« ASP. NET WEB SERVICES
+ C COLUMN COLLECTION

*C PEARLS

+ C PROJECTS (WICD)

« C#.NET FUNDAS (W/CD)

+ C++.NET FUNDAS (W/CD)

« DATA STRUCTURE THROUGH C (W/CD)

« DATA STRUCTURE THROUGH C#+ (WICD)
+ DIRECTX GAME PROGRAMMING FUNDAS (W/CD)
* EXPLORING C

« Go Embedded (W/cD) BT

+ GRAPHICS UNDER C

+ INTRODUCTION TO OOPS & C++

+ INTERVIEW QUESTIONS IN C PROGRAMMING

« INTERVIEW QUESTIONS IN C++ PROGRAMMING
«LETUS C-othEd. -G

* LET US C SOLUTIONS - 9th Ed. SE0E

« LET US C#+

+« PROGRAMMING EXPERTISE IN BASIC

* TEST YOUR C SKILL E NEW

« TEST YOUR C++ SKILLS

* TEST YOUR C# .NET SKILLS

* TEST YOUR UNIX SKILLS

* TEST YOUR VB.NET SKILLS PART |

« TEST YOUR VB.NET SKILLS PART II

* UNDERSTANDING POINTERS INC 008

* UNDOCUMENTED DOS THROUGH C

* UNIX SHELL PROGRAMMING

* VC++ GEMS (W/CD)

» VC++, COM AND BEYOND (W/CD)

* VISUAL C++ PROGRAMMING

* VISUAL C++ PROJECTS (W/CD)

* WORKING WITH C (FOR DOE - A & B LEVEL)

* WRITING TSR'S THROUGH C

* WRITING WINDOWS DEVICE DRIVERS (W/CD)

* BPB LET US C (HINDI)

*LET US C# (COVERS c#3.0) 0

=

Unix Shell
Programming

Yashavant P. Kanetkar

BPB PUBLICATIONS

B-14, CONNAUGHT PLACE, NEW DELHI - 110001

N

ext month

Bonus points shall be credited by 10th of it

FIRSTEDITION 1996 REPRINTED 2009 miCRO MEDIA
Distributors: ShopNo. 5, Mahendra Chambers, 150 D.N. Road,
MICRO BOOK CENTRE Nextto Capital CinemaV.T. (C.S.T.) Station,
2,City Centre, CG Road, MUMBAH400001 Ph. 22078296, 22078297
Near Swastc Char Rasta, BPB PUBLICATIONS
AHMEDABAD-380009 Phone: 26421611 B-14, Connaught Place, NEW DELHI-110001
COMPUTER BOOK CENTRE Phone: 23325760, 23723333,23737142
12, Shrungar Shopping Centre, M.G. Read, INFOTECH
BANGALORE-560001 Phone:5587923,558464¢ G2, Sichartha Buiding, 96 Nehru Place,
MICROBOOKS NEW DELHI-110019
ShantiNiketan Buiding, 8, Camac Street, Phone: 26438245,26415092,26234208
KOLKAFTA-700017 Phone: 22826518, 22826519 INFOTECH
BUSINESS PROMOTION BUREAU ShopNo.2, 38, South Extension Part1
8/1, Ritchie Street, Mount Road, NEW DELHI-110049
CHENNAI-600002 Phone: 28410796,28550491 Phone:24691288, 24641941
DECCAN AGENCIES gTF;BOBHOngs aﬁfl‘_ﬁ?jm

Bank Stree g al '
ek : DELHI-110006 PHONE: 23861747

HYDERABAD-500195 Phone: 24756400, 24756967

Copyright © BPB PUBLICATIONS

All Rights Reserved. No part of this publication can be stored in any retrieval system ot
reproduced in any form or by any means without the prior written permission of the publishers.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The Author and Publisher of this book have tried their best to ensure thar the programmes,
procedures and funcrions contained in the book are correct. However, the author and the
,ublishers make no warranty of any kind, expressed or implied, with regard to these programmes
or the documentation contained in the book. The author and publishers shall not be liable in
any event of any damages, incidental or consequential, in connection with, or arising out of the
furnishing, performance or use of these programmes, procedures and functions, Product name
mentioned are use for identifications purposes only and may be trademarks of their respective
companies.

All trademarks referred to in the book are acknowledged as properties of their respective
owners.

ISBN 81-7029-753-2

Published by Manish Jain for BPB Publicarions, B-14, Connaughrt Place,
New Delhi-110 001 and Printed by him at Pressworks, Delhi.

Dedicated to
all Unix users

vt

wext month

Bonus points shall be credited by 10th of n

Neibauer,A ABC's of WINDOWS 3.1

Robbins,| ' Amazing WINDOWS Games (W/D)

English, AV Advanced Tools for WINDOWS Developers
Mansfield,R Compact Guide to WINDOWS, WORD & EXCEL
Cieve,AL Creatig Help for Windows Applications (W/D)
Levens,A Designing GUI Applications for Windows (W/D)
PCM Guide to WINDOWS for Workgroups

Bryan lilustrated WINDOWS 3.1

Doolem,B Learn WINDOWS in a Day

Krumm, R Making WINDOWS Application Work Together (W/D)
Cowart,R Mastering WINDOWS 3.1 (Special Edition)

Young,M Mastering WINDOWS Utilities Programming with C++ (W/D)
Nesbitt,D Microsoft WINDOWS at A Glance

Russel ‘Murphy's Laws of WINDOWS

Currid,C Networking with WINDOWS for workgroups
Anand,R Programming for WINDOWS

Kumar,D Programming WINDOWS 3.1 (W/D)

PCLL' Teaches WINDOWS 3.1

Stevens,A Teach Yourself WINDOWS 3.1

Minasi,M The WINDOWS Problem Solver

Scheib,J Up & Running with WINDOWS 3.1

Robbins,J WINDOWS Magic Tricks (W/D)

Mukhi,V WINDOWS 3.0/3.1 Test

Qualline,S WINDOWS Programming with Borland C++ (W/D)
Sarna/Febish WINDOWS Rapid Application Development (W/D)
Ezzell,B’ WINDOWS 3.1 Graphics Programming (W/D)
Richter,JM WINDOWS 3.1 A Developer's Guide (W/D)
Moseley,M WINDOWS 3.1 Instant Reference

Smith/Ward WINDOWS Custom Controls

Edson,D Writing WINDOWS Application from Start fo Finish (W/2D)

| Open the Windows of Knowledge . .. Thru BPBTitles

Hand on'Windows Programming Series

Bardem,R Book 1: Introduction to Windows Programming (W/D)
Bardem,R Book 2: Child Windows (W/D)

Bardem,R Book 3: Painting the Screen (W/D)

Bardem,R Book 4: Transferring Data to and from Windows (W/D)
Bardem,R Book 5: Mouse, Timer, and Keyboard | nputs (W/D)
Bardem,R Book 6: Text & Special Fonis, Menus, and Prin ting (W/D)
Bardem,R - Book 7: AppStudio Graphics Editor (W/D)

Bardem,R Book 8: C to C++ Conversion (W/D)

Bardem,R Book 9: Index and Cross - Reference for Books 1-8
Simpson Alan Simpson's Easy Guide to Windows 95

Crawford Getiing Ready for Windows 95

Fuller/Pagan Learn Windows 95 in a Day

Cowart Mastering Windows 95

PCLL PCLL -Teaches Windows 95

Courter The Learing Guide to Windows 95 (W/D)

Russel Upgrading to Windows 95 - Special Edition

Mattehews Windows 95 Instant Reference

Chen Windows 95 : A Programmer's Case Book (W/CD-ROM)

All these and many more authoritative titles are available at your bookshop.

in case of any difficulty, please contact our distributors.

About the Author

Yashavant Prabhakar Kanetkar obtained his B.E. from VITI Bombay
and his M. Tech. from IIT Kanpur. Since 1987 he has been Director
of ICIT, a Training and Software Development firm which he set up
at Nagpur. Mr. Kanetkar is author of several books including Let Us
C, Exploring C; Working With C, C Projects, Undocumented DOS
Throug_h C, Writing TSRs Through C and Understanding Pointers In

C published by BPB Publications and Tech Publications, Singapore
These days he is writing a few more books on C++ and Windows
with his team at ICIT. Mr. Kanetkar also writes regular columns titled
The C Column and Object: C++ for a leading computer magazine.

Acknowledgments

Unix I was told is difficult to learn. I too found it to be so. However;
I have realised that writing about it is more difficult. More so because
it's not easy to decide what to include and what to leave out. .

Niranjan Bakre and Sangeeta Karandikar helped me to make these
choices. In that sénse this book is theirs as much as mine, though I
retain the responsibility of any inadequacies or mistakes that I have
made.] have worked hard to eliminate the mistakes. You would judge

it better whether I worked hard enough. Sangeeta also helped in

honing the first five chapters, whereas Niranjan executed and im-
proved the shell scripts.

Thanks to Manish Jain of BPB for asking if I might be interested in

‘writing this book. I was and you now hold it, and I hope that it may

help to make Unix as pleasant for you as it has been for me.

Most of the figures in this book have been prepared by Shilp_ag
Agarkar. Her remarkable thoroughness has greatly improved this
book.

Hemant Kelkar designed the book cover and I hope you too would
appreciate his eye for detail and precision. '

Thanks to Seema and Aditya for putting up with my bizarre schedules
and for listening to my dreams.

Contents

Introduction

PARTI

Getting Started
A Unix Biography

Hardware Requirements for Unix

Salient Features of Unix
Multiuser Capability
Multitasking Capability
Communication
Security
Portability

Unix System Organisation
Types of Shells

Bourne Shell
C Shell
Korn Shell

The First Faltering Steps

Unix Commands

What’s in The Name? -

Exercise

Gaining Confidence

The Unix File System

Creating Files

Indulging in File Play

Listing Files and Directories
Masking File Permissions
Directory Permissions
Still Better Directory Permissions
Removing A File Forcibly
Other Useful Is Variations

vi

xiii

O W oo W B RN

The crontab commaand
Exercise

Communication - Unix Style

The write Command

The wall Command

What’s The News Today

motd is for Message of The Day

Mail: The Basis of Unix Communication
Sending mail
Handliug Incoming Mail
Customizing mail

Exercise

PART II

Shell Programming - The Kirst Step

Before We Start...

When to Use Shell Scripts

The First Shell Script

Interactive Shell Scripts

Shell Variables

Shell Keywords

Another Way of Assigning Values to Variables
Unix-defined or System Variables
User-defined Variables

Tips and Traps

Unchanging Variables

Wiping Out Variables

Positional parameters

Passing Command Line Arguments

Setting Values of Positional Parameters

Displaying Date in Desired Format

Using Shift on'Positional Parameters

Arithmetic in Shell Script

read and echo Revisited
The Carriage Return

ix

175
178

181
182
185
187
190

190
191
192
195
197

199
201
202
203
206
207
208
209
210
212
212
214
215
215
216
217
219
221
223
226
228

The Tab and The Backspace
Positioning The Cursor
Beep, Beep...
Bold and Beautiful
The tputr Command
Control Instructions in Shell
Exercise

Taking Decisions
The if-then-fi Statement
The if-then-else-fi Statement
The test Command
File Tests
String Tests
Nested if-elses
Forms of if
Use of Logical Operaiors
Hierarchy of Logical Operators
else + if Equals elif
The Case Control Structure
The Tips and Traps
Exercise

The Loop Control Structure
Loops
The while Loop
Tips and Traps
Friend, Where are You...
The IFS Thing
Reading From A File
The until Loop
The for Loop

Using for with Command Line Arguments

Creating Nested Directories

Generating Values for a for Loop
Nesting of Loops

The break Statement

228
228
229
229
230
233
234

243
244
246
248
251
253
256
257
258
261
261
264
267
271

281
282
283
284
287
290
292
295
297
299
301
302
305
306

The continue Statement
Exercise

Shell Metacharacters
Filename Substitution Metacharacters
I/O Redirection Metacharacters
Process Execution Metacharacters
Conditional Execution Using &<& and |l
Quoting Metacharacters
Positional Parameters and Special Parameters
Oh! I Forgot...
Debugging a Script
$* And $@
Exercise

Tricks ~f The Trade

Controlling Terminal Input

Tackling Multiple Command Line Options
traping Signals

Functions

Executing Multiple Scripts

Exercise

Shell Miscellany
Functions of A Shell
Variables Revisited
Exporting Variables
Controlling Variable Assignments
The eval Command
Exercise

System Administration

Adding and Removing Users

Some More Daily Administiauon
Starting Up The System
Shutting The System Down

Disk Management

xi

309
310

319
320
321
324
325
327
329
329
330
332
333

337
338
342
354
359
364
365

369
370
373
373
376
381
386

389
393
395
396
396
401

Formatting A Disk

Making A Fiie System

Mounting A File System

Unmounting A File System
Using A Kaw Disk
Monitoring System Usage
Ensuring System Security
Providing Assistance to Users
Exercise

Shell Programming Project
Payroll Processing System
Data Organisation
Menus
Report Formats
Calculations
Working of The System
Program

Where Do You Go from Here...

Improve This Program...

Index

xii

402
404
406

- 410

411
414
420
423
423

427
428
429
431
432
434
436
438
476
477

479

Introduction

Welcome to Unix Shell Programming! There are lots of books about
Unix, but most of them assume that you are a computer wizard and
would love to learn every single command Unix has to offer. On these
scores at least you would find this book refreshingly different.

It doesn’t expect that you have worked with Unix earlier. It begins
with a description of what you can really do with Unix, how to get
started, what commands you should really know, before beginning
with the real stuff - the shell programming.

How This Book is Organized

This books has two parts. These parts stand on their own depending
on whether you are a novice Unix user or you have already worked
with Unix. If you are already familiar with Unix commands you can
straightaway begin with Part II. However, if this is your first tryst
with Unix you would be better off if you start with Part I. Part I
comprises Chapters 1 through 8, whereas PartII consists of Chapters
9 through 16. Contents of each part are mentioned below in brief.

Part I:

Chapter 1 introduces you to fundamental Unix concepts, the major
features of Unix OS and the equipment you need to run it. Chapter 2
gives you step-by-step instructions for creating, renaming and remov-
ing files and directories. It also describes the file and directory
permissions and the philosophy behind it. Chapter 3 discusses the
Unix file system, its organization and the commands related to it.
Chapter 4 discusses commonly used Unix commands with their
_important variations. Chapter 5 is devoted to one of the important
capabilities of the Unix shell - input/output redirection and piping.
Chapter 6 is a self-contained guide to the vi editor which helps you
create, modify and maintain text files. Chapter 7 talks about the

xiii

+ processes launched by the system and by the users and their be-

haviour. Chapter 8 helps you communicate with other users through
the powerful communication facilities offered by Unix.

Part II:

Assuming that you are thorough with the philosophy and the com-
mands introduced in the earlier part, Part II proceeds to teach you the
intricacies of shell programming. Chapter 9 introduces the fundamen-
tal concepts of shell programming with discussion about shell vari-
ables, positional parameters and writing interactive and non-interac-
tive shell scripts. Chapter 10 covers the decision control instruction,
the file and string tests and their utility. Chapter 11 discusses the
various looping facilities available with the shell and their practical
use. Shell metacharacters are VIPs of Unix and you learn about them
in detail in Chapter 12. Every programmer keeps a few aces up his
sleeves. Some of these are shown in Chapter 13. Features which are
away from mainstream shell programming but are quite handy in
particular situations are the topic of Chapter 14. This book would lose
its charm if it doesn’t discuss system administration and the related
scripts. Hence a separate chapter has been devoted to it - Chapter 15.
To put together all the skills acquired earlier into one big practical
program nothing short of a full-fledged project would do. With that
1lr!6tention a Payroll Processing System has been developed in Chapter

Thus, this book-takes you from the simple use of single Unix
corlnmand.s through complex commands to shell script programs to”
an 1n-dep‘th shell programing project.

Throughout the book there is a strong emphasis on examples, so that
you can see how various programming mechanisms work and try
your hand at tinkering with them. All chapters also have an exercise
at the end so that you can test your understanding of the concepts as’
you progress. This makes the learning process easier. Don’t forget to
do the exercises. After all reading about ideas is no substitute for
using them,

If you are a relative novice, i hope this book would make a Unix
programmer of you. And if you are already a programmer, I hope this
book would make you a good Unix programmer. Good luck!
Yashavant Kanetkar

kanetkar @kalptaru.indiagate.com
Aug, 1996

xv

Getting Started

A Unix Biography
Hardware Requirements for Unix
Salient Features of Unix
Multiuser Capability
Multitasking Capability
Communication
Security
Portability
Unix System Organisation
Types of Shells
Bourne Shell
C Shell
Korn Shell
The First Faltering Steps
Unix Commands
What’s in The Name?
Exercise

|2-- Unix Shell Programming |

e are now embarking on a very special journey that of
unveiling and exploring the unlimited expanse that is Unix.
By the end of this journey, we plan to have you make
tentative, if not confident overtures to the Unix Operating system.

But first, let us do away with a few civilities, What was the origin of
Unix? How did it reach the status it enjoys today? Read on.

A Unix Biography

Unix, as the world knows it today, is the happy outcome of the
proverbial rags-to-riches story. What is now heralded as the most
powerful and popular multiuser Operating System (OS) had a very
humble beginning in the austere premises of AT & T’s Bell
laboratories, the fertile spawning ground of many a landmark in
computer history.

The origin of Unix can be traced back to 1965, when a joint venture
was undertaken by Bell Telephone Laboratories, the General Electric
Company and Massachusetts Institute of Technology. The aim was
to develop an operating system that could serve a large community
of users and allow them to share data if need be. This never-to-be
enterprise was called Multics, for Multiplex Information and Com-
puting Service. Even after much time, resources and efforts had been
devoted to the project, the convenient, interactive computing service
as quoted by Ritchie, failed to materialise. This led Dennis Ritchie
and Ken Thompson, both of AT & T, to start afresh on what their
mind’s eye had so illustriously envisioned. Thus, in 1969, the two
along with a few others evolved what was to be the first version of

E Getting Started --3|

the multiuser system Unix. Armed with a museum piece of a com-
puter called PDP-7, a rudimentary file system was developed.
Though this was not tapped to the fullest, it had all the trappings of
atruly potent multiuser operating system. This system was christened
‘Unix’ by Brian Kernighan, as a very reminder of the ill-fated
Multics. Later, in 1971 Unix was ported to a PDP-11 computer with
a 512 KB disk. Unix then was a 16 KB system with 8 KB for user
programs and a upper limit of 64 KB per file. All its assembly code
being machine dependent, the version was not portable, akey require-
ment for a successful OS.

To remedy this, Ken Thompson created a new language ‘B” and set
about the Herculean task of rewriting the whole Unix code in this
high level language. ‘B’ lacked in several aspects necessary for real
life programming. Ritchie sifted the inadequacies of B and modified
it to a new language which he named as ‘C’ - the language which
finally enabled Unix to stand tall on any machine.

Thus, by 1973, Unix had come a long way from its PDP-7 days, and
was soon licensed to quite a number of Universities, Companies and
other commercial institutions. With its uncomplicated elegance it
was charming a following perhaps more effortlessly than the pied
piper of the fables. The essentially accommodating nature of the
system encouraged many a developer to polish and enhance its-
capabilities, which kept it alive and with the times.

By the mid eighties there were more than a hundred thousand Unix
installations running on anything from a micro to a mainframe
computer and over numerous varying architectures - a remarkable
achievement for an OS by any standard. Almost a decade later Unix
still holds the record for being the soul of more computer networks
than any other OS is.

T Unix Shell Programming I

1
lardware Requirements for Unix

From the Lilliputian System on the PDP-11, Unix has emerged to be
a rugged stalwart today. There are some prerequisites for a system
that can host and take best advantage of it. These are an 80 MB hard
disk and at least 4 MB of RAM (Random Access Memory)ona 16-bit
microprocessor (80286, or preferably 80386/80486). So you need a
PC/AT or higher with the aforementioned configuration to employ
Unix to the best of its ability. And how do we connect the terminals
to the host machine? Through a 4/8/16 port controller card installed
in the expansion slot on the mother board of the host machine. One
end of the cable is plugged to the port on the controller card and
another end to the serial port (9 pin or 25 pin) of the terminal. Any
DOS based machine with a serial port can act as a terminal.

Out of 80 MB disk space almost 40 MB is eaten away by the actual
Unix OS files whereas another 10-20 MB is used as swap space. The
swap space is used when Unix falls short of memory. At such times
it temporarily stores in this swap space the contents of memory which
are not immediately required. Whenever these contents are required
they are read back from the swap space.

More the number of terminals more should be the memory on the
host machine. As a thumb rule we can say that per terminal to be
supported 0.75 to 1 MB should be present in the host machine.

Besides the hardware, Unix also requires a considerable amount of
human support. This comes in the form of a System Administrator
who supervises the working of Unix on any installation.

‘Sillient Features of Unix

The ‘}nix 0S offers several salient features, the important of which
are discugged below.

E__ Getting Started --5|

Multiuser Capability

Among its salient features, what comes first is its multiuser
capability. In a multiuser system, the same computer resources - hard -
disk, memory etc. - are accessible to many users. Of course, the users
don’t flock together at the same computer, but are given different
terminals to operate from. A terminal, in turn, is a keyboard and a
monitor, which are the input and output devices for that user. All
terminals are connected to the main computer whose resources are
availed by all users. So, a user at any of the terminals can use not only
the computer, but also any peripherals that may be attached, say for
instance a printer. One can easily appreciate how economical such a
setup is than having as many computers as there are users, and also
how much more convenient when the same data is to be shared by
all. The following figure shows a typical Unix setup.

S =

Terminal

Terminal

i %

Houst Machine
) t L

Terminal Terminal

Figure 1.1

At the heart of a Unix installation is the host machine, often known
as 4 server.or a console. The number of terminals that can be

|6-- Unix Shell Programming]

connected to the host machine depends on the number of ports that
are present in its controller card. For example, a 4-port controller card
in the host machine can support 4 terminals. There are several types
of terminals that can be attached to the host. These are:

(a) Dumb Terminals: These terminals consist of a keyboard and a
display unit with no memory or disk of its own. These can never
act as independent machines. If they are to be used they have
to be connected to the host machine.

(b) Terminal Emulation: A PC has its own microprocessor,
memory and disk drives. By attaching this PC to the host
through a cable and running a software from this PC we can
emulate it to work as if it is a dumb terminal. At such times,
however, the memory and the disk are not in use and the PC
cannot carry out any processing on its own. Like a dumb
terminal it transmits its processing jobs to the host machine.
The software that makes the PC work like a dumb terminal is
called Terminal Emulation Software. VTERM and XTALK
are two such popularly used softwares.

(c) Dial-In Terminals: These terminals use telephone lines to
connect with the host machine. To communicate over
telephone lines it is necessary to attach a unit called modem to
the terminal as well as to the host. Figure 1.2 shows a typical
layout of such a communication with the host machine. The
modem is required to transmit data over telephone lines.

Multitasking Capability

Another highlight of Unix is that it is Multitasking, implying that it
is capable of carrying out more than one job at the same time. It allows
youto type in a program inits editor while it simultaneously executes
some other command you might have given earlier, say to sort and
copy a huge file. The latter job is performed in the ‘background’,
while in the *foreground’ you use the editor, or take a directory listing

Getting Started --7|

.

or whatever else. This is managed by dividing the CPU time intel-
ligently between all processes being carried out. Depending on the
priority of the task, the operating system appropriately allots small
time slots (of the order of milliseconds or microseconds) to each
foreground and background task.

il | e

|

Modem

IR

Host Machine
Terminal
Modem
Figure 1.2

The very concept of a multiuser operating system expects the same
to be multitasking too. We can say this because even when a user is
executing only one command at a time, the CPU is not dedicated to
the solitary user. In all probability, there are ten more users who also
demand execution of their commands. Unix, therefore, has to be on
Its toes all the time, obliging all the users connected to it.

Although crude, MS-DOS also provides a multitasking capability.
The type of multitasking provided by Ms-DOS is known as Serial
Multitasking. In this type of multitasking one program is stopped
temporarily while another is allowed to execute. At any given time
only one task is run. You can liken this to a situation in which a human
Wworking on a computer stops his work to answer a ringing phone and
then, having finished with the call, switches back to the computer.

[8-- Unix Shell Programming]

Most of us must have used Sidekick or some other memory resident
program. Once we load this into memory, a simple keystroke can take
us from Sidekick to another program we may be running or vice versa.

If, for example, we invoke Sidekick in the middle of some calculation
being done, then all work on the calculations would be stopped as the
computer responds to Sidekick. Once you are through with Sidekick
and you hit a key to go out of Sidekick the calculations would then
be resumed. Wouldn't it be far better to give Sidekick only a part of
the computer’s time? So that even while we were in Sidekick the
calculations would carry on being performed in the background. And
this is exactly what Unix does. Using the timer interrupt it schedules
the CPU time between programs. These time periods are known as
time-slices. If there were 10 programs running at one time, the
microprocessor would keep switching between these 10 programs.
At a given point in time only one program will be handled by the
CPU. But because the switch happens very fast we get the feeling
that the microprocessor is working on all the programs simultaneous-

ly.

Thus, multitasking of Unix is different from DOS which does not
give time-slices to running programs. And if there are 5 programs
running in DOS and even one goes haywire, the entire machine hangs.
In any genuine multitasking environment like Unix this does not
happen.

Does Unix give equal time-slices to all programs running in memory?
No. There may be some programs that are relatively more important.
For example, those that wait for user responscs are given a higher
priority. Programs which have the same priority are scheduled on a
round-robin basis.

Communication

Unix has excellent provision for communicating with fellow users.
The communication may be within the network of a single main

—~— —

Getting Started --9|

- -

computer, or between two or more such computer networks. The
users can easily exchange mail, data, programs through such net-
works. Distance poses no barrier to passing information or messages
to and fro. You may be two feet away or at two thousand miles your
mail wilt hardly take any time to reach its destination.

Security

Unix allows sharing of data, but not indiscriminately. Had it been so,
it would be the delight of mischief-mongers and useless for any
worthwhile enterprise. Unix has three inherent provisions for protect-
ing data. The first is provided by assigning passwords and login
names to individual users ensuring that not anybody can come and
have access to your work.

At the file level, there are read, write and execute permissions to each
file which decide who can access a particular file, who can modify it
and who can execute it. You may reserve read and write permissions
for yourself and leave others on the network free to execute it, or any
such combination.

Lastly, there is file encryption. This utility encodes your file into an
unreadable format, so that even if someone succeeds in opening it,
your secrets are safe. Of course should you want to see the contents,
you can always decrypt the file. % 2

Portability

One of the main reasons for the universal popularity of Unix is that
it can be ported to almost any computer system, with only the bare
minimum of adaptations to suit the given computer architecture. As
of today, there are innumerable computer manufacturers around the
globe, and tens of hundreds of hardware configurations. More often
than not, Unix is running strong on each one of them. And lest we
forget, due credit for this feat must be given to the Dennis Ritchie’s

[10-- Unix Shell Programming |

prodigy, C, which granted Unix this hardware transparency. Unix, in
fact is almost entirely written in C.

Unix System Organisation

The functioning of Unix is manned in three levels. On the outer crust
reside the application programs and other utilities, which speak our
language. Atthe heart of Unix, on the other hand, is the Kernel, which
interacts with the actual hardware in machine language. The stream-
lining of these two modes of communication is done by the middle
layer, called the Shell. Figure 1.3 shows the three layers of Unix OS.

Tools and Applications
Shell

Kerncl

Figure 1.3

The shell, or the command interpreter as it is called, is the mediator,
which interprets the commands that we give and then conveys them
to the kernel which ultimately executes them. You canimagine kernel
as a monarch who is in overall control of everything, whereas the
shell as its emissary.

The kernel has various functions. It manages files, carries out all the
data transfer between the file system and the hardware, and also
manages memory. The onus of scheduling of various programs
running inmemory or allocation of CPU time to all running programs

| Getting Started --11|

also lies with the kernel. It also handles any interrupts issued, as it is
the entity that has direct dealings with the hardware.

The kernel program is usually stored in a file called ‘unix” whereas
the shell program is in a file called ‘sh’. For each user working with
Unix at any time different shell programs are running. Thus, at a
particular pointin time there may be several shells running in memory
but only one kernel. This is because, at any instance Unix is capable
of executing only one program as the other programs wait for their
turn. And since it’s the kernel which executes the program one kernel
issufficient. However, different users at different terminals are trying
to seek kernel’s attention. And since the user interacts with the kernel
through the shell different shells are necessary.

Types of Shells

Different people implemented the interpreter function of the shell in
different ways. This gave rise to various types of shells, the most
prominent of which are outlined below:

Bourne Shell

Among all, Steve Bourne’s creation, known after himn as the Bourne
Shell, is the most popular. Probably that’s why it is bundled with
every Unix system. Or perhaps it is the other way round. Because it
was bundled with every system it became popular. Whatever the
cause and the effect, the fact remains that this is the shell used by
many Unix users. This will also be the shell we shall be talking about
extensively through the course of this book.

C Shell

This shell is a hit with those who are seriously into Unix program-
ming. It was created by Bill Joy, then pursuing his graduation at the
University of California at Berkeley. It has two advantages over the
Bourne Shell.

|

[12-- Unix Shell Programming |

Firstly, it allows aliasing of commands. That is, you can decide what
name you want to call a command by. This proves very useful when
lengthy commands which are used time and again are renamed by
you. Instead of typing the entire command you can simply use the
short alias at the command line.

If you want to save even more on the typing work, C shell has a
command history feature. This is the second benefit that comes with
CShell. Previously typed commands can be recalled, since the C shell
keeps track of all commands issued at the command line. This feature
is similar to the one provided by the program DOSKEY in MS-DOS
environment.

Korn Shell

If there was any doubt about the cause-effect relationship of the
popularity of Bourne Shell and it’s inclusion in every package, this
adds fuel to it. The not-so-widely-used Korn Shell is very powerful,
and is a superset of Bourne Shell. It offers a lot more capabilities and
is decidedly more efficient than the other. It was designed to be so
by David Korn of AT & T’s Bell Labs.

The First Faltering Steps

We have done enough homework on Unix now to venture for our first
practical contact with it. Given that your terminal is secured to the
host computer and is powered on, your display prompts you for your
login name. Each user is given a unique login name and a password,
which are like an entry pass to connect to the host machine as a user.

If you haven’t been given a login name and a password, you won’t
be able to gain access to Unix. After you enter your login name, you
are prompted to enter the password which when keyed in does not
appear on the display. Obviously this is to ensure that no chance or
may be premeditated passer-by is able to sneak in on it.

Getting Started -- 13|

.

When you try to access your system, Unix will display a prompt that
looks something like this:

login:aal
Password: heman1

After receiving the login prompt, you enter your login name (aal in
the above example), after which you receive the Password prompt.
At this stage you must type in your password (hemanl in this
example). The password of course would not appear on the screen.
The password you use should be kept private. It is the method used
by Unix to prevent unauthorized entry into the system. The password
should be changed frequently. On many systems, after a specified
period of time, your password expires (ages) and the next time you
login the system requires you to change your password. In addition,
you can change your password whenever you like on most systems
by using a command to alter the password: We would discuss how to
change your password in a later chapter.

Sometimes you may not type the login name or password propqu.
When you do this, the system will respond with the following
message:

login: aat
Password: hemant
Login incorrect

Wait for login retry:
login:

Note that the system does not tell you which one is incorrect, the login
name or the password. Again, this is a security measure. Even if you
type your login name improperly, you will still get the password
prompt. You usually get three to five attempts to get it right before
your terminal is disconnected. Many times a message is displayed to
the system administrator telling him or her that several unsuccessful
attemnts were made on your login name.

Y

[.’4-- Unix Shell Programming |

Once the correct login name and password have been supplied, you
find some welcome messages from the suppliers of the Unix version
installed on the host machine, followed by a command prompt. The
command prompt is a $ (dollar) if you are operating in Bourne shell,
ora % if in C shell. What powers await you here will be unwound as
we progress. For now, take it from me that they do.

You are prompted for the login and the password every time you put
on your terminal. Its purpose is to identify the user and allow access
to the system only after verifying the identity of the user. You will
not be prompted for the login if there is some problem in cables
through which your terminal is connected to the host machine.

Once at the $ prompt you can issue commands. There are several
hundred commands available in Unix. Let us begin with the most
elementary one.

$ who ami
aal tty3a Jun10 09:15

A word of caution before we proceed. All Unix commands are to be
typed in small-case letters. Once you enter the above.command and
press the Enter key the shell interprets your command and then
dispatches a message to kernel to identify the user. The kernel
retrieves the information about you and displays it on the screen. This
information consists of "aal" which is our login name, "tty3a"
signifies the terminal number or the serial port line by which your
terminal is connected to the host machine. The date and time at which
you logged in are also displayed.

In fact the who am i command is a special case of the who command.
The who command is more powerful and displays data about all the
users who have logged into the system currently. This is shown
below:

B 78)

E: Getting Started --15|

$who :

aal ftty3a Jun10 09:15
aa2 fttydc Jun10 09:25
ajay tty3d Jun10 08:22
shilpa tty3b Jun 10 07:10

The format of the output is same as that of who am i. The first entity
isagain the user’s login name followed by the terminal line he is using
and login dates and times.

The end of a Unix session is marked by a logout. This is done by
either typing exit at the $ prompt or hitting Ctrl d. Terminating your
session this way indicates that you have logged out of the system,
Simply turning the power at your terminal off does not result in an
actual exit. Anyone switching on the terminal would then automat-
ically find himselflogged in, bypassing the login procedure. Needless
to say, that would mean goodbye to your file security.

Unix Commands

Having covered this much ground let us now get into the thick of the
things. Most of us would be entering the Unix arena after traversing
that of DOS. So just so as to feel at home, we will first have a look

atsome commands in Unix that are parallel to those available in DOS. ~

That’s the point from where we would begin the next chapter. But
before you turn over to the next chapter where you are going to meet
aplethora of commands, remember a few things that apply to all Unix

- commands.

(a) All Unix commands must always be entered in small case
letters.

(b) Between the command name uud the options that may be
available with the command there must always be a space or a
tab. For example, Is -1. Here Is is the command whereas -l is
the option and the two have been separated by a space. The

| 16-- Unix Shell Programming

option is usually preceded by a minus (-) sign. The options
available with a command are often known as switches.

(¢c) Twoor more options available with a command can usually be
combined. For example, the command Is -1-a is same as Is -la.

(d) If you make a typing mistake, press Backspace to erase char-
acters. Don’t try to back using arrow keys and then attempt
deleting using the Del key.

(e) To cancel the entire command before you press Enter, press
the Del key.

(f) Don’t turn off the computer if you have made a mistake and
all is not going well. DOS users are used to just turning off the
computer if a command behaves strangely possibly by falling
into an infinite loop or some such thing. Unix doesn’t respond
well to such an approach. Instead we need to suggest politely
to Unix to stop execution of the command which is creating a
problem. One way do so is by hitting the Del key. If still the
command is not abandoned try Ctrl d and you would be
returned to the login prompt. And if it is really a bad day for
you even Ctrl d may not be able to do the job. At such times
you got to contact the system administrator who would then
kill your process from memory. How exactly he achieves this
we would explore in a later chapter.

What’s in The Name?

A lot if the name happens to be the name of a Unix command. Unix
commands have strange names. Unlike DOS environment where you
have jazzy names for each utility there appears to be a lack of
imagination as far as naming of the utilities under Unix is concerned.
Under DOS you have C compilers bearing names like Turbo C, Quick
C. Zortech C, Lattice C, Vitamin C etc., whereas under Unix the C
compiler is simply named as cc. If a DOS developer writes a utility

Getting Started --17|

|

for searching expression in a file he is likely to call it as ‘search’ or
‘explor‘f or ‘peek’ or some such name. A similar utility under Unix
pearsaname ‘grep’ standing for ‘globally search a regular expression
and print it’! When a Unix developer developed a utility which could
convert a file (let’s say from lowercase to uppercase) while copying
it, he decided to name it as cc. However, ce was already there standing
for C Compiler. Hence he chose the next best option - dd. What a
Jack of imagination! What we must understand is how-come Un'x
commands have such strange names. This is because when Ken
Thompson gave Unix as a case study to his students, the student
groups started building utilities around Unix. Nobody outside these
groups believed that Unix would ever become popular and success-
ful. The names given to utilities were to serve as reminders to persons
who were developing or using it. You would agree that the names
would have been different and better had people gone about the
development of Unix more systematically. '

~ Exercise

[A] Pick up the correct alternative for each of the following ques-
tions:

(a) Unix OS was first developed by
(1) Dennis Ritchie
(2) Bjarne Stroustrup
(3) Ken Thompson
(4) Brian Kernighan

(b) Unix OS was first developed at
(1) Microsoft Corp., USA
(2) AT & T Bell Labs, USA
(3) IBM, USA
(4) Borland International, USA

(¢) Unix OS cannot run on which of the following Microprbcessor
(1) 8086

| 18-- Unix Shell Programming

(d

(e)

®

(g

(h)

(2) 80286
(3) 80386
(4) Pentium

Unix is written in
(1) Clanguage

(2) Adalanguage
(3) Perl language
(4) Pascal language

In a typical Unix setup the host machine is attached to the
terminals through

(1) I/O card

(2) Sound blaster card

. (3) Disk controller card

(4) 4/8-port controller card

Unix is

(1) Single user, single tasking OS
(2) Single user, multitasking OS
(3) Multiuser, multitasking OS
(4) None of the above

If every user working on a Unix setup is to use the printer, then
the printer should be attached to

(1) The host machine

(2) Any of the terminal

(3) The terminal from where the first login was made

(4) None of the above

For dial-in terminal facility which of the following is a must
(1) Multimedia kit
(2) Modem

-(3) Printer

(4) Terminal emulator

)

()

(B]

(a)
(b)
()

(@
(e)

(f)
(&
(h)
@)

)
(k)

[C]

Getting Started --19|

* Which «of ‘thé following is a popular terminal emulation

software

(1) VTERM b
(2) VT100

(3) COMIT

(4) Perl

Which of the following is a command for searching a pattern
in a file.

(1) find

(2) grep

(3) lookup

(4) None of the above

State whether the following statements are True or False:

Unix uses serial multitasking to support various programs
running in memory.

Unix supports multitasking by giving time slices to various
programs running in memory.

In Unix we can communicate only between users conuectcd to
one host and not with users connected to another host.

Every legal user has to have a login id and a password.

Any user having access to Unix automatically gets an access _
to all the files present in it.

Unix can be ported to a new hardware platform with minimum
changes in the Unix code. .
The Unix kernel acts as an agent betwéen the shell ‘and the
hardware.

In atypical Unix environment there are several kernels and one
shell. '

Bourne shell offers a command history feature.

who is a special case of who am i command.

A command switch for any Unix command always begins with
a/sign.

Answer the following:

[20-- Unix Shell Programming]

(a) What do you mean by password ageing?

(b) What do you mean by multiuser, multitasking OS?

(¢) What are the minimum hardware requirements for installing
Unix? _

(d) Can Unix be installed on a PC/XT with 80mb hard disk and
16mb RAM? If not why not?

(e) Name any 5 salient features of Unix OS.

(f) Which are the different ways of establishing a logical connec-
tion with the host machine?

(g) What is the basic difference between DOS, Windows 95 and
Unix?

(h) Which different types of shells are available in Unix?

(i) What are the long forms of the following Unix commands?
ce dd grep unix

(j) Which different security mechanisms are availab'e in Unix?

2

Gaining Con-
fidence

The Unix File System
Creating Files
Indulging in File Play
Listing Files and Directories
Masking File Permissions
Directory Permissions
Still Better Directory Permissions
Removing A File Forcibly
Other Useful Is Variations
Directory Related Commands
mkdir
rmdir
cd
A Bit of Mathematics
Miscellaneous Commands
Exercise

|22-- Unix Shell Programming

gives information about the user who has invoked this command

after logging in. Remember that in a multiuser system like Unix
knowing who you are and where do you stand is crucial. That is why
wetackled the who am i command first. We also know that who lists
all the users that might have logged in. Let us now find out how are
yourelated with these users. We know that the System Administrator
is in overall control of the Unix installation. In fact he is the one who
has to first create your account with Unix so that you can login. For
that matter unless he creates an account for a particular user the user
is unable to login since Unix won’t recognise such a user. Creation
of an account involves the following activities:

In the last chapter we saw how to execute the who command which

(@) Providing login name to the user

(b) Providing initial password to the user

(¢) Putting the user in one of the groups

(d) Providing a default working shell to the user

(¢) Providing a default working directory to the user

A typical Unix installation might have 25 to 50 users. If this instal-
lation is in a University then the users may be categorised as second
year students, third year students and so on. Accordingly, while
creating such users the system administrator would put all third year
students in one group, all second year students in another group etc.
Similarly, in an industrial setup all users from Accounts department
may be kept in one group, all users from Purchase department in
another group and so on. By dividing all users into groups it becomes
easier for the system administrator to manage them. At the same time

The Unix File System

C Gaining Confidence --23|

it is more convenient for the users themselves tc share their WFJI‘k.
their files and their data. The way the system administrator gives
different login names to different users he also provides names to the
groups to which the users belong. The following figure shows. the
organisation of the users and groups which would give you an idea
about where do you stand among the user community.

System Administrator

| o |
Group 1 Group 2 Group 3
I

||11|l

User1 User2 User3 User4 User5 User6 User7 User8

Figure 2.1

Before we learn any more Unix commands it is essential to under-

stand the Unix File System since Unix treats everything it knows and

understands, as a file. All utilities, applications, data in Unix is stored

as files. Even a directory is treated as a file which contains several

other files. The Unix file system resembles an upside down tree.

Thus, the file system begins with a directory called root. The root

directory is denoted as slash (/). Branching from the root there are -
several other directories called bin, lib, usr, etc, tmp and dev. The

root directory also contains a file called unix which is Unix kernel

itself. These directories are called sub-directories, their parent being

the root directory. Each of these sub-directories contain several files

and directories called sub-sub-directories. Figure 2.2 shows the basic
structure of the Unix file system.

|24-- Unix Shell Programming _]

N AL T S B

unix bin lib dev usr tmp etc

user | user2 user3 bin

Figure 2,2

The main reason behind creation of directories is to keep related files
together and separate them from other group of related files. For
example, it is a good idea to keep all user related files in the usr
directory, all device related files in the dev directory, all temporary
files in the tmp directory and so on. Let us now look at the purpose
of each of these directories.

The bin directory contains executable files for most of the Unix
commands. Unix commands can be either € programs or shell

programs. Shell programs are nothing but a collection of several Unix
commands.

The Iik directory contains all the library functions provided by Unix
for programmers. The programs written under Unix make use of these
library functions in the lib directory.

The dev directory contains files that control various input/output
devices like terminals, printer, disk drives etc. For each device there
is a separate file. In Unix each device is implemented as a file. For
example, everything that is displayed'on your terminal is first written
to a file associated with your terminal, and this file is present in the
dev directory.

Gaining Confidence --25|

. the usr directory there are several directories, each associated with
- ular user. These directories are created by the system ac}-
k ‘pa'r[tlczuor wl;en‘he creates accounts for diffe.ent users. Each user is
n]lil::i:erd to work with his directory (often called hm:ne dirt‘:cto.ry)_ and
zan organise his directory by creating other sub-directories in it, to

contain funetionally related files.

Within the usr directory there is another bin directory which contains
additional Unix command files.

The tmp directory contains the temporary files created by Unix or by
the users. Since the files present in it are created for a ten}pc?rary
purpose Unix can afford to dispense .w:th them. Thcse\ﬁles get
automatically deleted when the system is shutdown and restarted.

All the aforementioned directories are present on almost all Unix
installations. The following figure captures the essence of these

directories and their purpose.

Directory Contains
bin Binary executable files
lib Library functions
dev Device related files
tc Binary executable files usually required for sys-
4 temn administration
tmp Temporary files created by Unix or users
usr Home directories of all users
fusr/bin Additional binary excutable files

Figure 2.3

Following are the salient features of the Unix File System:

[26-- Unix Shell Programming]

(a) It has a hierarchical file structure.
(b) Files can grow dynamically.

(¢) Files have access permissions.

(d) All devices are implemented as files.

These features would be discussed in detail in the following pages.

Creating Files

Now that we understand how the file system is organised in Unix let
us learn a few elementary file related commands. We would first learn
how to create files. There are two commands to do so: touch and cat.
And this is how they are to be used.

$ touch sample

This creates a file called ‘sample’. However, the size of the file would
be zero bytes since touch doesn’t allow you to store anything in a
file. Then does touch serve any purpose? Yes, when we want to create
several empty files quickly. This can be done by saying,

$ touch sample1 sample2 sample3 sample4 sampIeS

You would agree that this is a refreshingly simple way of creating
empty files. But what if we want to store a few lines in a file? Just
type the command,

$cat > test

Now press the Enter key and you wonld find the cursor positioned in
Fhe next line, waiting for you to type the matter that you want to store
in the file ‘test’. Type in two lines of text:

Vatdgrama, Valderama pass the ball to Asprilla
Asprilla, Asprilla shoot the ball into the net

C Gaining Confidence --27|
“I

Once you are through with this press the keys Ctrl d. In Unix the

keys Ctrld indicate the EOF or end of file character. Therefore, when

we press these keys the cat command recognises the EOF character

and promptly saves the matter you typed on the disk in the file “test’.
Naturally, you would once again get back the $ prompt on the screen.

To display the contents of a file under DOS, we use the type
command. In Unix, its counterpart is cat, derived from concatenate.
Saying cat recipe at the command prompt displays the contents of
file recipe on the screen. Thus, to see the contents of the file test that
we created above we should say,

$ cat test

Now we know two uses of the cat command. One is to create new
files and another to display the contents of an existing file. cat has a
few more aces up its sleeve. It can concatenate the contents of two
files and store them in the third file.

$ cat sample1 sample2 > newsample

This would create newsample which contains contents of samplel
followed by that of sample2. A word of caution. If newsample
already contains something it would be overwritten. If you want that
it should remain intact and contents of samplel and sample2 should
get appended to it then you should use the *append output redirection
operator’, >>, as shown below:

$ cat sample1 sample2 >> newsample

Indulging in File Play

Now that we know how to create files and display them let us indulge
ourselves in more file related commands. Like those for copying files,
renaming them, deleting them, listing them etc. Here we go...

|28-- Unix Shell Programming |

In DOS, we copy a file, while in Unix we cp it. For example,
$cp lettera letterb

This will copy the contents of letter.a into a file letter.b. If letter.b
does not exist, it will be created. However, if it does exist, Unix takes
the liberty to overwrite it without warning you.

Look at the following ep command:
$cp lettera letterh letters

In such a use of cp, all files mentioned are copied to the indicated
directory. Provided that the directory letters exists, both files letter.a
and letter.b would be copied to it.

Just as in DOS, 1n Unix too you can copy files from or to different
directories by specifying their name along with the path. Forexample

$cp Jusr/aalb/chapter! Jusr/aal6/newbook/chap1

Herc the file chapter1 is copied from the directory /usr/aalé to the
directory /usr/aal6/newbook. When copied to this directory it would
have the name chap1 instead of chapterl.

While on filenames, we mightas well point out that unlike DOS, Unix
files do not have to follow a stringent 3-character extension rule.
What’s more, the dot in the filenames is treated as any other character
constituting the filename, having no significance whatsoever as a
separator of filename and extension.

Also note that in the above example we have used absolute pathname
torefer to the file chapter1. The absolute pathname started at the root
directory /.

Sometimes instead of absolute pathname we may use a relative
pathname. This refers to the pathname starting from the directory in

R 78

= Gaining Confidence --29|

which you are now. When you type a full pathname starting at the
root directory, the pathname starts with a /. When you type a relative
pathname starting at the current working directory, the pathname
doesn’t start with /. That’s how Unix (and you) can figure out which
kind of path it is.

The counterpart of the del command in DOS is the rm command in
Unix. rm removes the given file or files supplied to it. It works
differently for different options supplied with it. This leads us to a
slight digression wherein we need the most populous entity in Unix
- options or switches. Unix commands have an abundance of options
to manipulate their executions. For instance, saying

$rm i file

where -iis a switch, removes file interactively; i.e. you are asked for
confirmation before deleting the file.

In DOS, to remove a directory, you are first requirea 1o empty the
directory, and then delete it. Unix offers a single command for the
same, -

$rm -r din

This command recursively (-r) removes all contents of dirl and alsc-
dirl itself. That gives us a trailer of the powers of Unix, doesn’t it?

rm used with the -f option removes files forcibly, irrespective of
whether you have write permission to them or not. This would be
more clear in the next section where we deal with file permissions.
For the time being just remember that such an option exists with Unix.

Renaming of tiles in DOS is interpreted in Unix as imoving them.
However, mv is more capable than ren of DOS as we would see.

Suppose we want to rename the file test tc sample we should say,

$mv test sample

[30-- Unix Shell Programming |

The mv command also has the power to rename directories.
$mv olddir newdir

olddir will be renamed to newdir, provided newdir is not already
existing.

But why call the operation ‘moving’ of files rather than ‘renaming’
of files. Because moving a file implies removing it from its current
location and copying it at a new location. However, moving is
different than copying in that the source file is erased from its original
location and copied at the specified destination. This sense of mv
command is exemplified by the following command:

$mv file1 file2 newdir

On execution of this command filel and file2 are no longer present
at their original location, but are moved to the directory newdir.

Let us now ‘move’ on to other file related commands.

Listing Files and Directories

Is is to Unix as DIR is to DOS. It gives the directory listing, or lists
the contents of the current or specified directory. As you might have
fallen in the habit of expecting, s too does more than what plain
simple DIR can do. No wonder, considering the whole gang of
options (switches) it has on its side. Literally. There are around two
dozen options to go with Is (what were they thinking of?) that list the
contents in ways to suit every fancy of yours. Let us begin with the
plain and simple Is without any options.

$ls
carribeans
kangaroos
kiwis

———

Gaining Confidence --31]

e

pakde
pommies
springboks
zulus

No, don’t fall for the filenames that are present in the current
directory. What you should note unlike DIR of DOS Is is intelligent
enough to display the filenames in alphabetical order.

Let us now create a file and then see whether we can list it using Is.

$cat > .cricket

Surat is different than Sharjah

So sixes don't come so easily at Sharjah
Ctrld

Did you expect an error because our filename began with a *.’? Well,
ftienames can begin with a dot. Since no error has occurred while
creating this file we should be confident that Is is bound to list it. Let
us try it out.

$ls
carribeans
kangaroos
kiwis
pakde
pommies
springboks
zulus

Where has the file .cricket gone? Well, well. It is there in the
directory but it is treated as a hidden file. For that matter any filename
Which begins with a ‘.’ is treated as a hidden file. And if we want to
list even the hidden files we need to use the -a option of Is.

$Is -a

)

| 32-- Unix Shell Programming

.cricket
carribeans
kangaroos
kiwis
pakde
pommies
springbeks
~zulus

Now there is another problem? What are the two entries . and ..
signifying? . stands for the current directory whereas .. stands for the
parent of the current directory. These two entries automatically get
created in the directory whenever the directory is created.

Try the following command:

$is p*
pakde
pommies

Let us tackle here a new entity called ‘metacharacters’. No, this is no
digression. If you talk of Is, you generally talk of metacharacters, and
vice versa. Metacharacters are characters that the shell never takes at
face value. They are representative of one or a group of characters,
and constitute Unix’s way of indulging us users. These allow us to
formulate ail sorts of criteria to be satisfied by a string. To understand
them better, we deal with them one by one.

Take the most pertinent one, the question mark. When the shell comes
across a ‘?’. it understands that the symbol signifies any single
character. Consider the following example:

$1s 7ain

gain

main

pain

: Gaining Confidence --33|

rain

Thus, assuming the four listed files to be present in the current
directory, the shell substituted ‘g’, ‘m’, ‘p’ and ‘r’ in turn to display
those files ending in ‘ain’.

The * is interpreted by the shell as presence (or absence) of any
number of characters. Thus saying Is * is same as saying ls, wherein
all the files in the current directory are listed . In fact when we said
Is p*, the shell interpreted it as “list all files whose names begin with
p’. Hence ‘pommies’ and ‘pakde’ were listed.

To list all files in directory mydir which end in, say, x, we would say,

$1s /mydir/*x
cc_fax

i_tax

myUnix

Whatever be the length of the name, if the last letter is an x, it qualifies
for listing.

Another very powerful means for specifying criteria for file selection
is by supplying ranges. If you want to list all files whose name start _
with a vowel, you can say

$1s [aeiou]*

This indicates that the first character of the filename to be listed must
be any one of the letters given within the square brackets, and the
remaining can be anything.

If your requirement is to list those files whose names do not begin
with a vowel, what do you'do? List out all the other 21 alphabets? No
way, Again Unix indulges your whim. You simply tell it to list those
files whose names do not begin with a vowel.

[34-- Unix Shell Programming j

$1s [laeiou]*

The ! symbol complements the condition that follows it. Hence the
above command would list all those files whose first character is
anything other than a vowel.

Remember that the [] is always substituted by a single character. We
can specify a group of characters within [], as in,

Is [a-mic-z][4-9]??

This will list all 5 character filenames in the current directory whose
first character is in the range a to m, the second character is in the
raLge c to z, the third character is in the range 4 to 9, whereas the
fourth and fifth are any valid characters.

Take a deep breath before reading any further. Because whatis going
to follow js a longggg listing... the one obtained by the -1 option used
with Is.

$ls -

total 22 s

-pAxr-X-x 1 userl group 24 Jun06 10:12 carribeans

-wxr-x-wx 1 userl group 23Jun0600:05 Kangaroos

-owxr-xr-x 1 userl group 12Jun 06 12:54 kiwis

drwxr-xr-x 1 userl group 10Jun 06 11:09 mydir

-rwxr-xrwx 2 useri group 22 Jun 06 14:04 pakde

srwxrwxr-X 2 userl group 16 Jun0622:25 pommies

-wxr-xr-x 1 userl group 04 Jun0623:16 springboks
1

~IWXT-XI-X userl group 04 Jun 06 10:17 zulus
Intimidated? Relax as we go along all would flow smoothly. Let us
begin with the first line of the output. ‘total 22" indicates that the total
number of disk blocks that the files in the current directory have
occupied is 22. Generally each block in Unix is of 1024 bytes. But
this is something which can be changed to some other muitiple of
512,

Gaining Confidence -—311

Unix treats all entities - files, directories, devices - as files. Thus to
distinguish between all of them it uses file types. In fact in all the
Jines listed in the output of the command Is -l the leftmost character
indicates this type. A *’ indicates that the file is an ordinary file,
whereas a ‘d’ indicates that it is a directory. Other possible file types
are given in the following figure.

File Type Meaning

- Ordinary file
d Directory file

c Character special file
b Block special file

1 Symbolic link

] Semaphore

p Named pipe

m Shared memory file

Figure 2.4

The character special files and the block special files are normally
present in the /dev directory. These files are used to handle character
oriented devices like terminals or block oriented devices like disks.
When these files are listed the file size entry for these files is replaced
by major and minor device numbers. Usually these files are never
found in user’s directory.

The next nine characters following the file type character are the file
permissions. Each column in succession gives the number of links,
owner name, group name, size of file in bytes, date and time when
the file was last modified, and finally the file name.

The concept of an ‘owner’ comes with the multiuser OS. By default,
the person who creates the file is the owner of that file. A ‘group’

!j(Su Unix Shell Programming]

may be formed of a given number of users, who may be working on
similar data.

How many links the file has essentially determines by how many
different names the file is accessible. When a file has two nnks, it is
not physically present at two places, but can be referred to by either
of the names. This is a very useful feature. If you accidentally delete
a file with a single link or a single name, there is no bringing it back,
as Unix has no file undelete facility. But if a file has 2 links (thereby
two names) your file is safe even if one of the links gets severed. A
link is severed when the file is deleted.

So if a file is very important for you and you want to avoid its
accidental deletion you should establish more than one link for such
a file. The command to do so is fairly straight-forward.

$in poem mypoem

This establishes one more link for the file poem in the form of the
name newpoem. If you now take a long listing you would find that
both these files are listed each showing the presence of 2 links.

The concept of having several links to a file offers another advantage.
If one file is to be shared between several users, instead of giving
each user a separate copy of the same file we can create links of this
file in each user’s directory. This avoids unnecessary duplication of
the same file contents in different directories.

