Programming in Python 3

A Complete Introduction to the Python Language

Second Edition

Mark Summerfield

vvAddison-Wesley

Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
New York - Toronto - Montreal - London - Munich - Paris - Madrid
Capetown - Sydney - Tokyo - Singapore - Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international @pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data

Summerfield, Mark.

Programming in Python 3 : a complete introduction to the Python language / Mark
Summerfield.—2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-321-68056-3 (pbk. : alk. paper)
1. Python (Computer program language) 2. Object-oriented programming (Computer science)

I. Title.

QA76.73.P98S86 2010
005.13'3—dc22
2009035430

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-68056-3

ISBN-10: 0-321-68056-1

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2009

www.it-ebooks.info

http://www.it-ebooks.info/

ContentsataGlance

ListofTablesiiiiiiii i,
Introduction
Chapterl. RapidIntroductiontoProceduralProgramming
Chapter2. DataTypescoiiiiiiiiiiiiiiiiiiiiinnnn..
Chapter3. CollectionDataTypesccciiiininn....
Chapter4. ControlStructuresandFunctions
Chapter5. Modules i,
Chapter6. Object-OrientedProgramming
Chapter7. FileHandling cciiiiiieieo....
Chapter8. AdvancedProgrammingTechniques
Chapter9. Debugging,Testing,andProfiling
Chapterl0. ProcessesandThreading
Chapterll. Networking i ..
Chapterl2. DatabaseProgramming
Chapterl3. RegularExpressions
Chapterl4. IntroductiontoParsing

Chapterl5. IntroductiontoGUIProgramming

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Listof Tablesoi i i
Introduction i e

Chapter 1. Rapid Introduction to Procedural Programming ...
Creating and Running Python Programs
Python’s “Beautiful Heart”,

Piece #1: Data Typescovviiiiiiiiiiiiiiiiiiaee e
Piece #2: Object Referencescccoiiiiii ..
Piece #3: Collection Data Typesccoiiiiiiinnn....
Piece #4: Logical Operationsccovviiiieennn...
Piece #5: Control Flow Statements
Piece #6: Arithmetic Operatorscoo....
Piece #7: Input/Output
Piece #8: Creating and Calling Functions
Examples ... e
DIgdigitS. PY v oo
generate_grid. Pyoiiiiiii e
SUMMATY ...ttt e
BXerCiSes o e

Chapter 2. DataTypesoouiiiiiiiiiiiiiiiiiiiiiennn..
Identifiersand Keywordsccoiiiiiiiiiiiiiiinnnn...
Integral Typescooviiiiii e e e

Integerso e
Booleansc.ccoiiiiiiii e
Floating-Point Typescoiiiiiiiiiiiiiiiiiiennn.
Floating-Point Numbers,
Complex Numbersottt
Decimal Numbers
SIS . e e
Comparing Stringscoiiiiiiieeeeeeniiiiiiiiiee..
Slicing and Striding Stringscoiiiiiiiii...
String Operators and Methods

ix

www.it-ebooks.info

http://www.it-ebooks.info/

String Formatting with the str.format() Method 78

Character Encodingsttt 91
Examples 94
qUAdratic. Py ..ot e 94
esv2htmlpy ... 97
SUMIMNATY ...ttt ettt 102
EXercises ... 104
Chapter 3. CollectionDataTypescccvnnn.. 107
Sequence Types ... e 107
TUples ..ot e 108
Named Tuplescooviiiiiiiiii e 111
LSt oo e 113

T P I =Y 120
N 13 71 P 121
Frozen Sets ...t e 125
Mapping Types ...t 126
Dictionaries ..o e 126
Default Dictionaries ..., 135
Ordered Dictionaries ..., 136
Iterating and Copying Collections 138
Iterators and Iterable Operations and Functions 138
Copying Collectionsc.ciiiiiiiiiiinnnnnnnnnnnn, 146
Examples 148
generate_USernames.PY . ..oovvvrirt it e 149
StatIStiCS. Py « i e 152
SUMIMATY ...ttt ittt ettt 156
BEXerCiSes oo e 158
Chapter 4. Control Structures and Functions 159
Control Structures........ ..ot e 159
Conditional Branching, 159
L00DINg . oottt 161
Exception Handling, 163
Catching and Raising Exceptions 163
Custom Exceptionscooiiiiiiiiiiiiiiiin e, 168
Custom Functions i 171
Names and Docstrings ..., 176
Argument and Parameter Unpacking 177

X

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing Variables in the Global Scope 180

Lambda Functions i, 182
ASSErtioNS ... 183
Example: make_html_skeleton.py 185
SUMIMATY ...ttt 191
ExXercise ... 192
Chapter 5. Modules i, 195
Modules and Packagescciiiiiiiiiiiii . 195
Packages ... 199
Custom Modules i 202
Overview of Python’s Standard Library 212
String Handling i ... 213
Command-Line Programming 214
Mathematicsand Numbersooiiiiiia.. 216
Timesand Dates i 216
Algorithms and Collection Data Types 217
File Formats, Encodings, and Data Persistence 219
File, Directory, and Process Handling 222
Networking and Internet Programming 225
XML . e 226
Other Modules ..o i 228
SUMIMATY ...ttt ittt ettt 230
EXercise ... 231
Chapter 6. Object-Oriented Programming 233
The Object-Oriented Approachcoiiin.... 234
Object-Oriented Concepts and Terminology 235
Custom Classesvviiiiniii i e 238
Attributesand Methodsl 238
Inheritance and Polymorphism 243
Using Properties to Control Attribute Access 246
Creating Complete Fully Integrated Data Types 248
Custom Collection Classesccoieeiiiiiiiiiiiiiienn... 261
Creating Classes That Aggregate Collections 261
Creating Collection Classes Using Aggregation 269
Creating Collection Classes Using Inheritance 276
SUMMATY ...ttt ettt ettt 283
BXerCiSes oo e 285
xi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. FileHandlingc.... 287

Writing and Reading BinaryData 292
Pickles with Optional Compression.......................... 292
Raw Binary Data with Optional Compression 295

Writing and Parsing Text Files, 305
Writing Text ... e e 305
Parsing Text ... 307
Parsing Text Using Regular Expressions 310

Writing and Parsing XML Filesoooiiiiiiiiiiiian, 312
Element Treescoiiiiiiiiiii e 313
DOM (Document Object Model)o... 316
Manually Writing XML 319
Parsing XML with SAX (Simple API for XML) 321

Random Access Binary Files i, 324
A Generic BinaryRecordFile Class 324
Example: The BikeStock Module’s Classes 332

SUMIMATY ...ttt ittt ettt et 336

BEXerCiSes oo e 337

Chapter 8. Advanced Programming Techniques 339

Further Procedural Programming 340
Branching Using Dictionaries..................coovie... 340
Generator Expressions and Functions 341
Dynamic Code Execution and Dynamic Imports.............. 344
Local and Recursive Functions 351
Function and Method Decorators............................ 356
Function Annotationso i .., 360

Further Object-Oriented Programming 363
Controlling Attribute Accesscoiiiiiinnnnii.. 363
Functors ... e 367
Context Managersoovveeiiiiiiiiiiiiiiiaeeeeeeennnns 369
Descriptors ... 372
Class Decoratorso, 378
Abstract Base Classescccoiiiiiiiiiiiiiiiiiiennnnn. 380
Multiple Inheritance, 388
Metaclasses 390

Functional-Style Programming 395
Partial Function Application 398

xii

www.it-ebooks.info

http://www.it-ebooks.info/

COTOULINEGS . .ottt ettt et e e e 399

Example: Valid.pyooiiiii 407
SUMIMATY ...ttt 410
EXerciSes ... 411
Chapter 9. Debugging, Testing, and Profiling 413
Debugging ... 414
Dealing with Syntax Errors............ ... i, 414

Dealing with Runtime Errors 415
Scientific Debugging 420

Unit Testingcooiiiiiii e 425
Profiling 432
SUMIMATY ...ttt ittt ettt 437
Chapter 10. Processes and Threading 439
Using the Multiprocessing Module 440
Using the Threading Module iiiiin.... 444
Example: A Threaded Find Word Program 446
Example: A Threaded Find Duplicate Files Program 449
SUMMATY ...ttt ittt 454
EXErCiSes oo e 455
Chapter 11. Networking i, 457
Creatinga TCPClient 458
Creatinga TCP Serverc.cciiiiiiiiiiiiiiiiiiiiinnn.. 464
SUMMATY ...ttt ettt e 471
EXErCiSes oo e 471
Chapter 12. Database Programming 475
DBM Databasesoouuuiiinii e 476
SQL Databasest 480
SUMMATY ..ottt e e 487
EXercise ... e 488
Chapter 13. Regular Expressionscco.... 489
Python’s Regular Expression Language 490
Characters and Character Classes 490
Quantifiers i 491
Grouping and Capturingcciiiiiiieneeeni.. 494
Assertionsand Flags i 496

The Regular Expression Module 499

xiii

www.it-ebooks.info

http://www.it-ebooks.info/

SUMIMNATY ...ttt ettt 509

EXerciSes ... 510
Chapter 14. IntroductiontoParsing 513
BNF Syntax and Parsing Terminology 514
Writing Handcrafted Parsers, 519
Simple Key—Value Data Parsing 519

Playlist Data Parsingccoiiiiiiiiiinnnenennnnn, 522

Parsing the Blocks Domain-Specific Language 525
Pythonic Parsing with PyParsing 534

A Quick Introduction to PyParsing 535

Simple Key—Value Data Parsing 539

Playlist Data Parsingccoiiiiiiiiinnnnennnnn, 541

Parsing the Blocks Domain-Specific Language 543

Parsing First-Order Logicccoiiiiiiiiiii... 548
Lex/Yacc-Style Parsing with PLY 553
Simple Key—Value Data Parsing 555

Playlist Data Parsing ..., 557

Parsing the Blocks Domain-Specific Language 559

Parsing First-Order Logicccoiiiiiiiiiii.., 562

UMM ALY ...ttt ittt ettt 566
EXercise ... e 568
Chapter 15. Introduction to GUI Programming 569
Dialog-Style Programsccoiiiiiiiiiiiiiiiiiiaa... 572
Main-Window-Style Programscciiiinn.... 578
Creatinga Main Windowccoiiiiiiiiiiia., 578
Creatinga Custom Dialog, 590

10 0010102 593
BXErCiSeS oo e 593
Epilogue ... 595
Selected Bibliography it 597
Indexo 599

Xiv

www.it-ebooks.info

http://www.it-ebooks.info/

List of Tables

2.1
2.2.
2.3.
2.4.
2.5.
2.6.
2.17.
2.8.
2.9.
2.10.
3.1
3.2.
3.3.
3.4.
6.1.
6.2.
6.3.
6.4.
7.1.
7.2.
7.3.
7.4.
7.5.
8.1.
8.2.
8.3.
8.4.
12.1.
12.2.
13.1.

Python’s Keywordscoiiiiiiiiiiiiii i 52
Numeric Operators and Functions 55
Integer Conversion Functions 55
Integer Bitwise Operatorsccovviiiiiiiiiinnn... 57
The Math Module’s Functions and Constants #1 60
The Math Module’s Functions and Constants #2 61
Python’s String Escapesc.cooviiiiiiiiiiiiiiiinn... 66
String Methods #1 ...t 73
String Methods #2 74
String Methods #3 i 75
List Methods ... e 115
Set Methods and Operatorscciiiiiiiinnn... 123
Dictionary Methods i, 129
Common Iterable Operators and Functions 140
Comparison Special Methodso..... 242
Fundamental Special Methods 250
Numeric and Bitwise Special Methods 253
Collection Special Methodsccooiiiiiii.... 265
Bytes and Bytearray Methods #1 299
Bytes and Bytearray Methods #2 300
Bytes and Bytearray Methods#3 301
File Object Attributes and Methods#1 325
File Object Attributes and Methods#2 326
Dynamic Programming and Introspection Functions 349
Attribute Access Special Methods 365
The Numbers Module’s Abstract Base Classes 381
The Collections Module’s Main Abstract Base Classes 383
DB-API 2.0 Connection Object Methods 481
DB-API 2.0 Cursor Object Attributes and Methods 482
Character Class Shorthands 492
XV

www.it-ebooks.info

http://www.it-ebooks.info/

13.2.
13.3.
13.4.
13.5.
13.6.
13.7.

Regular Expression Quantifiers 493

Regular Expression Assertionscccovunnnn. 497

The Regular Expression Module’s Functions 502

The Regular Expression Module’s Flags 502

Regular Expression Object Methods 503

Match Object Attributes and Methods 507
xvi

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Python is probably the easiest-to-learn and nicest-to-use programming lan-
guage in widespread use. Python code is clear to read and write, and it is con-
cise without being cryptic. Python is a very expressive language, which means
that we can usually write far fewer lines of Python code than would be required
for an equivalent application written in, say, C++ or Java.

Python is a cross-platform language: In general, the same Python program can
be run on Windows and Unix-like systems such as Linux, BSD, and Mac OS X,
simply by copying the file or files that make up the program to the target
machine, with no “building” or compiling necessary. It is possible to create
Python programs that use platform-specific functionality, but this is rarely
necessary since almost all of Python’s standard library and most third-party
libraries are fully and transparently cross-platform.

One of Python’s great strengths is that it comes with a very complete standard
library—this allows us to do such things as download a file from the Internet,
unpack a compressed archive file, or create a web server, all with just one or a
few lines of code. And in addition to the standard library, thousands of third-
party libraries are available, some providing more powerful and sophisticat-
ed facilities than the standard library—for example, the Twisted networking
library and the NumPy numeric library—while others provide functionality
that is too specialized to be included in the standard library—for example, the
SimPy simulation package. Most of the third-party libraries are available from
the Python Package Index, pypi.python.org/pypi.

Python can be used to program in procedural, object-oriented, and to a lesser
extent, in functional style, although at heart Python is an object-oriented
language. This book shows how to write both procedural and object-oriented
programs, and also teaches Python’s functional programming features.

The purpose of this book is to show you how to write Python programs in good
idiomatic Python 3 style, and to be a useful reference for the Python 3 language
after the initial reading. Although Python 3is an evolutionary rather than rev-
olutionary advance on Python 2, some older practices are no longer appropriate
or necessary in Python 3, and new practices have been introduced to take ad-
vantage of Python 3 features. Python 3 is a better language than Python 2—it
builds on the many years of experience with Python 2 and adds lots of new
features (and omits Python 2’s misfeatures), to make it even more of a pleasure
to use than Python 2, as well as more convenient, easier, and more consistent.

1

www.it-ebooks.info

http://www.it-ebooks.info/

2 Introduction

The book’s aim is to teach the Python language, and although many of the
standard Python libraries are used, not all of them are. This is not a problem,
because once you have read the book, you will have enough Python knowledge
to be able to make use of any of the standard libraries, or any third-party
Python library, and be able to create library modules of your own.

The book is designed to be useful to several different audiences, including self-
taught and hobbyist programmers, students, scientists, engineers, and others
who need to program as part of their work, and of course, computing profes-
sionals and computer scientists. To be of use to such a wide range of people
without boring the knowledgeable or losing the less-experienced, the book as-
sumes at least some programming experience (in any language). In particu-
lar, it assumes a basic knowledge of data types (such as numbers and strings),
collection data types (such as sets and lists), control structures (such as if and
while statements), and functions. In addition, some examples and exercises
assume a basic knowledge of HTML markup, and some of the more specialized
chapters at the end assume a basic knowledge of their subject area; for exam-
ple, the databases chapter assumes a basic knowledge of SQL.

The book is structured in such a way as to make you as productive as possible
as quickly as possible. By the end of the first chapter you will be able to write
small but useful Python programs. Each successive chapter introduces new
topics, and often both broadens and deepens the coverage of topics introduced
in earlier chapters. This means that if you read the chapters in sequence,
you can stop at any point and you’ll be able to write complete programs with
what you have learned up to that point, and then, of course, resume reading
to learn more advanced and sophisticated techniques when you are ready. For
this reason, some topics are introduced in one chapter, and then are explored
further in one or more later chapters.

Two key problems arise when teaching a new programming language. The
first is that sometimes when it is necessary to teach one particular concept,
that concept depends on another concept, which in turn depends either directly
or indirectly on the first. The second is that, at the beginning, the reader may
know little or nothing of the language, so it is very difficult to present inter-
esting or useful examples and exercises. In this book, we seek to solve both
of these problems, first by assuming some prior programming experience, and
second by presenting Python’s “beautiful heart” in Chapter 1—eight key pieces
of Python that are sufficient on their own to write decent programs. One con-
sequence of this approach is that in the early chapters some of the examples
are a bit artificial in style, since they use only what has been taught up to the
point where they are presented; this effect diminishes chapter by chapter, until
by the end of Chapter 7, all the examples are written in completely natural and
idiomatic Python 3 style.

The book’s approach is wholly practical, and you are encouraged to try out the
examples and exercises for yourself to get hands-on experience. Wherever

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 3

possible, small but complete programs and modules are used as examples to
provide realistic use cases. The examples, exercise solutions, and the book’s
errata are available online at www.qtrac.eu/py3book.html.

Two sets of examples are provided. The standard examples work with any
Python 3.x version—use these if you care about Python 3.0 compatibility. The
“eg31” examples work with Python 3.1 or later—use these if you don’t need to
support Python 3.0 because your programs’ users have Python 3.1 or later. All
of the examples have been tested on Windows, Linux, and Mac OS X.

While it is best to use the most recent version of Python 3, this is not always
possible if your users cannot or will not upgrade. Every example in this book
works with Python 3.0 except where stated, and those examples and features
that are specific to Python 3.1 are clearly indicated as such.

Although it is possible to use this book to develop software that uses only
Python 3.0, for those wanting to produce software that is expected to be in use
for many years and that is expected to be compatible with later Python 3.x re-
leases, it is best to use Python 3.1 as the oldest Python 3 version that you sup-
port. This is partly because Python 3.1 has some very nice new features, but
mostly because the Python developers strongly recommend using Python 3.1
(or later). The developers have decided that Python 3.0.1 will be the last
Python 3.0.y release, and that there will be no more Python 3.0.y releases even
if bugs or security problems are discovered. Instead, they want all Python 3
users to migrate to Python 3.1 (or to a later version), which will have the usu-
al bugfix and security maintenance releases that Python versions normal-
ly have.

The Structure of the Book

Chapter 1 presents eight key pieces of Python that are sufficient for writing
complete programs. It also describes some of the Python programming
environments that are available and presents two tiny example programs, both
built using the eight key pieces of Python covered earlier in the chapter.

Chapters 2 through 5 introduce Python’s procedural programming features,
including its basic data types and collection data types, and many useful built-
in functions and control structures, as well as very simple text file handling.
Chapter 5 shows how to create custom modules and packages and provides an
overview of Python’s standard library so that you will have a good idea of the
functionality that Python provides out of the box and can avoid reinventing
the wheel.

Chapter 6 provides a thorough introduction to object-oriented programming
with Python. All of the material on procedural programming that you learned
in earlier chapters is still applicable, since object-oriented programming is

www.it-ebooks.info

http://www.it-ebooks.info/

4 Introduction

built on procedural foundations—for example, making use of the same data
types, collection data types, and control structures.

Chapter 7 covers writing and reading files. For binary files, the coverage in-
cludes compression and random access, and for text files, the coverage includes
parsing manually and with regular expressions. This chapter also shows how
to write and read XML files, including using element trees, DOM (Document
Object Model), and SAX (Simple API for XML).

Chapter 8 revisits material covered in some earlier chapters, exploring many of
Python’s more advanced features in the areas of data types and collection data
types, control structures, functions, and object-oriented programming. This
chapter also introduces many new functions, classes, and advanced techniques,
including functional-style programming and the use of coroutines—the mate-
rial it covers is both challenging and rewarding.

Chapter 9is different from all the other chaptersin that it discusses techniques
and libraries for debugging, testing, and profiling programs, rather than
introducing new Python features.

The remaining chapters cover various advanced topics. Chapter 10 shows tech-
niques for spreading a program’s workload over multiple processes and over
multiple threads. Chapter 11 shows how to write client/server applications
using Python’s standard networking support. Chapter 12 covers database pro-
gramming (both simple key—value “DBM” files and SQL databases).

Chapter 13 explains and illustrates Python’s regular expression mini-language
and covers the regular expressions module. Chapter 14 follows on from the reg-
ular expressions chapter by showing basic parsing techniques using regular ex-
pressions, and also using two third-party modules, PyParsing and PLY. Finally,
Chapter 15 introduces GUI (Graphical User Interface) programming using the
tkinter module that is part of Python’s standard library. In addition, the book
has a very brief epilogue, a selected bibliography, and of course, an index.

Most of the book’s chapters are quite long to keep all the related material
together in one place for ease of reference. However, the chapters are broken
down into sections, subsections, and sometimes subsubsections, so it is easy to
read at a pace that suits you; for example, by reading one section or subsection
at a time.

Obtaining and Installing Python 3

If you have a modern and up-to-date Mac or other Unix-like system you may
already have Python 3 installed. You can check by typing python -V (note the
capital V) in a console (Terminal.app on Mac OS X)—if the version is 3.x you've
already got Python 3 and don’t have to install it yourself. If Python wasn’t
found at all it may be that it has a name which includes a version number. Try

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 5

typing python3 -V, and if that does not work try python3.0 -V, and failing that try
python3.1 -V. If any of these work you now know that you already have Python
installed, what version it is, and what it is called. (In this book we use the name
python3, but use whatever name worked for you, for example, python3.1.) If you
don’t have any version of Python 3 installed, read on.

For Windows and Mac OS X, easy-to-use graphical installer packages are pro-
vided that take you step-by-step through the installation process. These are
available from www.python.org/download. For Windows, download the “Windows
x86 MSI Installer”, unless you know for sure that your machine has a different
processor for which a separate installer is supplied—for example, if you have
an AMDG64, get the “Windows AMD64 MSI Installer”. Once you've got the in-
staller, just run it and follow the on-screen instructions.

For Linux, BSD, and other Unixes (apart from Mac OS X for which a .dmg in-
stallation file is provided), the easiest way to install Python is to use your oper-
ating system’s package management system. In most cases Python is provided
in several separate packages. For example, in Ubuntu (from version 8), there
is python3.0 for Python, idle-python3.0 for IDLE (a simple development envi-
ronment), and python3.0-doc for the documentation—as well as many other
packages that provide add-ons for even more functionality than that provided
by the standard library. (Naturally, the package names will start with python-
3.1 for the Python 3.1 versions, and so on.)

If no Python 3 packages are available for your operating system you will
need to download the source from www.python.org/download and build Python
from scratch. Get either of the source tarballs and unpack it using tar xvfz
Python-3.1.tgz if you got the gzipped tarball or tar xvfj Python-3.1.tar.bz2 if
you got the bzip2 tarball. (The version numbers may be different, for example,
Python-3.1.1.tgz or Python-3.1.2.tar.bz2,in which case simply replace 3.1 with
your actual version number throughout.) The configuration and building are
standard. First, change into the newly created Python-3.1 directory and run
./configure. (You can use the —-prefix option if you want to do a local install.)
Next, run make.

It is possible that you may get some messages at the end saying that not all
modules could be built. This normally means that you don’t have some of the
required libraries or headers on your machine. For example, if the readline
module could not be built, use the package management system to install the
corresponding development library; for example, readline-devel on Fedora-
based systems and readline-dev on Debian-based systems such as Ubuntu.
Another module that may not build straight away is the tkinter module—this
depends on both the Tcl and Tk development libraries, tcl-devel and tk-devel
on Fedora-based systems, and tc18.5-dev and tk8.5-dev on Debian-based sys-
tems (and where the minor version may not be 5). Unfortunately, the relevant
package names are not always so obvious, so you might need to ask for help on

www.it-ebooks.info

http://www.it-ebooks.info/

6 Introduction

Python’s mailing list. Once the missing packages are installed, run ./configure
and make again.

After successfully making, you could run make test to see that everything is
okay, although this is not necessary and can take many minutes to complete.

If you used --prefix to do a local installation, just run make install. For
Python 3.1, if you installed into, say, ~/1ocal/python31, then by adding the ~/1o-
cal/python31/bin directory to your PATH, you will be able to run Python using
python3 and IDLE using idle3. Alternatively, if you already have a local directo-
ry for executables that is already in your PATH (such as ~/bin), you might prefer
to add soft links instead of changing the PATH. For example, if you keep exe-
cutablesin ~/bin and you installed Python in ~/1local/python31, you could create
suitable links by executing ln -s ~/local/python31/bin/python3 ~/bin/python3,
and ~/local/python31/bin/idle3 ~/bin/idle3. For this book we did a local install
and added soft links on Linux and Mac OS X exactly as described here—and
on Windows we used the binary installer.

If you did not use —-prefix and have root access, log in as root and do make in-
stall. On sudo-based systems like Ubuntu, do sudo make install. If Python 2 is
on the system, /usr/bin/python won’t be changed, and Python 3 will be avail-
able as python3.0 (or python3.1 depending on the version installed) and from
Python 3.1, in addition, as python3. Python 3.0’s IDLE is installed as idle,
so if access to Python 2’s IDLE is still required the old IDLE will need to be
renamed—for example, to /usr/bin/idle2—before doing the install. Python 3.1
installs IDLE as idle3 and so does not conflict with Python 2’s IDLE.

Acknowledgments

I would first like to acknowledge with thanks the feedback I have received
from readers of the first edition, who gave corrections, or made suggestions,
or both.

My next acknowledgments are of the book’s technical reviewers, starting
with Jasmin Blanchette, a computer scientist, programmer, and writer with
whom I have cowritten two C++/Qt books. Jasmin’s involvement with chapter
planning and his suggestions and criticisms regarding all the examples, as well
as his careful reading, have immensely improved the quality of this book.

Georg Brandl is a leading Python developer and documentor responsible for
creating Python’s new documentation tool chain. Georg spotted many sub-
tle mistakes and very patiently and persistently explained them until they
were understood and corrected. He also made many improvements to the ex-
amples.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 7

Phil Thompson is a Python expert and the creator of PyQt, probably the best
Python GUI library available. Phil’s sharp-eyed and sometimes challenging
feedback led to many clarifications and corrections.

Trenton Schulz is a senior software engineer at Nokia’s Qt Software (formerly
Trolltech) who has been a valuable reviewer of all my previous books, and has
once again come to my aid. Trenton’s careful reading and the numerous sug-
gestions that he made helped clarify many issues and have led to considerable
improvements to the text.

In addition to the aforementioned reviewers, all of whom read the whole
book, David Boddie, a senior technical writer at Nokia’s Qt Software and an
experienced Python practitioner and open source developer, has read and given
valuable feedback on portions of it.

For this second edition, I would also like to thank Paul McGuire (author of the
PyParsing module), who was kind enough to review the PyParsing examples
that appear in the new chapter on parsing, and who gave me a lot of thoughtful
and useful advice. And for the same chapter, David Beazley (author of the
PLY module) reviewed the PLY examples and provided valuable feedback. In
addition, Jasmin, Trenton, Georg, and Phil read most of this second edition’s
new material, and provided very valuable feedback.

Thanks are also due to Guido van Rossum, creator of Python, as well as to the
wider Python community who have contributed so much to make Python, and
especially its libraries, so useful and enjoyable to use.

As always, thanks to Jeff Kingston, creator of the Lout typesetting language
that I have used for more than a decade.

Special thanks to my editor, Debra Williams Cauley, for her support, and for
once again making the entire process as smooth as possible. Thanks also to
Anna Popick, who managed the production process so well, and to the proof-
reader, Audrey Doyle, who did such fine work once again. And for this second
edition I also want to thank Jennifer Lindner for helping me keep the new ma-
terial understandable, and the first edition’s Japanese translator Takahiro Na-
gao K E =i, for spotting some subtle mistakes which I've been able to correct
in this edition.

Last but not least, I want to thank my wife, Andrea, both for putting up with
the 4 a.m. wake-ups when book ideas and code corrections often arrived and
insisted upon being noted or tested there and then, and for her love, loyalty,
and support.

www.it-ebooks.info

http://www.it-ebooks.info/

® Creating and Running Python
Programs

® Python’s “Beautiful Heart”

Rapid Introduction to
Procedural Programming

This chapter provides enough information to get you started writing Python
programs. We strongly recommend that you install Python if you have not
already done so, so that you can get hands-on experience to reinforce what you
learn here. (The Introduction explains how to obtain and install Python on all
major platforms; 4 <)

This chapter’s first section shows you how to create and execute Python pro-
grams. You can use your favorite plain text editor to write your Python code,
but the IDLE programming environment discussed in this section provides not
only a code editor, but also additional functionality, including facilities for ex-
perimenting with Python code, and for debugging Python programs.

The second section presents eight key pieces of Python that on their own are
sufficient to write useful programs. These pieces are all covered fully in later
chapters, and as the book progresses they are supplemented by all of the rest
of Python so that by the end of the book, you will have covered the whole
language and will be able to use all that it offers in your programs.

The chapter’s final section introduces two short programs which use the subset
of Python features introduced in the second section so that you can get an
immediate taste of Python programming.

Creating and Running Python Programs

Python code can be written using any plain text editor that can load and save
text using either the ASCII or the UTF-8 Unicode character encoding. By de-
fault, Python files are assumed to use the UTF-8 character encoding, a super-
set of ASCII that can represent pretty well every character in every language.
Python files normally have an extension of . py, although on some Unix-like sys-

9

www.it-ebooks.info

Char-
acter
encod-
ings

>» 91

http://www.it-ebooks.info/

10 Chapter 1. Rapid Introduction to Procedural Programming

tems (e.g., Linux and Mac OS X) some Python applications have no extension,
and Python GUI (Graphical User Interface) programs usually have an exten-
sion of . pyw, particularly on Windows and Mac OS X. In this book we always use
an extension of . py for Python console programs and Python modules, and . pyw
for GUI programs. All the examples presented in this book run unchanged on
all platforms that have Python 3 available.

Just to make sure that everything is set up correctly, and to show the clas-
sical first example, create a file called hello.py in a plain text editor (Win-
dows Notepad is fine—we’ll use a better editor shortly), with the following
contents:

#!/usr/bin/env python3
print("Hello", "World!")

The firstlineis a comment. In Python,commentsbegin with a # and continue to
the end of the line. (We will explain the rather cryptic comment in a moment.)
The second line is blank—outside quoted strings, Python ignores blank lines,
but they are often useful to humans to break up large blocks of code to make
them easier to read. The third line is Python code. Here, the print() function
is called with two arguments, each of type str (string;i.e., a sequence of char-
acters).

Each statement encountered in a .py file is executed in turn, starting with
the first one and progressing line by line. This is different from some other
languages, for example, C++ and Java, which have a particular function or
method with a special name where they start from. The flow of control can of
course be diverted as we will see when we discuss Python’s control structures
in the next section.

We will assume that Windows users keep their Python code in the C:\py3eg
directory and that Unix (i.e., Unix, Linux, and Mac OS X) users keep their code
in the $HOME/py3eg directory. Save hello.py into the py3eg directory and close
the text editor.

Now that we have a program, we can run it. Python programs are executed
by the Python interpreter, and normally this is done inside a console window.
On Windows the console is called “Console”, or “DOS Prompt”, or “MS-DOS
Prompt”, or something similar, and is usually available from Start—All Pro-
grams—Accessories. On Mac OS X the console is provided by the Terminal.app pro-
gram (located in Applications/Utilities by default), available using Finder, and
on other Unixes, we can use an xterm or the console provided by the windowing
environment, for example, konsole or gnome-terminal.

Start up a console, and on Windows enter the following commands (which
assume that Python is installed in the default location)—the console’s output
is shown in lightface; what you type is shown in bold:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Running Python Programs 11

C:\>cd c:\py3eg
C:\py3eg\>c:\python31\python.exe hello.py

Since the cd (change directory) command has an absolute path, it doesn’t
matter which directory you start out from.

Unix users enter this instead (assuming that Python 3 is in the PATH):*

$ cd $HOME/py3eg
$ python3 hello.py

In both cases the output should be the same:

Hello World!

Note that unless stated otherwise, Python’s behavior on Mac OS X is the
same as that on any other Unix system. In fact, whenever we refer to “Unix”
it can be taken to mean Linux, BSD, Mac OS X, and most other Unixes and
Unix-like systems.

Although the program has just one executable statement, by running it we can
infer some information about the print() function. For one thing, print() is a
built-in part of the Python language—we didn’t need to “import” or “include”
it from a library to make use of it. Also, it separates each item it prints with
a single space, and prints a newline after the last item is printed. These are
default behaviors that can be changed, as we will see later. Another thing
worth noting about print() is that it can take as many or as few arguments as
we care to give it.

Typing such command lines to invoke our Python programs would quickly
become tedious. Fortunately, on both Windows and Unix we can use more
convenient approaches. Assuming we are in the py3eg directory, on Windows
we can simply type:

C:\py3eg\>hello.py

Windows uses its registry of file associations to automatically call the Python
interpreter when a filename with extension .py is entered in a console.

Unfortunately, this convenience does not always work, since some versions
of Windows have a bug that sometimes affects the execution of interpreted
programs that are invoked as the result of a file association. This isn’t specific
to Python; other interpreters and even some .bat files are affected by the bug
too. If this problem arises, simply invoke Python directly rather than relying
on the file association.

If the output on Windows is:

*The Unix prompt may well be different from the $ shown here; it does not matter what it is.

www.it-ebooks.info

print()
» 181

http://www.it-ebooks.info/

12 Chapter 1. Rapid Introduction to Procedural Programming

('Hello', 'World!")

then it means that Python 2 is on the system and is being invoked instead
of Python 3. One solution to this is to change the .py file association from
Python 2 to Python 3. The other (less convenient, but safer) solution is to put
the Python 3 interpreter in the path (assuming it is installed in the default lo-
cation), and execute it explicitly each time. (This also gets around the Windows
file association bug mentioned earlier.) For example:

C:\py3eg\>path=c:\python3l;%path%
C:\py3eg\>python hello.py

It might be more convenient to create a py3.bat file with the single line
path=c:\python31;%path% and to save this file in the C:\Windows directory. Then,
whenever you start a console for running Python 3 programs, begin by exe-
cuting py3.bat. Or alternatively you can have py3.bat executed automatically.
To do this, change the console’s properties (find the console in the Start menu,
then right-click it to pop up its Properties dialog), and in the Shortcut tab’s Target
string, append the text “ /u /k c:\windows\py3.bat” (note the space before,
between, and after the “/u” and “/k” options, and be sure to add this at the end
after “cmd.exe”).

On Unix, we must first make the file executable, and then we can run it:

$ chmod +x hello.py
$./hello.py

We need to run the chmod command only once of course; after that we can
simply enter ./hello.py and the program will run.

On Unix, when a program is invoked in the console, the file’s first two bytes are
read * If these bytes are the ASCII characters#!, the shell assumes that the file
is to be executed by an interpreter and that the file’s first line specifies which
interpreter to use. This line is called the shebang (shell execute) line, and if
present must be the first line in the file.

The shebang line is commonly written in one of two forms, either:
#!/usr/bin/python3
or:

#!/usr/bin/env python3

If written using the first form, the specified interpreter is used. This form
may be necessary for Python programs that are to be run by a web server,

*The interaction between the user and the console is handled by a “shell” program. The distinction
between the console and the shell does not concern us here, so we use the terms interchangeably.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtain-
ing and
install-
ing
Python
1<

Creating and Running Python Programs 13

although the specific path may be different from the one shown. If written
using the second form, the first python3 interpreter found in the shell’s current
environment is used. The second form is more versatile because it allows for
the possibility that the Python 3 interpreter is not located in /usr/bin (e.g., it
could be in /usr/local/bin or installed under $HOME). The shebang line is not
needed (but is harmless) under Windows; all the examples in this book have a
shebang line of the second form, although we won’t show it.

Note that for Unix systems we assume that the name of Python 3’s executable
(or a soft link to it) in the PATH is python3. If this is not the case, you will need
to change the shebang line in the examples to use the correct name (or correct
name and path if you use the first form), or create a soft link from the Python 3
executable to the name python3 somewhere in the PATH.

Many powerful plain text editors, such as Vim and Emacs, come with built-in
support for editing Python programs. This support typically involves providing
color syntax highlighting and correctly indenting or unindenting lines. An al-
ternative is to use the IDLE Python programming environment. On Windows
and Mac OS X, IDLE is installed by default. On Unixes IDLE is built along
with the Python interpreter if you build from the tarball, but if you use a pack-
age manager, IDLE is usually provided as a separate package as described in
the Introduction.

As the screenshot in Figure 1.1 shows, IDLE has a rather retro look that harks
back to the days of Motif on Unix and Windows 95. This is because it uses the
Tk-based Tkinter GUI library (covered in Chapter 15) rather than one of the
more powerful modern GUI libraries such as PyGtk, PyQt, or wxPython. The
reasons for the use of Tkinter are a mixture of history, liberal license condi-
tions, and the fact that Tkinter is much smaller than the other GUI libraries.
On the plus side, IDLE comes as standard with Python and is very simple to
learn and use.

IDLE provides three key facilities: the ability to enter Python expressions
and code and to see the results directly in the Python Shell; a code editor that
provides Python-specific color syntax highlighting and indentation support;
and a debugger that can be used to step through code to help identify and kill
bugs. The Python Shell is especially useful for trying out simple algorithms,
snippets of code, and regular expressions, and can also be used as a very
powerful and flexible calculator.

Several other Python development environments are available, but we recom-
mend that you use IDLE, at least at first. An alternative is to create your pro-
grams in the plain text editor of your choice and debug using calls to print().

It is possible to invoke the Python interpreter without specifying a Python
program. If this is done the interpreter starts up in interactive mode. In
this mode it is possible to enter Python statements and see the results exactly
the same as when using IDLE’s Python Shell window, and with the same >>>

www.it-ebooks.info

http://www.it-ebooks.info/

14 Chapter 1. Rapid Introduction to Procedural Programming

Python Shell (=3}
File Edit Shell Debug Options ‘Windows Help
ortedbict =
orLedDic U, SorLedDic Likey=lambda <0 . lower (1)
= in os.listdir("."}:
file sizes[name] = os.path.getsize{name)

print(file_sizes)
Lracl.py ' s 4591, 'Abslracl.pyc': &

‘BinaryReco ~|
Ln: 35/ Cal: 4

Figure 1.1 IDLE’s Python Shell

prompts. But IDLE is much easier to use, so we recommend using IDLE for
experimenting with code snippets. The short interactive examples we show
are all assumed to be entered in an interactive Python interpreter or in IDLE’s
Python Shell.

We now know how to create and run Python programs, but clearly we won’t get
very far knowing only a single function. In the next section we will consider-
ably increase our Python knowledge. This will make us able to create short but
useful Python programs, something we will do in this chapter’s last section.

Python’s “Beautiful Heart”

In this section we will learn about eight key pieces of Python, and in the next
section we will show how these pieces can be used to write a couple of small but
realistic programs. There is much more to say about all of the things covered
in this section, so if as you read it you feel that Python is missing something
or that things are sometimes done in a long-winded way, peek ahead using the
forward references or using the table of contents or index, and you will almost
certainly find that Python has the feature you want and often has more concise
forms of expression than we show here—and a lot more besides.

Piece #1: Data Types

One fundamental thing that any programming language must be able to do
is represent items of data. Python provides several built-in data types, but
we will concern ourselves with only two of them for now. Python represents

www.it-ebooks.info

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 15

integers (positive and negative whole numbers) using the int type, and it
represents strings (sequences of Unicode characters) using the str type. Here
are some examples of integer and string literals:

-973
210624583337114373395836055367340864637790190801098222508621955072
0

"Infinitely Demanding"

'Simon Critchley'

'positively afy€+©'

Incidentally, the second number shown is 2°"—the size of Python’s integers
is limited only by machine memory, not by a fixed number of bytes. Strings
can be delimited by double or single quotes, as long as the same kind are used
at both ends, and since Python uses Unicode, strings are not limited to ASCII
characters, as the penultimate string shows. An empty string is simply one
with nothing between the delimiters.

Python uses square brackets ([]) to access an item from a sequence such as
a string. For example, if we are in a Python Shell (either in the interactive
interpreter, or in IDLE) we can enter the following—the Python Shell’s output
is shown in lightface; what you type is shown in bold:

>>> "Hard Times"[5]

1 T 1

>>> "giraffe"[0]

1 g 1
Traditionally, Python Shells use >>> as their prompt, although this can be
changed. The square brackets syntax can be used with data items of any data
type that is a sequence, such as strings and lists. This consistency of syntax
is one of the reasons that Python is so beautiful. Note that all Python index
positions start at 0.

In Python, both str and the basic numeric types such as int are im-
mutable—that is, once set, their value cannot be changed. At first this appears
to be a rather strange limitation, but Python’s syntax means that thisis a non-
issuein practice. The only reason for mentioning it is that although we can use
square brackets to retrieve the character at a given index position in a string,
we cannot use them to set a new character. (Note that in Python a character is
simply a string of length 1.)

To convert a data item from one type to another we can use the syntax
datatype(item). For example:

>>> int("45")
45

www.it-ebooks.info

http://www.it-ebooks.info/

16 Chapter 1. Rapid Introduction to Procedural Programming

>>> str(912)
'912'

The int() conversion is tolerant of leading and trailing whitespace, so
int(" 45 ") would have worked just as well. The str() conversion can be
applied to almost any data item. We can easily make our own custom data
types support str() conversion, and also int() or other conversions if they
make sense, as we will see in Chapter 6. If a conversion fails, an exception is
raised—we briefly introduce exception-handling in Piece #5, and fully cover
exceptions in Chapter 4.

Strings and integers are fully covered in Chapter 2, along with other built-in
data types and some data types from Python’s standard library. That chapter
also covers operations that can be applied to immutable sequences, such
as strings.

Piece #2: Object References

Once we have some data types, the next thing we need are variables in which
to store them. Python doesn’t have variables as such, but instead has object
references. When it comes to immutable objects like ints and strs, there is
no discernable difference between a variable and an object reference. As for
mutable objects, there is a difference, but it rarely matters in practice. We will
use the terms variable and object reference interchangeably.

Let’s look at a few tiny examples, and then discuss some of the details.

x = "blue"
y = "green"
Z =X

The syntax is simply objectReference = value. There is no need for predecla-
ration and no need to specify the value’s type. When Python executes the first
statement it creates a str object with the text “blue”, and creates an object ref-
erence called x that refers to the str object. For all practical purposes we can
say that “variable x has been assigned the ‘blue’ string”. The second statement
is similar. The third statement creates a new object reference called z and sets
it to refer to the same object that the x object reference refers to (in this case
the str containing the text “blue”).

The = operator is not the same as the variable assignment operator in some
other languages. The = operator binds an object reference to an object in
memory. If the object reference already exists, it is simply re-bound to refer to
the object on the right of the = operator;if the object reference does not exist it
is created by the = operator.

www.it-ebooks.info

Shallow
and
deep
copying

>» 146

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 17

Let’s continue with the x, y, zexample, and do some rebinding—as noted earlier,
comments begin with a # and continue until the end of the line:

print(x, y, z) # prints: blue green blue

z=y
print(x, y, z) # prints: blue green green
X =1z

print(x, y, z) # prints: green green green

After the fourth statement (x = z), all three object references are referring to
the same str. Since there are no more object references to the “blue” string,
Python is free to garbage-collect it.

Figure 1.2 shows the relationship between objects and object references
schematically.

a=7 The circles represent object references.
- The rectangles represent objects in memory.
il O] e
- b=a
a = "Liberty"

Figure 1.2 Object references and objects

The names used for object references (called identifiers) have a few restrictions.
In particular, they may not be the same as any of Python’s keywords, and must
start with a letter or an underscore and be followed by zero or more nonwhite-
space letter, underscore, or digit characters. There is no length limit, and the
letters and digits are those defined by Unicode, that is, they include, but are
not limited to, ASCII’s letters and digits (“a”,“b”, ..., “z”, “A”, “B”, ..., “Z”,“0”,“1”,
..., “9”). Python identifiers are case-sensitive, so for example, LIMIT, Limit, and
limit are three different identifiers. Further details and some slightly exotic
examples are given in Chapter 2.

Python uses dynamic typing, which means that an object reference can be re-
bound to refer to a different object (which may be of a different data type) at
any time. Languages that use strong typing (such as C++ and Java) allow only
those operations that are defined for the data types involved to be performed.
Python also applies this constraint, but it isn’t called strong typing in Python’s
case because the valid operations can change—for example, if an object refer-
ence is re-bound to an object of a different data type. For example:

route = 866
print(route, type(route)) # prints: 866 <class 'int'>

www.it-ebooks.info

Identi-
fiers
and
key-
words

» 51

http://www.it-ebooks.info/

18 Chapter 1. Rapid Introduction to Procedural Programming

route = "North"
print(route, type(route)) # prints: North <class 'str's

Here we create a new object reference called route and set it to refer to a new
int of value 866. At this point we could use / with route since division is a valid
operation for integers. Then we reuse the route object reference to refer to a
new str of value “North”, and the int object is scheduled for garbage collection
since now no object reference refers to it. At this point using / with route would
cause a TypeError to be raised since / is not a valid operation for a string.

The type() function returns the data type (also known as the “class”) of the
data item it is given—this function can be very useful for testing and debug-
ging, but would not normally appear in production code, since there is a better
alternative as we will see in Chapter 6.

If we are experimenting with Python code inside the interactive interpreter or
in a Python Shell such as the one provided by IDLE, simply typing the name
of an object reference is enough to have Python print its value. For example:

>>> x = "blue"
>>> y = "green"
>>> 72 = X

>>> X

"blue’

>>> X, Yy, 2
(‘blue', 'green', 'blue')

This is much more convenient than having to call the print() function all
the time, but works only when using Python interactively—any programs
and modules that we write must use print() or similar functions to produce
output. Notice that Python displayed the last output in parentheses separated
by commas—this signifies a tuple, that is, an ordered immutable sequence of
objects. We will cover tuples in the next piece.

Piece #3: Collection Data Types

It is often convenient to hold entire collections of data items. Python provides
several collection data types that can hold items, including associative arrays
and sets. But here we will introduce just two: tuple and list. Python tuples and
lists can be used to hold any number of data items of any data types. Tuples
are immutable, so once they are created we cannot change them. Lists are
mutable, so we can easily insert items and remove items whenever we want.

Tuples are created using commas (,), as these examples show—and note that
here, and from now on, we don’t use bold to distinguish what you type:

>>> "Denmark", "Finland", "Norway", "Sweden"
('Denmark', 'Finland', 'Norway', 'Sweden')

www.it-ebooks.info

isin-
stance()
>» 242

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 19

>>> Ilonell ,
('one',)

When Python outputs a tuple it encloses it in parentheses. Many programmers
emulate this and always enclose the tuple literals they write in parentheses.
If we have a one-item tuple and want to use parentheses, we must still use
the comma—for example, (1,). An empty tuple is created by using empty
parentheses, (). The comma is also used to separate arguments in function
calls, so if we want to pass a tuple literal as an argument we must enclose it in
parentheses to avoid confusion.

Here are some example lists:

[1, 4, 9, 16, 25, 36, 49]

['alpha', 'bravo', 'charlie', 'delta', 'echo'l]
['zebra', 49, -879, 'aardvark',6 200]

[]

One way to create a list is to use square brackets ([]) as we have done here;
later on we will see other ways. The fourth list shown is an empty list.

Under the hood, lists and tuples don’t store data items at all, but rather object
references. When lists and tuples are created (and when items are inserted in
the case of lists), they take copies of the object references they are given. In
the case of literal items such as integers or strings, an object of the appropriate
data type is created in memory and suitably initialized, and then an object
reference referring to the object is created, and it is this object reference that
is put in the list or tuple.

Like everything else in Python, collection data types are objects, so we can nest
collection data types inside other collection data types, for example, to create
lists of lists, without formality. In some situations the fact that lists, tuples,
and most of Python’s other collection data types hold object references rather
than objects makes a difference—this is covered in Chapter 3.

In procedural programming we call functions and often pass in data items as
arguments. For example, we have already seen the print() function. Another
frequently used Python function is len(), which takes a single data item as its
argument and returns the “length” of the item as an int. Here are a few calls
to len():

>>> len(("one",))

1

>>> len([3, 5, 1, 2, "pause", 5])
6

>>> len("automatically")

13

www.it-ebooks.info

tuple
type
» 108

Creat-
ing and
calling
func-
tions

> 36

list
type
» 113

Shallow
and
deep
copying

>» 146

http://www.it-ebooks.info/

20 Chapter 1. Rapid Introduction to Procedural Programming

Tuples, lists, and strings are “sized”, that is, they are data types that have
a notion of size, and data items of any such data type can be meaningfully
passed to the len() function. (An exception is raised if a nonsized data item is
passed to len().)

All Python data items are objects (also called instances) of a particular data
type (also called a class). We will use the terms data type and class interchange-
ably. One key difference between an object, and the plain items of data that
some other languages provide (e.g., C++ or Java’s built-in numeric types), is
that an object can have methods. Essentially, a method is simply a function
that is called for a particular object. For example, the list type has an append()
method, so we can append an object to a list like this:

>>> x = ["zebra", 49, -879, "aardvark", 200]
>>> x.append("more")

>>> X

['zebra', 49, -879, 'aardvark', 200, 'more']

The x object knows that it is a list (all Python objects know what their own
data type is), so we don’t need to specify the data type explicitly. In the im-
plementation of the append() method the first argument will be the x object
itself—this is done automatically by Python as part of its syntactic support for
methods.

The append() method mutates, that is, changes, the original list. This is possi-
ble because lists are mutable. It is also potentially more efficient than creating
a new list with the original items and the extra item and then rebinding the
object reference to the new list, particularly for very long lists.

In a procedural language the same thing could be achieved by using the list’s
append() like this (which is perfectly valid Python syntax):

>>> list.append(x, "extra")
>>> X

['zebra', 49, -879, 'aardvark',6 200, 'more', 'extra'l]

Here we specify the data type and the data type’s method, and give as the
first argument the data item of the data type we want to call the method on,
followed by any additional arguments. (In the face of inheritance there is a
subtle semantic difference between the two syntaxes; the first form is the one
that is most commonly used in practice. Inheritance is covered in Chapter 6.)

If you are unfamiliar with object-oriented programming this may seem a bit
strange at first. For now, just accept that Python has conventional functions
called like this: functionName(arguments); and methods which are called like
this: objectName.methodName (arguments). (Object-oriented programming is cov-
ered in Chapter 6.)

www.it-ebooks.info

Sized
>» 383

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 21

The dot (“access attribute”) operator is used to access an object’s attributes.
An attribute can be any kind of object, although so far we have shown only
method attributes. Since an attribute can be an object that has attributes,
which in turn can have attributes, and so on, we can use as many dot operators
as necessary to access the particular attribute we want.

The list type has many other methods, including insert() which is used to
insert an item at a given index position, and remove() which removes an item at
a given index position. As noted earlier, Python indexes are always 0-based.

We saw before that we can get characters from strings using the square
brackets operator, and noted at the time that this operator could be used with
any sequence. Lists are sequences, so we can do things like this:

>>> X

['zebra', 49, -879, 'aardvark',6 200, 'more', ‘'extra'l
>>> X[0]

'zebra'

>>> Xx[4]

200

Tuples are also sequences, so if x had been a tuple we could retrieve items us-
ing square brackets in exactly the same way as we have done for the x list. But
since lists are mutable (unlike strings and tuples which are immutable), we can
also use the square brackets operator to set list elements. For example:

>>> x[1] = "forty nine"
>>> X
['zebra', 'forty nine', -879, 'aardvark', 200, 'more', 'extra'l

If we give an index position that is out of range, an exception will be raised—we
briefly introduce exception-handling in Piece #5, and fully cover exceptions in
Chapter 4.

We have used the term sequence a few times now, relying on an informal under-
standing of its meaning, and will continue to do so for the time being. However,
Python defines precisely what features a sequence must support, and similarly
defines what features a sized object must support, and so on for various other
categories that a data type might belong to, as we will see in Chapter 8.

Lists, tuples, and Python’s other built-in collection data types are covered in
Chapter 3.

Piece #4: Logical Operations

One of the fundamental features of any programming language is its logical
operations. Python provides four sets of logical operations, and we will review
the fundamentals of all of them here.

www.it-ebooks.info

http://www.it-ebooks.info/

22 Chapter 1. Rapid Introduction to Procedural Programming

The Identity Operator

Since all Python variables are really object references, it sometimes makes
sense to ask whether two or more object references are referring to the same
object. The is operator is a binary operator that returns True if its left-hand ob-
ject reference is referring to the same object as its right-hand object reference.
Here are some examples:

>>> g = ["Retention", 3, Nonel
>>> b ["Retention", 3, None]
>>>a is b

False

>>> b = a

>>> a3 is b

True

Note that it usually does not make sense to use is for comparing ints, strs, and
most other data types since we almost invariably want to compare their values.
In fact, using is to compare data items can lead to unintuitive results, as we
can see in the preceding example, where although a and b are initially set to
the same list values, the lists themselves are held as separate 1ist objects and
so is returns False the first time we use it.

One benefit of identity comparisons is that they are very fast. This is because
the objects referred to do not have to be examined themselves. The is operator
needs to compare only the memory addresses of the objects—the same address
means the same object.

The most common use case for is is to compare a data item with the built-in
null object, None, which is often used as a place-marking value to signify
“unknown” or “nonexistent”:

>>> a = "Something"

>>> b = None

>>> a 1is not None, b is None
(True, True)

To invert the identity test we use is not.

The purpose of the identity operator is to see whether two object references
refer to the same object, or to see whether an object is None. If we want to
compare object values we should use a comparison operator instead.

Comparison Operators

Python provides the standard set of binary comparison operators, with the
expected semantics: < less than, <= less than or equal to, == equal to, != not

www.it-ebooks.info

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 23

equal to, >= greater than or equal to, and > greater than. These operators
compare object values, that is, the objects that the object references used in the
comparison refer to. Here are a few examples typed into a Python Shell:

>>> 3 = 2
>>>bh =6
>>> g ==
False
>>>a<b
True

>>a<=b,al=b,a>b,a>b
(True, True, False, False)

Everything is as we would expect with integers. Similarly, strings appear to
compare properly too:

>>> a = "many paths"
>>> b = "many paths"
>>> g is b

False

>>> g ==

True

Although a and b are different objects (have different identities), they have
the same values, so they compare equal. Be aware, though, that because
Python uses Unicode for representing strings, comparing strings that contain
non-ASCII characters can be a lot subtler and more complicated than it might
at first appear—we will fully discuss this issue in Chapter 2.

In some cases, comparing the identity of two strings or numbers—for example,
using a is b—will return True, even if each has been assigned separately as we
did here. Thisis because some implementations of Python will reuse the same
object (since the value is the same and is immutable) for the sake of efficiency.
The moral of this is to use == and != when comparing values, and to use is and
is not only when comparing with None or when we really do want to see if two
object references, rather than their values, are the same.

One particularly nice feature of Python’s comparison operatorsis that they can
be chained. For example:

>>> 3 =9
>>> 0 <= a <= 10
True

This is a nicer way of testing that a given data item is in range than having
to do two separate comparisons joined by logical and, as most other languages
require. It also has the additional virtue of evaluating the data item only once
(since it appears once only in the expression), something that could make a

www.it-ebooks.info

Com-
paring
strings

> 68

http://www.it-ebooks.info/

24 Chapter 1. Rapid Introduction to Procedural Programming

difference if computing the data item’s value is expensive, or if accessing the
data item causes side effects.

Thanks to the “strong” aspect of Python’s dynamic typing, comparisons that
don’t make sense will cause an exception to be raised. For example:

>>> "three" < 4
Traceback (most recent call last):

TypeError: unorderable types: str() < int()

When an exception is raised and not handled, Python outputs a traceback
along with the exception’s error message. For clarity, we have omitted the
traceback part of the output, replacing it with an ellipsis.* The same TypeError
exception would occur if we wrote "3" < 4 because Python does not try to guess
our intentions—the right approach is either to explicitly convert, for example,
int("3") < 4, or to use comparable types, that is, both integers or both strings.

Python makes it easy for us to create custom data types that will integrate
nicely so that, for example, we could create our own custom numeric type
which would be able to participate in comparisons with the built-in int type,
and with other built-in or custom numeric types, but not with strings or other
non-numeric types.

The Membership Operator

For data types that are sequences or collections such as strings, lists, and tu-
ples, we can test for membership using the in operator, and for nonmembership
using the not in operator. For example:

>>>p = (4, "frog", 9, -33, 9, 2)

>>> 2 1in p

True

>>> "dog" not in p
True

For lists and tuples, the in operator uses a linear search which can be slow for
very large collections (tens of thousands of items or more). On the other hand,
in is very fast when used on a dictionary or a set; both of these collection data
types are covered in Chapter 3. Here is how in can be used with a string:

>>> phrase = "Wild Swans by Jung Chang"
>>> "J" in phrase
True

*A traceback (sometimes called a backtrace)is a list of all the calls made from the point where the
unhandled exception occurred back to the top of the call stack.

www.it-ebooks.info

Dealing
with
runtime
errors

» 415

Alter-
native
Fuzzy-
Bool

» 256

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 25

>>> "han" in phrase
True

Conveniently, in the case of strings, the membership operator can be used to
test for substrings of any length. (As noted earlier, a character is just a string
of length 1.)

Logical Operators

Python provides three logical operators: and, or, and not. Both and and or use
short-circuit logic and return the operand that determined the result—they do
not return a Boolean (unless they actually have Boolean operands). Let’s see
what this means in practice:

>>> five = 5
>>> two = 2
>>> zero = 0
>>> five and two

2

>>> two and five
5

>>> five and zero
0

If the expression occurs in a Boolean context, the result is evaluated as a
Boolean, so the preceding expressions would come out as True, True, and False
in, say, an if statement.

>>> nought = 0
>>> five or two

5

>>> two or five

2

>>> zero or five
5

>>> zero or nought
0

The or operator is similar; here the results in a Boolean context would be True,
True, True, and False.

