is no more memory, or a total of 2M has been allocated.

Listing 8.1. MALLOC2.C.

/* MALLOC2, written 1992 by Peter D. Hipson
* This program allocates memory.
*/

#include <io.h> // 1/0 functions

#include <stdio.h> // Make includes first in program
#include <string.h> // For string functions

#include <malloc.h> // For memory allocation functions

int main(void); // Define main() and the fact that this
// program doesn’t use any passed parameters

int mainQ)

{

int i =0;

int Jj = 0;

int *nPointer[100] = {NULL};
int nSize = 32767;

long ITotalBytes = 0;

while(nSize > 0 && // Make nSize valid
nSize <= 32767 &&
ITotalBytes < 2000000) // Not more than 2M will be allocated

nPointer[i] = (int *)malloc(nSize);
iT (nPointer[i] != NULL)

{

++1 ;

ITotalBytes += nSize;

230

Dynamic Memory Allocation

printf(“Allocated

%5u bytes, total %10ld\n”,

printf(“Couldn’t allocate %5u bytes, total %101d\n”,

nSize,
ITotalBytes);
b
else
{
nSize,
ITotalBytes);
nSize /= 2;
b
3
for G =0; J < i; j+9)
{
free(nPointer[j]);
nPointer[j] = NULL;
3

return (0);

g

Listing 8.1 is system dependent. If you are using a PC under DOS in real mode,
for example, about 400,000 bytes of memory might be allocated. Under a protected-
mode environment such as OS/2 or Windows, you can allocate much more memory.
For example, on a system running in protected mode with 10M of free memory, 2M

of memory might be allocated, as follows:

Allocated
Allocated
Allocated
and so on...
Allocated
Allocated
Allocated

32767
32767
32767

32767
32767
32767

bytes,
bytes,
bytes,

bytes,
bytes,
bytes,

total
total
total

total
total
total

32767
65534
98301

1966020
1998787
2031554

If you are not sure of the environment in which your application will be running,
assume the worst case—less than 32K of free memory.

231

Part Il « Managing Data in C

232

Notice that a loop at the end of the program frees the memory that mal1oc() has
allocated. This loop is performing housekeeping—something that every well-written
program should do.

Using the calloc() Function

Because malloc() does not initialize memory and cal1oc() does, programmers often
prefer calloc(). When using Microsoft’s C compilers, the array memory allocation
functions in Table 8.2 are used with calloc().

Table 8.2. Microsoft C calloc() Functions.

Function Description

void *calloc(size_t num, The ANSI C standard array memory allo-
size_t size); cation function.

void __based(void) Does based memory allocation. You

* pcalloc(__segment seg, provide the segment that the data will be
size_t num, size_t size); allocated from.

void __far * fcalloc Allocates a block of memory outside the

(size_t num, size t default data segment, returning a far

size); pointer. This function is called by callocQ)
when the 1arge or compact memory model
is specified.

void __near *_ncalloc Allocates a block of memory inside the

(size_t num, size t default data segment, returning a near

size); pointer. This function is called by callocQ)
when the smal1 Or medium memory model
is specified.

The caltoc() library function allocates memory much like the mallocQ
function, with two main differences. With the cattoc() function, you specify two
parameters, not one: the number of elements and the size of each element. The product
of these parameters determines the size of the memory block to allocate, and must fit
intype size_t, which on many systemsisashortint (16 bits). If you specify an element

Dynamic Memory Allocation 8

size of 1, the calloc() num parameter functions similarly to the malloc() size
parameter.

The second difference is that the caltoc() function initializes the memory it
allocates to zero. The value used to initialize the memory is an absolute zero, which
usually—but not always—evaluates to a floating-point zero or a nuLL pointer value.
This s fine if the memory will be used for string storage or integers. If the memory will
be used for floating-point values, you should explicitly initialize the block of memory
after callocQ) returns. I recommend that you always initialize memory allocated with
calloc if you do not know the format of the data that you will be storing in it.

To use calloc(), you follow the same rules for using mal1oc(). These rules are
outlined in the first section, “Using the malloc() Function.”

Listing 8.2, CALLOCL1.C, allocates blocks of memory. The size of the largest
available block cannot be determined, so the program begins with the largest size
possible (using the size of int) and tries to allocate an array of 32,767 members. If
calloc() fails, the program reduces the size by 50 percent; this continues until the
requested size is less than 2 bytes. The program allocates buffers, each containing
32,767 2-byte integers. When an allocation request fails, the program decreases the size
of the array until more memory can be allocated. It stops when there is no more
memory or 2M have been allocated. The only major difference between MALLOC2.C
and CALLOC1.C is the call to the memory allocation function.

Listing 8.2. CALLOC1.C.

/* CALLOC1, written 1992 by Peter D. Hipson
* This program allocates arrays of memory.
*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#include <malloc.h> // For memory allocation functions
int main(void); // Define main() and establish that this

// program does not use any passed parameters

int mainQ)

continues

233

Part Il « Managing Data in C

234

Listing 8.2. continued

{

int i =0;

int j = 0;

int *nPointer[100] = {NULL};
int nSize = 32767;

long ITotalBytes = 0O;

while(nSize > 0 && // Make nSize valid
nSize <= 32767 &&
ITotalBytes < 2000000) // No more than 2M will be allocated

{
nPointer[i] = (int *)calloc(nSize, sizeof(int));
if (nPointer[i] != NULL)
{
++1i ;
ITotalBytes += (nSize * sizeof(int));
printf(*“Allocated %5u short int, total %10ld\n”,
nSize,
ITotalBytes);
¥
else
{
printf(“Couldn’t allocate %5u short int, total %10ld\n”,
nSize,
ITotalBytes);
nSize /= 2;
¥
¥

Dynamic Memory Allocation 8

free(nPointer[j]);
nPointer[j] = NULL;

}

return (0);

When CALLOC1 was run, it could not allocate an integer array of 32,767

members, as the following output shows:

Couldn”t Allocate 32767

Allocated
Allocated
Allocated

and so on...

Allocated
Allocated
Allocated

16383
16383
16383

16383
16383
16383

bytes,
bytes,
bytes,
bytes,

bytes,
bytes,
bytes,

total
total
total
total

total
total
total

0
32766
65532
98298

1965960
1998726
2031492

The reason for this is not the ANSI C limit of 32,767 bytes in a data object—my C
compiler does not enforce this limit. The limit in my compiler is that a data object
created by calloc() or malloc() cannot be larger than 65,510 bytes. The array of
integers consisted of 32,767 members (each 2 bytes long), for a total of 65,534 bytes,

which is too large.

CALLOCI then attempted to allocate the next size, 16,383, and was successful.

Using the free() Function

The free) functions in Table 8.3 can be used with a Microsoft C compiler.

Table 8.3. Microsoft C free() Functions.

Function

Description

void free(void *memblock);

The ANSI C standard array
memory deallocation function.

continues

235

Part Il « Managing Data in C

Table 8.3. continued

Function Description

void _bfree(__segment seg, Based memory deallocation.
void _ _based(void) *memblock);

void _Fffree(void __far Frees a block of memory outside
*memblock); the default data segment.

void _nfree(void __near Frees a block of memory inside
*memblock); the default data segment.

The free() memory allocation function was shown in Listings 8.1 and 8.2. Its
function is to return to the operating system memory that you have allocated. (You
could think of the memory as borrowed.) Memory is usually a limited resource—even
when you are running a system with virtual memory—so you must give memory back
when you are finished with it.

The free O functionisalmost foolproof. Errors could occur, however, when you
try to free memory that

Was not allocated with one of the memory allocation functions;

Has been released through a prior call to free() or a call to realloc();

Is currently in use by another thread in a multithreaded operating system;
Is not yours to free.

When free() is called, be sure you are passing a valid pointer to it . To make sure that
the pointer is valid, check that it contains nuLL or points to a properly allocated block
of memory. Note that free () considers a NuLL pointer to be always valid, and treats a
call with anuLL pointer as a no-operation, which means free () simply returns without
freeing any memory.

Look at the following variable declarations in the CALLOCL1 program:

int J = 0;
int *nPointer[100] = {NULL};
int nSize = 32767;

236

Dynamic Memory Allocation 8

The pointer array is initialized to nuLL, which is a safe value for initialization because
it will not cause an error if it is passed to free(). In addition, because the loop that
allocates the memory uses an index into the array of memory pointers (nPointer[]),
only valid pointers to allocated blocks of memory will be stored in npointer[].

In the final cleanup, the memory pointed to by nprointer[] is freed. The
following loop resets each pointer to nuLL after the block of memory is freed:
for (j =0; j < i; j++)
{

free(nPointer[j]);
nPointer[j] = NULL;

If the program tries to free one of the already freed nrointer[]s later (because of
a programming error), the NULL pointer prevents an error that would be caused by
trying to free a block of memory twice.

Using the realloc() Function

When using Microsoft’s C compilers, the array memory allocation functions in
Table 8.4 are used with realloc().

Table 8.4. Microsoft C realloc() functions.

Function Description

void *realloc(void The ANSI C standard array memory
*memblock,size_t size); reallocation function.

void __based(void) Does based memory reallocation. You must
* prealloc(__segment provide the segment that the data will be

seg, void __based(void) allocated from.
*memblock, size_t size),

void __far * frealloc Reallocates a block of memory outside the
(void __far *memblock, default data segment, returning a far pointer.
size_t size); This function is called by real1oc() when the

large OF compact memory model is specified.

continues

237

Part Il « Managing Data in C

238

Table 8.4. continued

Function Description

void __near *_nrealloc Reallocates a block of memory inside the de-
(void __near *memblock, fault data segment, returning a near pointer.
size_t size); This function is called by real1oc() when the

small Or medium memory model is specified.

Assume that you have a program that reads customer records from the keyboard
and stores each in a structure. When the user is finished entering the names, the
program saves them to disk. You want to be sure that there is enough memory (within
reason) to hold the entered names, but you do not want to allocate more memory than
necessary.

You could call cattoc() and allocate all available free memory for the structures.
This might work, but it wastes a lot of memory. Another method is to call calloc(Q
and allocate a small block, but the program would have to pause to save the
information, something that might irritate the user. Or you could call caltoc(Q),
allocate a small block, call cat1oc() again when the block was filled and get a bigger
block of memory, copy the small block of memaory to the larger one, then free the small
block. As you can see, that would require a lot of work.

The best solution is to call caltoc() to allocate the initial array, then call
real loc() to make the block larger. The real 1oc() function copies the contents of the
original block of memory to the new block, then frees the original block, so your work
is minimized.

Listing 8.3 is the CDB program. Like the CREATEDB program in Chapter 7,
“C Structures”, CDB reads in customer records. Unlike CREATEDB, CDB writes the
records entered by the user to the file only after the user has finished entering the names.

Listing 8.3. CDB.C.

/* CDB, written 1992 by Peter D. Hipson
* This program uses calloc() and realloc(). It has
* better error checking than the CREATEDB program,
* which was presented in Chapter 7.
*/

Dynamic Memory Allocation

#include <string.h>
#include <ctype.h>
#include <stdio.h>
#include <process.h>
#include <stdlib.h>

#define INCREMENT_AMOUNT 2

#define CUSTOMER_RECORD
#define SUPPLIER_RECORD

/* Define our structure for the customer database. */

//
//
//
//
//
//
//
//
//

typedef struct _CUSTNAME {
int nRecordType;
char szName[61];
char szAddr1[61];
char szAddr2[61];
char szCity[26];
char szState[3];
long 1Zip;
int nRecordNumber;
double dSalesTotal;

} CUSTNAME;

typedef CUSTNAME

1 == Customer record
60 chars for name,

1 for null at end

g

60 chars for address, 1 for null at end
60 chars for address, 1 for null at end

25 chars for city, 1 for null at end
2-char state abbreviation, plus null
print as %5.51d for leading O

Use integer,
Which record number?
How much customer has purchased

near *NPCUSTNAME;

NULL;

typedef CUSTNAME *PCUSTNAME;
void main()

{

FILE *DataFile;

PCUSTNAME Customer = NULL;
PCUSTNAME TempCustomer
char szFileName[25];

char szBuffer[257];

continues

239

Part Il « Managing Data in C

Listing 8.3. continued

int i;

int nNumberRecords = O;
int nRecord = 0;

int nResult = 0;

double dSales = 0.0; // Forces loading of floating-point support

Customer = (PCUSTNAME)calloc(sizeof(CUSTNAME),
INCREMENT_AMOUNT) ;

nNumberRecords += INCREMENT_AMOUNT;
printf(**Please enter customer database name: *);
gets(szFileName);

DataFile = fopen(szFileName, “wb”);

if (DataFile == NULL)

{

printfF(“ERROR: File “%s” couldn’t be opened.\n”, szFileName);

exit(4);
¥

printf(“Demo of calloc() and realloc(). sizeof(CUSTNAME) = %d\n”,
sizeof(CUSTNAME)) ;

nRecord = 0;

Customer[nRecord].szName[0] = “A”; // To get past while() first time
while (strlen(Customer[nRecord].szName) > 0)

{

memset(&Customer[nRecord], 0, sizeof(CUSTNAME));

printf(“Enter name %d: *“, nRecord + 1);
gets(szBuffer);

240

Dynamic Memory Allocation 8

szBuffer[sizeof(Customer[nRecord].szName) - 1] = “\0”;
strcpy(Customer[nRecord] -szName, szBuffer);

if (strlen(Customer[nRecord].szName) > 0)

{

Customer[nRecord].nRecordNumber = i;

do
{
printf(“Enter 1 for customer, 2 for supplier “);
gets(szBuffer);
sscanf(szBuffer, “%d”, &Customer[nRecord] -nRecordType);
b
while (Customer[nRecord].nRecordType != CUSTOMER_RECORD &&
Customer[nRecord] .nRecordType != SUPPLIER_RECORD);

printf(“Enter address line 1: “);

gets(szBuffer);
szBuffer[sizeof(Customer[nRecord] -szAddrl) - 1] = “\0”;
strcpy(Customer[nRecord] .szAddrl, szBuffer);

printf(“Enter address line 2: “);

gets(szBuffer);
szBuffer[sizeof(Customer[nRecord] -szAddr2) - 1] = “\0”;
strcpy(Customer[nRecord] .szAddr2, szBuffer);

printf(“Enter City: “);

gets(szBuffer);
szBuffer[sizeof(Customer[nRecord].szCity) - 1] = “\07;
strcpy(Customer[nRecord].szCity, szBuffer);

printf(“Enter state postal abbreviation: “);
gets(szBuffer);
szBuffer[sizeof(Customer[nRecord].szState) - 1] = “\0~;
strcpy(Customer[nRecord] .szState, szBuffer);

printf(“Enter ZIP code: “);
gets(szBuffer);
sscanf(szBuffer, “%ld”, &Customer[nRecord]-1Zip);

continues

241

Part Il « Managing Data in C

Listing 8.3. continued

printf(“Enter total sales: “);

gets(szBuffer);

sscanf(szBuffer, “%f”, &Customer[nRecord] .dSalesTotal);
++nRecord;

iT (nRecord == nNumberRecords)

{

TempCustomer = (PCUSTNAME)real loc(Customer,
sizeof(CUSTNAME) * (nNumberRecords +
INCREMENT_AMOUNT)) ;

if (TempCustomer)

{
nNumberRecords += INCREMENT_AMOUNT;
printf(“realloc() added records, now total is %d\n”,
nNumberRecords) ;
Customer = TempCustomer ;
Customer[nRecord].szName[0] = “A”; // To get past
while()
}
else
{
printf(*“ERROR: Couldn’t realloc the buffers\n\n\g”);
--nRecord;
Customer[nRecord].szName[0] = “\0”;
}
}
else
{
Customer [nRecord].szName[0] = “A”; // To get past while(Q)
}
¥
¥

for (i = 0; 1 < nRecord; i++)

{

242

Dynamic Memory Allocation 8

printf(“Name “%10s” City “%10s’ State “%2s” ZIP “%5.51d”\n”,
Customer[i]-szName,
Customer([i]-szCity,
Customer[i]-szState,
Customer[i]-1Zip);
T

nResult = fwrite((char *)Customer,
sizeof(CUSTNAME),
nRecord,
DataFile);

if (nResult != nRecord)

{
printf(“ERROR: File “%s”, write error, record %d.\n”,
szFileName,
i);
fclose(DataFile);
exit(4);
T

fclose(DataFile);

By expanding the buffers used for storing data, the data can be saved in memory
and written to the disk at one time. In addition, summary information such as totals
could be displayed, the user could edit the entered information, and the information
could be processed if necessary. The one hitch is that all the user’s data that is in
RAM and not written to the disk will be lost if the computer fails. With CREATEDB,
at most one record would be lost.

When you write a program in which the user will be entering substantial
amounts of data from the keyboard, you should plan for events that might cause the
loss of information just entered. One solution to retaining this information is to write
to the file after the user inputs a record. Summary information can be presented,
records can be edited, and so on, and the records the user entered can be rewritten by
the program to a master file later as necessary.

243

Part Il « Managing Data in C

244

The realloc() function enables you to have some control over the size of your
dynamic data objects. Sometimes, however, the data objects will become too large for
available memory. In CDB, for example, each data object is 228 bytes long. If 40,000
bytes of free memory were available, the user could enter about 176 records before
using up free memory. Your program must be able to handle the problem of
insufficient memory in a way that does not inconvenience the user or lose data.

Allocating Arrays

Allocating anarray is an easy process when you use cal loc(). Its parametersare the size
for each element of the array and a count of the number of array elements. To dynam-
ically allocate an array at runtime, you simply make a call.

Refer to Listing 8.4, SORTALOC. The program prompts the user for a number
of integers, in the range 10 to 30,000. It then creates a list of integers, sorts them, and
prints the result.

Listing 8.4. SORTALOC.C.

/* SORTALOC, written 1992 by Peter D. Hipson

* This program prompts for the number of integers to sort,
* allocates the array, fills the array with random numbers,
* sorts the array, then prints it, using 10 columns.

*/

#include <search.h>
#include <stdio.h>
#include <process.h>
#include <stdlib.h>
#include <time.h>

int compare(const void *, const void *);
int main()

{

int i;

int *nArray = NULL;

Dynamic Memory Allocation 8

int nArraySize = 0;

while(nArraySize < 10 || nArraySize > 30000)

{
printf(“Enter the number of random integers to sort (10 to \
30,000): “);
scanf(“%d”, &nArraySize);
if(nArraySize < 10 || nArraySize > 30000)
{
printf(“Error: must be between 10 and 30,000!\n”);
b
nArray = (int *)calloc(sizeof(int), nArraySize);
if (nArray == NULL)
{
printf(“Error: couldn’t allocate that much memory!\n™);
nArraySize = 0;
b
3

srand((unsigned)time(NULL));
for (i = 0; 1 < nArraySize; i++t)
{
nArray[i] = randQ;
3

gsort(nArray, nArraySize, sizeof(int), compare);

for (i = 0; i < nArraySize; i += 10)

{
printf(“%5d %5d %5d %5d %5d %5d %5d %5d %5d %5d\n”’,

nArray[i],

nArray[i + 1],
nArray[i + 2],
nArray[i + 3],
nArray[i + 4],
nArray[i + 5],

continues

245

Part Il « Managing Data in C

246

Listing 8.4. continued

nArray[i + 6],
nArray[i + 6],
nArray[i + 7],
nArray[i + 8],

nArray[i + 9]);
}

free(nArray);

return(0);
}
int compare(
const void * a,
const void * b)
{
return (*(int *)a - *(int *)b);
}

SORTALOC illustrates several important points about using the memory al-
location functions. First, the array is simply declared as an integer pointer called
nArray. This pointer is initialized with nuLL to prevent an error when the free()
function frees the pointer. Although always initializing variables may seem excessive,
using an uninitialized variable is a common programming error.

After calloc() allocates the array, it can be accessed in the same way as any other
array. For example, standard array indexing can be used, as shown in the following:

for (i = 0; 1 < nArraySize; i++)
{

nArray[i] = rand(Q);
}

The loop assigns a random number to each element (indexed by).

After the array is filled, it is passed to the gsort() function like any other array.
The gsort() function can sort almost any type of data. You just give gsort() the
size of the array’s elements, the number of elements, and the compare function. (Note:
The compare function in Listing 8.4 is valid for integers but not floating-point values.

Dynamic Memory Allocation 8

This is because the compare must return an integer, and a floating-point value may
differ by less than the truncation value of an integer.)

Finally, the array is printed in ten columns. There is nothing tricky about this
portion of the code—one print statement prints ten elements, then the index is
incremented by ten.

Global Memory versus Local Memory

The discussion of local memory and global memory is applicable to computers with
Intel 80x86 CPUs. These CPUs use segmented architecture, in which a data object can
be addressed with a full address (consisting of both a segment and an offset from the
segment) or as an offset (where the segment used is the default data segment).

Not all operating systemsand compilers offer access to both local memory (found
in the default data segment) and global memory (located outside the default data
segment, usually in its own segment). A compiler that offers memory models, such as
smal I, medium, large, and compact, is generally found on a PC-type of computer. The
discussion in this section pertains to compilers used on an 80x86 CPU.

For most compilers, the memory model determines the area from which memory
will be allocated. If your program uses the 1arge Or compact memory model, the default
memory pool is global. If your program is a smat 1 or medium model program, the de-
fault memory pool is local. You can always override the compiler’s default memory
allocation area.

When running in real mode, Intel 80x86 CPUs can access a maximum of 64K
in each segment. This limitation, and the way the default data segment is allocated (it
is often used for the stack, initialized data variables, constants, literals, and the heap,
which iswhere memory isallocated from when using local memory), affects how much
data a program can have.

Global memory has its own segment, and thus can have up to 64K in a single
data object (or more than 64K by using several contiguous segments). To use global
memory, however, your program must use far (4-byte) pointers rather than near (2-
byte) pointers, and this can slow program execution. If you need to determine the effect
this has on performance, you could create one version of your program with small data
blocks and near pointers, and the other with large data blocks and far pointers, then
run simple benchmarks.

247

Part Il « Managing Data in C

248

summary

In this chapter, you learned about memory allocation, how to change the size of an
allocated block of memory, and how to free memory after it is no longer needed.

The mattocQ) function is the ANSI standard method for allocating memory.
It accepts a single parameter that specifies how much memory should be
allocated.

The cattocQ function allocates memory based on the size of the object and
the number of objects. It is typically used to allocate an array.

When memory allocated with one of the memory allocation functions is no
longer needed, the free() function returns the memory to the operating
system.

The real1oc() function changes the size of a block of memory allocated with
one of the memory allocation functions. The object’s size can be increased or
decreased.

When programming on the PC (and other systems), you can often choose the
size of the pointer that accesses the allocated memory. The pointer size affects
the size of the executable program and the performance of the program.

Disk Files and Other 1/0

Without files, your program could do nothing. It would be without input, unable to
provide output, and unable to save the result of any of its computations. Fortunately,
ANSI C offers an excellent collection of file 1/0 functions. You can write to a file in
an unformatted (machine readable) manner, or your program can write to a file in a
formatted (people readable) manner.

This chapter deals with all types of 1/O: to and from files, the console, and
other devices. You learn all (at least | hope all) that you will need to develop the I/O
portions of your programs. The first part of this chapter deals with disk files. The
second part covers console 1/0 and direct port 1/0, including 1/0 to printer portsand
communications ports. Much of the direct port 1/0 is hardware dependent; the
discussion applies to a PC-based system.

249

Part Il « Managing Data in C

250

File I/0 Basics

This section does not discuss how files are arranged, stored, and managed on the disk
drive. That is a topic for a book on operating systems, not a book on C programming.
This section does cover how to use files.

The most important part of most programs is their capability to save results or
the data they use (such as a database) to a disk file. All disk files share things in com-
mon. (Again, this discussion is confined to the PC’s DOS operating system.)

All files have names. The format for a disk filename is eight characters for the
name and three characters for the extension. The selection of a file’s name and
extension are generally left to the user, except for files that other applications utilize.
Many applications suggest an extension (some require it), but few programs place
restrictions on the name.

All files have a creation date and time, which is stored in the time stamp. The
time stamp is updated each time you save changes to the file, so it serves as a file
modification time stamp.

Allfiles have a length. This length is in the operating system’s structure saved for
each file. When a file consists of only text, it may also contain an EOF (end of file)
marker, which under DOS is ox1a (Ctrl-Z).

All files also have attributes, as follows:
Normal No special attributes are set for the file.

Directory The file is a directory. The directory attribute can be used with
the hidden attribute.

Hidden The file’s name is not displayed when you issue a biIr com-
mand without the sa:H option.

System The file is used only by the operating system. Generally, only
the two files belonging to the operating system have the system
attribute.

Read only The file can be only read, not written or deleted.

Archive The file has not been backed up since it was last changed.
BAckUP and xcory can use and change the archive attribute.

Disk Files and Other 1/0 9

You can specify the read-only attribute when you create a file. All other attri-
butes must be set (or cleared) using the DOS aTTRIB cOmmand. You use the system()
function to call the aTTrR1B command from DOS applications.

When a file is opened, the program typically must specify the filename and the
mode: read, write, or both read and write. If the file is being created, the program
could specify also whether the file will be read only after it is created.

The open functions return an identifier that is a file handle or a pointer to the
opened file. You use this identifier when you call the read and write functions. When
the program has finished with the file, the file should be closed, or if it is a temporary
work file, deleted.

Text Files and Binary Files

If a text file is displayed on the screen, it is readable. It shouldn’t contain any special
characters other than tabs and newlines and is generally formatted so that it pre-
sents information to the user in an organized manner. Many text files are used only by
programs, however, even though the files are fully readable (and perhaps even
understandable). A binary file can contain any data, including the internal represen-
tation of numbers, special control characters.

A problem arises when you use a text file, the C language, and C’s interface to
DOS. C specifies a single character (called the newline character) to signify the end of
a line. DOS uses two characters (a newline character followed by a carriage return
character) to signify the end of a line. Each is a control character, and as such, must be
specified using the ANSI C escape sequence, which begins with a backslash character.

Tospecify anewline, you use the \n character sequence. When C encounters the
newline character in a string being output to DOS (either to a file or on the screen),
C converts it to the two-character sequence that DOS expects (a newline followed by
a carriage return). When input is read, C does the opposite, converting the newline
and carriage return pair to a single newline character.

This creates a minor problem. When the program reads a specified number of
bytes in a text mode file, each time the newline and carriage return pair is encounter-
ed, the character count is incremented by only 1 (only one newline character is
counted). If your program reads the string from afile, asshown in Figure 9.1, the string
is only 29 characters long, not the 31 characters stored in the file.

251

Part Il « Managing Data in C

252

The string stored in a C program

iribfi{e]] [st Eln] debelolr. i

The string when stored in a C program The newline character

occupies a total of 29 bytes, \n occupies one byte
in the program, and
two bytes in a file.

The string stored in a DOS file
| etribltle] [1] o] Efelelileld] [in] pedefedelep. F [[]
The string when stored in a DOS file occupies a total of 31 bytes,
two bytes longer than used when the the string is stored in memony.