By default any new file that we create has one link whereas any new
directory we create has two links. Why 2 links for a directory?
Because that directory name appears in two directory files. For
example, if we create a directory dirl in adirectory aal, the directory
file aal would have an entry dirl, whereas the directory file dirl
itself would also have an entry dir1 (in the form of . which stands for
current directory). Can you figure out the situation where a directory
hias 4 links? If you are able to do that can you determine the maximum
number of links that a directory can have.

| Gaining Confidence --37)

Let us get back to possibly the most important field in the output of
Is -1: the permission field. The permissions signify who all can access
the file, and for what purpose. This is decided by the files permissions.
A set of nine characters denote these permissions. Let us now take a
closer look at these permissions. There are three types of permissions
to a file.

rread
W write
X execule

There are three entities to which any combination of these permis-
sions are assigned. These entities are the owner, the group, and the
rest (those outside the group). Of the nine characters, the first three
characters decide the permissions held by the owner of the file. The
next set of three characters specify the permissions for the other users
in the group to which the file owner belongs, while the last set decides
the permissions for the users outside the group. Out of the three
characters belonging to each set the first character is for indicating
the ‘read’ permission, the second character is for ‘write’ permission
and the last is for ‘execute’ permission.

The permissions for the file carribeans from the long listing are
IWXr-x--X. Thus, they signify that

(a) the owner can read, write as well as execute the file car-
ribeans.

(b) the members of the group can read and execute the file, but
cannot write to it. A - indicates that the permission is denied.

(¢) all others can only execute carribeans (not literally).

These permissions can be encoded numerically. The weights as-
Signed to the three permissions are:

|

[l
il

|

[38-- Unix Shell Programming l

Permission ~ Weight
read (r) 4
write (w) 2
execute (e) 1

Thus, when all three permissions are available, the total weightage
orvalueis4 +2+ 1,i.e. 7, as is the case with the owner of earribeans.

The group permissions of carribeans are r-x, hence the value is 4 +
0 + 1. i.e. 6. The permissions for the rest are --X, thus the value
aseignedis 0+0+ 1 =1.

Inanutsheli, therefore, we can say that carribeans has the permission
761. When everybody has all the permissions, TWXIWXrwx, they
would amount to 777.

The existing file permissions can be changed by the owner of the file
or by the superuser. The way to change these permissions is by using
the chmod command. It ‘changes the mode’ of the file it is executed
on. If we want the owner of carribeans to have all the permissions
and the group and others none, we say.

$ chmod 700 myfile

If you now take a long listing you would find that the permissions of
the file carribeans have become rwx---«-- 1

This way of changing file permissions is referred to as the absolute
mode. There is another syntax for chmod that changes permissions,
which constitutes the symbolic mode. Its general form is,

$ chmod [who] [+/-/=] [permissions] file
The who here refers to whom the permissions are to be assigned. It

may be the user or owner (u), the group (g) or others (o). If none is
speciiied, all are assumed. The + refers to add permission, - refers to

Gaining Confidence --39]

.

remove permission and = instructs chmod to add the specified
pcnnission and take away all others, if present.

The specified permission, of course, can be r, w or x. The command
to give write permission to all would be

$ chmod +w carribeans

In order to take away execute permission from others as well as group
we would say

$ chmod go-x myfile
What if we are to give a read permission to group and others and take
away their write permission for a file called yankees? In such a case
we should use chmod as shown below:

$ chmod go+r,go-w yankees
What would happen it execute the following command:

$ chmoa ygu=ru=rw file1
This removes all existing permissions and replaces them with read
permission for group and others and read & write permission for
owner of the file filel. Instead of using u/g/o and +/-/= we can
straightaway use the weight (read = 4, write = 2, execuie = 1)
associated with each permission as shown below:

$ chmod 744 filet

This would assign the permission rwxr--r-- to filel.

Can you interpret the following commands? Try your hand at them.

$ chmod 777 filel
$ chmod 654 filet

|40-- Unix Shell Programming j

$ chmod 457 filet

Masking File Permissions

Let us first create an empty file called sample using the touch
command and then try to list it.

$ touch sample
$1s - sample
-W-r-r- 1 userl group 24 Jun0610:12 carribeans

How come that the file permissions for this file have been set to 6447
Ideally speaking, whenever you create a file Unix should ask you
what permissions you would like to set for the file. But then Unix
never spoon-feeds you. It assumes that you are an intelligent user who
understands the importance of file security and then sets up certain
default permissions for the files that you create. What Unix does is it
uses t_he.vatue stored in a variable called umask to decide the default
permissions. umask stands for user file creation mask, the term mask
un;_)lymg which permissions to mask or hide. The umask value tells
Unix which of the three permissions are to be denied rather than
granted. The current value of umask can be easily determined by just
typing umask.

$ umask
0022

Here, tl.-ie first O indicates that what follows is an octal number. The
threle digits that follow the first zero refer to the permissions to be
denied to th; owner, group and others. This means that for the owner
no_permzs.‘;].on is denied, whereas for both, ‘the group and others, a
write permission (2) is denied. Whenever a file is created Un,ix
assumes that the permissions for this file should be 666. But since
Sousr[:;}naskdva]ue is 0.22, Unix subtracts this value from the default
igthen u\:;deagf;m]ssmr_]s g666) resulting in a value 644. This value

5 the permissions for the file that you create. That is the

S Gaining Confidence --4]|

L________

reason why the pf:rrriissions turned out to be 644 or rw-r--r-- for the
file sample that we created.

gimilarly system-wide default permissions for a directory are 777.
This means that when we create a directory its permissions would be
777 - 022, i.e. 755. You must be wondering of what significance
would execute permission be for a directory, since we are never going
to execute a directory. But remember execute permission for a
directory has a special significance. If a directory doesn’t have an
execute permission we can never enter into it.

Can we not change the current umask value? Very easilv. All that
we have to say is something like.

$ umask 242

This would see to 1t that here onwards any new file that you create
would have the permissions 424 (666 - 242) and any directory that
you create would have the permissions 535 (777 - 242).

Directory permissions

Read, write and execute permissions for files are alright, but these
permissions for directories have more to them than meets the eye.
We know that directories too are treated by Unix as files. A directory,
as Unix perceives, is a file which contains the names of the files
present in the directory. Hence a read permission on a directory
allows the listing of the directory contents and nothing else. No
changing over to that directory or removing or modifying files.

If one has only a write permission to a directory, itis as good as having
no permissions at all. You can’t read it, so listing of its contents is
not allowed. Neither can you enter it, as no execute permission exists.
Rather like blindfolding somebody, tying up his limbs and then
‘generously’ telling him to eat whatever he can see!

|42-- Unix Shell Programming _]

A variation of the same syndrome is in assigning only an execute
permission. With an execute permission, you can do a cd (cd stands
for change directory) and enter the directory, but that’s it. You can
neither read nor modify or create files in the directory.

Since we don’t favour any Nazi or sadistic tendencies, we would want
to allow others just so much freedom as ensures our safety. As
owners, we would certainly like to have all three permissions. For
users of the same group, a read as well as execute permission can
pose no threat. The read permission will allow them to see the
contents and the execute permission to enter into the directory.
Anything further may prove detrimental to our health.

For all others, aread permission is 21l we need to grant All and sundry
are not expected to wander into our domains.

Thus, the best combination of permissions to be granted to directories
may be rwxr-xr--, which numerically amounts to 754. Security at
the directory level plays a significant role. For instance, a trespasser
may easily delete files to which he has no permissions, provided he
has access to the directory in which itis present.

If we have a read permission to somebody’s directory we can do a ls
on it. If we have an execute permission to this directory we can go
into it using the cd command. Finally, if we have a write permission
toit we can copy a file into this directory using the ¢p command. And
then we may have a combination of these permissions. Figure 2.5
shows what we can achieve through such permissions.

Still Better Directory Permissions

We saw above that 754 permissions for a directory are powerful
erough to guard your directories from intruders with malicious
intentions. To make it virtually impregnable we may add a ‘sticky’
bit to it. Contrary to its name there is a lot more to it. When this bit

Gaining Confidence 43|

o

«sticks’ onto the directory, no matter what a hacker does he can never
delete any files in this directory. With the sticky bit attached to the

I

’—’ff T =T
Directory Permissions for | ed Is cp c
group and others Into Elz'om
r-- error works | error error
-w- error error error error
--X works | error error error
rw- error works | error error
r-X works | works | error works
WX error works | error
WX works | works | works

Figure 2.5

directory only the owner of the directory or the superuser can delete
files from this directory. Let us understand this with an example.

Suppose we have assigned the most liberal directory permissions
(777) to a directory called mydir. The following command confirms
this. -

$1s -Id mydir
drwxrwxrwx 2 userl group 50 Jun 11 10:50 mvdir

Note that we have used the option -d since we want Lo see the long
listing of a directory. We (user1) being the owners of this directory
we can set the sticky bit for this directory by saying,

$ chmod u+t mydir

Let us now see if any change has taken place in the permissions of
the directory.

i}

[4_4-- Unix Shell Programming

$1s - mydir
drwxrwxrwt 2 user! group 50 Jun 11 10:50 mydir

Notice the ‘t’ at the end of the permissions. The sticky bit has been
set up. Here onwards it would guard all the files in this directory
against an intruder trying to remove or modify them. The intruder
may read your existing files or create a few himself, since your
generous permissions permit it, but delete, he cannot, come what
may. Let’s confirm this.

'Assume that there is a file called chapl.bpb in the mydir directory.
Let us attempt to delete it.

$rm /mydir/chap1.bpb
chap1.bpb: mode 644 7y
rm: chap1.bpb not removed.
Permission denied.

['hope that sets to rest any doubt that you may have about the power
of the sticky bit. So to ensure that your files in an important directory
remain fail-safe first assign the permission 754 to this directory and
then add the sticky bit to it. If we are to carry out both the jobs

simultaneously we can use the weight [associated with a sticky bit
as shown below:

$ chmod 1754 mydir

Can an intruder modify files that are present in the directory whose
sticky bit is set? That depends upon permissions of the individual
files present in this directory.

Can we not set the sticky bit for a file, and thereby ensure that nobody
can delete it? No, because significance of a sticky bit with reference
to a file is different. When a sticky bit is applied to a file, the file
sticks around in memory even when its execution is over. This
ensures that next time we have to execute it, it is not necessary to read
it back from disk, thereby saving the read time. Great. So we should

Gaining Confidence --45 |

[—

¢ the sticky bit for every file that we create. Not really. E_&ccaus.c
Se] superuser can set the sticky bit for a file. Moreover, sticky bit
g:nybe set only for a binary executable file. When set fqr any other
file it carries no meaning. So if we can’t set the sticky bit Oum-elv?%
at least let us see which file has a sticky bit set. One good example is

4 file called vi.

$1s - /usrbinivi o
-wx-x-t 5 bin bin 132424 Dec 151991 /usr/bin/vi

Note the ‘t’ in the permissions field. vi stands fqr 'vi?ual editor’ and
since on any installation many users work “:'nh vi the superuser
usually sets up a sticky bit for this file. Thls ensures that once
executed there is no need to reload vi from disk during subsequent
executions. Quite an economy of time, you would agree.

Removing A File Forcibly

Now that we understand file permissions let us see how can we
remove a file to which we do not have a write permission. Thls can
be achieved by using rm with -f option as mentioned earlier. For
example, if we have permission r-- to a file letter, we can delete the
file by using

$rm -f letter

Ordinarily we cannot delete a file unless we have a write permission
to it. Had rm not provided the -f option we would ‘lmve been first
required to add the write permission to the file using the chmod
command and then delete it using rm.

As you must have guessed, the -f option is applicable _onl;* to files of
which you are the owner. You of course cannot forcibly delete
somebody else’s files using the -f option of rm.

—al

Other Useful /s Variations

We already know the -a and -l option of ls. Let us wander a little
further. Try the -r option. It lists all the files in the present directory
including the files present in any sub-directories that may be present
in the current directory. When it encounters any sub-directory firstly
all files in this sub-directory are listed before listing the next file in
the current directory.

Two more options are useful. -s and -i. The -s option lists the files
along with their sizes (in blocks, not bytes), whereas, the -i option
lists the files along with their inode numbers. At this stage we don’t
know what are inode numbers. As we progress we would see that
they are crucial in understanding how files are created on the disk.

lc and If are look-alikes of Is. The first one displays the files in
columnar fashion, whereas the second puts a * after all executable
files and a / after all sub-directories present in the current directory.

$lc

carribeans chap3.bpb chap6.bpb kiwis pommies
chap1.bpb chap4.bpb cricket mainfile .. springboks
chap2.bpb chap5.bpb kangaroos pakde zulus

$If .

carribeans® chap3.bpb chapb.bpb kiwis pommies
chapl.bpb chapd.bpb cricket® mainfile* springboks
chap2.bpb chap5bpb kangaroos/ pakde/ zulus/

Thus, If provides a handy way to determine which is an ordinary file,
which is a directory and which is an executable file.

So much about the variations of Is. I hope you got the idea by now?
If you're really interested in the whole bunch (are you sure?) of
options available with Is you are referred to the Unix manual.

———

[46-- Unix Shell Programming :l

Gaining Confidence --47|

e

pirectory Related Commands

When the user logs in he is always brought to his default working
directory (often called home directory). A convenient way of finding
in which directory you are a pwd command is provided. pwd stands
for ‘present working directory’

$ pwd
Jusr/useri

The current working directory is displayed as /usr/user1. Note how
the detailed path is listed so as to leave no doubt in the mind of the
user. The / denotes the root directory of the Unix file system. Within
this root directory there is a sub-directory called usr within which
there is another directory called user1, That's where we are working
right now. Hence the path from the root directory is listed as
Jusr/userl. Note that unlike DOS where \ (backslash) is used to
specify a path, in Unix a / (slash) is used.

mkdir :

Another commonly used directory command is mkdir. It isa counter-
part of MD or MKDIR of DOS. Case is one issue Unix is vehemently
touchy about. So while mkdir is fine, M KDIR simply won't touch
the right chords.

$ mkdir book
The above command creates a directory named book.

Among the options available with mkdir is -p, which allows you to
create multiple generations of directories, at one go That means. it

3

|48-- Unix Shell Programming j

creates all the parent directories specified in the given path too,
Here’s an example.

$ mkdir -p works/bpb/unix/book

The -p option tells Unix to first create works, then within it bpb, next
its child directory unix, and lastly book, nested within all these. Neat,
isn’tit? And then they say Unix wasn't meant to be user friendly.

Suppose you want to create a directory which should have permus-
sions 754 irrespective of the umask value you can use the command,

$ mkdir -m 754 newdir

Confirm the permissions set for this directory using Is -1. You would
find the permissions to be rwxr-xr--.

Also note in this long listing that the number of links for this directory
are 2. By default any new file created has 1 link, whereas any new
directory created has 2 links. Why this disparity? Because whenever
a directory is created two entries for this directory are made. For
example, assume that newdir was created in the parent directory, say
chapters. As we know a directory file contains a list of all files and
sub-directories present in the directory. Thus, one entry of newdir
would be in the chapters directory file. The second entry of newdir
would be present in the directory file newdir itself, in the form of a
‘. The * " as we know signifies the current directory.

rimdir

Dedicated to removing directories is the command rmdir, though rm
is also capable of the job. With the -p option, rmdir wields enough
power to remove not only the specified directory, but also its parent

directories. However rmdir only removes the empty directories.

Thus, to remove the directory book created earlier, we say

-

Gaining Confidence --49|

$ rmdir works/bpb/unix/book

In order to remove the parent directories of book, we say

$ rmdir -p works/bpb/unix/book

Here on removing the book directory if the unix directory .falls empty
then it is removed. On removing the unix directory if the hpp
directory falls empty then that too gets removed and so on. This
process stops when rmdir bumps into a non-empty parent directory.

cd

In Unix parlance too, ed is for changing over to a new directory.

$ mkdir newdir
$ cd newdir

This would take you in newdir. To confirm that you really do reside
in newdir now, we can use pwd.‘

$ pwd
Jusr/user1/newdir

cd when given without any argument is interpreted by the shell as 4
request to change over to the current user’s home directory. Stray
where you please, a ed will bring you back where you belong - to

your home directory.

$cd
$pwd
fusr/user1

While using ed you can tell Unix in two ways exactly which directory
you want to go to: '

Ll

————

]

50-- Unix Shell 2728 anming

Using full pAthname or gbsolute pathname
Using arelaf!V€Pathname (the pathname starting from where you
are now)

If youtry to mov®€ t0adirectory that doesn’texist or if you incorrectly
type the director’y M@Me or pasthname, Unix reports an error.

A Bit of MathéMatics

Unix keeps a v€'Y Useful feature handy. The calculator called be,
possibly short fOF l::ase conversion, which is one of its functions, or
the ‘best calculat®l - Your giess is as good as mine. It is invoked by
typing be at the shell Prompt. Once you type be at the prompt, you
are in the calcul#t°T Mode, and the $ the prompt disappears. That is
the only way th¢ S€ved ard laconic Unix indicates to you that it
has braced itself 10 €arry outeven the most mind-boggling calcula-
tions. The inpul © the calcalator is taken line by line. Enter an
expression and UnIX supplies the result as shown here:

$be
10/2*2
10
252542
8.25

quit

The input and rc‘;‘u“s are sef-explanatory. Typing quit ends your
tryst with be. Whil€ Workingwith floats if you want precise answers
all that you need ©© 90 is set (1 variable scale to a value equal to the
number of digits At the cecimal point till which you want the
answer to be printed-

$be
scale =1
2.25 +1
3.35

Gaining Confidence --51 |

=

Foxed? How come even after setting the .scale we ’arc gettiq g answa
upto second place after the decimal point? That's the point. After
setting the scale variableif the answer of an expression turns outmore
than what scale can provide then the value in scale is ignored and the
correct answer is displayed.

Another of be’s useful features is that of base conversion. _You no
Jonger have to sweat it out what 1 1010011 amounts to in decimal, or
what 89275 is in hexadecimal or octal. Two commands, ibase and

obase rescue you.

$be

ibase =2
obase = 16
11010011
89275
1010

A

quit

By setting the variable ibase to 2 and obase to 16 all input that we
supply is taken as a binary number whereas all output is dispiayed in
hexadecimal.

be also supports functions like sqrt, cosine, sine, tangent &tc.

$be

sqrt (196)

14

s(3.14)
unimplemented

sqrt() is an in-built function wheréas s() and ¢() which s.tand for
sine and cosine respectively would work only when be is invoked
with the -1 option.

$be-l

—

|5_-- Unix Shell Programming

scale=2
s(3.14)
0

Note that the trigonometric functions expect their arguments in
radians and not in degrees.

be also allows setting up of variables. The life of these variables is

~until you exit be (by typing quit). These variables can be used in

programs. Yes, be is a programmable calculator in its truest sense.

$be
for(i=1;i<=5;i=i+1)i
1

LSLIE R 7S B L)

quit

This Clike program prints numbers from 1 to 5 using a for loop which
gives values 1 to 5 to the variable i. Giving values is alright but how
do you print the variable’s value? Simply by mentioning it’s name,
as justified by the i following the closing parentheses in the above
program.

The scope of be’s programming ability is vast. What we have done
here is only the tip of the iceberg. It can support loops, decisions,
function definitions, several operators etc. Just say man bc and
explore on your own what more be has to offer.

Another utility that aids computation in Unix is expr. The almighty
bc need not be beseeched for analysing a simple expression here or
a formula there. expr can handle that easily. It gives the result of the
expression it acts on

$ expr 100 + 50

I:: Gaining Confidence --53|

150
$ expr 3*2
6

Why the \ preceding the “*’ in the second expression? Remember
while working with shell a * always expands to all files in the current
directory. The \ just takes away this special meaning of *,

Though useful expr can’t handle floating point arithmetic. In such
cases we have no recourse but to invoke be.

There is another math related command available in Unix: factor.
When factor is invoked without an argument, it waits for a number
to be typed in. If you type in a positive number less than 2746 (about
7.2e13) it will factorise the number and print its prime factors; each
one is printed the proper number of times. Then it waits for another
number. It exits if it encounters a zero or any non-numeric character.
For example,

$ factor
15
3
5

28

no

q
$

If factor is invoked with an argument, it factors the number as above
and then exits.

Unix provides another handy utility called units. It converts quan-

tities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

L—__

[54-- Unix Shell Programming]

$ units

You have: inch
You want: cm
*2.540000e+00
/3.937008e-01

Wha.t the above output means is if we are to convert inches to
centimeter we got to multiply the inches with 2.54 or divide inches
by 0.3937008. The way units understands various units possibly no
}}uman being can. For example, it understands distance through units
like cm, meter, km, inches, feet, mile, nautical mile, yard etc. Itknows
that quantity of liquid can be measured in liters, quarts, pints, gallons
etc. And of course it understands units like weber, henry, faraday,
coulomb, newton, joule, kelvin, rankine etc. It understands all the
currencies in the world and knows their conversion rates. We couldn’t
ha\.rc expected more. As on date units understands 484 different units
a]’:st of which can be seen by displaying the file /usr/lib/unittab
using the cat command.

Miscellaneous Commands

Before getting down to business, let us first go through a few
commands that help us get a stronger feel of the ambience. These are
commands that in general give us information about the network and
we, its users.

$ logname
userl

The command logname prints the login name of the user.

Unix knows each user not only by the login name, but also by two
numbers called the user and group identity numbers. Those, obvious-
ly are distinct for each user and are used by Unix for operations
regarding that user. To print these, say at the shell prompt

; Gaining Confidence --55|

$id :
uid=202(user1) gid=50(group)

If we are to find the name of the Unix system we are using we cau.
use the command uname as shown below.

$ uname
SCOSYySV

[n addition to above information if we want to know the details like
the release number, version number, OEM number, type of the
microprocessor (80386, 80486 etc.) on which Unix is-béing run, type
of bus the microprocessor has, number of CPUs present in the host
machine etc. we can use the uname command with the -X option.

For each terminal on the network, Unix uses a file. The output
displayed on its monitor is picked from the file associated with the
terminal. Thus, there is a different file for each terminal. All these
files are present in the /dev directory. To Unix, all devices are nothing
but files. It sees each terminal as a special file. To find out the name

of your terminal file, say

$ tty
[devitty1a

So all your transactions with the Unix system are via the file
/dev/ityla.

Te see who all are currently sharing the network with you, there is
the command who which gives a list of all the users on the system,
their terminal names and the date and time at which they logged in.
If you are not interested in everybody, just want to get some infor-
mation on yourself, there is the rather philosophical sounding com-
mand who am i. It is a special case of who, listing only one user,
yourself,

$whoami

|56-- Unix Shell Programming __]

usert ttyla Apr20 01:02

- To display the current date and time, there is the date command.

$ date
Sat Apr 20 04:40:10 IST 1996

So t.hat was the instant we entered the date command, IST signifying
Indlgn_ Standard Time. The output of the date command can be
modified by a variety of switches. For example,

$ date "+DATE : %d-%m-%y %n TIME : %H:%M:%S’
DATE : 17-06-96
TIME : 10:55:25

Note that the format in which you want to print the date must be
en.closcd within a pair of single quotes and the format should begin
witha+sign. As can be guessed %d, %m and %y signify day, month
-and year, whereas %H, %M and %S signify hour, minute and
second. The %n ensures that what follows is displayed on a new line.

Under Unix a lot of significance is attached with time: Hence a real
time -:?Iock keeps time, and according to it times of creation or
modification of files and directories, login and logout times etc. are
recprded. The real time clock also sees to it that Unix performs certain
actrons‘it is instructed to at the specified time. With quite a lot
f:lependmg on the system time, the privilege of changing tl;e set time
1s reserved for the superuser alone.

Exercise

[A] Fill in the blanks

(2) Binary executables required for system administration are
, usually placed in directory.
{(b) All user directories are usually placed in directory.

-

(©
(d

©)
()
(g)
(h)
[B]
(a)
(b)
(c)
(d)
(e)
(f)
(2)
(h)
)
G)
(k)

€]

(a)
(b)
(c)

(d)
(e)

Guaining Confidence ——57l

Hidden files in Unix always begin with a character __.

To list hidden as well as the normal files in the current directory
the command you would use is :

Usually the size of each block in Unix file system is of __
bytes.

If there are three links for a file then the number of copies of
the file would be ___.

The default system-wide permissions for afileare ___and that
for a directory are ___.

The default value of umask is __.

State whether the following statements are True or False:

All devices in Unix are implemented as files.

All device related files are usually present in /tmp directory.
A terminal file is always a block special file.

Directories do not have execute permission.

The wildcard characters ‘*’ and ‘?’ have the same meaning in
Unix as they have in DOS.

The minimum number of links for any directory file are 2.

A directory can have more than 2 links.

A common user cannot set sticky bit for his file.

Setting a sticky bit for a non-executable file is meaningless.
A user can change his password using pwd command. -
The way we use cd to change directory we can use md to make
a new directory.

Log into a Unix system and try to perform the following
operations:

Create 5 empty files emptyl, empty2, empty3, empty4 and
emptys.

Create a file called text and store your name, age, sex and
address in it.

Display the contents of the file text on the screen.

Make a copy of the file text into another file newtexu

Create a file matter and type any two sentences in it.

,i(?—- Unix Shell Programming

()

(g)
(h)
(i)
Q)
(k)
(1

(n)
(0)
(p)
(q)

[C]

(a)
(b)
(c)
(d)
(e)
(f)

[D]

Delete the file text.

Create one more link called tmpfile for the file matter
Change the permissions for the file newtext to 666 .
Rename the file newtext to oldtext. ‘
Create a directory mydir in the current directory

Move the files oldtext and matter to the directm:y mydir

(m) Create another directory newdir within the directory mydir

Copy I!’l]f! contents of mydir directory to the newdir directory
Delete interactively all empty files created earlier N
Setup sticky bit for the directory newdir. '

Delete the directories mydir and newdir at one shot

Suppose there are following files in present working directory:

art
part
parti
pan?
part3
mozart
tart
quartz

Which of the above files ali i
searches: would qualify for the following

Is a?

Is a*

Is %t

Is [labclart
Is [albclart
Is [b-dku-z]*

Answer the following:

—1

(@)
(b)

(d)
(e)
€3]
(g)
(h)
(i)
g)

(k)
()
(m)
(m)
(0)
(p)

(C)
()

Gaining Confidence --59]

What does a sticky bit for a directory and a executable file
signify?
State two different ways in which you would identify whether
a given file is an ordinary file or a directory.
How would you identify whether a given file is an executable
file or not without executing it?
Suppose the path dir1/dir2/dir3/dir4 exists in your directory.
All these directories are empty. How would you remove all of
them at one shot?
Write a program using be to find factorial value of a number.
Write a program using be to print squares, cubes and square
roots of all numbers from 1 to 50.
Write a program using be to print sine and cosine values of all
angles from 0 to 360 degrees in steps of 5 degrees.
How will you find the current Rupee to Dollar and Dollar to
Yen conversion rate?
What does uid and gid signify?
How would you find with which version of Unix you are
working and the processor on which this version is running?
If the path dirl/dir2/dir3 exists then how many links would
the directory dir2 have?
Write the Unix equivalent of the following DOS commands:
DIR DEL COPY TYPE
CD MD RD REN
What is the meaning of . and ..?
How will you change over to the parent of parent of current
directory without using any directory names?
How will you print the listing of the parent directory from the
current directory?
If you have gone to some other directory, how will you come
back to your default directory without using the default direc-
tory name? :
How will you copy a file "aaa.c” present in current directory
to a directory "ddd" present in the parent directory?
How will you forcibly remove a file to which you don’t have
write permission?

-

60-- Unix Shell Programming

(s)

(t)
(u)

(v)
(w)
(x)

(y)
(z)

How will you print the contents of files "aaa" "bbb" "ccc” using
a single command?

How will you list the current directory in columnar format?
How will you list all files in current directory whose second
character is a digit?

How will you list all filenames starting with *a’ or *b’ or 'k*?
What are the typical characteristics of a Unix file system?
What will be the effect of following Unix commands?

umask

chmod 777 aaa.c

chmod u+w g-w abcd.out

chmod ug+w a=x ffff.out

chmod u+t mydir

Which is the ideal directory permission? What operations can
be performed by user, users in the group and others in a
directory with ideal permissions?

. Whatis the usual permission settings for a file and a directory?

How will you find out prime factors of a number 2182

—

The Unix File
System

The Boot Block
The Super Block
The Inode Table
Data Blocks
Surrogate Super Block and Inode Table
How Does Unix Access Files
Storage of Files
Disk-Related Commands
Checking Disk Free Space
dfspace Makes More Sense
Disk Usage - The du Command
The ulimit Command

Exercise

around with the utilities Unix offers on a silver platter. No

doubt, it’s no mean offering. But it’s worth going back-stage
and getting the feel of how Unix actually runs the show. Knowing
about what goes on inside a Unix file system is, in fact, a must for
anyone who cares for serious programming.

ﬁ § an average user one may be satisfied by just tinkering

A *file system’ is a group of files and relevant information regarding
them. Your whole hard disk may comprise a single file system or it
may be partitioned to house several file systems. However, the
reverseis nottrue. No file system can be split over two different disks.
Creation of file systems is dealt with ina later chapter. For the present,
let us concentrate on understanding an already installed file system.
The disk space allotted to a Unix file system is made‘up of ‘blocks’,
each of which are typically of 512 bytes. Some file systems may have
blocks of 1024 or 2048 bytes as well. The block size depends upon
how the file system has been implemented on a particular installation.
It may also change frem one Unix version to another. Should you
want to find out the block size on your file system, use the emchk
command which reports the block size.

$ cmehk
BSIZE = 1024

The block size rarely exceeds 2048 bytes. Whenever a file is created
one block is made available for storing this file’s contents. Thus, on
afile system whose block size is 2048 bytes if we create a small file
of 1000 bytes still one block (2048 bytes) would be assigned for this

[62-- Unix Shell Programming]

file’s storage, thereby wasting precious 1048 bytes. Then won’t it be

The Unix File System --63)

worthwhile having as small a block size as possible? No, because if
he block size is 512 bytes and we create a file of 2000 bytes then to
store it on the disk four disk accesses would be necessary. Remember
disk accesses are time consuming. More the disk accesses required
more would be the time required for reading/writing this file.

All the blocks belonging to the file system are logically divided into
four parts. The first block of a file system is called the ‘Boot block’
which is followed by ‘Super block’, ‘Inode Table’ and ‘Data Blocks’. |
Let us understand these blocks one by one.

The Boot Block

This represents the beginning of the file system. It contains a program
called ‘bootstrap loader’. This program is executed when we ‘boot’
the host machine. Although only one boot block is needed to start up
the system, all file systems contain one (possibly empty) boot block.

The Super Block

The super block describes the state of the file system - how large it
is, how many maximum files can it accommodate, how many more
files can be created etc. :

The Inode Table

We know that all entities in Unix are treated as files. The information
related to all these files (not the contents) is stored in an Inode Table
on the disk. For each file, there is an inode entry in the table. Each
entry is made up of 64 bytes and contains the relevant details for that
file. These details are:

(8) Owner of the file
(b) Group to which the owner belongs
(¢) Typeoffile

(d) File access permissions

(e) Date and time of last access

(f) Date and time of last modification

(g) Number of links to the file

(h) Size of the file

(i) Addresses of blocks where the file is physically present

Data Blocks

These contain the actual file contents. An allocated block can belong
to only one file in the file system. This block cannot be used for
storing any other file’s contents unless the file to which it originally
belonged is deleted.

Surrogate Super Block and Inode Table

Judging by the information stored in the Inode Table, we can see that
this must change whenever we use any file, or change its permissions,
etc. Making these changes on the disk would gobble up a lot of
precious CPU time. To remedy this, a copy of the Super Block and
Inode Table gets loaded into memory (RAM) at start-up time. Since
memory access is faster than disk access, a lot less time is consumed
inrecording the changes in the RAM copies of Super Block and Inode
Tableevery time some modification occurs. The original Super Block
and Inode Table on the disk are updated after a fixed interval of time,
say every 30 seconds, by a command called sync. sync synchronises
theinode table in memory with the one on disk by simply overwriting
the memory copy on to the disk. Thus, the changes that may have
been recorded in the copy in memory during the last interval of 30
seconds get duly registered on the disk.

|64-- Unix Shell Programming j

-

P

~The Unix File System --65|

gow Does Unix Access Files

Internally a file is identified by Unix by a unique ‘Inode number’
associated with it. We can obtain the inode number associated with
a file by using the command Is -i.

$1s -i reports
reports 12324

Here 12324 is the inode number. We know that a directory in Unix
is nothing but a file. A directory file contains the names of the
files/sub-directories present in that directory along with an inode
number for each. The inode number is nothing but an index into the
inode table where the information about the file is stored. For ex-
ample, amongst several slots present in the inode table slot number
12342 contains information about the file reports.

Suppose the file reports is present in a directory called mydir. If we
attempt to cat the reports file let us see how Unix would handle this
situation. Firstly, it would check whether we have a read permission
to the mydir directory file. If so. it would find out whether this
directory file has an entry reports in it. If such an entry is found then
it would pick up the inode number for this file from mydir. This inode
number as we know is an index into the in-core (memory) inode table.
Using this inode number the information about reports is accessed
from the inode table. From this information it is ascertained whether
we have a read permission for the reports file. If so then the contents
of the reports file are read from the disk addresses mentioned in the
inode entry of reports and displayed on the screen.

Storage of Files

Amongst other information, each inode entry in the inode table
consists of 13 addresses each, which specify completely where the
contents of the file are stored on the disk. These addresses may be
numbered O through 12. Of these, the first ten addresses, 0 through 9

—

"56-- Unix Shell Programming j

point to 1 KB blocks on disk. For example, a file of size 3 KB may
have its entries as shown in Figure 3.1. The address 4970 signifies
where the first | kilobytes of the file are stored. The next 1 KB chunk
is at 5231, and the-next at 3401.

Typical Inode Entry
3

Owner

Group
File Type
Permissions
Access Time
Modification Time
Inode Modi. Time
File Size

4970

5231
3401

4970

5231

3401

Figure 3.1

These addresses mayl be scattered throughout the disk, as files are
stored in chunks wherever empty blocks of disk are available. This
is specially the case with large files, for which a very big chunk may

The Unix File System --67|

-

be impossible to find. Thus, the addresses 0 to 9 can ha:}dle a file of
2 maximum size of 10 KB. For files larger than this, Unix h_as a very
interesting way of indicating their location. Have a look at Figure 3.2.

[FileType | 4970
Permission o
Access Time
Modification Time
Inode Modi. Time 5231
Size .

0 4970 | i

1 5231

75 3401 3401

3 7654 :

4 8765 .

5 9877 B

6 7666 I

7 4444

: 7665 7665

9 8771] T et

10 7777 & [:
|11 | 8888 I
| 12 | 9999

L

]
[¥5)

Figure 3.2

|68-- Unix Shell Programming j

As can be seen from the figure the 10% entry also contains an address
ofa 1 KB block. This block doesn’t contain the file contents. Instead,
it consists of 256 four-byte slots which can store-256 more addresses.
Each of these 256 addresses can point to a 1 KB block on disk. Thus,
for a file which occupies 12 blocks on the disk, the first 10 addresses
would be found in the inode entry for this file, whereas address of
11" and 12" block would be present in a 1 KB block whose address
in turn is stored as the 11'" address in the inode entry.

Thus, the maximum file size that can be addressed using the 1ot
address entry is 256 KB. This is called Single Indirection.

For a still larger file, Double Indirection is used. The 12" address in
the inode entry points to a block of 256 addresses, each of which in
turn points to another set of 256 addresses. These are the addresses
of 1 KB chunks, making the maximum file size accessible by Double
Indirection equal to 256 x 236 KB, which is 64 MB.

For an even larger {.le - you guessed it - Unix uses Triple Indirection.
This way, the last address ir the inode entry yields a massive 256 x
256 x 256 KB, i.e. 16 gigabytes!

That means, the maximum ftle size Unix provides for is the sum of
sizes accessible by the 13 addresses that occur in the inode entry.
Together, they yield 10 KB+ 256 KB + 64 MB + 16 GB, which is
more than sufficient for all practical purposes.

That was some enlightenmert! Now we know how Unix handles files
and keeps track of them. Being aware of Unix’s way of doing things
is the best way to use it to weeld its full power.

Let’s now see what links have to do with inode numbers.

If we choose to rename a file. all that Unix does is associate the new
name with the same inode number and forget the old name. This
association may be thought of as a link with the inode number, or in
essence with the file. Unixprovides for its files to have more than

——p—

-

The Unix File System --69)]

i

¢

one such links. For instance, a file called reports in the root directory
may have a link called results in a sub-directory. The way to create

a link is by saying,
$In reports impdir/results

Assuming that impdir is a directory present in root, it now contains
the entry for results, whose inode numbet is, say, 12324. We can
check what the inode number of reports was, in the first place, by
using Is with -i option.

$ls - reports
12324 reports

This is no coincidence - the inode numbers of reports and results
have to be the same, as they are referring to the same file. The file is
physically present in only one location, but can be accessed by either
of its two names. What if you were to delete reports?

$ m reports

This would tell Unix to discard the name reports as a link to the file
with same inode number 12324. However, the file is still very much
present on the disk. The root directory no longer holds an entry for
reports, but the other link, results in impdir, is intact. Hence the file
is also intact, and will remain so until all links to it are deleted. If we
use rm to delete results, only then will the file be physically deleted.

Disk Related Commands

One of the major concerns of the System Administrator of a-Unix
installation is efficient hard disk management. Since the Unix file
system is installed usually on a hard disk its upkeep is of primary
importance. The System Administrator has to regularly monitor the
integrity of the file system and the amount of disk space available.

[70-- Unix Shell Programming]

Neglecting this may eventually lead to a system crash. Let’s see what
are the commands usually used for the upkeep of hard disk.

Checking Disk Free Space

If we want to see how much of the disk is being used and what part
of it lies free, Unix has for us a command called df (for disk free).
This command reports the free as well as the used disk space for all
the file systems installed on your machine.

df
(/deviroot): 12970blocks 27857 i-nodes

~ ¢

We have on our machine only one file system installed, the root file
system or simply /dev/root. df reports the number of free disk blocks
_and free inodes for this file system. If we want a more detailed
information about disk usage we should say,

S df -ivt :
Mount Dir Filesystem blocks used free %used iused ifree %iused
/ /deviroot 282098 269146 12952 95% 7410 27854 21%

Now, the available blocks and inodes are reported numerically as well
as percentages of total available blocks and inodes. This possibly
gives a better idea of how much disk space is free.

One thing that you must note is that df counts blocks in sizes of 512
bytes irrespective of the actual block size as reported by the emchk
command. Hence the actuai amount of free disk space in bytes will
be the free space reported by df multiplied by 512. For our file system
this comes out to be,

12952 * 512 = 6631424 bytes (approximately 6.32 MB)

Phew! That's close to exhaustion. If steps are not taken immediately
soon the entire disk space is going to be consumed. That’s the time
the Systeim Administrator goes into action and cleans the file system

[The Unix File System --71]

of any unused files, empty files, empty directories, unreasonably big
files etc. In fact a program can be written to identify and delete such
files. This program is discussed in a Chapter 15.

dfspace Makes More Sense

How much space do you think you have on your hard disk if it has
27857 free inodes or 12970 blocks? Finding it difficult to com-
prehend? Naturally so, because we understand the disk space better
in terms of bytes and megabytes than in terms of inodes and blocks.
And dfspace does exactly that. It reports the free disk space in terms
of megabytes and percentage of total disk space.

$ dfspace
dfspace: not found

Don’t get offputted by that message. It came because the dfspace
command is present in /etc directory. This directory doesn’t get
searched when we execute any command. So to execute it we need
to say, :

$ letc/dfspace
Disk space: 6.32 MB of 137.74 MB available (4.59%).

Total Disk Space: 6.32 MB of 137.74 MB available (4.59%).

Now dfspace does all the mathematics internally and reports free disk
space for the root file system. Had there been other file systems
installed their free space would also have been reported. Additionally
it also reports the total disk space available. Note that the disk space
available (6.32 MB) tallies with what we calculated earlier while
discussing the df command. Only difference beiag this time the
calculations were done by dfspace.

[72-- Unix Shell Programming

Disk Usage - The du Command

du sounds s_imila;_ todfbut is different in its working. df and dfspace
report the disk space available in the file system as a whole whereas

du reports the disk space used by specified files and directories. For
example: :

$du

226 Jbackup
418 J[falbackup
1182 ffa

4 Jcheck

16 Jdbf

1662

H_ere du is reporting the number of blocks used by the current
directory (denoted by “.’) and those used by sub-directories within
the current directory. Thus, when invoked without any arguments it
- assumes that blocks occupied by current directory and the directories
lying within it are to be reported

If we specify a d.irectory then du descends down this directory
locat?nlg any sub-directories lying in it and reports the blocks used by
the directory and the sub-directories. For example,

$du idev
2 /dev/string
4 [dev/rdsk

4 [dev/dsk
2 /devimouse
20 /dev

Thus, the number of biocks occupied by each sub-directory within
/dev, as well as those occupied by /dev are displayed. If we want only

the blpcks Of:cupied by the directory and not those occupied by the
sub-directories within it we can say, -

g The Unix File System --73|

$du -s /dev
20 /dev

du is often used to single out directories that occupy large amounts
of disk space. Unused and redundant files and directories can then be
climinated from them, thereby freeing the valuable disk space.

The ulirnit Command

Though most files in Unix occupy few tens of blocks, in some odd
case a program may go awry and create files which occupy huge
amounts of disk space. Sometimes things might take such a bad turn
that the file might occupy several megabytes of disk space and
ultimately harm the file system. To avoid creation of such files Unix
uses a variable called ulimit. It stands for ‘user limit’ and contains a
value which signifies the largest file that can be created by the user
in the file system. Let’s see the current value of the ulimit variable.

- $ ulimit
2097152

This implies that the user cannot create a file whose size is bigger
than 2097152 bytes, or 2048 KB. If you happen to create a file which
exceeds this size, its size would be curtailed to 2048 KB and the”
program creating this file would be aborted. -

A user can reduce this value by saying,

$ ulimit 1
Here onwards no file can be created whose size is bigger than 512
bytes. Once reduced this value remains effective till the user doesn’t

log out. Thus this change will be effective only for the current session
and the system will return to its default value when you log out.

| 74-- Unix Shell Programming

An ordinary user can only reduce the ulimit value and is never
permitted to increase it. A super-user is an exception to the rule and
can increase or decrease this value.

Exercise

[A] Answer the following:

(a) Why can't the following call to dfspace work?
$ dfspace '

(b) What does the block size signify?

(¢) Whichcommand is used to write in-core super block and inode
table information to the disk?

(d) What information does a super block contain?

(e) What does the ‘i’ in inode connote?

() Why there is a in-core copy and a disk copy of inode table and

| super block?

(g) Outline the steps performed by Unix whenever we attempt to
access a file. :

(h) Whatis the maximum file size permitted by a Unix file system?

(i) When a file is deleted what happens to its entry in the inode
table?

J) Can a file have more than two links?

(k) Can a file have links across file systems?

(1) Does the df command report the free disk space in bytes?

(m) How would you find out how much space is used by the
directory fusr/aal/mydir?

(n) What is the size of each entry in the inode table?

(o) If a file occupies 10 blocks on the disk is it guaranteed that
these blocks would be in adjacent locations on the disk?

(p) What are the 4 components of a Unix file system?

(@) What are the contents of an Inode block?

[B] What will be the effect of following Unix commands?

(a) umask 022

The Unix File System --75|

(b) umask

(c) ulimit512 .
(d) Indirl dir2 (dir2 is existing on the disk)
(e) du../..

(f) du.

Nobody ever mastered .NET
technologies without a solid
understanding of C# language.
This book teaches you C# in
"right" perspective. After going

through this book you would not |

only be able to master the
language, but would also be able
to put it to use for building powerful |
applications. This book would be
an ideal next thing to read after

"Let Us C".

* OOPS

¢ Inheritance

® Exception Handling

e Interfaces

* Namespaces

e Effective 10

® Encryption Filter Stream

® Attribute based programming
® Generics

* Partial Classes & Functions
e LINQ

@ Collection Classes

e Digital Security

¢ Zipping and Unzipping

* Multi-threading

® Synchronization

® XML & Reflection

|
|
|
* Web Services

Essential Unix
Commands

Password
cal is for Calendar
The banner Command
The touch Command
The file Command
Links with DOS
File Related Commands
wc
sort
cuit
grep
dd .
Viewing Files
Taking Printouts
File Compression
The On-line Unix Manual
Exercise

IE-— Unix Shell Programming

he journey on which we embarked three chapters ago con-
tinues, meeting more commands as we travel, Some quite

handy, some not quite so. But nevertheless we must know
them. So here we go...

Password

Though all users have access to the same resources under Unix. it is
no public library where anyone may pick any information as he
pleases. Itis more like an account in a Swiss Bank, where even money
and power prove useless. If you are the only one who knows the
password to your account, rest assured that you will be the only one
who can access it. Too good to be true? Well yes, there is one person
who can encroach on your data - the superuser. He can override any
obstacles and get through to any of your files. That s why by universal
consent the system administrator is made to be a person who is totally
above board, unbiased, scrupulous and impervious to kickbacks of

any nature. After all, the life’s work of many is at the mercy of this
being’s integrity.

We have seen that Unix asks for the user’s password at login time. If
you have some data that’s for youreyes only and you happen to notice
that some shady looking characters are making it a habit of looking
in the background every time you log in, with all due faith in mankind,
take itas a warning bell. You would do well to change your password.

You can change your password whenever you're logged in, by using
the passwd command as shown below:

-

Essential Unix L'e_m:mf.’*‘d =

$ passwd

»pe still who
Jt asks you to enter your old password to prove thatyou re

u were when you logged in (computers are notonouSl?’ SI::E::S?JZ
%tt)]en the pas wd program asks you to enter yournew FJSbW(eistemlyt
to make sure that you type it, if not correctly, at leat CO;_ o
None of the three passwords you type appears on s,

' ooy be @ Unix
The new password may be framed by you, or it may boll e
creation. You are asked what you wouvld prefer. Su?-PSZ:d s
to create your own password. Thc_ choice of your pisw ® aiher bt
some thought. You want something easy for you r.nhlr{ei it £
difficult for other people to guess. Here are some ‘._-.1 s
passwords: single letters or digits,_your name, mt:“:lvs e g
spouse or significant other, your kid’s name, your ::E:xcr\' oosiile
anything less than six letters long. (Bad guys can ity)
five letter password in just a few hours.)

ate’s name
Good choices include something like your college mor.nml::t;;n?:‘ii-
misspelled and backward. Throw in a digit or .IWOO? ;Oinyou il
tion, and capitalize a few letters to add confusronl sotf ?to usea patx
with something like Ame101pal, Another goodidet 1S s [enght
of words, like Egg;Head. Password names have no limi
but often only the first eight matter.

. s aceword aging,
Some system administrators do something called passW s

i e amonth.
this strategy makes you change your password at I“?‘fom ot i
Some administrators put rules in the passwd ‘pro-:raiﬂ’i s e
enforce which passwords are permissible anc -"fm“_ t-;e L orﬁy
passwords chosen randomly. This idea is .I.err‘lble f-eftdlit S cosite.
way you can remember a password you didq t chc«?t]§€ h. s,
on a piece of paper and stick it on your terminal, whic
purpose of having passwords.

oword.Change

Inany event, besure thatno one bptyou know yourp._mbwi(:'rli kc;mw tl“[
your password whenever you think that someone else n:]:jthc o
Unix stores passwords in a scrambled form so thateve

[80—- Unix Shell Programming

—]

administrator can’t find out what yours is. If you forget your
password, the administrator can give you a new one, but he can’t tel]
you what your old one was.

If you really want to be paranoid about passwords, don’t use 3
password that appears in any dictionary. Some truly fiendish system
breaker may decide to use Unix’s password encryption program to
encryptevery word in a dictionary and then compare every encrypted
word to your password - another thing to keep you awake at night.

Whichever password we create Unix stores it in a file /ete/passwd.
We can even cat this file on the screen as shown below:

$ cat /etc/passwd

root:x:0:1:Superuser:/;

daemon:x:1:1:System daemons:/etc:
bin:x:2:2:0wner of system commands:/bin:
sys:x:3:3:0wner of system files:/usr/sys:
adm:x:4:4:System accounting:/usr/adm:
uucp:x:5:5:UUCP administrator:/usr/lib/uucp:
auth:x:7:21:Authentication administrator:/tcbfiles/auth:
asg.x:8:8:Assignable devices:/ust/tmp:
cron:x:9:16:Cron daemon:/usr/spool/cron:;
sysinfo:x:11:11:System information:/usr/bin:
dos:x:16:11:DOS device:/tmp:

mmdf:x:17:22:MMDF administratos:/us/mmadf:
network:x:18:10:MICNET administrator./usr/network;
nouser:x:28:28:Network user with no access privileges:/:/bin/false
listen:x:37:4:Network daemons:/usr/net/nls:
Ip:x:71:18:Printer administrator:/usr/spool/p:
ingres:x:777:50:Database administrator:/usr/ingres:
oracle:x:200:100:0racle ver. 6.0:/usr/oracle:/bin/sh
audit:x:79:17:Audit administrator:/tcb/files/audit:
aal:x:202:50:user number 1:/usr/aal:/bin/sh
aa2:x:203:50:user number 2:/usr/aa2:/bin/sh
aa3:x:204:50:user number 3:/usi/aa3:/bin/sh
aa4:x:205:50:user number 4:/usr/aad:/bin/sh

N

| \

Essential Unix Commands --81 |

aa5:x:206:50:user number 5:/usr/aa5:/bin/sh
2a6:x:207:50:user number 6:/ust/aa6:/bin/sh

The above output shows that fetc/passwd holc.is lcrt of useful infor-
mation about the users. Each field of information is scpa.rated from
the next using a 1. The following figure shows the meaning of each
field in the last line of the above output.

Typical value Meaning _ '
aal Login name

X Encrypted password

202 User ID

50 Group ID

This is account of aal | Comment, given while creating an account
fusr/aal Default working directory

/bin/sh Default working shell
T S R

Figure 4.1

Note that there is another passwd file present in /bin directory. In

' fact this is the one that gets executed when we change the password.

Thus, /bin/passwd is an executable file which permits changing of
the password, whereas /etc/passwd contains the data about eachuser.

cal is for Calendar

Unix’s understanding of time is superb. We saw earlier how the dat'e‘
command works. It displays the current date and time. But what if
we want to refer to a calendar? That’s the time when we use the cal
command. It is capable of printing calendar for any year in the range
1 t0 9999. To invoke it all that we have to do is type cal. .

$ cal

|82-- Unix Shell Programming _]

Fri Apr26 18:21:10 1996

Mar A
SMTuWTh FS S MTu

12 1 2

3 45 6 7 819 7 8 910 11 1 5 6
101112 13 14 15 16 14 15 1617 18 1920 12 13 1
171819 20 21 22 23 21 22 2324 25 2627 19 20 2
242526 27 28 29 30 28 29 30
31

=3
=
2

Th
4
1

N o

S
6 1
13

~ O

The output shows the current date as well as the calendar of preced-
ing, current and succeeding month. Obviously, Unix must not be
storing all these calendars in memory but must be generating them
through calculations when we invoke the cal command.

Should you want to see calendar of only a specific month, say,
February 1997, you will have to be more explicit while using the cal
command.

$ cal 2 1997
~ February 1997
S MTu WTh F 8

2 3 4 5 6 7 8
9 10 11 12 13 14 156
16 17 18 19 20 21 22
23 24 25 26 27 28

The 2 here indicates February. In place of 2 we could have used feb,
or just a ‘f*. However, you can’t use cal j 1997 to obtain january
1997’ calendar. This is because ‘j’ might as well stand for June or
Jaly. If we become more specific and say cal ja 1997, it works.

This utility displays the calendar for the month and year specified by
the cser. Due consideration has been given to the leap years and the
calendar is framed accordingly. Try out this utility for September
1752 and I am sure you would be taken aback. No, there is nothing
wrong with the program. It just so happened that the King of England

| Essential Unix Commands --83 |

decreed that 11 days (3" to 13™) be knocked off from this month.
This he did to adjust the number of days while switching over from
Julian to Gregorian calendar. As a result, many people missed their

Birthday celebrations.

The banner Command

This command prints a message in large letters which looks like a
banner. All that you have to say is

$ banner Strange Ways

And here is the output that it produces...

fi

0 # HuhEE B W # # HEE HhEE

4 # # B E B ORE

#i ¥ & # F # ### ¥ i
i 4 # HERBE BEREEE B BB H B4

¥ # & # # PR AR O#

shass B O# # B # # & HHH AR

#

8 # B # & Hind

8 # # #

4% 4 # # #H

#F # HHEH # #

448 £ % #

¢ # # i

That’s really no fancy effect. But then fancy and finesse have never
been Unix’s forte.

If you want that instead of splitting the words in two different lines
they should be displayed in the same line then they should be enclosed
in inverted commas as shown below:

|84-- Unix Shell Programming

$ banner "Strange Ways'

Remember that a bqnner can accommodate only 10 characters in one
line. So the ‘ys’ in the above message are just not displayed.

The touch Command

We had our first tryst with the touch command in Chapter 2. Let’s
explore it a little further. Not only does it create empty files, but it
also allows you to change the modification and access times of a file.
When you run a cat command on a file you are accessing it, when
'you are making changes in a file you are modifying it, whereas when
you are preparing a new file afresh you are creating it. Unix keeps
track of times at which each of these activities are performed for every
single file on the file system.

touch comes into picture when you want to change these times
without reaily accessing or modifying the file. For example,

$ touch -a myfile

would change the access time of myfile to whatever is the current
time.

The time displayed by Is -1is the iast modification time for each file.
1 vou v o fo See the last access time you may use Is -lu.

As you must have guessed the -m option is used with the touch
command for changing modification time to current time. If you just
say,

$ touch myfile

then modification as well as the access time is set to current time.

a §: Essential Unix Commands --85 |

What if you want to set the access time for a file to a particular time
instead of current time? Well, no problem.

$ touch -a 0425120596 story

This would set the access time of story to the specified time. '_Thc
unintelligible looking series of digits is the supplied time. Read it as

two digits each for montk, day, hour, minutes and year.

The file Command

Suppose you have created a bunch of files and have lost track of what
does each file contain. You can find out the contents of each Iby
running a cat command on each file. You would agree this‘would be
too tedious. Saying cat * too would not serve the purpose since there
would be too much of output to look at. Unix being a fatherly old
chap helps you out in such a situation. It provides us the file com-
mand. Let’s try this one out.

$ file * :

a.out; iAPX 386 executable not stripped
ban: empty

bin: directory

cal.out: ascii text

catfile: commands text

clean: ¢ program texi

emd: commands text

etc: directory

etran.dbf. empty
mdatac: ¢ program text

story: english text

SS: commands text
totdir: ascii text

trash: asclii text

186-- Unix Shell Programming j

file command recognizes several types of files as shown in the output,
Before determining the contents it of course reads each file. We typed
an English paragraph in the file story, a few Unix commands in the
file cmd and some garbage in the file trash. And, file being what it
is reported story to be an ‘English text file’, cmd to be a ‘command
text file’ and trash to be an ‘ascii text file’. file also recognizes empty
files and directories and reports them accordingly. Note how the
contents of the file a.out are being reported. Can you make out much
from that message? Frankly, I cannot.

Links with DOS

Many users move to the multiuser OS like Unix after having spent a
lot of time with a single user OS like MS-DOS. At least during the
initial phases of this switch they want to (or are required to) shift files
from a DOS machine to their directory in the Unix fijle system. Unix
obliges such users. To accommodate and win them over, it incor-
porates the capability to recognise DOS disks. Thus, a user can easily
view, list, copy or delete files from a DOS formatted disk. The
commands for carrying out these operations are fairly straight-for-
ward. Some of these commands are exemplified below.

If you want to read some DOS formatted floppy, you simply have to
say:

$ dosdir a:
This will give you the list of all files on the floppy similar to the way
DIR lists them. If we want to see the contents of a directory ‘project’
we will have to say:

3 dosdir a:/proj

Note that the drive specification in this command is followed by a b
and not the customary ‘\’ that we employ in DOS.

ﬁ Essential Unix Commands --87)

In order to see the contents of a DOS file,-we can use
$ doscat afilename

gimilarly, dosmkdir, dosrmdir, dosrm and dosls also function on,
pDOS formatted disks as their counterparts, mkdir, rmdir, rm and Is
work in Unix environment. Not only this, we can also formata floppy
so that DOS understands it using the command dosformat.

Though all these utilities are useful, the most important utility in this
area is doscp, since it is the one which would'help you move files
from DOS to Unix and vice versa. The trailing cp in doscp suggests
that it is a function for copying files. But that’s only half the picture.
doscp copies a Unix file onto a disk which is in DOS format, with all
necessary conversions to make it readable by DOS. For example,

$ doscp trial a:

will copy the file trial from current Unix directory to the DOS
formatted floppy in A drive.