The not unary operator evaluates its argument in a Boolean context and
always returns a Boolean result, so to continue the earlier example, not
(zero or nought) would produce True, and not two would produce False.

www.it-ebooks.info

http://www.it-ebooks.info/

26 Chapter 1. Rapid Introduction to Procedural Programming

Piece #5: Control Flow Statements

We mentioned earlier that each statement encountered in a . py file is executed
in turn, starting with the first one and progressing line by line. The flow of
control can be diverted by a function or method call or by a control structure,
such as a conditional branch or a loop statement. Controlis also diverted when
an exception is raised.

In this subsection we will look at Python’s if statement and its while and for
loops, deferring consideration of functions to Piece #8, and methods to Chap-
ter 6. We will also look at the very basics of exception-handling; we cover the
subject fully in Chapter 4. But first we will clarify a couple of items of termi-
nology.

A Boolean expression is anything that can be evaluated to produce a Boolean
value (True or False). In Python, such an expression evaluates to False if it is
the predefined constant False, the special object None, an empty sequence or
collection (e.g., an empty string, list, or tuple), or a numeric data item of value
0; anything else is considered to be True. When we create our own custom data
types (e.g., in Chapter 6), we can decide for ourselves what they should return
in a Boolean context.

In Python-speak a block of code, that is, a sequence of one or more statements,
is called a suite. Because some of Python’s syntax requires that a suite be
present, Python provides the keyword pass which is a statement that does
nothing and that can be used where a suite is required (or where we want to
indicate that we have considered a particular case) but where no processing
is necessary.

The if Statement

The general syntax for Python’s if statement is this:*

if boolean expressionl:
suitel
elif boolean expression2:

suite2

elif boolean expressionN:

suitelN
else:
else suite

*In this book, ellipses (...) are used to indicate lines that are not shown.

www.it-ebooks.info

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 27

There can be zero or more elif clauses, and the final else clause is optional. If
we want to account for a particular case, but want to do nothing if it occurs, we
can use pass as that branch’s suite.

The first thing that stands out to programmers used to C++ or Java is that
there are no parentheses and no braces. The other thing to notice is the
colon: This is part of the syntax and is easy to forget at first. Colons are used
with else, elif, and essentially in any other place where a suite is to follow.

Unlike most other programming languages, Python uses indentation to signify
its block structure. Some programmers don’t like this, especially before they
have tried it, and some get quite emotional about the issue. But it takes just a
few days to get used to, and after a few weeks or months, brace-free code seems
much nicer and less cluttered to read than code that uses braces.

Since suites are indicated using indentation, the question that naturally aris-
es is, “What kind of indentation?” The Python style guidelines recommend
four spaces per level of indentation, and only spaces (no tabs). Most modern
text editors can be set up to handle this automatically (IDLE’s editor does of
course, and so do most other Python-aware editors). Python will work fine with
any number of spaces or with tabs or with a mixture of both, providing that
the indentation used is consistent. In this book, we follow the official Python
guidelines.

Here is a very simple if statement example:

if x:
print("x is nonzero")

In this case, if the condition (x) evaluates to True, the suite (the print () function
call) will be executed.

if lines < 1000:
print("small")

elif lines < 10000:
print("medium")

else:
print("large")

Thisis a slightly more elaborate if statement that prints a word that describes
the value of the lines variable.

The while Statement

The while statement is used to execute a suite zero or more times, the number
of times depending on the state of the while loop’s Boolean expression. Here’s
the syntax:

www.it-ebooks.info

http://www.it-ebooks.info/

28 Chapter 1. Rapid Introduction to Procedural Programming

while boolean expression:
suite

Actually, the while loop’s full syntax is more sophisticated than this, since both
break and continue are supported, and also an optional else clause that we will
discuss in Chapter 4. The break statement switches control to the statement
following the innermost loop in which the break statement appears—that is,
it breaks out of the loop. The continue statement switches control to the start
of the loop. Both break and continue are normally used inside if statements to
conditionally change a loop’s behavior.

while True:
item = get next item()
if not item:
break
process item(item)

This while loop has a very typical structure and runs as long as there are items
to process. (Both get next item() and process _item() are assumed to be custom
functions defined elsewhere.) In this example, the while statement’s suite
contains an if statement, which itself has a suite—as it must—in this case
consisting of a single break statement.

The for ... in Statement

Python’s for loop reuses the in keyword (which in other contexts is the mem-
bership operator), and has the following syntax:

for variable in iterable:
suite

Just like the while loop, the for loop supports both break and continue, and also
has an optional else clause. The variable is set to refer to each object in the
iterable in turn. An iterable is any data type that can be iterated over, and
includes strings (where the iteration is character by character), lists, tuples,
and Python’s other collection data types.

for country in ["Denmark", "Finland", "Norway", "Sweden"]:
print(country)

Here we take a very simplistic approach to printing a list of countries. In
practice it is much more common to use a variable:

countries = ["Denmark", "Finland", "Norway", "Sweden"]
for country in countries:
print(country)

www.it-ebooks.info

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 29

In fact, an entire list (or tuple) can be printed using the print() function
directly, for example, print(countries), but we often prefer to print collections
using a for loop (or a list comprehension, covered later), to achieve full control
over the formatting.

for letter in "ABCDEFGHIJKLMNOPQRSTUVWXYZ":
if letter in "AEIOU":
print(letter, "is a vowel")
else:
print(letter, "is a consonant")

In this snippet the first use of the in keyword is part of a for statement, with
the variable letter taking on the values "A", "B", and so on up to "Z", changing
at each iteration of the loop. On the snippet’s second line we use in again, but
this time as the membership testing operator. Notice also that this example
shows nested suites. The for loop’s suite is the if ... else statement, and both
the if and the else branches have their own suites.

Basic Exception Handling

Many of Python’s functions and methods indicate errors or other important
events by raising an exception. An exception is an object like any other Python
object, and when converted to a string (e.g., when printed), the exception
produces a message text. A simple form of the syntax for exception handlers
is this:
try:
try suite

except exceptionl as variablel:
exception suitel

except exceptionN as variableN:
exception suiteN

Note that the as variable part is optional; we may care only that a particular
exception was raised and not be interested in its message text.

The full syntax is more sophisticated; for example, each except clause can
handle multiple exceptions, and there is an optional else clause. All of this is
covered in Chapter 4.

The logic works like this. If the statements in the try block’s suite all execute
without raising an exception, the except blocks are skipped. If an exception
is raised inside the try block, control is immediately passed to the suite corre-
sponding to the first matching exception—this means that any statements in
the suite that follow the one that caused the exception will not be executed. If

www.it-ebooks.info

List
compre-
hen-
sions

>» 118

http://www.it-ebooks.info/

30 Chapter 1. Rapid Introduction to Procedural Programming

this occurs and if the as variable part is given, then inside the exception-han-
dling suite, variable refers to the exception object.

If an exception occurs in the handling except block, or if an exception is raised
that does not match any of the except blocks in the first place, Python looks for
a matching except block in the next enclosing scope. The search for a suitable
exception handler works outward in scope and up the call stack until either
a match is found and the exception is handled, or no match is found, in which
case the program terminates with an unhandled exception. In the case of
an unhandled exception, Python prints a traceback as well as the exception’s
message text.

Here is an example:

s = input("enter an integer: ")
try:

i=1int(s)

print("valid integer entered:", i)
except ValueError as err:

print(err)

If the user enters “3.5”, the output will be:
invalid literal for int() with base 10: '3.5'
But if they were to enter “13”, the output will be:
valid integer entered: 13

Many books consider exception-handling to be an advanced topic and defer it
aslateaspossible. Butraising and especially handling exceptionsis fundamen-
tal to the way Python works, so we make use of it from the beginning. And as
we shall see, using exception handlers can make code much more readable, by
separating the “exceptional” cases from the processing we are really interest-
ed in.

Piece #6: Arithmetic Operators

Python provides a full set of arithmetic operators, including binary operators
for the four basic mathematical operations: + addition, - subtraction, * multipli-
cation, and / division. In addition, many Python data types can be used with
augmented assignment operators such as += and *=. The +, -, and * operators
all behave as expected when both of their operands are integers:

>> 5+ 6
11

www.it-ebooks.info

Deal-
ing with
runtime
errors

» 415

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 31

>> 3 -7
-4
>>> 4 * 8
32

Notice that - can be used both as a unary operator (negation) and as a binary
operator (subtraction), as is common in most programming languages. Where
Python differs from the crowd is when it comes to division:

>>> 12 / 3
4.0
>>> 3 /2
1.5

The division operator produces a floating-point value, not an integer; many
other languages will produce an integer, truncating any fractional part. If
we need an integer result, we can always convert using int() (or use the
truncating division operator //, discussed later).

>>> =5

a
>>> 3
5
>>> g += 8
>>> 3

13

At first sight the preceding statements are unsurprising, particularly to those
familiar with C-like languages. In such languages, augmented assignment is
shorthand for assigning the results of an operation—for example, a += 8 is es-
sentially the same as a = a + 8. However, there are two important subtleties here,
one Python-specific and one to do with augmented operators in any language.

The first point to remember is that the int data type is immutable—that is,
once assigned, an int’s value cannot be changed. So, what actually happens
behind the scenes when an augmented assignment operator is used on an
immutable object is that the operation is performed, and an object holding the
result is created; and then the target object reference is re-bound to refer to the
result object rather than the object it referred to before. So, in the preceding
case when the statement a += 8 is encountered, Python computes a + 8, stores
the result in a new int object, and then rebinds a to refer to this new int. (And
if the original object a was referring to has no more object references referring
to it, it will be scheduled for garbage collection.) Figure 1.3 illustrates this
point.

The second subtlety is that a operator=b is not quite the same as a = a operator
b. The augmented version looks up a’s value only once, so it is potentially faster.
Also, if a is a complex expression (e.g., a list element with an index position
calculation such as items[offset + index]), using the augmented version may

www.it-ebooks.info

Numer-
ic opera-
tors and
func-
tions

» 55

http://www.it-ebooks.info/

32 Chapter 1. Rapid Introduction to Procedural Programming

i=173 @_.73 i+=2 73

75

Figure 1.3 Augmented assignment of an immutable object

be less error-prone since if the calculation needs to be changed the maintainer
has to change it in only one rather than two expressions.

Python overloads (i.e., reuses for a different data type) the + and += operators
for both strings and lists, the former meaning concatenation and the latter
meaning append for strings and extend (append another list) for lists:

>>> name = "John"
>>> name + "Doe"
'JohnDoe’

>>> name += " Doe"
>>> name

'John Doe'

Like integers, strings are immutable, so when += is used a new string is created
and the expression’s left-hand object reference is re-bound to it, exactly as
described earlier for ints. Lists support the same syntax but are different
behind the scenes:

>>> seeds = ["sesame", "sunflower"]
>>> seeds += ["pumpkin"]

>>> seeds

['sesame', 'sunflower', ‘pumpkin’]

Since lists are mutable, when += is used the original list object is modified, so
no rebinding of seeds is necessary. Figure 1.4 shows how this works.

m= [5, 9] @_' 0 1 m += [6] @__' 0 1 5
v v v v

Figure 1.4 Augmented assignment of a mutable object

Since Python’s syntax cleverly hides the distinction between mutable and im-
mutable data types, why does it need both kinds at all? The reasons are most-
ly about performance. Immutable types are potentially a lot more efficient to
implement (since they never change) than mutable types. Also, some collection
data types, for example, sets, can work only with immutable types. On the oth-

www.it-ebooks.info

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 33

er hand, mutable types can be more convenient to use. Where the distinction
matters, we will discuss it—for example, in Chapter 4 when we discuss setting
default arguments for custom functions, in Chapter 3 when we discuss lists,
sets, and some other data types, and again in Chapter 6 when we show how to
create custom data types.

The right-hand operand for the list += operator must be an iterable; if it is not
an exception is raised:

>>> seeds += 5
Traceback (most recent call last):

TypeError: 'int' object is not iterable
The correct way to extend a list is to use an iterable object, such as a list:

>>> seeds += [5]
>>> seeds
['sesame', 'sunflower', 'pumpkin', 5]

And of course, the iterable object used to extend the list can itself have more
than one item:

>>> seeds += [9, 1, 5, "poppy"]
>>> seeds
['sesame', 'sunflower', 'pumpkin', 5, 9, 1, 5, 'poppy'l]

Appending a plain string—for example, "durian"—rather than a list containing
a string, ["durian"], leads to a logical but perhaps surprising result:

>>> seeds = ["sesame", "sunflower", "pumpkin"]

>>> seeds += "durian"

>>> seeds

['sesame', 'sunflower', 'pumpkin', 'd', 'u', 'r', 'i', 'a', 'n']

The list += operator extends the list by appending each item of the iterable it
is provided with; and since a string is an iterable, this leads to each character
in the string being appended individually. If we use the list append() method,
the argument is always added as a single item.

Piece #7: Input/Output

To be able to write genuinely useful programs we must be able to read
input—for example, from the user at the console, and from files—and produce
output, either to the console or to files. We have already made use of Python’s
built-in print () function, although we will defer covering it further until Chap-

www.it-ebooks.info

Deal-
ing with
runtime
errors

» 415

http://www.it-ebooks.info/

34 Chapter 1. Rapid Introduction to Procedural Programming

ter 4. In this subsection we will concentrate on console I/0, and use shell redi-
rection for reading and writing files.

Python provides the built-in input() function to accept input from the user.
This function takes an optional string argument (which it prints on the con-
sole); it then waits for the user to type in a response and to finish by pressing
Enter (or Return). If the user does not type any text but just presses Enter, the in-
put() function returns an empty string; otherwise, it returns a string contain-
ing what the user typed, without any line terminator.

Here is our first complete “useful” program; it draws on many of the previous
pieces—the only new thing it shows is the input() function:

print("Type integers, each followed by Enter; or just Enter to finish")

total = 0
count = 0

while True:
line = input("integer: ")
if line:
try:
number = int(line)
except ValueError as err:
print(err)
continue
total += number
count +=1
else:
break

if count:
print("count =", count, "total =", total, "mean =", total / count)

Book’s The program (in file suml.py in the book’s examples) has just 17 executable

e’fam' lines. Here is what a typical run looks like:
ples

3« Type integers, each followed by Enter; or just Enter to finish
number: 12
number: 7
number: 1x
invalid literal for int() with base 10: '1x'
number: 15
number: 5
number:
count = 4 total = 39 mean = 9.75

Although the program is very short, it is fairly robust. If the user enters a
string that cannot be converted to an integer, the problem is caught by an

www.it-ebooks.info

http://www.it-ebooks.info/

Win-
dows file
associa-
tion bug

11

Python’s “Beautiful Heart” 35

exception handler that prints a suitable message and switches control to the
start of the loop (“continues the loop”). And the last if statement ensures that
if the user doesn’t enter any numbers at all, the summary isn’t output, and
division by zero is avoided.

File handling is fully covered in Chapter 7; but right now we can create files by
redirecting the print() functions’ output from the console. For example:

C:\>test.py > results.txt

will cause the output of plain print() function calls made in the fictitious
test.py program to be written to the file results.txt. This syntax works in the
Windows console (usually) and in Unix consoles. For Windows, we must write
C:\Python31\python.exe test.py > results.txt if Python 2 is the machine’s de-
fault Python version or if the console exhibits the file association bug; other-
wise, assuming Python 3 is in the PATH, python test.py > results.txt should be
sufficient, if plain test.py > results.txt doesn’t work. For Unixes we must
make the program executable (chmod +x test.py) and then invoke it by typing
./test.py unless the directory it is in happens to be in the PATH, in which case
invoking it by typing test.py is sufficient.

Reading data can be achieved by redirecting a file of data as input in an
analogous way to redirecting output. However, if we used redirection with
suml.py, the program would fail. This is because the input() function raises an
exception if it receives an EOF (end of file) character. Here is a more robust
version (sum2.py) that can accept input from the user typing at the keyboard, or
via file redirection:

print("Type integers, each followed by Enter; or ”D or ~Z to finish")

total = 0
count = 0

while True:
try:
line = input()
if line:
number = int(line)
total += number
count +=1
except ValueError as err:
print(err)
continue
except EOFError:
break

if count:
print("count =", count, "total =", total, "mean =", total / count)

www.it-ebooks.info

http://www.it-ebooks.info/

36 Chapter 1. Rapid Introduction to Procedural Programming

Given the command line sum2.py < data\sum2.dat (where the sum2.dat file con-
tains a list of numbers one per line and is in the examples’ data subdirectory),
the output to the console is:

Type integers, each followed by Enter; or ~D or “Z to finish
count = 37 total = 1839 mean = 49.7027027027

We have made several small changes to make the program more suitable for
use both interactively and using redirection. First, we have changed the
termination from being a blank line to the EOF character (Ctrl+D on Unix,
Ctrl+Z, Enter on Windows). This makes the program more robust when it comes
to handling input files that contain blank lines. We have stopped printing a
prompt for each number since it doesn’t make sense to have one for redirected
input. And we have also used a single try block with two exception handlers.

Notice that if an invalid integer is entered (either via the keyboard or due to
a “bad” line of data in a redirected input file), the int() conversion will raise a
ValueError exception and the flow of control will immediately switch to the rele-
vant except block—this means that neither total nor count will be incremented
when invalid data is encountered, which is exactly what we want.

We could just as easily have used two separate exception-handling try blocks
instead:

while True:
try:
line = input()
if line:
try:
number = int(line)
except ValueError as err:
print(err)
continue
total += number
count +=1
except EOFError:
break

But we preferred to group the exceptions together at the end to keep the main
processing as uncluttered as possible.

Piece #8: Creating and Calling Functions

It is perfectly possible to write programs using the data types and control struc-
tures that we have covered in the preceding pieces. However, very often we
want to do essentially the same processing repeatedly, but with a small differ-
ence, such as a different starting value. Python provides a means of encapsu-

www.it-ebooks.info

http://www.it-ebooks.info/

Python’s “Beautiful Heart” 37

lating suites as functions which can be parameterized by the arguments they
are passed. Here is the general syntax for creating a function:

def functionName(arguments):
suite

The arguments are optional and multiple arguments must be comma-separated.
Every Python function has a return value; this defaults to None unless we return
from the function using the syntax return value, in which case value isreturned.
The return value can be just one value or a tuple of values. The return value
can be ignored by the caller, in which case it is simply thrown away.

Note that def is a statement that works in a similar way to the assignment
operator. When def is executed a function object is created and an object
reference with the specified name is created and set to refer to the function
object. Since functions are objects, they can be stored in collection data types
and passed as arguments to other functions, as we will see in later chapters.

One frequent need when writing interactive console applications is to obtain
an integer from the user. Here is a function that does just that:

def get int(msg):
while True:
try:
i = int(input(msg))
return 1
except ValueError as err:
print(err)

This function takes one argument, msg. Inside the while loop the user is prompt-
ed to enter an integer. If they enter something invalid a ValueError exception
will be raised, the error message will be printed, and the loop will repeat. Once
a valid integer is entered, it is returned to the caller. Here is how we would
call it:

age = get int("enter your age: ")

In this example the single argument is mandatory because we have provided
no default value. In fact, Python supports a very sophisticated and flexible
syntax for function parameters that supports default argument values and
positional and keyword arguments. All of the syntax is covered in Chapter 4.

Although creating our own functions can be very satisfying, in many cases it
is not necessary. This is because Python has a lot of functions built in, and a
great many more functions in the modules in its standard library, so what we
want may well already be available.

www.it-ebooks.info

return
state-
ment

>» 173

http://www.it-ebooks.info/

Dot (.)
operator

21 <

shebang
#!) line

12 <

38 Chapter 1. Rapid Introduction to Procedural Programming

A Python module is just a .py file that contains Python code, such as custom
function and class (custom data type) definitions, and sometimes variables. To
access the functionality in a module we must import it. For example:

import sys

To import a module we use the import statement followed by the name of the
.py file, but omitting the extension.* Once a module has been imported, we can
access any functions, classes, or variables that it contains. For example:

print(sys.argv)

The sys module provides the argv variable—a list whose first item is the name
under which the program was invoked and whose second and subsequent
items are the program’s command-line arguments. The two previously quoted
lines constitute the entire echoargs.py program. If the program is invoked
with the command line echoargs.py -v, it will print ['echoargs.py', '-v'] on the
console. (On Unix the first entry may be './echoargs.py'.)

In general, the syntax for using a function from a module is moduleName. func-
tionName(arguments). It makes use of the dot (“access attribute”) operator we
introduced in Piece #3. The standard library contains lots of modules, and we
will make use of many of them throughout the book. The standard modules
all have lowercase names, so some programmers use title-case names (e.g., My-
Module) for their own modules to keep them distinct.

Let us look at just one example, the random module (in the standard library’s
random. py file), which provides many useful functions:

import random
X = random.randint(1, 6)
y = random.choice(["apple", "banana", "cherry", "durian"])

After these statements have been executed, x will contain an integer between
1 and 6 inclusive, and y will contain one of the strings from the list passed to
the random. choice() function.

It is conventional to put all the import statements at the beginning of . py files,
after the shebang line, and after the module’s documentation. (Document-
ing modules is covered in Chapter 5.) We recommend importing standard li-
brary modules first, then third-party library modules, and finally your own
modules.

*The sys module, some other built-in modules, and modules implemented in C don’t necessarily
have corresponding .py files—but they are used in just the same way as those that do.

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 39

Examples

In the preceding section we learned enough Python to write real programs.
In this section we will study two complete programs that use only the Python
covered earlier. This is both to show what is possible, and to help consolidate
what has been learned so far.

In subsequent chapters we will increasingly cover more of Python’s language
and library, so that we will be able to write programs that are more concise and
more robust than those shown here—but first we must have the foundations
on which to build.

bigdigits.py

The first program we will review is quite short, although it has some subtle
aspects, including a list of lists. Here is what it does: Given a number on the
command line, the program outputs the same number onto the console using
“big” digits.

At sites where lots of users share a high-speed line printer, it used to be
common practice for each user’s print job to be preceded by a cover page that
showed their username and some other identifying details printed using this
kind of technique.

We will review the code in three parts: the import, the creation of the lists
holding the data the program uses, and the processing itself. But first, let’s
look at a sample run:

bigdigits.py 41072819
*

* *kk ok ko *%k *okk * Xk

* X% XX * * *x X *x X * kX * *

* X * * * * X X * * * * *
*x X * * * * * *oxk * Xk
ok ok ok ok * * * * * * * * *
* * * * * * * * * *

* ok *kk * ok kk *kk X%k *

We have not shown the console prompt (or the leading ./ for Unix users); we
will take them for granted from now on.

import sys

Since we must read in an argument from the command line (the number
to output), we need to access the sys.argv list, so we begin by importing the
sys module.

We represent each number as a list of strings. For example, here is zero:

www.it-ebooks.info

http://www.it-ebooks.info/

40 Chapter 1. Rapid Introduction to Procedural Programming

One detail to note is that the Zero list of strings is spread over multiple lines.
Python statements normally occupy a single line, but they can span multiple
lines if they are a parenthesized expression, a list, set, or dictionary literal, a
function call argument list, or a multiline statement where every end-of-line
character except the last is escaped by preceding it with a backslash (\). In
all these cases any number of lines can be spanned and indentation does not
matter for the second and subsequent lines.

Each list representing a number has seven strings, all of uniform width,
although what this width is differs from number to number. The lists for the
other numbers follow the same pattern as for zero, although they are laid out
for compactness rather than for clarity:

—_ n n " n " n " n n n n n n n
One = [" * ", "kx " ko * o0 * o0 ko0 k]
—_ n n " n n n n n n n n n n "
Two = [" *%x " x L I U * , * , Uk [RRRRR N]
...
2 —_ n " n n n n n n n " n n n n
Nine = [" #k*xn koo ko RAHKN *n *n 1

The last piece of data we need is a list of all the lists of digits:
Digits = [Zero, One, Two, Three, Four, Five, Six, Seven, Eight, Nine]

We could have created the Digits lists directly, and avoided creating the extra
variables. For example:

Digits = [
[|| kK k n "ok x n ('3 %xn "k xn "k xn
! ’ ! ’ !

"ok % ||, n ok ok n] , # Zero
[n * "n , II** n , n * n , n * n , "n * n , n * n , II***II] , # One
...
[II ****Il II* *II II* *ll n ****II n *ll n *II

’ ! ’ ! ’ !
" *"1 # Nine

]

We preferred to use a separate variable for each number both for ease of

understanding and because it looks neater using the variables.

We will quote the rest of the code in one go so that you can try to figure out how

it works before reading the explanation that follows.

www.it-ebooks.info

set type
» 121
dict
type

» 126

http://www.it-ebooks.info/

Examples 41

try:
digits = sys.argv[1]
row = 0
while row < 7:
line = ""
column = 0

while column < len(digits):
number = int(digits[column])
digit = Digits[number]
line += digit[row] + " "
column += 1
print(line)
row += 1
except IndexError:
print("usage: bigdigits.py <number>")
except ValueError as err:
print(err, "in", digits)

The whole code is wrapped in an exception handler that can catch the two
things that can go wrong. We begin by retrieving the program’s command-line
argument. The sys.argv list is 0-based like all Python lists; the item at index
position 0 is the name the program was invoked as, so in a running program
this list always starts out with at least one item. If no argument was given we
will be trying to access the second item in a one-item list and this will cause
an IndexError exception to be raised. If this occurs, the flow of control is imme-
diately switched to the corresponding exception-handling block, and there we
simply print the program’s usage. Execution then continues after the end of
the try block; but there is no more code, so the program simply terminates.

If no IndexError occurs, the digits string holds the command-line argument,
which we hope is a sequence of digit characters. (Remember from Piece #2 that
identifiers are case-sensitive,so digits and Digits are different.) Each big digit
is represented by seven strings, and to output the number correctly we must
output the top row of every digit, then the next row, and so on, until all seven
rows have been output. We use a while loop to iterate over each row. We could
just as easily have done this instead: for row in (0, 1, 2, 3, 4, 5, 6): and later
on we will see a much better way using the built-in range() function.

We use the line string to hold the row strings from all the digits involved. Then
we loop by column, that is, by each successive character in the command-line
argument. We retrieve each character with digits[column] and convert the
digit to an integer called number. If the conversion fails a ValueError exception
is raised and the flow of control immediately switches to the corresponding
exception handler. In this case we print an error message, and control resumes
after the try block. As noted earlier, since there is no more code at this point,
the program will simply terminate.

www.it-ebooks.info

range()
>» 141

http://www.it-ebooks.info/

random.
rand-
int()

38 «

42 Chapter 1. Rapid Introduction to Procedural Programming

If the conversion succeeds, we use number as an index into the Digits list, from
which we extract the digit list of strings. We then add the row-th string from
this list to the line we are building up, and also append two spaces to give some
horizontal separation between each digit.

Each time the inner while loop finishes, we print the line that has been built
up. The key to understanding this program is where we append each digit’s
row string to the current row’s line. Try running the program to get a feel for
how it works. We will return to this program in the exercises to improve its
output slightly.

generate_grid.py

One frequently occurring need is the generation of test data. There is no single
generic program for doing this, since test data varies enormously. Python is
often used to produce test data because it is so easy to write and modify Python
programs. In this subsection we will create a program that generates a grid
of random integers; the user can specify how many rows and columns they
want and over what range the integers should span. We’ll start by looking at
a sample run:

generate grid.py

rows: 4x

invalid literal for int() with base 10: '4x'
rows: 4

columns: 7

minimum (or Enter for 0): -100

maximum (or Enter for 1000):

554 720 550 217 810 649 912
-24 908 742 -65 -74 724 825
711 968 824 505 741 55 723
180 -60 794 173 487 4 -35

The program works interactively, and at the beginning we made a typing error
when entering the number of rows. The program responded by printing an
error message and then asking us to enter the number of rows again. For the
maximum we just pressed Enter to accept the default.

We will review the code in four parts: the import, the definition of a get_int()
function (a more sophisticated version than the one shown in Piece #8), the
user interaction to get the values to use, and the processing itself.

import random

We need the random module to give us access to the random. randint() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 43

def get int(msg, minimum, default):
while True:
try:
line = input(msg)
if not line and default is not None:
return default
i = int(line)
if i < minimum:
print("must be >=", minimum)
else:
return i
except ValueError as err:
print(err)

This function requires three arguments: a message string, a minimum value,
and a default value. If the user just presses Enter there are two possibilities. If
default is None, that is, no default value has been given, the flow of control will
drop through to the int() line. There the conversion will fail (since '' cannot
be converted to an integer), and a ValueError exception will be raised. But if
default is not None, then it is returned. Otherwise, the function will attempt
to convert the text the user entered into an integer, and if the conversion is
successful, it will then check that the integer is at least equal to the minimum
that has been specified.

So, the function will always return either default (if the user just pressed
Enter), or a valid integer that is greater than or equal to the specified minimum.

rows = get int("rows: ", 1, None)
columns = get int("columns: ", 1, None)
minimum = get int("minimum (or Enter for 0): ", -1000000, 0)

default = 1000
if default < minimum:
default = 2 * minimum
maximum = get int("maximum (or Enter for " + str(default) + "): ",
minimum, default)

Our get int() function makes it easy to obtain the number of rows and
columns and the minimum random value that the user wants. For rows and
columns we give a default value of None, meaning no default, so the user must
enter an integer. In the case of the minimum, we supply a default value of 0,
and for the maximum we give a default value of 1000, or twice the minimum
if the minimum is greater than or equal to 1000.

As we noted in the previous example, function call argument lists can span
any number of lines, and indentation is irrelevant for their second and subse-
quent lines.

www.it-ebooks.info

http://www.it-ebooks.info/

44 Chapter 1. Rapid Introduction to Procedural Programming

Once we know how many rows and columns the user requires and the mini-
mum and maximum values of the random numbers they want, we are ready to
do the processing.

row = 0

while row < rows:
line = ""
column = 0

while column < columns:
i = random.randint(minimum, maximum)
s = str(i)
while len(s) < 10:
s=""+s5
line += s
column += 1
print(line)
row += 1

To generate the grid we use three while loops, the outer one working by rows,
the middle one by columns, and the inner one by characters. In the middle
loop we obtain a random number in the specified range and then convert it to
a string. The inner while loop is used to pad the string with leading spaces so
that each number is represented by a string 10 characters wide. We use the
line string to accumulate the numbers for each row, and print the line after
each column’s numbers have been added. This completes our second example.

Python provides very sophisticated string formatting functionality, as well
as excellent support for for ... in loops, so more realistic versions of both
bigdigits.py and generate grid.py would have used for ... in loops, and gener-
ate grid.py would have used Python’s string formatting capabilities rather
than crudely padding with spaces. But we have limited ourselves to the eight
pieces of Python introduced in this chapter, and they are quite sufficient for
writing complete and useful programs. In each subsequent chapter we will
learn new Python features, so as we progress through the book the programs
we will see and be capable of writing will grow in sophistication.

Summary

In this chapter we learned how to edit and run Python programs and reviewed
a few small but complete programs. But most of the chapter’s pages were
devoted to the eight pieces of Python’s “beautiful heart”—enough of Python to
write real programs.

We began with two of Python’s most basic data types, int and str. Integer liter-
als are written just as they are in most other programming languages. String

www.it-ebooks.info

str.
format()

>» 78

http://www.it-ebooks.info/

Summary 45

literals are written using single or double quotes; it doesn’t matter which as
long as the same kind of quote is used at both ends. We can convert between
strings and integers, for example, int("250") and str(125). If an integer con-
version fails a ValueError exception is raised; whereas almost anything can be
converted to a string.

Strings are sequences, so those functions and operations that can be used with
sequences can be used with strings. For example, we can access a particular
character using the item access operator ([]), concatenate strings using +, and
append one string to another using +=. Since strings are immutable, behind
the scenes, appending creates a new string that is the concatenation of the
given strings, and rebinds the left-hand string object reference to the resultant
string. We can alsoiterate over a string character by character using a for ... in
loop. And we can use the built-in len() function to report how many characters
are in a string.

For immutable objects like strings, integers, and tuples, we can write our code
as though an object reference is a variable, that is, as though an object refer-
ence is the object it refers to. We can also do this for mutable objects, although
any change made to a mutable object will affect all occurrences of the object
(i.e., all object references to the object); we will cover this issue in Chapter 3.

Python provides several built-in collection data types and has some othersin its
standard library. We learned about the list and tuple types, and in particular
how to create tuples and lists from literals, for example,even=[2, 4, 6, 8]. Lists,
like everything else in Python, are objects, so we can call methods on them—for
example, even.append(10) will add an extra item to the list. Like strings, lists
and tuples are sequences, so we can iterate over them item by item using a
for ... in loop, and find out how many items they have using len(). We can also
retrieve a particular item in a list or tuple using the item access operator ([]),
concatenate two lists or tuples using +, and append one to another using +=. If
we want to append a single item to a list we must either use list.append() or
use += with the item made into a single-item list—for example, even += [12].
Since lists are mutable, we can use [] to change individual items, for example,
even[1] = 16.

The fast is and is not identity operators can be used to check whether two ob-
ject references refer to the same thing—this is particularly useful when check-
ing against the unique built-in None object. All the usual comparison operators
are available (<, <=, ==, =, >=, >), but they can be used only with compatible data
types, and then only if the operations are supported. The data types we have
seen so far—int, str, list, and tuple—all support the complete set of compar-
ison operators. Comparing incompatible types, for example, comparing an int
with a str or list, will quite sensibly produce a TypeError exception.

Python supports the standard logical operators and, or, and not. Both and and
or are short-circuit operators that return the operand that determined their

www.it-ebooks.info

http://www.it-ebooks.info/

46 Chapter 1. Rapid Introduction to Procedural Programming

result—and this may not be a Boolean (although it can be converted to a
Boolean); not always returns either True or False.

We can test for membership of sequence types, including strings, lists, and tu-
ples, using the in and not in operators. Membership testing uses a slow linear
search on lists and tuples, and a potentially much faster hybrid algorithm for
strings, but performance is rarely an issue except for very long strings, lists,
and tuples. In Chapter 3 we will learn about Python’s associative array and
set collection data types, both of which provide very fast membership testing.
It is also possible to find out an object variable’s type (i.e., the type of object the
object reference refers to) using type ()—but this function is normally used only
for debugging and testing.

Python provides several control structures, including conditional branching
with if ... elif ... else, conditional looping with while, looping over sequences
with for ... in, and exception-handling with try ... except blocks. Both while
and for ... in loops can be prematurely terminated using a break statement,
and both can switch control to the beginning using continue.

The usual arithmetic operators are supported, including +, -, *, and /, although
Python is unusual in that / always produces a floating-point result even if both
its operands are integers. (The truncating division that many other languages
use is also available in Python as //.) Python also provides augmented assign-
ment operators such as += and *=; these create new objects and rebind behind
the scenes if their left-hand operand is immutable. The arithmetic operators
are overloaded by the str and list types as we noted earlier.

Console I/O can be achieved using input() and print(); and using file redi-
rection in the console, we can use these same built-in functions to read and
write files.

In addition to Python’s rich built-in functionality, its extensive standard
library is also available, with modules accessible once they have been imported
using the import statement. One commonly imported module is sys, which
holds the sys.argv list of command-line arguments. And when Python doesn’t
have the function we need we can easily create one that does what we want
using the def statement.

By making use of the functionality described in this chapter it is possible to
write short but useful Python programs. In the following chapter we will learn
more about Python’s data types, going into more depth for ints and strs and
introducing some entirely new data types. In Chapter 3 we will learn more
about tuples and lists, and also about some of Python’s other collection data
types. Then, in Chapter 4 we will cover Python’s control structures in much
more detail, and will learn how to create our own functions so that we can
package up functionality to avoid code duplication and promote code reuse.

www.it-ebooks.info

http://www.it-ebooks.info/

Book’s
exam-
ples

3«

Exercises 47

Exercises

The purpose of the exercises here, and throughout the book, is to encourage you
to experiment with Python, and to get hands-on experience to help you absorb
each chapter’s material. The examples and exercises cover both numeric and
text processing to appeal to as wide an audience as possible, and they are kept
fairly small so that the emphasis is on thinking and learning rather than just
typing code. Every exercise has a solution provided with the book’s examples.

1. One nice variation of the bigdigits.py program is where instead of
printing *s, the relevant digit is printed instead. For example:

bigdigits ans.py 719428306
77777 1 9999 4 222 888 333 000 666

7 11 9 9 44 2 28 83 3 06 0 6

7 1 9 9 44 2 2 8 8 30 0 6
7 1 9999 4 4 2 888 33 0 0 6666
7 1 9 444444 2 8 8 30 0 6 6
7 1 9 4 2 8 83 3 06 06 6 6
7 111 9 4 22222 888 333 000 666

Two approaches can be taken. The easiest is to simply change the *s in
the lists. But this isn’t very versatile and is not the approach you should
take. Instead, change the processing code so that rather than adding each
digit’s row string to the line in one go, you add character by character, and
whenever a * is encountered you use the relevant digit.

This can be done by copying bigdigits.py and changing about five lines.
It isn’t hard, but it is slightly subtle. A solution is provided as bigdig-
its_ans.py.

2. IDLE can be used as a very powerful and flexible calculator, but some-
times it is useful to have a task-specific calculator. Create a program that
prompts the user to enter a number in a while loop, gradually building
up a list of the numbers entered. When the user has finished (by simply
pressing Enter), print out the numbers they entered, the count of numbers,
the sum of the numbers, the lowest and highest numbers entered, and the
mean of the numbers (sum / count). Here is a sample run:

averagel ans.py

enter a number or Enter to finish: 5
enter a number or Enter to finish: 4
enter a number or Enter to finish: 1
enter a number or Enter to finish: 8
enter a number or Enter to finish: 5
enter a number or Enter to finish: 2
enter a number or Enter to finish:

www.it-ebooks.info

http://www.it-ebooks.info/

random.
rand-
int()
and
random.
choice()

38«

48

Chapter 1. Rapid Introduction to Procedural Programming

numbers: [5, 4, 1, 8, 5, 2]
count = 6 sum = 25 lowest = 1 highest = 8 mean = 4.16666666667

It will take about four lines to initialize the necessary variables (an empty
list is simply []), and less than 15 lines for the while loop, including basic
error handling. Printing out at the end can be done in just a few lines, so
the whole program, including blank lines for the sake of clarity, should be
about 25 lines.

. In some situations we need to generate test text—for example, to populate

a web site design before the real content is available, or to provide test
content when developing a report writer. To this end, write a program that
generates awful poems (the kind that would make a Vogon blush).

” K »

Create some lists of words, for example, articles (“the”, “a”, etc.), subjects
(“cat”,“dog”, “man”, “woman”), verbs (“sang”, “ran”, “jumped”), and adverbs
(“loudly”, “quietly”, “well”, “badly”). Then loop five times, and on each it-
eration use the random.choice() function to pick an article, subject, verb,
and adverb. Use random.randint() to choose between two sentence struc-
tures: article, subject, verb, and adverb, or just article, subject, and verb,

and print the sentence. Here is an example run:

awfulpoetryl ans.py
another boy laughed badly
the woman jumped

a boy hoped

a horse jumped

another man laughed rudely

You will need to import the random module. The lists can be done in about
4-10 lines depending on how many words you put in them, and the loop
itself requires less than ten lines, so with some blank lines the whole
program can be done in about 20 lines of code. A solution is provided as
awfulpoetryl ans.py.

. To make the awful poetry program more versatile, add some code to it so

that if the user enters a number on the command line (between 1 and 10
inclusive), the program will output that many lines. If no command-line
argument is given, default to printing five lines as before. You'll need to
change the main loop (e.g., to a while loop). Keep in mind that Python’s
comparison operators can be chained, so there’s no need to use logical and
when checking that the argument isin range. The additional functionality
can be done by adding about ten lines of code. A solution is provided as
awfulpoetry2 ans.py.

. It would be nice to be able to calculate the median (middle value) as well

as the mean for the averages program in Exercise 2, but to do this we must
sort the list. In Python a list can easily be sorted using the list.sort()

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises 49

method, but we haven’t covered that yet, so we won’t use it here. Ex-
tend the averages program with a block of code that sorts the list of
numbers—efficiency is of no concern, just use the easiest approach you
can think of. Once the list is sorted, the median is the middle value if the
list has an odd number of items, or the average of the two middle values
if the list has an even number of items. Calculate the median and output
that along with the other information.

This is rather tricky, especially for inexperienced programmers. If you
have some Python experience, you might still find it challenging, at least if
you keep to the constraint of using only the Python we have covered so far.
The sorting can be done in about a dozen lines and the median calculation
(where you can’t use the modulus operator, since it hasn’t been covered yet)
in four lines. A solution is provided in average2 ans.py.

www.it-ebooks.info

http://www.it-ebooks.info/

Object
refer-
ences

16 <

® Identifiers and Keywords
® Integral Types

® Floating-Point Types

@® Strings

Data Types

In this chapter we begin to take a much more detailed look at the Python lan-
guage. We start with a discussion of the rules governing the names we give to
object references, and provide a list of Python’s keywords. Then we look at all
of Python’s most important data types—excluding collection data types, which
are covered in Chapter 3. The data types considered are all built-in, except for
one which comes from the standard library. The only difference between built-
in data types and library data types is that in the latter case, we must first im-
port the relevant module and we must qualify the data type’s name with the
name of the module it comes from—Chapter 5 covers importing in depth.

Identifiers and Keywords

When we create a data item we can either assign it to a variable, or insert it
into a collection. (As we noted in the preceding chapter, when we assign in
Python, what really happens is that we bind an object reference to refer to
the object in memory that holds the data.) The names we give to our object
references are called identifiers or just plain names.

A valid Python identifier is a nonempty sequence of characters of any length
that consists of a “start character” and zero or more “continuation characters”.
Such an identifier must obey a couple of rules and ought to follow certain con-
ventions.

The first rule concerns the start and continuation characters. The start char-
acter can be anything that Unicode considers to be a letter, including the ASCII
letters (“a”, “b”, ..., “z”, “A”, “B”, ..., “Z”), the underscore (“_"), as well as the let-
ters from most non-English languages. Each continuation character can be
any character that is permitted as a start character, or pretty well any non-
whitespace character, including any character that Unicode considers to be a
digit, such as (“0”,“1”, ..., “9”), or the Catalan character “.”. Identifiers are case-

51

www.it-ebooks.info

http://www.it-ebooks.info/

52 Chapter 2. Data Types

sensitive, so for example, TAXRATE, Taxrate, TaxRate, taxRate, and taxrate are five
different identifiers.

The precise set of characters that are permitted for the start and continuation
are described in the documentation (Python language reference, Lexical analy-
sis, Identifiers and keywords section), and in PEP 3131 (Supporting Non-ASCII
Identifiers).*

The second rule is that no identifier can have the same name as one of Python’s
keywords, so we cannot use any of the names shown in Table 2.1.

Table 2.1 Python’s Keywords

and continue except global lambda pass while
as def False if None raise with

assert del finally import nonlocal return yield
break elif for in not True

class else from is or try

We already met most of these keywords in the preceding chapter, although 11
of them—assert, class, del, finally, from, global, lambda, nonlocal, raise, with,
and yield—have yet to be discussed.

The first convention is: Don’t use the names of any of Python’s predefined iden-
tifiers for your own identifiers. So, avoid using NotImplemented and Ellipsis,
and the name of any of Python’s built-in data types (such as int, float, list,
str, and tuple), and any of Python’s built-in functions or exceptions. How can
we tell whether an identifier falls into one of these categories? Python has a
built-in function called dir() that returns a list of an object’s attributes. If it is
called with no arguments it returns the list of Python’s built-in attributes. For
example:

>>> dir() # Python 3.1's list has an extra item,
[' builtins ', ' doc_ ', ' name ']

__package

The builtins _ attribute is, in effect, a module that holds all of Python’s
built-in attributes. We can use it as an argument to the dir() function:

>>> dir(builtins)
['ArithmeticError', 'AssertionError', 'AttributeError',

‘sum', 'super', 'tuple', 'type', 'vars', 'zip']
*A “PEP” is a Python Enhancement Proposal. If someone wants to change or extend Python,
providing they get enough support from the Python community, they submit a PEP with the details
of their proposal so that it can be formally considered, and in some cases such as with PEP 3131,

accepted and implemented. All the PEPs are accessible from www.python.org/dev/peps/.

www.it-ebooks.info

http://www.it-ebooks.info/

import

38«

Identifiers and Keywords 53

There are about 130 names in the list, so we have omitted most of them. Those
that begin with a capital letter are the names of Python’s built-in exceptions;
the rest are function and data type names.

The second convention concerns the use of underscores (). Names that begin
and end with two underscores (such as 1t) should not be used. Python
defines various special methods and variables that use such names (and in the
case of special methods, we can reimplement them, that is, make our own ver-
sions of them), but we should not introduce new names of this kind ourselves.
We will cover such names in Chapter 6. Names that begin with one or two lead-
ing underscores (and that don’t end with two underscores) are treated specially
in some contexts. We will show when to use names with a single leading un-
derscore in Chapter 5, and when to use those with two leading underscores in
Chapter 6.

A single underscore on its own can be used as an identifier, and inside an
interactive interpreter or Python Shell, holds the result of the last expression
that was evaluated. In a normal running program no _ exists, unless we use it
explicitly in our code. Some programmers like to use in for ... in loops when
they don’t care about the items being looped over. For example:

for in (0, 1, 2, 3, 4, 5):
print("Hello")

Be aware, however, that those who write programs that are international-
ized often use as the name of their translation function. They do this so
that instead of writing gettext.gettext("Translate me"), they can write
_("Translate me"). (For this code to work we must have first imported the get-
text module so that we can access the module’s gettext() function.)

Let’s look at some valid identifiers in a snippet of code written by a Spanish-
speaking programmer. The code assumes we have done import math and that
the variables radio and vieja &rea have been created earlier in the program:

7 = math.pi

€ = 0.0000001

nueva area = ® * radio * radio

if abs(nueva area - vieja area) < €:
print("las areas han convergido")

We’ve used the math module, set epsilon (¢) to be a very small floating-point
number, and used the abs() function to get the absolute value of the difference
between the areas—we cover all of these later in this chapter. What we are
concerned with here is that we are free to use accented characters and Greek
letters for identifiers. We could just as easily create identifiers using Arabic,
Chinese, Hebrew, Japanese, and Russian characters, or indeed characters from
any other language supported by the Unicode character set.

www.it-ebooks.info

import

» 196

http://www.it-ebooks.info/

54 Chapter 2. Data Types

The easiest way to check whether something is a valid identifier is to try to
assign to it in an interactive Python interpreter or in IDLE’s Python Shell
window. Here are some examples:

>>> stretch-factor = 1

SyntaxError: can't assign to operator (...)

>>> 2miles = 2

SyntaxError: invalid syntax (...)

>>> str = 3 # Legal but BAD

>>> 1'imp6t31 = 4

SyntaxError: EOL while scanning single-quoted string (...)
>>> 1 imp6t3l = 5

>>>

When an invalid identifier is used it causes a SyntaxError exception to be raised.
In each case the part of the error message that appears in parentheses varies,
so we have replaced it with an ellipsis. The first assignment fails because
“~” is not a Unicode letter, digit, or underscore. The second one fails because
the start character is not a Unicode letter or underscore; only continuation
characters can be digits. No exception is raised if we create an identifier that
is valid—even if the identifier is the name of a built-in data type, exception,
or function—so the third assignment works, although it is ill-advised. The
fourth fails because a quote is not a Unicode letter, digit, or underscore. The
fifth is fine.

Integral Types

Python provides two built-in integral types, int and bool.* Both integers and
Booleans are immutable, but thanks to Python’s augmented assignment oper-
ators this is rarely noticeable. When used in Boolean expressions, 0 and False
are False, and any other integer and True are True. When used in numerical
expressions True evaluates to 1 and False to 0. This means that we can write
some rather odd things—for example, we can increment an integer, i, using the
expression i += True. Naturally, the correct way to do thisis i += 1.

Integers

The size of an integer is limited only by the machine’s memory, so integers
hundreds of digits long can easily be created and worked with—although they
will be slower to use than integers that can be represented natively by the
machine’s processor.

*The standard library also provides the fractions.Fraction type (unlimited precision rationals)
which may be useful in some specialized mathematical and scientific contexts.

www.it-ebooks.info

Deal-
ing with
syntax
errors

» 414

http://www.it-ebooks.info/

Tuples
18 «

Integral Types

55

Syntax
X +y
X -y
X *y

x/y

x /]y

+X
abs(x)
divmod(x, y)

pow(x, y)
pow(x, y, z)

round(x, n)

Syntax
bin(i)

hex(1)

int(x)

int(s, base)

oct(i)

Table 2.2 Numeric Operators and Functions

Description

Adds number x and number y
Subtracts y from x

Multiplies x by y

Divides x by y; always produces a float (or a complex if x ory
is complex)

Divides x by y; truncates any fractional part so always pro-
duces an int result; see also the round() function

Produces the modulus (remainder) of dividing x by y
Raises x to the power of y; see also the pow() functions
Negates x; changes x’s sign if nonzero, does nothing if zero
Does nothing; is sometimes used to clarify code

Returns the absolute value of x

Returns the quotient and remainder of dividing x by y as a
tuple of two ints

Raises x to the power of y; the same as the ** operator
A faster alternative to (x **y) % z

Returns x rounded to n integral digits if n is a negative int
or returns x rounded to n decimal places if n is a positive int;
the returned value has the same type as x; see the text

Table 2.3 Integer Conversion Functions

Description

Returns the binary representation of int i as a string, e.g.,
bin(1980) == '0b11110111160"

Returns the hexadecimal representation of i as a string, e.g.,
hex(1980) == '0x7bc'

Converts object x to an integer; raises ValueError on
failure—or TypeError if x’s data type does not support integer
conversion. If x is a floating-point number it is truncated.
Converts str s to an integer; raises ValueError on failure. If
the optional base argument is given it should be an integer
between 2 and 36 inclusive.

Returns the octal representation of i as a string, e.g.,
oct(1980) == '003674"

www.it-ebooks.info

Tuples
>» 108

http://www.it-ebooks.info/

56 Chapter 2. Data Types

Integer literals are written using base 10 (decimal) by default, but other
number bases can be used when this is convenient:

>>> 14600926 # decimal
14600926

>>> 0b110111101100101011011110 # binary
14600926

>>> 0067545336 # octal
14600926

>>> OxDECADE # hexadecimal
14600926

Binary numbers are written with a leading 0b, octal numbers with a leading
00,* and hexadecimal numbers with a leading 0x. Uppercase letters can also
be used.

All the usual mathematical functions and operators can be used with integers,
as Table 2.2 shows. Some of the functionality is provided by built-in functions
like abs()—for example, abs (i) returns the absolute value of integer i—and
other functionality is provided by int operators—for example, i + j returns the
sum of integers i and j.

We will mention just one of the functions from Table 2.2, since all the others are
sufficiently explained in the table itself. While for floats, the round() function
works in the expected way—for example, round(1.246, 2) produces 1.25—for
ints, using a positive rounding value has no effect and results in the same
number being returned, since there are no decimal digits to work on. But when
anegative rounding value is used a subtle and useful behavior is achieved—for
example, round (13579, -3) produces 14000, and round(34.8, -1) produces 30.0.

All the binary numeric operators (+, -, /, //, %, and **) have augmented assign-
ment versions (+=, -=, /=, //=, %=, and **=) where x op=y is logically equivalent to
X = x op y in the normal case when reading x’s value has no side effects.

Objects can be created by assigning literals to variables, for example, x = 17, or
by calling the relevant data type as a function, for example, x = int(17). Some
objects (e.g., those of type decimal.Decimal) can be created only by using the
data type since they have no literal representation. When an object is created
using its data type there are three possible use cases.

The first use case is when a data type is called with no arguments. In this case
an object with a default value is created—for example, x = int() creates an
integer of value 0. All the built-in types can be called with no arguments.

The second use case is when the data type is called with a single argument. If
an argument of the same type is given, a new object which is a shallow copy of

*Users of C-style languages note that a single leading 0 is not sufficient to specify an octal number;
o (zero, letter o) must be used in Python.

www.it-ebooks.info

http://www.it-ebooks.info/

Integral Types 57

the original object is created. (Shallow copying is covered in Chapter 3.) If an
argument of a different type is given, a conversion is attempted. This use is
shown for the int type in Table 2.3. If the argument is of a type that supports
conversions to the given type and the conversion fails, a ValueError exception
is raised; otherwise, the resultant object of the given type is returned. If the
argument’s data type does not support conversion to the given type a TypeError
exception is raised. The built-in float and str types both provide integer
conversions; it is also possible to provide integer and other conversions for our
own custom data types as we will see in Chapter 6.

The third use case is where two or more arguments are given—not all types
support this, and for those that do the argument types and their meanings
vary. For the int type two arguments are permitted where the first is a string
that represents an integer and the second is the number base of the string
representation. For example, int("A4", 16) creates an integer of value 164.
This use is shown in Table 2.3.

The bitwise operators are shown in Table 2.4. All the binary bitwise operators
(, ™, & <<, and >>) have augmented assignment versions (|=, "=, &=, <<=, and
>>=) where i op= j is logically equivalent to i = i op j in the normal case when
reading i’s value has no side effects.

From Python 3.1, the int.bit length() method is available. This returns
the number of bits required to represent the int it is called on. For example,
(2145) .bit length() returns 12. (The parentheses are required if a literal inte-
ger is used, but not if we use an integer variable.)

If many true/false flags need to be held, one possibility is to use a single integer,
and to test individual bits using the bitwise operators. The same thing can be
achieved less compactly, but more conveniently, using a list of Booleans.

Table 2.4 Integer Bitwise Operators

Syntax Description

i | j Bitwiseorof int i and int j; negative numbers are assumed to be
represented using 2’s complement

~j Bitwise xor (exclusive or) of i and j

i&j Bitwise anD of 1 and j

i << j Shifts i left by j bits; like i * (2 ** j) without overflow checking

i >> j Shifts i right by j bits; like i // (2 ** j) without overflow checking

~1 Inverts i’s bits

www.it-ebooks.info

Copying
collec-
tions

>» 146

Type
conver-
sions

» 252

http://www.it-ebooks.info/

Logical
opera-
tors

25 <«

58 Chapter 2. Data Types

Booleans

There are two built-in Boolean objects: True and False. Like all other Python
data types (whether built-in, library, or custom), the bool data type can be
called as a function—with no arguments it returns False, with a bool argument
it returns a copy of the argument, and with any other argument it attempts
to convert the given object to a bool. All the built-in and standard library data
types can be converted to produce a Boolean value, and it is easy to provide
Boolean conversions for custom data types. Here are a couple of Boolean
assignments and a couple of Boolean expressions:

>>> t = True
>>> f = False
>>> t and f
False

>>> t and True
True

As we noted earlier, Python provides three logical operators: and, or, and not.
Both and and or use short-circuit logic and return the operand that determined
the result, whereas not always returns either True or False.

Programmers who have been using older versions of Python sometimes use
1 and 0 instead of True and False; this almost always works fine, but new code
should use the built-in Boolean objects when a Boolean value is required.

Floating-Point Types

Python provides three kinds of floating-point values: the built-in float and
complex types, and the decimal.Decimal type from the standard library. All three
are immutable. Type float holds double-precision floating-point numbers
whose range depends on the C (or C# or Java) compiler Python was built with;
they have limited precision and cannot reliably be compared for equality.
Numbers of type float are written with a decimal point, or using exponential
notation, for example, 0.0, 4., 5.7, -2.5, -2e9, 8.9e-4.

Computers natively represent floating-point numbers using base 2—this
means that some decimals can be represented exactly (such as 0.5), but others
only approximately (such as 0.1 and 0.2). Furthermore, the representation uses
a fixed number of bits, so there is a limit to the number of digits that can be
held. Here is a salutary example typed into IDLE:

>>> 0.0, 5.4, -2.5, 8.9%e-4
(0.0, 5.4000000000000004, -2.5, 0.00088999999999999995)

www.it-ebooks.info

http://www.it-ebooks.info/

Floating-Point Types 59

The inexactness is not a problem specific to Python—all programming lan-
guages have this problem with floating-point numbers.

Python 3.1 produces much more sensible-looking output:

>>> 0.0, 5.4, -2.5, 8.9e-4
(0.0, 5.4, -2.5, 0.00089)

When Python 3.1 outputs a floating-point number, in most cases it uses David
Gay’s algorithm. This outputs the fewest possible digits without losing any
accuracy. Although this produces nicer output, it doesn’t change the fact
that computers (no matter what computer language is used) effectively store
floating-point numbers as approximations.

If we need really high precision there are two approaches we can take. One
approach is to use ints—for example, working in terms of pennies or tenths of
a penny or similar—and scale the numbers when necessary. This requires us
to be quite careful, especially when dividing or taking percentages. The other
approach is to use Python’s decimal.Decimal numbers from the decimal module.
These perform calculations that are accurate to the level of precision we specify
(by default, to 28 decimal places) and can represent periodic numbers like 0.1
exactly; but processing is a lot slower than with floats. Because of their accu-
racy, decimal.Decimal numbers are suitable for financial calculations.

Mixed mode arithmetic is supported such that using an int and a float pro-
duces a float, and using a float and a complex produces a complex. Because dec-
imal.Decimals are of fixed precision they can be used only with other decimal.
Decimals and with ints, in the latter case producing a decimal.Decimal result.
If an operation is attempted using incompatible types, a TypeError exception
is raised.

Floating-Point Numbers

All the numeric operators and functions in Table 2.2 (55 <) can be used with
floats, including the augmented assignment versions. The float data type can
be called as a function—with no arguments it returns 0.0, with a float argu-
ment it returns a copy of the argument, and with any other argument it at-
tempts to convert the given object to a float. When used for conversions a string
argument can be given, either using simple decimal notation or using expo-
nential notation. It is possible that NaN (“not a number”) or “infinity” may be
produced by a calculation involving floats—unfortunately the behavior is not
consistent across implementations and may differ depending on the system’s
underlying math library.