Figure 9.1. A string in memory and in a text mode file.

The problem arises when the program must go (seek) to a specific place in the
file. You cannot assume how many characters (or bytes) are between a given point and
the desired point. If you have written a file containing five different strings thatare each
50 characters long (and contain an unknown number of newline characters), you could
not get to the beginning of the fourth string, for example, by seeking to character
number 150.

To successfully seek in a text file, you must create an index to each string (or
record). This index is assigned values by using one of the functions that return the
current placein afile, suchas feel 10 or fgetpos(). These functionsreturn the correct
position of a given data object, taking into consideration the conversion of the new-
line character to a newline and carriage return pair.

You must save this index to be able to access the strings randomly. The only al-
ternative to saving an index is to read the text file sequentially, which may not be
acceptable based on performance considerations.

The TEXTFILE.C program, shown in Listing 9.1, shows the effects of text
mode.

Listing 9.1. TEXTFILE.C.

/* TEXTFILE, written 1992 by Peter D. Hipson
* This program demonstrates text file

* newline conversions.

*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

Disk Files and Other 1/0 9

#include <process.h> // For abort(), spawn(), exit(), etc.
#include <malloc.h> // For memory allocation functions

#include <conio.h> // For console getch(), getche(), etc.
#include <ctype.h> // For character-conversion functions

#define MAX_LINES 25
#define MAX_LENGTH 80

char szSaying[MAX_LINES][MAX_LENGTH] =

{
‘“NnFirestone’s Law of Forecasting: \n”’,
‘“Nn Chicken Little has to be right only once. \n”’,
“An \n\n”*,
‘“NnManly’s Maxim: \n”,
‘“Nn Logic is a systematic method of coming to \n”’,
‘“Nn the wrong conclusion with confidence. \n”,
“An \n\n”*,
‘“\nMoer”s truism: \n”’,
‘“Nn The trouble with most jobs is the job holder’s \n”’,
‘“An resemblance to being one of a sled dog team. No one \n”’,
‘“\An gets a change of scenery except the lead dog. \n”’,
“An \n\n”*,
‘“\NnCannon’s Comment: \n”’,
‘“Nn 1T you tell the boss you were late for work because you \n”’,
‘“Nn had a flat tire, the next morning you will have a flat tire.\n”,
“An \n\n”*,

};

int main(void); // Define main() and the fact that this program
// does not use any passed parameters

int mainQ)

{

FILE *DataFile = NULL;
char szFileName[25];
char szBuffer[257];

char szMode[5] = “w\O\0”’;
continues

253

Part Il « Managing Data in C

Listing 9.1. continued

int i;

int nNumberRecords = 0;
int nRecord = 0;

int nResult = 0;

long INewPosition = O;

long 101dPosition = 0;

/* Prompt the user to supply the mode, either lowercase t
* for a text file or lowercase b for a binary file.
*/

while (DataFile == NULL)

{
while(szMode[1] !'= “b” && szMode[1] != “t”)

{
printf(*\nPlease enter “t’ for text file, “b> for binary: “);

/* For non-Microsoft C systems, use tolower() (no leading underscore) */

szMode[1] = _tolower(getche());
¥

printf(*“\nPlease enter name of file to write: *);
gets(szFileName);

DataFile = fopen(szFileName, szMode);

iT (PataFile == NULL)

{
printf(“ERROR: File “%s” couldn’t be opened.\n”, szFileName);

}
}

printf(*\n”);
switch(szMode[1])

{

case “t’:

254

Disk Files and Other 1/0 9

printf(“Demo of a text file\n\n”);
break;

case “b’:
printf(“Demo of a binary file\n\n”);
break;

}

for (i = 0; strlen(szSaying[i]); i++)
{
101dPosition = ftell(DataFile);

fwrite(szSaying[i],
strlen(szSaying[i]),
1,
DataFile);

INewPosition = ftell(DataFile);

printf(
“Start position %51d “
“end %51d, “
“strlen(...) %d but “
“wrote %51d bytes’\n”,
101dPosition,
INewPosition,
strlen(szSaying[i]),
(long) INewPosition - 10ldPosition);
3

fclose(DataFile);
printf(*\n”);

switch(szMode[1])
{
case “t’:
printf(“Note the bytes written don’t”
“ equal the string’s length\n\n”);
break;

continues

255

Part Il « Managing Data in C

256

Listing 9.1. continued

case “b’:
printf(“Note the bytes written always”
“ equal the string’s length\n\n”);

break;

}

return (0);

TEXTFILE enables you to open the file in text mode or binary mode so you can
see how the modes differ. The fte1 1) function returns the number of bytes in the file,
without regard to the file’s mode. All strings in TEXTFILE have the same number of
characters, according to strien(), but the number of bytes written in the text mode
depends on the number of newline characters in the string.

Virtually all files saved by editors and other programs are equivalent to a text file.
Many DOS programs cannot read a file that does not have the newline and carriage
return combination.

Creating and Using Temporary Work Files

When you create a temporary work file, remember the following simple rules:

« The filename must be unique. This uniqueness can be guaranteed by using
tmpFile() O tmpnam().

» The file must be deleted when you have finished using it. If you create the file
using tmpfile(), the operating system deletes the file for you. If you create it
with tmpnam() and an explicit open, your program must delete the file.

Few programs can store all their data in memory. You cannot be sure of the
amount of memory available to your program for data storage, and you therefore
won'’t know if there will be enough memory to load the data the program requires.

Many larger programs with large data objects do not even try to save all their data
in memory. They read the data, index the data, then write the data to a temporary
work file. Listing 9.2, EDLINE, isasimple editor that reads a text file, provides editing

Disk Files and Other 1/0 9

capabilities, then writes the program’s buffers out to the file when the user ends the
program. Because this editor is simple, it supports only line-number editing.

Listing 9.2. EDLINE.C.

/* EDLINE, written 1992 by Peter D. Hipson

* This program is a simple line-oriented editor. If
* your compiler supports memory models, use the

* large model.

*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#include <process.h> // For abort(), spawn(), exit(), etc.
#include <malloc.h> // For memory allocation functions
#include <conio.h> // For console getch(), getche(), etc.
#include <ctype.h> // For character conversion functions

#define MAX_LINES 15500 /* Allow 64K for indexes */
#define MAX_LENGTH 513 /* Longest line is 512 + NULL */
#define DELETED_LINE -1 /* A line that has been deleted */

long ILinelndex[MAX_LINES];

char szlnputLine[MAX_LENGTH];

int main(
int argc, /* Count of arguments */
char *argv[], /* Array of pointers to arguments */
char *envp[l /* Array of pointers to environment */
);

int EditLine(char * szlnputLine); /* Used to edit a given line */

int main(
int argc,
char *argv[],
char *envp[l

)

continues

257

Part Il « Managing Data in C

Listing 9.2. continued

{

FILE *DataFile = NULL;
FILE *WorkFile = NULL;
char szFileName[25];

char szBuffer[257];

char szTempName[L_tmpnam] ;
char szNewName[L_tmpnam];
char szCommand[81];

char chChar;

int i;

int nMaxLines = 0;

int nStartLine;

int neEndLine;

/* First, get the filename to edit */

if (argc >= 2)

{
DataFile = fopen(argv[1l], “rt”);
if (DataFile == NULL)
{
printfF(“ERROR: File “%s” couldn’t be opened_-\n”, argv[1l]);
¥
else
{
strcpy(szFileName, argv[1]):
¥
¥

while (DataFile == NULL)
{

printf(*\nPlease enter name of file to edit: “);

gets(szFileName);

258

Disk Files and Other 1/0

/*

*/

DataFile = fopen(szFileName, “rt”);

if (DataFile == NULL)
{

9

printf(“ERROR: File “%s” couldn’t be opened.\n”, szFileName);

}
}

printf(*\n”);

Next, get a temporary filename, read the original file, and

write

you can access the records.

tmpnam(szTempName) ;

if (strlen(szTempName) == 0)
{

printf(“Couldn’t get a work file name..

exit(4);
}

WorkFile = fopen(szTempName, “w+t’);

for (i = 0O;
{

i < MAX_LINES; i++)

ILinelndex[i] = DELETED_LINE;
3

nMaxLines = 1;
ILinelndex[nMaxLines] = O;

it to the work file. Create a line-number index so that

A\n”);

while(fgets(szlnputLine, sizeof(szlnputLine), DataFile))

{

ILinelndex[nMaxLines++] = ftell(WorkFile);

fputs(szlnputLine, WorkFile);
T

fclose(DataFile);

continues

259

Part Il « Managing Data in C

Listing 9.2. continued

printf(“Total lines in file %d.\n”, nMaxLines - 1);

szCommand[0] = “\0”;

while(szCommand[0] != “q”) // Quit without saving (use w command to
// save)

¢ printf(“Command? “);
gets(szCommand);
striwr(szCommand) ;
nEndLine = -1;
sscanf(&szCommand[1], “%d%d”,
&nStartLine,

&nEndLine);

if (nEndLine < nStartLine)

{
neEndLine = nStartLine;
¥
if (nEndLine >= nMaxLines)
{
nEndLine = (nMaxLines - 1);
¥
switch(szCommand[0])
{

case “e’: /* Edit the specified line */

if (nStartLine == 0)
{

printf(“Line number must be 1 to %d\n”, nMaxLines);

}

else

{

260

Disk Files and Other 1/0 9

if (ILinelndex[nStartLine] == DELETED_LINE)

{
printf(“Line %d has been deleted,
“and cannot be edited.\n”,
nStartLine);
¥

if (nStartLine < nMaxLines &&
ILinelndex[nStartLine] != DELETED_LINE)

{
fseek(WorkFile,
ILinelndex[nStartLine], SEEK_SET);
fgets(szlnputLine,
sizeof(szlnputLine), WorkFile);
if (EditLine(szlnputLine))
{
fseek(WorkFile, 0, SEEK_END);
ILinelndex[nStartLine] = ftell(WorkFile);
fputs(szlnputLine, WorkFile);
b
by
3
break;

case “1’: /* List the specified line */

if (nStartLine == 0)

{
nStartLine = 1;

while(nStartLine < nMaxLines)

{
if (ILinelndex[nStartLine] != DELETED_LINE)

{
fseek(WorkFile,
ILinelndex[nStartLine], SEEK_SET);

continues

261

Part Il « Managing Data in C

262

Listing 9.2. continued

fgets(szlnputLine,
sizeof(szlnputLine), WorkFile);

printf(“%4d - %s”,
nStartLine,
szlnputLine);

}
else
{
printf(“%4d ***DELETED LINE***\n”,
nStartLine);
}
++nStartLine;
3
nStartLine = O;
3
else
{
while(nStartLine <= nEndLine)
{
if (ILinelndex[nStartLine] != DELETED_LINE)
{
fseek(WorkFile,
ILinelndex[nStartLine], SEEK_SET);
fgets(szlnputLine,
sizeof(szlnputLine), WorkFile);
printf(“%4d - %s”,
nStartLine,
szlnputLine);
}
else
{
printf(“%4d ***DELETED LINE***\n”,
nStartLine);
}

Disk Files and Other 1/0 9

++nStartLine;
3
b

break;
case “d’: /* Delete the specified line */

if (nStartLine > 0 &&
nStartLine < nMaxLines)

¢ printf(“Do you really want to delete line %d? (y|n) “,
nStartLine);
chChar = getche();
printf(‘*\n”);
if (chChar == “y” || chChar == “Y~?)

{
ILinelndex[nStartLine] = DELETED_LINE;

by
3
break;
case “w’: /* Write; continue editing? */
szNewName[0] = “\0~;
tmpnam(szNewName) ;
iT (strlen(szNewName) == 0)
{
printf(“Error getting a temporary file name..._.\n");
3
rename(szFileName, szNewName);

DataFile = fopen(szFileName, “wt);

nStartLine = 1;
continues

263

Part Il « Managing Data in C

Listing 9.2. continued

while(nStartLine < nMaxLines)

{
if (ILinelndex[nStartLine] != DELETED_LINE)
{
fseek(WorkFile,
ILinelndex[nStartLine], SEEK_SET);
fgets(szlnputLine,
sizeof(szlnputLine), WorkFile);
fputs(szlnputLine, DataFile);
3
++nStartLine;
}

nStartLine = O;
fclose(DataFile);
/* In this version, the original file is simply deleted.
* A better programming practice is to rename it to .BAK
* so the user can recover the original file.
* Question:
* When renaming to .BAK, does the user recover from the
* last save or the original file?
*/
remove(szNewName); /* Could be renamed to .BAK */

break;

case “Qq’: /* Quit, with no save */

break;
default:
printf(“Error: the command “%c” is not supported!\n”,
szCommand[0]);

264

Disk Files and Other 1/0

break;
3
fclose(WorkFile);
remove(szTempName) ;

return (0);
h

int EditLine(
char * szlnputLine)

{
char chChar = “A”; // To fool while() the first time!
int nCurrentChar = 0;

printf(“%s”, szlnputLine);

while (chChar)

{

chChar = getch();
if (chChar == “\07)

{
chChar = getch();
switch(chChar)
{

case “\x4D~:

printf(“%c”, szlnputLine[nCurrentChar]);
++nCurrentChar;
break;

default: /* No other keys implemented yet */
printf(*\a”);
break;

continues

265

Part Il « Managing Data in C

266

Listing 9.2. continued

}
else
{
switch(chChar)
{
case “\n’:
case “\x0d~:
chChar = “\0”;
break;
default: /* Change current character to typed character */
szlnputLine[nCurrentChar] = chChar;
printf(“%c”, szlnputLine[nCurrentChar]);
++nCurrentChar;
break;
}
}

}

printf(*\n”);

return(l);

Two parts of EDLINE require closer examination. First, the program declares
two character-string buffers to hold temporary file names:

char szTempName[L_tmpnam] ;
char szNewName[L_tmpnam];

I don’t know how long these buffers should be, so I use the L_tmpnam identifier,
which is defined in stdio.h. This identifier is system dependent and is large enough
to hold any temporary filename returned by tmpnam().

Now that there is a place to save the temporary file names, I can call the ANSI
C tmpnam() function, which returns a unique filename. This filename can be used for
any purpose (EDLINE, for example, uses it for a work file). In a multitasking
environment, the same name might be returned to more than one program. Your
application can handle this situation by getting a new temporary name if a file is

Disk Files and Other 1/0 9

opened for writing and an error is returned because another application is using
the name. There is no need to signal an error to the user; simply recover by getting a
new name.

The following code shows how a temporary filename is obtained and opened:

tmpnam(szTempName) ;

ifT (strlen(szTempName) == 0)

{
printf(“Couldn’t open a work file...\n”);

exit(4);

The recovery in a multitasking environment could be coded as follows:

WorkFile = NULL;

while (WorkFile == NULL)
{

tmpnam(szTempName) ;

if (strlen(szTempName) == 0)

{
printf(“Couldn’t get a work file name...\n”);
exit(4);

}

/* fopen() fails if the name has been used by
* another application
*/
WorkFile = fopen(szTempName, “w+t);

}

Ingeneral, this type of error checking is unnecessary for programs running on the
PC under DOS.

When you are finished with your work file, you must delete it. You can do this
with the ANSI C remove () function or the untink() function, which is still found on
many C compilers.

ANSI C also supports the tmpfi1e() function, which createsa temporary fileand
opens the file. This function does much of the work for the programmer, but it has
disadvantages. For example, when the file is closed (whether or not you are finished),

267

Part Il « Managing Data in C

it is deleted. This makes it impossible to close the file early in the program’s execution
and reopen it later. You also cannot specify the mode of the file: it is opened in the
binary read/write mode. EDLINE required a temporary work file with the text mode,
not the binary mode, so tmpfile() could not be used.

The calls to tmpfile() are easy to make, as shown in the following lines of code:

FILE *TempFile = tmpfile();
/* Lines of code to use the file */

fclose(TempFile);

The tmpfile() function is handy when the file’s attributes (binary read/write)
are suitable to your program’s needs, and when you want the system to automatical-
ly delete the file.

Sometimes you will want the temporary file to stay around. If the program
crashes, for example, you may be able to recover the user’s data from the temporary
work file.

Using a temporary work file is similar to using any other file, except it must be
deleted and its name must be unique.

Stream Files and Default File Handles

In C, files can be opened as stream files, which are identified with a pointer to a FILE
structure, or as low-level files, which are identified with an integer handle. This section
coversstream files. Low-level files are described later in the chapter, under “Low-Level
1/0 and File Handles.”

A stream file must be opened with one of the following functions:

fopen() Opens the specified file with the specified mode

freopen() Closes the file specified, then opens a new file as specified

fdopen() Opens a duplicate stream file for an already open low-level
file

If a file is opened with open() or one of the other file open functions that return
an integer handle, the file is a low-level file, not a stream file. Table 9.1 lists the stream
functions that C supports.

268

Disk Files and Other 1/0 9

Table 9.1. Stream file functions (including Microsoft’s additions).

Function Description

_fsopenQ) Microsoft’s shared file open.
clearerr() Clears the current error condition flags.
fclose() Closes the specified file.

fcloseal 1Q) Closes all open stream files.

fdopen() Opens a low-level file as a stream file.

feof() Checks for end-of-file in a stream file.

ferror() Tests for a read or write error.

fflushQ Flushes pending 1/O for a file.

fgetcQ) Gets a character from a stream file.

fgetchar() Gets the next character from a file.

fgetpos() Gets a file’s current position, for use by fsetposQ).
fgets() Gets a string from the specified file.

filenoQ) Returns the low-level file handle for a stream file.
Fflushal 1) Flushes pending 1/0 from all opened files.
fopen() Opens a stream file.

fputcQ Writes a character to the specified file.

fputchar () Writes a character to the specified file.

fputs() Writes the buffer to the stream file.

fread() Reads from the specified stream file.

freopen() Reopens the file.

fscanf() Does a formatted read from a stream file.

fseek(Q) Sets the file’s current position as specified.
fsetpos() Sets the file to the position obtained by fgetpos().
ftell) Gets the file’s current position.

continues

269

Part Il « Managing Data in C

270

Table 9.1. continued

Function Description

furite() Writes to a specified file.

getc Gets a character.

getchar() Gets a character from stdin.

getsQ Gets a string from stdin.

getw() Gets an integer from the specified file.

printfQ Does a formatted write to stdout.

putc) Writes a character to a stream file.

putchar() Writes a character to stdout.

putsQ Writes a buffer to stdout.

putw() Writes an integer value to a file.

rewind() Sets the file’s current position to the beginning of the file.

rmtmpQ) Removes (deletes) temporary files opened with tmpfile().

scanf(Q) Does a formatted read from stdin.

setbuf() Sets the stream file’s buffer.

setvbufQ) Sets the stream file’s buffer (variable size buffer).

sprintf() Does a formatted write to a string.

sscanf(Q) Reads formatted input from a string.

tempnam() Gets a temporary filename, allowing the specification of a
different directory.

tmpFile) Opens a uniquely named temporary work file. When the file
is closed or the program ends, the file is deleted.

tmpnam() Returns a unique name for use as a temporary filename.

ungetc() Puts back a character to a file opened in the read mode. The

character put back does not need to be the same as the one
read, but only one character can be put back at a time. Two
successive calls to ungetc() without an intervening read will
fail.

Disk Files and Other 1/0 9

Function Description

viprintfQ Does a formatted write to the specified file. The output is
pointed to by a parameter-list pointer.

vprintfQ Does a formatted write to stdout. The output is pointed to
by a parameter-list pointer.

vsprintfQ Does a formatted write to the specified string. Output is
pointed to by a parameter-list pointer.

The classification of stream files includes a number of standard files. For every
C program, five standard files are always open. Programs can use these files to perform
basic file 1/0 to the screen and the keyboard.

Before describing the standard files, remember that most operating systems
enable you to redirect files. Usually, a simple redirection symbol automatically allows
a file to be used for input or output; the program uses this file as if it were either the
keyboard or the screen.

The stdin File

The stdin file is opened by the operating system and is considered to be the keyboard.
If the operating system supports 1/O redirection, however, stdin could be a file.

If stdin’s input comes from an 1/O redirected file, several problems can occur
when the end of the redirected file is reached. First, the program receives an end-of-
file (eoF) error. Many programs do not adequately check for eor, and the user may
have a difficult time ending the program. Second, the operating system does not switch
back to the keyboard. You can force your program to use the keyboard by opening a
file called con: (under DOS on a PC), but this requires a lot of programming.

The following functions use stdin:
getchar() Gets a character from stdin
gets() Gets a string from stdin
scanf() Performs a formatted read from stdin

These functions make your code easier to read and understand. Each has a coun-
terpart that can be used for any other stream file.

271

Part Il « Managing Data in C

2172

The stdout File

The stdout file is opened by the operating system and is considered to be the screen.
If the operating system supports 1/O redirection, however, stdout could be a file.

If stdout’s output goes to a redirected file, several problems can occur. The
program could receive an end-of-file (eoF) error when the disk is full. Many programs
do not adequately check for EoF with stdout, and the user may not realize an error
has occurred until the program has finished running. Another problem is that there is
no provision to switch back to the screen. You can force your program to use the screen
by opening a file called con: (under DOS on a PC), but doing so requires a lot of
programming.

The following functions use stdout:

printfQ Performs a formatted write to stdout

putchar() Writes a character to stdout

putsQ) Writes the buffer to stdout

vprintfQ Performs a formatted write to stdout. The output is

pointed to by a parameter-list pointer.

Each stdout function hasa counterpart that can be used for any other stream file.
And like the stdin functions, the stdout functions enable you to write code that is
easier to read and understand.

The stderr File

The stderr file is similar to the stdout file; data written to stderr is displayed on the
screen. The major difference is that stderr is used for error messages that you would
not want redirected to afile if the user is using I/O redirection. You can use stderr to
display messages to the user regardless of whether 1/O redirection is used because
stderr is never 1/O redirected.

No functions use stderr directly. You can use forintf() to write your error
message:

fprintf(stderr,
“The input file is in the old format. Run REFMT first”);

Disk Files and Other 1/0 9

The error message will not be redirected if the operating system’s I/O redirection
is in effect.

Always use stderr for the program’s banner message (the message to the user that
describes the program and lists the copyright, author, and so on) and error messages.
If you develop one error message function that is always called when an error occurs,
you can be sure that the message is written to the correct place—the screen and not a
redirected file.

The stdaux File

The stdaux file’s name is a bit confusing. What is the aux device? In ANSI C, the aux
device is defined as the main serial communication port (not the console serial com-
munication port). On a PC, aux is defined as com1:, and stdaux writes to the comz:
port.

The short program in Listing 9.3, called STDAUX.C, writes 100 lines to the
stdaux file. Before running this program, initialize the communications port. To do
this under DOS on the PC, use the mobE command.

Listing 9.3. STDAUX.C.

/* STDAUX, written 1992 by Peter D. Hipson

* This program uses the stdaux file. It should be run
* only under DOS on a PC.

*/

#include <stdio.h> // Make includes first part of the file
#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

int main(// Define main() and the fact that this program
int argc, // uses the passed parameters
char *argv[],
continues

2173

Part Il « Managing Data in C

Listing 9.3. continued

char *envp[]

);

int main(
int argc,
char *argv[],
char *envp[]

)

int

for (i = 0; 1 < 100; i++)
{
/* Because stdaux is opened in the binary mode,
* CR/LF must be supplied explicitly, using \n\r
*/
fprintf(stdaux,
“Line %2d of 100 lines”
“ being written to stdaux by a program.\n\r”’,

i);

return (0);

The stdprn File

The stdprn file is easy to understand. It provides a simple way to write to the system
printer without having to explicitly open a file. The stdprn file cannot be redirected
and therefore should be used only for items that will be printed, probably in response
to a user request.

274

Disk Files and Other 1/0 9

The short program in Listing 9.4, called STDPRN.C, writes to stdprn. Before

running this program, be sure a printer is connected to the primary printer port and
is online.

Listing 9.4. STDPRN.C.

/* STDPRN, written 1992 by Peter D. Hipson
* This program uses the stdprn file. It should be run
* under DOS on a PC.

*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

int

/*

*/

main(// Define main() and the fact that this program
int argc, // uses the passed parameters

char *argv[],

char *envp[]

)

main(

int argc,
char *argv[],
char *envp[]

I
for (i = 0; 1 < 50; i++)
{

Because stdprn is opened in the binary mode,
CR/LF must be supplied explicitly, using \n\r

continues

275

Part Il « Managing Data in C

Listing 9.4. continued

fprintf(stdprn,
“Line %2d of 50 lines”
‘ being written to stdprn by a program.\n\r”,
i);
}

/* An explicit form feed is used to force a page eject
* if the printer is a laser printer
*/
fprintf(stdprn, “\f”);

return (0);

This program shows how easy it is to use a printer from a C program. Listing 9.5
isa more flexible program—the user can choose the screen, the communications port,
or the printer.

Listing 9.5. STDFILE.C.

/* STDFILE, written 1992 by Peter D. Hipson

* This program prints to the selected destination. It
* should be run under DOS on a PC.

*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions.

#include <stdlib.h> // Standard include items.

#include <process.h> // For exit(), etc.

int main(// Define main() and the fact that this program
int argc, // uses the passed parameters
char *argv[],
char *envp[]

);

276

Disk Files and Other 1/0

int main(

{

FILE * OutputFile = NULL;

int
int

int

argc,

char *argv[],
char *envp[]

)

nFile = 0;
i;

while (nFile < 1 || nFile > 3)

{

}

printf

“Which file to write to:\n”
“ 1 - stdprn (the
“ 2 - stdaux (the
“ 3 - stdout (the
“ enter 1, 2 or 3:

scanf(“%d”, &nFile);

switch(nFile)

{

case 1:
OutputFile
break;

case 2:
OutputFile
break;

case 3:
OutputFile
break;

stdprn;

stdaux;

stdout;

printer)\n”
communications
console)\n”

“);

port)\n”’

continues

2177

Part Il « Managing Data in C

Listing 9.5. continued

for (i = 0; 1 < 50; i++)
{

/* stdprn is opened in the binary mode, so a CR/LF
* must be supplied explicitly, using \n\r
*/
fprintf(OutputFile,
“Line %2d of 50 lines”
“ being written to user-selected destination by a program.\n\r”,
i);
}
/* Use an explicit form feed to force a page eject if the

printer is a laser printer.

*/

fprintf(OutputFile, “\f”);

return (0);

2178

This program shows the effect of assigning standard file handles to a user-
specified file. This technique enables you to have one output routine and several
destinations. This is useful when you want the user to be able to preview a report or
easily select a secondary printer connected to a communications port.

Low-Level 1/0 and File Handles

Allfile 170 functions described so far perform primarily high-level I/0O, and all require
stream files. (Functions that require stream files receive a FILE = structure pointer.)

You can also access a file more directly using low-level file 1/0O technigues. Be-
fore describing the details of these techniques, however, several important issues
should be covered.

Afile that has been opened as a stream file can be read and written to using low-
level file 1/0 functions. To get the necessary integer file handle, you must use the
filenoQ function.