Likewise, we can copy several files at a time:

$ doscp $HOME/proj/*.prg a:/progs

- This copies all ‘.prg’ files from the proj directory in the home

directory to the progs directory in drive A.

File Related Commands

Unix envisages a host of possible ways in which we might want to

Operate on files, and hence provides a sizeable number of commands

that help us manipulate files. Many of these file related commands

are called filters. We would explore why they are called filters in

Chapter 5. For now let us take a look at some of the more commonly -
Used commands with their numerous options.

 —

[88-- Unix Shell Programming

wc

A simple and useful command, it counts the number of lines, words
and characters in the specified file or files. It comes with the options
-1, -w and -¢ which allow the user to obtain the number of lines, words
or characters individually or in any desired combination.

$we -lc file1 file2
filet 20 571
file2 30 804

Thus, the file filel constitutes 20 lines and 571 characters. Similarly
for the file file2.

The we command is capable of accepting input directly form the
keyboard. By entering we without any arguments, it waits for the user
to type in the input. On terminating input (using Ctrl d), the ap-
propriate counts are displayed for the input that you supplied.

sort

As the name suggests the sort command can be used far sorting the

-contents of a file. Apart from sorting files, sort has another trick up

its sleeve. It can merge multiple sorted files and store the result in the
specified output file. While sorting the sort command bases its
comparisons on the first character in each line in the file. If the first
character of two lines is same then the second character in each line
is compared and so on. That’s quite logical. To put it in more technical
terms, the sorting is done according to the ASCII collating sequence.
That is, it sorts the spaces and the tabs first, then the punctuation

marks followed by numbers, uppercase letters and lowercase letters
in that order.

The simplest form of sort command would be:

$ sort myfile

Essential Unix Commands --89|

This would sort the contents of myfile and display the sorted output
on the screen.

If we want we can sort the contents of several files at one shot as in:
$ sort file1 file2 file3

Instead of displaying the sorted output on the screen we can store it
in a file by saying,

$ sort -oresult file1 file2 file3

The above command sorts the three files filel, file2 & file3 and saves
the result in a file called result.

And if there are repeated lines in each of these files and we want that
such lines should occur only once in the output we can ensure that
too using the -u option which outputs only unique lines.

$sort -u -0 result filel file2 file3

If the files have already been sorted and we just want to merge them
We can use: -

$sort -m file1 file2
Sometimes we may want to combine the contents of a file with the
input from the keyboard and then carry out the sorting. This can be
achieved by saying:

$ sont - filet

Where ‘- stands for the standard input i.e. the keyboard.

We can even sort only the input from standard input by just saying,

$ sort

L90~- Unix Shell Programming

Since no file has been specified here it is assumed that the input is to
come from the standard input device,

That is only part of the capability of sort. sort is used most fruitfully
for files which are essentially databases, or which have its informa-
tion organised in fields. Fields are a group of characters separated by
a predetermined delimiter, or a newline. In most cases, the delimiter
is a space or a tab, separating different chunks of information.

Now that we know what fields are, we can specify the fields to be
used for sorting. Such fields are often known as sort keys. The syntax
of the sort command includes optional +pos1 and -pos2, signifying
the starting and ending position of the sort key. If -pos2 is not
included, then the key is assumed to extend till the end of the line.

Assume that a file students has four fields, for roll number, names
of the students, their marks, and their grades. These fields would be
numbered 0, 1, 2 and 3.

$sort-r +1 -2 students

Saying thus would sort the file students on the field containing the
names of the students. The +1 indicates that the sort key begins at the
second field and the -2 indicates that it ends before the third field.
This yields names of the students as the sort key. We can even have
multiple sort keys using this feature of the sort command.

The -r switch indicates a reverse sort. So, the records arranged in
reverse alphabetical order of names would be displayed on the screen.

If we want to sort the same file according to marks we must use the
-n option which specifies that the sorting is to be done on a numeric
field. If not specified then the marks 100, 40, 50, 10 would be
incorrectly sorted in the order 10, 100, 40, 50.

Essential Unix Commands --91|

pe following figure summarises all the options that we have used
€

th sort along witha few more useful ones that you may try on your
w1
own.
,.——l-'_'-_-__-__
Option Meaning
-b Ignores leading spaces and tabs.
- Checks if files are already sorted. If they are, sort does
nothing. .
.d | Sorts in dictionary order (ignores punctuation).
i Ignores case.
-m Merges files that have already becn sorted.
-n Sorts in numeric order.
-ofile Stores output in file. The default is to send output to
standard output.
-F Reverses sort. '
-lc Separates fields with character default is tab).
-u Unique output: il merge creates identical lines, uses
only the first. _
Skips n fields before sorting-and then sorts through field
m.

Figure 4.2

cut

Like sort, cut is also a filter. True to its name, it cuts or picks up a
given number of character or ficlds from the specified file. Say you
have a large database of employee information. If from this you want
to view only a few selected fields, for instance name and division,
cut is the answer. If the name happens to be the second field end the
division the seventh you would say

Scut -f 2,7 empinfo

I_92-- Unix Sh.ell Programming ;

If we are to view fields 2 through 7 we can say,

$ cut-f 2.7 empinfo

The cut command assumes that the fields are separated by tab
character. If the fields are delimited by some character other than the
default tab character, cut supports an option -d which allows us to
set the delimiter. The file empinfo may have the information for each
employee stored in the following format

name:age:address:city:pin:division

Each piece of information is separated by a colon, hence we require
the field delimiter to be recognised as ‘:’. The command for listing
the name and division fields would now be

$eut -f 27 -d"" empinfo

The cut command can also cut specified columns from a file and

display them on the standard output. The switch used for this purpose
is -c. For example,

$cut -¢1-15 empinfo

As a result, the first 15 columns from each line in the file empinfo
would be displayed.

grep

grep is an acronym for ‘globally search a regular expression and print
it’. The command searches the specified input fully (globally) for a
match with the supplied pattern and displays it. While forming the
patterns to be searched we can use shell metacharacters, or regular
expressions, zs professional Unix users call them. Some metacharac-
ters like , “?’, ‘[]’ and ‘!’ we learnt in Chapter 2. Knowing the
versatility of the metachaiacters, what powers they yield to grep can

Essential Unix Commands --93|

|

ily be imagined. Added to that is its capabi]it_y to search in more
fl?:n one file, enhanced by the use of various options or switches.

Let us begin with the simplest example of usage of grep.
$ grep picture newsfile

This would search the word ‘picture’ in the file newsfile and if found,
the lines containing it would be displayed on the screen.

We can use grep to search a pattern in several files. For example,
$ grep picture newsfile storyfile

Here, the word ‘picture’ would be searche_d ?n bpth the files, pewsfile
and steryfiie and if found, the lines containing it wop]d be dxsp]ayei,d
along with the name of the file where it Uccurr.cd.‘Thls.way. we would
be able to make out the file from which the line is being listed.

For a search pattern comprising more than a single word, single
quotes can be used to enclose the same, as in,

$ grep 'the picture taken’ -i -n newsfile storyfile

The above command searches for the pattern enclosed within %
Without heeding the case (-i makes it case insensitive). The -n option
also causes the numbers of the lines in which the pattern was found
10 be printed by the side of each line.

To tailor even the weirdest criteria for searching, grep has at its
disposal the metacharacters.

$ grep [Rrlebecca myfile
Here grep would search for all occurrences of ‘Rebecca’ as well as

Tebecca’ in myfile and display the lines which contain one of these
Words,

W- Unix Shell Programming 1

$ grep b??k myfile

This command would display all four letter words whose first letter
is a ‘b’ and last letter, a ‘k’. The two *?" symbols represent one
character each. Thus, lines containing words like book, back, beak
etc. would be listed.

grep realises that you may not always want 1o see what you search,
Sometimes you may wish the output to be the other way round,
wherein you may wish to see only those lines which do not contain
the search patterns. The option -v makes this possible.

$ grep -v a* myfile

With that, all those lines that do not contain words starting with “a’
are displayed. Just in case you failed to appreciate it, note the point
that unlike a ‘2", a “*' also denotes zero characters. Hence all
occurrences of an isolated letter ‘a’ would also qualify for the search.

We can be more explicit in building the patterns to be searched. For
example, a pattern *A[abc]” would help search only those lines which
begin with ‘a’, ‘b’ or ‘c’. Likewise, we can build search pattern which
helps only those lines to qualify which end in that pattern. For
example, the search pattern ’[s-z]$’ would help search those lines
which end with any character between ‘s’ to ‘z’

Figure 4.3 lists out the various options available with grep along with
the meaning of each to serve as a quick reference for you.

Essential Unix Commands --95 |

.-l—'-'-'__-__
Option Meaning
-c Returns only the number of matches, without quoting
the text.
-1, Ignores case while searching.
-1 Returns only filenames containing a match, without
quoting the text.
-n Returns line number of matched text, as well as the
text itself.
-s Suppresses error messages.
-v Returns lines that do not match the text.
-~ ST
Figure 4.3
dd

The unintuitive dd is a disguise for an extremely versatile command
for file manipulation. dd converts and copies a file, allowing plenty
of choices. For example, :

$dd if=report of=document conv=ebcdic, ucase

Unix sure is one of few words. The information packed in that one .
line is: Convert the input file report from ascii to ebcdic, and while
doing this conversion map alphabetic characters in uppercase and
copy them to the output file called document. If the input and output
files are not mentioned, then by default, the standard input and output
are assumed,

Following is the list of other options available with dd:

Option Meaning
e Copy only n input records
conv=ascij Convert ebcdic to ascii

conv=icase Convert alphabets to lower case

]

| 96-- Unix Shell Programming

conv=noerror Continue processing if error encountered

COMV=,0upnus Several comma separated conversions
skip=n Skip n input records before starting copy
- Viewing Files

So far we have used the cat command to view the contents of a file, |

However, if the file is bigger than 24 lines then the matter would
naturally scroll off the screen. If we want to stop the scrolling we can
do so by hitting the pause key and resume it by hitting any other key.
This of course needs a bit of a practice otherwise the matter scrolls
off the screen before you can reach for the pause key. To exercise a
tighter control over the way we can view files Unix provides several
utilities. Out of these the head and tail commands help in viewing
lines at the beginning or at the end of the file respectively.

Unless otherwise specified the head command assumes that you want
to display first 10 lines in the file. Should you decide to view first
fifteen lines you simply have to say,

$ head -15 myfile

The tail command is the counterpart of head and by defaultitdisplays

the last 10 lines in the file. As with head here too we can specify the

number of lines if we decide to override this default value.

The disadvantage of head and tail is that they cannot display a range
of lines. Moreover, what is displayed is final. That is, if we have
displayed the first 50 lines in a file we cannot move back and view
say the 10" line. Unix provides two commands which offer more
flexibility in viewing files. These are pg and more. They more or les$
work in the same manner, except for a few minor differences. Each
of them helps you view a file page by page with lot of useful options
like:

(a) Set the number of lines to be displayed per page.

© Ability to move either forwards or backwards in a file just at

Essential Unix Commands --97)

the touch of a key.

(c) Skip pages while viewing the file page by page.

Search the file for a pattern in forward or backward direction.

(d)

On executing each of these commands one pageful of file contents
are displayed on the screen after which a prompt is displayed at which
the user can give various commands that are understood by pg or
more.

Here we will look at only one example of usage of each command.

‘For more variations the reader is referred to the Unix manual or the

on-line help provided by both the commands on pressing the ‘h’ key

‘at the prompt displayed at the end of page.

$pg +10 -15 -p "Page no. %d" -s myfilé

‘This command starts displaying the contents of myfile, 15 lines at a

time from 10™ line onwards. At the end of each displayed page a
prompt comes which displays the page number on view. This prompt

‘overrides the default ‘:* prompt of the pg command. The -s option

ensures that the prompt is displayed in reverse video.
Let us now look at an example of the more command.
$ more +10 -15 -s -d myfile yourfile

This command too would bring about more or less the same effect as

~ the one that we used with pg above. The difference being it would

display contents of two files myfile and yourfile. Also, the -s option

~ Would squeeze multiple blank lines in a file to a single blank line.

This helps in maximizing the useful information displayed on the
SCreen especially when you know that a file contains several succes-
SIVE blank lines. The -d option changes the normal --more-- prompt
displayed at the end of each page to a more explanatory ‘[Hit space
10 continue, Delete to abort]’.

E&-- Unik Shell Programming

The most obvious difference between Pg and more is pg permits you
to set the prompt whereas more doesn’t. Also, while using more 3
the end of each page a number appears which indicates how much,
percentage of file have we viewed so far.

Taking Printouts

Unix permits sharing of one printer amongst all users or severa]
printers amongst several users. When several users makes a request
to print, their requests are put on a queue and then printed according
to the precedence. A print scheduler runs in the background which
manages the print jobs of different users.

The Ip command is used to send the user’s print job to the print queue.
When we submit the job for printing using the Ip command it returns
a ‘requestid’. This id can be used to keep track of our job or to cancel
itif required. When we cancel the print request our job gets removed
from the print queue.

When we print a file using Ip it adds a banner page at the beginning
of our printout. This helps the user in identifying his printout from
the heap of printouts that are printed by different users. The simplest
form in which Ip can be used is: :

$Ip filet file2
request id is Ip-32 (2 files)

We can submit the print joband then continue to work with something
else. We would like_to be informed that our print job has been
processed so that we can ga.to the printer and collect our printout.
We can do so by invoking Ip using the -w option:

$Ip -w filet file2
request id is Ip-44 (2 files)

C—

Essential Unix Commands --99|

Now as soon as the printing is over we would be so informef_i b_y a
message on our screen. If we have logged off by the time the printing
is over then the message would be mailed to us.

Ip comes with several such useful options. Figure 4.4 shows the
commonly used options with the Ip command.

Option Meaning

-w Sends a message to the user when the file is printed.
-n num Prints num number of copies (the default is 1).

-o nobanner | Does not print the banner page.

-P list Prints the page numbers specified by list. ,

-d printer Specifies a printer other than the default prm.ter‘

-q level Sets a priority level for the print job (lowest is 39).

Figure 4.4

Once the print request has been made using the lp comrnffn.fyi wecan
watch its progress using the Ibstat command which shows tne_s;lat;i;
of our print job. There are various options that can be.used Wll. t e
Ipsat command. Out of these the most comprehensive mformanc;n 1;
obtained using the -t option. This information inc]udt_es status of a
print jobs on the queue, the type of printer, wh_et[.ler it is accepl.mg
any fresh print requests etc, When we tried it this is what we got:

$ Ipstat -t

scheduler is running

system default destination: Ip

device for Ip: /dev/Ip0

Ip is accepting requests since Sat Apr 20 14:25:34 1996
available.

Ip-13 aat 190 Apr2313:10

{700 - Unix Shell Programming [

p-12 root 208 Apr 23 13:21
Ip-14 root 311 Apr 23 13:25
Ip-15 aa2 126 Apr2313:18

If for some reason having submitted the job for printing we decide to
cancel it, we can do so using the cancel command. For doing this we
must know the request id that is displayed on our terminal when we
submit the print job using Ip. Even if we forget this id we can always
find it using the Ipstat command. To cancel the print job all that we
have to say is:

$ cancel Ip-13

whers Ip-13 is the request id of our print job. The cancel command
respends with,

request "Ip-13,190 canceled

We can once again verify this cancellation by using the lpstat
comtnand and you are sure to find your print job request id missing.
Guite naturally, you can cancel only your print jobs, whereas the
superuser can cancel anybody’s print jobs. ¥

As we said earlier, the print jobs submitted to the print queue are
managed by the print scheduler called Ipsched. This scheduler 18
usually executed at the time of booting. If not, then the system
administrator can run it by saying

fust/lib/ipsched

Also, it is only the system administrator who can terminate the
printing services if the printer goes bad by using the command

Jusr/lib/lpshut

’ I; Fssential Unix Commands --101|

file Compression

you would always have more files than what you can accommoda'te
on your disk! This is a very common fact, you would agree. Ut.ux
takes care of this to a certain extent by providing you utilities which
can pack the same information in lesser bytes thereby saving you
precious disk space. These utilities are known as compress and pack.

Although you can’t do anything with the file which has been comi-
pressed or packed unless you expand it back to the original format,
for files you don’t need to refer to very often, they can save a lot of
disk space.

‘The usage of both the commands is more or less same. To compress
a file called trial.txt, we can say,

compress -v trial.txt

The optional -v (for verbose) option tells compress to report how
much space it saved. For example, in the above case it reported the
following:

trial.txt: Compression: 43.21% - replaced with trial.txt.Z

How much would be the compression is solely dependent on the
contents of the file. On compression the original file is replaced by
another which has the same name with .Z extension added to it.

Sometimes it may so happen that the contents of the file are such that
on compression no saving in disk space is likely to occur. In such a
Case the compress utility informs you so and doesn’t create a .Z file
1n such an event.

To get the compressed file back to its original state, we can use the
Uncompress utility as shown below:

~ $ uncompress trial.ixt.Z

] 102-- Unix Shell Programming I

On doing this tri i
al.txt.Z is deleted and i
. - t . .
recreated back in its original form and shapehe S

Remem ;]

uilse thge;ot::}t ?nce a file has been compressed we cannot view i

St purposean:;:[at c}ommand. Unix provides a utility called z(:altr

file to the termi.nai]:\Erﬁys im;mcompressed version of a compressed
; out changing the ¢ 5 i -

s BoRoss] ey s mﬁ_ g ompressed file or storing

differem com cot
: pression scheme, L - ;
@PROGRAM = § pack: trial.txt €t us try it on our trialtxt file,

lustibirvpack: trial.txt: 37.1% compression

there is a utility called unpack,

$ unpack trial.txt
unpack: frial.txt: unpacked

Like com '
HIpress, pack leaves the fil if
save any s e e Itie untouched if packing doesn’
oo gfc}j:;;.rgl;!n, often it is found that compresg offcz'fsga f?i?}?c;
$10N as compar. - -
reverse may be true. pared to pack, though occasionally the

The On-line Unix Manual

The Unix manual i« i
ok Wn’?]gldll:ual ls_poss:bly_ the best thing that has happened to the
i u_'i‘h :T” fl}!':)\’]d.f:s on-line help about every single Unix comb
1 all the options that the command can support. To invok i
S . e

Ih maﬁd“-‘;i } 5 g ECO]]llllalld >
“'-lbh l'G HOCK !]\,Ip on. l Ol examl}le

Essential Unix Commands --103)

$ man cd

And here is the output it produces on the screen...

ca(C)

cd(C)

Name
cd - change working directory

Syntax
cd [directory]

Description
If specified, directory becomes the new working directory; otherwise

the value of the shell parameter $HOME is used. The process must
have search (execute) permission in all directories (components)
specified in the full pathname of directory.

Because a new process is created to execute each command, cd
would be ineffective if it were written as a normal command; therefore,

it is recognized and executed by the shell.

If the shell is reading its commands from a terminal, and the specified

directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory, ina
search for the name. The shell then asks whether or not to try and
change directory to the corrected directory name; an answer of n
means ‘no’, and anything else is taken as “yes".

The Korn Shell command, ksh, has extensions to the syntax for cd.
Please refer to ksh(C) for more information.

Note
Wildcard designators will work with the cd commana.

See also
pwd(C), sh(C), chdir(S)

| 104-- Unix Shell Programming 3]

The manual page that is displayed on the screen is identical to the
manual supplied with the operating system itself. The on line manual
comes with lots of information like the use, syntax, switches available
with the command, examples etc. The following guidelines would
help you in understanding the manual page:

(@) ‘Name’ is the first titled section and it describes the name of
the command followed by a brief description of the command.

(b) The ‘Syntax’ section shows exactly how the command is used.

(c) Square brackets indicate optional arguments,

(d) Ellipses (...) indicate that the previous argument can be
repeated.

(¢) In the description section the purpose of the command, its
\yorking and its options are outlined. After reading the Jescrip-
tion try out the command with its various options yourself,
That’s the real way of learning.

() Some commands have a ‘Files’ section. It lists the system files
used by the command.

(g) The ‘See also’ section points out the related commands and
information.

The man files are not merely text files, hence they cannot be cat on
the screen. Instead, man is a complex program that searches and then

dl?lays manual text from special files which contain text processing
codes. :

Thqugh the on-line manual is a great idea, it is written in a style that
at times can be difficult to decipher. At many places it appears that
the authors of the manual assumed that you have read all the other-
parts of the manual and know what all the commands are called. Still
itis of immense help when you just can’t remember the options for

a command or what to type where on the command line after the
command name. .

Even th.ou.gh‘thc on-line manual is the final word on how a command
works it is ill-suited for browsing through the vzrious available

C——

Essential Unix Commands --105|

commands since one has to know the name of the command you want
1o see. For browsing, one can use the printed manual.

Exercise

[A] State whether the following statements are True or False:

(@ The command $ man man would give help about the man
command.

(b) Ifthe fields in a file are separated using / we can separate them
out using the cut command.

(¢) AABBCCis a valid password.

(d To change our existing password we execute the file
[etc/passwd.

(¢) There are two passwd files in the system, one to store password
and another to change password.

(f) September of every year always had and will have 30 days.

(g) banner "aaa\nbbb" will display ‘aaa’ and ‘bbb’ as large char-
acters split over two lines.

(h) A DOS formatted floppy can be used in Unix and a Unix
formatted floppy can be used in DOS.

(i) The wc command works only on text files.

(G) Once ajob is submitted for printing using the Ip command we
have to take the printout even on second thoughts we realise”
that we should not have printed the file.

(k) Once a job is submitted for printing using the Ip command we
have to remain logged in till our file gets printed.

(I) We cannot submit a new job for printing unless our earlier job
has been printed.

(m) If the printer goes out of order the system administrator can
ensure that the system refuses to accept new printing jobs.

 (n) Only system administrator can cancel your printing job.

[B] How would you perform the following operations:

[]06-- Unix Shell Programming

(a)

(b)
(c)

@
()
®
(8)
0)

(i)
0)
(k)
[C]
(a)
(b)
(c)
(d)

(€)

——

Change the modification time of a file to midnight of
01/01/1996.

Convert all capital letters in a file to smallcase letters.
Change the prompt to ‘What next’ while using the more
command.

Merge and sort the contents of files a, b and ¢ and display the
sorted output on the screen.

Extract the address field from a file which coatains records
having fields name:age:address:phone.

Merge the contents of file f1 with the input supplied from the
keyboard and store the sorted output in a file £2.

Copy all files from /usr/aal/cobol directory to a DOS for-
matted floppy in drive B.

Display all lines in a file which contain the word ‘Poem’ from
a file english.txt. You should be able to report all occurrences
like POem, PoEm, POEm etc. You are not allowed to use a
command line option to ignore the case while searching.
Search all lines in a file which end with a semicolon.

Search all lines in a file which do not end with a semicolon.
Report number of lines which contain a number for each file
in the current directory

Answer the following:

How would you display the strings ‘aaa’ and ‘bbb’ in two
different lines using the banner command?

You are given a file myfile. Without opening this file how
would you make a fair estimate about its contents?

What is the difference between the commands compress and
pack?

A file contains records with each record containing name of
city, name of state and name of country. How would you sort
this file with state as the sort key.

A file contains records with'each record containing name of
city, name of state and name of country. How would you sort
this file with country as the primary sort key and state as the
secondary sort key.

I/O Redirection
and Piping

[108-- Unix Shell Programming

ow that we have discussed the essential Unix commands that
would help us get started with Unix, let us shift gears and

look at something different: Input/Output Redirection.

In all operating systems, there is a standard input device and a
standard output device. In Unix, as also in most other operating
systems, the standard input device is the keyboard and the standard
output is the display screen. Trailing behind in popularity is the
standard error device, which is the display screen.

Unless otherwise instructed Unix commands/programs get their
input from the standard input device and send their output to the

standard output device. Any error messages if they occur are sent to
the standard error device.

Thus if a command is described as reading from the standard input
and writing to the standard output, that means it takes input from your
keyboard and sends output or error messages to your screen,

Special files that instruct all the programs to accept standard input
from the keyboard and direct the standard output to the display, are
provided by Unix. The three streams, i.e the standard input, standard

output and standard error are denoted by the numbers 0,1 and 2
respectively.

1/0 Redirection and Piping --109)

Stream Device

Standard Input Keyboard
Standard Output Terminal Screen
Standard Error Terminal Screen

Figure 5.1

Why not just use the terms keyboard and screen for the standard input,
output, and error? Because Unix allows you to change the standard

input and output temporarily by using what is known as redirection

and piping.

Sometimes it is useful to redirect the input or output to a f”1l».°T or a
printer. For example, you might want to redirect a directory listing
from the screen to a file. Unix provides redirection symbols for the

purpose.

The symbol > implies redirection of output and the symbol < implies
redirection of input. The symbol > sends the output of a command to
a file or a device, such as a printer. The symbol < takes the input
needed for a command from a file rather than from the keyboard. The
symbol >> adds output from a command to the end of & file without
deleting the information already in the file.

The > operator telis Unix, "Don’t display this output on sL:Iu.n
instead, put it somewhere else”. Likewise the < operators says, "I he
input for this command is not coming from the keyboard this time
look for it somewhere else."

The "somewhere else" can be a file or a printer for output redirection
and a file or a keyboard for input redirection, You \fwould agree that
attempting to receive input from the printer or sending the output to
the keyboard would be a losing battle.

[110-- Unix Shell Programming

vy

Letus put these operators to a practical stint. Consider this commang:

$cat filel > file2

On executing this you will promptly be returned to the $ prompt. The
redirection operator declares file2 to be the standard output, oustin g
the terminal screen from that role. Thus the output of cat which s
normally sent to the screen is now sent to file2 and not to the screen.
If the file file2 does not exist, it is created. If it does exist, it is wiped
clear and refilled with the new data.Thus, the output going to the
screen has been redirected to a file.

Note that this change in standard output is temporary. When the

command ends, your terminal once again becomes the standard
output.

Now let’s look at input redirection. The Unix manual says that cat
reads from the standard input if no input file is given. This allows us
to do the following:

$ cat

Did you hear the story about the optimist and the pessimist? The op-
timist goes to the window every morning and says, "Good morning,
God". The pessimist goes to the window and says, "Good God, morn-
ing".

Ctrld

Did you hear the story about the optimist and the pessimist? The op-
timist goes to the window every moming and says, "Good morning,
God". The pessimist goes to the window and says, "Good God, morn-

ing".

First we typed cat and then hit the enter key. Thus we provided no
input filename. Then, what we typed next was gathered as standard
input, and cat passed it on to the standard output, the terminal screen.
You may recall that a Ctrl d at the beginning of the line acts to mark

the end of keyboard input; it simulates reaching the end of an ordinary
file.

I/O Redirection and Piping --111]

Any command that accepts standard input also accepts input redirec-
tion. So let’s try that out with cat:

$cat < newfile _
One of the best things about getting older is that all those things you
wanted and couldn't afford when you were younger, you no longer

want.

Here the file newfile became the standard input, and cat read its
contents and displayed them on the screen. The same thing could as
well have been achieved by saying,

$§ cat newfile .
One of the best things about getting older is that all those things you
wanted and couldn't afford when you were younger, you no longer
want.

Though both the commands produce the same output there is a subtle
difference between the two. In the latter example newfile was not the
standard input. Instead, the standard input remained the terminal, and
the internal programming of cat caused the newfile file to be opened
in addition to the standard input.

Indeed, cat, like many file-reading programs, can read the standard
input and a file input during the execution of the command. The-
standard method (and the one used by cat) is to use a hyphen instead
of a filename to stand for standard input. Here is an example that uses
the file newfile as the first input and the standard input (here the
keyboard) as a second input:

$ cat newfile -

We all shall plant some trees we will never sit under.

Ctrld

One of the best things about getting older is that all those things you
wanted and couldn't afford when you were younger, you no longer
want.

Wa all shall plant some trees we will never sit under.

[112-- Unix Shell Programming

1]

As you can see, cat concatenated the two inputs. Since the filename
came first, it was printed first. Then the keyboard input, represented
by the hyphen, was printed. '

Sometimes we may use both the redirection operators at once as
shown below,

$ cat < currentfile > newfile

The first part of redirection, < currentfile, indicates that input is to
be taken from the file currentfile, and the second part of redirection,
> newfile establishes that output is to be routed to the file newfile.
The order in which the two indirection operators are used doesn't
matter. We could have obtained exactly the same effect even by
saying,

$ cat > newfile < currentfile

Another redirection operator which is popularly used is the append
operator, >>, It is similar to >, except if the target file already exists,
the new output is appended to its end. For example,

$who >> logfile

This command appends the current list of users who have logged in
to the end of the file logfile.

Redirection is a very useful tool and is frequently used to redirect the
output of a process running in the background as we would see in 2
later chapter. Can you make out what the following commands would
achieve?

(a) $ls > filelist

(b) $banner Hi-Fi > message

(c) $cat par3 pard par5 >> report
(@ $cat filel > filef

1/O Redirection and Piping --113|

$cat < filet > filet
$cat > file < filet

$ date ; who

$ date ; who > logfile
$ (date ; who) > logfile

't jump to conclusions. Try your hand at the above commands.
are in for a few surprises,

ere are a few more redirection operators, but they are used mainly
e writing shell scripts rather than at command prompt. So we will
postpone their discussion to a later chapter. For the moment we will
make a list of these operators along with the purpose of each.
er Figure 5.2 for this list.

Operator Action

Make file the standard outpt.
Make file the standard input.

Make file the standard output, appending to it if it
already exists.

> file
< file
>> file

<< word Take shell input up to lhe first line containing
word or upto end of fi
| | n>file Make file the output for file descriptor n.
1>&2 Redirect standard output to standard error.
cemdl lemd2 | make standard output of cmd] the standard input

of cmd2

: he philosophy of Unix commands is that each does a small job but
0es it quite comprehensively. Quite often a single Unix command
does not suffice to solve a problem or do a task. That’s the time we

[114-- Unix Shell Programming

-

can try joining commanas together. The chief tools for this are
redirection and the pipe. If you have migrated to Unix from some
other operating system you probably know about these facilities,
However, their true power is tapped best (arguably) by the Unix
commands. |

Redirection facility of Unix lets us connect commands to files. The
Unix piping facility lets us connect commands to other commands,
This facility is of utmost importance in combining Unix commands
and operations. It can be really useful to redirect the output of one
program so that it becomes the input of another program, thereby
joining the two programs. To send the output of one command as
input for another, the two commands must be joined using a pipe ()
character.

It is possible to join commands using a pipe since many Unix
commands accept input from the standard input and send output to
the stanuard output. Incidentally, such commands are known as
filters.

Thus a filter is a program which can receive a flow of data from
standard input, process (or filter) it, and send the results to the
standard output. :

How can cnetell ifacommand is a filter? Simple. Read its description
using the man command. If it can take input from the standard input
and if it sends its output to the standardoutput, then itis a filter. Figure
5.3 shows a list or commonly used filters in Unix.

170 Redirection and Piping —115)

B -
Filter Purpose
cat Concatenates and displays files
pe Paginates display for terminals
more Displays a file one screenful at a time
head Prints the first few lines of a file
tail Displays the last few lines of a file
grep Searches files for a pattern
sort Sorts and merges files
nl Adds line numbers to a file
pr Prints files to the standard output
we Counts lines, words and characters
tee Creates a tee in a pipe
uniq Reports repeated lines in a file
tr Translates characters in a file
cut Cuts out selected fields of each line of a file
paste Merges lines of files
lpr Sends requests to line printer
| AT T e i
Figure 5.3

Let us now see a few examples of piping.

$is | we -l
Here the output of Is becomes the input to wc which promptly counts
the number of lines it receives as input and displays this count on the
sereen. Instead of displaying this count, whatif want to store the count
value in a file? Simple, use the output redirection as shown below:

$1s | we - > countfile

This example shows that piping and redirection can go together.

IM-- Unix Shell Programming

Let’s consider another example,

$who | sont

Here, instead of displaying the output of who on the screen it 8 pi
tosort. sort sorts whatever it receives as input (output of who iE t]f'd
case) and displays the sorted output (sorted according to first c’:harac]f
reen. Why on the screen? Because sort being
a filter un_lcss otherwise mentioned it sends the output to the screeng
Once again, if we want we can redirect this sorted output to a file by'

terin each line) on the sc

saying,
$Swho | sort > sortedlist

There are several situations where we
- of these are given below.

$who | grep shailesh
$ls | grep filet

Swho | we

$ls | sort -r

2is | more

$cat filet file2 file3 | pg
$cal 1996 | head -10
$cal 1996 | tail -5

$cat postry | grep love

In a[llthe above examples we can visualize the data flowing through
the pipe from one program to the next with each program doing
§0rnet!11ng to the information being passed through it. This process
Is equivalent to piping in real life, only difference being you do not
hear the gurgles as the matter flows through the pipe.

Ip many cases, input from a pipe can be combined with input from
ﬁlcs: The trick, as in combining redirection with files, is to use the
special symbol - (a hyphen) for those commands that recognise the
hyphen as standard input. For instance, consider this command;

—

can use the pipe operator. Some

1/0 Redirection and Piping —-117|

who | sort -logfile > newfile

ut from who becomes the standard input to sort. Meanwhile,
sens the file logfile. The contents of this file are sorted together
utput of who (represented by the hyphen), and the sorted
redirected to the file newfile.

we know that redirection routes the output to files while pipes
output to other programs. What if you want to do both? Unix
the tee command to achieve this purpose. It reads the standard
‘and sends it on to the standard output. It also redirects a copy
at it has read into the file (if any) of your choice. For example:

- who | tee logfile | sort
the output of who becomes the standard input of tee. tee now

one copy of the input to sort through one pipeline, whereas the
r copy is stored in a file called logfile.

at if we want to store the output of who in two files and still

lage to send one copy to sort. Simple just mention the two
es after the tee command as shown below:

8 .. $who | tee logfile newlogfile | sort

1s stretch this a little further. We want to store the output of who
lel and file2, display the same output on the screen and store the
ed output in file3. Observe carefully how this can be done:

$who | tee file1 file2 /devitty3a | sort > file3

ere, in addition to filel and file2 we have used the file associated

our terminal (/dev/tty3a). Hence tee sends the output of who to
the three files. What is sent to /dev/tty3a is promptly displayed
the screen. The copy which is sent to sort is first sorted and the
ed output is then stored in the file file3.

@—~ Unix Shell Programming

l?efqre using the pip_eline shown above use the tty command (g
f.onﬁrm the file associated with your terminal and use that filename
In place of /dev/tty3a.

= 1] 3 >

$cal filet file2 | tee -a completefile | more

In this pipeline the output of cat (contents of the files filel and file2)
are appended to the existing contents of the file completefile.

iother copy of output of cat is sent to more for displaying on the
screen.

So far we have redirect.d only the standard input and the standard
output. We can however also redirect the standard error. The follow-

ing example shows this can be done.
$ cat myfile > newfile 2> errorfile

Ffthc file myfile exists, then the contents of that file would be copied
into newfile. However, if it does not exist, then an €rror message
would be produced. However instead of displaying the error message
on the screen it would be redirected to a file errorfile. Note that the
> symbol redirects the standard output whereas 2> redirects the
standard error. While redirecting the standard output instead of > we
may as well use 1>,

Assuming that the file myfile did not exist let’s check out the contents
of errorfile,

$ cat errorfile
cat: cannot open myfile

¢ i the are i
;Fh]na isth .»,.len ormessage produced by the cat command when it failed
0 oc:::_u the file myl?le. Obviously, had myfile existed its contents
would Eave been copied into the file newfile.

1/O Redirection and Piping --119)

'_:'.Thus the facility of piping and redirection in Unix provides a lot of
'.-.'ﬂ'exibility. It owes its success largely to two factors. The first is the
‘Unix’s treatment of devices as files. This allows the same commands
10 work equally well with files and with terminals, hard disk drives,
and other input/output devices. The second factor is that a lot of Unix

commands are designed as filters which take the input from the

keyboard and send to the output to the screen. This makes connecting

Unix commands a very natural process. The fact that more, cat, sort,
pg etc. are filters is what lets us link them together with pipes.

‘Whenever we write programs to work under Unix environment we

- should give a careful thought to whether it should be developed as a

filter to exploit the capabilities of redirection and piping.

We are certainly not through with redirection in all its garbs. How-
‘ever, for the time being that is all that we have to say about the topic.
We are going to do a lot more I/O redirection when we write shell
_programs in later chapters. Till that time get used to the concept by
trying your hand at the following.

Construct pipelines to execute the following jobs:

(a) Output of who should be displayed on the screen with value of
total number of users who have logged in displayed at the
bottom of the list.

(b) Output of Is should be displayed on the screen and from this
output the lines containing the word ‘poem’ should be couni-d
and the count should be stored in a file filel.

(€) Contents of filel and file2 should be displayed on the screen
and this output should be appended to the file file3.

d) From output of Is the lines containing ‘poem’ should be dis-
played on the screen along with the count.

| 120-- Unix Shell Programming j

(e) Names of cities should be accepted from the keyboard. This
list of cities should be combined with the list of cities present
in the file cityfile. This combined list should be sorted and the
sorted output should be stored in a file newcity.

(f) All files present in a directory dirl should be deleted. Any
error, if it occurs while carrying out this operation should be
stored in a file errorlog.

Exercise

[A] Answer the following:

’ (a) What would be the effect of the following commands?

(b)

(c)

cat < filel > file2

we -l < aaa

who | sort

who | we -l > aaa

sort

date > aaa

banner > aaa

(date;banner Cheerio) > aaa

Is | grep poem

grep poem file | sort | we -l | banner
Is | tee /devitty | grep poem | wc -l
sort a.xt b.xt c.txt | dd conv=ucase | more
cal 1994 | head -15

date > aaa

cat aaa > bbb 2> cce

What do you mean by a filter? Give éxamples of filers.
Which of the following are filters?

date head grep fail Is
more who pg ps tee

.

(d)
(€

()

(2)

[B]

(@)
(b)

(©)

(d)

(e)

1/0 Redirection and Piping -- IZII

Can we redirect the output to keyboard and redirect input to
screen?

What is the internal value associated with the standard error
device?

Can you write the following command in a more compact
form?
cat < file1 | grep John > result

What is the difference between the commands:
we -l < file
we -l filel

What is the difference between the commands:
cat < filel > file2
cat > file2 < filet

Construct pipelines to carry out the following jobs:

List all files beginning with the character ‘P’ on the screen and
also store them in a file called filel.

List all files beginning with the character ‘P’ on the screen
twice in succession.

Output of who should be sorted and displayed on the screen
along with the total number of users. The same output except
the number of users should also be stored in a file filel.

Merge the contents of e files a.txt, b.txt and c.txt, sort them
and display the sorted output on the screen page by page.

Display the list of last 20 files present in the cu...nt directory.
Also store this list in a file profile.

vi, The King of
All Editors

Why vi
Modes of Operation
The First Editing Session
Learning The Ropes
Into The Murky Depths
Block Commands
Search, Search Everywhere...
Find and Replace
Delete and Paste
Yank and Paste
abbr is for Abbreviate
Set Commands
Customizing The vi Environment
Multiple File Editing in vi
Command Line Options in vi
Exercise

[124-- Unix Shell Programming

i(short for visual editor) divides Unix users in two camps: those

who hate it and those who love it, nothing in between. People

who hate it say that vi is the worst thing to have happened in

the Unix world, whereas those who love it are totally biased towards

. itand would go any length supporting its cause. I too have strong

opinion about vi (and other editors available under the Unix platform)
which will be abundantly clear in the later sections of this chapter.

Why vi

There are three editors available in almost all versions of Unix: ed,
ex and vi. The ed program is the original editor that has been a part
of Unix since the very beginning. If you use t, you begin to appreciate
how far software design has progressed since 1975. The ed program
is basically a line editor, which means that ed assigns line numbers
| to the lines in the file; every time you do something, you must tell ed

i which line or lines to do it to. If you have used the EDLIN orogram
[in DOS, ed should look familiar.

An improved version of ed, called ex, understands all the commands
of ed. Compared to ed it is a shade better in user-friendliness with
more informative error messages. If ed is an ugly toad than ex is a
less ugly toad. If there is any way you can get another text editor to
use other than ed and ex do it without a second thought. If you don’t
think that ed and ex can’t really be that bad, justinvoke them once
and you will never use them agu.n.

vi, The King of All Editors --125|

Compared to ed or ex the vi text editor ib head and shoulqers at?oveT
'ﬂ18m inalmostevery way. Itisascreen eleOI' rather than aline cdltOl.‘,
1t shows you as much of the file as it can fiton l}}e scree_n._You don’t
pave to beg it to display bits and pieces of your file. Definitely a step
forward, you would agree.

In fact vi created a sensation when it first appeared on the Uni}x scene
ﬁnce it was the first full screen editor. It allowed‘the user IO‘V‘IEW and
edit the entire document at the same time. Creating afld edmng ﬁ!es
ﬁaccamc alot easier and that’s the reason it became an instant hit with
_;ﬂe programmers.

l The bad news is that deep down vi is just a souped-up version of ed.
There are several disadvantages in using vi. These are:

(a) The user is always kept guessing: There are no self- ex-
planatory error messages. If anything goes wrong no error
messages appear, only the speaker beeps to inform you that
something went wrong.

(b) The guy who wrote vididn’t believe in help, so there isn’t any
o online help available in vi. Incidentally, vi was _writtf:n by Bill
Joy when he was a student at University of California.

(c) There are three modes in which the editor works. Under each

. mode the same keypress creates different effects. Hence mean-
ing of several keys and their effects in each mode have to be
memorised.

(d) viis fanatically case-sensitive. A *h’ moves the cursor one
. position to the left whereas a ‘H’ positions it at the top left
corner. Moreover, you are required to remember both.

~ That's vi for you in brief. I don’t intend to depress you, but all the

- Same, let’s eliminate any rosy ideas that you might have imagined

* about vi. Then how come vi is so popular even today. One of the

-

@6-- Unix Shell Programming

major reasons is that vi is available on almost all Unix systems. Yes
even if it is installed in Siberia.

vi can handle files that contain text. No fancy formatting, no fonts,
no embedded graphics or junk like that, just plain simple text. Yo,
can create files, edit files, and print them. It cannot do boldface,
running headers or footers, italics, or all that other fancy stuff yoy
need in order to produce really modern, over-formatted, professiong].
quality memos! '

Like all Unix programs, vi is a power-packed editor but lacks the
finesse that modern-day editors possess. It's possibly the last word
in how a program can be non-user-friendly. While using vi, you time
and againrealise that it possibly wants to make users aware that Unix
demands a certain level of maturity and knowledge when it comes to
using even its elementary editors. In many ways,vi sets standard in
Unix and presents the true no-nonsense picture that Unix is built over,

Even the most experienced computer user may take a while to get
accustomed to vi. In fact one needs to develop a taste for vi. And once
you do that you would realise it is the best editor in the world.
Learning vi will be a gaint step towards mastering the intricacies of
Unix. So let’s meet it head on, '

Modes of Operation

The vi program has three modes of operation;

(@) Command Mode: In this mode all the keys pressed by the user
are interpreted to be editor commiands. For example, if you hit
a h the cursor is moved one position to the left. In command
mode the keys that are hit are not displayed on the screen.

(b) Insert Mode: This mode permits insertion of new text, editing
of existing text or replacemen of cxisting text. Each of these
operations car: be performed only after changing over from the

vi, The King of All Editors --127|

command mode to insertion mode using appropriate r:o(;r;—
i i is als as input-text mode.
N mands. The insertion mode is also known p

\ The ex Command Mode: This mode permil:q us to give
Y ands at the command line. The bottom line of the. vi
:2::;?1 is called the command line. vi uses the command l(;r}e
display messages and.commands. All commands entered in
:l?le ex command mode are displayed in th‘e con.'nmar‘lc.i ir.neci T:;:
mode is so called because commands given in this mode
compatible with the commands of the ex editor.

The First Editing Session
| Let us now create a file, add text to it, save this file on the disk a{nd
then quit out of vi. To invoke vi type vi and the name of file you want
to create as shown below:

Svi letter

When you type the vi command and the file name{, vi clgi_itr:;' ll: ziF;f;en
and displays a window in which you can enter ‘d_nd e; it te {0 s
(underscore) on the top line shows tht_: cursor waiting for yopld i
a command here. Every other line is markcd vylth_a ~ (ti E),} -
symbol for an empty line. The screen as it looks like is shown below:

“letter" [New file]

-

(128-- Unix Shell Programming |

If you have successfully entered vi, you are in command mode ang
vi is waiting for your command. How do you create text? Let us now
add text to the file letter,

- Press the i key to enter the insert mode of vi. (Do not press the
Enter key). You can now add text to the file. (the i is not printed
on the screen)

- Type in some text. May be the piece shown below. Take care to
press the Enter key to begin on a fresh line.

Dear sonny,

A weaver bird is building a nest in the dogwood tree next to our
kitchen window. It builds it with such completeness, such perfection,
and with such confidence. Where does that kind of knowledge come
from?

Bye,
Mom.

The text that we type goes into a place in memory known as buff-
er.When you have finished creating text, press the Esc key to leuve
the insert mode and return to command mode. Now you can edit the
text you have created or write the text in the bufferto a file and return
to the $ prompt. We would try to save the file to the disk rather than
editing it.

To dothis, hold down the shift key and press z twice (ZZ). The editor
remembers the file name you specified with the vi command al the
beginning of the editing session, and moves the buffer text to the file
of that name. A notice at the bottom of the screen gives the file name
and the number of lines and characters in the file. Then the shell gives
you a $ prompt.

Instead of using ZZ to save and quit you can also use :w and :q
commands for writing and quitting a file. Note that any command
which begins with a: is a command to be given in ex command mode.

vi. The King of All Editors --129)

.

The :W command writes the buffer to a file. The :q command leaves
the editor and returns to the shell. You can type these commaqu
separately or combine them into the single command :wq. It is easier

to combine them.

Don’t bother about any typing mistakes that you may commit. We
would soon see how to edit the text present in the file.

If you press Esc key and a bell sounds, you are already in command
mode. The text in the file is not affected by this, even if you press the

Esc key several times.

Learning The Ropes

Having had our first tryst with vi let us now move further on. Let us
see how we can edit a file. To edit an existing file you must be able
to add, change, and delete text. However, before you can perform
those tasks you must be able to load the file from disk into buffer and
then move to the part of the file you want to edit. To load the file,

type this line:

$vi tidbits

Remember to substitute the name of the file you want to edit for |
tidbits. The vi program shows you a full-screen view of your file. If
the file isn’t long enough to fill the screen, vi shows tildes (~) on Fhe
blank lines beyond the end of the file. The cursor (the point at which
you are working) appears at the beginning of the first line of the file.
Figure 6.1, for example, shows the file tidbits (created using cat >
tidbits) as it would appear in vi.

[130-- Unix Shell Programming

A clock in an office can never get stolen.

Too many employees watch it all the time.

Two stone-cutters were asked what they were doing. The first said, "I am
cutting this stone into blocks.” The second replied, "I am on a team that is
building a temple." It's the attitude that matters!

"tidbits" [New file]

Figure 6.1

To edit your text, you need to move the cursor to the point on the
screen where you will begin the correction. This is easily done with
four keys h, j, k and L.

moves the cursor one character to the left
moves the cursor one character to the right
moves the cursor down one line

moves the cursor up one line

o i

The j and k comuuands maintain the column position of the cursor,
For example, if the cursor is on the 7" character from the left, when
you type j it goes to the 7™ character on the new line. If there is no
7" character on the new line the cursor moves to the last character in
the new line.

Instead of pressing a motion command key a number of times to move
the cursor a corresponding number of spaces or lines, you can precede
the command with the desired number. For example, to move two
spaces to the right, you can press I twice or enter 21. You can move
as many spaces, or lines as you want. If that place falls outside the
current window that part will be scrolled. If that space or line does
not exist vi will scuna the bell.

vi, The King of All Editors --131]

1 ike most vicommands, the h, j, k, and 1 motion commands are silent;

they do not appear on the screen as you enter them. The only time

'y'ou would see characters on the screen on hitting keys is when you

are in insert mode and are adding text to your file or when you are in

‘ex command mode. If the motion command letters appear on the

‘screen, you are still in the insert mode. Press the Esc key to return to
- command mode and try the commands again.

‘Adding Text

Let us now add some text to the end of the file. For this, first position
the cursor on the last character in the file using the cursor movement
'.'keys discussed above. Next, hit an a to switch from command mode
to text-input mode. The a here stands for append and it lets you add

0 characters beyond the current cursor position. Type in some text so
that your screen looks like this:

| A clock in an office can never get stolen.

Too many employees watch it all the time.

| Two stone-cutters were asked what they were doing. The first said, "1 am
cutting this stone into blocks." The second replied, "T am on a team that is
: building a temple." It’s the attitude that matters!

| Promise only what you can deliver.

- | Then deliver more than what you promised. 1

“tidbits" 9 lines 332 characters

1ddle position the cursor where you wish to add text and th:n press
Ao indicate that you wish to insert the text before the current cursor

[]32-- Unix Shell Programming Q

position. As you type the new text it will appear on the screen to the
left of the character on which you put the cursor. That character ang
all characters to the right of the cursor will move to the right to make
room for your new text. The vi editor will continue to accept the
characters you type until you press the Esc key. If necessary, the
original characters will even wrap around onto the next line.

How to Delete Text

If you want to delete a character, move the cursor to that character
and press the x. Watch the screen as you do so; the character will
disappear and the line will readjust to the change. To erase three
characters in a row, press x three times or press 3x. You got the idea
I believe. Let’s put the whole thing more succinctly.

X delete one character
nx delete n characters, where n is the number of characters you
want to delete. '

Notice that vi adjusts the text so that no gap appears in place of the
deleted string.

Overwriting Text

If you wish to overwrite the existing text then first position the cursor
(using h, j. k, I) at the character from where you want overwriting to
begin. Next hit a R (a capital R) to indicate that whatever you type
next should overwrite the existing text at the current cursor position.
Press Esc when you finish replacing text.

On Second Thoughts...

Having made changes in the text if you think you'd prefer the text
the way it was before you made the changes you can undo the
changes. Type an u and vi will undo the most recent change or
deletion you made. If you type a capital U, vi undoes all changes t¢
the current line since you moved the cursor to that line.

-

the document

vi. The King of All Editors --133

werful undoing capabilities. It has more undo features
than most jazzy word-processors axiailabie today. vaiously, the
m'acor was aware that users were going to commit mistakes. These
_anabilities would be covered later in this chapter.

i has very po

Quitting Vi

all the changes in the document you can finally save
and quit out using ZZ in command mode or :wq in ex
command mode. If you decide to quit and not save the changes you
have made, type :q! in ex command mode and then press Enter. Tl’us
means, "Leave vi and throw away my changes. I know what I'm

doing".

Having made

" Into The Murky Depths

Having seen how to type, edit and save a file let us now look deep
down and explore what more features vi has to offer. Almost all
letters, numbers, and symbols present on the keyboard are vi com-
mands too, so watch what you type when you are in command mode.
Instead of discussing each command in detail I think it would be more
appropriate if we segregate the commands into logical groups like
commands for cursor movement, commands for deleting text, com-
mands for adding text etc.

-

'I_?resented below are a few charts for these command groups. I hope
these charts would also prove helpful whenever you forget a com-
mand and want a quick reference for it.

[1' 34-- Unix Shell Programming

Commands for Positioning Cursor in the Window

Positioning by Character

.

vi, The King of All Editors --135)

. and

oning in the Window

Function

Moves the cursor to the first line on the screen, or "home",
Moves the cursor to the middle line on the screen .
Moves the cursor to the last line on the screen.

s

~mands for Positioning in the File

Function

Command | Function
h Moves the cursor one character to the left,
Backspace Moves the cursor one character to the left.
1 Moves the cursor one.character to the right,
Space bar Moves the cursor one character to the right.
0 Moves the cursor to the beginning of the current line.
3 Moves the cursor to the end of the current line.
Positioning by Line
Command | Function
j Moves the cursor down one line from it’ iti
B e S ine from it’s present position,
k Moves th i i
e cursor up one line from it's ition, i
B s R ot p present position, in
+ Moves the cursor down to the beginning of next line.
- Moves the cursor upto the beginning of previous line.
Enter Moves the cursor down to the beginning of the next line.
Positioning by Word
Command | Function
w Moves the cursor to the ri
i right, to the first character of the
b xgr\ées the cursor back to the first character of the previous
¢ Moves the cursor to the end of the current word.

Scrolls the screen forward a full window, revealing the win-
dow of text below the current window.

Scrolls the screen back a full window, revealing the win-
dow of text above the current window.

oning on a Numbered Line

'_l'nmand

Function

Moves the cursor to the beginning of the last line in the file.
Moves the cursor to the beginning of the n' line in the file.

ands for Inserting Text

Function

Enters text input mode and appends text after the cursor.
Enters text input mode and inserts text at the cursor.

Enters text input mode and appends text at the end of cur-
rent line.

Enters text input mode and inserts text at the beginning of
current line,

|136-- Unix Shell Programming

)

Enters text input mode by opening a new line immediatel
below the current line. e y

Enters text input mode by opening a new line immediat
above the cur?ent line. MR il

Enters text input mode and overwrites from current cursor
position onwards.

Commands for Deleting Text

Command Function

A Deietes the character at current cursor position.

X Deletes the character to the left of the cursor.

dw Deletes a word (or part of a word) from the cursor to the
next space or to the next punctuation.

dd Deletes the current line.

nx, ndw, ndd | Deletes n characters, n words or n lines.

do Dg[ﬁt:es the current line from the cursor to the beginning of

d$ E;éetes the current line from the cursor to the end of the

Miscelianeous Commands

Command | Function

Curl g Gives the line number of current cursor position in the buff-
er and modification status of the file.

x Repeats the action performed by the last command.

u Undoes the effects of the last command.

U Restores all chan ine si

anges to the current line since oved

the cursor to this ﬁne. e

J Joins the line immediately below. the current line with the
current line.

= C_hanges character at current cursor position trom upper
case to lower case or from lower case to upper case.

ish Temporarily returns to the shell to perform some shell com-
mands. Type exit to return to vi.

Cull Clears and redraws the current window.

]

vi, The King of All Editors --137|

Commands for Quitting vi
Command Function
R
"'_"ZZ Writes the buffer to the file and quits vi.
' : _':wq Writes the buffer to the file and quits vi.
[.y filename | Writes the buffer to the file filename (new) and quits vi.
and :q
! filename | Overwrites the existing file filename with the contents of
and :q the buffer and quits vi.
! Quits vi whether or not changes made to the buffer were
written to a file. Does not incorporate changes made to the
_ buffer since the last write (:w) command.
| Quits vi if changes made to the buffer were written to a file.
Block Commands

Having been able to create files, add and delete text and save the text
in a file let us now get into some advanced stuff. Something which
- will help you increase your efficiency when you work with vi. Block
‘commands for instance. As their name suggests these commands
work on a group of lines (a block of text) rather than an isolated line.
- For example, we may want to delete a group of lines from the file by
,lm_'ing a single command. Or we may want to copy a group of lines
 from one part of the file to another. We can make block commands
‘Wftork on single lines. But by doing so we would be under-utilising

Eir power.

be able to use biock commands we must remember two things:
All the block commands work in ex command mode.

Line numbers should be associated witn the text before we
issue any block commands. This is so vecause block com-
mands need to be told the line numbers on which they are
Supposed to operate.

7

vi, The King of All Editors --139]

(138-- Unix Shell Programming ﬁ

For example, a block command like :4,12d indicates that line 41
12 should be deleted from the file currently loaded in vi.

es in the file are numbered sequentially starting from 1. These
umbers get readjusted if you delete any existing lfnes of text 01:
¢ new ones. By displaying the lim? numbers in this way makes
While issuing this command if the line numbers are displayed on the , hlock commands a whole lot easier.
screen, we can promptly issue the command without having to take
trouble to count the lines ourselves. Displaying line numbers jg 2
simple matter.

‘the line numbers are displayed we can issue the following
sle block commands.