Here is a simple function for comparing floats for equality to the limit of the
machine’s accuracy:

www.it-ebooks.info

http://www.it-ebooks.info/

Tuples
18 «

60 Chapter 2. Data Types
Table 2.5 The Math Module’s Functions and Constants #1

Syntax Description

math.acos (x) Returns the arc cosine of x in radians

math.acosh(x) Returns the arc hyperbolic cosine of x in radians

math.asin(x) Returns the arc sine of x in radians

math.asinh(x) Returns the arc hyperbolic sine of x in radians

math.atan(x) Returns the arc tangent of x in radians

math.atan2(y, x) Returns the arc tangent of y / x in radians

math.atanh(x) Returns the arc hyperbolic tangent of x in radians

math.ceil(x) Returns [x],i.e., the smallest integer greater than or
equal to x as an int; e.g.,math.ceil(5.4) ==

math.copysign(x,y) Returnsx with y’s sign

math.cos(x) Returns the cosine of x in radians

math.cosh(x) Returns the hyperbolic cosine of x in radians

math.degrees(r) Converts float r from radians to degrees

math.e The constant e; approximately 2.718 2818284590451

math.exp(x) Returns ¢, i.e., math.e ** x

math. fabs (x) Returns | x |, i.e., the absolute value of x as a float

math.factorial(x) Returns x!

math.floor(x) Returns | x|, i.e., the largest integer less than or equal
to x as an int; e.g., math.floor(5.4) ==

math.fmod(x, y) Produces the modulus (remainder) of dividing x by y;
this produces better results than % for floats

math.frexp(x) Returns a 2-tuple with the mantissa (as a float) and
the exponent (as an int) so, x = m x 2°; see math. ldexp()

math.fsum(i) Returns the sum of the values in iterable i as a float

math.hypot(x, y) Returns \x2 +)2

math.isinf(x) Returns True if float x is £ inf (£ o)

math.isnan(x) Returns True if float x is nan (“not a number”)

math.ldexp(m, e) Returns m x 2°; effectively the inverse of math.frexp()

math.log(x, b) Returns log,x; b is optional and defaults to math.e

math.logl0(x) Returns log,,x

math.loglp(x) Returns log (1+x); accurate even when x is close to 0

math.modf (x) Returns x’s fractional and whole parts as two floats

www.it-ebooks.info

Tuples
>» 108

http://www.it-ebooks.info/

Floating-Point Types 61

Table 2.6 The Math Module’s Functions and Constants #2

Syntax Description
math.pi The constant 7; approximately 3.141592653589 7931
math.pow(x, y) Returns x’ as a float

math.radians(d) Converts float d from degrees to radians

math.sin(x) Returns the sine of x in radians

math.sinh(x) Returns the hyperbolic sine of x in radians
math.sqrt(x) Returns +/x

math.tan(x) Returns the tangent of x in radians

math.tanh(x) Returns the hyperbolic tangent of x in radians
math.trunc(x) Returns the whole part of x as an int; same as int(x)

def equal float(a, b):
return abs(a - b) <= sys.float _info.epsilon

This requires us to import the sys module. The sys.float_info object has many
attributes;sys.float_info.epsilonis effectively the smallest difference that the
machine can distinguish between two floating-point numbers. On one of the
author’s 32-bit machines it is just over 0.000 000000000 000 2. (Epsilon is the
traditional name for this number.) Python floats normally provide reliable
accuracy for up to 17 significant digits.

If you type sys.float_info into IDLE, all its attributes will be displayed; these
include the minimum and maximum floating-point numbers the machine can
represent. And typing help(sys.float info) will print some information about
the sys.float_info object.

Floating-point numbers can be converted to integers using the int() func-
tion which returns the whole part and throws away the fractional part, or
using round() which accounts for the fractional part, or using math.floor()
or math.ceil() which convert down to or up to the nearest integer. The
float.is_integer() method returns True if a floating-point number’s frac-
tional part is 0, and a float’s fractional representation can be obtained using
the float.as integer ratio() method. For example, given x = 2.75, the call
x.as_integer ratio() returns (11, 4). Integers can be converted to floating-
point numbers using float().

Floating-point numbers can also be represented as strings in hexadecimal
format using the float.hex() method. Such strings can be converted back to
floating-point numbers using the float. fromhex() method. For example:

s = 14.25.hex() # str s == '0x1.c800000000000p+3"

www.it-ebooks.info

http://www.it-ebooks.info/

62 Chapter 2. Data Types

f
t

float.fromhex(s) # float f == 14.25
f.hex() # str t == '0x1.c800000000000p+3"

The exponent is indicated using p (“power”) rather than e since e is a valid
hexadecimal digit.

In addition to the built-in floating-point functionality, the math module provides
many more functions that operate on floats, as shown in Tables 2.5 and 2.6.
Here are some code snippets that show how to make use of the module’s func-
tionality:

>>> import math

>>> math.pi * (5 ** 2) # Python 3.1 outputs: 78.53981633974483
78.539816339744831

>>> math.hypot(5, 12)

13.0

>>> math.modf(13.732) # Python 3.1 outputs: (0.7319999999999993, 13.0)
(0.73199999999999932, 13.0)

The math.hypot() function calculates the distance from the origin to the point
(x,) and produces the same result as math.sqrt((x ** 2) + (y ** 2)).

The math module is very dependent on the underlying math library that Python
was compiled against. This means that some error conditions and boundary
cases may behave differently on different platforms.

Complex Numbers

The complex data type is an immutable type that holds a pair of floats, one
representing the real part and the other the imaginary part of a complex
number. Literal complex numbers are written with the real and imaginary
parts joined by a + or - sign, and with the imaginary part followed by a j.* Here
are some examples: 3.5+2], 0.5, 4+0j, -1-3.7j. Notice that if the real part is 0,
we can omit it entirely.

The separate parts of a complex are available as attributes real and imag.
For example:

>>> z = -89.5+2.125]
>>> z.real, z.imag
(-89.5, 2.125)

Except for //, %, divmod(), and the three-argument pow(), all the numeric
operators and functions in Table 2.2 (55 <) can be used with complex numbers,
and so can the augmented assignment versions. In addition, complex numbers

*Mathematicians use i to signify v - 1, but Python follows the engineering tradition and uses .

www.it-ebooks.info

http://www.it-ebooks.info/

Floating-Point Types 63

have a method, conjugate(), which changes the sign of the imaginary part.
For example:

>>> z.conjugate()

(-89.5-2.125j)
>>> 3-4j.conjugate()
(3+47)

Notice that here we have called a method on a literal complex number. In gener-
al, Python allows us to call methods or access attributes on any literal, as long
as the literal’s data type provides the called method or the attribute—however,
this does not apply to special methods, since these always have corresponding
operators such as + that should be used instead. For example, 4j . real produces
0.0, 4j.imag produces 4.0, and 4j + 3+2j produces 3+6j.

The complex data type can be called as a function—with no arguments it
returns 0j, with a complex argument it returns a copy of the argument, and
with any other argument it attempts to convert the given object to a complex.
When used for conversions complex() accepts either a single string argument,
or one or two floats. If just one float is given, the imaginary part is taken to
be 0j.

The functions in the math module do not work with complex numbers. This is
a deliberate design decision that ensures that users of the math module get
exceptions rather than silently getting complex numbers in some situations.

Users of complex numbers can import the cmath module, which provides com-
plex number versions of most of the trigonometric and logarithmic functions
that are in the math module, plus some complex number-specific functions such
as cmath.phase(), cmath.polar(), and cmath.rect(), and also the cmath.pi and
cmath.e constants which hold the same float values as their math module coun-
terparts.

Decimal Numbers

In many applications the numerical inaccuracies that can occur when using
floats don’t matter, and in any case are far outweighed by the speed of calcu-
lation that floats offer. But in some cases we prefer the opposite trade-off, and
want complete accuracy, even at the cost of speed. The decimal module provides
immutable Decimal numbers that are as accurate as we specify. Calculations
involving Decimals are slower than those involving floats, but whether this is
noticeable will depend on the application.

To create a Decimal we must import the decimal module. For example:

>>> import decimal
>>> a = decimal.Decimal(9876)

www.it-ebooks.info

http://www.it-ebooks.info/

64 Chapter 2. Data Types

>>> b = decimal.Decimal("54321.012345678987654321")
>>>a+ b
Decimal('64197.012345678987654321")

Decimal numbers are created using the decimal.Decimal() function. This
function can take an integer or a string argument—but not a float, since floats
are held inexactly whereas decimals are represented exactly. If a string is
used it can use simple decimal notation or exponential notation. In addition
to providing accuracy, the exact representation of decimal.Decimals means that
they can be reliably compared for equality.

From Python 3.1 it is possible to convert floats to decimals using the deci-
mal.Decimal.from float() function. This function takes a float as argument
and returns the decimal.Decimal that is closest to the number the float approx-
imates.

All the numeric operators and functions listed in Table 2.2 (55 «), including
the augmented assignment versions, can be used with decimal.Decimals, but
with a couple of caveats. If the ** operator has a decimal.Decimal left-hand
operand, its right-hand operand must be an integer. Similarly, if the pow()
function’s first argument is a decimal.Decimal, then its second and optional
third arguments must be integers.

The math and cmath modules are not suitable for use with decimal.Decimals,
but some of the functions provided by the math module are provided as deci-
mal.Decimal methods. For example, to calculate ¢* where x is a float, we write
math.exp(x), but where x is a decimal.Decimal, we write x.exp(). From the dis-
cussion in Piece #3 (20 <), we can see that x.exp() is, in effect, syntactic sugar
for decimal.Decimal.exp(x).

The decimal.Decimal data type also provides ln() which calculates the natural
(base e) logarithm (just like math. log() with one argument), 1og16(), and sqrt(),
along with many other methods specific to the decimal.Decimal data type.

Numbers of type decimal.Decimal work within the scope of a context; the
context is a collection of settings that affect how decimal.Decimals behave. The
context specifies the precision that should be used (the default is 28 decimal
places), the rounding technique, and some other details.

In some situations the difference in accuracy between floats and decimal.
Decimals becomes obvious:

>>> 23 / 1.05

21.904761904761905

>>> print(23 / 1.05)

21.9047619048

>>> print(decimal.Decimal(23) / decimal.Decimal("1.05"))
21.90476190476190476190476190

www.it-ebooks.info

http://www.it-ebooks.info/

Floating-Point Types 65

>>> decimal.Decimal(23) / decimal.Decimal("1.05")
Decimal('21.90476190476190476190476190")

Although the division using decimal.Decimals is more accurate than the one
involving floats, in this case (on a 32-bit machine) the difference only shows
up in the fifteenth decimal place. In many situations this is insignificant—for
example, in this book, all the examples that need floating-point numbers use
floats.

One other point to note is that the last two of the preceding examples reveal
for the first time that printing an object involves some behind-the-scenes for-
matting. When we call print() on the result of decimal.Decimal(23) / deci-
mal.Decimal("1.05") the bare number is printed—this output is in string form.
If we simply enter the expression we get a decimal.Decimal output—this output
is in representational form. All Python objects have two output forms. String
form is designed to be human-readable. Representational form is designed to
produce output that if fed to a Python interpreter would (when possible) re-
produce the represented object. We will return to this topic in the next section
where we discuss strings, and again in Chapter 6 when we discuss providing
string and representational forms for our own custom data types.

The Library Reference’s decimal module documentation provides all the
details that are too obscure or beyond our scope to cover; it also provides more
examples, and a FAQ list.

Strings

Strings are represented by the immutable str data type which holds a sequence
of Unicode characters. The str data type can be called as a function to create
string objects—with no arguments it returns an empty string, with a non-
string argument it returns the string form of the argument, and with a string
argument it returns a copy of the string. The str() function can also be used
as a conversion function, in which case the first argument should be a string
or something convertable to a string, with up to two optional string arguments
being passed, one specifying the encoding to use and the other specifying how
to handle encoding errors.

Earlier we mentioned that string literals are created using quotes, and that we
are free to use single or double quotes providing we use the same at both ends.
In addition, we can use a triple quoted string—this is Python-speak for a string
that begins and ends with three quote characters (either three single quotes or
three double quotes). For example:

text = """A triple quoted string like this can include 'quotes' and
"quotes" without formality. We can also escape newlines \
so this particular string is actually only two lines long."""

www.it-ebooks.info

Char-
acter
encod-
ings

>» 91

http://www.it-ebooks.info/

66 Chapter 2. Data Types

Table 2.7 Python’s String Escapes

Escape Meaning

\newline Escape (i.e., ignore) the newline

\\ Backslash (\)

\' Single quote ()

\" Double quote (")

\a ASCII bell (BEL)

\b ASCII backspace (BS)

\f ASCII formfeed (FF)

\n ASCII linefeed (LF)

\N{name} Unicode character with the given name

\ooo Character with the given octal value

\r ASCII carriage return (CR)

\t ASCII tab (TAB)

\uhhhh Unicode character with the given 16-bit hexadecimal value
\Uhhhhhhhh Unicode character with the given 32-bit hexadecimal value
\v ASCII vertical tab (VT)

\xhh Character with the given 8-bit hexadecimal value

If we want to use quotes inside a normal quoted string we can do so without
formality if they are different from the delimiting quotes; otherwise, we must
escape them:

a
b

"Single 'quotes' are fine; \"doubles\" must be escaped."
'Single \'quotes\' must be escaped; "doubles" are fine.'

Python uses newline as its statement terminator, except inside parentheses
(()), square brackets ([]), braces ({}), or triple quoted strings. Newlines can be
used without formality in triple quoted strings, and we can include newlines
in any string literal using the \n escape sequence. All of Python’s escape se-
quences are shown in Table 2.7. In some situations—for example, when writing
regular expressions—we need to create strings with lots of literal backslashes.
(Regular expressions are the subject of Chapter 13.) This can be inconvenient
since each one must be escaped:

import re
phonel = re.compile("~((?:[(I\\d+[) 1) ?\\s*\\d+(?:-\\d+)?)$")

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 67

The solution is to use raw strings. These are quoted or triple quoted strings
whose first quote is preceded by the letter r. Inside such strings all characters
are taken to be literals, so no escaping is necessary. Here is the phone regular
expression using a raw string:

phone2 = re.compile(r"~((?:[(I\d+[)])?\s*\d+(?:-\d+)?)$")

If we want to write a long string literal spread over two or more lines but with-
out using a triple quoted string there are a couple of approaches we can take:

t = "This is not the best way to join two long strings " + \
"together since it relies on ugly newline escaping"

s = ("This is the nice way to join two long strings "
"together; it relies on string literal concatenation.")

Notice that in the second case we must use parentheses to create a single
expression—without them, s would be assigned only to the first string, and
the second string would cause an IndentationError exception to be raised. The
Python documentation’s “Idioms and Anti-Idioms” HOWTO document recom-
mends always using parentheses to spread statements of any kind over mul-
tiple lines rather than escaping newlines; a recommendation we endeavor to
follow.

Since . py files default to using the UTF-8 Unicode encoding, we can write any
Unicode characters in our string literals without formality. We can also put
any Unicode characters inside strings using hexadecimal escape sequences or
using Unicode names. For example:

>>> euros = "€ \N{euro sign} \u20AC \U0GOOO20AC"
>>> print(euros)
€€ €€

In this case we could not use a hexadecimal escape because they are limited to
two digits, so they cannot exceed 0xFF. Note that Unicode character names are
not case-sensitive, and spaces inside them are optional.

If we want to know the Unicode code point (the integer assigned to the charac-
ter in the Unicode encoding) for a particular character in a string, we can use
the built-in ord() function. For example:

>>> ord(euros[0])

8364

>>> hex(ord(euros[0]))
'Ox20ac’

Similarly, we can convert any integer that represents a valid code point into
the corresponding Unicode character using the built-in chr() function:

www.it-ebooks.info

Char-
acter
encod-
ings

>» 91

http://www.it-ebooks.info/

68 Chapter 2. Data Types

>>> 5 = "anarchists are " + chr(8734) + chr(0x23B7)
>>> S

‘anarchists are oo\
>>> ascii(s)
"'anarchists are \u22le\u23b7'"

If we enter s on its own in IDLE, it is output in its string form, which for strings
means the characters are output enclosed in quotes. If we want only ASCII
characters, we can use the built-in ascii() function which returns the represen-
tational form of its argument using 7-bit ASCII characters where possible, and
using the shortest form of \xhh, \uhhhh, or \Uhhhhhhhh escape otherwise. We will
see how to achieve precise control of string output later in this chapter.

Comparing Strings

Strings support the usual comparison operators <, <=, ==, !=, > and >=. These
operators compare strings byte by byte in memory. Unfortunately, two prob-
lems arise when performing comparisons, such as when sorting lists of
strings. Both problems afflict every programming language that uses Unicode
strings—neither is specific to Python.

The first problem is that some Unicode characters can be represented by two
or more different byte sequences. For example, the character A (Unicode code
point 0x00C5) can be represented in UTF-8 encoded bytes in three different
ways: [0xE2, 0x84, 0xAB], [0xC3, 0x85], and [0x41, 0xCC, 0x8A]. Fortunately, we
can solve this problem. If we import the unicodedata module and call unicode-
data.normalize() with "NFKC" as the first argument (this is a normalization
method—three others are also available, "NFC", "NFD", and "NFKD"), and a string
containing the A character using any of its valid byte sequences, the function
will return a string that when represented as UTF-8 encoded bytes will always
be the byte sequence [0xC3, 0x85].

The second problem is that the sorting of some characters is language-specific.
One example is that in Swedish d is sorted after z, whereas in German, d is sort-
ed as if though were spelled ae. Another example is that although in English
we sort ¢ as if it were o, in Danish and Norwegian it is sorted after z. There
are lots of problems along these lines, and they can be complicated by the fact
that sometimes the same application is used by people of different nationalities
(who therefore expect different sorting orders), and sometimes strings are in a
mixture of languages (e.g., some Spanish, others English), and some characters
(such as arrows, dingbats, and mathematical symbols) don’t really have mean-
ingful sort positions.

As a matter of policy—to prevent subtle mistakes—Python does not make
guesses. In the case of string comparisons, it compares using the strings’ in-
memory byte representation. This gives a sort order based on Unicode code

www.it-ebooks.info

str.
format()

>» 78

Char-
acter
encod-
ings

>» 91

http://www.it-ebooks.info/

Piece #3
18 «

Strings 69

points which gives ASCII sorting for English. Lower- or uppercasing all the
strings compared produces a more natural English language ordering. Normal-
izing is unlikely to be needed unless the strings are from external sources like
files or network sockets, but even in these cases it probably shouldn’t be done
unless there is evidence that it is needed. We can of course customize Python’s
sort methods as we will see in Chapter 3. The whole issue of sorting Unicode
strings is explained in detail in the Unicode Collation Algorithm document
(unicode.org/reports/trio).

Slicing and Striding Strings

We know from Piece #3 that individual items in a sequence, and therefore in-
dividual charactersin a string, can be extracted using the item access operator
([1). In fact, this operator is much more versatile and can be used to extract not
just one item or character, but an entire slice (subsequence) of items or charac-
ters, in which context it is referred to as the slice operator.

First we will begin by looking at extracting individual characters. Index
positions into a string begin at 0 and go up to the length of the string minus
1. But it is also possible to use negative index positions—these count from the
last character back toward the first. Given the assignment s = "Light ray",
Figure 2.1 shows all the valid index positions for string s.

s[-9] s[-8] s[-7] s[-6] s[-5] s[-4] s[-3] s[-2] s[-1]

L1 | g|h|t rraly

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8]

Figure 2.1 String index positions

Negative indexes are surprisingly useful, especially -1 which always gives us
the last character in a string. Accessing an out-of-range index (or any index in
an empty string) will cause an IndexError exception to be raised.

The slice operator has three syntaxes:

seq[start]
seq[start:end]
seq[start:end:step]

The seq can be any sequence, such as a list, string, or tuple. The start, end, and
step values must all be integers (or variables holding integers). We have used
the first syntax already: It extracts the start-th item from the sequence. The
second syntax extracts a slice from and including the start-th item, up to and
excluding the end-th item. We’ll discuss the third syntax shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

70 Chapter 2. Data Types

If we use the second (one colon) syntax, we can omit either of the integer
indexes. If we omit the start index, it will default to 0. If we omit the end index,
it will default to len(seq). This means that if we omit both indexes, for example,
s[:], it is the same as writing s[0:1en(s)], and extracts—that is, copies—the
entire sequence.

Given the assignment s = "The waxwork man", Figure 2.2 shows some example
slices for string s.

s[4:11]

Tlhlie| [wla|x[w|o]|r]|k ml|aln

s[:7] >ie s[7:] >

le—s[-3:] —»

Figure 2.2 Sequenceslicing

One way of inserting a substring inside a string is to mix slicing with concate-
nation. For example:

>>> 5 = s[:12] + "wo" + s[12:]
>>> S
'The waxwork woman'

In fact, since the text “wo” appears in the original string, we could have
achieved the same effect by assigning s[:12] + s[7:9] + s[12:].

Using + to concatenate and += to append is not particularly efficient when
many strings are involved. For joining lots of strings it is usually best to use
the str.join() method, as we will see in the next subsection.

The third (two colon) slice syntax is like the second, only instead of extracting
every character, every step-th character is taken. And like the second syntax,
we can omit either of the index integers. If we omit the start index, it will
default to 0—unless a negative step is given, in which case the start index
defaults to -1. If we omit the end index, it will default to len(seq)—unless a
negative step is given, in which case the end index effectively defaults to before
the beginning of the string. If we use two colons but omit the step size, it will
default to 1. But there is no point using the two colon syntax with a step size
of 1, since that’s the default anyway. Also, a step size of zero isn’t allowed.

If we have the assignment s = "he ate camel food", Figure 2.3 shows a couple of
example strided slices for string s.

Here we have used the default start and end indexes, so s[::-2] starts at the
last character and extracts every second character counting toward the start
of the string. Similarly, s[::3] starts at the first character and extracts every
third character counting toward the end.

www.it-ebooks.info

String
opera-
tors and
methods

» 71

http://www.it-ebooks.info/

Strings 71

s[::-2] == 'doea t h'
¥ N ¥ N ¥ N ¥ N ¥ N¥ N¥ N¥ N\

hle| |a|t]|e clalm|e| | flolo|d
~_ T~ I~ "~ "I~~~

s[::3] == 'ha m o'

Figure 2.3 Sequence striding
It is also possible to combine slicing indexes with striding, as Figure 2.4
illustrates.
s[-1:2:-2] == s[:2:-2] == 'do ea t'

hle alt|e clalm|e] | flolo|d
//_/
s[0:-5:3] == s[:-5:3] == 'ha m'

Figure 2.4 Sequence slicing and striding

Striding is most often used with sequence types other than strings, but there
is one context in which it is used for strings:

>>> s, s[::-1]
('The waxwork woman', ‘namow krowxaw ehT')

Stepping by -1 means that every character is extracted, from the end back to
the beginning—and therefore produces the string in reverse.

String Operators and Methods

Since strings are immutable sequences, all the functionality that can be used
with immutable sequences can be used with strings. This includes member-
ship testing with in, concatenation with +, appending with +=, replication with
* and augmented assignment replication with *=. We will discuss all of these in
the context of strings in this subsection, in addition to discussing many of the
string methods. Tables 2.8,2.9,and 2.10 summarize all the string methods, ex-
cept for two rather specialized ones (str.maketrans() and str.translate()) that
we will briefly discuss further on.

As strings are sequences they are “sized” objects, and therefore we can call
len() with a string as the argument. The length returned is the number of
characters in the string (zero for an empty string).

We have seen that the + operator is overloaded to provide string concatenation.
In cases where we want to concatenate lots of strings the str.join() method

www.it-ebooks.info

Iterable
opera-
tors and
func-
tions

» 140

Sized
>» 383

http://www.it-ebooks.info/

72 Chapter 2. Data Types

offers a better solution. The method takes a sequence as an argument (e.g., a
list or tuple of strings), and joins them together into a single string with the
string the method was called on between each one. For example:

>>> treatises = ["Arithmetica", "Conics", "Elements"]
>>> " ", join(treatises)

"Arithmetica Conics Elements'

>>> "-<>-",join(treatises)
'"Arithmetica-<>-Conics-<>-Elements'

>>> "", join(treatises)

"ArithmeticaConicsElements’

The first example is perhaps the most common, joining with a single character,
in this case a space. The third example is pure concatenation thanks to the
empty string which means that the sequence of strings are joined with nothing
in between.

The str.join() method can also be used with the built-in reversed() function,
to reverse a string, for example, "".join(reversed(s)), although the same result
can be achieved more concisely by striding, for example, s[::-1].

The * operator provides string replication:

>>> § = n_no % 5

>>> 5 *= 10
>>> print(s)

As the example shows, we can also use the augmented assignment version of
the replication operator*

When applied to strings, the in membership operator returns True if its left-
hand string argument is a substring of, or equal to, its right-hand string ar-
gument.

In cases where we want to find the position of one string inside another, we
have two methods to choose from. One is the str.index() method; this returns
the index position of the substring, or raises a ValueError exception on failure.
The other is the str.find() method; this returns the index position of the sub-
string, or -1 on failure. Both methods take the string to find as their first ar-
gument, and can accept a couple of optional arguments. The second argument
is the start position in the string being searched, and the third argument is the
end position in the string being searched.

*Strings also support the % operator for formatting. This operator is deprecated and provided only
to ease conversion from Python 2 to Python 3. It is not used in any of the book’s examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 73

Table 2.8 String Methods #1

Syntax Description

s.capitalize() Returns a copy of str s with the first letter capitalized;

.isdecimal()

.isdigit()

see also the str.title() method

is alphabetic

Returns True if s is nonempty and every character in s is
a Unicode base 10 digit

Returns True if s is nonempty and every characterin s is
an ASCII digit

Identi- .isidentifier() Returns True if s is nonempty and is a valid identifier
fiers . .

and .islower() Returns True if s has at least one lowercaseable charac-
key- ter and all its lowercaseable characters are lowercase;
words see also str.isupper()

51 <«

www.it-ebooks.info

.center(width, Returns a copy of s centered in a string of length width

char) padded with spaces or optionally with char (a string of
length 1); see str.ljust(), str.rjust(), and str.format()

.count(t, Returns the number of occurrences of strtin strs (orin

start, end) the start:end slice of s)

.encode (Returns a bytes object that represents the string using bytes
encoding, the default encoding or using the specified encoding and type
err) handling errors according to the optional err argument > 293

.endswith(x, Returns Trueif s (or the start:end slice of s) ends with str Char-

start, end) xor with any of the strings in tuple x; otherwise, returns "‘Cterd
False. See also str.startswith(). f::gcs i

.expandtabs (Returns a copy of s with tabs replaced with spaces in > 91

size) multiples of 8 or of size if specified

find(t, Returns the leftmost position of t in s (or in the start:end

start, end) slice of s) or -1if not found. Use str.rfind() to find the
rightmost position. See also str.index().

format(...) Returns a copy of s formatted according to the given str.

arguments. This method and its arguments are covered = format()
in the next subsection. > 78
.index(t, Returns the leftmost position of t in s (or in the
start, end) start:end slice of s)or raises ValueError if not found. Use
str.rindex() to search from the right. See str.find().
.isalnum() Returns True if s is nonempty and every character in s
is alphanumeric
.isalpha() Returns True if s is nonempty and every character in s

http://www.it-ebooks.info/

74

Chapter 2. Data Types

Syntax
s.isnumeric()

s.isprintable()

s.isspace()

s.istitle()

s.isupper()

s.join(seq)

s.ljust(
width,
char)

s.lower()
s.maketrans()

s.partition(
t)

s.replace(t,
u, n)

s.split(t, n)

s.splitlines(
f)

s.startswith(
X, Start,
end)

Table 2.9 String Methods #2

Description

Returns True if s is nonempty and every character in s is
a numeric Unicode character such as a digit or fraction

Returns True if s is empty or if every character in s is con-
sidered to be printable, including space, but not newline

Returns True if s is nonempty and every character in s is
a whitespace character

Returns True if s is a nonempty title-cased string; see
also str.title()

Returns True if str s has at least one uppercaseable char-
acter and all its uppercaseable characters are uppercase;
see also str.islower()

Returns the concatenation of every item in the sequence
seq, with str s (which may be empty) between each one

Returns a copy of s left-aligned in a string of length width
padded with spaces or optionally with char (a string of
length 1). Use str.rjust() to right-align and str.center()
to center. See also str.format().

Returns a lowercased copy of s; see also str.upper()
Companion of str.translate(); see text for details

Returns a tuple of three strings—the part of str s before
the leftmost str t, t, and the part of s after t;orif tisn’tin
s returns s and two empty strings. Use str.rpartition()
to partition on the rightmost occurrence of t.

Returns a copy of s with every (or a maximum of n if
given) occurrences of str t replaced with stru

Returns a list of strings splitting at most n times on str t;
if n isn’t given, splits as many times as possible;if t isn’t
given, splits on whitespace. Use str.rsplit() to split from
the right—this makes a difference only if n is given and is
less than the maximum number of splits possible.

Returns the list of lines produced by splitting s on line
terminators, stripping the terminators unless f is True

Returns True if s (or the start:end slice of s) starts with
str x or with any of the strings in tuple x; otherwise,
returns False. See also str.endswith().

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 75

Table 2.10 String Methods #3

Syntax Description

s.strip(chars) Returns a copy of s with leading and trailing whitespace
(or the charactersin str chars) removed;str.lstrip() strips
only at the start, and str.rstrip() strips only at the end

s.swapcase() Returns a copy of s with uppercase characters lowercased
and lowercase characters uppercased; see also str. lower()
and str.upper()

s.title() Returns a copy of s where the first letter of each word
is uppercased and all other letters are lowercased; see
str.istitle()

s.translate() Companion of str.maketrans(); see text for details
s.upper() Returns an uppercased copy of s; see also str.lower()

s.zfill(w) Returns a copy of s, which if shorter than w is padded with
leading zeros to make it w characters long

Which search method we use is purely a matter of taste and circumstance,
although if we are looking for multiple index positions, using the str.index()
method often produces cleaner code, as the following two equivalent functions
illustrate:

def extract from tag(tag, line): def extract from tag(tag, line):

opener = "<" + tag + ">" opener = "<" + tag + ">"

closer = "</" + tag + ">" closer = "</" + tag + ">"

try: i = line.find(opener)
i = line.index(opener) if i 1= -1:
start = i + len(opener) start = 1 + len(opener)
j = line.index(closer, start) j = line.find(closer, start)
return line[start:j] if j 1= -1:

except ValueError: return line[start:j]
return None return None

Both versions of the extract from tag() function have exactly the same be-
havior. For example, extract from tag("red", "what a <red>rose</red> this is")
returns the string “rose”. The exception-handling version on the left separates
out the code that does what we want from the code that handles errors, and the
error return value version on the right intersperses what we want with error
handling.

The methods str.count(), str.endswith(), str.find(), str.rfind(), str.index(),
str.rindex(), and str.startswith() all accept up to two optional arguments: a
start position and an end position. Here are a couple of equivalences to put
this in context, assuming that s is a string:

www.it-ebooks.info

http://www.it-ebooks.info/

76 Chapter 2. Data Types

s.count("m", 6) == s[6:].count("m")
s.count("m", 5, -3) == s[5:-3].count("m")

As we can see, the string methods that accept start and end indexes operate on
the slice of the string specified by those indexes.

Now we will look at another equivalence, this time to help clarify the behavior
of str.partition()—although we’ll actually use a str.rpartition() example:

i=s.rfind("/")

if 1 == -1:
result = " II’ n II' S
else:
result = s.rpartition("/") result = s[:1i], s[i], s[i + 1:]

The left- and right-hand code snippets are not quite equivalent because the
one on the right also creates a new variable, i. Notice that we can assign tuples
without formality, and that in both cases we looked for the rightmost occur-
rence of /.If s is the string "/usr/local/bin/firefox", both snippets produce the
same result: ('/usr/local/bin', '/', 'firefox').

We can use str.endswith() (and str.startswith()) with a single string argu-
ment, for example, s.startswith("From:"), or with a tuple of strings. Here is a
statement that uses both str.endswith() and str.lower() to print a filename if
it is a JPEG file:

if filename.lower().endswith((".jpg", ".jpeg")):
print(filename, "is a JPEG image")

The is*() methods such as isalpha() and isspace() return True if the string
they are called on has at least one character, and every character in the string
meets the criterion. For example:

>>> "917.5".isdigit(), "".isdigit(), "-2".isdigit(), "203".isdigit()
(False, False, False, True)

The is*() methods work on the basis of Unicode character classifications, so
for example, calling str.isdigit() on the strings "\N{circled digit two}@3" and
"@03" returns True for both of them. For this reason we cannot assume that a
string can be converted to an integer when isdigit() returns True.

When we receive strings from external sources (other programs, files, network
connections, and especially interactive users), the strings may have unwanted
leading and trailing whitespace. We can strip whitespace from the left using
str.lstrip(), from the right using str.rstrip(), or from both ends using
str.strip(). We can also give a string as an argument to the strip methods, in
which case every occurrence of every character given will be stripped from the
appropriate end or ends. For example:

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 77

>>> s = "\t no parking "
>>> s, lstrip(), s.rstrip(), s.strip()

(‘no parking ', '\t no parking', 'no parking')
>>> "<[unbracketed]>".strip("[1(){}<>")
‘unbracketed’

We can also replace strings within strings using the str.replace() method.
This method takes two string arguments, and returns a copy of the string it is
called on with every occurrence of the first string replaced with the second. If
the second argument is an empty string the effect is to delete every occurrence
of the first string. We will see examples of str.replace() and some other string
methods in the csv2html.py example in the Examples section toward the end of
the chapter.

One frequent requirement is to split a string into a list of strings. For exam-
ple, we might have a text file of data with one record per line and each record’s
fields separated by asterisks. This can be done using the str.split() method
and passing in the string to split on as its first argument, and optionally the
maximum number of splits to make as the second argument. If we don’t spec-
ify the second argument, as many splits are made as possible. Here is an ex-
ample:

>>> record = "Leo Tolstoy*1828-8-28*¥1910-11-20"
>>> fields = record.split("*")
>>> fields

['Leo Tolstoy', '1828-8-28', '1910-11-20']

Now we can use str.split() again on the date of birth and date of death to
calculate how long he lived (give or take a year):

>>> porn = fields[1].split("-")

>>> born

['1828', '8', '28']

>>> died = fields[2].split("-")

>>> print("lived about", int(died[0]) - int(born[0]), "years")
lived about 82 years

We had to use int() to convert the years from strings to integers, but other than
that the snippet is straightforward. We could have gotten the years directly
from the fields list, for example, year born = int(fields[1].split("-")[0]).

The two methods that we did not summarize in Tables 2.8, 2.9, and 2.10 are
str.maketrans() and str.translate(). The str.maketrans() method is used to
create a translation table which maps characters to characters. It accepts one,
two, or three arguments, but we will show only the simplest (two argument)
call where the first argument is a string containing characters to translate from
and the second argument is a string containing the characters to translate to.

www.it-ebooks.info

csv2-
html.py
example

>» 97

http://www.it-ebooks.info/

78 Chapter 2. Data Types

Both arguments must be the same length. The str.translate() method takes
a translation table as an argument and returns a copy of its string with the
characters translated according to the translation table. Here is how we could
translate strings that might contain Bengali digits to English digits:

table = "".maketrans("\N{bengali digit zero}"

"\N{bengali digit one}\N{bengali digit two}"

"“\N{bengali digit three}\N{bengali digit four}"

"\N{bengali digit five}\N{bengali digit six}"

"\N{bengali digit seven}\N{bengali digit eight}"

"\N{bengali digit nine}", "0123456789")
print("20749".translate(table)) # prints: 20749
print("\N{bengali digit two}07\N{bengali digit four}"

"\N{bengali digit nine}".translate(table)) # prints: 20749

Notice that we have taken advantage of Python’s string literal concatenation
inside the str.maketrans() call and inside the second print() call to spread
strings over multiple lines without having to escape newlines or use explicit
concatenation.

We called str.maketrans() on an empty string because it doesn’t matter what
string it is called on; it simply processes its arguments and returns a transla-
tion table. The str.maketrans() and str.translate() methods can also be used
to delete characters by passing a string containing the unwanted characters as
the third argument to str.maketrans(). If more sophisticated character trans-
lations are required, we could create a custom codec—see the codecs module
documentation for more about this.

Python has a few other library modules that provide string-related function-
ality. We've already briefly mentioned the unicodedata module, and we’ll show
it in use in the next subsection. Other modules worth looking up are difflib
which can be used to show differences between files or between strings, the io
module’s i0.StringI0 class which allows us to read from or write to strings as
though they were files, and the textwrap module which provides facilities for
wrapping and filling strings. There is also a string module that has a few use-
ful constants such as ascii letters and ascii lowercase. We will see examples
of some of these modules in use in Chapter 5. In addition, Python provides ex-
cellent support for regular expressions in the re module—Chapter 13 is dedi-
cated to this topic.

String Formatting with the str.format() Method

The str.format () method provides a very flexible and powerful way of creating
strings. Using str.format() is easy for simple cases, but for complex formatting
we need to learn the formatting syntax the method requires.

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 79

The str.format() method returns a new string with the replacement fields in
its string replaced with its arguments suitably formatted. For example:

>>> "The novel '{0}' was published in {1}".format("Hard Times", 1854)
"The novel 'Hard Times' was published in 1854"

Each replacement field is identified by a field name in braces. If the field
name is a simple integer, it is taken to be the index position of one of the
arguments passed to str.format(). So in this case, the field whose name was 0
was replaced by the first argument, and the one with name 1 was replaced by
the second argument.

If we need to include braces inside format strings, we can do so by doubling
them up. Here is an example:

>>> "{{{0}}} {1} ;-}}".format("I'm in braces", "I'm not")
“{I'm in braces} I'm not ;-}"

If we try to concatenate a string and a number, Python will quite rightly raise
a TypeError. But we can easily achieve what we want using str.format():

>>> "{0}{1}".format("The amount due is $", 200)
'The amount due is $200'

We can also concatenate strings using str.format() (although the str.join()
method is best for this):

>>> x = "three"

>>> s ="{0} {1} {2}"

>>> s = s.format("The", x, "tops")
>>> S

'The three tops'

Here we have used a couple of string variables, but in most of this section
we'll use string literals for str.format() examples, simply for the sake of
convenience—just keep in mind that any example that uses a string literal
could use a string variable in exactly the same way.

The replacement field can have any of the following general syntaxes:

{field name}

{field name!conversion}

{field name:format specification}

{field name'!conversion:format specification}

One other point to note is that replacement fields can contain replacement
fields. Nested replacement fields cannot have any formatting; their purpose is
to allow for computed formatting specifications. We will see an example of this

www.it-ebooks.info

http://www.it-ebooks.info/

80 Chapter 2. Data Types

when we take a detailed look at format specifications. We will now study each
part of the replacement field in turn, starting with field names.

Field Names

A field name can be either an integer corresponding to one of the str.format()
method’s arguments, or the name of one of the method’s keyword arguments.
We discuss keyword arguments in Chapter 4, but they are not difficult, so we
will provide a couple of examples here for completeness:

>>> "{who} turned {age} this year".format(who="She", age=88)
'She turned 88 this year'

>>> "The {who} was {0} last week".format(12, who="boy")

'The boy was 12 last week'

The first example uses two keyword arguments, who and age, and the second
example uses one positional argument (the only kind we have used up to
now) and one keyword argument. Notice that in an argument list, keyword
arguments always come after positional arguments; and of course we can make
use of any arguments in any order inside the format string.

Field names may refer to collection data types—for example, lists. In such
cases we can include an index (not a slice!) to identify a particular item:

>>> stock = ["paper", "envelopes", "notepads", "pens", "paper clips"]
>>> "We have {0[1]} and {0[2]} in stock".format(stock)
'We have envelopes and notepads in stock'

The 0 refers to the positional argument, so {0[1]} is the stock list argument’s
second item, and {0[2]} is the stock list argument’s third item.

Later on we will learn about Python dictionaries. These store key—value items,
and since they can be used with str.format (), we’ll just show a quick example
here. Don’t worry if it doesn’t make sense; it will once you've read Chapter 3.

>>> d = dict(animal="elephant", weight=12000)
>>> "The {0[animal]} weighs {0[weight]}kg".format(d)
‘The elephant weighs 12000kg’

Just as we access list and tuple items using an integer position index, we access
dictionary items using a key.

We can also access named attributes. Assuming we have imported the math and
sys modules, we can do this:

>>> "math.pi=={0.pi} sys.maxunicode=={1.maxunicode}".format(math, sys)
'math.pi==3.14159265359 sys.maxunicode==65535"

www.it-ebooks.info

dict
type
» 126

http://www.it-ebooks.info/

Strings 81

So in summary, the field name syntax allows us to refer to positional and key-
word arguments that are passed to the str.format() method. If the arguments
are collection data types like lists or dictionaries, or have attributes, we can ac-
cess the part we want using [] or . notation. This is illustrated in Figure 2.5.

positional argument index
|

v v v v
{0} {1[5]} {2[capital]} {3.rate}
+ s 4
index key attribute

— — —
{title} {color[12]} {point[y]} {book.isbn}
4 4 4)

T
keyword argument name

Figure 2.5 Annotated format specifier field name examples

From Python 3.1t is possible to omit field names, in which case Python will in
effect put them in for us, using numbers starting from 0. For example:

>>> "{} {} {}".format("Python", "can", "count")
'Python can count'

If we are using Python 3.0, the format string used here would have to be "{0}
{1} {2}". Using this technique is convenient for formatting one or two items,
but the approach we will look at next is more convenient when several items
are involved, and works just as well with Python 3.0.

Before finishing our discussion of string format field names, it is worth men-
tioning a rather different way to get values into a format string. This involves
using an advanced technique, but one useful to learn as soon as possible, since
it is so convenient.

The local variables that are currently in scope are available from the built-in
locals() function. This function returns a dictionary whose keys are local
variable names and whose values are references to the variables’ values. Now
we can use mapping unpacking to feed this dictionary into the str.format()
method. The mapping unpacking operator is ** and it can be applied to a
mapping (such as a dictionary) to produce a key—value list suitable for passing
to a function. For example:

>>> element = "Silver"

>>> number = 47

>>> "Element {number} is {element}".format(**locals())
'"Element 47 is Silver'

www.it-ebooks.info

Map-
ping
unpack-
ing

» 179

http://www.it-ebooks.info/

Decimal
num-
bers

63 <

82 Chapter 2. Data Types

The syntax may seem weird enough to make a Perl programmer feel at home,
but don’t worry—it is explained in Chapter 4. All that matters for now is that
we can use variable names in format strings and leave Python to fill in their
values simply by unpacking the dictionary returned by locals()—or some
other dictionary—into the str.format () method. For example, we could rewrite
the “elephant” example we saw earlier to have a much nicer format string with
simpler field names.

>>> "The {animal} weighs {weight}kg".format(**d)
'The elephant weighs 12000kg'

Unpacking a dictionary into the str.format() method allows us to use the
dictionary’s keys as field names. This makes string formats much easier to
understand, and also easier to maintain, since they are not dependent on the
order of the arguments. Note, however, that if we want to pass more than one
argument to str.format(), only the last one can use mapping unpacking.

Conversions

When we discussed decimal.Decimal numbers we noticed that such numbers
are output in one of two ways. For example:

>>> decimal.Decimal("3.4084")
Decimal('3.4084")

>>> print(decimal.Decimal("3.4084"))
3.4084

The first way that the decimal.Decimal is shown is in its representational form.
The purpose of this form is to provide a string which if interpreted by Python
would re-create the object it represents. Python programs can evaluate snip-
pets of Python code or entire programs, so this facility can be useful in some
situations. Not all objects can provide a reproducing representation, in which
case they provide a string enclosed in angle brackets. For example, the repre-
sentational form of the sys module is the string "<module 'sys' (built-in)>".

The second way that decimal.Decimalis shown isin its string form. This form is
aimed at human readers, so the concern is to show something that makes sense
to people. If a data type doesn’t have a string form and a string is required,
Python will use the representational form.

Python’s built-in data types know about str.format(), and when passed as an
argument to this method they return a suitable string to display themselves.
It is also straightforward to add str.format() support to custom data types as
we will see in Chapter 6. In addition, it is possible to override the data type’s
normal behavior and force it to provide either its string or its representational
form. Thisis done by adding a conversion specifier to the field. Currently there
are three such specifiers:s to force string form, r to force representational form,

www.it-ebooks.info

Parame-
ter
unpack-
ing

>» 177

eval()
>» 344

http://www.it-ebooks.info/

Strings 83

and a to force representational form but only using ASCII characters. Here is
an example:

>>> "{0} {0's} {0!r} {0!a}".format(decimal.Decimal("93.4"))
"93.4 93.4 Decimal('93.4') Decimal('93.4')"

In this case, decimal.Decimal’s string form produces the same string as the
string it provides for str.format() which is what commonly happens. Also, in
this particular example, there is no difference between the representational
and ASCII representational forms since both use only ASCII characters.

Here is another example, this time concerning a string that contains the ti-
tle of a movie, "¥fJER Tk > 5", held in the variable movie. If we print the
string using "{0}".format(movie) the string will be output unchanged, but
if we want to avoid non-ASCII characters we can use either ascii(movie) or
"{0'a}".format(movie), both of which will produce the string '\u7ffb\u8a33
\u3067\u5931\u308f\u308c\u308b'.

So far we have seen how to put the values of variables into a format string, and
how to force string or representational forms to be used. Now we are ready to
consider the formatting of the values themselves.

Format Specifications

The default formatting of integers, floating-point numbers, and strings is often
perfectly satisfactory. But if we want to exercise fine control, we can easily do
sousing format specifications. We will deal separately with formatting strings,
integers, and floating-point numbers, to make learning the details easier. The
the general syntax that covers all of them is shown in Figure 2.6.

For strings, the things that we can control are the fill character, the alignment
within the field, and the minimum and maximum field widths.

A string format specification is introduced with a colon (:) and this is followed
by an optional pair of characters—a fill character (which may not be }) and an
alignment character (< for left align, ~ for center, > for right align). Then comes
an optional minimum width integer, and if we want to specify a maximum
width, this comes last as a period followed by an integer.

Note that if we specify a fill character we must also specify an alignment. We
omit the sign and type parts of the format specification because they have no
effect on strings. It is harmless (but pointless) to have a colon without any of
the optional elements.

Let’s see some examples:

>>> s = "The sword of truth"
>>> "{0}".format(s) # default formatting
'The sword of truth'

www.it-ebooks.info

http://www.it-ebooks.info/

84 Chapter 2. Data Types

fill align sign # 0 width , . precision type
Any < left + force ?s _0.0 Mini- S Maximum ints
char- > right sign; £ 8 mum 2 fieldwidth b, c,d,
acter “center —signif = > field S forstrings; n,o0,X,
except =pad needed; & 3 width 3 number X
} between £ § % ofdecimal floats
sign and cs)felczs g g Placesfor e, E f,
digits for > S floating- g.G.n,
numbers ~ @PPro- -2 2 point %
priate = Q numbers
>

Figure 2.6 The general form of a format specification

>>> "{0:25}".format(s) # minimum width 25

'The sword of truth '

>>> "{0:>25}".format(s) # right align, minimum width 25

: The sword of truth'

>>> "{0:725}".format(s) # center align, minimum width 25

" The sword of truth '

>>> "{0:-"25}".format(s) # - fill, center align, minimum width 25
'-—-The sword of truth-—-——-'

>>> "{0:.<25}".format(s) # . fill, left align, minimum width 25
'The sword of truth....... '

>>> "{0:.10}".format(s) # maximum width 10

'The sword '

In the penultimate example we had to specify the left alignment (even though
this is the default). If we left out the <, we would have :.25, and this simply
means a maximum field width of 25 characters.

As we noted earlier, it is possible to have replacement fields inside format spec-
ifications. This makesit possible to have computed formats. Here, for example,
are two ways of setting a string’s maximum width using a maxwidth variable:

>>> maxwidth = 12

>>> "{0}".format(s[:maxwidth])
'The sword of'

>>> "{0:.{1}}".format (s, maxwidth)
'The sword of'

The first approach uses standard string slicing; the second uses an inner
replacement field.

*The grouping comma was introduced with Python 3.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 85

For integers, the format specification allows us to control the fill character, the
alignment within the field, the sign, whether to use a nonlocale-aware comma
separator to group digits (from Python 3.1), the minimum field width, and the
number base.

An integer format specification begins with a colon, after which we can have
an optional pair of characters—a fill character (which may not be }) and an
alignment character (< for left align, ~ for center, > for right align, and = for the
filling to be done between the sign and the number). Next is an optional sign
character: + forces the output of the sign, - outputs the sign only for negative
numbers, and a space outputs a space for positive numbers and a - sign for
negative numbers. Then comes an optional minimum width integer—this can
be preceded by a # character to get the base prefix output (for binary, octal, and
hexadecimal numbers), and by a 0 to get 0-padding. Then, from Python 3.1,
comes an optional comma—if present this will cause the number’s digits to be
grouped into threes with a comma separating each group. If we want the out-
put in a base other than decimal we must add a type character—b for binary,
o for octal, x for lowercase hexadecimal, and X for uppercase hexadecimal, al-
though for completeness, d for decimal integer is also allowed. There are two
other type characters: ¢, which means that the Unicode character correspond-
ing to the integer should be output, and n, which outputs numbers in a locale-
sensitive way. (Note that if n is used, using , doesn’t make sense.)

We can get 0-padding in two different ways:

>>> "{0:0=12}".format(8749203) # 0 fill, minimum width 12
'000008749203"

>>> "{0:0=12}".format(-8749203) # 0 fill, minimum width 12
'-00008749203"

>>> "{0:012}".format(8749203) # O0-pad and minimum width 12
'000008749203"

>>> "{0:012}".format(-8749203) # O-pad and minimum width 12
'-00008749203"

The first two examples have a fill character of 0 and fill between the sign and
the number itself (=). The second two examples have a minimum width of 12
and 0-padding.

Here are some alignment examples:

>>> "{0:*<15}".format(18340427) # * fill, left align, min width 15

118340427 ***kxHokk !
>>> "{0:*>15}".format(18340427) # * fill, right align, min width 15
DRkokkokkk 18340427
>>> "{0:**15}".format(18340427) # * fill, center align, min width 15
DRk] 8340427 KKk !

>>> "{0:**15}".format(-18340427) # * fill, center align, min width 15
Dkxk-18340427%K*!

www.it-ebooks.info

http://www.it-ebooks.info/

86 Chapter 2. Data Types

Here are some examples that show the effects of the sign characters:

>>> "[{0: }] [{1: }]".format(539802, -539802) # space or - sign
"[539802] [-539802]"

>>> "[{0:+}] [{1:+}]1".format(539802, -539802) # force sign
'[+539802] [-539802]"

>>> "[{0:-}] [{1:-}]".format(539802, -539802) # - sign if needed
'[539802] [-539802]"'

And here are two examples that use some of the type characters:

>>> "{0:b} {0:0} {0:x} {0:X}".format(14613198)
'110111101111101011001110 67575316 deface DEFACE'

>>> "{0:#b} {0:#0} {0:#x} {0:#X}".format(14613198)
'0b110111101111101011001110 0067575316 Oxdeface OXDEFACE'

It is not possible to specify a maximum field width for integers. Thisis because
doing so might require digits to be chopped off, thereby rendering the integer
meaningless.

If we are using Python 3.1 and use a comma in the format specification, the
integer will use commas for grouping. For example:

>>> "{0:,} {0:*>13,}".format(int(2.39432185€e6))
2,394,321 ****2,394,321"

Both fields have grouping applied, and in addition, the second field is padded
with *s, right aligned, and given a minimum width of 13 characters. This is
very convenient for many scientific and financial programs, but it does not take
into account the current locale. For example, many Continental Europeans
would expect the thousands separator to be . and the decimal separator to
be ,.

The last format character available for integers (and which is also available for
floating-point numbers) is n. This has the same effect as d when given an inte-
ger and the same effect as g when given a floating-point number. What makesn
special is that it respects the current locale, and will use the locale-specific dec-
imal separator and grouping separator in the output it produces. The default
locale is called the C locale, and for this the decimal and grouping characters
are a period and an empty string. We can respect the user’s locale by starting
our programs with the following two lines as the first executable statements*

import locale
locale.setlocale(locale.LC ALL, "")

*In multithreaded programsit is best to call locale.setlocale() only once, at program start-up, and
before any additional threads have been started, since the function is not usually thread-safe.

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 87

Passing an empty string as the locale tells Python to try to automatically
determine the user’s locale (e.g., by examining the LANG environment variable),
with a fallback of the C locale. Here are some examples that show the effects
of different locales on an integer and a floating-point number:

X, y = (1234567890, 1234.56)

locale.setlocale(locale.LC ALL, "C")

¢ ="{0:n} {1l:n}".format(x, y) # c == "1234567890 1234.56"
locale.setlocale(locale.LC ALL, "en US.UTF-8")

en = "{0:n} {l:n}".format(x, y) # en == "1,234,567,890 1,234.56"
locale.setlocale(locale.LC ALL, "de DE.UTF-8")

de = "{0:n} {l:n}".format(x, y) # de == "1.234.567.890 1.234,56"

Although n is very useful for integers, it is of more limited use with floating-
point numbers because as soon as they become large they are output using ex-
ponential form.

For floating-point numbers, the format specification gives us control over the
fill character, the alignment within the field, the sign, whether to use a non-
locale aware comma separator to group digits (from Python 3.1), the mini-
mum field width, the number of digits after the decimal place, and whether to
present the number in standard or exponential form, or as a percentage.

The format specification for floating-point numbers is the same as for integers,
except for two differences at the end. After the optional minimum width—from
Python 3.1, after the optional grouping comma—we can specify the number of
digits after the decimal place by writing a period followed by an integer. We can
also add a type character at the end: e for exponential form with a lowercase e,
E for exponential form with an uppercase E, f for standard floating-point form,
g for “general” form—this is the same as f unless the number is very large, in
which case it is the same as e—and G, which is almost the same as g, but uses
either f or E. Also available is %—this results in the number being multiplied by
100 with the resultant number output in f format with a % symbol appended.

Here are a few examples that show exponential and standard forms:

>>> amount = (10 ** 3) * math.pi

>>> "[{0:12.2e}] [{0:12.2f}]".format(amount)

[3.14e+03] [3141.59]"

>>> "[{0:%>12.2e}] [{0:*>12.2f}]".format(amount)
"[***%3,14e+03] [*****3141.59]"

>>> "[{0:*>+12.2e}] [{0:*>+12.2f}]".format(amount)
"[***+3,14e+03] [****+3141.59]"

The first example has a minimum width of 12 characters and has 2 digits after
the decimal point. The second example builds on the first, and adds a * fill
character. If we use a fill character we must also have an alignment character,
so we have specified align right (even though that is the default for numbers).

www.it-ebooks.info

http://www.it-ebooks.info/

88 Chapter 2. Data Types

The third example builds on the previous two, and adds the + sign character to
force the output of the sign.

In Python 3.0, decimal.Decimal numbers are treated by str.format() as strings
rather than as numbers. This makes it quite tricky to get nicely formatted out-
put. From Python 3.1, decimal.Decimal numbers can be formatted as floats, in-
cluding support for , to get comma-separated groups. Here is an example—we
have omitted the field name since we don’t need it for Python 3.1:

>>> "{:,.6f}".format(decimal.Decimal("1234567890.1234567890"))
'1,234,567,890.123457"

If we omitted the f format character (or used the g format character), the
number would be formatted as '1.23457E+9".

Python 3.0 does not provide any direct support for formatting complex
numbers—support was added with Python 3.1. However, we can easily solve
this by formatting the real and imaginary parts as individual floating-point
numbers. For example:

>>> "{0.real:.3f}{0.imag:+.3f}j".format(4.75917+1.2042j)
'4.759+1.2047"
>>> "{0.real:.3f}{0.imag:+.3f}j".format(4.75917-1.2042j)
'4,759-1.204j"

We access each attribute of the complex number individually, and format them
both as floating-point numbers, in this case with three digits after the decimal
place. We have also forced the sign to be output for the imaginary part; we
must add on the j ourselves.

Python 3.1 supports formatting complex numbers using the same syntax as for
floats:

>>> "{:,.4f}".format(3.59284e6-8.984327843e6])
'3,592,840.0000-8,984,327.8430] "

One slight drawback of this approach is that exactly the same formatting is
applied to both the real and the imaginary parts; but we can always use the
Python 3.0 technique of accessing the complex number’s attributes individual-
ly if we want to format each one differently.

Example: print_unicode.py
Inthe preceding subsubsections we closely examined the str.format () method’s
format specifications, and we have seen many code snippets that show partic-

ular aspects. In this subsubsection we will review a small yet useful example
that makes use of str.format() so that we can see format specifications in a

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 89

realistic context. The example also uses some of the string methods we saw in
the previous section, and introduces a function from the unicodedata module.*

The program has just 25 lines of executable code. It imports two modules, sys
and unicodedata, and defines one custom function, print_unicode table(). We’ll
begin by looking at a sample run to see what it does, then we will look at the
code at the end of the program where processing really starts, and finally we
will look at the custom function.

print _unicode.py spoked

decimal hex chr name
10018 2722 <+ Four Teardrop-Spoked Asterisk
10019 2723 <+ Four Balloon-Spoked Asterisk
10020 2724 < Heavy Four Balloon-Spoked Asterisk
10021 2725 < Four Club-Spoked Asterisk
10035 2733 ¥ Eight Spoked Asterisk
10043 273B % Teardrop-Spoked Asterisk
10044 273C % Open Centre Teardrop-Spoked Asterisk
10045 273D % Heavy Teardrop-Spoked Asterisk
10051 2743 %k Heavy Teardrop-Spoked Pinwheel Asterisk
10057 2749 ¢ Balloon-Spoked Asterisk
10058 274A ¥ Eight Teardrop-Spoked Propeller Asterisk
10059 274B % Heavy Eight Teardrop-Spoked Propeller Asterisk

If run with no arguments, the program produces a table of every Unicode
character, starting from the space character and going up to the character with
the highest available code point. If an argument is given, as in the example,
only those rows in the table where the lowercased Unicode character name
contains the argument are printed.

word = None
if len(sys.argv) > 1:
if sys.argv[1l] in ("-h", "--help"):
print("usage: {0} [string]".format(sys.argv[0]))
word = 0
else:

word = sys.argv[1l].lower()
if word !'= 0:
print_unicode table(word)

* This program assumes that the console uses the Unicode UTF-8 encoding. Unfortunate-
ly, the Windows console has poor UTF-8 support. As a workaround, the examples include
print_unicode uni.py, a version of the program that writes its output to a file which can then be
opened using a UTF-8-savvy editor, such as IDLE.

www.it-ebooks.info

Chapter 7
(File Han-
dling)

» 287

http://www.it-ebooks.info/

90 Chapter 2. Data Types

After the imports and the creation of the print unicode table() function, exe-
cution reaches the code shown here. We begin by assuming that the user has
not given a word to match on the command line. If a command-line argument
is given and is -h or --help, we print the program’s usage information and set
word to O as a flag to indicate that we are finished. Otherwise, we set the word
to a lowercase copy of the argument the user typed in. If the word is not 0, then
we print the table.

When we print the usage information we use a format specification that just
has the format name—in this case, the position number of the argument. We
could have written the line like this instead:

print("usage: {0[0]} [string]".format(sys.argv))

Using this approach the first 0 is the index position of the argument we want
touse, and [0] is the index within the argument, and it works because sys.argv
is a list.

def print unicode table(word):
print("decimal hex chr {0:740}".format("name"))
print("-———-—- -—— -— {0:-<40}".format(""))

code = ord(" ")
end = sys.maxunicode

while code < end:
¢ = chr(code)
name = unicodedata.name(c, "*** unknown ***")
if word is None or word in name.lower():
print("{0:7} {0:5X} {0:73c} {1}".format(
code, name.title()))
code +=1

We’ve used a couple of blank lines for the sake of clarity. The first two lines of
the function’s suite print the title lines. The first str.format() prints the text
“name” centered in a field 40 characters wide, whereas the second one prints
an empty string in a field 40 characters wide, using a fill character of “-”, and
aligned left. (We must give an alignment if we specify a fill character.) An
alternative approach for the second line is this:

print("-—-—-- - -— {0}".format("-" * 40))

Here we have used the string replication operator (*) to create a suitable string,
and simply inserted it into the format string. A third alternative would be to
simply type in 40 “-’s and use a literal string.

We keep track of Unicode code points in the code variable, initializing it to
the code point for a space (0x20). We set the end variable to be the highest

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 91

Unicode code point available—this will vary depending on whether Python
was compiled to use the UCS-2 or the UCS-4 character encoding.

Inside the while loop we get the Unicode character that corresponds to the code
point using the chr() function. The unicodedata.name() function returns the
Unicode character name for the given Unicode character; its optional second
argument is the name to use if no character name is defined.

If the user didn’t specify a word (word is None), or if they did and it is in a low-
ercased copy of the Unicode character name, then we print the correspond-
ing row.

Although we pass the code variable to the str.format() method only once, it is
used three times in the format string, first to print the code as an integer in a
field 7 characters wide (the fill character defaults to space, so we did not need
to specify it), second to print the code as an uppercase hexadecimal number
in a field 5 characters wide, and third to print the Unicode character that
corresponds to the code—using the “c” format specifier, and centered in a field
with a minimum width of three characters. Notice that we did not have to
specify the type “d” in the first format specification; this is because it is the
default for integer arguments. The second argument is the character’s Unicode
character name, printed using “title” case, that is, with the first letter of each
word uppercased, and all other letters lowercased.

Now that we are familiar with the versatile str.format () method, we will make
great use of it throughout the rest of the book.

Character Encodings

Ultimately, computers can store only bytes, that is, 8-bit values which, if un-
signed, range from 0x00 to 0xFF. Every character must somehow be represented
in terms of bytes. In the early days of computing the pioneers devised encoding
schemes that assigned a particular character to a particular byte. For example,
using the ASCII encoding, A is represented by 0x41, B by 0x42, and so on. In the
U.S. and Western Europe the Latin-1 encoding was often used; its characters
in the range 0x20—0x7E are the same as the corresponding characters in 7-bit
ASCII, with those in the range 0xA0—0xFF used for accented characters and oth-
er symbols needed by those using non-English Latin alphabets. Many other
encodings have been devised over the years, and now there are lots of them in
use—however, development has ceased for many of them, in favor of Unicode.

Having all these different encodings has proved very inconvenient, especially
when writing internationalized software. One solution that has been almost
universally adopted is the Unicode encoding. Unicode assigns every charac-
ter to an integer—called a code point in Unicode-speak—just like the earlier
encodings. But Unicode is not limited to using one byte per character, and is
therefore able to represent every character in every language in a single encod-

www.it-ebooks.info

http://www.it-ebooks.info/

92 Chapter 2. Data Types

ing, so unlike other encodings, Unicode can handle characters from a mixture
of languages, rather than just one.

But how is Unicode stored? Currently, slightly more than 100000 Unicode
characters are defined, so even using signed numbers, a 32-bit integer is more
than adequate to store any Unicode code point. So the simplest way to store
Unicode characters is as a sequence of 32-bit integers, one integer per charac-
ter. This sounds very convenient since it should produce a one to one mapping
of characters to 32-bit integers, which would make indexing to a particular
character very fast. However, in practice things aren’t so simple, since some
Unicode characters can be represented by one or by two code points—for ex-
ample, é can be represented by the single code point 0xE9 or by two code points,
0x65 and 0x301 (¢ and a combining acute accent).

Nowadays, Unicode is usually stored both on disk and in memory using UTF-
8, UTF-16, or UTF-32. The first of these, UTF-8, is backward compatible with
7-bit ASCII since its first 128 code points are represented by single-byte val-
ues that are the same as the 7-bit ASCII character values. To represent all the
other Unicode characters, UTF-8 uses two, three, or more bytes per character.
This makes UTF-8 very compact for representing text that is all or mostly En-
glish. The Gtk library (used by the GNOME windowing system, among others)
uses UTF-8, and it seems that UTF-8 is becoming the de facto standard format
for storing Unicode text in files—for example, UTF-8 is the default format for
XML, and many web pages these days use UTF-8.

A lot of other software, such as Java, uses UCS-2 (which in modern form is
the same as UTF-16). This representation uses two or four bytes per character,
with the most common characters represented by two bytes. The UTF-32 rep-
resentation (also called UCS-4) uses four bytes per character. Using UTF-16
or UTF-32 for storing Unicode in files or for sending over a network connection
has a potential pitfall: If the data is sent as integers then the endianness mat-
ters. One solution to this is to precede the data with a byte order mark so that
readers can adapt accordingly. This problem doesn’t arise with UTF-8, which
is another reason why it is so popular.

Python represents Unicode using either UCS-2 (UTF-16) format, or UCS-4
(UTF-32) format. In fact, when using UCS-2, Python uses a slightly simplified
version that always uses two bytes per character and so can only represent code
points up to 0xFFFF. When using UCS-4, Python can represent all the Unicode
code points. The maximum code point is stored in the read-only sys.maxunicode
attribute—if its value is 65535, then Python was compiled to use UCS-2; if
larger, then Python is using UCS-4.

The str.encode() method returns a sequence of bytes—actually a bytes object,
covered in Chapter 7—encoded according to the encoding argument we supply.
Using this method we can get some insight into the difference between encod-
ings, and why making incorrect encoding assumptions can lead to errors:

www.it-ebooks.info

http://www.it-ebooks.info/

Strings 93

>>> artist = "Tage Asén"

>>> artist.encode("Latinl")

b'Tage \xc5s\xe9n'

>>> artist.encode("CP850")

b'Tage \x8fs\x82n'

>>> artist.encode("utf8")

b'Tage \xc3\x85s\xc3\xadn'

>>> artist.encode("utf16")

b'\xff\xfeT\x00a\x00g\x00e\x00 \x00\xc5\x005\x00\xe9\x00n\x00"

A b before an opening quote signifies a bytes literal rather than a string
literal. As a convenience, when creating bytes literals we can use a mixture of
printable ASCII characters and hexadecimal escapes.

We cannot encode Tage Asén’s name using the ASCII encoding because it does
not have the A character or any accented characters, so attempting to do so
will result in a UnicodeEncodeError exception being raised. The Latin-1 encod-
ing (also known as ISO-8859-1) is an 8-bit encoding that has all the necessary
characters for this name. On the other hand, artist Erné Bank would be less
fortunate since the § character is not a Latin-1 character and so could not be
successfully encoded. Both names can be successfully encoded using Uni-
code encodings, of course. Notice, though, that for UTF-16, the first two bytes
are the byte order mark—these are used by the decoding function to detect
whether the data is big- or little-endian so that it can adapt accordingly.

It is worth noting a couple more points about the str.encode() method. The
first argument (the encoding name) is case-insensitive, and hyphens and un-
derscores in the name are treated as equivalent, so “us-ascii” and “US_ASCII”
are considered the same. There are also many aliases—for example, “latin”,
“latinl”, “latin_17, “ISO-8859-1”, “CP819”, and some others are all “Latin-1".
The method can also accept an optional second argument which is used to tell it
how to handle errors. For example, we can encode any string into ASCII if we
pass a second argument of “ignore” or “replace”—at the price of losing data, of
course—or losslessly if we use “backslashreplace” which replaces non-ASCII
characters with \x, \u, and \U escapes. For example, artist.encode("ascii",
"ignore") will produce b'Tage sn' and artist.encode("ascii", "replace") will
produce b'Tage ?s?n', whereas artist.encode("ascii", "backslashreplace")
will produce b'Tage \xc5s\xedn'. (We can also get an ASCII string using
“{0!a}".format(artist), which produces 'Tage \xc5s\xe9n'.)

The complement of str.encode() is bytes.decode() (and bytearray.decode())
which returns a string with the bytes decoded using the given encoding.
For example:

>>> print(b"Tage \xc3\x85s\xc3\xa9n".decode("utfd"))
Tage Asén

www.it-ebooks.info

http://www.it-ebooks.info/

94 Chapter 2. Data Types

>>> print(b"Tage \xc5s\xe9n".decode("latinl"))
Tage Asén

The differences between the 8-bit Latin-1, CP850 (an IBM PC encoding), and
UTF-8 encodings make it clear that guessing encodings is not likely to be a
successful strategy. Fortunately, UTF-8 is becoming the de facto standard for
plain text files, so later generations may not even know that other encodings
ever existed.

Python .py files use UTF-8, so Python always knows the encoding to use with
string literals. This means that we can type any Unicode characters into our
strings—providing our editor supports this.*

When Python reads data from external sources such as sockets, it cannot know
what encoding is used, so it returns bytes which we can then decode according-
ly. For text files Python takes a softer approach, using the local encoding unless
we specify an encoding explicitly.

Fortunately, some file formats specify their encoding. For example, we can as-
sume that an XML file uses UTF-8, unless the <?xm1?> directive explicitly speci-
fies a different encoding. So when reading XML we might extract, say, the first
1000 bytes, look for an encoding specification, and if found, decode the file us-
ing the specified encoding, otherwise falling back to decoding using UTF-8. This
approach should work for any XML or plain text file that uses any of the sin-
gle byte encodings supported by Python, except for EBCDIC-based encodings
(CP424,CP500) and a few others (CP037,CP864, CP865,CP1026,CP1140,HZ,
SHIFT-JIS-2004, SHIFT-JISX0213). Unfortunately, this approach won’t work
for multibyte encodings (such as UTF-16 and UTF-32). At least two Python
packages for automatically detecting a file’s encoding are available from the
Python Package Index, pypi.python.org/pypi.

Examples

In this section we will draw on what we have covered in this chapter and the
one before, to present two small but complete programs to help consolidate
what we have learned so far. The first program is a bit mathematical, but it is
quite short at around 35 lines. The second is concerned with text processing
and is more substantial, with seven functions in around 80 lines of code.

quadratic.py

Quadratic equations are equations of the form ax®>+bx+c=0 where a#0
describe parabolas. The roots of such equations are derived from the formula

*Tt is possible to use other encodings. See the Python Tutorial’s “Source Code Encoding” topic.

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 95

x = 2EVb e ‘5_4“. The b* - 4ac part of the formula is called the discriminant—if it
is positive there are two real roots, if it is zero there is one real root, and if it is
negative there are two complex roots. We will write a program that accepts the
a, b, and ¢ factors from the user (with the b and ¢ factors allowed to be 0), and
then calculates and outputs the root or roots.*

First we will look at a sample run, and then we will review the code.

quadratic.py

ax2 + bx +c=0

enter a: 2.5

enter b: 0

enter c: -7.25

2.5x2 + 0.0x + -7.25 = 0 — x = 1.70293863659 or x = -1.70293863659

With factors 1.5, -3, and 6, the output (with some digits trimmed) is:
1.5x%2 + -3.0x + 6.0 = 0 —> x = (1+1.7320508j) or x = (1-1.7320508j)

The output isn’t quite as tidy as we’'d like—for example, rather than + -3.0x
it would be nicer to have - 3.0x, and we would prefer not to have any 0 factors
shown at all. You will get the chance to fix these problems in the exercises.

Now we will turn to the code, which begins with three imports:

import cmath
import math
import sys

We need both the float and the complex math libraries since the square root
functions for real and complex numbers are different, and we need sys for
sys.float info.epsilon which we need to compare floating-point numbers
with 0.

We also need a function that can get a floating-point number from the user:

def get float(msg, allow zero):

X = None
while x is None:
try:

x = float(input(msg))

if not allow zero and abs(x) < sys.float info.epsilon:
print("zero is not allowed")
x = None

*Since the Windows console has poor UTF-8 support, there are problems with a couple of the
characters (2 and —) that quadratic.py uses. We have provided quadratic uni.py which displays the
correct symbols on Linux and Mac OS X, and alternatives (*2 and ->) on Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

96 Chapter 2. Data Types

except ValueError as err:
print(err)
return x

This function will loop until the user enters a valid floating-point number (such
as 0.5, -9, 21, 4.92), and will accept 0 only if allow zero is True.

Once the get float() function is defined, the rest of the code is executed. We’ll
look at it in three parts, starting with the user interaction:

print("ax\N{SUPERSCRIPT TWO} + bx + ¢ = 0")

a = get float("enter a: ", False)
b = get float("enter b: ", True)
¢ = get float("enter c: ", True)

Thanks to the get _float() function, getting the a, b, and ¢ factors is simple. The
Boolean second argument says whether 0 is acceptable.

x1 = None
x2 = None
discriminant = (b ** 2) - (4 * a * ()
if discriminant ==
x1=-(b/ (2 * a))
else:
if discriminant > 0:
root = math.sqrt(discriminant)
else: # discriminant < 0
root = cmath.sqrt(discriminant)
(-b + root) / (2 * a)
(-b - root) / (2 * a)

x1
X2

The code looks a bit different to the formula because we begin by calculating
the discriminant. If the discriminant is 0, we know that we have one real
solution and so we calculate it directly. Otherwise, we take the real or complex
square root of the discriminant and calculate the two roots.

equation = ("{0}x\N{SUPERSCRIPT TWO0} + {1}x + {2} = 0"
" \N{RIGHTWARDS ARROW} x = {3}").format(a, b, c, x1)
if x2 is not None:
equation += " or x = {0}".format(x2)
print(equation)

We haven’t done any fancy formatting since Python’s defaults for floating-point
numbers are fine for this example, but we have used Unicode character names
for a couple of special characters.

www.it-ebooks.info

http://www.it-ebooks.info/

Us-

ing str.
format()
with
map-

ping un-

packing
81«

Examples 97

A more robust alternative to using positional arguments with their index posi-
tions as field names, is to use the dictionary returned by locals(), a technique
we saw earlier in the chapter.

equation = ("{a}x\N{SUPERSCRIPT TW0} + {b}x + {c} = 0"
" \N{RIGHTWARDS ARROW} x = {x1}").format(**locals())

And if we are using Python 3.1, we could omit the field names and leave Python
to populate the fields using the positional arguments passed to str.format().

equation = ("{}x\N{SUPERSCRIPT TWO} + {}x + {} = 0"
" \N{RIGHTWARDS ARROW} x = {}").format(a, b, c, x1)

This is convenient, but not as robust as using named parameters, nor as
versatile if we needed to use format specifications. Nonetheless, for many
simple cases this syntax is both easy and useful.

csv2html.py

One common requirement is to take a data set and present it using HTML. In
this subsection we will develop a program that reads a file that uses a simple
CSV (Comma Separated Value) format and outputs an HTML table containing
the file’s data. Python comes with a powerful and sophisticated module for
handling CSV and similar formats—the csv module—but here we will write
all the code by hand.

The CSV format we will support has one record per line, with each record
divided into fields by commas. Each field can be either a string or a number.
Strings must be enclosed in single or double quotes and numbers should be
unquoted unless they contain commas. Commas are allowed inside strings,
and must not be treated as field separators. We assume that the first record
contains field labels. The output we will produce is an HTML table with text
left-aligned (the default in HTML) and numbers right-aligned, with one row
per record and one cell per field.

The program must output the HTML table’s opening tag, then read each line of
data and for each one output an HTML row, and at the end output the HTML
table’s closing tag. We want the background color of the first row (which will
display the field labels) to be light green, and the background of the data rows
to alternate between white and light yellow. We must also make sure that the
special HTML characters (“&”, “<”, and “>”) are properly escaped, and we want
strings to be tidied up a bit.

Here’s a tiny piece of sample data:

"COUNTRY", "2000","2001",2002,2003,2004
"ANTIGUA AND BARBUDA",0,0,0,0,0

www.it-ebooks.info

http://www.it-ebooks.info/

98 Chapter 2. Data Types

"ARGENTINA",37,35,33,36,39
"BAHAMAS, THE",1,1,1,1,1
"BAHRAIN",5,6,6,6,6

Assuming the sample data is in the file data/co2-sample.csv, and given
the command csv2html.py < data/co2-sample.csv > co2-sample.html, the file
co2-sample.html will have contents similar to this:

<table border='1'><tr bgcolor='lightgreen'>

<td>Country</td><td align='right'>2000</td><td align='right'>2001</td>
<td align='right'>2002</td><td align='right'>2003</td>

<td align='right'>2004</td></tr>

<tr bgcolor='lightyellow'><td>Argentina</td>

<td align='right'>37</td><td align='right'>35</td>
<td align='right'>33</td><td align='right'>36</td>
<td align='right'>39</td></tr>

</table>
We've tidied the output slightly and omitted some lines where indicated by
ellipses. We have used a very simple version of HTML—HTML 4 transitional,

with no style sheet. Figure 2.7 shows what the output looks like in a web
browser.

Country 2000 2001 2002 2003 2004
Antigua and Barbuda 0 0 0 0 0
Argentina 37| 35| 33| 36/ 39
Bahamas, The 1 1 1 L 1
Bahrain 5 6 6 6 6

Figure 2.7 A csv2html.py table in a web browser

Now that we've seen how the program is used and what it does, we are ready
to review the code. The program begins with the import of the sys module; we
won’t show this, or any other imports from now on, unless they are unusual
or warrant discussion. And the last statement in the program is a single
function call:

main()

Although Python does not need an entry point as some languages require, it
is quite common in Python programs to create a function called main() and to
call it to start off processing. Since no function can be called before it has been
created, we must make sure we call main() after the functions it relies on have

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 99

been defined. The order in which the functions appear in the file (i.e., the order
in which they are created) does not matter.

In the csv2html.py program, the first function we call is main() which in turn
calls print start() and then print line(). And print line() calls extract_
fields() and escape html(). The program structure we have used is shown in
Figure 2.8.

import sys

<

— def main(): < ~
N> def print start():

N def print line():
calls
def extract fields(): calls | calls

def escape html():

_» def print end():

main() J
Figure 2.8 The csv2html.py program’s structure

When Python reads a file it begins at the top. So for this example, it starts by
performing the import, then it creates the main() function, and then it creates
the other functions in the order in which they appear in the file. When Python
finally reaches the call to main() at the end of the file, all the functions that
main() will call (and all the functions that those functions will call) now exist.
Execution as we normally think of it begins where the call to main() is made.

We will look at each function in turn, starting with main().
def main():

maxwidth = 100
print_start()

count = 0
while True:
try:
line = input()
if count ==

color = "lightgreen"
elif count % 2:

color = "white"
else:

color = "lightyellow"

www.it-ebooks.info

http://www.it-ebooks.info/

100 Chapter 2. Data Types

print line(line, color, maxwidth)

count +=1
except EOFError:
break

print_end()

The maxwidth variable is used to constrain the number of characters in a
cell—if a field is bigger than this we will truncate it and signify this by adding
an ellipsis to the truncated text. We’ll look at the print start(), print line(),
and print_end() functions in a moment. The while loop iterates over each line
of input—this could come from the user typing at the keyboard, but we expect
it to be a redirected file. We set the color we want to use and call print_line()
to output the line as an HTML table row.

def print start():
print("<table border='1'>")

def print _end():
print("</table>")

We could have avoided creating these two functions and simply put the rel-
evant print() function calls in main(). But we prefer to separate out the logic
since this is more flexible, even though it doesn’t really matter in this small
example.

def print line(line, color, maxwidth):
print("<tr bgcolor='{0}'>".format(color))
fields = extract fields(line)
for field in fields:
if not field:
print("<td></td>")
else:
number = field.replace(",", "")
try:
x = float(number)
print("<td align='right'>{0:d}</td>".format(round(x)))
except ValueError:
field = field.title()
field = field.replace(" And ", " and ")
if len(field) <= maxwidth:
field = escape_html(field)
else:
field = "{0} ...".format(
escape_html(field[:maxwidth]))
print("<td>{0}</td>".format(field))
print("</tr>")

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 101

We cannot use str.split(",") to split each line into fields because commas
can occur inside quoted strings. So we have farmed this work out to the
extract_fields() function. Once we have a list of the fields (as strings, with no
surrounding quotes), we iterate over them, creating a table cell for each one.

If a field is empty, we output an empty cell. If a field is quoted, it could be
a string or it could be a number that has been quoted to allow for internal
commas, for example, "1,566". To account for this, we make a copy of the field
with commas removed and try to convert the field to a float. If the conversion is
successful we output a right-aligned cell with the field rounded to the nearest
whole number and output it as an integer. If the conversion fails we output the
field as a string. Inthiscase we use str.title() toneaten the case of the letters
and we replace the word And with and as a correction to str.title()’s effect.
If the field isn’t too long we use all of it, otherwise we truncate it to maxwidth
characters and add an ellipsis to signify the truncation, and in either case we
escape any special HTML characters the field might contain.

def extract fields(line):
fields = []
field = ""
quote = None
for ¢ in line:

if ¢ in "\"'":
if quote is None: # start of quoted string
quote = ¢
elif quote == c: # end of quoted string
quote = None
else:
field += ¢ # other quote inside quoted string
continue
if quote is None and ¢ == ",": # end of a field
fields.append(field)
field = ""
else:
field += ¢ # accumulating a field
if field:

fields.append(field) # adding the last field
return fields

This function reads the line it is given character by character, accumulating
a list of fields—each one a string without any enclosing quotes. The function
copes with fields that are unquoted, and with fields that are quoted with single
or double quotes, and correctly handles commas and quotes (single quotes in
double quoted strings, double quotes in single quoted strings).

www.it-ebooks.info

http://www.it-ebooks.info/

102 Chapter 2. Data Types

def escape html(text):
text = text.replace("&", "&")
text = text.replace("<", "<")
text = text.replace(">", ">")
return text

This function straightforwardly replaces each special HTML character with
the appropriate HTML entity. We must of course replace ampersands first,
although the order doesn’t matter for the angle brackets. Python’s standard
library includes a slightly more sophisticated version of this function—you’ll
get the chance to use it in the exercises, and will see it again in Chapter 7.

Summary

This chapter began by showing the list of Python’s keywords and described the
rules that Python applies to identifiers. Thanks to Python’s Unicode support,
identifiers are not limited to a subset of characters from a small character set
like ASCII or Latin-1.

We also described Python’s int data type, which differs from similar types in
most other languagesin that it has nointrinsic size limitation. Python integers
can be aslarge as the machine’s memory will allow, and it is perfectly feasible to
work with numbers that are hundreds of digitslong. All of Python’s most basic
data types are immutable, but this is rarely noticable since the augmented as-
signment operators (+=, *=, -=, /=, and others) means that we can use a very nat-
ural syntax while behind the scenes Python creates result objects and rebinds
our variablesto them. Literal integers are usually written as decimal numbers,
but we can write binary literals using the 0b prefix, octal literals using the 0o
prefix, and hexadecimal literals using the 0x prefix.

When two integers are divided using /, the result is always a float. This is
different from many other widely used languages, but helps to avoid some
quite subtle bugs that can occur when division silently truncates. (And if we
want integer division we can use the // operator.)

Python has a bool data type which can hold either True or False. Python has
three logical operators, and, or, and not, of which the two binary operators (and
and or) use short-circuit logic.

Three kinds of floating-point numbers are available: float, complex, and dec-
imal.Decimal. The most commonly used is float; this is a double-precision
floating-point number whose exact numerical characteristics depend on the
underlying C, C#, or Java library that Python was built with. Complex num-
bers are represented as two floats, one holding the real value and the other the
imaginary value. The decimal.Decimal type is provided by the decimal module.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 103

These numbers default to having 28 decimal places of accuracy, but this can be
increased or decreased to suit our needs.

All three floating-point types can be used with the appropriate built-in math-
ematical operators and functions. And in addition, the math module provides a
variety of trigonometric, hyperbolic, and logarithmic functions that can be used
with floats, and the cmath module provides a similar set of functions for complex
numbers.

Most of the chapter was devoted to strings. Python string literals can be
created using single quotes or double quotes, or using a triple quoted string
if we want to include newlines and quotes without formality. Various escape
sequences can be used to insert special characters such as tab (\t) and newline
(\n), and Unicode characters both using hexadecimal escapes and Unicode
character names. Although strings support the same comparison operators
as other Python types, we noted that sorting strings that contain non-English
characters can be problematic.

Since strings are sequences, the slicing operator ([]) can be used to slice and
stride strings with a very simple yet powerful syntax. Strings can also be
concatenated with the + operator and replicated with the * operator, and we
can also use the augmented assignment versions of these operators (+= and
*=), although the str.join() method is more commonly used for concatenation.
Strings have many other methods, including some for testing string properties
(e.g.,str.isspace() and str.isalpha()),some for changing case (e.g.,str.lower()
and str.title()), some for searching (e.g., str.find() and str.index()), and
many others.

Python’s string support is really excellent, enabling us to easily find and
extract or compare whole strings or parts of strings, to replace characters or
substrings, and to split strings into a list of substrings and to join lists of
strings into a single string.

Probably the most versatile string method is str.format (). This method is used
to create strings using replacement fields and variables to go in those fields, and
format specifications to precisely define the characteristics of each field which
isreplaced with a value. The replacement field name syntax allows us to access
the method’s arguments by position or by name (for keyword arguments), and
to use an index, key, or attribute name to access an argument item or attribute.
The format specifications allow us to specify the fill character, the alignment,
and the minimum field width. Furthermore, for numbers we can also control
how the sign is output, and for floating-point numbers we can specify the num-
ber of digits after the decimal point and whether to use standard or exponen-
tial notation.

We also discussed the thorny issue of character encodings. Python .py files use
the Unicode UTF-8 encoding by default and so can have comments, identifiers,
and data written in just about any human language. We can convert a string

www.it-ebooks.info

http://www.it-ebooks.info/

104 Chapter 2. Data Types

into a sequence of bytes using a particular encoding using the str.encode()
method, and we can convert a sequence of bytes that use a particular encoding
back to a string using the bytes.decode() method. The wide variety of charac-
ter encodings currently in use can be very inconvenient, but UTF-8 is fast be-
coming the de facto standard for plain text files (and is already the default for
XML files), so this problem should diminish in the coming years.

In addition to the data types covered in this chapter, Python provides two other
built-in data types, bytes and bytearray, both of which are covered in Chapter 7.
Python also provides several collection data types, some built-in and others
in the standard library. In the next chapter we will look at Python’s most
important collection data types.

Exercises

1. Modify the print_unicode.py program so that the user can enter several
separate words on the command line, and print rows only where the
Unicode character name contains all the words the user has specified.
This means that we can type commands like this:

print unicode ans.py greek symbol

One way of doing this is to replace the word variable (which held 0, None,
or a string), with a words list. Don’t forget to update the usage informa-
tion as well as the code. The changes involve adding less than ten lines
of code, and changing less than ten more. A solution is provided in file
print_unicode ans.py. (Windows and cross-platform users should modify
print _unicode uni.py;a solution is provided in print unicode uni_ans.py.)

2. Modify quadratic.py so that 0.0 factors are not output, and so that negative
factors are output as - n rather than as + -n. This involves replacing the
last five lines with about fifteen lines. A solution is provided in quadrat-
ic_ans.py. (Windows and cross-platform users should modify quadrat-
ic_uni.py; a solution is provided in quadratic _uni_ans.py.)

3. Delete the escape_html() function from csv2html.py, and use the xml.sax.
saxutils.escape() function from the xml.sax.saxutils moduleinstead. This
is easy, requiring one new line (the import), five deleted lines (the unwant-
ed function), and one changed line (to use xml.sax.saxutils.escape() in-
stead of escape_html()). A solution is provided in csv2htmll ans.py.

4. Modify csv2html.py again, this time adding a new function called pro-
cess_options(). This function should be called from main() and should
return a tuple of two values: maxwidth (an int) and format (a str). When
process _options() is called it should set a default maxwidth of 100, and a
default format of “.0f”—this will be used as the format specifier when out-
putting numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises 105

If the user has typed “-h” or “--help” on the command line, a usage message
should be output and (None, None) returned. (In this case main() should
do nothing.) Otherwise, the function should read any command-line
arguments that are given and perform the appropriate assignments. For
example, setting maxwidth if “maxwidth=n" is given, and similarly setting
format if “format=s” is given. Here is a run showing the usage output:

csv2html2 ans.py -h
usage:
csv2html.py [maxwidth=int] [format=str] < infile.csv > outfile.html

maxwidth is an optional integer; if specified, it sets the maximum
number of characters that can be output for string fields,
otherwise a default of 100 characters is used.

format is the format to use for numbers; if not specified it
defaults to ".0f".

And here is a command line with both options set:
csv2html2_ans.py maxwidth=20 format=0.2f < mydata.csv > mydata.html

Don’t forget to modify print line() to make use of the format for out-
putting numbers—you’ll need to pass in an extra argument, add one line,
and modify another line. And this will slightly affect main() too. The pro-
cess_options() function should be about twenty-five lines (including about
nine for the usage message). This exercise may prove challenging for inex-
perienced programmers.

Two files of test data are provided: data/co2-sample.csv and data/co2-from-
fossilfuels.csv. A solution is provided in csv2html2_ans.py. In Chapter 5
we will see how to use Python’s optparse module to simplify command-line
processing.

www.it-ebooks.info

http://www.it-ebooks.info/

® Sequence Types

® Set Types

@® Mapping Types

@ Iterating and Copying Collections

Collection Data Types

In the preceding chapter we learned about Python’s most important funda-
mental data types. In this chapter we will extend our programming options
by learning how to gather data items together using Python’s collection data
types. We will cover tuples and lists, and also introduce new collection data
types, including sets and dictionaries, and cover all of them in depth.*

In addition to collections, we will also see how to create data items that are
aggregates of other data items (like C or C++ structs or Pascal records)—such
items can be treated as a single unit when this is convenient for us, while
the items they contain remain individually accessible. Naturally, we can put
aggregated items in collections just like any other items.

Having data items in collections makes it much easier to perform operations
that must be applied to all of the items, and also makes it easier to handle col-
lections of items read in from files. We'll cover the very basics of text file han-
dling in this chapter as we need them, deferring most of the detail (including
error handling) to Chapter 7.

After covering the individual collection data types, we will look at how to it-
erate over collections, since the same syntax is used for all of Python’s collec-
tions, and we will also explore the issues and techniques involved in copying
collections.

Sequence Types

A sequence type is one that supports the membership operator (in), the size
function (len()), slices ([]), and is iterable. Python provides five built-in se-
quence types: bytearray, bytes, list, str, and tuple—the first two are covered

*The definitions of what constitutes a sequence type, a set type, or a mapping type given in this
chapter are practical but informal. More formal definitions are given in Chapter 8.

107

www.it-ebooks.info

http://www.it-ebooks.info/

Strings
65 <«

String
slicing
and
striding

69 <

108 Chapter 3. Collection Data Types

separately in Chapter 7. Some other sequence types are provided in the stan-
dard library, most notably, collections.namedtuple. When iterated, all of these
sequences provide their items in order.

We covered strings in the preceding chapter. In this section we will cover
tuples, named tuples, and lists.

Tuples

A tuple is an ordered sequence of zero or more object references. Tuples
support the same slicing and striding syntax as strings. This makes it easy to
extract items from a tuple. Like strings, tuples are immutable, so we cannot
replace or delete any of their items. If we want to be able to modify an ordered
sequence, we simply use a list instead of a tuple; or if we already have a tuple
but want to modify it, we can convert it to a list using the 1ist() conversion
function and then apply the changes to the resultant list.

The tuple data type can be called as a function, tuple()—with no arguments
it returns an empty tuple, with a tuple argument it returns a shallow copy of
the argument, and with any other argument it attempts to convert the given
object to a tuple. It does not accept more than one argument. Tuples can also
be created without using the tuple() function. An empty tuple is created using
empty parentheses, (), and a tuple of one or more items can be created by using
commas. Sometimes tuples must be enclosed in parentheses to avoid syntactic
ambiguity. For example, to pass the tuple 1, 2, 3 to a function, we would write
function((1, 2, 3)).

Figure 3.1 shows the tuple t = "venus", -28, "green", "21", 19.74, and the index
positions of the items inside the tuple. Strings are indexed in the same way,
but whereas strings have a character at every position, tuples have an object
reference at each position.

t[-5]1 t{-4] t[-3] t[-2] t[-1]
'venus'| -28 |'green'| '21' 19.74

tfe] tf1] tf2] t[3] t[4]

Figure 3.1 Tuple index positions

Tuples provide just two methods, t.count(x), which returns the number of
times object x occursin tuple t,and t.index(x), which returns the index position
of the leftmost occurrence of object x in tuple t—or raises a ValueError excep-
tion if there is no x in the tuple. (These methods are also available for lists.)

In addition, tuples can be used with the operators + (concatenation), * (repli-
cation), and [] (slice), and with in and not in to test for membership. The +=
and *= augmented assignment operators can be used even though tuples are

www.it-ebooks.info

Shallow
and
deep
copying

>» 146

http://www.it-ebooks.info/

Sequence Types 109

immutable—behind the scenes Python creates a new tuple to hold the result
and sets the left-hand object reference to refer to it; the same technique is used
when these operators are applied to strings. Tuples can be compared using the
standard comparison operators (<, <=, ==, !=, >=, >), with the comparisons being
applied item by item (and recursively for nested items such as tuples inside
tuples).

Let’s look at a few slicing examples, starting with extracting one item, and a
slice of items:

>>> hair = "black", "brown", "blonde", "red"
>>> hair[2]

'blonde’

>>> hair[-3:] # same as: hair[1l:]

("brown', 'blonde', 'red')

These work the same for strings, lists, and any other sequence type.

>>> hair[:2], "gray", hair[2:]
(('black', 'brown'), 'gray', ('blonde', 'red'))

Here we tried to create a new 5-tuple, but ended up with a 3-tuple that contains
two 2-tuples. This happened because we used the comma operator with three
items (a tuple, a string, and a tuple). To get a single tuple with all the items we
must concatenate tuples:

>>> hair[:2] + ("gray",) + hair[2:]
('black', 'brown', 'gray', 'blonde', 'red')

To make a 1-tuple the comma is essential, but in this case, if we had just put
in the comma we would get a TypeError (since Python would think we were
trying to concatenate a string and a tuple), so here we must have the comma
and parentheses.

In this book (from this point on), we will use a particular coding style when
writing tuples. When we have tuples on the left-hand side of a binary operator
or on the right-hand side of a unary statement, we will omit the parentheses,
and in all other cases we will use parentheses. Here are a few examples:

a, b=1(1, 2) # left of binary operator
del a, b # right of unary statement
def f(x):

return x, x ** 2 # right of unary statement

for x, y in ((1, 1), (2, 4), (3, 9)): # left of binary operator
print(x, y)

www.it-ebooks.info

http://www.it-ebooks.info/

110 Chapter 3. Collection Data Types

There is no obligation to follow this coding style; some programmers prefer to
always use parentheses—which is the same as the tuple representational form,
whereas others use them only if they are strictly necessary.

>>> eyes = ("brown", "hazel", "amber", "green", "blue", "gray")
>>> colors = (hair, eyes)

>>> colors[1][3:-1]

(‘green', 'blue')

Here we have nested two tuples inside another tuple. Nested collections to any
level of depth can be created like this without formality. The slice operator []
can be applied to a slice, with as many used as necessary. For example:

>>> things = (1, -7.5, ("pea", (5, "Xyz"), "queue"))
>>> things[2][1]1[1][2]

Ly

Let’s look at this piece by piece, beginning with things[2] which gives us the
third item in the tuple (since the first item has index 0), which is itself a tu-
ple, ("pea", (5, "Xyz"), "queue"). The expression things[2][1] gives us the
second item in the things[2] tuple, which is again a tuple, (5, "Xyz"). And
things[2][1][1] gives us the second item in this tuple, which is the string "Xyz".
Finally, things[2][1][1][2] gives us the third item (character)in the string, that
1s, "z".

Tuples are able to hold any items of any data type, including collection types
such as tuples and lists, since what they really hold are object references.
Using complex nested data structures like this can easily become confusing.
One solution is to give names to particular index positions. For example:

>>> MANUFACTURER, MODEL, SEATING = (0, 1, 2)

>>> MINIMUM, MAXIMUM = (0, 1)

>>> aircraft = ("Airbus", "A320-200", (100, 220))
>>> aircraft[SEATING] [MAXIMUM]

220

This is certainly more meaningful than writing aircraft[2][1], but it involves
creating lots of variables and is rather ugly. We will see an alternative in the
next subsection.

In the first two lines of the “aircraft” code snippet, we assigned to tuples in
both statements. When we have a sequence on the right-hand side of an
assignment (here we have tuples), and we have a tuple on the left-hand side,
we say that the right-hand side has been unpacked. Sequence unpacking can
be used to swap values, for example:

a, b= (b, a)

www.it-ebooks.info

http://www.it-ebooks.info/

Sequence Types 111

Strictly speaking, the parentheses are not needed on the right, but as we noted
earlier, the coding style used in this book is to omit parentheses for left-hand
operands of binary operators and right-hand operands of unary statements,
but to use parentheses in all other cases.

We have already seen examples of sequence unpacking in the context of for ...
in loops. Here is a reminder:

for x, y in ((-3, 4), (5, 12), (28, -45)):
print(math.hypot(x, y))

Here we loop over a tuple of 2-tuples, unpacking each 2-tuple into variables x
and y.

Named Tuples

A named tuple behaves just like a plain tuple, and has the same performance
characteristics. What it adds is the ability to refer to items in the tuple by
name as well as by index position, and this allows us to create aggregates of
data items.

The collections module provides the namedtuple() function. This function is
used to create custom tuple data types. For example:

Sale = collections.namedtuple("Sale",
"productid customerid date quantity price")

The first argument to collections.namedtuple() is the name of the custom tuple
data type that we want to be created. The second argument is a string of space-
separated names, one for each item that our custom tuples will take. The first
argument, and the names in the second argument, must all be valid Python
identifiers. The function returns a custom class (data type) that can be used
to create named tuples. So, in this case, we can treat Sale just like any other
Python class (such as tuple), and create objects of type Sale. (In object-oriented
terms, every class created this way is a subclass of tuple; object-oriented pro-
gramming, including subclassing, is covered in Chapter 6.)

Here is an example:

sales = []
sales.append(Sale(432, 921, "2008-09-14", 3, 7.99))
sales.append(Sale(419, 874, "2008-09-15", 1, 18.49))

Here we have created a list of two Sale items, that is, of two custom tuples. We
can refer to items in the tuples using index positions—for example, the price of
the first sale item is sales[0][-1] (i.e., 7.99)—but we can also use names, which
makes things much clearer:

www.it-ebooks.info

http://www.it-ebooks.info/

Us-

ing str.
format()
with
map-

ping un-

packing
81«

112 Chapter 3. Collection Data Types

total = 0
for sale in sales:
total += sale.quantity * sale.price
print("Total ${0:.2f}".format(total)) # prints: Total $42.46

The clarity and convenience that named tuples provide are often useful. For
example, here is the “aircraft” example from the previous subsection (110 <)
done the nice way:

>>> Aircraft = collections.namedtuple("Aircraft",

"manufacturer model seating")
>>> Seating = collections.namedtuple("Seating", "minimum maximum")
>>> aircraft = Aircraft("Airbus", "A320-200", Seating(100, 220))
>>> aircraft.seating.maximum

220

When it comes to extracting named tuple items for use in strings there are
three main approaches we can take.

>>> print("{0} {1}".format(aircraft.manufacturer, aircraft.model))
Airbus A320-200

Here we have accessed each of the tuple’s items that we are interested in
using named tuple attribute access. This gives us the shortest and simplest
format string. (And in Python 3.1 we could reduce this format string to just
“{} {}".) But this approach means that we must look at the arguments passed
tostr.format() to see what the replacement texts will be. This seems less clear
than using named fields in the format string.

"{0.manufacturer} {0.model}".format(aircraft)

Here we have used a single positional argument and used named tuple at-
tribute names as field names in the format string. This is much clearer than
just using positional arguments alone, but it is a pity that we must speci-
fy the positional value (even when using Python 3.1). Fortunately, there is a
nicer way.

Named tuples have a few private methods—that is, methods whose name
begins with a leading underscore. One of them—namedtuple. asdict()—is so
useful that we will show it in action.*

"{manufacturer} {model}".format(**aircraft. asdict())

The private namedtuple. asdict() method returns a mapping of key-value
pairs, where each key is the name of a tuple element and each value is the cor-

*Private methods such as namedtuple. asdict() are not guaranteed to be available in all Python 3.x
versions; although the namedtuple. asdict() method is available in both Python 3.0 and 3.1.

www.it-ebooks.info

http://www.it-ebooks.info/

String
slicing
and
striding

69 <

Sequence Types 113

responding value. We have used mapping unpacking to convert the mapping
into key—value arguments for the str.format() method.

Although named tuples can be very convenient, in Chapter 6 we introduce
object-oriented programming, and there we will go beyond simple named
tuples and learn how to create custom data types that hold data items and that
also have their own custom methods.

Lists

A list is an ordered sequence of zero or more object references. Lists support
the same slicing and striding syntax as strings and tuples. This makes it easy
to extract items from a list. Unlike strings and tuples, lists are mutable, so we
can replace and delete any of their items. It is also possible to insert, replace,
and delete slices of lists.

The list data type can be called as a function, list()—with no arguments it Shallow
returns an empty list, with a 1ist argument it returns a shallow copy of the 2and

argument, and with any other argument it attempts to convert the given object g:;)ljing
to a list. It does not accept more than one argument. Lists can also be created .

without using the list() function. An empty list is created using empty brack-
ets, [1, and a list of one or more items can be created by using a comma-sepa- List

rated sequence of items inside brackets. Another way of creating lists is to use ;er?f)re'
a list comprehension—a topic we will cover later in this subsection. r—

Since all the items in a list are really object references, lists, like tuples, can » 118
hold items of any data type, including collection types such as lists and tuples.

Lists can be compared using the standard comparison operators (<, <=, ==, |=,>=,

>), with the comparisons being applied item by item (and recursively for nested

items such as lists or tuples inside lists).

Given the assignment L = [-17.5, "kilo", 49, "V", ["ram", 5, "echo"], 7],we
get the list shown in Figure 3.2.

L[-6] L[-5] L[-4] L[-3] L[-2] L[-1]
-17.5 | 'kilo"' 49 V! ['ram', 5, 'echo'] 7
L[e] L[1] L[2] L[3] L[4] L[5]

Figure 3.2 List index positions

And given this list, L, we can use the slice operator—repeatedly if neces-
sary—to access items in the list, as the following equalities show:

L[O] == L[-6] == -17.5
L[1] == L[-5] == 'kilo'
L[11[0] == L[-5][0] == 'k

www.it-ebooks.info

http://www.it-ebooks.info/

114 Chapter 3. Collection Data Types

L[4][2] == L[4][-1] == L[-2][2] == L[-2][-1] == 'echo’
L[41[2]1[1] == L[4]1[2]1[-3] == L[-2]1[-1][1] == L[-2][-1][-3] == 'c'

Lists can be nested, iterated over, and sliced, the same as tuples. In fact, all
the tuple examples presented in the preceding subsection would work exactly
the same if we used lists instead of tuples. Lists support membership testing
with in and not in, concatenation with +, extending with += (i.e., the appending
of all the items in the right-hand operand), and replication with * and *=. Lists
can also be used with the built-in len() function, and with the del statement
discussed here and described in the sidebar “Deleting Items Using the del
Statement” » 116). In addition, lists provide the methods shown in Table 3.1.

Although we can use the slice operator to access items in a list, in some situa-
tions we want to take two or more pieces of a list in one go. This can be done
by sequence unpacking. Any iterable (lists, tuples, etc.) can be unpacked using
the sequence unpacking operator, an asterisk or star (*). When used with two or
more variables on the left-hand side of an assignment, one of which is preceded
by *,items are assigned to the variables, with all those left over assigned to the
starred variable. Here are some examples:

>>> first, *rest = [9, 2, -4, 8, 7]

>>> first, rest

(9, [2, -4, 8, 7])

>>> first, *mid, last = "Charles Philip Arthur George Windsor".split()
>>> first, mid, last

('Charles', ['Philip', 'Arthur', 'George'], 'Windsor')

>>> *directories, executable = "/usr/local/bin/gvim".split("/")

>>> directories, executable

(f'", 'usr', 'local', 'bin'], 'gvim')

When the sequence unpacking operator is used like this, the expression *rest,
and similar expressions, are called starred expressions.

Python also has a related concept called starred arguments. For example, if we
have the following function that requires three arguments:

def product(a, b, c):
return a * b * ¢ # here, * is the multiplication operator

we can call it with three arguments, or by using starred arguments:

>>> product(2, 3, 5)
30

>>> L = [2, 3, 5]

>>> product (*L)

30

>>> product(2, *L[1:])
30

www.it-ebooks.info

http://www.it-ebooks.info/

Sequence Types 115

Table 3.1 List Methods

Syntax Description

L.append(x) Appends item x to the end of list L

L.count(x) Returns the number of times item x occursin list L

L.extend(m) Appends all of iterable m’s items to the end of list L; the

L+=m operator += does the same thing

L.index(x, Returns the index position of the leftmost occurrence of
start, item x in list L (or in the start:end slice of L); otherwise,
end) raises a ValueError exception

L.insert(i, x) Insertsitem x into list L at index position int i

L.pop() Returns and removes the rightmost item of list L

L.pop(i) Returns and removes the item at index position int i in L

L. remove(x) Removes the leftmost occurrence of item x from list L, or

raises a ValueError exception if x is not found
L.reverse() Reverses list L in-place
L.sort(...) Sorts list L in-place; this method accepts the same key and

reverse optional arguments as the built-in sorted()

In the first call we provide the three arguments normally. In the second call
we use a starred argument—what happens here is that the three-item list is
unpacked by the * operator, so as far as the function is concerned it has received
the three arguments it is expecting. We could have achieved the same thing
using a 3-tuple. Andin the third call we pass the first argument conventionally,
and the other two arguments by unpacking a two-item slice of the L list. Func-
tions and argument passing are covered fully in Chapter 4.

There is never any syntactic ambiguity regarding whether operator * is the
multiplication or the sequence unpacking operator. When it appears on the
left-hand side of an assignment it is the unpacking operator, and when it
appears elsewhere (e.g., in a function call) it is the unpacking operator when
used as a unary operator and the multiplication operator when used as a
binary operator.

We have already seen that we can iterate over the items in a list using the
syntax for item in L:. If we want to change the items in a list the idiom to
use is:

for i in range(len(L)):
L[i] = process(L[i])

The built-in range() function returns an iterator that provides integers. With
one integer argument, n, the iterator range() returns, producing 0, 1, ...,n - 1.

www.it-ebooks.info

sorted()

> 140,
144

range()
>» 141

http://www.it-ebooks.info/

116 Chapter 3. Collection Data Types

Deleting Items Using the del Statement

Although the name of the del statement is reminiscent of the word delete,
it does not necessarily delete any data. When applied to an object reference
that refers to a data item that is not a collection, the del statement unbinds
the object reference from the data item and deletes the object reference.
For example:

>>> x = 8143 # object ref. 'x' created; int of value 8143 created
>>> X

8143

>>> del x # object ref. 'x' deleted; int ready for garbage collection
>>> X

Traceback (most recent call last):

NameError: name 'x' is not defined

When an object reference is deleted, Python schedules the data item to
which it referred to be garbage-collected if no other object references refer to
the dataitem. When, or even if, garbage collection takes place may be nonde-
terministic (depending on the Python implementation), so if any cleanup is
required we must handle it ourselves. Python provides two solutions to the
nondeterminism. One istouse a try ... finally block to ensure that cleanup
is done, and another is to use a with statement as we will see in Chapter 8.

When del is used on a collection data type such as a tuple or a list, only the
object reference to the collection is deleted. The collection and its items (and
for those items that are themselves collections, for their items, recursively)
are scheduled for garbage collection if no other object references refer to
the collection.

For mutable collections such as lists, del can be applied to individual items
or slices—in both cases using the slice operator, []. If the item or items
referred to are removed from the collection, and if there are no other object
references referring to them, they are scheduled for garbage collection.

We could use this technique to increment all the numbers in a list of integers.
For example:

for i in range(len(numbers)):
numbers[i] += 1

Since lists support slicing, in several cases the same effect can be achieved
using either slicing or one of the list methods. For example, given the list woods
= ["Cedar", "Yew", "Fir"], we can extend the list in either of two ways:

woods += ["Kauri", "Larch"] ‘ woods.extend(["Kauri", "Larch"])

www.it-ebooks.info

http://www.it-ebooks.info/

Slicing
and
striding

69 <«

Sequence Types 117

In either case the result is the list ['Cedar', 'Yew', 'Fir', 'Kauri', 'Larch'l.

Individual items can be added at the end of a list using list.append(). Items
can be inserted at any index position within the list using list.insert(), or by
assigning to a slice of length 0. For example, given the list woods = ["Cedar",
"Yew", "Fir", "Spruce"], we can insert a new item at index position 2 (i.e., as
the list’s third item) in either of two ways:

woods[2:2] = ["Pine"] woods.insert(2, "Pine")

In both cases the result is the list ['Cedar', 'Yew', 'Pine', 'Fir', 'Spruce'l].

Individual items can be replaced in a list by assigning to a particular index
position, for example, woods[2] = "Redwood". Entire slices can be replaced by
assigning an iterable to a slice, for example, woods[1:3] = ["Spruce", "Sugi",
"Rimu"].The slice and the iterable don’t have to be the same length. In all cases,
the slice’s items are removed and the iterable’s items are inserted. This makes
the list shorter if the iterable has fewer items than the slice it replaces, and
longer if the iterable has more items than the slice.

To make what happens when assigning an iterable to a slice really clear, we
will consider one further example. Imagine that we have the list L = ["A", "B",
“C", "D", "E", "F"], and that we assign an iterable (in this case, a list) to a slice
of it with the code L[2:5] = ["X", "Y"]. First, the slice is removed, so behind the
scenes the list becomes ['A', 'B', 'F']. And then all the iterable’s items are
inserted at the slice’s start position, so the resultant listis ['A', 'B', 'X', 'Y"',
FL

Items can be removed in a number of other ways. We can use list.pop() with
no arguments to remove the rightmost item in a list—the removed item is also
returned. Similarly we can use list.pop() with an integer index argument to
remove (and return) an item at a particular index position. Another way of
removing an item is to call list.remove() with the item to be removed as the
argument. The del statement can also be used to remove individual items—for
example, del woods [4]—or to remove slices of items. Slices can also be removed
by assigning an empty list to a slice, so these two snippets are equivalent:

woods[2:4] = [] del woods[2:4]

In the left-hand snippet we have assigned an iterable (an empty list) to a
slice, so first the slice is removed, and since the iterable to insert is empty, no
insertion takes place.

When we first covered slicing and striding, we did so in the context of strings
where striding wasn’t very interesting. But in the case of lists, striding allows
us to access every n-th item which can often be useful. For example, suppose
we have the list, x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], and we want to set every
odd-indexed item (i.e., x[1], x[3], etc.) to 0. We can access every second item by

www.it-ebooks.info

http://www.it-ebooks.info/

118 Chapter 3. Collection Data Types

striding, for example, x[::2]. But this will give us the items at index positions
0, 2,4, and so on. We can fix this by giving an initial starting index, so now we
have x[1::2], and this gives us a slice of the items we want. To set each item
in the slice to 0, we need a list of 0s, and this list must have exactly the same
number of Os as there are items in the slice.

Here is the complete solution: x[1::2] = [0] * len(x[1::2]). Now list x is [1,
0, 3,0,5,0, 7,0, 9, 0]. We used the replication operator *, to produce a list
consisting of the number of 0s we needed based on the length (i.e., the number
of items) of the slice. The interesting aspect is that when we assign the list [0,
0, 0, 0, 0] to the strided slice, Python correctly replaces x[1]’s value with the
first 0, x[3]’s value with the second 0, and so on.

Lists can be reversed and sorted in the same way as any other iterable using
the built-in reversed() and sorted() functions covered in the Iterators and Iter-
able Operations and Functions subsection (» 138). Lists also have equivalent
methods, list.reverse() and list.sort(), both of which work in-place (so they
don’t return anything), the latter accepting the same optional arguments as
sorted(). One common idiom is to case-insensitively sort a list of strings—for
example, we could sort the woods list like this: woods.sort(key=str.lower). The
key argument is used to specify a function which is applied to each item, and
whose return value is used to perform the comparisons used when sorting. As
we noted in the previous chapter’s section on string comparisons (68 <), for
languages other than English, sorting strings in a way that is meaningful to
humans can be quite challenging.

For inserting items, lists perform best when items are added or removed at the
end (list.append(), list.pop()). The worst performance occurs when we search
for items in a list, for example, using list.remove() or list.index(), or using in
for membership testing. If fast searching or membership testing is required,
a set or a dict (both covered later in this chapter) may be a more suitable
collection choice. Alternatively,lists can provide fast searching if they are kept
in order by sorting them—Python’s sort algorithm is especially well optimized
for sorting partially sorted lists—and using a binary search (provided by the
bisect module), to find items. (In Chapter 6 we will create an intrinsically
sorted custom list class.)

List Comprehensions

Small lists are often created using list literals, but longer lists are usually
created programmatically. For alist of integers we can use list(range(n)),orif
we just need an integer iterator, range() is sufficient, but for other lists using a
for ...inloop is very common. Suppose, for example, that we wanted to produce
a list of the leap years in a given range. We might start out like this:

leaps = []
for year in range(1900, 1940):

www.it-ebooks.info

sorted()

> 140,
144

http://www.it-ebooks.info/

Sequence Types 119

if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
leaps.append(year)

When the built-in range() function is given two integer arguments, n and m,
the iterator it returns produces the integersn,n + 1, ..., m - 1.

Of course, if we knew the exact range beforehand we could use a list literal, for
example, leaps = [1904, 1908, 1912, 1916, 1920, 1924, 1928, 1932, 1936].

A list comprehension is an expression and a loop with an optional condition
enclosed in brackets where the loop is used to generate items for the list, and
where the condition can filter out unwanted items. The simplest form of a list
comprehension is this:

[item for item in iterable]

This will return a list of every item in the iterable, and is semantically no
different from list(iterable). Two things that make list comprehensions more
interesting and powerful are that we can use expressions, and we can attach a
condition—this takes us to the two general syntaxes for list comprehensions:

[expression for item in iterable]
[expression for item in iterable if condition]

The second syntax is equivalent to:

temp = []
for item in iterable:
if condition:
temp.append(expression)

Normally, the expression will either be or involve the item. Of course, the
list comprehension does not need the temp variable needed by the for ... in
loop version.

Now we can rewrite the code to generate the leaps list using a list comprehen-
sion. We will develop the code in three stages. First we will generate a list that
has all the years in the given range:

leaps = [y for y in range(1900, 1940)]

This could also be done using leaps = list(range (1900, 1940)). Now we’ll add a
simple condition to get every fourth year:

leaps = [y for y in range(1900, 1940) if y % 4 == 0]
Finally, we have the complete version:

leaps = [y for y in range(1900, 1940)
if (y%s4==0andy% 100 !=0) or (y % 400 == 0)]

www.it-ebooks.info

range()
>» 141

http://www.it-ebooks.info/

120 Chapter 3. Collection Data Types

Using a list comprehension in this case reduced the code from four lines to
two—a small savings, but one that can add up quite a lot in large projects.

Since list comprehensions produce lists, that is, iterables, and since the syntax
for list comprehensions requires an iterable, it is possible to nest list compre-
hensions. Thisis the equivalent of having nested for ... in loops. For example,
if we wanted to generate all the possible clothing label codes for given sets of
sexes, sizes, and colors, but excluding labels for the full-figured females whom
the fashion industry routinely ignores, we could do so using nested for ...
in loops:

codes = []
for sex in "MF": # Male, Female
for size in "SMLX": # Small, Medium, Large, eXtra large
if sex == "F" and size == "X":

continue
for color in "BGW": # Black, Gray, White
codes.append(sex + size + color)

This produces the 21 item list, ['MSB', 'MSG', ..., 'FLW']. The same thing can be
achieved in just a couple of lines using a list comprehension:

codes = [s + z + ¢ for s in "MF" for z in "SMLX" for c in "BGW"
if not (s == "F" and z == "X")]

Here, each item in the list is produced by the expression s + z + c. Also, we have
used subtly different logic for the list comprehension where we skip invalid
sex/size combinations in the innermost loop, whereas the nested for ... in loops
version skips invalid combinations in its middle loop. Any list comprehension
can be rewritten using one or more for ... in loops.

If the generated list is very large, it may be more efficient to generate each item
asit is needed rather than produce the whole list at once. This can be achieved
by using a generator rather than a list comprehension. We discuss this later,
in Chapter 8.

Set Types

A set type is a collection data type that supports the membership operator (in),
the size function (len()), and is iterable. In addition, set types at least provide
a set.isdisjoint() method, and support for comparisons, as well as support
for the bitwise operators (which in the context of sets are used for union,
intersection, etc.). Python provides two built-in set types: the mutable set type
and the immutable frozenset. When iterated, set types provide their items in
an arbitrary order.

www.it-ebooks.info

Genera-
tors

>» 341

http://www.it-ebooks.info/

Set Types 121

Only hashable objects may be added to a set. Hashable objects are objects
whichhavea hash () special method whose return value is always the same
throughout the object’s lifetime, and which can be compared for equality using
the eq_ () special method. (Special methods—methods whose name begins
and ends with two underscores—are covered in Chapter 6.)

All the built-in immutable data types, such as float, frozenset, int, str, and
tuple, are hashable and can be added to sets. The built-in mutable data types,
such as dict, list, and set, are not hashable since their hash value changes
depending on the items they contain, so they cannot be added to sets.

Set types can be compared using the standard comparison operators (<, <=, ==,
I=, >=, >). Note that although == and != have their usual meanings, with the
comparisons being applied item by item (and recursively for nested items such
as tuples or frozen sets inside sets), the other comparison operators perform
subset and superset comparisons, as we will see shortly.

Sets

A set is an unordered collection of zero or more object references that refer to
hashable objects. Sets are mutable, so we can easily add or remove items, but
since they are unordered they have no notion of index position and so cannot
be sliced or strided. Figure 3.3 illustrates the set created by the following
code snippet:

S = {7, "veil", 0, =29, ("x", 11), "sun", frozenset({8, 4, 7}), 913}

frozenset ({8, 4, 7})

Figure 3.3 A set is an unordered collection of unique items.

The set data type can be called as a function, set()—with no arguments it
returns an empty set, with a set argument it returns a shallow copy of the
argument, and with any other argument it attempts to convert the given object
to a set. It does not accept more than one argument. Nonempty sets can also
be created without using the set () function, but the empty set must be created

www.it-ebooks.info

Shallow
and
deep
copying

>» 146

http://www.it-ebooks.info/

122 Chapter 3. Collection Data Types

using set (), not using empty braces* A set of one or more items can be created
by using a comma-separated sequence of items inside braces. Another way
of creating sets is to use a set comprehension—a topic we will cover later in
this subsection.

Sets always contain unique items—adding duplicate items is safe but pointless.
For example, these three sets are the same: set("apple"), set("aple"),and {'e

'p', 'a', 'U'}. In view of this, sets are often used to eliminate dupllcates For
example if x is a list of strings, after executing x = list(set(x)), all of x’s strings

will be unique—and in an arbitrary order.

Sets support the built-in len() function, and fast membership testing with in
and not in. They also provide the usual set operators, as Figure 3.4 illustrates.

EEEE®O U @@@ - ®OOEO®O

set("pecan") | set("pie") == {'p', 'e', 'c', 'a', 'n', 'i'} # Union
EPEO®M N OO — @@

set("pecan") & set("pie") = {'p', 'e'} # Intersection
EEOE@Mm \ ®OHE — ©@W
set("pecan") - set("pie") == {'c', 'a', 'n'} # Difference
PE@@@Mm A ®MOE — ©O@M®H
set("pecan") ~ set("pie") == {'c', 'a', 'n', 'i'} # Symmetric difference

Figure 3.4 The standard set operators

The complete list of set methods and operators is given in Table 3.2. All the
“update” methods (set.update(), set.intersection update(), etc.) accept any
iterable as their argument—but the equivalent operator versions (|=, &, etc.)
require both of their operands to be sets.

One common use case for sets is when we want fast membership testing. For ex-
ample, we might want to give the user a usage message if they don’t enter any
command-line arguments, or if they enter an argument of “-h” or “--help™:

if len(sys.argv) == 1 or sys.argv[1l] in {"-h", "--help"}:

Another common use case for sets is to ensure that we don’t process duplicate
data. For example, suppose we had an iterable (such as a list), containing
the IP addresses from a web server’s log files, and we wanted to perform some

*Empty braces, {}, are used to create an empty dict as we will see in the next section.

www.it-ebooks.info

Set
compre-
hen-
sions
» 125

http://www.it-ebooks.info/

Set Types

123

Table 3.2 Set Methods and Operators

Syntax

S

S

S

.add(x)
.clear()
.copy()

.difference(t)
-t

.difference update(t)
-=t

.discard(x)
.intersection(t)

& t

.intersection update(t)
&= t
.isdisjoint(t)

.issubset(t)
<=t

.issuperset(t)
>= t

-pop()

.remove(x)

.symmetric_

difference(t)

S

S

~t

.symmetric_

difference update(t)

S
S
S

S
S

A=t
.union(t)
| t

.update(t)
|=t

Description

Adds item x to set s if it is not already in s
Removes all the items from set s

Returns a shallow copy of set s*

Returns a new set that has every item that is in

set s that is not in set t*
Removes every item that is in set t from set s

Removes item x from set s if it is in s; see also
set.remove()

Returns a new set that has each item that is in
both set s and set t*

Makes set s contain the intersection of itself
and set t

Returns True if sets s and t have no items in
common”

Returns True if set s is equal to or a subset of set
t; use s < t to test whether s is a proper subset
of t*

Returns True if set s is equal to or a superset
of set t;use s > t to test whether s is a proper
superset of t*

Returns and removes a random item from set s,
or raises a KeyError exception if s is empty
Removes item x from set s, or raises a KeyError
exception if x is not in s; see also set.discard()
Returns a new set that has every item that is in
set s and every item that is in set t, but exclud-
ing items that are in both sets”

Makes set s contain the symmetric difference of
itself and set t

Returns a new set that has all the items in set s
and all the items in set t that are not in set s*
Adds every item in set t that is not in set s, to
set s

*This method and its operator (if it has one) can also be used with frozensets.

www.it-ebooks.info

Shallow
and
deep
copying
» 146

http://www.it-ebooks.info/

124 Chapter 3. Collection Data Types

processing, once for each unique address. Assuming that the IP addresses are
hashable and are in iterable ips, and that the function we want called for each
one is called process ip() and is already defined, the following code snippets
will do what we want, although with subtly different behavior:

seen = set()
for ip in ips:
if ip not in seen:
seen.add(ip) for ip in set(ips):
process _ip(ip) process_ip(ip)

For the left-hand snippet, if we haven’t processed the IP address before, we add
it to the seen set and processit; otherwise, we ignore it. For the right-hand snip-
pet, we only ever get each unique IP address to process in the first place. The
differences between the snippets are first that the left-hand snippet creates the
seen set which the right-hand snippet doesn’t need, and second that the left-
hand snippet processes the IP addresses in the order they are encountered in
the ips iterable while the right-hand snippet processes them in an arbitrary
order.

The right-hand approach is easier to code, but if the ordering of the ips
iterable is important we must either use the left-hand approach or change the
right-hand snippet’s first line to something like for ip in sorted(set(ips)): if
this is sufficient to get the required order. In theory the right-hand approach
might be slower if the number of items in ips is very large, since it creates the
set in one go rather than incrementally.

Sets are also used to eliminate unwanted items. For example, if we have a list
of filenames but don’t want any makefiles included (perhaps because they are
generated rather than handwritten), we might write:

filenames = set(filenames)
for makefile in {"MAKEFILE", "Makefile", "makefile"}:
filenames.discard(makefile)

This code will remove any makefile that is in the list using any of the standard
capitalizations. It will do nothing if no makefile is in the filenames list. The
same thing can be achieved in one line using the set difference (-) operator:

filenames = set(filenames) - {"MAKEFILE", "Makefile", "makefile"}

We can also use set.remove() to remove items, although this method raises a
KeyError exception if the item it is asked to remove is not in the set.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Types 125

Set Comprehensions

In addition to creating sets by calling set (), or by using a set literal, we can also
create sets using set comprehensions. A set comprehension is an expression and
a loop with an optional condition enclosed in braces. Like list comprehensions,
two syntaxes are supported:

{expression for item in iterable}
{expression for item in iterable if condition}

We can use these to achieve a filtering effect (providing the order doesn’t
matter). Here is an example:

html = {x for x in files if x.lower().endswith((".htm", ".html"))}

Given a list of filenames in files, this set comprehension makes the set html
hold only those filenames that end in .htm or .html, regardless of case.

Just like list comprehensions, the iterable used in a set comprehension can
itself be a set comprehension (or any other kind of comprehension), so quite
sophisticated set comprehensions can be created.

Frozen Sets

A frozen set is a set that, once created, cannot be changed. We can of course
rebind the variable that refers to a frozen set to refer to something else, though.
Frozen sets can only be created using the frozenset data type called as a
function. With no arguments, frozenset() returns an empty frozen set, with a
frozenset argument it returns a shallow copy of the argument, and with any
other argument it attempts to convert the given object to a frozenset. It does
not accept more than one argument.

Since frozen sets are immutable, they support only those methods and oper-
ators that produce a result without affecting the frozen set or sets to which
they are applied. Table 3.2 (123 <) lists all the set methods—frozen sets sup-
port frozenset.copy(), frozenset.difference() (-), frozenset.intersection() (&),
frozenset.isdisjoint(), frozenset.issubset() (<=; also < for proper subsets),
frozenset.issuperset() (>=; also > for proper supersets), frozenset.union() (|),
and frozenset.symmetric difference() (%), all of which are indicated by a *in
the table.

If a binary operator is used with a set and a frozen set, the data type of the
result is the same as the left-hand operand’s data type. So if f is a frozen set
and s is a set, f & s will produce a frozen set and s & f will produce a set. In the
case of the == and != operators, the order of the operands does not matter, and
f == s will produce True if both sets contain the same items.

www.it-ebooks.info

Shallow
and
deep
copying

>» 146

http://www.it-ebooks.info/

Hash-
able
objects

121 <

126 Chapter 3. Collection Data Types

Another consequence of the immutability of frozen sets is that they meet
the hashable criterion for set items, so sets and frozen sets can contain frozen
sets.

We will see more examples of set use in the next section, and also in the
chapter’s Examples section.

Mapping Types

A mapping type is one that supports the membership operator (in) and the
size function (len()), and is iterable. Mappings are collections of key—value
items and provide methods for accessing items and their keys and values.
When iterated, unordered mapping types provide their items in an arbitrary
order. Python 3.0 provides two unordered mapping types, the built-in dict
type and the standard library’s collections.defaultdict type. A new, ordered
mapping type, collections.OrderedDict, was introduced with Python 3.1; thisis
a dictionary that has the same methods and properties (i.e., the same API) as
the built-in dict, but stores its items in insertion order.* We will use the term
dictionary to refer to any of these types when the difference doesn’t matter.

Only hashable objects may be used as dictionary keys, so immutable data types
such as float, frozenset, int, str, and tuple can be used as dictionary keys, but
mutable types such asdict, list, and set cannot. On the other hand, each key’s
associated value can be an object reference referring to an object of any type,
including numbers, strings, lists, sets, dictionaries, functions, and so on.

Dictionary types can be compared using the standard equality comparison op-
erators (== and !=), with the comparisons being applied item by item (and recur-
sively for nested items such as tuples or dictionaries inside dictionaries). Com-
parisons using the other comparison operators (<, <=, >=, >) are not supported
since they don’t make sense for unordered collections such as dictionaries.

Dictionaries

A dict is an unordered collection of zero or more key—value pairs whose keys
are object references that refer to hashable objects, and whose values are object
references referring to objects of any type. Dictionaries are mutable, so we can
easily add or remove items, but since they are unordered they have no notion
of index position and so cannot be sliced or strided.

*API stands for Application Programming Interface, a generic term used to refer to the public
methods and properties that classes provide, and to the parameters and return values of functions
and methods. For example, Python’s documentation documents the APIs that Python provides.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Types 127

The dict data type can be called as a function, dict()—with no arguments it
returns an empty dictionary, and with a mapping argument it returns a dic-
tionary based on the argument; for example, returning a shallow copy if the
argument is a dictionary. It is also possible to use a sequence argument, pro-
viding that each item in the sequence is itself a sequence of two objects, the
first of which is used as a key and the second of which is used as a value.
Alternatively, for dictionaries where the keys are valid Python identifiers, key-
word arguments can be used, with the key as the keyword and the value as the
key’s value. Dictionaries can also be created using braces—empty braces, {},
create an empty dictionary; nonempty braces must contain one or more comma-
separated items, each of which consists of a key, a literal colon, and a value.
Another way of creating dictionaries is to use a dictionary comprehension—a
topic we will cover later in this subsection.

Here are some examples to illustrate the various syntaxes—they all produce
the same dictionary:

dl = dict({"id": 1948, "name": "Washer", "size": 3})

d2 = dict(id=1948, name="Washer", size=3)

d3 = dict([("id", 1948), ("name", "Washer"), ("size", 3)1])
d4 = dict(zip(("id", "name", "size"), (1948, "Washer", 3)))
d5 = {"id": 1948, "name": "Washer", "size": 3}

Dictionary d1 is created using a dictionary literal. Dictionary d2 is created us-
ing keyword arguments. Dictionaries d3 and d4 are created from sequences,
and dictionary d5 is created from a dictionary literal. The built-in zip() func-
tion that is used to create dictionary d4 returns a list of tuples, the first of which
has the first items of each of the zip() function’siterable arguments, the second
of which has the second items, and so on. The keyword argument syntax (used
to create dictionary d2) is usually the most compact and convenient, providing
the keys are valid identifiers.

Figure 3.5 illustrates the dictionary created by the following code snippet:

d = {"root": 18, "blue": [75, "R", 2], 21: "venus", -14: None,
"mars": "rover", (4, 11): 18, 0: 45}

Dictionary keys are unique, so if we add a key—value item whose key is the
same as an existing key, the effect is to replace that key’s value with a new val-
ue. Brackets are used to access individual values—for example, d["root"] re-
turns 18,d[21] returns the string "venus", and d[91] causes a KeyError exception
to be raised, given the dictionary shown in Figure 3.5.

Brackets can also be used to add and delete dictionary items. To add an item
we use the = operator, for example, d["X"] = 59. And to delete an item we use
the del statement—for example, del d["mars"] will delete the item whose key
is “mars” from the dictionary, or raise a KeyError exception if no item has that

www.it-ebooks.info

Shallow
and
deep
copying
>» 146
Key-
word
argu-
ments

» 174

Dic-
tionary
compre-
hen-
sions

>» 134

zip()
> 143

http://www.it-ebooks.info/

128 Chapter 3. Collection Data Types

'mars’

(¢, 10 ‘rover “venus'

"blue’
[75, 'R", 2]

Figure 3.5 A dictionary is an unsorted collection of (key, value) items with unique keys.

key. Items can also be removed (and returned) from the dictionary using the
dict.pop() method.

Dictionaries support the built-in len() function, and for their keys, fast
membership testing with in and not in. All the dictionary methods are listed in
Table 3.3.

Because dictionaries have both keys and values, we might want to iterate over
a dictionary by (key, value) items, by values, or by keys. For example, here are
two equivalent approaches to iterating by (key, value) pairs:

for item in d.items(): for key, value in d.items():
print(item[0], item[1]) print(key, value)

Iterating over a dictionary’s values is very similar:

for value in d.values():
print(value)

To iterate over a dictionary’s keys we can use dict.keys(), or we can simply
treat the dictionary as an iterable that iterates over its keys, as these two
equivalent code snippets illustrate:

for key in d: for key in d.keys():
print(key) print(key)

If we want to change the values in a dictionary, the idiom to use is to iterate
over the keys and change the values using the brackets operator. For example,
here is how we would increment every value in dictionary d, assuming that all
the values are numbers:

for key in d:
dlkey] +=1

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Types 129

Table 3.3 Dictionary Methods

Syntax Description

d.clear() Removes all items from dict d

d.copy() Returns a shallow copy of dict d

d. fromkeys (Returns a dict whose keys are the items in sequence s and
s, V) whose values are None or v if v is given

d.get(k) Returns key k’s associated value, or None if k isn’t in dict d

d.get(k, v) Returns key k’s associated value, or v if k isn’t in dict d

d.items() Returns a view* of all the (key, value) pairs in dict d

d.keys() Returns a view™ of all the keys in dict d

d.pop(k) Returns key k’s associated value and removes the item

whose key is k, or raises a KeyError exception if k isn’t in d

d.pop(k, v) Returns key k’s associated value and removes the item
whose key is k, or returns v if k isn’t in dict d

d.popitem() Returns and removes an arbitrary (key, value) pair from
dict d, or raises a KeyError exception if d is empty

d.setdefault(The same asthedict.get() method,except that if the key is
k, v) not in dict d, a new item is inserted with the key k, and with
a value of None or of v if v is given

d.update(a) Adds every (key, value) pair from a that isn’t in dict d to d,
and for every key that is in both d and a, replaces the corre-
sponding value in d with the one in a—a can be a dictionary,
an iterable of (key, value) pairs, or keyword arguments

d.values() Returns a view* of all the values in dict d

The dict.items(),dict.keys(),and dict.values() methods all return dictionary
views. A dictionary view is effectively a read-only iterable object that appears
to hold the dictionary’s items or keys or values, depending on the view we have
asked for.

In general, we can simply treat views as iterables. However, two things make
a view different from a normal iterable. One is that if the dictionary the view
refers to is changed, the view reflects the change. The other is that key and
item views support some set-like operations. Given dictionary view v and set
or dictionary view x, the supported operations are:

v & x # Intersection

v | x # Union

*Dictionary views can be thought of—and used as—iterables; they are discussed in the text.

www.it-ebooks.info

Shallow
and
deep
copying

>» 146

http://www.it-ebooks.info/

130 Chapter 3. Collection Data Types

vV - X # Difference
v "X # Symmetric difference

We can use the membership operator, in, to see whether a particular key is in
a dictionary, for example, x in d. And we can use the intersection operator to see
which keys from a given set are in a dictionary. For example:

d = {}.fromkeys("ABCD", 3) #d == {'A': 3, 'B': 3, 'C': 3, 'D': 3}
s = set("ACX") #s=={'A", 'C'", 'X'}
matches = d.keys() & s # matches == {'A", 'C'}

Note that in the snippet’s comments we have used alphabetical order—this is
purely for ease of reading since dictionaries and sets are unordered.

Dictionaries are often used to keep counts of unique items. One such example
of this is counting the number of occurrences of each unique word in a file.
Here is a complete program (uniquewordsl.py) that lists every word and the
number of times it occurs in alphabetical order for all the files listed on the
command line:

import string
import sys

words = {}
strip = string.whitespace + string.punctuation + string.digits + "\"'"
for filename in sys.argv[1l:]:
for line in open(filename):
for word in line.lower().split():
word = word.strip(strip)
if len(word) > 2:
words[word] = words.get(word, 0) + 1
for word in sorted(words):
print("'{0}"' occurs {1} times".format(word, words[word]))

We begin by creating an empty dictionary called words. Then we create a string
that contains all those characters that we want to ignore, by concatenating
some useful strings provided by the string module. We iterate over each file-
name given on the command line, and over each line in each file. See the side-
bar “Reading and Writing Text Files” 131) for an explanation of the open()
function. We don’t specify an encoding (because we don’t know what each file’s
encoding will be), so we let Python open each file using the default local encod-
ing. We split each lowercased line into words, and then strip off the characters
that we want to ignore from both ends of each word. If the resultant word is
at least three characters long we need to update the dictionary.

We cannot use the syntax words[word] += 1 because this will raise a KeyError
exception the first time a new word is encountered—after all, we can’t incre-
ment the value of an item that does not yet exist in the dictionary. So we use

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Types 131

Reading and Writing Text Files

Files are opened using the built-in open() function, which returns a “file
object” (of type io.TextIOWrapper for text files). The open() function takes one | Chap-
mandatory argument—the filename, which may include a path—and up | ter?
to six optional arguments, two of which we briefly cover here. The second g;lr(f
argument is the mode—thisis used to specify whether the file is to be treated | giing)
as a text file or as a binary file, and whether the file is to be opened for > 287

reading, writing, appending, or a combination of these.

Char- For text files, Python uses an encoding that is platform-dependent. Where
acter possible it is best to specify the encoding using open()’s encoding argument,
encod- . .

ings so the syntaxes we normally use for opening files are these:

91« fin = open(filename, encoding="utf8") # for reading text

fout

open(filename, "w", encoding="utf8") # for writing text

Because open()’s mode defaults to “read text”, and by using a keyword rather
than a positional argument for the encoding argument, we can omit the other
optional positional arguments when opening for reading. And similarly,
when opening to write we need to give only the arguments we actually want
to use. (Argument passing is covered in depth in Chapter 4.)

Once a file is opened for reading in text mode, we can read the whole file into
a single string using the file object’s read() method, or into a list of strings
using the file object’s readlines () method. A very common idiom for reading
line by line is to treat the file object as an iterator:

for line in open(filename, encoding="utf8"):
process(line)

This works because a file object can be iterated over, just like a sequence,
with each successive item being a string containing the next line from the
file. The lines we get back include the line termination character, \n.

If we specify a mode of “w”, the file is opened in “write text” mode. We write
to a file using the file object’s write() method, which takes a single string as
its argument. Each line written should end with a \n. Python automatically
translates between \n and the underlying platform’s line termination
characters when reading and writing.

Once we have finished using a file object we can call its close () method—this
will cause any outstanding writes to be flushed. In small Python programs
it is very common not to bother calling close(), since Python does this
automatically when the file object goes out of scope. If a problem occurs, it
will be indicated by an exception being raised.

www.it-ebooks.info

http://www.it-ebooks.info/

132 Chapter 3. Collection Data Types

a subtler approach. We call dict.get() with a default value of 0. If the word
is already in the dictionary, dict.get() will return the associated number, and
this value plus 1 will be set as the item’s new value. If the word is not in the
dictionary, dict.get() will return the supplied default of 0, and this value plus
1 (i.e., 1) will be set as the value of a new item whose key is the string held by
word. To clarify, here are two code snippets that do the same thing, although the
code using dict.get() is more efficient:

if word not in words:
words[word] = 0
words[word] = words.get(word, 0) + 1 words[word] += 1

In the next subsection where we cover default dictionaries, we will see an
alternative solution.

Once we have accumulated the dictionary of words, we iterate over its keys
(the words) in sorted order, and print each word and the number of times
it occurs.

Using dict.get() allows us to easily update dictionary values, providing the
values are single items like numbers or strings. But what if each value isitself
a collection? To demonstrate how to handle this we will look at a program
that reads HTML files given on the command line and prints a list of each
unique Web site that is referred to in the files with a list of the referring files
listed indented below the name of each Web site. Structurally, the program
(external sites.py) is very similar to the unique words program we have just
reviewed. Here is the main part of the code:

sites = {}
for filename in sys.argv[l:]:
for line in open(filename):

i=0
while True:
site = None
i = line.find("http://", 1)
if 1 > -1:
i += len("http://")
for j in range(i, len(line)):
if not (line[j].isalnum() or line[j] in ".-"):
site = line[i:j].lower()
break
if site and "." in site:
sites.setdefault(site, set()).add(filename)
i=1]
else:
break

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Types 133

We begin by creating an empty dictionary. Then we iterate over each file listed
on the command line and each line within each file. We must account for the
fact that each line may refer to any number of Web sites, which is why we keep
calling str.find() until it fails. If we find the string “http://”, we increment i
(our starting index position) by the length of “http://”, and then we look at each
succeeding character until we reach one that isn’t valid for a Web site’s name.
If we find a site (and as a simply sanity check, only if it contains a period), we
add it to the dictionary.

We cannot use the syntax sites[site].add(filename) because this will raise a
KeyError exception the first time a new site is encountered—after all, we can’t
add to a set that is the value of an item that does not yet exist in the dictionary.
So we must use a different approach. The dict.setdefault() method returnsan
object reference to the item in the dictionary that has the given key (the first
argument). If there is no such item, the method creates a new item with the
key and sets its value either to None, or to the given default value (the second
argument). In this case we pass a default value of set(), that is, an empty set.
So the call to dict.setdefault() always returns an object reference to a value,
either one that existed before or a new one. (Of course, if the given key is not
hashable a TypeError exception will be raised.)

In this example, the returned object reference always refers to a set (an empty
set the first time any particular key, that is, site, is encountered), and we then
add the filename that refers to the site to the site’s set of filenames. By using
a set we ensure that even if a file refers to a site repeatedly, we record the
filename only once for the site.

To make the dict.setdefault() method’s functionality clear, here are two
equivalent code snippets:

if site not in sites:
sites[site] = set()
sites.setdefault(site, set()).add(fname) sites[site].add(fname)

For the sake of completeness, here is the rest of the program:

for site in sorted(sites):
print("{0} is referred to in:".format(site))
for filename in sorted(sites[site], key=str.lower):
print(" {0}".format(filename))

Each Web site is printed with the files that refer to it printed indented under-
neath. The sorted() call in the outer for ... in loop sorts all the dictionary’s
keys—whenever a dictionary is used in a context that requires an iterable it is
the keys that are used. If we want the iterable to be the (key, value) items or
the values, we can use dict.items() or dict.values(). The inner for ... in loop
iterates over the sorted filenames from the current site’s set of filenames.

www.it-ebooks.info

sorted()

» 140,
144

http://www.it-ebooks.info/

Us-

ing str.
format()
with
map-

ping un-

packing
81«

134 Chapter 3. Collection Data Types

Although a dictionary of web sites is likely to contain a lot of items, many
other dictionaries have only a few items. For small dictionaries, we can print
their contents using their keys as field names and using mapping unpacking
to convert the dictionary’s key—value items into key—value arguments for the
str.format() method.

>>> greens = dict(green="#0080000", olive="#808000", lime="#00FF00")
>>> print("{green} {olive} {lime}".format(**greens))
#0080000 #808000 #0OFFOO

Here, using mapping unpacking (**) has exactly the same effect as writing
.format(green=greens.green, olive=greens.olive, lime=greens.lime), but is eas-
ier to write and arguably clearer. Note that it doesn’t matter if the dictionary
has more keys than we need, since only those keys whose names appear in the
format string are used.

Dictionary Comprehensions

A dictionary comprehension is an expression and a loop with an optional
condition enclosed in braces, very similar to a set comprehension. Like list and
set comprehensions, two syntaxes are supported:

{keyexpression: valueexpression for key, value in iterable}
{keyexpression: valueexpression for key, value in iterable if condition}

Here is how we could use a dictionary comprehension to create a dictionary
where each key is the name of a file in the current directory and each value is
the size of the file in bytes:

file sizes = {name: os.path.getsize(name) for name in os.listdir(".")}

The os (“operating system”) module’s os.listdir() function returns a list of
the files and directories in the path it is passed, although it never includes
“”or “..” in the list. The os.path.getsize() function returns the size of the
given file in bytes. We can avoid directories and other nonfile entries by adding

a condition:

file sizes = {name: os.path.getsize(name) for name in os.listdir(".")
if os.path.isfile(name)}

The os.path module’s os.path.isfile() function returns True if the path passed
to it is that of a file, and False otherwise—that is, for directories, links, and
S0 on.

A dictionary comprehension can also be used to create an inverted dictionary.
For example, given dictionary d, we can produce a new dictionary whose keys
are d’s values and whose values are d’s keys:

www.it-ebooks.info

Map-
ping
unpack-
ing

» 177

os and
o0s.path
modules

» 224

http://www.it-ebooks.info/

unique-
wordsl.
py

130 <

Mapping Types 135

inverted d = {v: k for k, v in d.items()}

The resultant dictionary can be inverted back to the original dictionary if all
the original dictionary’s values are unique—but the inversion will fail with a
TypeError being raised if any value is not hashable.

Just like list and set comprehensions, the iterable in a dictionary comprehen-
sion can be another comprehension, so all kinds of nested comprehensions are
possible.

Default Dictionaries

Default dictionaries are dictionaries—they have all the operators and methods
that dictionaries provide. What makes default dictionaries different from
plain dictionaries is the way they handle missing keys; in all other respects
they behave identically to dictionaries. (In object-oriented terms, defaultdict
is a subclass of dict; object-oriented programming, including subclassing, is
covered in Chapter 6.)

If we use a nonexistent (“missing”) key when accessing a dictionary, a KeyError
is raised. This is useful because we often want to know whether a key that we
expected to be present is absent. But in some cases we want every key we use
to be present, even if it means that an item with the key is inserted into the
dictionary at the time we first access it.

For example, if we have a dictionary d which does not have an item with
key m, the code x = d[m] will raise a KeyError exception. But if d is a suitably
created default dictionary, if an item with key m is in the default dictionary, the
corresponding value is returned the same as for a dictionary—but if mis not a
key in the default dictionary, a new item with key m is created with a default
value, and the newly created item’s value is returned.

Earlier we wrote a small program that counted the unique words in the
files it was given on the command line. The dictionary of words was created
like this:

words = {}

Each key in the words dictionary was a word and each value an integer holding
the number of times the word had occurred in all the files that were read.
Here’s how we incremented whenever a suitable word was encountered:

words[word] = words.get(word, 0) + 1

We had to use dict.get() to account for when the word was encountered the
first time (where we needed to create a new item with a count of 1) and for
when the word was encountered subsequently (where we needed to add 1to the
word’s existing count).

www.it-ebooks.info

http://www.it-ebooks.info/

136 Chapter 3. Collection Data Types

When a default dictionary is created, we can passin a factory function. A factory
function is a function that, when called, returns an object of a particular type.
All of Python’s built-in data types can be used as factory functions, for example,
data type str can be called as str()—and with no argument it returns an emp-
ty string object. The factory function passed to a default dictionary is used to
create default values for missing keys.

Note that the name of a function is an object reference to the function—so
when we want to pass functions as parameters, we just pass the name. When
we use a function with parentheses, the parentheses tell Python that the
function should be called.

The program uniquewords2.py has one more line than the original unique-
wordsl.py program (import collections), and the lines for creating and updating
the dictionary are written differently. Here is how the default dictionary is
created:

words = collections.defaultdict(int)

The words default dictionary will never raise a KeyError. If we were to write
x = words["xyz"] and there was no item with key "xyz", when the access is
attempted and the key isn’t found, the default dictionary will immediately
create a new item with key "xyz" and value 0 (by calling int()), and this value
is what will be assigned to x.

words[word] += 1

Now we no longer need to use dict.get(); instead we can simply increment the
item’s value. The very first time a word is encountered, a new item is created
with value O (to which 1 is immediately added), and on every subsequent
access, 1is added to whatever the current value happens to be.

We have now completed our review of all of Python’s built-in collection data
types, and a couple of the standard library’s collection data types. In the next
section we will look at some issues that are common to all of the collection data

types.
Ordered Dictionaries

The ordered dictionaries type—collections.0OrderedDict—was introduced with
Python 3.1 in fulfillment of PEP 372. Ordered dictionaries can be used as
drop-in replacements for unordered dicts because they provide the same API.
The difference between the two is that ordered dictionaries store their items in
the order in which they were inserted—a feature that can be very convenient.

Note that if an ordered dictionary is passed an unordered dict or keyword ar-
guments when it is created, the item order will be arbitrary; this is because un-
der the hood Python passes keyword arguments using a standard unordered

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Types 137

dict. A similar effect occurs with the use of the update() method. For these
reasons, passing keyword arguments or an unordered dict when creating an
ordered dictionary or using update () on one is best avoided. However, if we pass
a list or tuple of key—value 2-tuples when creating an ordered dictionary, the
ordering is preserved (since they are passed as a single item—a list or tuple).

Here’s how to create an ordered dictionary using a list of 2-tuples:
d = collections.OrderedDict([('z"', -4), ('e', 19), ('k', 7)]1)

Because we used a single list as argument the key ordering is preserved. It is
probably more common to create ordered dictionaries incrementally, like this:

tasks = collections.OrderedDict()
tasks[8031] = "Backup"
tasks[4027] = "Scan Email"
tasks[5733] = "Build System"

If we had created unordered dicts the same way and asked for their keys, the
order of the returned keys would be arbitrary. But for ordered dictionaries, we
can rely on the keys to be returned in the same order they were inserted. So
for these examples, if we wrote list(d.keys()), we are guaranteed to get the list
['z', 'e', 'k'], and if we wrote list(tasks.keys()), we are guaranteed to get
the list [8031, 4027, 5733].

One other nice feature of ordered dictionaries is that if we change an item’s
value—that is, if we insert an item with the same key as an existing key—the
order is not changed. So if we did tasks[8031] = "Daily backup", and then asked
for the list of keys, we would get exactly the same list in exactly the same order
as before.

If we want to move an item to the end, we must delete it and then reinsert it.
We can also call popitem() to remove and return the last key—value item in the
ordered dictionary; or we can call popitem(last=False), in which case the first
item will be removed and returned.

Another, slightly more specialized use for ordered dictionaries is to produce
sorted dictionaries. Given a dictionary, d, we can convert it into a sorted
dictionary like this:d = collections.OrderedDict(sorted(d.items())). Note that
if we were to insert any additional keys they would be inserted at the end, so
after any insertion, to preserve the sorted order, we would have to re-create the
dictionary by executing the same code we used to create it in the first place.
Doing insertions and re-creating isn’t quite as inefficient as it sounds, since
Python’s sorting algorithm is highly optimized, especially for partially sorted
data, but it is still potentially expensive.

In general, using an ordered dictionary to produce a sorted dictionary makes
sense only if we expect to iterate over the dictionary multiple times, and if we
do not expect to do any insertions (or very few), once the sorted dictionary has

www.it-ebooks.info

http://www.it-ebooks.info/

138 Chapter 3. Collection Data Types

been created. (An implementation of a real sorted dictionary that automatical-
ly maintains its keys in sorted order is presented in Chapter 6; » 276.)

Iterating and Copying Collections

Once we have collections of data items, it is natural to want to iterate over all
the items they contain. In this section’s first subsection we will introduce some
of Python’s iterators and the operators and functions that involve iterators.

Another common requirement is to copy a collection. There are some subtleties
involved here because of Python’s use of object references (for the sake of
efficiency), so in this section’s second subsection, we will examine how to copy
collections and get the behavior we want.

Iterators and Iterable Operations and Functions

An iterable data type is one that can return each of its items one at a time. Any
object thathasan iter () method,or any sequence (i.e., an object that has a
__getitem () method taking integer arguments starting from 0) is an iterable
and can provide an iterator. An iterator is an object that providesa next ()
method which returns each successive item in turn, and raises a StopIteration
exception when there are no more items. Table 3.4 lists the operators and
functions that can be used with iterables.

The order in which items are returned depends on the underlying iterable. In
the case of lists and tuples, items are normally returned in sequential order
starting from the first item (index position 0), but some iterators return the
items in an arbitrary order—for example, dictionary and set iterators.

The built-in iter() function has two quite different behaviors. When given
a collection data type or a sequence it returns an iterator for the object it is
passed—or raises a TypeError if the object cannot be iterated. This use arises
when creating custom collection data types, but is rarely needed in other con-
texts. The second iter() behavior occurs when the function is passed a callable
(a function or method), and a sentinel value. In this case the function passed in
is called once at each iteration, returning the function’s return value each time,
or raising a StopIteration exception if the return value equals the sentinel.

When we use a for item in iterable loop, Python in effect calls iter(iterable)
to get an iterator. This iterator’s next () method is then called at each loop
iteration to get the next item, and when the StopIteration exception is raised,
it is caught and the loop is terminated. Another way to get an iterator’s next
item is to call the built-in next() function. Here are two equivalent pieces of
code (multiplying the values in a list), one using a for ... in loop and the other
using an explicit iterator:

www.it-ebooks.info

_ iter-
0

» 274

http://www.it-ebooks.info/

Iterating and Copying Collections 139

product = 1

i = iter([1, 2, 4, 8])

while True:

try:
product =1 product *= next(i)
for 1 in [1, 2, 4, 8]: except StopIteration:
product *= 1 break

print(product) # prints: 64 print(product) # prints: 64

Any (finite) iterable, i, can be converted into a tuple by calling tuple(i), or can
be converted into a list by calling list(i).

The all() and any() functions can be used on iterators and are often used in
functional-style programming. Here are a couple of usage examples that show
all(), any(), len(), min(), max(), and sum():

>> x = [-2, 9, 7, -4, 3]

>>> all(x), any(x), len(x), min(x), max(x), sum(x)
(True, True, 5, -4, 9, 13)

>>> x.append(0)

>>> all(x), any(x), len(x), min(x), max(x), sum(x)
(False, True, 6, -4, 9, 13)

Of these little functions, len() is probably the most frequently used.

The enumerate() function takes an iterator and returns an enumerator object.
This object can be treated like an iterator, and at each iteration it returns a
2-tuple with the tuple’s first item the iteration number (by default starting
from 0), and the second item the next item from the iterator enumerate() was
called on. Let’s look at enumerate()’s use in the context of a tiny but complete
program.

The grepword.py program takes a word and one or more filenames on the
command line and outputs the filename, line number, and line whenever the
line contains the given word.* Here’s a sample run:

grepword.py Dom data/forenames.txt
data/forenames.txt:615:Dominykas
data/forenames.txt:1435:Dominik
data/forenames.txt:1611:Domhnall
data/forenames.txt:3314:Dominic

Data files data/forenames.txt and data/surnames.txt contain unsorted lists of
names, one per line.

*In Chapter 10 will see two other implementations of this program, grepword-p.py and grepword-
t.py, which spread the work over multiple processes and multiple threads.

www.it-ebooks.info

Func-
tional-
style
pro-
gram-
ming

» 395

http://www.it-ebooks.info/

140 Chapter 3. Collection Data Types
Table 3.4 Common Iterable Operators and Functions
Syntax Description
s+t Returns a sequence that is the concatenation of sequences s
and t
s *n Returns a sequence that is int n concatenations of sequence s
X in i Returns True if item x is in iterable i; use not in to reverse
the test
all(i) Returns True if every item in iterable i evaluates to True
any (1) Returns True if any item in iterable i evaluates to True
enumerate(i, Normally used in for ... in loops to provide a sequence of (in-
start) dex, item) tuples with indexes starting at O or start; see text
len(x) Returns the “length” of x. If x is a collection it is the number
of items;if x is a string it is the number of characters.
max(i, key) Returns the biggestitem in iterable i or the item with the
biggest key (item) value if a key function is given
min(i, key) Returnsthe smallestitem in iterable i or the item with the
smallest key (item) value if a key function is given
range(Returns an integer iterator. With one argument (stop), the it-
start, erator goes from 0 to stop - 1; with two arguments (start, stop)
stop, the iterator goes from start to stop - 1; with three arguments
step) it goes from start to stop - 1in steps of step.
reversed(i) Returns an iterator that returns the items from iterator i in
reverse order
sorted(i, Returns a list of the items from iterator i in sorted order; key
key, is used to provide DSU (Decorate, Sort, Undecorate) sorting.
reverse) If reverse is True the sorting is done in reverse order.
sum(i, Returns the sum of the items in iterable i plus start (which
start) defaults to 0); i may not contain strings
zip(il1, Returns an iterator of tuples using the iterators il to iN;
.., 1N) see text

Apart from the sys import, the program is just ten lines long:

if len(sys.argv) < 3:
print("usage: grepword.py word infilel [infile2 [... infileN]1")
sys.exit()

word = sys.argv[l]
for filename in sys.argv[2:]:
for 1ino, line in enumerate(open(filename), start=1):
if word in line:

www.it-ebooks.info

http://www.it-ebooks.info/

Read-
ing and
writing
text files
sidebar

131 <

Iterating and Copying Collections 141

print("{0}:{1}:{2:.40}".format(filename, lino,
line.rstrip()))

We begin by checking that there are at least two command-line arguments.
If there are not, we print a usage message and terminate the program. The
sys.exit() function performs an immediate clean termination, closing any open
files. It accepts an optional int argument which is passed to the calling shell.

We assume that the first argument is the word the user is looking for and that
the other arguments are the names of the files to look in. We have deliberately
called open() without specifying an encoding—the user might use wildcards
to specify any number of files, each potentially with a different encoding, so in
this case we leave Python to use the platform-dependent encoding.

The file object returned by the open() function in text mode can be used as an
iterator, returning one line of the file on each iteration. By passing the iter-
ator to enumerate(), we get an enumerator iterator that returns the iteration
number (in variable 1ino, “line number”) and a line from the file, on each itera-
tion. If the word the user is looking for is in the line, we print the filename, line
number, and the first 40 characters of the line with trailing whitespace (e.g.,
\n) stripped. The enumerate() function accepts an optional keyword argument,
start, which defaults to 0; we have used this argument set to 1, since by conven-
tion, text file line numbers are counted from 1.

Quite often we don’t need an enumerator, but rather an iterator that returns
successive integers. This is exactly what the range() function provides. If we
need a list or tuple of integers, we can convert the iterator returned by range()
by using the appropriate conversion function. Here are a few examples:

>>> list(range(5)), list(range(9, 14)), tuple(range(10, -11, -5))
([01 1: 21 3! 4]: [91 10! 111 12: 13]: (101 5: 0! _51 _10))

The range() function is most commonly used for two purposes: to create lists or
tuples of integers, and to provide loop counting in for ... in loops. For example,
these two equivalent examples ensure that list x’s items are all non-negative:

i=0
while i < len(x):
for i in range(len(x)): x[i] = abs(x[i])
x[i] = abs(x[i]) i+=1

In both cases, if list x was originally, say, [11, -3, -12, 8, -1], afterward it will
be [11, 3, 12, 8, 1].

Since we can unpack an iterable using the * operator, we can unpack the
iterator returned by the range() function. For example, if we have a function
called calculate() that takes four arguments, here are some ways we could call
it with arguments, 1, 2, 3, and 4:

www.it-ebooks.info

http://www.it-ebooks.info/

Tuple
unpack-
ing

110 <

142 Chapter 3. Collection Data Types

calculate(1, 2, 3, 4)
t=(1, 2, 3, 4)
calculate(*t)
calculate(*range(1l, 5))

In all three calls, four arguments are passed. The second call unpacks a 4-tuple,
and the third call unpacks the iterator returned by the range() function.

We will now look at a small but complete program to consolidate some of the
things we have covered so far, and for the first time to explicitly write to a file.
The generate test namesl.py program reads in a file of forenames and a file
of surnames, creating two lists, and then creates the file test-names1.txt and
writes 100 random names into it.

We will use the random.choice() function which takes a random item from a
sequence, so it is possible that some duplicate names might occur. First we’ll
look at the function that returns the lists of names, and then we will look at
the rest of the program.

def get forenames and surnames():

forenames = []

surnames = []

for names, filename in ((forenames, "data/forenames.txt"),
(surnames, "data/surnames.txt")):

for name in open(filename, encoding="utf8"):
names.append(name.rstrip())
return forenames, surnames

In the outer for ... in loop, we iterate over two 2-tuples, unpacking each 2-tuple
into two variables. Even though the two lists might be quite large, returning
them from a function is efficient because Python uses object references, so the
only thing that is really returned is a tuple of two object references.

Inside Python programs it is convenient to always use Unix-style paths, since
they can be typed without the need for escaping, and they work on all platforms
(including Windows). If we have a path we want to present to the user in, say,
variable path, we can always import the os module and call path.replace("/",
0s.sep) to replace forward slashes with the platform-specific directory sepa-
rator.

forenames, surnames = get forenames and surnames()
fh = open("test-namesl.txt", "w", encoding="utf8")
for i in range(100):
line = "{0} {1}\n".format(random.choice(forenames),
random.choice(surnames))
fh.write(line)

www.it-ebooks.info

http://www.it-ebooks.info/

Read-
ing and
writing
text files
sidebar

131 <

Iterating and Copying Collections 143

Having retrieved the two lists we open the output file for writing, and keep
the file object in variable fh (“file handle”). We then loop 100 times, and in each
iteration we create a line to be written to the file, remembering to include a
newline at the end of every line. We make no use of the loop variable i; it is
needed purely to satisfy the for ... inloop’s syntax. The preceding code snippet,
the get forenames and surnames() function, and an import statement constitute
the entire program.

In the generate test namesl.py program we paired items from two separate
lists together into strings. Another way of combining items from two or
more lists (or other iterables) is to use the zip() function. The zip() function
takes one or more iterables and returns an iterator that returns tuples. The
first tuple has the first item from every iterable, the second tuple the second
item from every iterable, and so on, stopping as soon as one of the iterables is
exhausted. Here is an example:

>>> for t in zip(range(4), range(0, 10, 2), range(1l, 10, 2)):
print(t)
, 1)

’

’

(
(
(
(

W N = o
o BN O
~N O W

)
)
v 7)
Although the iterators returned by the second and third range() calls can

produce five items each, the first can produce only four, so that limits the
number of items zip() can return to four tuples.

Here is a modified version of the program to generate test names, this time
with each name occupying 25 characters and followed by a random year. The
program is called generate test names2.py and outputs the file test-names2.txt.
We have not shown the get forenames and surnames () function or the open() call
since, apart from the output filename, they are the same as before.

limit = 100
years = list(range(1970, 2013)) * 3
for year, forename, surname in zip(
random.sample(years, limit),
random.sample(forenames, limit),
random.sample(surnames, limit)):
name = "{0} {1}".format(forename, surname)
fh.write("{0:.<25}.{1}\n".format(name, year))

We begin by setting a limit on how many names we want to generate. Then we
create a list of years by making a list of the years from 1970 to 2012 inclusive,
and then replicating this list three times so that the final list has three occur-
rences of each year. This is necessary because the random.sample() function
that we are using (instead of random.choice()) takes both an iterable and how

www.it-ebooks.info

http://www.it-ebooks.info/

Tuple
unpack-
ing

110 <

str.
format()

78 <«

144 Chapter 3. Collection Data Types

many items it is to produce—a number that cannot be less than the number
of items the iterable can return. The random.sample() function returns an iter-
ator that will produce up to the specified number of items from the iterable it
is given—with no repeats. So this version of the program will always produce
unique names.

In the for ... in loop we unpack each tuple returned by the zip() function. We
want to limit the length of each name to 25 characters, and to do this we must
first create a string with the complete name, and then set the maximum width
for that string when we call str.format() the second time. We left-align each
name, and for names shorter than 25 characters we fill with periods. The extra
period ensures that names that occupy the full field width are still separated
from the year by a period.

We will conclude this subsection by mentioning two other iterable-related
functions, sorted() and reversed(). The sorted() function returns a list with
the items sorted, and the reversed() function simply returns an iterator that
iterates in the reverse order to the iterator it is given as its argument. Here is
an example of reversed():

>>> list(range(6))
[0, 1, 2, 3, 4, 5]
>>> list(reversed(range(6)))
[5, 4, 3, 2, 1, 0]

The sorted() function is more sophisticated, as these examples show:

>>> x = []

>>> for t in zip(range(-10, 0, 1), range(0, 10, 2), range(l, 10, 2)):
X +=t

>>> X

[-10, 0, 1, -9, 2, 3, -8, 4, 5, -7, 6, 7, -6, 8, 9]
>>> sorted(x)

[-10, -9, -8, -7, -6, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> sorted(x, reverse=True)

[9, 8, 7,6,5,4,3,2,1,0, -6, -7, -8, -9, -10]
>>> sorted(x, key=abs)

[0, 1, 2, 3, 4, 5,6, -6, -7, 7, -8, 8, -9, 9, -10]

In the preceding snippet, the zip() function returns 3-tuples, (-10, 0, 1), (-9,
2, 3),and so on. The += operator extends a list, that is, it appends each item in
the sequence it is given to the list.

The first call to sorted() returns a copy of the list using the conventional sort
order. The second call returns a copy of the list in the reverse of the conven-
tional sort order. The last call to sorted() specifies a “key” function which we
will come back to in a moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Iterating and Copying Collections 145

Notice that since Python functions are objects like any other, they can be
passed as arguments to other functions, and stored in collections without
formality. Recall that a function’s name is an object reference to the function;it
is the parentheses that follow the name that tell Python to call the function.

When a key function is passed (in this case the abs() function), it is called
once for every item in the list (with the item passed as the function’s sole
parameter), to create a “decorated” list. Then the decorated list is sorted, and
the sorted list without the decoration is returned as the result. We are free to
use our own custom function as the key function, as we will see shortly.

For example, we can case-insensitively sort a list of strings by passing the
str.lower() method as a key. If we have the list, x, of ["Sloop", "Yawl",
"Cutter", "schooner", "ketch"], we can sort it case-insensitively using DSU
(Decorate, Sort, Undecorate) with a single line of code by passing a key func-
tion, or do the DSU explicitly, as these two equivalent code snippets show:

temp = []
for item in x:
temp.append((item.lower(), item))

x =[]
for key, value in sorted(temp):
x = sorted(x, key=str.lower) x.append(value)

Both snippets produce a new list: ["Cutter", "ketch", "schooner", "Sloop",
"Yawl"], although the computations they perform are not identical because the
right-hand snippet creates the temp list variable.

Python’s sort algorithm is an adaptive stable mergesort that is both fast and
smart, and it is especially well optimized for partially sorted lists—a very
common case.* The “adaptive” part means that the sort algorithm adapts to
circumstances—for example, taking advantage of partially sorted data. The
“stable” part means that items that sort equally are not moved in relation to
each other (after all, there is no need), and the “mergesort” part is the generic
name for the sorting algorithm used. When sorting collections of integers,
strings, or other simple types their “less than” operator (<) is used. Python
can sort collections that contain collections, working recursively to any depth.
For example:

>>> x = list(zip((1, 3, 1, 3), ("pram", "dorie", "kayak", "canoe")))
>>> X

[(1, 'pram'), (3, 'dorie'), (1, 'kayak'), (3, 'canoe')l]

>>> sorted(x)

[(1, 'kayak'), (1, 'pram'), (3, 'canoe'), (3, 'dorie')]

*The algorithm was created by Tim Peters. An interesting explanation and discussion of the
algorithm is in the file listsort.txt which comes with Python’s source code.

www.it-ebooks.info

http://www.it-ebooks.info/

Object
refer-
ences

16 <

146 Chapter 3. Collection Data Types

Python has sorted the list of tuples by comparing the first item of each tuple,
and when these are the same, by comparing the second item. This gives a
sort order based on the integers, with the strings being tiebreakers. We can
force the sort to be based on the strings and use the integers as tiebreakers by
defining a simple key function:

def swap(t):
return t[1], t[0]

The swap() function takes a 2-tuple and returns a new 2-tuple with the argu-
ments swapped. Assuming that we have entered the swap() function in IDLE,
we can now do this:

>>> sorted(x, key=swap)
[(3, 'canoe'), (3, 'dorie'), (1, 'kayak'), (1, 'pram')]

Lists can also be sorted in-place using the list.sort() method, which takes the
same optional arguments as sorted().

Sorting can be applied only to collections where all the items can be compared
with each other:

sorted([3, 8, -7.5, 0, 1.3]) # returns: [-7.5, 0, 1.3, 3, 8]
sorted([3, "spanner", -7.5, 0, 1.3]) # raises a TypeError

Although the first list has numbers of different types (int and float), these
types can be compared with each other so that sorting a list containing them
works fine. But the second list has a string and this cannot be sensibly com-
pared with a number, and so a TypeError exception is raised. If we want to sort
a list that has integers, floating-point numbers, and strings that contain num-
bers, we can give float() as the key function:

sorted(["1.3", -7.5, "5", 4, "-2.4", 1], key=float)

Thisreturns thelist [-7.5, '-2.4', 1, '1.3', 4, '5']. Notice that the list’s values
are not changed, so strings remain strings. If any of the strings cannot be
converted to a number (e.g., “spanner”), a ValueError exception will be raised.

Copying Collections

Since Python uses object references, when we use the assignment operator (=),
no copying takes place. If the right-hand operand is a literal such as a string
or a number, the left-hand operand is set to be an object reference that refers to
the in-memory object that holds the literal’s value. If the right-hand operand
is an object reference, the left-hand operand is set to be an object reference that
refers to the same object as the right-hand operand. One consequence of this
is that assignment is very efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

Iterating and Copying Collections 147

When we assign large collections, such as long lists, the savings are very
apparent. Here is an example:

>>> songs = ["Because", "Boys", "Carol"]

>>> peatles = songs

>>> peatles, songs

(['Because', 'Boys', 'Carol'], ['Because', 'Boys', 'Carol'])

Here, a new object reference (beatles) has been created, and both object
references refer to the same list—no copying has taken place.

Since lists are mutable, we can apply a change. For example:

>>> beatles[2] = "Cayenne"
>>> peatles, songs
(['Because', 'Boys', 'Cayenne'], ['Because', 'Boys', 'Cayenne'])

We applied the change using the beatles variable—but this is an object refer-
ence referring to the same list as songs refers to. So any change made through
either object reference is visible to the other. This is most often the behavior
we want, since copying large collectionsis potentially expensive. It also means,
for example, that we can pass a list or other mutable collection data type as an
argument to a function, modify the collection in the function, and know that the
modified collection will be accessible after the function call has completed.

However, in some situations, we really do want a separate copy of the collection
(or other mutable object). For sequences, when we take a slice—for example,
songs[:2]—the slice is always an independent copy of the items copied. So to
copy an entire sequence we can do this:

>>> songs = ["Because", "Boys", "Carol"]

>>> beatles = songs[:]

>>> beatles[2] = "Cayenne"

>>> peatles, songs

(['Because', 'Boys', 'Cayenne'], ['Because', 'Boys', 'Carol'])

For dictionaries and sets, copying can be achieved using dict.copy() and
set.copy().In addition, the copy module provides the copy.copy() function that
returns a copy of the object it is given. Another way to copy the built-in collec-
tion types is to use the type as a function with the collection to be copied as its
argument. Here are some examples:

copy of dict d = dict(d)
copy of list L = list(L)
copy of set s = set(s)

Note, though, that all of these copying techniques are shallow—that is, only
object references are copied and not the objects themselves. For immutable

www.it-ebooks.info

http://www.it-ebooks.info/

148 Chapter 3. Collection Data Types

data types like numbers and strings this has the same effect as copying (except
that it is more efficient), but for mutable data types such as nested collections
this means that the objects they refer to are referred to both by the original
collection and by the copied collection. The following snippet illustrates this:

>>> X = [53’ 68, ["A", "B", "C"]]
>>>y = x[:] # shallow copy

>>> X, Y

([53, 68, ['A', 'B', 'C']], [53, 68, ['A', 'B', 'C']])
>>> y[1] = 40

>>> x[2][0] = 'Q'

>>> X, Y

({53, 68, ['Q*, 'B', 'C']], [53, 406, ['Q", 'B', 'C']])

When list x is shallow-copied, the reference to the nested list ["A", "B", "C"] is
copied. This means that both x and y have as their third item an object refer-
ence that refers to this list, so any changes to the nested list are seen by both x
and y. If we really need independent copies of arbitrarily nested collections, we
can deep-copy:

>>> import copy

>>> X = [53’ 68, [IIAII’ IIBII' IICII]]
>>> y = copy.deepcopy(x)

>>> y[1] = 40

>>> x[2][0] = 'Q'

>>> X, Yy

([53, 68, ['Q', 'B", 'C']], [53, 46, ['A*, 'B', "C']])

Here, lists x and y, and the list items they contain, are completely inde-
pendent.

Note that from now on we will use the terms copy and shallow copy
interchangeably—if we mean deep copy, we will say so explicitly.

Examples

We have now completed our review of Python’s built-in collection data types,
and three of the standard library collection types (collections.namedtuple,
collections.defaultdict, and collections.OrderedDict). Python also provides
the collections.deque type, a double-ended queue, and many other collection
types are available from third parties and from the Python Package Index,
pypi.python.org/pypi. But now we will look at a couple of slightly longer exam-
ples that draw together many of the things covered in this chapter, and in the
preceding one.

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 149

The first program is about seventy lines long and involves text processing. The
second program is around ninety lines long and is mathematical in flavor. Be-
tween them, the programs make use of dictionaries, lists, named tuples, and
sets, and both make great use of the str.format() method from the preceding
chapter.

generate_usernames.py

Imagine we are setting up a new computer system and need to generate user-
names for all of our organization’s staff. We have a plain text data file (UTF-
8 encoding) where each line represents a record and fields are colon-delimited.
Each record concerns one member of the staff and the fields are their unique
staff ID, forename, middle name (which may be an empty field), surname,
and department name. Here is an extract of a few lines from an example
data/users.txt data file:

1601:Albert:Lukas:Montgomery:Legal
3702:Albert:Lukas:Montgomery:Sales
4730:Nadelle::Landale:Warehousing

The program must read in all the data files given on the command line, and for
every line (record) must extract the fields and return the data with a suitable
username. Each username must be unique and based on the person’s name.
The output must be text sent to the console, sorted alphabetically by surname
and forename, for example:

Name ID Username
Landale, Nadelle................ (4730) nlandale
Montgomery, Albert L............ (1601) almontgo
Montgomery, Albert L............ (3702) almontgol

Each record has exactly five fields, and although we could refer to them by
number, we prefer to use names to keep our code clear:

ID, FORENAME, MIDDLENAME, SURNAME, DEPARTMENT = range(5)

It is a Python convention that identifiers written in all uppercase characters
are to be treated as constants.

We also need to create a named tuple type for holding the data on each user:

User = collections.namedtuple("User",
"username forename middlename surname id")

We will see how the constants and the User named tuple are used when we look
at the rest of the code.

www.it-ebooks.info

http://www.it-ebooks.info/

150 Chapter 3. Collection Data Types

The program’s overall logic is captured in the main() function:

def main():
if len(sys.argv) == 1 or sys.argv[1l] in {"-h", "—-help"}:
print("usage: {0} filel [file2 [... fileN]]".format(
sys.argv([0]))
sys.exit()

usernames = set()
users = {}
for filename in sys.argv[1l:]:
for line in open(filename, encoding="utf8"):
line = line.rstrip()
if line:
user = process _line(line, usernames)
users[(user.surname.lower(), user.forename.lower(),
user.id)] = user
print users(users)

If the user doesn’t provide any filenames on the command line, or if they type
“-h” or “--help” on the command line, we simply print a usage message and
terminate the program.