Disk Files and Other 1/0 9

Alow-level file can be used with stream functions by opening it with the fdopen()
function. Be careful not to take a file that has been opened as a stream file, get its file
handle, then open it a second time with fdopen(). You would then have to close the
file twice.

The low-level file 1/O functions are shown in Table 9.2. These functions
generally have a stream file function counterpart.

Table 9.2. Low-level file functions.

Function Description

close() Closes the specified file.

creat() Creates a new file.

dupQ Creates a new, duplicate file handle.

dup2(Q) Creates a new, duplicate file handle and sets the second
(specified) file handle to the first file.

eof(Q) Tests for an end-of-file.

Iseek() Seeks (changes the read/write pointer) to a new place in thefile.

open() Opens an existing file.

read() Reads an opened file.

sopen() Opens a file in shared mode.

tell Returns the value of the read/write pointer.

writeQ) Writes data to a file that has been opened for output.

Before you use stream functions with a low-level file, be sure that you open the
file using the correct stream function. Generally, it is best if you use one type of
function with any specific file.

There are several reasons for using low-level functions, including the following:

 Low-level functions do not try to format data, read from a file, or write
to a file.

« Low-level file I/O is not buffered. When an 1/O statement is executed,
what is written goes directly to the file. (This may slow the program’s
execution.)

2179

Part Il « Managing Data in C

280

Most programs benefit from the use of stream functions. The capability to open,
read, and write any data object is present in both low-level files and stream files. The
problems caused by buffering, if important, can be circumvented using the file flush-
ing routines.

Standard Low-Level File Handles

Because stdin, stdout, stdaux, stderr, and stdprn are stream files, they can be
referenced using the fileno() function. These files can also be used with low-level
I/O functions directly, however. The file handle numbers for the standard stream files
follows:

stdin 0
stdout 1
stderr 2
stdaux 3
stdprn 4

These low-level file numbers should not be used if possible. The fileno()
function is more portable, especially when a program must run on different systems.

Console and Port 1/0

Much of the direct access to the computer’s terminal (the screen and keyboard) is
system dependent. On a PC, you can have any of a number of keyboards, all of which
have different keys, and different scan codes. Several functions interact more directly
with the keyboard, and though not all are ANSI standard, they are often part of many
C compilers. These functions are shown in Table 9.3.

You can easily simulate most console functions by using the stream functionsand
the predefined file handles. A few functions, however, have no equal. This section
describes the console functions and how to use them.

Some of the most frequently used direct console functions are the character
getting functions, getch() and getche(). The main difference between these two
functions is that getch() does not echo the character pressed, and getche() doesecho

Disk Files and Other 1/0 9

the character. Although the screen functions can be used to read a keypress and echo
it to the screen, you must use the getch () function to read a keypress without echoing
it to the screen.

Table 9.3. Console 1/0 functions.

Console function Description

cgetsQ Gets a string from the console.

cprintfQ) Performs a formatted print to the console.

cputsQ) Writes a string to the screen.

cscanf(Q Performs a formatted read from the console (key-
board).

getch(Q) Gets a character from the keyboard but does not echo
the character to the screen.

getche() Gets a character from the keyboard and echoes the
character to the screen.

kbhitQ Returns immediately with the return code indicating
whether a key has been pressed. Will not wait for a
keypress.

putch() Writes a character to the screen.

ungetch() Allows one character to be pushed back to the key-

board. The character put back does not need to be the
last character read. Only one character may be put
back.

The next most commonly used function is the kbhit¢) function, which has no
stream function counterpart. The kbhit() function enables you to poll the keyboard
for a keypress. Many business applications have little use for this function. Games,
however, run in real time, so they must check for user input without stopping
the action. The kbhit() function enables a program to do just that.

Listing 9.6, ARCADE.C, does processing while waiting for keyboard input
from the user. By a far stretch of the imagination, you could consider this program a
simple arcade game.

281

Part Il « Managing Data in C

282

Listing 9.6. ARCADE.C.

/* ARCADE, written 1992 by Peter D. Hipson
* This is a simple arcade game that uses console 1/0.
* 1t should be run under DOS on a PC. It also should
* be compiled with Microsoft C or a compiler that
* supports kbhit() and getch(). In addition, ANSI.SYS
* should be loaded before using this program, and the
* screen size is assumed to be 25 by 80.
*/

#include <stdio.h> // Make includes first part of file
#include <conio.h> // Console 1/0 functions

#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

#include <time.h> // To seed random numbers

/* ANSI_SYS screen control #defines follow: */

#define BOLD “Nx1B[1m”
#define NORMAL “\x1B[Om”
#define RED “Nx1B[31m”
#define BLACK “\x1B[30m”
#define GREEN “Nx1B[32m”

#define CLEAR_SCREEN ‘“\x1B[2J”
#define CLEAR_EOL “Nx1B[K”

#define MOVE_CURSOR ““\x1B[%d;%df”
#define UP “\x48~
#define DOWN “\x50~
#define LEFT “\x4B~
#define RIGHT “\x4D~

#define MAX_HEIGHT 25
#define MAX_WIDTH 80

#define HALF_SECOND (CLOCKS_PER_SEC / 2)

Disk Files and Other 1/0 9

int main(// Define main() and the fact that this
int argc, // program uses the passed parameters
char *argv[],
char *envp[l

);

int main(
int argc,
char *argv[],
char *envp[l

{
char chChar;

clock_t ClockTime;
clock_t OldClockTime;

int i;

int nHorizontal = 0; /* Randomize for real game */
int nVertical = 0; /* Randomize for real game */
int nMoneyHorizontal = 10; /* Randomize for real game */
int nMoneyVertical = 10; /* Randomize for real game */
int nPosition;

OldClockTime = clock() /7 HALF_SECOND;
srand((unsigned)time(NULL));

printf(CLEAR_SCREEN) ;

printf(MOVE_CURSOR, nMoneyVertical, nMoneyHorizontal);
printf(“$”);

printf(MOVE_CURSOR, nVertical, nHorizontal);

printf(“?”);
continues

283

Part Il « Managing Data in C

Listing 9.6. continued

while(1)
{
it (kbhitQ))
{/* A key has been pressed, so process it as necessary */
chChar = getch(Q);

if (chChar == (char)NULL)

{
chChar = getch();

printf(MOVE_CURSOR, nVertical, nHorizontal);
printf(* “);

switch(chChar)
{
case DOWN:
if (++nVertical > MAX_HEIGHT)
{

--nVertical;
}
break;
case UP:
if (--nVertical < 1)
{
++nVertical ;
}
break;
case RIGHT:
if (++nHorizontal > MAX_WIDTH)
{

--nHorizontal;

}
break;
case LEFT:
if (--nHorizontal < 1)

{

++nHorizontal ;

}

break;

284

Disk Files and Other 1/0

default:
break;

}

printf(MOVE_CURSOR, nVertical, nHorizontal);

iT (nMoneyHorizontal == nHorizontal &&
nMoneyVertical == nVertical)
{
printf(*\a”);
3
printf(“?”);
3
else
{
ifT (chChar == “\x1b”)
{/* Exit on Esc keypress */
printf(CLEAR_SCREEN);
exit(4);
3
3
b
else

{/* No key has been pressed. Move the money. */
ClockTime = clock() 7/ HALF_SECOND;

iT (ClockTime != OldClockTime)

{
OldClockTime = ClockTime;

printf(MOVE_CURSOR, nMoneyVertical, nMoneyHorizontal);

printf(* “); /* Erase the money */

i = randQ;

switch(i % 4) /7* Allow four states */
{
case O:
if (++nMoneyVertical > MAX_HEIGHT)

continues

285

Part Il « Managing Data in C

Listing 9.6. continued

{

--nMoneyVertical;
}
break;
case 1:
if (--nMoneyVertical < 1)
{
++nMoneyVertical;
}
break;
case 2:
if (++nMoneyHorizontal > MAX_WIDTH)
{
--nMoneyHorizontal ;
}
break;
case 3:
if (--nMoneyHorizontal < 1)
{

++nMoneyHorizontal ;

}

break;

default:
break;

}

if (nMoneyHorizontal == nHorizontal &&
nMoneyVertical == nVertical)

{

--nMoneyHorizontal;
--nMoneyVertical;

}

printf(MOVE_CURSOR, nMoneyVertical, nMoneyHorizontal);
printf(“$”); /* Display the money */

printf(MOVE_CURSOR, nVertical, nHorizontal);

286

Disk Files and Other 1/0 9

}

return (0);

First the program and the screen are initialized. Standard stream 1/0O statements
are used because they are easy to use. No sense in doing more work than is necessary!
Then the screen is cleared, and the target (the dollar sign) is placed at position 10, 10.
The chaser (the question mark) is then placed at position 0, 0, and the game begins.

A white loop polls the keyboard. When a key is pressed, kohit() returns TRUE,
allowing the program to read the keypress, as follows:

if (kbhit())
{/* A key has been pressed, so process it as necessary */
chChar = getch();

if (chChar == (char)NULL)

{
chChar = getch();

If the first call to getch) returns zero, an extended key (probably an arrow key)

has been pressed. If the return is nonzero, an ASCII key has been pressed. The only
nonextended key that interests us is ESC, which ends the game.

After a key has been pressed, a new location for the chaser is computed. If the
chaser has landed on the target’s position, the speaker beeps. Try playing the game—
it’s harder than it seems!

If no key has been pressed, the program checks how long it has been since the
target moved. Every half second, if no key is pressed, the target moves one square in
a random direction. This time period makes the game more playable. (Otherwise, on
a fast CPU, the target would be all over the screen, and you could never hit it.)

All moves in ARCADE are kept in the bounds of the screen. In addition, the
target cannot move to the same position as the chaser—the game should never lose by
its own choice!

287

Part Il « Managing Data in C

288

Direct Port 1/0

This section assumes that you are programming on an IBM compatible PC. If you are
using another type of computer, some of the discussion in this section may not apply.

Direct port 1/O can be dangerous because the program is interacting with the
hardware at a basic level. Because there is no error checking, you can seriously damage
the information on your hard disk.

If you are writing software that uses direct port 1/0, back up

o
@® your hard disk!

Direct port 1/O is system dependent, not only on the type of computer, but also
on the computer’s configuration. In this section, the assumption is that you are
programming on an IBM compatible PC. If you are using another type of computer,
this section may not apply.

The CPU uses the 1/O ports to communicate with all the various peripherals,
such as the communication ports, the printer ports, and the keyboard. Peripherals are
connected to the CPU by interface cards (these may be part of the motherboard). The
direct port 1/O functions are shown in Table 9.4.

Table 9.4. Direct 1/0 functions.

I/0 function Description

inpQ Inputs a byte of data from the specified port
inpwQ Inputs two bytes of data from the specified port
outp) Outputs a byte of data to the specified port
outpw() Outputs two bytes of data to the specified port

Disk Files and Other 1/0

9

The return type is always type int, so you should use only the first byte in
functions that process byte-size data objects. Both output functions return the byte or
word that was output. The input functions return the currently input byte or word.

The PC Printer Ports

The PC supports up to three printer ports. The addresses for the printer ports are
in the BIOS data area, at segment 0040, as follows: 0040:0008 for LPT1, 0040:000A
for LPT2, and 0040:000C for LPT3. Typical addresses for printer ports are 0x0378
or 0x03BC. Although there are standard addresses for the printer 1/0O, your program
could use any 1/0O address that is defined by the system.

Listing 9.7, PRNPORT.C, prints to the printer a single string, followed by a
form-feed character. (The form-feed character forces laser printers to print the page.)

The program prints directly, without calling the DOS or the BIOS routines.

Listing 9.7. PRNPORT.C.

/* PRNPORT, written 1992 by Peter D. Hipson

* This program prints directly to the printer’s port.

* The program should be run under DOS on a PC. If your

* computer is not PC-compatible, do not run this program.
* The program should also be compiled with Microsoft C.

*/

#include
#include
#include
#include
#include
#include

#define MAKELONG(low, high) ((long)(((unsigned short int)(low)) \

<stdio.h> //
<conio.h> //
<string.h> //
<stdlib.h> 7/
<process.h> //
<time.h> //

Make includes first part of file
Console 1/0 functions

For string functions

Standard include items

For exit(), etc.

To seed random numbers

| ((Qunsigned long int)((unsigned short int)(high))) << 16)))

#define MAKELP(sel, off)

((void _far*)MAKELONG((ofF), (sel)))

/* Printer port definitions */

continues

289

Part Il « Managing Data in C

Listing 9.7. continued

#define BIOS_DATA PAGE 0x0040
#define LPT1 0x0008

#define DATA_PORT (nPort)
#define STATUS_PORT (nPort + 1)
#define CONTROL_PORT (nPort + 2)

#define STATUS_NORESP 0x01
#define STATUS_UNUSED1 0x02
#define STATUS_UNUSED2 0x04
#define STATUS_ERROR 0x08
#define STATUS_SELECTED 0x10
#define STATUS_NOPAPER 0x20
#define STATUS_ACK 0x40
#define STATUS_NOTBUSY 0x80

#define CONTROL_STROBE 0x01
#define CONTROL_AUTOFEED 0x02

#define CONTROL_INIT 0x04
#define CONTROL_SELECT 0x08
#define CONTROL_IRQ7 0x10

#define CONTROL_UNUSED1 0x20
#define CONTROL_UNUSED2 0x40
#define CONTROL_UNUSED3 0x80

/* End printer port definitions. */

int main(// Define main() and the fact that this
int argc, // program uses the passed parameters
char *argv[],
char *envp[]

);

int PrintCharacter(char chChar);
int PrinterStatus(void);

int main(

int argc,

char *argv[],

290

Disk Files and Other 1/0

char *envp[]

)
{
char szNowlsTheTime[] = {
“Now is the time for all good men to come to the aid...\f’};
int nStatus;
int i;
if (PrinterStatus())
{
printf(“There was a printer error!\n”);
exit(4);
T
for (i = 0; 1 < strlen(szNowlsTheTime); i++)
{
if (PrintCharacter(szNowlsTheTime[i]) == 0)
{
printf(“\nCouldn’t print from “%s’\n”,
&szNowlsTheTime[i]);
break;
b
T
return (0);
h
int PrintCharacter(
char chChar)
{

int _far *pPrintPort;
int nPort;

continues

291

Part Il « Managing Data in C

Listing 9.7. continued

int nStatus;

/* The PC’s printer port is at address 0040:0008
* (for LPT1:). If O is stored at that address,
* a printer port is not installed.

*
/

pPrintPort = MAKELP(BIOS_DATA_PAGE, LPT1);
nPort = *pPrintPort;

if (nPort == 0)
{/* No printer is installed! */

printf(“No printer installed... WHY?\n”);
return(0);

¥
/* Write the data byte to the printer’s data lines */
outp(DATA_PORT, chChar);
/* Next, check to see if the printer is busy. */
nStatus = Inp(STATUS_PORT);
if (I(nStatus & STATUS_NOTBUSY))
{/* The printer is busy. You should wait and try again */
printf(*“The printer is busy?\n”);

return(0);
¥

/* Set the strobe line */
outp(CONTROL_PORT, CONTROL_STROBE | CONTROL_INIT | CONTROL_SELECT);

/* Clear the strobe line */
outp(CONTROL_PORT, CONTROL_INIT | CONTROL_SELECT);

int PrinterStatus(Q

292

Disk Files and Other 1/0

{
int
int
int
/*

*

*

*/

_Tar *pPrintPort;
nPort;

nStatus;

The PC’s printer port is at address 0040:0008
(for LPT1:). If O is stored at that address,
a printer port is not installed.

pPrintPort = MAKELP(BIOS_DATA PAGE, LPT1);
nPort = *pPrintPort;

if (nPort == 0)
{/* No printer is installed! */
printf(“No printer installed... WHY?\n”);

return(0);

3

printf(“Printer vector = %lp Printer port %4.4X\n”,
pPrintPort,
nPort);

nStatus = inp(DATA_PORT):

printf(“DATA port’s contents %2.2X (last character that was

printed).\n",

nStatus);
nStatus = inp(STATUS_PORT);

if (I(nStatus & STATUS_NORESP))

{
printf(“The printer did not respond. \n”);

}

else

{

continues

293

Part Il « Managing Data in C

Listing 9.7. continued

printf(“The printer is responding. \n”);

}
if (!(nStatus & STATUS_ERROR))
{
printf(“The printer is signaling an error. \n”);
}
else
{
printf(“The printer is signaling no errors. \n”);
}
if (nStatus & STATUS_SELECTED)
{
printf(“The printer is currently selected. \n”);
¥
else
{
printf(*“The printer is not selected. \n”);
¥
if (nStatus & STATUS_NOPAPER)
{
printf(“The printer is out of paper.\n”);
¥
else
{
printf(“The printer has paper. \n”);
¥
if (nStatus & STATUS_ACK)
{
printf(“The printer ACK line is set.\n”);
¥
else
{
printf(“The printer ACK line is cleared.\n");
¥

294

Disk Files and Other 1/0 9

if (nStatus & STATUS_NOTBUSY)

{
printf(“The printer is not busy.\n");
T
else
{
printf(“The printer is currently busy. \n”);
T
return(l);

The PRNPORT.C program shows how easy it is to print to a printer port
using a high-level language such as C. Admittedly, this program cannot be used in its
current state—the character print routines require more error checking and recovery.
These improvements, however, would not be difficult to implement.

I have written custom printer drivers for the PC in C. Why? In one case, the
printer (a special graphics printer with a high-speed interface) needed special timing
and control signals, even though it used a Centronics type of connector and the same
printer pins as other compatible printers.

A second use of the printer port is one that | think is more interesting than sim-
ply printing. In most PCs, the printer port is a bidirectional 1/O port (it can both
output data and read data) and as such can be used to communicate with all types of
external devices.

Athirduse for custom driversis for 1/O boards that are not intended to be printer
ports but have a similar structure. These boards are used for control and for special
devices. It is not unusual for a special board to be used for graphic tablets (which
might also use a serial port) or most tape drives, all of which need drivers.

You must write the driver in assembler (you can use in-line assembly if your
compiler supports it) for the best control and performance. A C language driver is ad-
equate, however, for initial development and for drivers with noncritical timing
requirements.

295

Part Il « Managing Data in C

296

The PC Communications Ports

The serial communications ports are more complex than the printer ports. First, they
require more initialization because the speed (baud rate) and the format of the char-
acters (number of bits) must be set. To make things easy, | have DOS initialize (in my
AUTOEXEC.BAT file) all the communications ports to a known state.

Following are the addresses used by the PC communications ports. When a
communications port is accessed, the first address used is referred to as the 1/0 base
address. The communications port I/O address starts at 0x03F8 or 0x02F8 (COM1
and COMZ2) in most PCs. All addresses are accessed using input and output functions,
either in C or assembler.

In the following discussion, the COMZ1 base I/O address of 0x3F8 is used. To
access COM2, you must use the COM2 base 1/0 address of 0x2F8. To access a port
other than COM1 or COM2, you must know the port’s base 1/O address. The
addresses for COM1 through COMA4 are stored in the BIOS data page as follows:

coM1 0000:0400
COM2 0000:0402
COM3 0000:0404
COM4 0000:0406

The UART (Universal Asynchronous Receiver/Transmitter) is the part of the
communications port that converts a byte of data to a serial data stream. The UART
in the PC’s communications port has eight separate addresses. The following para-
graphs and Table 9.5 describe each of these addresses.

Table 9.5. The serial board’s 1/0 port usage.

Name in
Name Address Description SENDCOMM.C Bits
Receive 1/0 base Characters received RBR_PORT 0-7 Eight bits of
buffer address may be retrieved received data

+0 from this I/0
address. LCR_PORT
bit 80 must be clear.

Disk Files and Other 1/0

9

Name in

Name Address Description SENDCOMM.C Bits
Divisor 1/0 base Used to set the baud DLL_PORT 0-7 Divisor’s LSB
register address rate, which is deter- (eight bits)
(LSB) +0 mined using a 16-bit

divisor.

LCR_PORT bit

80 must be set.
Transmit 1/O base Characters to be THR_PORT 0-7 Eight bits of
buffer address transmitted are data to be

+0 output to this 1/0 transmitted

address. LCR_PORT

bit 80 must be clear.
Interrupt 1/O base Enables the con- IER_PORT 01 Received data
enable address ditions that cause the available. A
register +1 UART to generate an character has

interrupt to be gener- been received.

ated. When a specified

bit is set and the con-

dition occurs, an inter-

rupt is generated.

02 Transmit
holding register
is empty. The
character that
was being sent
has completed.
A new character
can now be
sent.

04 Receive line status.
The receive line has
changed.

08 MODEM status.
The modem status
line has changed.

10 Not used

continues

297

Part Il « Managing Data in C

Table 9.5. continued

Name in
Name Address Description SENDCOMM.C Bits
20 Not used
40 Not used
80 Not used
Divisor 1/O base Used to set the baud DLM_PORT 0-7 Divisor’s MSB
register address rate, which is deter- (eight bits)
(MSB) +1 mined using a 16-bit
divisor. LCR_PORT
bit 80 must be set.
Interrupt 1/O base Tells the program IIR_PORT 01 If clear, an
identifier ~ address what condition caused interrupt is
register + 2 the interrupt. pending
02 Interrupt ID, bit 0
04 Interrupt ID, bit 1
08 Not used
10 Not used
20 Not used
40 Not used
80 Not used
Line 1/0 base Controls the format LCR_PORT 01 Word length,
control address of the characters be- bit 0
register + 3 ing transmitted, in-
cluding the number
of bits, the number of
stop bits, and the
parity. The divisor
latch (see the divi-
sor register) is also
located at this
address, bit 80.
02 Word length, bit 1
04 Stop bits (clear = 1,
set = 2)
08 Parity enable

298

Disk Files and Other 1/0 9

Name in
Name Address Description SENDCOMM.C Bits

10 Even parity

20 Stick parity

40 Set break

80 Enable divisor
latches

MODEM 1/O base Sets the output control MCR_PORT 01 DTR
control address lines. 02 RTS
register + 4 04 OouT1

08 ouT2

10 Loop back

20 Not used

40 Not used

80 Not used

Line status 1/0 base Status of various LSR_PORT 01 Data has been
register address +5 parameters. received.

02 Overrun error. The
previous character
received was not
read by the
computer and has
been overwritten
by the following
character.

04 Parity error. There
was a parity error
in the character
being received.

08 Framing error. The
start/stop bits could
not be detected
correctly.

10 Break interrupt. A
break has been
detected.

20 Transmit buffer
empty

continues

299

Part Il « Managing Data in C

300

Table 9.5. continued

Name in
Name Address Description SENDCOMM.C Bits
40 Transmit shift
register is empty.
The output shift
register is currently
empty.
80 Not used
MODEM I/O base Status of MODEM MSR_PORT 01 DCTS
status address + 6 signal lines. 02 DDSR
register 04 TERI
08 DDCD
10 CTS
20 DSR
40 RI (ring indicator)
80 DCD

The receive buffer is located at base address + 0. The functionality of base ad-
dress + 0 is controlled by bit 0x80 of LCR_PORT. If this bit is clear (zero), base
address + 0 is used as the receive buffer.

The baud rate divisor register (LSB) is also located at base address + 0. The
functionality of base address + 0 is controlled by bit 0x80 of LCR_PORT. If this
bit is set, base address + 0 is used as the divisor register (LSB).

The transmit buffer is located at base address + 0. The functionality of base
address + 1 is controlled by bit 0x80 of LCR_PORT. If this bit is clear (zero), base
address + 1 is used as the interrupt enable register.

The baud rate divisor register (MSB) is also located at base address + 1. The
functionality of base address + 1 is controlled by bit 0x80 of LCR_PORT. If this bit
is set, base address + 1 is used as the divisor register (MSB).

Theinterrupt enable register is located at base address + 1. Only the first four bits
are used in this register.

The interrupt identifier register is located at base address + 2. It is used to tell the
program what condition caused the interrupt.

Disk Files and Other 1/0 9

The line control register is located at base address + 3. This register controls the
character format and the mapping of the divisor latch (see offset +0 and +1).

The modem control register is located at base address + 4. This register is used
to control the port’s I/O connector control signals. These signals are then used to
control the modem (or whatever else is connected to the port).

The line status register is located at base address + 5. It is used to pass to the
program information regarding the status of the UART and the data being received.

The MODEM status register is located at base address + 6. The program uses this
register to determine the status of the device connected to the port.

Note how the DLL and DLM registers (the speed registers) have the same address
as the RBR and IER registers. This is accomplished with the divisor latch enable
bit (0x80) of the LCR register. If this bit is set, these registers are used for the speed
divisor. If this bit is cleared, these registers serve their other purpose.

A communications program can rely on the DOS MODE command setting the
communications port parameters, or the program can set the parameters itself. Each
of the port’s registers may be read (except transmitted data), modified, and written
back. This process of reading, modifying, and writing a register is all that is required
to initialize the serial port.

Listing 9.8, SENDCOMM.C, sends a single string, followed by a LF/cr
character pair, to COM1.. Before you run SENDCOMM.C, COM1: must be in-
itialized with the DOS MODE command.

Listing 9.8. SENDCOMM.C.

/* SENDCOMM, written 1992 by Peter D. Hipson

* This program outputs to the serial port. You should

* run this program under DOS on a PC. If your computer
* is not a PC-compatible, DO NOT RUN this program. Also,
* the program should be compiled with Microsoft C.