! 244 Deletes line numbers 2 to 4

You have to give a command set number in the ex command mode, g B 15 Copies inenumbers’s to8 dfisrine number 15

You will recollect that in this mode, all commands begin with a colop
(:). To display line numbers on the screen, first make sure you're in
the Command mode. Then press the colon (:) key and notice how the
cursor gets positioned at the last line of the screen. We had mentioned
before that the last line of the vi screen is the command line. Now
type in the command:

simple! However you may note a point. While copying lines
estination line number is greater than the number of the last
n the file, then vi will not be able to carry out the copyipg. Hence
or message will be displayed saying "Not that many l{ne’s in .the
"' So make sure that you give proper line numbers while issuing
(Esc): set number or (Esc): setnu commands.

i i T ' ious [‘ u can perform
Line numbers are instantly flashed onto the screen as shown in Figure ure 6.4 shows the various block commands that yo p

6.3.

| Congratulations on landing up with a job! .. ommand Function
2 As a new sales associate, just remember that true jobofa s
3 salesman begins when the customer says "No", Deletes n line.
4 There is no limit to what you can achieve if you don’t mind - Deletes lines from m tom
5 who gets the credit, Moves line n after line p. ‘
6 To be bitter to somebody is to waste precious moments of a * | | 1 mo p Mmics li.l‘IﬁS mton ffﬂCT line p.
7 life that is too short already. { Copies line m after line p..
= <op Copies lines m to n after line p.
= i W filename Writes lines m to n to a file.
= ' L0 W >> filename Appends lines m to n to a file.
~ T filename Reads the contents of the file filename at current
cursor position.
) Ommana Executes shell command and output of the com-
: mand is read at the current cursor position.
"trial" [New file] | 6.4
Figure 6.3

[140-- Unix Shell Programming
il R
e vi, The King of All Editors -141)

K—;:]T:]{0;1' are through with using the block commands andno |
¢ line numbers to be displayed you can easily deactivat;ﬁ '
em

b .
yssye, Wwill search for all strings which contain the characters

~ «art’, with ‘art’ being preceded by any character other than
.’ Hence words like ‘tart’, ‘cart’ etc. will qualify for the

(Esc): setnonumber or (s set nonu
search whereas ‘part’ will not.

All words which begin with characters ‘wing’ andend with

Search, Search Everywhere...
any characters would qualify for the search.

Li ; ; ” : ;
q[rl::gasni):; [::it] :d;}?r VItoo is equipped with a mechanism to searcy
. - These strings are more correctly k '
The patterns can be s s vy

earched from beginni :

fisl arc ginning to end or from en
b:ggggg;ﬁ.ﬂAéOt of variations can be made in building the patterg :0.
s ale-’ or lf:}fample‘:, if we want to search for all occurrences o{;
pale’, pile” and ‘pole’ in one scan of the file we can use the

) e ; o the Second Charac €r can be an

.cial characters that canbe used in building patterns are shown
6.5

er | Meaning

Zero or more characters

A set or a range of characters

If given at the beginning of a pattern, forces the match to
succeed at the beginning of the line

If ﬁilven at the end of a pattern, forces the match to succeed
at the end of the line.

Forces the match to occur only at the beginning of a word.
Forces the match to occur at the end of a word.

Matches any single character except the newline character.

Examine the following patterns to get a hang of the things:

Pattern Meaning

& ;
part Will search for all lines which begin with the word *part’.

part$ Will search for all lines which end with the word ‘part’ 6.5
y of the special characters mentioned above themselves occur in
attern to be searched then they must be preceded by a backslash

hey are to be treated as ordinary characters.

\<part '}\;:llll s:earch fo,ra][strings which begin with the word ‘part’.
$ “partner’ would qualify whereas ‘depart’ would not.

part\> TV};’:&LS%aérch rtfcu‘ all strings which end with the word ‘part’
part’ would qualify wh ; 2 .
\ \> y whereas “partner’ would not. llowing figure summarises the commands available for pattern
) b
part 82?’ the whole word “part’ will qualify for the search, "
reas the words ‘partner’ and ‘depart’ would not.

[m-s]ing :vVl]! _St::ath f?r‘ strings which contain any character in the
ange 'm-to 's’ and is followed by ‘ing’.

| 142-- Unix Shell Programming 3

Command | Function

/pattern Searches forward in the buffer for the next occurrence of
the pattern of text. Positions the cursor under the first char-
acter of the pattern.

Ipattern Searches backward in the buffer for the first occurrence of
the pattern of text. Positions the cursor under the first char-
acter of the pattern.

n Repeats the last search command.
N Repeats the search command in the opposite direction.
Figure 6.6

While searching a pattern you may want to search all occurrences of
the word irrespective of whether it is in capitals or smallcase or any
combination of these. In such an event you can arrange to ignore the
case of the word while searching by issuing the following command.

(Esc) :set ignorecase or (Esc) :set ic

Find and Replace

Quite often having searched a pattern we want to replace it with
another suitable pattern. vi provides a facility to carry-out such tasks
with ease. Using these commands we can carry out drastic changes
in files in one stroke. Learning how to use these commands is crucial
towards attaining efficiency.

Figure 6.7 shows the most frequently used combinations for search
and substitute.

180
vi, The King of All Editors 'jf*

nand Function

Replaces first occurrence of strd with str2in ¢
rent line.

1/str2/g Replaces all occurrences of strl with str2in ¢
rent line.

Replaces all occurrences of strl with str2from
lines m to n.

Rgplaces ali occurrences of strl with str2 from
1 []Jine to end of file.

sistrl/str2/g P\s;;lalaces all occurrences of strl with str2 from
£ 17" line to current line,

Replaces all occurrences of str1 with str2 {fom
current line to end of file.

the commands in figure 6.7 the g stands for global and £9%

ves the last nine deletions that the user makes. Howe"ﬂz
ot forget them. The user can review his last nine deletions ¥

i1
he changes. Now that’s a lot more than the poor undo commific

handle.

w that the undo command helps correct only the last chan
e have made to a document. For example, if you have deleted
using the command 4dd then we can bring these lines back
g the last delete operation using the command u. If we a*
yond this and undelete the last but one deletion that we b\
1en the u command is of no help.

a powerful editor it can undo the last nine deletions- ™
S registers (buffers) in memory (I don’t know why they &*
registers) in which it remembers the user’s changes 3%
NS, Using these registers it can retrieve the last nine deletio®
by auser.

[144-- Unix Shell Progranzming Q vi. The King of All Editors --145]|

To recover the last deletion that you may have made you'll have ¢,
press ""1p. The double «quote at the beginning is mandatory. It jg
followed by the name of the buffer i.e. 1. The p command pastes the
line from the buffer after the current line. Similarly, if you press "2
the second last deletion you made will be recovered. You can Carr);
on this process till "'"9p tto recover the last nine deletions. To undy
more than 9 deletions us« the following:

mand | Function

Yanks word from cursor position.

Yanks line from from cursor position.

Yanks line from cursor position to end of line.
L‘{_anks line from cursor position to beginning of line.

=3 i
C d ti ; S
e s te the matter present in the yank buffers use the following
"xdd Deletes current line and copies it to a buffer named x. (x ' ands.
can be any alphabet).
"xndd Deletes n lines from current line and copies them 1 & Y
er named x. pes ey ke mand | Function
"xdw Deletes cusrent word and copies it to a buffer named x. | ked buff
"xndw Deletes n words from current cursor position and copies PRalusit gae S DL,
them to a tzuffer named x. Pastes last but one yanked buffer.
"xp Pastes conzents of buffer x at current cursor position. 10
Figure 6.8 _
such yanked buffers can be pasted. To yank and paste more than
Yank and Paste ffers, use the following:
Unlike delete when you yank objects (word, line, gror:{p of words or mmand | Function

a group of lines) vi copie's these objects into buffers without removing
them from the file. These objects can then be pasted to another
location in the file or even to different files.

Yanks current line to a buffer named x (x can be any al-
phabet).

Yanks n lines from current line to a buffer named x.
Yanks current word to a buffer named x.

Yanks n words from current cursor position to a buffer
named x

Pastes contents of buffer x at current cursor position.

"Yank" means to extract or remove. However, this meaning of yank
is misleading since on yanking the objects are certainly not removed
from the file. This is another example in Unix where the words mean
one thing and perform something else.

The yanking commands are similar to the deletion commands 25

Figure 6.9 would justify . 'Is for Abbreviate

only used editors like Wordstar there exist facilities forusing
and characters for commonly required expressions. These

vi, The King of All Editors --1 47

[146-- Unix Shell Programming _ z

shorthand commands can be invoked at the press of a single key for (Esc):una pr

the user’s convenience.
your abbreviation is forgotten.

In vi, this can be achieved using the abbr command which stands for
abbreviation. Suppose you are typing a C program in vi. You are
required to use the word printf quite often in C programming. Hence
we can think of abbreviating this word as pr. To get this done use the
command:

» 6.12 has captured the essence of the abbreviation command.

Function

Jbr <abbreviation> <longform> An abbreviation is defined for a

& longform. When we type the ab-
breviation followed by a space, 1L1s
replaced by its longform.

Lists currently defined abbrevia-
tions.

Unabbreviates the abbreviation.

(Esc) :abbr pr printf

Now when you’re typing the program and you press ‘p’ followed by
‘r’ they appear on the screen as they are. But now if you follow them
with a ‘space’ or the ‘Enter’ they are instantly overwritten by the word
‘printf’. By building such shorthand expressions (often known as
rpa.cros) for commonly occurring text you can improve your produc-
tivity.

. have seen two set commands s0 far. set nu and set ic. The first
s used to associate line numbers with the file you are currently
ng with. The second was used toignore the case while searching
tern in the file.

To see the entire list of macros that you have set you can issue the
command:

(Esc} :abbr

on to these two there are several other options that the user
{ to customize the environment of vi. A thorough knowledge
ptions will help the user make the vienvironment friendlier
convenient to work with. The options are numerous, as
To get a list of all the options available with set, use the

You can confirm that your recently set macro pr is indeed present in
the list that is displayed. While abbreviating text you should take car¢ '
not to use to or at or in or such commonly used words for shorthand
expressions. Otherwise when you type them they would be promptly
replaced by the text they have been abbreviated for.

You can set a long list of abbreviations using this command. Thes¢
abbreviations however would be forgotten the moment you quit 0%t
of vi. Towards the end of this chapter we would see how vi can be
made to remember these abbreviations when we quit out of vi or eve?
when we log out.

(Esc) :set all

e listis long there are only a few which are most commonly
st of these along with the effect of each is shown in Figure
When not required you can unabbreviate the macro using the follow~
ing commuad: '

ol
| 148-- Unix Shell Programming 3 v
; § : vi, The King of All Editors --149)

Command Function
setnu Set display of line numbers on.
:set nonu Set display of line numbers off (default).
iseteb Beep the speaker when an error occurs (default).
:set noeb Do not beep the speaker when an error occurs.
:set ai Set auto indent on.
:set noai Set auto indent ofT (defauit).
isetic Ignore case while searching a pattern.
| :set noic Do not ignore case while searching a pattern (default).
i :set terse Make messages terse.
i :setnoterse | Do not make error messages terse (default).
iset mesg Permit receipt of messages from other terminals.
i :set nomesg | Don’t receive messages from other terminals (default).
:sei show- Display mode in which we are working.
| mode
:set noshow- | Do not display current working mode (default).
mode
:set aw Automatically write buffer contents to disk before switch-
ing to next file during multiple file editing.
:set noaw Do not write buffer contents to disk before switching to
next file during multiple file editing (default).

Figure 6.13

Customizing the vi Environment

Whenever you load vi it searches for a file called .exre in your default
working directory. This file is optional. It may be created by users t0
suite their convenience. If absent no error message is flashed. If
present any set commands or abbreviations that you may have stored
in this file become automatically effective in all your sessions with
vi. Since its name begins with a *.” this file is treated as a hidden file.
This file can be created using vi itself. Typical contents of this file
are shown below:

set nu
' set showmod:

set ai

set nomesg

abbr ys "Yours Sincerely"
abbr re "Reference no.:'

When vi loads itself, it will execute all the commands in the .exre
file first and then display the current file on the screen. The .exrc file
isaconvenient way to customize the vi environment and like all good
things you should put it to utmost use to improve your efficiency.

Multiple File Editing in vi

Multiple file editors became available under DOS platform in early
nineties, whereas vi offered this facility from its early days. It permits
you to load and edit several files simultaneously. For example, if we
are to edit files tidbits, letter and memo simultaneously we can load
all of them while invoking vi by saying,

$ vi tidbits letter memo

Once into vi the first file in the file list (tidbitsin our case) is displayed
for editing.

WE: can as well use metacharacters while mentioning the files to-be
edited. For example, we can load all C programs in the current

directory by saying,

$vi *c

At any moment if we are to find out the files that have been loaded

'fm"editing we can do so by saying,

(Esc) :args

Th's displays the list of files with the name of the file being currently
_ Ited enclosed within square brackets [].

[150-- Unix Shell Programming

Haying completed editing of a file we can go to the next file by simply
typing, }

(Esc) :n

Whether we would be able to go to the next file or not depends upon
whether we have made changes to the current file or not. If we have
not made any changes to the current file then we are taken to the next
ﬁIe:. However, if we have made chan ges to the current file, vi prevents
switching to the next file till you indicate whether you want to save
the changes or abandon them., -

If you want to save them use the usual method of Shift ZZ. And if

you want to go to the next file by abandoning any changes made to
the current file then say, /

(Esc) :n!

Unlike n there is no command available for editing the file previous
to the current file in the files loaded for editing. However, we can g0
back to the very first file in the file list by using the rewind command
as shown below:

(Esc) :rew

Again, if we have made changes to the current file vi would refuse
to go to the first file unless you decide what should be done with the
changes. Either save the changes and then use rew, or use rew! to
abandon the changes and rewind 10 the first file.

It’s quite' possible that when we mention the file list for editing we
forget to include some filename in the list. If we now want to edit this
left out file we can easily do so by saying,

(Esc):e document

filename :) :
. you can confirm this using the args command. Now you can edit the

file document, save it and once again return to your original file list. '

vi, The King of All Editors --151|

instantly loads the file document on the screen. Note that this
doesn’t get added to the file list given while invoking vi.

The commands required for carrying out multiple file editing are
given in Figure 6.14.

Command | Function
vi filel Loads 3 files, filel, file2, file3 into the vi buffer for editing.

ile2 file3

n Permits editing of the next file in the buffer.

n! Permits editing of next file without saving the current file.

rew Permits editing of the first file in the buffer.

rew! l;tlennits editing of the first file without saving the current
ile.

args Displays names of all files in the buffer in which name of
current file is enclosed within [].

f Displays the name of the current file.

Figure 6.14

Command Line Options in vi

- So far we have been invoking vi by mentioning one or more file -

names to be edited. However, there exist a few more ways for
nvoking vi. These are mentioncd in Figure 6.15.

Command Function
P
$ i +100 file Loads file and places cursor on the 100" line in the file.

$ vi +/pattern file | Loads file and places cursor on the first occurrence of
the matching pattern.

3 view file Displays file in the read-only mode of vi. Any changes

made to the buffer will not be allowed to be written to
g the file.

Figure 6.15

| 152:-- Unix Shell Programming

In the end let me say that decor wise vi is not the best editor around.
But it functions, and functions like none other. Only thing is you need
to cleanse your bias, broaden your mind and spend time with it to get
used to its cryptic one letter commands. Believe me it takes time to
do so even for the best players in the game. But once you acquire the
skills you would support vi all your life. Truly, vi is as much a part
of Unix as the soul is of the body.

Exercise
[A] Answer the following:
(a) Whit are the 3 modes of operations of vi?
" (b) Other than vi which other editors are usually available under
Unix?
(c) What is the purpose of .exrc file?
(d) Which commands in vi would you use to perform the follow-
ing operations?
- Block copy
- Block move
- Block delete
(¢) Two consecutive lines are to be combined into one. Which vi
command would you use to do 50?
(f) Which vi command would you use to perform the following

cursor movement operations?

- 3 words to the right

- 4 words to the left

- Top of screen

- Bottom of screen

- Beginning of current linc
- End of current line

- Beginning of file

- End of file

- goto 100™ line in the file

=

=

(h)

(k)
()
(m)

[B]

vi, The King of All Editors --153]

How will you perform the following deletions in vi?

- Character at the cursor

- One word from current cursor position
- Current line

- Next4 lines

- Line to the left of cursor

- Line to the right of cursor

What is the difference between the following vi commands?

What is the difference between yank and delete?

There are five files available. How would you replace all
occurrences of the word ‘printf® in these files with the word
‘PRINTF’?

In the middle of a file being typed you want to import the output
of who command. How would you do this?

While editing a file "filel" you want to read of the line nos. 10
to 20 from "file2". Can you do this?

What is the effect of the following commands? Where these
commands should ideally be stored?

set nu
set ai
set eb
set ic

Type in the following text exactly as shown below and then
perform on it the operations listed at the end.

In order for Unix to survive into nineties, it must get rid of its
intimidating commands and outmoded jargon, and become

u54-~ Unix Shell Programming

]

compatible with the existing standards of our day. To this end,
our technicians have come up with new version of Unix,
System VI, for use by the PC - that is, the "Politically Correct.”
Here is a brief extract from the release notes:

The "man" pages are now called "person" pages.

To avoid casting aspersions on our feline friends, the "cat"
command is now merely "domestic_quadruped."

The bias ot the "mail" command is obvious, and it has been
replaced by the more neutral "gender" command.

The "more" command reflects the materialistic philosophy of
the modern era. System VIuses the environmentally preferable
"less" command.

To avoid unpleasant, medieval connotations, the "kill" com-
mand have been renamed "euthanise."

The "nice" command was historically used by privileged users
to give themselves priority over unprivileged ones, by telling
them to be "nice". In System VI, the "sue" command is used
by unprivileged users to get for themselves the rights enjoyed
by privileged ones.

The "abort()" function is now called "choice()"

From now on, "rich text" will be more accurately referred to
as "exploitative capitalist text". The term "daemons" is a
Judeo-Christian pejorative. Such processes will now be known
as "spiritual guides."

There will no longer be an invidious distinction between
"dumb" and "smart" terminals. All terminals are equally valu-
able,

.

vi, The King of All Editors --155|

For far too long, power has been concentrated in the hands of
"root" and his "wheel" oligarchy. We have instituted a
democracy of the users. All system administration functions
will be handled by the People’s Committee for Democratically
Organising the System (PC-DOS).

And finally, Unix itself will be renamed "PC" - for Procrea-
tively Challenged.

Global searches and replacements to be made:

(a)
(b)
(c)
(d)

(e)

(f)
(2)

Change all full stops to semicolons.

Change all occu.rences of the word the or (The) to THE.
Replace one or more spaces with a single space.

Replace one or more spaces following a full stop or a comma
with two spaces.

Delete all blank lines. A blank line may contain whitespace
characters like spaces and tabs.

Insert a > and a space at the start of every line in the file.
Reverse the order of lines in the file.

N

Processes in
| Unix

What's Running Right Now
Still More Processes
Background Processes
The nohup command
Killing a processes
Changing Process Priorities
Scheduling of Processes

The at command

The batch command

. The crontab command

Exercise

| 158-- Unix Shell Programming j

l I nix as we know is a multi-user, multi-tasking operating
system. It means at any instant there might be several
programs of several users running in memory. All these

programs share the CPU’s attention between them. Thus by ensuring

that the CPU doesn’t remain idle the overall efficiency of the com-
puter is improved. There is a common misconcept thata program and

a process are one and the same thing. They are very nearly so except

for one subtle difference. A program is elevated to the status of a

process when it starts executing. Thus a process can be defined as the

instance of an executing program.

Though there might be several processes running in memory at any
given moment, the CPU can cater to only one of these processes as
the other processes await their turn. There is a program called
‘scheduler’ running in memory which decides which process should
get the CPU attention and when. At any given moment a process in
memory can be in one of the six states.

When you execute a program the scheduler submits your process to
a queue called process queue. At this instant the process is said to be
in submit state. Once submitted the process waits its turn in the queue
for some time. At this stage the process is said to be in hold state. As
the process advances in the queue at some instant it would become
the next one in the queue to receive CPU attention. At this stage it is
inready state. Finally the process gets the attention of CPU and starts
getting executed and thereby attains the run state.

Processes in Unix --1 59|

In the middle of this execution it might so happen that thf: time slice
allotted to this process gets over and the CPU starts running another
process. At such times the old process is returned to the re'fldy sta.{e
and is placed back in the process queue. As the CPU diverts its
attention to the new process all the necessary parameters (?f the old
process are saved for retrieval when its nf:}_tt time .sllce arrives. T:he
old process will now be in ready state waiting for its next time slice

to arrive.

Some processes might be required to do disk inpudqutput. Sipce I/O
is a slow operation the CPU can’t lie idle till the time I/O is over.
Therefore, such processes are put in wait state until their I/O is over
and are then placed in the ready state.

A process whose execution comes to an end goes into complete state
and is then removed from the process queue,

What’s Running Right Now

Should you want to see which processes are running at any instant
Just type ps and hit enter.

$ps ;
PID TTY TIME COMMAND

2269 3a 0:05 sh

2396 3a 0:00 ps

Unix assigns a unique number to every process running in memory.
This number is called process ID or simply PID. The PIDs start with
0and run upto a maximum of 32767. When the maximum number is
Ieached it starts counting all over again from 0 onwards.

The output of ps shows the PIDs for the two processes being run by
Us when ps was executed. The output also shows the terminal from
Which the processes were launched, the time that has elapsed since
the processes were launched and the names of the processes.

L}60-- Unix Shell Programming

How come that only two processes are listed when there might »
well be several users who have logged in right now? That's becauss
: e

ps is designed to display only the processes that are i
: run
terminal. : e

Ob_serve carefully that the first process running at your terminal is s
Thlls stands for Bourne shell. This process is born the moment. .
Ioglp and dies only when you log out of the systen,. The otherproci:ou
that is running is ps itself. This process was obviously running wheS:

ps took the snapshot of memory to determine which processes wer,
running. 1

Should you want to find out which processes are running for the other
users W}Ilo have logged in execute the ps command with the -a option
-a standing for processes of all the users. '

$ps -a

PID TTY TIME COMMAND
2269 3a 0:05 sh

2396 3a 0:00 ps-a

2100 3b 0:00 sh

2567 3b 0:00 i

If you want to see what a particular user is doing just say ps -u userl
where -u stands for user and user1 for his login name

Don’t you think that your security and privacy is getting violated if
orht?r users can find out what you are doing. True. But the kernel has
decided to let anybody find out what's running in memory. § ;

will have to live with this small quirk. S aa

Another useful option available with ps is -t. It lets you find out the

pI‘OCCSSGS Iha[]ta“e bee” !dUﬂCEIEd ﬁO]‘n d pal [I'Cl.]] I ((!] i] Or
d

$ps - tydd

—

~ woul .
W 3d. When the terminal file begins with the word “tty’ we are

armitted to drop this word and just say ps -t 3d to get the same

Processes in Unix --161]

d list all processes which have been executed from terminal

E@ults.

Remember that ps always lists those processes which are in memory
at the instant it was executed. It means that if some other user is
working with a C program it may so happen that this process would
not be listed by ps -a since at the instant ps -a took the snapshot of
memory the user may just have completed the execution of the C
program and returned to $ prompt. That’s why the output of ps always
contains ps itself as one of the running processes since it is obviously
active when the snapshot is taken.

" There’s a lot of additional information that Unix stores about each

running process. This information can be obtained by using the option
-f, standing for full listing.

$ps - -
uiD PID PPID C STIME TTY TIME COMMAND
icit 288 1 1 09:32:25 02 0:01 -sh

icit 513 288 8 09:51:07 02 0:00 ps-f

A process is ‘born’ the moment it starts executing and is “‘dead’ once
it terminates. For a process to be ‘born’ another process should give ~
birth to it. In the Unix jargon the new process is called the ‘child’
Whereas the process that starts it is called the ‘parent’.

The child born out of a parent can then become a parent by giving

- birth to another child process. In the above output you can observe

the field PPID which stands for the PID of the parent process. For

- €Xample, the process ps -fin the above output has aPID 513, whereas

‘_its parent’s PID is 288. Since ps -f was launched by the shell, PPID
Of ps -f is same as PID of sh. This way we can trace the ancestry of

any process, right till the very first process, the sched who is the father
B Of A1),

Ll

[162-- Unix Shell Programming

Still More Processes

So far we have encountered only the processes associated with
individual users. But there are several more running inmemory which
are necessary for the system to work. For example, there is a
scheduler process running at all times in memory which schedules
the CPU time and memory amongst all other processes and users.
The following command would help you confirm this.

$ps -e
PID TTY TIME COMMAND
0 7 0:00 sched
1 % 0:01 init
2?7 000 vhand
3 7 000 bdflush
487 01 001 sh
288 02 0:01 sh
289 03 0:00 getty
100 2 0:00 logger

145 7 0:00 cron
290 04 0:00 getty
151. 7 0:.00 Ipsched
275 7 0:00 deliver
512 3h 0:00 i
514 02 000 ps
295 05 0:00 getty
296 06 0:00 getty
297 07 0.00 getty
208 08 0:.00 getty
299 09 0:00 getty
300 10 0:00 getty
301 11 0:00 getty
302 12 0:00 getlty
303 ? 000 sdd
304 3a 000 getty
0305 3b 0:00 getty
306 3¢ 0:00 getty

Processes in Unix --163]

307 3d 0:00 getly
308 3e 0:00 getty
309 3f 0:00 gefty
310 3g 000 getty
311 3h 001 sh

. -e stands for every process running at that instant. Note the PID
e process sched. This is the scheduler that we talked about and
e first process that gets launched when the machine is booted.
d process gives birth to the initialiser process Jete/init. That's
1son why PPID of /ete/init would be 0. init is a file on disk
t in the /etc directory. The vhand process is the ‘virtual
nory handler’ and the task cut out for itis to swap active processes
een memory and disk as they run or wait their turn in the queue
rocessed by the system. Since vhand is launched after init its
is 2. Another process of interest is bdflush standing for buffer
flush and is responsible for disk I/O. When we attempt to store
ing to the disk first it gets stored in a buffer in memory. When
uffer gets full its contents are then flushed (emptied) to the disk.

all these processes support the activities of the system and go
their task independent of what users are doing these processes
own as ‘system processes’,

esses such as vhand, bdflush and sched are housed in the
file /unix and are popularly known as ‘daemons’. These
ses are constantly running in the background. Daemon proces-
characterised by the fact that they run without the user
ting them to do so. These processes are neither linked with a
or with a terminal. These processes are created when the system
up and remain active until the system is halted or shut down.

[164-- Unix Shell Programming

Background Processes

Most of the system processes run in the background, while the ugerg
execute their processes in the foreground. If the user so desires evey
he can run his processes in the background. Using this facility of Unix
the user can run time-consuming tasks like sorting a huge file anq
storing the sorted output in a file in the background. This way he
would not be required to wait till the sorting is over to be able to rup
the next process. He can immediately concentrate on another task the
moment sorting process is submitted to run in the background.

To run a process in the background, Unix provides the ampersand
(&_) symbol. While executing a command, if this symbol is placed at
the end of the command then the command will be executed in the
background. When you run a process in the background a number is
displayed on the screen.

This number is nothing but the PID of the process that you have just
executed in the background. Let’s understand this with an example.

$ sort employee.dat > emp.out &
17653
3

The task of sorting the file employee.dat and storing the output in
emp.out has now been assigned to the background, letting the user
free to carry out any other task in the foreground.

Though the facility to run processes in the background is of great
advantage, it comes with a few limitations too. These are:

(a) On termination of a background process no success or failure
is reported on the screen. Then how do we keep track of it’
That’s where the PID displayed on the screen (17653 in the
above example) comes in handy. We can search for this PID
in the output of ps to verify whether the process is still running
or has been terminated.

Processes in Unix --165]

The output of a background process should always be
redirected to a file. Otherwise you would get a garbled screen
showing the output of the background process along with
whatever you are doing in the foreground.

© With too many processes running in the background the overall

system performance is likely to degrade.

(@ Ifyou log out while some of your processes are running in the

background all these processes would be abandoned halfway
through. This is natural because all your processes are
children/grandchildren/great grandchildren of your sh (shell)
process. And when we log out the sh process dies along with
all its children.

- The nohup command

If we are to ensure that the processes that we have executed should
not die even when we log out, the nohup command is the answer.
‘Using this command we can submit the time consuming commands

In the background, log out and leave the terminal and come next day.
tosee our output ready. Appropriately, nohup stands for no hang ups.

The nohup command’s usage is shown below:

$ nohup sort employee.dat > output.emp
17695

Now we can safely log out (without any hangups) without our process

.:.-ge.tting terminated on logging out. If all goes well with the sorting

then our output would be ready in output.emp which can be verified

- When we log in next time.

_:‘:N-Ole that if we do not redirect the output of our background process

€ command acts intelligently and stores the output in the file

q

T 166-- Unix Shell Programming

$ nohup sort employee.dat
16779

Sending output to nohup.out
$

The ‘nohup.out’ file is always created in the current directory.

Another small issue. If the nohup command is used in a pipeline care
should be exercised to precede every command in the pipeline by the
word nohup as shown below. This would see to it that all the
processes in the pipeline remain alive when the user logs out. If not
done, the command which is not preceded by nohup will die when
you log out. And if one process in the pipeline dies, the entire pipeline
is bound te collapse as in the following command.

$ nohup cai employee.dat | nohup grep ‘Nagpur' | s.ort > addresses &
12695 .
$

Killing A Process

Some of the reasons why you would like to terminate a process in the
middle of its execution are mentioned below:

(a) The terminal has hung. A typical exampiz of this is when you
attempt to cat a directory file.

(b) The program which is running has gone in an indefinite loop
and hence is not getting terminated.

(¢c) The system performance has gone below acceptable limit$

because of too many processes running in the background. AS
a result, you may want to terminate a few time consuming
procc‘s‘;es.

Processes in Unix --167]

v of the above situations you would like to ‘kill’ the process. To

out this killing we must first note the PID of the process to be
ed using the ps command. Then we must employ this PID and the
| command to terminate the process. Here’s an example.

§ cat employee.dat | grep ‘Nagpur' | sort > output.dat &
- 6173
- $

e above background process is to be killed we must execute the
owing command.

. $kil 6173
6173 Terminated.

- us understand how the kill command works. When invoked, it
ids a termination signal to the process being killed. A signal is a
chanism to communicate with a process. These signals have been
en numbers. In the above example we have not communicated the
al number to the process to be killed. Hence, the default signal
r was sent to the process requesting it to terminate. This default
I is same as the one generated when you hit the Del key in the
e of a Is or cat command. This default signal however is not
owerful and may not be able to kill a process at all times. A
xample is the sh process which cannot be terminated by this
ult signal. At such times we can employ signal number 9, the
ill’ signal to forcibly terminate a process as shown below:

kil -9 2316

' can you employ kill if your terminal has hung? Simple. Login

again through another terminal (yes a user can login from
fal terminals simultancously). Then run the who command and
O9mmand to figure out the number of the terminal which has huns
tuse the command ps -t ttynumber to find out the PiD of the
Tunning on the hung terminal. Finally, using this PID number
the sure kill signal terminate the sh process. Next moment, the

I T
y’

[168-- Unix Shell Programming Q

hung terminal would spring back to life and would once again

the login prompt. .

There are processes which cannot be killed even by the sure ki) |

sign.a[.For qxample, the system processes like sched or vhand cannot
.be killed using the sure kill signal. This is quite reasonable, becayse
if these processes get killed the entire Unix OS would collapse.

Another important point. You can kill only your processes and not
tl?ose fired by other users. Superuser of course enjoys an altogether
different status. He can kill any of the user’s processes easily.

-Changing Process Priorities

Though all proggsses are equal, some processes are more equal than
otherg. Tht_ey can be made so by increasing their priority. The proces-
ses with higher priority would obviously get a time slot earlier and
would be fired earlier than the other processes in tiie queue.

Th?, priority of a process is decided by a number associated with it.
This number is called ‘nice’ value of the process. Though paradoxi-
cal, higher the nice value of a process lower is its priority. The nice
value of a process can range from 0 to 39, with 20 as the default nice
value of a process. Thus, a process with a nice value 25 would execute

slower than the one with a nice value 20, Let’s try to increase the nice
value of one of our processes.

$ nice cat employee.dat °

Th:s would ipcrcasc the nice value of our cat process from 20 to 30.
Since, we didn’t specify the increment, an increment of 10 got
assumed and the nice value got correspondingly incremented. If we
so desire, we can specify the value of the increment.

$ nice -15 cat employee.dat

Processes in Unix --1 6Sﬂ

e cat process will have a nice value 35 (20+15). Note that the
ent can range from 0 to 19. By incrementing the nice value we
utting cat on a lower priority and hence it would be executed

than what it does normally.

ands logical that if we can increase the nice value of a process
Lust as well be able to decrease it and thereby put our process on
er priority. Wishful thinking. However hard we try, we as users
ever decrease the nice value of our process. That’s fair enough.
rwise, every single user would try to put each of his processes
highest priority. As you must have guessed, it's only the
iser who can put a process on a higher priority by reducing its
value. That’s another reason why you should try to maintain
thy relations with the superuser, so that at times you can request
do you a favour by putting your process on a higher priority.
superuser can reduce the nice value of a process as shown below:

/0

nice --10 sort employee.dat > output.dat

n would the user like to increase the nice value of a process?
r all, why would anybody wish to put his process on a lower
fity! Remember a Unix user is expected to be reasonable and
‘some ethics. If your process is going to be time consuming
going to degrade the system performance, then you should
ys run the process in the background with a higher nice value.

that the priority of a process can be changed at the time of firing
rocess at command prompt. Once the process has been submitted
€ process queue its priority cannot be changed.

¢an see the nice values of the various processes running in
ory using ps -1.

$ps -

-~ F S UD PD PPIDC PRI NI TTY TIME CMD
20S 214 290 1 1 30 20 .. 01 001 sh
200 214 363 290 7 63 20 .. 01 0:00 ps

|

[170-- Unix Shell Programming

i

In the above output the column with the heading NI indicates the nice
value of a process.

Let’s now seek somé proof that a command with a higher nice valyg
indeed runs slower than normal. For this we can employ the time
command. It helps us to figure out the time taken to execute 3
command. Here's how it does so...

$time Is -laR > dirlist.out
real 0.3
user0.0
sys 0.1

Note that in the above command we have redirected the output of Is.
so that it doesn’t mix up with the output of the time command. The
output of time command doesn’t get redirected since the output of
the time command is written to the standard error device, i.e. the
screen.

The ‘real’ time in the above output represents the time taken by the
command to execute since its initiation to its termination. The ‘user’
time represents the amount of time that the command/program took
to execute its own code. For small programs which take milliseconds
to execute, this time is often reported as 0.0, as in the above case. The
‘sys’ time represents the time taken by Unix to fire the command.

Let’s now time the same command by executing it with a higher nice
value.

$time nice -19 Is -laR > directlist.out
real 0.6
user0.0
sys 0.2

Note that this time the process consumes a significantly higher time
to execute. However, the time taken (user time) by the command (¢
execute its own code has remained same.

Processes in Unix --1 7”

| duling of Processes

multitasking OS must provide tools to permit scheduling of
ocesses as per the user’s/system’s requirements. Unix is no excep-
on to this. In fact Unix’s understanding of time is marvellous, as
ou would soon realise. It can schedule processes to get executed
within next few- seconds to next few years. Once the user ‘ha§

bmitted a process to Unix directing it to execute the process at a
acified time and date in future, there onwards Unix takes over. Unix
anages to remember the processes to be executed and goes about
executing thern whenever the time arises without needing any further
directions frorn the user. That's the philosophy of scheduling proces-
s. Now let us understand its mechanism.

ecute the following command:

$ps -e | grep cron
147 ? 0:.01 cron

ere the process cron stands for chronograph. This system process
sponsible for scheduling the other processes. Neither user nor
ser can execute the executable file (/etc/cron) of this process
y. During booting Unix executes this file and displays the
sage ‘cron started’ on the host terminal. Once Unix launches this

ss there onwards cron is activated once every minute. When
n wakes up it checks whether any scheduled job is available for
execute, If itis, it executes the job and goes back to sleep again,
/ to wake up the next minute to once again carry out the check.

cycle goes on till the Unix system isn’t shut down on the host
“hine. There are three commands which make use of the cron
mon’s scheduling capability. These are at, batch and crontab.
s have a look at them one by one.

f

|£2—- Unix Shell Programming :

The at command

ghls com}rnand is capz_ible of executing Unix commands at a future
ate and time. The Unix commands can be specified at the command
prompt or can be stored in a file and the at command can use this file

A
I;olf:xe;cute the commands. Both these facilities are exemplified
elow,

{

$ tty
/devitty3c

$ daie
FriJun 14 10:57:23 IST 1996

$at 17:00

clear > /devitty3c

(e;t:l;c; “It's 5 PM | Backup your files and logout” > /devitty3c
i

Job 803108760.a at Fri Jun 14 17:00:00 IST 1996

Observe that on Qressing Ctrl d the at command displayed the job-id
imclI) the date and time we lieque.‘ited the two commands elear and echo

o be f%xe:cuted. The job-id always terminates with a ‘.a’ indicating
that this job was submitted using the at command.

gncc? submitted this way, the message would be echoed on our
dz‘mnal at 5.00 PM sharp. Is it necessary to redirect the output of
ar and echo to our ‘tty’ file? Yes, otherwise the output of these

cO 1 i
hozmands would arrive as mail from the cron daemon. Let us see

$at 17:00
echo "It's 5 PM! Backup your files and | ;
o your files and logout

Job 853158864.a at Wed Jun 14 17:00:00 IST 1996

Processes in Unix --173]

PM in the evening you would see a message on your screen
ing ‘you have mail’. To examine what have you received in mail

type

$ mail

SCO System V Mail (version 3.2) Type? for help.
*fusr/spool/mail/icit”: 1 message 1 new

1 cron Wed Jun 14 11:50 14/405

&

message 1:

From cron Wed Jun 14 11:50:03 1996

From: cron@scosysv.UUCP (Cron daemon)
X-Mailer: SCO System V Mail (version 3.2)

To: usert

Date: Wed, 14 Jun 96 11:50:02 IST

Message-ID: <9607141150.aa00570 @scostsv.UUCP
Status: R

It's 5.00 PM! Back up your files and logout.

Cron: The previous message is the standard output and standard
error of one of your cron commands,

p

at’s a very comprehensive mail indeed! The last two lines clarify
his mail is in fact the standard output of commands executed by

> are two options available with the at command which perinit
view the list of jobs submitted using at and to remove any
nted jobs from this job queue. These options are -1 for listing
and -r for removing jobs. While removing a submitted job its
d should be mentioned. In fact, that’s the reason why the jobs
ven ids - for easy identification. '

~ $at r 853158864.a -

[174-- 1)".ix Shell Programming]

would remove the job ‘853158864.a from the job queue.

While specifying the time at command permits a lot of flexibility,
Following are some of the specifications that can be used with at.

$at 0915 am Mar 24

$ at 9:15 am Mar 24

$ at now + 10 minutes

$at now + 1 day

$at 7 pm Thursday next week

Let’s now look at another way of executing the at command. Instead
of specifying the commands at the prompt, here we would make at
read them from a file and then execute them. Let’s first create this
commands file.

$ cat > cmdfile

clear

echo "Hi there! Do you never get bored with working?"
Cirld

Now we can ask the at command to read the commands from cmdfile
as shown below.

$at 5 PM < cmdfile
Job 853158870.a at Fri Jun 14 17:00:00 IST 1996

Now the at command will read the commands from emdfile and
execute them at 5 PM. Since we have not redirected the output to our
terminal it would be mailed to us by cron.

The power of at command can be harnessed only by a select few and
not by every Tom, Dick and Harry. These select few are decided by
the System Administrator by placing their login names in a file
at.allow present in the /user/lib/cron sub-directory. Only those users
whose login name appears in this file are permitted to use the af
command. If for some crooked reason your relations with the System

Processes in Unix =175

Linistrator get strained then all that he has to do is delete your
e from at.allow and include it in another file called at.deny.
ing black-listed you this way, you would never be able to use the

ommand.

dless to say, only the System Administrator can edit the files
ow and at.deny to include or delete the login names.

uming that our login name appears in at.deny let us try the at
mand.

$at 5 PM
at: you are not authorized to use at. sorry.

ral is, you cannot afford to be on bad terms with the System
\dministrator.

e batch command

ad of we specifying that our commands be executed at a precise
ment in time sometimes we may let the system decide the best
_e_fbrcxccuting our commands. The way to achieve this is through
command called batch. When we submit our jobs using this

mand, Unix executes our job when it is relatively free and the
stem load is light. Since the time of execution of our commands is
or the system to decide we don’t specify the time while executing
atch command.

$ batch

~ sort employee.dat | grep Nagpur > addresses.out
Cirld

job 692322435.b at Fri Jun 14 17:00:00 IST 1996

Once again note that the ‘b’ extension given to our job-id signifies
at it has been submitted using the batch command

I 176-- Unix Shell Programming

The crontab command

Though

e fuff?::‘ e;;a;i batch are powerful tools for schedulj

D comman? En obvious limitation. Once jobs suI;]

s § have been executed, the Jjobs will he
they are to be carried out again. For examhd

to backup all our C
do s0 as follows program files at the end of the da

Mitted us
Ve to be
Ple, if we y,

$at 5 PM
cp *.c /ebackup

However
, We must rememb =
. er to issue s
morning to be such an at comm:
able to take backups every evening WEthI(?lT?n? i
1 ai . Wha
t

if we forget to iss
sue the at command
some day? The back
ups won't

be taken. It’s as simple as that.

Th!s is Wher
i ;v‘ofglismntab command excels over at. It can ¢
prompting from usﬂl‘])_/hda_y t1:c>r years together, without neeZ?:g X,
: - Lhe jobs can be carri dny
u arr
sing the crontab co:mnmand as shown be[fi.our on a regular basis

$ crontab cmdfile

However, this ti

s time Cmdfi]e sh [d

we wish to should notonly contain co i

specific fa get exe:cyted but also the details of dat mman[.j” which
rmat. This format is shown below: ¢ and time in a

iJ nmar d

Using this format let us create our emdfile

gcat > cmdfile
0 10 1 * =
echo "Work hard on fi
o g _ on first day of the month®
S 1 mail aa? < confiletter e

$

g process o

y lhen We ma

Processes in Unix =177

stand the commands that we have given in our cmdfile.
d to echo the message at 10:30 am on first

, would be use |
‘month. The second message would mail the contents of
. Jetter to the user aa2 on 17" November of every year.

mdfile is separated either by aspace or a tab.
fonth of year’ and ‘Day of week’ fields we have used a **’.
ns all possible values. ‘Another thing to note is that Sunday

ted as 0 in the ‘Day of week’ field.

chfieldin¢

, execute the crontab command using the cmdfile

tab cmdfile

re automatically transferred to the
y where they are stored in a file
login name. There onwards the
ecute the commands present

yntents of cmdfile a
pool/cron/crontabs director
has the same name as your
1 daemon will read this file and ex

a regular basis.

the at command we can view the commands that we have
tted by using the -1 option with the crontab command.

~ $crontab -l

ise, to remove the submitted job we can use

$ crontab -r

uired to specify the job-id since using crontab
f we want to schedule a few
d then

we are not req
n submit only one command file. I
jobs we need to edit the cmdfile in our home directory an

Tesubmit it using

$ crontab cmdifile

Praéesses in Unix --179)

(178~ Unix Shell Programming

a bbb ccc
Once again cemdfile’s contents would be transferre jen-? i
/usr/spool/cron/crontabsdirectory and would be stored ina ﬁ]ed 3
our loglin name. Obviously, the earlier file with this name wOul‘: 5
overwritten.

i i 7
{ch processes cannot be killed using the kill command?

i 9
iority of a particular process:
H 1d you decrease the priority © :
I pw ‘:v(:'l; ygu find out which jobs hafve been submlt;ec? tfgé
O‘Zutic;n'? Can you remove a job which has been subm
e v

i how?
execution? If yes, i
cr;w will you find out which processes have

i inal? .
b heduling processes using

What's the difference between SC¢

i d?
' mand and using at comman '
?{zt:«hwcicljlr;ou schedule a process which should wish you happy

birthday on each of your birthday throughout the rest of your

life?

As with at, here also there are two files cron.allow and cr
] -! . i on-d I n(:th
which decide which users are permitted and which are pre»,.ene@ peen ¢

from using the crontab command.

Exercise
[A] Answer the following:

(a) What do the terms UID, PID and PPID stand for? For g
particular process which is currently executing how can you
obtain these values?

(b) Howy;will you terminate a process which has gone in an infinite
loop? -

{(¢) Which are the different states in which a process can be?

(d) What are the advantages and disadvantages of running a
process in the background?

(e) Having run a process in the background if you log out what
would happen to the process? How would you overcome this

What would the following commands do?

at 0915am Mar 2‘4
echo "Good Morning'
date

Ctrid

at 18:32 tomorrow
echo "Hapoy Birthday"
Ctrid ‘

problem?
() What do you mean by a ‘Daemon’? How will you kill a .
Daemon? at now + 15 minutes
(g) If the nice value of a process is increased, what would be the clear
effect on the speed of execution of the process? Is -I
Ctrl d

(h) Can we change the nice value of a process which is already
present in memory? :

(i) How will you find out how much time is required to execute 2
particular process? ;

(J)) What are the contents of the file /usr/lib/cron/at.deny? Can
an ordinary user modify its contents?

(k). Where would be the output of following command stored?

at 6pm wednesday next week
who

uptime
Ctrid

|180-- Unix Shell Programming

(e)
()

(8)
(h)
()

at now + 1 week < atfile
batch

sort * > bigfile &

Ctrl d

batch < batchfile

nohup cat * | sort -d &

nohup cat bigtile &

Communication -

Unix Style

The write Command

The wall Command

What's The News Today

motd is for Message of The Day

Mail: The Basis of Unix Communication
Sending Mail
Handling Incoming Mail
Customizing mail

Exercise

[182-- Unix Shell Programming

social creature that man is, the urge to communicate is
Ainherem and integral to human nature. Back in the days of
the tom-toms, who would have thought that some day men
- would take in their stride talking to someone on the other side of the
earth? Clearly, someone did. Trust the human brain to materialise
what it has the power to imagine. While the universe is expanding,
the world is shrinking with the electronic media bridging all distan-
ces. Quite naturally computer the sagest of all electronic devices got
into the act too. And as man started communicating through com-
puters Unix OS running on the computers led the way. armed with
ingenious software that took advantage of the almost total hardware
independence achieved by it. A direct application of a network
system, communication is handled expertly by Unix. Let'ts examine
one by one what tools it offers.

The write Command

The write command can be used by any user to write something on
someone else’s terminal, provided the recipient of the message
permits communication.

$write user2
Hey there! | am back from Paris.
Just wanted to say Hello!
- Your favourite Chimp
i d

Communication, Unix Style --iT_.?I

d the message would be relayed to the user

ing this comman : _
i 2. He would hear a beep on his terminal,

Jogin name is user
ed by the message:

Message from user1 on unix (t_ty3a) [Thu Oct 15 17:13:58]....
Hey there! | am back from Paris.

~ Just wanted to say Hello!

. Your favourite Chimp

- (end of message)

nyser2" may respond as follows:

$ write userl .
Alas! | was hoping you would fall off the Eiffel Tower.

A ~ Anyway, now that you have come let's celebrate.
- Your Ethnic beauty
Ctrld

ere are two prerequisites for a smooth write operation:

The recipient must be logged in, else an error message is

inevitable. o o
The recipient must have given permission for messages

reach his or her terminal. This is done by saying at the $ prompt

$ mesg -y

u are expecting nothing of consequence and do not wish to !:)e
sturbed by social trivia like the one we just saw, you can deny write
ission to your terminal by saying

$ mesg -n

. Superuser however can write to any terminal, irrespccti?fe_ of
ther mesg has been set 10 =y oOr -ii. For all lesser mortals, it1s a

g00d idea to first ascertain who all are logged in and who allow

_messages to be written to their terminals and then run the write

Communication, Unix Style --185|

(184— Unix Shell Programming §

command. There are two ways to do so. finger is one comman thy,
tells you which users are connected and which, if any, cap recejy,
messages. It displays alist of all those who have loggedinand Placeg
a * next to those terminals where mesg is set to -n.

1maaine the progress that man has made in communication since the
§ "I'mag of smoke signals and carrier 91990'1"5! No reoly possible.
' E‘-?:ming- You have your terminal set to “mesg -n". No reply p

]

arning is quite self-explanatory.
2 | i ' d in at
ﬂlgr;ger ‘;TY deid 3 imagine another variation. Suppose; user E:Z;Zi%: tol s
| .I i ant to send a mess (
.I veena *tty01 FriOct 13 17:25 8 minutes 12 seconds han one terminal and you wan i
| prafull tty3f FriOct1317:21 49 seconds i it on i
|

| userd tty3a Fri Oct 13 16:59
| user2 *tty3c Fri Oct 13 14:46 _ m—

j| usert “tty3e Fri Oct 13 13:59 - 3 ﬁ:&'}eknléwn grandchildren are so much fun | would have had them
first!

Ctrl d

want the message to go to as shown below:

- Another command that
who command lists al]
used with the -T op

| allowed messages

may be used for the purpose is who -T. The
the users who are currently logged in. When
tion, it places a ‘+’ next to the users who have

i : t from tty3e,
: : i logged in at tty3a and tty3b apar ‘
SPESRESS s,:::a];;f:]vsif]rir}:lz;s googfo tty3c. What if we do not mention the

$who -T inal to which the message should be sent?

veena -tty01 Oct1317:25
prafull +tty3f Oct 13 17:21
. user3 +ttyde Oct 13 16:59
User2 “-tty3a Oct 13 14:46
user! -tty3c Oct13 13:59

$ write user2

user2 is logged on at more than one place
You are connected to "tty3a"

Other locations are :

tty3b
Let’s now try to write to somebody who has set mesg to n on his

tty3c - ;
inal Tﬁ- greatest accomplishments have been made by‘lndwiduals acting
D, alone. There is never a statue dedicated to a committee.
$ write user3 Ctrid
Permission denied.
$

i i mand
us try to understand what exactly happened. The write cc?:;ected
und that user2 has logged in at more tha}n one place. Sodlt N sisEupit
'Bu to the terminal tty3a since this is decided by ap’-rece f.zncmm[])1 S
hnections of a terminal. This is write command’s own so
ase of confusion - quite smart, you would agree.

Suppose we decide to send message to a user who has set mesg to ¥,
whereas you haye setittonat your terminal. Let’s see what happens
if in such a case we decide to send message from our terminal.

$ write user2

__

[244

Unix Shell Programming

Taking Decisions --245)

Jiar with any high level language you must have used
of an if statement. The Unix shell if statement is different
at least on one count. In most high level languages the if
s are usually concerned with the values of variables - is age
. 20, is answer equal 1o yes or some such condition.

the if statement of Unix is concerned with the exit status
mand. The exit status indicates whether the command was
uccessfully or not. The exit status of a command is 0 if it
executed successfully, 1 otherwise. For example, if the cp
d when executed is able to copy the files(s) successfully then
status would be 0. Likewise, if grep is unable to locate the

it was searching for, then its exit status would be 1.

n the S Wri i
Icontror:ﬁ?t:;: ::r:;tht::: hu:hChaQter 9 we have used sequence
| P gk i€ various steps are executed .
i fher l):; ;-::é ;ﬂ;ihfh same ordgr in which they appear in the prs;gr:m-
Sy ilng at ol o de mstrucu_ons sequentially, we don’t have to d--i 3
sequentially fio “3: efault th_c Instructions in a program are executegl'
| s thhingsom o e;"ler, aserious program is rarely a straight-forwarg
B e : ‘ostof the times you need the program to do one
it o 1e lel:cumstan:ccs and a different thing in another
- For this it is essential to have control over the order of

e commands in th
four decic; ; e program. The B
cision making instructions. They are: oume shell ol

form of the if statement shown above the control command can

alid Unix command. The keyword if tells the shell that what
ws, is a decision control instruction. If the control command,
ver it is, returns an exit status I, then the command 1 is
suted. If the exit st.tus is 1 then command 1 is not executed;

(a) Theif. .

(b) The iﬂ:::en‘ﬁi statement ad the control skips past it. Note that every if statement has a
® Tk s §e-fi i sponding fi which indicates where the if statement ends.

© ii-then-elif-else-fi statement -

he case
-es
ac statement e is 2 more concrete example.

#5813
Usage: 8513

Lt.‘.[us] CAaAry f v
ca - " i
1 QaCh 0 thc.sc and theif ﬂfiations i]"l urn.

The if-then-fi Statement

Li ke mog 0
t 4
pmgrammmg !anguages, shell too uses the keyword if t

implemen th '
N e decision control i i T :
if < Instruction.

i statement looks like this: he simplest form of the

Enter source and target file names
read scurce target

if cp $source $target
then

if control command echo File copied successfully

i command 1 fi
aving read the source and target file names supplied from the
keyboard, cp proceeds to copy the contents of source file into target

*—

|246-- Unix Shell Programming

file. If it is able to do so successfully it would return an exit status of
0. In such a case the echo statement would get executed. If for some
reason cp is unable to ¢arry out the copying job successfully an exit
status of 1 would be returned. This would transfer the control beyond
the fi without executing the echo statement. As you must have
guessed, the if statement allows you to place several commands
between the then and the fi keywords if required.

The if-then-else-fi Statement

The if statement by itself will execute a single command, or a group
of commands, when the exit status of the control command is 0. It
does nothing when the exit status is 1. Can we execute one group of
commands if the exit status is 0 and another group if the exit status
is 17 Of course. This is what is the purpose of the else statement,
which is demonstrated in the following shell script.

#8514
Usage: 8514

Enter source and target file names
read source target

if cp $source $target
then

echo File copied successfully
else

echo Failed to copy the file
fi

As you can see the response of this program depends on how the ¢p
procedure went. If the control command (cp in this case) executes
successfully, then the echo between then and else gets executed,
otherwise the echo between else and fi gets executed.

@

-

TFaking Decisions --24_7]

A oints worth noting...
pafew p

The if statement can be represented by a block diagram as
shown below.

=

Control
Command

Command 3

(b)

Figure 10.1

] he then and else is called
The eroup of commands between t ;
an 'ii‘gblogk‘. Similarly, the commands between the else and fi

form the ‘else block’.

Notice that the else is written exa.ctly below the if. :‘he sLaet:;
ments in the if block and those In the else bl_ock‘ -z:";ﬁowed
indented to the right. This formatting convention : o

throughout the book to enable you to understand the w g

of the program better.

i ‘ if there is only one
ike languages like C or Pabcal._ even i
?;rtr::i-{nand %o Ec executed in the if block the fi cannot be

dropped.

L?#S—- Unix Shell Programming

The test Command

: 'y u
: b - th esu

wheth i
b e_iseer t:? execute the commands in the if block or the commands in
ock. Let us see how to put this theory to work.

#8515
Usage: 8515
Demonstrates the use of tast command

echo Enter a number from 1 to 10
read num

if test $num -t 6
then

I i I i isi

A sample run of the program would be like this.

$8815

Enter a number from 1 to 10

”dBC =l

S

we don’t know who said that, if he was s0O indecisive.

Taking Decisions --249|

No wonder

Here, We have used test to carry out a test w :
6. You may recall that all shell variables are sting

is less than

variables. Still when we use tes
.t the numeric value of the stri

parison.

hether the value of num

t in conjunction with operaters like
ng stored in pum is used for com-

The test command can carry out several types of tests. These are:

(a) Numerical tests
(b) String tests
(c) Filetests

As the name Suggests, qumerical tests are used when comparisons

petween values of two nu
compare two values 10 s¢

mbers is to be done. They allow us to
e whether they are equal to each other,

unequal, or whether one is greater than the other. In our program we
have used the operator -It. The other operators that can be used for

numerical test are shown in Figure 10.2.

.

Operator

_gl
-1t
-ge
-le
-ne
-eq

l

greater than

less than

greater (han or equal to
less than or equal to
not equal to

equal to

Figure 10.2

To make you comfortable
program one more example
before reading further.

with the usage of numerical test in a
has been given below. Study it carefully

[250-- Unix Shell Programming

Ex g
ample 10.1: In a company an employee is paid as under:

If his basic salary i
ary is less than Rs. 1500
Sa[a = . 5] then HRA =10% y
< 1;3; Sgd:]t?; ;1 Sl;f):b _of basic. If his salary is either equal to oifal;asm
' =Rs. 500 and DA = 98% of basic Saiary_ Iff:::

employee’s salary is input th
o i put through the keyboard write a program to

#8516

Usage: SS16

Example of numeric test

Calculation of gross salary

echo Enter basic salary
read bs

if [$bs -1t 1500]
then
hra='echo $bs * 10/ 100 | be'

da="echo $bs * 90 /100 | be'
else

hra=500

" da="echo $bs* 98 /100 | bc'

gs="echo $bs + $hra + $da | b¢'
echo Gross salary = Rs. $gs

Hereis s i i
Is some sample interaction with the program

$SS16
Enter Basic salary 1200
Gross salary = Rs. 2400

$ 5516
Enter Basic salary 2000
Gross salary = Rs. 3960

Taking Decisions --251)

_that in the if statement instead of explicitly mentioning the word

<1<t we have placed the condition within [] which is allowed.

e test command has several options for checking the status of a
_These are shown in Figure 10.3. Using these we can find out
hether the specified fileis an ordinary file or adirectory, or whether
nts read, write or execute permissions, so on and so forth.