For each line read, we strip off any trailing whitespace (e.g., \n) and process
only nonempty lines. This means that if the data file contains blank lines they
will be safely ignored.

We keep track of all the allocated usernames in the usernames set to ensure that
we don’t create any duplicates. The data itself is held in the users dictionary,
with each user (member of the staff) stored as a dictionary item whose key is
a tuple of the user’s surname, forename, and ID, and whose value is a named
tuple of type User. Using a tuple of the user’s surname, forename, and ID for the
dictionary’s keys means that if we call sorted() on the dictionary, the iterable
returned will be in the order we want (i.e., surname, forename, ID), without us
having to provide a key function.

def process line(line, usernames):
fields = line.split(":")
username = generate username(fields, usernames)
user = User(username, fields[FORENAME], fields[MIDDLENAME],
fields[SURNAME], fields[ID])
return user

Since the data format for each record is so simple, and because we’ve already
stripped the trailing whitespace from the line, we can extract the fields simply
by splitting on the colons. We pass the fields and the usernames set to the
generate_username() function, and then we create an instance of the User named

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 151

tuple type which we then return to the caller (main()), which inserts the user
into the users dictionary, ready for printing.

If we had not created suitable constants to hold the index positions, we would
be reduced to using numeric indexes, for example:

user = User(username, fields[1], fields[2], fields[3], fields[0])

Although this is certainly shorter, it is poor practice. First it isn’t clear to
future maintainers what each field is, and second it is vulnerable to data file
format changes—if the order or number of fields in a record changes, this code
will break everywhere it is used. But by using named constants in the face of
changes to the record struture, we would have to change only the values of the
constants, and all uses of the constants would continue to work.

def generate username(fields, usernames):
username = ((fields[FORENAME][O] + fields[MIDDLENAME][:1] +
fields[SURNAME]).replace("-", "").replace("'", ""))
username = original name = username[:8].lower()
count =1
while username in usernames:
username = "{0}{1}".format(original name, count)
count +=1
usernames.add(username)
return username

We make a first attempt at creating a username by concatenating the first let-
ter of the forename, the first letter of the middle name, and the whole surname,
and deleting any hyphens or single quotes from the resultant string. The code
for getting the first letter of the middle name is quite subtle. If we had used
fields[MIDDLENAME][0] we would get an IndexError exception for empty middle
names. But by using a slice we get the first letter if there is one, or an empty
string otherwise.

Next we make the username lowercase and no more than eight characterslong.
If the username is in use (i.e., it is in the usernames set), we try the username
with a “1” tacked on at the end, and if that is in use we try with a “2”, and so
on until we get one that isn’t in use. Then we add the username to the set of
usernames and return the username to the caller.

def print users(users):
namewidth = 32
usernamewidth = 9

print("{0:<{nw}} {1:76} {2:{uw}}".format(

"Name", "ID", "Username", nw=namewidth, uw=usernamewidth))
print("{0:-<{nw}} {0:-<6} {0:-<{uw}}".format(

""" nw=namewidth, uw=usernamewidth))

www.it-ebooks.info

http://www.it-ebooks.info/

str.
format()

78 <

152 Chapter 3. Collection Data Types

for key in sorted(users):
user = users[key]
initial = ""
if user.middlename:
initial = " " + user.middlename[0]
name = "{0.surname}, {0.forename}{1}".format(user, initial)
print("{0:.<{nw}} ({1.id:4}) {1.username:{uw}}".format(
name, user, nw=namewidth, uw=usernamewidth))

Once all the records have been processed, the print_users() function is called,
with the users dictionary passed as its parameter.

The first print() statement prints the column titles, and the second print()
statement prints hyphens under each title. This second statement’s str.
format() callis slightly subtle. The string we give to be printed is "", that is, the
empty string—we get the hyphens by printing the empty string padded with
hyphens to the given widths.

Next we use a for ... in loop to print the details of each user, extracting the
key for each user’s dictionary item in sorted order. For convenience we create
the user variable so that we don’t have to keep writing users[key] throughout
the rest of the function. In the loop’s first call to str.format() we set the name
variable to the user’s name in surname, forename (and optional initial) form.
We access items in the user named tuple by name. Once we have the user’s
name as a single string we print the user’s details, constraining each column,
(name, ID, username) to the widths we want.

The complete program (which differs from what we have reviewed only
in that it has some initial comment lines and some imports) is in gener-
ate_usernames.py. The program’s structure—read in a data file, process each
record, write output—is one that is very frequently used, and we will meet it
again in the next example.

statistics.py

Suppose we have a bunch of data files containing numbers relating to some
processing we have done, and we want to produce some basic statistics to
give us some kind of overview of the data. Each file uses plain text (ASCII
encoding) with one or more numbers per line (whitespace-separated).

Here is an example of the kind of output we want to produce:

count = 183

mean = 130.56

median = 43.00

mode = [5.00, 7.00, 50.00]
std. dev. = 235.01

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 153

Here, we read 183 numbers, with 5, 7, and 50 occurring most frequently, and
with a sample standard deviation of 235.01.

The statistics themselves are held in a named tuple called Statistics:

Statistics = collections.namedtuple("Statistics",
"mean mode median std dev")

The main() function also serves as an overview of the program’s structure:

def main():
if len(sys.argv) == 1 or sys.argv[1l] in {"-h", "--help"}:
print("usage: {0} filel [file2 [... fileN]]".format(
sys.argv([0]))
sys.exit()

numbers = []
frequencies = collections.defaultdict(int)
for filename in sys.argv[1l:]:
read data(filename, numbers, frequencies)
if numbers:
statistics = calculate statistics(numbers, frequencies)
print results(len(numbers), statistics)
else:
print("no numbers found")

We store all the numbers from all the files in the numbers list. To calculate the
mode (“most frequently occurring”) numbers, we need to know how many times
each number occurs, so we create a default dictionary using the int() factory
function, to keep track of the counts.

We iterate over each filename and read in its data. We pass the list and default
dictionary as additional parameters so that the read data() function can
update them. Once we have read all the data, assuming some numbers were
successfully read, we call calculate statistics(). This returns a named tuple
of type Statistics which we then use to print the results.

def read data(filename, numbers, frequencies):
for lino, line in enumerate(open(filename, encoding="ascii"),
start=1):
for x in line.split():
try:
number = float(x)
numbers.append(number)
frequencies[number] +=1
except ValueError as err:
print("{filename}:{lino}: skipping {x}: {err}".format(
**1ocals()))

www.it-ebooks.info

http://www.it-ebooks.info/

Us-

ing str.
format()
with
map-

ping un-

packing
81«

154 Chapter 3. Collection Data Types

We split every line on whitespace, and for each item we attempt to convert it to
a float. If a conversion succeeds—as it will for integers and for floating-point
numbers in both decimal and exponential notations—we add the number to
the numbers list and update the frequencies default dictionary. (If we had used
a plain dict, the update code would have been frequencies[number] = frequen-
cies.get(number, 0) +1.)

If a conversion fails, we output the line number (starting from line 1 as is tra-
ditional for text files), the text we attempted to convert, and the ValueError
exception’s error text. Rather than using positional arguments (e.g., .for-
mat(filename, lino, etc.,or explicitly named arguments, . format(filename=file-
name, lino=lino, etc.), we have retrieved the names and values of the local
variables by calling locals() and used mapping unpacking to pass these as
key—value named arguments to the str.format () method.

def calculate statistics(numbers, frequencies):
mean = sum(numbers) / len(numbers)
mode = calculate mode(frequencies, 3)
median = calculate median(numbers)
std dev = calculate std dev(numbers, mean)
return Statistics(mean, mode, median, std dev)

This function is used to gather all the statistics together. Because the mean
(“average”)is so easy to calculate, we do so directly here. For the other statistics
we call dedicated functions, and at the end we return a Statistics named tuple
object that contains the four statistics we have calculated.

def calculate mode(frequencies, maximum modes):
highest frequency = max(frequencies.values())
mode = [number for number, frequency in frequencies.items()
if frequency == highest frequency]
if not (1 <= len(mode) <= maximum modes):
mode = None
else:
mode.sort()
return mode

There may be more than one most-frequently-occurring number, so in ad-
dition to the dictionary of frequencies, this function also requires the caller
to specify the maximum number of modes that are acceptable. (The cal-
culate statistics() function is the caller, and it specified a maximum of
three modes.)

The max() function is used to find the highest value in the frequencies dictio-
nary. Then, we use a list comprehension to create a list of those modes whose
frequency equals the highest value. We can compare using operator == since
all the frequencies are integers.

www.it-ebooks.info

http://www.it-ebooks.info/

Examples 155

If the number of modes is 0 or greater than the maximum modes that are
acceptable, a mode of None is returned; otherwise, a sorted list of the modes
is returned.

def calculate median(numbers):
numbers = sorted(numbers)
middle = len(numbers) // 2
median = numbers[middle]
if len(numbers) % 2 == 0:
median = (median + numbers[middle - 11) / 2
return median

The median (“middle value”) is the value that occurs in the middle if the
numbers are arranged in order—except when the number of numbers is even,
in which case the middle falls between two numbers, so in that case the median
is the mean of the two middle numbers.

We begin by sorting the numbers into ascending order. Then we use truncating
(integer) division to find the index position of the middle number, which we
extract and store as the median. If the number of numbers is even, we make
the median the mean of the two middle numbers.

def calculate std dev(numbers, mean):
total = 0
for number in numbers:
total += ((number - mean) ** 2)
variance = total / (len(numbers) - 1)
return math.sqrt(variance)

The sample standard deviation is a measure of dispersion, that is, how far the
numbers differ from the mean. This function calculates the sample standard

-3

—— where x is each number, X is the mean,

deviation using the formula s =
and n is the number of numbers.

def print results(count, statistics):
real = "9.2f"

if statistics.mode is None:
modeline = ""
elif len(statistics.mode) == 1:
modeline = "mode = {0:{fmt}}\n".format(
statistics.mode[0], fmt=real)
else:
modeline = ("mode = [" +
", ".join(["{0:.2f}".format(m)
for m in statistics.mode]) + "]\n")

prlnt (un ||\

www.it-ebooks.info

http://www.it-ebooks.info/

str.
format()

78 <«

Named
tuple

111 <

Us-

ing str.
format()
with
map-

ping un-

packing
81«

156 Chapter 3. Collection Data Types

count = {0:6}

mean = {mean:{fmt}}
median = {median:{fmt}}
{IN

std. dev. = {std dev:{fmt}}""".format(
count, modeline, fmt=real, **statistics. asdict()))

Most of this function is concerned with formatting the modes list into the mode-
line string. If there are no modes, the mode line is not printed at all. If there
is one mode, the mode list has just one item (mnode[0]) which is printed using
the same format as is used for the other statistics. If there are several modes,
we print them as a list with each one formatted appropriately. This is done by
using a list comprehension to produce a list of mode strings, and then joining
all the strings in the list together with “,” in between each one. The printing
at the end is easy thanks to our use of a named tuple and its asdict() method,
in conjunction with mapping unpacking. This lets us access the statistics in
the statistics object using names rather than numeric indexes, and thanks to
Python’s triple-quoted strings we can lay out the text to be printed in an under-
standable way. Recall that if we use mapping unpacking to pass arguments to
the str.format() method, it may be done only once and only at the end.

There is one subtle point to note. The modes are printed as format item {1},
which is followed by a backslash. The backslash escapes the newline, so if the
mode is the empty string no blank line will appear. And it is because we have
escaped the newline that we must put \n at the end of the modeline string if it
is not empty.

Summary

In this chapter we covered all of Python’s built-in collection types, and also a
couple of collection types from the standard library. We covered the collection
sequence types, tuple, collections.namedtuple, and list, which support the
same slicing and striding syntax as strings. The use of the sequence unpack-
ing operator (*) was also covered, and brief mention was made of starred argu-
ments in function calls. We also covered the set types, set and frozenset, and
the mapping types, dict and collections.defaultdict.

We saw how to use the named tuples provided by Python’s standard library to
create simple custom tuple data types whose items can be accessed by index
position, or more conveniently, by name. We also saw how to create “constants”
by using variables with all uppercase names.

In the coverage of lists we saw that everything that can be done to tuples can
be done to lists. And thanks to lists being mutable they offer considerably
more functionality than tuples. This includes methods that modify the list

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 157

(e.g., list.pop()), and the ability to have slices on the left-hand side of an as-
signment, to provide insertion, replacement, and deletion of slices. Lists are
ideal for holding sequences of items, especially if we need fast access by index
position.

When we discussed the set and frozenset types, we noted that they may
contain only hashable items. Sets provide fast membership testing and are
useful for filtering out duplicate data.

Dictionaries are in some ways similar to sets—for example, their keys must
be hashable and are unique just like the items in a set. But dictionaries hold
key—value pairs, whose values can be of any type. The dictionary coverage
included the dict.get() and dict.setdefault() methods, and the coverage of
default dictionaries showed an alternative to using these methods. Like sets,
dictionaries provide very fast membership testing and fast access by key.

Lists, sets, and dictionaries all offer compact comprehension syntaxes that can
be used to create collections of these types from iterables (which themselves
can be comprehensions), and with conditions attached if required. The range()
and zip() functions are frequently used in the creation of collections, both in
conventional for ... in loops and in comprehensions.

Items can be deleted from the mutable collection types using the relevant
methods, such as list.pop() and set.discard(), or using del, for example, del
d[k] to delete an item with key k from dictionary d.

Python’s use of object references makes assignment extremely efficient, but
it also means that objects are not copied when the assignment operator (=) is
used. We saw the differences between shallow and deep copying, and later on
saw how lists can be shallow-copied using a slice of the entirelist,L[:],and how
dictionaries can be shallow-copied using the dict. copy() method. Any copyable
object can be copied using functions from the copy module, with copy.copy()
performing a shallow copy, and copy.deepcopy() performing a deep copy.

We introduced Python’s highly optimized sorted() function. This function is
used a lot in Python programming, since Python doesn’t provide any intrinsi-
cally ordered collection data types, so when we need to iterate over collections
in sorted order, we use sorted().

Python’s built-in collection data types—tuples, lists, sets, frozen sets, and
dictionaries—are sufficient in themselves for all purposes. Nonetheless, a few
additional collection types are available in the standard library, and many
more are available from third parties.

We often need to read in collections from files, or write collections to files. In
this chapter we focused just on reading and writing lines of text in our very
brief coverage of text file handling. Full coverage of file handling is given in

Chapter 7, and additional means of providing data persistence is covered in
Chapter 12.

www.it-ebooks.info

http://www.it-ebooks.info/

158 Chapter 3. Collection Data Types

In the next chapter, we will look more closely at Python’s control structures,
and introduce one that we have not seen before. We will also look in more depth
at exception-handling and at some additional statements, such as assert, that
we have not yet covered. In addition, we will cover the creation of custom func-
tions, and in particular we will look at Python’s incredibly versatile argument-
handling facilities.

Exercises

1. Modify the external sites.py program to use a default dictionary. This is
an easy change requiring an additional import, and changes to just two
other lines. A solution is provided in external sites ans.py.

2. Modify the uniquewords2.py program so that it outputs the words in fre-
quency of occurrence order rather than in alphabetical order. You'll need
to iterate over the dictionary’s items and create a tiny two-line function
to extract each item’s value and pass this function as sorted()’s key func-
tion. Also, the call to print() will need to be changed appropriately. This
isn’t difficult, but it is slightly subtle. A solution is provided in unique-
words_ans.py.

3. Modify the generate_usernames.py program so that it prints the details of
two users per line, limiting names to 17 characters and outputting a form
feed character after every 64 lines, with the column titles printed at the
start of every page. Here’s a sample of the expected output:

Name ID Username Name ID Username

Aitkin, Shatha... (2370) saitkin Alderson, Nicole. (8429) nalderso
Allison, Karma... (8621) kallison Alwood, Kole E... (2095) kealwood
Annie, Neervana.. (2633) nannie Apperson, Lucyann (7282) leappers

This is challenging. You'll need to keep the column titles in variables so
that they can be printed when needed, and you’ll need to tweak the format
specifications to accommodate the narrower names. One way to achieve
pagination is to write all the output items to a list and then iterate over
the list using striding to get the left- and right-hand items, and using zip()
to pair them up. A solution is provided in generate usernames_ans.py and
a longer sample data file is provided in data/users2.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

® Control Structures
® Exception Handling

@® Custom Functions

Control Structures and
Functions

This chapter’s first two sections cover Python’s control structures, with the
first section dealing with branching and looping and the second section cov-
ering exception-handling. Most of the control structures and the basics of
exception-handling were introduced in Chapter 1, but here we give more com-
plete coverage, including additional control structure syntaxes, and how to
raise exceptions and create custom exceptions.

The third and largest section is devoted to creating custom functions, with
detailed coverage of Python’s extremely versatile argument handling. Custom
functions allow us to package up and parameterize functionality—this reduces
the size of our code by eliminating code duplication and provides code reuse.
(In the following chapter we will see how to create custom modules so that we
can make use of our custom functions in multiple programs.)

Control Structures

Python provides conditional branching with if statements and looping with
while and for ... in statements. Python also has a conditional expression—this
is a kind of if statement that is Python’s answer to the ternary operator (?:)
used in C-style languages.

Conditional Branching
As we saw in Chapter 1, this is the general syntax for Python’s conditional
branch statement:
if boolean expressionl:

suitel

159

www.it-ebooks.info

http://www.it-ebooks.info/

160 Chapter 4. Control Structures and Functions

elif boolean expression2:
suite2

elif boolean expressionN:
suiteN

else:
else suite

There can be zero or more elif clauses, and the final else clause is option-
al. If we want to account for a particular case, but want to do nothing if it
occurs, we can use pass (which serves as a “do nothing” place holder) as that
branch’s suite.

In some cases,we canreduce an if ... else statement down to a single condition-
al expression. The syntax for a conditional expression is:

expressionl if boolean expression else expression2

If the boolean expression evaluates to True, the result of the conditional
expression is expressionl; otherwise, the result is expression2.

One common programming pattern is to set a variable to a default value, and
then change the value if necessary, for example, due to a request by the user,
or to account for the platform on which the program is being run. Here is the
pattern using a conventional if statement:

offset = 20
if not sys.platform.startswith("win"):
offset = 10

The sys.platform variable holds the name of the current platform, for example,
“win32” or “linux2”. The same thing can be achieved in just one line using a
conditional expression:

offset = 20 if sys.platform.startswith("win") else 10

No parentheses are necessary here, but using them avoids a subtle trap. For
example, suppose we want to set a width variable to 100 plus an extra 10 if
margin is True. We might code the expression like this:

width = 100 + 10 if margin else © # WRONG!

What is particularly nasty about this, is that it works correctly if margin is True,
setting width to 110. But if margin is False, width is wrongly set to 0 instead
of 100. This is because Python sees 100 + 10 as the expressionl part of the
conditional expression. The solution is to use parentheses:

width = 100 + (10 if margin else 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Control Structures 161

The parentheses also make things clearer for human readers.

Conditional expressions can be used to improve messages printed for users.
For example, when reporting the number of files processed, instead of print-
ing “0 file(s)”, “1 file(s)”, and similar, we could use a couple of conditional ex-
pressions:

print("{0} file{1}".format((count if count != 0 else "no"),
("s" if count !'=1 else "")))

This will print “no files”, “1 file”, “2 files”, and similar, which gives a much more
professional impression.

Looping

Python provides a while loop and a for ... in loop, both of which have a more
sophisticated syntax than the basics we showed in Chapter 1.

while Loops

Here is the complete general syntax of the while loop:

while boolean expression:
while suite

else:
else suite

The else clause is optional. Aslong as the boolean expression is True, the while
block’s suite is executed. If the boolean expression is or becomes False, the
loop terminates, and if the optional else clause is present, its suite is executed.
Inside the while block’s suite, if a continue statement is executed, control
is immediately returned to the top of the loop, and the boolean expression is
evaluated again. If the loop does not terminate normally, any optional else
clause’s suite is skipped.

The optional else clause is rather confusingly named since the else clause’s
suite is always executed if the loop terminates normally. If the loop is broken
out of due to a break statement, or a return statement (if the loop is in a
function or method), or if an exception is raised, the else clause’s suite is not
executed. (If an exception occurs, Python skips the else clause and looks for
a suitable exception handler—this is covered in the next section.) On the plus
side, the behavior of the else clause is the same for while loops, for ... in loops,
and try ... except blocks.

Let’s look at an example of the else clause in action. The str.index() and
list.index() methods return the index position of a given string or item, or
raise a ValueError exception if the string or item is not found. The str.find()

www.it-ebooks.info

http://www.it-ebooks.info/

enumer-
ate()

139 <

162 Chapter 4. Control Structures and Functions

method does the same thing, but on failure, instead of raising an exception it
returns an index of -1. There is no equivalent method for lists, but if we wanted
a function that did this, we could create one using a while loop:

def list find(lst, target):
index = 0
while index < len(lst):
if lst[index] == target:

break

index += 1
else:

index = -1

return index

This function searches the given list looking for the target. If the target is
found, the break statement terminates the loop, causing the appropriate index
position to be returned. If the target is not found, the loop runs to completion
and terminates normally. After normal termination, the else suite is executed,
and the index position is set to -1 and returned.

for Loops

Like a while loop, the full syntax of the for ... in loop also includes an optional
else clause:

for expression in iterable:
for _suite

else:
else suite

The expression is normally either a single variable or a sequence of variables,
usually in the form of a tuple. If a tuple or list is used for the expression, each
item is unpacked into the expression’s items.

If a continue statement is executed inside the for ... in loop’s suite, control is
immediately passed to the top of the loop and the next iteration begins. If the
loop runs to completion it terminates, and any else suite is executed. If the
loop is broken out of due to a break statement, or a return statement (if the loop
is in a function or method), or if an exception is raised, the else clause’s suite
is not executed. (If an exception occurs, Python skips the else clause and looks
for a suitable exception handler—this is covered in the next section.)

Here is a for ... in loop version of the list find() function, and like the while
loop version, it shows the else clause in action:

def list find(lst, target):
for index, x in enumerate(lst):

www.it-ebooks.info

http://www.it-ebooks.info/

Control Structures 163

if x == target:
break
else:
index = -1
return index

As this code snippet implies, the variables created in the for ... in loop’s expres-
sion continue to exist after the loop has terminated. Like all local variables,
they cease to exist at the end of their enclosing scope.

Exception Handling

Python indicates errors and exceptional conditions by raising exceptions, al-
though some third-party Python libraries use more old-fashioned techniques,
such as “error” return values.

Catching and Raising Exceptions

Exceptions are caught using try ... except blocks, whose general syntax is:

try:
try suite

except exception groupl as variablel:
except suitel

except exception groupN as variableN:
except _suiteN

else:
else suite

finally:
finally suite

There must be at least one except block, but both the else and the finally
blocks are optional. The else block’s suite is executed when the try block’s suite
has finished normally—Dbut it is not executed if an exception occurs. If there
is a finally block, it is always executed at the end.

Each except clause’s exception group can be a single exception or a parenthe-
sized tuple of exceptions. For each group, the as variable part is optional; if
used, the variable contains the exception that occurred, and can be accessed in
the exception block’s suite.

If an exception occurs in the try block’s suite, each except clause is tried in
turn. If the exception matches an exception group, the corresponding suite is
executed. To match an exception group, the exception must be of the same type

www.it-ebooks.info

http://www.it-ebooks.info/

164 Chapter 4. Control Structures and Functions

as the (or one of the) exception types listed in the group, or the same type as
the (or one of the) group’s exception types’ subclasses.*

For example, if a KeyError exception occurs in a dictionary lookup, the first
except clause that has an Exception class will match since KeyError is an
(indirect) subclass of Exception. If no group lists Exception (as is normally the
case), but one did have a LookupError, the KeyError will match, because KeyError
is a subclass of LookupError. And if no group lists Exception or LookupError, but
one does list KeyError, then that group will match. Figure 4.1 shows an extract

from the exception hierarchy.

BaseException
I 1 | |

[ArithmeticError] [EnvironmentError] [EOFEIrror] [LOOkUpEFFOF] [ValueError]
* —
(Tndecerror) - (Keyerror

Figure 4.1 Some of Python’s exception hierarchy

Here is an example of an incorrect use:

try:
x = d[5]
except LookupError: # WRONG ORDER
print(“Lookup error occurred")
except KeyError:
print("Invalid key used")

If dictionary d has no item with key 5, we want the most specific exception,
KeyError, to be raised, rather than the more general LookupError exception. But
here, the KeyError except block will never be reached. If a KeyError is raised,
the LookupError except block will match it because LookupError is a base class
of KeyError, that is, LookupError appears higher than KeyError in the exception
hierarchy. So when we use multiple except blocks, we must always order

* As we will see in Chapter 6, in object-oriented programming it is common to have a class
hierarchy, that is, one class—data type—inheriting from another. In Python, the start of this
hierarchy is the object class; every other class inherits from this class, or from another class that
inherits from it. A subclassis a class that inherits from another class, so all Python classes (except
object) are subclasses since they all inherit object.

www.it-ebooks.info

http://www.it-ebooks.info/

Exception Handling 165

them from most specific (lowest in the hierarchy) to least specific (highest in
the hierarchy).

try:
x = d[k / n]

except Exception: # BAD PRACTICE
print("Something happened”)

Note that it is usually bad practice to use except Exception since this will
catch all exceptions and could easily mask logical errors in our code. In this
example, we might have intended to catch KeyErrors, but if n is 0, we will
unintentionally—and silently—catch a ZeroDivisionError exception.

It is also possible to write except:, that is, to have no exception group at all.
An except block like this will catch any exception, including those that inherit
BaseException but not Exception (these are not shown in Figure 4.1). This has
the same problems as using except Exception, only worse, and should never
normally be done.

If none of the except blocks matches the exception, Python will work its way up
the call stack looking for a suitable exception handler. If none is found the pro-
gram will terminate and print the exception and a traceback on the console.

If no exceptions occur, any optional else block is executed. And in all
cases—that is, if no exceptions occur, if an exception occurs and is handled, or
if an exception occurs that is passed up the call stack—any finally block’s suite
isalways executed. If no exception occurs, or if an exception occurs and is han-
dled by one of the except blocks, the finally block’s suite is executed at the end;
but if an exception occurs that doesn’t match, first the finally block’s suite is
executed, and then the exception is passed up the call stack. This guarantee of
execution can be very useful when we want to ensure that resources are prop-
erly released. Figure 4.2 illustrates the general try ... except ... finally block
control flows.

Normal Flow Handled Exception Unhandled Exception

t ry:

, except exception: , except exception:

. # handle .. # handle
o> finally: "> finally:
T # cleanup

continue here > # go up call stack

Figure 4.2 Try ... except ... finally control flows

www.it-ebooks.info

> B

http://www.it-ebooks.info/

166 Chapter 4. Control Structures and Functions

Here is a final version of the list find() function, this time using exception-
handling:

def list find(lst, target):
try:
index = lst.index(target)
except ValueError:
index = -1
return index

Here, we have effectively used the try ... except block to turn an exception
into a return value; the same approach can also be used to catch one kind of
exception and raise another instead—a technique we will see shortly.

Python also offers a simpler try ... finally block which is sometimes useful:

try:

try suite
finally:

finally suite

No matter what happens in the try block’s suite (apart from the computer
or program crashing!), the finally block’s suite will be executed. The with
statement used with a context manager (both covered in Chapter 8) can be
used to achieve a similar effect to using a try ... finally block.

One common pattern of use for try ... except ... finally blocks is for handling
file errors. For example, the noblanks.py program reads a list of filenames on
the command line, and for each one produces another file with the same name,
but with its extension changed to .nb, and with the same contents except for no
blank lines. Here’s the program’s read data() function:

def read data(filename):
lines = []
fh = None
try:
fh = open(filename, encoding="utf8")
for line in fh:
if line.strip():
lines.append(line)
except (IOError, O0SError) as err:
print(err)
return []
finally:
if fh is not None:
fh.close()
return lines

www.it-ebooks.info

http://www.it-ebooks.info/

Exception Handling 167

We set the file object, fh, to None because it is possible that the open() call will
fail, in which case nothing will be assigned to fh (so it will stay as None), and
an exception will be raised. If one of the exceptions we have specified occurs
(I0Error or 0SError), after printing the error message we return an empty list.
But note that before returning, the finally block’s suite will be executed, so the
file will be safely closed—if it had been successfully opened in the first place.

Notice also that if an encoding error occurs, even though we don’t catch the
relevant exception (UnicodeDecodeError), the file will still be safely closed. In
such cases the finally block’s suite is executed and then the exception is passed
up the call stack—there is no return value since the function finishes as a
result of the unhandled exception. And in this case, since there is no suitable
except block to catch encoding error exceptions, the program will terminate
and print a traceback.

We could have written the except clause slightly less verbosely:

except EnvironmentError as err:
print(err)
return []

This works because EnvironmentError is the base class for both IOError and
0SError.

In Chapter 8 we will show a slightly more compact idiom for ensuring that files
are safely closed, that does not require a finally block.

Raising Exceptions

Exceptions provide a useful means of changing the flow of control. We can
take advantage of this either by using the built-in exceptions, or by creating
our own, raising either kind when we want to. There are three syntaxes for
raising exceptions:

raise exception(args)
raise exception(args) from original exception
raise

When the first syntax is used the exception that is specified should be either
one of the built-in exceptions, or a custom exception that is derived from
Exception. If we give the exception some text as its argument, this text will be
output if the exception is printed when it is caught. The second syntax is a
variation of the first—the exception is raised as a chained exception (covered
in Chapter 9) that includes the original exception exception, so this syntax
is used inside except suites. When the third syntax is used, that is, when no
exception is specified, raise will reraise the currently active exception—and if
there isn’t one it will raise a TypeError.

www.it-ebooks.info

Deal-
ing with
runtime
errors

» 415

Context
man-
agers

» 369

Chained
excep-
tions

» 419

http://www.it-ebooks.info/

168 Chapter 4. Control Structures and Functions

Custom Exceptions

Custom exceptions are custom data types (classes). Creating classes is covered
in Chapter 6, but since it is easy to create simple custom exception types, we
will show the syntax here:

class exceptionName(baseException): pass

The base class should be Exception or a class that inherits from Exception.

One use of custom exceptions is to break out of deeply nested loops. For
example, if we have a table object that holds records (rows), which hold fields
(columns), which have multiple values (items), we could search for a particular
value with code like this:

found = False
for row, record in enumerate(table):
for column, field in enumerate(record):
for index, item in enumerate(field):
if item == target:
found = True
break
if found:
break
if found:
break
if found:
print("found at ({0}, {1}, {2})".format(row, column, index))
else:
print("not found")

The 15 lines of code are complicated by the fact that we must break out of each
loop separately. An alternative solution is to use a custom exception:

class FoundException(Exception): pass

try:

for row, record in enumerate(table):

for column, field in enumerate(record):
for index, item in enumerate(field):
if item == target:
raise FoundException()

except FoundException:

print("found at ({0}, {1}, {2})".format(row, column, index))
else:

print("not found")

www.it-ebooks.info

http://www.it-ebooks.info/

Exception Handling 169

This cuts the code down to ten lines, or 11 including defining the exception,
and is much easier to read. If the item is found we raise our custom exception
and the except block’s suite is executed—and the else block is skipped. And if
the item is not found, no exception is raised and so the else suite is executed at
the end.

Let’s look at another example to see some of the different ways that exception-
handling can be done. All of the snippets are taken from the checktags.py pro-
gram, a program that reads all the HTML files it is given on the command line
and performs some simple tests to verify that tags begin with “<” and end with

>”, and that entities are correctly formed. The program defines four custom
exceptions:

class InvalidEntityError(Exception): pass

class InvalidNumericEntityError(InvalidEntityError): pass
class InvalidAlphaEntityError(InvalidEntityError): pass
class InvalidTagContentError(Exception): pass

The second and third exceptions inherit from the first; we will see why this is
useful when we discuss the code that uses the exceptions. The parse() function
that uses the exceptions is more than 70 lines long, so we will show only those
parts that are relevant to exception-handling.

fh = None
try:
fh = open(filename, encoding="utf8")
errors = False
for lino, line in enumerate(fh, start=1):
for column, c in enumerate(line, start=1):
try:

The code begins conventionally enough, setting the file object to None and
putting all the file handling in a try block. The program reads the file line by
line and reads each line character by character.

Notice that we have two try blocks; the outer one is used to handle file object
exceptions, and the inner one is used to handle parsing exceptions.

elif state == PARSING ENTITY:
ifc==";":
if entity.startswith("#"):
if frozenset(entity[1l:]) - HEXDIGITS:
raise InvalidNumericEntityError()
elif not entity.isalpha():
raise InvalidAlphaEntityError()

www.it-ebooks.info

http://www.it-ebooks.info/

set type
121 <

170 Chapter 4. Control Structures and Functions

The function has various states, for example, after reading an ampersand
(&), it enters the PARSING ENTITY state, and stores the characters between (but
excluding) the ampersand and semicolon in the entity string.

The part of the code shown here handles the case when a semicolon has been
found while reading an entity. If the entity is numeric (of the form “&#”, with
hexadecimal digits, and then “;”, for example, “AC;”), we convert the
numeric part of it into a set and take away from the set all the hexadecimal
digits; if anything is left at least one invalid character was present and we
raise a custom exception. If the entity is alphabetic (of the form “&”, with

letters, and then“;”, for example, “©”), we raise a custom exception if any
of its letters is not alphabetic.

except (InvalidEntityError,
InvalidTagContentError) as err:
if isinstance(err, InvalidNumericEntityError):
error = "invalid numeric entity"
elif isinstance(err, InvalidAlphaEntityError):
error = "invalid alphabetic entity"

elif isinstance(err, InvalidTagContentError):
error = "invalid tag"
print("ERROR {0} in {1} on line {2} column {3}"
.format(error, filename, lino, column))
if skip_on first error:
raise

If a parsing exception is raised we catch it in this except block. By using the
InvalidEntityError base class, we catch both InvalidNumericEntityError and
InvalidAlphaEntityError exceptions. We then use isinstance() to check which
type of exception occurred, and to set the error message accordingly. The
built-in isinstance() function returns True if its first argument is the same type
as the type (or one of that type’s base types) given as its second argument.

We could have used a separate except block for each of the three custom
parsing exceptions, but in this case combining them means that we avoided
repeating the last four lines (from the print() call to raise), in each one.

The program has two modes of use. If skip on first error is False, the pro-
gram continues checking a file even after a parsing error has occurred;
this can lead to multiple error messages being output for each file. If
skip_on _first error is True, once a parsing error has occurred, after the (one
and only) error message is printed, raise is called to reraise the parsing excep-
tion and the outer (per-file) try block is left to catch it.

www.it-ebooks.info

isin-
stance()
>» 242

http://www.it-ebooks.info/

Exception Handling 171

elif state == PARSING ENTITY:
raise EOFError("missing ';' at end of " + filename)

At the end of parsing a file, we need to check to see whether we have been left in
the middle of an entity. If we have, we raise an EOFError, the built-in end-of-file
exception, but give it our own message text. We could just as easily have raised
a custom exception.

except (InvalidEntityError, InvalidTagContentError):
pass # Already handled
except EOFError as err:
print("ERROR unexpected EOF:", err)
except EnvironmentError as err:
print(err)
finally:
if fh is not None:
fh.close()

For the outer try block we have used separate except blocks since the behavior
we want varies. If we have a parsing exception, we know that an error message
has already been output and the purpose is simply to break out of reading the
file and to move on to the next file, so we don’t need to do anything in the ex-
ception handler. If we get an EOFError it could be caused by a genuine prema-
ture end of file or it could be the result of us raising the exception ourselves.
In either case, we print an error message, and the exception’s text. If an Envi-
ronmentError occurs (i.e., if an I0Error or an 0SError occurs), we simply print its
message. And finally, no matter what, if the file was opened, we close it.

Custom Functions

Functions are a means by which we can package up and parameterize function-
ality. Four kinds of functions can be created in Python: global functions, local
functions, lambda functions, and methods.

Every function we have created so far has been a global function. Global
objects (including functions) are accessible to any code in the same module
(i.e., the same .py file) in which the object is created. Global objects can also be
accessed from other modules, as we will see in the next chapter.

Local functions (also called nested functions) are functions that are defined
inside other functions. These functions are visible only to the function where
they are defined; they are especially useful for creating small helper functions
that have no use elsewhere. We first show them in Chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

172 Chapter 4. Control Structures and Functions

Online Documentation

Although this book provides solid coverage of the Python 3 language and
the built-in functions and most commonly used modules in the standard
library, Python’s online documentation provides a considerable amount
of reference documentation, both on the language, and particularly on
Python’s extensive standard library. The documentation is available online
at docs.python.org and is also provided with Python itself.

On Windows the documentation is supplied in the Windows help file format.
Click Start—All Programs—Python 3.x—Python Manuals to launch the Windows
help browser. This tool has both an Index and a Search function that makes
finding documentation easy. Unix users have the documentation in HTML
format. In addition to the hyperlinks, there are various index pages. There
is also a very convenient Quick Search function available on the left-hand side
of each page.

The most frequently used online document for new users is the Library
Reference, and for experienced users the Global Module Index. Both of
these have links to pages covering Python’s entire standard library—and
in the case of the Library Reference, links to pages covering all of Python’s
built-in functionality as well.

It is well worth skimming through the documentation, particularly the Li-
brary Reference or the Global Module Index, to see what Python’s standard
library offers, and clicking through to the documentation of whichever top-
ics are of interest. This should provide an initial impression of what is avail-
able and should also help you to establish a mental picture of where you can
find the documentation you are interested in. (A brief summary of Python’s
standard library is provided in Chapter 5.)

Help is also available from the interpreter itself. If you call the built-
in help() function with no arguments, you will enter the online help
system—simply follow the instructions to get the information you want,
and type “q” or “quit” to return to the interpreter. If you know what module
or data type you want help on, you can call help() with the module or data
type asits argument. For example,help(str) providesinformation on the str
data type, including all of its methods, help(dict.update) provides informa-
tion on the dict collection data type’s update() method, and help(os) displays

information about the os module (providing it has been imported).

Once familiar with Python, it is often sufficient to just be reminded about
what attributes (e.g., what methods) a data type provides. This information
is available using the dir() function—for example, dir(str) lists all the
string methods, and dir(os) lists all the os module’s constants and functions
(again, providing the module has been imported).

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Functions 173

Lambda functions are expressions, so they can be created at their point of use;
however, they are much more limited than normal functions.

Methods are functions that are associated with a particular data type and
can be used only in conjunction with the data type—they are introduced in
Chapter 6 when we cover object-oriented programming.

Python provides many built-in functions, and the standard library and third-
party libraries add hundreds more (thousands if we count all the methods), so
in many cases the function we want has already been written. For this reason,
it is always worth checking Python’s online documentation to see what is al-
ready available. See the sidebar “Online Documentation” (172 <).

The general syntax for creating a (global or local) function is:

def functionName(parameters):
suite

The parameters are optional, and if there is more than one they are written asa
sequence of comma-separated identifiers, or as a sequence of identifier=value
pairs as we will discuss shortly. For example, here is a function that calculates
the area of a triangle using Heron’s formula:

def heron(a, b, c):
s=(a+b+c) /2
return math.sqrt(s * (s - a) * (s = b) * (s - ¢c))

Inside the function, each parameter, a, b, and c, is initialized with the corre-
sponding value that was passed as an argument. When the function is called,
we must supply all of the arguments, for example, heron(3, 4, 5). If we give too
few or too many arguments, a TypeError exception will be raised. When we do
a call like this we are said to be using positional arguments, because each argu-
ment passed is set as the value of the parameter in the corresponding position.
So in this case, a is set to 3, b to 4, and c to 5, when the function is called.

Every function in Python returns a value, although it is perfectly acceptable
(and common) to ignore the return value. The return value is either a single
value or a tuple of values, and the values returned can be collections, so there
are no practical limitations on what we can return. We can leave a function at
any point by using the return statement. If we use return with no arguments,
or if we don’t have a return statement at all, the function will return None.
(In Chapter 6 we will cover the yield statement which can be used instead of
return in certain kinds of functions.)

Some functions have parameters for which there can be a sensible default. For
example, here is a function that counts the letters in a string, defaulting to the
ASCII letters:

www.it-ebooks.info

http://www.it-ebooks.info/

174 Chapter 4. Control Structures and Functions

def letter count(text, letters=string.ascii letters):
letters = frozenset(letters)
count = 0
for char in text:
if char in letters:
count +=1
return count

We have specified a default value for the letters parameter by using the
parameter=default syntax. This allows us to call letter count() with just one
argument, for example, letter count("Maggie and Hopey"). Here, inside the
function, letters will be the string that was given as the default value. But we
can still change the default, for example, using an extra positional argument,
letter count("Maggie and Hopey", "aeiouAEIOU"),or using a keyword argument
(covered next), letter count("Maggie and Hopey", letters="aeiouAEIOU").

The parameter syntax does not permit us to follow parameters with default
values with parameters that don’t have defaults, so def bad(a, b=1, c): won’t
work. On the other hand, we are not forced to pass our arguments in the
order they appear in the function’s definition—instead, we can use keyword
arguments, passing each argument in the form name=value.

Here is a tiny function that returns the string it is given, or if it is longer than
the specified length, it returns a shortened version with an indicator added:

def shorten(text, length=25, indicator="..."):
if len(text) > length:
text = text[:length - len(indicator)] + indicator
return text

Here are a few example calls:

shorten("The Silkie") # returns: 'The Silkie'
shorten(length=7, text="The Silkie") # returns: 'The ...'
shorten("The Silkie", indicator="&", length=7) # returns: 'The Si&'
shorten("The Silkie", 7, "&") # returns: 'The Si&'

Because both length and indicator have default values, either or both can be
omitted entirely, in which case the default is used—this is what happens in
the first call. In the second call we use keyword arguments for both of the
specified parameters, so we can order them as we like. The third call mixes
both positional and keyword arguments. We used a positional first argument
(positional arguments must always precede keyword arguments), and then two
keyword arguments. The fourth call simply uses positional arguments.

The difference between a mandatory parameter and an optional parameter
is that a parameter with a default is optional (because Python can use the
default), and a parameter with no default is mandatory (because Python can-

www.it-ebooks.info

http://www.it-ebooks.info/

Read-
ing and
writing
text files
sidebar

131 <

Custom Functions 175

not guess). The careful use of default values can simplify our code and make
calls much cleaner. Recall that the built-in open() function has one manda-
tory argument (filename), and six optional arguments. By using a mixture of
positional and keyword arguments we are able to specify those arguments we
care about, while omitting the others. This leaves us free to write things like
open(filename, encoding="utf8"), rather than being forced to supply every ar-
gument like this: open(filename, "r", None, "utf8", None, None, True). Anoth-
er benefit of using keyword arguments is that they make function calls much
more readable, particularly for Boolean arguments.

When default values are given they are created at the time the def statement
is executed (i.e., when the function is created), not when the function is called.
For immutable arguments like numbers and strings this doesn’t make any
difference, but for mutable arguments a subtle trap is lurking.

def append if even(x, lst=[]): # WRONG!
if x %2 ==0:
1st.append(x)
return lst

When this function is created the lst parameter is set to refer to a new list.
And whenever this function is called with just the first parameter, the default
list will be the one that was created at the same time as the function itself—so
no new list is created. Normally, this is not the behavior we want—we expect
a new empty list to be created each time the function is called with no second
argument. Here is a new version of the function, this time using the correct
idiom for default mutable arguments:

def append if even(x, lst=None):
if 1st is None:
st = []
if x %2 =0:
1st.append(x)
return lst

Here we create a new list every time the function is called without a list argu-
ment. And if a list argument is given, we use it, just the same as the previous
version of the function. This idiom of having a default of None and creating a
fresh object should be used for dictionaries, lists, sets, and any other mutable
data types that we want to use as default arguments. Here is a slightly shorter
version of the function which has exactly the same behavior:

def append if even(x, lst=None):
st = [] if lst is None else lst
if x%2=20:
1st.append(x)
return lst

www.it-ebooks.info

http://www.it-ebooks.info/

176 Chapter 4. Control Structures and Functions

Using a conditional expression we can save a line of code for each parameter
that has a mutable default argument.

Names and Docstrings

Using good names for a function and its parameters goes a long way toward
making the purpose and use of the function clear to other programmers—and
to ourselves some time after we have created the function. Here are a few rules
of thumb that you might like to consider.

¢ Use a naming scheme, and use it consistently. In this book we use UP-
PERCASE for constants, TitleCase for classes (including exceptions), camel-
Case for GUI (Graphical User Interface) functions and methods (covered
in Chapter 15), and lowercase or lowercase with underscores for every-
thing else.

¢ For all names, avoid abbreviations, unless they are both standardized and
widely used.

* Be proportional with variable and parameter names: x is a perfectly good
name for an x-coordinate and i is fine for a loop counter, but in general the
name should be long enough to be descriptive. The name should describe
the data’s meaning rather than its type (e.g., amount _due rather than money),
unless the use is generic to a particular type—see, for example, the text
parameter in the shorten() example > 177).

* Functions and methods should have names that say what they do or
what they return (depending on their emphasis), but never how they do
it—since that might change.

Here are a few naming examples:

def find(l, s, i=0): # BAD
def linear search(l, s, 1i=0): # BAD
def first index of(sorted name list, name, start=0): # GOOD

All three functions return the index position of the first occurrence of a
name in a list of names, starting from the given starting index and using an
algorithm that assumes the list is already sorted.

The first one is bad because the name gives no clue as to what will be found,
and its parameters (presumably) indicate the required types (list, string, inte-
ger) without indicating what they mean. The second one is bad because the
function name describes the algorithm originally used—it might have been
changed since. This may not matter to users of the function, but it will proba-
bly confuse maintainers if the name implies a linear search, but the algorithm
implemented has been changed to a binary search. The third one is good be-

www.it-ebooks.info

http://www.it-ebooks.info/

Se-
quence
unpack-
ing

114 <

Custom Functions 177

cause the function name says what isreturned, and the parameter names clear-
ly indicate what is expected.

None of the functions have any way of indicating what happens if the name
isn’t found—do they return, say, -1, or do they raise an exception? Somehow
such information needs to be documented for users of the function.

We can add documentation to any function by using a docstring—this is simply
a string that comes immediately after the def line, and before the function’s
code proper begins. For example, here is the shorten() function we saw earlier,
but this time reproduced in full:

def shorten(text, length=25, indicator="..."):
"""Returns text or a truncated copy with the indicator added

text is any string; length is the maximum length of the returned
string (including any indicator); indicator is the string added at
the end to indicate that the text has been shortened

>>> shorten("Second Variety")
'Second Variety'
>>> shorten("Voices from the Street", 17)
'Voices from th...'
>>> shorten("Radio Free Albemuth", 10, "*")
'Radio Fre*'
if len(text) > length:
text = text[:length - len(indicator)] + indicator
return text

It is not unusual for a function or method’s documentation to be longer than the
function itself. One convention is to make the first line of the docstring a brief
one-line description, then have a blank line followed by a full description, and
then toreproduce some examples as they would appear if typed in interactively.
In Chapter 5 and Chapter 9 we will see how examples in function documenta-
tion can be used to provide unit tests.

Argument and Parameter Unpacking

We saw in the previous chapter that we can use the sequence unpacking oper-
ator (*) to supply positional arguments. For example, if we wanted to compute
the area of a triangle and had the lengths of the sides in a list, we could make
the call like this, heron(sides[0], sides[1], sides[2]), or simply unpack the list
and do the much simpler call, heron(*sides). And if the list (or other sequence)
has more items than the function has parameters, we can use slicing to extract
exactly the right number of arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

178 Chapter 4. Control Structures and Functions

We can also use the sequence unpacking operator in a function’s parameter
list. This is useful when we want to create functions that can take a variable
number of positional arguments. Here is a product() function that computes
the product of the arguments it is given:

def product(*args):
result =1
for arg in args:
result *= arg
return result

This function has one parameter called args. Having the * in front means
that inside the function the args parameter will be a tuple with its items set to
however many positional arguments are given. Here are a few example calls:

product(l, 2, 3, 4) # args == (1, 2, 3, 4); returns: 24
product(5, 3, 8) # args == (5, 3, 8); returns: 120
product(11) # args == (11,); returns: 11

We can have keyword arguments following positional arguments, as this
function to calculate the sum of its arguments, each raised to the given pow-
er, shows:

def sum_of powers(*args, power=l):
result = 0
for arg in args:
result += arg ** power
return result

The function can be called with just positional arguments, for example,
sum of powers(1, 3, 5), or with both positional and keyword arguments, for ex-
ample, sum of powers(1, 3, 5, power=2).

It is also possible to use * as a “parameter” in its own right. This is used to
signify that there can be no positional arguments after the *, although keyword
arguments are allowed. Here is a modified version of the heron() function.
This time the function takes exactly three positional arguments, and has one
optional keyword argument.

def heron2(a, b, ¢, *, units="square meters"):
s=f(a+b+c) /2
area = math.sqrt(s * (s - a) * (s - b) * (s - ¢))
return "{0} {1}".format(area, units)

Here are a few example calls:

heron2(25, 24, 7) # returns: '84.0 square meters'
heron2(41, 9, 40, units="sq. inches") # returns: '180.0 sq. inches'

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Functions 179

heron2(25, 24, 7, "sq. inches") # WRONG! raises TypeError

In the third call we have attempted to pass a fourth positional argument, but
the * does not allow this and causes a TypeError to be raised.

By making the * the first parameter we can prevent any positional arguments
from being used, and force callers to use keyword arguments. Here is such a
(fictitious) function’s signature:

def print setup(*, paper="Letter", copies=1, color=False):

We can call print_setup() with no arguments, and accept the defaults. Or we
can change some or all of the defaults, for example, print_setup(paper="A4",
color=True). But if we attempt to use positional arguments, for example,
print_setup("A4"), a TypeError will be raised.

Just as we can unpack a sequence to populate a function’s positional argu-
ments, we can also unpack a mapping using the mapping unpacking operator,
asterisk asterisk (**).* We can use ** to pass a dictionary to the print_setup()
function. For example:

options = dict(paper="A4", color=True)
print_setup(**options)

Here the options dictionary’s key—value pairs are unpacked with each key’s
value being assigned to the parameter whose name is the same as the key. If
the dictionary contains a key for which there is no corresponding parameter,
a TypeError is raised. Any argument for which the dictionary has no corre-
sponding item is set to its default value—but if there is no default, a TypeError
is raised.

We can also use the mapping unpacking operator with parameters. This allows
us to create functions that will accept as many keyword arguments as are giv-
en. Hereisanadd person details() function that takes Social Security number
and surname positional arguments, and any number of keyword arguments:

def add person details(ssn, surname, **kwargs):
print("SSN =", ssn)
print(" surname =", surname)
for key in sorted(kwargs):

print(" {0} = {1}".format(key, kwargs[key]))

This function could be called with just the two positional arguments, or with
additional information, for example, add person details(83272171, "Luther",
forename="Lexis", age=47). This provides us with a lot of flexibility. And we

*As we saw in Chapter 2, when used as a binary operator, ** is the pow() operator.

www.it-ebooks.info

http://www.it-ebooks.info/

180 Chapter 4. Control Structures and Functions

can of course accept both a variable number of positional arguments and a
variable number of keyword arguments:

def print args(*args, **kwargs):
for i, arg in enumerate(args):
print("positional argument {0} = {1}".format(i, arg))
for key in kwargs:
print("keyword argument {0} = {1}".format(key, kwargs[keyl))

This function just prints the arguments it is given. It can be called with no
arguments, or with any number of positional and keyword arguments.

Accessing Variables in the Global Scope

It is sometimes convenient to have a few global variables that are accessed by
various functions in the program. This is usually okay for “constants”, but is
not a good practice for variables, although for short one-off programs it isn’t
always unreasonable.

The digit names.py program takes an optional language (“en” or “fr”) and a
number on the command line and outputs the names of each of the digits it is
given. So if it is invoked with “123” on the command line, it will output “one
two three”. The program has three global variables:

Language = "en"

ENGLISH = {0: "zero", 1: "one", 2: "two", 3: "three", 4: "four",
5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine"}

FRENCH = {0: "zéro", 1: "un", 2: "deux", 3: "trois", 4: "quatre",
5: "cing", 6: "six", 7: "sept", 8: "huit", 9: "neuf"}

We have followed the convention that all uppercase variable names indicate
constants, and have set the default language to English. (Python does not
provide a direct way to create constants, instead relying on programmers to
respect the convention.) Elsewhere in the program we access the Language
variable, and use it to choose the appropriate dictionary to use:

def print digits(digits):
dictionary = ENGLISH if Language == "en" else FRENCH
for digit in digits:
print(dictionary[int(digit)], end=" ")
print()

When Python encounters the Language variable in this function it looks in the
local (function) scope and doesn’t find it. So it then looks in the global (. py file)
scope, and finds it there. The end keyword argument used with the first print()
call is explained in the sidebar “The print() Function” > 181).

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Functions 181

The print() Function

The print() function accepts any number of positional arguments, and has
three keyword arguments, sep, end, and file. All the keyword arguments
have defaults. The sep parameter’s default is a space; if two or more posi-
tional arguments are given, each is printed with the sep in between, but if
there is just one positional argument this parameter does nothing. The end
parameter’sdefaultis \n,which is why a newline is printed at the end of calls
to print(). The file parameter’s default is sys.stdout, the standard output
stream, which is usually the console.

Any of the keyword arguments can be given the values we want instead of
using the defaults. For example, file can be set to a file object that is open
for writing or appending, and both sep and end can be set to other strings,
including the empty string.

If we need to print several items on the same line, one common pattern is
to print the items using print () calls where end is set to a suitable separator,
and then at the end to call print() with no arguments, since this just prints
a newline. For an example, see the print digits() function (180 <).

Here is the code from the program’s main() function. It changes the Language
variable’s value if necessary, and calls print_digits() to produce the output.

def main():
if len(sys.argv) == 1 or sys.argv[1l] in {"-h", "—help"}:
print(“"usage: {0} [en|fr] number".format(sys.argv[0]))
sys.exit()

args = sys.argv[l:]

if args[0] in {"en", "fr"}:
global Language
Language = args.pop(0)

print_digits(args.pop(0))

What stands out here is the use of the global statement. This statement is
used to tell Python that a variable exists at the global (file) scope, and that
assignments to the variable should be applied to the global variable, rather
than cause a local variable of the same name to be created.

If we did not use the global statement the program would run, but when
Python encountered the Language variable in the if statement it would look
for it in the local (function) scope, and not finding it would create a new local
variable called Language, leaving the global Language unchanged. This subtle
bug would show up as an error only when the program was run with the “fr”
argument, because then the local Language variable would be created and set to

www.it-ebooks.info

http://www.it-ebooks.info/

sorted()

140,
144 <

182 Chapter 4. Control Structures and Functions

“fr”, but the global Language variable used in the print digits() function would
remain unchanged as “en”.

For nontrivial programs it is best not to use global variables except as con-
stants, in which case there is no need to use the global statement.

Lambda Functions

Lambda functions are functions created using the following syntax:
lambda parameters: expression

The parameters are optional, and if supplied they are normally just comma-
separated variable names, that is, positional arguments, although the complete
argument syntax supported by def statements can be used. The expression can-
not contain branches or loops (although conditional expressions are allowed),
and cannot have a return (or yield) statement. The result of a lambda expres-
sion is an anonymous function. When a lambda function is called it returns the
result of computing the expression as its result. If the expression is a tuple it
should be enclosed in parentheses.

Here is a simple lambda function for adding an s (or not) depending on whether
its argument is 1:

s = lambda x: "" if x == 1 else "s"

The lambda expression returns an anonymous function which we assign to the
variable s. Any (callable) variable can be called using parentheses, so given the
count of files processed in some operation we could output a message using the
s() function like this: print("{0} file{1} processed".format(count, s(count))).

Lambda functions are often used as the key function for the built-in sorted()
function and for the list.sort() method. Suppose we have a list of elements
as 3-tuples of (group, number, name), and we wanted to sort this list in various
ways. Here is an example of such a list:

elements = [(2, 12, "Mg"), (1, 11, "Na"), (1, 3, "Li"), (2, 4, "Be")]
If we sort this list, we get this result:
(1, 3, 'ti*), (1, 11, 'Na'), (2, 4, 'Be'), (2, 12, 'Mg')]

We saw earlier when we covered the sorted() function that we can provide a
key function to alter the sort order. For example, if we wanted to sort the list
by number and name, rather than the natural ordering of group, number, and
name, we could write a tiny function, def ignore@(e): return e[1], e[2], which
could be provided as the key function. Creating lots of little functions like this
can be inconvenient, so a frequently used alternative is a lambda function:

www.it-ebooks.info

Genera-
tor func-
tions

>» 279

http://www.it-ebooks.info/

Default
dictio-
naries

135 <

Custom Functions 183

elements.sort(key=lambda e: (e[1l], e[2]))

Here the key function is lambda e: (e[1], e[2]) with e being each 3-tuple ele-
ment in the list. The parentheses around the lambda expression are required
when the expression is a tuple and the lambda function is created as a func-
tion’s argument. We could use slicing to achieve the same effect:

elements.sort(key=lambda e: e[1:3])

A slightly more elaborate version gives us sorting in case-insensitive name,
number order:

elements.sort(key=lambda e: (e[2].lower(), e[1]))

Here are two equivalent ways to create a function that calculates the area of a
triangle using the conventional % x base x height formula:

def area(b, h):
area = lambda b, h: 0.5 * b * h return 0.5 * b * h

We can call area(6, 5), whether we created the function using a lambda expres-
sion or using a def statement, and the result will be the same.

Another neat use of lambda functions is when we want to create default dictio-
naries. Recall from the previous chapter that if we access a default dictionary
using a nonexistent key, a suitable item is created with the given key and with
a default value. Here are a few examples:

minus one dict = collections.defaultdict(lambda: -1)
point zero dict = collections.defaultdict(lambda: (0, 0))
message dict = collections.defaultdict(lambda: "No message available")

If we access the minus_one_dict with a nonexistent key, a new item will be creat-
ed with the given key and with a value of -1. Similarly for the point zero dict
where the value will be the tuple (0, 0), and for the message_dict where the val-
ue will be the “No message available” string.

