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PREFACE TO THE FOURTH EDITION

The present edition retains the basic outlook of the book, namely to demonstrate
the purposive and critical approach which should be made to all experimental
work in physics. But I have made a number of changes and additions in response
to new experimental methods and the widespread use of computers, which I hope
will add to its usefulness.

Substantial changes have been made in chapter 7, in which a selection of
techniques are analysed to show the art and craft of the experimenter. I have
added a section on the measurement of time and frequency, which includes an
account of the caesium atomic clock and the present universal time scale. This is
followed by a description of the Global Positioning System, which, based on
atomic clocks, enables position on the surface of the Earth to be determined to
very high precision. Timing techniques have a number of elegant and ingenious
features, which, combined with the importance of their practical applications,
make them instructive and interesting, both at the elementary and advanced level.

I have added an appendix on the x? distribution. The goodness of fit test based
on this distribution finds widespread application in the physical, biological,
medical, and social sciences. Many students have had an introduction to the topic
at school and have learnt to apply the formulae of the test, but I feel that valuable
insight is gained from seeing a derivation of the distribution, which I have given
in a not too formal manner.

Spreadsheets are now in common use, and I have included some worked
examples based on them. I have taken the opportunity to add to the exercises, and
have brought some of the examples, references, and definitions of units up to
date.

I would like to thank Mr J. Acton, Dr C. Bergemann, Professor M. F. Collins,
and Dr D. Kennedy for helpful discussions and for comments on therevised parts
of the book, and Mr A. Squires both for useful comments and for providing
Fig. E.2b.

G. L. SQUIRES
July 2000



PREFACE TO THE FIRST EDITION

Experimental physics has occupied some of the finest intellects in the history of
man, but the fascination of thesubject is not always apparent in an undergraduate
course of practical work. This book is about experimental physics and it is
intended for undergraduates, but it does not describe a systematic course of
experiments, nor is it a handbook of experimental techniques. Instead, it sets out
to demonstrate a certain outlook or approach to experimental work. It is intended
as a companion to a general course of practical work. My aim is to make the
student more critical of what he does and more aware of what can be done, and in
this way to make the course more interesting and meaningful.

The book is in three parts. The first is on the statistical treatment of data. I
have tried to give the statistical theory not as an exercise in mathematics but
rather as a tool for experimental work. This is perhaps the most difficult part of
the book, and the student should not worry if he does not grasp all the
mathematical details at first. He should read through the chapters to get a general
understanding - and then go ahead and use the results. He can always return and
master the proofs at a later stage. The second part is on experimental methods. I
discuss a selection of instruments, methods, and experiments with a view to
showing the craft of the experimenter. The selection is arbitrary - though I have
tried to illustrate the points with methods that are useful in themselves. The third
part concerns such matters as keeping ef ficient records, getting arithmetic right,
and writing good scientific English.

The examples have been kept fairly simple. Apart from the account of the
measurement of the magnetic moment of the electron, thelevel of the material is
roughly that of a first-year undergraduate course. But [ think that a wider range
of students — from intelligent sixth-formers to research students - could benefit
from the experimental ‘awareness’ that the book is trying to foster.

The experiment to measure the magnetic moment of the electron is an advanced
one and contains several ideas beyond those of an average first-year course. [
have tried to give sufficient explanation to make it intelligible to someone in his
second or third year who has had an introduction to quantum mechanics. The
experiment is a rewarding one to study, but the whole account may be omitted at
first reading without detriment to the understanding of therest of the book.

I would like to thank Professor O. R. Frisch, Professor R. G. Chambers, Mr
E. S. Shire, Dr ). Ashmead, Dr J. R. Waldram. Dr B. D. Josephson, and Dr



Preface to the first edition

N. J. B. A. Branson for reading the first draft of the book and making valuable
suggestions for its improvement. I would also like to thank Messrs R. A.
Bromley, R. G. Courtney, B. C. Hamshere, H. M. C. Rowe, B. Scruton, D. R.
Weaver, and M. A. G. Willson who read parts of the first draft and made many
useful comments from the user's point of view. Finally, I wish to express my
indebtedness to all the undergraduates who have passed through the first-year
Mechanics, Heat, and Optics Class at the Cavendish Laboratory in the past ten
years. They have taught me much about errors - in every sense of the word.

G. L. SQUIRES
September 1967

xi






1 The object of practical physics

This book is intended to help you to do practical physics at college or university:
its aim is to make the laboratory work more useful and profitable. We may start
by asking what is the object of laboratory work in a university physics course.
There are several possible objects. Laboratory work may serve

(a) to demonstrate theoretical ideas in physics,
(b) to provide a familiarity with apparatus,
(c) to provide a training in how {0 do experiments.

Let us consider each of these in turn.

Seeing something demonstrated in practice is often a great help in under-
standing it. For example, interference in light is not an intuitive concept. The idea
that two beams of light can cancel each other and give darkness takes a little
swallowing, and most people find it helpful to be given a visual demonstration. A
demonstration is useful for another reason - it gives an idea of orders of
magnitude. The interference fringes are in general close together, which indicates
that the wavelength of light is small compared with everyday objects. But the
demonstration is no substitute for a proper explanation, which goes into the
details of geometry and phase relations. So the first object, the demonstration of
theoretical ideas, has a definite but limited usefulness.

The second object is perhaps more important, but it is necessary to say exactly
what is meant by ‘apparatus’ in this context. In any practical course you will
handle a number of instruments, such as oscilloscopes, timers, thermometers, and
so on, and the experience you gain from using them should prove useful.
However, if you eventually do scientific work of some kind, the range of
instruments you could conceivably work with is enormous. No practical course
could possibly teach you to use them all. What the course should do is to train
you to use instruments in general. There is a certain attitude of mind that an
experimenter should adopt when handling any instrument, and this the course
should try to instil. But this is part of the third object which is the most important
of all.

The phrase ‘how to do experiments’ may sound vague, so let us try to be more
specific. The primary object - or set of objects - of practical physics is to train you to
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(a) plan an experiment whose precision is appropriate to its purpose,

(b) be aware of and take steps to eliminate systematic_errors in methods and
instruments,

(c) analyse the results in order to draw correct conclusions,

(d) estimate the precision of the final result,

(e) record the measurements and calculations accurately. clearly, and

-

concisely.

All this adds up to saying that the main object of a course in practical physics is to
train you to be a competent experimenter. But the course can do stillmore. It can
show the way physics works.

Physics is one of the natural sciences, that is to say, it is part of our attempt to
understand the natural world. When we are confronted by a situation in the
natural world, the way we proceed in physics is to select what we think are the
essential features. For example, the Greeks saw that a moving body came to rest
and they therefore said that a force is necessary to keep a body moving. Galileo
and Newton observed the same phenomenon, but they said that the coming to
rest of the body is not an essential feature of the situation. In depends on friction;
in the absence of friction a body keeps moving. If we try to do an experiment to
test this view, we find that we cannot completely eliminate friction or other
retarding forces, but we can make such forces small, and the smaller we make
them the farther the body goes before coming to rest. So it is reasonable to believe
that in the limiting case of zero friction the motion will remain unchanged as
stated in Newton’s first law.

This is the way physics works. We select what we think are the essential features
in an actual physical situation. From them we make a generalization, or theory,
and from the theory, deductions. We test a deduction by doing an experiment.
But the deduction refers to an idealized or theoretically simple situation. In order
to test it we have to create this simple situation in the messy, complicated, natural
world, which is often a difficult thing to do.

In lectures you are taught the theory of the subject. The physical world is
described in terms of the features which the current theories say are essential.
These features tend to be the only ones you hear about, and you may well come to
feel that they constitute the entire world, instead of a specially selected part of it.
Moreover, everything fits together so smoothly that you can easily lose sight of
the genius and effort that went into creating the subject. The most effective
antidote to this is going into the laboratory and seeing the complications of real
life.

By doing practical physics, then, you learn at first hand some of the obstacles to
testing a theory, to measuring what you want to measure and not something else,
and you learn how to overcome them. But above all you get an insight into
physics as a whole, into the way experiment and theory interact, which is the very
essence of the subject.
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2 Introduction to errors

2.1 The importance of estimating errors

When we measure a physical quantity, we do not expect the value obtained to be
exactly equal to the true value. It is important to give some indication of how
close the result is likely to be to the true value, that is to say, some indication of
the precision or reliability of the measurements. We do this by including with the
result an estimate of its error. For example, we might measure the focal length f of
alens and give the final result as

f = (256 + 2) mm. (2.0

By this we mean that we expect the focal length to be somewhere in the range 254
to 258 mm. Equation (2.1) is really a probability statement. It means, not that we
are certain that the value lies between the limits quoted, but that our measure-
ments indicate that there is a certain probability of its doing so. In chapter 3 we
shall make this statement more precise.

Estimates of errors are important because without them we cannot draw
significant conclusions from the experimental results. Suppose, for example, we
wish to find out whether temperature has an effect on the resistance of a coil of
wire. The measured values of the resistance are

200.025Q at 10°C
200.034 Q at 20°C.

Is the difference between these two values significant? Without knowing the errors
we cannot say. If, for example, the error in each value of the resistance is 0.001 ,
the difference is significant, whereas if the error is 0.010 €, then it is not.

Once the result of an experiment has been obtained it goes out into the world
and becomes public property. Different people may make use of it in different
ways. Some may use it in calculations for a practical end; others may want to
compare it with a theoretical prediction. For example, an electrical engineer may
want to know the resistivity of copper in order to design a transformer, while a
solid state physicist may want to know the same quantity to test a theory of
electrons in metals. Whatever use people make of an experimental result, they will
want to know whether it is sufficiently precise for their purpose. If they have
drawn some conclusions from the result, they will want to know how much
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confidence 1o place in"them. To arswer such qiiestions, an estimate of the errorin
the result is necessary, and it is the responsibility of the experimenter to provide it.

Now although the experimenter may not be able to foresee all the possible uses
of his results, he should be aware of some of them. No experiment should be done
in a vacuum - at least not in an intellectual one. If the experiment is being done to
test a theory, the experimenter should have some idea how precise the result needs
to be in order to provide a useful comparison with the theoretical prediction. So
the idea of using error estimates to draw conclusions from the results of an
experiment applies also in reverse. That is to say, the purpose of the experiment
often determines the error that can be tolerated, and this in turn may have an
important influence on the experimental procedure.

It might be thought that every expetiment should be done as precisely as possible,
but that is an unrealistic point of view. Life is finite, so are the experimenter’s
resources, and so also, unless he is a genius, is his capacity for taking pains.
Therefore it is important to plan and carry out the experiment so that the precision
of the final answer is appropriate to the ultimate object of the experiment. Suppose,
in the example given at the beginning of this section, that we are only interested in
the resistance of the coil because we want to use it as a standard resistance in the
temperature range 10 °C to 20 °C, and that the precision required is | part in 10 000.
A measurement of the resistance with an error of 0.010 Q would then be quite
adequate, and to strive to reduce the error to 0.001 Q would be a waste of time. On
the other hand, to measure the resistance to only 0.05 Q would be even worse
because the measurements would be useless for their purpose.

Just as the final result of an experiment should be obtained to an appropriate
degree of precision, so also should the values of the various measured quantities
within the experiment. Few experiments are so simple that the final quantity is
measured directly. We usually have to measure several primary quantities and
bring the results together in order to obtain the quantity required. The errors in
the primary quantities determine that in the final result. In general the primary
errors contribute different amounts to the final error, and the latter is minimized
if the finite resources of time, apparatus, and patience available are concentrated
on reducing those errors that contribute most to the final error.

So we see that the idea of errors is not something of secondary or peripheral
interest in an experiment. On the contrary, it is related to the purpose of the
experiment, the method of doing it, and the significance of the results.

2.2 Systematic and random errors

Errors may be divided into two kinds, systematic and random. A systematic error
is one which is constant throughout a set of readings.* A rundom error is one

* This definition is actually too restrictive  some systemalic errors are not constant. But in order to
give the basic ideas we restrict the discussion herc to the simple case. Morc general cases are
considered in chapter 8
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(b) —HHH—

True
value

Fig. 2.1. Set of measurements (a) with random errors only and (b) with
systematic plus random errors. Each point indicates the result of a measurement.

which varies and which is equally likely to be positive or negative.

Random errors are always present in an experiment and, in the absence of
systematic errors, they cause successive readings to spread about the true value of
the quantity - Fig. 2.1a. If in addition a systematic error is present, the readings
spread, not about the true value, but about some displaced value - Fig. 2.1b-

Suppose that the period of a pendulum is measured by means of a stopclock,
and the measurement is repeated many times. Errors in starting and stopping the
clock, in estimating the scale divisions, small irregularities in the motion of the
pendulum, all these cause variations in the results of successive measurements and
may be regarded as random errors. If no other errors are present, some results
will be too high and others too low. But if, in addition, the clock is running slow,
all the results will be too low- This is a systematic error.

[t should be noticed that systematic and random errors are defined according to
whether they produce a systematic or random effect. So we cannot say that a
certain source of error is inherently systematic or random. Retuming to the
example, suppose that every time we measure the period we use a different clock.
Some clocks may be running fast and others slow. But such inaccuracies now
produce a random error.

Again, some sources of error may give rise to both systematic and random
effects. For example, in operating the clock we might not only start and stop it in
a slightly irregular manner in relation to the motion of the pendulum, thus
producing a random error, but we might also have a tendency to start it too late
and stop it too early, which would give rise to a systematic error.

It is convenient to make a distinction between the words accurate and precise in
the context of errors. Thus a result is said to be accurate if it is relatively free from
systematic error, and precise if the random error is small.
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2.3 Systematic errors

Systematic errors often arise because the experimental arrangement is different
from that assumed in the theory, and the correction factor which takes account of
this difference is ignored. It is easy to give examples of effects that may lead to
systematic error. Thermal emfs in a resistance bridge, the resistance of the leads in
a platinum thermometer, the effect of the exposed stem in a mercury thermo-
meter, heat losses in a calorimetric experiment, counting losses due to the dead-
time in a particle counter are but a few. Another common source of systematic
error is the one mentioned earlier — inaccurate apparatus.

Random errors may be detected by repeating the measurements. Furthermore,
by taking more and more readings we obtain from the arithmetic mean a value
which approaches more and more closely to the true value. Neither of these
points is true for a systematic error. Repeated measurements with the same
apparatus neither reveal nor do they eliminate a systematic error. For this reason
systematic errors are potentially more dangerous than random errors. If large
random errors are present in an experiment, they will manifest themselves in a
large value of the final quoted error. Thus everyone is aware of the imprecision of
the result, and no harm is done - except possibly to the ego of the experimenter
when no one takes notice of his or her results. However, the concealed presence of
a systematic error may lead to an apparently reliable result, given with a small
estimated error, which is in fact seriously wrong.

A classic example of this was provided by Millikan’s oil-drop experiment to
measure ¢, the elementary charge. In this experiment it is necessary to know the
viscosity of air. The value used by Millikan was too low, and as a result the value
he obtained for e was

e=(1.591 £0.002) x 107"*C.

This may be compared with the present value (Mohr and Taylor 2000)
e = (1.602 176 46 +0.000 000 06) x 10~"° C.

Up till 1930, the values of several other atomic constants, such as the Planck
constant and the Avogadro constant. were based on Millikan’s value for e and
were consequently in error by more than %%

Random errors may be estimated by statistical methods, which are discussed in
the next two chapters. Systematic errors do not lend themselves to any clear-cut
treatment. Your safest course is to regard them as effects to be discovered and
eliminated. There is no general rule for doing this. It is a case of thinking about
the particular method of doing an experiment and of always being suspicious of
the apparatus. We shall try to point out common sources of systematic error in
thisbook, but in this matter there is no substitute for experience.



3 Treatment of a single variable

3.1 Introduction

Suppose we make a set of measurements, free from systematic error, of the same
quantity. The individual values x,, x,, etc., vary owing to random errors, and the
mean value X (i.e. the arithmetic average) is taken as the best value of the
quantity. But, unless we are lucky,  will not be equal to the true value of the
quantity, which we denote by X. The question we are going to consider is how
close we expect X to be to X. Of course we do not know the actual error in £. If we
did, we would correct X by the required amount and get the right value X. The
most we can do is to say that there is a certain probability that X lies within a
certain range centred on %. The problem then is to calculate this range for some
specified probability.

{a)

xu_—g
>

{b) L e .

Fig. 3.1. Results of successive measurements of the same quantity. The
mean £ is expected to be closer to the true value for set (a) than for set (b).

A clue to how we should proceed is provided by the results shown in Fig. 3.1.
On the whole, for the resultsin Fig. 3.1a we would expect X to be fairly close to &;
whereas for those in Fig. 3.1b we would not be greatly surprised if there were
quite a large difference. In other words, the larger the spread in the results, the
larger we would expect the error in % to be. The whole of the present chapter is
concerned with putting this qualitative statement on a firm quantitative basis. We
assume throughout that no systematic errors are present.
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Table 3.1. Measurements of
theresistance R of a coil

RIQ RIS
4.615 4613
4.638 4.623
4.597 4.659
4.634 4.623

3.2 Set of measurements
Denote the values of n successive measurements of the same quantity by
X3, T 3veren o0 3.1

The number n is not necessarily large and in a typical experiment might be in the
range 5 to 10. The mean is

ol )
x=_5x (3.2)

(Whenever the symbol _ appears in the present chapter, the summation is to be
taken fromi=1toi=n.)

To fix our ideas let us consider a specific experiment in which the resistance of a
coil is measured on a bridge. The measurement is made n= 8 times. The results
are listed in Table 3.1. The mean of these values is 4.625 Q. We require a quantity
that gives a measure of the spread in the 8 values, from which we shall estimate
the error in the mean. To define such a quantity we need to introduce the idea of a
distribution — one of the basic concepts in the theory of statistics.

3.3 Distribution of measurements

(a) Introduction. Although we have only n actual measurements, we imagine
that we go on making the measurements so that we end up with a very large
number N. We may suppose N is say 10000000. (Since we are not actually
making the measurements, expense is no object.) We call this hypothetical set of a
very large number of readings a distribution. The basic idea to which we shall
constantly return is that our actual set of n measurements is a random sample taken
Jrom the distribution of N measurements.

We may represent any set of measurements by a histogram. This is true whether
it be a set of a small number n of measurements or a distribution of a large
number N. To construct a histogram we simply divide the range of measured
values into a set of equal intervals and count how many times a measurement
occurs in each interval. The width of the intervals is arbitrary and is chosen for
convenience. Figure 3.2 shows a histogram for the measurements in Table 3.1.
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ST

Number of readings in interval
AR=0.028

o T T
46 47
R/Q

Fig. 3.2. Ristogram of the readings given in Table 3.1.

fx)

0 x)=X X —

Fig. 3.3. Typical function for distribution of measurements.

This histogram has a jagged appearance because it represents only a few values.
However, suppose we represent a distribution in this way. The number of
measurements N is so large that we may make the width of the intervals very
small and - provided the measuring instrument gives sufficiently fine readings ~
still have an appreciable number of readings in each interval. If we plot, instead of
the histogram itself, the fraction of the N readings in each interval as a function of
the value of the measurement, we shall get a smooth curve. We may then define a
function f(x), known as the distribution function, whose significance is that f(x) dx
is the fraction of the N readings that lie in the interval x to x +dx. In other words,
f(x)dx is the probability that a single measurement taken at random from the
distribution will lie in the interval x to x +dx. We shall not specify the exact form
of f(x) at this stage but we expect a typical distribution function to look
something like that shown in Fig. 3.3.

From its definition f{(x) satisfies the relation
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i s -

/wf(X) dx = 1. (3.3)

Notice the infinite limits in the integral. We do not expect any measurements with
values greatly different from the true value X in an actual experiment. In
particular, many quantities are of a nature such that negative values are
impossible. Therefore any function f(x) that we use to represent a distribution
must become very small as the difference between x and X becomes large. For
such functions no difficulty arises from the infinite limits, and they are taken for
mathematical convenience.

We shall use the symbol () to denote an average over ali the measurements in
the distribution. An important average is the mean of the distribution

=] xrtax (3.4)

Since the number of measurements in the distribution is very large, and they are
free from systematicerror, {x) may be taken as equal to the true value X.

(8) Standard error in a single observation. The error in a measurement with
value x is

e=x-X. (3.5)

The rns (root-mean-square) value of e for all the measurements in the distribu-
tion is denoted by ¢ and is known as the standard deviation of the distribution*
Thus o is defined by the equation

- /m(x —X)(x)dx. (3.6)

The standard deviation is a measure of the spread of the distribution, i.e. of the
scatter of the measurements. A distribution representing a precise set of measure-
ments will be highly peaked near x = X and will have a small value for o; while
one representing an imprecise set will have a large scatter about X and a large
value for o (Fig. 3.4). We take the quantity o as our measure of the error in a
single observation, and it is therefore also referred to as the standard error in a
single observation.

(c) Standard error in the mean. We now proceed to define a quantity that
specifies the error in the mean of a set of n measurements.

Let us go back to the set of 8 measurements given in Table 3. l We have said
that they are to be regarded as a random sample taken from the distribution of
single measurements. Imagine the distribution to be represented by a bin
containing N balls, each of which is labelled with the value of a single measure-
ment. The set of measurements in Table 3.1 may be regarded as the result of

* The quantity o* is known as the variance of the distribution.
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(a) {b)

T T
X X

Fig.3.4. Distribution function /(x) for (a) a precise set of measurements (small value
of @), and (b) an imprecise set of measurements (large value of ). Note that the area
under the two curves is the same because both functions satisfy the relation (3.3).

drawing 8 balls at random from the bin. Suppose now we have a second bin,
initially empty, and a supply of blank balls. We look at our 8 measurements,
calculate their mean, write the answer on a blank ball and put it in the second bin.
We put the set of 8 single-measurement balls back into the first bin, stir the
contents, and take out, at random, a second set of 8 balls. We again calculate the
mean of the 8 values, write it on a blank ball, and put it in the second bin. We
continue the process a large number of times, always drawing the same number,
8, of balls from the first bin. We end up with a large number of values in the
second bin, which represents another distribution, namely a distribution of means
of 8 measurements.

We denote the standard deviation of this distribution by o,,,. We take it as our
measure of the error in the mean of a single set of n measurements, and it is
therefore known as the standard error in the mean.

To sum up, o is the standard deviation of the distribution of single measure-
ments, and o, is the standard deviation of the distribution of the means of sets of
measurements, each set containing the same number n of single measurements. o
represents the error in a single measurement, and or, represents the error in the
mean of n measurements.

(d) Relation between o and o, There is a simple relation between ¢ and om
which we now prove. Consider one set of n measurements x,,...,x,. The error in
the ith reading is

6 =x;i— X, (3.7)

where X is the true value of the quantity, which is of course unknown. The error
in the mean is

1
E=3-X= sz,)—X=;'Z(,\'.~—X):;Ze.-. (38)
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Therefore

jasb %ZZem (3.9)
n oy

Thisisfor a single set of n measurements. Now imagine that, as before, we take
a large number of sets, each set consisting of the same number n of single
measurements. Each set will have its own set of values for e,,.. .,e,, and its own
value of E. Equation (3.9) will be true for each set. We add the equations for all
the sets and thendivide by the number of sets, that is to say, we average (3.9) over
all the sets. The average of 3 e? is n{e?). The average of each term in the double
sum is zero, because the errors ¢; and ¢; are independent, and the average of each
is zero. We therefore arrive at the result

v l 2
(E7) = () (3.10)
By definition
ok =(E) and o = (). (3.11)
Equation (3.10) thus becomes
g
Om = %_ (3.12)

i.e. the standard error in the mean of n observations is 1 /\/n times the standard error
in a single observation.

The value of o depends only on the precision of the individuai measurements
and is independent of their number; whereas the value of o, can be reduced by
increasing n. However, since o, decreases only as 1/\/n, it becomes more and
more unprofitable to take readings of the same quantity. Rather we should try to
reduce om by reducing o, i.e. by taking a more precise set of readings in the first
place.*

3.4 Estimation of ¢ and o,

(a) Standard method. We have defined the quantities o and o, that we are going
to take as our measures of the error in a single measurement and in the mean. It
remains to show how we can calculate, or more correctly how we can best
estimate, them from the actual measurements. We need to estimate only one of
them, because we can then use (3.12) to obtain the other.

The best estimate of o is [(1/n) 3 €2]3, but the errors e; come from the true

* A splendid example of this approach is to be found in the experiment to measure g precisely — see
section 7.3 (d).
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value X and hence are not known. A way round the difficulty is provided by
working in terms of residuals.
The residual d; of the ith measurement is defined by
di=xi — X (3.13)
Unlike theerror, the residual is a known quantity. We denote the rms value of the
n residuals by s, i.e.

f:igdﬁ. (3.14)

The quantity s is called the standard deviation of the sample. From (3.7) and (3.8)
xi—x=e —E. (3.15)
Therefore
= '—:):(x. . ;)’l= 52(&- —Ey
= %Ze,z - ZE;}:e; + E?
=£Ze}— £ (3.16)
This is for one set of n measurements. As before, we take the average of this
equation over a large number of sets in the distribution and obtain the result
(F)=a?— 2. (3.17)
From (3.12) and (3.17) we have
=" (5%, (3.8)

n—1

and
1

n-1

o2 = (). (3.19)

The quantity (s?) is not known. Our best estimate of it is s*, obtained by
evaluating (3.14). Substituting this value and taking the square root gives

i

o= (ni I)zs, (3.20)

amm( ! )is. (3.21)

n—1

We thus have estimates of o and o,, in terms of quantities that are known.*

* The symbol ~ signifies that (3.20) and (3.21) are not strictly equations. The values of the right-hand
sides depend on the particular set of n measurements and are not in general exactly equal to o and
am— Seesection 3.7.
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Table 3.2. Estimation of o and 0,,for the measurements in Table 3.1

v

Resistance” =~~~ Residual
RIQ d/mQ (d/mQ)?
4.615 —10 100
4.638 13 169
4.597 —28 784
4.634 9 81
4.613 —-12 144
4.623 -2 4
4.659 34 1156
4.623 -2 4
mean = 4.625 sum = 2442

(b) Worked example. As an example we show how o and o, are estimated for
the set of measurements in Table 3.1, which are listed again in the first column of
Table 3.2. The first step is to calculate the mean, which is 4.625 Q. From the mean
we calculate the residual of each measurement. For example, the residual of the
first measurement is

dy = (4.615 — 4.625)Q = —10 mf. (3.22)

The residuals and their squares are listed in the second and third columns of
Table 3.2. Then

2 %gdg - % « 10802, s=0017Q, (3.23)
n 8\!

o ["_ ]] = (5) x 0.017 = 0.019 Q, (3.24)
o 0.019

m= o T2 2 0.007 Q. 3.25

o N (3.25)

The result of a set of measurements is quoted as X + om. S0 in the present case
our best estimate of the resistance of thecoil is

R =4.625 £ 0.007 Q. (3.26)

(¢) Programmed calculator. Calculators, programmed to calculate ¢, use the
standard method, but they do not evaluate s from (3.14) because that requires the
value of %, which is not known until all the numbers are fed in. However, there is
an alternative expression for s that avoids the difficulty. From (3.2), (3.13), and
(3.14) we have
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1 A2
s =-3(x—x)
bl 5 [
1
= {z X} =25 X+ niz]

= ;I’Zx,? - szi)z. (3.27)
Combining this with (3.20) gives

o z% [’%):xf = G,zx,)z} (3.28)

--L [Ex:’ —%(Zx;)z]. (3.29)

This is the expression used by a calculator programmed to evaluate standard
deviations. As the numbers x; are fed in, the calculator accumulates the values of
S x?and 3 x;. It thenuses (3.2) and (3.29) to evaluate £ and o.
We may rewrite (3.28) as
PV . [F_(g)z], (3.30)

nr=

where a bar over a quantity denotes the average over the set. o is usually small
compared to %, so the difference between x2 and (%)’ is usually small compared to
the quantities themselves. For the measurements in Table 3.2

¥ =21393240%, and (%)’ =21.392940° (3.31)

Since these quantities are almost equal, and we require the difference between
them, they have to be evaluated very precisely to give an adequate estimate of o.
So the expression (3.29) is suitable only for a calculator or a computer. For a
hand calculation the method of section (b) should be used.

(d) Deviations from a general value of x. Before leaving this section we prove
one further result. Suppose that instead of taking the deviations of the readings
from the mean %, as we have done so far, we take the deviations from a different
value of x. Denote by S(x) the rms deviation of the readings taken from x, so that

1
[SC*= - Shx - x)*. (3.32)
Combining this equation with (3.27) we have

(S = & = 2 2 [(x 0 — (e~ 5]

= 12()?2 — 2x;x + 2x;% — )‘:2)

2 )2

n
=x? - 2%x+2x1 -3 = (x - %)%,
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[SOP =5 + (x— %)% (3.33)

This demonstrates an important result. For a given set of readings the sum of the
squares of the deviations is @ minimum when the deviations are taken from the
mean of the set. That is the reason why s* is not an unbiased estimate of o2 It is
slightly too small, as (3.18) shows.

3.5 The Gaussian distribution

We have not yet specified the exact form of the distribution function f(x). The
results derived so far are therefore independent of the distribution. However, to
make further progress we need a specific function, and the one we shall take is

f(x) = W L exp-fa— X)Z/ZUI]. (3.34)

This function, specified by thetwo constants X and o, is known as a Gaussian, and
the distribution as a Gaussian or normal distribution. Its shape is shown in Fig. 3.5.

X

N ——

Fig. 3.5. The Gaussian distribution function. The pointsof inflexionare at x=X +o.

Later in the chapter we mention the reasons for choosing the Gaussian, but at
this stage we merely note that the function

(i) is symmetric about X,
(i) has its maximum value at X,
(iii) tends rapidly to zero as | x— X | becomes large compared with .

Clearly these are reasonable properties for a function representing a distribution
of measurements containing only random errors.
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- SR .

Table 3.3. Some useful integrals for
the Gaussian distribution

/ : exp(-x7/20%) dx = /(2m)a

/ i 2 exp(-2? [20%) dx = /(21)

£

/x x4 expf —,x'3/2az) dx =3/(2m)d’

We show below that the constant o in (3.34) is in fact the standard deviation of
the function - hence the choice of the symbol. The purpose of the multiplying
factor

il
\/(Zvr) o
is to make f(x) satisfy (3.3). We can see that it does so from the value of the first

integral in Table 3.3. (The results in the table are proved in Appendix A.) Put
X =0, which does not affect the argument. Then

o I 34y 3
-[xf(x) dx = TZW) ;/:x exp(—x“/20°)dx = 1. (3.35)

The standard deviation of the function in (3.34) is obtained from the second
integral in Table 3.3. We continue with X = 0. By definition

oc
(standard deviation)’ =/ x}f (x)dx
(=]

1...1 f2 5 2075
= m ;/_m x° exp(—x*/20°) dx

=0 (3.36)

It is readily verified that the points of inflexion of the function exp(— x/2d?)
occur at x = o, a convenient result for relating the standard deviation to the
shape of a Gaussian.

3.6 The integral function

Suppose we have a symmetric distribution represented by a function f(x) for
which X=0. We can ask what fraction ¢(x) of the measurements lie within the
range — x to x. Sincef(x) dx is by definition the fraction of readings between x
and x + dx, ¢(x)is given by

o= [ star (6.37)
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f(y)

.

-X X=0 X y —=

Fig. 3.6. ¢(x), the fraction of measurements within + x, is the ratio of the
shaded area to the total area under the distribution function f(y).

We call ¢(x) the integral function of the distribution. It is equal to the shaded area
in Fig. 3.6 divided by the total area under the curve.
For a Gaussian distribution with standard deviation o

11 _
4= s / exp(—y/20%)ay

= \/G) &jﬂi exp(—)2/20%) dy. (3.38)

The last line follows because the function exp(—y*/25?) is even, i.e. it has the
same value for — y as for + y. The function ¢(x) depends on o. It is convenient to
have one table of values that can be used for all values of o. The variable is
therefore changed to ¢ = y/o. Put z = x/o. Then

=) = \/(’3{) /:exp(-r’/Z) dr. (3.39)

The function ¢(z) must be evaluated by numerical methods. It is tabulated in
Appendix H.1 and piotted in Fig. 3.7.

A few selected values of ¢(z) are given in Table 3.4. The numbers in the third
column are worth remembering. We see that about two out of three observations
lie within + 0. About { in 20 of the observations lie outside 20, and about 1 in 400
outside 30.

These results provide a quantitative basis for the statement that o.isa measure
of the spread of the observations. They also provide a check that ¢ has been
estimated correctly. For a set of readings with mean %, roughly two-thirds of the
readings should lie in the range X + 0. We can also apply the results to the
interpretation of ¢, remembering that o, is the standard deviation of the



3.6 The integral function

Table 3.4. Values of the Gaussian integral function

Approximate fraction
of readings outside

z=xlo ) z value

0 0 | out of |
l 0.683 3
2 0.954 20
3 0.9973 400
4 0.99994 16000

¢(z)

2 =x/0

Fig. 3.7. The integral function ¢(z}forthe Gaussian distribution.

distribution of means of which % is a member. Thus, when we quote the result of
the measurements as x + on,, the implication is that, in the absence of systematic
error, the probability that the true value of the quantity lies in the quoted range is
roughly two-thirds.

In addition to o, another quantity sometimes used to specify the error in the
measurements is the so-called probable error. It is defined as the value of x such
that one-half of the readings lie within x of the true value. For the Gaussian
distribution the probable error is equal to 0.670. There is little point in having
two similar measures of the error, and it is obviously convenient to settle on one
of them. Though its significance is easy to appreciate, the probable error is not a
very fundamental quantity, and the error commonly quoted nowadays is the
standard error. We use it throughout the present book and only mention the
probableerror because it may be encountered in older books and papers.
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3.7 The errorin the error

It was stated in section 3.4 that the best estimate of (s*) is provided by s
However, s” is just the value we happen to get from the particular set of n readings.
Itis of interest to know how s” varies from one set to another. Theerrorin s” is

u=s - (_.s'2>. (3.40)

In Appendix B we show that for a Gaussian distribution the mean value of
u? (taken from a large number of sets of n readings) is [2/(n — 1)](s?). Hence the
fractional standarddeviation of s* is [2/(n - l)]é, and provided n is fairly large, the
fractional standard deviation of s is approximately half this value, i..
[1/¢2n - 2).

The quantity 1/(2n — 2)§ is plotted against n in Fig. 3.8. The result provides a
salutary warning against elaborate calculations of errors. Notice for example that
for n=9, a not insignificant number of readings, the error estimate is only good
to 1 part in4.

0.4 |-
1/2n-2)'"?

02|

o] 10 20 30
n

Fig. 38. 1/(2n— Z)i. representing the fractional standard dewviation of s,
plotted against n, the number of measurements.

3.8 Discussion of the Gaussian distribution

So far we have used the Gaussian function, simply noting that its algebraic form
is suitable for a distribution of measurements with only random errors. A
theoretical justification for the function is provided by a theorem in statistics,
known as the central limit theorem, which shows that, if each observation is the
result of a large number of independent errors, the distribution tends to a
Gaussian.
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The assumption of a Gaussian distribution is related to taking the mean of a set
of readings as the best value of the measured quantity. The word ‘best’ in this
context is defined as follows. Suppose the distribution function has the fonn
S (x — X), where as usual X is the true value of the quantity. Let ¢ be the smallest
quantity to which the measuring instrument is sensitive. (We suppose ¢ to be small
- its actual value does not affect the argument.) The probability that we shall
obtain the values x|, x2, . .., x, when we make n measurements is

Sl = X) flxaa—X) - flxa— X)€" (3.41)

The best value of Xis defined to be the one which when inserted into (3.41) makes
the quantity a maximum, ie. it is the value which maximizes the probability of
getting the particular set of measured values. Now it can be proved that if
f(x — X) is a Gaussian, the best value of X is the mean of x) to x,, and conversely
that if the best value of X is the mean, then the distribution function is a Gaussian
(Whittaker and Robinson 1944, p. 218).

The Gaussian is the only distribution we shall use, but this should not be taken
to imply that all experimental distributions in physics are of this fonn. Phe-
nomena in which a random process gives rise to discrete measured values - for
example, the counting of particles in atomic and nuclear physics - follow the
Poisson distribution. This is discussed in Appendix D.

The results we have derived using the Gaussian distribution are in fact rather
insensitive to the precise fonn of the distribution. This applies to the results in
sections 3.6 and 3.7. We have seen - section 3.7 — that, quite apart from the
question of the form of the distribution, the values obtained for the errors are, in
the majority of cases, fairly crude estimates. Their uncertainties completely
swamp effects due to the distribution being slightly non-Gaussian.

The main thing is to have some distribution which is (a) reasonable and (b) easy
to handle algebraically. In most cases the Gaussian distribution fulfils both
conditions very nicely. So, unless the measurements provide clear evidence to the
contrary, we assume the distribution is Gaussian and use the fonnulae based on
it. The one common instance of non-Gaussian distribution is when the measure-
ments are discrete, being readings of an instrument to the nearest scale division,
or of a digital instrument with a small variation of the last digit. This situation is
discussed in chapter 5.
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Summary of symbols, nomenclature, and important formulae
A. Set of measurements

Quantities that are known

measured values Xy e X
mean X= B DB
n

residual for ith reading di=x;— X

{
standard deviation of sample s= ('I; ) df) '

Quantities that are not known
true value X
errorin ith reading ei=xi— X
efror in mean E=x-X
B. Distributions

Distribution of single measurements

standard error o= (&)
Distribution of means o fn measurements

standard error om = (D}

{ ) denotes the average over the distribution.

C. Important relations
=2
Om = 7
—_ " 2
e n—1 &
> 1,
T = 2 4)
D. Formulae for estimaring o and o,

(za)_ [Ed-aExr]
UN[n_] - n-1

: i
onre [BE )[BT
m n(n—1) n(n—1)




Summary
Gaussian distribution
1 1 )
S = - (x = X)}/2|.
) = s exp [ (x= X/ ]
Put X=0.The fraclion of readings between x and x + dxis f(z) dz, where
1) = \/ j exp(—2"/2), =2,
The fraction of readings between —xand + x is

#(z) = \/(1::) '/o;exp(flz/Z)dt.

/(2) and ¢(z) are tabulated in Appendix H.I.
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Exercises

A group of students measure g, the acceleration due to gravity, with a compound
pendulum and obtain the following values in units of m s~ 2

9.81,9.79, 9.84,9.81,9.75,9.79, 9.83.

Setout the values as in Table 3.2, and calculate the mean and the residuals. Hence
estimate o. Give the best estimate of g, together with its error, for the group.

In an undergraduate practical class in the Cavendish Laboratory there was an
experiment, originally devised by Searle, to measure the Young modulus E for
steel by applying a known load to a rod and measuring the deflection by an
optical method based on Newton’s rings. Although ingenious and capable of
considerable precision in the hands of a skilled experimenter, such as Searle
himself, the results obtained by the students were found to have a considerable
scatter. The experiment was therefore replaced by one in which a horizontal steel
beam was supported near its ends, and the deflection when a known load was
applied at the centre was measured directly by a dial indicator.

The values obtained for £ by the last 10 students who did the Newton’s rings
experiment and by the first 10 who did the dial indicator experiment are given
below. The values are in unitsof 10" N.m 2.

Newton’srings experiment 1.90,2.28, 1.74, 2.27, 1.67, 2.01, 1.60, 2.18, 2.18, 2.00.
Dial indicatorexperiment 2.01, 2.0, 2.03. 2,07, 2.04, 2.02, 2.09, 2.09, 2.04, 2.03.

Foreachset of values, calculate the mean value of E, and estimate the standard
error in the mean. Do the results indicate any systematic difference in the two
experimental methods?

The thermal conductivity of copper a1 0°C is
k=3850Wm~'K~!

A large number of measurements of k, free from systematic error, form a
Gaussian distribution with standard error

o=150Wm™'K~".

What is the probability that a single measurement lies in the range
(a) 385.0 to 385.1, (b) 400.0 to 400.1, (c) 415.0 to 415.1, (d) 370.0 to 400.0,
(€) 355.0t0 415.0, (f) 340.0 0 430.0 Wm ™' K~'?

In section 3.3 (d) we showed that the standard deviation o, of the distribution of
the means of a sample of n measurements, and the standard deviation o of the

distribution of single measurements, are related by

a
Om=—;-.

v

This result was proved before we specified the form of the distribution function
and is therefore true for any distribution function. To reinforce the point, consider
a distribution which consists of only two values, namely, — ] with probability 0.9
and +9 with probability 0.1. Calculate the value of o, and the value of o, for
n=3, and show that om = o/+/3 even for this (highly non-Gaussian) distribution.