True if the file exists and has a size greater than 0

True if the file exists and isnot a directory

True if the file exists and is a directory file

True if the file exists and is @ character special file

True if the file exists and is 2 block special file

True if the file exists and you have a read permission to it
True if the file exists and you have a write permission 10 it

True if the file exists and you have an execute permission
to it
True if the file exists and its sticky bit is set

Here is how we can use a file test in a shell script.

#SS17
Usage: SS17

Enter file name
read fname

it [4 $fname]
then

[252-- Unix Shell Programming 2

echo you indeed entered a file name
else :

echo what you entered is not a file name
fi

Observe the if statement carefully. Instead of using the test command
we have enclosed the file test within []. This is permissible and
avoids typing of test every time we wish to perform a test. However,
care should be exercised while using []. There should always be a

_ B ins Tests

space immediately after ‘[* and immediately before “)’. Thus the test
[-f $file] would be invalid.

Let us write another program on similar lines. This one checks

whether the user has a write permission to a file.. If yes,
the use.

file.

it prompts
rtotype a message which then gets appended to the mentioned

#8518
Usage: SS18

echo Enter file name
read filename

if[-w $filename]
then
echo Type matter to append. To stop type Ctl D. .-
cat >> $filename)
else

echo No write permission.
fi

If the user has a write permission to the filename supplied from the
keyboard, the matter typed by the user is read by the:cat command
and thenusing redirection operator (>>) gets appended to the desired
file. When the user hits Ctrl d the cat command comes to an end.

Taking Decisions --253]

£ é strin
her set of tests that the test command can handle are the string

' i 5 3 in
oot The checks that we can carry out using these tests are shown
tests.
'~ Figure 10.4
Fig —~
————
| .
Condition Meaning

True if the strings are same
True if the strings are different
True if the length of string is greater than 0

string] = string2
stringl != string2

A slring True if the length of the string is zero
3 ?umg True if the string is not a null string
string

|5
Figure 10.4

g W i its into action.
Here is a program which puts these string tests Into
(=]

#5819
Usage: SS19

stri="Good"
str2="Bad’
str3=

[$str1 =$str2)
echo §?

[$strl = $str2]
echo $7

[-n $str1]
echo $7

[254-- Unix Shell Programming

Taking Decisions 25__5‘

test? No, the test is quite correct, but it

2 "$str3’ ©hing go wrong with the the e e ot
: 71 $§'t7r3 I ' '.ythmgci chance to get evaluated. This is because c;rg] :rr:) ;:am.
e = er‘::Sg in a shell script the shell abandons the rest of the p
| cae] ; : i ality test there is a space on
- while carrying out the equality { :
echo $? = Ogj,::-v; ;l;a:) S Ta;;': isgnecessaf)’- Devoid of spaces it would
e A ok
["$str3"] ~ pecome 2 simple assignment.
o] .C n you figure out what would be the output of the following
Ca
There is a lot of new materi 1l in this program. Let us examine it more i'p'rogl'am?
carefully. To begin with you can observe that nowhere have we used
an if statement to carry out the tests. This brings about the fact that #8520 "
test is really an independent command. Only thing is we have been # Usage: 552

using it as a control command in association with an if. Then how do
we know whether the two strings being compared are identical ornot,
or whether length of a string is zero or non-zero? That’s the time the
metacharacter $? comes to help. This metacharacter contains the
success or failure of the last command that has been executed (the
test command in this case). That's the reason we have used a separate
echo statement after each test. Each echo statement reports the
success (0) or failure (1) of the test preceding it. Here is the output of
the program...

0O O —-

0
test: argument expected

The output of the first three echo statements is straight-forward. Why
did we get the error test: argument expected? Because str3 is a null
string and as we know a null string is ignored by the shell. Hence test
gets to work on [-z], hence the error. This situation can be avoided
as shown in the fourth test. This time we have enclosed str3 within
""" Therefore this time the test command gets to work with [-z """],
which returns a O since "" indeed represents a zero length string. How
come the output of last echo statement did not get displayed? Did

Surprised to get an erro
strings are being assigned 10 v
care to enclose the strings within a
failed. Look at the error message an
the reason. The test command went (0 WO
= Good bye]. Naturally, morning was
the error. If you write the testas s

stri="Good moming’
str2="Good bye"

[$strl = $str2 |
echo $7

And here is the output of the program...

test: unknown operator moming

r? Well, let us analyse it. Since two word
d to variables strl and str2 we h'fwe mkcln
pair of double quotes. Still the test
dyouwould be able to undarst“md
rk with [Good morning
treated as an operator, hence

hown below the error would vanish.

["$stri® = "$str2” |

=

]

|256-- Unix Shell Programming

Nested if-elses

It is perfectly all right if we write an entire if-else-fi construct within
either the body of the if statement or the body of an else statement.
This is called *nesting’ of ifs. This is shown in the following program.

#5521
Usage: 8521
A quick demo of nested if-else

echo Enter either 1 or 2
read i

if[$i-eq 1)
then
echo You would go to heaven!
else
if{$i-eq2]
then
echo Hell was created with you in mind
else
echo How about mother earth!
fi
fi

Note that the second if-else construct is nested in the first else
statement. If the test in the first if statement fails, then the test in the
second if statement is performed. If it is false as well, the final else
statement is executed.

You can see in the program how each time a structure is nested within
another structure, it is also indented for clarity. Inculcate this habit
of indentation, otherwise you would end up writing programs which
nobody (you included) can understand easily at a later date.

In the above program an if-else occurs within the else block of the
first if statement. Similarly, in some other program an if-else may

J

Taking Decisions --257)

in the i
oceur in th
and the elses can be nested.

£ block as well. There is no limit on how deeply the ifs

The if statement can take any of the

following forms:

@ ff control command
then
do this
and this

fi

(b) if control command

then
do this
and this

else
do this
and this

fi

(¢) if control command

then
do this

else
if control command

then
do this

else
do this
and this
fi

(d) if control command

[258-- Unix Shell Pro ']
gramming

then
if control command
then
do this
else
do this
and this
fi
else
do this
fi

Use of Logical Operators

Shell allows usage of three logical operators while performing a test

These are:

(a) -a(read as AND)
(b) -o(read as OR)
(c) !(read as NOT)

The fi
rst two operators, -a and -0, allow two or more conditions to

be combined in a test. L
: . Let us see how they a i ?
Consider the following problem. y are used in a program.

Example 10.2: The marks obtained by a student in S different

subjects are input throu
gh the keyboard. The s ivisi
as per the following rules: ’ i

Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division

Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail

Write a program to calculate the division obtained by the student.

I Taking Decisions QQ_'!

Here is the program...

#8822
Usage: 5522

echo "Enter marks in five subjects \c”
read m1 m2 m3 m4 md

per="expr \($m1 + $m2 + $m3 + $md + $m51) /5

if [per -ge 60]
then

echo First division
fi

if [per >= 50 -a per<60]
then

echo Second division
fi

if [per>=40 -a per<50]
then

echo Third division
fi

if [per < 40]
then

echo Fail
fi

As can be seen from the second if statement, the -a operator is used
to combine two conditions. ‘Second division’ gets printed if both the
conditions evaluate to true. If one of the conditions evaluate tc false
then the whole thing is treated as false.

So far we have used orily the logical operztors -a and -o. The third
logical operator is the NOT operator, written as !. This operator

——

|260-- Unix Shell Programming _]

reverses the value of the expression it operates on; it makes a true
expression false and a false expression true. Here is an example of

| Taking Decisions --261|

Hierarchy of Logical Operators

the NOT operator.
[! -d $dimame]

This test is treated as true if dirname contains something other than
a directory name.

Let us see another example of logical operators.

#5523
5 # Usage' 5523

echo "Enter any file name \c"
read fname

if[!-z "$fname"]

then
if[-r $fname -a -w $fname -a -x $fname]
then

echo You have a read, write and execute permissions to $fname

else
echo Read, write and execute permissions denied
fi
alse

echo Improper file name
fi

Note how we have used the ! operator. It lets the if block of the first
if get executed only if fname contains a string of non-zero length. If
the file name is correct then the script proceeds to check whether you

have read, write and execute permissions to the file and displays an
appropriate message.

gince we have now added the logical operators to the list pf ol?ergtlit;s
we know, it is time to review these operators and t?elr "[F'[]':-I(:i] he;
Figure 10.5 summarizes the operators we have seen so far. The g

an operator is in the table, the hi gher is its priority.

Operators Type

! Logical Not
-It, -gt, -le, -ge, -eq, -ne Relational
-a Logical And
-0 Logical Or

el

Figure 10.5

If you want to override any priority while carrying out a test t:lge
parentheses. Do not forget to precede the parentheses with a \. This
is necessary since parentheses themselves are shell metacharacters:
What do they exactly do we would find outin Cl‘{apter 12. Following
example shows how to parenthesize the expressions.

[$age -gt 10 -a\(-r $fname -0 -w $fname \)]

Looking at the hierarchy of operations shown in Figure !D.S can you
imagine how the test would be interpreted by the shell if the paren-
theses are omitted from the above expression.

élse + if Equals elif

The if statement can take one more form. It permits you to group
together several alternatives (multiple elses) one after the other. Th';s
is possible through a keyword elif which is a short form of else 1[.|
Given below are two shell scripts. The first doesn’t use the keyword

‘ I262—- Unix Shell Programming j

elif whereas the second one does use i
; s use it. Go through
we would discuss which form is better. gh them and then

8824
Usage: 5524

Example of nested else’s without using the elif clause

| echo "Enter the adapter name \c'
read adapter

‘ if ["$adapter’ = MA]
then

) | echo you have a monochrome adapter
else

if ["$adapter” = CGA]

echo You have a colour graphi
o graphics adapter

if ["$adapter” = EGA]
then

echo You ha i
o ve an enhanced graphics adapter

if ["$adapter’ = VGA |
then

I echo You have a video graphics adapter
else

" echo You have a super video graphics adapter
fi

#8825
Usage: 5825
Example of nested else's using the elif clause

echo 'Enter the adapter name \¢"

Taking Decisions .-263)

read adapter

if ["$adapter’ = MA]
then
echo you have a monochrome adapter
- elif ["$adapter’ = CGA]
then
echo You have a colour graphics adapter
elif ["$adapter” = EGA]
then
echo You have an enhariced graphics adapter
olif ["$adapter” = VGA]
then
echo You have a video graphics adapter
else
echo You have a super video graphics adapter
fi

 Idon’t suppose the shell script $S24 needs any explanation. So let us

concentrate on $S25. If the first test is satisfied then the if block is
executed and the control reaches the fi. If the first test fails then the
control goes to the first elif where it performs a test. If this test is

 satisfied then the echo statement is executed following which again

the control reaches fi. The same thing takes place for other elifs as
well. If all the tests fail then the control reaches the else block and .
executes the echo statement within it.

Does this program offer any advantage over $524? Yes. Two in fact.

(é) Even though there are multiple tests being carried out only one
fi is required.

(b) InSS24 any time anifis encountered the statements following
it are indented to the right to keep the program readable. As a
result, more the number of tests more is the level of indentation.
As against this elif maintains the level of indentation at a

[266-- Unix Shell Programming Q

mark the end of statements within that choice. On encounterip
semicolons the control is transferred to esac (case spelt backwards)
the keyword denoting the end of a case. If we omit the semicolons a:;
error results. Observe the last case ‘*)’. This represents the defay]
clause of the case control instruction. It gets executed when all other
+ cases fail. Let us now put these concepts to a practical stint. Here’g

a simple program which demonstrates the usage of the case cop.
struct.

Enter @ number from 1103:6
|said 110 3l

i aps
~he Tips and Tr o
- 3 | tips about the usage of case and a few

et us jotdowna few usefu

L 2 :
.gietfalls to be avoided:

hich used the case control instlruzz.;r:
i : an use onty S

. - oression that you € o

97 2.3 and default. This is not s0.

any order you please. Here is

The earlier program w
may give youa wrong g
arranged in ascending or¢eh i‘n i
You can in fact put the Cilheb‘ S
an example of scrambled €ase€ :

#8526
f # Usage: 526

(a)

echo “Enter a number from 1 to 3: \¢"
- read num

#8827

case $num in # Usage: SS27

1) echo You entered 1

echo “Enter any number e’

2) echo You entered 2 read num

"n

3) echo You entered 3 case $numin

! . 121) echo | am in case 121
*) echo | said 1 to 3! "

” 7 ed':m |amin case 7
esac "

22)"echo | am incase 22

Given below is the sample interaction with the program.

$ SS26

Enter a number from 110 3: 1
You entered 1

o ec'i;o | am in default
gsac |
n be ashell variable,

mand. For example,
gument

ase statement ca

output of a com ‘
below uses the shell geriptar

The value portionof the ¢
a shell script argument OF
the shell script SS28 given
in the value portion ©

b
$ SS26 b)

Enter a number from 1to 3: 3
You entered 3

f the case. Likewise,

$ 5826

1268-- Unix Shell Programming

case ‘who amil cut-f1*in

would also be a valid beginning of a case statement.

#5528
Usage: SS28 dog/cat/parrot

case $1in
cat) echo You supplied cat at command line

dog) echo You supplied dog at command line

'

) parrot) echo You supplied parrot at command line

*) echo You supplied an incorrect argument at command line

esac

Notice that the choice labels in this program are entire words;

we are not limited to using single digits or letters while check-
ing the choices.

(c)

If we want to execute the same set of statements if any of the
two choices are made we can combine the options using the or
(1) operator as shown in the following program.

#8529
Usage: $529 dog or cat / parrot or crow / whale or shark

case $1in

cat | dog) echo You supplied name of animal at command line
parrot | crow) echo You supplied name of a bird at command line
whale | shark) echo You supplied name of a fish at command line

*) echo You supplied an incorrect argument at coinmand iine

Taking Decisions --269)

\

e | e

W ly ‘dog’ or ‘cat’ to this script the Za;ncemhe;:agi :

A S;Eighoed. Note that the | operator use dinerupon B
“.r wmﬂld aig pips e Dezetnhe sﬁell carries

P nothmgt in which the | symbol has been use:

- context! _ ;
b f:ut an appropriate action.

¥ i ilities in the choice
s) atching abilities 1n
se shell’s pattern m e
o }vlfcfsanl; fact we have used one Zzgtr.npiiv a;h;z;dgemmed e
: e In addition
* atch any pattern. : s
used)‘:?“:g[] shell metacharacters. They are u;qi &:; ft i
L ti:ir'l in the same way as they are use : ; LI
'fn'lllzt:amegﬁ. The following script shows how to us ;

5S30 f
Usage: SS30

echo Enter any character
read char

har in
case[z?zl] echo You entered a small case character

[A-Z)) ;.cho You entered a capital letier

(0-9]) echo You entered a digi

50 ” echo You entered a special symbol

" racter
*) echo You entered more than one cha

esac

: acter and then

e the user to enter a charac S

gram asks the user : ; acapital
3:::3;2?“'}; whetherthe userentered asmallcase letter, acap

(f)

[270-- Unix Shell Programming

—

b o S
an(t;n[*,]a digit or a special symbol. You may recall that both 9
nd L] repn:smt one character, the difference being ? repre.
;;.fchar?j{c aracter, wherc':as [] represents the range or nr}:)?
. def;]ers mentioned within []. The *) once again repr:senp
ault case and in our pro]
gram the control reaches i
more than one character is suppli o
. f is supplied to the read

> : | i read stateme

sing this pattern matching ability of case we can b:lnl:j

Il ics p' Ii g
© h i i

8831
Usage: 8531

echo Enter any word
read word

case $word in
[aeiou]") ?cho The word begins with a small case vowel

"

[AEIOUT) ‘e.cho The word begins with a capital vowel
*[0-9]) echo The word ends with a digit

,’ ”
7177) fa.chc- You entered a three lettered word

esac

Even if there is a si
Pt \;?:hu?‘a:ngle command in a case it is necessary 10
;1. Actually, the ;; after the final choice in the

. [t T [I i uses no Ild[“
5 . S 50 A 1€ Same me 1t ca] £

If“'c hdbCIi elaultl:dse glll{lil{] se 15 sal \fle!ltllf‘,ll n o4
Od
s case s sal Olh"

is done and the A
program simply 1
10Ves on atlice :
after the case-esac statement HstRlenoomes

(2

(h)

(@)

(0)

Decisions --

uld write the default choice ‘*)' as the last
1d cause the first choice

1d not be searched any

deally, we sho
choice. Making it the first choice Wou

to match any value, and the case Wou
further.

[s cased replacement for if? Yes and no. Yes, because it offers
a better way of writing programs s compared to if, and no
because in certain situations we are left with no choice but to
use an if. The disadvantage of case is we cannot have a choice

in case which looks like...

$i -1t 20)

All that we can have as 4 choice 15 @ specific alternative or a
group of alternatives.

The advantage of case over an if is that it leads to a more

structured program and the level of indentation is more

manageablc .
In principle, a case may occur within another, but in practice
it is rarely done. Such statements would be called nested case
statements.

The case statement is very useful while writing menu driven
programs. This aspect of switch i« discussed in the exercise at

the end of this chapter.

Exercise

if, if-else, Nested if-elses, elif

[A] What will be the output of the following programs:

(a)

a=300
[-n$a]

[272-- Unix Shell Programming

(b)

(c)

(d)

(e)

4y

echo §?
[-z8a]
echo §7?

b=)
[-ngb)
echo $?
[-2$b]
echo $?

[-n $name]
echo §7
[z $name |
echo §7

X=3 y=5 z=10

if[\($x-eq3\) -a \($y-eq5 -0 $z-eq10))]

then

echo $x
else

echo Sy
fi

X=3
y=3.0
if[$x -eq $y]
then
echo x and y are equal
else

: echo x and y are not equal
I

X=3

y=1$x-eq 10
2=$x-It10]"

echo x=§x y=$y z=$z

(®

[j(h)

{1

a0

(k)

(1)

Taking Decisions --273

k=35
acho ‘[Sk -eq 351 [$k-eq 50

i:4 Z=1 2
if[$i=5 -0 $z2-gt50]
then

echo Sonata

glse
echo Sonnette

fi

i=4 2=12
[$i=5-a$z-gt5]
echo $?

i=4 j=1 k=0
[$i -0 § -0 9K
echo §?

[$i-a $ -a $k]
echo $?

[$i-a § -0 $k]
echo $?

i=3
it [1-2$i]
then

echo Thoughts thunk while writing this

else

echo Thoughts cannot be thunk

fi

if[1-z$code -a ! $flag]
then

fi

echo macinations on the mac

[274-- Unix Shell Programming

(k]

(a)

(b)

(c)

(d)

Point out the errors, if any, in the following programs:

a=12.25 b=12.52
if [a=b]
then

f‘ echo "\na and b are equal’
1

j =10 k=12
iftest[k-gej]
then

kej

j=k
fi
echo §j $k

j=10 k=12
if[k>=j]
then

k=j

j=
fi
echo $§j $k

x=10
if[x-ge2]
then

echo x
fi

x=10
if[$x-ge 2]

echo $x
fi

]

W)

(g)

(h)

)

(k)

()

=10 ‘,’:15
if[$x % 24 $y %3]

then
echo Barnie

fi
x=10 y=15
i [‘expr $x % o' ='expr$y % 3')

then
echo "\nCarpathians”

fi

a=10 b=15 ¢=20
if[$a-ge5 and $y-ge 10 or $c-ge20]

then
echo "nThe desert thunder”

fi

a=Sameer

if [$a = Sameer] then echo "\nThe carribeans” fi

Echo Enter filename
read fname

if [-rwx $fname]
then

fi

a=10
if [$a -ge 5]
then
echo "nStormy petrel’
fi

This script demonstrates

echo You have read, write and execute permissions to the file

[276-- Unix Shell Programming

(m)

(n)

(€]

the use of Logical operatorc

i=2 j:s
iffi-eq2-aj-eq5]
then

d echo Satisfied at last
|

read filename
if (1-s $filename)
then

' echo Size of files is 0 bytes
i

i=Amay j=Ajay
if[($i=Amay) -a ($j=Ajay)]
then
. echo Good day!
fi
i=4
y="expr ‘expr $i + 5' + §'
if[-ny]
then
echo $y

fi

if x=11, y=6 then find the exit
’ exit status of i 8
following table: st B thieexpreasiony in i

Expression Value

[$x-gt9-afy-ne3] 0
$x-eq5-08y-nel
[!$x-gt14]
[!8x-gt9-a!$y-ne23]
L[5""eq1|-a$y-neB}

: (a)

(b)

(©

(d

(e)

()

Taking Decisions =277

Attempt the following:

If cost price and selling price of an item is input through the
keyboard, write a program 10 determine whether the seller has
made profit or incurred loss. Also determine how much profit

was made or loss incurred.

Any integer is input through the keyboard. Write a prograrm to
find out whether it is an odd number or even number.

Write a shell script which receives any year from the keyboard
and determines whether the year is a leap year Of not. If no
argument is supplied the current year should be assumed.

Write a shell script which receives two filenames as arguments.
It should check whether the two file’s contents are same or not.
If they are same then second file should be deleted.

(Hint: Use the cmp command to compare files)

Write a shell script which will automatically get executed on
logging in. This shell script should display the present working
directory and report whether your friend whose logname is
aa10 has currently logged in or not. If he has logged in then
the shell script should send a message to his terminal suggest- -
ing a dinner tonight. If you do not have a write permission t0
his terminal or if he hasn’t logged in then such a message
should be mailed to him with a request to send confirmation

about your dinner proposal.

While executing a shell script either the LOGNAME or the
UID is supplied at the command prompt. Write 2 shell script
to find out at how many terminals has this user logged in.

(g) A shell script can receive an argument ‘one’, ‘two’ or ‘three’.

If the argument supplied is ‘one’ display itin bold, if it is ‘two’
display it in reverse video and if it is ‘three” make it blink on

[278-- Unix Shell Pro gramming

—

(h)

[E]

(a)

(b)

(c)

(d)

the screen. If a wrong argument is supplied report it. Use an
elif statement.

Any year is entered through the keyboard, write a program to
determine whether the year is leap or not. Use the logica)
operators -a and -o.

What will be the output of the foliowing programs:

suite=3
case $suite in

1) echo Diamond :;

2) echo Spade ;;

3) echo Heart :;

*) echo | thought one wears a suite
esac

terminal=vt100
case $terminal in
VT100) echo Dec terminal ::
vt200) echo Old terminal ::
ansi) echo Commonly used terminal ::
v*) echo vt series terminal -
*) echo Any terminal ;;
£sac

read dimame
case $dirame in
*) echo any directory name ;!
c*) echo Cobol directory name ::
f*) echo Fortran directory name :;
esac

ch=a
case "Sch" in
alble)echo One of the first three alphabets ::

| e—— Dacisions =279}

.71) echo Some capital letter ;; . ’
{{t-iﬂ]) acho Some character between e oo rtozy,

esac
i:“ L] 2
case $iin

**) echo 1 space

* *) echo 2 spaces ;;

* ") echo 3 spaces ;;

" ") echo 4 spaces

*) echo no space ;;
gsac

(©

[F1 Point out the errors, if any, in the following programs:

(a) suite=1
case suite in
0) echo Club ;;
1) echo Diamond

esac

(b) readtemp

temp in)
caset:mp E: 20) echo 0Ooooooohhhh! Damn cool! ;;

temp > 20) echo Rain rain here agal.in! 4
*) echo Good old nagpur weather ;;

esac

(€) a=35
case $ain s
0.5) echo 20000 leagues l;nder the C 1

1.5) echo The C calisthenics ; =
*) echo Simply C 5;
esac
(d) a=

[230-- Unix Shell Programming

(e)

[F]
(a)

(b)

(c)

case $a in
A)echoICCU;
albjecholCCU;;
*) echo | see see you ;;
esac

read name

case $name in
*.c) echo Itis a C program file
*for) echo It is a Fortran program file
*) echo Can't say for sure

esac

Attempt the following:

A shell script can receive an argument ‘one’, ‘two’ or ‘three’,
If the argument supplied is ‘one’ display it in bold, if it is ‘two’
display it in reverse video and if it is ‘three’ make it blink on

the screen. If a wrong argument is supplied report it. Use a case
control instruction.

Write a shell script which gets executed the moment the user
logs in. It should display the message "Good Morning"/"Good

Afternoon"/"Good Evening" depending upon the time at which
the user logs in.

Werite a menu driven program which has following options:

I. contents of /etc/passwd
2. List of users who have currently logged in

3. Present working directory
4. Exit

Make use of case statement. The menu should be placed
approximately in the centre of the screen and should be dis-
played in bold using the tput staternent.

11

The Loop Control
Structure

Loops
The while Loop
Tips and Traps
Friend, Where are You...
The IFS Thing
Reading from A File
The until Loop
The for Loop
Using for with
ting} d Directories
ting Nested Dire
g::eraﬁng ¥/ alues for a for Loop
Nesting of Loops
The break Statement
The continue Statement

Exercise

Command Line Argu-

|_282—— Unix Shell Programming

h ams
S;: E;O?Tailnb that we have developed so far used either
quential or a decision control structure. In the first one, th:

cor
e rslmands were executed in a fixed order, while in the second,
priate set of instructions was executed depending upon th
e

outcome of the condition b
s eing tested (or a logical decision being

Thes AMS Wer: P

Tesspropme yero il s, hesuie st exsoul

e g Dbl 15 s'afme series afgctions, in the same way, exactly

b i i fé;llll'i‘ommhmg is worth doing, it's worth doing

to perform an acti Ie programming we are frequently required
ion over and over, often with variations in the details

each time, The mecha
nism which meets tl ;
loops is the subiect of this chapter. . Thﬂ e

Loops

A loop involv i
olves repe: ; i
gpgcifﬂd numgs repeating some portion of the program either
er of times or until a particular condition is being
1

satisfied. There are three
method
part of a program. They are; ods by way of which we can repeat 2

(a) Using a for statement
Tei 3
{b) Using a while statement

(¢) Using an until statement

Eac - i '
ch of these methods are discussed in the following pages

Thé.{phile Loop

It

The Loop Control Struct

hat you want to do something a

¢ times. The whileloop s ideally suited for such cases.
which uses a while loop. The

ou to understand the operation

is often the case in programmmg t

ﬁxednumbero
Let us look at a simple example

flowchart § shown below would help y
of the while loop.

control
comman

]' command 1
command 2

Figure 11.1

which makes use of 2 while loop. Suppose

le interest for three sets of principal, number
the program which shows how

Let us now try a program
we want to calculate simp
of years and rate of interest. Here is

this can be done.

#5532

Usage: 8532
Calculation of simple interest for 3 sets of p,nand

count=1
while [$count-le 3]
do

echo "\nEnter values of p, n andr'c’

[284-- Unix Shell Programming

read pnr

si='echo $p * $n* $r /100 | be*
echo Simple interest = Rs. $si

count="expr $count + 1*
done

And here are a few sample runs...

Enter values of p, nand r 1000 5 13.5
Simple interest = Rs. 675

Enter values of p, nand r 2000 5 13,5
Simple interest = Rs, 1350

Enter values of p, nand r 3500 5 3.5
Simple interest = Rs. 612.5

The program executes all commands between do and done 3 times.
These commands form what is ¢

alled the ‘bady” of the while loop.
Immediately following the while is a control command (the test
command in our program). So lo

ng as the exit status of the control
command is true (0), all commands within the body of the while loop

keep getting executed repeatedly. To begin with, the variable count
is initialised to 1 and eve

ry time the simple interest logic is executed
the value of count is incr

emented by one. The variable count is many
a times called either a “loop counter’ or an ‘index variable’.

Tips and Traps
The general form of while is as shown below:

while control command
do
command 1

command 2
done

. the foll ettin
o ts within the while loop would keegn‘:inrgmaings
The statemen xit status of the control comm kG
executed i e‘[status of the control command turt ert
true. When - e:tum asses to the first command th;l i,
. fals;: ‘ thc llf:l:"li'lilf loop (i.e. the first command afte

the body O

The Loo Control Structure --285

owing points about while...

!he cO (4] Q man can bc ﬁ“y va Om]naﬁd. I
al'llples 01 CDHUD] CO]HHIaﬂdb arc Show“ bcl“w‘
ex

while [$# 16 5]
while who | grep $logname
while [- $file -a -w Sfile]

: single command or a
- ay be a sing
within the loop may be " ut them
] L Smt:mcrr:r;ands In either case it is necessary 10 p
0 s.
group of ¢

between do and done.

av i
h b
”y I t Klt 5talu (v)- v p

#8533
Usage: SS33

count=1 .
while [$count -ie 10]
do

echo $count
done

p-. o b q f .

Ihlb 15 an i[ld(..t"“[c llUO simce 1 Iﬂl!lal.llh c u:ll t(? l OICVC!
b

“lE LD“EC‘ (OI[il NOLﬂd b‘e as L'llldBl’,

count=1
while [$count -le 10]

il

The Loop Control Structure

[286-- Unix Shell Programm ing Q

ou think would be the result of the following test:

do
echo $count
: Wwhatdoy
S count="expr $count + 1°
a=3.5
37]

Inste i 3 e

ad of incrementing a loop counter, we can even decre A

ment 0

repeatedly. This is shown below:
being reported as 0 means the

The fact that the exit status is
paring real num-

s is because while com

#S8S ; .
i # US:d e: 58 test was satisfied. Thi
i pers using -eq the fractional partisi gnored and only the integer
count=10 part is used to carry out the comparison.

friend, Where are You...

;"h“e [$count -ge 1]
o
example of the whileloop. Suppose a friend

echo $coun
count=" eXprt$cou -1 Letusnow see aprgctical 2Xan : :
done of yours has promised to loginata particular time. However, he has
fiot kept the promise. You want to contact him as soon as he logs in.
after every vne minute

hell script which checks
has logged in or not.
ong with the amount 0
hould be supplied to the s

Let us write a s
whether your friend
‘whenever he logs in al
8535 ' logging in. The logname S
‘command prompt.

Usage: 5S35

The script should report
f time he was late in

It can even be a float.

SS36
Usage: SS36 usemame

count=10.0
‘:hﬂe [$count -le 20.0]
0
R if[$H-t1]
echo NRnHamdmps on roses..." th[$ ‘
echo "...and whiskers on kitiens" en :
count="echo $count + 0.1 | be' . B i i
done echo Correct usage is: $0 usemame
exit
Even floati i h
s e irlll::igmnt loop counters can be decremented. Once
e nent and decrement could b e logname=51
ecessarily 1. e by any value, not .
» time=0

[288-- Unix Shell Programming

while true
do
who | grep "$logname” > /dev/null
$[$7=0] :
then
_echo $logname has logged in.
if [$time -ne 0]
then
; echo He is $time minutes late.
i
exit
else
time="expr $time + 1
sleep 60
fi
done

Shown below are two runs of this program
gram.

§5836&

32105

Improper usaye

Correct usage is: $0 username
$ 5536 Aa10 &

32654

aal0 has loggedin

He is 12 minutes late.

Let us di . ;

s gbisgti:“; ?:iwt;on'i“epts incorporated in this script a step at a

ments have been su ; |-adl checks whether correct number of argu-

shell, During the ﬁfsr: ied at the command prompt while running the

happened because the run of the program an error resulted. This 50

executed for the fi W o < S
e first time. You should note two things here

a . - . - " .)
(a) While indicating the correct usage we have used the command

The Loop Control Structure -—28—21

gcho Correct usage is; $0 username

Here instead of using SS36 we have used $0. This is more
sensible since tomorrow if the file (SS36) which holds this
shell script is renamed to say NEWSS36 the message flashed

would be

Correct usage is: NEWSS36 usemame

After flashing the message indicating the correct usage the
execution of the seript should be terminated. This is achieved
by the exit statement. Whenever the shell comes across an exit
statement in a script it :mmediately terminates the execution

of the script.

e control reaches beyond the first if statement it means the usage
e scriptis correct. Hence the login name su pplied as the argument
sollected in the variable logname. Now we must check whether
suser has logged in or not. This can be done by scanning the output
o using the grep command. So far so good. But why the while
ge has been used? Because We wanted to execute the loop an
finite number of times since we are unsure when our friend would
in and we would like to search for him every minute. true does
thing except returning a zero exit status. Likewise, false, true’s
nterpart does nothirig eXcept returning a non-zero exit status.

ttime through the loop when . 2 search for our friend by scanning
he output of who using grep. the output of grep is redirected (0
ldev/null. Whenever the output of any command is redirected to this
le the output is ignored. This is necessary, otherwise the output
yould appear on the screen, something the script is not planning.
ether grep has been able to locate our friend or not can be verified
m the exit status of grep using our normal $2. Note that whenever
mmands are used in a pipeline $2 reports the exit status of the last
“Ommand in the pipeline (grep in our case). If grep is successful we
mptly display the message that the user has logged in along with
time. If the user has not logged in then we reach the else block.

ik
4

T

%
il

[290-- Unix Shell Programming

—

Here wee

e Exccu[?sr{:g?t&re the command sleep 60. This command post

of 60, sleep can mk"e“ command by 60 seconds. Of course inP(;-neg

Py e et:- any ¢ ther argument. Once 60 seconds arep N

and finally back at ths ll;s u‘mr%c. That is, the control goes to fi ;‘n'er

heponin il e 18 c egmplng of the while loop. This conti i
riend doesn’t log in. ontinues g

It is importa i
nt to run this seript i
wlese g : 1;}! in the background. If we
remain with]icrr'llfl?f _d?_es_n : |0g- in for hours together the Conl:-i:l I\:)[¢
infinite while loop waiting for our friend to | s
ologin,

The IFS Thing

,F;L.-Ill l]I!BI l S b P

It signifies where i i
: i
begin n a line does one field (word) end and another

What
would be the output of the following program segment?

set The Unix Operating S
echo $1 82 $3 $4 SN

Obviousl
How cm;i, folt ‘n:?{uld eihg “The’, $2 would echo ‘Unix’ and
e 2% gad t acal 4
$2. That's where r;:;gd SR e ‘The’ to $1 and Ur?0 i
IFS is a Spd;:c tﬁe ; S,co‘mss in. Since one of the default val H e
ol the rentes :ﬁa& :i1flfI:r “The’ was taken as end of the i-:b oit
: s change if IFS has a di > word.
the as a differe ; i
e following program’s output WOuidjuqurym value? Of course, as

SS37
Demo of IFS

IFS=:
set The Unix Operati
echo §1 perating System

e e—
The Log, Control Structure --291

echo $2 $3 54
And her® is the output...
The Unix Operating System
$.
T i . —
te that this tme the entire “The Unix Operating System go
= words were separated by 2 «»_Maturally, $2,

assi ned to $1 since no
3 and $4 are null variab
atiempt 10 echo them.

les, hence a blank line is outputted when We

But when woula we like to change the value of IFS? Whenever the

fields are separated by gome separator other than aspaceora tab. For

example fields in the file /etc/ passwd which stores inform ation about
all users are separated by a *:'. SO if we are to access these fields
separately we will have to set the IFS to : before accessing individual
fields. Once the fields have been accessed the value of IFS should be
reset to original. The program to achieve this is given below.

#5538
Usage: 5838 ysemame

if{o-t1]
then
echo "Improper usage.

fi

$0 username’

logname="$1
line="grep $logname Jetc/passwd'

oldifs="$IFS’
IFS:Z
set $line

clear

1292-- Unix Shell Programming

tputcup 10 20
echo User = $1

tout cup 11 20
echo User ID = $3

tput cup 12 20
echo Group ID = $4

tputcup 13 20
echo Comment about the user = $5

tput cup 14 20
echo Default Working Di rectory = $6

tput cup 15 20
echo Default working sheil = $7

Here,

‘ firstly the user name supplied at the command prompt is picked
up in

the variable logname. Next the line containing this logname is
extracted from the file /etc/passwd usin g grep. This line is stored in
the variable line. In our case the value of line turned out to be

aa10:x:203:50:This is working account of aal0:/usr/aa10:bin/sh

Now the original value of IFS is stored and the new value is set to
- - When set operates on this line it sets $1 with *aal0’, $2 with 'x’
etc. These values are then promptly displayed on the screen.

Read_ing from A File

So far we have used the read
keyboard, We can use the sam
reading from a file. The follow;
and displays it on the screen,

statement to read strings from the
e read statement to carry out the
ng program reads each line in a file

The Loop Control Structure --293|

5539

' echo Enter file name

{erminal="ty’

rexec < $fname

 while read line

do
~ echo$line
- done

gxec « $lermina|

ame whose contents are
- e th?fﬁ?r%:nn; 2::;}?;?;; ?: ;fli?l?ed up as usual using tlﬁc
i Splayec:. Here onwards reading should take plac.:c from :: nE:
Tsht?:??ai?ﬁ;w ed by the staterrient exec ::$ft\'1va::;;.l ;h;rsos;: ﬁﬁ?ﬁlc

i ead statement no

not g:;t?;elis:g;ﬁ;e read statement conti nu_es to r:ha;ld e::il(;
from the file and display it. When the end of ﬁlet: ;s :.iai o
S ﬁre no more lines left to read the read sfatemcn ‘ dgb e
sad a line. This time an exit status.ot‘ 1is return reas i
sment, hence the while loop is terminated. I-lav;]ngt i
now ﬂ"le standard input should be reset back to t e] ewc e
erent users would be working at different tenmr‘la sexec i
k the standard input properly. Hence ha_forc using s
éwed the terminal name (file) in the varlaple tgrir:lter;ninal s
le loop is terminated, using the value store

dard input is reset back to original.

i ines and
/e can write a similar program which counts the_ numbel: of; Enmcmand
”rds present in a file. If no filename 1s supplied aldt :Iere g
ompt then the input is taken from the keyboard.

. if filename is not supplied then read carries out the reading from the

[294-- Unix Shell Programming

#8540
Usage: SS40 [filename) :
Count number of lines and words supplied at standard input

if[$%-eq1)

then
terminal='tty'
exec< §1

flag=1
fi

nol=0
now=0

while read line

do
nol="expr $nol + 1*
set - §line

now="expr $now + $#"
done

echo "Number of lines = $nol"
echo "Number of words = $now"

if["$flag" = 1]
then

exec < $terminal
fi

If f‘ilename is supplied at the command prompt while executing the
script, then the input is redirec ted from this file usin g exec. However,

keyboard. The flag variable is used to keep track of whether the
ﬁ!enan'fc Was supplied or not, Each line as it is read is counted and
then using set and $# the number of words in it are counted.

The Loop Control Structure _-295|

read stataement tO alternately read from the file and

k- d. This iss how it San be done.

eyboal'
541
ss;ge: 5541

ho Enter filename
d fname

terminal="ty’
 exec < $fname

~ while read line

 echo $line
gcho Press any key...
read key < $terminal

done

 exec < Sterminal’

* s an
from the file and echoes it On the screen. A message ‘Press any

. 1 =
is now displayed and the program waits for the user to Supp'y

y press. Note that here the Tead statement should carry out the

| g from the keyboard and not from the file. One way of achiev-

echo Press any key. ..
exec < $terminal

read key

exec < $fname

; input
tead of this, we can continue to let the file act as standard inp
we can collect the keypress using the statement,

(296-- Unix Shell Prog ramming

read key < $terminal

The until Loop

An until loop looks like this:

this

and this

and this

and this
done

The statements withj
: within the until |
exit status o oop keep on gettin ad 1
Status becorrft:? ?rftgl;g)oltﬁommand — f%lse (fftﬁiﬁ clll:::l leTii
follows the b silia control passes to the first =
ody of the until loop (i.e. the first t:t)nnnul:l:c[iJI Tf?;:réi::z[

There is a mi ;
a minor differe
loops. Tt : nce between the worki i
. The whi . : orking of while i
le lﬂf:P executes till the exit status of th:nfo;l:'g;
ermin; : '
inates when the exit status becomes false.

CGII]!II&II 15 1alse aud Iﬁll[llllﬂ[ﬂ‘i \"\'h Il b omes [l ue. IIIIS

difference i
€ 1s brought about moye clearly by the following
programs.

8842
U;age: S84
Prints numbers from 1 to 10 using while

i=1

whila [$i -le 10]
do

The Loop Control Structure --297|

echo $i
L iexpri+ 1
~ done

. 45543
i Usage: SS43
~ #Prints numbers from 1 to 10 using unti

=1 -
~ yntil[$i-gt10]
do
echo &i
i="expr $i + 1'

done

(fference in the way the loops have been written
in the two programs given above. The while loop continues its job
| the test remains true and terminates when the test fails. Unlike
e until loop continues till the test remains false and terminates

hen the test becomes true.

you notice the di

from this peculiarity the while and the until loops behave
ctly identically. Can you now attemptto rewrite the program SS36

J: an until loop.
¢ the following points about until...

The control command can be any valid Unix command. Some
examples of control commands are shown below.

until [$i-le 5]
until who | grep Slogname > /dev/null
until [-s $file a -r $file]

The Loo Control Structure —-299,

[298-- Unix Shell Programming Q .

i The statements within the until loop may be a single COMmmgy
or a group of commands. In either case it is necessary to DU
them between do and done. d

p] i1 X=
a.".l c S h I 1 | =h when t1s €
L ng Ihls SCr1 t let g See wha t d e5 h

As a rule the until must have a control command that yjy ~ High
eventually return an exit status O (true), otherwise the loop :
would be executed forever, indefinitely.

The for Loop k-

lovely

The for loop is more frequently used as compared to the while and mountain

the until loops. Its working is also different than the other two loops.
The for allows us to specify a list of values which the control variable

in the loop can take. The loop is then executed for each value
mentioned in the list.

i ds
The word in the for loop is known as a control vanabl_c. Thecg;zgon
.m:l:uioned after in are values the variable ‘wo:_-d t‘lake{; in ::fm(;ﬁ{ms
) loop. That is, firstly the 1 lion:
the shell executes the for ‘ iy
':gittwaen do and done are executed with word s_ct to a x-falu‘cb;l\ii e
‘Then word is set to the next value ‘on’, and the instructions

i i hile executing the echo
e executed again. Each ime W :
o he current value of the variable word.

The general form of for statement is as under:

for control-variable in value1 value2 value3 ...

statement $word represents t ; . :
g This continues until all the values in the 1151. are used. Note ;h;:iihis
conmna: statements between do and done have been indented. Thoug .
command ot necessary, it is desirable since it makes it easier to see where the
comman _. ey s
S8 e loop starts and where 1t ends.

o A b 1 ts
Here the for loop would execute the same sequence of commands for 'USlllngJ" with Command Line ATgRIRER

values mentioned in the list foilowing the keyword in. Here is 2

| : ioni i licitly after the in, a for
e Instead of mentioning the list of values explicitly

loop can take values from command line arguments. Here 1.5 ta
modified version of $544 which uses command line argumefnts ?1
provide values to the variable word. Recall that $* stands for a
‘command line arguments following the name of the script.

5544
Usage: SS44

for word in High on a hill was a lovely mountain
do

echo $word
done

8545
Usage: SS45 [argl arg2 arg3 arg4 ...]

[300-- Unix Shell Programming

for word in $*
do

echo $word
done

Let us see what happens when we execute this program,

$ 5845 Merry go round and Tora Tora Tora
Merry
go
round
and
5 Tera
_ Tora
[Tora

Now the variable word takes in turn each of the
at command prompt and echo echoes these values.

We are so frequently required to use the form
I for word in $*
_ If that Unix accepts the abbreviation

‘ for word

This means we can rewrite S845 as follows:

il # 8846
. _' # Usage: $S46 [arg1 arg2 arg3 arg4 ... |

for word
do

echo $word
' f done

arguments supplied

The Loop Control Structure --30.‘!

m would work similar to $S45, using each argument
+ the script in turn while executing the for loor.

to

nother program using for. Suppose we want to

rite a { :
o directories present in the current directory.

 names of all sub-

455847
& Usage: SS47

forentryin*

if [-d $entry]
then
echo $entry
fi
done

program illustrates another way of gi;ifghvaiues tﬁ t:: Eg:éril

e i stead of using $*, here we have us 1
able in the for loop. Instea ‘ we s
7 h represents all files in the current _dlr_ectory. Wll.hl‘n- the 1?10[' :ﬂ
.ck whether the entry in question is a directory. If it is so, then we

play its name, otherwise we go to the next entry in the list.

ting Nested Directories

for loop works let us put it to a more practrf:nl
gfps:;?:}?l :;fam like drilrlldir,'-!!diﬂf’mydilr is sup_plted él-urf n f_:
écution of a shell script. Here dirl, dlr_z‘ d:r;i and m_vhnrhar.
fectory names. Let us write a shell script which crcatesi t les,i
tories (if they do not already exist) and cha!'ag‘c. to i.wl as
rectory in the list. We would also check for the possibility 11'!.11 there
ght exist a filename with the same name as any _nt l‘he‘dneul:mry
es present in the supplied path. The shell scriptis given below.
. #8548
Usage: SS48 pathname

I__302-- Unix Shell Programming

if [$#-1t1]
then

! " echo "improper Usage: $0 pathname"
|

oldifs="$IFS"
IFS=/

for arg in $*
do

if[-dSarg] #1fthe a s an existing di

an $arg] #if the argument is an existing directory
cd $arg

glse

if[-f $arg] #ifthe argumentis a file
then

echo $arg is afile
exit
else
mkdir r$arg # create directory
cd $dir #andgointoit
fi
done

IFS="$oldifs"

Having discuss :
g discussed scripts whic
ich change the v: S ;
would leave this one ange the value of IFS earlie
d leave this one for you to figure out on your own S earlier, I

Generating Values for a for Loop

Several ways exi i
h 1yS exis e values
Sisonk ot I(}'i};‘qe ist to give values to the control variable in a for loop
¥ - Iy e hav i n
ways we have already seen. Let us enumerate them
) ’ s erate them

na‘e fOT easy re

here
@

®)

(c)

The Loo Control Structure --303

membrance. A few new ways are also exemplified

es that the control yariable should take imme-

Mention the valu
shown below:

diately after the keyword in as
for var in Moderation is for marks
Take the values from shell script arguments, as in

5549
forvarin §'

or its equivalent short-form

8549
for var

While executing a script which contains such a for lopp the
arguments should be supplied at the command prompt while
executing the script as shown below:

$ $549 Goosy Goosy Gander

Take filenames from a directory as values for the control

variable as shown below:

forfilein".c
do
mv $file $file.cpp

done
This loop would pick up all C program files from the current
directory and add the extension ‘.cpp’ at the end of each such

file.

acceptable fo the shell.

All the following forms are

[304-- Unix Shell Programming

—

for file in mydir/letters/*.let
for var in mydir/a??
forentryin ../[./72."

At this stage you i i
— ge you should appreciate the difference between gh

forvarin*®
and

forvarin §*

The 3
Whm:--irsthf'orm represents all files in the current directo
as the second represents all command-line argur'nem:--Jf i

(d) The control variabl
ec
shown below: an take values from a shell variable as

phrase="to stay out of trouble"
for word in $phrase
do
echo $word
done

On executi .
ution the control variable would take values ‘to’

‘Stay‘ noutr etC iﬂ (.
’ .Anturn. This w .
statement would become - Hagpen because the for

for word in to stay out of trouble

Ihc conti v]. now o f I[-
OI i l{lbie 21s | T
g"'lb ﬂb&laned edch w(}!’d om t |

list, one at a ti
s ime. Thus. each iterati
ittt orie Woed. teration through the loop would

(e) The control vari
! variable can take v:
alues from tl
c p, b i 1€ ou a
‘ ommand as shown in the following example: gt of

The Loop Control Structure --305

for cmd in ‘cat commandlist’

do

man $cmd >> helpfile
done
tes? They ensure that the
s replaced with the output
ndlist* would be

Remember the effect of back-quo
command within the back-quotes 1
of the command. Hence here the ‘cat comma
replaced with the list of commands that may be present in the
file commandlist. Then these command names would be used
as successive values for the variable cmd. The manual pages
for each of these commands are then appended to the file

helpfile.

of the above mentioned ways are needed while using for loops

ifferent programming situations.

sting of Loops

~ The way if statements can be nested, similarly whiles, untils and fors
also be nested. To understand how nested loops work, look at the
ygram given below:

#5850
Usage: SS50
Demonstration of nested loops

=1

while [$r-le 3] # outer loop

do
c=1
while [$c e 2] #inner loop
do

sum="expr $r + 8¢’
echo r= $rc = $c sum = $sum

c="expr $c + 1'

ol
¥

[306-- Unix Shell Programming

done
r="expr $r + 1'
done

When you run this program you will get the following output:

r=1c=1sum=2
r=1c=2sum=3
r=2c=1sum=3
r=2c=2sum=4
r=3c=1sum=4
r=3c=2sum=5

Here, for each value of r the inner loop is cycled through twice, with
the variable ¢ taking values from 1 to 2. The inner loop terminates
when the value of ¢ exceeds 2, and the outer loop terminates when
the value of r exceeds 3.

As you cah see, the body of the outer for loop is indented, and the
bo_dy of the inner for loop is further indented. These multiple inden-
tations rake the program easier to understand.

Instead of using two statements, one to calculate sum and another to
printit out, we can compact this into one single statement by saying:

echo r = $r ¢ = $c sum = ‘expr $r + $¢'
The way while loops have been nested here, similarly, two untilloops

or two forloops can also be nested. Not only this, a for loop can occur
within a while loop, or a while within a for or any such combination.

The break Statement

Wc often come across situations where we want to jump out of a loop
instantly, without waiting to get back to the control-command. The
veyword break allows us to do this. When the keyword break is

g//’,;/"m’ Loop Control Structure --307)

omatically passes to the first

Conh aut
tered inside any loop, control & anif. As

- after the loop. A break is usually associated with

ent :
5wf$mple consider the following problem.
an f

nt and report the number of

. ite ram to cou .
Example 11:1: Write & PIO8 ntioned in the path which is

ontries present in each sub-directory me
'egpphed as a command-line argument.
S

The following program implements this Iogic.

SS51
Usage: SS51 pathname

pathname=$1
oldifs="$|FS"
IFS=/
flag=no

sef $pathname
for dirin $*
do
if [1 -d $dir]
then '
echo $dir is not a directory... hence breaking out
flag=yes
break
else
numz=s | we - .
echo Sdir has $num entries
fi
done

if [flag = yes]
then
echo Abrupt end to the for loop

fi

| 308-- Unix Shell Programming

IFS=%oldifs

In this program the moment the condition [! -d $dir] fails (j ¢, the
value stored in dir is not a directory entry) the message "ot 5
directory... hence breaking out" is echoed and the control breaks out
of the while loop. Why does the program require the if statement after

the while loop at all? Well, there are two ways the control could have
reached outside the while loop:

(a) It jumped out because all the values taken by the for loop haye
exhausted.
(b) The loop came to an end on execution of break.

To keep track of whether the loop was terminated because of the
second case cited above we have used the variable flag. It is settoa
value ‘yes’ if we come across an entry which is not a directory,

The keyword break, breaks the control only from the while in which

it is placed. Consider the following program which illustrates this
fact.

8852
Usage: $852

i=1 j=1

while [$i -le 100]
do
while [$j -1t 200]
do
if [$ -eq 150)
then
break
else
echo $i $j
fi

The Loop Control Structure --309)

j=expr§j + 1°
done

i='expr $i + 1°
done

| js program when j equals 150, break takes tbe -:omroii omf;ide
aner while only, since it is placed inside the inner }-vhlle. If we
1o take the control outside the outer while when j equals 150

: -;hould have said
break 2

Likewise, if we have three nested loops then to take the control from
the innermost loop to the statement outside the outermost loop we
it

~ should use the statement:

break 3

b continue Statement

f’-‘jﬁ?ﬁbme programming situations we want to take the control to Eha
rfﬁ?ginning of the loop, bypassing the statements inside the loop which
) fﬁﬂ. not yet been executed. The keyword continue allows us to do

this. When the keyword continue is encountered inside any loop,
Control automatically passes to the beginning of the loop.

. & = s - o] g
A continue is usually associated with an if. As an example, let's
Consider the following program.

8553
Usage: $S53

i=1

while [$i-le 2]
do

310 Ui
L.-' 0-- Unix Shell Programming

j=1
while [$j-le 2]
do

if [$i -eq $j]

then

j="expr §j + 1*
: continue
i

i='expr s} gy
echo §i §
done
i='expr $i + 1°
dona 4

Th
€ output of the above program would be

13
22

Note th
at when the v 7
takes the control ma;t}lc ofli quuals that of j, the continue statement
statements pendi ¢ while loop (inner " statemen
s pending execution in the while Io)ogy(?taswig vest of (8
ner).

break and
: continue can b :
are in a whil e used with until and ;
e lo i and for loops just as
bypassing all conﬁ?ﬁaﬁzte th;;: a break takes you oﬁmﬁiﬁ i[gz;
Strﬂigh[to '[h S within [he lﬂﬂ A c : i ”
) . 0 ands ¥
e control command at the begpinning ;‘;:::U? -y
€ 1oop.

Also. as wi
» 8 with the break s
the conti ak statement a numb:

Inue sta i er can be associated wi
use continue 3 il:e:s:{‘t- Thus, if we have three nested T;};Id\[%d \;n.h
to the ou innermost loop it would ps and we

termost loop. uld take the control to the

The Loo Control Structure --311

cise
hile and until Loop

(Al point out the errors, if any, in the following programs:

=1
@ while [§j -1 10]

do
echo 9

‘=i+1
done

(b) while who | grep aai2 lwe -l

0
echo hello
done

while false
do

(c)

echo false
done

until=1
while [$untit=1]
do

()

echo until cannot pbeusedasa yariable name

done
(€) IFS=P
set -P PParrots are Pretty
echo $*

exec < mydi/myfile
echo enter your name
read name < 'ty

)

I_?!.?-- Unix Shell Programming

(B

(a)

(b)

(c)

[C]

(a)

(b)

1
1

%

Answer the following:

\'r"h'd[wi > prog
|“ bL rhl. OUlpLIT. Of [hc fO”OWlng Oerar
aldimn;

fFS=+

set economists+are+ i
sel

sl dom+right

From wh
ere the read st:
staten ; ;
ments are executed: nent would read if following g
- JWINg State-

exec < file1
exec < file2
exec < file3
read line

Choﬁﬁt [hﬁ COrTect ans WEr
YUU' S S]}t s. ute Is
b h(.ll scn hdb d name I]f y{)u EXEC I

—l‘{}?u: script would get executed
e c :
Wht:[sl,;fn:?gnd would get executed
script is execut l
. ed or i
K dBeop:;r;ds upon the value of PATH maetibes
. s and the scri : -
e script would get executed one after another

W N -

Attempt the following:

Write a
rogra A
O'\.ferlimgis?%:miidn to calculate overtime pay of 10 employees
e i 40a;]the rate of Rs. 12.00 per hour for e\-.r.]-'\,';.;'ol.lli
. ours. Assume that e “o:
for fractional part of an hour e that employees do not work

Write a pro
gram to find the ‘
entered through the keyboard factorial value of any numbet

© Tam o

The Loop Control S

d, Write a pro-

gh the keyboar
o the power of

5 are entered throu
umber raised t

bers .
{fonen

Wwrite shell scripts which works similar to the following Unix
@ commaﬂds:

pead tal more

Try t0 incorporatc as many options as
able with these Unix commands.

possible that are avail-

which reports names and sizes of all files
tory would be supplied as an argument to
size is exceeding 1000 bytes. The
ted in descending order of their siZes.
ould also be reported.

Write a shell script
in a directory (direc
the shell script) whose
filenames should be prin
The total number of such files sh

(©

ginata particular time.

(f) A friend of yours has promised to lo
want to contact

However, he has not kept the promise. You
him as soon as he logs in. Write a shell script which checks

after every one minute whether your friend has logged in of
not. The logname should be supplied to the shell script al

command prompt. Use until loop-

i _fnr. break, continue

D] What will be the output of the following programs:

(@) #Assume that the command line arguments are dog parrot cuckoo
for argument in $'
do
echo $argument
done

line arguments are dog parrot cuckoo

{b) & Assume that the command
for argument in "

[T
(314-- Unix Shell Programming

(c)

(d)

(e)

(f)

(g)

(h)

do
echo $argument
done

Assume that the command li
and |
for argument in * d line arguments are dog parrot ctickoo
do
echo argument
done

Assume that the comm '
and
for argument in *** line arguments are dog parrot cuckoo
do
echo $argument
done

foriinabcde
do

echo $i
done

foriin'abede’
do

echo $i
done

i=1
for[i-le 10]
do
echo $i
i='expr $i + 1'
done

i=1 1:1 k=1
while [$i-1t 10]
do

? The Loop Control Structure --315|

[E]
(a)

(c)

(d)

']

while [$j -1t 10]

do
while [$k -t 10]
do
echo $i §j $k
k="expr $k + 1°
break 3
done
j=expr§j+ 1"
done
i='expr$i+ 1
done
echo out at last

Answer the following:

State true or false:

Using a for loop we can calculate factorial value of a number.