Assertions

What happens if a function receives arguments with invalid data? What
happens if we make a mistake in the implementation of an algorithm and
perform an incorrect computation? The worst thing that can happen isthat the
program executes without any (apparent) problem and no one is any the wiser.
One way to help avoid such insidious problems is to write tests—something we
will briefly look at in Chapter 5. Another way is to state the preconditions and
postconditions and to indicate an error if any of these are not met. Ideally, we
should use tests and also state preconditions and postconditions.

www.it-ebooks.info

http://www.it-ebooks.info/

184 Chapter 4. Control Structures and Functions

Preconditions and postconditions can be specified using assert statements,
which have the syntax:

assert boolean expression, optional expression

If the boolean expression evaluates to False an AssertionError exception is
raised. If the optional optional expression is given, it is used as the argument
to the AssertionError exception—this is useful for providing error messages.
Note, though, that assertions are designed for developers, not end-users.
Problems that occur in normal program use such as missing files or invalid
command-line arguments should be handled by other means, such as providing
an error or log message.

Here are two new versions of the product() function. Both versions are equiv-
alent in that they require that all the arguments passed to them are nonzero,
and consider a call with a 0 argument to be a coding error.

def product(*args): # pessimistic def product(*args): # optimistic
assert all(args), "0 argument" result = 1
result =1 for arg in args:
for arg in args: result *= arg
result *= arg assert result, "0 argument"
return result return result

The “pessimistic” version on the left checks all the arguments (or up to the first
0 argument) on every call. The “optimistic” version on the right just checks the
result; after all, if any argument was 0, then the result will be 0.

If one of these product() functions is called with a 0 argument an Assertion-
Error exception will be raised, and output similar to the following will be writ-
ten to the error stream (sys.stderr, usually the console):

Traceback (most recent call last):
File "program.py", line 456, in <module>
x = product(1l, 2, 0, 4, 8)
File "program.py", line 452, in product
assert result, "0 argument”
AssertionError: 0 argument

Python automatically provides a traceback that gives the filename, function,
and line number, as well as the error message we specified.

Once a program is ready for public release (and of course passes all its tests and
does not violate any assertions), what do we do about the assert statements?
We can tell Python not to execute assert statements—in effect, to throw them
away at runtime. This can be done by running the program at the command
line with the -0 option, for example, python -0 program.py. Another approach
is to set the PYTHONOPTIMIZE environment variable to 0. If the docstrings are of

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Functions 185

no use to our users (and normally they wouldn’t be), we can use the -00 option
which in effect strips out both assert statements and docstrings: Note that
there is no environment variable for setting this option. Some developers take
a simpler approach: They produce a copy of their program with all assert state-
ments commented out, and providing this passes their tests, they release the
assertion-free version.

Example: make_html_skeleton.py

In this section we draw together some of the techniques covered in this chapter
and show them in the context of a complete example program.

Very small Web sites are often created and maintained by hand. One way
to make this slightly more convenient is to have a program that can gener-
ate skeleton HTML files that can later be fleshed out with content. The
make html skeleton.py program is an interactive program that prompts the user
for various details and then creates a skeleton HTML file. The program’smain()
function has a loop so that users can create skeleton after skeleton, and it re-
tains common data (e.g., copyright information) so that users don’t have to type
it in more than once. Here is a transcript of a typical interaction:

make_html skeleton.py
Make HTML Skeleton

Enter your name (for copyright): Harold Pinter
Enter copyright year [2008]: 2009

Enter filename: career-synopsis

Enter title: Career Synopsis

Enter description (optional): synopsis of the career of Harold Pinter
Enter a keyword (optional): playwright

Enter a keyword (optional): actor

Enter a keyword (optional): activist

Enter a keyword (optional):

Enter the stylesheet filename (optional): style
Saved skeleton career-synopsis.html

Create another (y/n)? [y]:
Make HTML Skeleton

Enter your name (for copyright) [Harold Pinter]:
Enter copyright year [2009]:

Enter filename:

Cancelled

Create another (y/n)? [yl: n

www.it-ebooks.info

http://www.it-ebooks.info/

str.
format ()

78 «

186 Chapter 4. Control Structures and Functions

Notice that for the second skeleton the name and year had as their defaults
the values entered previously, so they did not need to be retyped. But no
default for the filename is provided, so when that was not given the skeleton
was cancelled.

Now that we have seen how the program is used, we are ready to study the
code. The program begins with two imports:

import datetime
import xml.sax.saxutils

The datetime module provides some simple functions for creating date-
time.date and datetime.time objects. The xml.sax.saxutils module has a useful
xml.sax.saxutils.escape() function that takes a string and returns an equiv-
alent string with the special HTML characters (“&”, “<”, and “>”) in their es-
caped forms (“&”, “<”, and “>”).

Three global strings are defined; these are used as templates.

COPYRIGHT TEMPLATE = "Copyright (c) {0} {1}. All rights reserved."

STYLESHEET TEMPLATE = ('<link rel="stylesheet" type="text/css" '
'media="all" href="{0}" />\n"')

HTML TEMPLATE = """<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" \
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1l-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>{title}</title>

<!—— {copyright} -—

<meta name="Description" content="{description}" />

<meta name="Keywords" content="{keywords}" />

<meta equiv="content-type" content="text/html; charset=utf-8" />
{stylesheet}\

</head>

<body>

</body>
</html>

These strings will be used as templates in conjunction with the str.format()
method. In the case of HTML TEMPLATE we have used names rather than index
positions for the field names, for example, {title}. We will see shortly that we
must use keyword arguments to provide values for these.

class CancelledError(Exception): pass

www.it-ebooks.info

http://www.it-ebooks.info/

Example: make_html_skeleton.py 187

One custom exception is defined; we will see it in use when we look at a couple
of the program’s functions.

The program’s main() function is used to set up some initial information, and
to provide a loop. On each iteration the user has the chance to enter some
information for the HTML page they want generated, and after each one they
are given the chance to finish.

def main():
information = dict(name=None, year=datetime.date.today().year,
filename=None, title=None, description=None,
keywords=None, stylesheet=None)
while True:
try:
print("\nMake HTML Skeleton\n")
populate _information(information)
make_html skeleton(**information)
except CancelledError:
print("Cancelled")
if (get_string("\nCreate another (y/n)?", default="y").lower()
not in {"y", "yes"}):
break

The datetime.date.today() function returns a datetime.date object that holds to-
day’s date. We want just the year attribute. All the other items of information
are set to None since there are no sensible defaults that can be set.

Inside the while loop the program prints a title, then calls the populate infor-
mation() function with the information dictionary. This dictionary is updated
inside the populate _information() function. Next, the make html skeleton()
function is called—this function takes a number of arguments, but rather than
give explicit values for each one we have simply unpacked the information dic-
tionary.

If the user cancels, for example, by not providing mandatory information,
the program prints out “Cancelled”. At the end of each iteration (whether
cancelled or not), the user is asked whether they want to create another
skeleton—if they don’t, we break out of the loop and the program terminates.

def populate information(information):

name = get string("Enter your name (for copyright)", "name",
information["name"])

if not name:

raise CancelledError()

year = get integer("Enter copyright year", "year",
information["year"], 2000,
datetime.date.today().year + 1, True)

www.it-ebooks.info

http://www.it-ebooks.info/

Map-
ping
unpack-

177 <

188 Chapter 4. Control Structures and Functions

if year == 0:
raise CancelledError()
filename = get string("Enter filename", "filename")
if not filename:
raise CancelledError()
if not filename.endswith((".htm", ".html")):
filename += ".html"

information.update(name=name, year=year, filename=filename,
title=title, description=description,
keywords=keywords, stylesheet=stylesheet)

We have omitted the code for getting the title and description texts, HTML key-
words, and the stylesheet file. All of them use the get string() function that
we will look at shortly. It is sufficient to note that this function takes a message
prompt, the “name” of the relevant variable (for use in error messages), and an
optional default value. Similarly, the get integer() function takes a message
prompt, variable name, default value, minimum and maximum values, and
whether 0 is allowed.

At the end we update the information dictionary with the new values using
keyword arguments. For each key=value pair the key is the name of a key in
the dictionary whose value will be replaced with the given value—and in this
case each value is a variable with the same name as the corresponding key in
the dictionary.

In theory, it looks like we could have done the update using information.up-
date(locals()), since all the variables we want to update are in the local scope.
After all, we often use mapping unpacking with locals() to pass arguments to
str.format (). In fact, using locals() to pass arguments to str.format() is gener-
ally safe because only the keys named in the format string are used, with any
others harmlessly ignored. But thisis not the case for updating a dictionary. If
we use locals() to update a dictionary, it will update the dictionary with every-
thing in the local scope—including the dictionary itself—not just the variables
we are interested in. So using locals() to populate or update a dictionary is
usually a bad idea.

This function has no explicit return value (so it returns None). It may also be
terminated if a CancelledError exception is raised, in which case the exception
is passed up the call stack tomain() and handled there.

We will look at the make html skeleton() function in two parts.

def make html skeleton(year, name, title, description, keywords,
stylesheet, filename):
copyright = COPYRIGHT TEMPLATE.format(year,
xml.sax.saxutils.escape(name))

www.it-ebooks.info

http://www.it-ebooks.info/

str.
format()

78 <«

Us-

ing str.
format()
with
map-

ping un-

packing
81«

Example: make_html_skeleton.py 189

title = xml.sax.saxutils.escape(title)
description = xml.sax.saxutils.escape(description)
keywords = ",".join([xml.sax.saxutils.escape(k)
for k in keywords]) if keywords else ""
stylesheet = (STYLESHEET TEMPLATE.format(stylesheet)
if stylesheet else "")
html = HTML TEMPLATE.format(**locals())

To get the copyright text we call str.format() on the COPYRIGHT TEMPLATE, sup-
plying the year and name (suitably HTML-escaped) as positional arguments
to replace {0} and {1}. For the title and description we produce HTML-escaped
copies of their texts.

For the HTML keywords we have two cases to deal with, and we distinguish
them using a conditional expression. If no keywords have been entered, we set
the keywords string to be the empty using. Otherwise, we use a list comprehen-
sion to iterate over all the keywords to produce a new list of strings, with each
one being HTML-escaped. This list is then joined into a single string with a
comma separating each item using str.join().

The stylesheet text is created in a similar way to the copyright text, but within
the context of a conditional expression so that the text is the empty string if
no stylesheet is specified.

The html text is created from the HTML TEMPLATE, with keyword arguments used
to provide the data for the replacement fields rather than the positional argu-
ments used for the other template strings. Rather than pass each argument
explicitly using key=value syntax, we have used mapping unpacking on the
mapping returned by locals() to do this for us. (The alternative would be to
write the format() call as . format(title=title, copyright=copyright, etc.)

fh = None

try:
fh = open(filename, "w", encoding="utf8")
fh.write(html)

except EnvironmentError as err:
print("ERROR", err)

else:

print("Saved skeleton", filename)
finally:

if fh is not None:

fh.close()

Once the HTML has been prepared we write it to the file with the given
filename. We inform the user that the skeleton has been saved—or of the error
message if something went wrong. Asusual we use a finally clause to ensure
that the file is closed if it was opened.

www.it-ebooks.info

http://www.it-ebooks.info/

Us-

ing str.
format()
with
map-

ping un-

packing
81«

190 Chapter 4. Control Structures and Functions

def get string(message, name="string", default=None,
minimum_length=0, maximum_length=80):

message += ": " if default is None else " [{0}]: ".format(default)
while True:
try:
line = input(message)
if not line:

if default is not None:
return default
if minimum length ==
return ""
else:
raise ValueError("{0} may not be empty".format(
name))
if not (minimum length <= len(line) <= maximum length):
raise ValueError("{name} must have at least "
"{minimum length} and at most "
"{maximum length} characters".format(
**Tocals()))
return line
except ValueError as err:
print("ERROR", err)

This function has one mandatory argument, message, and four optional argu-
ments. If a default value is given we include it in the message string so that
the user can see the default they would get if they just press Enter without typ-
ing any text. The rest of the function is enclosed in an infinite loop. The loop
can be broken out of by the user entering a valid string—or by accepting the
default (if given) by just pressing Enter. If the user makes a mistake, an error
message is printed and the loop continues. Asusual, rather than explicitly us-
ing key=value syntax to passlocal variablesto str.format() with a format string
that uses named fields, we have simply used mapping unpacking on the map-
ping returned by locals() to do this for us.

The user could also break out of the loop, and indeed out of the entire program,
by typing Ctrl+C—this would cause a KeyboardInterrupt exception to be raised,
and since thisis not handled by any of the program’s exception handlers, would
cause the program to terminate and print a traceback. Should we leave such
a “loophole™? If we don’t, and there is a bug in our program, we could leave the
user stuck in an infinite loop with no way out except to kill the process. Unless
there is a very strong reason to prevent Ctrl+C from terminating a program, it
should not be caught by any exception handler.

Notice that this function is not specific to the make html skeleton.py
program—it could be reused in many interactive programs of this type. Such
reuse could be achieved by copying and pasting, but that would lead to main-

www.it-ebooks.info

http://www.it-ebooks.info/

Example: make_html_skeleton.py 191

tenance headaches—in the next chapter we will see how to create custom mod-
ules with functionality that can be shared across any number of programs.

def get integer(message, name="integer", default=None, minimum=0,
maximum=100, allow zero=True):

This function is so similar in structure to the get string() function that it
would add nothing to reproduce it here. (It is included in the source code that
accompanies the book, of course.) The allow zero parameter can be useful
when 0 is not a valid value but where we want to permit one invalid value to
signify that the user has cancelled. Another approach would be to pass an
invalid default value, and if that is returned, take it to mean that the user
has cancelled.

The last statement in the program is simply a call to main(). Overall the pro-
gram is slightly more than 150 lines and shows several features of the Python
language introduced in this chapter and the previous ones.

Summary

This chapter covered the complete syntax for all of Python’s control structures.
It also showed how to raise and catch exceptions, and how to create custom
exception types.

Most of the chapter was devoted to custom functions. We saw how to create
functions and presented some rules of thumb for naming functions and their
parameters. We also saw how to provide documentation for functions. Python’s
versatile parameter syntax and argument passing were covered in detail, in-
cluding both fixed and variable numbers of positional and keyword arguments,
and default values for arguments of both immutable and mutable data types.
We also briefly recapped sequence unpacking with * and showed how to do
mapping unpacking with **. Mapping unpacking is particularly useful when
applied to a dictionary (or other mapping), or to the mapping returned by lo-
cals(), for passing key—value arguments to a str.format() format string that
uses named fields.

If we need to assign a new value to a global variable inside a function, we can
do so by declaring that the variable is global, thereby preventing Python from
creating a local variable and assigning to that. In general, though, it is best to
use global variables only for constants.

Lambda functions are often used as key functions, or in other contexts where
functions must be passed as parameters. This chapter showed how to create
lambda functions, both as anonymous functions and as a means of creating
small named one-line functions by assigning them to a variable.

www.it-ebooks.info

http://www.it-ebooks.info/

192 Chapter 4. Control Structures and Functions

The chapter also covered the use of the assert statement. This statement
is very useful for specifying the preconditions and postconditions that we
expect to be true on every use of a function, and can be a real aid to robust
programming and bug hunting.

In this chapter we covered all the fundamentals of creating functions, but
many other techniques are available to us. These include creating dynamic
functions (creating functions at runtime, possibly with implementations that
differ depending on circumstances), covered in Chapter 5; local (nested) func-
tions, covered in Chapter 7; and recursive functions, generator functions, and
so on, covered in Chapter 8.

Although Python has a considerable amount of built-in functionality, and a
very extensive standard library, it is still likely that we will write some func-
tions that would be useful in many of the programs we develop. Copying and
pasting such functions would lead to maintenance nightmares, but fortunate-
ly Python provides a clean easy-to-use solution: custom modules. In the next
chapter we will learn how to create our own modules with our own functions
inside them. We will also see how to import functionality from the standard
library and from our own modules, and will briefly review what the standard
library has to offer so that we can avoid reinventing the wheel.

Exercise

Write an interactive program that maintains lists of strings in files.

When the program is run it should create a list of all the files in the current
directory that have the .1st extension. Use os.listdir(".") to get all the files
and filter out those that don’t have the . 1st extension. If there are no matching
files the program should prompt the user to enter a filename—adding the .1st
extension if the user doesn’t enter it. If there are one or more .1st files they
should be printed as a numbered list starting from 1. The user should be asked
to enter the number of the file they want to load, or 0, in which case they should
be asked to give a filename for a new file.

If an existing file was specified its items should be read. If the file is empty, or
if a new file was specified, the program should show a message, “no items are
in the list”.

If there are no items, two options should be offered: “Add” and “Quit”. Once
the list has one or more items, the list should be shown with each item num-
bered from 1, and the options offered should be “Add”, “Delete”, “Save” (unless
already saved), and “Quit”. If the user chooses “Quit” and there are unsaved
changes they should be given the chance to save. Here is a transcript of a ses-
sion with the program (with most blank lines removed, and without the “List
Keeper” title shown above the list each time):

www.it-ebooks.info

http://www.it-ebooks.info/

Exercise

193

Choose filename: movies

—— no items are in the list —
[Aldd [QJuit [a]: a
Add item: Love Actually

1: Love Actually
[A]dd [D]elete [S]ave
Add item: About a Boy

1: About a Boy
2: Love Actually
[Aldd [D]elete
Add item: Alien

[S]ave

1: About a Boy

2: Alien

3: Love Actually

[A]dd [D]elete [S]ave
ERROR: invalid choice--enter one of
Press Enter to continue...

[A]dd [D]elete [S]ave

1: About a Boy

2: Love Actually

[Aldd [D]elete [S]ave
Saved 2 items to movies.lst
Press Enter to continue...

1: About a Boy
2: Love Actually

[Aldd [Dlelete [Q]uit [a]:

[QJuit [a]:

[QJuit [a]:

[QJuit [a]:

[Qluit [a]:
Delete item number (or 0 to cancel):

[QJuit [a]:

k
"AaDdSsQq’

d
2

Add item: Four Weddings and a Funeral

1: About a Boy

2: Four Weddings and a Funeral
3: Love Actually

[Aldd [D]elete [S]ave
Save unsaved changes (y/n) [y]:
Saved 3 items to movies.lst

[QJuit [a]:

q

Keep the main() function fairly small (less than 30 lines) and use it to provide
the program’s main loop. Write a function to get the new or existing filename
(and in the latter case to load the items), and a function to present the op-
tions and get the user’s choice of option. Also write functions to add an item,
delete an item, print a list (of either items or filenames), load the list, and
save the list. Either copy the get string() and get integer() functions from
make html skeleton.py, or write your own versions.

www.it-ebooks.info

http://www.it-ebooks.info/

194 Chapter 4. Control Structures and Functions

When printing the list or the filenames, print the item numbers using a field
width of 1if there are less than ten items, of 2 if there are less than 100 items,
and of 3 otherwise.

Keep the items in case-insensitive alphabetical order, and keep track of
whether the list is “dirty” (has unsaved changes). Offer the “Save” option only
if the list is dirty and ask the user whether they want to save unsaved changes
when they quit only if the list is dirty. Adding or deleting an item will make
the list dirty; saving the list will make it clean again.

A model solution is provided in listkeeper.py;it is less than 200 lines of code.

www.it-ebooks.info

http://www.it-ebooks.info/

Online
doc-
umenta-
tion

172 <

® Modules and Packages

® Overview of Python’s Standard
Library

Modules

Whereas functions allow us to parcel up pieces of code so that they can be
reused throughout a program, modules provide a means of collecting sets of
functions (and as we will see in the next chapter, custom data types) together
so that they can be used by any number of programs. Python also has facilities
for creating packages—these are sets of modules that are grouped together,
usually because their modules provide related functionality or because they
depend on each other.

This chapter’s first section describes the syntaxes for importing functionality
from modules and packages—whether from the standard library, or from our
own custom modules and packages. The section then goes on to show how to
create custom packages and custom modules. Two custom module examples
are shown, the first introductory and the second illustrating how to handle
many of the practical issues that arise, such as platform independence and
testing.

The second section provides a brief overview of Python’s standard library. Itis
important to be aware of what the library has to offer, since using predefined
functionality makes programming much faster than creating everything from
scratch. Also, many of the standard library’s modules are widely used, well
tested, and robust. In addition to the overview, a few small examples are used
to illustrate some common use cases. And cross-references are provided for
modules covered in other chapters.

Modules and Packages

A Python module, simply put, is a .py file. A module can contain any Python
code we like. All the programs we have written so far have been contained in a
single .py file, and so they are modules as well as programs. The key difference

195

www.it-ebooks.info

http://www.it-ebooks.info/

196 Chapter 5. Modules

is that programs are designed to be run, whereas modules are designed to be
imported and used by programs.

Not all modules have associated .py files—for example, the sys module is built
into Python, and some modules are written in other languages (most com-
monly, C). However, much of Python’s library is written in Python, so, for ex-
ample, if we write import collections we can create named tuples by calling
collections.namedtuple(), and the functionality we are accessing is in the col-
lections.py module file. It makes no difference to our programs what lan-
guage a module is written in, since all modules are imported and used in the
same way.

Several syntaxes can be used when importing. For example:

import importable
import importablel, importable2, ..., importableN
import importable as preferred name

Here importable is usually a module such as collections, but could be a package
or a module in a package, in which case each part is separated with a dot (.),
for example, os.path. The first two syntaxes are the ones we use throughout
this book. They are the simplest and also the safest because they avoid the
possibility of having name conflicts, since they force us to always use fully
qualified names.

The third syntax allows us to give a name of our choice to the package or mod-
ule we are importing—theoretically this could lead to name clashes, but in
practice the as syntax is used to avoid them. Renaming is particularly useful
when experimenting with different implementations of a module. For ex-
ample, if we had two modules MyModuleA and MyModuleB that had the same API
(Application Programming Interface), we could write import MyModuleA as MyMod-
ule in a program, and later on seamlessly switch to using import MyModuleB as
MyModule.

Where should import statements go? It is common practice to put all the import
statements at the beginning of .py files, after the shebang line, and after the
module’s documentation. And as we said back in Chapter 1, we recommend
importing standard library modules first, then third-party library modules,
and finally our own modules.

Here are some other import syntaxes:

from importable import object as preferred name

from importable import objectl, object2, ..., objectN
from importable import (objectl, object2, object3, object4, objects,
object6, ..., objectN)

from importable import *

www.it-ebooks.info

Pack-
ages

>» 199

http://www.it-ebooks.info/

Modules and Packages 197

These syntaxes can cause name conflicts since they make the imported objects
(variables, functions, data types, or modules) directly accessible. If we want
to use the from ... import syntax to import lots of objects, we can use multiple
lines either by escaping each newline except the last, or by enclosing the object
names in parentheses, as the third syntax illustrates.

In the last syntax, the * means “import everything that is not private”, which in
practical terms means either that every object in the module is imported except

for those whose names begin with a leading underscore, or, if the module has _ all__
aglobal all variable that holds a list of names, that all the objects named » 299
inthe all variable are imported.

Here are a few import examples:

import os
print(os.path.basename(filename)) # safe fully qualified access

import os.path as path
print(path.basename(filename)) # risk of name collision with path

from os import path
print(path.basename(filename)) # risk of name collision with path

from os.path import basename
print(basename(filename)) # risk of name collision with basename

from os.path import *
print(basename(filename)) # risk of many name collisions

The from importable import * syntax imports all the objects from the module (or
all the modules from the package)—this could be hundreds of names. In the
case of fromos.path import *, almost 40 names are imported, including dirname,
exists, and split, any of which might be names we would prefer to use for our
own variables or functions.

For example, if we write from os.path import dirname, we can conveniently call
dirname() without qualification. But if further on in our code we write dirname
="." the object reference dirname will now be bound to the string "." instead of
to the dirname() function, so if we try calling dirname() we will get a TypeError

exception because dirname now refers to a string and strings are not callable.

In view of the potential for name collisions the import * syntax creates, some
programming teams specify in their guidelines that only the import importable
syntax may be used. However, certain large packages, particularly GUI
(Graphical User Interface) libraries, are often imported this way because they
have large numbers of functions and classes (custom data types) that can be
tedious to type out by hand.

A question that naturally arises is, how does Python know where to look for
the modules and packages that are imported? The built-in sys module has a

www.it-ebooks.info

http://www.it-ebooks.info/

198 Chapter 5. Modules

list called sys.path that holds a list of the directories that constitute the Python
path. The first directory is the directory that contains the program itself, even
if the program was invoked from another directory. If the PYTHONPATH environ-
ment variable is set, the paths specified in it are the next ones in the list, and
the final paths are those needed to access Python’s standard library—these are
set when Python is installed.

When we first import a module, if it isn’t built-in, Python looks for the module
in each path listed in sys.path in turn. One consequence of thisis that if we cre-
ate a module or program with the same name as one of Python’s library mod-
ules, ours will be found first, inevitably causing problems. To avoid this, never
create a program or module with the same name as one of the Python library’s
top-level directories or modules—unless you are providing your own implemen-
tation of that module and are deliberately overriding it. (A top-level module is
one whose . py file is in one of the directories in the Python path, rather than in
one of those directories’ subdirectories.) For example, on Windows the Python
path usually includes a directory called C:\Python31\Lib, so on that platform we
should not create a module called Lib.py, nor a module with the same name as
any of the modules in the C:\Python31\Lib directory.

One quick way to check whether a module name is in use is to try to import
the module. This can be done at the console by calling the interpreter with
the -c (“execute code”) command-line option followed by an import statement.
For example, if we want to see whether there is a module called Music.py (or a
top-level directory in the Python path called Music), we can type the following
at the console:

python -c "import Music"

If we get an ImportError exception we know that no module or top-level direc-
tory of that name is in use; any other output (or none) means that the name
is taken. Unfortunately, this does not guarantee that the name will always be
okay, since we might later on install a third-party Python package or module
that has a conflicting name, although in practice this is a very rare problem.

For example, if we created a module file called os.py, it would conflict with the
library’s os module. But if we create a module file called path. py, this would be
okay since it would be imported as the path module whereas the library module
would be imported as os.path. In this book we use an uppercase letter for the
first letter of custom module filenames; this avoids name conflicts (at least on
Unix) because standard library module filenames are lowercase.

A program might import some modules which in turn import modules of their
own, including some that have already been imported. This does not cause any
problems. Whenever a module is imported Python first checks to see whether
it has already been imported. If it has not, Python executes the module’s
byte-code compiled code, thereby creating the variables, functions, and other
objects it provides, and internally records that the module has been imported.

www.it-ebooks.info

http://www.it-ebooks.info/

Modules and Packages 199

At every subsequent import of the module Python will detect that the module
has already been imported and will do nothing.

When Python needs a module’s byte-code compiled code, it generates it
automatically—this differs from, say, Java, where compiling to byte code must
be done explicitly. First Python looks for a file with the same name as the
module’s .py file but with the extension .pyo—this is an optimized byte-code
compiled version of the module. If there is no .pyo file (or if it is older than
the .py file, that is, if it is out of date), Python looks for a file with the exten-
sion .pyc—this is a nonoptimized byte-code compiled version of the module. If
Python finds an up-to-date byte-code compiled version of the module, it loads
it; otherwise, Python loads the .py file and compiles a byte-code compiled ver-
sion. Either way, Python ends up with the module in memory in byte-code com-
piled form.

If Python had to byte-compile the .py file, it saves a .pyc version (or .pyo if -0
was specified on Python’s command line, or is set in the PYTHONOPTIMIZE environ-
ment variable), providing the directory is writable. Saving the byte code can
be avoided by using the -B command-line option, or by setting the PYTHONDONT-
WRITEBYTECODE environment variable.

Using byte-code compiled files leads to faster start-up times since the inter-
preter only has to load and run the code, rather than load, compile, (save if
possible), and run the code; runtimes are not affected, though. When Python is
installed, the standard library modules are usually byte-code compiled as part
of the installation process.

Packages

A package is simply a directory that contains a set of modules and a file called
__init_ .py. Suppose, for example, that we had a fictitious set of module files
for reading and writing various graphics file formats, such as Bmp.py, Jpeg.py,
Png.py, Tiff.py, and Xpm.py, all of which provided the functions load(), save(),
and so on.* We could keep the modules in the same directory as our program,
but for a large program that uses scores of custom modules the graphics
modules will be dispersed. By putting them in their own subdirectory, say,
Graphics, they can be kept together. And if we put an empty init .pyfilein
the Graphics directory along with them, the directory will become a package:

Graphics/
__init__.py
Bmp.. py
Jpeg.py

*Extensive support for handling graphics files is provided by a variety of third-party modules,
most notably the Python Imaging Library (www.pythonware.com/products/pil).

www.it-ebooks.info

http://www.it-ebooks.info/

200 Chapter 5. Modules

Png.py
Tiff.py

Xpm. py

Aslong as the Graphics directory is a subdirectory inside our program’s directo-
ry or is in the Python path, we can import any of these modules and make use
of them. We must be careful to ensure that our top-level module name (Graph-
ics)is not the same as any top-level name in the standard library so as to avoid
name conflicts. (On Unix this is easily done by starting with an uppercase let-
ter since all of the standard library’s modules have lowercase names.) Here’s
how we can import and use our module:

import Graphics.Bmp
image = Graphics.Bmp.load("bashful.bmp")

For short programs some programmers prefer to use shorter names, and
Python makes this possible using two slightly different approaches.

import Graphics.Jpeg as Jpeg
image = Jpeg.load("doc.jpeg")

Here we have imported the Jpeg module from the Graphics package and told
Python that we want to refer to it simply as Jpeg rather than using its fully
qualified name, Graphics.Jpeg.

from Graphics import Png
image = Png.load("dopey.png")

This code snippet imports the Png module directly from the Graphics package.
This syntax (from ... import) makes the Png module directly accessible.

We are not obliged to use the original package names in our code. For ex-
ample:

from Graphics import Tiff as picture
image = picture.load("grumpy.tiff")

Here we are using the Tiff module, but have in effect renamed it inside our
program as the picture module.

In some situations it is convenient to load in all of a package’s modules using
a single statement. To do this we must edit the package’s init .py file
to contain a statement which specifies which modules we want loaded. This
statement must assign a list of module names to the special variable all .
For example, here is the necessary line for the Graphics/ init .py file:

731.17 = [llepn’ ||Jpeg||' "Png", "Tiff", ”Xpm"]

www.it-ebooks.info

http://www.it-ebooks.info/

Modules and Packages 201

That is all that is required, although we are free to put any other code we like in
the init .py file. Now we can write a different kind of import statement:

from Graphics import *
image = Xpm.load("sleepy.xpm")

The from package import * syntax directly imports all the modules named in the
__all_ list. So, after thisimport, not only is the Xpm module directly accessible,
but so are all the others.

Asnoted earlier, this syntax can also be applied to a module, that is, from module
import *,in which case all the functions, variables, and other objects defined in
the module (apart from those whose names begin with a leading underscore)
will be imported. If we want to control exactly what is imported when the from
module import * syntax is used, we can define an _all list in the module itself,
in which case doing from module import * will import only those objects named
inthe all list.

So far we have shown only one level of nesting, but Python allows us to nest
packages as deeply as we like. So we could have a subdirectory inside the
Graphics directory, say, Vector, with module files inside that, such as Eps.py and

Svg.py:

Graphics/
__init .py
Bmp.. py
Jpeg.py
Png.py
Tiff.py
Vector/

__init .py

Eps.py

Svg.py
Xpm. py

For the Vector directory to be a package it must have an init .py file, and
as noted, this can be empty or could have an all list as a convenience for
programmers who want to import using from Graphics.Vector import *.

To access a nested package we just build on the syntax we have already used:

import Graphics.Vector.Eps
image = Graphics.Vector.Eps.load("sneezy.eps")

The fully qualified name is rather long, so some programmers try to keep their
module hierarchies fairly flat to avoid this.

www.it-ebooks.info

http://www.it-ebooks.info/

202 Chapter 5. Modules

import Graphics.Vector.Svg as Svg
image = Svg.load("snow.svg")

We can always use our own short name for a module, as we have done here,
although this does increase the risk of having a name conflict.

All the imports we have used so far (and that we will use throughout the rest
of the book) are absolute imports—this means that every module we import is
in one of sys.path’s directories (or subdirectories if the import name included
one or more periods which effectively serve as path separators). When creating
large multimodule multidirectory packages it is often useful to import other
modules that are part of the same package. For example, in Eps.py or Svg.py
we could get access to the Png module using a conventional import, or using a
relative import:

import Graphics.Png as Png from ..Graphics import Png

These two code snippets are equivalent; they both make the Png module directly
available inside the module where they are used. But note that relative im-
ports, that is, imports that use the from module import syntax with leading dots
in front of the module name (each dot representing stepping up one directory),
can be used only in modules that are inside a package. Using relative imports
makes it easier to rename the top-level package and prevents accidentally im-
porting standard modules rather than our own inside packages.

Custom Modules

Since modules are just .py files they can be created without formality. In this
section we will look at two custom modules. The first module, TextUtil (in file
TextUtil.py), contains just three functions: is _balanced() which returns True
if the string it is passed has balanced parentheses of various kinds, shorten()
(shown earlier; 177 <), and simplify(), a function that can strip spurious
whitespace and other characters from a string. In the coverage of this module
we will also see how to execute the code in docstrings as unit tests.

The second module, CharGrid (in file CharGrid. py), holds a grid of characters and
allows us to “draw” lines, rectangles, and text onto the grid and to render the
grid on the console. This module shows some techniques that we have not seen
before and is more typical of larger, more complex modules.

The TextUtil Module

The structure of this module (and most others) differs little from that of a
program. The first line is the shebang line, and then we have some comments
(typically the copyright and license information). Next it is common to have a

www.it-ebooks.info

http://www.it-ebooks.info/

short-
en()

177 <

Modules and Packages 203

triple quoted string that provides an overview of the module’s contents, often
including some usage examples—this is the module’s docstring. Here is the
start of the TextUtil.py file (but with the license comment lines omitted):

#!/usr/bin/env python3
Copyright (c) 2008-9 Qtrac Ltd. All rights reserved.

This module provides a few string manipulation functions.

>>> 1s balanced(" (Python (is (not (lisp))))")

True

>>> shorten("The Crossing", 10)

‘The Cro..."

>>> simplify(" some text with spurious whitespace ")
'some text with spurious whitespace'

import string

This module’s docstring is available to programs (or other modules) that import
the module as TextUtil. doc . After the module docstring come the imports,
in this case just one, and then the rest of the module.

We have already seen the shorten() function reproduced in full, so we will not
repeat it here. And since our focus is on modules rather than on functions,
although we will show the simplify() function in full, including its docstring,
we will show only the code for is balanced().

This is the simplify() function, broken into two parts:

def simplify(text, whitespace=string.whitespace, delete=""):
r'""Returns the text with multiple spaces reduced to single spaces

The whitespace parameter is a string of characters, each of which
is considered to be a space.

If delete is not empty it should be a string, in which case any
characters in the delete string are excluded from the resultant
string.

>>> simplify(" this and\n that\t too")

'this and that too'

>>> simplify(" Washington D.C.\n")

'Washington D.C.'

>>> simplify(" Washington D.C.\n", delete=",;:.")
'Washington DC'

>>> simplify(" disemvoweled ", delete="aeiou")
"dsmvwld'

www.it-ebooks.info

http://www.it-ebooks.info/

Raw
strings

67 <«

204 Chapter 5. Modules

After the def line comes the function’s docstring, laid out conventionally with
a single line description, a blank line, further description, and then some
examples written as though they were typed in interactively. Because the
quoted strings are inside a docstring we must either escape the backslashes
inside them, or do what we have done here and use a raw triple quoted string.

result = []
word = ""
for char in text:
if char in delete:
continue
elif char in whitespace:
if word:
result.append(word)
word = ""
else:
word += char
if word:
result.append(word)
return " ".join(result)

The result list is used to hold “words”—strings that have no whitespace or
deleted characters. The given text isiterated over character by character, with
deleted characters skipped. If a whitespace character is encountered and a
word is in the making, the word is added to the result list and set to be an empty
string; otherwise, the whitespace is skipped. Any other character is added to
the word being built up. At the end a single string is returned consisting of all
the words in the result list joined with a single space between each one.

The is balanced() function follows the same pattern of having a def line, then
a docstring with a single-line description, a blank line, further description,
and some examples, and then the code itself. Here is the code without the
docstring:

def is balanced(text, brackets="()[]1{}<>"):
counts = {}
left for right = {}
for left, right in zip(brackets[::2], brackets[1::2]):
assert left != right, "the bracket characters must differ"
counts[left] = 0
left _for right[right] = left
for ¢ in text:
if ¢ in counts:
counts[c] +=1
elif ¢ in left for right:
left = left for_right[c]

www.it-ebooks.info

http://www.it-ebooks.info/

Modules and Packages 205

if counts[left] == 0:
return False
counts[left] =1
return not any(counts.values())

The function builds two dictionaries. The counts dictionary’s keys are the
opening characters (“(”, “[”, “{”, and “<”), and its values are integers. The
left for right dictionary’s keys are the closing characters ()", “1”, “}”, and “>”),
and its values are the corresponding opening characters. Once the dictionaries
are set up the function iterates character by character over the text. Whenever
an opening character is encountered, its corresponding count is incremented.
Similarly, when a closing character is encountered, the function finds out what
the corresponding opening character is. If the count for that character is 0 it
means we have reached one closing character too many so can immediately
return False; otherwise, the relevant count is decremented. At the end every
count should be 0 if all the pairs are balanced, so if any one of them is not O the
function returns False; otherwise, it returns True.

Up to this point everything has been much like any other . py file. If TextUtil.py
was a program there would presumably be some more functions, and at the end
we would have a single call to one of those functions to start off the processing.
But since this is a module that is intended to be imported, defining functions is
sufficient. And now, any program or module can import TextUtil and make use
of it:

import TextUtil

text =" a puzzling conundrum "
text = TextUtil.simplify(text) # text == 'a puzzling conundrum'

If we want the TextUtil module to be available to a particular program, we
just need to put TextUtil.py in the same directory as the program. If we want
TextUtil.py to be available to all our programs, there are a few approaches that
can be taken. One approach is to put the module in the Python distribution’s
site-packages subdirectory—this is usually C:\Python31\Lib\site-packages on
Windows, but it varies on Mac OS X and other Unixes. This directory is in
the Python path, so any module that is here will always be found. A second
approach is to create a directory specifically for the custom modules we want
to use for all our programs, and to set the PYTHONPATH environment variable to
this directory. A third approach is to put the module in the local site-packages
subdirectory—this is %APPDATA%\Python\Python31\site-packages on Windows
and ~/.local/lib/python3.1/site-packages on Unix (including Mac OS X) and
is in the Python path. The second and third approaches have the advantage of
keeping our own code separate from the official installation.

Having the TextUtil module is all very well, but if we end up with lots of pro-
grams using it we might want to be more confident that it works as advertised.

www.it-ebooks.info

http://www.it-ebooks.info/

206 Chapter 5. Modules

One really simple way to do this is to execute the examples in the docstrings
and make sure that they produce the expected results. This can be done by
adding just three lines at the end of the module’s .py file:

if name ==" main_":
import doctest
doctest.testmod()

Whenever a module is imported Python creates a variable for the module
called name and stores the module’s name in this variable. A module’s
name is simply the name of its .py file but without the extension. So in this
example, when the module is imported name _ will have the value "TextUtil",
and the if condition will not be met, so the last two lines will not be executed.
This means that these last three lines have virtually no cost when the module
is imported.

Whenever a .py file is run Python creates a variable for the program called
__name__ and sets it to the string " main_". So if we were to run TextUtil.py
as though it were a program, Python will set _name to" main_ " and the if
condition will evaluate to True and the last two lines will be executed.

The doctest.testmod() function uses Python’s introspection features to discover
all the functions in the module and their docstrings, and attempts to execute
all the docstring code snippets it finds. Running a module like this produces
output only if there are errors. This can be disconcerting at first since it doesn’t
look like anything happened at all, but if we pass a command-line flag of -v,
we will get output like this:

Trying:

is balanced("(Python (is (not (lisp))))")
Expecting:

True
ok

Trying:

simplify(" disemvoweled ", delete="aeiou")
Expecting:

"dsmvwld'

ok
4 items passed all tests:

3 tests in main
5 tests in _main_ .is balanced
3 tests in _ main_ .shorten
4 tests in main_ .simplify
15 tests in 4 items.
15 passed and 0 failed.
Test passed.

www.it-ebooks.info

http://www.it-ebooks.info/

Modules and Packages 207

We have used an ellipsis to indicate a lot of lines that have been omitted. If
there are functions (or classes or methods) that don’t have tests, these are listed
when the -v option is used. Notice that the doctest module found the tests in
the module’s docstring as well as those in the functions’ docstrings.

Examples in docstrings that can be executed as tests are called doctests. Note
that when we write doctests, we are able to call simplify() and the other func-
tions unqualified (since the doctests occur inside the module itself). Outside
the module, assuming we have done import TextUtil, we must use the qualified
names, for example, TextUtil.is balanced().

In the next subsection we will see how to do more thorough tests—in particular,
testing cases where we expect failures, for example, invalid data causing excep-
tions. (Testing is covered more fully in Chapter 9.) We will also address some
other issues that arise when creating modules, including module initialization,
accounting for platform differences, and ensuring that if the from module import
* gyntax is used, only the objects we want to be made public are actually im-
ported into the importing program or module.

The CharGrid Module

The CharGrid module holds a grid of characters in memory. It provides func-
tions for “drawing” lines, rectangles, and text on the grid, and for rendering the
grid onto the console. Here are the module’s docstring’s doctests:

>>> resize(14, 50)

>>> add rectangle(0, 0, *get size())

>>> add vertical line(5, 10, 13)

>>> add vertical line(2, 9, 12, "!")

>>> add horizontal line(3, 10, 20, "+")

>>> add rectangle(0, 0, 5, 5, "%")

>>> add rectangle(5, 7, 12, 40, "#", True)
>>> add rectangle(7, 9, 10, 38, " ")

>>> add text(8, 10, "This is the CharGrid module")
>>> add text(1l, 32, "Pleasantville", "@")
>>> add rectangle(6, 42, 11, 46, fill=True)
>>> render(False)

The CharGrid.add rectangle() function takes at least four arguments, the top-
left corner’s row and column and the bottom-right corner’s row and column.
The character used to draw the outline can be given as a fifth argument, and a
Boolean indicating whether the rectangle should be filled (with the same char-
acter as the outline) as a sixth argument. The first time we call it we pass the
third and fourth arguments by unpacking the 2-tuple (width, height), returned
by the CharGrid.get size() function.

www.it-ebooks.info

http://www.it-ebooks.info/

208 Chapter 5. Modules

By default, the CharGrid. render() function clears the screen before printing the
grid, but this can be prevented by passing False as we have done here. Here is
the grid that results from the preceding doctests:

0/00/0***>k************>k****************************
CEEEEEEEEEEEEEE
@Pleasantville@
ttttttttt (REEEEEAEEAEEEE

o® o° o° of
oP
o
o® o° o°

o
o°
o
o
o®

i e e

THHHEHHEHHEHHE R 0%

This is the CharGrid module ## **x**
! it HHE RRRX
U | #HHHHHHHHHHHHHHHHHHHHHHHHHHH R ook
U |

3Kk 3K 5K 3k 3Kk 3K 5K K oK ok K ok K 3K 5k K ok K >k ok K ok 3k >k ok K ok 3k >k 5k Kok K >k ok Kok sk k ok Kok Kok sk Kok k

%
*
%
%
%
%
%
*
*
%
%
%

* X X X X * X X

The module begins in the same way as the TextUtil module, with a shebang
line, copyright and license comments, and a module docstring that describes
the module and has the doctests quoted earlier. Then the code proper begins
with two imports, one of the sys module and the other of the subprocess module.
The subprocess module is covered more fully in Chapter 10.

The module has two error-handling policies in place. Several functions have
a char parameter whose actual argument must always be a string containing
exactly one character;a violation of this requirement is considered to be a fatal
coding error, so assert statements are used to verify the length. But passing
out-of-range row or column numbers is considered erroneous but normal, so
custom exceptions are raised when this happens.

We will now review some illustrative and key parts of the module’s code,
beginning with the custom exceptions:

class RangeError(Exception): pass
class RowRangeError(RangeError): pass
class ColumnRangeError(RangeError): pass

None of the functions in the module that raise an exception ever raise a
RangeError; they always raise the specific exception depending on whether an
out-of-range row or column was given. But by using a hierarchy, we give users
of the module the choice of catching the specific exception, or to catch either of
them by catching their RangeError base class. Note also that inside doctests the
exception names are used as they appear here, but if the module is imported
with import CharGrid, the exception names are, of course, CharGrid.RangeError,
CharGrid.RowRangeError, and CharGrid.ColumnRangeError.

www.it-ebooks.info

http://www.it-ebooks.info/

Modules and Packages 209

_CHAR ASSERT TEMPLATE = ("char must be a single character: '{0}' "
"is too long")

_max_rows = 25

~max_columns = 80

_grid = []

_background char = " "

Here we define some private data for internal use by the module. We use
leading underscores so that if the module is imported using from CharGrid
import *, none of these variables will be imported. (An alternative approach
would be to set an _all list.) The CHAR ASSERT TEMPLATE is a string for use
with the str.format() function; we will see it used to give an error message in
assert statements. We will discuss the other variables as we encounter them.

if sys.platform.startswith("win"):
def clear screen():
subprocess.call(["cmd.exe", "/C", "cls"])
else:
def clear screen():
subprocess.call(["clear"])
clear screen. doc = """Clears the screen using the underlying \
window system's clear screen command"""

The means of clearing the console screen is platform-dependent. On Windows
we must execute the cmd.exe program with appropriate arguments and on
most Unix systems we execute the clear program. The subprocess module’s
subprocess.call() function lets us run an external program, so we can use it
to clear the screen in the appropriate platform-specific way. The sys.platform
string holds the name of the operating system the program is running on, for
example, “win32” or “linux2”. So one way of handling the platform differences
would be to have a single clear screen() function like this:

def clear screen():
command = (["clear"] if not sys.platform.startswith("win") else
[Ilcmd.exe", Il/cll' IIC'LSII])
subprocess.call(command)

The disadvantage of this approach is that even though we know the platform
cannot change while the program is running, we perform the check every time
the function is called.

To avoid checking which platform the program is being run on every time
the clear screen() function is called, we have created a platform-specific
clear screen() function once when the module is imported, and from then on
we always use it. This is possible because the def statement is a Python state-
ment like any other; when the interpreter reaches the if it executes either
the first or the second def statement, dynamically creating one or the other

www.it-ebooks.info

http://www.it-ebooks.info/

List
compre-
hen-
sions

118 «

210 Chapter 5. Modules

clear _screen() function. Since the function is not defined inside another func-
tion (or inside a class as we will see in the next chapter), it is still a global func-
tion, accessible like any other function in the module.

After creating the function we explicitly set its docstring; this avoids us having
to write the same docstring in two places, and also illustrates that a docstring
is simply one of the attributes of a function. Other attributes include the
function’s module and its name.

def resize(max_rows, max_columns, char=None):

"""Changes the size of the grid, wiping out the contents and

changing the background if the background char is not None

assert max_rows > 0 and max_columns > 0, "too small"

global grid, max rows, max columns, background char

if char is not None:
assert len(char) == 1, CHAR ASSERT TEMPLATE.format(char)
_background char = char

_Max_rows = max_rows

_max_columns = max_columns

_grid = [[_background char for column in range(max_columns)]

for row in range(_max_rows)]

This function uses an assert statement to enforce the policy that it is a coding
error to attempt to resize the grid smaller than 1 x 1. If a background character
is specified an assert is used to guarantee that it is a string of exactly one
character;if it is not, the assertion error messageis the CHAR ASSERT TEMPLATE’s
text with the {0} replaced with the given char string.

Unfortunately, we must use the global statement because we need to update a
number of global variables inside this function. This is something that using
an object-oriented approach can help us to avoid, as we will see in Chapter 6.

The grid is created using a list comprehension inside a list comprehension.
Using list replication such as [[char] * columns] * rows will not work because
the inner list will be shared (shallow-copied). We could have used nested for ...
in loops instead:

~grid = []
for row in range(_max_rows):
_grid.append([])
for column in range(max_columns):
_grid[-1].append(_background char)

This code is arguably trickier to understand than the list comprehension, and
is much longer.

www.it-ebooks.info

http://www.it-ebooks.info/

Modules and Packages 211

We will review just one of the drawing functions to give a flavor of how the
drawing is done, since our primary concern is with the implementation of the
module. Here is the add horizontal line() function, split into two parts:

def add horizontal line(row, column®, columnl, char="-"):
"""Adds a horizontal line to the grid using the given char

>>> add horizontal line(8, 20, 25, "=")

>>> char_at(8, 20) == char_at(8, 24) == "="
True

>>> add horizontal line(31, 11, 12)
Traceback (most recent call last):

RowRangeError

The docstring has two tests, one that is expected to work and another that is
expected to raise an exception. When dealing with exceptions in doctests the
pattern is to specify the “Traceback” line, since that is always the same and
tells the doctest module an exception is expected, then to use an ellipsis to
stand for the intervening lines (which vary), and ending with the exception line
we expect to get. The char_at() function is one of those provided by the module;
it returns the character at the given row and column position in the grid.

assert len(char) == 1, CHAR ASSERT TEMPLATE.format(char)
try:
for column in range(column®, columnl):
_grid[row][column] = char
except IndexError:
if not 0 <= row <= _max_rows:
raise RowRangeError()
raise ColumnRangeError()

The code begins with the same character length check that is used in the re-
size() function. Rather than explicitly checking the row and column argu-
ments, the function works by assuming that the arguments are valid. If an
IndexError exception occurs because a nonexistent row or column is accessed,
we catch the exception and raise the appropriate module-specific exception in
its place. This style of programming is known colloquially as “it’s easier to ask
forgiveness than permission”, and is generally considered more Pythonic (good
Python programming style) than “look before you leap”, where checks are made
in advance. Relying on exceptions to be raised rather than checking in advance
is more efficient when exceptions are rare. (Assertions don’t count as “look
before you leap” because they should never occur—and are often commented
out—in deployed code.)

www.it-ebooks.info

http://www.it-ebooks.info/

212 Chapter 5. Modules

Almost at the end of the module, after all the functions have been defined,
there is a single call to resize():

resize(_max_rows, _max_columns)

This call initializes the grid to the default size (25 x 80) and ensures that code
that imports the module can safely make use of it immediately. Without this
call, every time the module was imported, the importing program or module
would have to call resize() to initialize the grid, forcing programmers to
remember that fact and also leading to multiple initializations.

if name ==" main ":
import doctest
doctest.testmod()

The last three lines of the module are the standard ones for modules that use
the doctest module to check their doctests. (Testing is covered more fully in
Chapter 9.)

The CharGrid module has an important failing: It supports only a single charac-
ter grid. One solution to this would be to hold a collection of grids in the mod-
ule, but that would mean that users of the module would have to provide a key
or index with every function call to identify which grid they were referring to.
In cases where multiple instances of an object are required, a better solution is
to create a module that defines a class (a custom data type), since we can cre-
ate as many class instances (objects of the data type) as we like. An additional
benefit of creating a class is that we should be able to avoid using the global
statement by storing class (static) data. We will see how to create classesin the
next chapter.

Overview of Python’s Standard Library

Python’s standard library is generally described as “batteries included”, and
certainly a wide range of functionality is available, spread over around two
hundred packages and modules.

In fact, so many high-quality modules have been developed for Python over the
years, that to include them all in the standard library would probably increase
the size of the Python distribution packages by at least an order of magnitude.
So those modules that are in the library are more a reflection of Python’s his-
tory and of the interests of its core developers than of any concerted or sys-
tematic effort to create a “balanced” library. Also, some modules have proved
very difficult to maintain within the library—most notably the Berkeley DB
module—and so have been taken out of the library and are now maintained
independently. This means many excellent third-party modules are available
for Python that—despite their quality and usefulness—are not in the standard

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Python’s Standard Library 213

library. (We will look at two such modules later on: the PyParsing and PLY
modules that are used to create parsers in Chapter 14.)

In this section we present a broad overview of what is on offer, taking a
thematic approach, but excluding those packages and modules that are of very
specialized interest and those which are platform-specific. In many cases a
small example is shown to give a flavor of some of the packages and modules;
cross-references are provided for those packages and modules that are covered
elsewhere in the book.

String Handling

The string module provides some useful constants such as string.ascii let-
ters and string.hexdigits. It also provides the string.Formatter class which we
can subclass to provide custom string formatters.* The textwrap module can be
used to wrap lines of text to a specified width, and to minimize indentation.

The struct module provides functions for packing and unpacking numbers,
Booleans, and strings to and from bytes objects using their binary representa-
tions. This can be useful when handling data to be sent to or received from low-
level libraries written in C. The struct and textwrap modules are used by the
convert-incidents.py program covered in Chapter 7.

The difflib module provides classes and methods for comparing sequences,
such as strings, and is able to produce output both in standard “diff” formats
and in HTML.

Python’s most powerful string handling module is the re (regular expression)
module. This is covered in Chapter 13.

The i0.StringI0 class can provide a string-like object that behaves like an
in-memory text file. This can be convenient if we want to use the same code
that writes to a file to write to a string.

Example: The io.StringlIO Class

Python provides two different ways of writing text to files. One way is to use
a file object’s write() method, and the other is to use the print() function
with the file keyword argument set to a file object that is open for writing.
For example:

print("An error message", file=sys.stdout)
sys.stdout.write("Another error message\n")

*The term subclassing (or specializing) is used for when we create a custom data type (a class)
based on another class. Chapter 6 gives full coverage of this topic.

www.it-ebooks.info

bytes
type
» 293
The

struct
module

>» 297

http://www.it-ebooks.info/

214 Chapter 5. Modules

Both lines of text are printed to sys.stdout, a file object that represents the
“standard output stream”—this is normally the console and differs from
sys.stderr, the “error output stream” only in that the latter is unbuffered.
(Python automatically creates and opens sys.stdin, sys.stdout, and sys.stderr
at program start-up.) The print() function adds a newline by default, although
we can stop this by giving the end keyword argument set to an empty string.

In some situations it is useful to be able to capture into a string the output
that is intended to go to a file. This can be achieved using the i0.StringI0 class
which provides an object that can be used just like a file object, but which holds
any data written to it in a string. If the i0.StringI0 object is given an initial
string, it can also be read as though it were a file.

We can access i0.5tringI0if we do import io, and we can use it to capture output
destined for a file object such as sys.stdout:

sys.stdout = i0.StringIO()

If this line is put at the beginning of a program, after the imports but before
any use is made of sys.stdout, any text that is sent to sys.stdout will actually
be sent to the io.StringI0 file-like object which this line has created and which
has replaced the standard sys.stdout file object. Now, when the print() and
sys.stdout.write() lines shown earlier are executed, their output will go to
the 10.StringI0 object instead of the console. (At any time we can restore the
original sys.stdout with the statement sys.stdout = sys. stdout .)

We can obtain all the strings that have been written to the io.StringI0 ob-
ject by calling the io.StringI0.getvalue() function, in this case by calling
sys.stdout.getvalue()—the return valueis a string containing all the lines that
have been written. This string could be printed, or saved to a log or sent over
a network connection like any other string. We will see another example of
i0.StringIO0 use a bit further on (> 227).

Command-Line Programming

If we need a program to be able to process text that may have been redirected
in the console or that may be in files listed on the command line, we can use
the fileinput module’s fileinput.input() function. This function iterates over
all the lines redirected from the console (if any) and over all the lines in the
files listed on the command line, as one continuous sequence of lines. The
module can report the current filename and line number at any time using
fileinput.filename() and fileinput.lineno(), and can handle some kinds of
compressed files.

Two separate modules are provided for handling command-line options,
optparse and getopt. The getopt module is popular because it is simple to use

www.it-ebooks.info

http://www.it-ebooks.info/

csv2-
html. py
example

97«

Overview of Python’s Standard Library 215

and has been in the library for a long time. The optparse module is newer and
more powerful.

Example: The optparse Module

Back in Chapter 2 we described the csv2html.py program. In that chapter’s ex-
ercises we proposed extending the program to accept the command-line argu-
ments, “maxwidth” taking an integer and “format” taking a string. The mod-
el solution (csv2html2_ans.py) has a 26-line function to process the arguments.
Here is the start of the main() function for csv2html2 opt.py, a version of the
program that uses the optparse module to handle the command-line arguments
rather than a custom function:

def main():
parser = optparse.OptionParser()
parser.add option("-w", "--maxwidth", dest="maxwidth", type="int",

help=("the maximum number of characters that can be "
"output to string fields [default: %default]"))
parser.add option("-f", "--format", dest="format",
help=("the format used for outputting numbers "
"[default: %default]"))
parser.set defaults(maxwidth=100, format=".0f")
opts, args = parser.parse_args()

Only nine lines of code are needed, plus the import optparse statement. Fur-
thermore, we do not need to explicitly provide -h and --help options; these are
handled by the optparse module to produce a suitable usage message using the
texts from the help keyword arguments, and with any “%default” text replaced
with the option’s default value.

Notice also that the options now use the conventional Unix style of having both
short and long option names that start with a hyphen. Short names are con-
venient for interactive use at the console;long names are more understandable
when used in shell scripts. For example, to set the maximum width to 80 we
can use any of -w80, -w 80, ——maxwidth=80, or ——maxwidth 80. After the command
line is parsed, the options are available using the dest names, for example,
opts.maxwidth and opts.format. Any command-line arguments that have not
been processed (usually filenames) are in the args list.

If an error occurs when parsing the command line, the optparse parser will
call sys.exit(2). This leads to a clean program termination and returns 2 to
the operating system as the program’s result value. Conventionally, a return
value of 2 signifies a usage error, 1 signifies any other kind of error, and 0
means success. When sys.exit() is called with no arguments it returns 0 to the
operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

216 Chapter 5. Modules

Mathematics and Numbers

In addition to the built-in int, float, and complex numbers, the library provides
the decimal.Decimal and fractions.Fraction numbers. Three numeric libraries
are available: math for the standard mathematical functions, cmath for complex
number mathematical functions, and random which provides many functions for
random number generation; these modules were introduced in Chapter 2.