*/

#include <stdio.h> // Make includes first part of file
#include <conio.h> // Console 1/0 functions
#include <string.h> // For string functions

continues

301

Part Il « Managing Data in C

302

Listing 9.8. continued

#include <stdlib.h> // Standard include items
#include <process.h> // For exit(), etc.
#include <time.h> // To seed random numbers

#define MAKELONG(low, high) ((long)(((unsigned short int)(low)) \
| ((Qunsigned long int)((unsigned short int)(high))) << 16)))
#define MAKELP(sel, off) ((void _far*)MAKELONG((offF), (sel)))

/* Comm port definitions */

#define BIOS_DATA_PAGE 0x0040
#define COM1 0x0000

/* Receive a character port (read only) */

#define RBR_PORT (nPort)
/* Send (transmit) a character port (write only) */
#define THR_PORT (nPort)

/* Interrupt enable register */

#define I1ER_PORT (nPort + 1)
#define RECEIVED_DATA_AVAILABLE O0x01
#define TRANSMIT_HOLD_EMPTY 0x02
#define RECIEVER_LINE_STATUS 0x04
#define MODEM_STATUS 0x08

/* Other bits undefined */

/* Interrupt identify register (read only) */

#define 1IR_PORT (nPort + 2)
#define INTERUPT_PENDING_O 0x01
#define INTERUPT_ID_BIT_1 0x02
#define INTERUPT_ID_BIT_2 0x04

/* Other bits undefined */

/* Line control register */

#define LCR_PORT (nPort + 3)

#define WORD_LENGTH_SELECT_1 0x01 /* 00 = 5 bits, 01 = 6 bits
#define WORD_LENGTH_SELECT_2 0x02 /* 10 = 7 bits, 11 = 8 bits

#define NUMBER_STOP_BITS 0x04 /* 0 =1 stop, 1 = 2 stop
#define PARITY_ENABLE 0x08
#define EVEN_PARITY_SELECT 0x10

*/
*/
*/

#define
#define
#define

STICK_PARITY
SET_BREAK
DIVISOR_LATCH_BIT

/* Other bits undefined */

/* Modem control register */

#define
#define
#define
#define
#define
#define

MCR_PORT
DTR

RTS
ouT 1
ouT 2
LOOP

/* Other bits undefined */

/* Line
#define
#define
#define
#define
#define
#define
#define
#define

status register */
LSR_PORT

DATA_READY
OVERRUN_ERROR
PARITY_ERROR
FRAMING_ERROR
BREAK_INTERUPT
TRANS_HOLDING_REGISTER
TRANS_SHIFT_REGISTER

/* Other bits undefined */

/* Modem status register */

#define
#define
#define
#define
#define
#define
#define
#define
#define

MSR_PORT
DCTS
DDSR
TERI
DDCD

CTS

DSR

RI1

DCD

Disk Files and Other 1/0 9

0x20
0x40
0x80 /* For DLL and DLH access */

(nPort + 4)
0x01
0x02
0x04
0x08
0x10

(nPort + 5)
0x01
0x02
0x04
0x08
0x10
0x20
0x40

(nPort + 6)
0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* Divisor latch least significant (sets speed) */

#define
/* Bits

DLL_PORT
0-7%*

(nPort + 0)

continues

303

Part Il « Managing Data in C

Listing 9.8. continued

/* Divisor latch most significant (sets speed) */
#define DLM_PORT (nPort + 1)
/* Bits 8 - 15 */

#define BAUD_50 0x0900
#define BAUD_75 0x0600
#define BAUD_110 0x0417
#define BAUD_134 0x0359
#define BAUD_150 0x0300
#define BAUD_300 0x0180
#define BAUD_600 0x00C0
#define BAUD_1200 0x0060
#define BAUD_1800 0x0040
#define BAUD_2000 0x003A
#define BAUD_2400 0x0030
#define BAUD_3600 0x0020
#define BAUD_4800 0x0018
#define BAUD_7200 0x0010
#define BAUD_9600 0x000C
#define BAUD_14400 0x0008
#define BAUD_19200 0x0006
#define BAUD_38400 0x0003
#define BAUD_56000 0x0002
#define BAUD_112000 0x0001

/* End serial port definitions */

int main(// Define main() and the fact that this
int argc, // program uses the passed parameters
char *argv[],
char *envp[]

);

int SerialCharacter(char chChar);
int SerialStatus(void);
int main(

int argc,

char *argv[],

304

Disk Files and Other 1/0

char *envp[]

)
{
char szNowlsTheTime[] = {
“Now is the time for all good men to come to the aid...\n\r”};
int nStatus;
int i;
ifT (1SerialStatus())
{
printf(“There was a serial error!\n”);
exit(4);
T
for (i = 0; 1 < strlen(szNowlsTheTime); i++)
{
ifT (SerialCharacter(szNowlsTheTime[i]) == 0)
{
printf(“\nCouldn’t send from character “%s’\n”,
&szNowlsTheTime[i]);
break;
b
T
return (0);
h
int SerialCharacter(
char chChar)
{
int _far *pSerialPort;
int nPort;

continues

305

Part Il « Managing Data in C

Listing 9.8. continued

int nStatus;

/* The PC’s serial port is at address 0040:0000
* (for COM1:). If a zero is stored at that address,
* a serial port is not installed.
*/
pSerialPort = MAKELP(BIOS_DATA_PAGE, COM1);
nPort = *pSerialPort;

if (nPort == 0)

{/* No serial port is installed! */
printf(“No serial installed... WHY?\n”);
return(0);

/* Write the data byte to the serial port’s data lines.
* The program must wait until the last character
* has been sent because the simple hardware does not
* have a queue.
*/

nStatus = Inp(LSR_PORT);
while (!(nStatus & TRANS_HOLDING_REGISTER))
{/* Simply get the status again, which wastes time */

nStatus = Inp(LSR_PORT);
¥

outp(THR_PORT, chChar);

return(l);
}
int SerialStatus()
{

306

Disk Files and Other 1/0 9

int _far *pSerialPort;
int nPort;
int nStatus;

/* The PC’s serial port is at address 0040:0000

* (for COM1:). If a zero is stored at that address,
* a serial port is not installed.

*/

pSerialPort = MAKELP(BIOS DATA PAGE, COM1);
nPort = *pSerialPort;

if (nPort == 0)
{/* No serial port is installed! */
printf(“No serial board installed... Why?\n”);

return(0);

3

printf(“Serial vector = %lp Serial port %4.4X\n”,
pSerialPort,
nPort);

nStatus = inp(MCR_PORT);
printf(“MCR_PORT returned %2.2X\n””, nStatus);

if (nStatus & DTR)

{

printf(“DTR is high. \n”);
}
else
{

printf(“DTR is low. \n”);
}
if (nStatus & RTS)
{

printf(“RTS is high. \n”);
}

continues

307

Part Il « Managing Data in C

Listing 9.8. continued

else

{
printf(“RTS is low. \n”);

}

nStatus = Inp(1ER_PORT);

printfF(*“IER_PORT returned %2.2X\n”, nStatus);

nStatus = Inp(11R_PORT);

printfF(“1IR_PORT returned %2.2X\n”, nStatus);

nStatus = Inp(LCR_PORT);

printf(*“LCR_PORT returned %2.2X\n, nStatus);

nStatus = Inp(MCR_PORT);

printfF(“*“MCR_PORT returned %2.2X\n”, nStatus);

nStatus = Inp(LSR_PORT);

printf(*“LSR_PORT returned %2.2X\n”, nStatus);

nStatus = Inp(MSR_PORT);

printfF(““MSR_PORT returned %2.2X\n’, nStatus);

return(l);

SENDCOMM issimple, in that it only displays the status of the registers, then
sends the string. Following is the code that sends the characters:

nStatus = Inp(LSR_PORT);

while (!(nStatus & TRANS_HOLDING_REGISTER))
{/* Simply get the status again, which wastes time */

308

Disk Files and Other 1/0 9

nStatus = inp(LSR_PORT);
3

outp(THR_PORT, chChar);

First, the program gets the port’s status. If the TRANS_HOLDING_REGISTER bit is
clear, the character can be sent. If the bit is set, the program waits for the hardware to
send the current character, at which point the bit is cleared.

After the TRANS_HOLDING_REGISTER IS Clear, the program sends the character
using a call to outp(). The hardware handles the serial transmission of the character
in a serial format.

SENDCOMM.C is a simple character sending program. Receiving a character
is just as easy. Listing 9.9, READCOMM.C, gets a character from the serial port,
sends it back (echoes the character), and displays it on the terminal’s screen.

Listing 9.9. READCOMM.C.

/* READCOMM, written 1992 by Peter D. Hipson

* This program reads characters from the serial port.
* You should run this program under DOS on a PC. If
* your computer is not a PC-compatible, DO NOT RUN

* this program. Also, the program should be compiled
* with Microsoft C.

*/

#include <stdio.h> // Make includes first part of file
#include <conio.h> // Console 1/0 functions

#include <string.h> // For string functions

#include <stdlib.h> // Standard include items

#include <process.h> // For exit(), etc.

#include <time.h> // To seed random numbers

#define MAKELONG(low, high) ((long)(((unsigned short int)(low)) \
| (((unsigned long int)((unsigned short int)(high))) << 16)))
#define MAKELP(sel, off) ((void _far*)MAKELONG((off), (sel)))

/* Comm port definitions */

continues

309

Part Il « Managing Data in C

310

Listing 9.9. continued

#deFine
#deFine

BI0S_DATA_PAGE
com1

0x0040
0x0000

/* Receive a character port (read only) */

#define RBR_PORT (nPort)

/* Send (transmit) a character port (write only) */
#define THR_PORT (nPort)

/* Interrupt enable register */

#define I1ER_PORT (nPort + 1)

#define RECEIVED_DATA_AVAILABLE Ox01

#define TRANSMIT_HOLD_EMPTY 0x02

#define RECIEVER_LINE_STATUS 0x04

#define MODEM_STATUS 0x08

/* Other bits undefined */

/* Interrupt identify register (read only) */

#define
#define
#define
#define

11R_PORT
INTERUPT_PENDING_O
INTERUPT_ID_BIT_1
INTERUPT_ID_BIT_2

/* Other bits undefined */

/* Line
#define
#define
#define
#define
#define
#define
#define
#define
#define

control register */
LCR_PORT
WORD_LENGTH_SELECT_1
WORD_LENGTH_SELECT_2
NUMBER_STOP_BITS
PARITY_ENABLE
EVEN_PARITY_SELECT
STICK_PARITY
SET_BREAK
DIVISOR_LATCH_BIT

/* Other bits undefined */

/* Modem control register */

#define
#define
#define
#define

MCR_PORT
DTR

RTS
ouT 1

(nPort + 2)
0x01

0x02

0x04

(nPort + 3)
0x01 /* 00 =
0x02 /* 10 =
0x04 /* 0 = 1 stop,
0x08

0x10

0x20

0x40

0x80 /*

(nPort + 4)
0x01
0x02
0x04

1

2 stop

For DLL and DLH access */

5 bits, 01 = 6 bits */
7 bits, 11 = 8 bits */

*/

#define OUT_2
#define LOOP
/* Other bits undefined */

/* Line status register */
#define LSR_PORT

#define DATA_READY

#define OVERRUN_ERROR

#define PARITY_ERROR

#define FRAMING_ERROR

#define BREAK_INTERUPT
#define TRANS_HOLDING_REGISTER
#define TRANS_SHIFT_REGISTER
/* Other bits undefined */

/* Modem status register */
#define MSR_PORT

#define DCTS

#define DDSR

#define TERI

#define DDCD

#define CTS

#define DSR

#define RI

#define DCD

Disk Files and Other 1/0 9

0x08
0x10

(nPort + 5)
0x01
0x02
0x04
0x08
0x10
0x20
0x40

(nPort + 6)
0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

/* Divisor latch least significant (sets speed) */

#define DLL_PORT
/* Bits 0 - 7 */

(nPort + 0)

/* Divisor latch most significant (sets speed) */

#define DLM_PORT
/* Bits 8 - 15 */

/* Bits defined as OxXMMLL. MM

#define BAUD_50
#define BAUD_75
#define BAUD_110
#define BAUD_134
#define BAUD_150

(nPort + 1)

is DLM. LL is DLL */

0x0900
0x0600
0x0417
0x0359
0x0300
continues

311

Part Il « Managing Data in C

Listing 9.9. continued

#define BAUD_300
#define BAUD_600
#define BAUD_1200
#define BAUD_1800
#define BAUD_2000
#define BAUD_2400
#define BAUD_3600
#define BAUD_4800
#define BAUD_7200
#define BAUD_9600
#define BAUD_14400
#define BAUD_19200
#define BAUD_38400
#define BAUD_56000
#define BAUD_112000

0x0180
0x00C0
0x0060
0x0040
0x003A
0x0030
0x0020
0x0018
0x0010
0x000C
0x0008
0x0006
0x0003
0x0002
0x0001

/* End serial port definitions */

int main(
int argc,
char *argv[],
char *envp[]

);

int GetSerialCharacter(char
int SerialStatus(void);

int main(
int argc,
char *argv[],
char *envp[]

)
{
char chChar;
int nStatus;
int i;

312

*chChar);

// Define main() and the fact that
// this program uses the

passed parameters

Disk Files and Other 1/0

if (1SerialStatusQ))

{
printf(“There was a serial error!\n”);
exit(4);
T
while(1)
{
if (kbhit())
{/* Discard the keypress and end */
(void)getch(Q);
break;
b
iT (GetSerialCharacter(&chChar))
{/* Print the received character, and get another */
printf(“%c”, chChar);
b
T
return (0);
h
int GetSerialCharacter(
char *chChar)
{
int _far *pSerialPort;
int nPort;
int nStatus;

/* The PC’s serial port is at address 0040:0000
* (for COM1:). If a zero is stored at that address,
* a serial port is not installed.

pSerialPort = MAKELP(BIOS DATA PAGE, COM1);
nPort = *pSerialPort;

continues

313

Part Il « Managing Data in C

Listing 9.9. continued

if (nPort == 0)

{/* No serial is installed! */
printf(“No serial installed.._Why?\n”);
return(0);

}

/* To read a character, the DATA_READY signal must be set
* (see the previous defines). This bit is in LSR_PORT.

* 1T DATA_READY is set, the program reads a character

* and returns TRUE.

*/

nStatus = Inp(LSR_PORT);

if (nStatus & DATA_READY)

{/* A character has been received. */
*chChar = inp(RBR_PORT);

/* Echo the data byte back to the sender. The program
* must wait until the last character has been sent
* because the simple hardware does not have a queue.
*/

nStatus = Inp(LSR_PORT);
while (I(nStatus & TRANS_HOLDING_REGISTER))

{/* Simply get the status again, which wastes time */
nStatus = inp(LSR_PORT);

}

outp(THR_PORT, *chChar);

return(l);
¥

return(0);

int SerialStatus()

314

Disk Files and Other 1/0

{

int
int

int
int

/*
*

*

*/

_far *pSerialPort;
nPort;

nTempStatus;
nStatus;

The PC’s serial port is at address 0040:0000
(for COM1:). If a zero is stored at that address,
a serial port is not installed.

pSerialPort = MAKELP(BIOS DATA PAGE, COM1);
nPort = *pSerialPort;

if (nPort == 0)
{/* No serial is installed! */
printf(“No serial board installed.. _Why?\n”);

return(0);

T

printf(“Serial vector = %Ip Serial port %4.4X\n”,
pSerialPort,
nPort);

nStatus = inp(MCR_PORT);

printf(“MCR_PORT returned %2.2X\n””, nStatus);

if (nStatus & DTR)

{

printf(“DTR is high. \n”);
}
else
{

printf(“DTR is low. \n”);
}

continues

315

Part Il « Managing Data in C

Listing 9.9. continued

if (nStatus & RTS)

{

printfF(“RTS is high. \n”);
}
else
{

printf(“RTS is low. \n”);
}

nStatus = Inp(1ER_PORT);

printfF(*“IER_PORT returned %2.2X\n”, nStatus);
nStatus = Inp(11R_PORT);

printfF(“1IR_PORT returned %2.2X\n”, nStatus);
nStatus = Inp(LCR_PORT);

printf(*“LCR_PORT returned %2.2X\n, nStatus);
nStatus = Inp(MCR_PORT);

printfF(““MCR_PORT returned %2.2X\n”’, nStatus);
nStatus = Inp(LSR_PORT);

printf(*“LSR_PORT returned %2.2X\n”, nStatus);
nStatus = Inp(MSR_PORT);

printfF(““MSR_PORT returned %2.2X\n’, nStatus);
nTempStatus = inp(LCR_PORT);

outp(LCR_PORT, nTempStatus | DIVISOR_LATCH_BIT);
nStatus = inp(DLM_PORT);

printf(“DLM_PORT returned %2.2X\n’, nStatus);

316

Disk Files and Other 1/0 9

nStatus = inp(DLL_PORT);

printf(“DLL_PORT returned %2.2X\n””, nStatus);

outp(LCR_PORT, nTempStatus);

return(l);

READCOMM.C uses a simple loop to read the characters. The part of the
program that does the reading is shown in bold in the following code fragment.
The other parts of the code fragment are the echo code. Echoing received characters
is optional and is usually controlled by the user.

nStatus = inp(LSR_PORT);
if (nStatus & DATA_READY)

{/* A character has been received. */
*chChar = inp(RBR_PORT);

/* Echo the data byte to the sender. The program

* must wait until the last character has been sent
* because the simple hardware does not have a queue.
*/

nStatus = inp(LSR_PORT);

while (!(nStatus & TRANS_HOLDING_REGISTER))
{/* Simply get the status again, which wastes time */
nStatus = Inp(LSR_PORT);

}

outp(THR_PORT, *chChar);

The READCOMM program also shows how to switch between the speed con-
trolling ports, DLL and DLM. Thisisaccomplished by setting the b1visor_LATCH_BIT
bit in the Lcr_PoRrT register, as follows:

nTempStatus = inp(LCR_PORT);

outp(LCR_PORT, nTempStatus | DIVISOR_LATCH BIT):

317

Part Il « Managing Data in C

318

nStatus = inp(DLM_PORT);
printf(“DLM_PORT returned %2.2X\n”, nStatus);
nStatus = inp(DLL_PORT);
printf(“DLL_PORT returned %2.2X\n”, nStatus);

outp(LCR_PORT, nTempStatus);

First, the program gets the current contents of the Lcr_porT and saves the

contents in nTempstatus. Then the program writes to LCR_PORT With nTempStatus
logically ORd with the bivisor_LATCH_BIT. This switches the meaning of RBR_PoRT to
DLL_PORT and the meaning of THR_PORT tO DLM_PORT.

Besure you reset Lcr_PorT after you have finished setting (or checking) the baud

rate. You set the baud rate using the identifiers prefaced with saub_ in either program.

summary

In this chapter, you learned about input and output using C, and how to use both file
1/0 and port 1/0.

Files used for both program input and program output are vital to any
program’s operation.

Text-based files can be read, printed, edited, and otherwise used without
conversion by people. Text files usually contain only printable, newline, and
form-feed characters.

Binary files contain any bytes that a program must place in the file. Generally,
a binary file is intended for use by the program or by other programs and
cannot be edited, printed, or read.

Using temporary work files, a programmer can extend a program’s data storage
space to almost the amount of free space on the disk. Work files can be text or
binary, depending on the program’s requirements.

Stream files are supported by many functions, can be text or binary, and are
usually buffered and formatted.

Disk Files and Other 1/0 9

Every C program has five opened files: stdin, stdout, stdaux, stdprn, and
stderr. These files are opened as stream files.

Low-level files are accessed with a minimum number of C functions and are
usually unformatted and unbuffered.

C compilers provide console functions to access the screen and keyboard.

In PC compatible systems, your programs can access ports using C. This access
allows direct interaction with the device, without DOS or the BIOS.

319

Data Management:
Sorts, Lists, and Indexes

Data management is what it’s all about. Almost all computer programs manage data—
even asimple computer game must manage and access data to update its list of current
high scores.

Sorting, merging, and purging. Indexed files. Tree access methods. Everyone
knows what sorting is, but the other terms may be unfamiliar. Merging is the process
of combining two sorted files and creating a resultant, sorted file. Purging uses a sorted
file to create a new file in which duplicate lines from the original file are eliminated.
An indexed file (or in-memory data object) consists of two files: the main data file and
asecond, smaller index file. A tree access method offers fast searching and sorted access
to data. (This chapter discusses B-trees.)

321

Part Il « Managing Data in C

322

I'll use the creation of this book’s index as an example of sorting, merging, and
purging. For each chapter, I created a file in which each word is on a separate line (I
simply changed all spaces to newline characters). | then sorted the file, then purged it,
which eliminates all duplicate words (and makes the file size more manageable).

Then, |1 merged each chapter’s file of unique words into one large file for the
entire book. | then purged that file—even though each chapter’s file contains only
unique words, other chapters might contain some of these words too. After this final
purge, | had a file of unique words in the book. After a quick session with an editor,
| deleted any words that were not index material, leaving only the important words.

I used programs that | created to sort, merge, and purge as part of this chapter.
The DOS SORT utility is limited to files under 64K, but the sort program in this
chapter is limited only by the available memory. The merge and purge utilities are not
part of DOS. I hope they prove to be valuable additions to your stable of programming
tools.

Sorting

Sorting afile can be both easy and difficult. It’s easy because C hasasort function called
gsort() that is part of the library. This function’s performance is acceptable. The
difficult partis reading in the filesand other programming overhead. You must provide
a compare function that gsort() can use.

When you write a program in which you do not know the amount of data that
the user will input, you must rely on dynamic memory allocation. Thisisnot a problem
with the gsort() function: you pass a single array of pointers to the data being sorted
and, when gsort() returns, use the (now sorted) array of pointers to access the data in
sorted order. When you use this technique with character strings, it reduces overhead
and increases the program’s performance because only the pointers are moved in
memory, not the strings.

Listing 10.1, SORTFILE.C, sorts the input from stdin and writes the sorted
results to stdout. If you use 1/O redirection, the program could sort a file and place the
results into a new file. Unlike the DOS SORT command, SORTFILE always sorts
from column one. (Adding the capability to sort from any other column is an exercise
I'll leave to you.)

Data Management: Sorts, Lists, and Indexes 1 O

Listing 10.1. SORTFILE.C.

/* SORTFILE, written 1992 by Peter D. Hipson

* This program sorts from stdin and sends the results
* to stdout. If your PC has memory models, you must
* compile with the LARGE model.

*/

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#include <process.h> // For exit(), etc.

#include <malloc.h> // For malloc(), calloc(), realloc(), free()
#include <search.h> // For gsort()...

int main(void); // Define main() and the fact that this program
// does not use any passed parameters

int compare(void *argl, void *arg2);

#define MAX_CHARACTERS 32767 /* Total maximum characters */

#define MAX_LINES 15500 /* Total maximum lines */
#define BIGEST_LINE 512 /* Largest line readable from keyboard */
#define MAX_BLOCKS 128 /* Allow 128 * MAX_CHARACTERS of memory */

/* Although these variables are defined as external, they could
* be defined inside the function or allocated dynamically,

* depending on the program”’s needs and the available memory.
*/

char szInput[BIGEST_LINE];
char *szBuffer;

char *pBlocks[MAX_BLOCKS] ;
char *pBuffer [MAX_LINES];

int nCurrentBlock = 0;
int nBufferPointer = {MAX_CHARACTERS};
int nLine = 0;

int main()

{

continues

323

Part Il « Managing Data in C

324

Listing 10.1. continued

int 1

/* Use fprintf(stderr...) to force prompts and error messages
* to be displayed on the user’s screen regardless of whether
* the output has been redirected.

*/
fprintf(stderr,
a\p”
“Peter’s SORTFILE: Sorts large files at the speed of light!\n”
a\p”
syntax: \n”
sortfile <inputfile >outputfile \n”
a\p”
where: \n”

the program’s 1/0 is redirected\n\n”);
fprintf(stderr, “Reading input...\n”’);
while (gets(szlnput))
{
iT ((nBufferPointer + strlen(szlnput)) > MAX_CHARACTERS)
{ 7/ The line won’t fit! Allocate new memory:

szBuffer = (char *)malloc(MAX_CHARACTERS);

fprintf(stderr, Allocating buffer (32K).\n’);
nBufferPointer = 0;

pBlocks[nCurrentBlock] = szBuffer;
++nCurrentBlock;
if (szBuffer == NULL)

{

fprintf(stderr, “System sort memory exceeded, can’t \
sort.\n”);

Data Management: Sorts, Lists, and Indexes

//

//
//
//

exit(16);

}

pBuffer[nLine] = &szBuffer[nBufferPointer];

strcpy(pBuffer[nLine], szlnput);

The + 1 skips over the terminating NULL in each string.
nBufferPointer += strlen(szlnput) + 1;

if (++nLine >= MAX_LINES)
{ 7/ Too many lines! End the program.
fprintf(stderr, “Too many lines—cannot sort.\n”);

exit(16);

Now sort the input lines

fprintf(stderr, “Sorting, %d lines, in %d buffers.\n”,
nLine,
nCurrentBlock);

gsort((void *)pBuffer,
(size_t)nLine,
sizeof(char *),
compare) ;

fprintf(stderr, “Writing output...\n);
for (i = 0; 1 < nLine; i++)
{
printf(“%s\n”, pBuffer[i]);
3

fprintf(stderr, ‘“\n”);

continues

10—

325

Part Il « Managing Data in C

326

Listing 10.1. continued

for (i = 0; i < nCurrentBlock; i++)

{
free(pBlocks[i]);

}

return (0);

int compare(
char **argl,
char **arg2)

return strcmp(*(char**)argl, *(char**)arg2);

Note the declaration of the compare() function:
int compare(char **argl, char **arg2);

Thefunction has two parameters. It receives its parameters as pointers to pointers
to strings. Got that? You pass an array of pointers to strings, then gsort() passes
pointers to elements in the array to compare. It compares the strings these two pointers
address, and returns a value based on this comparison. The compare function returns
zero if the two parameters are equal, less than zero if the first parameter is less than the
second, and greater than zero if the first parameter is greater than the second.

Next are some defined identifiers:

#define MAX_CHARACTERS 32767 /* Total maximum characters */

#define MAX_LINES 16383 /* Total maximum lines */
#define BIGEST_LINE 512 /* Largest line readable from keyboard */
#define MAX_BLOCKS 128 /* Allow 128 * MAX_CHARACTERS of memory */

Memory is allocated in blocks of 32K using the max_cHARACTERs identifier. A
maximum of 16K lines can be sorted (with a 4-byte pointer, about 16K pointers can
fit in 64K). The largest line allowed is 512 bytes, and up to 128 calls can be made to
the memory allocation functions (which allocates more memory than you'll find on
aPC).

Data Management: Sorts, Lists, and Indexes 1 O

The external variables declared (they could be declared as internal static
variables) define an input buffer, szsuffer[], a generic character pointer, an array of
pointers to each block of memory (so that the blocks can be freed later), and an array
of character pointers (=pBuffer[]) that point to each line that will be sorted:

char szInput[BIGEST_LINE];
char *szBuffer;

char *pBlocks[MAX_BLOCKS] ;
char *pBuffer [MAX_LINES];

int nCurrentBlock = 0;
int nBufferPointer = {MAX_CHARACTERS};
int nLine = 0;

The program receives its input from the keyboard and writes to the terminal.
Therefore, if the program is used as a pipe or with 1/O redirection, you must be sure
that error messages do not get redirected. In Chapter 9, “Disk Files and Other 1/0,”
you learned that the standard stream stderr does not get redirected, but stdout does.
Therefore, if the program’s output is written to stdout and messages to the user are
written to stderr, you can be sure that messages to the user are not mixed with the
program’s output.

Toaccess stderr, you use the fprintf(stderr, . ..); statement, asshown in the
following code fragment:

fprintf(stderr,
“\p
“Peter’s SORTFILE: Sorts large files at the speed of light!\n”
“\p”
syntax: \n”
sortfile <inputfile >outputfile \n”
“\p”
where: \n”
the program”s 1/0 is redirected\n\n™);

fprintf(stderr, “Reading input...\n");

After providing the opening messages to the user, the program reads the input
from stdin. The C function gets() does fine in this context. After reading a line, the
program checks whether there is enough room in the current buffer for the string. If
there is not enough room, the program allocates a new buffer and displays a message
that the buffer has been allocated:

327

Part Il « Managing Data in C

328

while (gets(szlnput))

{
ifT ((nBufferPointer + strlen(szlnput)) > MAX_CHARACTERS)

{ 7/ The line won’t fit! Allocate new memory:

szBuffer = (char *)mal loc(MAX_CHARACTERS);
fprintf(stderr, “ Allocating buffer (32K).\n”);
nBufferPointer = 0;

pBlocks[nCurrentBlock] = szBuffer;
++nCurrentBlock;

ifT (szBuffer == NULL)
{

fprintf(stderr, “System sort memory exceeded--cannot \
sort.\n");
exit(16);

}

Now that there is enough room in the buffer for the string, the program sets the
pointer array (pBuffer[]) to the string’s eventual location, then copies the string to the
buffer. The intermediate buffer is used to help prevent buffer overflow (otherwise the
programwould have to stop filling a block of memory at least 512 bytes before the end
of the block). The call to strcpy () does not take too much overhead. The programalso
updates the pointer into the block of memory, in preparation for the next string.

pBuffer[nLine] = &szBuffer[nBufferPointer];

strcpy(pBuffer[nLine], szlnput);
// The + 1 skips over the terminating NULL in each string.
nBufferPointer += strlen(szlnput) + 1;

A bit of error checking comes next, to be sure that the program does not read in
too many lines:

if (++nLine >= MAX_LINES)

{ 7/ Too many lines! End the program.
fprintf(stderr, “Too many lines--cannot sort.\n”);
exit(16);

After the input file had been read, the program calls gsort() to sort the file, using
the compare (described previously):

Data Management: Sorts, Lists, and Indexes 1 O

gsort((void *)pBuffer,
(size_t)nLine,
sizeof(char *),
compare) ;

When gsort() returns, the program uses printf() to write the final sorted
output:

fprintf(stderr, “Writing output...\n”);

for (i = 0; 1 < nLine; i++)
{

printf(“%s\n”, pBuffer[i]);
3

Because the printf() output goes to stdout, the output could be redirected to afile.
Finally, the blocks of memory are freed and the program ends:

for (i = 0; 1 < nCurrentBlock; i++)

{
free(pBlocks[i]);

}

The compare function, which is called by gsort() in the main program, is
simple. The program calls stremp (). If you want the program to ignore case, you could
call stricmp() instead. You could also create your own function to compare the strings,
but C’s functions work well enough.

int compare(
char **argil,
char **arg2)

return strcmp(*argl, *arg2);

The SORTFILE program can sort files up to 500K, depending on the DOS
version). You could use SORTFILE also with I/O redirection or as a filter with DOS’s
pipe operator, |.

Merging

No matter how much memory you have available, eventually you will want to sort a
file that is too large. You could sort the file from the disk. Another method is to break

329

Part Il « Managing Data in C

330

the file into smaller parts that will fit in memory, sort these parts, then combine the
sorted parts into a final sorted file that contains the sum of the parts. The process of
breaking a file into smaller, more manageable parts, called a sort/merge, is a common

technique on mainframes and minicomputers.

To keep the programs in this chapter as simple as possible (but wait until you see
the BTREE program later in the chapter), | created separate merge and sort programs.
Listing 10.2, MERGFILE.C, does not use stdin for its input because you must have

two files to perform a merge.

Listing 10.2. MERGFILE.C.

/* MERGFILE, written 1992 by Peter D. Hipson
* This program merges two sorted files into one large
* sorted file. If your PC has memory models, you must

* compile with the LARGE model.

*/

#include <stdlib.h>
#include <stdio.h>

#include <string.h>
#include <process.h>
#include <malloc.h>
#include <search.h>

//
//
//
//
//
//

For standard functions

Make includes first part of file
For string functions

For exit(), etc.

For malloc(), calloc(), realloc(), freeQ)
For gsort()..-.

int main(int argc, char *argv[], char *envp[l);

int compare(char **argl, char **arg2);

#define BIGEST_LINE
#define NEED_RECORD
#define END_OF FILE
#define ALL_OK

512 /*
1 /*
2 /*
3 /*

The largest readable line

A record is needed from the file
This file is finished

No record needed; not EOF

/* Although these variables are defined as external,
* they could be defined inside the function or
* allocated dynamically, depending on the program’s
* needs and available memory.

*/

*/
*/
*/
*/

Data Management: Sorts, Lists, and Indexes 1 O

char szInputl[BIGEST_LINE];
char szInput2[BIGEST_LINE];

int main(
int argc,
char *argv[],
char *envp[l

)

{

FILE *InFilel;
FILE *InFile2;
FILE *OutFile;

char szProgram[30];

/* Strings for _splitpath() (which parses a filename) */
char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME] ;

char szExt[MAX_EXT];

int i;

int J;

int nCompare = 0;

int nFileOneStatus = NEED_RECORD;
int nFileTwoStatus = NEED_RECORD;

/* Use fprintf(stderr...) to force prompts and error messages
* to be displayed on the user’s screen regardless of whether
* the output has been redirected.

_splitpath(argv[O0],
szDrive,
szDir,
szFname,
SzExt);

continues

331

Part Il « Managing Data in C

Listing 10.2. continued

strncpy(szProgram, szFname, sizeof(szProgram) - 1);

if (argc <= 3)
{
fprintf(stderr,
“\p”
“%s -\n”
“\p”
“Peter’s MERGEFILE: Merges two sorted files into one!\n”
“\p”
syntax: \n”
%s inputfilel inputfile2 outputfile \n”

“\n”,
szProgram,
szProgram);

return(16);
}

fprintf(stderr, “Reading input...\n”’);

InFilel = fopen(argv[1l], “rt”);
InFile2 = fopen(argv[2], “rt”);
OutFile = fopen(argv[3], “wt”);

while (
nFileOneStatus != END_OF_FILE ||
nFileTwoStatus '= END_OF_FILE)

switch(nFileOneStatus)
{
case NEED _RECORD: /* Read a record */
if (fgets(szlnputl, sizeof(szlnputl), InFilel) == NULL)
{
nFileOneStatus = END_OF_FILE;

}

else

{
nFileOneStatus = ALL_OK;

332

Data Management: Sorts, Lists, and Indexes

}

break;

case ALL_OK: /* Nothing needed */
break;

case END_OF_FILE: /* Can’t do anything */

10—

break;
b
switch(nFileTwoStatus)
{
case NEED_RECORD: /* Read a record */
if (fgets(szlnput2, sizeof(szlnput2), InFile2) == NULL)
{
nFileTwoStatus = END_OF FILE;
¥
else
{
nFileTwoStatus = ALL_OK;
¥
break;
case ALL_OK: /* Nothing needed */
break;
case END_OF_FILE: /* Can’t do anything */
break;
b
if (nFileOneStatus == END_OF_FILE)
{
if (nFileTwoStatus != END_OF_FILE)
{
fputs(szlnput2, OutFile);
nFileTwoStatus = NEED_RECORD;
3
b
else
{

ifT (nFileTwoStatus == END_OF_FILE)
{

continues

333

Part Il « Managing Data in C

Listing 10.2. continued

if (nFileOneStatus '= END_OF_ FILE)

{
fputs(szlnputl, OutFile);
nFileOneStatus = NEED_RECORD;

}

}
else
{

nCompare = strcmp(szlnputl, szlnput2);

it (nCompare < 0)

{/* File one is written */
fputs(szlnputl, OutFile);
nFileOneStatus = NEED_RECORD;

}

else

{
it (nCompare > 0)

{/* File two is written */
fputs(szlnput2, OutFile);
nFileTwoStatus = NEED_RECORD;

}

else

{/* They are the same; write both */
fputs(szlnputl, OutFile);
fputs(szlnput2, OutFile);
nFileOneStatus = NEED_RECORD;
nFileTwoStatus = NEED_RECORD;

}

}

}

}

fclose(InFilel);
fclose(InFile2);
fclose(OutFile);

return (0);

334

Data Management: Sorts, Lists, and Indexes 1 O

Merging files is a simple process. Because this program does not use advanced
techniques, | will dispense with the line-by-line analysis of the program’s code and refer
instead to the program’s flowchart, shown in Figure 10.1.

Initialize procram -
Sotproaren

Read record from Read record fram
file # 1 fle #2

L |

hi

&
<

N
iite fle #2

v

itite fle #1

Niite file #1

N
N

Y e fie #2
M (Bath files the same)
irite fle #1

ke fle #2

Figure 10.1. The flowchart for MERGFILE.C.

First, the program opens the two input files and the output file. If errors do not
occur in this stage, the program reads a record from both input files. After the records

335

Part Il « Managing Data in C

336

are read, the program does its comparisons (taking into consideration possible end-of-
file conditions), and writes the correct record. When the program reaches the end of
both input files, it closesall the filesand ends. It isasimple program that works quickly.

When writing a merge function, you must consider that one file may be (and
usually is) shorter than the other. The merge program must be sure that the longer file’s
records are written to the output.

Purging

One often needed (and hard to find) program is a purge program, which is used to
delete duplicates (sometimes called de-dup) from a file. You might want to delete
duplicates, for example, from a mailing list or a word list.

The PURGFILE.C program in Listing 10.3 performs two functions. Part of the
program works like MERGFILE (Listing 10.2). Unlike MERGEFILE, however,
PURGFILE does not write duplicates to the output file.

Listing 10.3. PURGFILE.C.

/* PURGFILE, written 1992 by Peter D. Hipson
* This program merges and purges in one step. If your
* PC has memory models, you must compile with the
* LARGE model.
*/

#include <stdlib_.h> // For standard functions

#include <stdio.h> // Make includes first part of file
#include <string.h> // For string functions

#include <process.h> // For exit(), etc

#include <malloc.h> // For malloc(), calloc(), realloc(), free()
#include <search.h> // For gsort()...

int main(int argc, char *argv[], char *envp[]);

int compare(char **argl, char **arg2);

#define BIGEST_LINE 512 /* The largest readable line */
#define NEED_RECORD 1 /* A record is needed from the file */

Data Management: Sorts, Lists, and Indexes 1 O

#define END_OF_FILE 2 /* This file is finished */
#define ALL_OK 3 /* No record needed, not EOF */

/* Although these variables are defined as external, they could
* be defined inside the function or allocated dynamically,

* depending on the program’s needs and available memory.

*/

char szInput[BIGEST LINE];
char szInputl[BIGEST_LINE];
char szInput2[BIGEST_LINE];

int main(
int argc,
char *argv[],
char *envp[l

)

{

FILE *InFilel;
FILE *InFile2;
FILE *OutFile;

char szProgram[30];

/* Strings for _splitpath(), which parses a file name */
char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME] ;

char szExt[MAX_EXT];

int i;

int J;

int nCompare = 0;

int nFileOneStatus = NEED_RECORD;
int nFileTwoStatus = NEED_RECORD;

/* Use fprintf(stderr...) to force prompts and error messages to be
* displayed on the user’s screen regardless of whether the output

continues

337

Part Il « Managing Data in C

Listing 10.3. continued

* has been redirected.
*/

_splitpath(argv[0],
szDrive,
szDir,
szFname,
szExt);

strncpy(szProgram, szFname, sizeof(szProgram) - 1);

it (argc <= 3)

{
fprintf(stderr,
“\p”
“%s -\n”
“\p”
“Peter’s PURGEFILE: Merges two sorted files, \n”
“ purging all duplicate lines!\n”
“\p”
“ inputfilel and inputfile2 can be the same file,\n”
if you want to de-dup only one file.\n”
“\p”
“ syntax: \n”
“\p”
%s inputfilel inputfile2 outputfile \n”
“\n”,
szProgram,
szProgram);
return(16);
}

InFilel = fopen(argv[1l], “rt”);
InFile2 = fopen(argv[2], “rt”);
OutFile = fopen(argv[3], “wt”);

while (
nFileOneStatus != END_OF_FILE ||
nFileTwoStatus '= END_OF_FILE)

338

Data Management: Sorts, Lists, and Indexes 1 O

while(
nFileOneStatus == NEED_RECORD ||
nFileTwoStatus == NEED_RECORD)

switch(nFileOneStatus)

{
case NEED_RECORD: /* Read a record */

if (fgets(szlnput, sizeof(szlnput), InFilel) == NULL)
{
nFileOneStatus = END_OF_FILE;
by
else
{
if (strcmp(szlnput, szlnputl) != 0)
{
strcpy(szlnputl, szlnput);
nFileOneStatus = ALL_OK;

3
break;

case ALL_OK: /* Nothing needed */
break;

case END_OF_FILE: /* Can’t do anything */
break;

}

switch(nFileTwoStatus)

{
case NEED_RECORD: /* Read a record */

if (fgets(szlnput, sizeof(szlnput), InFile2) == NULL)
{

nFileTwoStatus = END_OF FILE;
¥
else
{

if (strcmp(szlnput, szlnput2) != 0)

{

continues

339

Part Il « Managing Data in C

340

Listing 10.3. continued

strcpy(szlnput2, szlnput);
nFileTwoStatus = ALL_OK;

}
}

break;

case ALL_OK: /* Nothing needed */
break;

case END_OF FILE: /* Can’t do anything */

break;
}
}
iT (nFileOneStatus == END_OF_FILE)
{
if (nFileTwoStatus !'= END_OF FILE)
{
fputs(szlnput2, OutFile);
nFileTwoStatus = NEED_RECORD;
}
}
else
{
if (nFileTwoStatus == END_OF_FILE)
{
if (nFileOneStatus '= END_OF FILE)
{
fputs(szlnputl, OutFile);
nFileOneStatus = NEED_RECORD;
}
}
else
{

nCompare = strcmp(szlnputl, szlnput2);

it (nCompare < 0)

{/* File one is written */
fputs(szlnputl, OutFile);
nFileOneStatus = NEED_RECORD;

Data Management: Sorts, Lists, and Indexes 1 O

¥
else
{

it (nCompare > 0)

{/* File two is written */
fputs(szlnput2, OutFile);
nFileTwoStatus = NEED_RECORD;

¥

else

{/* They are the same; write one and discard the

other. */
fputs(szlnputl, OutFile);
nFileOneStatus = NEED_RECORD;
nFileTwoStatus = NEED_RECORD;
¥
¥

3

fclose(InFilel);
fclose(InFile2);
fclose(OutFile);

return (0);

Purging duplicate records from a single file is not difficult. First the program
reads a line. Then the program discards the line if it is the same as the previous line,
or saves the line if it is different from the previous line. PURGFILE performs a merge
and a purge at the same time, however, making the program a bit more complex.

Touse PURGFILE to purgeasinglefile, you simply specify the same name twice
or specify nuL: as the second filename. (A second filename must be specified to provide
the output filename.)

The flowchart in Figure 10.2 shows how the PURGFILE program works. The
program does not use advanced techniques, so this section looks only at the flowchart,
rather than each line of code.

341

Part Il « Managing Data in C

342

Read record from
file #1 file #2

Same as
previous
record?

\s

&
@

N M
Nivite fle #2.
Wirite fle #1.

Ntite fle #1
M
Y Wit Tz #2.
N (Both files the same)
ivite file #1

Discard fle #2's record

Figure 10.2. The flowchart for PURGFILE.C.

Data Management: Sorts, Lists, and Indexes 1 O

Asyou can see in Figure 10.2, the program begins by opening the two input files
and the output file. If there are no errors in the file-open stage, the program reads a
record from each file (assuming that the program should read a record and that the
program has not reached the end of the file).

After the records are read, the program makes its comparisons (taking into
consideration possible end-of-file conditions), then writes the correct record. When
the program has the same record from both files, it discards the second file’s record,
sets the flag indicating that it needs a new record from the second file, and saves the
first file’s record.

When the program reaches the end of both input files, it closes all the files and
ends. It is a simple program that works quickly.

When you write a purge function, remember that a record might be repeated
many times. When your program finds a duplicate and therefore reads a new record,
it still must test to be sure that it has read a unique record. The program might be
reading a third duplicate, for example, that must also be discarded.

Sorting, Merging, and Purging All in One

Usually, asingle utility offers sort, merge, and purge functions. This type of utility will
have one or two input filenames, sort the files, purge the duplicates, and provideasingle
output file.

A variation of a sort program is a sort that works on a file of any size. The process
to create the ultimate sort follows:

1. Read the file, stopping at the end of the file or when there is no more free
memory.

2. Sort this part of the file. Write the result of the sort to a temporary work file.

3. If the program has reached the end of the file and there are no more records to
read in, the program renames step 2’s work file to the output file’s name and
ends the program.

4. Again read the file, stopping when there is no more free memory or when the
end of the file is reached.

343

Part Il « Managing Data in C

344

5. Sort this part of the file. Write the result of the sort to a second temporary
work file.

6. Merge the file created in step 2 with the file from step 5. Delete both of the
files created by steps 2 and 5, and rename this new file using the name from
step 2.

7. Gotostep 3.

Linked Lists

A linked list is a group of data objects in which each object has a pointer to the next
object in the group. Everything that you do with linked lists can be performed in
memory or as part of a disk file.

Sometimes, sorting the data externally to the program (using the DOS SORT
program) is not enough. When a user is entering data, it is never acceptable to stop the
program, exit the program, run a sort, create a sorted file, then start the program again.

We have become accustomed to having the computer do the work for us, and
rightly so. A program should not require the user to do anything that the program can
perform without the user’s intervention.

There are alternatives when data must be sorted. For example, when the user
enters an item, the program can pause and use the gsort() function to insert the new
item into the current database. If the database is large, however, the pause could be so
long that you could go get lunch! Even a simple insert at the beginning of a list can be
time consuming—every record in the database must be moved. The size and number
of these records can be the critical factor.

Many programs must present the user’s data in a sorted format. Because speed
is critical, sorting each time the data is displayed usually is unacceptable—the data
must be stored in sorted order.

Many programs work to keep as much of the user’s current data as possible in
memory. Searching a large quantity of data in memory should be not only quick, but
instantaneous! If the data is not well organized, the search must be linear (record after
record). On average, the program must look at half the records to find a matching
record, assuming that the records are stored randomly.

Data Management: Sorts, Lists, and Indexes 1 O

In general, a linear search of a block of data or sorting after a data item has been
added or edited is too slow and therefore inadequate.

The program’s data must be organized better than the order in which it was
entered. One way to organize is to use a linked list. In a linked list, you start with a
pointer that points to, or identifies, the first member of the list. Each member (except
the last) has a pointer that points to the next member in the list. The last member’s
pointer isa NuLL pointer to indicate the end of the list. Often there is a separate pointer
to the last member in the list—this enables you to add to the end of the list. A single
linked list is shown in Figure 10.3.

Fointer 10 the
e

frat membar First member

Fainter o the
second member

Second mermber
Fainter to the

third member

Third member
Pairter o the
nth member
:; nth member

Foirter to
last member ——m™@@ @ > NULL

Fairter o the
last member

Optional poirter fo
the last member

Figure 10.3. A single linked list.

When you add a new member to a linked list, the program simply follows the list
until it finds the member that will precede the new member and inserts the new
member at that point. When the program must display sorted data to the user, it uses
the linked list pointers to find the necessary data. Because the links are already sorted,
the program’s performance is fast.

Using Dynamic Memory

Often you must rely on dynamic memory allocation (memory allocated using one of
the memory allocation functions) because you cannot tell how much user data will be
provided by the user. When allocating memory, the program must track each block of

Part Il « Managing Data in C

346

memory, usually with a linked list. In this situation, it may (or may not) be that the
links are simply arranged in the order that the memory blocks are allocated. When a
memory block is freed, it is removed from the linked list.

The example program in this section allocates memory blocks for each record
that the user enters. These blocks are pointed to by links.

Disk-Based Lists

When you create a linked list as a disk-based file, the list's members must be the same
size. If your program has different sized members of asingle linked list, the best solution
is to use a single union to create a single record of the correct size. The size of the union
is determined by its largest member, so the members will be the same size.

Double Linked Lists

In a double linked list, each member has a pointer not only to its successor in the list,
butalsotoits predecessor. Figure 10.4 shows how a double linked list is created. Notice
that the pointer to the end of the list is mandatory. This pointer is necessary so that the
end of the list can be accessed.

Fairter to the:
first member First member

|

—>Pointer to NULL

Fairter 1o the
second member

Painter back to
the first member

Secand member

Fointer to the

third metmber Fainter back to

the second member

Third member

Fainter to the
nth member

Fainter hack to
the third member

nth member

Fointer 1o the
last member

Fainter back to
the i th member

LNLNL LN
Aod N AR SN

last member Fointer o the
last member

Pointer 1o NULL §é——

|

Figure 10.4. A double linked list.

Data Management: Sorts, Lists, and Indexes 1 O

Figure 10.5 shows the structure’s list pointers. (Figure 10.5 and Figure 10.4 are
the basis for Figures 10.6 through 10.9.)

Previous
customer
l2 stomer

Plways poirts to the first member of (Or NULL itthere is
the list, unless the list has no members ha previous member)

FirstCustomer | o [Previous
variabl cu

->Prav Customer

Customer stuchure's pointers to ather list members

-» NextCustomer

Meut or | LEstCustomer
customer

—
gustomer Anays points i the kst memaer of
{0 NULL ffhere is the list, Linless the list has no members

no nesd mermber)

Figure 10.5. The CUSTOMER structure’s linked list pointers.

You can perform a trick with a double linked list. When you add a member to
a double linked list, the program can examine the key fields of the first and last
members to determine whether the list should be traveled from the beginning or the
end. This increases the program’s performance. (It doesn’t make sense to start at the
first member if the new member will be added near the end of the list.)

Listing 10.4, the LINKLIST.C program, demonstrates the use of adouble linked
list with dynamically allocated members. The program is simple, without much
optimization. The program always has sorted access to the items in the list.

Listing 10.4. LINKLIST.C.

/* LINKLIST, written 1992 by Peter D. Hipson
* A double linked list program. This program has
* better error checking than the CDB program.
* To improve the program, make the ZIP code field a
* character field. A character field is better for ZIP
* codes because many non-US ZIP codes also
* contain letters.

continues

347

Part Il « Managing Data in C

Listing 10.4. continued

#include <string.h>
#include <ctype.h>
#include <stdio.h>
#include <process.h>
#include <stdlib.h>

#define TRUE 1
#define FALSE (! TRUE)

#define INCREMENT_AMOUNT 1 /* Add one record at a time */

#define CUSTOMER_RECORD 1
#define SUPPLIER_RECORD 2

/* Define the structure for the customer database. */
struct _CUSTNAME;

typedef struct _CUSTNAME {
int nRecordType; // 1 == Customer record.
struct _CUSTNAME *NextCustomer; // Link to next, or NULL if none
struct _CUSTNAME *PrevCustomer; // Link to previous, or NULL if none
char szName[61]; // 60 chars for name; 1 for null at end
char szAddri[61]; // 60 chars for address; 1 for null at end
char szAddr2[61]; // 60 chars for address; 1 for null at end
char szCity[26]; // 25 chars for city; 1 for null at end

char szState[3]; // 2-character state abbrev. plus null
int 1Zip; // Print as %5.51d for leading O
int nRecordNumber; // Which record number?

double dSalesTotal; // Amount the customer has purchased
} CUSTNAME;

typedef CUSTNAME near *NPCUSTNAME;
typedef CUSTNAME *PCUSTNAME;

void GiveHelp(void);

void main()

348

Data Management: Sorts, Lists, and Indexes 1 O

{
FILE *DataFile;

PCUSTNAME FirstCustomer = NULL;
PCUSTNAME LastCustomer = NULL;
PCUSTNAME Customer = NULL;
PCUSTNAME TempCustomer = NULL;

char szFileName[257] ;

char szBuffer[257];

int nNotDone = TRUE;

int nRecord = 0;

int nDebug = FALSE;

int nNeedSaving = FALSE;

double dSales = 0.0; /* Forces loading of floating-point support */

printf(“Please enter customer save file name: “);

gets(szFileName);

DataFile = fopen(szFileName, “wt™);

if (DataFile == NULL)

{/* Test for file open. If the file can’t be opened, exit with
message. */

printf(“ERROR: File “%s” couldn’t be opened.\n”, szFileName);

exit(4);
b

fclose(DataFile);

printf(“Demo of a linked list concepts\n”

«\n”
“ Commands are:\n”

“ A - Add a customer/supplier record.\n”
“ D - Display current list.\n”

“ X - Exit from program.\n”

continues

349

Part Il « Managing Data in C

350

Listing 10.4. continued

Z - Toggle debug mode.\n”
? - Display the command list.”
H - Display the command list.”
S - Save the list.\n”

a\p”

):

nRecord = 0;

while (nNotDone)

{

printf(“Enter command (A, D+, D-, S)?7);
gets(szBuffer);
switch(szBuffer[0])
{

case “H”: /* Give some help */

case “h”:

case “?7:

GiveHelp(Q;

break;

case “A’: /* Add a record */
case “a’:

Customer = (PCUSTNAME)calloc(sizeof(CUSTNAME),
INCREMENT_AMOUNT) ;

printf(“Enter name %d: “, ++nRecord);
gets(szBuffer);

szBuffer[sizeof(Customer->szName) - 1] = “\07;
strcpy(Customer->szName, szBuffer);

if (strlen(Customer->szName) > 0)

{/* Insert this record in the list, sorted by name.

nNeedSaving = TRUE;

*/

Data Management: Sorts, Lists, and Indexes

ifT (FirstCustomer == NULL)

{
printf(“It is first record \n”);
Customer->NextCustomer = NULL;
Customer->PrevCustomer = NULL;
FirstCustomer = Customer;
LastCustomer = Customer;
TempCustomer = NULL;

¥

else

{
TempCustomer = FirstCustomer;

¥

while (TempCustomer)

{
ifT (nDebug)
{

printf(“TESTING FOR ADD: “%s” “%s’\n”,
Customer->szName,
TempCustomer->szName) ;

3

if (strcmp(Customer->szName,
TempCustomer->szName) < 0 ||
TempCustomer == LastCustomer)

if (strcmp(Customer->szName,
TempCustomer->szName) < 0 &&

TempCustomer == FirstCustomer)
{
iT (nDebug)
{
printf(“Assigning as first\n”);
3

10—

Customer->NextCustomer = FirstCustomer;

FirstCustomer = Customer;
Customer->PrevCustomer = NULL;

continues

351

Part Il « Managing Data in C

352

Listing 10.4. continued

TempCustomer = Customer->NextCustomer;
TempCustomer->PrevCustomer = Customer;

}

else
{
if (strcmp(Customer->szName,
TempCustomer->szName) > 0 &&
TempCustomer == LastCustomer)

it (nDebug)
{

printf(“Assigning as last\n™);
}

Customer->PrevCustomer =
LastCustomer;

LastCustomer = Customer;
Customer->NextCustomer = NULL;
TempCustomer = Customer-
>PrevCustomer;
TempCustomer->NextCustomer =
Customer;

else

it (nDebug)
{
printf(“Assigning inside \
list\n”);
}

Customer->PrevCustomer =
TempCustomer->PrevCustomer;

Customer->NextCustomer =
TempCustomer ;
TempCustomer->PrevCustomer
Customer;

TempCustomer = Customer-

>PrevCustomer;
TempCustomer->NextCustomer
Customer;

Data Management: Sorts, Lists, and Indexes 1 O

¥

¥

TempCustomer = NULL;
3
else
{

TempCustomer = TempCustomer->NextCustomer;
3

}

Customer->nRecordNumber = nRecord;

it (InDebug)

{
do
{
printf(“Enter 1 for customer, 2 for supplier \
s
gets(szBuffer);
sscanf(szBuffer, “%d”, &Customer
->nRecordType);
3
while (Customer->nRecordType != CUSTOMER_RECORD
&&

Customer->nRecordType != SUPPLIER_RECORD);

printf(“Enter address line 1: “);
gets(szBuffer);

szBuffer[sizeof(Customer->szAddrl) - 1] = “\07;
strcpy(Customer->szAddrl, szBuffer);
printf(“Enter address line 2: “);
gets(szBuffer);
szBuffer[sizeof(Customer->szAddr2) - 1] = “\07;

strcpy(Customer->szAddr2, szBuffer);

printf(“Enter City: “);

gets(szBuffer);
szBuffer[sizeof(Customer->szCity) - 1] = “\0~;
strcpy(Customer->szCity, szBuffer);

continues

353

Part Il « Managing Data in C

354

Listing 10.4. continued

}

else

{

}

break;

printf(“Enter state postal abbreviation: “);
gets(szBuffer);
szBuffer[sizeof(Customer->szState) - 1] = “\0~;
strcpy(Customer->szState, szBuffer);

printf(“Enter ZIP code: “);
gets(szBuffer);
sscanf(szBuffer, “%ld”, &Customer->1Zip);

printf(“Enter total sales: “);
gets(szBuffer);
sscanf(szBuffer, “%f”’, &Customer->dSalesTotal);

printf(*\aSorry, name must not be blank!\n™);

case “Z’: /* Debug mode toggle */

case “z7:

nDebug = !nDebug;

break;

case “D7:
case “d’:

/* Display all records */

TempCustomer = FirstCustomer;

printf(“Display customers\n™);

while (TempCustomer)

{

it (nDebug)

printf(
“Name “%10s” Me %Ip Next %lp Prev %lIp\n”,
TempCustomer->szName,
TempCustomer,

Data Management: Sorts, Lists, and Indexes 1 O

TempCustomer->NextCustomer,
TempCustomer->PrevCustomer) ;

¥
else
{
printf(
“Name “%10s” City “%10s’ State “%2s” “
“ZIP “%5.51d”\n”,
TempCustomer->szName,
TempCustomer->szCity,
TempCustomer->szState,
TempCustomer->1Zip);
¥
TempCustomer = TempCustomer->NextCustomer;
¥
break;

case “X’: /* Exit; prompt for save if needed */
case “X’:

nNotDone = FALSE;
szBuffer[0] = “\0~;

while (nNeedSaving &&
szBuffer[0] == “\07)
{
printf(‘“\nSave the data? (y|n)”);

gets(szBuffer);

if (szBuffer[0] == “n” ||
szBuffer[0] == “N”)
{
nNeedSaving = FALSE;
by
else
{
if (szBuffer[0] != “y’ &&
szBuffer[0] I= “Y?)
{

continues

355

Part Il « Managing Data in C

356

Listing 10.4. continued

/*

printf(*“\nWrong answer, “
“please respond with “y” or “n’”);

szBuffer[0] = “\0”;

}

ifT (InNeedSaving)
{/* Do not need to save, so just exit */
break;

}
Else fall through to save routines */

case “S’: /* Save all records */
case “s’:

printf(“Saving customers\n);

DataFile = fopen(szFileName, “wt™);

it (DataFile == NULL)
{/* Test for file re-open; if file can’t be opened, exit
with message */
printf(“ERROR: File “%s” couldn’t be opened.-\n”,
szFileName);

exit(4);
}

TempCustomer = FirstCustomer;

while (TempCustomer)
{
it (nDebug)
{
fprintf(DataFile,
“Name “%10s” Me %Ip Next %lp Prev %lIp\n”,
TempCustomer->szName,

Data Management: Sorts, Lists, and Indexes 1 O

TempCustomer,
TempCustomer->NextCustomer,
TempCustomer->PrevCustomer) ;

by

else

{

fprintf(DataFile,

“Name “%10s” City “%10s’ State “%2s” “
“ZIP “%5.51d”\n”,
TempCustomer->szName,
TempCustomer->szCity,
TempCustomer->szState,
TempCustomer->1Zip);

by

TempCustomer = TempCustomer->NextCustomer;

b
nNeedSaving = FALSE;

fclose(DataFile);
break;

}

void GiveHelp(O

{

printf(
«\n”
“This program shows how a double linked list is created and\n”
“used. It enables you to add records, display the list of\n”
“records (which are always sorted by name), and save the\n”
“list of records to the disk file.\n”
«\n”
“LINKLIST supports the following commands:\n");

printf
«\n”

continues

357

Part Il « Managing Data in C

Listing 10.4. continued

A - Add a customer/supplier record.\n”
Adds a record. Each added record is placed\n”
in the list in the correct order. Added\n”
records are sorted by name.\n”’);

printf(
a\p”
“ D - Display current list.\n”
Prints the current list of records in sorted\n”
order. This list contains name and address\n”
information or, in the debug mode, name and\n”
pointer information.\n);
printf(
a\p”
“ X - Exit from program.\n”
Ends the program. If records have been added\n”
and not saved, prompts for save. All saves\n”
are made to the file specified when the\n”
program was started.\n);
printf(
a\p”
“ Z - Toggle debug mode.\n”
Changes the information displayed for the\n”
user. When on, debug mode shows where the newly\n”
entered name is being placed in the list, and \
the\n”
list pointers are displayed when a display command \
is\n”
entered.\n”);
printf(
a\p”
“ - Display the command list.\n”
- Display the command list.\n”
Displays this help information.\n");
printf(
a\p”

358

Data Management: Sorts, Lists, and Indexes 1 O

“ S - Save the list.\n”

“ Saves (to the specified save file) the current \
list\n”

“ of records in sorted order. This list contains \
name\n”’

“ and address information or, in the debug mode,\n”
“ name and pointer information.\n”
“\n");

printf(
“Additional feature: This program includes a\n”
“prompt to save when the exit command is given.\n”
“This prompt is given only if the records have\n”
“not been saved since the last added record.\n");

printf(
“Additional feature: This program has a debug mode so that\n”
“the user can see how the program works. The debug mode \
enables\n”
“the user to print the linked list and its pointers.\n”);

This program was developed from the CDB.C program, which was presented in
Chapter 8, “Dynamic Memory Allocation.” In this section, you look at the
program, and the code that manages the linked list. First, in the following code
fragment, is a nonspecific structure definition (yes, this is a definition, not a
declaration) that creates the _cusTnamE structure name:

struct _CUSTNAME;

This allows _cusTnaMe to be used in the declaration of the structure as a set of
pointers, as the third and fourth lines in the following code show:

typedef struct _CUSTNAME {
int nRecordType; // 1 == Customer record.
struct _CUSTNAME *NextCustomer; // Link to next, or NULL if none
struct _CUSTNAME *PrevCustomer; // Link to previous, or NULL if none
char szName[61]; // 60 chars for name; 1 for null at end
char szAddri[61]; // 60 chars for address; 1 for null at end

359

Part Il « Managing Data in C

360

char szAddr2[61]; // 60 chars for address; 1 for null at end
char szCity[26]; // 25 chars for city; 1 for null at end

char szState[3]; // 2-character state abbrev. plus null
int 1Zip; // Print as %5.51d for leading O
int nRecordNumber; // Which record number?

double dSalesTotal; // Amount the customer has purchased
} CUSTNAME;

Thissection of the cusTnamE structure declares members that point to the next member
or the preceding member in the linked list.

The following code shows how the pointers to the first and last members in the
linked list are defined:

PCUSTNAME FirstCustomer = NULL;
PCUSTNAME LastCustomer = NULL;

These lines could have been coded as

struct _CUSTNAME *FirstCustomer;
struct _CUSTNAME *LastCustomer;

I suggest that you use the pointer names defined (if you write your structure prototype
as | do) when you create the typedef structure.

Next, a few pointers are created for the program to use when a member is created
or inserted into the list:

PCUSTNAME Customer = NULL;
PCUSTNAME TempCustomer = NULL;

The next significant part of the program is the section for adding a record, which
is called when the user enters the A command. First, the program allocates a block of
memory to hold the cusTname structure using calloc), Which initializes this memory
tozero. (Remember, mal 1oc() does not initialize memory.) After the memory hasbeen
allocated, the program prompts for the name to be added:

case “A’: /* Add a record */

case “a’:

Customer = (PCUSTNAME)calloc(sizeof(CUSTNAME),
INCREMENT_AMOUNT) ;

printf(“Enter name %d: “, ++nRecord);
gets(szBuffer);

Data Management: Sorts, Lists, and Indexes 1 O

szBuffer[sizeof(Customer->szName) - 1] = “\07;
strcpy(Customer->szName, szBuffer);

ifT (strlen(Customer->szName) > 0)

If the user has entered a name (and not just pressed Return), this member must
be added to the linked list. This program inserts members into the list in sorted order.
Your program could insert members based on another criterion, for example, ZIP code
or customer number.

Nothing prevents you from having two or more sets of links. You might have the
list linked based on customer name, ZIP code, and customer number. Each additional
key, however, slows the program’s performance when a record is inserted and requires
an additional two pointers for the customer structure (the preceding pointer and the
next pointer). When you create a linked list with more than one set of links, simply
treat each set of links as a separate linked list.

Whenarecordisinserted intoalinked list, there are four possible scenarios. One,
the list might have nothing in it, and this is the initial member. Thus, both
FirstCustomer and Lastcustomer must be initialized to this member, as follows:

{/* Insert this record in the list, sorted by name. */
nNeedSaving = TRUE;

ifT (FirstCustomer == NULL)

{
printf(“It is first record \n”);
Customer->NextCustomer = NULL;
Customer->PrevCustomer = NULL;
FirstCustomer = Customer;
LastCustomer = Customer;
TempCustomer = NULL;

}

else

{
TempCustomer = FirstCustomer;

}

while (TempCustomer)

{

it (nDebug)
{

361

Part Il « Managing Data in C

362

printf(“TESTING FOR ADD: “%s” “%s’\n”,
Customer->szName,
TempCustomer->szName) ;

}

If thisisnot the list’sinitial member, the program must go down the list searching
for the correct insertion point. The record could be inserted in three places:

At the beginning of the list, as the new first member.
¢ In the middle of the list.
* At the end of the list, as the last member.
Here is the code for inserting a member at the beginning of the list:

if (strcmp(Customer->szName,
TempCustomer->szName) < 0 ||
TempCustomer == LastCustomer)

if (strcmp(Customer->szName,
TempCustomer->szName) < 0 &&

TempCustomer == FirstCustomer)
{
if (nDebug)
{
printf(“Assigning as Ffirst\n”);
3

Customer->NextCustomer = FirstCustomer;
FirstCustomer = Customer;
Customer->PrevCustomer = NULL;
TempCustomer = Customer->NextCustomer;
TempCustomer->PrevCustomer = Customer;

When the member will be the first member in the list, the program updates the
FirstCustomer variable and the old first member. The Fi rstcustomer variable and the
old first member’s previous member pointer (->Prevcustomer) point to this new
member. The new member’s previous member pointer (->Prevcustomer) points to
NULL, and the new member’s next member pointer (->Nextcustomer) points to the old
first member (which has become the second member in the list).

Data Management: Sorts, Lists, and Indexes 1 O

In Figure 10.6, the bold lines show which pointers must be changed when a
record is inserted in the beginning of the list. Compare this figure with Figure 10.4.

FPointer to the | I L y
first member First member | — = FPointer o NULL

Fointer to the
secand member

Poirter back o
the first member

Second member
The bold lines show the changes

Pairter o the matle to insert a member at
Pairter back o the beginning of the list
the secand metnber

third member

Third member

:?rl]nﬁre:nn;re Poirter back to
the third member

nih member

Fainter to the Poirter back o
last member the nth member

last member Foirter 1o the
Painter to MULL &— last member

Figure 10.6. Inserting a new member at the beginning of a linked list.

When the member will be the last member in the list, the Lastcustomer variable
and the old last member must be updated:

}

else

{

if (strcmp(Customer->szName,
TempCustomer->szName) > 0 &&
TempCustomer == LastCustomer)

{

The Lastcustomer variable and the old last member’s next member pointer
(->Nextcustomer) Will now point to the new member. The new member’s next
member pointer (->Nextcustomer) Will point to nuLL, and the new member’s previous
member pointer (->Prevcustomer) Will point to the old last member (which has
become the next-to-last member in the list).

The bold lines in Figure 10.7 show which pointers must be changed when a
record is inserted at the end of the list. Compare this figure with Figure 10.4.

363

Part Il « Managing Data in C

Pointer 1o the
first member

First member

——> Painter t NULL

Pairter 1o the
second member

Fainter back i
the first member

Secand member

Fointer to the
third member

Fainter back to

Third member

Fainter to the
nth member

Fainter back to
the third member

nth member

Pairter 1o the
last member

Fointer back to
the nth member

Pairter 10 NULL

last member

J
d
J

the second member

The bold lines show changes
tade 1o insert a member at
the end of the list

New last member]

N2 Puirter 1o the

¢ last member

|

Figure 10.7. Inserting a new member at the end of a linked list.

C
C
g
$
L

The third insertion point is the middle of the list. Following is the code for
inserting a member in the middle of the linked list:

if (nDebug)
{
printf(“Assigning as last\n™);

}

Customer->PrevCustomer = LastCustomer;
LastCustomer = Customer;
Customer->NextCustomer = NULL;

TempCustomer = Customer->PrevCustomer;
TempCustomer->NextCustomer = Customer;
b
else
{
if (nDebug)
{
printf(“Assigning inside list\n”);
3

The program must update what will be the previous customer’s next member
pointer (->NextCustomer) to point to the new member. The new member’s prior
member pointer (->Prevcustomer) Will point to this previous customer member as

364

Data Management: Sorts, Lists, and Indexes

10—

well. The program must also update what will be the next customer’s prior member
pointer (->Prevcustomer) to point to the new member. The new member’s next
member pointer (->Nextcustomer) Will point to this next customer member as well.

See Figure 10.8, which shows what is happening when a member is inserted into
the middle of the list. The bold lines indicate which pointers must be changed when
a record is inserted in the middle of the list. Compare this figure with Figure 10.4.

Fointer o the:
first member First member

[——>Painter to NULL

Fointer to the
second member

Second member

Pointer back to
the first member

Fainter back to
the second metnber

FPainter to the:

third member

INetw member

(ol
Third member

Pairter to the
nth member

nih member

Pairter back to
the third tetber

Fainter o the
last member

Pointer back to
the nih member

LN DNL D

last member
Painter 0 MULL §&——

Fainter to the:
last member

The hold lines show the changes

made o insert a member in
the micdle of the list

Figure 10.8. Inserting a new member in the middle of a linked list.

The user must provide the program with other information, such as the address,
city, and state. The program can get this information after the record has been inserted
into the list. (However, you could change the program so that the information is

obtained before the record insertion.)

Customer->PrevCustomer =

TempCustomer->PrevCustomer;

Customer->NextCustomer = TempCustomer;
TempCustomer->PrevCustomer = Customer;
TempCustomer = Customer->PrevCustomer;
TempCustomer->NextCustomer = Customer;

The code to display records in the list in sorted order is simple because the

program maintains sorted links.

365

Part Il « Managing Data in C

TempCustomer = FirstCustomer;

printf(“Display customers\n”);

while (TempCustomer)

{
it (nDebug)
{
printf(

“Name “%10s” Me %Ip Next %lp Prev %lIp\n”,
TempCustomer->szName,
TempCustomer,
TempCustomer->NextCustomer,
TempCustomer->PrevCustomer);

b
else
{
printf(
“Name “%10s” City “%10s’ State “%2s” “
“ZIP “%5.5d”\n”,
TempCustomer->szName,
TempCustomer->szCity,
TempCustomer->szState,
TempCustomer->nZip);
b
TempCustomer = TempCustomer->NextCustomer;
¥
break;

First, the program gets a pointer to the first member of the list and saves the
pointer in Firstcustomer. When the first member of the linked list is obtained, it is
displayed. The first member (and each following member, except the last one) has a
pointer to the next member. The final member in the list hasa pointer to NULL, which
ends the white(loop. Just before the end of the white() loop, the pointer to the next
customer record is assigned to Tempcustomer. This allows the loop to display all the
records.

Theloop’s output depends on the program’s debug mode. In debug mode (used
when the program is developed), the pointers are printed; otherwise, the names and
addresses are printed.

366

Data Management: Sorts, Lists, and Indexes 1 O

With a linked list, it is easy to retrieve records in sorted order. Using multiple
links, a program can retrieve records based on different criteria. A double linked list
enables you to access the list in either forward order or backward order.

Linked lists do create a problem, however. The only way to access a specific
member in the list is with a linear search. Because the list’s members may be located
randomly in memory, the only access you usually have to the list’s membersis to follow
the chain of links. Therefore, finding a member in the middle of the list is not more
efficient than finding a specific member in an unsorted list. Your program will know
when the key field is greater than the member being tested, without searching the entire
list. But you typically will be looking at approximately n/2 members (where n is the
number of members in the list) to retrieve a specific member.

Indexing

Using an index to access data in a file is one way of gaining fast access to a large file of
large data objects. Rarely can all of a user’s data fit in memory at one time, so you must
use a file as temporary or permanent storage.

With an index, the program’s data is separated into two objects: the data and the
index. The data is usually not arranged in a specific order; new records are added to the
end of the block or the file. The index (there may be more than one index) is always
sorted. It contains the minimum necessary to allow the program to access the data,
typically a key value that the index is sorted on and a pointer to the corresponding data.

Figure 10.9 shows an indexed data file system that consists of a data file and two
index files used to access the data. The records in this example are simple; many
applications have thousands of bytes per record.

Each record in the data file is 183 bytes long. Each record contains a name, a
company name, and an address that consists of the street, city, state, and ZIP code. The
two index files are an index for the name field and an index for ZIP codes. Note that
you cannot predict the order of records that do not have unique ZIP codes. In this
example, either record with the ZIP code of 03468 could have been first.

The main factors for choosing an indexed data access system follow:
The main data file does not need to be sorted.
There can be more than one index, resulting in fast access to a given record.

Indexes can be created “on the fly,” as the need arises.

367

Part Il « Managing Data in C

368

The ZIP code index in Figure 10.9 has only 13 bytes per record. These short
records can be sorted more quickly than the 183-byte records that make up the entire

file.

The INDEX.C program in Listing 10.5 creates an indexed structure. This
program writes records to a data file and retains an index array in memory. The array

is then used to access the records.

Field name
Field length—|

Name inde: ata file ip index
Name [Rec| Rec] Nare [Company[streedciryfse] zip Zip [Rec|
50 |4 50 50 45 25 |z| 9 9 |a

Applen| 3 1 [Jones,|IBH 10 Atl Boca|FL[33599 03468 | 3

Daviso & Z [Smith,|3ams 9 East| Jami|LA[43567 03468 | 6

Fish, | & 3 |FppleJunk & |Upper | Fece|NH[D3466 | 06065 5

Jones,| 1 4 |Fish, |Wood & (51 — Tew ‘NY'IIDDD 11000 | 4

Molan,| 5 5 |Nolan,|dohn's [P.G. B Athe|T|06065 33959 | 1

Sawyer| 7 € |DavisqEODC/As|10 Eas| New [NH[03488 43567 2

Smith,| 2 7 |SawyedFun Unl|1 Up § New |MO|5443 65443 | 7

Yang, | 8 |——{ 8 |ang, |Clones |95 Wes| San |CA[94543 94543 | 0

Figure 10.9. An indexed data file system.

Listing 10.5.

INDEX.C.

/* INDEX, written 1992 by Peter D. Hipson
* This program shows indexed access to a file. It
* has better error checking than the CDB program in

* Chap
*/

#include
#include
#include
#include
#include
#include

#define
#define

#define
#define

#define
#define

ter 8.

<search.h>
<string.h>
<ctype.h>
<stdio.h>
<process._h>
<stdlib.h>

TRUE
FALSE

INCREMENT_AMOUNT
INDEX_SI1ZE

CUSTOMER_RECORD
SUPPLIER_RECORD

1
('TRUE)

1 /* Add one record at a time */
400 /* Maximum number of records */

Data Management: Sorts, Lists, and Indexes 1 O

/* Define the structure for the customer database. */
struct _CUSTNAME;

typedef struct _CUSTNAME {
int nRecordType; // 1 == Customer record
struct _CUSTNAME *NextCustomer; // Link to next, or NULL if none
struct _CUSTNAME *PrevCustomer; // Link to previous, or NULL if none
char szName[61]; // 60 chars for name; 1 for null at end
// In some cases, you would not need to
// duplicate this field in both the index and
// the record.
char szAddr1[61]; // 60 chars for address; 1 for null at end
char szAddr2[61]; // 60 chars for address; 1 for null at end
char szCity[26]; // 25 chars for city; 1 for null at end

char szState[3]; // 2-char state abbreviation plus null
long 1Zip; // Use integer. Print as %5.5d for leading O
int nRecordNumber; // Which record number?

double dSalesTotal; // Amount the customer has purchased
} CUSTNAME;

typedef CUSTNAME far *FPCUSTNAME;
typedef CUSTNAME near *NPCUSTNAME;
typedef CUSTNAME *PCUSTNAME ;

typedef struct _INDEXREC {
char szName[61]; // 60 chars for name; 1 for null at end
long Customer; // Pointer to customer record in file
} CUSTINDEX;

typedef CUSTINDEX far *FPCUSTINDEX;
typedef CUSTINDEX near *NPCUSTINDEX;
typedef CUSTINDEX *PCUSTINDEX;

void GiveHelp(void);

int compare(const void *, const void *);

continues

369

Part Il « Managing Data in C

Listing 10.5. continued

void main()

{

FILE *DataFile;
FILE *IndexFile;

PCUSTNAME FirstCustomer = NULL;
PCUSTNAME LastCustomer = NULL;
PCUSTNAME Customer = NULL;
PCUSTNAME TempCustomer = NULL;

PCUSTINDEX Custlndex = NULL;
PCUSTINDEX pTempCustindex = NULL;
CUSTINDEX TempCustlndex;

char szIndexFile[257];

char szDataFile[257];

char szBuffer[257];

/* Strings for _splitpath(), which parses a file name */

char szDrive[_MAX_DRIVE];

char szDir[_MAX_DIR];

char szFname[_MAX_FNAME] ;

char szExt[MAX_EXT];

int i;

int nDesiredRecord;

int nNotDone = TRUE;

int nRecord = 0;

int nDebug = FALSE;

int nNeedSaving = FALSE;

long IFilePosition;

double dSales = 0.0; /* Forces the loading of floating-point support
*/

370

Data Management: Sorts, Lists, and Indexes 1 O

Custindex = (PCUSTINDEX)calloc(sizeof(CUSTINDEX), INDEX_SIZE);
if (Custindex == NULL)

{

fprintf(stderr, “Couldn’t allocate necessary index memory!\n™);
exit(16);
T

memset(Custindex, 0, sizeof(CUSTINDEX));
Customer = (PCUSTNAME)calloc(sizeof(CUSTNAME), INCREMENT_AMOUNT);

if (Customer == NULL)

{
fprintf(stderr, “Couldn’t allocate necessary record memory!\n”);
exit(16);
T
printf
“Please enter customer save file name-\n"
“Extensions of .DAT and .IND will be used: “);
gets(szBuffer);

_splitpath(szBuffer,
szDrive,
szDir,
szFname,
SzExt);

strcpy(szindexFile, szDrive);
strcat(szIndexFile, szDir);
strcat(szIndexFile, szFname);
strcat(szlndexFile, “.IND”);

strcpy(szDataFile, szDrive);
strcat(szDataFile, szDir);

strcat(szDataFile, szFname);
strcat(szDataFile, “_.DAT™);

continues

371

Part Il « Managing Data in C

Listing 10.5. continued

DataFile = fopen(szDataFile, “wb”);

iT (DataFile == NULL)
{/* Test for file open. ITf file can’t be opened, exit with message.
*/
printf(“ERROR: Data file “%s” couldn’t be opened.-\n”,
szDataFile);

exit(4);
}

fclose(DataFile);
IndexFile = fopen(szlndexFile, “wb”);
it (IndexFile == NULL)
{/* Test for file open. ITf file can’t be opened, exit with message.
*/
printf(“ERROR: Index file “%s” couldn’t be opened.\n”,

szIndexFile);

exit(4);
}

fclose(IndexFile);

printf(“Demo of an indexed file/array.\n”

a\p”
“ Commands are:\n”
A - Add a customer/supplier record.\n”
D - Display current list (from file).\n”
X - Exit from program.\n”
Z - Toggle debug mode.\n”
? - Display the command list.\n”
H - Display the command list.\n”
a\p”
):
nRecord = -1;

372

Data Management: Sorts, Lists, and Indexes

//

while (nNotDone)

{

printf(“Enter command?’’);

gets(szBuffer);

switch(szBuffer[0])

{

case “H’: /* Give some help */
case “h’:
case “?7:

GiveHelp(Q;

break;

case “A’: /* Add a record */
case “a’:

memset(Customer, 0, sizeof(CUSTNAME));

printf(“Enter name %d: ““, ++nRecord);

gets(szBuffer);

szBuffer[sizeof(Customer->szName) - 1] = “\07;
strcpy(Customer->szName, szBuffer);

iT (strlen(Customer->szName) > 0)

10—

{/* Insert this record in the list, sorted by name. */

nNeedSaving = TRUE;

Add to file and index:

Customer->nRecordNumber

it (InDebug)
{
do

{

printf(“Enter 1 for customer, 2 for supplier \

“)s

continues

373

Part Il « Managing Data in C

Listing 10.5. continued

gets(szBuffer);
sscanf(szBuffer, “%d”, &Customer-
>nRecordType);
}
while (Customer->nRecordType != CUSTOMER_RECORD
&&

Customer->nRecordType != SUPPLIER_RECORD);

printf(“Enter address line 1: “);
gets(szBuffer);

szBuffer[sizeof(Customer->szAddrl) - 1] = “\0~;
strcpy(Customer->szAddrl, szBuffer);
printf(“Enter address line 2: “);
gets(szBuffer);
szBuffer[sizeof(Customer->szAddr2) - 1] = “\0~;

strcpy(Customer->szAddr2, szBuffer);

printf(“Enter City: “);

gets(szBuffer);
szBuffer[sizeof(Customer->szCity) - 1] = “\07;
strcpy(Customer->szCity, szBuffer);

printf(“Enter state postal abbreviation: “);
gets(szBuffer);
szBuffer[sizeof(Customer->szState) - 1] = “\0~;
strcpy(Customer->szState, szBuffer);

printf(“Enter ZIP code: “);
gets(szBuffer);
sscanf(szBuffer, “%d”, &Customer->nZip);

printf(“Enter total sales: “);

gets(szBuffer);
sscanf(szBuffer, “%f”’, &Customer->dSalesTotal);

}

DataFile = fopen(szDataFile, “ab™);

ifT (DataFile == NULL)
{

374

Data Management: Sorts, Lists, and Indexes 1 O

printf(
“ERROR: Data file “%s” couldn’t be
“opened for update.\n”,
szDataFile);

exit(4);
b

fseek(DataFile, 0, SEEK_END);

CustiIndex[nRecord].Customer = ftell(DataFile);
strcpy(Custindex[nRecord] .szName, Customer->szName);

printf(“Index %d “%s” is at “%ld’\n”,
nRecord,
Custindex[nRecord].szName,
CustiIndex[nRecord] .Customer);

fwrite(Customer, sizeof(CUSTNAME), 1, DataFile);

fclose(DataFile);
¥

else

{

printf(*\aSorry, name must not be blank!\n™);

}

break;

case “Z’: /* Debug mode toggle */
case “z’:

nDebug = !nDebug;

break;

case “D’: /* Display a record */
case “d’:

printf(“Display customer (total %d).\n, nRecord + 1);

gsort(Custlindex,
nRecord + 1,
sizeof(CUSTINDEX),
compare) ;

continues

375

Part Il « Managing Data in C

376

Listing 10.5. continued

for (i = 0; nDebug && i <= nRecord; i++)

{/* In debug mode, display the sorted index list.
printf(“Record %2d szName “%s’\n”’,
i,
Custindex[i].szName);

}

memset(Customer, 0, sizeof(CUSTNAME));
memset(&TempCustindex, 0, sizeof(CUSTINDEX));

printf(“Enter name™);
gets(TempCustlndex.szName);

printf(“Searching with a linear search\n”);
nDesiredRecord = -1;

for (i = 0; i <= nRecord; i++)
{/* Linear search; could be bsearch() */
it (stricmp(TempCustlindex.szName,
Custindex[i].szName) == 0)
{
nDesiredRecord = i;
break;

}

if (nDesiredRecord >= 0)

{
DataFile = fopen(szDataFile, “rb”);

ifT (DataFile == NULL)
{
printf(
“ERROR: Data file “%s” couldn’t be \
opened.\n”’,
szDataFile);

*/

Data Management: Sorts, Lists, and Indexes 1 O

exit(4);
b

fseek(DataFile,
Custindex[nDesiredRecord] -Customer, SEEK_SET);

fread(Customer, sizeof(CUSTNAME), 1, DataFile);

printf(
“Name “%10s” City “%10s’ State “%2s” “
“ZIP “%5.5d”\n”",
Customer->szName,
Customer->szCity,
Customer->szState,
Customer->nZip);

fclose(DataFile);

3
else
{
printf(“LINEAR SEARCH: Sorry, the name “%s” couldn’t \
be found\n”,
TempCustiIndex.szName);
3

printf(“Searching with a binary search\n”);

if ((pTempCustindex = (PCUSTINDEX)bsearch(&TempCustlindex,
Custlindex,
nRecord + 1,
sizeof(CUSTINDEX),
compare)) != NULL)

DataFile = fopen(szDataFile, “rb™);

if (DataFile == NULL)
{
printf(
“ERROR: Data file “%s” couldn’t be \
opened.\n",
szDataFile);

continues

377

Part Il « Managing Data in C

Listing 10.5. continued

exit(4);
}

fseek(DataFile,
pTempCustindex->Customer, SEEK_SET);

fread(Customer, sizeof(CUSTNAME), 1, DataFile);

printf(
“Name “%10s” City “%10s’ State “%2s” “
“ZIP “%5.5d>\n”,
Customer->szName,
Customer->szCity,
Customer->szState,
Customer->nZip);

fclose(DataFile);

}

else

{

printf(“BSEARCH: Sorry, the name “%s” couldn’t be \
found\n”,
TempCustlIndex.szName);
}
break;

case “X’: /* Exit; prompt for save if needed. */
case “X7:

nNotDone = FALSE;
szBuffer[0] = “\0”;
while (nNeedSaving &&

szBuffer[0] == “\07)

{
printf(*“\nSave the data? (y|n)”);

378

/*

Data Management: Sorts, Lists, and Indexes 1 O

gets(szBuffer);
if (szBuffer[0] == “n” ||
szBuffer[0] == “N”)
{
nNeedSaving = FALSE;
by
else
{
if (szBuffer[0] != “y’ &&
szBuffer[0] 1= “Y?)
{
printf(“\nWrong answer, *
“please respond with “y” or “n’”);
szBuffer[0] = “\0”;
b
by

}

iT (InNeedSaving)
{/* Don’t need to save, so just exit */
break;

¥
Else fall through to the save routines */

case “S’: /* Save all records */
case “s’:

printf(“Saving customer index file.\n”);
IndexFile = fopen(szlndexFile, “wb™);

ifT (IndexFile == NULL)
{/* Test for file open. ITf file can’t be opened, exit
with message. */
printf(“ERROR: Index file “%s” couldn’t be \
opened.\n",
szIndexFile);

continues

379

Part Il « Managing Data in C

Listing 10.5. continued

}
else
{
fwrite(Custlindex,

sizeof(CUSTINDEX) * (nRecord + 1),

1,

IndexFile);
fclose(IndexFile);
nNeedSaving = FALSE;

}
break;
default:
printf(‘“\aUnknown operation “%c’\n”,
szBuffer[0]);
break;
}
}
}
int compare(
PCUSTINDEX Custlndex1,
PCUSTINDEX Custlndex2)
{
// Uncomment the following printf() to see how gsort and gsearch work.
//
// printf(“Comparing %s and %s\n”,
// CustlIndexl->szName,
// Custlndex2->szName);
return(stricmp(
((PCustlndex) Custlndexl)->szName,
((PCustlndex) Custlndex2)->szName));
}

380

Data Management: Sorts, Lists, and Indexes 1 O

void GiveHelp(O

{

printf(
«\n”
“This program shows how an indexed file list is created and\n”
“used. It enables you to add records, display a specified\n”
“record, and save the list of records to the disk file.\n”
«\n”
“INDEX supports the following commands:\n");

printf(
«\n”
“ A - Add a customer/supplier record.\n”
“ Adds a record. Each added record is placed\n”
“ in the list in the correct order.\n);
printf(
«\n”
“ D - Display current list.\n”
“ Prints the user-specified record. This\n”
“ command lists the name and address\n”
“ information, assuming the name has been found.\n");
printf(
«\n”
“ X - Exit from program.\n”
“ Ends the program. If records or the index have\n”
“ not been saved, will prompt for save. All saves \
are\n”
“ made to the file specified when the program was \
started.\n”);
printf(
«\n”
“ z - Toggle debug mode.\n”
“ Changes the information displayed for the\n”
“ user. When on, debug mode shows the sorted\n”

“ index list.\n");

continues

381

Part Il « Managing Data in C

Listing 10.5. continued

printf(
a\p”
“ - Display the command list.\n”
- Display the command list.\n”
Displays this help information.\n");
printf(
a\p”
“ S - Save the list.\n”
IT records and the index have not been saved, this \
option\n”
saves the records the user has entered. All saves \
are made\n”
to the file specified when the program was \
started.\n”);
printf(

“Additional feature: In this program includes a prompt\n”
“to save when the exit command is given. (This prompt\n”

“is given only when the records have not been saved since\n”
“the last added record).\n”);

printf(
“Additional feature: This program has a debug mode so that\n”
“the user can see how the program works. This debug mode \
allows\n”
“the user to print the linked list and its pointers.\n”);

First the cusTname structure (which is identical to the structure used in many of
the other example programs) is defined. Then an index on the customer’s name is
defined.

In general, the field you are indexing on should be unique (although this is not a
requirement). When you use the index to retrieve records, a unique field ensures that
only one name is returned for each requested search, which can make your program
simpler because is does not have to process multiple matches.

382

Data Management: Sorts, Lists, and Indexes 1 O

The definition of the index structure follows:

typedef struct _INDEXREC {
char szName[61]; // 60 chars for name, 1 for null at end.
long Customer; // Pointer to actual customer record in Ffile.
} CUSTINDEX;

typedef CUSTINDEX far *FPCUSTINDEX;
typedef CUSTINDEX near *NPCUSTINDEX;
typedef CUSTINDEX *PCUSTINDEX;

Pointers are defined for the structure, like any other typedef’d structure. A
compare() function is also defined for use when sorting (and searching) the index. The
advantage of an indexed file is that it is always sorted. However, you can avoid re-
sorting the entire index when a record is added or an index field is changed. A typical
trick is to retain the existing records in the sorted index, and when a record is added
or changed, add it to aspecial area at the end of the index. If a binary search of the sorted
portion of the index does not find the record, a linear search is used on the special
section of nonsorted records. When the count of records in the unsorted section
exceeds a predetermined value, the program re-sorts the index.

Linear Search Versus Binary Search

A linear search starts with the first record in the list or file, and reads each
record until it finds a match to the key or the file ends. In a linear search, the
list or file does not need to be sorted, and the records in the list do not have
to be in any particular order.

A binary search proceeds as follows:

1. The binary search starts with the middle item in the list. If the key is less
than the selected item, the binary search takes the item halfway between
the current item and the beginning of the list. If the key is greater than
the selected item, the binary search takes the item halfway between the
current item and the end of the list. With one comparison, the binary
search eliminates half of the file.

2. If the key is less than the item found in step 1, the half less than the item is
selected. If the key is greater than the item found in step 1, the half that is

383

Part Il « Managing Data in C

384

greater than the item is selected. Of this half, the middle item is then again
selected.

3. This process is repeated until a match is found or it is shown that the key is
not part of the list.

For example, suppose the key (the item you want to find) is 5. Your list
contains the following numbers: 1, 2, 5, 12, 23, 24, 34, 35, 38, 45, 47, 50,
60, 65, 66, 76, 78, and 80. The first selection is 38 (the middle item in the
list). Because 5 is less than 38, the next selection is 23, (halfway between 1
and 38). Because 5 is smaller than 23, the next selection is 5 (halfway be-
tween 1 and 23). This is a match, so the search stops.

The maximum number of comparisons with a binary search is small—in a
file of 65,000 items, at most only 16 comparisons must be made. With a
linear search, an average of 32,000 comparisons are required.

The winner? A binary search is always the winner when the list can be (or is)
sorted. If the list cannot be sorted, a linear search must be performed.

Fortunately, the C compiler provides a binary search function called bsearch ().
This function requires a sorted list and the address of a compare function. The
bsearch() and bsort() functions use the same compare function, so that only one
compare function needs to be written when using either bsearch() or bsort(). In our
sorting and searching, we are working with an array of index records, and these index
records are what must be dealt with by the compare function. Because with bsort()
and bsearch() the compare is passed the address of the array members, the compare
function is defined as accepting two pointers to cusT INDEX structures.

int compare(const void *, const void*);

When the user wants to add a record to the customer database, the program first
uses memset() to clear the customer structure. It then prompts for the name. If the user
enters a name, the program processes it.

The code for adding a record follows:

case “A’: /* Add a record */
case “a’:

Data Management: Sorts, Lists, and Indexes 1 O

memset(Customer, 0, sizeof(CUSTNAME));

printf(“Enter name %d: “, ++nRecord);
gets(szBuffer);
szBuffer[sizeof(Customer->szName) - 1] = “\07;

strcpy(Customer->szName, szBuffer);

if (strlen(Customer->szName) > 0)
{/* Insert this record in the list, sorted by name. */
nNeedSaving = TRUE;

// Add to file and index:

Customer->nRecordNumber = nRecord;

To add the record to the database, the program first opens the database file. The
fileisclosed when itis not in use so that the database is as safe as possible if the computer
fails. If you do not close files in your program, you should at least call fFiush() after
every write to the file.

Thefile is opened in the append mode so that existing records are not lost. If the
file were opened in the write mode, the operating system would delete the contents of
the file.

DataFile = fopen(szDataFile, “ab™);

if (DataFile == NULL)

{
printf
“ERROR: Data file “%s” couldn’t be
“opened for update.\n”,
szDataFile);
exit(4);
3

After the file is opened, the program goes to the end of the file:
fseek(DataFile, 0, SEEK_END);

The ftel 1) function returns the current file pointer for the record that will be
added. Thisvalue is assigned to the index array’s pointer to this record. Next, strcpy)
copies the key into the index array:

385

Part Il « Managing Data in C

CustiIndex[nRecord] .Customer = ftell(DataFile);
strcpy(Custindex[nRecord] .szName, Customer->szName);

After the index has been set up, the program writes the record to the database and
closes the file:

fwrite(Customer, sizeof(CUSTNAME), 1, DataFile);

fclose(DataFile);

When the user requests a record, the program searches for the record using both
a linear search and the bsearch() function. | used both search techniques in List-
ing 10.5 simply to show how they are implemented; your program should use one or
the other (probably bsearch() because it is easy to implement and fast).

Touseabinary search, the index must be sorted. When the user wants the names
displayed, the program sorts the index list. The programmer can choose to sort the
index either as names are added (which slows the process of adding names) or when
the sorted index list is used. This program would have been better if it included a flag
to indicate when the list was already sorted.

The following code shows how a record is retrieved and displayed:

case “D’: /* Display a record */
case “d’:

printf(“Display customer (total %d).\n”, nRecord + 1);

gsort(Custlindex,
nRecord + 1,
sizeof(CUSTINDEX),
compare) ;

for (i = 0; nDebug && i1 <= nRecord; i++)
{/* In debug mode, display the sorted index list. */
printf(““Record %2d szName “%s’\n”’,
i,
Custindex[i].-szName);

}

In the debug mode, the program first shows the programmer the index list. This
display is useful when you want to see the results of the sort.

386

Data Management: Sorts, Lists, and Indexes 1 O

Following the display of the index list, the user is prompted to provide a name
to search for:

memset(Customer, 0, sizeof(CUSTNAME));
memset(&TempCustindex, 0, sizeof(CUSTINDEX));

printf(“Enter name”);
gets(TempCustlindex.szName);

printf(“Searching with a linear search\n™);

After the user enters a name, the program does a linear search. This search starts
at thefirst name, then searches each namein order, until either the list ends or the name
is found:

nDesiredRecord = -1;

for (i = 0; 1 <= nRecord; i++)
{/* Linear search; could be bsearch() */
if (stricmp(TempCustindex.szName,
Custindex[i]-szName) == 0)
{

nDesiredRecord = i;
break;

If the supplied key name is found, the program opens the database file (read
mode) and uses fseek() to find the correct record. After finding the record, the
program reads it in and displays the information for the user. If the supplied key name
is not found, the program simply gives the user a message that the name wasn’t found.

if (nDesiredRecord >= 0)

{
DataFile = fopen(szDataFile, “rb™);

it (DataFile == NULL)
{
printf(
“ERROR: Data file “%s” couldn’t be opened.\n”,
szDataFile);

387

Part Il « Managing Data in C

exit(4);
H

fseek(DataFile,
Custindex[nDesiredRecord] .Customer, SEEK_SET);

fread(Customer, sizeof(CUSTNAME), 1, DataFile);

printf(
“Name “%10s” City “%10s” State “%2s” “
“ZIP “%5.5d>\n”,
Customer->szName,
Customer->szCity,
Customer->szState,
Customer->nzZip);

fclose(DataFile);

¥
else
{
printfF(“LINEAR SEARCH: Sorry, the name “%s” couldn’t be found\n”,
TempCustlindex.szName);
¥

After the linear search is finished, the program does a binary search. This search
is performed with one statement:

it ((pTempCustindex = (PCUSTINDEX)bsearch(&TempCustlindex,
Custlindex,
nRecord + 1,
sizeof(CUSTINDEX),
compare)) != NULL)

If the supplied key name is found, the program opens the database file (read
mode) and use fseek() to find the correct record. After seeking to the record, the
program reads it in and displays the information for the user. If the supplied key name
is not found, the program displays a message that the name wasn’t found.

DataFile = fopen(szDataFile, “rb™);

if (DataFile == NULL)
{

388

Data Management: Sorts, Lists, and Indexes 1 O

printf
“ERROR: Data file “%s” couldn’t be opened.\n”,
szDataFile);

exit(4);
H

fseek(DataFile,
pTempCustindex->Customer, SEEK SET);

fread(Customer, sizeof(CUSTNAME), 1, DataFile);

printf(
“Name “%10s” City “%10s”’ State “%2s” *“
“ZIP “%5.5d>\n”,
Customer->szName,
Customer->szCity,
Customer->szState,
Customer->nzZip);

fclose(DataFile);

h
else
{
printf(“BSEARCH: Sorry, the name “%s” couldn’t be found\n”,
TempCustindex.szName);
h
break;

When the program ends (or when the user requests a save), the index array is
saved to a file. The index array in the saved file could be re-read into the index array
later when the user reuses the data file. To conserve on disk space, the program writes
only the index entries that have been used, not the entire index array.

case “S’: /* Save all records */
case “s’:

printf(“Saving customer index file.\n”);

IndexFile = fopen(szlndexFile, “wb);

389

Part Il « Managing Data in C

390

ifT (IndexFile == NULL)
{/* Test for file open. ITf file can’t be opened, exit with message.
*/
printf(“ERROR: Index Ffile “%s” couldn’t be opened.\n”,
szIndexFile);

3
else
{
fwrite(Custindex,
sizeof(CUSTINDEX) * (nRecord + 1),
1,
IndexFile);

fclose(IndexFile);

nNeedSaving = FALSE;

A quick look at the compare function shows that the szname members of the
index array are being compared using stricmp(). | have included a (commented out)
printf() that shows how the sort and the search use the compare function.

int compare(
PCUSTINDEX Custlndex1,
PCUSTINDEX Custlndex2)

{
// Uncomment the following printf() to see how gsort and gsearch work.
//
// printf(“Comparing %s and %s\n”,
// Custlndexl->szName,
// Custlndex2->szName);
return(stricmp(

CustlIndexl->szName,

Custlndex2->szName)) ;
}

Indexes can reside permanently in a disk file. The index for large databases can
be much too large to fit into memory. To search a disk-based index, you must write
abinary search function. Typically, such a function would know—~by a global variable
or a passed parameter—the number of records in the index, the size of the index
records, and the index file’s name or file handle.

Data Management: Sorts, Lists, and Indexes 1 O

Your disk-based bsearch function would then read the middle record. Compute
this record’s position using an fseek(). For example:

/* The code assumes that more than one record is in
* the index file.

*/

long IFirstRecord = 0;

long ILastRecord = ITotalRecords;

long ICurrentRecord = ((lLastRecord - IFirstRecord) 7/ 2);
long 10ffset = lLastRecord - IFirstRecord;

while(10ffset > 0)

{
ICurrentRecord = ((lLastRecord - IFirstRecord) 7/ 2);

fseek(IndexFile, ICurrentRecord *
sizeof(CUSTINDEX) * (ICurrentRecord), SEEK_SET);

// Read the record into Index (not shown)

if (Key < Index) /* This compare depends on Key’s data type */
{

ILastRecord = ICurrentRecord;

}

if (Key > Index) /* This compare depends on Key’s data type */
{

IFirstRecord = ICurrentRecord;

}

if (Index == Key) /* This compare depends on Key’s data type */
{

return(ICurrentRecord);

}

ITotalRecords = lLastRecord - IFirstRecord;
10ffset = lLastRecord - IFirstRecord;

391

Part Il « Managing Data in C

392

/* The record was not found! */

return (-1);

This binary search function is simplified. I did not show the reading of the index
file, nor are the compares accurate because they assume that 1ndex and key are numeric,
which may not be true.

Indexing afile can greatly enhance the access to specific records, especially when
a record must be accessed using more than one key (or index) value.

Fixed-field Disk Files

The best examples of fixed-field disk files are files created using a structure. Because
the structure’s length is fixed and each member’s location is known, you can al-
ways determine the location of any structure and its members in the file.

I recommend reading a file written with a structure into an identical structure.
After the data is placed in the structure, you can work on it using the individual
structure members. A possible exception to the reading of individual records is when
a large block of the file is read into a structure array, and the array is searched for the
correct key or another data object.

Many of the example programswrite fixed-field files. For example, the INDEX.C
program (Listing 10.5) creates two fixed-field files.

B-trees

None of the data management techniques in this chapter have addressed the problem
of a data list that changes frequently, must be searched quickly, and is too large to
constantly re-sort. Some problems with the techniques covered so far include:

e Alinked list presents data that appears to be sorted, but the list can be searched
only with a linear search.

« An indexed list is easy to search, but it must be resorted when an index value is
added, deleted, or changed.

The solution is to use the B-tree technique, a different method of storing data.
The B-tree technique arranges data in a structured format. Figure 10.10 shows some

Data Management: Sorts, Lists, and Indexes 1 O

sample data (used also in the “Linear Search Versus Binary Search” sidebar), and its
organization in a B-tree.

data list
1 45
2 47
-3 50
1z &0
23 65
24 66
34 76
35 78
38 80

Figure 10.10. A B-tree’s organization.

Data organization in a B-tree resembles an upside down tree. Usually, the first
data object has a key that half of the remaining data keys are less than (called the left
side) and the other half of the data keys are greater than (called the right side). The tree
continues in the same manner for all remaining data objects.

The following terms are used when discussing B-trees:

Node A data item in a B-tree.

Root node The first node in a B-tree.

Left side Data items on the left side are less than the current
data item.

Right side Data items on the right side are greater than the

current data item.

Balance How well the tree is organized. (Most B-trees exhibit
some imbalance.)

Figure 10.11 shows these terms and their relationships.

393

Part Il « Managing Data in C

Root node

Root node’s Root node’s
left side right side

Node 12's
left side

Node 65 is right
child of node 50
and parent of
node 76

Node 12's
right side

Figure 10.11. B-tree terms and relationships.

B-trees present some problems to the programmer, such as the following:

As records are added to the tree, it must be reorganized to ensure that each
node has a balanced number of data objects on its right and left sides.

When a B-tree member is changed or deleted, the tree must be reorganized
to eliminate the hole that is created. This reorganization can be complete,
which rebalances the tree, or partial, which may create a dummy member to
take the place of the missing member.

When sorted data objects are added to the B-tree, the tree’s balance suffers
unless the tree is reorganized.

When programming a B-tree implementation from scratch, you must have the
following functionality:

AddRecord() Adds a record to the B-tree. If a record with
the key being added exists, you must decide
what action to take: add the record as a
duplicate record, have and increment an
occurrence counter, or do not add the dupli-
cate record.

DeleteRecord() Deletes a record in the B-tree. The B-tree
must be reorganized, or a dummy record must
be inserted to replace the deleted record.
Using a dummy record usually implies that
there is a deleted flag field.

394

Data Management: Sorts, Lists, and Indexes 1 O

SearchRecord() Searches for a key value and returns the
information necessary to access the record.
This function could return the record struc-
ture if desired.

PrintTree() Debugging tool. This function is needed if
you are creating your own B-tree functions,
but is normally not used in a final program.

There are a number of supporting functions as well. These functions are not
always present in any specific B-tree implementation.

Listing 10.6, the BTREE.C program, implements a basic B-tree structure. The
program contains the following functions:

search() Finds a record in the B-tree.

SearchAndAdd () Finds a record in the B-tree; if the key does
not exist, the record is added.

Insert() Inserts a record into the B-tree.

Copy Item() Copies a node to another node.

Newl tem() Creates a new node.

TreePrint(Q) Prints the current tree.

Deleteltem() Deletes a node from the current B-tree.

UnderFlow() Used by peleteltem() to adjust the B-tree
when an item has been deleted.

Delete() Used by peleteltem() to delete items from
the B-tree.

PrintHelp() Prints a help screen.

Listing 10.6. BTREE.C.

/* BTREE.C

* This is a simple B-tree program. It should be compiled
* under ANSI C.

* [BTREE.C of JUGPDS Vol.19]

W4

continues

395

Part Il « Managing Data in C

396

Listing 10.6. continued

#include <stdlib.h> // For standard functions

#include <stdio.h> // Make includes first part of file

#include <string.h> // For string functions

#include <process.h> // For exit(), etc.

#include <malloc.h> // For malloc(), calloc(), realloc(), free()
#include <search_h> // For gsort()

#include <time.h> // To initialize the random-number functions

/* B-tree search and add, find, and delete
* Adapted from
* ALGORITHMS+DATA STRUCTURES=PROGRAMS by N. Wirth

* Implemented for BDS C by H. Katayose (JUG-CP/M No.179)
* Implemented for ANSI C by P. Hipson (CUG)
*/

/* PAGE_SIZE is better at 8 (less memory fragmentation) */

#define PAGE_SIZE 2
#define HALF_PAGE_SIZE (PAGE_SIZE / 2)

#define PAGE struct _page
#define ITEM struct _item
#define ROOT 0
#define RIGHT 1
#define LEFT 2

#define TRUE (€H)
#define FALSE ©®)

/* Storage allocation structures used by malloc() */

struct _header

{

struct _header * _ptr;
unsigned _size;

}:

Data Management: Sorts, Lists, and Indexes 1 O

struct _header _base; /* Declare this external data to */
struct _header *_allocp; /* be used by malloc() */

/* B-tree structures */

struct _item

{
int nKeyValue;
PAGE *RightReference;
int nCount;
};
struct _page
{
int nltemCount;
PAGE *LeftReference;
I1TEM Item[PAGE_SIZE];
};

/* Function prototypes */

int Search(int nKeyValue, int * nLevelCount, PAGE *a, ITEM *v);
int SearchAndAdd(int nKeyValue, PAGE *a, ITEM *v);

int Insert(PAGE *a, int i, ITEM *u, ITEM *Vv);

int Copyltem(ITEM *Destinationltem, ITEM *Sourceltem);

int Newl tem(PAGE **Page) ;

int TreePrint(PAGE *p, int 1, int nRightLeft, int nPosition);
int Deleteltem(int nKeyValue, PAGE *a);

int UnderFlow(PAGE *c, PAGE *a, int s);

int Delete(PAGE *p, PAGE *a, int k);

void PrintHelp(void);

/* The main program */

int mainQ)
{

int i;
int J;

continues

397

Part Il « Managing Data in C

Listing 10.6. continued

char
char

PAGE

PAGE
ITEM

398

nKeyValue;
h;
nLevelCount = O;

chOperation;
szCommand[132];

*root;
u;

printf(“\n\nBTREE: Demo program for B-trees\n”

root

a\p”
“Command are:\n”
A # - Adds key # (integer 0 - 32767).\n”

D # - Deletes key # (integer 0 - 32767).\n”
S # - Searches for key # (integer 0 - 32767).\n”
R # - Adds # random keys (integer O - 2000).\n"
H - Prints a help screen.\n”
T - Prints the current B-tree structure.\n”
X - Exits, after a confirming prompt.\n\n”);

= NULL;

while (TRUE)

{

printf(*\n\nCommand ?7’);
gets(szCommand);

sscanf(szCommand, “%c %d”, &chOperation, &nKeyValue);

switch(chOperation)
{
case “h’:
case “H”:
PrintHelp(Q);
break;

Data Management: Sorts, Lists, and Indexes 1 O

case “‘r’:

case “R’:
printf(“ADDING %d NODES\n”, nKeyValue);
srand((unsigned)time(NULL));

iT (nKeyVvalue > 2000)

{
nKeyValue = 2000;
¥
for (i = 0; 1 < nKeyValue; i++)
{
J = randQ;
ifT (SearchAndAdd(j, root, &u))
{
q = root;
Newltem(&root);
root->nltemCount = 1;
root->LeftReference = q;
Copyltem(&root->1tem[0], &u);
¥
¥
TreePrint(root, 0, ROOT, 0);
break;
case “s’:
case “S’:

nLevelCount = O;

if ((Search(nKeyValue, &nLevelCount, root, &u)))

{
printf(“SEARCH KEY %d found by searching %d \
levels\n”,

nKeyValue,

nLevelCount);
3
else
{

continues

399

Part Il « Managing Data in C

Listing 10.6. continued

printf(“SEARCH KEY %d NOT FOUND searching %d

levels\n”,
nKeyValue,
nLevelCount);
}
break;
case “a’:
case “A’:

printf(“ADD KEY %d\n”’, nKeyValue);

it (SearchAndAdd(nKeyValue, root, &u))

{
g = root;
Newltem(&root);
root->nltemCount = 1;
root->LeftReference = q;
Copyltem(&root->1tem[0], &u);
}

TreePrint(root, 0, ROOT, 0);
break;

case “t’:
case “T7:

printf(“PRINT TREE\n™);
TreePrint(root, 0, ROOT, 0);
break;

case “d’:
case “D7:

printf(“DELETE KEY %d\n”, nKeyValue);

400

Data Management: Sorts, Lists, and Indexes

ifT (Deleteltem(nKeyValue, root))

{
if (root->nltemCount == 0)
{
q = root;
root = g->LeftReference;
¥
3

TreePrint(root, 0, ROOT, 0);

break;

case “X’:

case

x> -
printf(“Confirm exit, y|n:");
scanf(“%c”, &chOperation);
iT (chOperation == “y” ||
chOperation == “Y?*)
{
exit(0);
3

break;

default:

printf(*““\aUnknown operation “%c’\n”,

chOperation);

break;
b
T
return(0);
h
int Search(
int nKeyValue,
int *nLevelCount,

continues

401

Part Il « Managing Data in C

Listing 10.6. continued

PAGE *a,
ITEM *Vv)

ITEM u;

// printf(“Search()...\n”);

if (a == NULL)

{

return(FALSE);
}
for (i = 0; i < a->nltemCount && nKeyValue > a->Item[i].nKeyValue;

i++)

{
}
it (nKeyValue == a->Item[i].nKeyValue && i < a->nltemCount)
{

return(TRUE) ;
}
else
{

++(*nLevelCount);

return(Search(nKeyValue, nLevelCount,

i ? a->ltem[i - 1].RightReference : a->LeftReference, &u));

}

int SearchAndAdd(
int nKeyValue,
PAGE *a,
ITEM *v)

402

Data Management: Sorts, Lists, and Indexes 1 O

{
int i;
1TEM u;

// printf(“SearchAndAdd()..-\n");

if (a == NULL)

{
v->nKeyValue = nKeyValue;
v->nCount = 1;
v->RightReference = NULL;
return TRUE;
3
for (i = 0; 1 < a->nltemCount && nKeyValue > a->ltem[i].nKeyValue;
i++)
{
3
if (nKeyValue == a->ltem[i].nKeyValue && i < a->nltemCount)
{
a->1tem[i]-nCount++;
3
else
{
ifT (SearchAndAdd(nKeyValue,
i ? a->ltem[i - 1].RightReference : a->LeftReference, &u))
{
return (Insert(a, i, &u, Vv));
b
3

return FALSE;

int Insert(
PAGE *a,

continues

403

Part Il « Managing Data in C

Listing 10.6. continued

int i,
1TEM *u,
ITEM *v)

{

PAGE *b;

int J;

int h;

// printf(“Insert()...\n”);

ifT (a->nltemCount < PAGE_SIZE)

{
for (J = a->nltemCount; j >= i + 1; j—)
{
Copyltem(&a->l1tem[j], &a->ltem[j - 1]);
}
++a->nltemCount;
Copyltem(&a->l1tem[i], u);
return(FALSE);
}
else

{/* Page a is full. Split it and assign the emerging item to v. */
Newltem(&b);

if (i <= HALF_PAGE_SIZE)

{
if (i == HALF_PAGE_SIZE)
{
Copyltem(v, u);
}
else
{

Copyltem(v, &a->ltem[HALF_PAGE_SIZE - 1]);

404

Data Management: Sorts, Lists, and Indexes 1 O

for (j = HALF_PAGE SIZE - 1; j >= i + 1; j--)

{
Copyltem(&a->ltem[j], &a->1tem[j - 1]);
¥
Copyltem(&a->Item[i], u);
¥
for (J = 0; j <= HALF_PAGE_SIZE - 1; j++)
{
Copyltem(&b->1tem[j], &a->1tem[j + HALF_PAGE_SIZE]);
¥
b
else
{
i -= HALF_PAGE_SIZE;
Copyltem(v, &a->ltem[HALF_PAGE_SIZE]);
for G =0; j <=1 - 2; j+¥)
{
Copyltem(&b->I1tem[j], &a->1tem[j + HALF_PAGE_SIZE + 1]);
¥
Copyltem(&b->Item[i - 1], u);
for (J = i; j <= HALF_PAGE_SIZE - 1; j++)
{
Copyltem(&b->l1tem[j], &a->ltem[j + HALF_PAGE_SIZE]);
3
b
if (HALF_PAGE_SIZE == 0)
{
a->nltemCount = 1;
b->nltemCount = 1;
b
else
{
a->nltemCount = HALF_PAGE_SIZE;
b->nltemCount = HALF_PAGE_SIZE;
b

continues

405

Part Il « Managing Data in C

406

Listing 10.6. continued

//

//

/*

b->LeftReference = v->RightReference;
v->RightReference = b;

}

return(TRUE) ;

Copy I'tem(
ITEM *Destinationltem,
ITEM *Sourcel tem)

printf(“Copyltem()...\n”);

Destinationltem->nKeyValue = Sourceltem->nKeyValue;
Destinationltem->RightReference = Sourceltem->RightReference;
Destinationltem->nCount

Sourceltem->nCount;

return(0);

Newltem(
PAGE **Page)

printf(“Newltem()...\n”);

if ((*Page = (PAGE *)malloc(sizeof(**Page))) == NULL)
{
fprintf(stderr, “Couldn’t allocate memory!\n);

exit(16);
}

malloc() doesn’t initialize storage, so we do. */

Data Management: Sorts, Lists, and Indexes 1 O

memset(*Page, 0, sizeof(**Page));

return(0);
TreePrint(
PAGE *Page,
int nLevel,
int nRightLeft,
int nPosition)
i;
i

if (Page != NULL)

{
for (i = 0; i1 < Page->nltemCount; i++)
{
switch(nRightLeft)
{

case ROOT: /* Should have only one root */
printf(‘*\n”);
printf(“(ROOT %2d) ““, nLevel);
break;

case LEFT: /* Happens all the time */
printf(“(L %2d %2d) “, nLevel, nPosition);
break;

case RIGHT:/* Happens all the time */
printf(“(R %2d %2d) “, nLevel, nPosition);
break;

default: /* Should never happen */

printf(“ERROR “);
break;

continues

Part Il « Managing Data in C

408

Listing 10.6. continued

for (J = 0; j < nLevel; j++)

{/* Adjust the starting column for the variable */

printf(“.....);
}

printf(“%5d \n”, Page->ltem[i].nKeyValue);

if (Page->ltem[i]-RightReference != NULL)

{
TreePrint(Page->ltem[i] -RightReference,
nLevel + 1, RIGHT, i1 + 1);
}
}
iT (Page->LeftReference != NULL)
{
TreePrint(Page->LeftReference, nLevel + 1, LEFT,
}
}
return(0);

int Deleteltem(
int nKeyValue,

PAGE *a)
{
int i;
int k;
int 1;
int r;
PAGE *q;

0);

Data Management: Sorts, Lists, and Indexes 1 O

// printf(“Deleteltem()...\n");

if (a == NULL)

{
printf(“Key is not in tree! Cannot delete this key.\n”);
return FALSE;

T

else

{/* Binary array search */
for (1 = 0, r = a->nltemCount - 1; I <=r;)

{
k=+r)/2;
if (nKeyValue <= a->I1tem[k].nKeyValue)
{
r =k - 1;
3
if (nKeyValue >= a->I1tem[k].nKeyValue)
{
I = k + 1;
3
b
q = (r == -1) ? a->LeftReference : a->ltem[r].RightReference;

if{-r>1)
{/* Found; now delete Item[k] */
if (g == NULL)
{/* a is a terminal page */
—(a->nltemCount);

for (i = k; 1 < a->nltemCount; i++)

{
Copyltem(&a->ltem[i], &a->1tem[i + 1]);
3
return (a->nltemCount < HALF PAGE_SIZE);
3
else
{

if (Delete(q, a, k))
{

continues

409

Part Il « Managing Data in C

Listing 10.6. continued

return(UnderFlow(a, q, r));

}
}
}
else
{
it (Deleteltem(nKeyValue, q))
{
return UnderFlow(a, g, r);
}
}

int UnderFlow(
PAGE *c,
PAGE *a,
int s)

PAGE *b;

int i;

=]
=
~

int mb;
int mc;

// printf(“UnderFlow()..-\n");
mc = c->nltemCount;
if (s<m-1)

{

++S;

b = c->1tem[s]-RightReference;
mb = b->nltemCount;

410

Data Management: Sorts, Lists, and Indexes 1 O

k = (mb - HALF_PAGE_SIZE + 1) / 2;
Copy ltem(&a->1tem[HALF_PAGE_SIZE - 1], &c->Item[s]);

a->1tem[HALF_PAGE_SIZE - 1].RightReference = b->LeftReference;

if (k> 0)
{
for(i = 0; i <k - 1; i++)
{
Copyltem(&a->1tem[i + HALF_PAGE_SIZE], &b->1tem[i]);
3

Copyltem(&c->1tem[s], &b->ltem[k - 1]);
c->ltem[s] -RightReference = b;

b->LeftReference = b->ltem[k - 1].RightReference;
mb -= K;

for (i = 0; i < mb; i++)
{

Copyltem(&b->l1tem[i], &b->1tem[i + k]);
¥

b->nltemCount = mb;
a->nltemCount = HALF_PAGE_SIZE - 1 + k;

return(FALSE);
b
else
{
for (i = 0; i < HALF_PAGE_SIZE; i++)
{
Copyltem(&a->1tem[i + HALF_PAGE_SIZE], &b->l1tem[i]);
3
for (i = s; i < mc; i++)
{
Copyltem(&c->l1tem[i], &c->ltem[i + 1]);
3

continues

411

Part Il « Managing Data in C

Listing 10.6. continued

a->nltemCount = PAGE_SIZE;
c->nltemCount = mc - 1;
}
}
else
{
b = (s == 0) ? c->LeftReference : c->ltem[s - 1].RightReference;
mb = b->nltemCount + 1;
k = (mb - HALF_PAGE_SIZE) / 2;

if (k> 0)
{
for(i = HALF_PAGE SIZE - 2; i >= 0; i--)
{
Copyltem(&a->l1tem[i + k], &a->ltem[i]);
}

Copyltem(&a->ltem[k - 1], &c->ltem[s]);
a->ltem[k - 1].RightReference = a->LeftReference;
mb -= Kk;

for (i = k - 2; 1 >=0; i--)
{

Copyltem(&a->l1tem[i], &b->ltem[i + mb]);
}

a->LeftReference = b->ltem[mb].RightReference;
Copyltem(&c->l1tem[s], &b->ltem[mb - 1]);
c->ltem[s].RightReference = a;

b->nltemCount = mb - 1;

a->nltemCount = HALF_PAGE_SIZE - 1 + k;

return(FALSE);
}

else

{
Copyltem(&b->1tem[mb], &c->ltem[s]);
b->1tem[mb].RightReference = a->LeftReference;

412

Data Management: Sorts, Lists, and Indexes 1 O

for (i = 0; i < HALF_PAGE_SIZE - 1; i++)
{
Copyltem(&b->Item[i + mb], &a->ltem[i]);

}

b->nltemCount = PAGE_SIZE;
c->nltemCount = mc - 1;

}

return(TRUE) ;

int Delete(

{

PAGE

//

PAGE *p,

PAGE *a,

int K)
*q;

printf(“Delete()...\n");

if ((g = p—>1tem[p->nltemCount - 1].RightReference)!= NULL)

{
if (Delete(q, a, k))

{
return(UnderFlow(p, q, p->nltemCount - 1));
b
3
else
{
p->1tem[p->nltemCount - 1].RightReference = a
->1tem[k] -RightReference;
Copyltem(&a->1tem[k], &p->l1tem[p->nltemCount - 1]);
—(p->nltemCount);
return(p->nltemCount < HALF_PAGE_SIZE);
3

continues

413

Part Il « Managing Data in C

414

Listing 10.6. continued

void PrintHelp()

{

printf(

“N\n\nBTREE: Demo program for B-trees\n”

«e\n”
“Comman
‘ A

X 4 T U »w O

printf(“\n”

d
#

#
#
#

are:\n”

- Adds key # (integer 0 - 32767).\n”

- Deletes key # (integer 0 - 32767).\n”

- Searches for key # (integer 0 - 32767).\n”
- Adds # random keys (integer O - 2000).\n"

Prints a help screen.\n”
Prints the current B-tree structure.\n”
Exits, after a confirming prompt.\n\n");

“All keys (the items that are placed in the tree) are \
integers,\n”’
“ranging from 0 to 32767. Each item is added to the tree when \

the\n”

“Add command is issued.\n’);

printf(“\n”

“A new key is added with the Add command. Enter an A and an\n”
“integer value._\n”);

printf(“\n”

“An existing key can be deleted by using the Delete command.\n”
“Enter a D followed by an integer key value. If the value \

entered\n”

“is not a valid key, the program will tell you so.\n");

printf(“\n”

“When you search for a key, the tree is traversed.
“is found, the level where it was found is provided. If the \

key\n”’

“is not found, a message is printed.\n”);

1T the key\n”

Data Management: Sorts, Lists, and Indexes 1 O

printf(“\n”
“The Repeat command is used to build a table of random keys. \
The\n”
“rand() function is called the specified number of times. No\n”
“test for duplicates is made, but duplicates for random-number\n”
“counts of less than several hundred are infrequent.\n”);

printf(“\n”
“To print the entire tree structure, use the Tree command. \
This\n”
“command is entered as a T. There are no parameters for “
“this command.\n”");

printf(“\n”
“To end the program, use the Exit command. Enter an X, with no\n”
“parameters. You will be prompted to confirm that you want to\n”
“exit.\n");

printf(“\n”
“If you don”t enter the key (or count for Repeat), the \
previous\n”
“value for the count is used.\n”);

The BTREE program arranges its tree in a way that you might not expect. The
memory allocation functions could be called for each node, but this would be
inefficient. Rather, each allocated block has from two to eight nodes. (You could have
more than eight, but the B-tree’s performance mightsuffer.) I chose a block that would
contain two data items (or nodes).

/* PAGE_SIZE is better at 8 (less memory fragmentation).*/

#define PAGE_SIZE 2
#define HALF_PAGE_SIZE (PAGE_SIZE / 2)

Three structures are created for the B-tree. First, a structure is created for the
malloc() function:

/* Storage allocation structures used by malloc() */

415

Part Il « Managing Data in C

416

struct _header

{
struct _header * ptr;
unsigned _size;
};
struct _header _base; /* Declare this external data to */

struct _header *_allocp; /* be used by malloc(Q) */

The next structure, called _item, contains information specific to each data item
(node) in the B-tree. This is the structure that would contain your item-specific data,
such as the node’s key (this is an integer in the example program, but it could be a
character string as well), a pointer to a structure containing the item’s data, or an index
into a file that would have the item’s data.

struct _item

{
int nKeyValue;
PAGE *RightReference;
int nCount;

};

The third structure, _page, forms the building block for the B-tree. This
structure contains a count of items (from 1 to pace_size), the block’s left branch, and
an array of PAGE_S1ZE I1tems. The nitemcount variable indicates how many of the items
are used.

struct _page

{
int nltemCount;
PAGE *LeftReference;
ITEM Item[PAGE_SI1ZE];
};

The majority of BTREE.C’s main function processes keyboard input. This code
issimilar to the code in other example programs, so this section describes only the three
most important blocks. The first block is executed when the user searches for a record.
The search() function is called, and is passed parameters that include the key the user
is searching for and the root node for the B-tree.
case “s’:
case “S’:

nLevelCount = 0;

Data Management: Sorts, Lists, and Indexes 1 O

ifT ((Search(nKeyValue, &nLevelCount, root, &u)))

{
printf(“SEARCH KEY %d found by searching %d levels\n”,

nKeyValue,
nLevelCount);

}

else

{
printf(““SEARCH KEY %d NOT FOUND searching %d levels\n”,

nKeyValue,
nLevelCount);

}

break;

The searchandadd O function searches for the item. If the item cannot be found,
searchAndAdd () adds the user’s key to the B-tree. This function returns True if the item
was not added because the B-tree does not exist yet. If the B-tree does not exist yet, the
B-tree is created and the item is added as the root of the node.

case “a’:
case “A’:
printf(““ADD KEY %d\n”’, nKeyValue);

iT (SearchAndAdd(nKeyValue, root, &u))

{
q = root;
Newltem(&root);
root->nltemCount = 1;
root->LeftReference = q;
Copyltem(&root->1tem[0], &u);
}

TreePrint(root, 0, ROOT, 0);

break;

The peleteltem() function is called when the user wants to delete a key. If the
item being deleted is the current root, beleteltem() returns TRUE, signaling that a new
root must be created from another node.
case “d’:
case “D’:

417

Part Il « Managing Data in C

418

printf(“DELETE KEY %d\n”, nKeyValue);

it (Deleteltem(nKeyValue, root))
{

if (root->nltemCount == 0)
{
q = root;
root = g->LeftReference;
b
¥

TreePrint(root, 0, ROOT, 0);

break;

Let’s look at some of the functions that do the work in the BTREE program. The
search() function simply follows the tree, starting at the given node, until the specified
key is found or it is known that the key is not in the B-tree. The search() function
works recursively: it calls itself each time it searches a node and does not find a match
for the specified key. By calling itself, search() can use a simple function to perform

a search to any level:

int

{

int

Search(

int nKeyValue,
int *nLevelCount,
PAGE *a,

ITEM *V)

ITEM u;

//

printf(“Search()...\n”);

if (a == NULL)
{

return(FALSE);
3

for (i = 0; i < a->nltemCount && nKeyValue > a->ltem[i].nKeyValue;

Data Management: Sorts, Lists, and Indexes 1 O

i++)

{

}

if (nKeyValue == a->l1tem[i].nKeyValue && i < a->nltemCount)

{
return(TRUE) ;

}

Search uses a simple integer comparison to check for amatch. If the key had been
acharacter string, you could use a call to stremp) or some other character comparison
function.

The recursive call to search() follows. The recursion is performed by using a
comparison of the variable i and by passing the current node’s right or left node to
search.

else

{

++(*nLevelCount);

return(Search(nKeyVvalue, nLevelCount,
i ? a->ltem[i - 1].RightReference : a->LeftReference, &u));

The searchandadd(® function is similar to the search(function. When
search() ends, however, it simply returns a flag showing that the key was not found.
When searchandadd () returns, it adds the key to the current B-tree.

int SearchAndAdd(
int nKeyValue,
PAGE *a,
I1TEM *v)

{

int i;

ITEM u;

// printf(“SearchAndAdd()..-\n");

41

(

Part Il « Managing Data in C

420

If the function was passed a NuLL pointer, the program is preparing to add this
key to a node. Then searchandadd() prepares to add the key as the node, and returns
TRUE to tell the caller that a node has been created.

The root node is created in the main program because the root node is “owned”
by the main program, not by the B-tree functions:

if (a == NULL)

{
v->nKeyValue = nKeyValue;
v->nCount = 1;
v->RightReference = NULL;
return TRUE;

3

The following code, which is similar to the code in search(), is used to find a
match:

for (i = 0; i < a->nltemCount && nKeyValue > a->ltem[i].nKeyValue;
i++)

{

}

it (nKeyValue == a->I1tem[i].nKeyValue && i < a->nltemCount)
{

In the following code, if a match is found, a counter of matches is incremented.
This allows our version of B-tree to have duplicate keys, with only one copy of the key
kept in memory.

a->1tem[i]-nCount++;

}

else

{
if (SearchAndAdd(nKeyValue,

i ? a->ltem[i - 1].RightReference : a->LeftReference, &u))
{

If the searchandadd O function does not find the key, the insert(function adds
the key to the B-tree (in the correct place), as follows:

return (Insert(a, i, &u, Vv));

Data Management: Sorts, Lists, and Indexes 1 O

return FALSE;

The nsert() function adds the current key value to the passed node by
computing the number of items in the current block. If the block is too full, the
function splits it into two blocks:

int Insert(

PAGE *a,
int i,
1TEM *u,
1TEM *V)

{

PAGE *b;

int J;

int h;

// printf(“Insert()...\n");

if (a->nltemCount < PAGE_SIZE)

{
for (= a->nltemCount; j >= 1 + 1; j—)
{
Copyltem(&a->1tem[j], &a->ltem[j - 1]);
}
++a->nltemCount;
Copyltem(&a->ltem[i], u);
return(FALSE) ;
}
else

{/* Page a is full. Split it and assign the emerging item to v. */
Newltem(&b);
if (i <= HALF_PAGE_SIZE)
{

if (i == HALF_PAGE_SIZE)
{

421

Part Il « Managing Data in C

Copyltem(v, u);

T
else
{
Copyltem(v, &a->ltem[HALF_PAGE_SIZE - 1]);
for (j = HALF_PAGE_SIZE - 1; j >= i + 1; j--)
{
Copyltem(&a->1tem[j], &a->ltem[j - 1]);
3
Copyltem(&a->Item[i], u);
T
for (J = 0; j <= HALF_PAGE_SIZE - 1; j++)
{
Copyltem(&b->1tem[j], &a->1tem[j + HALF_PAGE_SIZE]);
T
h
else
{
i -= HALF_PAGE_SIZE;
Copyltem(v, &a->ltem[HALF_PAGE_SIZE]);
for G =0; j <=1 - 2; j++)
{
Copyltem(&b->1tem[j], &a->l1tem[j + HALF_PAGE_SIZE + 1]);
T
Copyltem(&b->Item[i - 1], u);
for (J = i; j <= HALF_PAGE_SIZE - 1; j++)
{
Copyltem(&b->1tem[j], &a->1tem[j + HALF_PAGE_SIZE]);
T
h
if (HALF_PAGE_SIZE == 0)
{
a->nltemCount = 1;
b->nltemCount = 1;

422

Data Management: Sorts, Lists, and Indexes 1 O

b
else
{
a->nltemCount = HALF_PAGE_SIZE;
b->nltemCount = HALF_PAGE_SIZE;
b

b->LeftReference = v->RightReference;
v->RightReference = b;

}

return(TRUE) ;

The copyltem() function copies information from the source item to the
destination item. In the days of non-ANSI C, structures could not be assigned to each
other. ANSI C supports structure assignments, however, so you could replace
Copy I'tem() With assignment statements.

int Copyltem(
1TEM *Destinationltem,
ITEM *Sourceltem)

// printf(“Copyltem()...\n”);

Destinationltem->nKeyValue = Sourceltem->nKeyValue;
Destinationltem->RightReference = Sourceltem->RightReference;
Destinationltem->nCount

Sourceltem->nCount;

return(0);

The newt tem() function is used to create a new node. Newl tem() USeS malloc()
to allocate memory for the new node, then clears the memory.

int Newltem(
PAGE **Page)

423

Part Il « Managing Data in C

424

// printf(“Newltem(Q)...\n");

if ((*Page = (PAGE *)malloc(sizeof(**Page))) == NULL)
{

fprintf(stderr, “Couldn’t allocate memory!\n”);

exit(16);
¥

/* malloc() doesn’t initialize storage, so we do... */
memset(*Page, 0, sizeof(**Page));

return(0);

The TreePrint() function prints the B-tree. This function knows which level it
is being called for and prints this information with the current node’s values.

int TreePrint(
PAGE *Page,
int nLevel,
int nRightLeft,
int nPosition)

If TreePrint(iscalled withanuLL node, itdoes nothing. Otherwise, TreePrint()
prints the level, prints whether it is the left or right node of its parent, and indents the
node’s numeric value (its key value) by four spaces for each level.

if (Page !'= NULL)

{
for (i = 0; i < Page->nltemCount; i++)
{
switch(nRightLeft)
{

case ROOT: /* Should have only one root */
printf(*\n”);
printf(*“(ROOT %2d) ““, nLevel);
break;

Data Management: Sorts, Lists, and Indexes 1 O

case LEFT: /* Happens all the time */
printf(“(L %2d %2d) ““, nLevel, nPosition);
break;

case RIGHT:/* Happens all the time */
printf(“(R %2d %2d) “, nLevel, nPosition);
break;

default: /* Should never happen */
printf(“ERROR “);
break;

}

for (J = 0; j < nLevel; j++)
{/* Adjust the starting column for the variable */
printf(“.....);
b

After the necessary header information is displayed, the key value is printed.
Remember, the key does not need to be an integer. If it was a character string, you
would probably have to change the following line:

printf(“%5d \n”, Page->ltem[i].nKeyValue);

After printing the key value, Treeprint(), like search(), calls itself recursively,
and is passed information on whether the right node or the left node is being followed:

ifT (Page->1tem[i].RightReference != NULL)

{
TreePrint(Page->1tem[i] -RightReference,
nLevel + 1, RIGHT, 1 + 1);
3
3
if (Page->LeftReference != NULL)
{
TreePrint(Page->LeftReference, nLevel + 1, LEFT, 0);
3
3
return(0);

425

Part Il « Managing Data in C

The peletertem() function deletesa node. betete1tem() first checks thata node
and an item to be deleted have been passed.

int Deleteltem(
int nKeyValue,

PAGE *a)
{
int i;
int k;
int 1;
int r;
PAGE *q;

// printf(“Deleteltem()...\n");

if (a == NULL)

{
printf(“Key is not in tree! Cannot delete this key.\n");
return(FALSE);

}

else

Remember binary searches from earlier in the chapter? The following binary
search uses the same technique: halving the list you are searching, depending on the
result of the comparison of a given node and the user’s key:

{/* Binary array search */
for (1 = 0, r = a->nltemCount - 1; I <= r;)

{
k=+r) /7 2;
iT (nKeyValue <= a->Item[k].nKeyValue)
{
r=k-1
3
ifT (nKeyValue >= a->I1tem[k].nKeyValue)
{
I =k+1
3
3

426

Data Management: Sorts, Lists, and Indexes 1 O

q = (r == -1) ? a->LeftReference : a->ltem[r].RightReference;

if(l-r>1)
{/* Found; now delete Iltem[k] */
if (g == NULL)
{/* a is a terminal page */
--(a->nltemCount);

for (i = k; 1 < a->nltemCount; i++)

{
Copyltem(&a->l1tem[i], &a->ltem[i + 1]