State true or false:

£ IFS is changed to ‘", after execution

If in a script the value o
FS is automatically set back to the

of the script the value of 1
original value.

The break statement is used to exit from:

an if statement

a for loop

a program

None of the above

ot vl

An until loop ensures that the statements within the loop get

executed:

1. Only once

(316-- Unix Shell Programming

- [F]

(a)

(d)

(e)

(H)

2. At least once
3. Noteven once
4. None of the above

Attempt the following:

Write a progr: ;
gram to print all pri

Hint: ee nac prime numbers fro

(Hint: Use nested loops, break and continue) m 1 to 300,

Write a progr:
_ gram (o generate : a8
using for loops. g te all combinations of 1, 2 and 3

Write a shell scri
. script for renaming each file i
i e] ng each file in the dir / 8
Sc;ip[thl I;Z\«e the current shell PID as an cxtemi(.tzc't]?l:}F v
dis e : . S & o N 5
ensure that the directories do not get ren'nf SZC”
amed.

A file called
e wordfile consists of s

i : ’ sts of several ‘

soriot whic - = words. Write a s

W(JUF:d d wf:)::llll_llrucew-: a list of filenames, the first of?:!:t]t:

ces of each wnrd] i?; ET (Slhl"‘_:i” B o i ”c;
'ordlile 1 5 > - >

stguments. in the rest of the files supplied as

H‘]l[ca\!l SCI C 5 & €8 containi g € WOoI
s]pt wh! thICIs\riIII“\ ontain 1 Eh'\'(‘ d
unix in [llL fllt‘.s hu])pilt‘d as ’dlgliﬂlﬂl‘l[b' o [I”h ShC” SCI |pI

The word unix i
1INIX is present in o

5 - nly some of the fi '
arguments to the shell scri 4 of the files supplied as
each of tllcgeu;-‘-’ls}??” script. Your shell seript ShUUlr:ip‘lilet‘ldr?lz
encounters :,:oml»e"-' In turn and stop at the first file ‘lh‘(l L'L
e i e

splayed on the screen. s filename should be

A shell scri ;
ptreceives even o
filenames : b number of filenames. S X
are s s. SUDpo:
second file liizlig?l(ljec.i then the first file should get CF:'JP i::i 20“(:
e Ifod:j n;|n~‘]r fl!e.should getcopied into fC'UFlhpfi i :::L.I
shorld kb plac:f; t]JI filenames are supplied then no CO]JtY‘i“‘
> and an error message s £
ssage should be displ:
splayed.

)

(i)

1)

(k)

Loop Control Structure --317

The

stof all files in the current

hichdisplaysali
rite and execute permis-

ory o which you have read, W

wirite ashell scriptw

direct
sions.
ch will receive any number of filenames
script should check whether every
e or a directory. If itis a directory it
ename then name

ent in it should be

Write ashell script whi
a5 arguments. The shell

argument supplied is a fil
<hould be appropriately reported. If itis fil
of the file as well as the number of lines pres

reported.

Write ashell script which will receive any number of filenames
as arguments. The shell script should check whether such files
already exist. 1f they do. then it should be reported. If these
files do not exist then check if a sub-directory called mydir
exists in the current directory. If it doesn’t exist then it should
be created and in it the files supplied as arguments should get
created. If mydir already exists thenitshould be reported along

with the number of files that are currently present in mydir.

Suppose a user has re. med some files in current directory
using a command like m¥ filename filename.$$. Write 2
shell script to search all such files and rename them such that
they do not contain the shell PID.

-
12 Shell Metacharac-
ters

‘—___,..-—--__

Filename Substitution Metacharacters

1/O Redirection Metacharacters

Process Execution Metacharacters
Conditional Execution Using && and |l

Quoting Metacharacters

Poczitional Parameters and Special Parameters
Oh! I Forgot...
Debugging a Script
$* And $@

Exercise

S

L?ZO-- Unix Shell Programming
Shell Metacharacters --321

card character, it can represent any combination of any

¥ AWild
| @ umber of characters. A null or no character at all may also
qualify for representation by a *. When mentioned at the
. command line or with command like Is, it yields a complete
| jist of all files in the current directory, except hidden files that
,l start with a period ().
| s Stands for any one character.
he shell has a bie fami : : . .
I lt-‘haracter :j:olw L:;: g family of metacharacters which (] ?;:fcs the shell a choice of any one character trom the enclosed
characters ich special significance has been given, T i :
tont acters are accorded a VIP tres as been given. Thes fl.] Gives the shell a choice of any one character except those
etacharacters are also called * reatment by Unix. Someti " enclosed in the list.
met some of them in diffe regularexpressions’. Though w::l:mes
2 5 , rent contexts ; S HOUSN We have :
su ;
ch that they warrant a se exts earlier, their importance j Here are a few examples:
chapter we would take a .| Para:e chapter devoted to them. In [ehfs
Unix fam; a closer look g e ¢ 15 g s z o
I 2“';‘ family. All metacharacters mnkb:,I []h{'serf oyal members of the Is a* Lists all files beginning with character ‘a .
A : > classified as shown if Fi
e if Flgum
r Is 7?7 Lists all files whose names are 2 characters long.
Type — Is a?h? Lists all 4 character filenames whose first character
- s ‘I_Mmfharacters R i is ‘a’ and third character is ‘b’.
| ilename sbstitution T .
V/O Redirection }] 1) Is [kdgp]* Lists all files whose first character is ‘k’, o, g or
Pm":‘"j'sscxeculiun] (q}l :: << m> m>&n : ‘P
Qucl)tfng metacharacters \ i && ||
P“"”_'””‘d' parameters ‘ 51 Is [c-fmrv-z]* Lists all files whose first character is ‘m’ or ‘r’ oris
| Special characters 50"29 in the range c to forvto z.
L] * 5@ s# §! $5 3- .
Is [!d-m]* Lists all files whose first character is anything other
than an alphabet in the range d to m.

Figure 12.1

/0 Redirection Metacharacters

Filenam ¢
e Substituti
ion M : ;
T etacharacters These special characters specify from where input is to be picked up
a directory L]jr “_I'_H these. These are used for matching fi - [where the output s to be Sert-
Y- Letus quickly revise them atching filenames in
' $ cat mypaper > out_there

I322-, Unix Shell Programming

—3

The above ¢
o "
a file called :::;nﬂtll;d causes the output of the cat command
where it would ordi ére instead of the standard 0 go gy
ould ordinarily have gone output, the SCreey

|I}d-.

tion, instructs th
e shel
present, I'to append the output to the file if it is al
Ieady

$ cat poem >> out_there

The above
command ensur
contents of es that out_there is n. ;
Poem are added after the contents of 31[1::) \;irwrl e, b
: _there.

In the case of i
inputredirection, < is
» <1sused to specif
y the standard in
put,

which by default is
th
66 wiliten ax e keyboard. The above command may also have

$ cat < poem >> out_there

The result
would have be
functions, input i en same. This is b
»1npu s becaus

the officiul iIrjip:; rts t_akep from poem even in the absencee ct)?-e \;ay cat
e ovtictal npu, is stillthe keyboard. This is evident 1< butthen
input and sends it {on?hargumem atall. It waits for you toet];' Ca:hls

i : e standa pe the
terminate it by saying Ctrl d. rd output, the screen, until you

$cat

Sample text : Wh
cHD Boves | sy,

:ampfe text : Whatever | say.

With the ne
Xtopera
Siiida. perator, <<, you can select the input from the specificd

$ cat << optimist

Shell Metacharacters - 323]

ad from the standard input

command will continue to Te
n on a fresh line. cat will

ve
Tm a:ijlclJ the word ‘optimist’ is not fed in of hl
O inate if it encounters fresh line containing 'c-'ptlrmst‘ as shown
5&10‘”- Note that the word ‘optimist” when 1t 1§ embedded in a
sentence doesn’t terminate the cat command.
$ cat << optimist
It is impossible for an optimist to be pleasantly surprised.
optimist
It is impossible for an optimist to be pleasantly surprised.
$

The two redirection operators remaining are:

m> filename Makes filename the output of m
es the standard output and standard error if m=1

d n denote file descriptors. They
0, 1 or 2 representing standard
ut and standard error respective-

m>&n Merg

and n=2. Here m an
can take the values
input, standard outp
ly.
The best use of m>filename is when we want to redirect all our error
n some shell script and study

messages to some file. Say we wanttoru
‘the error messages that come with i+ at leisure, This would de the
trick:

$ SS40 2> errors

The file descriptor 2 signifies the standard error, which is now set 10

a file called errors.

We know that the time command is used to find out the time taken

of the time command always
hich is the screen. If we want
the following will not

by a process to execute. The output
comes to the standard error device, W
the output of time to go to some file, saying

suffice.

|324-- Unix Shell Programming

$time Is> myfile

This is becaus
e though the standard
myfile AR output (output of Is) w
yhile, standard error is still the screen, and tﬁat's whlreatshsemm
€ time

$time Is > myfile 2>&1
This
merges the standard output and standard error. As a result

Proc i
ess Execution Metacharacters

T oot i i
hese help with different ways of execution of commands

When we-
B w“:v.v‘ant Lo run more I_:han one command at the $ prompt in on
» We separate them with a semicolon. For example 1

$ Is; who; banner Hi

This would result i
1 ult in the execution
of Is first, t 3
banner command displays a big Hi, R

If we wish certai
* ain commandsto be i
; exec .
them in parentheses. uted in a sub-shell, we enclose

$ (cd mydir ; pwd)
fusr/aal/mydir

$ pwd

lusr/aal

Th
of§j$:;f;th?§es causes a sub-shell to be invoked, in which a change
ry Is executed. After executing a pwd in that sub-shell, the

Shell Metacharacters --@

| ceases to exist. Back in the current shell, we are still in

sub-shel
fus/aal

“The metacharacter which delegates a given process execution to the
packground is &. If we want a long file to be sorted, and we know
ke quite some time to sort this file, then we can

(hat it is going o ta
mark it for background execution while we continue to work on

something else.
§ sort abed > abed2 &

The trailing & entrusts the job to the background, leaving you free to
do some other jobs in the foreground.

Conditional Execution Using && and |l

optionally execute a command

These metacharacters can be used to
f the previous command.

depending on the success or failure 0

If we want the second command to be executed only if the first
succeeds, we say
command 1 && command 2

Conversely, if we want the second command to be carried out only
if the first fails, shell provides the metacharacter Il

$ command 1 I command 2
Let us illustrate this with an example.

Suppose you use grep to search a file for a word. On execution grep

reports back to the shell whether the search was successful or not.

Like other Unix commands, it reports the success or failure in terms
xit status 0. If something

The grep command, for

of an exit status. If successful it returns an €
goes wrong, it returns a non-zero exit status.

|326-- Unix Shell Programming

—3

example, returns an exit status 1 if it fails to find the pattern, apg an
exit status 2 in case of syntax error or inaccessible files. We can chegk
this status as shown below.

grep supplement paper > newpaper
if[$7-eq0]
then
cat paper
fi

Instead of this code we can use a more compact code using the &g&
metacharacter. This is shown below:

grep supplement paper > newpaper && cat paper
The command following the && is performed only if the exit status
of grep is 0, that is, only if the pattern ‘supplement’ is found in the
file paper.
Similarly, in a command like

grep supplement paper > newpaper |l echo pattern not present

the command following the Il is performed only if the initial command
(grep) fails, that is, has a nonzero exit status.

Let us take a more complicated example of usage of && and |I.
—grep sachin addresses |l grep sachin adrfile && cat afile

Here the pattern ‘sachin’ is searched first in the file addresses. If the

search fails then the pattern is searched in the file adrfile. If this

search is successful then the file afile is displayed on the screen.

What if the first grep is successful? The second grep is skipped and
the cat is executed.

ﬁmﬂl;a;& and Il enjoys a higher prionity.
out©

e metacharacter ¥
followin

Shell Metacharacters

" i< not executed. People
poth the greps fail? Then cat i ring which

ing (especially C) may be wonde

d what if

with programm

igher priority. The

. s enjoys a h
hich comes first enjoy for the command:

g figure summarises all the possibilities

command 1 Il command 2 && command 3

Command2 Command 3 Executed?

Fails
Successful Yes
Not executed

Fails
Fails
Successful

Figure 12.2

i uence:
Can you prepare 2 similar table for the following command seq

command 1 && command 2 I command 3

Quoting Metacharacters

The following characters come under this category..

(]

\ an 1

acharacter.
\ takes away the spccial significance attached to any met

Consider the following statement:

$ echo Thisisa*

(328-- Unix Shell Programming

Q

LD ~ .
" c::lces Illil::a a:slm]l;]t:‘ sltatcmcnt. But the shell interprets the * a¢ ¢,
; all files in the current directory. H € eng
s . Hence, i
echoing the * it echoes all files in the current cgi}rrector;e’ B
To remove the shell di
ilemma, w : :
661566 the inetachmraater: hat we do in such cases is place a\
$echoThisisa*
Thisisa*

When preceded b i
ya\ the *i nis ;
notechosd i the omtput, s echoed as it is. Note that the \ itself is

The single quotes * °
3 s " " tell the shell to take every
- ery enc
literally - absolutely no favourites, For example e

$ echo"$, \'.?' *, all just what they look!
$,\,2,*, all just what they look!

The
back quotes replace the command they enclose with its output

$ echo Today is ‘date’
Today is Sat Apr 27.17:05:56 IST 1996

By enclosi ;

ar{, cal]:;mf] da;e in the back quotes, or the accent graves, as they

i o d e shell understands that the output of date ’is to be
ed here. Hence the output shown abeve =

The d{)ub!e ST
and * ¥ Whgnu:;ecblo g” PT‘P‘-’T some metacharacters, namely, 3, \
' sed within " " these metach: , i
; : tacharacters are
to hold their special status. For example rs are allowed

$ name=Unuck
$ echo "Your name s $rame!
Your name is Unucr

Shell Metacharacters --329)

ble name, we echo the same using the

1o set up a varia
caracter $. $ indicates to the shell to take the value of the
Je that follows it. The double quotes have not affected the
status $ enjoys.

meters and Special Parameters

reserves some variable names for its use. $1 through $9 are
variables, called positional parameters, which automatically
he arguments passed at the command line. These were

sed in detail in Chapter g

pnal Para

ters are designated by the shell for yielding
eral and the process being
ning of

e special parame
ormation about the environment in gen
ted. Here is a list of such parameters alongwith the mea

PID of current shell

Exit status of the last exe
PID of last background process

Current shell settings

Total number of positional parameters

Name of the command being executed

List of all shell arguments. Can’tyieldeachargument separate-

ly.
Similar to $%*,
enclosed in double quotes.

cuted command

but yields each argument separately when

Ut of these we are already familiar with the parameters $$, $2, $0,
and $*. Let us examine the rest.

jl, I Forgot...

pose you want to sorta long fi
u would naturally get the process execute
that you are free to carry out some other work i

le and store the output in a new file.
d in the background such
n the foreground.

—]

[330-- Unix Shell Programming

$ sort logfile > logrep &
23415
$

;\i’; have: seen that whenever we run a process in the background th
- asagned to the process is displayed before displaying me§
?Or:;f;hn;pﬁuzg n(})lw we get busy with some other work in the

. And in the middle of this foreground job you wi i

he midd isht

og;whetger the sorting is still going on, or is it over.}fl"u find th?sﬁol:;d
Zm.can o a ps and find out from the PID column the status of‘oul
dis];ll;ie%mc;ss. Bu:_ what if we have forgotten the PID that wa;

when we fired the background process. No

. 1 roblem.

can still find out the PID by executing the simple comr[rjm?-ldem 9

$echo §!
23415

where $! stands for the PID of the last background process.

Naturally, i
,:i::lf' ltt; two processes are executed in the background then $!
presents the PID of the second process. If we want to preserve the

PID of the first process 4 g :
below: P we may save the same in a variable as shown

$ sort logfile > logrep &
23415
$ first=9!

Debugging a Script

However s N
i ﬁrsfr['bmal'] program you write it’s not going to work correctly
oo lﬁc around! This is because human beings are prone 10

es. Moreover, a comma here and a semicolon there makes 2

lot of difference. If the grammar of your program goes wrong the .

shell i 3
ecmeé"‘;‘;g\';& you so the moment the erroneous statement gets €X-
. However, if the grammar is correct but there is a mistake in/

| o

" Letus now execute the same script after adding th
- beginning of the script.

Shell Metacharacters --331 |

¢ the program would work, but would work incorrectly. At
guch times We would like to debug the program by tracing the flow
of control. examining values of variables, checking whether the
;yariable-, filename and command substitution is being done propcyly
or not etc.. To achieve this we have to simply add the following

atement at the beginning of the script:

the Jogi

set -vx

the shell script is displayed before it
that the command along with the
o displayed before execution.

Here, vV ensures that each line in
gets executed, and x ensures
argument values that it may have is als
Let us illustrate this with an example.

SS54
Usage: SS54

echo Enter your name
read name

echo $name

set yankee doodle do
echo $1 $2 $3

Shown below is the normal execution of this script.

$ 5554

Enter your name
duckling
duckling

$

e line set -vx at the

$ 5854
echo Enter your name
+ echo Enter your name

[332-- Unix Shell Programming Q

Enter your name

read name

+ read name

Dominique Domini

echo $name

+ echo Dominique Domini
Dominique Domini

set yankee doodle do

+ set yankee doodle do
echo $1 $2 $3

+ echo yankee doodle do
yankee doodle do

$

Note that by setting the v option the line from the script which is
about to get executed is displayed, whereas the lines which are
prec:?dcd by the + sign have come courtesy the -x option. Also note
that in the lines preceded by the + sign the variables have been
su bsnta‘ned by their actual values. This way we come to know on what
values is a particular command going to operate upon.

To know which options have been set we can use the parameter $- as
shown below,

$ echo $-
VX

We can unset the debugging options that may have veen set by saying,

$ set +vx

$* And $@

Let us look at the subtle difference between $* and $@ exemplified
by the following script.]

#
#

c

cters --333

Shell Metachara

5955
yUsage: SS5

5 file1 file2 file3 ...

at"$""

cat"$@"

the tw

‘there

[f we execute thi

On execution, the first

the second cat comman
£2 and 3. When not enc

s shell script by saying,

§ 5555 11 f2 13

o cat commands would become

cat "f1 213"

cat "f1" "f2" ‘13"

ds would give an error since
£2 £3". As against this,
ontents of the files f1,
d $@ behave exactly

of these comman
file with the name "1
d would display the ¢
loced within "" $* an

does not exist a

similarly.
Exercise
[A] What will be the output of the following program segments:
{a) echo?
echo\?
echo "?"
echo '\?'
echo "\?"
(b) n="ask me'
echo $n
echo "$n’
echo '$n’

| [334-- Unix Shell Programming

I: (c) a=b
b=c d=c
| echo $$b
echo $$$d
f
| - (d) setready the wa ,
as al
| echo $# §84 y as along with
(e) set-vx
echo $-
(fJ as=
[-2"$a"] && a=mafia
echo $a
(g) a=
[2$a"] Il a=mafia
echo $a

(h) (a="out of context’)
echo $a

(i) a=stargazer
{a:moongazer}
echo $a
() (date:echo hello) > message
(k) date : echo hello > message
(1) sort longfile > file &
grep lion longfile > afile &

echo §!

(m) set mafia wars of B
oml
| echo $* -

—

Shell Metacharacters --335|

acho $@

st shadow of Ignorance

(n)

echo
echo 14

[B] State whether the following statements are True or False:

(@) Within * * there should alv-ays occur a Unix command and not
a shell script.

(b) Within *° piping and redirection metacharacters cannot be

used.

{¢) If filenames are supplied as arguments {0 a script then rm
"$@" would remove all files supplied as arguments.

(d) $? gives the PID of last background process, whereas $! gives
the exit status of the last command executed.

(6) SS40 2> myfile would redirect the standard output and stand-
ard error to the file myfile.

[€] Suppose following files are present in the current directory:

dim.dwg document

ashish arctan dac.doc
folder sam

fag fionaccifinder fog
si.c tarun zenith zombie

g commands™

Which files would be listed by the followin

[336-- Unix Shell Programming

(a)
(b)
(c)
(d)

(e)

Is 7*?
Is fi*

Is [!fd]
Is [!fd)*

Is [10-9]['asd]*

—

.
13 Tricks of The
Trade

Controlling Terminal Input
Tackling Multiple Command Line Options

traping Signals
Functions
Executing Multiple Scripts

Exercise

@ -- Unix Shell Programming

ith the knowledge of various control instructions and the
shell metacharacters we would be able to tac

kle mog
programming situations. However, to add gloss to oyp
programs and to improve our programming efficiency we need o
_ look beyond what we have

learnt so far. Things which will help us
to change command names, control terminal input, tackle variety of
options that may be supplied at the command prompt and the like. So
here we go...

Controlling Terminal Input

We have been able to control
the screen. tput helped us in

whereas echo permitted us ¢
video, blinking etc.

the nature of output as it is echoed to
positioning the output on the screen,
o display characters in bold, reverse

So far to read values from the ke
we have used the read statement.
in its reach. Anytime read
values and faithfully hit the
variable(s) following
available to this routin

yboard during program execution
However, read statement is limited
Statement is encountered we supply the
enter key and the values get stored in the
the read statement. There are no variations
e. Too drab, you would agree. What if we want
to write a program which asks the user to supply a password from the

keyboard? When this password is read using the read statement the
password typed would naturally appear on the screen and the whole
“idea would be lost. In such a situation the stty command comes in

handy. The following program shows how stty can be used in such
a programming situation.

Tricks of The Trade --33 9

‘stty -9
_.ed’\ﬂ iucle ‘
"Enter paSSWd: \c

ity $ld

Cf[rspw" =icit]

i scho you supplied the correct password

~ else

~ gchowrong password

‘ : inal’. It sets certain terminal
i terminal’. ‘

‘set the options for a i

srziz(?si;(:)rr the device thatis the cumn;t stat?iarsc; :{rilﬁgs k<

. ts, it reports '

ithout arguments, : o
gs\:ﬁl:tlhe a option, it reports all the option setting
ons. Wi . ;

i inal
i tout the current settings of the termi

ot on CaUSClS] 5131::?;55 numbers separated by colon :.u:; ts)lll:;
e cd this option to store the current stty 5¢ el
g “5'3[we have invoked stty w'flh nptwn:.}l —e:n't .
B o tion ensures that what 1s typed : ‘oec wl.
e d the iuclc ensures that even if w. o

ke it would be mapped to correspon

ercase characters.

we restore the original stty

ce the password has been received | then check the Sup plied

tings stored in the varinle old an
i lega

password against the

‘matches with our legal password we flas

: hether it
d. Depending on W
g appropriate message.

(340-- Unix Shell Programming

—

There are several options available with stty. You are referred 10 the
manual for the details of each. Given below is only a list of commony

used options.
ignbrk
-ignbrk
igner
-igner
iucle
-iucle
olcuc
-olcuc
icanon
-icanon
echo

-echo
min i, time i

sane

Ignores break on input.

Does not ignore break on input.

Ignores carriage return on input.

Does not ignore carriage return on input.
Maps uppercase alphabets to lowercase on
input.

Does not map uppercase alphabets to lower-
case on input.

Maps lowercase alphabets to uppercase on
output.

Does not map lowercase alphabets to upper-
case on output,

Enables canonical input (ERASE and KILL
processing).

Disables canonical input (ERASE and KILL
processing).

Echoes back every character typed.

Does not echo back every character typea.

(0 <i < 127) When -icanon is set, and one
character has been received, read requests are
not satisfied until at least min characters have
been received or the timeout value time has
expired and one character has been received.
Resets all modes to some reasonable values.
This optionis useful when a terminal’s settings
have been hopelessly scrambled.

We would try to incorporate this password logic in a more practical
situation later in this chapter.

Let us now look at another example which makes use of the stty

command.

Tricks of The Trade --341]

aple 13.1: Write a shell script to identify all zero byte_ files in
m?rent directory and delete them. Before proceeding with dele-

e shell script should geta confirmation from the user. Nofe that

eletion rm -i should not be used since it needs an Enter key to
8

it after supplying y or n.

n the current directory is fairly straight-
dois use a file test. When we prompt the
*_ his response would be collected

ing the usual read statement. However, there is a small hitch here.
e read statement terminates only on hitting the enter key, whereas
e problem specifies that the user should be I'CQUIFCd to supply only
? or ‘n’ in response to our prompt. To ensure this we .shou]d once
sain use the stty command as shown in the program given below.

tifying zero byte files i
ard. All that we have to
¢ for his response to ‘delete y/n

SS856

Usage: SS56 _
Remove 0 byte files in the current directory

for file in *
do
if[-f $file -a! -s $file]
then
echo "Delete $file y/n\c'

ans="" _
stty -icanon min 0, time 0

while [-z "$ans"]
do

read ans
done

if[$ans=y -0 $ans=Y]
then -

mm f Sfile

echo * $file deleted..."
fi

|3i-- Unix Shell Programming = “343_1

i domﬁ 3 he arguments provided, if any, are valid, and finlalllgir perform
|J | priate action depending upon the arguments supplied.
f stty sane

| carry out these checks using multiple if statements. However,
pecomes especially dif ficult when the mult_iplef arguments are
cified in any order that the user wishes. Let’s justify this with an

'_ple.

When -icanon is set and one character has been received, the p
statement would continue to get executed till either: b

(a) At least min characters have been received mple 13.2: Afriend of yours s promiSCd . N i

‘However, he has not kept the promise. You want to contact him
.o0n as he logs in. Write a shell script which checks after every
nute whether your friend has logged in or not. The logname
1d be supplied to the shell script at command prompt.

or

g (b ;lt':f; i -t.l ::f:ct:l value has expired and one character has beep
e command prompt the user may optionally supply a -m option
and a -t interval option. The -m option means whenever the user logs
1 we should be so informed not through echo but through m_ail. The
interval option means check whether the user has logged in every
num seconds. Write a shell script to achieve this.

|I1f og]y read choice is used without the while loop then since min
maisn ;:;en setto0 control would just skip past the read statement since
means that read should read 0 characters. The while loop

ensures thz
ures that so long as at least one character is not received read
1 continues to get executed.

. Here is the shell script...
time 0 ens i i =
| ensures that read is terminated the moment one character is

hit. This is e ti it
This is because time n means waitill nseconds after a character

has been hit. bUsag

Usage SS57 [-m] [t interval] logname

Note that instead of preserving the original stty settings in a variable

Netetha mailopt=false
restoring them at the end, here firstly we have changed the

| interval=60
settings and then restored them using the sane option mentioned
earlier. .
if[$1=m]
| then
| = . :
f Tackling Multiple Command Line Options fi E L
, Many programs need multi i
i | s ple command line arguments to be '
EEM.?;L;{-?T the time of execution. In such cases, firstly the program ot
ould chieck whether any arguments have been provided, then check men'n‘t al=$3
| interval=
fi

!344-- Unix Shell Programming

while true
do
f.\rho | grep $4 > /dev/null
if[32-eq0]
then
if [$mailopt = yes]
then
echo $4 has logged in | mail * g
o gged in | mail ‘logname
: echo $4 has logged in
|

break
else
sleep Sinterval
fi
done

Weh is i

- ha?ﬁ;?iﬁ?jum program in an 'Chaptcr 11. However, that time

s i ‘;:erizd the possibility of being informed by mail as

i et Na%e ‘het her the user has logged in at an interval supplied

s s .h y at }he above program has not been sandpapered
checks and is bound to fire in several situations:

Eil;}; ;tt:logﬁn}me is not supplied at the command prompt
. promuong of the -m and -t options are interchanged
5 Ifmterval is not guppiicd after the -t option. i
-m and -t options are not supplied and only | e i
supplied. PR

Not e possibiliti

. antgaé:sly:;:;zg:szbllmcg cannot be tackled using multiple nested

ooy becorr?[s. But it would sure result into chaos. Instead

s kg e much smoother to program and understand if
pts command. Let us see how. To begin with let us

tackle getopts in its simpl
simpl
present example. plest garb. We would soon come back to the

* While executing this pr

~ getopts will store the option

- command line provided the option
Thus, we should execute the above program by saying

#5558
Usage. 5558 [-ab]

getopts ab choice
case $choice in
a) echo you entered a

b) echo you entered b

7) echo wrong choice
esac

ogram the user is supposedto supply anoption

‘g’ or ‘b at the command line. Look at the getopts command used

in the program.

getopts ab choice

Here ab are the valid options and choice is the variable in which
supplied at the command prompt.

hat are the valid command line options. On
topts reads the options given by the user
and deciaes whether they aré valid or not and then leaves the rest to

4 case statement. getopts accepts single character options from the
is preceded by a minus (-) sign.

‘Thus getopts Knows W
execution of the script ge

$ 5358 -a

$5858-b

nand line, picks up the option,
d if a match is found stores the

In either case getopts scans the comt
compares it with the legal options an

command line for the minus sign; if
character immediately following the
that the user has specified.

In SS58 we supplied onl
multiple options? We will have to
as shown in tha following program

[346-- Unix Shell Programming

—

option in the variable choice. If we supply an illegal option by Sayiny

$5858 -z

getopts stores a ‘2" in the variable choice since the option Supblieq
didn’t match with any of the legal options.

Depending upon what is present in the va

riable choice the vase
statement then executes the appropriate inst

ruction.

If we supply an illegal option, in addition to executing an

statement from the case, getopts also flashes an error
shown below.

appropriate
message as

$ 5858 -z
S§858: illegal option -- z
wrong choice

Observe that getopts does not assi
case) to the variable choice because in that case, none of the case
conditions will be true and no case statement will be executed, as it

would be very difficult to devise a case statement that will take care
of any option that the user may type in.

gn the invalid choice (‘2 in our

Note that when the option is supplied at the command line it must
always be preceded by a minus sign, getopts actually scans the entire
aminus sign is found, the single
mInus sign is taken as the option

y one option. What if the script is to tackle
call getopts repeatedly in a loop
8859

Usanie: SS59 [-a/b)] [-c/d]

£

Tricks of The Trade -—.@

while getopts abed choice

0 (.03
; case $chaice I
a) echo you entered @

b) é‘cho you entered b
c) é'cho you entered ¢

m;mowumwmdd
7 erzlcho wrong choice
esac
done

o ——
Let us see what happens when we execute this scrip

$5858-a-c-z

you entered a

you entered ¢ ‘
$559: illegal option - 2
wrong choice

i mmand
Since we have supplied three options getopts \.\;;!lvsic]:]an ;?:ki{()i g
line thrice each time picking up one option. ddlg i], i om
option it again checks for its legality. If f?un : -p%' il v
option to the variable choice, otherwise assigns a =

i es ' value is as-
case statement then appropriately processes whatever v

signed to choice.

i it status on

i er Unix commands getopts too retunjs an fixl Bt

eAyfe\:t:t?o?hAs long as there are options at' thcob:rzr;r?h?gommﬂnds

getoptshasn’tlooked at yet, it would return a z;a.r U

in the while loop would getexec.u@d. If t‘he ofp Lct)his gy
command line is valid, the specified action for p

WS-- Unix Shell Programming

options (the ? case) would be taken.

When there are no more options to be retrieved from the commapg
line, getopts would return a non-zero exit status and ths while loop

" would be terminated.

Let us now go one step further and see how can we tackle argumengs
that may be supplied with an option. For example, if we execute S§57

at command prompt by saying
$ 8857 -m -t 120 aa12

120 becomes an argument for the option -t.

The following program shows how getopts takes care of arguments

for an option.

5560
Usage: SS60 [-a account] [-c creditlimit] [-d]

while getopts a:c.d choice
do ? :

case $choice in
a) echo you entered a with argument $OPTARG

¢) echo you entered ¢ with argument SOPTARG

d) echo you entered d
esac
done

Note how we have specified the valid options after getopts:

getopts aic:d choice

—

taken; if the option is not valid, the action common to al] invalig

pﬁ of The Trade —-349)

ptions -a and -¢ would be followed by

: that the 0
The ' tells getopts tha .d would not be. Suppose we execule

; ments,whcreasthcoption
?}ii‘s script as follows:

¢ 5960 -a alll -¢ 5000 -d

you entered @ with argument 2101
you entered ¢ with argument 5000
you entered d

he command line is scanned by getopts it fir:el cncpuntcrs the
W}{ent : topts now checks whether it is a valid option or not.
L e giaiﬁi option and there is a ‘" after ‘a’ in the list of valid
[) Ha -d") getopts picks up the next argument from the com-
i (El'C‘cl aqsﬁgns to an internal variable OPTARG. getopts now
i i-mz ::it sialuq 0.Hence the control-command in the while loop
;:Tar:;:;cd and the control proceeds to 1h_e case sta;lemcfngp};e“;; cé::i
‘a’ gets satisfied and a message along w1ti.1 lT\:‘va ufuo b
echoed to the screen. Same thing happens “0;[‘;' i‘;{ Gpam:l T
the -¢ option. This time 5000 is assigned to S Son o
printed out. Third time around getopts fancounterst e - ; p m.cr 2
time no value is assigned to OPTARG since there 1sdn“m,: r.ns)
in the list of valid options. When the c_ntlhrc c?lnms:n , whhe e
scanned getopts returns a non-zero exit status hence the

is terminated.

oy £ ion?
What if we do not supply an argumentto, let us say, the -c option:

$SS60-aalll
you entered a with argument a101
SS60: option requires an argument -- ¢

Now when getopts encounters the -c option it objects |n1‘rt’1¢;i1al\tnai]y¢
since in the list of valid options ‘" 1S foll(?wed by a [. | u e
argument is missing at the command line. That 1 suppos

demonstrates the intelligence of getopts.

L3

|350-- Unix Shell Programming

Note that if an argument is expected along with an option (remembe
that the colon in the script tells getopts that an argument is expecteq)
the word immediately following the option on the command line i;
read as the argument to that option. Also, while an option cannot be
specified without the minus sign, there is no rule saying that the
argument to the option cannot begin with a minus sign.

Let us now see one final facility available with getopts. It provides
a means by which we can find out exactly how many of the argy.
ments provided at the command line were read by getopts.

getopts keeps count of the number of parameters read from the
command line in an internal variable called OPTIND. By default the
value of this variable is 1. It is incremented by 1 every time getopts
comes across a valid option or argument to an option while scanning
the command line. Look at the following program to verify this.

SS61
#Usage: SS61 [-a account] [-¢ creditlimit] [-d]

while getopts a:c:d choice
do
case $choice in

a) echo you entered a with argument $OPTARG

c) echo you entered ¢ with argument $OPTARG
d) echo you entered d
esac
echo $OPTIND
done

Figure 13.1 shows the values of OPTIND and $# for different

arguments supplied at the command prompt while executing the
above shell script.

3 _s'g@ompare the val

* command prompt.

it
é Note the last case in Figure 13.1. Even

.’-"l',] g561 -aal0l € 5000

~ value of $#. Any time t

-
i

%

L]

P

7o

Tricks of The Trade -=351

.

1 _(_:ommaﬂd line

- | gs61 -a al0l

| g561-aal0l d
i §s61 -¢ 1200
| ss61-d
| 561 -d -aal0l ¢ 1300
| gs61 -aalll -d-¢ 1300
5561

$561 -d 100

5561 -a
8861 -d -¢

fﬁigure 13.1

ues of OPTIND and $# in Figure 13.1. You can

S S i ctly the
observe that if the options and arguments are supplied correctly

i : 1 to the
f i either greater than or equal 10 ti
ey OPTIND;Z ila‘nﬁ:;f $# exceeds that of OPTIND itis

\:'l'BWl“bCUIIlIblIIgthlaIEbult111 OUtnelelogldm

though the value of OFTIND
This error however would be

is i§ an error. N .
e e widle If since it doesn't find an argu-

trapped and reported by getopts itse
“ment after the option -C.

IWha{ if we execute SS611n this fashion:

I $5S61-a-C

uld be 3 and that of $# would be

“This time the value of OPTIND wo omiins e

2. Moreover, no error would bg reported

135.?—— Unix Shell Programming

—

the word (-c in this case) following the option -a is an argument f,
this option. Though getopts cannot trap such errors (since there i o
rule saying an argument cannot begin with a -) usually these errop
get trapped when' the value of this argument is used in further
processing within the program.

Let us now get back to what we had begun with. We will rewrite the
program for Example 13.2 using getopts. To prevent shuttling be.
tween pages the problem is reproduced below.

Example 13.2: A friend of yours has promised to lcg in ata particular
time. However, he has not kept the promise. You want to contact him
as soon as he logs in. Write a shell script which checks after every
one minute whether your friend has logged in or not. The logname
should be supplied to the shell script at command prompt.

At the command prompt the user may optionally supply a -m option
and a -t interval option. The -m option means whenever the user logs
in we should be so informed not through echo but through mail. The
-tinterval option means check whether the user has logged in every
interval seconds. Write a shell script to a~hieve this.

Here is the program...

#5562 .
Usage! SS62 [-m] [t interval] logname

mailopt=false
interval=60

while getopts mt; choice
do
case $choice in
m) mailopt=true

1) interval=SOPTARG

Tricks of The Trade --353)

\7) echo Improper usage
exit
esac
done

if [$OPT.ND -ne $#]

then
gcho Improper usage

exit
fi

count="expr $# - 1'
shift $count
logname=$1

while true

do
who | grep $logname > /dev/null

if[$?-eq0]
then
if [$mailopt = true]

then)
set ‘'whoam| _ .
echo $logname has logged in | mail $1

else .
echo $logname has logged in

fi

exit
else
sleep $interval
fi
done

I i li
| .
|| (354 Unix Shell Pr ogramming

{| Q ﬁ//;/’ Tricks of The Trade --35!

ut of the shell.

With all tha
[. at has been said abo
would be able to about getopts and its faciliti
¢ unders ities I hope ; to log 0
| should prove helpful in nggfr;hz-pmgmm' The following pop ' Esi;zgtge? key :
stan i = in H s : : .
J - ing it. Is Ez) illhe process which has gone inan infinite loop from another
4a A . X P :
| - ANl option is always a single charact grminal.) o .
. sign, whereas the argument may b fcr preceded by a mipy; (@ fillhe shell itself in which the infinite loop process is work-
| and m: ; ay be of one g ;
i\ &y or may not be preceded by a minu(irﬂri?;m characters ng.
II] 1 . l . . .
: (b) F}il encountering an option getopts stores it | Whikisiag any of these methods we are sending certain signals to
| the end of the getopts *'-‘Ommang ([;ior(:,s itin the variable g Unit 3utsometimes the requirement 18 such (as we u_rould shortly
1¢ variable choice in the seelfst ve Wani some process to ignore these signals. Or better st_ill,
cesses to carry out some other job on receiving

| above program).
we it vme pro
‘) % . -
| . () On encountering an ille e thesgnils. Unix provides
I variable at the end of gat option getopts stores a ‘7’ | Usingthis ommand we can see

the end of the getopts ¢ el oy
.|| { pts command. sigal thit we mentioned above ca
I (d On encountering an arsument to a ; thattey vere initially instructed to
. the variable OP’I"ARG,C‘ 1Nt to an option getopts stores it in somehiing totally unconnected with
hrwdie rap command works.

2 command called trap to achieve this.
to it that the program terminating
n be persuaded to ignore ine task
do. They can also be asked to do
their original duties. Let us see

mbers associated with the ways by
The practice of giving numbers to
ke it easier to handle the large

Figee 132 shows the signal nu
whit wecan terminate a process.
the¥eaisignals is employed to ma

(C‘l B\- ae rau“ IIIE \H]IUL, Uf Om IL\{J—-’ var Iab‘h.o 1S l

(i‘} _rf-e Vi :
/ he value of the vari:
rariable OPTIND s i
£210p18 encounters an opti PTIND is incremented every time
PUon or an argument to an option nuter #f such signals that are available in Unix. These numbers
(8) Ifthe options and argum _ aredko ssed for identifying the signals to be trapped.
a1 2 ruments hav i ot et
Iinal value of {JPTINH__) te _,'.‘}_ Ve t‘Lt.,ll blipt_‘l“C{J correctly the
b4 s either greater than or equal to that of] ‘
Wi ¢ e _i ——— | |
p . fignl | Signal Number ;
‘rapi - e ——— |
ping Slgnals Bxi 1 0 7
It frequent] Crd I ‘
€quently so happens that whi : |
by accident the cm{)r};ol f t]ii]\-u- Wh”.c programming either by design or 5 | £ |
of getting out of such i allsnan infinite loop. There has to b;,‘:“”f i_ Cul 3
i mdehchloopx, This facility is prohvidnglf: i Surkill |9
Ctrl C to kczp mlrtf:nment.l For example, in DOS We.have tLh= }--thu il I s
5 Irom going round in circles. Unix too pL u'_\?"ﬂ L——
Lt roviges

I L8 B
0O SIt t n h
means t [ai:kle su ‘Il uatio s] €5€ are F"llfBz

L

| 356-- Unix Shell Programming

Out of all the methods the Del key is most frequently useq W
terminate an ongoing process. To ensure that the Del key does not

carry out the program termination job we should trap signal Numbey
2 as shown below.

trap " 2

If this command is given at the beginning of a program then whep
this program is executed the Del key cannot terminate the program
in the middle of its work. The command tells Unix that we want to
change the course of action to be employed by the system when it

receives the signal number 2 from the user in the midst of program
execution.

The new job to be performed on receiving the signal is to be givenin
double quotes. Here the double quotes do not enclose anything and
so no alternate action will be performed by Unix on receiving signal
number 2. This signal will thus be just ignored from now on.

We could also have told Unix that we want a listing of files in the

current directory whenever we press Del when the program is execut-
ing. The trap command for this would look like

trap "Is" 2

Now if we hif a Del key in the middle of the program execution the
files in'the current directory would be listed immediately . If we press
the Del key after the program execution is over it would of course
have no effect and the file listing would not be generated.

Instead of Is we may have any other Unix command or even a shell
script. Shown below are a few examples of the trap command.

Command Action

trap "" 2 Does nothing on generation of signal number 2.

—

~ pap "lsiexit” 2

Tricks of The Trade _ﬁ

Displays a long listing on generation of signal

Sk W ,_1“ 2
rap ls number 2.
rwho" 2 Displays a list of users on generation of signal
I number 2.
o vs:who" 2 Displays file listing and current user listing on
frap .'»»

generation of signal number 2.

Displays file listing and term.‘nates the process
on generation of signal number 2.

Executes the shell script S540 on generation of

"§S40" 2
B signal number 2.
trap " 123 Does nothing on generation of signal numbers 1
3 2o0r3.
frap "Is" 123 Displays file listing on generation of signal num-

bers 1, 2 or 3.

From the above examples it is evident that Del is not‘the gqu;?gzii
: iority of the signals mentioned In F1g

that can be trapped. A majority of th s m

13.1 can be trapped. There are some si gnals like signal number 9 t!ltat

cannot be trapped. Hence no matter what trap statement we Wrli¢,

this signal will always stop program execution.

Let us now see a more practical use of the trap command. Consider
the following example:

Example 13.3: Write a shell script which would display a 1.ne?ssage
“Terminal Locked’ on the screen and wait for the user to hit d]ffti;
On receiving a key, it should accept a password and then unloc
terminal if the password matches.

; - i .I-
At many Unix installations the users outnumber lthe tcr‘rimnisca:?to
able. It may so happen that you leave your terminal and m

|358-- Unix Shell Programming

-

your friend’s terminal to get some help, only to find that when you
return somebody has pressed a Ctrl-d at your terminal. As a resul;
you were logged out. Then this person logged in and started working,
To avoid such a situation you may like to lock your terminal before
leaving your terminal. When somebody comes in and tries a Cirl-q
your script should ask for a password and since he may not be
knowing your password his malicious intentions would be defeated.
When you return and supply the correct password the script should
terminate and you should be returned to the dollar prompt. The
following program shows how this can be achieved.

#5563
Usage: SS63

trap™123
banner terminal
banner locked

read key
while true
do
echo “Enter your password: \c*
stty -echo
read pw
stty sane

if ["$pw" = cit]
then
break
else
echo Wrong password. You are a illegal user.
fi
done

To begin with we have trapped signals 1, 2 and 3. Next we have
displayed the message ‘Terminal Locked’ on the screen. The first
read statement receives a keypress and then the control goes in an

Tricks of The Trade --359)

afini i sword logic is fairly simple. What is the
"-il']ﬁm‘:c‘zl;’:;:;ﬁ%ﬁ?e}e\fﬁsﬂe loop? I“i ensures that the execution c_)f
?""ﬁ;e script doesn’t come to an end even if_ an incorrect pe_zsstor(Il :)s;
- supplied. In fact this loop cannot be terminated by pressing ted ’
' Curl d since these signals have been trapped and been instructe

' do nothing.

ctions

Don’t you think instead of ‘Is’ the good old ‘dir’ would have been a
' petter name. Likewise, ‘ren’ and ‘copy’ would have been mor;
~ guitable than a ‘mv’ and a ‘cp’. No problem. We can still have DO
' like commands for their Unix equivaients. Here is how.

#5564
Usage: SS64

dir()
{

}
{cow()
cp $1 $2

}

ren()

mv $1 $2
}

~ Here dir(), copy() and ren() are function names. \.Vhen you t?xccute
 this script it will put these functions in memory (ll}{fi the variables).
* There onwards anytime you want to see the file listing all that you
are required to say at the dollar prompt is

Tricks of The Trade --361]

(360-- Unix Shell Programming

- 1e the variables present in the current shell, the functions available
the current shell can also be seen using the set command. Let us
~ _.ecute the set command after executing SS64 in the current shell.

i
=3

$ dir
dir: not found

What went wrong? Well, didn’t we say that functions are like
variables in one sense. If we initialise variables in shell script, execute
the script and then attempt to echo the variables’ value at the dollar
prompt would the variables be available. Of course not. This so
hfippens as the shell script gets executed in a subshell, and the subshel]
dies the moment the execution of the script is over. Likewise our
functions also died the moment the execution of SS64 was over. Then
what do we do to ensure that the functions don’t die? Simple. Make
Eihe shell script to execute in the current shell. This is how it can be
one.

$. 5864

$ set
HOME=/usr/veena
HUSHLOGIN=FALSE
HZ=100

IFS=

LANG=english_us.ascii
LOGNAME=veena
MAIL=/usr/spool/mail/veena
MAILCHECK=600
OPTIND=1
PATH=/bin:/usr/bin:/usriveena:/bin:.
PS1=%

PS2=>

SHELL=/bin/sh
TERM=ansi

T2=IST-5:30

copy()

cp $1 82

$. 8564

Note the ‘.’ preceding SS64. It ensures that SS64 gets executed in the
current shell. The space between the *.” and SS64 is necessary. If it
is absent the shell considers *.SS64” as a hidden file. Let us now see
whether the *dir’ command works.

$ dir
abe
adobe
bekar
binary
5564
8570
zombi

So here onwards we can see the directory listing using the ‘dir’

command. Is would of course continue to work. Likewise to rename]
NOte that like the variables the functions also have been listed in the

files we can now say,
Adlphabetical order.

$ren oldfile newfile e
Now a few tips about the functions.

Iy 7 e —

@2—- Unix Shell Programming

(a)

(b)

(c)

(d)

(€)

(H

Q

i A ¢
Func mnsexnstonlymtheshellinwhichthey are defineq

=Ine -Tha

!

is, they cannot b
e passe
can be), passed to subshells (whereas the variahj
e

If the functi
nctions ;
larans matclfzréb a;e executed in the current shell th
effective even]j:t ese functions in values ofvariabl‘cs . i
after the execution of the functions i TeMmaip
ver. For

example, if we
» execute fhe f()l 5 z
prompt remains as DB, lowing function, the system

db()
{

}

$db
DB:

PS1=DB:

f s
1 a 5

You can put definiti
: initions of co
-profile mmonly used functi :
file so that they are available whenevelrn;'i::loll‘ls in t(i;f
ogin. Or

You canstore the ;
se functions i
P sinafile:
required in the current shel] file and execute that file when

Executio
n of a function j
R n is faster th
script since whi . than a corres i
1 on 3
le executing a function the she]'lpdoiir?:gt ;}hE"
; : ave

to search the disk
for the progr.
contents of the file into mfmogr;m Rl

Like varic
deeS tore
’ move the definiti -
shell w : elinition of ; :
€ can use the unset command For :xmmtl]on e
' ample,

$ unset dir

Let us
NOw try to execute the dir function

' other legal Unix comman

-

Tricks of The Trade --363

§ dir

ir: not found
tions within a shell script which has
ds and control instructions. For ex-
ample, in the following program we have a function usage()
which can be called from several places in the shell script.

It is possible to have func

5565
usagel()

echo Improper usage
echo The correct usage is S84 [-m] [+

exit

a logname] [] [-1]

)

if ($#%-0t5]
then
usage
fi
some more instructions

if some test
then

usage
fi

some more instructions

(6 If in addition to functions some other Unix commands or
control instructions are present in the shell script then it is
necessary that the functions appear physically before the com-

mands and control instructions.
command inside a function it not only

() If you execute the exit
terminates execution of the function but also the execution of

|36 -- Unix Shell Programming

—]

the shell script that called the function. If you want to termingge

Just the execution of the function you may use the retupy
statement.

() Between a function and shell script of the same name Priority
goes to the function during execution.

Executing Multiple Scripts

We can easily call one script from another. All that we have to do is
mention the name of the script to be called when we want to invoke
it. For example, in the following program having executed the first
two echo statements the shell script 8S67 is executed. Once is

execution is over the control comes back to 8866 which executes the
pwd command and terminates.

8566
Usage: SS66

echo Hello!
echo Today is ‘date’

SS67 # calls the script SS67
pwd

SS67
echo Now the control is in $567
echo Returning back to the calling script...

Let us verify the output.

$ 5566

Hello!

Today is Sat May 4 19:05:55 IST 1996
Now the control is in SS67

echo Returning back to the calling script...

Tricks of The Trade -—363

Jusriaall

ell executes all instructions ﬁrlise::r;gt;t
tically returns the control b_ack to SSﬁ§ (thc{f‘; onsgin =
R o back after executing all the instruc g
'Bﬁtcafi 4 relurﬂ:;;g want to return the contr’()l back tob oo
o er omg condition. This can be aCh.lﬁVEd by usmid
's.aﬁSfac:?Ztcthse point from where the control is to be returned.
stateme

when SS67 is called the sh

and

ell scripts any number of times t‘rml-g
1l one shell script, which m'turn wou
nesting of calls is allowed.

We can call any number of shi
i ca

ithin a script. Also, wemay
:ra]l another shell script, and so on. Such

Exercise

i ; False:
[A] State which of the following statements are True or

3 nly b
(a) Functions once loaded in memory, can be removed only by

logging out.

. d auto-
() When you log in, the functions that you have declared au

matically get loaded into memory.

\ré ai 1 the
() Uﬂctio de '|nCd in the Cufrf:nl shell aré a d!‘ﬂ.blﬂ to a
C F ns f s T v

subshells invoked from the current shell.
(d) Functions, like variables, can be made readonly.

(&) A maximum of 256 functions can be defined in a file.

(c n g 1 KELU‘\C fl.l. te hﬂ lh bpon(llf'l:,
f] I un “0 S et e d Ster [\ n e COITC o Il

scripts.

nthe

unctions s e executed i
{(g) The shell script containing functions should be exec
current shell.

[366-- Unix Shell Programming

(i) The default value of OPTIND is 0
() OPT .
IND and OPTARG are Unix defined variables.

I:k) ']f th i
She

script are correct then the v.
alu
than or equal to that of $#, A e

1 sy
() Ifashell scriptis called from another then the called she]]
sc

should necessarily have a return statement b

(m) The trap command can trap any signal

(} e
n »

then the output i
of this s i
i tatement would not be displayed on the

(o) An i
argument to a option cannot be preceded by a minus si
sign.
() All Unj
Ix commands always have a single character options

(@) Settings i i
dl.tri!'.lggti':;]E::}i::-:,;us!-n 8 stty in a shell script are effective only
il B ution of zhe. script. The original settings : .
oment execution of the script is over o

(r) We can trap a si
P a signal such that on
' oc .
particular shell script gets executed currence of that signal a

[B] Attempt the following:

. :
(a) Ashell Script can receive one or more o

dptioie: ut of the following four

s

Tricks of The Trade --367)

- Qption. pieaning Option Meaning
- CGA mode -V VGA mode
a3 Single player -4 Two players

Write a shell script using getopts which would receive one or
more of these options from the command prompt, check their
validity and display appropriate messages depending on the

option selected.

Write a shell script using getopts which can receive two
options -a and -p. The option -a is either followed by an
argument CGA or VGA, whereas the -p option is followed by
an argument SINGLE or TWO. Your script should report
which options have been used by the user as well as their

validity.

ich works similar to the we command.
This script can receive the options -1, -w and -¢ to indicate
whether number of lines, number of words or number of
characters from the input stream are to be counted. The user
may use any or all of these options. Your script should be
intelligent to identify invalid options and reject them.

Werite a shell script wh

Write a shell script containing a function myed() using which
you would be able to shuttle between directories. The function
should work in the following manner:

3 mycd dir # should cd into dir
$ mycd - # should cd into previous directory

Write a function go() which would change the $ prompt to the
current directory name in which you are working. Thus, if you
are working in the directory fusr/aal0 the prompt should look ’I

like

jusr/aai0

I—

@58—- Unix Shell Programming

—

If you execute the go() function as shown below
Just/aa10> go abe
the prompt should look like
lusr/aa10/abes
(f) Write a function mked() which would create all the directorjeg
present in the path supplied to it as argument and change oyer

to the last directory in this path. Thus,

$ mked d1/d2/d3/dda/ds5

should create the five nested directories and change the present
working directory to d5.

14

Shell Miscellany

Functions of A Shell

Variables Revisited
Exporting Variables _ |
Controlling Variable Assignments

The eval Command
Exercise

[370-- Unix Shell Programming

cl:l k:(\):mflhi[v.:hcn a user logs into the system, Unix starg

f—Jo $ i’ Lal]-.,ld:he]ugmshcilfonhmuxer.ThcIogin\heﬁ

s [I:; aégpi)tri;lhe u;el _for commands and executes them if they

p e ;:10‘1 181t performs several other functions

e |0gg::1 2 E.:or e ‘logm shell lha_t you acquire, depends upon

o ca]iéd we:fanTple. the login shell for the root, grants the

e : peruser) .powcrful and unlimited privileges as
S e shell of an ordinary user, though both have invok

€ same executable file, /bin/sh. i

as we

Funciions of A Shell

The various function
1ous functions that the s PR ——
below. at the shell carries out for us are discussed

(a) Itcanactas a command. For example
ample,

sh

o LR

2:-":;:’31;;\ ;Lhﬂd shell (better known as a sub-shell). You
out of it we must eithe aving gone into the sub-shell, to quit
A forinvokin:-l — l?’PE exit or Curl-d. There is a better
b fucl"f_‘_‘h‘f‘h'-’“:“‘r: know thatevery shell script
a sub-shell. Also, bef otherwise mentioned) gets executed in

s . Also, before executing a script we have to use

(b)

(c)

(d)

Shell Miscellany --371|

chmod to grant ourselves an execute permission to it. We can
avoid using chmod by executing the script as follows:

$sh S540

Here shi is acting as a command and SS40 as an argument for
this command. Now the shell reads each command present in
$540 and exccutes it in the sub-shell. Does this mean that we
can execute any user’s shell scriptusing the sh command? Yes
and no. Yes, if you have a read permission-to that script. And
no if you do not have a read permission. Not only this, you
cannot execute even your shell seript using sh if you do not
have a read permission to it.

In the last chapter we had seen how to trace the flow of control
in a shell script using the set -vx command. Likewise we can
say,

$sh -vx 5S40

and obtain the same effect.

It acts as a command interpreter.

When we are executing any command at the dollar prompt the

shell first interprets our command and then transfers the contro!
to the appropriate command file present on the disk.

It can act as a programming language.
We very well know this feature of the shell. It provides vari-
ables. control instructions, functions etc. which help in writing

scripts to perform many complicated tasks.

It permits customization of user’s environment.

[372-- Unix Shell Programming

Shell Miscellany --373)

Whenever we log in a file called .profile automatically g
executed. This file is similar to the AUTOEXEC.BAT fije in
DOS. This file can contain commands, variables, contro] jp.
structions etc. Using these features we can customise our
working environment as per our requirements. For example
we can change our prompt, decide what messagesfinformatim;
should be displayed when we log in, start execution of Some
processes in the background, schedule tasks for future execy.
tion, set up values of variables like MAILCHECK, PATH et

Note that whenever piping or redirection is used in conjunctien -
with a control instruction as shown above this instruction gets
executed in a sub-shell. Thus, if some variables are set up in
the loop, they won’t be available in the parent shell when the
execution of the loop gets over and the control returns to the

parent shell.