Python’s numeric abstract base classes (classes that can be inherited from
but that cannot be used directly) are in the numbers module. They are useful
for checking that an object, say, x, is any kind of number using isinstance(x,
numbers.Number), or is a specific kind of number, for example, isinstance(x,
numbers.Rational) or isinstance(x, numbers.Integral).

Those involved in scientific and engineering programming will find the third-
party NumPy package to be useful. This module provides highly efficient n-di-
mensional arrays, basic linear algebra functions and Fourier transforms, and
tools for integration with C, C++, and Fortran code. The SciPy package incor-
porates NumPy and extends it to include modules for statistical computations,
signal and image processing, genetic algorithms, and a great deal more. Both
are freely available from www.scipy.org.

Times and Dates

The calendar and datetime modules provide functions and classes for date and
time handling. However, they are based on an idealized Gregorian calendar,
so they are not suitable for dealing with pre-Gregorian dates. Time and date
handling is a very complex topic—the calendars in use have varied in differ-
ent places and at different times, a day is not precisely 24 hours, a year is not
exactly 365 days, and daylight saving time and time zones vary. The date-
time.datetime class (but not the datetime.date class) has provisions for han-
dling time zones, but does not do so out of the box. Third-party modules are
available to make good this deficiency, for example, dateutil from www.labix.
org/python-dateutil, and mxDateTime from www.egenix.com/products/python/mx-
Base/mxDateTime.

The time module handles timestamps. These are simply numbers that hold the
number of seconds since the epoch (1970-01-01T00:00:00 on Unix). This mod-
ule can be used to get a timestamp of the machine’s current time in UTC (Co-
ordinated Universal Time), or as a local time that accounts for daylight saving
time, and to create date, time, and date/time strings formatted in various ways.
It can also parse strings that have dates and times.

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Python’s Standard Library 217

Example: The calendar, datetime, and time Modules

Objects of type datetime.datetime are usually created programmatically,
whereas objects that hold UTC date/times are usually received from external
sources, such as file timestamps. Here are some examples:

import calendar, datetime, time

moon_datetime a = datetime.datetime(1969, 7, 20, 20, 17, 40)
moon_time = calendar.timegm(moon datetime a.utctimetuple())
moon_datetime b = datetime.datetime.utcfromtimestamp(moon_ time)
moon_datetime a.isoformat() # returns: '1969-07-20T20:17:40'
moon_datetime b.isoformat() # returns: '1969-07-20T20:17:40'
time.strftime("%Y-%m-%dT%H:%M:%S", time.gmtime(moon time))

The moon datetime a variable is of type datetime.datetime and holds the
date and time that Apollo 11 landed on the moon. The moon time variable
is of type int and holds the number of seconds since the epoch to the moon
landing—this number is provided by the calendar.timegm() function which
takes a time struct object returned by the datetime.datetime.utctimetuple()
function, and returns the number of seconds that the time struct represents.
(Since the moon landing occurred before the Unix epoch, the number is nega-
tive.) The moon_datetime b variable is of type datetime.datetime and is created
from the moon_time integer to show the conversion from the number of seconds
since the epoch to a datetime.datetime object.* The last three lines all return
identical ISO 8601-format date/time strings.

The current UTC date/time is available as a datetime.datetime object by calling
datetime.datetime.utcnow(), and as the number of seconds since the epoch by
calling time.time(). For the local date/time, use datetime.datetime.now() or
time.mktime(time.localtime()).

Algorithms and Collection Data Types

The bisect module provides functions for searching sorted sequences such
as sorted lists, and for inserting items while preserving the sort order. This
module’s functions use the binary search algorithm, so they are very fast. The
heapq module provides functions for turning a sequence such as a list into a
heap—a collection data type where the first item (at index position 0) is always
the smallest item, and for inserting and removing items while keeping the
sequence as a heap.

*Unfortunately for Windows users, the datetime.datetime.utcfromtimestamp () function can’t handle
negative timestamps, that is, timestamps for dates prior to January 1, 1970.

www.it-ebooks.info

http://www.it-ebooks.info/

Default
dictio-
nary
135 <

Named
tuple

111 <

Ordered
dictio-
nary

136 <

218 Chapter 5. Modules

The collections package provides the collections.defaultdict dictionary and
the collections.namedtuple collection data types that we have previously dis-
cussed. In addition, this package provides the collections.UserList and col-
lections.UserDict types, although subclassing the built-in 1ist and dict types
is probably more common than using these types. Another type is collec-
tions.deque, which is similar to a list, but whereas a list is very fast for adding
and removing items at the end, a collections.deque is very fast for adding and
removing items both at the beginning and at the end.

Python 3.1introduced the collections.OrderedDict and the collections.Counter
classes. OrderedDicts have the same API as normal dicts, although when
iterated the items are always returned in insertion order (i.e., from first to last
inserted), and the popitem() method always returns the most recently added
(i.e., last) item. The Counter classis a dict subclass used to provide a fast and
easy way of keeping various counts. Given an iterable or a mapping (such as
a dictionary), a Counter instance can, for example, return a list of the unique
elements or a list of the most common elements as (element, count) 2-tuples.

Python’s non-numeric abstract base classes (classes that can be inherited from
but that cannot be used directly) are also in the collections package. They are
discussed in Chapter 8.

The array module provides the array.array sequence type that can store num-
bers or characters in a very space-efficient way. It has similar behavior to lists
except that the type of object it can store is fixed when it is created, so unlike
lists it cannot store objects of different types. The third-party NumPy package
mentioned earlier also provides efficient arrays.

The weakref module provides functionality for creating weak references—these
behave like normal object references, except that if the only reference to an ob-
ject is a weak reference, the object can still be scheduled for garbage collection.
This prevents objects from being kept in memory simply because we have a ref-
erence to them. Naturally, we can check whether the object a weak reference
refers to still exists, and can access the object if it does.

Example: The heapq Module

The heapq module provides functions for converting a list into a heap and for
adding and removing items from the heap while preserving the heap property.
A heap is a binary tree that respects the heap property, which is that the
first item (at index position 0) is always the smallest item.* Each of a heap’s
subtrees is also a heap, so they too respect the heap property. Here is how a
heap could be created from scratch:

*Strictly speaking, the heapg module provides a min heap; heaps where the first item is always the
largest are max heaps.

www.it-ebooks.info

http://www.it-ebooks.info/

Char-
acter
encod-
ings

91 <

Overview of Python’s Standard Library 219

import heapq

heap = []

heapq.heappush(heap, (5, "rest"))
heapq.heappush(heap, (2, "work"))
heapq.heappush(heap, (4, "study"))

If we already have a list, we can turn it into a heap with heapq.heapify(alist);
this will do any necessary reordering in-place. The smallest item can be
removed from the heap using heapq.heappop (heap).

for x in heapq.merge([1, 3, 5, 8], [2, 4, 71, [0, 1, 6, 8, 9]):
print(x, end=" ") # prints: 011234567889

The heapq.merge () function takes any number of sorted iterables as arguments
and returns an iterator that iterates over all the items from all the iterables
in order.

File Formats, Encodings, and Data Persistence

The standard library has extensive support for a variety of standard file for-
mats and encodings. The base64 module has functions for reading and writing
using the Basel6, Base32, and Base64 encodings specified in RFC 3548.* The
quopri module has functions for reading and writing “quoted-printable” for-
mat. This format is defined in RFC 1521 and is used for MIME (Multipurpose
Internet Mail Extensions) data. The uu module has functions for reading and
writing uuencoded data. RFC 1832 defines the External Data Representation
Standard and module xdrlib provides functions for reading and writing data
in this format.

Modules are also provided for reading and writing archive files in the most
popular formats. The bz2 module can handle .bz2 files, the gzip module handles
.gz files, the tarfile module handles . tar, .tar.gz (also .tgz), and .tar.bz2 files,
and the zipfile module handles .zip files. We will see an example of using the
tarfile module in this subsection, and later on (» 227) there is a small example
that uses the gzip module; we will also see the gzip module in action again in
Chapter 7.

Support is also provided for handling some audio formats, with the aifc mod-
ule for AIFF (Audio Interchange File Format) and the wave module for (uncom-
pressed) .wav files. Some forms of audio data can be manipulated using the
audioop module, and the sndhdr module provides a couple of functions for deter-
mining what kind of sound data is stored in a file and some of its properties,
such as the sampling rate.

*RFC (Request for Comments) documents are used to specify various Internet technologies.

Each one has a unique identification number and many of them have become officially adopted
standards.

www.it-ebooks.info

http://www.it-ebooks.info/

220 Chapter 5. Modules

A format for configuration files (similar to old-style Windows .ini files) is
specified in RFC 822, and the configparser module provides functions for
reading and writing such files.

Many applications, for example, Excel, can read and write CSV (Comma
Separated Value) data, or variants such as tab-delimited data. The csv module
can read and write these formats, and can account for the idiosyncracies that
prevent CSV files from being straightforward to handle directly.

In addition to its support of various file formats, the standard library also has
packages and modules that provide data persistence. The pickle module is
used to store and retrieve arbitrary Python objects (including entire collec-
tions) to and from disk; this module is covered in Chapter 7. The library also
supports DBM files of various kinds—these are like dictionaries except that
their items are stored on disk rather than in memory, and both their keys and
their values must be bytes objects or strings. The shelve module, covered in
Chapter 12, can be used to provide DBM files with string keys and arbitrary
Python objects as values—the module seamlessly converts the Python ob-
jects to and from bytes objects behind the scenes. The DBM modules, Python’s
database API, and using the built-in SQLite database are all covered in Chap-
ter 12.

Example: The base64 Module

The base64 module is mostly used for handling binary data that is embedded in
emails as ASCII text. It can also be used to store binary data inside .py files.
The first step is to get the binary data into Base64 format. Here we assume
that the base64 module has been imported and that the path and filename of a
.png file are in the variable left_align png:

binary = open(left _align png, "rb").read()
ascii text = "*
for i, ¢ in enumerate(base64.b64encode(binary)):
if i and i % 68 == 0:
ascii text += "\\\n"
ascii text += chr(c) left _align.png

This code snippet reads the file in binary mode and converts it to a Base64
string of ASCII characters. Every sixty-eighth character a backslash-newline
combination is added. This limits the width of the lines of ASCII characters
to 68, but ensures that when the data is read back the newlines will be ignored
(because the backslash will escape them). The ASCII text obtained like this can
be stored as a bytes literal in a . py file, for example:

LEFT ALIGN PNG = b"""\
1VBORWOKGGOAAAANSUNEUGAAACAAAAAGCAYAAABZEN rOAAAABGABTUEAALGPC/XhBQAA\

www.it-ebooks.info

bytes
type
>» 293

http://www.it-ebooks.info/

Overview of Python’s Standard Library 221

bmquu8PAMVT2+CwVV6 rCyA9UFFMCKI+bN6p18tCWqcUz rDOwBh2zVCR+IZVeAAAAAELF\
TkSu@mcc"""

We'’ve omitted most of the lines as indicated by the ellipsis.

The data can be converted back to its original binary form like this:
binary = base64.b64decode(LEFT ALIGN PNG)

The binary data could be written to a file using open(filename, "wb").write(
binary). Keeping binary data in .py files is much less compact than keeping
it in its original form, but can be useful if we want to provide a program that
requires some binary data as a single . py file.

Example: The tarfile Module

Most versions of Windows don’t come with support for the .tar format that
is so widely used on Unix systems. This inconvenient omission can easily be
rectified using Python’s tarfile module, which can create and unpack .tar and
.tar.gz archives (known as tarballs), and with the right libraries installed,
.tar.bz2 archives. The untar.py program can unpack tarballs using the tarfile
module; here we will just show some key extracts, starting with the first import
statement:

BZ2 AVAILABLE = True
try:
import bz2
except ImportError:
BZ2 AVAILABLE = False

The bz2 module is used to handle the bzip2 compression format, but importing
it will fail if Python was built without access to the bzip2 library. (The Python
binary for Windows is always built with bzip2 compression built-in; it is only
on some Unix builds that it might be absent.) We account for the possibility
that the module is not available using a try ... except block, and keep a Boolean
variable that we can refer to later (although we don’t quote the code that
uses it).

UNTRUSTED PREFIXES = tuple(["/", "\\"] +
[c + ":" for c in string.ascii letters])

This statement creates the tuple ('/', '\', 'A:*, 'B:', ..., 'Z:', 'a:', 'b:",
..., 'z:"). Any filename in the tarball being unpacked that begins with one of
these is suspect—tarballs should not use absolute paths since then they risk
overwriting system files, so as a precaution we will not unpack any file whose
name starts with one of these prefixes.

www.it-ebooks.info

http://www.it-ebooks.info/

222 Chapter 5. Modules

def untar(archive):
tar = None
try:
tar = tarfile.open(archive)
for member in tar.getmembers():
if member.name.startswith(UNTRUSTED PREFIXES):
print("untrusted prefix, ignoring", member.name)
elif ".." in member.name:
print("suspect path, ignoring", member.name)
else:
tar.extract(member)
print("unpacked", member.name)
except (tarfile.TarError, EnvironmentError) as err:
error(err)
finally:
if tar is not None:
tar.close()

Each file in a tarball is called a member. The tarfile.getmembers() function
returns a list of tarfile.TarInfo objects, one for each member. The member’s
filename, including its path, is in the tarfile.TarInfo.name attribute. If the
name begins with an untrusted prefix, or contains .. in its path, we output an
error message; otherwise, we call tarfile.extract() to save the member to disk.
The tarfile module hasits own set of custom exceptions, but we have taken the
simplistic approach that if any exception occurs we output the error message
and finish.

def error(message, exit status=1):
print(message)
sys.exit(exit status)

We have just quoted the error() function for completeness. The (unquoted)
main() function prints a usage message if -h or —--help is given; otherwise, it
performs some basic checks before calling untar() with the tarball’s filename.

File, Directory, and Process Handling

The shutil module provides high-level functions for file and directory handling,
including shutil.copy() and shutil.copytree() for copying files and entire
directory trees, shutil.move() for moving directory trees, and shutil.rmtree()
for removing entire directory trees, including nonempty ones.

Temporary files and directories should be created using the tempfile module
which provides the necessary functions, for example, tempfile.mkstemp(), and
creates the temporaries in the most secure manner possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Python’s Standard Library 223

The filecmp module can be used to compare files with the filecmp.cmp() func-
tion and to compare entire directories with the filecmp.cmpfiles() function.

One very powerful and effective use of Python programs is to orchestrate
the running of other programs. This can be done using the subprocess mod-
ule which can start other processes, communicate with them using pipes, and
retrieve their results. This module is covered in Chapter 10. An even more
powerful alternative is to use the multiprocessing module which provides ex-
tensive facilities for offloading work to multiple processes and for accumulating
results, and can often be used as an alternative to multithreading.

The os module provides platform-independent access to operating system func-
tionality. The os.environ variable holds a mapping object whose items are en-
vironment variable names and their values. The program’s working directory
is provided by os.getcwd() and can be changed using os.chdir(). The module
also provides functions for low-level file-descriptor-based file handling. The
os.access () function can be used to determine whether a file exists or whether
it is readable or writable, and the os.listdir() function returns a list of the
entries (e.g., the files and directories, but excluding the . and .. entries), in the
directory it is given. The os.stat() function returns various items of informa-
tion about a file or directory, such as its mode, access time, and size.

Directories can be created using os.mkdir(), or if intermediate directories
need to be created, using os.makedirs(). Empty directories can be removed
using os.rmdir(), and directory trees that contain only empty directories can
be removed using os.removedirs(). Files or directories can be removed using
os.remove(), and can be renamed using 0s.rename().

The os.walk() function iterates over an entire directory tree, retrieving the
name of every file and directory in turn.

The os module also provides many low-level platform-specific functions, for
example, to work with file descriptors, and to fork (only on Unix systems),
spawn, and exec.

Whereas the os module provides functions for interacting with the operating
system, especially in the context of the file system, the os.path module pro-
vides a mixture of string manipulation (of paths), and some file system con-
venience functions. The os.path.abspath() function returns the absolute path
of its argument, with redundant path separators and .. elements removed.
The os.path.split() function returns a 2-tuple with the first element con-
taining the path and the second the filename (which will be empty if a path
with no filename was given). These two parts are also available directly using
os.path.basename() and os.path.dirname(). A filename can also be split into
two parts, name and extension, using os.path.splitext(). The os.path.join()
function takes any number of path strings and returns a single path using the
platform-specific path separator.

www.it-ebooks.info

http://www.it-ebooks.info/

224 Chapter 5. Modules

If we need several pieces of information about a file or directory we can use
os.stat(), but if we need just one piece, we can use the relevant os.path
function, for example, 0s.path.exists(), os.path.getsize(), os.path.isfile(), or
os.path.isdir().

The mimetypes module has the mimetypes.guess type() function that tries to
guess the given file’s MIME type.

Example: The os and os.path Modules

Here is how we can use the os and os.path modules to create a dictionary
where each key is a filename (including its path) and where each value is the
timestamp (seconds since the epoch) when the file was last modified, for those
files in the given path:

date from name = {}
for name in os.listdir(path):
fullname = os.path.join(path, name)
if os.path.isfile(fullname):
date from name[fullname] = os.path.getmtime(fullname)

This code is pretty straightforward, but can be used only for the files in a
single directory. If we need to traverse an entire directory tree we can use the
os.walk() function.

Here is a code snippet taken from the finddup.py program.* The code creates a
dictionary where each key is a 2-tuple (file size, filename) where the filename
excludes the path, and where each value is a list of the full filenames that
match their key’s filename and have the same file size:

data = collections.defaultdict(list)

for root, dirs, files in os.walk(path):
for filename in files:
fullname = os.path.join(root, filename)
key = (o0s.path.getsize(fullname), filename)
data[key].append(fullname)

For each directory, os.walk() returns the root and two lists, one of the subdirec-
tories in the directory and the other of the files in the directory. To get the full
path for a filename we need to combine just the root and the filename. Notice
that we do not have to recurse into the subdirectories ourselves—os.walk() does
that for us. Once the data has been gathered, we can iterate over it to produce
a report of possible duplicate files:

*A much more sophisticated find duplicates program, findduplicates-t.py, which uses multiple
threads and MD5 checksums, is covered in Chapter 10.

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Python’s Standard Library 225

for size, filename in sorted(data):
names = data[(size, filename)]
if len(names) > 1:
print("{filename} ({size} bytes) may be duplicated "
"({0} files):".format(len(names), **locals()))
for name in names:
print("\t{0}".format(name))

Because the dictionary keys are (size, filename) tuples, we don’t need to use a
key function to get the data sorted in size order. If any (size, filename) tuple
has more than one filename in its list, these might be duplicates.

shell32.d1l (8460288 bytes) may be duplicated (2 files):
\windows\system32\shell32.d11l
\windows\system32\dllcache\shell32.d1ll

This is the last item taken from the 3282 lines of output produced by running
finddup.py \windows on a Windows XP system.

Networking and Internet Programming

Packages and modules for networking and Internet programming are a major
part of Python’s standard library. At the lowest level, the socket module pro-
vides the most fundamental network functionality, with functions for creating
sockets, doing DNS (Domain Name System) lookups, and handling IP (Internet
Protocol) addresses. Encrypted and authenticated sockets can be set up using
the ssl module. The socketserver module provides TCP (Transmission Control
Protocol) and UDP (User Datagram Protocol) servers. These servers can han-
dle requests directly, or can create a separate process (by forking) or a separate
thread to handle each request. Asynchronous client and server socket han-
dling can be achieved using the asyncore module and the higher-level asynchat
module that is built on top of it.

Python has defined the WSGI (Web Server Gateway Interface) to provide
a standard interface between web servers and web applications written in
Python. In support of the standard the wsgiref package provides a reference
implementation of WSGI that has modules for providing WSGI-compliant
HTTP servers, and for handling response header and CGI (Common Gateway
Interface) scripts. In addition, the http.server module provides an HTTP serv-
er which can be given a request handler (a standard one is provided), to run
CGI scripts. The http.cookies and http.cookiejar modules provide functions
for managing cookies, and CGI script support is provided by the cgi and cgitb
modules.

www.it-ebooks.info

http://www.it-ebooks.info/

226 Chapter 5. Modules

Client access to HTTP requestsis provided by the http.client module, although
the higher-level urllib package’s modules, urllib.parse, urllib. request, url-
lib.response, urllib.error, and urllib.robotparser, provide easier and more
convenient access to URLs. Grabbing a file from the Internet is as simple as:

fh = urllib.request.urlopen("http://www.python.org/index.html")
html = fh.read().decode("utf8")

The urllib. request.urlopen() function returns an object that behaves much
like a file object opened in read binary mode. Here we retrieve the Python
Web site’s index.html file (as a bytes object), and store it as a string in the html
variable. It is also possible to grab files and store them in local files with the
urllib.request.urlretrieve() function.

HTML and XHTML documents can be parsed using the html.parser module,
URLs can be parsed and created using the urllib.parse module, and robots.txt
files can be parsed with the urllib. robotparser module. Data that is represent-
ed using JSON (JavaScript Object Notation) can be read and written using the
json module.

In addition to HTTP server and client support, the library provides XML-RPC
(Remote Procedure Call) support with the xmlrpc.client and xmlrpc.server
modules. Additional client functionality is provided for FTP (File Transfer
Protocol) by the ftplib module, for NNTP (Network News Transfer Protocol)
by the nntplib module, and for TELNET with the telnetlib module.

The smtpd module provides an SMTP (Simple Mail Transfer Protocol) server,
and the email client modules are smtplib for SMTP, imaplib for IMAP4 (Inter-
net Message Access Protocol), and poplib for POP3 (Post Office Protocol). Mail-
boxes in various formats can be accessed using the mailbox module. Individual
messages (including multipart messages) can be created and manipulated us-
ing the email module.

If the standard library’s packages and modules are insufficient in this
area, Twisted (www.twistedmatrix.com) provides a comprehensive third-par-
ty networking library. Many third-party web programming libraries are
also available, including Django (www.djangoproject.com) and Turbogears
(www.turbogears.org) for creating web applications, and Plone (www.plone.org)
and Zope (www.zope.org) which provide complete web frameworks and content
management systems. All of these libraries are written in Python.

XML

There are two widely used approaches to parsing XML documents. One is the
DOM (Document Object Model) and the other is SAX (Simple API for XML).
Two DOM parsers are provided, one by the xml.dom module and the other by
the xml.dom.minidom module. A SAX parser is provided by the xml.sax mod-

www.it-ebooks.info

http://www.it-ebooks.info/

Overview of Python’s Standard Library 227

ule. We have already used the xml.sax.saxutils module for its xml.sax.sax-
utils.escape() function (to XML-escape “&”, “<”, and “>”). There is also an
xml.sax.saxutils.quoteattr() function that does the same thing but addi-
tionally escapes quotes (to make the text suitable for a tag’s attribute), and
xml.sax.saxutils.unescape() to do the opposite conversion.

Two other parsers are available. The xml.parsers.expat module can be used to
parse XML documents with expat, providing the expat library is available, and
the xml.etree.ElementTree can be used to parse XML documents using a kind
of dictionary/list interface. (By default, the DOM and element tree parsers
themselves use the expat parser under the hood.)

Writing XML manually and writing XML using DOM and element trees, and
parsing XML using the DOM, SAX, and element tree parsers, is covered in
Chapter 7.

There is also a third-party library, Ixml (www.codespeak.net/1xml), that claims
to be “the most feature-rich and easy-to-use library for working with XML
and HTML in the Python language.” This library provides an interface that
is essentially a superset of what the element tree module provides, as well as
many additional features such as support for XPath, XSLT, and many other
XML technologies.

Example: The xml.etree.ElementTree Module

Python’s DOM and SAX parsers provide the APIs that experienced XML
programmers are used to, and the xml.etree.ElementTree module offers a more
Pythonic approach to parsing and writing XML. The element tree module is
a fairly recent addition to the standard library,* and so may not be familiar to
some readers. In view of this, we will present a very short example here to give
a flavor of it—Chapter 7 provides a more substantial example and provides
comparative code using DOM and SAX.

The U.S. government’s NOAA (National Oceanic and Atmospheric Administra-
tion) Web site provides a wide variety of data, including an XML file that lists
the U.S. weather stations. The file is more than 20000 lines long and contains
details of around two thousand stations. Here is a typical entry:

<station>
<station id>KB0S</station id>
<state>MA</state>
<station_name>Boston, Logan International Airport</station name>

<xml_url>http://weather.gov/data/current obs/KBOS.xml</xml url>
</station>

*The xml.etree.ElementTree module first appeared in Python 2.5.

www.it-ebooks.info

http://www.it-ebooks.info/

io.
StringIO
213 <

228 Chapter 5. Modules

We have cut out a few lines and reduced the indentation that is present in the
file. The file is about 840K in size, so we have compressed it using gzip to a
more manageable 72K. Unfortunately, the element tree parser requires either
a filename or a file object to read, but we cannot give it the compressed file since
that will just appear to be random binary data. We can solve this problem with
two initial steps:

binary = gzip.open(filename).read()
fh = 10.StringIO(binary.decode("utf8"))

The gzip module’s gzip.open() function is similar to the built-in open() except
that it reads gzip-compressed files (those with extension .gz) as raw binary
data. We need the data available as a file that the element tree parser can
work with, so we use the bytes.decode() method to convert the binary data to a
string using UTF-8 encoding (which is what the XML file uses), and we create
a file-like io0.StringI0 object with the string containing the entire XML file as
its data.

tree = xml.etree.ElementTree.ElementTree()

root = tree.parse(fh)

stations = []

for element in tree.getiterator("station name"):
stations.append(element.text)

Here we create anew xml.etree.ElementTree.ElementTree object and give it a file
object from which to read the XML we want it to parse. As far as the element
tree parser is concerned it has been passed a file object open for reading,
although in fact it is reading a string inside an io.StringI0 object. We want to
extract the names of all the weather stations, and this is easily achieved using
the xml.etree.ElementTree.ElementTree.getiterator() method which returns an
iterator that returns all the xml.etree.ElementTree.Element objects that have
the given tag name. We just use the element’s text attribute to retrieve the
text. Like os.walk(), we don’t have to do any recursion ourselves; the iterator
method does that for us. Nor do we have to specify a tag—in which case the
iterator will return every element in the entire XML document.

Other Modules

We don’t have the space to cover the nearly 200 packages and modules that are
available in the standard library. Nonetheless, this general overview should
be sufficient to get a flavor of what the library provides and some of the key
packages in the major areas it serves. In this section’s final subsection we
discuss just a few more areas of interest.

In the previous section we saw how easy it is to create tests in docstrings and
to run them using the doctest module. The library also has a unit-testing

www.it-ebooks.info

bytes
type
>» 293

http://www.it-ebooks.info/

Shallow
and
deep
copying

146 <

Overview of Python’s Standard Library 229

framework provided by the unittest module—this is a Python version of the
Java JUnit test framework. The doctest module also provides some basic in-
tegration with the unittest module. (Testing is covered more fully in Chap-
ter 9.) Several third-party testing frameworks are also available, for example,
py.test from codespeak.net/py/dist/test/test.html and nose from code.google.
com/p/python-nose.

Noninteractive applications such as servers often report problems by writing
to log files. The logging module provides a uniform interface for logging, and
in addition to being able to log to files, it can log using HTTP GET or POST
requests, or using email or sockets.

The library provides many modules for introspection and code manipulation,
and although most of them are beyond the scope of this book, one that is worth
mentioning is pprint which has functions for “pretty printing” Python objects,
including collection data types, which is sometimes useful for debugging. We
will see a simple use of the inspect module that introspects live objects in
Chapter 8.

The threading module provides support for creating threaded applications,
and the queue module provides three different kinds of thread-safe queues.
Threading is covered in Chapter 10.

Python has no native support for GUI programming, but several GUI libraries
can be used by Python programs. The Tk library is available using the tkinter
module, and is usually installed as standard. GUI programming is introduced
in Chapter 15.

The abc (Abstract Base Class) module provides the functions necessary for
creating abstract base classes. This module is covered in Chapter 8.

The copy module provides the copy.copy() and copy.deepcopy() functions that
were discussed in Chapter 3.

Access to foreign functions, that is, to functions in shared libraries (.d11 files on
Windows, .dylib files on Mac OS X, and .so files on Linux), is available using
the ctypes module. Python also provides a C API, so it is possible to create
custom data types and functions in C and make these available to Python.
Both the ctypes module and Python’s C API are beyond the scope of this book.

If none of the packages and modules mentioned in this section provides
the functionality you need, before writing anything from scratch it is worth
checking the Python documentation’s Global Module Index to see whether
a suitable module is available, since we have not been able to mention ev-
ery one here. And failing that, try looking at the Python Package Index
(pypi.python.org/pypi) which contains several thousand Python add-ons rang-
ing from small one-file modules all the way up to large library and framework
packages containing anything from scores to hundreds of modules.

www.it-ebooks.info

http://www.it-ebooks.info/

230 Chapter 5. Modules

Summary

The chapter began by introducing the various syntaxes that can be used for
importing packages, modules, and objects inside modules. We noted that
many programmers only use the import importable syntax so as to avoid name
clashes, and that we must be careful not to give a program or module the same
name as a top-level Python module or directory.

Also discussed were Python packages. These are simply directories with an
__init .py file and one or more .py modules inside them. The init .py
file can be empty, but to support the from importable import * syntax, we can
create an _all special variable in the init .py file set to a list of module
names. We can also put any common initialization code in the init .py file.
It was noted that packages can be nested simply by creating subdirectories and
having each of these contain its own init .py file.

Two custom modules were described. The first just provided a few functions
and had very simple doctests. The second was more elaborate with its own
exceptions, the use of dynamic function creation to create a function with a
platform-specificimplementation, private global data, a call to an initialization
function, and more elaborate doctests.

About half the chapter was devoted to a high-level overview of Python’s stan-
dard library. Several string handling modules were mentioned and a couple
of i0.StringI0 examples were presented. One example showed how to write
text to a file using either the built-in print() function or a file object’s write()
method, and how to use an i0.5tringI0 object in place of a real file. In previous
chapters we handled command-line options by reading sys.argv ourselves, but
in the coverage of the library’s support for command-line programming we in-
troduced the optparse module which greatly simplifies command-line argument
handling—we will use this module extensively from now on.

Mention was made of Python’s excellent support for numbers, and the library’s
numeric types and its three modules of mathematical functions, as well as
the support for scientific and engineering mathematics provided by the SciPy
project. Both library and third-party date/time handling classes were briefly
described and examples of how to obtain the current date/time and how to
convert between datetime.datetime and the number of seconds since the epoch
were shown. Also discussed were the additional collection data types and the
algorithms for working with ordered sequences that the standard library
provides, along with some examples of using the heapq module’s functions.

The modules that support various file encodings (besides character encodings)
were discussed, as well as the modules for packing and unpacking the most
popular archive formats, and those that have support for audio data. An exam-
ple showing how to use the Base64 encoding to store binary data in . py files was
given, and also a program to unpack tarballs. Considerable supportis provided

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 231

for handling directories and files—and all of this is abstracted into platform-
independent functions. Examples were shown for creating a dictionary with
filename keys and last modified timestamp values, and for doing a recursive
search of a directory to identify possible duplicate files based on their name
and size.

A large part of the library is devoted to networking and Internet programming.
We very briefly surveyed what is available, from raw sockets (including
encrypted sockets), to TCP and UDP servers, to HTTP servers and support for
the WSGI. Also mentioned were the modules for handling cookies, CGI scripts,
and HTTP data, and for parsing HTML, XHTML, and URLs. Other modules
that were mentioned included those for handling XML-RPC and for handling
higher-level protocols such as FTP and NNTP, as well as the email client and
server support using SMTP and client support for IMAP4 and POP3.

The library’s comprehensive support for XML writing and parsing was also
mentioned, including the DOM, SAX, and element tree parsers, and the expat
module. And an example was given using the element tree module. Mention
was also made of some of the many other packages and modules that the
library provides.

Python’s standard library represents an extremely useful resource that can
save enormous amounts of time and effort, and in many cases allows us to
write much smaller programs by relying on the functionality that the library
provides. In addition, literally thousands of third-party packages are available
to fill any gaps the standard library may have. All of this predefined function-
ality allows us to focus much more on what we want our programs to do, while
leaving the library modules to take care of most of the details.

This chapter brings us to the end of the fundamentals of procedural program-
ming. Later chapters, and particularly Chapter 8, will look at more advanced
and specialized procedural techniques, and the following chapter introduces
object-oriented programming. Using Python as a purely procedural languageis
both possible and practical—especially for small programs—but for medium to
large programs, for custom packages and modules, and for long-term maintain-
ability, the object-oriented approach usually wins out. Fortunately, all that we
have covered up to now is both useful and relevant in object-oriented program-
ming, so the subsequent chapters will continue to build up our Python knowl-
edge and skills based on the foundations that have now been laid.

Exercise

Write a program to show directory listings, rather like the dir command in
Windows or 1s in Unix. The benefit of creating our own listing program is
that we can build in the defaults we prefer and can use the same program on

www.it-ebooks.info

http://www.it-ebooks.info/

locale.
set-
locale()

86 «

232 Chapter 5. Modules

all platforms without having to remember the differences between dir and 1s.
Create a program that supports the following interface:

Usage: 1s.py [options] [pathl [path2 [... pathN]]]
The paths are optional; if not given . is used.
Options:
-h, —-help show this help message and exit
-H, —--hidden show hidden files [default: off]
-m, ——modified show last modified date/time [default: off]
-0 ORDER, --order=0RDER
order by ('name', 'n', 'modified', 'm', 'size', 's') [default: namel
-r, ——recursive recurse into subdirectories [default: off]
-s, —-sizes show sizes [default: off]

(The output has been modified slightly to fit the book’s page.)

Here is an example of output on a small directory using the command line
1s.py -ms —os misc/:

2008-02-11 14:17:03 12,184 misc/abstract.pdf

2008-02-05 14:22:38 109,788 misc/klmgtintro.lyx

2007-12-13 12:01:14 1,359,950 misc/tracking.pdf
misc/phonelog/

3 files, 1 directory

We used option grouping in the command line (optparse handles this automati-
cally for us), but the same could have been achieved using separate options, for
example, 1s.py -m -s -0s misc/, or by even more grouping, 1s.py -msos misc/, or
by using long options, 1s.py ——modified --sizes --order=size misc/, or any com-
bination of these. Note that we define a “hidden” file or directory as one whose
name begins with a dot (.).

The exercise is quite challenging. You will need to read the optparse documen-
tation to see how to provide options that set a True value, and how to offer a
fixed list of choices. If the user sets the recursive option you will need to pro-
cess the files (but not the directories) using os.walk(); otherwise, you will have
to use 0s.listdir() and process both files and directories yourself.

One rather tricky aspect is avoiding hidden directories when recursing. They
can be cut out of os.walk()’s dirs list—and therefore skipped by os.walk()—Dby
modifying that list. But be careful not to assign to the dirs variable itself, since
that won’t change the list it refers to but will simply (and uselessly) replace it;
the approach used in the model solution is to assign to a slice of the whole list,
thatis,dirs[:] = [dir for dir in dirs if not dir.startswith(".")].

The best way to get grouping characters in the file sizes is to import the locale
module, call locale.setlocale() to get the user’s default locale, and use the n
format character. Overall, 1s.py is about 130 lines split over four functions.

www.it-ebooks.info

http://www.it-ebooks.info/

® The Object-Oriented Approach
® Custom Classes

@® Custom Collection Classes

Object-Oriented
Programming

In all the previous chapters we used objects extensively, but our style of
programming has been strictly procedural. Python is a multiparadigm
language—it allows us to program in procedural, object-oriented, and function-
al style, or in any mixture of styles, since it does not force us to program in any
one particular way.

It is perfectly possible to write any program in procedural style, and for very
small programs (up to, say, 500 lines), doing so is rarely a problem. But for most
programs, and especially for medium-size and large programs, object-oriented
programming offers many advantages.

This chapter covers all the fundamental concepts and techniques for doing
object-oriented programming in Python. The first section is especially for those
who are less experienced and for those coming from a procedural programming
background (such as C or Fortran). The section starts by looking at some of
the problems that can arise with procedural programming that object-oriented
programming can solve. Then it briefly describes Python’s approach to object-
oriented programming and explains the relevant terminology. After that, the
chapter’s two main sections begin.

The second section covers the creation of custom data types that hold sin-
gle items (although the items themselves may have many attributes), and
the third section covers the creation of custom collection data types that can
hold any number of objects of any types. These sections cover most aspects
of object-oriented programming in Python, although we defer some more ad-
vanced material to Chapter 8.

233

www.it-ebooks.info

http://www.it-ebooks.info/

234 Chapter 6. Object-Oriented Programming

The Object-Oriented Approach

In this section we will look at some of the problems of a purely procedural ap-
proach by considering a situation where we need to represent circles, poten-
tially lots of them. The minimum data required to represent a circle is its (x, y)
position and its radius. One simple approach is to use a 3-tuple for each circle.
For example:

circle = (11, 60, 8)

One drawback of this approach is that it isn’t obvious what each element of
the tuple represents. We could mean (x, y, radius) or, just as easily, (ra-
dius, x, y). Another drawback is that we can access the elements by index
position only. If we have two functions, distance from origin(x, y) and
edge distance from origin(x, y, radius), we would need to use tuple unpacking
to call them with a circle tuple:

distance = distance from origin(*circle[:2])
distance = edge distance from origin(*circle)

Both of these assume that the circle tuples are of the form (x, y, radius).
We can solve the problem of knowing the element order and of using tuple
unpacking by using a named tuple:

import collections

Circle = collections.namedtuple("Circle", "x y radius")
circle = Circle(13, 84, 9)

distance = distance from origin(circle.x, circle.y)

This allows us to create Circle 3-tuples with named attributes which makes
function calls much easier to understand, since to access elements we can use
their names. Unfortunately, problems remain. For example, there is nothing
to stop an invalid circle from being created:

circle = Circle(33, 56, -5)

It doesn’t make sense to have a circle with a negative radius, but the circle
named tuple is created here without raising an exception—just as it would be
if the radius was given as a variable that held a negative number. The error
will be noticed only if we call the edge distance from origin() function—and
then only if that function actually checks for a negative radius. This inability
to validate when creating an object is probably the worst aspect of taking a
purely procedural approach.

If we want circles to be mutable so that we can move them by changing their
coordinates or resize them by changing their radius, we can do so by using the
private collections.namedtuple. replace() method:

www.it-ebooks.info

http://www.it-ebooks.info/

The Object-Oriented Approach 235

circle = circle. replace(radius=12)

Just as when we create a Circle, there is nothing to stop us from (or warn us
about) setting invalid data.

If the circles were going to need lots of changes, we might opt to use a mutable
data type such as a list, for the sake of convenience:

circle = [36, 77, 8]

This doesn’t give us any protection from putting in invalid data, and the best
we can do about accessing elements by name is to create some constants so that
we can write things like circle[RADIUS] = 5. But using a list brings additional
problems—for example, we can legitimately call circle.sort()! Using a dictio-
nary might be an alternative, for example, circle = dict(x=36, y=77, radius=8),
but again there is no way to ensure a valid radius and no way to prevent inap-
propriate methods from being called.

Object-Oriented Concepts and Terminology

What we need is some way to package up the data that is needed to represent
a circle, and some way to restrict the methods that can be applied to the data
so that only valid operations are possible. Both of these things can be achieved
by creating a custom Circle data type. We will see how to create a Circle data
type in later in this section, but first we need to cover some preliminaries and
explain some terminology. Don’t worry if the terminology is unfamiliar at first;
it will become much clearer once we reach the examples.

We use the terms class, type, and data type interchangeably. In Python we
can create custom classes that are fully integrated and that can be used just
like the built-in data types. We have already encountered many classes, for
example, dict, int, and str. We use the term object, and occasionally the term
instance, to refer to an instance of a particular class. For example, 5 is an int
object and "oblong" is a str object.

Most classes encapsulate both data and the methods that can be applied to that
data. For example,the str class holds a string of Unicode characters asits data
and supports methods such as str.upper(). Many classes also support addition-
al features; for example, we can concatenate two strings (or any two sequences)
using the + operator and find a sequence’s length using the built-in len() func-
tion. Such features are provided by special methods—these are like normal
methods except that their names always begin and end with two underscores,
and are predefined. For example, if we want to create a class that supports
concatenation using the + operator and also the len() function, we can do so by
implementing the add () and len () special methods in our class. Con-
versely, we should never define any method with a name that begins and ends
with two underscores unless it is one of the predefined special methods and is

www.it-ebooks.info

http://www.it-ebooks.info/

236 Chapter 6. Object-Oriented Programming

appropriate to our class. This will ensure that we never get conflicts with later
versions of Python even if they introduce new predefined special methods.

Objects usually have attributes—methods are callable attributes, and other
attributes are data. For example, a complex object has imag and real attributes
and lots of methods, including special methods like add () and sub (to
support the binary + and - operators), and normal methods like conjugate().
Data attributes (often referred to simply as “attributes”) are normally imple-
mented as instance variables, that is, variables that are unique to a particular
object. We will see examples of this, and also examples of how to provide data
attributes as properties. A property is an item of object data that is accessed like
an instance variable but where the accesses are handled by methods behind the
scenes. As we will see, using properties makes it easy to do data validation.

Inside a method (which is just a function whose first argument is the instance
on which it is called to operate), several kinds of variables are potentially acces-
sible. The object’s instance variables can be accessed by qualifying their name
with the instanceitself. Local variables can be created inside the method;these
are accessed without qualification. Class variables (sometimes called static
variables) can be accessed by qualifying their name with the class name, and
global variables, that is, module variables, are accessed without qualification.

Some of the Python literature uses the concept of a namespace, a mapping from
names to objects. Modules are namespaces—for example, after the statement
import math we can access objects in the math module by qualifying them with
their namespace name (e.g., math.pi and math.sin()). Similarly, classes and ob-
jects are also namespaces; for example, if we have z = complex(1, 2), the z ob-
ject’s namespace has two attributes which we can access (z.real and z. imag).

One of the advantages of object orientation is that if we have a class, we can
specialize it. This means that we make a new class that inherits all the at-
tributes (data and methods) from the original class, usually so that we can add
or replace methods or add more instance variables. We can subclass (another
term for specialize), any Python class, whether built-in or from the standard
library, or one of our own custom classes.* The ability to subclass is one of the
great advantages offered by object-oriented programming since it makes it
straightforward to use an existing class that has tried and tested functional-
ity as the basis for a new class that extends the original, adding new data at-
tributes or new functionality in a very clean and direct way. Furthermore, we
can pass objects of our new class to functions and methods that were written
for the original class and they will work correctly.

We use the term base class to refer to a class that is inherited; a base class
may be the immediate ancestor, or may be further up the inheritance tree.
Another term for base class is super class. We use the term subclass, derived

*Some library classes that are implemented in C cannot be subclassed; such classes specify this in
their documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

The Object-Oriented Approach 237

class, or derived to describe a class that inherits from (i.e., specializes) another
class. In Python every built-in and library class and every class we create is
derived directly or indirectly from the ultimate base class—object. Figure 6.1
illustrates some of the inheritance terminology.

Superclass of dict, MyDict, ... -
Base class of dict, MyDict, ... [Ob] ect]

A
Superclass of MyDict : Subc!as_s of object .
Base class of MyDict @ct Specialization of object
3 Derived from object
Subclass of dict Subclass of object
Specializationof dict |MyDict| Specialization of object
Derived from dict . Derived from object

Figure 6.1 Some object-oriented inheritance terminology

Any method can be overridden, that is, reimplemented, in a subclass; this is the
same as Java (apart from Java’s “final” methods)* If we have an object of class
MyDict (a class that inherits dict) and we call a method that is defined by both
dict and MyDict, Python will correctly call the MyDict version—this is known as
dynamic method binding, also called polymorphism. If we need to call the base
class version of a method inside a reimplemented method we can do so by using
the built-in super() function.

Python also supports duck typing—“if it walks like a duck and quacks like
a duck, it is a duck”. In other words, if we want to call certain methods on an
object, it doesn’t matter what class the object is, only that it has the methods we
want to call. In the preceding chapter we saw that when we needed a file object
we could provide one by calling the built-in open() function—or by creating an
i0.StringI0 object and providing that instead, since io.StringI0 objects have
the same API (Application Programming Interface), that is, the same methods,
as the file objects returned by open() in text mode.

Inheritance is used to model is-a relationships, that is, where a class’s objects
are essentially the same as some other class’s objects, but with some variations,
such as extra data attributes and extra methods. Another approach is to use
aggregation (also called composition)—this is where a class includes one or
more instance variables that are of other classes. Aggregation is used to model
has-a relationships. In Python, every class uses inheritance—because all
custom classes have object as their ultimate base class, and most classes also
use aggregation since most classes have instance variables of various types.

*In C++ terminology, all Python methods are virtual.

www.it-ebooks.info

http://www.it-ebooks.info/

238 Chapter 6. Object-Oriented Programming

Some object-oriented languages have two features that Python does not pro-
vide. The first is overloading, that is, having methods with the same name but
with different parameter lists in the same class. Thanks to Python’s versatile
argument-handling capabilities this is never a limitation in practice. The sec-
ond is access control—there are no bulletproof mechanisms for enforcing data
privacy. However, if we create attributes (instance variables or methods) that
begin with two leading underscores, Python will prevent unintentional access-
es sothat they can be considered to be private. (Thisis done by name mangling;
we will see an example in Chapter 8.)

Just as we use an uppercase letter as the first letter of custom modules, we will
do the same thing for custom classes. We can define as many classes as we like,
either directly in a program or in modules—class names don’t have to match
module names, and modules may contain as many class definitions as we like.

Now that we have seen some of the problems that classes can solve, introduced
the necessary terminology, and covered some background matters, we can
begin to create some custom classes.

Custom Classes

In earlier chapters we created custom classes: custom exceptions. Here are two
new syntaxes for creating custom classes:

class className:
suite

class className(base classes):
suite

Since the exception subclasses we created did not add any new attributes (no
instance data or methods) we used a suite of pass (i.e., nothing added), and
since the suite was just one statement we put it on the same line as the class
statement itself. Note that just like def statements, class is a statement, so
we can create classes dynamically if we want to. A class’s methods are created
using def statementsin the class’s suite. Classinstances are created by calling
the class with any necessary arguments; for example, x = complex(4, 8) creates
a complex number and sets x to be an object reference to it.

Attributes and Methods

Let’s start with a very simple class, Point, that holds an (x, y) coordinate. The
classisin file Shape.py, and its complete implementation (excluding docstrings)
is show here:

class Point:

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Classes 239

def init (self, x=0, y=0):
self.x = x
self.y =y

def distance from origin(self):
return math.hypot(self.x, self.y)

def eq (self, other):
return self.x == other.x and self.y == other.y

def repr_ (self):
return "Point({0.x!r}, {0.y!r})".format(self)

def str_ (self):
return "({0.x!r}, {0.y!r})".format(self)

Since no base classes are specified, Point is a direct subclass of object, just
as though we had written class Point(object). Before we discuss each of the
methods, let’s see some examples of their use:

import Shape
a = Shape.Point()

repr(a) # returns: 'Point(0, 0)'
b = Shape.Point(3, 4)

str(b) # returns: '(3, 4)'
b.distance from origin() # returns: 5.0

b.x = -19

str(b) # returns: '(-19, 4)'
a==>b,al=b # returns: (False, True)

The Point class has two data attributes, self.x and self.y, and five methods
(not counting inherited methods), four of which are special methods; they are
illustrated in Figure 6.2. Once the Shape module is imported, the Point class
can be used like any other. The data attributes can be accessed directly (e.g.,
y = a.y), and the class integrates nicely with all of Python’s other classes by
providing support for the equality operator (==) and for producing strings in
representational and string forms. And Python is smart enough to supply the
inequality operator (!=) based on the equality operator. (It is also possible to
specify each operator individually if we want total control, for example, if they
are not exact opposites of each other.)

Python automatically supplies the first argument in method calls—it is an
object reference to the object itself (called this in C++ and Java). We must in-
clude this argument in the parameter list, and by convention the parameter is
called self. All object attributes (data and method attributes) must be qualified
by self. This requires a little bit more typing compared with some other lan-
guages, but has the advantage of providing absolute clarity: we always know
that we are accessing an object attribute if we qualify with self.

www.it-ebooks.info

http://www.it-ebooks.info/

240 Chapter 6. Object-Oriented Programming

object Point
0 '
_new
“init () y
—ea_0) init_ ()
repr_ () — = .
- - distance from origin()
str () - -
- —eq_()
_repr__()
Key _str_()
implemented
reimplemented

Figure 6.2 The Point class’s inheritance hierarchy

To create an object, two steps are necessary. First a raw or uninitialized object
must be created, and then the object must be initialized, ready for use. Some
object-oriented languages (such as C++ and Java) combine these two steps
into one, but Python keeps them separate. When an object is created (e.g., p =
Shape.Point()), first the special method new () is called to create the object,
and then the special method init () is called to initialize it.

In practice almost every Python class we create will require us to reimple-
ment only the init () method, since the object. new () method is al-
most always sufficient and is automatically called if we don’t provide our own
__new_ () method. (Later in this chapter we will show a rare example where
we do need to reimplement new ().) Not having to reimplement methods
in a subclass is another benefit of object-oriented programming—if the base
class method is sufficient we don’t have to reimplement it in our subclass.
This works because if we call a method on an object and the object’s class
does not have an implementation of that method, Python will automatically
go through the object’s base classes, and their base classes, and so on, until it
finds the method—and if the method is not found an AttributeError exception
is raised.

For example, if we execute p = Shape.Point(), Python begins by looking for
the method Point. new (). Since we have not reimplemented this method,
Python looks for the method in Point’s base classes. In this case there is only
one base class, object, and this has the required method, so Python calls ob-
ject. new () and creates a raw uninitialized object. Then Python looks for
the initializer, init (), and since we have reimplemented it, Python doesn’t
need to look further and calls Point. init (). Finally, Python sets p to be an
object reference to the newly created and initialized object of type Point.

Because they are so short and a few pages away, for convenience we will show
each method again before discussing it.

www.it-ebooks.info

Alter-
native
Fuzzy-
Bool

» 256

http://www.it-ebooks.info/

Custom Classes 241

def init (self, x=0, y=0):
self.x = x
self.y =y

The two instance variables, self.x and self.y, are created in the initializer,
and assigned the values of the x and y parameters. Since Python will find this
initializer when we create a new Point object, the object. init () method
will not be called. This is because as soon as Python has found the required
method it calls it and doesn’t look further.

Object-oriented purists might start the method off with a call to the base
class init () method by calling super(). init (). The effect of calling
the super() function like this is to call the base class’s _init () method. For
classes that directly inherit object there is no need to do this, and in this book
we call base class methods only when necessary—for example, when creating
classes that are designed to be subclassed, or when creating classes that don’t
directly inherit object. This is to some extent a matter of coding style—it is
perfectly reasonable to always call super(). init () at the start of a custom
class’s init () method.

def distance from origin(self):
return math.hypot(self.x, self.y)

This is a conventional method that performs a computation based on the
object’s instance variables. It is quite common for methods to be fairly short
and to have only the object they are called on as an argument, since often all
the data the method needs is available inside the object.

def _eq (self, other):
return self.x == other.x and self.y == other.y

Methods should not have names that begin and end with two under-
scores—unless they are one of the predefined special methods. Python pro-
vides special methods for all the comparison operators as shown in Table 6.1.

All instances of custom classes support == by default, and the comparison
returns False—unless we compare a custom object with itself. We can override
this behavior by reimplementing the eq () special method as we have done
here. Python will supply the ne () (not equal) inequality operator (!=)
automatically if we implement eq () but don’t implement ne ().

By default, all instances of custom classes are hashable, so hash() can be called
on them and they can be used as dictionary keys and stored in sets. But if we
reimplement eq (), instances are no longer hashable. We will see how to fix
this when we discuss the FuzzyBool class later on.

By implementing this special method we can compare Point objects, but if we
were to try to compare a Point with an object of a different type—say, int—we

www.it-ebooks.info

Fuzzy-
Bool

» 254

http://www.it-ebooks.info/

str.
format()

78 <

242 Chapter 6. Object-Oriented Programming

Table 6.1 Comparison Special Methods

Special Method Usage Description

1t (self, other) x <y ReturnsTrueif xislessthany

le (self, other) x <=y ReturnsTrue if x is less than or equal to y

eq (self, other) x ==y ReturnsTrueif xisequal toy

ge (self, other) x >=y ReturnsTrue if x is greater than or equal to y

(
(
(
ne (self, other) x !=y ReturnsTrueif xisnot equal toy
(
_ gt (self, other) x >y ReturnsTrueif x is greater thany

would get an AttributeError exception (since ints don’t have an x attribute).
On the other hand, we can compare Point objects with other objects that
coincidentally just happen to have an x attribute (thanks to Python’s duck
typing), but this may lead to surprising results.

If we want to avoid inappropriate comparisons there are a few approaches
we can take. One is to use an assertion, for example, assert isinstance(other,
Point). Another is to raise a TypeError to indicate that comparisons between the
two types are not supported, for example, if not isinstance(other, Point): raise
TypeError(). The third way (which is also the most Pythonically correct)is to do
this: if not isinstance(other, Point): return NotImplemented. In this third case,
if NotImplemented is returned, Python will then try calling other. eq (self) to
see whether the other type supports the comparison with the Point type, and if
there is no such method or if that method also returns NotImplemented, Python
will give up and raise a TypeError exception. (Note that only reimplementations
of the comparison special methods listed in Table 6.1 may return NotImplement-
ed.)

The built-in isinstance() function takes an object and a class (or a tuple of
classes), and returns True if the object is of the given class (or of one of the tuple
of classes), or of one of the class’s (or one of the tuple of classes’) base classes.

def _repr_ (self):
return "Point({0.x!r}, {0.y!r})".format(self)

The built-in repr() function calls the repr_ () special method for the object
it is given and returns the result. The string returned is one of two kinds.
One kind is where the string returned can be evaluated using the built-in
eval() function to produce an object equivalent to the one repr() was called
on. The other kind is used where this is not possible; we will see an example
later on. Here is how we can go from a Point object to a string and back to a
Point object:

www.it-ebooks.info

http://www.it-ebooks.info/

import

195 <

Custom Classes 243

p = Shape.Point(3, 9)

repr(p) # returns: 'Point(3, 9)'
q = eval(p._ module + "." + repr(p))
repr(q) # returns: 'Point(3, 9)'

We must give the module name when eval()-ing if we used import Shape. (This
would not be necessary if we had done the import differently, for example, from
Shape import Point.) Python provides every object with a few private attributes,
one of whichis module ,a string that holds the object’s module name, which
in this example is "Shape".

At the end of this snippet we have two Point objects, p and g, both with the
same attribute values, so they compare as equal. The eval() function returns
the result of executing the string it is given—which must contain a valid
Python statement.

def str_ (self):
return "({0.x!r}, {0.y!r})".format(self)

The built-in str() function works like the repr() function, except that it calls
the object’s str () special method. The result is intended to be understand-
able to human readers and is not expected to be suitable for passing to the
eval() function. Continuing the previous example, str(p) (or str(q)) would re-
turn the string ' (3, 9)'.

We have now covered the simple Point class—and also covered a lot of behind-
the-scenes details that are important to know but which can mostly be left in
the background. The Point class holds an (x,y) coordinate—a fundamental part
of what we need to represent a circle, as we discussed at the beginning of the
chapter. In the next subsection we will see how to create a custom Circle class,
inheriting from Point so that we don’t have to duplicate the code for the x and
y attributes or for the distance from origin() method.

Inheritance and Polymorphism

The Circle class builds on the Point class using inheritance. The Circle class
adds one additional data attribute (radius), and three new methods. It also
reimplements a few of Point’s methods. Here is the complete class definition:

class Circle(Point):

def init (self, radius, x=0, y=0):
super(). init (x, y)
self.radius = radius

def edge distance from origin(self):
return abs(self.distance from origin() - self.radius)

www.it-ebooks.info

Dynam-
ic code
execu-
tion

>» 344

http://www.it-ebooks.info/

244

Chapter 6. Object-Oriented Programming

def area(self):
return math.pi * (self.radius ** 2)

def circumference(self):
return 2 * math.pi * self.radius

def _eq_ (self, other):
return self.radius == other.radius and super(). eq_ (other)

def _ repr_ (self):
return "Circle({0.radius!r}, {0.x!r}, {0.y!r})".format(self)

def str_ (self):
return repr(self)

Inheritance is achieved simply by listing the class (or classes) that we want our
class to inherit in the class line.* Here we have inherited the Point class—the
inheritance hierarchy for Circle is shown in Figure 6.3.

object « Point «— Circle
X X
new () ,
" init_ () y y
- U new () radius |
Trer (| |0 S
“str () distance from origin() __1n1t_() -
- - _eq_() distance from origin()
__repr__() edge distance from origin()
_str__() area()
circumference()
Key _eq_()
inherited _repr__()
implemented _str_()
reimplemented

Figure 6.3 The Circle class’s inheritance hierarchy

Inside the init () method we use super() to call the base class’s _init ()
method—this creates and initializes the self.x and self.y attributes. Users
of the class could supply an invalid radius, such as -2; in the next subsection
we will see how to prevent such problems by making attributes more robust
using properties.

The area() and circumference() methods are straightforward. The edge dis-
tance from origin() method calls the distance from origin() method as part

* Multiple inheritance, abstract base types, and other advanced object-oriented techniques are
covered in Chapter 8.

www.it-ebooks.info

http://www.it-ebooks.info/

Shallow
and
deep
copying
146 <

Custom Classes 245

of its computation. Since the Circle class does not provide an implementa-
tion of the distance from origin() method, the one provided by the Point base
class will be found and used. Contrast this with the reimplementation of the
__eq__() method. This method compares this circle’s radius with