4 Further topics in statistical theory

4.1 The treatment of functions

In most experiments we do not measure the final quantity Z directly. Instead we
measure certain primary quantities 4, B, C, etc. and calculate Z, which must be a
known function of the primary quantities. For example, we might measure the
density p of the material of a rectangular block by measuring the mass M and the
dimensions /, /,, /. of the block. The functional relation between the quantity we
require, p, and the primary quantities M, I, /,, I. is
M
=i (4.1)
Suppose that each primary quantity has been measured several times. Then, in
the case of 4, we have a best value 4, the mean of the measured values, and an
estimate of its standard error AA. (The latter is the o, of the previous chapter.)
Similarly we have B and an estimate of AB. We assume that the measurements of
the primary quantities are independent and therefore that the errors in them are
also independent. By this we mean, for example, that if the value of 4 happens to
be high, the value of B still has an equal probability of being high or low. From
the values 4 = 4, B = B, etc,, the best value of Z may be calculated. The problem
we are going to consider is how to calculate the standard error AZ in Z from the
standard errors A4, AB, etc. Although we are restricting the discussion to
independent measurements, there are occasional situations where the assumption
is not valid. The way AZ is calculated in such cases depends on the way the
primary errors are related; no general rule can be given. Exercise 4.2 provides an
example of related errors.

(a) Functions of one variable. We consider first the case where Z is a function of
only one variabie A4, for example

Z=A> or Z=InA.
We write thisin generalas

Z=Z(A). (42)

(The symbol A is used both for the name of the primary quantity and for its
value.)
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If the true value of the primary quantity is Ao, the true value of Z is

Zo = Z(Ayg) (4.3)

—seeFig. 4.1. The error in a given value 4 is
E;=A- A, (4.4)

z
£, Z(A)
2
Eq
Ay A —e

Fig. 4.1. Error £:in Z due to error £4in A.

and this gives rise to an error £z in Z, where

E.= Z(Ag+ E4) — Z(Ao) (4.5
dz
= -‘EE,. (4.6)

The derivative dZ/dA4 is evaluated at 4 = 4,. The approximation in (4.6) is
equivalent to the assumption that the error in 4 is sufficiently small for Z(4) to be
represented by a straight line over the range of the measured values of A. The
error in Z is therefore proportional to the error in 4, the constant of proportion-
ality being

We now allow A4 to vary according to the distribution of which A is a member
and take the root-mean-square of (4.6). This gives the result

AZ = c HA. (4.8)
An important special case is Z = 4", for whichc4 = nA"-! Then

NZ DA

Z..2 (4.9)

i.e., the fractional standard error in Z is n times thatin 4. We have-akeady used

this result (p. 22) for the case n = }.

(b) Functions of several variables. We next consider the case where Z is a function
of two variables 4 and B,
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Table 4.1. Combination of errors

Relation between Relation between

ZandA, B standard errors

Z=A+8 1_ 2 2 3

Z=A—B} (AZ) = (AA) + (AB) (i}

Z=A4B } AZ\?_ (84 (ABY? i

Z=A/B Z)] \4 B )
n AZ DA

Z=4 Z =" (iii)

Z=l4 az=~4 @

A
Z =expAd E =AA (v)
VA
Z=2(A4, B). (4.10)

Theerrorsin 4 and B are
Eq=A— Ao, Ep=B-Bo @.11)

where 4o and By are the true values of 4 and B. As before we assume that Z is
approximately a linear function of 4 and B in the range over which the measured
values vary. Then the error in Z is

Ez = c4E4q+cpEp (4.12)
where the coefficients c «and cpare given by
5= (g—i), cg= (z—g) (4.13)
The partial derivatives are evaluated at 4 = 4o, B = Bo.
From (4.12)
EL = 2E2+GEL+ 2cacsE4Ep. (4.14)

We take the average of this equation for pairs of values of 4 and B taken from
their respective distributions. Since 4 and B are assumed independent, the
average value of E4E 5 is zero. By definition

(A2)° = (E}), (AA)’ = (EL) (AB) =(E}). (4.15)
Therefore
(AZ)? = L (AA) + A(AB). (4.16)

Wecannow state the general rule. Let Z be a known function of 4, B, C, . . .
Letthe standard error in 4 be A4 and so on. Thenthe standard errorAZ in Z is
given by

29



30

. Further topics in statistical theosy . i
(AZ) = (AZ4) + (AZg) + (AZc) + -, (4.17)
where
AZa= (Z_i)AA and so on. (4.18)

The expressions for AZ for some common relations between Zand A, B are given
in Table 4.1.

4-2 The straight line - method of least squares

(a) Introduction. In an experiment it is often the case that one quantity y is a
function of another quantity x, and measurements are made of values of x and y.
The values are then piotted on a graph, and we try to find a curve corresponding
to some algebraic function y = y(x) which passes as closely as possible through
the points. We shall consider only the case where the function is the straight line

y=mx+c. (4.19)

The problem is to calculate the values of the parameters m and ¢ for the best
straight line through the points.

The straight-line relation covers a great range of physical situations. In fact we
usually try to plot the graph so that the expected relationship is a straight line.
Forexample, if we expect the refractive index z of a certain glass to be related to
the wavelength 4 of the light by the equation

n=a+b/i (4.20)
we plot 2 against 1/4%

The standard statistical method for calculating the best values of m and c is the
method of least squares.

(b) Theory of the method. Suppose there are 7 pairs of measurements (x), y;), (xa,
Ya), -« .. (xn ya) — Fig. 4.2. Assume that the errors are entirely in the y values.*
For a given pair of values for m and ¢ , the deviation of the ith reading is

yi—my, — ¢ (4.21)
The best values of n1 and c are taken to be those for which

S=ly —mxi— ) (4.22)

is a minimum' - hence the name method of least squares.

* The analysis for the case when there are errors in both the x and ) variables is much more
complicatcd - see Guest 1961, p. 128 - but the resulting straight line is usually quite close to that
given by the present calculation - seeexercise 4.4.

" The points are assumed to have equal weights. The casc of unequal weights is discussed in section
44,
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T e g el

{y;—mx;—c)

R

X —

Fig. 4.2. Method of least squares. The best line through the points is
taken to be the one for which 3"(y, — mx, — ¢)” is a minimum.

The principle of minimizing the sum of the squares of the deviations was first
suggested by Legendre in 1806. We have already seen that in the case of a single
observable the principle gives the mean as the best value.

From (4.22)
% =23 x{y;= mxi—c) =0, (4.23)
as
% = —ZZ(y; —mx;—¢c)=0. (424)

Therefore the required values of m and ¢ are obtained from the two simultaneous
equations

my ok + ¢y xi = 3 xiVi (4.25)
my xi+en =2 yi (4.26)
The last equation shows that the best line goes through the point
1 _ 1
X= ;Zx.‘- y= ;E}’i. (4.27)
i.e. through the centre of gravity of all the points. From (4.25)and (4.26)
i .&X"_X)J’z‘, (4.28)
2(xi—x)
c=y—mx. (4.29)

When the best values of m and c are inserted into (4.21), the deviations become
the residuals

di=yi—mxi —c (4.30)
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Estimates of the standard errors in m and c are given by

: 1 Xd
(am)’ mzp =L, (4.31)
2 2
(Ac) =~ G + %) ”Z_d'z ; (432)
D=Y(xi— %)% (4.33)

These results are proved in Appendix C.
If we require the best line that passes through the origin, the value of m is given
by (4.25) with ¢ = 0:
m=2"*'f“. (4.34)
2

An estimate of its standard error is given by

e, | 3l
(B! = = (4.35)

(¢) Programmable calculator or computer. A programmable calculator or com-
puter may be used to calculate m, ¢, Am, Ac. The expressions for these quantities
in equations (4.28)—(4.33) are not suitable for this purpose as they stand, because
the values of x,7, m, and ¢ (and therefore of d;) are not known until all the
numbers are fed in. However, just as in the calculation of o (section 3.4 c), the
expressions may be recast into a form that avoids this difficulty. Put

E=3(xi—X)yi—p) = Llxi - X)y; (4.36)
F=Yy-ph (4.37)
From (4.28)
m= %- (4.38)
Now
Sd} =S (yi— mxi — )}
= Zlyi - %) — m(x; - %)
= (i = ) = 2mTxi = R = )+ m*Lxi - %)}
=F - 2mE+m’D
= F—%Z- ~- - (4.39)
From (4.31), (4.32), and (4.39)
| DF-E?
(A’")z zm DD (4.40)
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@0t =y (B ) 255 L
Equations (4.33), (4.36), and (4.37) may be written in the form

D=3%x f,';(Zx;)’. (4.42)

E=3 xyi —;le,Zy;, (4.43)

F= X3 - 2w (4.44)

The expressions for m, ¢, Am, and Ac show that these quantities depend only
on n, and the five sums

Yx, yn Lxb Txwn, Ly (4.45)
The calculator or computer calculates the sums from the n pairs of x;, y; values,
and then evaluates D, E, and F from (4.42)-(4.44). The quantities m, ¢, Am, and
Ac are then obtained from (4.38), (4.29), (4.40), and (4.41).

(d) Worked example. We consider an experiment to test a relation between the
resistance of a semiconductor and its temperature. The semiconductor is a sample
of fairly pure silicon, and a simple theory suggests that the resistance R depends
on the thermodynamic temperature 7T according to the relation

R= RoCXp(To/T), (4>46)

where Ry and Ty are constants. The resistance is measured by connecting the
sample in series with a standard resistor of fixed resistance R, and measuring the
voltage V) across the sample and V; across the standard when the same current
passes through the two elements. Then
1
R=Ry—-. 4.47
‘v, ( )
The temperature of the sample is measured by a nickel-chromium/copper-nickel
thermocouple.*
From (4.46)

InR=In Ry + 77;_') (4.48)

So if the relation (4.46) holds, a plot of In R against 1/7 will be a straight line
with slope 7.

The calculation is readily done on a computer with a spreadsheet such as
Excel®. In the description that follows it is assumed that you are familiar with the
basic operation of a spreadsheet, i.e. how to create the necessary formulae, copy
them from one cell to another, and so on.

* Theexperiment is currently part of the first-year practical course in the Cavendish Laboratory. The
theoretical relations in (4.46) and (4.52) are discussed in Kittel 1996, p. 220.
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Table 4.2. Variation of the resistance of a silicon sample with
temperature. x = 10> K /T, y = In(R/S2)

TIK RIQ x y

570.6 148.] 1.752 4.998
555.9 202.6 1.799 5.311
549.4 2271 1.820 5.425
544.1 25511 1.838 5.542
5273 362.0 1.897 5.892
5222 406.1 1.915 6.007
513.] 502.5 1.949 6.220
497.6 750.1 2.010 6.620
484.9 1026.7 2.062 6.934

Table 4.3. Example of spreadsheet layout for calculation of best straight line
y=mx +c. The values ofx andy are copied from Table 4.2

X y x? xy »? d
1.752 4.998 3.07 8.76 24.98 —0.006
1.799 5.311 324 9.55 2821 0.016
1.820 5.425 3.31 9.88 29.44 —0.001
1.838 5.542 338 10.18 30.71 0.006
1.897 5.892 3.60 11.17 347 —0.010
1.915 6.007 3.67 11.50 36.08 —0.011
1.949 6.220 3.80 12.12 38.68 —0.009
2.010 6.620 4.04 13.30 43.83 0.014
2.062 6.934 425 14.30 48.08 0.000
Sum 17.042 52.949 32.35 100.78 314.72 —1.5E~14

n 9 m 6.225
D 0.0829 am 0.038

E 0.5159 ¢ —5.905

I 3.2124 Ac 0.073

It is convenient to do the calculation in two stages. First we write a program,
i.e. a set of formulae in the spreadsheet, to calculate x and y from the experimental
data. The output of this stage is shown in Table 4.2. The measured values of T
and R areentered in thefirst two columns of the table. Put

x=10* K/T, y = In(R/Q). (4.49)

Note that the dimensions of Tare [K], so x is a dimensionless quantity. The factor
10% is inserted in the definition of x to give values of the order of unity — see
section 10.6.

The second stage is to copy the values of x and y into another program that
does the actual least-squares calculation. The output of this stage is shown in
Table 4.3. Foreachpair of x, y values the program calculates the values of x% xy,
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T ¥ T . T

In{RIQ}

10° KT

Fig. 4.3. Plotof y = In(R/Q) versus x = 10’ KJT for the values in Table 4.2.

and y°, counts the number of x, y pairs in the data, and evaluates the five sums in
(4.45), which are shown at the foot of each column. The values of D, E, and F,
and finally those of m, ¢, Am, and Ac are then obtained from the equations in the
previous section.

It is good practice to evaluate the deviations

di=yi— (mxi + ¢). (4.50)

These are listed in the last column of Table 4.3, and their sum given at the
bottom. Theoretically the sum is zero - see exercise 4.6. It will not be exactly zero
in the spreadsheet owing to rounding errors in computer arithmetic, but if it is not
very small there is a mistake in the calculation. The sum in Table 43 is
—15E—l4,ie. —1.5x 107"

The values of x and y are plotted in Fig. 4.3, together with the best straight line.
The values are evidently a good fit to a straight line, showing that, within
experimental error, the relation (4.46) holds over the range of temperature of the
experiment. Due to the factor 10% in the definition of x, the value of Ty is 10°
times that of m. Thus, taking the error to one significant digit, we have the result

To = (6230 + 40) K. (4.51)
The intercept ¢ is equal toIn Re, but this depends on the particular silicon sample
and is not of interest in the experiment.

The theory shows that the energy gap E, between the valence band and the

conduction band of a semiconductoris related to 7, by

Eg = 2T,, (4.52)
where k is the Boltzmann constant. The value of Ty in (4.51), together with the
values of k and e, the charge on the electron, given on p. 192, give
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E, = (1.073 £0.007) eV, (4.53)

which may be compared with a value of about 1.06 eV for puresilicon.

It may be noted that by doing the calculation in two stages we have in the
second program a general least-squares fit for a straight line. Having saved this
program, we only need feed in a set of x, y values, and we have the values of m, c,
Am, and Ac.

4.3 The straight line - points in pairs

In the absence of a programmable calculator or a computer, the least-squares
calculation is laborious. The following method provides a simple alternative that
is often adequate for the purpose. It is particularly useful when the x values are
equally spaced.

In order to illustrate the method, suppose that we have 8 points that lie
approximately on a straight line, and we require the best value of the slope m and
the error in it. Let the points be numbered in order from 1 to 8 - see Fig. 4.4.
Consider points I and 5; they determine a straight line and hence a value for the
slope. Pairing the points in this way we obtain four values for the slope. We take
their mean /m as the best value of m and find its standard error in the usual way.

on
ow
LI
owm
[ B
o~
[ X

Fig. 4.4. Simple method of estimating slope of best line. Each pair of points
1-5,2-6,etc. gives a value of the slope. The mean is taken as the best value.

The method will give a reasonable result only if the quantities (xs—x,), (x¢—x32),
(x7-x3), (xg—x4) are roughly equal. Otherwise, the four values of the.slepe do not
have equal weight.

The best line given by this method is the one with slope rn that passes through
the point X, §. (We have already seen that the line given by the method of least
squares passes through this point.) However, the method is mainly used when
only the slope is required.
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4.4 Weighting of results

Suppose we measure a quantity a certain number of times, say 10, and obtain the
values xj, x2, . . . , Xjo. Suppose further that we divide the measurements into two
sets and calculate the mean of each. For example, we might make 7 of the
measurements in the morning and calculate their mean

=300 +x2+-+x7) (4.54)
Then we might make the other 3 in the afternoon and calculate their mean

22 = §(xg + X9 + x19)- (4.55)
The best value from all 10 measurements is

Z=3(x +x2+ -+ xo), (4.56)

and obviously it is not given by taking the simple mean of z; and z,. If we wish to
calculate it from these two quantities, it is given by
7z) + 322

10

® (4.57)
The numbers 7 and 3 are termed the weights or relative weights of the quantities z,
and Z3y.

In general, if we have a set of values zj, z3, . . . , zny with relative weights w,
w3y, . . ., Wy, then the best value of the quantity is

_Lowa (4.58)
L wi
If all the ws are multiplied by a constant, the value of z is unchanged, so it is only
the ratios of the ws that matter.
Suppose now that we have N measurements of the quantity z, each measure-
ment having its own standard error, i.e. we have

z

zZy+ Azy, z2p £ Bz, ..., zn £ Azp.

What weight should we give to each z; in order to obtain thebest value of z from
all the measurements? The answer is provided by the simple example at the
beginning of the section. We saw that if z; is the mean of n; original values, then its
weight w; is proportional to n,. This assumes that all the original values have the
same weight, that is, that they all come from the same distribution characterized
by a certain standard error 0. We therefore imagine each z; in the above set is the
mean of n; original values taken froma distribution of standard error ¢, and give it
weightn,.

We do not know the value of o; in fact we can choose it quite arbitrarily but,
havingfixed on a value, we use the result

Az = \}L" (4.59)
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to obtain n;. So
2
Wi == ——. 4.60)
i i (AZ,)' (
The standard errorin Zis o /() n,-)gA
From (4.58) and (4.60) the best value of 7 and its standard error are

-~ : N
[Z/a=y]

Both these expressions are independent of the value of ¢ as of course they must
be.

In section 4.2 we gave the method of least squares for finding the best straight
line through a set of points of equal weight. The generalization to the case of
unequal weights is readily made. If w; is the weight of the pair of values x;, y;, then
it is necessary to minimize the quantity

(4.61)

Sy = Twilyi = mx; — ). (4.62)
The equations for m and ¢ become
mY> wix? + ¢y wixi = 3 WiXiy, (4.63)
MY wiXi + Yo=Y Wy, (4.64)
The expressions for m and c and their standard errors are given in the summary

onp. 49
It can be seen that the expressions depend only on the six sums

Sowi, Lowixi, LWy, WG, LWy, Wil (4.65)
A spreadsheet calculation of m, ¢, Am, and Ac for unequal weights is thus a
straightforward extension of that for equal weights. In the latter case we had in
Table 4.3, p. 34, columns headed

x y xX xy y d (4.66)
For unequal weights the column headings are

x oy ow owx owy wx? owxy wy? wd (4.67)

The experimental values of x;, ). w, are entered in the first three columns. The
spreadsheet is programmed to calculate the values in the next five columns and to
evaluate their sums, together with the sum of the weights. After the values of m
and ¢ have beenobtained, the weighted deviations

(4.68)

widi = wi(vi — mx; — c)

are evaluated and entered in the last column. As in the case of equal weights you
should check that 3~ wid; is very small.



Summary of equations for the best straight line by the method of least squares
- i v e

Summary of equations f or the best straight line by the method of least
squares

npointsx;, y;
Equal weights

General line y = mx + ¢

D=%x *%(Zn)z

1
E= EX.'}’; _;ExIEYE

F=52 -1 ()

1 1
x=-% y=-Sy;
X n_‘x‘ y n_y.
di=yi—-mxi—c¢
Line through origin 'y = mx
in}'.'
"o
2, 1 Zd_ 1 T AV - (T
(Am)” =~ T 7\2
n—1 an n—1 (le)
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Unegqual weights

General line y = mx + ¢

1
E =3 wixiyi — E—WZ WiXiD Wiy

F=Xwyl- ﬁ(z wiy,)?

).‘:ZW:X" }-’:Ewlyl
Wi Wi

di=yi—mxi—c

Line through origin y = mx

E WiXi)i
3 wix?
At L Zwd? 1 Cwaxllwy? — (Cwaxiy)’
(Am)t e —— L
n—1Ywx? n-1 (Cwix2)?
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Exercises

[n the following examples, Z is a given function of the independently measured
quantities 4, B, . . . Calculate the value of Z and its standard error AZ from the
given valuesof A £+ A4, B+ AB, ...

@@ z=A2, A=25%1.

(b) Z=4-28B, A=100%3,
B=45%2.

@ z=4(c+0h, A= 0.100 + 0.003,
B =100 0.05,
C=1500=+0.5,
D=100+8.

d Z=A4In8, 4 =10.00 £ 0.06,
B=100%2.

(e) z:n-%, A=50+2.

The volume V of a rectangular block is deteninined by measuring the lengths {,, /,,
{- of its sides. From the scatter of the measurements a standard error of 0.01% is
assigned to each dimension. What is the standard error in V (a) if the scatter is
due to errors in setting and reading the measuring instrument, and (b} ifit is due
to temperature fluctuations?

A weight W is suspended from the centre of a steel bar which is supported at its
ends, and the deflection at the centre is measured by means of a dial height
indicator whose readings are denoted by y. The following values are obtained:

Wikg ylum
0 1642
L 1483
1 1300
I 1140
2 948
24 78
3 590
3 426
4 263
4 7

(a) Plot the points on a graph and draw the best line by eye. Make an intelligent
guess of the standard error in the slope by placing a transparent rule along
the points and seeing what might be reasonable limits for the line.

(b) Calculate the best value of the slope and its standard error by the method of
least squares, and compare the results with your estimates in (a).

(c) Calculate the best value of the slope and its standard error by the method of

4
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points in pairs, and draw the line with this slope through the point %, y.
Compare these results with those of (b).

The zener diode is a semiconductor device with the property that its resistance
drops suddenly to almost zero when the reverse bias voltage exceeds a critical
value V., which depends on the temperature 7 of the diode. The value of V- is of
the order of volts, but the temperature coefficient dV./dT is only a few millivolts
per °C in the temperature range 20—80°C. Therefore, to measure dV./dT
precisely, a constant reference voltage is subtracted from V., and the resulting
voltage V is measured directly on a digital multimeter. The following values are
obtained for a particular zener diode:

TI°C VimV TI%C VimV
240 725 50.0 139
30.0 93 56.2 156.5
37.6 107 61.0 mn
40.0 116 64.6 178
44.] 127 73.0 198.5

Treat the data in the same way as in parts (a), (b), and (c) of exercise 4.3,
assuming in part(b) that the temperature measurements are free from error. This
assumption is probably not correct, so repeat the least-squares calculation,
assuming that the voltage measurements are free from error, and compare the
two values of dV./dT"

The free neutron isan unstable particle and decays into a proton, an electron, and
an antineutrino. If there are Np neutrons at time ¢ = 0, the number of undecayed
neutrons at time ¢ is Noexp(—1/1), where t is a constant known as the neuiron
tifetime. The results of the four most precise measurements of 7 given by
Yerozolimsky 1994 are

Year tls Atls
1989 887.6 3.0
1990 893.5 543
1992 888.4 33
1993 882.6 27

Calculate the weighted mean of the values of 7 and its standard error.

Show that. for the best straight line y» = m.v + ¢ calculated by the method of least
squares, the deviations d,in (4.30) satisfy the relations

d =0,
S xidi=0.

In section 4.2 we obtained the value of n for the best line through the origin by
the method of least squares. Another method is to take the weighted mean of the
values m; = y;/x;. Show that this gives the same result as (4.34).
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5.1 Error calculations in practice

We are now in a position to estimate the standard errors for a large class of
experiments. Let us briefly recapitulate. The final quantity Z is a function of the
primary quantities 4, B, C, ... which are either measured directly or are the
slopes or intercepts of straight lines drawn through points representing directly
measured quantities.

If the quantity is measured directly, we take the mean of several values to be the
best value and obtain its standard error by the method given in chapter 3. (During
the present chapter we shall drop the word ‘standard’ in ‘standard error’. We shall
not be considering the aczual error in a measured quantity, and the word ‘error’
will refer to the standard error, i.e. the standard deviation of the distribution of
which the quantity is a member.) If the quantity is the slope or intercept in a
straight line, its value and error are obtained either from the method of least
squares or from the method of taking the points in pairs.

The best value of Z is calculated from the best values of the primary quantities,
and its error is obtained from their errors by the rules given in Table 4.1, or in
general from(4.17) and (4.18).

There are often a large number of primary quantities to be measured, and it
might be thought that the calculation of the error tn each one and the subsequent
calculation of the error in Z would be a laborious process. And with many
students it is indeed. They calculate the standard deviation automatically for
every set of measurements, and combine all the errors irrespective of their
magnitudes according to the formal rules, involving themselves in elaborate
calculations and ending up with an error calculated to a meaningless number of
decimal places, which is usually wrong by several orders of magnitude due to
various arithmetical slips on the way.

To see what is required in practice, let us first remember why we estimate errors.
It is to provide a measure of the significance of the final result. The use made of
the error is seldom based on such precise calculation that we need its value to
betterthan | part in 4. Often we are interested in the error to much less precision,
perhaps only to within a factor of 2. However, let us take 1 part in 4 as an
arbitrary but adequate degree of precision for the final error.
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(a) Combining errors. If we look at the equation for combining errors (4.17), we
see that, owing to the procedure of squaring the terms, one error is often
negligible compared with another. Consider the case

Z=A+8, (5.1)
andletAAd =2and AB = 1. FromTable4.1, (i)
AZ=(2+ 11)5= 2.24. (5.2)

So even though AB is as much as one-half of A4, ignoring AB altogether and
putting AZ ~ A4 =2 makes a difference of only about I part in 8 in the final
error_If Z is the sum of several quantities, ignoring errors thatare one-half of the
largest error may be rather drastic, but we shall nearly always be justified in
ignoring an error less than one-third of the largest error.

We may notice also the situation when the quantities themselves differ greatly
in magnitude. For example, suppose in (5.1) that B is some small correction tern
and we have values

A=100%£6
B= 5#7

The error in B will be negligible unless it is as much as 3, but such an error
amounts to 60% of B; so the quantity will have to be measured very roughly
indeed ifits error is to contribute.

In the case of multiplication and division — Table 4.1, (ii) - we add the squares, not
of the errors themselves, but of the fractional errors. So in this case, all fractional
errors less than about one-third of the largest fractional error may be neglected.

(b) Contributing and non-contributing errors. With these considerations in mind
let us go back to the estimation of the errors in the primary quantities. We may
call a quantity contributing or non-contributing according to whether or not its
error contributes appreciably to the final error. A quantity may be non-con-
tributing either because it is measured relatively precisely or because it is added to
a much larger quantity.

If we suspect that a quantity is non-contributing, it is sufficient to estimate its
error very roughly, provided the estimate is on the high side. The reason for this
condition is obvious. It ensures that we do not omit the error unjustifiably. If the
inflated error is negligible we are quite safe. If not, we must'go back to the
measurements and work out the error more carefully.

For example, suppose the results of successive weighings of an object are:

503853 g
50.3846
50.3847
50.3849.
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We take the best value of the weight to be
50.3849 £ 0.0003 g.

Weexpect thisset of measurements to be much more precise than several others in
the particular experiment and we therefore estimate an error simply by inspecting
the measurements. The value 0.0003 encompasses 3 out of the 4 individual
readings, so it is almost certain to be an overestimate of the error in the mean.

(c) Discrete readings. Another case where a common-sense estimate of the error
should be made is when the readings are in digital form or are taken to the nearest
scale division of an instrument, and show little or no spread. Consider the
following set of measurements made with a metre rule:

325, 325, 325, 3254, 325, 325 mm.

The most one can say is that the measured quantity is 325 + % mm or 325 + %mm.*
If a better value of the quantity and its error are required, they will not be
obtained by more arithmetic, nor by more measurements of the same kind. Either
the scale should be estimated to ﬁ) mm as the measurements are made, or a more
precise instrument such as a cathetometer should be used.

(d) Systematic errors. So far we have confined the discussion to the estimation
of random errors. And this is all that is needed in the majority of experiments.
Any systematic error that we know about should be corrected and hence
eliminated — or at least rendered negligible. Normally we would reduce it to a
level small compared with the random errors. So it would be non-contributing
and would not enter the error calculation.

The occasional situation when residual systematic errors are not small com-
pared with random errors should be discussed and treated on its merits. One way
of proceeding is to try to estimate, for each systematic error, something equivalent
to a standard error, that is to say, a quantity such that we think there are about 2
chances in 3 that the true value lies within the quoted range. For example, we
might estimate — or make an intelligent guess of — an upper limit, and then divide
it by 2. (This may seem rough and ready, but a crude estimate is better than none
at all) All the errors are then combined as though they were random and
independent. When this is done, it is good practice to make quite clear how much
of the final error is due to the actual random error and how much to the various
systematic errors.

(e) The final quoted error. We may sum up as follows. Systematic errors are
eliminated as far as possible. The random errors in contributing quantities are
calculated by an appropriate statistical method. Other errors are estimated

* Tiis not unknown{orstudents to solemnly feed these numbers into their calculators, rriving at the
result 325.08 £ 0.08 mm.
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roughly, the estimates being slightly on the high side. A check — which can often
be done mentally — is made that these errors are in fact negligible. The
contributing errors are then combined according to the rules of Table 4.1 to give
the final quoted error. This quantity represents our best estimate of the standard
deviation of the distribution of results that would be obtained if the entire
experiment were repeated many times with the same or similar apparatus. It is
thus a measure of the overall reproducibility of the result.

Some experimenters, having obtained the overall error in the usual way, then
proceed to enlarge it by an arbitrary factor to take account of possible, but
unknown, sources of systematic error. This is highly undesirable. It is difficult for
anyone to make use of these sub jective overestimates. Y ou should estimate the error
as honestly as you are able and leave it at that. If it subsequently turns out that the
‘true’ value of the quantity being measured is several times your estimated error
away from the value you have obtained, you may or may not be held at fault. But
you must not arbitrarily double or treble the error as a kind of safety measure to
prevent the situation arising. Quite apart from the confusion caused by the uncertain
significance of the final error, the procedure may obscure genuine discrepancies
between one experimental result and another, or between theory and experiment.

It is conventional to quote the final error in absolute terms, and not as a
fraction of the final value of the quantity being measured, although it is often
useful to give this fraction or percentage in addition. The final value of the
quantity and its error should be given to the same number of digits, which should
not be more than are meaningful. In general this corresponds to an error of one
significant digit, though, if this digit is I or 2 a second digit might be given. The
fact that we do not want an estimate of the final error more precise than this
means that the whole error calcutation should be done only to one or at the most
two significant digits.

5.2 Complicated functions

The evaluation of quantities of the type 8Z/34 in (4.18) is sometimes quite
laborious. As an example consider the measurement of the refractive index y of a
glass prism by measuring the angle 4 of the prism and the angle D of minimum
deviation. The refractive index is obtained from the equation

i)
_sinz(4+ D)
o sinj4 (33)

Theerror in g is given by
() = (B1ea) + (Bpep). (54)

Ay isthe error in p due to the error A4 in A and is given by

3
Ay = (ﬁ)u. (5.5)
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Z(A)

2,

Fig. 5.1. Relation between different estimates of AZ.

Similarly for & up.
The expressions for d1/84 and 8u/3D are
Bu _1cosj(4+D) 1 sinj(4+D)

842 sinl4 2 sindAtaniA’

(5.6)

B . 1 cos %}(A + D) ' (57
8D 2 sinjd
These expressions have to be evaluated at 4 = A4, the measured value of 4, and
D =D, the measured value of D. And, provided we do the arithmetic correctly
and remember to express A4 and AD in radians, we shall get the right answer for
Ay, and App.

However, there is a quicker method. Consider the significance of Ap4. It is the
change in the value of ;. when A changes by an amount A4, the value of D
remaining constant. So it may be obtained by calculating g from (5.3), first for
A=A, D =D and then for A =4+ AA, D = D. Thedifference is Ap 4. Similarly
Ayp is obtained by calculating p for 4 =4, D = D+ AD. All we need are the
sine values. We do not have to do any complicated algebra or arithmetic — fruitful
sources of mistakes — nor bother to convert A4 and AD into radians. We
combine Aze4 and Ajp in the usual way.

The fact that this method of calculating A .4 and Aep is muchquicker than the
more formal method should not lead you to imagine that it is in any way less
rigorous or exact. The two methods usually give the same answer, and when they
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do not, the formal method is not valid. This may be seen from Fig. 5.1, where the
results of the two methods are shown for some relation Z = Z(A4). The best value
of A4 is A and this corresponds to Zj. The error AZ, obtained by the formal
method corresponds to putting the tangent to the curve Z(A4) at the point 4, Z,.
The value calculated from the simpler and more direct method is AZ, in the
diagram. We could equally well have calculated AZ by taking the value A—A A4,
which would have given AZ ..

The curvature of the function Z(A) over the range A + AA is not usually as
large as that shown in Fig. 5.1; in which case the difference between AZ,, AZ,
and AZ_ is negligible. If, however, the curvature of the function is significant,
then a single value of the error is misleading. Instead, both AZ, and AZ_ should
be calculated and the resultquoted as
+AZ,

-AZ_

Such refinement is seldom justified. The main point is that to calculate the error
in Z due to an error in A4, we cannot go wrong if we stmply calculate the values of
Z at the values A and 4 + A4, with the other measured quantities constant. And
often this is much quicker than the formal method.

zZ=2,

5.3 Errors and experimental procedure

When the final quantity Z is related to two directly measured quantities by a
function of the form

Z=AB or A/B,
then an error of x% in A4 or B gives rise to anerror of x% in Z. So we would try
to measure 4 and B with comparable precision, and this is true whatever the
relative magnitudes of 4 and B. But the situation

Z=A+B or A-B

is quite different. Everything depends on the relative magnitudes of 4 and B.
Look at the following example:

Case I A=10000+1,
B= 100+5,
Z=A+B=10100%5S.

Here A is a large, precisely known quantity. B has been measured to 5%, but the
final quantity Z has been found to 0.05%. So we see that it is advantageous to
start with a large, precisely known quantity and simply measure a small additional
term in order to get the required quantity.

Now consider the following: ——
Case Il A=100%2,
B= 96+2,

Zeed—B= A8
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The two directly measured quantities have been determined to 2%, but the final
quantity is only known to 75%. So taking the difference between two nearly equal
quantities, each of which is measured independently, is inherently disadvanta-
geous; the final error is greatly magnified. If possible an entirely different method
of measuring Z should be found.

In the next two chapters we shall give specific examples of methods devised to
take advantage of the Case I situation and others devised to avoid Case II. They
provide examples of the way error considerations may have a direct influence on
experimental procedure.

We give one hypothetical example here. Consider the following situation. We
require to measure the quantity Z = 4/B. We have made a set of measurements
and found

A = 1000 = 20,

B= 10zx1.
Therefore

ad AB _ -,

—A——Z/n and 5 = 10%,
whence

2 :
’37 = (22 + 10%)*= 10.2%.

We have some further time available for measurements and estimate it is
sufficient to reduce the error in either A4 or B by a factor 2. If we devote the time
to A, we shall have

A
7" = 1%, which gives ‘372 = (12 +10)'= 10.0%.

If we devote it to B, we shall have

éBf = 5%, which gives —AZZ- = (2 +5)'= 5.4%.

So in the first case the overall error is barely changed, and in the second case it is
reduced by a factor of almost 2. The moral is always concentrate on quantities that
contribute most to the final error.

In general one should plan the experiment so that in the final result no one
quantity contributes an error much greater than the others. In the present
example we may suspect that the original measurements, which resulted in AB/B
being 5 times greater than A4/ A, were badly planned, and that more time should
have been devoted to measuring B at the expense of A. Of course it is not always
the case that additional measurements result in a reduction of the error. Never-
theless, the desirability of reducing the maximum contributing error should
always be kept in mind when planning an experiment.
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Summary of treatment of errors

Strategy

Identify the quantity contributing most to the final error, and
try to reduce it, either by making more measurements or by
usinga different method.

Calculation

An estimate of the error in the final result good to I part in 4 is
usually adequate. So the error calculation should be done to
one, or at the most two, significant digits.

Ignore all errors whose contribution to the final error is less
than about a third of the largest contribution.

Combine the errors that remain.

The final error should be equal to, or larger than, the largest
contribution (it cannot be less), but it will usually be only
slightly larger. If it is much larger, you have probably made a
mistake.

Final result
Quote the result and its error to the same number of digits.

It is often useful to give, in addition, the error as a fraction,
or a percentage, of the result.

Systematic errors
The above refers to random errors. Comment on any systematic
errors, and estimate an upper limit for them.
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Exercises

A rectangular brass bar of mass M has dimensions a. b. ¢. The moment of inertia
Iabout an axis in the centre of the ab faceand perpendicular to it is
M

I=E(

@+ b%).

Thefollowing measurements are made:
M=135.010.1g.
a=80% ] mm,
b=10%+ 1 mm,
¢ =20.00 £ 0.0 mm.

What is the percentage standard error in () the density p of the material, and (b)
the moment of inertia?

When atorsion wire of radius » and length / is fixed at one end and subjected to a
couple of moment Cat the other, the angular displacement ¢ is given by
UC

¢:m.

where n is the rigidity modulus of the material of the wire. The following values
are obtained:
$/C=400+0.12rad N"'m",
r=1.00%0.02 mm,
{ =500+ | mm.

Calculate the value of nand its standard error.

For Kater’s pendulum, g is obtained from the equation
8r2 T4+T: TI-T?
—= + 2,
g H hy = Ay

where T is the period of oscillation about one of the knife-edges and A, the
distance from this knife-edge to the centre of gravity of the pendulum. T3 and /i,
are the corresponding quantities for the other knife-edge. The quantity ¥ is equal
to /i) + hy and, being the distance between the knife-edges, is measured directly.
The following measurements are made:

T = 2.004 28 £ 0.00005s,

T2 =2.00229 £ 0.00005s,

H =1.00000 £ 0.00004 m,

I 0.700+ 0.00l m,

hy = 0300+ 0.00l m.

Calculate the measured value of g and its standard error.
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S .
Calculate the value and standard error of the refractive index of the glass of a
prism from the following results:

angle of prism A =60"18 £ 10"

angle of minimum deviation D =35°46" £ 20'.

If a narrow collimated beam of monoenergetic -y-rays of intensity /; is incident on
a thin sheet of material of thickness x, the intensity of the emerging beam is given
by

I = Iy exp(—j.tx),

where 4 is a quantity known as the linear attenuation coefficient. The following
values are obtained for-y-rays of energy | MeV incident on lead:

I = (0.926 +0.010) x 10'° 4-rays m2s~",

Ip = (2.026+ 0.012) x 100 y-rays m=2s~",

x = (10.00 + 0.02) mm.

Calculate the value of i and its standard error for y-rays of this energy in lead.

Neutrons reflected by a crystal obey Bragg’s law nd =24 sin 8, where 1 is the de
Broglie wavelength of the neutrons, d is the spacing between the reflecting planes
of atoms in the crystal, @ is the angle between the incident (or reflected) neutrons
and the atomic planes, and # is an integer. If n and d are known, the measured
value of ¢ for a beam of monoenergetic neutrons determines A, and hence
the kinetic energy E of the neutrons. If #=11°18"+ 9, what is the fractional error
in £7

As the temperature varies, the frequency fof a tuning fork is related to its linear
dimensions L and the value of the Young modulus E of its material by

S« V{EL).

When the temperature rises by 10 K, the frequency of a certain fork falls by
(0.250+£0.002)%. For the same temperature rise, the Young modulus of the
material falls by (0.520 & 0.003)%. Calculate the value of a, the linear expansivity
of the material, given by these experiments. What is its standard error? Is this a
good method formeasuring the linear expansivity?
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6  Some laboratoty instrumehts aind methods”

6.1 Introduction

In this chapter we shall consider some general principles for making measure-
ments. These are principles which should be borne in mind, first in selecting a
particular method and second in getting the most out of it. By the latter we mean
making the method as precise or reproducible as possible, and — even more
important - avoiding its inherent systematic errors.

We shall illustrate the various points by describing some specific examples of
instruments and methods. Though chosen from several branches of physics, they
are neither systematic nor exhaustive. The idea is that, having seen how the
principles apply in these cases, you will be able to apply them yourselves in other
situations. As always there is no substitute for laboratory experience. But
experience without thought is a slow and painful way of learning. By concen-
trating your attention on certain aspects of measurement making we hope to
make the experience more profitable.

6.2 Metre rule

We start with almost the simplest measuring device there is — a metre rule. Its
advantages are that it is cheap to make and convenient to use. It can give results
accurate to about % mm. However, to achieve this accuracy certain errors must be
avoided.

(a) Parallax error. If there is a gap between the object being measured and the
scale, and the line of sight is not at right angles to the scale, the reading obtained ts
incorrect (Fig. 6.1a). Thisis known as a parallax error and clearly may occur, not
only in a metre rule, but in all instruments where a pointer moves over a scale. It
may be reduced by having the ob ject or pointer as close to the scale as possible, and
alsoby having a mirror next to the scale as shown in Fig. 6.1b. Aligning the image
of the eye with the object ensures that the line of sight is at right angles to the scale.

() Zeroerror. Except for crude measurements it is not good practice to place one
end of the rule against one end of the object and take the reading at the other end
(Fig. 6.2a). Instead, the ob ject should be placed so that a reading can be taken at
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Fig. 6.]. Parallax error. (a) Different positions of the eye result in different
readings. (b) A mirror placed beside the scale ensures that the line of sight is at
right angles to the scale.
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Fig. 6.2. Measuring the length of an object as in (a} is bad practice. It will give
a systematic error if the end of the rule is worn. The rule should be placed as in
(b) and two readings taken. .

both its ends (Fig. 6.2b). This is because the end of the rule may be worn or the
zero ruling incorrect in some way. In general the zero position of any instrument
should be regarded as suspect. The resulting error can usually be avoided by a
simple subtraction technique as here.
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(¢) Calibration. The scale on the rule may be incorrectly marked. The rule should
therefore be checked, or calibrated. This is done by simply laying it beside a more
accurate standard rule and noting the readings.

It is important to realize the logic of this. The ordinary metre rule is cheap
because it is made of a cheap material - wood — and the scale is engraved without
a great deal of care. The two factors go together,; it is not worth engraving an
accurate scale on a wooden rule whose whole length is iable to change with time.

Suppose we have say 20 experimenters in a laboratory, and they need to
measure lengths of about 508 mm to an accuracy of j;mm. We could supply each
one with a steel rule known to be marked to this accuracy. Such a rule is far more
expensive than an ordinary wooden one, whose markings are probably only good
to about %mm over the whole rule. (Plastic rules are much worse than this and are
often in error by as much as 1%.) Alternatively, we could supply each person with
an ordinary rule and install one expensive standard in the laboratory. The cost of
this would only be a fraction of the other. But the measurements could still be
made to the required accuracy, provided each experimenter remembers to do the
calibration. This procedure, viz.

many cheap + one expensive standard + calibration

is obviously a sensible one.

If you use only part of the rule during a particular experiment, the comparison
with the standard should be done particularly carefully for the part actually used.
It would not matter if the rest was incorrectly marked. In practice it is unlikely
that one part of a metre rule is ruled less accurately than another. But itis a good
general principle when calibrating an instrument to concentrate on the range
actually used.

6.3 Micrometer screw gauge

This instrument measures the external dimensions of objects up to the order of

100 mm. A typical micrometer is shown in Fig. 6.3. The spindle has two threads to

the millimetre, so that one complete rotation of the thimble T corresponds to

500 pm. The instrument can easily be read to 10 jam. a gain in precision of about 20

over the metre rule. High precision versions of the instrument can be read to 1 jtm.
Several points may be noted:

Fig. 6.3. Micrometer screw gauge.
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(a) The increase in precision comes from the screw mechanism - a highly
effective way of magnifying linear motion.

(b) The personal element involved in the torque applied to the thimble, when
the face F is in contact with the object, is eliminated by a ratchet device. The
thimble is rotated by applying torque, not to the body itself, but to the end cap C.
This transmits the motion only up to a certain standard torque; thereafter it slips,
and rotating it further has no effect on the reading. So the final reading
corresponds to a standard pressure of the face F against the object.

(c) The instrument is prone to zero error, which should always be checked by
taking a reading with the face F right up against E.

(d) Other readings may be checked by means of gauge blocks, which are
rectangular blocks of high-grade hardened steel. The end-faces of a block are flat
and parallel, and the distance between them, known to about 0.1 um, is engraved
on the block.

6.4 Measurement of Jength - choice of method

In the last two sections we have considered two methods of measuring length. We
are not going to describe any more in detail, but, instead, shall look at the general
problem of measuring length.

First we must decide what we mean by length. On the whole we know fairly
well what we mean in the case of objects whose velocity is small compared with
that of light, and which we can see, or almost see, in the laboratory or near the
Earth and Sun - a range in length say of about 10" to about 10"’ m. But when
we consider objects whose velocity is not small compared with that of light, or try
to extend the range downwards to objects as small as atoms and elementary
particles, or upwards to the distances that separate us from the stars and galaxies,
we have to say what we mean by length and distance -~ we cannot lay a ruler
across a nucleus or extend one to a star. We have to say something like ‘if we do
such and such an experiment, the result is as though something extends over such
and such a distance, or is a certain distance away’. Such operational definitions
sometimes lead to concepts of length and distance which differ from our usual
common-sense ideas on the subject. But the latter have come from seeing and
thinking about lengths over a very restricted range. So we need not be too
surprised if they do not apply when the range is enormously extended.

The problems of definition and measurement at the extreme ends of the range
are outside the scope of this book. We shall only consider the range where our
common-sense ideas do apply. However, it does no harm to put the discusston in
a more general context and to remind ourselves that behind a// measurements lies
the definition — usually implicit ~ of the quantity being measured.

Even restricting ourselves to measurements of length of the order of 1 pum to
1 m, we have a range of instruments to choose from. In deciding which one to use
we should consider the following:
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Table 6.1. Suitability of some instruments for measuring length

Instrument Range/m Precision/um  Applicability
metre rute 1 200 general
vernier calipers 0.1 50 most useful for overall dimensions

of an object, also for dimensions
of a space —width of gap,
diameter of hole

cathetometer 1 10 general
micrometer screw gauge 0.1 2 overall dimensions of an object
travelling microscope 0.2 1 general

(a) The nature of the length we wish to measure, for example, whether it is the
distance between two marks or between the two end-faces of a rod or bar, or the
diameter of a hole or of a rod.

(b) The rough value of the length.

(c) The precision required.

In Table 6.1 we list five instruments which are available in the range we arc
considering. Vernier calipers are shown in Fig. 6.4. A cathetometer is simply a
telescope that can slide on a rigid graduated bar. A travelling microscope is an
instrument in which the distance travelled by the microscope, from a position in
which one object or mark is in focus on its crosswires to another similar position,
ts given by the rotation of a screw device that controls the motion. (This
instrument is subject to the error known as ‘backlash’. Owing to looseness in the
moving parts, the reading depends on the direction from which the crosswires are
moved into position. The error is avoided if the final setting is always made from
the same direction.) The table shows the approximate range and precision, and
type of measurement for each instrument.

Of course, having chosen the right instrument we have to make the right set of
measurements with it. In theoretical physics we say a cylindrical rod has a
diameter of 4 mm and that is the end of the matter. But in practical physics we
have to verify that the rod is a cylinder — or, to be more correct, to say within
what limits it is. So at one place along the length we should measure the diameter
in various directions. Then we should repeat the measurements at various places
along the length. As always, the thoroughness of the investigation depends on the
purpose of the measurements. Similarly, before giving a distance between the end
faces of a bar, we must check the extent to which the faces are parallel.

We mention briefly how the range of lengths and the precision of the measure-
ments may be increased. The latter may be achieved by optical interference
experiments. Similar experiments with various forms of waves — light, X-rays.
electrons, neutrons — also extend the range in the downward direction. Another
way of measuring changes in length is to measure the change in capacitance when
one plate of a capacitor moves relative to another (Sydenham 1985). At the upper
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Fig. 6.4. Vernier calipers. The parts marked A form a rigid unit, which is free to move refative to the rest of the instrument
when the spring-loaded button B is pressed. The three distances marked d are equal and are read of f from the vernier scale.
(1) gives the diameter of a rod, (2) the diameter of a hole, and (3) the depth of a blind hole.
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end of the length range we may measure distances by triangulation. The enormous
cosmological distances are deduced - indirectly and with varying degrees of
plausibility —from measurements of quantities such as the apparent brightness of
stars (Pasachoff ef al. 1994).

All is grist to the physicist’s mill. We look for any physical phenomenon that
depends on the quantity we wish to measure. From the variety of instruments
based on these phenomena, we select one of appropriate applicability, range, and
precision.

6.5 Measurement of length — temperature effect

In any precise measurement of length we must consider the effects of thermal
expansion. This applies first to the ob ject being measured. Suppose, for example,
we require the length of a tube at liquid-hydrogen temperature (20 K). If we
measured its length at room temperature and did not allow for the contraction,
we should make a serious error. In this extreme case, to calculate the correction
we could not assume that the linear expansivity was independent of temperature,
but would have to know its values from 300 K down to 20 K.

Second, we must consider whether thermal expansion is affecting the readings
of the instrument used to measure the lengths. And last, if we calibrate the
instrument by measuring the length of a standard object such as a gauge block,
we must consider whether the length of the latter has departed from its nominal
value owing to temperature change.

In Table 62 the values of a, the linear expansivity, for a few common
substances are given. The values are approximate and correspond to room
temperature (293 K). Invar is a steel alloy containing 36% nickel, its chief merit is
its very low expansivity at room temperature, and it is often used when this
property is required. At higher temperatures its value of o increases. Fused silica
is superior as a low-expansion substance; the value of a given in the table applies
up to 1300 K. Moreover, it is extremely stable dimensionally. It is therefore often

Table 6.2. Linear expansivity o.f or some common substances

Substance all0"SK™'
copper 17

brass 19

steel 1

Invar 1

soda glass 9

Pyrex 3

fused silica 0.5

wood - along grain 4

across grain 50
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used in precise measurements where the geometry must be very exactly defined
and must vary as little as possible with temperature,

Let us look at the actual values in the table. The substances listed are fairly
representative. Most solids at room temperature have values of a tn the range 5 to
25 x 1078 K~'. If we take 10~° K~ as a typical value, we see that a change in
temperature of 10 K corresponds to a change in length of 1 part in 10°.

It is very important in practical physics to have an idea of orders of magnitude
of this kind. On the one hand, if we do not correct for thermal changes in
dimensions in a precise measurement, we may make a serious error. On the other
hand, if we were to calculate the possible thermal correction every time we
measured a length of any kind, we would obviously waste a lot of time. Common
sense tells us this, But what common sense does not tell us is at what stage, as the
precision of an experiment is increased, we should start to concern ourselves with
the effect. This is where the order of magnitude calculation comes in. It tells us
that, for temperature changes of less than 10 K, we need not worry about
temperature effects in length, unless we are measuring it to better than 1 part
in 10*.

6.6 The beat method of measuring frequency

(a) The phenomenon of beats. Suppose we have two sinusoidal waves of equal
amplitude A but slightly different frequencies f; and /> We do not specify the
physical nature of the waves. They may, forexample, be the displacement tn space
of a mechanical vibrating system or the voltage across a capacitor in an oscillatory
circuit. Whatever their nature we can represent the separate displacements by

m=Acos 2nfii and y, = A cos 2 fot. 6.1)

They are shown in Fig. 6.5a and b. If the two waves act together, the total
displacement is

Y =0+ Y = A(cos 2nfit +cos 2n f>t)
Si=ih

=24 cos2n ™= 1 cos 2nfi;r—ﬁ/.

(6.2)

Suppose f, and f; are fairly close in value, that is,
h=-L<hi+h (63)

Then we may regard the factor cos 2z[(f; +f2)/2}¢ in (6.2) as representing rapid
sinusotdal motion, the amplitude of which is varying slowly according to the
factor 24 cos 2n{(f, —f>)/2])t. The overall motion is shown in Fig. 6.5c.

Quite apart from (6.2), derived from the previous line by straightforward
trigonometry, we can see how the waves in (a) and (b) in Fig. 6.5 add to give the
wave in (c). At time P the two waves are in phase, and their sum is large. As their
frequencies are slightly different, they gradually get out of phase until at Q they
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Y=hthk P Q R

Fig. 6.5. The two waves y, and y,, of slightly different frequency, add to
give the resultant shown in (¢).

are exactly 180° out of phase, and their sum is zero. At R they are back in phase
again. This phenomenon, the successive swelling up and dying down of the
resultant, is known as beats, and the frequency of the maxima in the amplitude
variation is known as the beat frequency.

The broken line in Fig. 6.5c has a frequency (f;—f3)/2. But the maximum
amplitude occurs twice in each of its cycles. So the frequency of the beats is given
by

So=h—fa (64)

This is an important result.

(8) Measurement of frequency. The phenomenon of beats provides a very precise
method of measuring the frequency f of a source, particularly for electromagnetic
waves. For such waves we can produce a standard source whose frequency fg is
known very precisely indeed - see section 7.4. If we mix its output with that of the
unknown and measure the beat frequency f,, we have

f=hth (6.5)

The precision of the method lies in the fact that we can find a standard oscillator
such that fg is close tof” Then f; is a small quantity; so even a relatively imprecise
measurement of it suffices to detennine f precisely. This is anexample of the Case I
situation mentioned on p. 48.

Suppose, for example,

fo=1000000 Hz and f, = 500 + 5 Hz.
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Then
/ =1000500 + S Hz. (6.6)

In other words, a measurement of f, to 1 part in 100 has given the value of / to
1 part in 200000.

To measure f;, it is necessary first to extract from y in Fig. 6.5c a signal
equivalent to the positive envelope of the wave, a process known as detection or
demodulation (Horowitz and Hill 1989). The frequency of the signal is then
measured by some standard method, e.g. by converting the signal into a series of
pulses, one for each cycle, and counting the number of pulses in a known time
interval.

We have taken the positive sign — arbitrarily — in (6.5) to obtain the value of /
in (6.6). How would we know which sign to takein practice? One way would be to
measure f approximately to find out whether it was greater or less than fp. In the
present example a measurement precise to slightly better than 1 part in 2000
would be adequate for the purpose. Another way of selecting the correct sign is to
make a slight change in f, say to increase it slightly, and observe whether f,
increases or decreases.

6.7 Negative feedback amplifier

(@) Principle of negative Jeedback. Suppose we have an electronic amplifier which
has the property that, when a voltage V; is applied across its input tenninals, a
voltage ¥, appears across its output tenininals, where

V, = aV, (6.7)

We assume « is a constant and call it the intrinsic gain of the amplifier. We shall
not concern ourselves with the internal details of the amplifier but shall simply
represent it as a box with input and output tenninals (Fig. 6.6).

Suppose now that we have a certain signal voltage ¥ that we wish to amplify,
but that, instead of applying Vs directly to the input terminals, we subtract from it

v Yo
o— |

tnput Amplifier Output

i

Fig. 6.6. Schematic representation of amplifier.
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a fraction SV, of the output and apply the remainder to the input terminals. This
procedure of reducing the input signal by something that depends on the output is
known as negative feedback. Figure 6.7 is a schematic representation of the
situation where the feedback signal is obtained from a simple resistance chain.

Vs Vo

Vi I Amplifier

A

Fig. 6.7. Amplifier with negative feedback.

We have
Vi=V, -V, (6.8)
Therefore
Vo =aV;=a(V, - BV,), (6.9)
whence
% = ﬁ (6.10)

So the net of overall gain is reduced by the feedback, since a and # are both
positive numbers.

Now what is the point of this? The answer comes from considering what
happens when af is very much larger than unity. In that case we may neglect the
| in the denominator of (6.10), and the gain becomes | /f. In other words, the net
gain does not depend on the intrinsic gain of the amplifier, but only on the
fraction 8 of the output that is fed back.

(b) Advantages of the method. (i) Insensitivity to variations in supply voltage and
amplifier components. The quantity § can be fixed very precisely. It simply
depends on having a pair of well-defined resistors. The quantity a on the other
hand can vary for many reasons. For example, it may fluctuate owing to changes
in the supply voltage. Again, it may vary from one amplifier to another owing to
small changes in the various components - resistors, capacitors, and transistors.
Nevertheless, provided the value of f is the same for all the amplifiers, their
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overall gains will be almost equal. The fact that negative feedback reduces the
gain of an amplifier is not really a disadvantage, because pure gain as such is quite
easy to achieve.

Quite apart from (6.10), it is easy to see qualitatively why negative feedback
reduces the sensitivity of the net gain to the intrinsic gain of the amplifier.
Suppose the amplifier is working with feedback at a certain value of a, #, and V;.
Then ¥V, and V; are given by (6.10) and (6.8). Now suppose that for some reason
the value of a is reduced. This tends to reduce V,, which reduces the feedback
voltage fiV,, which results in an increase in V; Therefore the output ¥, is not
reduced as much as it would otherwise be. Of course it must be reduced by
something, however small, otherwise the whole sequence of steps that we have
just outlined would not occur at all.

Let us put in some numbers to show how negative feedback reduces the effect
of a change in a on the net gain of an amplifier. If

1

a =20000 and ﬂ:‘lb-d, (6 “)
then
. 20000
net gam = T+ 200~ 99.50. (6.12)

Now suppose that o drops to 10000 — a very large drop indeed. The net gain
becomes

=99.01. (6.13)

So through the intrinsic gain changes by a factor of 2, the net gain changes by
only }%.

(ii) Improved frequency response. Suppose the input is a sinusoidal voltage. For
most amplifiers the intrinsic gain depends on frequency, owing to the various
capacitances in the circuit. The advantage of obtaining the feedback voltage from
a resistance chain is that § does not depend on frequency. So the overall gain of
the amplifier is practically independent of frequency.

In a hi-fi audio amplifier, heavy negative feedback is used to achieve this
situation, which means that musical notes of all frequencies, and their harmonics,
are amplified by the same amount. This is necessary for the final result to be a
faithful copy of the original, and the specification of the amplifier usually contains
a statement about the constancy of the overall gain over a specified frequency
range.

(il)) /mproved linearity. If, for a signal of given frequency, V, is not a linear
function of V;, we still write

V, = ab;, (6.14)

but a now varies with ¥i. However, provided off 3> 1 for all values of V;, the
same reasoning applies as before, and
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. i 4
V, = 7 (6.15)
So, provided f§ is constant and aff 3> 1. ¥, is approximately a linear function of
V,, and thisistrue no matterhow non-linear the relation between ¥V, and V,
Other advantages of negative feedback are that the input impedance of the
amplifier is increased and its output impedance decreased.

(c) Stabiliry. If the sign of the feedback signal is reversed, so that it adds to the
signal Vs instead of subtracting from it, we have positive feedback. Equation
(6.10) still applies with 8 negative. It is now possible for aff to be equal to — 1, in
which case the equation gives an infinite value for ¥, What happens in practice is
that V¥, rises to a large value, the capacitive and inductive elements in the circuit
give time delays, and the system becomes unstable and starts to oscillate. Circuits
based on this principle are in fact designed deliberately as oscillators.

However, if the circuit is required as an amplifier, such behaviour is highly
undesirable. The danger with any type of feedback circuit is that even though we
intend always to have negative feedback, we may in fact get positive feedback at
certain frequencies. This is because the amplifier produces phase shifts in the
signals and these shifts depend on frequency. Part of the art of designing an
amplifier is to ensure that it remains stable at all frequencies. The theoretical
conditions for this have been worked out by Nyguist and others.

For a full discussion of the theory and design of negative feedback amplifiers
you are referred to one of the books listed on p. 206. In this section we have given
only an introduction to this important idea, which may be applied to all
amplifying devices.

6.8 Servo systems

(a) The servo principle. Suppose we have an apparatus S, some feature of which
we wish to control from a unit C. We may take a control signal from C, put it
through an amplifier A and apply the output to S.

Suppose now we allow S to produce a signal F that is a measure of the quantity
we are trying to control, feed it back so as to subtract from the control signal and
apply the difference to the input terminals of the amplifier ~ Fig. 6.8. This system
of controlling the apparatus 1s known as a servo system. We see that it is based on
the idea of negative feedback, and many of the advantages of negative feedback
that we considered in the last section in relation to amplifiers apply also to quite
general servo systems.

(b) Example — temperature control. As an example of the servo principle we
consider a bath whose temperature Twe require to keep constant, at a value that
depends on the setting of a control. The bath ~ Fig. 69 - loses heat to its
surroundings, and its temperature is maintained by means of a heating coil H. Let
the control produce a voltage V.. The feedback is provided by some device that
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Fig. 6.8. Block diagram of servo system.

I—————- t Amplifier |—=| Microprocessor
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Fig 6.9. Servosystem for maintaining bath at constant temperature

gives a signal that depends on the temperature of the bath, for example a
thetmocouple with its hot junction at P. Suppose this produces a voltage Vy. The
voltage V.— V¢ is fed into an amplifier, the output of which goes t6 4 Tnicro-
processor. The output from this unit controlsthe current through the heating coil.

The required temperature 7T is that for which the thermocouple output ¥y is
equal to V. When the bath is at this temperature, the input signal to the amplifier
is zero. The microprocessor is programmed so that under this condition' the heat
supplied to the bath is constant. At equilibrium the heat supplied is equal to the
heat loss of the bath at temperature T. If for any reason the temperature should
fall, for example because the heat loss increases due to a fall in the surrounding
temperature, ¥, falls, and the positive signal V.—V( acts via the amplifier,
microprocessor, and heating unit to increase the current through the heater.
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Conversely, if the temperature rises above T, ¥, —¥( becomes negative, and this
results in a decrease in the heating current.

We see then the essential features of a servo system. We must have a control
signal ¥ This acts as a reference. We must have an output signal Vg, whichis a
measure of the physical quantity that is being controlled. The difference between
the two signals is used to operate a device which acts so as to reduce this
difference to zero. In short a servo system provides automatic control.

(c) Stabrlity. So far we have ignored time lags in the system. However, these have
an important effect on its behaviour. Suppose in the example we move the control
to correspond to a new higher temperature 7". While the bath is warming up and
T is less than T, the servo mechanism is providing higher and higher currents to
the heater. Thiscontinues until the thermocouple reaches 7. However, owing to
thermal time lags in the system, heat continues to come in at a rate greater than
the equilibrium heat loss at temperature 7°. So the temperature of the bath rises
above this value. Whereupon the servo mechanism starts to reduce the heating
current, and again, owing to thermal time lags, it reduces it too much.

This type of oscillatory behaviour in a servo system is known as hunting. It is
analogous to the instability we mentioned previously in connection with positive
feedback in amplifiers. Mathematically the two types of behaviour are equivalent.
Instability in servo systems is overcome by damping, that is, by diminishing the
change in the applied quantity — heat into the bath in the present example ~ in
various ways. The microprocessor may be programmed to respond, not only to
the instantaneous temperature of the bath, but also to its past history, so that a
time-varying heater current is applied such that the bath is brought to the required
temperature 7" as quickly as possible, with minimum, or indeed zero, overshoot.

6.9 Natural limits of measurement

It might be thought that, if we used sufficiently sensitive instruments and took
enough care, we could make measurements as precisely as we pleased. But this is
not so. Quite apart from the limitations imposed by the uncertainty principle in
quantum physics, with which we are not here concerned, there are several
phenomena which give rise to random fluctuations in measuring devices. These
fluctuations are known as noise and provide natural limits to the precision that
can be achieved.

(a) Brownian motion. One source of random fluctuation in a measuring instru-
ment is Brownian motion; an example is provided by a small mirror suspended by
a torsion fibre. If the restoring couple due to an angular displacement & is c, then
the potential energy is

V= %C”Z- (6.16)

Themirror is being constantly bombarded by gas molecules, and, though the value
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of the couple they exert is zero when averaged over time, its instantaneous value is
not, and the mirror undergoes random fluctuations about its mean position.

The mirror is in thermal equilibrium with the gas molecules. So, by the theorem
of the equipartition of energy, the average value of V is }kT. where k is the
Boltzmann constant and T the thermodynamic temperature.* The average value
of & is therefore

7L (6.17)
¢
Since k = 1.38 x 107>J K™, the effect is usually small at room temperature.
However, for small values of c, the fluctuations become appreciable; in fact, the
phenomenon has been used to provide a value for k (Kappler 1938).

Notice that the effect cannot be reduced by reducing the pressure. Such a
reduction decreases the number of molecules striking the mirror per second and
changes the motion from a high speed jitter to one with sinusoidal swings, but the
average value of #° remains the same. Some diagrams of the motion are given in
Fowler 1936, p. 783.

(b) Johnson noise. A second and important type of theimal agitation is the
phenomenon known as Johnson or thermal noise. A resistance R at temperature T’
is found to act as a generator of random emfs. They may be regarded as arising
from the theimal motion of the conduction electrons. The resulting emf E varies
in an irregular manner, and, if a frequency analysis is made, the average value of
E”in the frequency rangef tof +df is

E® = 4RKT df. (6.18)

We are simply quoting this result.” It follows from basic thermodynamic
reasoning and is valid provided f « kT /h, where A is the Planck constant. (At
room temperature k7/h =6 THz.)

Notice that the right-hand side of (6.18) does not contain f itself. In other
words, except at very high frequencies, Johnson noise is constant throughout the
frequency spectrum and is proportional to the product R7. For this reason, when
the signal to be amplified is very weak and the noise therefore very troublesome,
the amplifier is sometimes cooled to liquid-nitrogen and even liquid-helium
temperatures. This not only reduces the value of T but also that of R.

(c) Noise due t0 the discreteness of matter. Electric current is carried by discrete
particles —electrons and electron holes. In successive intervals of time the number
of particles in motion fluctuates, a phenomenon known as shot noise. The smaller

* The equipartition theorem is discussed in most textbooks on statistical mechanics: see for example
Zemansky and Dittman 1997.

 For comprehensive accounts of noise in measurements sse Robinson 1974 and Milburn and Sun
1998. The former gives a proof of {6.18). For a good introduction to frequency (Fourier) analysis see
Wilson 1995.



Exercises

the current, the larger the fractional fluctuation. Exampies of shot noise are the
fluctuations in the current of a semiconductor diode due to variations in the rate
at which the charge carriers cross the p-n junction, and fluctuations in electron
emission by a thermionic cathode or photocathode.

(d) Flicker nmoise. In addition to Johnson noise and shot noise, which are
fundamental and do not depend on the quality of the components in which they
occur, there is another type of noise which depends on the detailed properties of
the component. It is known as flicker or 1/ noise because its frequency spectrum
varies as 1//. Thus it is most important at low frequencies. The physical origin of
flicker noise varies from one device to another. It commonly arises from
variations of properties with time in devices which are not in thermal equilibrium,
but are subject to an external disturbance such as a bias or signal voltage. For
example, a carbon resistor consists of a large number of small granules with
contact resistance between them. When a current passes, small random motions
of the granules produce changes in the overall resistance, and the voltage across
the resistor fluctuates with time. In a biased semiconductor device, flicker noise
arises from fluctuations in the rates at which the majority and minority carriers
are generated and recombine in heterogeneous regions of the crystal.

(e) Noise in general. Except for work involving the detection of very weak signals,
the various sources of noise we have been describing are not usually limiting
factors in normal laboratory measurements. Other sorts of disturbance are often
present and may be more serious. Common examples are pickup from the mains,
interference by nearby electrical machinery, spurious signals due to bad electrical
contacts and faulty electronic components.

Exercises

6.1 A stroboscope is a device for measuring the frequency f of a rotating object by
viewing it with a flashing light of known frequency f, and measuring the apparent
frequency f,, of rotation.

(a) Showthatif f is roughly equal to mf e, where m is an integer,

/‘W :f = mf'
What is the significance of a negative value for f,,?
(b) If

m =5

Jo =100.00 +£0.01 Hz,
Sfapp = 0.40 + 005 Hz,
calculate the valueof f'and itsstandarderror.

6.2 The period T of a rigid pendulum is determined by measuring the time ¢ taken for
an integral number of swings N. The error Af in ¢ comes from starting and
stopping the timer and may be assumed to be independent of ¢. So the larger the
valueof NV and hence of t. themore precise is thevalue of the period.
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Let the value of Af be 0.2 s. Twenty swings are counted and are found to take a
time ¢ =40.8 s. The pendulum is set swinging again; this time the swings are not
counted, but an integral number N, are found to take 1629 s. It is set swinging a
third time, and M, swings are found to take 653.6 s. Deduce the values of N, and
N3, and the final value of T with its error. (Assume that the amplitude of the
swings is sufficiently small for the variation in the period to be negligible
throughout the measurements.)

Make a critical comparison of the following types of thermometers on the basis of
range of temperature, precision, convenience (including situations of particular
applicability), and cost:

(a) mercury in glass,

(b} thermocouple,

(c) platinum resistance,

(d) thermistor,

(e) constant volume gas thermometer,

(f) optical pyrometer.

Make a list of possible ways of measuring magnetic fields and compare them as in
the previous exercise.

The following discussion exercises are meant to make you think about the nature
of measurement and to help you see how measurement and theory are inextric-
ably bound together. Some of them involve ideas beyond the scope of the average
first-year undergraduate course.

Discuss the concept of size as applied to
(a) anatom,
(b) an atomic nucleus.

Discuss appropriate methods of measuring the distance between
(a) atomsin a crystal,

(b) thetwo atoms in a hydrogen molecule,

(c) two points about 10 km apart on the Earth’s surface,

(d) the Earth and the Moon,

(e) the Earthand a nearbystar,

(f) the Earth and adistantstar.

Discuss appropriate methods of measuring the mass of
(a) a sack of potatoes,

(b) a bar of gold,

(c) a proton,

(d) a neutron,

(e) the Earth.

Explain what is meant by the following statements and how they may be verified:
(a) The temperature of a salt following adiabatic demagnetization is 0.001 K.
(b) The temperature in a plasma is 50 800 K.

(c) The temperature in outer space is 3 K.



7  Some experimental techniques

In the present chapter we consider some examples of experimental techniques.
They have been chosen because they contain many ingenious features and show
that the same principles of good experimentation apply whether the experiment
be advanced or elementary. They come from different branches of physics —
optics, electricity, mechanics, and atomic physics —and are illustrated in different
contexts — either as an instrument, a complete experiment, or an application. This
is the hardest chapter in the book, as some of the physics may be unfamiliar to
you. But each section stands alone, so you can omit any one of them — or indeed
the whole chapter —at first reading, and carry on with the rest of the book. On the
other hand, the experimental ideas contain so many instructive features that you
will find a little perseverance well rewarded.

7-1 Rayleigh refractometer

(@) Description of instrument. The Rayleigh refractometer is an instrument
devised to measure the refractive indices of gases and also small changes in the
refractive indices of solids and liquids.

Monochromatic light from a vertical slit S (Fig. 7.1) is collimated by an
achromatic lens L, and falls on two vertical slits Sy and S,. The two beams pass
through tubes T and T, of equal length ¢, lying in the same horizontal plane. The
beams then recombine to form vertical interference fringes in the focal plane of
the lens L,. The fringes are viewed by a small cylindrical lens L.

To measure the refractive index of a gas, the fringes are first observed with both
tubes evacuated. Gas is then admitted to one of the tubes, say T), thereby
increasing the optical path of beam 1. This causes the fringe pattern to move

[ I
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Fig. 7.1. Rayleigh refractometer - view from above.
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sideways and the number of fringes passing a crosswire is counted. If p (not
necessarily an integer) fringes pass, the refractive index g of the gas is given by

t(pe—1) = pa, (1)

where 1 is the wavelength of the light. We consider some practical aspects of the
instrument in the following sections; a detailed account of the Rayleigh refract-
ometer will be found in Ditchburn 1952.

() Reference system. Instead of using a crosswire as the reference or fiduciary
mark, it is better to use a second set of fringes which remain fixed. These are
obtained by allowing only the upper halves of the beams from S, and S; to pass
through the tubes. The lower halves pass under them and produce a second,
independent set of fringes. Since the optical paths of the two lower beams are
identical, the second set of fringes remains fixed throughout the experiment.

The advantage of this type of reference mark is that the eye is much more
sensitive to relative displacements of two similar non-overlapping parallel lines,
in this case the two sets of fringes, than to relative displacements between a
crosswire and a fringe (see Fig. 7.2). In the first case, displacements of as little
as % of a fringe separation can be detected. whereas in the second, the limit is
about ;§ of a fringe separation. The sensitivity of the eye in the first case is known
as vernier acuity.

HI ’l“‘ | HI !\i mgwg:sg ‘IHI ”I“I”I mggsg
@ (0}

Fig. 7.2. Two forms of reference marks. (a) fixed set of fringes, (b} crosswire.
The eye detects small movements more readily in (a) than in (b).

Fixed
fringes Crosswire

Another important advantage of the fringe reference system is that distortion
of the framework of the apparatus or displacement of the double slit S,S, does
not affect the readings, because these faults affect both sets of fringes in the same
way.

(¢) Cylindrical eyepiece. In a practical case the separation s of the slits S; and Sz
is about 10 mm. The angular separation of the fringes is given by
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s8=2. (7.2)

So for A =500 nm, 0 is Sx 10~ 3 rad or about %'A The fringes are thus very close
together. They are viewed with the lens Lj, which is simply an accurately made
cylindrical glass rod of diameter about 2 mm. The point of having a vertical
cylindrical lens is that it only gives magnification in the direction of the separation
of the fringes, which is where we want it. The effective aperture of the beam is
much smaller than the pupil of the eye; any magnification therefore reduces the
brightness of the field. If the magnification factor of the cylindrical lens is n
(usually about 150), the brightness is reduced by a factor n. A spherical lens of the
same magnification would reduce the brightness by a factor . Since lack of
brightness is one of the disadvantages of the instrument, the saving of the
cylindrical lens is well worth having.

(d) Compensator method. It is tedious to count the large number of fringes that
pass the crosswire as the gas is admitted into the tube T;. The increase in the
optical path length of beam 1 is therefore compensated by increasing the optical
path length of beam 2 by a measured amount. The two fringe systems are used as
an indicator to determine when the two optical paths are equal.

Severalmethods of compensation have been devised. We shall confine ourselves
to one. A fairly thin glass plate is placed in each of the two upper beams; one is
fixed and the other can be rotated. When the two plates are parallel the path
difference is zero. The path difference is varied by rotating the rod R (Fig. 7.3) to
which the moving plate is attached. This is done by means of a micrometer screw
M which bears against the radial arm A. In this way small changes in path
difference can be made precisely and reproducibly.

R

Rotatable
plate

Fixed
plate

Fig 7.3. Compensating device,

The path difference produced by the compensating device can be calculated as
a function of the setting of the micrometer screw, provided we know the
dimensions and refractive index of the rotating plate. But it is a good general
principle to prefer an empirical to a calculated calibration. So the compensator ts
calibrated by observations of the fringe system with monochromatic light. The
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micrometer screw 1s rotated and its readings for displacement of 1, 2, 3, ... fringes
are noted. The calibration must be done at various wavelengths of incident light.

(e) White-light fringes. All the discussion so far has been based on the use of
monochromatic light. Clearly the ultimate measurements must be done in this
way, because the wavelength is a crucial quantity in (7.1). However, it would be
highly inconvenient if we used only monochromatic light, because all the fringes
look alike. It would be necessary to sit watching the fringes as the gas was
admitted into tube T, and to turn the screw on the compensating device at just the
correct rate to ensure that the fringe system remained unchanged at all times. If
the compensation was not exactly right and we lost sight of the fringes for an
instant, we would not know which was the zero-order fringe.

Fortunately this difficulty can be overcome by the use of a source of white light.
Each monochromatic component in the source produces its own fringe system
with its own spacing, the blue with the narrowest and the red with the widest (Fig.
7.4). What we actually see is the sum of all these fringe systems. For zero path

Order -3 -2 -1 0 1 2 3
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Fig. 74. Fringes for blue, yellow, red, and white light. The central white
fringe is at zero order.
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difference, all the systems give a bright fringe, and the sum is a bright white
fringe. But as the path difference increases, the systems get out of step and never
get back in step again. (A finite set of different wavelengths may produce fringe
systems that get back into step, but not an infinite set of continuously varying
wavelengths.) The total effect is that the fringes on either side of the central white
one are coloured. The colouring increases as we go farther out, and the fringes
rapidly disappear. So with a white-light source we have a means of detecting zero
path difference.

The procedure in the experiment is therefore as follows. We start with both
tubes evacuated and a white-light source. The micrometer screw is set approxi-
mately so that both sets of fringes coincide. The white light is replaced by a
monochromatic source, and the screw is set accurately. The required amount of
gas is let into one of the tubes. The screw is then turned to bring the zero-order
fringe back into the central position. The fringe is located by means of white light
as before, and the final ad justment made with monochromatic light.

(f) Dispersion effect. A difficulty arises over the white-light method if the
dispersion of the gas differs from that of the compensating plate.

Consider the situation when there is no gas in the tube and the compensator is
set to zero. The fringe system with the white-light source may be represented by
the analytic diagram shown in Fig. 7.5a. This diagram is to be interpreted in the
sense that if we draw a horizontal line across it, the crossing points give the fringe
spacing at a particular wavelength. The lower we draw the line, the longer is the
corresponding wavelength. Thus a horizontal line at the top gives the fringe
spacing for blue light and at the bottom for red light.

The total effect of the white light is obtained by collapsing the diagram in the
vertical direction. The zero-order fringe, being originally vertical, collapses to a
sharp dot, representing the central bright fringe, but the Ist, 2nd, 3rd, ... order
fringes collapse to spread out lines which soon overlap, representing fringes that
are blurred out.

Now suppose that the gas is admitted and the rotating plate set to compensate
for the increase in optical path length. If the dispersions of the gas and the plate
are the same, we can achieve compensation at all wavelengths, and the analytic
diagram looks identical to Fig. 7.5a. But if the dispersions are different, we cannot
achieve simultaneous compensation at all wavelengths. Suppose we set the plate
to achieve exact compensation at some wavelength in the middle of the spectrum.
The diagram would then look like Fig. 7.5b. The blue, say, is over-compensated
and its zero-order fringe has moved to the right; the red is under-compensated and
its zero-order fringe has moved to the left. If now we collapse this diagram
vertically, it is fringe number 2 that becomes a dot. In other words, the white light
fringe is no longer the one of zero order. (In general none of the fringes in Fig.
7.5b is vertical, and the white-light fringe is not of integral order.)

This defect in the ability of the white-light fringes to pick out the zero-order
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Fig. 7.5. Analytic diagram to show fringe system with white light. A
horizontal line gives the fringe spacing at a particular wavelength. Collap-
sing the diagram vertically gives the result for white light. (a} Dispersions of
gas and compensating plate the same, (b} dispersions different.

fringe may be overcome in two ways. The first is to admit the gas gradually so
that we can follow the change in the white fringe. The other is to use short tubes
to determine a preliminary value of the refractive index, which is sufficiently
precise to determine the zero-order fringe when the longer tubes are used - see
Ditchburn 1952, p. 279 for further discussion.

(g) Precision and applications. We have already said that the smallest path
difference that can be detected is about }04 The largest that can be measured is
about 250.. We have

tAp = pA. (7.3)

So for a tube 10 mm in length and 4 =400 nm, a change in x of 107° can be
detected, and the maximum change that can be measured in 10~>. For a tube 1 m
inlength, the smallest detectable change is 10~%, and the maximum change is 10~°.

The Rayleigh refractometer is the most precise instrument we have for
measuring small changes in refractive index. The refractive index of a transparent
mixture ~ liquid or gas - depends on the proportions of its components, and the
refractometer is often the most precise device for determining the proportions or
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small changes in them. The instrument finds a variety of applications in this way
in physics, chemistry, and biology.

For precise work the temperature must be strictly controlled - to obtain a
precision of 10~ for a liquid the temperature must be known to 10~2 K. The
longer the tube, the more sensitive the apparatus, and the more difficult to obtain
reliable results. Therefore we choose the shortest tube that will achieve the
required precision in a given situation.

The refractometer was originally designed by Lord Rayleigh (1896) to measure
the refractive indices of the recently discovered inert gases, helium and argon. The
value of s« —1 at s.t.p. is 3.5 x 10~ for helium and 28.1 x 10~ for argon.* As we
have seen, the instrument is well able to measure even these low values.

7.2 Measurement of resistivity

(@) Imtroduction. For many years the most precise instrument for measuring
electrical resistance was the dc potentiometer, but it suffers from the disadvantage
that thermoelectric and drift effects give errors that are troublesome to eliminate.
For this reason ac methods are now more commonly used for precise electrical
measurements. As an example of a current technique we have selected a method
developed by Friend and others for measuring the resistivity and the Hall effect in
metallic specimens at low temperatures. The design of the apparatus contains a
number of interesting features showing what can be done with semiconductor
devices. We give here a simplified account of the method. Further details can be
found in Friend and Bett 1980. To follow the discussion you will need some basic
ideas on devices such as operational amplifiers, binary counters, and so on. These
may be found in a number of books on electronics - see for example Horowitz
and Hill 1989.

(b) Description of the method. The basic experimental arrangement is shown in
Fig. 7.6. A sine-wave voltage is generated by digital means at a frequency of
JSo =70 Hz and fed into a unit which produces an alternating current of the same

/
A
Digital Ty c T
s|nge—wave l Current Lock-in o
voltage | generator | amplifier utput
generator - ) =
I Reference
signal

Fig. 7.6. Block diagram of apparatus for measuring the resistivity of a metallic
sample (shown shaded).

* Kayeand Laby1995,p. 131. Thevalues arefor 4 = 589 nm.
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frequency and of constant amplitude. The current / is passed through the sample
via a pair of contacts A and B. The resulting voltage ¥ developed across another
pair of contacts C and D is fed into a unit, known as a lock-in amplifier, which
acts as a highly tuned detector or demodulator, and gives a dc output propor-
tional to the amplitude of the alternating voltage ¥. An essential feature of a lock-
in amplifier is the injection of a reference signal with the same frequency fp as the
signal from the sample. This is provided by the sine-wave voltage generator.

The current 7 is determined in a preliminary experiment by passing it through a
known resistance and measuring the voltage across the resistance. The lock-in
amplifier is calibrated by applying a known alternating voltage to its input
terminals and measuring the resulting dc voltage at the output. These measure-
ments are made with a digital voltmeter which can measure dc and ac voltages
and also resistance.

To obtain the resistivity of the sample, the measurements are repeated with A
and D as the current contacts and B and C as the voltage contacts. An ingenious
theorem by van der Pauw (1958) shows that, for a sample in the form of a lamina
of uniform thickness, the two sets of measurements, plus the thickness of the
lamina, suffice to determine the resistivity of the material ~ irrespective of the
shape of the lamina and the location of the points A, B, C, D.

With this apparatus the experimenters were able to measure the current and
voltage with a precision of about 1 part in 10*. We consider each unit of the
apparatus in turn to show how it functions.

(¢) Digital sine-wave voltage generator. The elements of this unit are shown in
Fig. 7.7. A timer circuit produces clock pulses at a frequency of 256 f. These are
fed into an 8-bit binary counter which produces the numbers 0 to 255 in
succession. The entire sequence is thus repeated with a frequency fo. The numbers
are fed into a read-only memory with 256 registers. Each number locates a
register, the contents of which - also an 8-bit number ~ are produced at the
output of the memory unit. The contents of register n are preprogrammed to be

Serraled
Clock Conlents sine-wave
puise Address =t
generator ¥
Smoath
T[T
Pulses | :il}-\uve SRR
t=261, [4 N
§ T,
ety |gon | fReed 1es  [Dikal Ampidie 3” to curtent
counter i‘:d'g?:;s’ memory | number 1o er | (RC elemant generator
Most
ggnicant| L R
I I Relerenca signal
for lack-in
f=ty amplifier

Fig. 7.7. Digital sine-wave voltage generator.



7.2 Measurement of cesistivity

¢, = nearest integer to { [sin (Z%;) + 1] x 127.5}. (7.4)

The successive integers ¢, (Which you can see are in the range 0 to 255) are fed
into a digital-to-analogue converter. This is a circuit that produces a voltage
proportional to the digital input (Horowitz and Hill, p. 614). The output from the
convertor is thus a serrated sine-wave as shown schematically in Fig. 7.7. The
serrations are removed by an RC element in the circuit. Finally a 1:1 transformer
T, removes the dc component, thereby providing a floating voltage signal which
acts as the input to the current generator. This signal is a smooth sine-wave of
frequency fp. Its amplitude may be varied in steps from 0.5 Vto 2.5 V.

The reason for using a digital method to produce the sine-wave voltage is that
the amplitude of the wave is very stable, being fixed by the digital-to-analogue
converter. This unit has a built-in voltage reference — see section (g) - that
regulates the output voltage to a few parts in 10°.

The most significant bit of the 8-bit number from the binary counter is used as
a reference signal for the lock-in amplifier. It is a square-wave with frequency fp.

(d) Current generaror. The current generator is shown in the left half of Fig. 7.8.
The operational amplifier A; has the property that its gain is very high, so the
voltage across its input terminals is very small and may be taken to be zero. The
voltage across the resistor R, is thus equal to the voltage ¥, from the secondary of
the transformer T,. The current through R, is therefore

Jedl (7.5)

Since the input impedance of the operational amplifier is high and the voltage
across the input terminals is small, the current through the input terminals is very
small indeed. Therefore virtually all the current / passes through the sample via
the contact points A and B. The resistance R; may be varied in steps to give a
range of current values from 10 j1A to 20 mA.

from
voltage
tor

9

to lock-in
amplitier

Fig. 7.8. Current generator and sample.
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The basic property of the current generator is that the current depends only on
the values of ¥, and Ry according to (7.5). It does not depend on the resistance of
the sample or on any contact resistances. So the values of the current, obtained in
the calibration measurements when the current is passed through a standard
resistor, remain valid when the resistor is replaced by the sample.

The voltage developed across the points C and D is applied to a step-up
transforier T, with a 1:100 ratio, which serves two purposes. The first is to
match the low impedance of the sample to the higher impedance required by the
lock-tn amplifier. The second is to ensure that the signal applied to the amplifier
depends only on the voltage difference V¢ — Vp, and not on the common-mode
signal, i.e. the mean voltage } (V¢ + Vp).

(e) Lock-~in amplifier. A simplified version of this unit is shown in Fig. 7.9. M,
and M are a pair of MOSFETSs,* which in the present context act simply as a
pair of switches. Each switch is closed when the gate of the MOSFET is at a
positive voltage and open when the gate voltage is negative. The square-wave
reference signal from the voltage generator is applied directly to the gate of M,
and, via an inverter, to the gate of M,. Thus when the reference signal is positive,
M, is closed and M; is open; when the reference signal is negative the reverse is
true.

10k

. P
Signal
from the
secondary
of T,

)

Square-wave
ence signal
from voltage generator

Fig. 7.9. Simplified version of lock-in amplifier.

When M, is closed, the signal at P from the secondary of the transformer T,
appears unchanged at Q. When M is closed, the signal appears at Q with its sign
reversed. This ts because the non-inverting terminal of the operational amplifier
A; is earthed. Since the voltage across the input terminals is close to zero, the

* A MOSFET is a metal-oxide-semiconductor-field-effect transistor. See Horowitz and Hill, p. 117 for
a description of (he device.



7.2 Measurement of resistivity
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Fig. 7.10. Waveforms in lock-in amplifier. The points P and Q are indicated in Fig. 7.9.

(

voltage of the inverting terminal is effectively zero - it is a ‘virtual earth’. The
potential differences across the two 10kQ resistors are equal. Therefore, since
their common point is at earth potential, the voltages P and Q are equal and
opposite. The signal at Q is thus the rectified form of the signal at P - Fig. 7.10.
The RC circuit on the right-hand side of Fig. 7.9 acts as a low-pass filter, i.e. the
voltage across the capacitor C is, apart from a small ripple, equal to the dc
component of the signal at Q, which in turn is proportional to the amplitude of
the alternating voltage at P.

(/) Noise reduction. In a typical set of measurements the resistance of a small
metallic sample varies from about 1073 Q at room temperature to about 10~¢ ©
at low (liquid-helium) temperature. To avoid heating the sample, the maximum
current that can be used is about 1 mA. The signal from the sample is therefore of
the order of nV. The ac method eliminates the effects of thermoelectric voltages
which, in the present experiment where leads are taken from room temperature to
liquid-helium temperature, are of the order of uV. However, with such a small
signal, noise is a major problem. Apart fromJohnson and 1/ fnoise mentioned in
the last chapter, there are effects due to mechanical vibrations of the equipment in
the presence of magnetic fields. In general there is also pickup from the mains at a
frequency of SOHz, but the experimenters avoided this by working at a frequency
of 70 Hz.

The purpose of the lock-in amplifier and the low-pass filter, represented by the
RC element, is to reduce the noise. Consider the RC element first - Fig. 7.11a. For
a sinusoidal wave of frequency f'the relation between the output V¢ and the input
Vg is (seeexercise 7.1)

Ve
Vo

1
S — (1.6)
(1 +4z2f2C2 RY)'?

83



84

Some experimental techniques

(@) C]

Fig. 7.11. RClow-pass filter.

The relation s plotted in Fig. 7.11b. If we define a frequency f} by the relation
2nf,CR =1, (7.7)

we can see that

1
> 7 0.707. (7.8)
We may take the frequency range 0 < f < f;, as the bandwidth of the filter. The
values of R and C are chosen so that f, < fo. For example, a typical value of RC
1s 1 s, giving f, =0.2 Hz, which may be compared with fo =70 Hz.

Now consider the lock-in amplifier, which acts as a mixer for the reference and
the signal voltages. The reference voltage has a square waveform of fundamental
frequency fo Such a waveform contains higher harmonics of frequency 3f,, 5f,,
etc, but we may ignore these for the present purpose. Suppose the signal is a
sinusoidal wave of frequency f. Then the result of combining the reference and
signal voltages is a wave with frequency components f+/, and f—/ (see section
6.6). Since the filter only passes frequencies in the range 0 to f, the net result is
that the lock-in amplifier plus the filter pass only those signal voltages whose
frequencies lie in the range fox /4, or (70 0.2) Hz. In other words the combina-
tion acts as a highly tuned circuit whose resonance frequency is locked to fo.

Let us go back to the experiment. Without the lock-in amplifier the signal
would be almost lost in the noise. However, the noise is distributed thrgﬁ-gﬁout
the frequency spectrum, whereas the signal is entirely at a frequency of 70 Hz.
Therefore, with the lock-in amplifier we retain the whole of the signal, but only
that part of the noise that lies in the narrow frequency range (70+ 0.2) Hz. The
noise is now much less than the signal. This technique for reducing the noise is
known as bandwidth narrowing.

The technique is a powerful one and finds application in several branches of
physics, for example in the measurement of light intensities. Fig. 7.12 shows a
schematic arrangement for measuring the transmission of light through a thin

Ve

for f < fo. Vo




7.2 Measurement of resistivity

s Signal | 5i9ma!['| ock-in
P -H amplifier amplifier

4 D Reference
Monachromatic 7% | voltege
light
C
L
o o - _,? P
Reference|
amplifier
Fig. 7.12. Noise reduction in a measurement of light intensity; -~ steady
beamof light; - - - - chopped beam.

slab of material as a function of wavelength. A beam of monochromatic light is
modulated or chopped by allowing it to impinge normally on a rotating slotted
disc C. Fig. 7.12 shows a disc that chops the beam four times per rotation. The
frequency of rotation, of the order of 100 Hz, is not critical, provided the
modulation frequency fp is not near the mains frequency or its harmonics.

The modulated beam passes through the sample S and is detected by a
photodetector D, which produces an electrical signal that depends on the intensity
of the light falling on it. The signal, a square-wave with frequency f, is amplified
and passed into a lock-in amplifier. A light-emitting diode L provides a secondary
source of light, which is also chopped by the rotating disc and then detected by a
phototransistor P. The output from P, after amplification, is applied as the
reference voltage to the lock-in amplifier. You can see that the arrangement acts
in the same way as in the resistance measurement. The sample signal and the
reference voltage, being modulated by the same rotating disc, always have the
same frequency. The effects of extraneous light and of noise in the detecting and
amplifying components are much reduced.

(g) Voltage standards. We return to the resistivity experiment. The method gives
the resistivity in absolute units. The digital voltmeter used to measure the output
of the current generator and to calibrate the lock-in ampiifier is a commercial
instrument capable of giving readings with a precision of about 1 part in 10°.
Such instruments have an internal voltage reference, commonly based on a zener
diode. This is a semiconductor diode with the property that when the reverse bias
voltage exceeds a certain value (known as the zener voltage) reverse current flows
and rises rapidly with increasing voltage. Thus, by arranging that the current
through the zener is kept constant within certain limits, the voltage across it is
fixed within much closer limits. For diodes used as voltage references, the zener
voltage ¥, is about 6 V.

For a given zener diode, V, varies with temperature 7. Some values for a
particular diode are given in exercise 4.4, p. 42. They correspond to a temperature
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coefficient d¥,/dT of a few mV K~', which is too large for a precise reference
device. However, other types of zener diode have lower temperature coefficients —
about 10 pV K ™' —and are suitable for the purpose.

The reference voltage of a particular instrument may be determined absolutely
by comparison with a voltage standard which is ultimately related to those in a
laboratory such as the National Physical Laboratory in the United Kingdom or
the National Institute of Standards and Technology in the United States. At one
time these standards were based on temperature-controlled Weston standard
cells, but the present voltage standard is derived from the ac Josephson effect. kn
the presence of microwave radiation of frequency f, the voltage across a
Josephson junction has the value

h

Vzni

S (7.9)
where 7 is an integer, h is the Planck constant, and e is the elementary charge.
Thus the measurement of a frequency, which can be made very precisely, provides
an absolute voltage standard. For further details of voltage references see
Horowitz and Hill, p. 331. For a discussion of the Josephson effect and its use in
voltage standards see Petley 1985.

7-3 Absolute measurement of the acceleration due to the Earth’s gravity

(a) Introduction. In this section we consider a complete experiment, namely, a
precision measurement of g, the acceleration due to the Earth’s gravity. Although
for many purposes we only require the variation of g from place to place (see
p- 113), there are some applications for which we need its absolute value. These
arise primarily from the need to establish the unit of force in terms of the
fundamental units of mass, length, and time. We can measure the mass of a
suspended object in terms of the kilogram unit (p. 191). If we know the absolute
value of g at the position of the object, we know the absolute value of the force
that the object exerts on its suspension. Apart from practical applications, such as
the absolute measurement of pressure and so on, we need the unit of force to
establish the unit of electric current, since this is defined in terms of the force
between current-carrying conductors. Absofute values of g are also required for
astronomical purposes, such as the calculation of the motion of bodies in the
solar system, including nowadays artificial satellites.

Until thc Second World War the most precise method of measuring g was by
the use of a reversible pendulum - basically the same as that used by Kater over a
century before. However. the effects of small irregularities in the penduium and
its supporting knife-edge placed an ultimate limit of about 1 in 10 on the
precision that could be obtained.*

The present method is to time the motion of a body in free fall and takes

* See Cook 1967 fora good introductory article on the absolute determination of £.
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advantage of the very high precision with which small distances and short times
can now be measured. The instruments based on this method are of two types —
those in which a body is thrown up and measurements are made on the up and
down parts of the motion, and those in which the body is simply allowed to fall.
Each type has its advantages and disadvantages. The up-and-down instruments
are less sensitive to air resistance effects, but care is necessary to eliminate
vibrational effects from the body-launching system. The instrument to be
described, by Zumberge, Rinker, and Faller 1982, is of the second type.

(8) Description of the method. The apparatus is shown schematically in Fig.
7.13. The dropped object C; is a cube-corner prism, known as a retroreflector,
because it has the property that a ray of light, after internal reflection at each of
three mutually perpendicular faces, returns travelling in the opposite direction.
The principle is illustrated in Fig. 7.14 for the simple two-dimensional case.

C,, and a similar cube-corner C,, act as the ends of an arm of a Michelson

Molior
3‘:
Vacuum
N chamber
4 Falli
Isolating
spring ¢ é chamber
=]
C, N
w .
L__F 1| Photo- Counting
detector circuit
> —1—1 1
-
Beamn Laser
splitter

Fig. 7.13. Schematic arrangement of the apparatus of Zumberge, Rinker,
and Faller for the absolute measurement of g.

interferometer. The light source for the interferometer is a stabilized He-Ne laser
of wavelength i. The incident beam is split by a prism, and, after reflection at C;
and C,, the two beams are combined by the prism to give an interference pattern.
A small part of the fringe pattern falls on a photodetector which gives an electric
signal that depends on the intensity ofthe light.

During the measurements, C, remains at rest, while C, falls freely under
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B

Fig. 7.14. Two-dimensional retroreflector. A and B are two mirrors mounted
at right angles. An incident ray /, travelling in the plane perpendicular to the
common axis of the mirrors emerges after two reflections as the ray R
travelling in the direction opposite to /.

gravity. This causes the fringes to move, and the output from the photodetector
oscillates with a period that corresponds to a change in height of /2 forC,.

The total distance that C; drops during the measurements is about 170 mm.
The value of 2 for the He-Ne laser is about 633 nm. The total number of fringes
that pass (i.e. the number of sinusoidal oscillations of the output) is therefore

170 x 103

= = 540000. .10
§x633x10-° (7.10)

The time of occurrence of every 12 000th fringe is measured by means of a digital
clock. Thus about 45 points are obtained in the relation between height A and
time ¢ as the body C, drops. These are fitted to the quadratic relation

h=ur+1g’ (7.11)

by the method of least squares. This calculates the values of ¥ and g-which makes
the sum of the squares of the deviations of the experimental values from the
theoretical relationin (7.11) a minimum. .

The metre is now defined in terms of the second and the speed of light (see
p. 191). The wavelength of the laser is thus known in terms of the metre from a
measurement of its frequency. The digital clock is calibrated in terms of the
caesium standard which is used to define the second - see section 7.4. Hence g is
determined in terms of the metre and the second.

Let us consider what precision might be possible in the experiment. The
photodetector can detect a change of about 2 x 10 “3ofa fringe movement. So the
fractional error in the length measurement is
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The total time of fail is about 0.2's, which can be measured to about 0.1 ns. Thus
the fractional error in ¢ is

At 0.1x107°

= 5% 10719 7.13

t 0.2 (7.13)

Theerrorin g is therefore governed by the error in the length measurement, andis
potentially about 4 parts in 10°, Since g is about 10 m s~2, this corresponds to
Ag =40 nm s~ 2.* However, to achieve this accuracy, or something close to it, the
systematic errors must be reduced to nearly the same level, and this objective
forms the basis of the design of the experiment. We shall now describe the features
of the apparatus that reduce the systematic errors to the required levels.

(c) Falkng chamber. It is clearly essential to eliminate as far as possible all non-
gravitational forces on the dropped object. The two most important here are air
resistance and electrostatic forces. Air resistance is reduced by reducing the
pressure in the chamber in which the object falls. However, at very low pressures,
electric charge, which tends to build up on the object, cannot leak away, thus
giving rise to electrostatic forces. The experimenters overcame this difficulty by
allowing theobject to fall inside a chamber which was itself falling.

The mechanism is shown in Fig. 7.15. Light from a light-emitting diode L is
focussed by a sphere S attached to the cube-corner C, and falls on a detector. This
is a device with two elements Dy and D, each of which produces an electric
current which depends on the intensity of the light falling on it. Both the light-
emitting diode and the detector are fixed to thechamber. If the dropped object Cy
falls slightly faster than the chamber, light from L falls on the element Dy; if C,
falls slightly slower than the chamber, the light falls on the element D, The
difference in the current outputs from D, and D, is amplified and made to drive a
motor which controls the rate of descent of the chamber. Output from D,
increases the acceleration of the chamber; output from D; decreases it. Thus the
whole device is a servo system (see section 6.8) for ensuring that the chamber falls
with the dropped object C,. Notice that C; is falling freely and is unaffected by
the action of the servo system, which acts only on the chamber. The chamber is
vented to the vacuum chamber surrounding it, so that the air pressure in the two
chambers is the same.

The falling chamber device has three main advantages. Firstly, it avoids the
need forvery low pressure to reduce air resistance. The dropped object and the air
molecules in the chamber are all falling freely together. The absence of re/ative
motion means that there is almost no force from the air molecules. In fact the

* We continue to use Si umlg However, a unit ol‘accclerauon commonly used in gravitational work is
the gal. | Gal=10">m s>, so | pGal =10 nms 3.
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Fig. 7.15. Sewvo control of falling chamber. The motor, controlled by
the output from the servo amplifier, drives the stainless steel ribbon to
which the falling chamber is attached.

experimenters still had to work at a reduced pressure (about 10~* mm Hg). This
was not due to air resistance, but to the effects of pressure and temperature
gradients across the dropped object, which though small are nevertheless signifi-
cant at the very high precision of the experiment.

The second advantage of the falling chamber is that, being made of conducting
material, it shields the dropped object from external electrostatic fields. Lastly, the
chamber can be controlled so that it gently arrests the fall of the dropped object at
the end of the measurements and returns it quickly to its starting point. This
means that many sets of measurements can be made in rapid succession.

(d) Long-period isolator. So far we have considered only the motion of the
dropped object C,, but we need to consider also the cube-corner C; which acts as
a reference and which is assumed to be at rest. How is this ensured? C, must be
supported in some way, and its support must ultimately be related to a point on
the surface of the Earth. But this point will in general suffer acceleration due to
both man-made and seismic vibrations. It is a reasonable assumption that these
vibrationshave no coherent phase relation to the times of successive drops of C;.
In other words, they give random and not systematic errors. However, thereis no
point in striving to reduce the systematic errors in an experiment if there remain
substantial random errors. Suppose, for example, that for a single drop of C, the
error in g due to the vibrations in the support of Cs is 160 parts in 10°, and that
it is desired to reduce this error to 3 parts in 10°. Since the error in the mean is
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1/V n times the error in a single reading, the number of drops required to reduce
the error to the desired value is about 1000. It is obviously preferable to reduce the
error in a single reading. rather than to rely on the inefficient effect of the 1/vV/ n
factor, and the experimenters achieved this by means of a servo-controlled spring.

Suppose that the cube-comer C, is suspended from a spring to form an
oscillating system of natural frequency f5. If a sinusoidal motion of constant
amplitude and variable frequency /is applied to the upper end of the spring, it is
readily shown that, when the damping is small, the amplitude of the displacement
of C; for the forced oscillations is approximately proportional to 1/(f7 — f2).
(When f = f, this expression becomes infinite, but n practice the damping force
keeps the amplitude finite.) The important point in the present application is that,
for f >» fo, the amplitude of the motion of C, becomes small, i.e. C, is effectively
isolated from the motion of the upper end of the spring. For seismic vibrations
the period is typically about 6 s. To isolate C; it is therefore necessary that the
period of free oscillation of the spring should be about 60 s. This would require a
spring with a length of about 1 km, which is clearly impracticable.

However, the experimenters were able to obtain an effective period of 60 s from
a much shorter spring by electronic means. The principle of the method is as
follows. Suppose we have a long spring of length L, fixed at its upper end, with a
body attached to the lower end Q — Fig. 7.16. As the body makes vertical
oscillations with amplitude X, a point on the spring oscillates with amplitude
proportional to its distance from the point of suspension. Thus a point P, distance
I from Q, has amplitude (I — //L)}X. Now suppose we have a second spring of
length / of the same material and with the same body suspended at its lower end.
If. as the body oscillates with amplitude X the upper end is made to oscillate with
amplitude (1 — [/L)X, the whole motion of the spring is the same as the lower
part PQ of the first spring. and in particular the frequency of the motion is the
same as that of the first spring.

P
:[
- Q

Fig. 7.16. Vertical oscillations of a body on a spring.
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Fig 7.17. Long-period isolation device.

The upper end of the spring is given the required motion by a servo system very
similar to the one controlling the falling chamber. The upper end of the spring is
attached to a cylindrical housing H — Fig. 7.17. Fixed to the bottom of the
housing is a light-emitting diode L and a photodetector with two sensing elements
D, and D,. As before, the sphere S attached to the cube-corner C; acts as a lens,
and a signal arrives at the amplifier that depends on the displacement of C,
relative to the housing H. The output from the amplifier is fed into the voice coil
of a loudspeaker, to which the upper end of the housing is attached. The gain of
the amplifier is adjusted to make the amplitude of the oscillation of the housing
some required fraction of the amplitude of the body Ca. The closer the fraction is
to unity, the larger is the period of oscillation of the spring. In this way the
experimenters were able to use a spring of length 1 m whose period of ¢3¢illation
corresponded to a spring of length [ km.

(e) Other errors. The experimenters took many other precautions to reduce
systematic errors, of which we shall mention only two. The first concerns the
optical path. Clearly the light beams must be vertical; otherwise the length
measurements will not give the height A, but 4 cos ¢, where ¢ is the angle between
the light beams and the vertical. There is a subtle effect which needs to be
considered in this connection. The window in the vacuum chamber (W in Fig.
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7.13) is tilted slightly in order to avoid reflection of the light back to thelaser. This
by itself does not cause a deviation of the beam from the vertical, because the two
surfaces of the window are parallel. However, the difference in air pressure on the
two sides means that the refractive indices of the air on the two sides are slightly
different, and this, together with the tilt, does give a deviation. Fortunately, the
effect is negligible, provided the angle of incidence of the light is close to zero.

A second type of error arises from the electronic circuits that amplify the
oscillating electric signal from the detector registering the passage of the inter-
ference fringes. As the dropped object descends, the frequency of the signal
increases linearly with time, from about 1 MHz at the beginning of the measure-
ments to about 6 MHz at the end. The amplifying circuits produce phase shifts
which depend on frequency. It may be shown that phase shifts that vary linearly
with frequency do not affect the results - only a non-linear variation gives rise to
error. The phase changes depend on the bandwidth of the amplifier.* The
experimenters found that a bandwidth from zero to about 30 MHz was necessary
to reduce the error to an acceptable level.

(f) Results. The apparatus was tested in several places, including Boulder,
Colorado, and Sévres, near Paris. An example of a series of measurements made at
Boulder in May 1981 isshown in Fig. 7.18. The results show the variation of g with
time, at the same place, due to the tidal redistribution of water in the oceans. This
variation has several components with different periods, the two most prominent
having periods of a day, and half a day." They are clearly seen in the figure. Each

-2 o | 1 |
May 3 May 4

Fig. 7.18. The tidal variation of g at Boulder, Colorado measured with
theapparatus of Zumberge, Rinker, and Faller in May 1981. The curve
shows the theoreti'cal variation.

* See Horowitzand Hill 1989, p. 243.
' See Cook 1973, chapter 4, for the theory of the variation of g due (0 the tides.
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experimental point is the result of a set of 150 drops. The rms deviation of the
points after the variation of the tides has been removed is 60 nms ™ 2.

Measurements taken at different places indicated an average error of about
100 nm s ™2, which corresponds to a fractional error of Ag/g=10"%. It may be
noted that this error is about 100 times smaller than that of the most accurate
reversible pendulum. A striking illustration of the very high precision of the
apparatus is that its error is equivalent to the change in g due to a change in
height of about 30 mun (!) at the surface of the Earth — see exercise 7.3.

Since this experiment in 1982 the instrument has been improved (Niebauer
et al. 1995), and a number of absolute gravimeters, as they are called, have been
constructed and operated in various parts of the world. In 1994 a comparison was
made of the results of eleven instruments at five sites, which showed that the
fractional error for the measurement of g had been reduced to about 3 to 4 x 10 ~°
(Marson et al. 1995).

An interesting experiment was reported by Peters, Chung, and Chu in 1999.
They measured the gravitational acceleration of falling atoms with a fractional
error of 3 x IO", and showed that the value obtained agreed with the value for a
falling macroscopic object to within 7 partsin 10°. The experiment involved very
sophisticated atomic techniques; you are referred to the paper in Nature for the
details

7.4 Measurement of frequency and time

(a) Introduction. Frequency — and its reciprocal, time — can be maintained and
measured to a higher degree of precision than any other quantity in physics. This
precision is not only the basis of some fundamental definitions, but also has a
number of important applications.

Several methods are available for producing oscillations of a standard fre-
quency. The simplest is to make use of a quartz crystal, which, by virtue of the
piezoelectric effect, can act as a highly tuned circuit and produce an electromag-
netic oscillation whose frequency is a characteristic of the geometry of the crystal
and its elastic properties. Crystals giving a frequency stability of 1 part in 10® are
readily available. If the temperature of the crystal is controlled, a stability of
about 1 part in 10'? may be obtained.

(8) The caesium atomi’c clock. Still higher stability is obtained from an oscillator
whose frequency is controlled by transitions between two energy levels in an
atom. The atom that has proved most suitable is caesium. A full explanation of
the caesium clock needs quantum mechanics,* but we outline the basic ideas here.
The caesium atom has only one stable isotope, 133¢Cs. The spin of its nucleus is %
It has a single valence electron, which has spin 3, and zero orbital angular

* The basic physics can be found in a number of textbooks - see for example Gasiorowicz 1996,
chapters 15 and 22, and Bransden and Joachain 1983, p. 232.
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Fig. 7.19. Thetwo lowest energy states of the ***Cs atom.

momentum in the ground state. The quantum number for the resultant of the
nuclear and electronic spin angular momenta is denoted by F, and, from the rules
for adding angular momentum in quantum mechanics, takes values % +3=4, and
%—% = 3. The spin motions of the nucleus and the electron give rise to magnetic
dipole moments. The F= 3 state corresponds to the two magnetic dipoles being in
the same direction, and F =4 to the two dipoles being in opposite directions. The
two states have slightly different energies, the F=3 state being lower - Fig. 7.19.
Suppose we have a system of caesium atoms, some in one state and some in the
other, and shine electromagnetic radiation of frequency f, on it. If fy satisfies the
relation

AE = hfy, (7.14)

where AE is the energy difference between the two states, and 4 is the Planck
constant, transitions will occur. Some atoms in the F =4 statechange to the F=3
state, and vice versa. If the frequency of the radiation does not equal fo,
transitions do not occur, and theatomsremain in theirinitial state.

The elements of the caesium clock are shown schematically in Fig. 7.20. The
caesium is in an oven at a temperature of about 100°C, which vaporizes the
metal. The emerging beam, which contains atoms in both the F=4 and F=3
states in nearly equal numbers, passes into a magnet — A in the diagram — which is
constructed to have a very inhomogeneous field. (It is often referred to as a Stern—
Gerlach magnet after two German physicists who pioneered its use.) The

Oscillator

f signal ]
f =9.192- GHz Amplifier

A

3and 4 | pa 4 R 3and 4
' gnet esonance | Magnet
Oven —p= -y ot ag

B
——l —:I 3 Detector

Fig. 7.20. Schematic representation of the caesium clock. The values of F are
shown next to the beam paths.
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inhomogeneous field produces a deflecting force on an atom that depends on its
magnetic dipole moment. The atoms in the two quantum states have different
values of magnetic dipole moment, and the magnetic field deflects them in
opposite directions. The two sets of atoms emerge from the magnet afong
different paths, and the F=3 atoms are then blocked. The F=4 atoms pass into a
cavity where they are subjected to a radio-frequency oscillation of frequency fo.
This causes transitions so that some of the atoms leaving the cavity are in the
F=13 state. The beam now passesthrough a second magnet B, identical to magnet
A. The atoms in the F=4 and F=3 states again emerge along different paths,
and this time the F =4 states are blocked. The atoms in the F= 3 state, i.e. those
that have made a transition in the cavity, strike a tungsten detector, which gives a
signal that depends on the rate of arrival of the atoms.

If the frequency of the oscillator producing the radiation in the cavity drifts
fromf, the rate of transitions in the cavity drops and so does the output from the
detector. An electronic arrangement determines whether the frequency is iess than
or greater than fj, and sends a signal to the oscillator which brings the frequency
back to the correct value. We thus have a servo system that keeps the oscillator
frequency tightly locked to the value fj.

The precision of present caesium clocks is better than one part in 10'*. The
longer the time the caesium atoms are in the resonant cavity, the more precise is
the frequency. In recent experiments this time has been increased by slowing the
atoms down by radiative forces from photons in a laser beam, a process known as
luser cooling -- see Cohen-Tannoudji 1998. They are then thrown upwards and
allowed to fall back under gravity along the same path. This ‘fountain’ technique
has so far yielded a further factor of 10 in precision. Experiments are in progress
to use the transitions between states of ions trapped by a set of electromagnetic
fields to stabilize the frequencies of oscillators. These promise even higher
precision, but that is for the future.

(c) Definition of the second and other applicadons. The caesium clock is so stable
that since 1967 it has been used to define the second. Prior to then the second was
defined in terms of the Earth’s yearly motion round the Sun. However, neither
this nor the Earth’s daily rotation is as stable as a caesium-controiled oscillator.
The definition of the second is made by assigning the specific value of
9192631 770 GHz to fp. Thevalue was chosen to make the second agree with its
previous definition.

Because frequency and time can be measured so precisely, other definitions are
tied to them. Thus the metre is defined as the distance travelled by light in a
certain time- We try to measure a physical quantity by relating it to frequency.
For example, the Josephson effect can be used to relate voltage and frequency,
thereby providing a very precise and reproducible volt in the SI system of units —
see p. 86.

Another example is the method of proton magnetic resonance for measuring a
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magnetic field. The proton has a magnetic dipole moment yp, and in a magnetic
field B the dipole may be parallel or antiparallel to the field, the two states
differing in energy by an amount 2u,B. If an alternating electromagnetic field of
frequency f, where k

Bf = 2,8, (7.15)

is applied to a system of protons, for example a small sample of water, transitions
occur between the two states. The system absorbs energy from the alternating
field, and the resonance is readily detected. The quantity yp =2u,/# is known as
the gyromagnetic ratio of the proton. (# = h/2rn.) Thus (7.15) may be written as

w=21f = 7B (716)

The value of yp is known to about 4 parts in 10® — see p. 192 —so a measurement
of the frequency gives the value of the magnetic field to a high degree of precision.

(d) Time scales. In addition to providing a definition of the second, the very
high stability of atomic clocks allows us to define a standard, universal time scale.
The outputs of over 200 atomic clocks from laboratories all over the world are
sent to an organization known as the International Bureau of Weights and
Measures (BIPM) outside Paris, which defines a time scale from the weighted
mean of all the clocks. This is known as International Atomic Time (TAl). We
could have used this time scale, which is precise to about one part in 10', as a
universal time scale, but it is convenient for many purposes to have a scale related
to the daily rotation of the Earth, even though its period varies and is slowly
increasing. To meet the requirement of a very precise time scale, which is also
related to the mean rotation of the Earth, a new time scale known as Coordinated
Universal Time (UTC) has been devised. This is synchronous with TAI, except
that on certain specific occasions a /eap second is added to UTC* The occasions
are determined from observations made at an observatory in Paris which
accurately monitors the rotation of the Earth. Twenty-two such leap seconds have
been added from 1972 to 1999. (In principle a leap second may also be subtracted,
but this has not so far happened.) The net result is that UTC is determined with
the precision of atomic clocks, but is always within one second of a time scale
fixed by the rotation of the Earth. The announcement of the insertion of a leap
second is published in advance, so the whole world has an agreed official time
scale. UTC is used in scientific work, such as astronomy, where groups in different
laboratories around the world need to coordinate their observations.

A number of radio stations throughout the world broadcast signals with the
frequency of the carrier maintained by an atomic standard. In the United
Kingdom, for example, the National Physical Laboratory provides a signal
known as MSF which is broadcast from Rugby at a carrier wave frequency of

* On such an occasion someone holding 2 watch that ticked cvery second according to TAl would
observe 61 seconds in that particular minute of UTC
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60 kHz, stabilized to 2 parts in 10'2.* The signal may be fed into a laboratory
oscillator (or even nowadays into an inexpensive domestic radio clock) which is
then stabilized to the same degree.

7.5 The Global Positioning System

Not only have caesium clocks become more accurate over the last three decades,
they have also become more stable in different environments, and their size has
been reduced. This has led to a very important application of atomic timekeeping,
known as the Global Positioning System (GPS), which enables objects to be
located on the surface of the Earth with very high precision.

(a) Principle of the system. The system is based on twenty-four satellites in orbit
at heights of about 20000 km. Each satellite contains an atomic clock and
radiates radio-frequency signals whose modulating patterns are locked to a
common time scale. The satellites are spaced so that, at any point on the ground,
a receiver can at all imes pick up the signals from at least four of them. The
receiver contains a clock and a computer, which calculates the time taken for each
signal to travel from the satellite to the receiver. Since the signals are travelling
with the speed of light, this gives the distances from each satellite to the receiver.
The satellites also broadcast their positions. Putting all this information together
the computer can determine the jocation of the receiver on the surface of the
Earth to within about a metre!

We illustrate the principle in two dimensions in Fig. 7.21. If the time taken by a
signal from a satellite at S, to reach the receiver is #;, and the time for a signal
from a satellite at S, is ¢, then the receiver is at a distance 7, =ct, from S, and a

Fig. 7.21. The principle of the Global Positioning System. The receiver
is at measured distances r; and r; from the satellites S, and S,, and is
therefore at either A or B.

* The short-term stability of the received signal may not be as good as that of the transmitted signal,
owing to variations in ionospheric conditions.
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distance r, = ct, from S;, where c is the speed of light. Thus the receiver lies on the
intersection of the two circles centred on S; and S2 with radii r and r,. There are
two intersections, A and B in the figure, but a very approximate value of the
position enables one to be ruled out. In three dimensions we need signals from
three satellites to locate the position of the receiver. The receiver lies at the
intersection of three spheres centred on the positions of the three satellites with
radii determined by the travel times of the three signals. The three spheres
intersect at two points. In general, only one of them is on the surface of the Earth;
the other is either deep inside the Earth or in far outer space, and so can be ruled
out.

(b) Measurement of the travel time of the signal. The travel times of the signals
are determined by an ingenious method. The signals from each satellite have a
pseudo-random pattern, i.e. they appear to have a random sequence, but this
sequence is in fact determined by a formula. Each sequence, together with its time
of transmission, is built into the memory of the computer in the receiver. The
situation is shown schematically in Fig. 7.22. (a) is part of a transmission sequence
from a satellite. When the transmitted pattern reaches the receiver it is delayed by
the travel time ¢; and appears as (b). The computer determines the value of ¢ by
finding out how much (b) must be advanced to bring it into maximum correlation
with, ie. to match, its copy of (a).

Time —=

Fig. 7.22. Diagram showing how the travel time ¢; of the signal is measured.
(a) is the signal transmitted by the satellite. An identical copy is stored in the
receiver's computer. (b) is the signal when it reaches the receiver. The
computer determines the value of ¢; by finding how much (b) must be
advanced to bringit into maximum correlation with thecopy of (a).

(¢) Correction to the receiver clock. Signals from three satellites are sufficient to
determine a position in three dimensions. However, if the information came from
only three satellites, the clock in the receiver would have to be as accurate as those
in the satellites. But putting an atomic clock in each receiver would be prohibi-
tively expensive. With signals from four satellites it is possible to use a relatively

99



Some experimental techniques

Fig. 7.23. Diagram illustrating the correction of the error in the
receiver’s clock for the case when the clock is running fast. The original
circles (thick lines) intersect at three points. The computer calculates the
clock correction necessary to reduce the radii of the circles so that they
intersect at a single point.

cheap quartz clock of lower accuracy, and to use the infortnation of the signals to
correct the clock.

The method is demonstrated in two dimensions in Fig. 7.23. For two dimen-
sions we need signals from three satellites to make the clock correction. The figure
shows the situation if the receiver clock is running fast. As a result the calculated
values of the travel times, and hence the radii of the circles, are too large. The
circles (thick lines in the figure) intersect at the pomnts A, B, and C instead of at a
single point. It is a relatively simple calculation for the computer to find the
correction to the clock that reduces the three radii so that the circles intersect at
the single point P, which is the correct location of the receiver.

(d) Features of the system and applications. The Global Positioning System was
constructed by the United States Department of Defence for military purposes.
The first satellite was put into orbit in 1978. Subsequent satellites had improved
facilities, and each one now has four atomic clocks on board. Light traveis.3 m in
10 ns. So to achieve a precision of 1 m in location, the times have to be known to
a few nanoseconds. Caesium clocks are stable to within a few parts in 10'* per
day, which amounts to a few nanoseconds per day. The clocksin the satellites are
monitored by a set of control stations located in different parts of the world at
known positions on the ground. Signals are sent back to the satellites, which
adjust their clocks to give the required degree of synchronism. The time scale used
is based on atomic time (TAI).

The control stations also monitor the positions of the satellites by reflecting
laser beams from them and measuring the travel time of the signal. The satellites
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are equipped with cube-corner reflectors — see p. 87 — which reverse the direction
of the laser beam whatever the orientation of the satellite. The measured ranges
are accurate to a few centimetres!

The United States Government has made the Global Positioning System
available for civilian, as well as military, purposes. It is used in navigation by
ships, aircraft, and ground vehicles, including domestic cars, and also by hikers
and boating enthusiasts. But it has many other uses. It is so precise that it can
measure small deformations of the Earth’s crust, providing information on
impending earthquakes. It can also be used in weather forecasting. Water in the
atmosphere affects the travel times of the radio signals. So if the location of the
receiver is known, the atmospheric water content can be measured. There are
many other uses for the system, and their number is growing rapidly. A large
number of commercial GPS receivers are available, catering for the different types
of use, and there is a magazine G PS World devoted to the system.

You will find details of the topics in the last two sections in a number of
publications. A very readable book on atomic clocks and time scales is Splitting
the Second by Jones 2000. A full account of the physics of timing devices from
sundials to quartz clocks, caesium clocks, masers, and ion traps will be found in
The Quantum Bear by Major 1998. For a popular account of the Global
Positioning System see Herring 1996.

Exercises
71 Prove theresult in (7.6).

72 A zener diode with ¥,=6 V, aperated at a current of /=1 mA, has a dynamic
resistance dV./dl, =3 Q. If the current varies by 2%, what is the fractional
change in the voitage?

73 Estimate the increase in height at the surface of the Earth corresponding to a
reduction in gof i partin 10*.



8  Experimental logic

8.1 Introduction

Systematic error is just a euphemism for experimental mistake. Such mistakes are
broadly due to three causes:

(a) inaccurate instruments,
(b) apparatus that differs from some assumed form,
(c) incorrect theory, that is, the presence of effects not taken into account.

We have seen the remedy for the first — calibrate. There is no blanket remedy
for the other two. The more physics you know, the more experience you have
had, the more likely you are to spot the effects and hence be able to eliminate
them. However, there are ways of making measurements, of following certain
sequences of measurements, which automatically reveal — and sometimes elim-
inate — certain types of error. Such procedures form the subject of the present
chapter. Some are specific, others are more general and add up to an attitude of
mind.

Finding and eliminating a systematic error may sound a negative, albeit
desirable, object. But there is more to it than that. The systematic error that is
revealed may be due to a phenomenon previously unknown. It is then promoted
from an ‘error’ to an ‘effect’. In other words, by careful measurement we may
make discoveries and increase our understanding of the physical world.

8.2 Apparent symmetry in apparatus

It is a good rule that whenever there is an apparent symmetry in the apparatus, so
that reversing some quantity or interchanging two components should have no
effect (or a predictable effect - see the second example), youshould go ahead and
make the change. Two examples will illustrate the point.

Consider an experiment, for example, the measurement of the thermal con-
ductivity of a material, in which we necd to measure the temperature difference
AQ between two points P and Q. Suppose we do this by measuring the
temperature at P and Q with a pair of similar thermometers. Symmetry says that
interchanging the two thermometers should not affect the result. We interchange
them and find that it does, thereby discovering that the thermometers are not
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reading correctly. If A is small, its value from one pair of temperature readings
could be seriously wrong. Interchanging the thermometers and taking the mean of
the two values of Af considerably reduces the error. (If A@ is small, a better
method still is to measure it directly and thus avoid the unsatisfactory procedure
of taking the difference between two nearly equal quantities. This could be done
by placing platinum resistance thermometers at P and Q and connecting them in
the opposite arms of a Wheatstone bridge.)

The second example is the Wheatstone bridge. Look at the circuit in Fig. 8.1. R
is an unknown resistance, and S is a standard of known value. The value of R is
obtained by finding the value of AB at balance. Denoting it by x; and the value of
AC by, we have

R x|

§=1-—X1v (8'1)

!

Fig.8.]. Wheatstone bridge.

Symmeltry says that if we interchange R and S, the new value of AB should be
x2=1-x. (8.2)

We make the change and get a different value. The operation has revealed the
presence of end effects.

8.3 Sequence of measurements

The order in which measurements are made can be very important, as the
following example illustrates. Three students are asked to find how the terminal
velocity of a sphere falling in a liquid varies with its diameter. They are given a set
of four ball bearings of various sizes and a large tank of glycerine.

Student X takes the largest ball and measures its terminal velocity five times,
then takes the next largest and does the same, and carries on until he reaches the
smallest. He gets a poor result. Why? Because the laboratory has been warming
up during the measurements, and so has the glycerine. The viscosity of glycerine,
like that of most liquids, drops rapidly with increase in temperature. The terminal
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velocity depends on the viscosity of the liquid as well as the diameter of the ball.
Therefore, since the average viscosity was different for each ball, the results do
not give the variation of terminal velocity with diameter alone.

Student Y knows more physics than X and knows about the variation of
terminal velocity with viscosity and hence with temperature. He therefore builds a
device for keeping the temperature of the glycerine constant. He makes the
measurements in the same sequence as X and gets a much better result, but it is
still incorrect. Why? Because unknown to Y the clock that he is using to measure
the terminal velocity is gradually slowing down, and this gives an effect system-
atically different for the four balls.

The third student Z is as ignorant as X about the effect of temperature on the
measurements, and his clock is just as poor as Y's, but he gets a very good result.
This is due to the sequence in which he — instinctively - makes his measurements.

Denote the four balls by A, B, C, D. Suppose that instead of five successive
measurements for ball A, followed by five for ball B and so on, the measurements
are made in the order

ABCDABCD - -

Now instead of ball A being measured with the high and D with the low viscosity
liquid, all four balls are being measured at a high value and then again at a lower
value and so on. However, although this sequence reduces the systematic error
considerably, it is still true that for each set of four measurements A comes at the
high and D at the low viscosity end. So even better is the sequence

ABCDDCBA,

which is repeated as many times as the total time permits. This is the way student
Z makes his measurements. (An extra precaution would be to make the next
sequence BCDAADCB and so on.) You can see that over the entire sequence of
measurements, the effects of a smooth variation with time of the viscosity of the
liquid, or of the accuracy of the clock, or indeed of any factor other than the
diameter of the ball, will probably be small.

Note that even Z's method can be improved upon. His ignorance of the
temperature effect is hardly a merit. The measurements in this experiment are so-
sensitive to the temperature of the liquid, that a competent experimenter would
not only adopt Z’s sequence, but would also measure the temperature from time
to time to check that there was no chance correlation between the temperature
variation and the sequence of the diameters.

8.4 Intentional and unintentional changes

In an experiment to measure the effect of varying one quantity, we obviously try
to keep all other quantities constant. However, there is always the possibility of
variationsin the latter, and in the last section we described a method for reducing
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the effects of such variations. The method is very effective, but is only applicable
when the unwanted variations are not caused by or related to the quantity that we
wish to vary. This is clearly the case in the previous example. Neither the
temperature of the glycerine nor the accuracy of the clock depend on which ball
we decide to drop for the next measurement.

However, consider the following experiment. We wish to investigate the change
in the dimensions of a ferromagnetic material caused by the application of a
magnetic field, a phenomenon known as magnetostriction. An iron rod is placed
in a solenoid, and its length is measured as a function of the current through the
solenoid, the current being a measure of the magnetic field.

Now the change of length in magnetostriction is small — the fractional change
for complete magnetization is about 5 x 10=* — and so in order to measure it
accurately, we must keep the temperature of the sample constant; otherwise
thermal expansion will swamp the magnetic effect. When we increase the current
through the solenoid we increase the heat generated in it, and this may raise the
temperature of the specimen. The method of the last section is quite irrelevant
here — the quantity we are varying is causing the unwanted variation. What we
have to do is to ensure that the current through the solenoid does noz affect the
temperature of the specimen, for example, by winding the solenoid on a water-
cooled former.

The converse effect is also a potential source of error. The current through the
heating coil of a furnace may give rise to a magnetic field, which in turn may
affect the measurements.

85 Drift

In section 8.3 we had an example of slow systematic variation or drift during an
experiment. Apart from temperature, other common quantities that are liable to
vary are atmospheric pressure and humidity, the voltage of a battery, the mains
voltage and evenits frequency.

Choosing an appropriate sequence for the measurements is one way of reducing
the effects of these variations, but often we wish to prevent or at least minimize
the variations in the first place. This is usually done by various negative feedback
and servo devices (sections 6.7 and 6.8).

Section 8.3 also provided an example of instrumental variation. We should
always have it in mind that instruments are liable to drift — their zero errors may
change and so may their sensitivities. It may therefore be necessary to calibrate an
instrument more than once - indeed many times — during an experiment.

Notice that the calibration operation itse{f may form part of a sequence which
can give rise to a systematic error. Suppose, for example, we are comparing two
voltages V, and V; by means of a potentiometer. The emf of a potentiometer cell
tends to fall with time. So if, after standardizing the instrument, we always measure
¥V, first and then V», the measured values of ¥/ ¥, will be systematically low.
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Table 8.1. Measured values of the diameter
of a wire at various points along its length

Length/m Diameter/mm
0.0 1.259
0.0 1.263
00 1.259
0.0 1.261
0.0 1.258
0.1 1.252
0.2 1.234
0.3 1.209
04 1.214
0.5 1.225
0.6 1.248
0.7 1.258
08 1.256
0.9 1.233

8.6 Systematic variations

Look at the numbers in Table 8.1 which represent the measurements of the
diameter d of a piece of wire at various points along its length x. If you were
asked for the best value of the diameter and an estimate of the standard error in a
single measurement, how would you proceed? (Stop at this point and decide.)

Let us see how our friends X and Y would tackle this problem. X is in no
doubt. He has been told that the best value of a quantity is the mean of a set of
measurements, and he has a calculator that calculates the mean and the standard
error. So he happily feeds all the readings into his calculator and finds the mean,
which is 1.245 mm, and the standard error, which is 0.018 mm.

Y, however, notices that the readings are not varying in a random manner and
so he plots them on a graph, which is shown in Fig. 8.2. It is now obvious that the
variation is systematic. He realizes that the mean of all the readings has no
significance at all. The diameter was measured five times at x=0, so its value
there is over-weighted. Accordingly, he replaces these five readings by the single
number 1.260, which is their mean. He takes the mean of the ten values which he
now has and obtains 1.239 as his best value.

Furthermore, he realizes that, since the diameter is undoubtedly varying along
the length of the wire, the spread in the values over the whole range of x has
nothing whatever to do with the standard error in a single measurement. In order
to obtain the latter, he looks at the spread in the five values of x =0 and obtains
0.002mm as an estimate for o. (Whether this is a random error or whether the
cross-section is not circular at x =0 we cannot say without being told more about
the measurements.)
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Fig. 8.2. Diameter of wire d at various points along its length x -~ plot of vajues
in Table 8.1.

Y'’s approach is a sensible one, but there is a point to be noted in connection
with the ‘best value’ of 4. Since d is varying in a systematic way, the value we
require is not necessarily d, the mean obtained by Y. If, for example, we have
measured the resistance of the wire and wish to determine the resistivity of the
material, the quantity required is the average value of I/d?, which is not quite
equal to 1/d2. In the present case the difference is small, but occasionally it is not,
and the correct average must be taken.

Another situation that calls for examination is a set of results that spread by
more than their errors indicate. Consider the set of results for the speed of sound
in air at room temperature given in Table 8.2. We may suppose they were
obtained by measuring the wavelength of stationary waves at various frequencies
in a resonance tube. Suppose that at each frequency many measurements were
made and that their internal consistency was such that the standard error in each
result was estimated to be

c=07ms"". (8.3)

In this situation some studentssimply take the mean of the five results and give as
its error

Om = %% ~03ms', (8.4)
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Table 8.2. Measured values of the speed of

sound
Frequency/Hz Speed/ms™'
1008 346.7

720 3415

200 338.6

600 3422

380 3396

blithely ignoring the fact that three of the results are 30,4, and 70 away from the
mean. If the value of o given in (8.3) is reasonably correct, this is clear evidence of
some systematic effect, and until it is discovered neither the mean nor the value of
o m can be considered of much significance.

With afl wave motion there is the possibility that the speed varies with
frequency, a phenomenon known as dispersion. For sound waves in air, careful
measurements by many experimenters have shown that there is no measurable
dispersion at the frequencies in Table 8.2. However, in any resonance tube
experiment there are certain corrections to be made, one of which depends on
frequency (see Wood 1940, chapter X). It is possible that a systematic error in this
correction has caused the present variation. Alternatively there might be a
systematic error in the frequency values.

We therefore plot the values of the speed against frequency — Fig. 8.3. There
does appear to be a correlation, and, if it is easy to make the measurements, it

350
]
Speed/ms-1
by
340 E
¢
330 1 1 1 1 : 7
0 200 400 600 800 1000
Frequency/Hz

Fig. 8.3. Measured values of the speed of sound at various frequencies — plot
of values in Table 8.2.
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would be worth making a few more at other frequencies to see if the trend were
confirmed. If so, we should look very carefully at the frequency-dependent
correction and also at how the frequency values were obtained.

If the trend were not confirmed, we would have to look elsewhere. For
example, although the value of ¢ in (8.3) might be correctly calculated from the
measurements, it might be the case that the spread in the values at each frequency
is spuriously small. This could arise if the resonance condition were being detected
by ear, and a succession of measurements were made at the same frequency. The
experimenter might have been influenced by the first reading at each frequency,
and tended to find subsequent resonance conditions close to the first. This could
be avoided by making only one or two measurements at each frequency and then
repeating this cycle a few times without looking at the previous results.

We have treated this example in some detail to show possible ways of
proceeding when results spread more than their apparent error suggests. It is a
not uncommon situation in experimental work.

8.7 Calculated and empiricatl corrections

In many experiments, corrections have to be made to take account of systematic
effects. In estimating the magnitude of these corrections, preference should always
be given to empirical methods, i.e. methods based on actual measurements, rather
than to theoretical calculations. The latter may be wrong for a variety of reasons
- wrong theory, incorrect assumptions, faulty calculations — whereas empirical
methods are, by their very nature, less likely to be in error.

Suppose, for example, we are investigating the transmission of light of a given
wavelength through a certain liquid. We place the liquid in a glass cell with its end
walls perpendicular to the light beam (Fig. 8.4) and measure the intensity /x and
Iy of the light at the points X and Y. We suppose for simplicity that the
transmission factor

iy
r=r (8.5)

has been found to be independent of /x. We require the value of f for the length /

A S
—1] . N | D
\ X iy Y

b

Fig. 8.4. Arrangement for measuring the attenuation of a light beam by
a sample of liquid.
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of the liquid alone. The cell cannot be entirely transparent, so it is necessary to
correct the measurements for the attenuation of the light by the two end walls.

The theoretical way of making the correction would be to measure the thickness
of the walls and look up in some table of physical constants the attenuation
produced by this thickness of this particular glass for light of the wavelength we
are using. Assuming that the information exists, the correction would depend on
our knowing the correct wall thickness — it might not be constant and we would
have to get the correct average value over just the area through which the light
passed. It would depend on our knowing the wavelength of the light, and above
all it would depend on our cell being made of just the same type of glass as that to
which the tables referred.

The empirical method is first to measure the intensity at X and Y for the empty
cell, then, without displacing the cell relative to the light beam, to fill the cell with
the liquid and repeat the measurements. You can see that this procedure
eliminates every one of the difficulties mentioned in the last paragraph.

Although empirical should be preferred to theoretical corrections, the best
procedure of all is to obtain the corrections both ways and check that they agree.
An example of this occurs in an experiment by Froome 1958, who measured the
speed of light using microwave radiation (p. 116). The only part of the experiment
that concerns us here is the measurement of the wavelength 4 of the radiation.
The principie of the measurement is shown in Fig. 8.5. The microwave signal
from the source S is divided into two and applied to two transmitting horns 7
and T,. The two signals are received by the horns R and R, and combined in a
unit not shown. The magnitude of the resultant signal depends on the relative
phases of the signals received by R, and R, If they are exactly in phase, it is a
maximum; if they are exactly out of phase, it is zero. (Whatever the relative
magnitudes of x) and x», the signals received by R; and R, are made equal in
amplitude. This is achieved by adjusting the relative amplitudes of the signals
transmitted by 7, and T without altering their phases.)

s
)
S

A

Fig. 8.5. Measurement of the wavelength in Froome’s experiment,



8.8 Relative methods

R, and R; are mounted on a rigid trolley G so that x, and x> can be varied, the
quantity x, + x> remaining constant. If the trolley is moved so that x, increases by
412, then the phase of the signal at R, is retarded by 7 and at R> advanced by =.
Thus the resultant signal goes through a complete cycle during the motion. The
value of A is obtained by counting the number of cycles through which the
resultant signal passes as x; or x; is changed by a known amount.

Now the statement that increasing x; by 4/2 causes the phase of the signal at
R, to be retarded by r, is only strictly true in the limiting case where T is a point
emitter and R, a point receiver. In practice, radiation is emitted and received over
a finite area. The path lengths of the rays from the various parts of T to the
various parts of R; vary. Moreover, when the value of x, is changed, the different
path lengths are changed by different amounts. The correction for these diffrac-
tion effects is important in a precision experiment such as this.

Froome’s procedure was to make measurements with various types of covering
of the horns and at various values of x; + x>. The diffraction effect, which varied,
was calculated theoretically in each case. The agreement between theory and
experiment throughout showed that in any given situation the correction was
being calculated correctly and could be applied with confidence. This dual
approach — theoretical and empirical - is the very acme of the experimental
method.

8.8 Retative methods

The Wheatstonebridge, p. 103, is an example of a relative method. The resistance
R is measured, not absolutely, but in terms of, or relative to, the resistance S.
Relative methods are very important in physics. They can be made more precisely
and easily than absolute measurements, and very often are all we require.

Consider as an example the measurement of the viscosity of a liquid by a
method based on Poiseuille’s formula for the flow of a liquid through a capillary
tube. The formula is

dv  part
where d V' /d¢ is the rate of volume flow of the liquid, p the pressure drop along a
tube of length /, r the internal radius of the capillary tube, and # the viscosity of
the liquid. If we maintain and measure a constant pressure difference along the
tube, and measure dV/d¢, {, and r, we can calculate the viscosity. This is an
absolute measurement.

Now look at the apparatus in Fig. 8.6, which is a viscometer due to Ostwald. A
fixed volume of liquid of density p; and viscosity m is introduced into A and
sucked into B so that its level is just above L on the left and N on the right. The
time 7, taken by the liquid to drop from L to M - both levels being precisely
marked - is measured. The liquid is then replaced by a second liquid of density g»

m
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Fig. 8.6. Ostwald viscometer.

and viscosity 7, and the corresponding time r, is measured. It is easy to show
that the ratio of the viscosities is given by*
i L (8.7)
H mnD
The measurement of the quantities on the right-hand side of (8.7) is comparatively
simple.

Notice that the relative method completely avoids two difficulties in the
absolute method. The first is maintaining and measuring a constant pressure
head, and the second is measuring the internal radius of the capillary tube, which
must be done precisely since r is raised to the fourth power in the formula,
Furthermore, the simplicity of the Ostwald apparatus means that temperature
control is easier. As mentioned earlier, temperature has a marked effect on
viscosity; so this is an important advantage.

The relative methods described so far give the ratio of two quantities, but a
relative method can also give the difference between two quantities. A~ good
example of this occurs in the measurement of g, the acceleration due to gravity.
We have seen (p. 86) that to measure the absolute value of g with high precision
an elaborate apparatus is necessary. However, it is possible to obtain precise

* Equation {8.7), like Poiseuille's formula on which it is based, ignores the fact that the liquid acquires
kinctic energy. A small correction is necessasy 10 take account of this — see Smith 1960, chapter XI,
for details.
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values for differences in g with much simpler apparatus. The inst@inén*ised for
the purpose is a spring gravimeter, which is essentially a very sensitive spring
balance. There are several versions for use under different conditions. (See
Dobrin and Savit 1988 for details.) The gravimeter must be calibrated by
observations at a few places where the absolute value of g is already known. But it
can measure differences in g with an error smaller than that of the absolute
calibration values. The instrument is light, portable, and convenient to use, so
that many observations can be made rapidly. Modern gravimeters have sensitiv-
ities of about 100 nm s~2, which is comparable to the precision of the best
absolute instruments.

For many purposes we are not interested in the absolute value of g, but only in its
variation. The most important factors in the variation of g with position are
latitude and height above sea-level — see Appendix G. When these have been
allowed for, variations of g over large distances are related to the sea-level surface
of the Earth and provide inforination about the structure of the continents and
oceans; variations over small distances provide information of geological structure.

Other examples of relative methods are measurements of such quantities as the
strength of a radioactive source, the intensity of a light source, and the flux
density of radiation from a radio galaxy. In all these cases, the absolute
determination of the quantity is very difficult, and the measurements are usually
made relative to another similar quantity.

Notice finally that if we know the absolute value of the quantity we are
measuring for one sample or object, all the relative values are converted into
absolute values. Thus, once we have put one liquid of known viscosity and density
through an Ostwald viscometer, measurements for another liquid give its vaiscosity
absolutely.* And once the value of g is determined absolutely at one of the points
on the network of difference values, all these values become absolute.

8.9 Nult methods

A nuil method is one in which the quantity X being measured is opposed by a
similar quantity Y, whose magnitude is adjusted until some indicating device
shows that a balance has been achieved. This is to be contrasted with a direct
method in which the quantity being measured produces a deflection or reading on
an instrument. We have already had two examples of null methods. The first is
the compensator device in the Rayleigh refractomer, p. 75; the second is the
Wheatstone bridge. Another example is the potentiometer where an unknown
voltage is determined by balancing it against a known voltage.

Null methods have several important advantages over direct methods. The

* The kinelic energy effect mentioned in the footnote on p. 112 requires that v liquids of known
viscosily be put through the apparatus. But as you will already have realized - if you have caught on
to the spirit of the last few chapters - the most satisfactory procedure is 10 calibrate the apparatus
with severailiquids of known viscosity.

"3
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adjusted quantity Y in a null method tends to be more stable and reproducible
than the instrument in a direct method, and its value can usually be read more
precisely. The instrument in a direct method must be calibrated and should
preferably be a linear device. By contrast, the indicating device in a null method
only has to show when some quantity is zero. Therefore it does not have to be
calibrated and need not be linear, though it is convenient if it is so in the
neighbourhood of zero. The main property of interest in the device is its
sensitivity, that is, the minimum out-of -balance effect that it can detect.

A disadvantage of null methods is that they tend to be slower than direct ones,
since the balance point is approached by stages. This can be overcome at the
expense of further complication by using a servo system to find the balance point
automatically 1t is important to realize that null methods can give only relative,
and not absolute, values. So an essential feature is the existence of a precisely
known standard.

8.10 Why make precise measurements?

We said in chapter 2 that the precision to be sought in an experiment depends on
its object. That is generally true, but in many experiments in physics, and
particularly in measurements of fundamental quantities, we simply do not know
what precision may, in the last resort, be appropriate. We try to attain the very
highest precision that known phenomena and techniques permit. Why is this?

If you look at the table of values of the physical constants on p. 192, you will
see that most of the constants are thought to be known to one part in 107 or even
better. Now you may wonder if there is any point in this, or whether making such
measurements is a useless exercise like calculating the value of 7 to hundreds of
decimal places.

The answer is quite simple. Precise experiments have a very important purpose.
They test our theoretical ideas and, when they give results at variance with them,
lead to new theories and discoveries. There have been many examples of this in
physics and chemistry. A theory says that two quantities are equal. We do an
experiment and find that, within the limits of this experiment, they are. We then
do a more precise experiment and find a small difference. In other words the
theory is only a first approximation. The more precise experiment guides us in the
next theoretical step. We conclude with a few examples of discoveries that have
been made as a result of careful and precise measurements.*

(a) Prior to 1894 it was thought that, apart from variable quantities of water
vapour and traces of carbon dioxide, hydrogen, etc., atmospheric air consisted of
oxygen and nitrogen. However, careful measurements by Rayleigh showed that

* A detailed account of the measurement of the fundamental constants has been given by Pelley
(1985). An earlier atticle by Cohen and DuMond (1965) is well worth reading for its discussion and
comments on thc experimental method. For an instructive article on the importance of precise
measurements in physics. see Cook 1975.
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the density of the gas remaining when the oxygen had been removed was about
'5% higher than the density of pure nitrogen obtained from a compound such as
ammonia. This led Rayleigh and Ramsay (1895) to the discovery of the inert gas
argon, which is now known to constitute about 1/, of the atmosphere.

(b) The discovery of deuterium is another example of the fruitfulness of exact
measurement. In 1929 the ratio of the mass of the hydrogen atom to the mass of
%O (the isotope of oxygen with mass number 16) was found by chemical
determination of atomic weights to be

mass H  1.00799 £ 0.00002

mass 60 16 (18]
In 1927 Aston had measured the ratio in his mass spectograph and found
mass H  1.00778 + 0.00805 8.9)

mass 60 16

The discrepancy between these two values led Birge and Menzel (1931) to
suggest that what was being measured in the chemical determination was the
average mass of the atoms in ordinary hydrogen gas, and if the latter contained a
heavy isotope of mass 2, present in the proportion of 1 part in 5000, the
discrepancy would be explained. (In the mass spectrograph only the light
hydrogen atom contributes to the measurement.) The suggestion was confirmed
soon after by Urey, Brickwedde, and Murphy (1932), who found faint lines in the
spectrum of hydrogen. The wavelengths of these lines were in exact agreement
with those calculated for the Balmer series of hydrogen with mass number 2.

(c) The constancy of the speed of light in empty space for all observers in
uniform relative motion was first suggested by the experiments of Michelson and
Morley between 1881 and 1887. They obtained interference fringes for light
propagating in two directions at right angles and found no significant difference
for the speed in the two directions, whatever time of the day or year the
measurements were made. These and similar measurements led Einstein to the
theory of special relativity, one of the great discoveries of physics. Even on pre-
relativity theory the difference in the two speeds was expected to be small, and
very precise measurements were necessary to show that the difference, if any, was
very much less than the expected value. (For a clear account of the Michelson-
Morley experiment, see Lipson, Lipson, and Tannhauser 1995.)

The original measurements of the speed of light ¢ were done with optical waves
for which the wavelength is about 500 nm. When measurements were made
during and after the Second World War with microwaves — wavelength of the
order of 10 mm - the value of ¢ was found to be about 17 km s ' higher than the
optical value, despite the fact that the quoted standard errors in the two values
were about I km s~ The difference is only I part in 20000; nevertheless, had it
been genuine the consequences for our present theories of electromagnetism
would have been grave.

us
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Table 8.3. Results of three experiments to measure the speed of light ¢

Year  Experimenter Range A ¢/ms™!

1958 Froome microwave 4.2mm 299792500 & 100
1972 Bay etal. optical 630nm 299792462 + 18
1973 Evenson et al. infra-red 3.4 pm 2997924574 + 1.1

Again, precise measurements were necessary to resolve the question. Repetition
of the optical measurements did not confirm the previous values but gave results
in agreement with the microwave values. The results of three representative
experiments are given in Table 8.3. In each of the experiments the values of the
frequency f and the wavelength A of a monochromatic source were measured
independently, and the value of ¢ obtained from the relation ¢ = f4. The use of
lasers (second and third experiments) give greatly improved precision. The
experiment by Bay er al. was the first in which the very high frequency of an
optical source (of the order of 10'* Hz) was measured directly, instead of being
deduced from a measurement of A and the value of c. The procedure is to relate
the optical frequency to a2 known microwave frequency by the generation of
harmonics and the measurement of beat frequencies. A very readable account of
the method has been given by Baird 1983; see also Udem et al. 1999.

The best evidence that the value of ¢ is independent of wavelength comes from
astronomical data. Radiation from pulsars and from high-energy gamma-ray
bursts has been studied. From the times of arrival of pulses in different ranges of
the electromagnetic spectrum, an upper limit may be calculated for the variation
of ¢ with wavelength .. For radiation extending from microwaves (/. ~ S0 mm) to
gamma rays (2 ~ 2pm) the fractional variation Ac/c has been found to be less
than 10~ '%, For gamma rays with wavelengths varying from about 40 pm to
6 pm, Ac/c has been found to be less than 10~ See Schaefer 1999 for a
summary of the results,
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In the present chapter we are going to consider some common-sense aspects of
doing experiments. They apply toall experiments, from the most elementary and
simple to the most advanced and elaborate.

9.1 Preliminary experiment

In a real experiment, as opposed to an exercise, one nearly always does a trial
experiment first. This serves several purposes.

(a) The experimenters ‘learns’ the experiment. Every experiment has its own
techniques and routines, and the experimenter needs some training or practice in
them. It is nearly always true that the first few measurements in an experiment are
not as reliable or useful as the later ones, and it is usually more economical in
time to have an initial period for finding out the best way of making the
measurements and recording the results.

(b) The various pieces of apparatus are checked to see that they are working
properly.

(c) A suitable range for each variable in the experiment is found.

(d) Theerrors in the different quantities can be estimated. As we have seen, this
influences the strategy of the experiment proper, in the sense that more attention
is given to those quantities whose errors give the major contributions to the final
error.

Points (c) and (d) really add up to saying that any serious experiment must be
planned, and that a few trial measurements provide a better basis for a plan than
a lot of theory. Of course the plan must be flexible and is usually modified as the
experiment goes along. But even the most rudimentary plan is preferable to
making one measurement after another just as one thinks of them.

In an exercise experiment the scope for a preliminary experiment is somewhat
limited, and you probably will not have time to do the whole experiment first,
even roughly. Nevertheless, except in the very simplest experiment, some pre-
liminary measurements should always be made and some sort of plan drawn up.
This includes deciding what quantities are to be measured and roughly how long
is to be spent on each one.

A related point may be made with regard to a piece of apparatus. Make sure
that you know how it is to be operated, in the crude sense of knowing what
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controls what. before you start making systematic measurements. If you are
confronted with a spectrometer, for example, make sure before making any
measurements, that you know how to rotate the prism table and how to rotate the
telescope, which knob must be tightened to allow a micrometer screw adjustment
to be effective, which vernier scale corresponds to which motion, and so on. If
there is a laboratory manual giving information about the apparatus, or a leafiet
put out by the manufacturer, read it first.

You may think this is all very obvious, and so it is. But it is surprising how
many people are lacking in this elementary ‘horse-sense’ when it comes to
experimental work. Sophisticated ways of treating data and avoiding subtle errors
are all very well, but they are no substitute for common sense.

9.2 Checking the obvious

If the apparatus is meant to be mechanically firm, and most apparatus is, see that
it is not wobbling about. Remember that three points define a plane, provided
they are not in a straight line. So three is the best number of legs for a piece of
apparatus, and the closer their positions are to an equilateral triangle the better.
With more than three the apparatus will wobble when placed on a plane surface,
unless the contact points have been made to lie in a plane.

If the base of the apparatus is meant to be level, and mostly it is, /ook and check
that it is approximately so. You can always use a spirit-level afterwards ifit must
be accurately level.

In opticalexperiments, make sure that all reflecting and refracting surfaces look
clean. A quick breath and wipe will often do wonders with cheap apparatus. But
do not wipe expensive lenses with a cloth or handkerchief. They are made of soft
glass, and in addition are often coated with a very thin film — about 100 nm thick
— of a mineral salt to reduce reflection at the surface. Such lenses are easily
scratched. They must never be touched with fingers and should be covered when
not in use. They will seldom need more than a dusting with a soft camel-hair
brush, or in extreme cases a careful wipe with special lens tissue.

See that optical components that are meant to be aligned, look as though they
are, and that lenses are turned with their faces roughly at right angles to the
direction of the beam. It is amazing how often one sees a student struggling with
an optical system with some vital lens, covered with a film of grease, several
millimetres too high or low and rotated 10* or so from the normal.

If you have to solder a connection in an electrical circuit, scrape the wires first,
then make as firm a mechanical joint as possible. See that the solder melts in a
healing flow running over the whole junction. Finally, when cold, wiggle the
individual wires gently to make sure that the solder has adhered to them all and
that youdo not have a dry joint.

When you use a galvanometer or similar instrument with several ranges of
sensitivity, always start with the switch on the least sensitive range.
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When you are assembling electrical apparatus operated from the mains supply,
always plug into the mains /as¢, and if you have to service any of it, do not rely on
the mains switch being off, but pull the mains plug out.

9.3 Personal errors

When you are making measurements you should regard yourself as a piece of
apparatus subject to error like any other. You should try to be aware of your own
particular errors. For example, in estimating tenths of a division in a scale reading
some people have a tendency to avoid certain numbers. You can easily test
yourself on this, which is perhaps not a very serious matter.

What can be serious, however, are what might be called wishful errors. Anyone
is liable to make an occasional mistake in reading an instrument or in arithmetic.
But suppose a series of measurements is producing results which you think are
too high. You may well find yourself making more mistakes than usual, and the
likelihood is that the majority will be in the direction of decreasing the result. Of
course, if you do not know beforehand what to expect, you avoid the danger. This
is not always possible, but can sometimes be achieved by a change of procedure
or by varying the order in which measurements are made.

A related situation is one where measurements are repeated in rapid succession,
and you are influenced by the previous values, so that if the first measurement is a
misreading, you tend to repeat the mistake. Alternatively, even if there is no
misreading, the results are not genuinely independent, and their spread is
spuriously small - see p. 109.

In general you will make fewer mistakes if youarecomfortable — physically and
mentally. It is worth spending a little time, particularly in a lengthy set of
measurements, to ensure this.

(a) Apparatus that needs to be adjusted and controls that are operated often
should be conveniently placed.

(b) The same is true for instruments that are read often. In general it is more
comfortable to read a vertical than a horizontal dial, and still more comfortable if
the dal slopes backwards at a small angle.

(c) The general lighting should be good. (Of course in an optical experiment it
is worth going to some trouble to exclude stray light.)

(d) Ventilation should be adequate. It is quite important that the air in the
laboratory should be as fresh as possible — and not too warm.

(e) Finally, there should be somewhere convenient for your notebook, prefer-
ably away from sources of water and heat.

9.4 Repetition of measurements

Measurements of a single quantity should be repeated at least once. Such
repetition

19
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Fig. 9.1. Amplitude of oscillation of a simple harmonic system versus
frequency of external force.

(a) serves to avoid mistakes in reading instruments and recording the
numbers,
(b) provides a means of estimating the error.

But if we are making a series of measurements of a pair of quantities x, y from
which we wish to determine say the slope m of the best line, there is no need to
measure y several times for each value of x. Once we have made two pairs of
measurements, i.e. obtained two points on the line, we have one value for m. We
need further values for m, but it is better to obtain them by making- mere
measurements at different values of x, rather than by repeating the measurements
at the same values of x.

It is sometimes the case that we measure a set of x, y values and that the
function y(x) is not at all like a straight line. Suppose for example that y is the
amplitude of oscillation of a simple harinonic system due to an external oscillating
force of frequency x. A typical set of x,y values in the neighbourhood of
resonance is shown in Fig. 9.1. In this case the points must be sufficiently close
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together to define the ‘best’ curve fairly well.* But, as in the straight-line case,
there is no need to repeat the measurements. The scatter of the points about the
‘best’ curve is a measure of their error, though it might be wise to repeat the
measurement of y a few times for one or two values of x as a check.

There is one aspect to the repetition of measurements which may be illustrated
by the following not-so-hypothetical occurrence. A student in a practical class
comes to a demonstrator with a dilemma. He is measuring the angle of a prism
with a spectrometer and has obtained the results

56°30° and 60°12".

He estimates that his accuracy is about 5’ and, having checked the arithmetic,
deduces that one of the results is wrong. (Stop at this point and consider what you
would do.)

He asks the demonstrator which one he should take as correct. He is of course
being ridiculous. The object of an experiment is to find out something. The
student has so far found out nothing, except that one of his answers is wrong.
(Quite possibly both are wrong.) In this situation you must make more measure-
ments. In fact you must go on making measurements until the results start to
make sense. You cannot do anything, not even the simplest manipulation, with
the numbers until they do make sense.

If the next measurements gave 56° 34’, you would start to think that the second
was probably wrong. You should measure the angle once more and, if the result
was 56° 35', you would be fairly certain that this was so. The results are beginning
to be sensible. You may still wonder how you obtained the value 60° 12’. Probably
you will never find out. Perhaps the prism was inadvertently moved during the
measurements, or, more likely, a telescope setting was misread or incorrectly
recorded. It is annoying when a wrong result turns up and you cannot account for
it, but it does happen, and, provided it is rare, you need not worry. But you
should worry if (a) you arbitrarily decided that the prism was a 60° one and
therefore the second result was corract, or (b) you decided to take the mean.

9.5 Working out resuits

We say something about this in chapter 12, but here we only want to make the
general point that in any experiment lasting more than a day or two, you should
always try to work out the results as you go along.

It is very bad practice to make lots and lots of measurements and to work them
out at the end of an experiment. First of all, it is much better to do the
calculations while everything is fresh in your mind. Secondly, it is not uncommon

* How close the points have to be 10 do this depends on the shape of the function and the precision of
the measurements. Beginners are so used (0 measuring straight-line retations, where relatively few
points are needed, that when they come 1o investigate retations such as that shown in Fig. 9.1, they
usually do not have enough points.
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to find when you work out a set of results that something is wrong and a change
needs to be made to the apparatus. You will be much crosser if this happens after
a month than after a day. Quite apart from that, it is often the case that one set of
results determines what you do next.

The most foolish thing you can do in this respect is to dismantle elaborate
apparatus before working out the results — it has been known.

9.6 Design of apparatus

The principles and techniques of the design of apparatus are discussed in some of
the books listed on p. 206. We say very little about the subject here, beyond
offering a few words of general advice.

(a) Make things as simple as possible.

(b) If the apparatus is being constructed by a mechanic or instrument maker in
the laboratory, discuss the detailed object of the apparatus with him before
making definite plans or drawings. His experience may enable him to suggest
improvements, or he may see ways of simplifying the apparatus and hence
making it easier to construct, without detracting from its performance.

(c) Quote tolerances for the dimensions, and do not make them less than are
actually necessary. Obviously, the closer the tolerances to which the constructor is
asked to work, the more difficult is his task.

(d) Do some construction yourself. This will give you some idea of what can
and cannot be done. An ounce of practice . . .
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10 Record of the experiment

10.1 Introduction

In any experiment it is essential to keep a running record of everything that is
done.

The record should be clear — and economical. On the one hand, you do not
want to have to spend time subsequently searching pages of numbers without
headings to find a particular set of results, or puzzling out from some meagre
clues just what the conditions were when you made a certain set of measurements.
On the other hand, to produce a record that is so clear that it may be followed
with absolute ease by someone else is itself a time-consuming operation and is
hardly necessary. You should aim at a record that you yourself will be able to
interpret without too much difficulty after an interval of, say, a year.

In this chapter some suggestions for keeping the record are given. The
important thing is not that you should regard them as a set of rules to be followed
blindly, but rather that you should understand the spirit behind them, which is to
produce a record — accurate, complete, and clear — with a minimum of effort.

10.2 Bound notebook versus loose-teaf

Some experimenters prefer a bound notebook; others use loose sheets. The
advantage of a single bound book is that one knows where everything is — in the
book. There are no loose bits of paper to be mislaid. The main disadvantage is
that in an experiment of even moderate complexity one often goes from one part
to another, and it is tiresome to have the various parts split into fragments in the
record.

The advantage of loose-leaf is its flexibility. All the sheets on a particular topic
may be brought together irrespective of what was written in between. The
flexibility is useful in another way. In practical work it is convenient to use
different kinds of paper — plain, ruled, graph, and data paper. (The last is paper
ruled with vertical lines and is very convenient for tabular work.) You may also
have sheets of computer output. All these can be inserted in any quantity and in
any order in a loose-leaf book.

It is best not to be dogmatic about the basic method of keeping the record but
to adapt the procedure to the particular experiment. A combination of bound
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book and loose-leaf may secure the advantages of both. Whatever the system
adopted, it is a good idea to have at least one bound notebook; it provides a place
for odds and ends — occasional ideas, miscellaneous measurements, references to
the literature, and so on. It is helpful if the pages of the notebook are numbered,
and a detailed list of the contents compiled at the beginning or end ofthe book.

Experiments done by students as exercises are usually sufficiently short and
straightforward to make a combination of bound notebook and loose-leaf sheets
unnecessary. Opinion varies as to which is preferable, but the experience of the
writer is that the flexibility of loose-leaf gives it the advantage. Different kinds of
paper can be used in any order, and the account of a previous experiment may be
handed in by the student for critical comment while he or she carries on with
another.

10.3 Recording measurements

All measurements should be recorded immediately and directly. There is no
exception to thisrule. Do not perform any mental arithmetic —eventhe most trivial
- on a reading before getting it down on paper. For example, suppose numbers
appearing on an ammeter have to be divided by 2 to bring the readings to amperes.
Write down the reading given by the instrument markings first. Do not divide by 2
and then write down the result. The reason for this is obvious. If you make a
mistake in the mental arithmetic, you are nevergoingto be able to correct it.

In making and recording a measurement, it is a good idea to check what you
have written by looking at the instrument again. So

read, write, check.

Note the serial number of any instrument or of any key piece of apparatus,
such as a standard resistor, used in the measurements. If the maker has not given
it a readily observed serial number, you should give it one of your own. The
subsequent identification of a particular piece of apparatus may be important.
For example, something may go wrong in the experiment and the inquest may
lead you to suspect an erraticinstrument. Y ou will want to know which particular
one you used.

All written work should be dated.

10.4 Down with copying

An extremely bad habit of many students is to record the observations on scrap
paper or in a ‘rough’ notebook and then to copy them into a ‘neat’ notebook,
throwing away the originals. There are three objections to this:

(a) Itisa gross waste of time.

(b) There s a possibility of a mistake in the copying.
(c) Itis almost impossible to avoid the temptation of being selective.
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The last is the most important and is worth considering further. In most
experiments we do not use all the measurements. We often decide that some
measurements are not very useful, or were made under the wrong conditions or
are simply not relevant. In other words, we are selective. This is quite proper,
provided we have objective reasons for the selection. But it is vital that all the
original measurements be retained. We may subsequently wish to make a different
selection. And in any case all the experimental evidence must be available, so that
someone else may form an opinion on the validity of our selection, or indeed on
any aspect of the original measurements.

An important part of a practical physics course is to train you to keep clear and
efficient records, but this training cannot begin until you try to make direct
recordings. They will probably look very messy at first and perhaps will be
difficult to follow, but do not let that discourage you. You will gradually learn
from experience and improve. The result will never look as pretty as the copied-
out version, but that is of no consequence. The important thing in a record is
clarity, not beauty.

Having said that, let us add that a certain amount of copying out may well be
useful. It is often a distinct aid to clarity, which in turn is desirable, not only for
its own sake, but also because it reduces mistakes in working out the results. It is
very often the case that at a certain point in the experiment we want to bring
together various results dotted about in different parts of the account. We may
want to plot a graph, do some calculations, or perhaps just look at the numbers.
But, since we are retaining the original readings, this copying may be, in fact
should be, highly selective and has nothing to do with the wholesale copying
mentioned above.

10.5 Diagrams

‘One picture is worth a thousand words’ — Chinese proverb.

The importance of diagrams in a record or an account can hardly be
exaggerated. Combined with a few words of explanation, a diagram is often the
easiest and most effective way of explaining the principle of an experiment,
describing the apparatus, and introducing notation. Consider the following
alternative descriptions of a piece of apparatus for investigating the motion of a
pair of coupled pendulums:

Description 1. A piece of string was fastened to a horizontal rod at two points A
and B. Two spheres S, and S» were suspended by strings, the upper ends of which
were attached to the original string by slip knots at the points Py and P>. The
lengths AB, AP,, BP,, PP, are denoted by a, yi, y,, and x respectively. The
distance from P, to the centre of S is denoted by /;, and from P; to the centre of
Sz by Iz.

The degree of coupling betwsen the pendulums was varied by varying the

Y27
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distance x. This was done by moving the knots P, and P; along the string
AP/ P,B, the system being kept symmetric, i.e. yy = ya.

Description 2. The apparatus was set up as shown in Fig. 10.1. AP,P,B is a
continuous length of string.

Py, P, are slip knots.
Coupling varied by varying x by means of slip knots (y; = y> throughout).

Comment on the two descriptions is superfluous

Sy S2

Fig. 10.1. Coupled pendulums.

A diagram should not be an artistic, or even a photographically true,
representation of the apparatus. It should be schematic and as simple as possible,
indicating only the features that are relevant to the experiment. Furthermore,
although an overall sketch of the apparatus drawn roughly to scale is often
helpful, you should not hesitate to distort the scale grossly in another diagram if
this serves to make clear some particular point.

Suppose, to take a simple example, we are measuring the focal length of a
convex lens by placing it on a plane mirror and observing when an objectanidits
image are coincident. We wish to indicate whether a particular measurement
refers to the distance from the object to the top or bottom of the lens. Figure
10.2a is to scale; Fig. 10.2b is not, but is much clearer for the purpose.

A diagram is usually the best way of giving a sign convention. Look at Fig.
10.3, which shows the usual convention for representing a rotation by a vector.
Expressing this in words is not only more difficult but also less effective.
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(a) (b}

Fig. 10.2. Diagrams for coincident-image method of finding the focal
length of a lens.

Fig. 10.3. Diagram showing the convention for representing a
rotation by a vector.

10.6 Tables

When possible always record measurements in tabular form. This is both compact
and easy to follow, Measurements of the same quantity should preferably be
recorded vertically, because the eye can more readily compare a set of vertical
numbers. Head each column with the name and/or symbol of the quantity,
followed by the units.

For convenience, the power of 10 in the unit should be chosen so that the
numbers recorded are roughly in the range 0.1 to 1000. There are several
conventions for expressing units in a table. The one recommended by the Symbols
Committee of the Royal Society* — and used in this book - is that the expression
at the head of a column should be a dimensionless quantity. Consider Table 10.1,
which gives the values of -y, the surface tension of water, at various values of the
temperature 7. (The values are taken from Kaye and Laby 1995, p. 60.) We have

* Quantities, Units, and Symbols. The Royal Society, 1975, 1983.
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Table {0.1. Surface tension of water

TIK 10°KIT y/mNm~'
283 353 742
293 3.41 727
303 330 7.2

included also the values of 1/T as a further illustration. The quantities 7/K,
10* K/T, and v/mN m~' are dimensionless, and are therefore suitable headings
for the columns. The first line of numbers is interpreted thus.

At T/K =283, ie. T=283K, (10.1)
the value of 1/T is given by
10°K/T=353, ie I/T=3.53x107°K™}, (10.2)
and at this temperature the value of v is given by
YmNm~'=742, ie y=742mNm~' (10.3)

Once the unit has been specified at the top of a column it is not necessary to
repeat it after each measurement. In general all unnecessary repetition should be
avoided. It wastes time, it wastes energy, and it clutters up the record. The fewer
inessentials we have, the easier it is to follow the essentials.

10.7 Aids to clarity

Diagrams and tables are two aids to clarity. But any such aid is to be welcomed.
Groups of measurements of diff erent quantities should be well separated and each
should have a title. Ifa set of measurements leads to one value, say the mean, it is
helpful if this one number is not only labelled but also underlined, or made to
stand out in some way.

In general you should not be too economical with paper in keeping the record.
You will often find yourself starting to record measurements without giving them
a title or specifying the units. The habit of leaving a few lines of space at the top
permits these items to be added tidily later on. Omitting titles to start with is not
necessarily a sign of impatience, but is in fact a sensible practice. You will usually
be able to add much more useful titles — often of an extended nature — after
several sets of measurements have been made.

A definite hindrance to clarity is the habit of overwriting. Is 37, 27 or 37? Do
not leave the reader — or yourself at a later date — to puzzle it out. Just cross out
and rewrite 27 37,
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10.8 Some common faults — ambiguity and vagueness

Example 1. A student is told to measure the viscosity of water at 20°C and to
compare the value obtained with that given in some table of physical constants.
The following appears in his notebook:

experimental value 1.005x 10 >N sm™2
correct value 1002 x 107> Nsm~?

Which is his value and which the one given in the tables? If we know him tobe a
modest person we might guess that what he calls the ‘experimental value’ is his
own, and what he calls the ‘correct value’ is the one in the tables. If he is
conceited it might be the other way round. But of course we ought not to have to
guess, on the basis of his personality or otherwise. He should have written
something like

this experiment 1.005x 10> Nsm~?
Kaye & Laby (16thed. p. 51) 1.002x10"*Nsm™2

Other adjectives such as ‘actual’, ‘official’, ‘measured’, ‘true’ are equally vague in
this context and should be avoided.

Note that a detailed reference to the tables has been given. We might want to
check the value or look at the table again.

Example 2. Consider a notebook entry such as
Ammeter A 14 zero error  —0.03 A

Does this mean that when no current passed the instrument read —0.03 A, and
therefore 0.03 should be added to all the instrument readings to get the correct
value, or does it mean that 0.03 should be subtracted? Again we are left to guess.

In accordance with the rule that measurements should be written down directly,
without the intervention of any mental arithmetic, what the experimenter should
do is to read the instrument when no current is passing and write down the value.
So the entry should be something like

Ammeter A 14
—0.03 A - reading when no current passed

Example 3. The following is a statement of a kind often found in a student’s
notebook:

The timebase of the oscilloscope was checked with a timer-counter and
found to beaccurate withinexperimental error.

This is objectionable for its vagueness on two essential points. Firstly, an
oscilloscope timebase has a number of ranges and the statement does not indicate
which one or ones were checked. Secondly, the evidence for the statement has not
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been given, and without that evidence we have no means of knowing whether the
statement is justified. What should have appeared is something like this:

Oscilloscope SC 29 — calibration of timebase range 0.1 ms cm !

sine-wave applied to Y plates f=10.018 kHz (timer-counter)

oscilloscope cycle x/cm S cycles
0 0.95 5.00
1 1.96 4.92
S 5.95 4.96 + 0.04 cm
6 6.88
5

sweep speed = = 0.1006 + 0.0008 ms cm "

10.018 x 4.96

Conclusion timebase correct within experimental error for this range

The above examples illustrate the following points:

(a) What is stated must be unambiguous. You should consciously ask yourself
whether any interpretation other than the correct one is possible. Quite often the
simplest way to resolve possible ambiguity is to give a single numerical example.

(b) If a conclusion is based on numerical evidence, and nearly all conclusions in
physics experiments are or should be so based, then the numbers must be given
explicitly.
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11.1 The use of graphs

In experimental physics, graphs have three main uses. The first is to determine the
value of some quantity, usually the slope or the intercept of a straight line
representing the relation between two variables. Although this use of graphs is
often stressed in elementary teaching of practical physics, it is in fact a compara-
tively minor one. Whether we obtain the value of the slope of a straight line by
the method of least squares or by taking the points in pairs (see chapter 4), we are
of course not using the graph as such, but the original numbers. The only time we
actually use the graph to determine the slope is when we judge or guess the best
line through the points by eye. This is a crude method - though not to be despised
on that account — and should only be used as a check on the result of a more
sophisticated method, or when the value of the slope is not an important quantity
in the final result.

The second use of graphs is by far the most important. They serve as visual aids.
Suppose, for example, the rate of flow of water through a tube is measured as a
function of the pressure gradient, with the object of determining when the flow
ceases to be streamlined and becomes turbulent. A set of readings is listed in Table
1.1 (They are taken from Reynolds’ original paper on turbulent flow — Reynolds
1883.) As long as the flow is streamlined, the rate of flow is proportional to the
pressure difference. It is difficult to tell by inspecting the numbers in the table
where the proportionality relationship breaks down. However, if the numbers are
plotted on a graph (Fig. 11.1), the point of breakdown is apparent at once.

Another example of this visual use is the comparison of experimental results
with a theoretical curve, when both are plotted on the same graph. In general a
graphical display of the measurements is invaluable for showing what is going on
in an experiment.

The third use of graphs in experimental work is to give an empirical relation
between two quantities. For example, a thermometer may have been calibrated
against some standard, and the error determined as a function of the thermometer
reading (Fig. 11.2a). We draw a smooth or average curve through the measured
errors and use it (Fig. 11.2b) to correct the thermometer readings. We could have
done the same thing by compiling a correction table. In general a table is more
convenient to use than a graph, but may be more trouble to compile.
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Table 11.1. Flow of water through a tube

Pressure Average
gradient/Pam~"  velocity/mm s~
7.8 35
15.6 65
234 78
313 126
39.0 142
469 171
54.7 194
62.6 226
783 245
86.0 258
81.6 258
939 27
101.6 277
109.6 284
118.0 290
300 |-
.(/I
13
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X 200[-
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>
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Pressure gradient/Pam™"'

Fig. 11.1. Average velocity of water through a tube versus pressure
gradient — plot of values in Table 11.1.
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Standard minus
hermometer) /°C

Thermome er reading/°C

(@)

Correction POSITIVE
Thermometer readi
must be INCREASE|

0
Correction/°C

-1

®) Thermometer reading /*C

Fig. 11.2. (a) Calibration measurements for a theimometer and (b)
correction curve.

Itis a well-established convention for all graphs in physics that the independent
variable, ie. the quantity whose value is chosen each time by the experimenter, is
plotted along the horizontal axis, and the dependent variable, ie. the quantity
whose value is then determined, plotted along the vertical axis. Or, more briefly,
plot cause along the horizontal and effect along the vertical axis.

Nowadays there are a number of computer applications that plot graphs for
you. The data consist of pairs of values for the two variables, sometimes with, in
addition, error estimates for one or both of the variables. These are fed into the
application, which then produces a graph. Most graph-plotting applications have
a wide range of features. You can choose the axis scales, the symbols for the
experimental points, and so on, and there are usually options to include error bars
and curve fits. All this is very convenient, particularly if there is a large amount of
data. However, you are advised to start by doing your own graph plotting in
simple experiments with relatively few data. You will learn what are the most
effective graphs to plot and will be in a better position to instruct a computer in
more complicated experiments with large amounts of data.
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Fig. 11.3. Graph paper with logarithmic rulings.
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11.3  Scale

1.2 Choice of ruling

Graph paper can be obtained in a variety of rulings for specialized purposes, but
the two most commonly used in physics are ordinary linear and logarithmic
rulings. The latter may be further subdivided according to whether only one axis
is ruled logarithmically (semi-log) or both axes (log-log) — see Fig. 11.3. Semi-log
paper is useful when there is a logarithmic or exponential relation between the
two variables. Log-log paper is useful when the relation is of the form

yx x?

and the value of p is not known. An’ alternative to the use of paper with
logarithmic ruling is to take the logarithm of the quantity and plot the latter on a
linear scale - see for example Fig. 4.3.

11.3 Scale

Suppose we are using graph paper ruled in centimetres and millimetres. Our
choice of scale should be governed by the following considerations:

(a) The experimental points should not all be cramped together. It is rather
difficult to get much out of Fig. 11.4a. So we choose a scale to make the points
cover the sheet to a reasonable degree as in Fig. 11.4b. However, in trying to do
this we should bear in mind two further points.

(b) The scale should be simple. The simplest is 1 cm on the graph paper
representing 1 unit (or 10, 100, 0.1, etc.) of the measured quantity. The next
simplest is 1 cm representing 2 or S units. Any other scale should be avoided
simply because it is tedious to do the mental arithmetic each time a point is
inserted or read off.

100 |- 55 - .
L]
.
50 |- LL .
.
| | 50 ] 1
1] S0 100 70 a0 90

(a) (b)

Fig. [1.4. (a) is not a very useful graph. The same results are plotted on an
expanded scale in (b).
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(c) We sometimes have to choose the scale for theoretical reasons. Thus if we
are investigating whether the results in Fig. 11.4 satisfy the relation y =mx, we
must include the origin in a plot of y against x, and Fig. 11.4b is wrong. (This
does not mean that we need revert to Fig. 1 1.4a — see section 11.7.)

11.4 Units

It is usually convenient to choose the power of 10 in the unit on the same basis as
for tables (see section 10.6). The marks on the graph can then be labelled 1, 2,
3,...0r10,20,30,...rather than 10000, 20000, etc., or 0.0801, 0.0002, etc.

The axes should always be labelled with the name or symbol or both of the
varying quantity. The units should be given with the same convention as in tables
—see p. 129. Some examples are given in Fig. 11.5.

15

“

e 22| £

z 14

°

Woz0f- 13

| 1 | l 1 I
0 100 200 300 400 0 s 10
TiK um2;)2

(@) (b}

Fig. 11.5. Examples of labelling axesand expressing units. (a) Young modulus
E versus temperature T (b) Refractive indexy: of a glass versus 1/, where 4 is
the wavelength of the light.

11.5 Some hints on drawing graphs

The main purpose of a graph is to give a visual impression of results, and it
should therefore do this as clearly as possible. We give here a few general hints for
drawing graphs. They should be interpreted and modified according to the
particular case.

(a) If a theoretical curve is drawn on the graph for comparison with the
experimental results, the calculated theoretical points through which the curve is
drawn are chosen arbitrarily. They should therefore be inserted faintly, preferably
in pencil, so that they can be rubbed out.

On the other hand, each experimental point should be represented by a bold
mark — not a tiny point - so that it stands out clearly - Fig. 11.6.

(b) It sometimes helps if a ‘best’ smooth curve is drawn through the experi-
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® Experiment

(a) (b)
Fig. 11.6. (a) is a poor graph - the experimental points are faint and
indistinguishable from the points calculated for drawing the theoretical curve.
In (b) the calculated points have been erased, and the experimental points are
prominent.

(a) (0}

Fig. 11.7. (a) iswrong - it implies that the relation between the two variables
has the jagged shape shown, which is most unlikely. From the experimental
values we expect the relation to be something like the curve in (b).

mental points. Note the word smooth. Beginners sometimes join up experimental
points as in Fig. 11.7a. But this implies that the relation between the two variables
has the jagged shape shown, which except in special circumstances is highly
unlikely. We expect the relation to be represented by something like the curve
shown in Fig. 11.7b.

If a theoretical curve is also drawn on the graph, it is usually better to omit the
curve through the experimental points. The curve may imply more than the actual
results warrant and distracts from the direct comparison of experiment and
theory.

(c) Different symbols, e.g. @, O, X, or different colours may be used to
distinguish experimental points that refer to different conditions or different
substances. But they should be used sparingly. If the graph starts to look
complicated it is better to draw each set on a separate graph.

The device of different symbols is perhaps most useful in demonstrating that
varying the conditions or the material has little or no effect. An example is given

139



140

Graphs

105k
Debye theory
«
©
£1
3
6]
oK

05 & Lead 88

o] Silver 215

X Copper 315

[o] Diamond 1860

| |
Q 05 1.0 1.5

T/e

Fig. 11.8. Molar heat capacity, Cme in units of 3R, versus 7/@ for lead,
silver, copper, and diamond.

in Fig. 11.8, where C,,y, the molar heat capacity at constant volume ofa substance,
is plotted against T/@. Tis the thermodynamic temperature, and &, known as the
Debye temperature. is a constant which depends on the substance. According to
the Debye theory of specific heats, the relation between Cyp,and 7/0 is the same
for all solids. Some results for lead (@=88 K), silver (# =215 K), copper
(@ =315 K) and diamond (@ = 1860 K) are given in the figure, together with the
form of the relation predicted by Debye. It can be seen that for these substances the
experimental results are in good agreement with the theory.

Notice that the quantity plotted along the y-axis is Cp,;-/3R, where R is the
molar gas constant. It is a common procedure in physics to express a physical
quantity in dimensionless form by means of some natural unit. In the present case
the unit, 3R, is the value of Cp, predicted by classical theory and also by_the_
Debye theory in the high-temperature limit (7> @).

(d) It is a good idea to mark out the scale along the axes and to insert the
experimental points in pencil in the first instance. You will sometimes change
your mind about the scale and occasionally put a point in the wrong place
initially. When you are satisfied with the scale and position of the points, it is easy
to ink everything in and draw bold experimental points. The practice avoids
messy alternations or wasting graph paper through redrawing.
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11.6 Indicating errors

The error in an experimental point may be indicated thus

} or }—{—{
Since inserting the error bars is an additional labour and complicates the graph, it
should only be done if the error information is thought to be relevant. Little
would be gained forexample by adding the error bars to the points in Figs. 9.1 or
11.8.

On the other hand, the significance of deviations from a theoretical curve may
depend on the estimated error, and in that case the errors should be indicated.
Thus in Fig. 11.9a the deviations would not be considered significant, whereas in
Fig. 11.9b they would. We have already encountered this situation in section 8.6,
where the spread of a set of results is not consistent with their errors. In that case
the theoretical curve is the straight line

(a)

(b)

Fig. 11.9. The deviations are the same in the two figures, but in (a) they
are probably not significant, whereas in (b) they probably are.
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speed of sound = constant.

Plotting the experimental results together with the estimated error - Fig. 83 —is a
useful way of showing the discrepancy.

Another situation in which errors are commonly shown is when they are
different for the various experimental points.

11.7 Sensitivity
Suppose we are doing an experiment to determine whether a certain equation
y=x
is valid. We obtain pairs of values for y and x and find that the equation is
approximately true. If we wish to show the results graphically, we can plot y

against x — Fig. 11.10a. However, it is muchmore sensitive to plot y — x against x,
because y — x is small compared to y, and we may use a much expanded scale for

.
al
@
y L)
%
2+ y=x
.
@ 1 1 1
(4] 1 2 3
x

Fig. 11.10. (a)y versus x, and (b) y — X versus x.
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Fig.11.11. (a)y versus x, and (b)y/x versus x.

it — Fig. 11.10b. The departure from the equation y = x, slightly indicated in the
first figure, is quite evident in the second. Figure 11.2a is an example of this way
of plotting results.

A similar method is applicable to the relation

y=mx.

A direct plot of y against x gives an overall picture of the relation and may be
useful on that account - Fig. 11.11a. But plotting y/x against x is much more
sensitive. We do not have to include the origin as in the direct plot, but may have
whatever range of values for y/x and x is convenient — Fig. 11.11b.



12 Arithmetic

12.1 Arithmetic is important

The object of an experiment is to obtain a number, and the correct working out of
that number is just as important as the taking of the measurements. Many
experiments performed by students, containing sensible measurements, are ruined
by mistakes in calculating the results.

The following devices are available for calculations:

compulter,
calculator,
you.

They are listed in order of decreasing expense and increasing availability. Choose
the one appropriate to the job.

12.2 Computers

There are experiments where large computers are necessary, for example in the
processing of radio and optical images studied in astrophysics, or in the
determination of complicated biological structures by the analysis of X-ray
diffraction patterns. However, for the type of experiment we are concerned with,
the small computers available in the laboratory and in many homes are entirely
adequate.

The great majority of the calculations that require a computer are best done
with a spreadsheet. A spreadsheet such as Excel® is extremely versatile; it has a
large range of functions — arithmetical, trigonometric, statistical, and logical —
and a variety of features for controlling the appearance of the output, which
includes the number of digits shown for a number. You can put comments and
labels throughout the output, and you are strongly advised to do this liberally, so
that when you look at it at a later date you will follow what has been done. You
can, and should, save the result of a particular calculation as a document. This
can serve as a template for a standard calculation. We have already had an
example of this in the calculation of the best line through a set of points in a
graph by the method of least squares —see the comment at the end of section 4.2
(d), p. 36.



12.4 Ways of reducing arithmetical mistakes

12.3 Calcutators

Although a computer is the most efficient tool for complicated or repetitive
calculations, there are many calculations in an experiment which are sufficiently
simple for a calculator to be the most appropriate device for the purpose.

A calculator, being portable and versatile, is an indispensable tool for doing
arithmetic in practical work. All calculators do the four basic operations of
addition, subtraction, multiplication, and division. It is worth getting what is
termed a scientific calculator, which also calculates squares, square roots, and the
common functions — logarithmic, exponential, and trigonometric. A number of
storage registers, or memories is also an advantage. Some calculators have built-
in programs for calculating the mean and standard deviation of a set of numbers,
and the best straight line through a set of points. A calculator that you can
program yourself is an advantage for repetitive calculations, but these are best
done with a computer if one is available.

Most calculators produce numbers with up to 8 or 10 digits. This is of course
far more than is significant for the vast majority of experiments. You should
avoid the elementary blunder of quoting values with a large number of mean-
inglessdigits just because they are given by thecalculator. Many calculators allow
you to fix the number of digits after the decimal point. This facility is very
convenient and should certainly be used if available. It is much easier to
appreciate the significance of numbers, and you will make fewer mistakes, if you
eliminate most of theinsignificant digits.

Youshould alwaysretain at least one and possibly two digits beyond those that
are significant. You should never so truncate a number that you lose information.
So if you are not sure at the time how many digits are significant, err on the side
of caution and include more rather than less.

12.4 Ways of reducing arithmetical mistakes

It might be thought that with calculators and computers there is no need to worry
about arithmetical mistakes. Experience suggests otherwise. It is true that
calculators and computers are very reliable. They will nearly always give the right
answer based on what you tell them. The trouble is that what you tell them may
be wrong. You may enter a wrong number, or press a wrong function key, or
make a mistake in program logic. Anyone is liable to make such mistakes.
However, it is possible to reduce their likelihood by sensible procedures. More-
over, there is a remedy, namely, to check the calculation. We consider these points
in turn.

(a) Avoid y calculati The less calculating you do, the less opportu-
nity you have for going wrong, and the more mental energy you have available
for necessary calculations.
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Suppose, for example, you are doing a simple experiment to determine the force
constant A of a spring, defined by the equation

F=ix, (r2.n

where Fis the applied force in newtons and x the resulting extension in metres.
You have a set of weights 1, 2, 3, ..., 6kg and you measure the extension
produced by each one in turn. Do you then convert each weight into newtons by
multiplying by 9.81? You would be very foolish to do so. That would involve six
multiplications and, moreover, would convert the six simple integers into six
messy numbers. You should of course do all the arithmetic to find the best value
of 4, keeping F in the integer form. Only at the end should you multiply the value
of 4, in units of kilogram-weight per metre, by 9.81 to get the answer in newtons
per metre.

The same point applies when a quantity is measured a number of times with an
instrument which has been calibrated against a standard. The calibration correc-
tion should be made only to the mean of the measurements, and not to each
measurement separately. '

(8) Be tidy. Calculations should be set out as systematically and tidily as possible.
Space the working liberally. Untidy and cramped calculations are a prolific source
of mistakes.

Most of the points made in connection with recording measurements apply also
to calculations. A tabular arrangement of numbers is often the most convenient
and effective. (Of course, if you are doing the calculation on a computer with a
spreadsheet this arrangement is automatic.) Very often the numbers in one
column are the results of manipulations of numbers in one or more previous
columns. Every column should have a heading of some kind to indicate the
manipulation. These headings are often simplified if the columns are in addition
labelled alphabetically. For example, suppose you are calculating a function that
occurs in resonance theory

y*l{(lﬂ‘)ﬂi}’g (12.2)
0 0 i
for the value Q = 22. A simple set of table headings would be

A B (o D E F

: 2 x _E

B (t —x) e B+C 1/vD =i

(c) Check the calculation. Checking should be regarded as part of the calculation.
The experimenter is here in the same situation as a manufacturer of motor cars.
The latter must have a department for inspecting the cars before they are sent out.
This is regarded as a necessary part of the cost of producing a car. In the same
way, part of your time and effort must be devoted to checking the calculations.
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e P

X

Fig. 12.]. We need not check the arithmetic leading to each point very carefully,
because a mistake will probably be obvious - P Is almost certainly a mistake.

But it is up to you to get the greatest return for the effort, in other words, to direct
it where it is most needed. Some calculations in an experiment are more important
than others and should therefore be checked more carefully.

Calculations can be divided into two categories, which may be terined ‘self-
checking’ and ‘non-self-checking’. Suppose for example we are measuring two
physical quantities which after a little arithmetic give a pair of numbers x,, y;. The
measurements are plotted in a graph and give approximately a straight line. We
would be justified here in not checking the arithmetic very carefully for every x;
and y;, because if we made a mistake it would very likely stand out on the graph -
Fig. 12.1. This is an example of a set of self-checking calculations.

But suppose we end an experiment with the quantity to be determined given
by

14.93 x 9.8 x 873

= 85 x (07156 x 2. 123
6.85 x (0.7156)* x n? (12.3)

The evaluation of this expression is not self-checking. There is nothing to tell
us whether the answer is correct, except some method of checking. If a
calculator is being used, it is worth doing the calculation twice, particularly if
the numbers in (12.3) are not already stored in the calculator memories and
have to be keyed in.

You may think it is showing excessive caution to work out the result twice as
suggested; but arithmetical mistakes in experiments are a major source of wasted
effort. On balance you will save time by careful calculation. Remember that,
though in a classroom someone may go through your work and find your
mistakes, no one will do so later on. You should get into the habit of making a
rough mental estimate — good to about 1 in 3 — of every calculation. Thus for the
expression in (12.3) you should say something like
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14.93
T e
2 x 9.81 x 873 =~ 20000,

(0.7156)% x 7* z—; x 10 = 5.
So
Z 4000, (12.4)

So far we have assumed that the numbers in (12.3) are correct, i.e. free from
calculation errors. But of course this may not be so, particularly if they are
themselves the end results of long calculations. One of the conveniences of a
calculator is that it is not necessary to record the results of intermediate steps, and
it is tempting not to do so. However, the consequence is that if you make a
mistake somewhere along the way it is not possible to trace and correct it. If the
repetition of a long calculation gives a different answer you still do not know
which one (if either) is correct. It is therefore important to record some of the
intermediate values. How many and which ones depend on the complexity of the
calculation and your own reliability. You would be well advised to record more
rather than less at the beginning, and to reduce the amount with experience.

If a check calculation does not agree with the original, look at the check first, as
it was probably done less carefully than the original. A story is told of a new
research student in theoretical physics who took the result of an elaborate
calculation to his supervisor, a very famous physicist. The supervisor looked at it
and said, 'If we take the following special case, your result should reduce to such
and such.’ He scribbled a couple of lines of calculation on the back of an envelope
and said ‘You see, it doesn’t. You've gone wrong somewhere” The downcast
student took his work away and spend the next month going through it all again.
He sought his supervisor once more. ‘Well,’ said the great man, ‘did you find the
mistake? ‘Yes,’ replied the student, ‘it was in your two lines of calculation.

Look at all numerical values to see if they are reasonable. If you divide instead
of multiply by the Planck constant in SI units, you should notice that the answer
looks wrong. Of course, to know whether a value is reasonable or not you must
have some idea of the orders of magnitude of various physical quantities in the
first place - seeexercise 12.1.

12.5 Checking algebra

(a) Dimensions. The dimensions of an algebraic expression provide a useful
check. It is not worth checking the dimensions at every stage of a theoretical
argument, but an expression such as

2+,

where 7is a length, shouldleap to theeye as being wrong.
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In expressions like exp x, sin x, cos x, the dimensions of x must be zero. This is
true of any function that can be expressed as a power series in x.

(5) Special cases. You should check that an expression reduces to the correct
form in special simple cases — the very famous physicist had the right idea.

{¢) Direction of variation. Make sure that an expression gives a variation in the
right direction as some component quantity varies. Consider, for example,
Poiseuille’s equation

dv  part

— = 1255

dr  8in Uzs)
(The quantities are defined on p. 111.) We expect on physical grounds that if p or
ris increased, or if / or # is decreased, then dV'/d¢ should increase. The form of
the equation is in agreement with each of these variations.

(d) Symmetry. Symmetry sometimes provides a usefulcheck on the correctness of
a formula. The resistance of the arrangement in Fig. 12.2 is

A,

AAA
\AAAS

Ay
Flg 12.2. Arrangement of resistors.

RiR:Rs

— (12.6)
RiR2 + RaR3 + RyRy

If we exchange any two of the Rs, say R| and R;, we get the same expression,
which of course we must, because the arrangement is symmetric in the three
resistances. But suppose we had made a mistake in the algebra and had obtained
the result

RiR:Ry

Ri(Ry+ Ry)’ (127)

We would know at once that it was wrong, because interchanging R, and R; gives
a different result.
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Table 12.). Approximations f or some

Sfunctions for x « 1

Function Approximation

(1 +xp 1+c

I

—— 1-x

1+x

(1 +x)° | +ax

sin x X

cos x [

tan x x

exp x |+ x

In(] +x) X
(e) Series expansion. The first one or two terms of a series expansion of a function
often provides a useful approximation. Some common functions are given in
Table 12.1.

(f) A useful tip. If you have to do some algebraic manipulation of quantities for
which you have numerical values, do all the algebra first and get the final algebraic
answer. Substitute the numerical value right at the end. It is much easier to avoid
mistakes in this way. Quite apart from that, once you substitute numbers you lose
the check on dimensions.

12.1

Exercises

The following exercises are given to test your knowledge of orders of magnitude
of various physical quantities. They are in the form of simple problems, because
there is not much point in knowing the value of a physical quantity unless you
know how to make use of it. You should try the problems in the first instance
without looking up any of the values. Try to make an intelligent guess of those
youdo not know, on the basis of any theoretical or practical knowledge you have
of related quantities.

When you have gone through all the problems in this way, look up the values
in a book like Kaye and Laby before looking at the answers. You will find
browsing through Kaye and Laby far more instructive than just checking the
answers given here,

(@) A copper rod is 40mm in diameter and 200 mm long. If one end is at #°C,
how much heat must be supplied per second at the other end to kecp it at
25°C?

(b) A steel ruleis correct at 20°C. What isitserrorat 30°C?
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(c) A copper wire of diameter 1 mm is Im long. (i) What is its resistance at 0°C

and (ii) by how much does it change between 0°C and 20°C?

The cold junction of a chromel-alumel thermocouple is at 0°C and the hot

junction is at 100 °C. What emf results?

(e) Water flows through a tube |mm in diameter and 250mm long under a

pressure difference of 2000 Nm~2 What is its average velocity (i) at 20°C

and (ii) at 50°C?

The cross-section of a rectangular steel bar is 25 mm by Smm. If its length is

I m, what forceis necessary to extend it by 0.5 mm?

(g) What is the wavelength in air at 0°C of a sound wave of frequency 256 Hz?

(h) What is the average (rms) velocity of a hydrogen molecule at 27°C?

(i) Estimate a value of Gfrom g.

() Parallel monochromatic red light is incident normally on a diffraction
grating. (i) If the first order spectrum is at an angle of 30° to the normal,
estimate the number of lines per mm of the grating. What roughly would be
the angle for (ii) green light and (iii) violet light?

(k) How much energy is radiated per second by a black sphere of radius 20mm
at a temperature of 500 K?

(1) What is (i) the velocity and (ii) the wavelength of an electron whose energy is
L keV?

(m) What magnetic field is required to bend a stream of protons of energy | MeV

into circle of radius 500 mm?

What is the wavelength of light that will just ionize a hydrogen atom in the

ground state?

What is the energy equivalent in MeV ofa mass of unit atomic weight?

I

~

)

(n

(o

Calculate the followang in your head:
(a) 1.00025 x 1.00041 x 0.99987,

7200 0)1

(b) 91264 x <ﬁ66§ ,

©) (9.100)%



13 Writing a paper

13.1 Introduction

The communication of ideas, theories, and experimental results is an important
part of scientific work. Vast quantities of scientificliterature are pouring out into
the world, and if you take up a scientific career of any kind you are almost certain
to add to the flood. If you can achieve a good standard of writing, two benefits
will accrue - one to yourself when people take note of what you have to say, and
the other to the rest of the world who - strange to say — prefer their reading
matter to be clear and interesting rather than obscure and dull.

We are going to consider some elementary features of good scientific writing in
the present chapter. To make the discussion specific we shall confine it to a paper
on some experimental work in physics, but much of what we have to say applies
to scientific writing in general.

13.2 Title

The title serves to identify the paper. It should be brief - not more than about 10
words. You should bear in mind that the title will ultimately appear in a subject
index. The compiler of an index relies heavily on the words in the title in deciding
where it should appear. So if there are one or two key words which help to classify
the work, try to put them in the title.

13.3 Abstract

Every paper should have an abstract of about 100 words or so, giving positive
information about its contents. P

The abstract serves two classes of reader. It enables those who work in the
subject to decide whether they want to read the paper; and it provides a summary
for those who have only a general interest in the subject — they can obtain the
essential results without having to read the whole paper. The abstract should
therefore not only indicate the general scope of the paper but should contain the
final numerical results and the main conclusions.
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13.4 Planof paper

Most papers — unless they are very short — are divided into sections. The following
is a fairly common division:

Introduction
Experimental method
Results

Discussion

Some papers describing experimental work also contain theoretical material
which might well constitute an additional section, coming after either Introduc-
tion or Results.

Although the actual plan of a paper depends to some extent on its contents,
you can see that the one above is logical and you should try to followit, at least in
a general way. We consider each section in turn.

13.5 Sections of paper

(a) Introduction. The Introduction is an important part of the paper. Most
experiments are part of a general investigation of a physical problem. The
Introduction should make clear

(1) the physical interest of the problem,
(i1) the part played by the experiment in the general investigation,
(iii) the relation of the experiment to any previous work.

These points add up to your answering the question ‘Why did you do the
experiment or what was its object?’

You may assume that the reader of the main body of the paper has a certain
background knowledge of the subject, but it may be that someone starting the
paper does not have this knowledge. The Introduction should serve as a possible
starting point for him or her. You may not wish to go back to the beginning of
the subject, in which case you should give references - not too many - to
published work which does provide the necessary background. The Introduction
plus this work should bring the reader to the point where he or she is ready to
hear about your experiment.

We give an example of a splendid opening. It is from J. J. Thomson’s paper on
Cathode Rays (Thomson 1897), announcing the discovery of the electron.

CATHODE RAYS

The experiments discussed in this paper were undertaken in the hope of
gaining some information as to the nature of the Cathode Rays. The
most diverse opinions are held as to these rays; according to the almost
unanimous opinion of German physicists they are due to some process in
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the aether to which — inasmuch as in a uniform magnetic field their
course is circular and not rectilinear — no phenomenon hitherto observed
is analogous; another view of these rays is that, so far from being wholly
aetherial, they are in fact wholly material, and that they mark the paths
of particles of matter charged with negative electricity. It would seem at
first sight that it ought not to be difficult to discriminate between views so
different, yet experience shows that this is not the case, as amongst the
physicists who have most deeply studied the subject can be found
supporters of either theory.

The electrified-particle theory has for purposes of research a great
advantage over the aetherial theory, since it is definite and its conse-
quences can be predicted; with the aetherial theory it is impossible to
predict what will happen under any given circumstances, as on this
theory we are dealing with hitherto unobserved phenomena in the aether,
of whose laws we are ignorant.

The following experiments were made to test some of the consequences
of the electrified-particle theory.

We shall have more to say about this passage later. But in the meantime, notice
how clearly and directly Thomson has given the kind of information that should
appear in the Introduction — the opening sentence is a model of its kind.

(5) Experimental method. In this section comes the description of the apparatus.
The amount of detail here varies considerably, and you must use your own
judgement, but a few general principles may serve as a guide.

If the apparatus you used is of a standard kind, it is probably sufficient to say
what it was and give a reference so that anyone interested can find a full
description. On the other hand, if it contains some novel features, they should be
described in some detail. If the paper is intended for a journal devoted to
descriptions of instruments and apparatus, still more detail would be appropriate.
But we shall suppose that this is not the case and that the main interest is in the
results and their interpretation, rather than on the apparatus used.

Although you may assume that the reader of this section has a certain
familiarity with the background to the work, you should not go farther than this.
You should certainly not aim the paper directly at other experimenters using the
same or similar apparatus. So you should not use esoteric phrases understood
only by such workers. Nor should you include minute experimental details of
interest only to them.

(c) Results. In general it is neither possible nor desirable to give all the
measurements. They would only confuse and distract the reader. He or she would
have to spend time assessing their relative importance and extracting the essential
results. But that is your job before writing the paper.

You should, therefore, give only



13.7 Instructions to authors

(1) a representative sample of some of the basic measurements,
(i) the important results.

Note the word representative in (i). The sample that you present in the paper
should give a faithful picture of the quality, precision, and reproducibility of the
measurements. So if you have fifty sets of them, you do not reproduce the second
best with the caption ‘Typical set’.

(d) Discussion. The headingspeaks for itself. Like the Introduction, this section
is an important part of the paper. It should include

(1) comparison with other similar measurements, if there are any,
(ii) comparison with relevant theories,
(iii) discussion of the state of the problem under investigation in the light of
your results. This is the conclusion, the counterpart to the object of the
experiment, given in the Introduction.

13.6 Diagrams, graphs, and tables

Almost everything said in chapters 10 and 11 about diagrams, graphs, and tables
applies to their use in papers.

A diagram can be a great help in understanding the text. Unless the apparatus
is completely standard, a diagram of it should nearly always be included. Graphs
are a very convenient and common way of displaying the results. They should be
kept simple; the same applies to diagrams. In the final printed version, graphs and
diagrams are usually reduced in scale by a factor of two or three, so unless they
are bold and clear in the original, they will look fussy and complicated in the final
version.

Tables are a very good way of presenting results. They have the big advantage
that they stand out, and the reader can find the results easily.

13.7 Instructions to authors

Most scientific journals now allow papers to be submitted either electronically or
as hard copy. You will usually find instructions about this at the beginning of
each issue. In addition, journals usually produce a pamphlet giving instructions to
authors so that their papers may conform to the general style of the journal. You
are advised to read this before the paper is prepared in its final form; otherwise
someone - probably you — will have to spend a lot of time bringing it into line
later on.

The pamphlet gives instructions on the form of sectional headings, abbrevia-
tions, references, footnotes, tables, diagrams, and graphs. It also gives instructions
on the arrangement of mathematical material. This is important, because the way
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you write a mathematical expression in longhand may be inconvenient or
expensive to set up in print. Forexample, most journals prefer

@+ 10 Va+ 8

If the journal does not produce a pamphlet, you should examine a recent issue.

13.8 Clarity

Clarity is an essential quality in scientific writing. We may distinguish two kinds.

(a) Stractural clarity. Writing may be said to have structural clarity when the
reader can readily follow the outline of the argument — or see the wood despite the
trees. Similar topics are grouped together, and the groups arranged in a logical
order.

You are strongly advised to construct a framework before writing the paper.
This is a skeleton outline in which all the ideas, arguments, experimental details
and so on are represented by a word or phrase. When the items are in this form,
the arrangement is seen much more clearly and, moreover, is easily changed if not
satisfactory. The main sections of the scheme should correspond to the plan given
in section 13.4.

(b) Expositional clarity. The other type of clarity, which may be called exposi-
tional clarity. is making the reader understand exactly what you are trying to say
at each stage in the discussion.

Look at the extract from the paper on Cathode Rays again. It is crystal clear.
We are led firinly from one point to the next. Notice the phrase ‘so far from being
wholly aetherial’. It could have been omitted, and we would still have followed
the discussion; but the explicit contrast is helpful. Making it easy for the reader is
a worthwhile object in any writing, but particularly in scientific writing.

Perhaps you feel that the example we have given is not a very severe test for the
writer. because he is explaining something simple. That is true, but the reason it is
simple is that Thomson has made it so. He has selected the important features of
the theories of the nature of the rays. He is able to do this because he understands
the physics. And this a fundamental point. Clear writing depends on clear
thinking. You will not be able to produce a clear and logical paper unless you d6
understand the physics.

13.9 Good English

We come to the final link in the chain between you and the reader — the words
themselves. Good English in scientific writing is not just a matter of correct
grammar - though that is not unimportant - it is choosing words and composing
sentences to say exactly what you mean as concisely and pleasantly as possible.
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Some instructive books on the subject are given on p. 206. We make a few
miscellaneous points here.

(a) Students are often discouraged from using ‘I’ in their accounts. There seems
no sensible reason for this. When you are describing an experiment you actually
did, the ‘I’ style is a natural one and enables you to use the active voice, which is
simpler and more direct than the passive. However, it must be admitted that
nowadays few papers, even those describing experiments, are written in the first
person. So if you want to be conventional, avoid it. But if you do use it, you will
be in the company of Newton, Faraday, Maxwell, and Thomson, which, as
Damon Runyon might have said, is by no means bad company at that.

(b) On the whole, short sentences make for clarity, but variety is necessary to
avoid monotony. You can be clear in long sentences — Thomson’s are hardly
short — but it takes more skill.

(c) Paragraphs can help the reader to follow the argument. Start a new
paragraph when you are starting a fresh point, or when you start discussing a
pointfrom a different angle.

(d) Avoid verbiage, roundabout ways of saying things, and redundant adverbs.
Thus the second version should be preferred to the first in the following examples:

(i) Calculations were carried out on the basis of a comparatively rough
approximation.

(ii) Approximate calculations were made.

(i) Similar considerations may be applied in the case of copper with a view to
testing to what extent the theory is capable of providing a correct estimate
of the elastic properties of this metal.

(i1) The elastic properties of copper may be calculated in the same way as a
further test of the theory.

(e) Avoid qualifying a noun with a long string of adjectives — most of which are

not adjectives anyhow. For example

The time-of-flight inelastic therinal neutron scattering apparatus . . .
should be replaced by

The time-of-flight apparatus for the inelastic scattering of thermal
neutrons . . .

(f) The unattached participle is a common fault in scientific writing. Sentences

like

Inserting equation (3), the expression becomes . . .
or

Using a multimeter, the voltage was found tobe . . .
occur frequently, so much so that you may not even realize what is wrong with
them. Perhaps the following example taken from Fowler (1965) will show. A firm
wrote to a customer ‘Dear Sir, Being desirous of clearing our books, will you
please send a cheque to settle your account. Yours etc.’ They received the
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following reply: ‘Sirs, you have been misinformed. I have no desire to clear your
books.’

13.10 Conctusion

Not everyone can write great literature, but anyone can write good, clear English
— if he or she is prepared to take the trouble. Be critical of what you write. Ask
yourself continually whether what you have written is logical, clear, concise, If
not, try again - and again. Hard writing makes easy reading. Give your work to
others to read for critical comment; read and criticize theirs.

You should not regard good experimenting and good writing as separate
things. There is beauty in both, and it is no accident that the greatest scientists
like Galileo and Newton have produced some of the finest scientific writing. But
we shall allow a non-scientist — Cervantes - the final word.

Study to explain your Thoughts and set them in the truest Light,
labouring as much as possible not to leave them dark nor intricate, but
clear and intelligible.
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Appendix A
Evaluation of some integrals connected with
the Gaussian function

Al / exp(-x?)dx

0

First consider the integral with finite limits. We put

a

U:/:a exp(—xz)dx=/ exp(-»?)dy, (Al)

o -a

since the variable is a dummy. Therefore

U? = /ﬂ exp(—xz)dx/_a exp(—y?)dy. (A2)

o
Since one integrand is a function only of x and the other only of y, the right-hand
side is equal to exp [—(x*+y?)] integrated over the square ABCD in Fig. A.l,
ie.

a

Fig. A.l. Evaluation of the Gaussian integral.
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U= f f exp[~(x* +%)] dxdy. )

We now change to polar coordinates r, . The area element dx dy is replaced by
rdrdg, and exp[~(x>+)°)) becomes exp (—r?).
Consider theintegral of exp (—r°) over acircle of radius b.

fb 2r 2
W(b)=jo j; eXp(—r2)rdrd9=7I[] —exp(-b )] (A4)

Clearly {? is greater than W(b) for b=a (circle (D in Fig. A.1) but less than W(b)
for b= /2a (circle ); i.e. U’lies between

(1 -exp(-a?)] and n[l-exp(—Zaz)].

But as 4 tends to infinity, both these limits tend to 7, and therefore {? also tends
ton. So

]m exp(—x?)dx=Vn (AS5)

A2 f exp(-x*/20%) dx

This is evaluated from (A.5) by changing the variable to y = x/v/2 g.
el o0
/ exp(—x?/20%) dx = \/Ea/ exp(—y?) dy

= /(2n)o (A.6)

Al I, =f x"exp(—x2/20%)dx
0

nis a positive integer or zero. Wefirst evaluate /gand /.
Iy = ] exp(—x2/20%) dx = \/(E) a. (A.T)
o 2

This follows from (A.6). The integrand has the same value for —x and x. So the
integral from O to oo is half the value of the integral from —oo to oce.
The integral /, is evaluated by direct integration.

I = /erxp(‘xz/zoj)d"' =20° /ow)’exl’(_yz)d)'
o
=0 (A-8)
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Having evaluated /o and I, we may evaluate I, for general values of n by
treating o as a variable parameter and differentiating under the integral sign.

o o0
: / x"exp(=2/26%) dx = & f Rexp(-2/20%)dx,  (A9)
do Jy a? Jo
di,
ie. Iny2 =0 == (A.10)
do
Soforn>1
L=1:3.5 % (- 1)\/@)‘7"“ n even, (A1)
Ih=2-4.6--- (n—1) a"! n odd. (A.12)

If the integration is taken from —oc to oo, the values of the integral are doubled
foreven n. For odd n, the integral is zero, since the integrand is an odd function
of x.
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The variance of s> for a Gaussian distribution

We prove the result, stated in section 3.7, that for a Gaussian distribution the
variance of s is 2(s%)?/(n — 1).
For one set of n readings

21 2
§= ;Z d;. (B.1)
The error in 5% is
u=g5 — (sz). (B.2)
The quantity we require is
W) = (s - 284) + (2)7)
= (%)~ () (B3)
From (3.8)and (3.16)
1 , 1
5= = e - “—Z(Zﬂ)z

= (1 - l)g & - nlz Lee (B.4)
i#)

n n?

Square both sides and average over the distribution. The average of any term
containing an odd power of e is zero. Therefore

= (1-3)@, (®3)

and -

I o (VY
(s4)=(r'%) n{e")+ (;ﬁr%) ,,(,,,1)(52)2+$2,,(n—l)<82>2, (B.6)

From(B.3), (B.5), and (B.6)
E_):l[ﬂ_"*]. (B.7)

()
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Fora Gaussian distribution we have from Table 3.3
('Y =36* and (&) =07,
whence

2
n-1

() = ——()"

(B.8)

(B.9)
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Appendix C
The straight line — the standard error in the
slope and intercept

In section 4.2 we used the method of least squares to calculate the best values of m
and cin the equation y = mx + c, for a set of measurements consisting of n pairs
(x1, p1)s {x2, ¥2), - . ., (xm y,) With equal weights. We here derive the expressions
for the standard errors Am and Ac given in formulae (4.31) and (4.32).

Imagine that we keep repeating the measurements so that we have many sets
each of n pairs, the measurements being made in such a way that the values x,,
X3, ..., X, arethesameforall the sets. In other words, if we look at the first pair
Xy, ¥y in all the sets, x) is the same throughout, but the value of y, varies. We shall
have a distribution of y,s centred about Y), the true value of y for x,. Similarly
for all the second pairs; x; is the same in each case, but the y,s vary and form a
distribution centred on Y3, the true value of y for x,. And so on for all the pairs.
Since the n pairs have equal weights, the standard deviations of the n distributions
are equal and we denote them by o. The situation is shown schematically in
Fig. C.1. We assume that for each set there is no correlation between the errors in
two different ys.

Now the x,, ¥, values are related by

Yi= Mx; + C. (c.n

This is the true line, and M and C are the true values of the slope and intercept.

For each set of n (x,, y,) pairs, we can calculate the values of m and ¢ from the
expressions given in (4.25) and (4.26). The value of m averaged over all the sets is
M, and the standard error in a single value is Am, where

(Aam)? = ((m— M), (C.2)

the average again being taken over all the sets. Similarly the average value of ¢ is
C, and the standard error of c is Ac, where

(Ac) = ((c~ OP). (C3)

In an actual experiment we only have one set of n(x,, y,) values. The values for m
and ¢ for this particular set are our best estimates of M and C. The problem is to
obtain estimates for Am and Ac.

The algebra is considerably simplified if we change the independent variable
from x to &, given by

E=x-%, (C4)
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Ya True line
Y=Mx+C
Ya

Y2

Yy

pd

X Xz X3 A
X ——
Fig. C.1. Repetition of measurements with a fixed set of x values. For each x the
values of y fonn a distribution centred about the true value Y. Since the measure-
ments at different x values have equal weights, the standard deviations of the
distributions are equal.

where

x= %E"i‘ (C5)
Clearly

L= x~-x)=0 (C6)
The quantity D is defined by

D=3 ¢ =L lxi—%) =L 57— nx €7
The line

y=mx-+c (C8)
becomes

y=m+X)+c (C9

=mé +b, (C.10)

where

b=mx+c. (c.1)

The best values of m and & for a given set of n pairs of measurements are
obtained from (4.25) and (4.26) with c replaced by b, and x by &. Since 3¢ = 0,
these equations become

m=1TEy,  b=3= Ty (c1n)
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From now on the symbols m and b refer to these values.
We see that m is a linear function of the y;. For a given set
4] &
m=—p+—=ya+ - c13

ph o2 (C.13)
The coefficients of the ys are the same for all the sets. Since we are assuming that
in each set there is no correlation between the errors in two different ys, we may
use (4.17) and (4.18) to calculate Am in terms of the errors in the ys.

2 2
(Am)? = (%') (An) + (%) (Ay) 4. (C.14)
But
(An Y = (Ap) = =ob (C15)
So we have
2 X8 7
(Am)’ = &2t g? = . (C.16)
Similarly,
(Ab)? = % . (C17)
We actually require (Ac)?, which, from (C.11), is given by
(Ac) = (Ab) + XX (Am)? (C.18)
1.2\ 5
= (;+B) a’. (C.19)
(See comment at the end of the Appendix.)
The estimate of o is obtained as follows. If B is the true value of b, then
Y, = M& +B. (C.20)

Adding these equations for each / gives an expression for B (since ) ¢; = 0).
Similarly, multiplying each one by ¢; and then adding gives an expression for M.
Thus

1 |
M=5}:C,Y;. B=’—’Z},-. (C.21)

The error in the ith y reading is
e =yi— Y=y - (M& + B). (C.22)

At the point ¢, the best line gives m¢; + b for the value of y. The residual 4, is
therefore

d=yi— ('"C; +b) (CA23)

~ Fig. C.2. As in the case of a single variable, the errors e; are not known, but the
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Measurement x,,,

d / 8
Bestline \ ,,,,,,,,,,

G

True line

Fig. C.2. Diagram showing various quantities defined in Appendix C.

residuals d; are known. The root-mean-square value of d; for the n points is
denotedby s as before.
From (C.22) and (C.23)

di= ¢ —[(m—~ M), + (b~ B)] (C24)
From (C.12) and (C.21)

m—-M= %Z &i—-Y)= %Zf,e,-, (C.25)

b—B:’l—'):e.A (C.26)

Insert these expressions for m — M and b — B in (C.24), square both sides, and
sum over i. This gives

$d? = Sel - 5 (St - 1 (Te)’ c2

(In summing over i we haveagain made use of the fact that Y°¢, = 0.)

Now average (C.27) over all the sets, remembering that the ¢, are fixed, and
that the average value of ee; for i # j is zero. The average of the middle term on
the right-hand side is
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1 2 1 3
H(Ee))=Hma) =e a1
Equation (C.27) therefore becomes
n{$?) = no® — o — o2, (C.29)
or
o= "%2 (. (C.30)

Our best value of {s?) is (1/n)3"d% From (C.16), (C.19), and (C.30) we have
the required the resulits

L1z
@m) m 5=t (c31)
52 2
(B = (£+XB) Ed;. (€32)

The generalization to the case of unequal weights is readily made. If the ith
point has weight w, the varrance of the ith distribution is put equal to
0% w,)/nw,, where o is a constant. The results given on p. 40 then follow by
reasoning closely similar to that above.

Comment on the dependence of m, ¢, and &

Equation (C.18) assumes that the values of m and b are independent, which may
readily be proved by calculating (m — M)(b — B) from (C.12) and (C.21). The
average value of this quantity is seen to be zero. However, m and c are not
independent, for

{{im— M)c—C)) = —x(Am)". (C.33)

Since m and b(= y) are independent, while m and care not, the best line should
be written as

y=(mxAm)x —X)+ b+ Ab, (C.34)
and not as
y={mxAm)x+ct Ac. (C.39)

Equation (C.34) implies correctly that the error Ay in the best value of y at any
value of x is given by

(&) = (Ab) + (x— %) (Am)’. (C36)

The best line may therefore be regarded as pivoting about the centre of gravity of
the points — G in Fig. C.2. The errors in the y value of the pivot and in the slope
of the line contribute independently to Ay. Equation (C.35) implies incorrectly
that the pivot point is H.
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The binomial and Poisson distributions

The Poisson distribution may be regarded as a limiting case of the binomial
distribution, so we consider the latter first.

0.1 Binomial distribution

(a) Derivation. Suppose an event can have only two outcomes which we denote
by A and B. Let the probability of outcome A be p. Then the probability of
outcome B is g =1 —p. If the event occurs N times, the probability wy(n) that A
comes up n times and B N—n times is equal to the number of ways of selecting n
objects from N, i.e. yC,, times the probability that the first n events give A and
the remaining N —n events give B. Therefore

N
wn(n) =n!(N—_")‘ p"qN’"_ (D.1)

This probability function is known as the binomial distribution. It is specified by
giving the values of the two parameters N and p. Figure D. shows the
distribution for N = 10, p = .

If we sum wy(n) from n=0 to n= N, the result must be unity. To check that
this is so we use a mathematical trick, which will also be useful later. We definea
function g(:) by

g(2) = (g+zp)". (D.2)
Then the coefficient of =” is just w y(n), thus

L, AN =) o
£(2) = (g-+9)" = g+ zpg-' 4 22X 1) T Jpght g g Mg

= wy(0) + 2w (1) + Pwp(2) + - + 2wy (V). (D.3)

Zf:‘, w(n) is obtained from the last line by putting z = I. Therefore

ﬁowN(n)=g(l>=(q+p>”= o SO gugprel (D.4)
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021 r‘ Binomial
N =10
wnn) | p=1/3
01}
0

Fig. D.1. The binomial distribution for N = 10, p=1.

(5) Mean value of n. The mean value of n for the distribution is

N d
{n) ="§0an(") = (£>:_| (from D3)
=Np(g+p)""
= Np. (D.5)

We might have guessed this result. If the probability of A coming up in a single
eventis p, we would expect the average number of As in N events to be Np.

(c) Standard deviation. The standard deviation o is given by
o = {(n— (n))?) = (n* = 2n{n) + (n)’)
= {n(n = 1)) + (n) — (n)". (D-6)
Now
2
(on = 1) = Tl = D) = (35)
=)
= N(N - )p (g +p)""?
= N(N - 1)p%. (D.7)
From (D.5), (D.6), and (D.7)
o? = N(N ~ 1)p2 + Np — N*p?
= Np(l —p). (D.8)

or
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= V(Npg). (D.9)

As Np becomes large compared to unity, the standard deviation becomes small
compared to the mean. The binomial distribution becomes more and more
symmetric, and the points tend to lie on a Gaussian with mean value Np and
standard deviation v/(Npgq).

D.2 Poisson distribution

(a) Derivation. The Poisson distribution is the limiting case of the binomial
distribution when N tends to infinity and p tends to zero, in such a way that the
product Np is equal to a finite constant which we denote by a. We require an
expression for the probability w,(n) that event A occurs 7 times.

N! -n
(n)..llmxt AN ) Pt
,Ho
Np=a
a . NN-1)- (N-n+1 ,_,
=;!-11m1t N 9" " (D.10)

As N tends to infinity, the quantity

NN =1)-- (N —n+1)
Nn

tends to unity. (Remember that n is finite, and therefore small compared with N.)

Also
repr= (18"

N
_Q.ﬂ (D.11)

= L e
(r-%)
As N tends to infinity the numerator tends to exp{ — a) and the denominator to
unity.
Collectingthese results we have

"

wiln) = expl~a) =, (D12)

which is the Poisson distribution. Notice that, whereas the binomial distribution
is specified by two parameters, the Poisson distribution is specified by the single
parameter a.

We can check that summing w,(n) over n gives unity.
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%w‘,{n) = exp(fa)ﬂgl;!-
= exp(-a)expa = 1. (D.13)

(5) Mean value of n and standard deviation. W e may use results of the binomial
distribution to obtain the mean value of n and the standarddeviation.

(n) = Np = a. (D.14)
o =V(Npg) = Va, (D.15)

since ¢ = | in the limit. As a becomes large, the Poisson distribution becomes
more and more symmetric, and the points tend to lie on a Gaussian with mean a
and standard deviation \/a.

(c) Application. The Poisson distribution applies to the counting of particles when
the average rate of arrival is constant —a common situation in atomic and nuclear
physics. Suppose we are counting electrons with a scintillation counter, and we
record the numbers that arrive in successive periods of, say, 10 seconds. The
numbers form a Poisson distribution.

To see how the situation relates to our definition of the Poisson distribution,
imagine that the 10-second interval is divided into N sub-intervals, where N is
very large — say 10®. Suppose that a, the average number of electrons recorded in
the 10-second intervals, is 5.3. Then the probability of an electron arriving in any
particular sub-interval is

p:%:i} x 1072 (D.16)

wafn) |- ]
Poisson
— a=53

0.1 |-

[) 5 10
n

Fig. D.2. The Poisson distributionfora = 5.3.
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Outcome A in this situation is the arrival of an electron in the sub-interval;
outcome B is the non-arrival of an electron. (p is so small that we ignore the
possibility of two electrons arriving in the same sub-interval.)

The probability of n electrons arriving in a 10-second interval is
(53)°

wsy(n) = exp(—5.3]T .

(D.17)

The standard deviation is v/5.3. The Poisson distribution for @ = 5.3 is shown in
Fig. D.2.



Appendix E
The x* distribution — test of goodness of fit

E.1 Introduction
Suppose we have a known function Y = ¥(x) and a set of n pairs of measurements
(e, 31), (x2,92), -+, (Xn, Yn)- (E.D)

The x values are known exactly, but the y values are subject to error. The question
we are going to consider is how well the measured y values fit the function Y(x).
Imagine that we have many sets of n pairs of measurements, the values
X),X3,...,Xn being the same for all the sets. If we look at the sth pair x;,y; for all
the sets, x, is the same throughout, but the value of y; varies. The basic assumption
in the calculation is that the y; values form a Gaussian distribution. The mean of
the distribution is ¥,;= ¥(x;), and the standard deviation is o; (assumed known).
The situation is indicated in Fig. E.I. We start with a hypothesis, called the null

f Ya Y(x)
y

]

Y2
Y, o2

1

X X2 X3
X ———
Fig. E.l. Repetition of measurements with a fixed set of x values for the

function Y= Y(x). It is assumed that the values at x; have a Gaussian
distribution centred on Y, = ¥(x;) with standard deviation o,.
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hypothesis, which is that the set of measurements in (E.1) is a random selection
from the n Gaussian distributions.
In order to test the hypothesis we define a quantity x> by

=g (22 1) ®2)

ai

(We continue with the convention that, whenever the symbol y_ appears, the
summation is to be taken from i = | toi = n.) If the null hypothesis is correct, we
expect (¥, — Y:)/a: to be of the order of unity for each i. So x? should be of the
order of n. If x* is very much larger than n there is a low probability that the null
hypothesis is correct. We shall now put this statement on a quantitative basis, i.e.
we shall calculate the probability that, if the null hypothesis is correct, we would
obtain a value of xz as large as, or larger, than the value given by (E.2). To do this
we need the distribution function of x* for a given value of n. This is the function
Fu(x?) such that F,(x?) d(x?) is the probability that x* has a value between x>
and x* +d(x?).

E.2 Derivation of x* distribution

In order to derive an expression for Fu( xz), itis convenient to derive first a closely
related function, namely f,(x), where f,(x) dx is the probabifity that x hasa value
between x and x +dx. (The positive value of x is always taken.)

Suppose to start with we make only a single measurement x,, y,, We know
from (3.34), p. 18, that for a Gaussian distribution the probability of y; lying in
theinterval yi to y1 +dy is

Sy)dy = \/(é) EXP{—(yl = Y.)Z/Zr.’}d((%)v (E3)

The function f(y;) has the same value for +(y; — ¥,). We take only the positive
value of (y; — Y)), but have included the negative value by doubling the
expression in (3.34). The range of integration of f(y;) is thus 0 to oc.

Now suppose we make two measurements, x;, y; and x2, y,. Since the two
measurements are independent of each other, the probability of obtaining y, in
the range y; to y; +dy, and p; in the range y, to y, +dy, is the product of the
separate probability functions, and is thus

S o dy2 = Zerp{~(n - VP 2T}
% exp{—(yz = Y:)’/Zai}d(i—:)d(y_2>

02

= 72—lexp(—x2/2) d(?l)d (’l) (E4)

03

Y=YY? [yr- Ya)?
where = [J—] +[Za—22] . (E-5)

g1
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s

(ys-Yloy —>

(y3-Ya)ag

Yoo

()

r=Y1)oy

Fig. E.2. Diagrams showing regions of constant x for (a) two measure-
ments and (b) three measurements.

However, we are not interested in the particular combination of y, and y, that
gives the value of y, but in all y|, y, combinations that give the same value of x.
Consider a two-dimensional plot of (y, — Y1)/o) and (y; — Y>)/o2 - Fig. E.2a. x
is constant over a quadrant of a circle of radius x. (We take only a quadrant
because, as before, we take the positive values of (y) — Y1)/a and (y2 — Y2)/c2.)
Therefore, the probability that x has the value x to x+dx is obtained by
replacing the element d(yi1/a)d(y»/03) in (E.4) by (2rx/4)dx, the area between
two quadrants of radii x and x + dx. Thus

£00dx=3x2 exp(~x/2) dx = x exp(-x*/2) dx. (E6)

A similar calculation applies for three measurements. x* is the sum of three
terms according to (E.2). When we multiply the three Gaussian probability
functions we obtain a factor proportional to exp(—x?/2), and this is multiplied
by the volume of the shell between octants of radii x and x + dx, whichis 4nx?dx /8
- Fig. E.2b. Theresultis



Appendix £

560 =\J(2) exvl-xr2) €7)

Wearenow in a position to give the expression for f(x) for general values of n.
The method we have used so far can be applied for all values of n. The expression
for f(x) is obtained by multiplying the factor exp(—x?/2) by the ‘volume’ ofa
‘shell’ in n-dimensional x-space, which is proportional to x"~*dx. Thus, for
general values of n the probability that x lies between x and x +dy is

Sl dx = Cox"" exp(—x?/2) dx, (E.8)

where C,is a constant that ensures that
o F]
G [ explox /) ax =1 (E9)
o
The values of the constants C,are readily obtained. We have already seen that

() o1 o= ()

For n > 2, the expressions for C, are obtained from the expressions for the
integral [, givenin (A.11)and (A.12), p. 163, with o= 1. Since

&=k, (B11)
we have
C":‘/(;)/{IJ.S....A(n—Z)} nodd, and >3,
Co=1/{2:4-6. - -(n-2)} neven, and > 4. (E.12)

These equations show that for all values of n
Cpy2=—. (E.13)

For a given value of n, the mean value of x* is equal to n. This is readily shown
as follows.

o3 = Cnfomx"“ exp(-x’/2) dx

i - " Ca
= Cotz | x"' exp(—x?/2)dx = =n (E14)
Coiz 0 Crs2

In the last line we have made use of (E.9) and (E.13). This result is to be expected.
By definition the mean value of (y;— )f’,»)2 is cr,?. Thus the mean value of each term
in the sum in (E.2) is unity, and there are n terms in the sum.

Finally, we deduce the function F,(x?) from the expression for f,(x) in (E.8).
We have
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Flx?)
1] 5 10 15 20 25
l?
Fig. E3. The distribution function F,{x?) for n=2,4, 12.
F.(OA)d(xX) =f0)dx, and d(x?) = 2xdx. (E.15)
N 1 1 /2-1
So  F(x) =52 /00 =3G(X)" T exp(=x*/2). (E.16)

The function F,(x?) is shown in Fig. E.3 forn=2, 4, and 12.

E.3 The function P (x*)

Suppose that we have made a set of measurements and obtained a value for x°.
The probability that x* should be as large or larger than the measured value is
=] l 00
Palx) = f Fu(r)dt = EC"/ 27 exp(~1/2)dr. (E.17)
e o
It is equal to the shaded area in Fig. E.4 divided by the total area under the
distribution function F,(7). Sz
Foreven values of n, the integration in (E.17) can be done explicitly and leads
to theresult
uJ wr

Pu) = <l + u+12£!+ TR +m) exp(—u), (E.18)

Y]

where u= and m=g—l.

For odd values of n, P,(x) must be calculated by numerical methods. The
function P,(x?) is shown in Fig. ES forn=2, 4, and 12.
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Falt)

2

0o X
Fig. E.4. Py(x?, the probability of obtaining a value greater than or equal to
the observed value %, is the ratio of the shaded area to the total area under the
distribution function F,(f). (The function F,(f) in the figure corresponds to

t —-

n=2_8.)
1
08 7]
Pu(x’)
0.6 N
04 .
02 E
0 1 1
(o] 5 10 15 20 25 30

x?

Fig. E.5. The probability function £,(x?) forn=2,4, 12.

E.4 Degrees of freedom

So far we have assumed that the parameters that specify the function Y(x) are
independent of the measurements (x),y,),(x2,)2),---,{(xm¥s). However, it is
usually the case that some or all of the parameters are calculated from the
measurements themselves. The deviations y1 — Yi,y2 — Y2, etc. are then not
independent. There are relations between them which tend to reduce their values.
We have already had examples of this. In (3.14), p. 15, the quantity s is
obtained from the sum of the squares of the deviations of a set of n readings taken
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from the mean of the set. But the n deviations are not independent; they satisfy
the relation )" d, = 0. [f we are told the values of all but one of the deviations, we
can calculate the other one from this relation, i.e. we have, not n, but n—1
independent deviations. For this reason the quantity 5% in (3.14) is o n average less
than the variance ¢, as we saw in section 34 (d). To obtain an unbiased estimate
of o, wedivide 3~ d? by n— 1, and not by .

The same argument applies to fitting the best straight line y =mx + ¢ to a set of
n pairs of x;, y; values. We calculate the sum of the squares of the deviations from
the best straight line y=mx + ¢, but we have used the measurements themselves to
determine the parameters m and ¢. The deviations therefore satisfy the two
relations

Zd, =0 and Y xidi=0 (E.19)

— see exercise 4.6. This reduces the number of independent deviations from n to
n—2, which is reflected in the result that, to obtain an unbiased estimate of o*, the
variance of the measurements about the true straight line, we divide the sum of
the squares of the deviations from the best line y=mx+c¢ by n—2; see (C.30),
p- 170.

In general, if there are n pairs of measurements and r parameters in the function
Y(x) that have been determined by the measurements, the number of independent
deviations is

v=n-—r. (E.20)

The quantity v is called the number of degrees of freedom, and r is tetined the
number of constraints. The effect of the constraints in the probability interpreta-
tion of x? is that the index n in (E.16) is replaced by v, ie. x is calculated from
(E.2) for all the n measurements, and the probability that x° has the value
between x?and x? +d(x?) is

;—C,‘()‘f})‘.ﬂul exp{—x2/2}d(x2), (E.21)

F(x)d(x’) =
A formal proof of this result is given in several textbooks of statistics — see for
example Weatherburn 1961, p. 166.
The values of x” for values of v and P are given in Table H.2.

E.5 Test of goodness of fit

We now consider another, and important, situation in which the x? distribution
applies. It has the simplif ying feature that the standard deviations ¢; do not have
to be known separately from the Y, values, but are obtained from them.

Suppose we have a set of N observations each of which falls into one of n
classes. The number of observations that fall into the ith class is y;, and as before,
we want to calculate the probability that the set of y; values comes from a set of
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Gaussian distributions centred on a set of Y; values. In the previous situation, the
Y, values came from the function Y(x), and the value of xz is a measure of how
well the measurements fit the function. In the present case, instead of the function
Y(x), we have a given probability p; that an observation falls into the ith class. Y,
is related to p; as we show below (E.22), and the value of X1 is a measure of how
well the values of y, fit the set of p; values. Note that in the previous situation y,
and Y; are physical quantities and, in general, have dimensions; ¢; has the same
dimensions, so xz is dimensionless. In the present case y; Y, and o; are
dimensionless numbers, y; being an integer.

Suppose we make many sets of N observations and look at the distribution of
the y; values for the ith class. This will be a binomial, given by (D.1), p. 171. In
that equation, outcome A, with probability p;, is obtaining an observation in the
ith class; outcome B, with probability g,= | —p,, is obtaining an observation in
any one of the other classes. From (D.5) and (D.8) the distribution of y; values
has

mean Y, = Np, (E.22)
variance o7 = Np,g;. (E.23)

Provided Np; is fairly large compared to unity, the standard deviation is small
compared to the mean and, as stated in Appendix D, the binomial distribution
then approximates to a Gaussian, which is consistent with the basic assumption in
section E.I.

To obtain an expression for x? that satisfies the distribution given in (E.21) it
might be thought that, from (E.2) and (E.23), we should take

-]
2 (}’i — Yi)-
RS AL . L E.24
= owa; (E24)
However, that is not correct, because it ignores the fact that, for each set of N
observations, we have the constraint

Y yi=N, (E25)

which tends to reduce the sum of the squares of the deviations. The correct
expression for x°, i.e. the one that satisfies the distribution given in (E.21), is

- ¥)?

E.26
Npi (E.26)

x=I5

A formal proof of this is given in Stuart and Ord 1994, p. 520. We give here a
simple argument to show the plausibility of the result.
From the definition of p; we have the relation

rpi=L (E.27)

Assume all the p; and hence all the g, are equal, i.e.
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1
pi=p=_. and ¢, =q=1-p (E.28)

for all i. From the discussion in section E.4, the effect of the constraint in (E.25) is
that the expression for x? in (E.24) should be multiplied by the factor
T ol =g, (E.29)
n n
which gives (E.26).

It should benoted that the constraint reduces the number of degrees of freedom
to n—1. The number is still further reduced if some of the parameters that
determine the probabilities p,come from the data themselves.

From (E.22) and (E.26)

o 2
Xz - Z (}’- Y‘Yu) .

(E.30)
A common notation is to denote the quantity Y; by E, (the expected value) and y;
by O; (the observed value). Thus (E.30) is written as

2
=g (E31)
Note that the interpretation of x> depends on a Gaussian distribution for y,,
and this is valid only if Y, is not too small compared to unity. If thiscondition is
not satisfied — a minimum value of five is conventionally taken — the values for
two or more intervals should be taken together.
The result in (E.30) was first derived by Pearson (1900) and is known as the )(2

test of goodness of fit.

E.6 Worked examples

(a) Neutron lifetime. Using the expression in (E.2) we calculate the value of X2
for the four values of the neutron lifetime r given in exercise 4.5 (pp. 42 and 198)
to see if they are consistent with each other, taking into account their standard
errors. The null hypothesis is that each of the four values of r is a random sample
from a Gaussian distribution, the mean values of the four distributions being
equal to the weighted mean 7 of the four values of r. The standard deviation of
each distribution is equal to the standard error Ar in each value of r. In the
present case the variable x is simply the index i. Thus

=5 [riﬁ;f] y (E32)

The calculation is set out in Table E.I. The value of x? is 4.30. There are n =4
terms in the sum. The value of 7 comes from the experimental values, so the
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TableE.1. y* analysis of measurements of neutron lifetime t.
Weighted mean = 886.5 s.

:.2
1 1 e
i /s Adls e )
1 887.6 3.0 0.13
2 8935 5% 1.74
3 8884 3% 033
4 882.6 27 209
sum 4.30

number of constraints is r = 1. The number of degrees of freedom is therefore
v=n—r=3. From Table H.2 we see that for x*= 4.30, and v= 3, the value of P is
just less than 0.25. Since this is not very small compared to unity, we conclude
that the four values of t are reasonably consistent. Had P been small, this would
have indicated that there was probably a systematic error in one or more of the
values of t, in which case the weighted mean would not have been a significant
quantity.

(b) Radioactive background. As an example of the goodness of fit test we
calculate the value of x’ for a set of measurements of the background counts in a
radioactivity experiment. The radioactive source was removed for this part of the
experiment, and the counts were due to cosmic rays and other forms of stray
radiation. The number of counts & in a period of 10 seconds was recorded, and
this measurement was made 400 times. The calculation of x? is readily done with
a spreadsheet and is shown in Table E2. A histogram of the measurements is
inserted in the first two columns. O is the number of times that k counts were
recorded. If the counts occur at random times we expect the histogram to follow a
Poisson distribution —see p. 173. We therefore analyse the results to see how well
they fit this distribution. The mean number of counts in a 10-second period is
a=6.38. From (D.12), p. 173, the expected number of times that & counts are
observed is

ak
E(k) = Nexp(-a) 75, (E33)

where N=400. The calculated values of E(k) are given in the third column. In
order to obtain values of £ greater than 5, the O and E values for k=0 and |
havebeen combined; the values for & from 13 to 16 have been similarly combined.

The values of (O—E)?/E in the fourth column sum to 8.18. There are n=13
termsin the sum. The values of N and a have gone into the calculation of £(k), so
there are r=2 constraints. Thus the number of degrees of freedom is
v=n—r=11. Table H.2 shows that, for x2=8 18 and v= 11, the value of P is
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Table E.2. x° analysis of measurements of number of counts ina 10-second

period

k o E (0-EE
0 0 | 2 071 so 180
1 2 43
2 16 138 0.35
3 30 293 0.01
4 44 46.8 0.17
s 62 59.7 0.09
6 71 635 0.8
7 61 57.9 0.17
8 42 46.2 0.38
9 28 327 0.68
10 24 209 0.47

1 13 12.1 0.07
12 2 6.4 3.06
13 3 32

14 2 1.4

» ol % o6l 59 0.05
16 [ 02

sum 400 399.9 8.18

about 0.7, so the Poisson distribution is a good fit to the data, i.e. the latter are
consistent with the hypothesis that the counts occur at random times. In fact we
do not have to refer to Table H.2 to reach this conclusion. If the value of x” is not
very different from that of v, the data are consistent with the null hypothesis.

E.7 Comments

(1) As we haveseen,a value of P,(x?) small compared to unity is evidence against
the null hypothesis. A common (but arbitrary) value of P,(x%) = 0.05 is taken for
this purpose, and the discrepancy with the null hypothesis is said to be significant
at the 570 level.

(2) A very high value of x° indicates that the null hypothesis is probably not
correct. However, a very low value of x?, giving a value of P,(x?) very close to
unity, does nos mean that the null hypothesis is probably correct. It has a quite
different significance. The quantity 1 - P,(x?) is the probability that the value of
x?is as low or lower than the calculated value. So a value of P,(x?) close to unity
means that the experimental data are an improbably good fit to the function Y(x),
or the probabilities p, It indicates that there is probably something wrong with
the data or with the calculation of x?.

In the former category is the possibility that the experimenter has selected
results that agree with the null hypothesis. The calculation of x may involve
more innocent mistakes. If (E.2) is used for the purpose, it may be that the
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assumed values of o7 are too large. Another possibility is that the dataappear to
fit the function Y(x) very well because a number of parameters in the function
have been obtained from the data, and allowance for the constraints has not been
made, so the assumed number of degrees of freedom is too high.

If all these possibilities have been eliminated and the value of x* is still
improbably low, then, assuming the data are from your own measurements, the
standard remedy should be applied, namely make more measurements.
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Sl units

The system of units used throughout this book is known as SI, an abbreviation
for Systéme International d’Unités. It is a comprehensive, logical system, designed
for use in all branches of science and technology. It was formally approved in
1960 by the General Conference of Weights and Measures, the international
organization responsible for maintaining standards of measurement. Apart from
its intrinsic merits, it has the great advantage that one system covers all situations
- theoretical and practical.

A full account of SI will be found in a publication of the National Physical
Laboratory (Bell 1993). The following are the essential features of the system.

(I) SI is a metric system. There are seven base units (see next section), the metre
and kilogram replacing the centimetre and gram of the old c.g.s. system.

(2) The derived units are directly related to the base units. For example, the
unit of acceleration is 1 m s~ 2 The unit of force is the newton, which is the force
required to give a body of mass I kg an acceleration of 1 m s~2. The unit of
energy is the joule, which is the work done when a force of I N moves a body a
distance of | m.

The use of auxiliary units is discouraged in SI. Thus the unit of pressure, the
pascal, is | N-m~? the atmosphere and the torr are not used. Similarly the calorie
is not used; all forms of energy are measured in joules. (However, the electron volt
is a permitted unit.)

(3) Electrical units are rationalized and are obtained by assigning the value
47 x 10-7 H m"" to u, the permeability of a vacuum. This leads to the ampere —
one of the seven base units — as the unit of current. The other electrical units are
derived directly from the base units and are identical with the practical units. (See
Duffin 1990 for a clear discussion of electrical units.)
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SI units ~ names and symbo ks

Quantity Unit Symbol  Relation to
other units

Base units

length metre m

mass kilogram kg

time second H

electric current ampere A

thermodynamic temperature kelvin K

amount of substance mole mol

luminous intensity candela cd

Derived units with special names

force newton N kgms~?
pressure pascal Pa Nm™2
energy joule J Nm
power watt w Js™!
electric charge coulomb C As
potential volt \ yc
resistance ohm Q VA-!
capacitance farad F CV-'=sQ-'
magnetic flux weber Wb Vs
flux density tesla T Wbm?
inductance henry H WbA-'=Qs
frequency hertz Hz s~!
temperature degree Celsius  °C t/°C = T/K -273.1S
luminous flux lumen Im cdsr
illuminance lux Ix Imm~?2
activity (radioactive) becquerel Bq s~!
absorbed dose (of ionizing radiation) gray Gy Jkg~!
planeangle radian rad

solid angle steradian sr
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Decimal factors

Factor Prefix Symbol Factor Prefix Symbol
10-" deci d 10' deca da
102 centi c 10% hecto h
10 ° milli m 10° kilo k
10-¢ icro 10° mega M
10-° :-:mo : 10° gig: G
10-" pico P 10" tera T
10- 1 femto f 10" peta P
1o-'® atto a 10'® exa E
10-2> zepto z 10 zetta z
lo-% yocto y 107 yotta Y

Note. The prefix is to be taken together with the unit befare the power symbol operates, e.g.

L m® = I(m)? = 10~ "2 .

Relation to c.g.s. units

Electricalunits
1A=10"emu.=cd/l0esu.
1V=10% em.u. = 10%c esu.

1 Q=10° em.u. = 10%* e.s.u.
IF=10"%e.mu=10"%c?esu

1 H=10"e.m.u.= 10°/es.u.

1 T= 10° e.m.u. (gauss)

1 Wb = 10* e.m.u. (maxwell)
1Am™"'=4n x 10~? em.u, (oersted)
{c = 3 x 10'® in the above equations.)

Other units
length | parsec = 3.086x [0'* m
1 light-year =9.46x 10> m
I micron=10"%m
1 dngstrom= 10"""m
| fermi=10"""m
area I barn= 10" m?
volume llitre=10"*m’
force ldyne=10"°N
energy lerg=10"7J

| calorie (IT)=4.1868 J
| electron volt = 1.6022 x 10~'°J
pressure | bar = 10° Pa
| atmosphere = 1.01325 x 10° Pa
I torr=| mm of Hg = 133.322 Pa
viscosity
dynamic 1 poise = 10" Pas

kinematic | stokes=10"*m>s~"
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Definitions of the SI base units
Metre
The metre is the length of the path travelled by light in vacuum during a time
interval of 1/299 792 458 of a second.

Kilogram
The kilogram is the unit of mass; it is equal to the mass of the international
prototype of the kilogram.

Second

The second is the duration of 9 192631 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state of the
caesium-133 atom.

Ampere

The ampere is that constant current which, if maintained in two straight parallel
conductors of infinite length, of negligible circular cross-section, and placed
I metre apart in vacuum, would produce between these conductors a force equal
to 2 x 10~ newton per metre of length.

Kelvin
The kelvin, unit of thernodynamic temperature, is the fraction 1/273.16 of the
thermodynamic temperature of the triple point of water.

Mole

The mole is the amount of substance of a system which contains as many
elementary entities as there are atoms in 0.012 kilogram of carbon-12. When the
mole is used, the elementary entities must be specified and may be atoms,
molecules, ions, electrons, other particles, or specified groups of such particles.

Candela

The candela is the luminous intensity, in a given direction, of a source that emits
monochromatic radiation of frequency 540 x 10> hertz and that has a radiant
intensity in that direction of 17683 watt per steradian.

The above definition of the metre came into effect in 1983 and replaced the
definition which assigned a certain value to the wavelength of one of the lines in
the spectrum of the krypton-86 atom. Thus, the speed of light is now defined to be
exactly 299792458 ms~'.
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Values of physical constants

Physical constant Value Fractional
uncertainty
atomic mass unit ma=10"Na=16605x10"?" kg gx 1078
energy equivalent myc?=931.49 MeV 4% 10-°
Avogadro constant Na=6.0221 x 10* mol~! gx 1078
Bohr magneton 1g=9.2740x10"2*J T~ 4x10-8
Boltamann constant k=1.3807x10"2JK~' 2x107¢
elementary charge e=1.6022x107""C ax107®
Faraday constant F=Nae=9.6485x 10*Cmol™" 4x 1078
fine-structure constant a=72974x10"? 4x 10~°
l/a=137.036 4x10~?
gravitational constant G=6673x10""Nm?kg~? 15x10~*
gyromagnetic ratio of proton Tp=2.6752x 10%s ™' T~ 4x10”8
magnetic flux quantum ®o=h/2e=2.0678x 10~"*Wb 4x10°8
mass of electron m.=9.1094x 107" kg 8x 10~%
mass of neutron ma=16749% 1072 kg gx 1078
mass of proton my=16726x 107" kg gx 107"
molar gas constant R=Nak=831451K ™" mol~' 2x 107
molar volume of ideal gas Vi=22414x 10> m’mol~"  2x107¢
nuclear magneton n=50508x10"273T"" 4x10°8
permittivity of vacuum 0= l/uoc® = 8.8542x 10~ 2 F ;! zero
Planck constant h=6.6261x 1075 8x 1078
h=hi2n=10546x 10" **]s 8x 107"
Rydberg constant 'y = 10974 x 10’ m~"' gx 107"
speed of light ¢=29979x10*ms~' 210
Stefan—Boltzmann constant a=56704x 10" *Wm2K~* 7x10°8

acceleration due to gravity
2=(9.7803+0.0519sin’¢—3.I x 10 *H)m s 2
¢ =1atitude; H = height abovesea level in metres

The values of the physical constants, other than g, are taken from Mohr and Taylor;O—OO—.
The expression for g is taken from Kaye and Laby 1995, p. 193, and gives values correct to
about5x 10~ *ms™2,
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Mathematical tables

Table H.1. Values of the Gaussian function and the Gaussian
integral function

=R @) [ ewr
=—e - 7) = - e L
S(2) ) xp(-2°/2) #(2) ) xp(—1°/2) dt
z 1) #(2) z S #(2)
0.0 0.3989 0.0000 2.0 0.0540 0.9545
01 03970 0.0797 2.1 0.0440 0.9643
0.2 0.3910 0.1585 2:2 0.0355 0.9722
03 0.3814 0.2358 23 0.0283 0.9786
0.4 0.3683 0.3108 24 0.0224 0.9836
0.5 0.3521 0.3829 2.5 0.0175 0.9876
0.6 0.3332 0.4515 26 0.0136 0.9907
0.7 0.3123 0.5161 2.7 0.0104 0.9931
08 0.2897 0.5763 28 0.0079 0.9949
09 0.2661 0.6319 2.9 0.0060 0.9963
1.0 0.2420 0.6827 3.0 0.0044 0.99730
1.1 0.2179 0.7287 3l 0.0033 0.99806
12 0.1942 0.7699 3.2 0.0024 0.99863
L3 0.1714 0.8064 33 0.0017 0.99903
1.4 0.1497 0.8385 34 0.0012 0.99933
LS 0.1295 0.8664 3¢5 0.0009 0.99953
1.6 0.1109 0.8904 36 0.0006 0.99968
17 0.0940 0.9109 3 0.0004 0.99978
1.8 0.0790 0.9281 3.8 0.0003 0.99986
1.9 0.0656 0.9426 3.9 0.0002 0.99990

40 0.0001 0.99994
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Table H.2. Values of Xz Jor given vand P

P is the probability that, for v degrees of freedom, x? should be as large or larger
than the tabulated value.

v P
0.99 0.975 0.95 0.90 0.75 0.50
1 0.00016 0.00098 0.0039 0.0158 0.102 0.455
2 0.0201 0.0506 0.103 0.21 0.575 1.386
3 0.115 0.216 0.352 0.584 1.213 2.366
4 0.297 0.484 0.711 1.064 1923 3.357
S 0.554 0.831 1.145 1.610 2,675 4.351
6 0.87 1.24 1.64 2.20 3.45 5.35
7 1.24 1.69 219 2.83 4.25 6.35
8 1.65 2.18 239, 349 5.07 734
9 2.09 2.70 333 4.17 5.90 8.34
10 2.56 325 394 4.87 6.74 9.34
11 3.05 3.82 4.57 5.58 7.58 10.34
12 3.57 4.40 5.23 6.30 8.44 11.34
13 4.11 5.0l 589 7.04 9.30 12.34
14 4.66 5.63 6.57 7:19) 10.17 13.34
1S 5.23 6.26 7.26 8.55 11.04 14.34
16 5.81 6.91 7.96 9.31 11.91 15.34
17 6.41 7.56 8.67 10.09 12.79 16.34
18 7.0l 8.23 9.39 10.86 13.68 17.34
19 7.63 8.91 10.12 11.65 14.56 18.34
20 8.26 9.59 10.85 12.44 15.45 19.34
22 9.54 10.98 12.34 14.04 17.24 21.34
24 10.86 12.40 13.85 15.66 19.04 2334
26 12.20 13.84 15.38 17.29 20.84 2534
28 13.56 15.31 16.93 18.94 22,66 27.34

30 14.95 16.79 i8.49 20.60 23.57 29.34
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v P
0.25 0.i10 0.05 0.025 0.01
1 K32 2.7 384 5.02 6.64
2 2.7 4.6l 5.99 7.38 9.21
3 4.11 6.25 7.81 9.35 11.34
4 5.39 7.78 9.49 1114 13.28
) 6.63 924 11.07 12.83 15.09
6 7.84 10.64 12.59 14.45 16.81
7 9.04 12.02 14.07 16.01 18.48
8 10.22 13.36 15.51 17.53 20.09
9 11.39 14.68 16.92 19.02 21.67
10 12.55 15.99 18.31 20.48 23.2
1] 13.70 17.28 19.68 21.92 24.72
12 14.85 18.55 21.03 2334 26.22
13 15.98 19.81 2236 2474 27.69
14 i7.12 21.06 23.68 26.12 29.14
15 18.25 2231 25.00 27.49 30.58
16 19.37 23.54 26.30 28.85 32.00
17 20.49 24.77 27.59 30.19 3341
18 21.60 25.99 28.87 31.53 34.81
19 22.72 2720 30.14 32.85 36.19
20 23.83 28.41 31.41 34.17 37.57
22 26.04 30.81 33.92 36.78 40.29
24 28.24 33.20 36.42 39.36 4298
26 3043 35.56 38.89 41.92 45.64
28 32.62 37.92 41.34 44.46 48.28
30 34.80 40.26 43.77 46.98 50.89
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3.4

Solutions to exercises

The value of the mean is 9.803 m s~2, and the values of the residuals in units of

10"2m s™2are I, ~1,4, |, =5, —1, 3, giving 3_d} = 54. Dividing this by
n-1=6, and taking the square root, gives 0=0.030 ms~2 ¢,=0030//7
=0_011 ms™2. The group result is thus g = 9.803 £0.011 ms~2.

If you have a calculator programmed to calculate standard deviations, try
feeding in the values of g, and check that you get the same value for 0. Note that
the calculator gives o, and nat 6. Some calculators are programmed to calculate
s (equation 3.14), rather than o, i.e. the quantity 3 _d? is divided by  instead of
n—1. Youcan check your own calculator by feeding in the numbers 9 and 11, for
which o =v2ands=1.

The values of E and the standard errors are given in units of 10'' Nm~2.

Newton’s rings experiment. The mean value of £ is 1.98. The value of ¢ is 0.25.
Dial indicator experiment. The mean value of E is 2.047. The value of ¢ is 0.028.
Dividing o by /10 to obtain ¢, we have

Newton’s rings experiment E=198 +£0.08
Dial indicator experiment E=2.047 £ 0.009.

The difference between the two mean values is slightly less than the standard
error in the Newton’s rings value, so there is little evidence for a systematic
difference between the two experimental methods.

(a) 0.00266, (b) 0.0161, (c) 0.00036,
(d) 0.683, (e) 0.954, (f) 0.997.

The fraction of readings between x and x + dx is /(=) dz, where f(z) is defined on
p. 25 and tabulated in Appendix H.l:z = x/o. Forexercises (a) to (c) dz = 0.1/15.0.
So the answer to (a) is 0.399/150=10.00266. The answers to (d), (e), (f) are.given
by the values of ¢(z) for z= |, 2, 3.

For the distribution of single measurements, the mean is —
p1=(~1x0.9)+(9%x0.1)=0.

Since the mean is zero, the variance o is the mean square value of the
measurements themselves, weighted by their probabilities, i.e.

@ = [0 x 0.9 + [ x 0] =9.

For asample of three values we have to consider the possible combinations of — §
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Solutions to exercises

and +9, of which there are four. They are listed here with their probabilities and

means.

Sample Probability Mean

-1, ~1, -1 09 =0.729 -1

~1L, -1, 9 (09)*x(0.1)x3 =0243 73

-1, 9, 9 0.9)x (0.1x3  =0.027 1713
9, 9, 9 0.1} = 0.001 9

For the distribution of the means of three values, themean is

fm =(—1x0.729) +(7/3x 0.243) +(17/3 x 0.027)+ (9 x 0.001) =0,
as we would expect. The standard deviation o, is given by

o = [(4)Z x 0.729] + [(7/3)2 x olzaz] + [(17/3)3 x 0.027

+{9% x 0.001] =3.
Thus 0 = o/V3.
In the following solutions, g(4) means the% standard error in 4, ie.
g(A) = I00AA/A.

(a) g(A) =4, g(4%) =8,
Z =625, AZ=625x 8/100 =50,
Z =625 +50.
(b) 28=90+4, AZ=(?+4) =5,
Z2=10+5
(c) g(C)=1, £(C) =2, C? =2500 + 50,
g(D) =8, 2(0%) = 12, Di= 1000 + 120.
Put E=C + D} =3500.
AE = (507 + 1202)f = 130, g(E) =13.7,
g(4) =3, 8(B) =5,
g(Z) = (R +52+372) =69,
Z=350+24
@ AnB)_s8/8_002 08
InB In8 461 100’
2(Z) = (0.62 + 0.43%)} = 0.74,
Z=461+03.
1
(e) g{A) =4, g(;) =4,

AL =0.0200 + 0.0008,
Z = 0.9800 + 0.0008.

(a) The measured values of /, /,, /. are independent. From Table 4.1 (ii), the
standard error in the volume is therefore

V3 .
160 = 0.02%.

(b) The measured values are not independent. An increase in temperature causes
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4.5

Solutions to exercises

all three lengths to increase by the same fractional amount. The situation is
represented by (4.9) with n = 3. The standard error in the volume is therefore 0.03%.
In practice, variations in the measured values of the Jength could be due to
both instrumental errors and temperature fluctuations. It would be necessary to
decide the contributions ofeach in order to estimate the error in the volume.

The values and standard errors of the slope are:

Method Slope /pm kg ™"
least squares -3492+ 19
points in pairs -350.1 £2.0

The calculation by the method of least squares is made easier if the values of x are
taken to be 4, where Wis in kg. Then ¥ and all the (x;—X) are simple integers.

The values and standard errors of the slope are
Method Slope/mV K~
least squares
errors only in V' 2.551 £0.041
errorsonlyin T 2.556 + 0.041
pointsin pairs 2.542+0.053
The values are given to 3 decimal places for purposes of comparison. but
normally these results would be quoted to only 2 decimal places.

Notice that the results of the two least-squares calculations are quite close. In
fact therc are probably errors in both the voltage and temperature readings, but a
calculation that takes thisinto account requires a knowledge of the relative errors
in ¥ and 7. The value of the slope of the best line when there are errors in both
variables always lies between the two values corresponding to errors in only one
or other of the variables (Guest 1961, p. 131). Since these two values are usually
quite close, calculations are usually done on the assumption that only one of the
variables is subject to error.

Weight each value of r inversely as the square of its standard error Ar, putting
the weight v = 10/(Ar)%

Tis Atls " wrls

887.6 3.0 (W 986

8935 5.3 0.36 3i8

888.4 33 092 816

882.6 2.7 1.37 1211
Yowr 3331

W e 886.5 s.

The weighted meanis ¥ =

To calculate the standard error in 7 we note that a weight of 1.1]1 corresponds to a
standard error of 3.0 s. The weight of 7 is 3.76, so its standard error is

Lt
[ﬁ] x30=16s.

Thust =886.5+ 16
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5.2

5.3

Solutions to exercises

From (4.30) di=y;—mx; ~-c.
Thus Ldi=3yi—my x;—nc
=0 from (4.26).
Multiply the expression ford ;above by x; and sum over i. This gives
oxid; = oxiyi~ ”’z)"f — ey x;
=0 from (4.25).

It may be noted that (4.26) comes from the relation 85/3c = 0. Thus the relation
3" d; = 0 lollows from the presence of the constant ¢ in the function y =mx+c.
Forthe best line through the origin, y = mx, the relation 3.d; = 0 does not hold.
Therelation ¥ x;d; = Oholdsin both cases.

There is no error in x;. Therefore the error in m; = y;/x; is &m; = Ay;/x;. The
error Ay; is the same for all the points. Therefore Am; o< 1/x;, giving a weight
w; o x2. The weighted mean of the y;/x; values is thus

T4k T

Zv’ - B
(a) M
P*m~

The fractional error in p due to each measured quantity is equal to the fractional
error in the quantity. The fractional error in & — 10% — entirely dominates the
others. The error in p is therefore i0°%. (The term ‘error’ in this and following
solutions refers to standard error.)
(b} a* = 6400 + 160 mm?,

» = 100+ 20 mm?
The error in a” now dominates that of 42 The error in «* +b% is 2.5%. The error in
M is negligible by comparison. The error in 7 is therefore 2.5% and comes entirely
from the error in a.

Theerrorin ¢ /Cis 3%. The error in r is 2%:; so the errorin r* is 8%. The errorin /
is negligible. The error in nis (32 +8%)" = 8.5%. Therefore

n=(8.0£0.7) x 10" N m~2.
Notice that a quantity raised to a high power needs to be measured relatively

precisely.

Substitution gives

Ty
A:%:B.O%Bszm",
_le—Tzzﬁ 2 - d
B= R =0.0199s m™,

z:%:xux =804625> m™'.
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5.7

Solutions to exercises

The calculation of the error is straightforward. An interesting feature is that
though 4 is very much larger than 8, theerror due to T, comes largely from the B
term. The latter contributes (A + h12)/2h, = 3 of the error due to Ty. The errors
from Ay and A, are negligible. The errors in Z due to the errors in Ty, T2, H are 7,
3,3x107? s> m~"' and these combine to give a total error of 8 x 107 *s2m~".
The final result is

£=9.8129+0.0010 ms~2.

Calculate  for the three pairs of values (i) A, D; (ii) 4 +AA, D; (iii) A, D+AD.
From the sine values of (4 + D) /2 and A /2, the three values of y are
0.7435 0.7445 0.7455
05023°  0.5035"  0.5023°
Thesegive Apy = 0.002, Aup = 0.004,
whence £1= 1480 £ 0.004.

px = Info— Inf=0.7829.

The simplest way of finding the error is that of direct substitution. Thus
In ({94 Alg) —InIy = 0.006,
In{(/+4f) -InJ =0.0ll

These give a combined error0f0.012, i.e.
ux =0.783+0.012.

x = 10 mm with negligible error. Therefore
p=783%12m™".

The expression for the error given by the formal method (section 4.1 (b)) is

an’  (any qu)3
(T)*(T)]*( )
which is not difficult to evaluate. (Again the term in Ax is negligible.) But you

have to be able to derive the expression correctly in the first place. You are less
liable to make mistakes with the simpler method of direct substitution.

Bwi= 5

As in exercise 5.5 the emror can be evaluated either by direct substitution or
formally. Since n and d are fixed, A « sin#. Evaluate sin 8 for 0 and 0 + AQ. The
results are 0.1959 and 0.1985, giving Ad/i = 1.3%. Since E x (momentum)?
o 1/4%, AEJE = 2A)/A = 26%. The expression given by the formal method is
AE/E = 2 cot 0 AQ, where

A0=—9

n
5 %180 rad.

We have



6.t

Solutions to exercises

Denote the [ractional increases in f and E by r, and rg. Then the fractional
increasein L is

r,=2r; —re.

Since the rise intemperatureis 10 K,
a=r /10
= (~0.500 + 0.520) x 107% x 10~
=20x 10°°

Theerrorin 2r, is 4 x 10~%; theerrorin reis 3x 10~ Theerrorin r, is therefore
5x10~° and theerrorin cris 5 x 1078

The method is a bad one. The two primary quantities ryand r are measured to
better than { part in 100, but the value of « is only good to | part in 4. This is an
example of Casell, p. 48.

(a) Let theinterval between flashes be

|

=7

Suppose that fis slightly greater than mfy. Then intime T the object will make m
revolutions plus a small fraction é of a revolution. The body is actually rotating
with frequency

+6
/=Tﬁ—=(m+5)/o.

To

but it appears to be rotating with frequency
s 6
Javp =ﬁ:6f0 =f —mf.

The sense ofthe apparent rotation is the same as that of the actual rotation. I fis
slightly less than myy, the quantity & is negative and therefore f, is negative. The
body appears to be rotating in the opposite sense to that of the actual rotation.

If f is exactly equal to mfy the body appears stationary. This can sometimes
happen with fluorescent lighting, where the variation of illumination as the mains
voltage varies sinusoidally is much more marked than with a filament bulb. For
this reason it is dangerous to have fluorescent lighting in workshops with
machinery rotating at high speeds.

(b I =m0+ fapp
mfy = 500.00 + 0.05 Hz,
fop= 040+ 005 Hz.

Therefore
f = 50040 + 007 Hz.
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Solutions to exercises

Comments

The stroboscope, like the beat method of measuring frequency, is an example of
the Case 1 situation where we measure the difference between two nearly equal
quantities, one of which is known to high precision. Another example is the
doublet method in mass spectroscopy, where the mass difference between two ions
of nearly equal mass, such as the deuterium atom and the molecule of light
hydrogen, is measured, and the value combined with the precisely known mass of
one of them. See Squires 1998 for further discussion of the method.

For 20 swings, 1 =40.8 + 0.2 5. Therefore
T=284+0.0ls. (1)

With this approximate value of 7, we see that r=162.9 s corresponds to about
N, =80swings. Tty N, =79, 80, 81. The results are

N =179, T = 2.0620 + 0.0025 s,

N, = 80, T = 2.0363 +£0.0025 5,

N, =81, T=2.0111£0.0025s.

Only the value
T =2.0363£0.0025 s (2)

is consistent with (1}. So N, =80, and we now have a more precise value of T,
which serves to fix the value of N for the next measurement.

The time 7 =653.6 s corresponds to about 320 swings. We try values of N: in
this region. The results are

N> =319, T = 20489 £ 0.0006 s,
N; = 320, T = 2.0425 £ 0.0006 s,
N> =321, T =2.0361 +0.0006 s,
N2 =322, T =2.0298 £0.0006 5.

Only the value
T = 2.036]1 £ 0.0006 s (3)

is consistent with (2). So N> =321, and thevalueof T'is given by (3).

Comments
Clearly, the principle of the method is that each measurement gives a valueof 7,
which enables us to determine the integer for the following measurement, and
thus obtain a more precise value of 7. Only the swingsin the initial measurement
need be counted. Note that the factor by which the timing period is increased in
successive measurements — 4 in the present exercise — depends on the value of Az.
II this error were larger, the factor would have to be reduced in order to obtain an
unambiguous value of the integer.

The method of e¢xact fractions in high-precision interferometry is based on
similar reasoning. In this method the optical path length in an interferometer is
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Solutions to exercises

determined for monochromatic light of three known wavelengths .4, 2, A3. The
path length is given by

d=(m +fi)d = (m+f2)h2 = (m + i), 4
where the three ns are integers and the three /s are fractions. Only the three
[ractions are actually measured, but an approximate knowledge of d suffices to

identify the three integers, and hence to determine d to much higher precision. See
Ditchburn 952, p. 283 for details of the method.

For a sinusoidal voltage of angular frequency w = 2xf, the impedence of the
capacitoris 1 /jw C. j=/( — 1). Therefore

ve  ljwC 1

Vo (1/iwC)+ R [ +jwCR

Vel 1 1
|7Q T+ joCR){(I— jwCR)  1+a’CR

which gives the required result.

AV. = (dV./df )AL
=3x002x107>=6x 107V,

Therefore AV./V.=10"5.

Outside the Earth’s surface, g is proportional to 1 /R? where R is the distance
from the centre of the Earth. Therefore a decrease in g of Ag corresponds to an
increase in height Ah, given by

L _,0h

g Re'
where Re, the radius of the Earth, is 6400 km. Thus

Ah=1x 64 x 10° x 1078 = 32 mm.

The values used for the atomic constants in these solutions are approximate ones
that you will find it useful to remember. In fact the values of these constants are
probably known to a few parts in 107.

(a) 60 W.

The thermal conductivity of copper at 0°C is 385 W m ' K~". The calculation
assumes no heat loss along the rod.

(b) The readings are too low by about 0.010%. The linear expansivity is about 10
to Ll x 10~ ¢ for most kinds of steel.

(c) (i) 0.0199 Q. (ii) Itincreases by 0.0017 Q.

The resistivity of copper is 1.56x 10™* Q m at 0°C and it increases by 0.4% per
degree rise in temperature.

(d) 4.1l mV.

(e) (i) 025ms™". (i) 0.45ms~".
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At 20°C the viscosity of water is 1.00x10=* Nsm~? and at 50°C it is
>

055x10"*Nsm~2

(M) 13kN.
The Young modulus of steelis 2.1 x 10" N m~2
(g) 1.29m.
Thespeed of sound inairat 0°Cis 331 ms~". '
(h) .9kms~". S
The result may be obtained from the equation

fmp® = 3kT.

m, the mass of the hydrogen molecule, is 2x167x 10~ kg, and &, the
Boltzmann constant, is 1.38x 10" J K -*.
i) G=6.7x10""" Nm?kg~2

Use the equation
_am
g= R% .

where M is the mass and Rg the radius of the Earth. The mean density of the
Earth is 5500kg m >, and itsradius is 6400 km. g = 9.8l m s ~2.

(j) Typical wavelengths for red, green, and violet light are 700 nm, 550 nm, and
400 nm. The values give (i) 710 lines per mm, (ii) 23.1%, (iii) 16.6°.

(k) 18 W.

Stefan-Boltzmann constant o= 5.67x 10" * Wm=2K~*.

) (i) 1.9% 10" ms™" (ii) 39pm.

mass of electron me =91 x 10" kg,

elementary charge ¢e=16x10"C,

Planck constant h=66x10"%1]s.
(m) 0.29T.

mass of proton my =167 x 10777 kg.
(n) 91 nm.

Theanswer is the reciprocal of the Rydberg constant
R=110x10"m™".
(0) 931 MeV.
The mass in kilograms of a particle of atomic weight unity is 10 ">/Na, where

Na=6.0x 1023 is the Avogadro constant.
speed of light c=30x108ms".

(a) (T+ &)1+ 61+ 8) =1+ 86+ 6+ 8, =TE
if the 6s are small compared with |. So theanswer is

1 +0.000 25 + 0.000 41 - 0.000 13 = 1.000 53.

=% i sl
(I +6)?



Solutions to exercises

6 is approximately 9/72 000, so 912.64 must be reduced by 8 parts in 72 000, that
is, by | part in 4000, which is 0.23. The answer is 912.41.
© (9.100¢ = 3 x (1 + &)}

=3 x (1 +m0)

=3.017.



Some useful books

Techniques and experimental methods
Delchar, T. A. 1993. Vacuum Physics and Techniques, Chapman & Hall.
Hablanian, M. H. 1997. High-Vacuum Technology: A Practical Guide, 2nded., Marcel Dekker.

Electronics and instrumentation

Franklin, G. F., Powell, J. D, and Emami-Naeini, A. 1994. Feedback Control of Dynamic
Systems, 3rd ed., Addison Wesley.

Horowitz, P. and Hill, W. 1989. The Art of Electronics. 2nd ed., Cambridge University
Press

Streetman, B. G. and Banerjee, S. 2000. Solid-State Ejectronic Devices, Sth ed., Prentice-Hall.

Taur, Y. and Ning, T. H. 1998. Fundamentals of Modern VLSI Devices, Cambridge
University Press.

Yu, P. Y. and Cardona, M. 1996. Fundamentals o f Semiconductors: Physics and Materials
Properties, Springer.

Mathematics and mathematical tables

Abramowitz, M. and Stegun, 1. A. 1964. Handbook of Mathematical Functions, National
Bureau of Standards, reprinted by Dover Publications, 1970.

Lindley, D. V. and Scott, W. F. 1995. New Cambridge Statistical Tables, 2nd ed.,
Cambridge University Press.

Press. W. H., Flannery, B. P, Teukolsky, S. A, and Vetterling, W. T. 1990-.1997.
Numerical Recipes: The Art of Scientific Computing. Cambridge University Press.
This is a series of books giving programs for a wide range of mathematical
operations and functions in several computer languages. Some of the books are
available as CD-ROMs and diskettes.

Riley, K. F., Hobson. M. P., and Bence, S. J. 1997. Mathematical Methods for Physics and
Engineering, Cambiidge University Press.

Scientific writing

Dampier. W. C. and Dampier, M. 1924. Editors, Readings in the Literature of Science,
Cambridge University Press, reprinted by Harper & Brothers, 1959.

Burchfield, R. W. 1996. The New Fowler's Modern English Usage, Oxford University Press.

Quiller-Couch, A. 1916. The Art of Writing, Cambridge University Press.

Scientific Style and Format: The CBE Manual for Authors, Editors, and Publishers, 6th ¢d.,
1994, Cambridge University Press.
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Index

abstract of paper, 152
acceleration due to gravity: see g
acuity, vernier, 74
algebra.cbecking, 148-50
ambiguity in record, 131-2
ampere, definition of, 19}
amptifier,

bandwidth of, 66, 84,93

tock-in, 79-80, 82-5

negative feedback in,64-7, 105

operationat. 79, 83~3, 206

stability of, 67

apparatus
design of, 122, 206
placing of, 119

argon, discovery of, 114-35
arithmeltic, 144-5]

checking, 146-8

reducing mistakes in, 1458
ajithmetic mean: see mean

atomic clock; see caesium atomic clock

atomic mass unit, 151,192
authors, instructions to, 155-6
average over distribution, 12
Avogadro constant, 192.204

back!ash, 59
bandwidth, 66,84,93
narrowing, 84
beats. 62-4
best value, defined, 23
binary counter, 80
binomial distribution, 17-3, 183
standard deviation, 172-3
Bottzmann constant, 35, 70, 192
Brownian motion, 69-70

caesium atomic clock, 94-6
fountain technique. 96
laser cooling, 96

calcutating devices, 144~5

calcutator, 16-17,145

catibration, 57
curve, 133, 135
empirical, 75

calipers, vernier, 59~60

calorie, 190

candela, definition of, 191

cathetometer, 59

cathode rays, $53-4

central limit theorem, 22
c.g.s.units, 188, 190
charge, elementary, 8, 192
checking
algebra, 148-50
arithmetic, 146-8
chi-squared (xz) distribution, $76-87
comments, {86- 7
constraints, 182
degrees of freedom, 1812
derivation, $77-80
goodness of fit test, 182-6
table of probability values, 194-5
worked examples, 184-6
clarity
in record, 130-2
in scientific writing, 156
cleaning optical equipment, 18
Cohen and DuMond, 1t4n
compensator in Rayteigh refractometer, 75--6
computer, 17, 32-6, t44
constants, physical, 192
converter, digital-to-anaogue, 81
Coordinated Universal Time, 97
copying in record, 126 -7
corrections, calculated and empirical, 10911
counter, binary, 80
current generator, 8t-2

Debye theoty of specific heats, 139~40
decimat factorsfor units, 190
definition, operational, 58
degrees of freedom, 181~2
design of apparatus, 122, 206
deuterium, discovery of, 115
diagrams, 127-9

in a paper, 155
diffraction effect, 111
digitat-to-analogue converter, 8]
dimensions, 148-9, 150
dispersion effect

in refractometer, 77--8

in waves, 108
distribution, {0-14

average over, 12

binomial, 171-3,183

chi-squared (x3), 7687

function, 18~12

Gaussian: see Gaussian distribution

Poisson, 23, 173-5



distribution (con d)

standard deviation of, 12
doubtet method in mass spectroscopy, 202
drift, 105

Earth
mean density of, 204
radius of, 204
efectricat resistivity of copper, 203
electricat units. 190
etectron volt, 188, 190
empirical calibration, 75
energy
equipartition of, 70
units, 190
error
calculations, 43-6, 50
finat quoted, 45-6
in function, 27-30, 46-8
indication on graph, 41 -2
parallax, 55-6
probabte, 21
random, 6--8
standard: s ¢e Standard error
systematic, 6--8, 45, 102
worked exampte, {6
2€r0: see 2er0 error
errors
combination of, 28-30,43-6
contributing, non-contributing, 445
and experimental procedure. 48-9, 117
independent, dependent, 27, 41
summary of treatment, 50
exact fractions, method of , 202-3
expansion, thermal,6%-2, 105
Excel" 33, 144
eyepiece, cylindrical,74-5

feedback
negative, 64-17, 105
positive, 67
tilter, low-pass, 83-4
flickernoise, 71
fluorescent lighting, 201
Fourier analysis, 70
frequency,
measurement of, 63 -4
of optical source, 116
response of amplifier. 66.84,93
standards, 94-8
fringes, white-tight, 76-8
Froome, $10-11, 116
function, errorin, 27-30, 46-8
fused silica, 6% 2

g, acceleration due to gravity
absolute measurement of. 86-94
relative measurement of, 112-13
tidal variation in, 93-4
value of, 192
G, gravitational constant, 15%, 192, 204
gat, 89n
gauge block, 58, 61
gauss. 90

Index

Gaussian distribution, $8-23
standarddeviationof, 19
validity for measurements, 22-3
variance of s~ for, 164-5

Gaussian function
evaluation of integrals, 161-3
values of, 193

Gaussian integrat function. 19-21
values of, 193

General Conference of Weights and Measures,

188
Global Positioning System, 98— 10}
applications, 100-1
correction to receiver clock, 99-100
goodness of fit test, 182-6
graph paper, 136-7
graphs, 133-43
hints on drawing, 138-40
indicating errors on, 141-2
scale for, 137-8
sensitivity of, 142-3
symbolsin, £39-40
as visual aids, $33-4
gravimeter,
absolute, 94
spring, 112-13

histogram, 10-1%
hunting, in servo system, 69

1, use of in scientific writing, 157
independent errors, 27, 4]
index, 152
instructions to authors, §55-6
instrumental vaniation, 105
integral function, 19- 21
for Gaussian distsibution, 19-21
valuesof, 193
integrals of Gaussian function, 19, 161 -3
Internationat Atomic Time, 97, $00

Internationat Bureau of Weights and Measures,

intrinsicgain of amptifier, 64
Invar, 61
isolator, long-pesiod, 90-2

Johnson noise. 70
Josephson, ac effect, 86

Kater's pendulum, errorsin, 51, 86
Kayeand Laby. 129. 13}, 150
kelvin, definition of . 191

kilogram, definition of, 191

\aser, 87-8, 116
feap second, 97
least squares, method of, 30-6, 88, 166-70
Legendre, 3t
length
measurement of, 55-62
temperature effect, 632
lenses, care of, 118
light intensity, measurementof, 84-5
light, speed of, 11081, 815-16, 192



tighting, 119
fluorescent, 201
liquid, transmission oflight through, $09-10
long-period isotator, 90-2
loose-leaf record, 125-6

magnetic field, measurement of, 96-7
maguetic resonance, 96. 7
magnetostriction, 105
mass spectograph, 5, 202 .
mathematical material in papers, 11 5~16
mathematicaltables
chi-squared probabitity values, 194-5
values of Gaussian function, 193
mean
arithmetic mean, 9-10, 12
and best vatue, 23
standard errorin, 12-16, 20-1, 24, 196-7
measurements
original, 126-7
repetition of . 119-21
sequence of, 1034
triial, 117
memoty, read-only 80-1
method of teast squares, 30-6, 88, 166-70
metre, definition of, 191
metre rule, 55~7
Michelson and Mortey, 115
micrometer screw gauge, 57-8
microprocessor, 68,206
microscope, travelting, 59
microwave measurements, 115 16
Mittikan, 8
mole, definition of, 191
MOSFET 82

negative feedback, 64-7, 105
neutron lifetime, 42
noise,69-71
reduction, 83-5
normat distribution: s ee Gaussian distribution
notebook, 125-6
null methods, 13 3-14
Nyquist, 67

operational amplifier, 79, 81-3, 206
operational definition, 58
optical equipment, |18

opticat radiation, measurement o [ frequency, 116

orders of magnitude, 62, 148
exerciseson, 150-1

Ostwald viscometer, 111-12

overestimate o lerror, 46

paper
abstractof, 152
diagramsin, 155
mathematicat materialin, 155-6
plan of, 153
presentation of resultsin, 154-5
sections of, $53-5
title of, 152

paragraphs, 157

paraltax error, 55-6

Index

participle, unatiached, 157
pendutum, Kater’s reversibte, 51, 86
pendutums, coupted, 127-8
permeability of vacuum, 192
personat errors, 119
physical constants, valuesof, 192
piezoelectric effect, 94
Planck constant, 70,95,97, 192
pointsin pairs,methodof,36,41-2
Poiseuitle’s formula, $31 -12
Poisson distribution, 23, 173-5
applicationsof, 174-5, 185~6
standard deviation of., 174
positive feedback, 67
potentiometer, 113
precise measurements, 11416
preliminary experiment, 117-18
probabte error, 21

quartz, 94, 99-100

randomerror, 6-8
Rayteigh refractometer, 73-9
apptications of , 78-9
compensator in, 756
precision of , 78-9
reference system in, 74
white-light fringes in, 76-8
read-only memory, 80~ 1
record of experiment, 125-32
aids te clarity in, 130
common faults in, 1331-2
diagrams in, 127-9
tablesin, 129-30
recording measurements, 126
refractive index
of gases, 78--9
of gtass, 30, 46.-7
refractometer: see Rayleigh refractometer
refative methods. $81-13
retativity, speciat theory of, 115
repetition of measurements, 119-21
residual, 15,31-2,168--70
resistivity, measurement of, 79-86
resonance, 96--7, 120-1
results, working out, 121-2
retroreflector, 87-8. 100-1
Reynolds, 133 4
rule, metre, 55.-7
ruling of graph paper, 136-7
Rydberg constant, 192, 204

sample. standard deviation of. 15
scale

of diagram, 128-9

ofgraph, 137-8
scientific writing, 152-8
second, definition of 96, 191
sections of paper, 153-5
semiconductor

energygap, 35-6

resistance~temperature relation, 33
sequence of measurements, $03~4
serial number of instrument, 126
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ser.es expansion, 150
servo system, 67-8, 89-90, 92, 105
stability of, 69
shot noise, 70-1
Sl units, $88-91
silica, fused, 64--2
sotdering. 118
sound, speed of, 107-9. 204
specific heats, Debye theory of, 139-40
spectrometer, |18, 121
speed
oflight, §30--11,185-16, 192
ofsound, 107-9,204
spreadsheet, 33, 144
worked examples, 33-6, 185-6
spring gravimeter, 112.-13
stabitity
ol amplifier, 67
of servo system, 69
standard deviation
of binomiat distribution, 172-3
of distribution, 12
ofGaussian distribution, 19
of Poisson distribution, 174
of sample, {5
standard error
inmand ¢, 32--3, 39-40, 166-70
inthe mean, 12-16,20-1,24, 196-7
in a single observation, 12-16, 20-%, 24,
196-7
standard frequency, sourcesof,94-8
Stern-Gerlach magnet, 95-6
straight tine, 30-6, 39-40, 166-70
stroboscope, 71
symbols in error theory, 24-5
symbols, recommendations by Royat Society, 29
symmetry
apparent, $02-3
as check in algebra, 149
systematic error, 6-8, 45, 102
systematic variations, 106-9

tabtes

headingsfor, 129-30, 146

mathematical, 206

in a paper, 155

unitsin, 129-30
temperature

effect on lengthmeasurement, 68 -2

messurement of, 72
temperature control, 67 -9
thermat conductivity

of copper. 26

measurement of, 102-3
thetmal expansion, 61 -2, 105
thermal noise, 70
thermocouple, 68
thetmoetectric effect, 79, 83
thermometer, typesof, 72
Thomson, 153-4, 156, §57
tidal variation of g, 93-4
timescates97-8
Coordinated Universal Time, 97
{nternational Atomic Time, 97, 100
t1olerances, 122
transmission of light through liquid, $09- 10
travelling microscope, 59
triat measurements, {17
turbulent flow, 133-4

unattached participle, 157
units
c.gs., 188,190
convention for expressing, 129-30, 138
decimal factors for, 190
etectrical, 190
SI, 188-91

values of physicat constants, 192
vander Pauw theorem, 80
variance, 12n

of 5 for Gaussian distribution, 22, 164 -5
ventitation, 119
vernier acuity, 74
verniercalipers, 59-60
viscometer, 111-12
viscosity, 103-4, 11} 12,190,204
visualaids, 133-4
voltage

generator, 79

standards. 86

weighting of results, 37-8, 40,42, 170

Weston standard cell, 86

Wheatstone bridge, 103, t13

white-light fringes, 76-8

worked examptes
chi-squared distribution, $84-6
method of least squares, 33-6
single vanable, 16

working out resutts, $21-2

writing, scientific, 152-8

zener diode, 42, 85-6, 101
2ero erfor, 55-6 T