It performs variable, filename and command substitution.

(e) Itprovides redirection and piping facilities. Consider the following command:

option="-"
a='ls $option

We are well familiar with these facilities. So far we have seen
these facilities being used with standard Unix commands and
filters. However we can use them even with control instruc-

tions as shown below, Here, we are using all the three substitutions mentioned above.

Firstly, the variable substitution is done, whereby $option is

ot myfle | replaced by the value of the variable option. Next the filename
while read line substitution is done during which a long listing of all files
® beginning with the character ‘f* is obtained. Lastly, the com-

mand substitution is done ih which the command present
within the accent graves is replaced by the output of the
command, in this case the long listing of files beginning with
the character ‘f".

grep camel $line
~done

Here the output of cat myfile is being piped into the while
loop. The while loop reads each line into the variable line and
then grep searches and echoes those lines which contain the -~
word ‘camel” in them. ables Revisited

‘¢ have been using variables since our first shell script. Still some
1all but important details have been left out. Let us try to cover them

re. Let us begin with exporting variables.

Likewise we can redirect the outputof a for loop to some file
as shown below:’

for var in merry had a little lamp
do porting Variables
echo $var

done > newfile default, any variable is available only in the shell in which itis

ined. The following sequence of commands illustrates this.

$a=20

[374-- Unix Shell Programming ’

$sh
$echo $a

$ exit
$ echo $a
20

After defining a, we invoked a sub-shell. This is achieved by saying
sh at the prompt. We shall stay in this sub-shell until we leave it cither
by saying exit or ctrl d.

Since awas defined in the parent shell. it no longer holds any identity
in the sub-shell. Having left the sub-shell, we can ensure that a is very
much alive here by echoing it’s value.

If we want variables to be available to all sub-shells we must export
them from the current shell.

$exporta

Having done this, now when we invoke a sub-shell we obtain the
same value for a as in the parent shell.

Try invoking sub-shells, and their sub-shells and you will always find
yourself in the same environment - the dollar prompt is same, so is
the secondary prompt. You'll find that values of the variables HOME
and PATH too are always identical. Guess how is this achieved?
'l;lhe"se variables are exported, hence are made available to all sub-
shells.

To obtain a list of al] exported variables, we simply say export at the
shell prompt. ,

$ export

“ Allvariables which have been ex ported are displayed aiong with theil

values. Note that this list contains variables that have been explicitly _

Shell Miscellany --375]

| ported by the current shell and doesn’t contain those that may have

en inherited from the parent shell.

ote the-following points:

A variable once exported from the parent shell becomes avail-
able to the sub-shell or any other shells launched from this
sub-shell. This so happens because whenever a sub-shell is
executed, the list of exported variables get copied to the sub-
shell, while the local (unexported) variables in parent shell do
not.

» Once a variable is exported it remains exported to all sub-shells

that are subsequently executed.

We can first create the variable and then exportitor first export
it and then create it. Thus the effect of

exportabe
a=100 b=200 ¢=300

is same as

a=100 b=200 ¢=300
exportabc

A variable once exported remains exported. If we dre to unex-
port it we have to first unset it and then recreate it.

A variable can be exported from the parent shell to its subshell,
but never the other way round. Thus if we create a variable a
ina sub-shell and then export it, it would not become available
to the parent shell.

If the sub-shell changes the value of an exported variables the
Value of this variable in the parent shell remains unchanged

(376-- Unix Shell Programming

e

since the sub-shell always works only on the copy of the
variable in the parent shell.

(g) If an exported variable is modified in a sub-shell then to make
this modified value available to a sub-sub-shell we must once
again export the variable in the sub-shell.

Controlling Variable Assignments

The shell provides several ways for assigning values to variables
under varying conditions. The action taken depends upon whether
the variable is set or not, or whether the variable is null or not. The
assignment is done using operators. These operators are more con-
venient than testing for the condition using an if statement.

Let’s look at the first form of assignment. It looks like this:

${var-val)

If the variable var exists, then this expression has the value of the
variable. If the variable doesn’t exist (or is a null string), then the
expression has the value val.

For example, look at the following sample code:

$ mydir=/usr/aal0
$ echo ${mydir-/usr/aa12)
lusr/aal0

First, we have defined the mydir variable to have a value “/usr/aal0’-
Then, when we echoed the expression ${mydir-/usr/aa12} we got
‘/ust/anl0’ the value of mydir. Had mydir not been defined,
‘fusr/aal2’ would have been echoed.

Let’s now iook at another example. Suppose there is no variable
called workingdir,

Shell Miscellany --377)

$ echo ${workingdir-/usrtemp/aag)
fusrftemp/aa3
$ echo $workingdir

$

since workingdir was not existing the expression echoed
n:lempiaﬁ‘. Look at the next echo statement carefu]ly. It con-
"s that the value ‘fusr/temp/aal3’ didn’t get assigned to the

\variable workingdir. This variable still remains undefined.

t would be the practical use of this faci!ity? We can use it whe_!;”
want to use some default value for a variable and we‘wam that 1<:1
variable is defined then this default value should be 1gnored_an
new value be used. This is exemplified by the following script.

#5568
option=${1--la}
Is $option

this script is executed without any argument t‘hen the variable il
Id stand undefined hence the variable option would tal::e the
e -la and these options would be used by .the foklm{vmg !s)
ommand. However, if an argument is supplied while excenting this
Pt, $1 would stand defined hence the value of $1 would be
gned to the variable option and this value would be used vy the

ommand.

ere are three more conditional expressions which use braces;
Stead of -, they use =, +, and ?.

he ${var=val} form works like the last expression except that if the
iable is undefined, ‘val’ is assigned to the variable var. For

Xample,

$ echo ${workingdir=/usrtemp/aal3}
lust/temp/aal3

378-- Unix Sh

ell Pro Lranuning

| $ echo $workingdir

1 lusr'temp/aal3

i

; If the variable i, already defined, it is of course left uncha

that with this form we are not

T e - N .
hus the following statement would be invalid.

! ${1=-la)

A third variation is the ex
if the vari: is i
¢ variable is defined, otherwise it has no value,

B $ tempfile=sundries

$ echo ${tempfile +trash)
trash

.i $ echo ${newfile+trash)
! $
The fourth variation is ${var?

[a g o 1

hen the message is printed, and the shell is exited
Forex: » T

or example, consider the following script.

#5569
Usage: SS69 (filename]

.;f file=§1
cat ${file? File does not exist}
echo Through with the file!

Let's run this first without supplying the filename

$5569
File does not exist
$

: nged, :
allowed to use positional -

pression ${var+val}. It has the valye ‘val'

e ‘ A message}. If the variabl '
l efined, it works like the + form; but if the variable is nmcd:;;ci

Shell Miscellany ——3791

o argument was supplied the variable file was undefined,
", message was printed, and the script was terminated. This
confirmed by the fact that the echo statement after the cat

{ get executed.

Jow execute the script by supplying the filename:

5569 newfile

~ Rapping on the window...

" Flying through the night...
Through with the file!

at file was defined, the contents of newfile were displayed
with the message “Through with the file’. This form of condi-
sxpression is useful when you put error checking into a script.
you halt execution of a script if things start going wrong, as
1 we ran SS69 with file undefined.

s that if you omit the message after the question mark, the system
orint a default message and terminate the script.

es braces are used simply to enclose the variable name, as in
. Ordinarily, ${var} is the same as $var. However, the
osed form can be used effectively to combine the value of a
Je with other characters. This is of help if wish to construct
. which contain one or more variable values. The following

mple would clarify this statement.

$ opt=noecho
$ echo Soptwas

$

 echoes a blank line since the shell belicves that optwas IS an
efined variable, However, the result would be different if we
lose the variable within a pair of braces.

| 380-- Unix Shell Programming Q

echo ${varjwas
noechowas

$

The moment we use braces the shell now recognizes the embeddeq
variable Thus with braces we are able to construct a new word using
the variable’s value.

Note that we don’t have to use the braces for a construction like

$ echo $file.c
noname.c

$

The reason is that the period is not a legal character for variable
names, so the shell knows that the variable name must end before the
period. N

The following figure summarises all the operators that we have used
above.

Expression ' Meaning

Has parameter value if any. If not has
the value word.

${parameter=word) Has Eammeter value if any. Otherwise
has the value word and sets parameter

${parameter-word)

to word.
${parameter+word) If parameter is set it is substituted by
word, otherwise substitutes nothing.
${parameter?message} Has parameter’s value if any, otherwise

substitutes message and exits from
shell.

Figure 14.1

Shell Miscellany --381|

eval Command

t do you think would be the output of the following code
gmenl:

#8870

Usage: SS70
y=X

=y

echo $$z

us try to execute it.

$ 8870
1342z

output of the echo statement is surprising. It seems it should have
rinted “x’. since $z should have yielded ‘y’ and $y shou!d have
ded ‘x”. But that doesn’t happen since the sequence $3 gives the

of current shell. This PID gets printed followed by the character

If we really wish to get the output as ‘x” then we Can do so using the
eval command as shown below.

#8871

Usage: SST1
y=x

=y

eval echo \$$z

‘Let us now execute it.

$ Ss71
X

|382-- Unix Shell Programming Q

The e‘valvcommand evaluates the command line to complete any ¢

substitutions necessary and then execu'es the command Tyh}"f-]?”
needed when a single pass of shell substitution does not con;ple e
the needed expansions. In our program when the statement S

eval echo \$$z

is scanned for the first time $z is replaced by y and then the commgpg

echo 3y

is exec.uled; This results in *x" being echoed to the screen Note that
the ‘\ in this statement is necessary. When the statement i‘\ scanne‘:j
the \. ensures that the first $ is preserved on the command line such
that it can later be used to extract the value the variable y. :

;I‘hu; the eval command tells shell to performs all its substitutions on
Lva S arguments and then to execute the result as if it were a standard
shell command line.

FO{' th:_: following statements can you find out how to echo the value
w' using the variable z?

X=W
y=x
z=y

'l:'hc_ev?l command is useful in shell scans that build up command

line inside variables, If the variable contains any characters that must

be seen _hy the shell directly on the command line i.e. not as a result

c—f substitution then eval can be useful. 3 | & < > and quotes must

;llireclil};]flappeur on the command line to have any special meaning (@
e shell.

Here are a few more examples of usage of eval,

(@) Consider the following program.

Shell Miscellany 4-.1‘33'

#8872
Usage: SS72

output="myfile > yourfile"
cat $output

If we execute this script it reports that the file > does not exist.
This is because I/O redirection is done before variable substitu-
tion. So once the variable has been substituted the shell cannot
do redirection and thus attempts to cat three files on the screen:
myfile, > and yourfile. Naturally, the shell doesn’t find the file
> in the current directory and hence reports an error. This
problem can be overcome using the eval statement as shown

below.
eval cat Soutput

Suppose we execute the following commands:

$ pipe="'

$ls $pipe we -l
| not found

we not found

-l not found

The errors result since input/output redirection and piping is
done before variable substitution. Thus, when the shell scans
the command line and doesn’t’ find any input/output redirec-
tion or piping symbols it goes ahead with the variable
substitution. Therefore, |, we and -1 are passed to Is as argu-
ments hence the error. A solution to this situation is usage of
eval as shown below:

$ pipe='I'
$ eval Is $pipe we -

Shell Miscellany --385)

[384-- Unix Shell Programming Q

(c)

(d)

. o o I in two different executions.
The first time the shell scans the command line it su bSlilutes Let us see what this script SURpRES drit

‘I as value of the variable pipe. By the time substitutiong o
eval’s arguments are over and it’s time to execute the cop,.

mand, it has become

$ 5573 fast faster fastest

fastest
$ SS73 fast faster fastest fassstessttt

Islwe-| fassstessttt

the script is able to properly report thet};t;t

{ the command line. During executi }
red and the \ is removed by the shel

from the statement, Also. this time $# gives tptal numbercaf
b e . In the next scan it becomes $3 during first exe >

?“rgu:];;g.ﬁ ;uri:g the next. This value is then echoed to the
ion

screen.

When this command is executed by the shell the output of | is
properly piped to we which then reports the number of lineg,

As you can see,
argument provided al
first time the first $ is 1200

Consider the following command:
cat<ch*17

As we know, I/O redirection is done before filename substitu-
tion. Hence, before the shell can replace ch*17 with files
matching this skeleton, it would attempt to redirect standard
input to ch*17. And since such a file does not exist in the

i ari ing another
al is useful in assigning value to a variable using
ev
variable as shown bel0OW-

currentdirectory an error results. Again usin g eval would solve # 8874
the problem. # Usage: SS74
eval cat\< ch*17 ¥=100
ptr=x
eval causes this command to be evaluated by the shell twice; eval $ptr=50

once when eval is executed and once when the result of eval echo $x

is execnted. -
Let us execute this script

The first evaluation replaces ch*17 with chapter17 and
removes the \, then the shell executes the resulting command
cat chapter17.

$ 8574
50

. 3 is d
I statement used in this script the valu‘e e S’:‘Ti
In the eval hat ptr points to, i.e. in the variable X. &
in the variable that p laced by the new value (50).

s 00) of x is rep :
gl (100 ol et b

The following script shows how to get to the last argument
supplied to the script using eval.

#8873
Usage: 8873 [arg1 arg2 arg3]
eval echo \$$#

!386-- Unix Shell fragmmming
= ______-_—__—-—_.___

Exercise
[A] State whether the following Statements are True or False:
(a) An cqurted variable cannot be unset.
(b) A readonly variable cannot be exported.

(¢) If value of the €xported variable js changed in a sub-she]| the
changed value becomes available 1o the parent shel] automat-

(d) If value of the exported variable is changed in a sub-shell the

(¢) If output of a command is piped to a while loop the loop is
€xecuted in a sub-shel].

() If output of a while loop is redirected to a file then the loop
8ets executed in a sub-shel],

(g) While executing a script the shell acts as a compiler.

(h) The shel performs command substitution before filename
substitution,

() Onloggi ng in the shell automatically executes the .profile file
if it is present in your home directory, q

[B] What would be the output of the following programs:

(@ b=a
c=b
d=c
echo $$%c
eval echo $$$c

Shell Miscellany --387)

eval echo \$$$c

eval echo \$\$$c

eval echo \$\$\$c

~ eval eval echo \$\$\$c

gval eval eval echo \$\$\$c

eval eval eval echo W$$3c

echo Hello
eval echo Hello

~ eval eval echo Hello

i=0

while [$i-le 10]
do

echo $i
i="expr $i + 1°

- done > myfile

‘echo $i

name=Sanjay

~ sumame=Khare

echo ${name-Rahul)

~ echo ${middlename-Rahu)

echo ${surname+Arora}

- echo ${newname+Arora)

) name=Sanjay

- Surmame=Khare

- echo ${name=Rahul}

~ echo ${middlename+Rahul}

echo ${sumname-Arora)

M=thanks
echo ${n?Not defined} is the value sto
Echo ${m?Not defined} is the valus sto

System Ad-
ministration

Adding and Removing Users
Some More Daily Administration
Starting Up The System
Shutting The System Down
Disk Management
Formatting A Disk
Making A File System
Mounting A File System
Unmounting A File System
Using A Raw Disk
Monitoring System Usage
Ensuring System Security
Providing Assistance to Users -
Exercise

System Administration --391]

]390-- Unix Shell Proér(mrmmé 3

3 '-Discussing the sysadmsh shell is bcyonq lrhc sc;r:np—el 01’1 t::suﬁ?(;:__
'..,Likewise, discussing each and every admlmstra{nf}‘n 00 S
" quire a separate text devoted only to syStem‘adm:nlb‘tratmpi er.

' :q uld discuss only those tools which can be used in writing some
3 'wztem administration shell scripts. Nevertheless let us f?md outrwhere
B administrator’s tools reside. Figure 15.1 showsthcfilrccgonesthat
i f:!:]tain files and commands that affect system administration.

$ we harped upon several times in earlier chapters, System
Administratc_}r is Ilhe ultim.ate authority in a Unix environ- - '_Directol')' Description
ment. But with this authority and power comes the respon- ! :
MDY to govern and care, To ajd the genuine users in need of help ' fetc Administrative and ppcralijnnal cmg?;?“'is reside
and at the same time protect the system and the users from illega m biocs, 45 Wl SIS Ssonp
- Users. 50 system administration is about setting standards ang main- | fusr/adm Accounting directories d
4 taining them. It’s not as €asy as it may sound. After all the system Jusr/lib Operational logs, cron tables, comrmands
| administrator has to live up to the expectations of al] the users of the Jusr/lib/acet Accounting commands
System. The various jobs that a system administrator has to carry out fusr/lib/uucp | uucp commands
can be classified ag shown below: lusr/news Local news directory
Just/pub Public directories
(@) Add, change, and delete users, software and hardware. Just/tmp Temporary directories
(b) Carry out routine maintenance activities like backup files and
Testore them on user's request,
(€) Monitor System usage as related to disk and CPU. | & Figure 15.1 ‘
| (d) Maintain services like mail and uucp. o .
|I (€} Ensure system securi ty. | & The major files and commands of concern to the system administrator
. () Provide assistance 1o users when required,

~ are shown in Figure 15.2. Most of these files are ASCII. data f";le;
" Which are used by system administration tools sl'}own in Frgljsrc 1 .d.
B Ag you can note most of the commands required for system ad-
i ~ inistration reside in the /etc directory.
(@) Using Sysadmsh, the sysiem administration shell. '
(b) Using the varioys s
the system,

(c) Writing small she)] scripts which in turn use the tools men-
tioned in (b).

The system administrator can carry out these jobs in three ways:

ystem administration tools that come with

[392-- Unix Shell Programming

File Description]
Jete/bre Executed at startup by init
Jetc/checklist Default file systems checked by fsck
lete/group Listing of group IDs and passwords
{2tc/inittab Event list for init
letc/motd Message of the day
fete/mntiab List of mounted file systems
fete/passwd Login and password file
fete/profile Custom shell script executed by init
letc/re Startup shell script executed by init
fetc/termeap Terminal capabilities database
fete/wimp Log of login processes
lusr/adm/pacet Accounting log
fustflib/eron/log Log of eron processing
fust/spool/cron/crontabs | Event list for cron
B e e ——

System Administration --393)

:.-_--"__'_
Directory

Description

|
| fetc/config

| fetc/crash

" | fetc/cron
fbin/format
fetc/fsck

| fetc/fsdb

|| fetc/inil

| etc/killall
Jetc/labelit

| fete/mkfs

| Jetc/mknod

| | /etc/mount
[etc/shutdown
[etc/fumount
fetc/volcopy

Configures a Unix system

Crashes the system

Executes commands infust/lib/crontab
Formats a disk

Checks a file sytem

Debugs file system errors

Initialises the system

Kills all processes

Labels a disk or tape volume

Makes a file system

Makes a special file node (e.g., named pipes)

Mounts a file system

Gracefully shuts the system down
Unmounts a file system
Volume-to-volume file system copy

Figure 15.2

fetc/wall Sends a message to all users

ng and Removing Users

y-to-day work is where Shell truly shines as an aid for productive
stem administration. Almosteveryday the administrator is required
‘add or delete a user or group from the system. Adding a user
quires entries to be made in the passwd and group files. Also,
rectories and files need to be created and environment variables to
3 stablished. The following shell script shows how this can be
achieved,

8575
Usage: SS75

@ -= Unix Shell Programming

shell script to open an account for auser

get last user no
usernum="1ail -1 /etc/passwd | cut -f3 -g"

Increment user no
usernum="expr $usernum + 1*

receive relevant information

echo "Which group will user belong to?"

read groupname

groupnum='grep $groupname /etc/group | A3 d""
echo "User's login name?" B
read logname |
echo "User's name and phone?*

read username

add the information to the passwd file

echo "$logname:x:$usemum:$gmupnum:$usemamejusn’$fog-

name:bin/sh* >> Jetc/passwd

create login and other directories
homedir=/usr/$logname

mkdir $homedir

mkdir $homedir/bin

mkdir $homedir/doc

mkdir $homedir/src

add .p;oﬁle file to user's account
cp /ust/lib/mkuser/sh/orofile /$homedir/ profile

give proper permissions to direstori i
Clories and files

chmod 755 $homedir $homedir/*

chmod 777 $homedir/src

chmod 700 $homedir/,profile

—3

System Administration --395|

make all files and directories owned by user and group
chown $logname $homedir $homedir/* $homedir/.profile
charp $groupname $homedir $homedir’* $homedir/.profile

The above shell script meets the basic needs for creating a new
punt. If the user requires more hooks into the additional subsys-
ems of Unix like Ip, mail etc. - the shell seript will have to be
nhanced to establish the environment variables required to make the
1’s entrance into the system as comfortable as possible.

shell script to add a group to the /ete/group file would be similar
is script and can be written with a few modifications to this seript.
ewise, we can write a shell script to delete the user. To do this all
erences to the user must be removed from the system. Try your
hand at writing these two shell scripts.

e More Daily Administration

In Chapter 7 we had seen how the cron daemon can carry out jobs
assigned to it at predetermined regular intervals. It reads the
r/lib/crontab file and executes the commands found there accord-
ng to the time specifications. cron gives the system administrator a
handy way of being everywhere, doing everything, without having_
10 be on the system.

To remind you each entry in the crontab file has six fields. The first
e fields tell cron when to execute the command: minute (0-59),
r (0-23), day (1-31), month (1-12), and day of the week (0-6,
day = 0). To match a number of different times or days, a field
Mmay contain comma-separated numbers. To match any time or day,
4n asterisk (*) can be used in any of these fields. The sixth field
ntains the command to be executed.

Ahe system administrator may use this facility to print the date and
tme on the console every 30 minutes and to syne the super block
€very 10 minutes as shown below:

[396-- Unix Shell Programming j

0,50 **** date > /deviconsole
0,10,20,30,40,50 * * ** jbin/sync > /devinull

The system administrator should use eron to handle as many routine
tasks as possible. These include activities such as monitoring disk
usage, cleaning up temporary files, keeping system logs to a
reasonable size, printing accounting reports, administering subsys-
tems such as Ip, or any related administrative task.

Starting Up The System

Starting of the system is handled by a file /ete/init. It uses the file
/ete/inittab during each of its startup states like mounting of disks or
bringing the terminal devices (/dev/tty) on line. During startup a shell
script called /ete/re gets executed. It checks all the file systems for
errors by calling a command called fsck (file system check), mounts
the file system, and starts process accounting, cron, Ip, and anything
else that should be available when users enter the system.

Since /ete/re is a shell script, it can be modified to ensure that the
system comes up cleanly, ready for users. This shell script should
evolve over a period of time to simplify system operation.

Shutting The System Down

Unlike DOS, it is of utmost important to shutdown the system
systematically. Rash actions such as halting the machine from the
console before all commands are killed, file system unmounted,
accounting stopped, subsystems stopped, and so on, can generate all
kinds of problems when you put on the system next time,

Unix provides a shell script called shutdown to close down the
system systematically. /ete/shutdown can be modified by the sychnl
administrator to improve system reliability. Presented below 1§ @
sample script which contains the basic ingredients of the shutdown
command.

C System Administration --39 7|

8576
Usage: 8S76 [-y] [-g [hh]:mm)] -f file
shell script to shutdown the system systematically

check whether you have an execute permission
if [-x fusr/bin/id |
then

var="id'

echo $var | grep uid=0 > /dev/null

it[$7 -ne 0]
then
echo Only root can run this shell script
exit
fi
fi

initialise default values for variables
grace=600

askconfirmation=no

hr:O

min=10

filesupplied=no

process command line options, if any
while getopts yg:f: choice
do

case $choice in
-g) time=$0PTARG
echo $time | grep " > /dev/null

if time supplied in hh:mm format
if[§?-eq0]
then
hr="echo $OPTARG | cut -d: -f1'
min="echo $OPTARG | cut -d: -f2'

else

(398 Unix Shell Programming

System Admin istration --395|

hr=0
min=$time
fi

check validity of hours

if [$hr -1t 0 -0 $hr gt 72

then
echo grace period should be <= 72 hours
exit

fi

check validity of minutes

if [$min -1t 0 -0 $min -gt 59|

then
echo value of min should be between 0-59
exit

fi

-f) filesupplied=yes
file=$OPTARG

"

+y) askconfirmation=yes

?) echo Improper usage
echo The correct usage is
echo Usage: SS76 [-y] [-g [hh]:mm)] -f file
esac
done

grace="expr $hr * 3600 + $min * 60'

continue till grace pericd is greater than 60 seconds
while [$grace -gt 60

do
left='who | we -I

if more than one user has logged in right now
if [Sleft-gt 1]
then
#1f a filename has been supplied then wall its contents
if [$filesupplied = yes)
then
cat $file | /etc/wall
else
otherwise wall the following message

echo The system will be shut in $hr hours and $min minutes\n

Please log off before that | /etc/wall
fi

adjust the grace period such that the shutdown warning is
displayed every hour or every fifteen minutes if the grace
period is less than an hour,

if [$hr-gt0]
then
hr="expr $hr - 1*
grace="expr $grace - 3600'
sleep 3600
else
it[$min -ge 15]
then
min="expr $min - 15'
grace='"expr $grace - 900'

remain idle for next 15 minutes
sleep 900
else
if [$min -gt 0]
then
min="expr $min - 1*

i_4()0—- Unix Shell Programming

—

System Administration --401]

grace='"expr $grace - 60'

remain idle for next 1 minute
sleep 60
fi
fi
fi
fi
done

1 minute left for shutdown

echo Shutdown has started...
date

echo
sync
cd/

trap ™ 115
trap "exit* 2

if confirmation has been requested

if [$askconfirmation = yes]

then
echo "Do you really want to shutdown the system? y/n *
read ans

else
ans=y

if

if[$ans =y -0 $ans = Y]

then
echo The system will be shut down NOW!
fetc/init 0

else

echo False Alarm!! The system will not be brought down
echo Shut Down aborted!!

exit
fi

program is self-explanatory to a major extent. The command line
gptions are processed using the getopts command. Then within aloop
 ashutdown message is sent to all logged in users every hour and every
5 minutes during the last hour. Once this time period expires the
stem is shut down using /etc/init 0 after receiving a final confir-
on.

necan think of improving the above program by including one more
feature. Instead of straightaway shutting down the system on expira-
tion of the grace period the system can be first placed in a single-user
-mode, then file systems can be checked, then it should ask whether
sk or tape backups are to be made, execute the necessary commands
r taking backups and then finally halt the system entirely.

e were unable to incorporate these features since so far we have
not learnt how to backup the files, how to check the file systems etc.
This in fact is going to be our next topic of discussion.

k Management

ere are two types of backups that are frequently done in a typical
environment. The first type is done by the system administrator
hich involves backing up all system and user files. Such backups
taken on mass storage devices like magnetic tapes and fixed disks.
vidual users can take backup of their work on cheaper storage
diums like floppies of different capacities. To take either kind of
kups Unix provides a command called tar, a short-form for tape
archive,

Before we can archive (backup) our files on the floppy we have to
format it. Unix understands a wide variety of floppy disks though the
L2MB and 1.44 MB varieties are the ones which are more commonly
Used today. Remember that the floppy disk formats in Unix are not

|402-- Unix .IS'he[l Progrwnmfng

the same as il} other operating systems such as MS-DOS, All digks
used on a [_Imx machine, must be formatted under Unix only. oy,
formatted, it can be used in two ways in Unix: y

(a) _erc can create a file system on the floppy disk and use it as if
it is a dln_actory on the hard disk. To do this we have to do two
things. Firstly, we have to establish a file system on it using
thetemkfs command. Secondly, we have to mount this file
System at a specific place (called mount point on t
system of our hard disk. o e

(b) We access thle floppy disk using the ‘raw access’ method which
doesn’t require creation of a file system on he floppy. This
‘Ijnl;t-.thod Is generally used during backing-up or archiving of

ata.

Irrespective of which method we decide to i
. use we will have to first
format the disk .Let us see how this can be done. ¢

Formatting A Disk

Tounderstand and interface with the different types of disks there are
several files present in the /dev directory. These files are named as
per the capacity and type of disks they intend to interact with. For
example, for a 1.2 MB, double sided, 96 tracks per inch floppy disk
lthere is a file called rfd096ds15. Here ‘rfd’ stands for raw floppy
ci_lsk, O for floppy in drive A, 96 for tracks per inch, ‘ds’ for double
sided and 15 for number of sectors per track. Given below are three
more sample names:

(a) rde-l 96ds15 - same as above, except indicating floppy in drive

(b) rflde:.lSdsQ - 48 tracks per inch, 9 sectors per track raw floppy
disk in drive A. i.e. a 360 KB disk.

(c) rfd0[35c_1518 = 135 tracks per inch, 18 sectors per track ra'
floppy disk in drive B. i.e. a 1.44 MB disk.

—

System Administration --403|

format a floppy disk, we just have to say,
- ¢ format /dev/rid096ds15

urally, if we are to format the 1.44 MB floppy disk present in drive
ve would say

$ format /dev/rid1135ds18

us depending on the type of format desired and the capacity of the
ppy disk the device name following the format command would

nge.

times we can even skip the device name. In such an event the
ormat command reads the device value specified in the
/default/format file. In our case this file contained the following

ues:

$ cat /etc/default/format

@(#) format96 23.1 91/08/29
#

#

VERIFY=Y
DEVICE=/dev/fd096ds15

$

s indicates that if we issue the format command without mention-
the device name it would format the disk in drive A as if itis a
MB (96 tpi) disk. This is shown below:

$ format

Insert floppy in drive; press <Return> when ready
formatting /dev/rfd096ds15 ...

track 79 head 1

done

verifying /dev/rfd096ds15 ...

track 79

\404-- Unix Shell Programming

—

done
$

As can be seen once the formatting was over, Unix went ahead and
verified each formatted track since the VERIFY flag was set to Y i
/etc/default/format, If during verification any errors in formatrinn
are_detcctt.:d then they are appropriately reported. We can also use ;hﬁ
verify option at command line as

$ format -v /dev/rid096ds15

As menlior{ed earlier, once formatted we can use the floppy as a
backup device, or create a file system on it, mount it in the uriginal
file system and use it as a directory. For the present let us follow the

second path. Later on we would find out how to use it for taking
backups.

Makinug A File System

A file system can be created on a formatted floppy using the mkfs
command. Unlike format this command can only be used by the
superuser of the system. So you’ll have to approach him with your
floppy disk and request him to create a file system on it and then
mount it. This is what he is likely to do...

letc/mids /dev/rfd096ds15 2400:600
mids: default type (AFS) used

bytes per logical block = 1024

total logical blocks = 1200

total inodes = 608

gap (physical blocks) = 7

cylinder size (physical blocks) = 400
cluster size = 16

mkfs: Available blocks = 1157

#

System Administration --405|

Note that the command has been executes at the # prompt rather than
e $ prompt since it is the # prompt at which the system administrator
‘ysually works. As can be seen mkfs takes a device name as its
reument and creates a file system on that device. By default it creates
p cer File System on our disk This is the default file system. We
can use mkfs to create other types of file systems too. Note the second
parameter supplied to mkfs 2400:600.

'_‘ngc 2400 stands for the numbers of 512 KB blocks that may be
. fjrcsent on the disk. For a 1.2 MB disk the number of blocks can be

calculated as,

tracks/side * number of sides * sectors/track * bytes/sector / 512
=80"2*15"512/5612
= 2400

~ Mentioning fewer blocks than 2400 for a 1.2 MB disk would result
_into wasted disk space and mentioning more than 2400 would cause
~ afatal error since mkfs would not be able to find the specified number
~ of blocks on the floppy disk.

- The 600 following the colon indicates the number of inodes that we
- want to create in the file system. Usually this number is one fourth
of the number of blocks.

- We know that for each file that we create one inode gets consumed.

- Hence if we are expecting a lot of small sized files to be created on

:?_h_is file system we should give a larger inode count. If we don’t then

- We may end up with a situation where there are free blocks available
On the file system bat all the inodes have been consumed.

Vice versa if we expect to create small number of large sized files on
- the file system then we should give a smaller inode count. This would
- avoid wasting of disk space to accommodate inode entries which may
never get used.

|406-- Unix Shell Pragmmming

If we want we can s
the system to decid

pecify only the number of b

ocks and leave j; for
e the optimum inode count a

s shown below

#letc/mkfs /dev/id096ds15 2400
mkds: default type (AFS) used

bytes per logical block = 1024

total logical blocks = 1200

total inodes = 304

gap (physical blocks) = 7

cylinder size (physical blocks) = 400
cluster size = 16

mkfs: Available blocks = 1176

Since we did not s
304 inodes for oy

pecify the number of inod
r file system of 2400 bloc

es the system calculated

creating a file system if an
promptly erased. Usuall
e only once. There onwards the fi

y data exists on the floppy disk, it
g and creating a file system
le system is only mounted

Mounting A File System

The file system built
file system on the

inked into the existing
mount command. Once
es in the new file system
n a file system.

on the floppy disk can be |
hard disk using the
mounted we can create files and directori
and treat it as a normal directory existing i

Like all file systems, each mounted file ‘system too, has a root
directory and all jts directories fan out from the root. When we are
ystem, we are simply attaching its root directory t0
in the existing file system, This point of attachment
nt point’ for that file system. The mount point of
™M, must always be specified as a path from the root

mounting a file s
a particular point
is called the ‘moy
any new filz syste

System Administration --407|

ory of the existing file system. Unix provides a default mount
' nt called /mnt. Let us mount our file system at this mount point,

/etc/mount /dev/fd096ds15 /mnt

te that while mentioning the device we have mentioned only ‘fd’
lace of the normal ‘rfd’. This is because once the file system has
n created on the disk it no longer remains a ‘raw’ floppy disk.

ount point /mnt is an empty directory in the root (/) d?rei:tory,
1 root (superuser) as its owner. All users have the permission to

ccess this directory,

ether the floppy disk file system has been successfully mounted
not can be verified in two ways:

cd into the /mnt directory and create a few files and directories.
If you are successful then these files and directories would be
created on the floppy disk.

Run the mount command without any argument and it would
list out all currently mounted file systems.

mount

/ on /dev/root read/write on Wed May 01 12:04:42 1996

/mnt on /dev/fd096ds15 read/write on Wed May 01 17:54:22 1996
ft

output shows the root nle system and tne one that we mounted
the /mnt mount point.

Fwe want we can mount a file system at a mount point, other thus.
efault mount point as shown below:

letc/mount /dev/id096ds15 usr/fdd

System Administration --409|

|408-- Unix Shell Programming Q

This command will mount the file system on the flopp
fusr/fdd mount point assuming that the System Adminis
already created the directory /usr/fdd. This can again be
by calling mount without any arguments.

Y at the
trator hag

confirmeq

change standard input
exec < ftmp/dfoutput

while read line

/etc/mount do

/ on /dev/root read/write on Wed May 01 12:04:42 1996

.-’#usr!fdd on /dev/Id096ds15 read/write on Wed May 01 17:54:22 1996

extract name of the file system
fsys="echo $line | cut -d":" -f1’

A # keep rest of the fields together
s long as the file system is mounted, Unix follows all norma] rest="echo $line | cut -d"." -f2'

procedures to keep the floppy up-to-date with the changes that you

make. To confirm the status of the new file system, we can use the set -- Srest
dfspace command. folk=$1
finode=$3
fetc/dfspace
/i Diskspace: 35.72 MB of 253.85 MB available (14.07%) # read the line which contains the total
/mnt: Disk space: 1.14 MB of 1.17 MB available (98.00%). read line
. set -- Sline
Total Disk space: 36.86 MB of 255.02 MB available (14.46%). tblk=52
tinode=3$4

When a file system is mounted, an entry is made in the ‘mount table’
of the system, maintained in a file. This mount table is read by the
commands df which is called by dfspace. If we want we can write
our own shell program which works similar to the dfspace script.

calculate the space in megabytes
availmb="echo "scale=2 \n $fblk * 512 / 1048576 - 0.0005" | b¢*
totmb="echo "scale=2 \n $tblk * 512 / 1048576 - 0.0005" | be'
availper='echo "scale=2 \n $availmb / Stotmb * 100" | bc'

Here is how...
45877 echo "$fsys Savailmb of $totmb MB available ($availper)*
Usage: 5577 cumfree="echo "scale=2 \n $cumfree + $availmb" | be'

cumtot="echo "scale=2 \n $cumtot + $totmb" | be'
done

reports the disk usage of each mounted file system

df -t > /imp/dfoutput

=y’ cumper='echo "scale=2 \n $cumfree * 100 / $cumtot' | be'
—— ~echo "Total disk space : $cumfree of $cumtot MB ($cumper)
cumtot=0

reset standard input to terminal

{410-- Unix Shell Programming

exec < §t

get rid of the temporary file
rm -f /tmo/dfoutout

And here is the output...

$ 8877
/ (/deviroot) 35.7195 of 253.8495 MB availa
B i ble (14.00)
/mnt (f(l:lev!fd096d81 5 1.1395 of 1.1695 MB available (97.00)
Total disk space : 36.8590 of 255.0190 MB (14.45)

Except for the places after the decimal point this output matches with
that of the standar_d dfspace command. The shell script just rea;is l]he
f{)‘urput of df -t wh:ch_is earlier redirected into the file !tmp!dfout‘put
: hf’ df commands gives the free disk space in terms of blocks Om:
SCript just converts this into megabytes, calculates the percerllta e
usage per file system and then prints out this statistics. y

Remember that once the file system on the floppy disk has been

:E:uf?[ti w:l:eil;xo}?]d Eever remove the ﬂop_;py from the drive unless

oo gfommanills Oeen unn?mfnt_ed. This can be done using the

e i . Once ftgam it is only the system administrator
mount a file system.

Unmounting A File System

The umount command can be used to unmount any existing file
systzr'n. Onexecution unmount delinks the new file system from the
:Eotf_]:rectory OfU‘lEIEGXISIIng file system. On unmounting a file system
» e files I?n that file system remain undisturbed. Only thing that
t;lp]:fiins]bfhey becuime inaccessible. To access the files once again

¢ file system has to be remounted using the mount command.

While unmountin
gthefile system’s mo i ;
as:an argument, Y unt point has to be mentioned

System Administration --411]

fetc/umount /mnt

1f the unmounted file system was existing on a floppy, now we can
ely remove the floppy. Note that the umount command fails when
ser has a file open in the file system or has used the cd command

d is currently working in the file system.

fetc/umount /mnt
umount: /mnt busy

is, ensures that the superuser does not unmount the default file
tem on the hard disk while users are working on it.

‘Usually when the system is shut down using the /etc/shutdown
mmand, a command unmountall is called which unmounts all the
file systems before the system is shut down. During startup, a rec
script is executed which calls the command mountall which

remounts the file systems.

g A Raw Disk

We mentioned earlier that we can format a disk and then use it to take
‘backups without being required to create a file system on it. This way
the floppy disk can be used by individual users to backup their own
files. The tar command is used to save and restore files to and from

an archive medium like a tape or a floppy disk.

All users are permitted to use the tar command, it’s usage is not
testricted only to the superuser. Let us assume that a 1.2 MB for-
‘matted floppy is sitting indrive A and we want to backup files present
in /usr/aal/cprogs directory to this floppy. We can achieve this by
saying

$1tar -cv2 [usr/aalfcprogs/*
Volume ends at 1100K, blocking factor = 5K
seek = OKa /usr/aal/cproggs/chipri.c 2K

|412-- Unix Shell Programming

seek = 3Ka /usr/aal/cproggs/chipr2.c 1K
seek = 4Ka /ust/aal/cproggsffirst.c 1K
seek = 5Ka /usr/aal/cproggs/second.c 1K
seek = 6Ka /usr/aal/cproggsitrial.c 1K

Here the option ¢ indicates that the files should be created anew op
the floppy while taking the backup. The option v stands for verboge
which ensures that all the messages about the actions of tar are
displayed on the screen. And finally 2 stands for 1.2 MB disk. How
come 2 represents 1.2 MB disk? Because while archiving files to an
medium tar needs information like device name, blocking factor,
volume size, and type of device. These values would obviously be
different for different devices. Hence, instead of we being required
to suppiy these values they are stored systematically in a file called
/etc/default/tar as shown below:

$ cat /etc/defaultitar

@(#) def9.src 23.2 91/08/29

device vlock size tape
archiveO=/dev/rfd048ds9 18 360 n
archivel=/dev/rfd148dsg 18 360 n
archive2=/dev/rfd096ds15 10 1200 .. n
archive3=/dev/rfd196ds15 10 1200 n
archived=/dev/fd096ds9 18 720 n
archive5s=/dev/fd196ds9 18 720 n
archiveb=/dev/dd0135ds18 18 1440 n
archive7=/dev/rfd1135ds18 18 1440 n
archive8=/dev/rctd 20 0 ¥
archive9=/dev/rctmini 20 0 b 4
The default device in the absence of a numeric or *f device'
argument archive=/dev/rfd096ds15 10 1200 n

You can note that in this list the 1.2 MB disk has been given a number
2 and that’s the reason we used it while issuing the tar command.

The usage of tar command differs slightly from the rest of the UI1'ix
command set. In tar options have two parts: a function option (¢ 1"

System Administration --413|

tion modifiers. It is
sed) followed by the func '
i / mand must contain at least one function

8 that each tar com : _ i
ssa;ynd one or more function modifiers. The function option
tion

sides what function the tar command must perform_ (ba[:'li;ip[1?;
i i ontrol the manner in whi

and the function modifiers con! ‘ .
"'rf?ld function must be executed. It is necessary that the function
:] l - N
ters precede the function modifiers.
restore the files from the floppy disk back to their original place
= can issue the command,

$tar -xv2

x which indicates that we want to extragt
¢ files from the backup medium and put them in their m:lf;z:‘. grii!c A
once again is a function modifier standing folx;/‘l Ee e

dicates that we are extracting files from a 1.2 . pp)tr()r _ir;
N'ewhcrc are we required to mentior_l t_he name of the u'e:-::tmc);lc L
i S;-f.hich the files should be restored. This is because a file 3?::; g
up from a particular directory gets restored to the same

"'-‘. ra ction.

ere the function option is

;-,-. e can of course extract only specific files my mentioning their full
path name during extraction.

$tar -xv2 /usr/aat/cprogs/firstc /usr/aal/myprogs/sample.c

3K
x [ust/aal/cprogsfirstc 2231 bytes
x Just/aal/myprogsisampke.c 2236 bytes 3K

Th is extracts only the files first.c anf] sample.c and places them back
) their original place on the hard disk.

i usefulness of the tar com-
now you must have apprec1atcd the s

d. However, the multitude of optiqns that it off s
fficult for the user. To make the]ean}lng process easlthepfunction
below is a figure indicating the function options an

i and.
Modifiers that are commonly used with the tar comm

(414-- Unix Shell Programming

—3
4

Option Description

Function options

c Creates a new archive

r Appends files (o the rear of the archive
t Lists filenames backed up on the disk
u

Updates archive by a i ;
already present orif nﬁ%ﬁ‘}ﬂ;’hg files(s) if not

X Extracts files from the tar archive

Function Modifiers

v y By ;

i Verbose mode: prints out status information
Prompts for additional floppi i

_] ; oppies -

ing archive becomes full, Rptes Wheti s

g :
Ensures that no file is split across a disk or

'lapcﬁ

Figure 15.4

Monitoring System Usage

There is no such thing as a foolproof system, There are bound to be
problems as people start using a system. What is important is that the
system administrator must be able to anticipate problems: and fix
thcnf vzahen they occur. To be able to anticipate problems the system
administrator must monitor certain system functions ’

UOSI;c gf?hg ‘most important ti_lings to manage on most systems is disk
spafei duls can be dpne using .the commands df (reports free disk
e di:qk : ('repc!rls directory-wise dII!ik usage) and dfspace (reports
Chapta:r : Plc;ca_: in terms of MB) which were discussed at length it
be able t;). A these commands the system administrator would
e, T ispl;‘{POI?t any unreasonably high or, rapidly growing disk
o & orten qund that a Smfl” community of users tend to use

arge amount of disk space. Having identified such users the system

System Administration --415]

script to monitor their disk usage more

ly. The system administrator can automate }hls process so that
s€ ztel'ﬂ tracks change$ in disk usage, comparing one day against
b :l "xt, and notifies him of any untoward activity.

amount of free spac® under a file system drops below a certain
th? the system administrator can either request the users to
jes and directories thereby freeing valuable

:nate unnecessary fi _
T:;ace or cans?cgr expanding the file system by adding more

rage devices.

dministrator can write &

pat both these options are ruled out. At such

it is possible t
il be required to apply some brute force and

nes the superuser may
eliminate the following:

in /usr/tmp directory.
Jusr/preserve directory.
messages which contains all boot time

Temporary files
Temporary files i
The file /usr/ad
screens.

The file /usr/ad
time screens. _ —
The secondary mail box file called mbox for each individual
user.

All zero byte

m/sulog which contains the superuser’s login

files in user’s directories.

The following shell script shows how these files can be eliminated.

SS78

Usage: S578 ‘ ‘
eliminates unneceSsary files to free some disk space
cd fusr/tmp

rm f * 2> fdevinull

cd /ust/preserve
rm -t * 2> /devinul

[416-- Unix Shell Programming ::l

overwrite with nothing, results into a zero byte file
> lusr/adm/messages
> fusrfadm/sulog

remove secondary mailboxes interactively
rm -i /usr/*/mbox

locate and remove zero byte files from user's directories
find /ust/* -size Oc -execrm{} \;

In this script except for the last line everything else is pretty self-ex-
planatory. The find command helps in locating files which meet the
search criteria. The general form of find command is,

find pathname-list expression

Usually Unix file systems are exhaustive having several directories
and files in it. Often the depth of the directory tree is very large. If
we are to ed into each of these directories to search a particular file
we would have to spend several hours before we can reach every
directory in the file system. The find command automates this
process for us. It recursively descends into the ‘pathname-list’ sup-
plied to search the file(s) mentioned in the ‘expression’. Thus the
‘pathname-list’ contains the directories to be searched, whereas the
‘expression’ specifies the list of the files to be searched along with
the criteria to carry out this search.

Let us illustrate this with a practical example.

$find fusrficit -name trial -print
{usr/icittrial

fustficit/mydirtrial
fust/icit/mydir/dir1/trial
lusrficit/tempftrial

Here /usr/icit was the path that was searched for a file whose name
was trial and on encountering such a file it's name along with the

System Administration --417|

lete path was printed. Note that unless we use the -print option
he file gets located but doesn’t get printed. Also, appreciate how the
'ind command descends into the directory tree st arting from /usrficit.

< with any powerful Unix command find too comes with several
ons. Instead of listing these options it would be worthwhile listing
amples which mnake use of these options. So here is the list. Go

ugh it carefully.

(a) - Searchthe fileaaafromcurrent directory downwards and print
it

find . -name aaa -print

Find all files which begin with ‘a’ or ‘b’ from current directory
downwards and print them.

find . -name [ab]* -print

Search directories called backup from /usr directory
downwards and print them.

find /usr -type d -name backup -print

Search normal files called backup from /usr directory
downward and print them.

find fusr -type f -name backup -print

Search character special files called backup from /usr direc-
tory downwards and print them.

find fusr -type ¢ -name backup -print

Search block special files called backup from /usr directory
downwards and print them.

418-- Unix Shell Programmin,
(418-- Unix Shell 1g 3

(g)

(h)

@

@

(k)

O]

(m)

find /usr -type b -name backup -print

Search all directories from /usr downwards for fil
inode number is 1234 and print them. o Whes

find /usr -inum 1234 -print

Search in root directory downwards all files whi
ly 2 links. s which have exact-

find / -finks 2 -print

Search in root directory downwards all fil 2
than 2 links. iles which have less

find / -links -2 -print

Search in root directory downwards all files which have more
than 2 links.

find / -links +2 -print

_Sea:ch in current directory downwards all files whose owner
is aal and group is grp.

find . \(-user aal -a -group grp\) -print

§ench in current directory downwards all files whose ownef
is aal or whose name is myfile.

find . \(-user aal -0 -name myfile\) -print

Search in current directory downwards all files which have
permissions 777.

find . -perm 777 -print

System Administration --419|

Search in current directory downwards all files whose size is
10 blocks.

find . -size 10 -print

Search in current directory downwards all files whose size is
10 bytes (characters).

find . -size 10c -print

Search in current directory downwards all files whose size is
greater than 10 bytes.

find . -size +10c -print

Search in current directory downwards all files whose size is
less than 10 bytes.

find . -size -10c -print

Search in current directory downwards all files which were
accessed exactly 7 days back.

find . -atime 7 -print o

Search in current directory downwards all files which have not
been accessed since last 7 days (or in other words which were
accessed more than 7 days ago).

find . -atime +7 -print

Search in current directory downwards all files which have not
been modified since last 7 days (or in other words which have
been modified more than 7 days ago).

find . -mtime +7 -print

|

[420-- Unix Shell Programming :__‘[

(u) Search in current directory downwards all files whose Status

has changed (on creation or modification) more than 7 days
ago.

find . -ctime +7 -p'rint

(v) Searchin current directory downwards all files whose name is
core and instead of printing their names execute a command
rm on the searched files.

find . -name core -exec rm{}\;

Here, the {} indicate that the searched files would become

> arguments for rm. The semicolon is necessary and it has to be

preceded by a\ to take away its special meanin g.

(w) Same as above except that this time it should ask for confirma-
tion before executing the rm command.

find . -name core -ok rm {}\;
So much about managing and monitorin g the disk usage.

CPU and access times can be monitored via the accounting data. By
tracking and plotting the trend, the system administrator will have
sufficient advance warning to install hardware upgrades and tune the
system to meet the demands. He may also be required to develop

additional commands to monitor the other services on the system like
mail and Ip.

Ensuring System Security

Systfzm security is one of the most important jobs that the system
administrator has to perform. He should ensure the following:

(@) Prevent illegal users from accessing the system .

D ‘System Administration --421|

(b) Maintain integrity of the system.
(¢) Make sure that files of a user is accessible only to the owner
Or 1S group-mates.

To prevent unauthorised access, the system administrator should
encourage users to change their passwords frequently. He should also
use password ageing thereby forcing the users to change passwords
after certain period of time.

Using chmod we can change the ownership ot a program. For
example, if you ever happen to get around to the terminal where the
superuser has logged in and has gone somewhere. At such times if
you set the user id bit of the program /bin/sysadmsh, copy it into
your directory and then reset the original permissions and quietly
walk off then you can become the superuser. Just execute the
sysadmsh program that you copied in your directory. Since you have
set the user ID bit for this file, on execution of this program the
ownership of this program comes to you and then you can gain total
control over the system. Neat trick, you would agree!

Well, if the system administrator wants he can easily detect whether
somebody has played such a trick by running the following com-
mand:

find / -user root -perm 4000 -exec Is-lg{}\;

That brings us to the third part of security, i.e. data privacy. The
Superuser can easily ensure this since mounting and unmounting of
file systems lies in the control of the superuser. Controlling data
Security is augmented by the umask command, which determines the
default file and directory permissions.

As a precautionary measure the system administrator can periodically
check for directories that can be read and written by anyone in the
Wworld:

find / -perm 777 -type d -print

[422-- Unix Shell Programming

The systern administrator can also encourage users to set their own
default security using a proper umask value and encrypting the
important files. All these measures would help in preventing loss of
data or system files.

* Occasionally, the system administrator may be required to allow a
group of users to access the machine without giving them all of the
power of Unix. In such cases, while creating their accounts the system
administrator may assign such users a restricted shell (/bin/rsh)
rather than the usual Bourne (/bin/sh) or C shel! (/bin/csh).

When such users log in, they will not be able to execute the cd
command nor would they be able to change the value of PATH. For
such users I/O redirection is NO NO and so also is executing
commands that begin with /. This ensures that such users can cause
little damage, inadvertently or otherwise.

Thus restricted shell lets the external users perform some necessary
work, but prohibits them from going crazy in the system. However,
the system administrator should not go overboard with restricted shell
leicility and start handing it out to every new user, thereby sentencing
him to virtually life imprisonment. He is supposed to use his discre-
tion in this regard. After all the goal of system administration is to
help users do whatever they need to do.

Providing Assistance to Users

The system administrator should communicate to the users any
changes that he incorporates in the system from time to time. This he
can do by using communication commands like mail, news, wall and
motd. The system administrator would be inviting user’s wrath if
they get stuck up, need help and don’t know from where to get it. T0
avoid this the system administrator can write a simple shell script
which indicates where and how to reach him. If there is more than
one administrator and each specializes in certain Unix subsystems,
then that information can be included too.

System Administration --423 I

e bave seen that shell programming can aid the system ad-
ministrator in all the phases of administration. The system ad-
ministrator has as much to gain from shell usage as any common Unix
user. I hope you would be able to extend the shell scripts presented
" in this book so far to satisfy your specific needs.

[xercise

[A] State whether the following statements are True or False:

(a) The file /bin/sysadmsh can be executed only by the system
administrator.

(p) To mount a 1.2 MB floppy disk the command mount
[dev/rfd096ds15 /mnt is correct.

() The command/ete/init 1 puts the system in single-user mode.

(d) The command /etc/init 0 halts the system.

(¢) Itisnecessary to format the floppy before using a tar command
to store files on it.

() There is no need to make file system on a disk if we are going
to use it only to backup files on it.

(g) A file system can be installed at any mount point other than
/mnt,

(h) A file can be copied across two different file systems.

(i) A file system can be mounted and unmounted by any user.

() A floppy can be formatted only by the system administrator.

(k) Creating a file system on a disk means creating boot block,
super block, inode table and data blocks on the disk.

() Using tar we can archive files only on a magnetic tape.

(m) It is necessary to unmount a file system before removing a
floppy.

(n) A tar command always needs at least one function option.

(0) The number of inodes that can be created on floppy disks have
been fixed according to their capacities.

[B] How would you perform the following operations:

System Administration --425|
[424-- Unix Shell Programming j c vstem Ad

(a)
(b)

(c)

(d)
(e)

®
(8)
(h)

@)
)
(k)
[C]
(a)
(b)
(©

()

(e)

®

Write a interactive shell script which will request the user to
put the 1.2 MB floppy in drive A, format it, make a file system
on it with 2000 blocks and 500 inodes, mount it at a mount

point /fdd.

sync the disk after every five minutes.
Take backup of files in /usr/cprogs directory at 5 PM every
day.

List all backed up files present on a floppy disk.
Extract a file mylog from a 1.44 MB disk.

Find all files which begin with ‘a’ or ‘b’ with a digit as the
second character from current directory downwards and print
them.
Delete all 5 byte files from the current directory downwards.
Find all links of the vi editor.
Search in current directory downwards all files which have
more than 5 links.
Search in current directory downwards all files whose owner
is aal, group is grp and it has not been accessed since last two
years.
Search in /usr directory downwards all directories which have
permissions 444,
Search in /dev directory downwards all block special files.

Write a shell script to send mail to groups of users by extracting
their IDs from /etc/group file.

Answer the following:
Outline the jobs of a system administrator.
What does each character in rfd1135ds18 connote”?

Can we delete the line VERIFY=Y from fetc/default/format
and still be able to format a disk.

How is tar command a little different than other Unix com-
mands?

Whatis the noticeable difference between options used by find
command as compared to other Unix commands?

Write the crontab entry for printing the report fil
/usy/aal/finacc/bsheeet on first monday of every month.

| 6 Shell Program-

ming Project

Payroll Processing System
Data Organisation
Menus
Report rormats
Calculations

Working of The System

Program

Where Do You Go from Here...

Improve This Program...

[428-- Unix Shell Programming

o far we have written small but useful shell scripts. The ideg
was always to introduce some new concept orasubtlety of shel|
programming, Now that we are through with most of the
features of shell programming let us put together an entire syslcl.'n

. using shell scripts. Development of this system would encompass all

that we have learnt so far. This would help you in two ways:

(a) It would serve as a revision of al] the conceplts.
(b) It would help you visualise in which situation which concept
has to be used while writing professional level scripts.

Howcve_r, instead qf handing you the entire software on a platter, I
thought it worthwhile to give you the overali picture and-getting you
started and then leaving it for you to develop some componerits of

the software. We would try to develop a payroll processing system.
So here we go...

Payroll Processing System

Shivley ‘& Brett is a pharmaceutical company engaged in manufac-
ture of life saving drugs. The company was established in the year
1982 with an employee strength of 75, with 8 officers. Since its
inception, it has grown steadily over the years and today boasts d
turnover of Rs. 130 millions. Today it has a strength of 600 employees
out of which 125 are of officer cadre. There are five departments in
the company, viz., Manufacturing, Assembly, Stores, Accounts and
Mamlenaljlce. It has been the policy of the company to develop &
technologically advanced work environment. In tune with this policy:

Shell Programming Project --429|

ccounts department of the company has decided to computerise
ﬁYm“ preparation. Since the payroll processing package for the
mpany must be made to suit their requirements, the company has
ached you to prepare the package. To begin with, the company
ecided to implement computerised payroll processing only for
workers, with plans to include the officer staff only after the
Factory completion of workers payroll processing.

' ta Organisation

ie workers in the company are divided into 5 categories, namely,
er skilled (SSK), Highly Skilled (HSK), Skilled (SKI), Semi
illed (SMS) and Unskilled (USK). The data about each worker in
 company can be categorised as shown below:

neral Data | Allowances | Deductions Leave Record
mployee code | DA Provident fund Maximum CL
HRA ESI Maximum ML
cpartment CA GIP Maximum PL
ade CCA Income tax Cumulative CL
Special Pay 1 | Profession tax Cumulative ML
dress Special Pay 2 | Rent deduction Cumulative PL
no. Gross Pay LT loan installment | Cumulative LWP
scheme no ST loan installment | Attended days
scheme no. Special deduction 1 | Monthly CL
ic salary Special deduction 2 | Monthly ML
Total deduction Monthly PL
Monthly LWP

(EMASTER.DBF)

Employee master data file - This contains that information
about the employees which is rtlatively permanent.

" |430-- Unix Shell Programming

—3

(b) Employee transaction data file - This contains data Whigh
varies from month to month. (ETRAN.DBF)

For maintaining one to one correspondence between records in
master data file and transaction data file, the Employee code ang
Department in which the employee works would be present in both
the data files. The fields in each data file would be as under:

EMASTER.DBF ETRAN.DBF
Description Field Name Description Field Name
Employee code | e_empcode Employee code | t_empcode
Name e_empname Department t_dept
Sex e_sex Casual leave t_cl
Address e_address Medical leave | t_ml
Name of city e_city Provi. leave t_pl
Pin code e_pin LWP t_lwp
Department " e_dept DA t_da
Grade e_grade HRA t_hra
GPF. no. e_gpf_no. CA Lca
Gl scheme no, | e_gis_no. CCA t_cca
ESI scheme no. | e_esis_no. Special pay 1 -~ | t_sppay_!
CL allowed e_max_cl Special pay 2 t_sppay_2
PL allowed e_max_pl Gross salary t_gs
ML allowed e_max_ml GPF t_gpfl
Basic salary e_bs GIS L_gis
Cumulative cl e_cum_cl ESIS t_esis
Cumulative pl | e_cum_pl Income tax {_inc_tax
Cumulative ml | e_cum_ml Profession tax | (_prof_tax
Cumulative lwp | e_cum_lwp Rent deduction | t_rent_ded
Cumu. att.days | e_cum_att Long term loan | t_It_loan
Short teri loan | (_st_loan
Special ded. | | t_spded_!
Special ded. 2 | t_spded_2
Total deduction | t_tot_ded
Net pay t_net_pay

_-—-—"-'.-’.‘

Shell Programming Project m

us

ifferent menus to be developed in this system are as follows:

PAYROLL SYSTEM
DATA BASE OPERATIONS

Master File Data Entry
Transaction Data Entry
Return to main menu

Your Choice?
[PAYROLL SYSTEM PAYROLL SYSTEM
'MASTER DATA ENTRY TRAN. DATA ENTRY
; record Add record
| Modify record Modify record
Delete record Delete record

etrieve record
' 10 main menu

Retrieve record
Return to main menu
Your choice?

PAYROLL SYSTEM
SYSTEM MAINT. MENU

’aysheet Printing
summary Payroll Sheet
urn to main menu

Close month
Close year & reorganise
Return to main menu

Your choice?

(432-- Unix Shell Programming

Report Formats

The formats of the different reports to be printed are as follows:

Mailing List

This report displays the entire mailing list of employees.

Clarence Elmsworth
Blandings Castle

Kalyan
411002

John Galt

A-2, Manish Nagar, Andheri

Bombay
400054

Leave Status Report

Jason Bourne

Whispering Palms, Madh Island
Bombay

400064

Michael Havilland

22, Shangri-la, Bandra
Banglore

560050

This report shows the status of leaves taken by an employee during
the current year in terms of allowed leaves, leaves availed so far
(cumulative) and leaves in balance.

Name : John Galt

CL allowed
12

Cum. CL

3

Balance CL
9

ML allowed
15

Cum. ML

4

Balance ML
11

Empcode:A10 Grade:HSK Month:Mar96
PL allowed

5 .

Cum.PL CumLWP Cum. Att. days
0 0 82

Balance PL

: |

Shell Programming Project --433)

allowed

me : Jason Bourne

ML allowed
20

Cum. ML

0

Balance ML
20

Empcode:AO1 Grade: SSK Month:Mar96

PL allowed

5

Cum. PL Cum.LWP Cum Att.days
0 0 102

Balance PL

5

s report generates payslips of employees working in the f?ctory.
that such reports are usually printed on pre-printed stationary.
this system it has been printed only on the screen.

HIVLEY & BRETT PVT. LTD.
mp.code:A10 | Sex: Male Grade: HSK Month:Mar |
| Name: John Galt) Department: Assembly
| GPF No. 6132/A | GIS No.P6329 ESIS No. P6452
) ical Prov. LWP| Attended
o’rrsnal &aisgl m@a Leave days
2 1 0 0 |28
DA HRA| CA | cca|sP1|SP2|GS
1040.00 | 130.00 52.00 52.00 45.00 0.00 | 1839.00

ESIS| GIS | IT PT | Rent| Loan] Loan? 8.D.1] SD.2| Tot.
6.0 75.00 115.00 0.00 | 20.00 50.00 0.00 | 75.00 0.00 | 0.00 | 491.0
| Net Pa
. Receiver’s signa-

f"Rs. 1348.00

ture

(434-- Unix Shell Programming

Summary Payroll Sheet

This report gives department wise payment made for a particular
month for all employees in each department.

Summary Payroll Sheet
March 1996
Department Total Gross Gross Net
Employees [Earnings Deductions Payment
MFG 132 32,040 3,530 28,510
ASSLY 67 21,030 2,850 18,180
STORES 19 17,550 1,870 15,680
ACCTS 22 18,490 2,115 16,375
MAINT 30 24,555 3,335 21,220

Calculations

. e v .
The following table shows percentages used for calculation of
various allowances and deductions for different grades of employees.

Grade] DA | HRA| CA | CCA| GPF| ESIS | GIS | PT

%of | %oof | %of | % of ok
BS BS BS BS

SSK | 2009%|30% | 10% | 10% | 10% | Rs. 100 | Rs. 115 Rs. 50
HSK [200%|25% | 10% | 10% | 10% | Rs. 100 | Rs. 115| Rs. 50
SKI |100%|25% | 10% | 10% | 10% | Rs. 100 | Rs. 115| Rs. 50
SMS | 100%| 20% | 10% | 10% | 10% | Rs. 100 | Rs. 115| Rs. 20
USK | 175%| 18 % 10% | 10% | Rs. 100 | Rs. 115

Rs.
150

*REX % of BS + DA

3

Shell Programming Project --435|

~ Quite naturally, this big a system cannot be implemented using a
single shell script. In fact there would be several of them each doing
a specific job and interacting with one another to work like a system
as a whole. This once again is in tune with the Unix philosophy -
" puild small parts, make them do their job well and then combine them,
;ii-nk them to build a powerful, robust system.

Given below is alist of the various shell scripts that are developed iri
this system along with the purpose of each. This will help you to keep
track of the system as you read the listings given in the subsequent

- pages.

 Shell Script Purpose

Does some initial house-keeping, Displays
Main Menu and branches control to ap-
propriate sub-menu.

Writes a given string in the center of a given
row either in Bold, Normal or Reverse video.
Writes a given string at the given row, column
either in Bold, Normal or Reverse video.
Displays Database Operations Menu and
branches control to either Master or Transac-
tion Data Entry Menu.

Displays Reports Menu and branches control
to generate the appropriate report.

Displays System Maintenance Menu and
branches control to carry out appropriate
house-keeping job.

Displays Master Data Entry Menu and
branches control to carry out appropriate
operation on employee master.

Displays Transaction Data Entry Menu and
branches control to carry out appropriate
operation on employee transaction file.

Adds new records to master file.

Modifies an existing record in master file.

_paymain.prg

‘writecentre

writerc

_-.ii__bopcr.prg

i?i?,ports.prg

sysmnt.prg
“mde.prg
de.prg

Madd.prg
‘mmodi.prg

1

|436-- Unix Shell Programming

—]

Shell Script Purpose

mdel.prg _ Deletes an existing record from master file.

mret.prg Retrieves record from master file and displays
it on the screen.

tadd.prg Adds new records to employee transaction file,

maillbl.prg Prints mailing labels.

payprint.prg Prints monthly payslips for employees on
screen.

spaysheet.prg Prints department-wise summary payroll
sheet.

Isr.prg Generates leave status report.

- clmonth.prg Closes the monthly transaction file.
clyear.prg Closes the yearly transactions, updates master

and reorganizes files and variables.

The overall breakup of the system on a file by file basis and their
hierarchy of calling is given in Figure 16.1. Files which are general
“and are called by several other scripts are shown separately.

- With this much detailing I suppose you would be able to follow the
shell script listings given below. They have been suitably commented
to help you understand the underlying logic.

Working of The System

The user just has to add records to the master and the monthly
transaction file. While adding records to master file the program
avoids any duplication of records since there must be a unique record
for each employee. Also while adding records to the monthly trans-
action file the program makes sure that a record doesn’t get added to
the transaction file unless there is a corresponding record in the

-master file. Here too, the program prevents any unintentional Of
otherwise duplication of records.

Shell Programming Project --437]

e madd.prg
— Mmmodi.prg

mde.prg —|, mdel prg
Lo lTll'Bl.prg

— [add.prg
s tde.prg

tde.prg —}— tmodi prg
— t[’el.prg

—» dboper.prg

— maillbl.prg
s Isr.prg

s reports.prg ———— | Payprint.prg
— spaysheet.prg

paymain.prg -

s ::Imenlh.prg

s sysmnt.prg

L clyear.prg
General files:

writecentre

| writerc

At the end of each month the user should generate al] the reports
'through the reports menu. Before starting data entry for new transac-
tions for a new month the user must specifically close that month’s

‘transactions through the ‘Close month’ option from the System
Maintenance menu. At the end of the financial year the ‘Close year’
| option from the System Maintenance menu should be exercised. It
Zenerates a transaction file which is a combination of all monthly
transaction files in that financial year. It has been assumed that the
financial year runs from April through March of next year,

Shell Programming Project --439|

[438-- Unix Shell Programming

stty -icanon min 0, time 0

Program while [-z "$choice”]
- do
paymain.prg read choice
done
paymain.prg SRty e

Does some initial house-keeping, Displays Main Menu
and branches control to appropriate sub-menu. # branch off to appropriate menu
case "$choice” in

(Dd]) dboper.prg ;;

[Rr)) reports.prg ;;

[Ss]) sysmnt.prg ;;

MASTER=$HOME/emaster.dbf
TRAN=$HOME/etran.dbf
export MASTER TRAN

[Ee]) clear

check if master and transaction files exist exit
if [! -f SMASTER] *) echo \007 ;;
then esac

touch $MASTER done
fi
if[!f$TRAN]
then .

touch $TRAN writecentre
fi

writecentre

while true # Writes a given string in the center of a given row
do # either in Bold, Normal or Reverse video.

display Main Menu

clear

writecentre “Payroll Processing System" 7 “B"
writecentre *Main Menu® 8 *N"

writerc "\033[1mD\033[0matabase operations” 10 30 "N"
writerc "\033{1mR\033[0meports” 11 30 "N*
writerc "\033[1mS\033[0mystem maintenance” 12 30 "N’
writere "\033{1mE\033[0mxit" 13 30 "N
writerc "Your choice? " 15 30 "N"

check whether called properly
if [$# -ne 3]

then

echo improper arguments
exit

fi

position cursor
str=§1

row=$2

atir=53

receive user's choice
choice=""

|440-- Unix Shell Programming

length="echo $str | we -¢*
col="expr\(80 - $length) / 2"
tput cup $row $col

display string in Bold, Normal or Reverse video
case $attr in
[bB])echo -n "033[1m$str" :;
[nN])echo -n $str ;;
[rR])echo -n "033[7m$str* ;;
esac
echo -n "\033{0m*

writerc

writerc
Wﬁtes_a given string at the given row, column
either in Bold, Normal or Reverse video.

check whether called properly
if [$#-ne 4]
then
echo improper arguments
exit
fi

position cursor
str="$1"

row=$2

col=$3

attr=$4

Iput cup $row $col

display string in Bold, Normal or Reverse video
case $attr in

[bB])echo -n "033[1m$str” ::

fnN])echo -n "$str" ;;

Shell Programming Project --441 |

[fR])echo -n "033[7mgstr* ;;

gsac
echo -n "\033[0m"

dboper.prg

dboper.prg
Displays Database Operations Menu and branches control to

- # either Master or Transaction Data Entry Menu.

while true

do
display Database Operations Menu
clear
writecentre "Payroll Processing System" 7 "B"
writecentre "Data Base Operation® 8 “B"
writerc "\033[tmM\033[Omaster File Data Entry" 1030 "N
writerc "\033[1mT\033[0Omransaction Data Entry" 11 30 "N"
writerc "\033{1mR\033[0meturn to Main Menu" 12 30 "N
writerc "Your choice? " 15 30 "N"

receive user’s choice
choice=""
stty -icanon min 0, time 0
while [-z "$choice” |
do
read choice
done
stty sane

check user's choice and branch off to
appropriate Data Entry Menu
case "$choice" in

[Mm]) mde.prg ;;

[Tt]) tde.prg
[Rr)) clear

|442-- Unix Shell Programming

Shell Programming Project --443|

break ;;
*) echo \007 ;;
esac

done

reports.prg

reports.prg

Displays Reports Menu and branches control to generate the

appropriate report.

while true

do

display Reports Menu
clear

writerc "\033[36mPayroll Processing System\033[37m" 7 27 'B*
writerc "033[36mReports Menu\033[37m" 8 33 "N’

writerc "\033[1mM\033[0mailing Labels" 10 30 "N*

writerc "\033[1mL\033[0meave Status Report" 11 30 "N"
writerc "\033[1mP\033[0maysheet Printing" 12 30 "N
writerc "\033(1mS\033[0mummary Payroll Sheet" 13 30 "N"
writere "033[1mR\033[0meturn to main menu® 14 30 "N"

writerc "Your choice? " 16 30 "N"

receive user's choice

choice=""

stty -icanon min 0, time 0

while [-z "$choice" |

do ;
read choice

done

stty sane

check user's choice and branch off to
generate an appropriate report
case "$choice” in

[Mm) maillbl.prg ;;
(L)) Isr.prg ;s
(Pp]) payprint.prg ;;
[Ss]) spaysheet.prg i,
[Rr]) clear

break ;;
*) echo \007 ;;

esac

while true

sysmnt.prg

mnt.
:g:playsp l‘Sgystem Maintenance Menu and branches control to

carry out appropriate house-keeping job.

display System Maintenance Menu

E.I'ﬁ?errc "033(36mPayroll Processing System\oas[:g?m“"? 27 '%u
writerc "\033[32mSystem Maintenanc:a Menu}?%:;{gm 828
writerc "c\033[1mL\033[{0mose month" 10 30 N " »
writerc "033{1mC\033[0mlose year &.reorgan:se 1 ?:01 N
writerc "033{1mR\033[0meturn to main menu” 12 30 "N

writerc "Your choice? * 14 30 "N

receive user's choice
choice=" _
stty -icanon min 0, time 0
while [-z *$choice’]
do
read choice
done
stty sane

[444-- Unix Shell Programming]
- Shell Programming Project --445)
check user’s choice and branch off to
carry out appropriate house-keeping job read chokce
case "$choice” in done
[LI)) cimonth.prg ; sity sane
[Cc]) clyearprg ;;
[Ri]) clear # check user's choice and branch off to perform
* bk # appropriate operation on employee master
) echo \007 = case "$choice” in
ata [Aa)) madd.prg ;;
S [Mm]) mmodi.prg ;;
[Dd]) mdel.prg ;;
[Rr]) mret.prg ;;
e [Ee]) exit ;;
prg *) echo \007 ;;
#mde.prg d"":’sac
Displays Master Pata Entry Menu and branches control to
carry out appropriate operation on employee master. tde.prg
while true
do # tde.prg ;

display Master Data Entry Menu

clear

writecentre "Payroll Processing System" 7 'B"
writecentre "Master File Data Entry" 8 "B*

wjierc "\033[1mA\033[0mdd records * 10 30 "N*
wr!terc "\033[1mM\033({0modify records" 11 30 "N"
writerc "\033{1mD\033[0melete record" 12 30 "N"
wr!terc "\033[1mR\033[0metrieve record" 13 30 "N
wr!terc "N033[1mE\033[Omturn” 14 30 "N

writerc "Your choice? * 16 30 "N

receive user's choice
choice=""

stty -icanon min 0, time 0
while [-z "$choice")

do

Displays Transaction Data Entry Menu and branches control to
carry out appropriate operation on employee transaction file.

while true

do

display Transaction Data Entry Menu

clear

writecentre "Payroll Processing System" 7 *B*
writecentre "Transaction Data Entry" 8 "B"

writerc "\033[1mA\033[0mdd records * 10 30 "N
writerc "\033[1mM\033[0modify records” 11 30 “N*
writerc "\033[1mD\033[0melete record” 12 30 "N*
writerc "\033[1mR\033[0metrieve record” 13 30 "N*
writerc "\033[1mE\033[0mturn® 14 30 “N*
writerc *Your choice? * 16 30 "N

receive user's choice

1446-- Unix Shell Programming

choice=""
stty -icanon min 0, time 0
while [~z *$choice” |
do
read choice
done
stty sane

check user’s choice and branch off to perform
appropriate operation on employee transaction file
case "$choice” in

[Aa]) tadd.prg ;;

[Mm]) tmodi.prg ;

[Dd)) tdel.prg ;;

[Rr]) tret.prg ;;

[Ee]) clear

exit ;;

*) echo \007 ;;

esac
done

Shell Programming Project --447)

madd.prg

madd.prg
Adds new records to master file.

another=y
="y’

while ["$another” = y -0 “$another* = Y]
do

clear

writecentre "Payroll Processing System® 1 *B"
writecentre "Add Records - Master File* 2 "B"

writerc *Employee Code: \c* 4 10 "B"

read e_empcode
if [-z "$e_empcode"]
then
exit
fi

check if such an employee code already exists

grep \"$e_empcode: $MASTER > /dev/inull

if [$?-eq0]

then
writerc "Code already exists. Press any key..." 20 10 "N
read key
continue

fi

read values of various fields
writerc "Name of Employee: \c" 5 10 "B"
read e_empname

writerc "Sex; \c* 6 10 "B"

read e_sex

writerc "Address: \c" 7 10 "B"

read e_address

writerc *Name of city: \c* 8 10 "B"
read e_city

writerc "Pin code number: \c¢* 9 10 "B"
read e_pin

writerc "Department: \¢* 10 10 "B"
read e_dept 3

writerc "Grade: \c" 11 10 "B"

read e_grade

writerc "GPF no. \¢" 12 10 "B"
reade_gyf_no

writerc "Gl scheme no.: \¢" 13 10 "B"
read e_gis_no

writerc "ESI scheme no.: \c* 14 10 "B"
read e_esis_no

writerc "CL allowed: \¢" 15 10 "B"

Shell Programming Project --449)

|i48—- Unix Shell Programming

writecentre "Modify Records - Master File’ 2 "B

read e_max_cl B - e
i S ee Code: "4 10"B
writerc "PL allowed: \¢" 16 10 "B" ' ":B':sr: ::'ppolgz 5 ’
sl g f -2 "$e_empoode’]
writerc "ML allowed: \c¢* 17 10 "B" ' than
read e_max_ml : axit
writerc "Basic Salary: \¢" 18 10 "B" E fi
read e_bs i
5 grep V\$e_empcode: SMASTER > /dev/null
e_cum_cl=0 . i1[$2-ne0)
e_cum_pl=0 an
e.oum_frid writerc "Employee code does not exist. Press any key..." 10 10 "g"
5 &_cum_wp=0 ' read key
6_cum_ali=0 continue
write new record into employee master file _ "

echo $e_empcode:$e_empname:$e_sex:$e_address:$e_city:
$e_pin:$e_dept:$e_grade:Se_gpf_no:$e_gis_no:3e_esis_no:
$e_max_cl:$e_max_pl:$e_max_ml:$e_bs:$e_cum_cl:$e_cum_pl:
$e_cum_ml:$e_cum_lwp:$e_cum_att | dd conv=ucase

transfer all other records to a temporary file
grep -v \\$e_empcode: $MASTER > /tmp/em: ster.mmm

3 line='arep \$e_empcode: SMASTER'
2> idevinull>> SMASTER ' el A
writerc "Add another y/n \c" 20 10 *N* . | 3 2::: $mline
read another .
done writerc "Name: $2° 5 10 "N’
read e_empname
mmodi.prg ;
. _- #if no change is made in employee name
; if [-z "$e_empname"]
mmodi.prg :119 i "Se_emp
Modifies an existing record in master file. . 6_empname=52
another=y : f
. % 5 X " uNn
while ["$another” = y -0 "$another' = Y] wntderc i
do read e_sex
clear

writecentre "Payroll Processing System" 1 "B"

(450-- Unix Shell Programming

?t if no change is made in employee sex
if [-z "$e_sex")
then
e_sex=3$3
fi

writerc "Address: $4" 7 10 *N"
read e_address

if [-z "$e_address"]

then

: e_address=%4

i

writerc "City: $5" 8 10 °N"
read e_city
if [<z "$e_city"]
then
e_city=35
fi

writerc “Pin code No: $6" 9 10 "N"
read e_pin

if [-z "$e_pin"]

then

; e_pin=56

1

writerc "Department; $7° 10 10 "N"
re ad e_dept

if [-z "$e_dept" |

then

g e_dept=8$7

i

writerc "Grade: $8° 11 10 "N"
read e_grade
if [-z "$e_grade"]

Shell Programming Project --451|

then
e_grade=$8
fi

writerc "GPF no: $9" 1210 "N
read e_gpf_no
it [-z “$e_gpf_no"]
then
e_gpf_no=$9
fi

shift 9

writerc *Gl scheme no: $1" 13 10 "N
read e_gis_no
if[-z "$e_gis_no"]
then
e_gis_no=$1
fi

writerc "ES| sscheme no: $2° 14 10 "N"
read e_esis_no
if [-z "$e_esis_no" |
then
g_esis_no=$2
fi

writerc "CL allowed: $3" 15 10 "N
read e_max_c!
if [-z "$e_max_cl']
then
e_max_cl=$3
fi

writerc "PL allowed: $4" 16 10 "N°
read e_max_pl
if [-z "$e_max pl']

[452-- Unix Shell Programming

then
e_max_pl=$4
fi

writerc "ML allowed: $5" 17 10 "N"
read e_max_m|
if[-z "$e_max_ml"]
then
e_max_ml=$5
fi

writerc "Basic salary: $6" 18 10 "N"
read e_bs
if [-z "$e_bs"]
then
e_bs=36
fi

e_cum_cl=$7

e_cum_pl=$8 t

e_cum_ml=$9

shift 9
e_cum_Iwp=$1
e_cum_att=$2

IFS="$oldIFS"
append modified record to employee master file

echo $e_empcode:$e_empname:$e_sex:$e_address:$e_city:
$e_pin:$e_dept:$e_grade:$e_gpf_no:$e_gis_no:$e_esis_no:

$e_max_cl:$e_max_pl:$e_max_ml:$e_bs:$e_cum_cl:$e_cum_pl:

$e_cum_ml:$e_cum_lwp:$e_cum_att | dd conv=ucase
2> [devinull >> fimp/emaster.mmm

move new master over top of original
mv /tmp/emaster.mmm $MASTER

-

Shell Programming Project --453|

writerc "Modify Another y/n * 20 20 "N*
read another
done

mdel.prg

mdel.prg
Deletes an existing record from master file.

another=y

while ["$another” =y]

do
clear
writecentre "Payroll Processing System" 1 “B"
writecentre "Delete Records - Master File" 3 "B

writerc "Employee Code to Delete: \c' 6 10 "B"
read e_empcode
if [-z "$e_empcode”]
then
exit
fi

check whether employee code exists

grep -y \\$e_empcode: SMASTER > /dev/null

if[$?-ne 0]

then
writerc "Employee code does not exist... Press any key" 10 10 "B"
read key
continue

fi

rewrite all other records into a new file
grep vy $e_empcode: SMASTER > /tmp/emaster.ddd
mv /tmp/emaster.ddd SMASTER

[454-- Unix Shell Programming

check whether there is a corresponding employee in transaction fjg
grep -y VWse_empcode: $TRAN > /dev/null
if($?-eq0]
then
eliminate the corresponding record from transaction file too
grep -vy W$e_empcode: $TRAN > /tmp/etran.ddd
mv ftimp/emaster.ddd $TRAN
fi

writerc "Delete another y/n * 16 15 "B"
read another
done

mrét.prg

mret.prg
Retrieves record from master file and display it on the screen.

another=y

while ["$another’ = y -0 "$another" = Y]
do

clear
writecentre "Payroll maintenance System" 1 “B"
writecentre * Retrieve Records - Master File' 2 "B"

writerc "Employee Code: “ 4 10 "B"
read e_empcode

if[-z "$e_empcode”]
then

exit
fi :

search employee code in master file

Shell Programming Project -~45.5—|

grep Y'$e_empcode: $MASTER > /dev/null

if employee code doesn't exist

if[$? -ne 0]

then
writerc "Employee code does not exist. Press any key..." 10 10 "B*
read key
continue

fi

separate out field values

mline='grep \$e_empcode: $MASTER'
¥ oldIFS="$IFS"

IFS="'

i

'y set -- $mline
'% # display field values on screen
writerc "Name: $2" 5 10 "N
writerc “sex; $3" 6 10 "N"
writerc "Address: $4" 7 10 "N"
writerc "City: $5" 8 10 *N*
writerc *Pin code No: $6" 9 10 “N*
writerc "Department: $7" 10 10 "N*
writerc "Grade: $8" 11 10 "N"
writerc "GPF no: $9" 12 10 "N"
shift 9
writerc "Gl scheme no: $1" 13 10 "N"
writerc "ESI sscheme no: $2" 14 10 "N*
writerc "CL allowed: $3" 1510 "N
writerc "PL allowed: $4" 16 10 "N"
writerc "ML allowed: $5" 17 10 *N"
writerc "Basic salary: $6" 18 10 "N

IFS="$oldIFS"
writerc “Retrieve another y/n * 20 20 "N"
read another

done

[456-- Unix Shell Programming

Shell Programming Project --45?|

tadd.prg

#1add.prg
Adds new records to employee transaction file.

clear

another=y

t:lttyl
IFScolon=":"
IFSspace="§IFS"

percentages used for calculation, according to employee grade

SSK="20030 10 10 10 75 115 20"
HSK="20025 10 10 10 75 115 20"
SKI="10025 10 10 10 75 115 15"
SMS="10022 10 10 10 75 115 15"
USK="17 20 10 10 10 75 115 0"

while ["$another" =y -0 "$another* =Y]

do

clear
writecentre "Payroll Processing System® 1 "B"
writecentre "Add Records - Tran, File" 2 "B"

writerc "Employee Code; * 4 10 “B"
read t_empcode
if [-z "$1_empcode” |
then
exit
fi

miine='grep \A$t_empcode: SMASTER'
mfound=$?

ft if employee code is not found in master
if [$mfound -ne 0]

then
writecentre "Corresponding Master record absent" 7 "N*
writecentre "Press any key..." 88888888 "N’
read key
continue
fi

grep \$t_empcode: $TRAN > /dev/null
tiound=$?

if employee code already exists in transaction file
if [$tfound -eq 0]
then
writecentre "Already exists, Cannot duplicate” 7 "N'
writecentre "Press any key..." 8 "N*
read key
continue
fi

read values of various fields -
writerc "Department: * 5 10 "B*

read t_dept

writerc "Casual leave: " 6 10 "B'
read t_cl

writerc "Medical leave: " 7 10 "B"
read t_ml

writerc "Provisional leave: " 8 10 "B"
read t_pl

writerc "LWP: "9 10 "B"

read t_Iwp

writerc "Special pay 1:* 1010 'B"
read t_sppay_1

writerc "Special pay 2: " 11 10 "B
read t_sppay_2

writerc “Income tax; * 12 10 "B"
read t_inc_tax

writerc "Rent deduction: * 13 10 "B"

[458-- Unix Shell Programming

Shell Programming Project --459)

read t_rent_ded

writerc "Long term loan: * 14 10 "B"
read t_It_loan_

writerc "Short term loan: * 15 10 "B"
read t_st_loan

writerc "Special ded. 1: " 16 10 "B"
read t_spded_1
writerc "Special ded. 2: * 17 10 "B"
read t_spded_2

extract grade and basic salary from master
grade="echo $mline | cut -d";" -f8'
bs="echo $mline | cut -d":" -{15'

calculate various allowances and gross salary
set -- ‘eval echo \$$grade’
t_da='echo "scale=2\n$1 / 100.0 * $bs" | be'
t_hra="echo "scale=2\n$2 / 100.0 * $bs" | bc'
t_ca="echo "scale=2\n$3 / 100.0 * $bs" | be'
1_cca="echo "scale=2\n$4 / 100.0 * $bs" | b¢'
t_gs='echo "scale=2\n$bs + $t_da + $t_hra + §t_ca + $t cca +
$t_sppay_1 + $t_sppay_2" | bc’

calculate various deductions

t_gpf="echo "scale=2\n$5/ 100.0 * ($bs + $t_da)" | be'
t_esis=$6

t_prof_tax=$8

t_tot_ded="echo "scale=2\n$t_gpf + $t_esis + $t_gis + $t_prof_tax +
$t_inc_tax + $t_It loan + $t_st_loan + $t_rent_ded +
$t_spded_1 + $t_spded_2" | bc

calculate net salary
t_net_pay="echo "scale=2\n$t_gs - $t_tot_ded" | bc'

write new record to transaction file
echo $t_empcode:$t dept:$t_cl:$t_ml:$t_pl:$t_lwp:$t_da:$t_hra:

$t_ca:$t_cca:$t_sppay_1:3t_sppay_2:$t_gs:$t_gpf:$t_gis:$t_esis:

$t_inc_tax:$t_prof_tax:$t_rent_ded:$t_It_loan:$t_st_loan:

$t_spded_1 :$t_spded_2:$t_tot_ded:$t_net_pay | dd conv=ucase
25 [dev/inull >> $TRAN

find number of days in current month
days="3128 31 30 31 30 31 31 30 31 30 31"
months="date '+%m"

totdays="echo $days | cut -d" * -f $months’

|FS="$IFScolon’
exec < $MASTER

read each record from master file :
while read e_empcode e_empname e_sex e_address e_city e_pin
e_dept e_grade e_gpf_no e_gis_no e_esis_no e_max_cl
e_max_pl e_max_ml e_bs e_cum_cl e_cum_pl e_cum_ml

e_cum_|wp e_cum_att
do
IFS="$IF Sspace’

if [$e_empcode = $t_empcode]

then
update cumulative leaves fields
e_cum_cl="expr $e_cum_cl + $t_cl
e_cum_mi=‘expr $e_cum_ml + $t_ml'
e_cum_pl="expr $e_cum_pl + $t_pl'
e_cum_lwp="expr $e_cum_Iwp + $t_lwp'
net_days="expr $totdays - $t_cl - $t_ml - $t_pl - - $t_iwp!
e_cum_att="expr $e_cum_att + $net_days'

fi

write record to master file

echo $e_empcode:$e_empname:$e_sex:$e_address:Se_city.
$e_pin:$e_dept:$e_grade:Se_gpf_no:$e_gis_no:$e_esis_no:
$e_max_cl:$e_max_pl:Se_max_ml:$e_bs:$e_cum_cl:$e_cum.pi:
$e_cum_ml:$e_cum_lwp:$e_cum_att | dd conv=ucase

|460—- Unix Shell Programming

2> [dev/null >> fmp/master.aaa
IFS="$IFScolon"
done

mv ftmp/master.aaa $MASTER
exec < $t
IFS="§IFSspace"
writerc "Add another y/n * 23 10 *N"
read another

done

maillbl.prg

maillbl.prg
Prints mailing labels.

clear
t=lttyl

writerc “Screen/Printer * 10 20 "B"
read ans
writerc “Please wait..." 12 22 "B"

exec < $MASTER
while true

do
read line1

#if record read successfully
if[$7-eq0]
then

separate out relevant fields

namel="echo $linel | cut -d:" -f 2'

addi="echo $line1 | cut -d"" -f 4'

city1="echo $line1 | cut-d":" -f 5'
pini="echo $line1 | cut -d"." -f 6"

calculate lengths of various fields
In1="echo $name1 | we -¢'
lai="echo $add1 | we -¢'

Ic1="echo $city1 [we -¢'

Ip1="echo $pin1 | we -¢*

calculate blanks to be padded
bni="expr 40 - $in1*
bal="expr 40 - $lat’
bei1="expr 40 - $lc1’
bp1="expr 40 - $ip1*

pad blanks after name
count=1
while [$count -le $bn1]
do
namei="$namel "
count="expr $count + 1'
done

pad blanks after address
count=1
while [$count -le $bat |
do
add1="$add1 "
count="expr $count + 1'
done

pad blanks after city
count=1
while [$count -le $bc1]
do
city1="gcity1 "
count="expr $count + 1*

Shell Programming Project @

{462-- Unix Shell Programming

Shell Programming Project --463]

done pg maillbl # display mailing labels
else
pad blanks after pin Ipr mail.lbl # print mailing labels
count=1 fi
while [$count -le $bp1]
do rm mail.Ibl
pin1="$pint
count="expr $count + 1' T
doiia payprint.prg
else
break # payprint.prg

fi # Prints monthly payslips for employees on SCREEN.
In practice the payslips are printed on

read another record from file # pre-printed computer stationery. Hence printing on

line2="" # printer would have to be planned according to the
read line2 # page layout of the pre-printed form.
separate out relevant fields cleai

name2="echo $line2 | cut -d"." -f 2'
add2="echo $line2 | cut -d"" -f 4'
city2="echo $line2 | cut -d";" -f &'
pin2="echo $line2 | cut -d*" -f 6

writerc "Screen/Printer * 10 20 "B"
read ans '

calculate number of days in current month
month="date '+%B"

days="3129 31 30 31 3031 31 3031 30 31"
tmp="date '+%m"

mdays="echo $days | cut -d" * -f $tmp’

write fields from 2 records side by side
echo "$name1 $name2" >> mail.lbl
echo "$add1 $add2" >> mail.lbl

echo “$city1 $city2" >> mail.lbl

echo "$pini $pin2" >> mail.lbl

echo >> mail.lbl another=y
t="tty’
done IFSspace="8IFS"
exec < St while ["$annther* =y]
do
if["$ans" =S -0 "$ans" =s] clear
then
echo writerc "Employee Code: " 4 10 "B"

[464-- Unix Shell Programming ‘"‘E
T

read empcode

it [-z "$empcode”]
then

exit
fi

search the employee code
grep V"$empcode: SMASTER > /dev/null

if the search fails
if[$? -ne 0]
then
writerc "Employee code does not exist. Press any key..." 10 109
read key
clear
continue
fi

build a horizontal dashed line
din="-"
count=0
while [$count -It 78)
do

din="$dIn-"*

count="expr $count + 1'
done

clear

writerc *$din* 0 1 "B*

writecentre "Shiviey & Brett Pvt. Ltd." 1B
writerc "$din* 2 1 "B"

set standard input to master file
exec < $MASTER

IFS=""

Shell Programming Project --465)

=

read till desired record is encountered

while read e_empcode e_empname e_sex e_address e_city e_pin
e_dept e_grade e_gpf_no e_gis_no e_esis_no e_max_cl
¢_max_pl e_max_ml e_bs e_cum_cl e_cum_ple_cum_ml
e_cum_lwp e_cum_att

do
if ["$empcode” = "$e_empcode”]
then

break

fi

done

set standard input to transaction file
exec < $TRAN

read till desired record is encountered

while read t_empcode t_deptt_clt_mit_plt_lwpt dat hrat ca
t_ccat_sppay_1t_sppay_2t_gst _gpft_gis t_esis t_inc_tax
t_prof_taxt_rent_dedt_It_loant_st_loan t_spded_1 t_spded_2
t_tot_ded {_net_pay

do
if ["$empcode” = "$t_empcode”]
then

break

fi

done

reset standard input to terminal

¥ exec < $t
[;
I'T IFS="$|FSspace”
display various field values at appropriate places
i 9 writerc "Employee code:" 31 "B

writerc "$e_empcode” 3 15 "N
writerc "\033[1mSex:\033[0m$e_sex" 3 24 'N°

[466-- Unix Shell Programming

Shell Programming Project --467)

writerc "\033[1mGrade:\033[0m$e_grade” 3 40 "N"
writerc "\033[1mMonth:\033[0m$month" 3 66 “N*
writerc "\033[1mName:\033[0m$e_empname" 5 1 "N
writerc "\033[1mDepartment:\033[0m$e_dept" 5 50 "N"
writerc "\033[1mGPF NO.:\033[0m$e_gpf_no" 7 1 "N"
writerc "\033[1mGIS NO.:\033[0m$e_gis_no" 7 25 "N
writerc \033[1mESIS NO.:\033[0m$e_esis_no" 7 48 "N"
writerc "Normal Days" 9 1 "B"

writerc "Casu.Leav" 921 "B"

writerc "Medical Leave" 9 32 "B"

writerc "Prov. Leave" 9 48 'B"

writerc "LWP" 9 61 "B"

writerc "Attended Days" 9 66 "B"

writerc "$mdays® 10 1 "N"

writerc "$t_cl" 10 27 "N"

writerc "$t_ml" 10 32 "N"

writerc "$t_pl" 10 48 "N"

writerc "$t_lwp" 10 61 "N*

writerc "$e_cum_att" 10 66 "N

writerc "BS" 12 1 "B*

writerc "DA" 12 10 "B"

writerc "HRA" 12 25 "B"

writerc "CA" 12 32 'B"

writerc "CCA" 12 39 'B"

writerc "S.P.1" 12 48 "B"

writeic "S.P.2" 12 54 'B"

writerc "GS" 12 61 "B"

writerc "$e_bs" 13 1"N"

writerc "$t_da“ 13 10 "N"

writerc "$t_hra" 13 25 "N"

writerc "$t_ca" 1332 "N"

writerc "$t_cca" 13 39 "N"

writerc "$t_sppay_1" 13 48 "N"

writerc "$t_sppay_2" 13 54 "N"

writerc “$t_gs" 1361 "N’

writerc "GPF" 15 1 "B"

writerc "ESIS" 1510 "B"

writerc "GIS" 15 18 "B"

writerc "IT" 15 25 "B"

writerc "PT* 1532 "B"

writerc "RENT" 15 39 "B"
writerc "Loan1" 15 48 'B"
writerc "Loan2" 15 54 "B"
writerc "S.D.1" 1561 "B"
writerc "S.D.2" 1568 "B"
writerc “Total" 15 74 "B"

writerc “$t_gpf* 16 1 "'N"
writerc "$t_esis" 16 10 "N"
writerc "$t_gis" 16 18 "N"
writerc "$t_inc_tax" 16 25 "N"
writerc "$t_prof_tax" 16 32 "N*
writerc "$t_rent_ded" 16 39 "N"
writerc "$t_It_loan" 16 48 "N"
writerc "$t_st_loan" 16 54 “N"
writerc "$t_spded_1" 16 61 *N*
writerc "$t_spded_2" 16 68 "N"
writerc "$t_tot_ded" 16 73 "N"
writerc "Net Pay" 18 1 *B"
writerc "Rs. $t_net_pay" 19 1"N"
writerc "Receiver's Signature” 19 59 "B"
writerc "$din" 20 1 "B"

writere "Want to display another payslip y/n * 22 10 "N*
read another
done

spaysheet.prg

spaysheet.prg
Prints department-wise summary payroll sheet.

clear

|468-- Unix Shell Progranmming

Shell Programming Project —-46:9]

possible departments in the company
dept="MFG:ASSLY:STORES:MAINT:ACCTS"

="y’
IFSspace="$IFS"
IFScolon=""

month="date '+%B"
year='date '+%Y"

display report titles

writecentre "Payroll Processing System® 1 "B"
writecentre 'Summary Payroll Sheet’ 2 "B"
writecentre *$month $year" 3 "B"

display column headings
writerc “Total" 5 20 "B
writerc "Gross" 5 35 "B”
writerc "Gross" 5 50 "B"
writerc “Net" 5 70 "B"

writerc "Department” 6 5 "B*
writerc "Employees” 6 20 "B"
writerc "Earning" 6 35 "B"
writerc "Deduction” 6 50 "B"
writerc "Payments’ 6 70 'B"

count=1
row=8

run the loop for 5 different departments in the company

while [$count -le 5]

do
pick up one department
var="echo $dept | cut -d":" -f $count'

initialise variables
tot_emp=0

gross_earmn=0
gross_ded=0
net_pay=0
IFS="$IFScolon"

set standard input to transaction file
exec < $TRAN

read records from transaction tile

while read t_empcode t_deptt_clt_mlt_pl t_lwp t_da_ t_hra t_ca
t_ccat_sppay_1t_sppay_21gs t_gpf t_gis t_esis 1_inc_tax
t_prof_tax t_rent_ded t_It_loan t_st_loan t_spded_1t_spded 2
t_tot_ded {_net_pay

do

IFS="$IFSspace’

if department matches

if [“$t_dept" = "$var']

then
tot_emp="expr $tot_emp + 1 =
gross_earn="echo "scale = 2\n $gross_eam + $t_gs'| bff .
gross_ded="echo "scale = 2 \n $gross_ded + $Ll°1_;dﬂd ‘I be
net_pay='echo "scale = 2 \n $net_pay + $t_net_pay" | bc

fi

IFS="$IFScolon"

done

reset standard input to téfminal
exec < St

output summary values of one depariment
writerc "$var" $row 5 "N

writerc "$tot_emp" $row 20 "N"
writerc "$gross_earn" $row 35 "N
writerc "$gross_ded" $row 50 “N"
writerc “$net_pay” $row 70 "N

[470-- Unix Shell Programming

IFS="$IFSspace"
row="expr $row + 1'
count="expr $count + 1°

done

IFS="$IFSspace"

writerc "Press any key..." 24 10 "N
read key

Isr.prg

Isrprg
Generates leave status report.

clear

initialise variables
anotherzy
1="tty*

month="'date '+%B"
IFSspace="8IFS"

while ["$another® =y -0 "$another' =Y

do
clear
writecentre “Payroll Processing System" 1 “B"
writecentre "Leave Status Report” 2 "B"

writerc "Employee Code: " 4 10 'B"
read empcode

if [-z "$empcode”]

Shell Programming Project --471)

fi

grep \"$empcode: SMASTER > {dev/null

if[$?-ne0]

then
writerc "Employee code does not exist. Press any key..." 10 10 'B"
read key
continue

fi

IFS=""

set standard input to master file
exec < SMASTER

search for the desired employee code

while read e_empcode e_empname e_sex &_address e_city e_pin
e_dept e_grade e_gpf_no e_gis_no e_esis_no e_max_cl e_max_pl
e_max_mle_bs e_cum_cl e_cum_pl e_cum_ml e_cum_lwp
e_cum_att

do
if ["$empcode” = "$e_empcode”]
then

break

fi

done i

reset standard input to terminal
exec < $t

IFS="$IFSspace"

calculate balance leaves
bal_cl="expr $e_max_cl - $e_cum_cl'
bal_ml="expr $e_max_ml - $e_cum_c’
bal_pl='expr $e_max_pl - $e_cum_pl

{472-- Unix Shell Programming

display leave status

writerc * L N

writerc "\033[1mName:\033[0m$e_empname’ 5 1 ‘N
writerc "\033[1mEmpcode:\033[0m$e_empcode’ 5 35 "N°
writerc "\033[1mGrade:\033[0m$e_grade” 5 55 "N
writerc "\033[1mMonth:\033[0m$month® 5 66 "N

writerc "CL Allowed" 7 1"B"
writerc "ML Allowed" 7 15 "B"
writerc "PL Allowed" 7 35 "B"
writerc "$e_max_cl' 8 1 "N"
writerc "$e_max_ml" 8 15 "N
writerc “$e_max_pl" 8 35 "N

writerc "Cum.CI* 101 'B"
writerc "Cum.ML" 10 15 "B"
writerc *Cum.PL" 10 35 "B"
writerc "Cum.LWP" 10 55 "B"
writerc "Cum.Att.Days" 10 66 "B
writerc "$e_cum_cl" 11 1 "N*
writerc "$e_cum_ml" 11 15 "N"
writerc "$e_cum_pl" 11 35 "N"
writerc "$e_cum_Iwp" 11 55 "N"
writerc “$e_cum_att" 11 66 "N"

writerc "Balance CL" 13 1 "B"
writerc 'Balance ML" 13 15 "B"
writerc ‘Balance PL" 13 35 "B"
writerc "$bal_cl" 14 1 *N*
writerc "$bal_ml" 14 15 "N"
writerc "$bal_pl" 14 35 "N

writerc "Another employee y/n “ 21 10 "N"
read another
done

Q Shell Programming Project --473

clmonth.prg

clmonth.prg o
Closes the monthly transaction file.

clear -
writecentre "Payroll Processing System” 2 B

writecentre "Close Current Month® 3 "B*

sel 'date’
cur_mth=$2

if [“etran$cur_mth.dbf"]

then o
writecentre "Month has already been closed. Press any key... 15"B

read key
exit
fi

count="wc - SMASTER'
set $count

meount=$1

count="wc -| $TRAN'
set $count

tcount=$1

#if all records have not been entered in transaction file
if [$mcount -gt $tcount]

then o
writecentre "Transaction file incomplete. Cannot close month." 15°B

writecentre "Press any key..." 16 "B°
read key
exit

fi

mv $TRAN etran$cur_mth.dbf

[474-- Unix Shell Programming

touch $TRAN

check for success
if[$7-eq0]
then
writecentre "Month successfully closed... Press any key" 15 "B"
else
writecentre "Unable to close month... Press any key" 15 "B
fi
read key

Shell Programming Project --4 ,‘rﬂ

clyear.prg

clyear.prg
Closes the yearly transactions, updates master and reorganizes.

clear
writecentre "Payroll Processing System” 2 "B"
writecentre "Close Year & Reorganize’ 3 'B"

t= lﬁyl
oldifs="$IFS"

writecentre "Please wait... frying to close year' 10 "B"

yr='date +%y"

if [-f "etran$yr.dbf"]

then
writecentre "Year has already been closed. Press any key..." 12 "B"
read key
exit

fi

since financial year is from Apr to Mar
months="Apr:May:Jun:Jul:Aug:Sep:Oct:Nov:Dec:Jan:Feb:Mar"
IFS=;

set $months
count=1

flag=0
while [$count -le 12]
do
if [f “etran$1.dbf"]
then
cat etran$1.dbf >> etran$yr.dbf
rm etran$1.dbf
flag=1
fi

count="expr $count + 1°
shift
done

if [$flag=0]
then '
writecentre "Month has not been closed. Press any key..." 12 "B"
writecentre “Close month before closing year. Press any key..." 13
8"
read key
exit
fi

set standard input to master file
exec < $MASTER

prepare master file for new financial year

while read e_empcode e_empname e_sex e_address e_city e_pin
e_dept e_grade e_gpf_no e_gis_no e_esis_no e_max_cl e_max_pl
e_max_ml e_bs e_cum_cl e_cum_pl e_cum_ml e_cum_iwp '
e_cum_att

do
e_cum_cl=0

Shell Programming Project --477|

[476-- Unix Shell Programming

e_cum_pl=0
e_cum_mi=0
e_cum_lwp=0
e_cum_atlzf}
IFS="$oldifs"
echo $e_empcode:$e_empname:$e_sex:$e_address:$e_city:
$e_pin:$e_dept:$e_grade:$e_gpf_no:Se_gis_no:$e_esis_no:
$e_max_cl:$e_max_pl:$e_max_ml:$e_bs:$e_cum_cl:$e_cum_pl:
|$r%c? r.n_ml :$e_cum_lwp:$e_cum_att >> tmp/master

done

(a)

> IFS="$oldifs"
mv /tmp/master $MASTER

reset standard input fo terminal
exec < §t
':\éritecentre "Year has been closed successfully. Press any key..." 12 '

(b
read key '

Where Do You Go from Here...

Phew! Thal was one long program listing. I Hope you understood the
_undf:rlymg logic. I can appreciate that such big programs cannot be
imbibed to the last detail at first shot. But if you take it apart file by
file the whole process of understanding would become a little easier.
Now you can think of developing on your own the following
programs which have been left as an exercise to the reader.

(c)

(a) tmodi.prg - Modification of an existing record in the transac-

tion file.
tdel.prg - Deletion of an existing record in the transaction file.

;I;:‘-P"E - Retrieval of an existing record from the transaction
ile.

) Y

(c)

srove This Program...

However good one does anything there is always ascope for improve-
~ ment. So also is true with this program.

_You can improve this program in several ways. Some of these are
“mentioned below:

The program is not sand-papered with error checks. (This was
done to simply keep the programs compact and easy (0 under-
stand.) For example, while performing data entry the program
doesn’t do data validation. That is, if the user supplies Basic
salary as alphanumeric or Name as numeric the program
blindly accepts this. The data validation can be done for each
field. Though this is not entirely impossible using the shell
techniques that we know, a better idea would possibly to call
a C routine which can do the data validation more efficiently.

The program has been hard-coded to implement only five
different types of departments present in the company. Also,
the program assumes there are certain fixed grades of
employees. You canimprove upon this by making the program
work for any number of departments and grades of employees.
It would be a good idea to read the percentages used for
calculation of various allowances and deductions, from an
initialisation file when the program is run every time rather
than hard-coding these facts within a program.

No facility has been provided to take backup of current master
and transaction files. This can be implemented through the
System Maintenance menu.

One more menu called File Tools can be implemented which
would permit the usual file operations like copying, deletion,
catenation, renaming etc. such that the user doesn’t have toquit
from the software just to perform these common chores.

Other Titles of Interest by Y.P. Kanetkar

«C COLUMN COLLECTION

C PEARLS

«C PROJECTS (W/CD)

«C#,NET FUNDAS (W/CD)

«C++.NET FUNDAS (WICD)

« DATA STRUCTURE THROUGH C (W/CD)
«DATA STRUCTURE THROUGH C#+ (W/CD)
«DIRECTX GAME PROGRAMMING FUNDAS (W/CD)
+EXPLORING C

*Go Embedded (W/CD) - 3308
+GRAPHICS UNDERC

«INTRODUCTION TO OOPS & C++

*LET US C - 8th Ed.

«LET US C SOLUTIONS - 8th Ed.

eLET US C++

«PROGRAMMING EXPERTISE IN BASIC
*TEST YOUR C SKILL -2nd Ed.

e TEST YOUR C#+ SKILLS

*TEST YOUR C# .NET SKiLLS 3508
*TEST YOUR UNIX SKILLS

«TEST YOUR VB.NET SKILLS PART |

«TEST YOUR VB.NET SKILLS PART Il
»UNDERSTANDING POINTERS IN C
«UNDOCUMENTED DOS THROUGH C

sUNIX SHELL PROGRAMMING

oVC++ GEMS (WICD)

#VC++, COM AND BEYOND (W/ch)

*VISUAL C++ PROGRAMMING

*VISUAL C++ PROJECTS (W/CD)

*WORKING WITH C (FOR DOE - A & B LEVEL)
*WRITING TSR'S THROUGH C

*WRITING WINDOWS DEVICE DRIVERS (WICD) |
*BPB LET US C (HINDI) 4

Index --479)

!

i 362

file
fm l 109,112
< 109,112
>> 109, 112
A
at 171,172
B
background processes 12:‘3;
b r .
bi?;: 171,175
be 50
boot block ’.gé
break 3
c
cal
case-esac

cat

cd

chmod

cmchk

command line arguments
compress

continue

control instructions

|480-- Unix Shell Programming

cp

cron
crontab
cut

g =
data blocks
date
dd
df
dfspace
doscat
doscp
dosdir
dosformat
du

E

echo

escape sequences
eval

exec

export

expr

F

factor

file

file system
mounting
unmounting

filter

find

finger

for loop

28
171
171, 176
91

64
56
95
70
71,408
87
87
86
87
72

206, 226
229

381

293

373
52,223

. Index --481 |
generating values tor 302
format 402
functions 359
G -—
getopts 344
grep 92
H
head 96
I
I/Q redirection 108
id 35
if 244
IFS 290
inode table 63
K
kernel 10
kill 166
L
If 46
In 36
logical operators
hierarchy of 261
logname 54
loop
for 282, 298
until 282,294
while 282, 283
Ip "+ 98

[482-- Unix Shell Brogramming

Ipsched
Ipshut
Ipstat

Is

M
mail
customizing
receiving
sending
man
mesg
metacharacters
filename substitution
[/O redirection
process execution
quoting
mkdir
mkfs
more
mount
multitasking
serial
multiuser

.operators
iogical
OPTARG

OPTIND

P

pack
passwd
permissions
directory
PE
piping
positional parameters
process
killing
priorifies
process states
ps
pwd

read
rm
rmdir

set

shell
Bourne
c
functions of
keywords
Korn
metacharacters
programming project
scripts
types of
variables

Index --4 83|

— |

114
215,329

166
16§
15§
159

47

206, 226
29, 45
48

218, 331

I

Ll

370

208

12

320

428
202

11
207,373

14_&1-- Unix Shell Programming

shell script
debugging
executing, multiple
interactive
-shift
shutdown
signal
sort
standard erron
standard input
standard ontput
sticky bit
sty
super block
sync
sysadmsh
system
payroll processing
system administration

T

tail

tar

terminal
dial in
dumb
emulation
types of

test
file
numeric
string

time

touch

tput

trap

ity

Index --485|

ulimit

umask

umount

uname

uUncompress

Unix

communication
file system
hardware requircments
portability
processes

salient features of
security

unpack

unset

until loop

v

variable assignment
variables

readonly
sysiem defined
user defined

abbr

adding text

block commands
command line options
cursor movement
customizing

telete and paste
deleting text

modes of operation
multiple file editing
overwriting text
search and replace

[486-- Unix Shell Programming

l READER'S EVALUATION

searching text
set commands
yank and paste

\%%

wall

we

while loop
who

who am i
write

tis our sincere endeavour to publish books which are specifically designed to meet
your requirements. Your feedback on our titles would be of crucial help to us in this endeavour.
Dlease spare some of vour valuable time to fill the form given below and mail it to:
Publishing Manager,
BPB Publications,
20, Ansari Road, Daryaganj, New Delhi 110002
Looking forward to receiving your valuable comments and suggestions.

Title: Unix Shell Programming

Author: Y.P.Kanetkar - ISBN: 81-7029-753-2
186 |1 Pilease tick the appropriate box below each question as per the tollowing rating code:
88 1. COWERAGE (have all relevant topics been included in the book?)
282 l Excellent | Good | Average | Bad]

14, 184

14
132 [_Excellenll Good l Averaga[Bad |

2. PRESENTATION (have the topics been clearly explained?)

3. DEPTH (have the topics been explained in sufficient detail.?)
[Excelient‘ Good | Averagel Bad |

4. EXAMPLES/SAMPLE PROGRAMS/EXERCISES (Are these clear and illustrative?)
[Excellent | Good] Average i Bad J

5. Isthere any other topic which you would like to be included in the book?
(i)
(ii)
(iii) :

6. Isthere any topic which you feel should be explained in a better manner?
(i)

(ii)
(i)
7. s there any other book on this subject which you have been using? If yes, please
state title, author and publisher. S
8. How does this book compare with the other one?
(i) Coverage in this book is better/much better/same/worse.
(i) Presentation in this book is better/much better/same/worse.
(i Depthin this book is more/much more/same/lesser.
{iv) Exarnples/sample programs in this book are better/much better/
\ samefworse.
9. Did you experience any difficulty in obtaining this book in your town? Yes/No
10: How did you come to know about this book?
(i) Fromfriends/fellow students
(i) From teacher/instructor
(i) Sawitin the bookshop
(iv) Through an advertisement/book reviews in magazine(s).

Name: __
Affiliation: _

Quailification:
Address:

