The McGraw-Hill Companies _

FOURTH EDITION

~ 8 -I-.F‘

L

Y

0{\\ oS a’;}o

OBJECT /7
ORIENTED /- =%
=

|

%

: 3

[

A

el
- ¥

[

[}
|

1

[
) _}:

Y

=" PROGRAMMING ~-o¢

b e e

i ¢

¥ +
v +
N 4 +
) ¢
Y {

r 1

oA 2 S ;.’s}-

iy

* ¥

- v
-l iy
A A b b

E BALAGURUSAMY

Now a unique opportunity to access the Web Resources!

Look for the Genuinaness Catiicale insida the book]

l

[Scrafch the silver ink on the Genuinenass Cerdificate to tind your Unique Access Number* J

L4
{ Access the website]

Rt fwww. mbihe. comvbalagurusamy/oopde

¥

[Chick on tha First Time Usars Link in the OLC menu an your left J

[Al tha bottom of the text appearing on your right-hand side, ook for Register Now]

and click on tha Student Enk

. J

[Mow click on the link that says: | have a registration code that came with my book. J

l

When asked to enfar your code, fype in your Unique Access Mumber]

o

[Create your Personalized Account by selecting your username and password]

l

[Click on the Student Edition Link in the OLC manu on your left]

l

[Login using your parsonalkzed usamame and passwond]

* This numbear is meant for one time use and is saif desiruchibie

FOURTH EDITIOMN

il 0
Irr

.+ ORIENTED
~ PROGRAMMING

"
%
%
)
*
L]

"'rr e
-I._f'f
)

"l

This One [

O R
COKZ-DEXBIOK 1 o material

DGX-5

About the Author

E Balagurusamy, former Vice Chancellor, Anna University, Chennai, is currently Member,
Union Public Service Commission, New Delhi. He is a teacher, trainer, and consultant in
the fields of Information Technology and Management. He holds an ME (Hons) in Electrical
Engineering and a Ph. D. in Systems Engineering from the Indian Institute of Technology,
Roorkee. His areas of interest include Object-Oriented Software Engineering, Electronic
Business, Technology Management, Business Process Re-engineering, and Total Quality
Management.

A prolific writer, he has authored a large number of research papers and several books.
His best selling books, among others include:

Programming in C#, 2/e
Programming in Java, 3/e
Programming in ANSI C, 4/e
Programming in BASIC, 3/e
Numerical Methods, and
Reliability Engineering

LA N N NN

A recipient of numerous honours and awards, he has been listed in the Directory of
Who's Who of Intellectuals and in the Directory of Distinguished Leaders in Education.

OBJECT
ORIENTED
PROGRAMMING
WITH

C++

FOURTH EDITION

E Balagurusamy _

Member
Union Public Service Commission
New Delhi

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

Mo Graw-Hill Cffices

New Delhi MNew York St Louis San Francisco Auckland Bopoti Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokve Toronto

i—l| Tata McGraw-Hill

Published by Tata MoGraw-Hill Publishing Company Limited,
7 West Patel Magar, New Delhi 110 008,

Copyright © 2008, 2006, 2001, 1994, by Tata McGraw-Hill Publishing Company Limited

No part of this publication may be reproduced or distributed in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prios
written permission of the publishers, The program listings (if any) may be entered, =tored and execwied in a
computer system, but they may not be reproduced for publication.

Fouwrth reprint 2008
DOLCRDRXRAZXNE

This edition can be exported from India only by the publishers,
" Tata McGraw-Hill Publishing Company Limited.

ISBN (13 digits): 978-0-07-066907-9
ISBN (10 dugits): O-07-066907 -4

Muanaging Director: Ajay Shukia

Creneral Manager: Publishing—SEM & Tech Ed: Vibha Mahajan
Sponsoring Editor: Shalind Sha

Jr. Sponsoring Editor: Nilanjan Chakravarty

Senior Copy Editor: Dipika Dey

senior Prodoction Manager: P L Ponding

Creneral Manager: Marketing—Higher Education & School: Mickael J, Criz
Product Manager; SEM & Tech Ed: Biju Ganesan

Controller—Production: Rajender P Ghansela
Asst. Gieneral Manager—Production: 8 L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed o be
reliable, However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any
information published herein, and peither Tata McGraw-Hill nor its authors shall be responsible for any
errors, omissions, or damages arising out of vse of this information, This work is published with the
understanding that Tata McGraw-Hill and its authors are supplying information bt are nol attempling 1o
render engimeering or other professional services. If such services are required, the assistance of an
appropriate professional should be sought.

Typeset at Script Makers, 19, Al-B, DDA Market, Paschim Vihar, New Delli 110 063, and prainted at
Gopsons, A-2 & 3, Sector 64, Noida - 201 30/

Cover: Gopsons

rhe McGraw-Hill Companies

Contents

Preface xiLi
1. Principles of Object-Oriented Programming 1
1] Soft Crisis 7

1.2 Software Evolution 3
1.3 A Look at Procedure-Oriented Propramming 4
1.4 Object-Oriented Programming Paradigm 6
1.5 Basic Concepta of Object-Oriented Prt;grﬂ.mming i
16 Benefits of OOPF 12
1.7 Object-Oriented Languages 13
1.8 Applications of QOP 14
Summary 15
Review Questions 17

2. Beginning with C++ 19

21 What 1a C+4+7 19
2.2 Applications of C++ 20
2.3 A Simple C++ Program 20
24 More C44 Statements 35
2.5 An Example with Class 258
2.6 Structure of C++ Program 29
2.7 Creating the Source File 30
2.8 Compiling and Linking 30
Summary J1
Review Questions 32
Debugging Exercises 33
Programming Exercises 34

3. Tokens, Expressions and Control Structures 35

d1 Introduction 35

3.9 Tal 26

3.3 Kevwords 36

44 Identifiers and Constants 36
a5 Basic Data Types 38

3.6 User-Defined Data Types 40
3.7 Derived Data Types 42

vi ® Contents
3.8 Symbolic Constants 4.3
3.9 Type Compatibility 45
210 Declaration of Variables 45
3.11 Dynamic Initialization of Variables 46
312 Referencs Variables 47
3.13 Operators in C++ 49
3.14 Scope Resolution Operator 50
3.15 Member Dereferencing Operators 52
316 Memory Management Operators 52
3.17 Manipulators 55
3.18 Type Cast Operator 57
3.19 Expressions and their Types 58
3.20 Special Assignment Expressions 60
3.21 Implicit Conversions 61
322 Operator Overloading 63
3.23 Operator Precedence 63
424 Control Structures &4
Summary 69
Review Questions 71
Debugging Exercises T2
Programming Exercises 75
4, Functions in C++ 77
41 Introduction 77
42 The Main Function 78
4.3 Function Prototyping 79
4.4 Call by Reference 81
4.5 Heturn by Reference 82
L 6 Inline F : T
4.7 Default Arpuments 84
4.8 const Arpuments 87
4.9 Function Overloading 87
4.11 Math Library Functions 50
Summary 50
Review Questions 92
Debugging Exercises 853
Programming Exercises 95
IS. Classes and Objects 96

g1 Introduction 96
T C S Revisited 97

5.4

Specifying a Class 99

Contents

b.4 Defining Member Functions 103
5.5 A C++ Program with Class 104
5.6 Making an Outzide Function Inline 106
5.7 Nesting of Member Functions 107
68 Private Member Functions 108
59 Arrays within a Clags 109
5.10 Memory Allocation for Objectz 114
511 Static Data Members 115
5.12 Static Member Functions 117
5.13 Arravs of Objects 119
5.14 Objects as Function Arguments 122
5.15 Friendly Functions 124
5.16 Returning Objects 130
5.18 Pointers to Members 132
5.19 Local Classes]34
Summary 135
Review Questions 136
Debugging Exercises 137
Programming Exercises 142

® vii

6. Constructors and Destructors 144
61 Introduction 44
62 Constructors J45
6.4 Multiple Constructors in a Class 150
6.6 Constructors with Default ﬁLrEumth-; Ia3
6.6 Dyvnamic Initialization of Objects 153
6.7 Copy Constructor 156
6.8 Dvnamic Constructors 158
6.9 Constructing Two-dimensional Arrays 160
6.10 const Objects 162
611 Destructors J62
Summary 164
Review Questions 165
Debugging Exercises 166
Programming Exercises 169
7. Operator Overloading and Type Conversions 171

11 Introduction 777

7.2 Defining Operator Overloading 172
7.3 Owverloading Unary Operators 173
7.4 Overloading Binary Operators 176

viii ®

Contenis

7.5

Overloading Binary Operators Using Friends

I78

7.6

Manipulation of Strings Using Operators 183

7.7

Rules for Overloading Operators 186

7.8

Type Conversions I87

Summary 185

Review Questions 196
Debugging Exercises 197
Programming Exercizses 200

8. Inheritance: Extending Classes

201

81 Introduction 2071

8.2

Defining Derived Classes 202

8.3

Eil‘.l.E’]E Inheritance 204

8.4

Making a Private Member Inheritable 210

85 Multilevel Inheritance 2713

8.6

Multiple Inheritance 218

87 Hierarchical Inheritance 224

8.8

Hybrid Inheritance 225

8.10 Abstract Classes 232

8.12

Member Classes: Nesting of Classes 240

9. Pointers, Virtual Functions and Polymorphism

Summary 241

Review Questions 243
Debugging Exerciges 243
Programming Exercises 248

251

81 Introduction 257
92 Pointers 253

9.3

Pointers to Objects 265

24

this Pointer 270

9.5 Pointers to Derived Classes 273
T Vi 1F , 575

Summary 282

Review Questions 283
Debugging Exercises 284
Programming Exercises 289

10. Managing Console I/O Operations

10.1 Introduction 290
102 Ctt+ Streams 297

290

Contents & ix

10.3 ;HIIEHIfEE fEiEEEE' 252

10.4 Unformatted V'O Operations 292
10.5 Formatted Console 'O Operations 301
10.6 Managing OQutput with Manipulators 312
Summary 317
Review Questions 319
Debugging Exercizses 320
Programming Exercises 321
11. Working with Files 323
111 Introduection 333
11.2 Classes for File Stream Operations 325
11.3 Opening and Closing a File 325
114 Detecting end-of-file 334
1.5 More about Openi): File Modes 334
11.6 File Pointers and Their Manipulations 335
11.7 Sequential Input and Output Operations 338
118 Updating a File: Random Acess 343
119 Error Handling During File Operations 348
11.10 Command-line Arguments 350
Summary 353
Review Questions 355
Debugging Exercises 356
Programming Exercises 358
12. Templates 359
121 Introduction 359
122 Class Templates 360
12.3 Class Templates with Multiple Parameters 365
124 Function Templates 366
1256 Function Templates with Multiple Parameters 371
126 Overloading of Template Functions 372
12,7 Member Function Templates 373
128 Non-Type Template Arguments 374
Summary 375
Heview Questions 376
Debugging Exercises 377
Programming Exercises 379
13. Exception Handling 380
121 Introducti 280
13.2 Basics of Exception Handling 381

X ®

Contents

13.3

Exception Handling Mechanism 381

13.4
13.5
13.6

Throwing Mechanism 386
Catching Mechanism J86
Rethrowing an Exception 391

13.7

Specifying Exceptions 392

Summary 394

Review Questions 395
Debugging Exercises 396
Programming Exercises 400

IH. Introduction to the Standard Template Library 401
141 Introduction 407
14.2 Components of STL. 402
143 Contai 7
144 Algorithms 406
14 5 [terators 408
146 Application of Container Classes 409
147 Function Objects 418
summary 421
Review Questions 4323
Debugging Exercises 424
¢ Programming Exercizes 428
15. Manipulating Strings 428
151 Introduction 428
15.2 Creating (string) Objects 430
153 Manipulating String Objects 432
15.4 HRelational Operations 433
15.56 String Characteristics 434
15.6 Accessing Characters in Strings 436
15.7 Comparing and Swapping 438
Summary 440
Review Questions 441
Debugging Exercizses 442
Programming Exercises 445
16. New Features of ANSI C++ Standard 446

161 Introduction 448

162 New Data Tvpes 447

16.3 New Operators 449

164 Class Implementation 451

Contents 8 Xi

16.5 DNamespace Scope 453
16.6 Operator Kevwords 459
16.7 New Reyvwords 460
168 New Headers J61
Summary 461
Review Questions 463
Debugging Exercises 464
Programming Exercises 467

Ll‘f. Object-Oriented Systems Development 468

171 Introduction 468
17.2 Procedure-Oriented Paradigms 469
173 Procedure-Oriented Development Tools 472
17.4 Object-Oriented Paradigm 473
17.5 Object-Oriented Notations and Graphs 475
17.6 Steps in Object-Oriented Analvsis 479
17.7 Steps in Object-Oriented Design 483
17.8 Implementation 490
17.9 Prototyping Paradigm 480
7.10 Wrapping Up 481
Summary 492
Review Questions 494

Appendix A: Projects 496
Appendix B: Executing Turbo C++ * 539
Appendix C: Executing C+ + Under Windows 552
Appendix D: Glossary of ANSI C+ + Keywords 564
Appendix E: C+ + Operator Precedence 570
Appendix F: Points to Remember 572
Appendix G: Glossary of Imporiant O+ + and OOP Terms 584
Appendix H: C++ Proficiency Test 596
Bibliographby 632

Index 633

Copyrighted material

Principles of Object-Oriented
Programming

Y Y Y Y Y Y Y YYYYYY

Key Concepts

Software evolution
Procedure-oriented programming
Object-oriented programming
(jects

Classes

Data abstraction
Encapsulation

Inheritance

Pobvmorphizm

Dymamic binding

Message passing
Ohject-oriented lanpuages
1_”1_'|-|"T bazed languages

|1.1 Software Crisis

Developments in software technology
continue to be dynamic. New tools and
techniques are announced in quick
succession, This has forced the software
engineers and industry to continuously look
for new approaches to software design and
development, and they are becoming more
and more critical in view of the increasing
complexity of software systems as well as
the highly competitive nature of the
industry. These rapid advances appear to
have created a situation of crisis within the
industry. The following issues need to be
addressed to face this crisis:

® How to represent real-life entities
of problems in system design?

How to design systems with open
interfaces?

2 ® Object-Oriented Programming with C++

How to ensure reusability and extensibility of modules?

How to develop modules that are tolerant to any changes in future?
How to improve software productivity and decrease software cost?
How to improve the quality of software?

How to manage time schedules?

How to industrialize the software development process?

Many software products are either not finished, or not used, or else are delivered with
major errors. Figure 1.1 shows the fate of the US defence software projects undertaken in
the 1970s. Around 50% of the software products were never delivered, and one-third of
those which were delivered were never used. It is interesting to note that only 2% were used
as delivered, without being subjected to any changes. This illustrates that the software
industry has a remarkably bad record in delivering products.

3.5 - Paid for but
nol recaived
3 -
Deliversd
i 25— bt ol used

s 21 | r
§1.5—

-
a ! |
054 B ! |
B 1 '
0 —— e e | - | . i .

Fig. 1.1 « The state of US defence projects (eccording to fhe LS gmmrnml}- - I

Changes in user requirements have always been a major problem. Another study
(Fig. 1.2) shows that more than 50% of the systems required modifications due to changes
in user requirements and data formats. It only illustrates that, in a changing world with a
dynamic business environment, requests for change are unavoidable and therefore systems
must be adaptable and tolerant to changes.

These studies and other reports on software implementation suggest that software products
should be evaluated carefully for their quality before they are delivered and implemented.
Some of the quality issues that must be considered for critical evaluation are:

Correctness

Maintainability

Reusability

Openness and interoperability

o DO B3

Principles of Object-Oriented Programming ® 3

Portability
Security
Integrity

User friendliness

s

Selection and use of proper software tools would help resolving some of these issues.

Documentation Other Efficiency Changes in user
Hardware ! : improvement requiremants

Changes in
data formats

Fig. 1.2 = Breakdown of maimtenance cosls

1.2 Software Evolution

Ernest Tello, a well-known writer in the field of artificial intelligence, compared the evolution
of software technology to the growth of a tree. Like a tree, the software evolution has had
distinet phases or “layers” of growth, These layvers were built up one by ene over the last five
decades as shown in Fig. 1.3, with each layer representing an improvement over the previous
one, However, the analogy fails if we consider the life of these layers. In software systems,
each of the layers continues to be functional, whereas in the case of trees, only the uppermost
laver 18 functional.

Alan Kay, one of the promoters of the object-oriented paradigm and the principal designer
of Smalltalk, has said: "As complexity increases, architecture dominates the basic material”,
To build today's complex software it is just not enough to put together a sequence of
programming statements and setz of procedures and modules; we need to incorporate sound
construetion techniques and program structures that are easy to comprehend, implement
and modify.

Since the invention of the computer, many programming approaches have been tried.

4@ Object-Oriented Programming with C++

These include techniques such as modular programming, top-down programming, bottom-
up programming and structured programming. The primary motivation in each has been
the concern to handle the increasing complexity of programs that are reliable and
maintainable. These techniques have become popular among programmers over the last
two decades.

Machine language -
Assembly language

Procedure-omented

Otyect-oriented programming

Fig. 13" e Layers of computer software |

With the advent of languages such as C, structured programming became very popular
and was the main technigque of the 1980s. Structured programming was a powerful tool that
enabled programmers to write moderately complex programes fairly easily. However, as the
programs grew larger, even the structured approach failed to show the desired results in
terms of bug-free, easy-to-maintain, and reusable programs.

Object-Oriented Programming (O0OP) 18 an approach to program organization and development
that attempts to eliminate some of the pitfalls of conventional programming methods by
incorporating the best of structured programming features with several powerful new concepts. It
is a new way of organizing and developing programs and has nothing to do with any particular
language. However, not all languages are suitable to implement the OOP concepts easily.

Il.’j A Look at Procedure-Oriented Programming

Conventional programming, using high level languages such as COBOL, FORTRAN and C, is
commonly known as procedure-oriented programming (POF). In the procedure-oriented
approach, the problem is viewed as a sequence of things to be done such as reading, calculating

Prinuiples of Object-Oriented Programming —8 5

and printing. A number of functions are written to accomplish these tasks. The primary focus
is on functions, A typical program structure for procedural programming is shown in Fig. 1.4,
The technique of hierarchical decomposition has been used to specify the tasks to be completed
for solving a problem. .

L o g

F_:um:.-l%un -1 Function - 2 Fi =

Function - 4 Fi -5

L 3

Function - & Function - T Function - 8

Fig. 1.4 = Typical structure of procedure-orienibed Fm;gn_m_s s I

Procedure-oriented programming basically consists of writing a list of instructions (or
actions) for the computer to follow, and organizing these instructions into groups known as
functions. We normally use a flowchart to organize these actions and represent the flow of
control from one action to another. While we concentrate on the development of functions,
very little attention is given to the data that are being used by various functions. What
happens to the data? How are they affected by the functions that work on them?

In a multi-function program, many important data items are placed as global so that they
may be accessed by all the functions, Each function may have its own local data. Figure 1.5
shows the relationship of data and functions in a procedure-oriented program.

Global data are more vulnerable to an inadvertent change by a function. In a large program
it is very difficult to identify what data is used by which function. In case we need to revise
an external data structure, we also need to revise all functions that access the data. This
provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that it does not model real
world problems very well. This is because functions are .mhnn-unaﬂtad u.m.'l do not really
correspond to the elements of the problem.

6 ® Object-Oriented Programming 1eath C++

L '
" /
1"\.\ .-__..-' E-\._\H ._.-" %
I L
5 ,.-"':::\- .-:l':{"\-\.\ i
AN ;o™ X
) - ,-'f) \
A F e \'-. ¥ " |)
Function -1 Funetion -2 | Function -3 |
- E— 1 I
|
Local data | Local data Local data |
]

Fig. 1.5 + Relationship of data and functions in procedural prograntming |

Some characteristics exhibited by procedure-oriented programming are:

Emphasis is on doing things (algorithms),

Large programs are divided into smaller programs known as functions.
Most of the functions share global data.

Data move openly around the system from function to function.
Funections transform data from one form to another.

Employs top-dewn approach in program design.

I 1.4 Object-Oriented Programming Paradigm

The major motivating factor in the invention of ohject-oriented approach is to remove some
of the flaws encountered in the procedural approach. OOFP treats data as a critical element
in the program development and does not allow it to flow freely around the system. It ties
data more closely to the functions that operate on it, and protects it from accidental
modification from outside functions. OOP allows decomposition of a problem into a number
of entities called objects and then builds data and functions around these objects. The
organization of data and functions in ohject-oriented programs is shown in Fig. 1.6. The
data of an object can be accessed only by the functions associated with that object. However,
functions of one object can access the functions of other objects.

Some of the striking features of ohject-oriented programming are:

Emphasis is on data rather than procedure.
Programs are divided into what are known as objects.
® Data structures are designed such that they characterize the objects.

Principles of Object-Onented Programming e 7

Functions that operate on the data of an object are tied together in the data struc-
ture.

Data is hidden and cannot be accezsed by external functions.

Objects may communicate with each other through functions.

New data and funetions can be easily added whenever necessary.

Follows bottom-up approach in program design.

Object A Object B

Communicalion

e i

Fig. 1.6 <« Orgunizalion of dala and funchions in O0P I

Object-oriented programming is the most recent concept among programming paradigms
and still means different things to different people. It is therefore important to have a working
definition of object-oriented programming before we proceed further. We define “object-
oriented programming as an approach that provides a way of modularizing programs by
creating partitioned memory area for both data and functions that can be used as templates
for ereating copies of such modules on demand.” Thus, an object is considered to be a
partitioned area of computer memory that stores data and set of operations that can access
that data. Since the memory partitions are independent, the objects can be used in a variety
of different programs without modifications.

Il.i Basic Concepts of Object-Oriented Programming

It is necessary to understand some of the concepts used extensively in object-oriented
programming. These include:

Ohjects
® (Classes

B & Ohject-Oriented Programming with C++

Data abstraction and encapsulation
Inheritance

Polymorphism

Dynamie binding

Message passing

L B NN

We shall discuss these concepts in some detail in this section.

Objects

Objects are the basic run-time entities in an object-oriented system. They may represent a
person, a place, a bank account, a table of data or any item that the program has to handle.
They may also represent user-defined data such as vectors, time and lists. Programming
problem is analyzed in terms of objects and the nature of communication between them.
Program objects should be chosen such that they match closely with the real-world objects.
Objects take up space in the memory and have an associated address like a record in Pascal,
or a structure in C.

When a program is executed, the objects interact by sending messages to one another,
For example, if “customer”and “account” are two objects in a program, then the customer
object may send a meszage to the account ohject requesting for the bank balance. Each
object contains data, and code to manipulate the data. Objects can interact without having
to know details of each other's data or code. It 15 sufficient to know the type of message
accepted, and the type of response returned by the objects. Although different authors
represent them differently, Fig. 1.7 shows two notations that are popularly used in object-
oriented analvsis and design.

Object: STUDENT STUDENT

DATA Total 1
Mame

Date-of-birth
. Eﬁmﬂrﬂga

FURCTIONS
Total :
Avarage Display |
Display

Fig. 1.7 = Twwo weays of represeniing an object

Classes

We just mentioned that objects contain data, and eode to manipulate that data. The entire
set of data and code of an object can be made a user-defined data type with the help of a

Principles of Object-Oriented Programming # 9

class. In fact, objects are variables of the type class. Once a class has been defined, we can
create any number of objeets belonging to that class. Each object is associated with the data
of type class with which they are created. A class is thus a collection of objects of similar
type. For example, mango, apple and orange are members of the class fruit. Classes are
user-defined data types and behave like the built-in types of a programming language. The
syntax used to create an object is no different than the syntax used to create an integer
object in C. If fruit has been defined as a class, then the statement

fruit mango;

will create an object mango belonging to the class fruit.

Data Abstraction and Encapsulation

The wrapping up of data and functions into a single unit (called class) is known as
encapsulation. Data encapsulation is the most striking feature of a class. The data is not
accessible to the outside world, and only those functions which are wrapped in the class can
access it. These functions provide the interface between the object's data and the program.
This insulation of the data from direct access by the program is called data hiding or
information hiding.

Abstraction refers to the act of representing essential features without including the
background details or explanations. Classes use the concept of abstraction and are defined
as a list of abstract attributes such as size, weight and cost, and functions to operate on -
these attributes. They encapsulate all the essential properties of the objects that are to be
created, The attributes are sometimes called data members because they hold information.
The functions that operate on these data are sometimes called methods or member functions.

Since the classes use the concept of data abstraction, they are known as Abstract Data
Types (ADT).

Inheritance

Inheritance is the process by which objects of one class acquire the properties of objects of
another class. It supports the concept of hierarchical classification. For example, the bird
‘robin' is a part of the class flying bird’ which is again a part of the class 'bird’. The principle
behind this sort of division is that each derived class shares common characteristics with
the class from which it is derived as illustrated in Fig. 1.8,

In OOP, the concept of inheritance provides the idea of reusability. This means that we
can add additional features to an existing class without modifying it. This is possible by
deriving a new class from the existing one. The new class will have the combined features of
both the classes. The real appeal and power of the inheritance mechanism is that it allows
the programmer to reuse a class that is almost, but not exactly, what he wants, and to tailor
the class in such a way that it does not introduce any undesirable side-effects into the rest
of the classes.

10 & Object-Oriented Programming with C++

MNote that each sub-class defines only those features that are unique to it. Without the use
of classification, each class would have to explicitly include all of its features.

Bird
Attributes
Feathers
Lay eggs
Flying Bird Manfying Bird |
Aftributes Attribute ';_1'
Robin Swallow Penguin | Kiwi

AtribLitas Attributes Attributes | Altributes

Fig. 1.8 = Properly inheritance

Polymorphism

Polymorphizm is another important OOP concept. Polymorphism, a Greek term, means the
ability to take more than one form. An operation may exhibit different behaviours in different
instances. The behaviour depends upon the types of data used in the operation. For example,
consider the operation of addition. For two numbers, the operation will generate a sum. If
the operands are strings, then the operation would produce a third string by concatenation.
The process of making an operator to exhibit different behaviours in different instances is
known as aperator overloading.

Figure 1.9 illustrates that a single function name can be used to handle different number
and different tyvpes of arguments. This is something similar to a particular word having
several different meanings depending on the context. Using a single function name to perform
different types of tasks is known as function overloading.

Polymorphism plays an important role in allowing objects having different internal
structures to share the same external interface. This means that a general elass of operations

Copyrighted maierial

Principles of Object-Oriented Programming e 11

may be accessed in the same manner even though specific actions associated with each
operation may differ. Polymorphism is extensively used in implementing inheritance.

! Shape

]
| |

Draw ()

Cinche object Box object Triangle object

Draw (clrcie) Draw (Bax) Drmr_{‘h'imgh]

Dynamic Binding

Binding refers to the linking of a procedure call to the code to be executed in response to the
call. Dynamic binding (also known as late binding) means that the code associated with a
given procedure call is not known until the time of the call at run-time. It is associated with
polymorphism and inheritance. A function call associated with a polymorphic reference
depends on the dynamic type of that reference.

Consider the procedure “draw” in Fig. 1.9. By inheritance, every object will have this
procedure. Its algorithm is, however, unigue to each ohject and so the draw procedure will
be redefined in each class that defines the object. At run-time, the code matching the ohject
under current reference will be called.

Message Passing
An object-oriented program consists of a set of objects that communicate with each other.

The process of programming in an ohject-oriented language, therefore, involves the following
basic steps:

1. Creating classes that define objects and their behaviour,
2. Creating objects from class definitions, and
3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the
same way as people pass messages to one another. The concept of message passing makes it
easier to talk about building systems that directly model or simulate their real-world
counterparts.

12 &

Object-Oriented Programming with C++

A message for an object is a request for execution of a procedure, and therefore will
invoke a function (procedure) in the receiving object that generates the desired result. Meszsage

passing

involves specifying the name of the object, the name of the function {message) and

the information to be sent. Example:

amployes. salary (nama);
. I ‘.
|

1
ohjact information
—e] _

massage

Objects have a life cycle. They can be created and dést.rnyed. Communication with an
object is feasible as long as it is alive.

1.6

Benefits of OOP

OOP offers several benefits to both the program designer and the user. Object-orientation
contributes to the solution of many problems associated with the development and quality
of software products. The new technology promises greater programmer productivity, better

quality
L

of software and lesser maintenance cost. The principal advantages are:

"I'I:imugh inheritance, we can eliminate redundant code and extend I;he use of exist-
ing classes.

We can build programs from the standard working modules that communicate with
one another, rather than having to start writing the code from scratch. This leads
to saving of development time and higher productivity.

The principle of data hiding helps the programmer to build secure programs that
cannot be invaded by code in other parts of the program.

It is possible to have multiple instances of an object to co-exist without any inter-
ference.

It is possible to map objects in the problem domain to those in the program.

It is easy to partition the work in a project based on objects.

The data-centered design approach enables us to capture more details of a model in
implementable form.

Object-oriented systems can be easily upgraded from small to large systems.
Message passing techniques for communication between objects makes the inter-
face deseriptions with external systems much simpler.

Software complexity can be easily managed.

While it is possible to incorporate all these features in an object-oriented system, their
importance depends on the type of the project and the preference of the programmer, There
are a number of issues that need to be tackled to reap some of the benefits stated above. For

Principles of Object-Oriented Programming - ¢ 13

instance, ohject libraries must be available for reuse. The technology is still developing and
current products may be superseded quickly. Strict controls and protocols need to be developed
if reuse is not to be compromised.

Developing a software that is easy to use makes it hard to build. It is hoped that the
object-oriented programming tools would help manage this problem.

'_1.1|r Object-Oriented Languages

Object-oriented programming is not the right of any particular language. Like structured
programming, OOF concepts can be implemented using languages such as C and Pascal.
However, programming becomes clumsy and may generate confusion when the programs
grow large. A language that is specially designed to support the OOP concepts makes it
easier to implement them.

The languages should support several of the OOF concepts to claim that they are object-
oriented. Depending upon the features they support, they can be classified into the following
two categories:

1. Object-based programming languages, and
2. Ohject-oriented programming languages.

Object-based programming is the style of programming that primarily supports
encapsulation and ohjeet identity. Major features that are required for object-based

programming are:

® Data encapsulation

® Data hiding and access mechanisms

#® Automatic initialization and clear-up of objects
® Operator overloading

Languages that support programming with objects are said to be object-based programming
languages. They do not support inheritance and dynamic binding. Ada is a typical object-
based programming language.

Object-oriented programming incorporates all of object-based programming features along
with two additional features, namely, inheritance and dynamic binding. Object-oriented
programming can therefore be characterized by the following statement:

Object-based features + inheritance + dynamic binding

Languages that support these features include C++, Smalltalk, Object Pascal and Java.
There are a large number of object-based and object-oriented programming languages.
Table 1.1 lists some popular general purpose OOP languages and their characteristics.

14 & Object-Oriented Programming with C#+

Table 1.1 Characteristics of some OOFP languages

Choracteristics Simuolae Smallialk Oljective T+ Ada Object Turbo = Eiffel Jmlul!

" o i b Pascal Pascal " ¥

Binding Both Late Bath Both Early Late Early FEarly Both |
{early or late) W ¥ v " o o W " < I
Polymorphism ¥ W W W W W ¥ v ' E
Dinta hiding v * v v ¥ « o - :
Concurrency ¥ Poar Poor Poor Dilfeult Ma B
Imheritances ¥ L ¥ + No v v
Multiple o . . . Na
Inheritance
Garbage v o’ v v No ’ v
Callection

like
Persistence Mo Fromised Mo W AGL Mo Mo
Genericity Mo Mo No ¥ . No Mo
Object Libraries o o o ¥ Not W r"

* Pure object-oriented languages
** Object-based languages
Others are extended conventional languages

As seen from Table 1.1, all languages provide for polymorphism and data hiding. However,
many of them do not provide facilities for concurrency, persistence and genericity. Eiffel,
Ada and C++ provide generic facility which is an important construct for supporting reuse.
However, persistence {a process of storing objects) is not fully supported by any of them. In
Smalltalk, though the entire current execution state can'be saved to disk, yet the individual
objects cannot be saved to an external file.

Commercially, C++ is only 10 years old, Smalltalk and Objective C 13 years old, and Java
only 5 years old. Although Simula has existed for more than two decades, it has spent most
of its life in a research environment. The field is so new, however, that it should not be

judged too harshly,

Use of a particular language depends on characteristics and requirements of an application,
organizational impact of the choice, and reuse of the existing programs. C++ has now become the
most successful, practical, general purpose OOP language, and is widely used in industry today.

I 1.8 Applications of QOP

0OP has become one of the programming buzzwords today. There appears to be a great deal
of excitement and interest among software engineers in using OOP. Applications of OOP

Principles of Object-Oriented Programming # 15

are beginning to gain importance in many areas. The most popular application of object-
oriented programming, up to now, has been in the area of user interface design such as
windows. Hundreds of windowing systems have been developed, using the OOP techniques.

Real-business systems are often much more complex and contain many more objects with
complicated attributes and methods. O0P is useful in these types of applications because it
can simplify a complex problem. The promizing areas for application of OOP include:

Real-time systems

Simulation and modeling

Object-oriented databases

Hypertext, hypermedia and expertext

Al and expert systems

Neural networks and parallel programming
Decision support and office automation systems
CIM/CAM/CAD systems

LA N N X N N N

The richness of OOP environment has enabled the software industry to improve not only
the quality of software systems but also its productivity. Object-oriented technology is
certainly changing the way the software engineers think, analyze, design and implement
systems,

p + . 2 EE SIS R A e,

Software technology has evolved through a series of phases during the last five decades.
The most popular phase till recently was procedure-oriented programming (POP).

POP employs top-down programming approach where a problem is viewed as a sequence
of tasks to be performed. A number of funetions are written to implement these tasks.

POP has two major drawbacks, viz. (1) data move freely around the program and are

therefore vulnerable to changes caused by any function in the program, and (2} it does
not model very well the real-world problems.

¢ ¢ ¢

&» Object-oriented programming (O0FP) was invented to overcome the drawbacks of the
POP. It employs the bottom-up programming approach. It treats data as a critical element
in the program development and does not allow it to flow freely around the system. It
ties data more closely to the functions that operate on it in a data structure called
class. This feature is called data encapsulation.

¢+ In OOP, a problem is considered as a collection of a number of entities called objects.
Objects are instances of classes.

& Insulation of data from direct access by the program is called data hiding.

16 & Object-Oriented Programming with C+4

&» Data abstraction refers to putting together essential features without including
background details.

& Inheritance is the process by which ohjects of one class acquire properties of objects of
another class.

% Polymorphism means one name, multiple forms. It allows us to have more than one
function with the same name in a program. It also allows overloading of operators so
that an operation can exhibit different behaviours in different instances.

& Dynamic binding means that the code associated with a given procedure is not known
until the time of the call at run-time.

& Message passing involves specifying the name of the object, the name of the function
(message) and the information to be sent.

& Object-oriented technology offers several benefits over the conventional programming
methods---the most important one being the reusability.

& Applications of OOP technology has gained importance in almost all areas of computing
including real-time business systems.

&» There are a number of languages that support ohject-oriented programming paradigm.
Popular among them are C++, Smalltalk and Java. C++ has become an industry standard
language today.

Key Terms
> Ada ¥» flowcharts
» assembly language ¥ function averloading
» bottom-up programming » functions
» Ces » garbage collection
> classes » global data
» concurrency » hierarchical classification
» data abstraction » inheritance
» data encapsulation » Java
» data hiding > late bisidifnig
» data members » local data
» dynamic binding » machine language
> early binding » member functions
> Eiffel » message passing

(Contd)

Principles of Object-Oriented Programming e 17

methods

modular programming
multiple inheritance

Objeet Pascal

u-hjﬁl:t-hannd Programming
 Objective C

‘ohject-oriented languages
 ohject-oriented programming
hﬁﬁ#ﬂ-

Ineuiewgumﬂus

1.1 What do you think are the major issues facing the software industry today?
1.2 Briefly discuss the software evolution during the period 1950 — 1990.
1.3 What is procedure-oriented programming? What are ifts main characteristics?
1.4 Discuss an approach to the development of procedure-oriented programs.
1.5 Describe how data are shared by functions in a procedure-oriented program.
1.6 What iz object-oriented programming? How is it different from the procedure-

ortented programming?
1.7 How are data and functions organized in an object-oriented program?
1.8 What are the unique advantages of an object-oriented programming paradigm?
1.9 Distinguish between the following terms:

{a) Objects and classes

(b) Data abstraction and data encapsulation

(c) Inheritance and polymorphism

(d) Dyvnamic binding and message passing
1.10 What kinds of things can become objects in OOPE
1.11 Describe inheritance as applied to QOP.
1.12 What do you mean by dynamic binding? How is it useful in OOP?
1.13 How does object-oriented approach differ from object-based approach?
1.14 List a few areas of application of OOP technology.
1.15 State whether the following statements are TRUE or FALSE.,

{a) In procedure-oriented programming, oll data are shared by all functions.

ib} The main emphasis of procedure-oriented programming is on algorithms
rather than on data.

T
i

vwwvvvvv

T
f
YYVYYYYYYYY

#

Copyrighted material

18 & Ohject-Oriented Programming with O++

ic) One of the striking features of object-oriented programming is the division of
programs into ohjects that represent real-world entities,

(d) Wrapping up of data of different types into o single unit is known os
encapsulation.

(e} One problem with OOP is that once a class is created it can never be changed.,

(fi Inheritance means the ability to reuse the data values of one ohject by

(g} Polymorphism is extensively used in implementing inheritance.

(h) Object-oriented programs are executed much faster than conventional
programs.

(i} Object-oriented systems can scale up better from small to large.

(3) Object-oriented approach cannot be used fo create databases.

Copyrighted material

hC++ |

| Beginning with C++

¥ ¥ Y Y Y Y Y Y Y YYYYYYY

Key Concepts

L with classes

C++ features

Main function

C4+ comments

Chutput operator

Input operator
Header file

Return statement
Namespace

Variables

Cascading of operators
C++ program structure
Client-server model
source file creation
Compitlation

Linking

2.1 What is C++?

C++ is an object-oriented programming
language. It was developed by Bjarne
Stroustrup at AT&T Bell Laboratories in
Murray Hill, New Jersey, USA, in the early
1980's. Stroustrup, an admirer of Simulag7
and a strong supporter of C, wanted to
combine the best of both the languages and
create a more powerful language that could
support object-oriented programming
featurez and still retain the power and
elegance of C. The result was C++.
Therefore, C++ is an extension of C with a
major addition of the class construct feature
of SimulaB7. Since the class was a major
addition to the original C language,
Stroustrup initially called the new language
'C with classes’. However, later in 1983, the
name was changed to C++. The idea of C++
comes from the C increment operator ++,
thereby suggesting that C++ iz an
augmented (incremented) version of C.

During the early 1990's the language
underwent a number of improvements and

20 @ Object-Oriented Programming with C++

changes. In November 1997, the ANSLITS0 standards committee standardized these changes
and added several new features to the language specifications.

C++ 18 a superset of C. Most of what we already know about C applies to C++ also.
Therefore, almost all C programs are also C++ programs. However, there are a few minor
differences that will prevent a C program to run under C++ compiler. We shall see these
differences later as and when they are encountered.

The most important facilities that C++ adds on to C are classes, inheritance, function
overloading, and operator overloading. These features enable creating of abstract data
types, inherit properties from existing data types and support polymorphizm, thereby
making C++ a truly ohject-oriented language.

The ohject-oriented features in C++ allow programmers to build large programs with
elarity, extensibility and ease of maintenance, incorporating the spirit and efficiency of C,
The addition of new features has transformed C from a language that currently facilitates
top-down, structured design, to one that provides bottom-up, object-oriented design.

|2i2 Applications of C++

C++ 15 a versatile language for handling very large programs. It is suitable for virtually any
programming task including development of editors, compilers, databases, communication
systems and any complex real-life application systems.

Since C++ allows us to create hierarchy-related objects, we can buildzpecial object-
oriented libraries which can be used later by many programmers,

® While C++ is able to map the real-world problem properly, the C part of C++ gives
the language the ability to get close to the machine-level details.

® C++ programs are easily maintainable and expandable. When a new feature needs
to be implemented, it is very easy to add to the existing structure of an object.

®@ i is expected that C++ will replace C as a general-purpose language in the near future,

|2.3 A Simple C++ Program

Let us begin with a simple example of a C++ program that prints a string on the screen.

finclude <iostream [/ include header file

using namespace std;

Contd)

Copyrighted material

Beginning with C++ & 21

int main{)

I!

cout << “[++ 15 better than C.\n"; [/ C++ sictement

return O;
by {f End of exomple

PROGRAM 2.1

' This simple program demonstrates several C++ features.

Program Features

Like C, the C++ program is a collection of functions. The above example contains only one
function, main(}). As usual, execution beging at main(). Every C++ program must have a
main(). C++ is a free-form language. With a few exceptions, the compiler ignores carriage
returns and white spaces. Like C, the C++ statements terminate with semicolons.

Comments

C++ introduces a new comment symbaol // (double slash). Comments start with a double
slash symbol and terminate at the end of the line. A comment may start anywhere in the
line, and whatever follows till the end of the line is ignored. Note that there is no closing
symbol.

The double slash comment is basically a single line comment. Multiline comments can be
written as follows:

[f This is on example of
i C++ program to illustrate
[/ Some of its feotures

The C comment symbols /#, */are still valid and are more suitable for multiline comments.
The following comment is allowed:

f* This is an example of
C++ program to illustrate
some of its features

We can use either or both styles in our programs. Since thiz is a book on C++, we will use
only the C++ style. However, remember that we can not insert a // style comment within the
text of a program line. For example, the double slash comment cannot be used in the manner
as shown below:

for(j=0; j=n; /* loops n times */ j++)

Copyrighted material

22 @ Object-Oriented Programming with Css

Output Operator

The only statement in Program 2.1 is an output statement. The statement

cout =< “C++ is better tham C.";

causes the string in quotation marks to be displayed on the sereen. This statement
introduces two new C++ features, cout and <<. The identifier cout (pronounced as ‘C out’) is
a predefined object that represents the standard output stream in C++. Here, the standard
output stream represents the screen. It is also possible to redirect the output to other output
devices. We shall later discuss streams in detail.

The operator << is called the insertion or put to operator. It inserts (or sends) the contents
of the variable on its right to the object on its left (Fig. 2.1).

Screan

cout CHe”

- Variable
Object Inserton opearator

Fig. 11 < Ouipui using inserfion operator

The object cout has a simple interface, If string represents a string vanable, then the
following statement will display its contents:

cout =< string;

You may recall that the operator << is the bit-wise left-shift operator and it can still be
used for this purpose, This is an example of how one operator can be used for different
purposes, depending on the context. This concept is known as operator overloading, an
important aspect of polymorphism. Operator overloading is discussed in detail in Chapter 7.

Copyrighted material

Beginning with C++ ® 23

It is important to note that we can still use printfl) for displaying an output. C++ accepts
this notation. However, we will use cout << to maintain the spirit of C++.

The iostream File
We have used the following #include directive in the program:

#include <=iostreams

This directive causes the preprocessor to add the contents of the iostream file to the
program. [t contains declarations for the identifier cout and the operator <<. Some old
versions of C++ use a header file called iostream.h. This is one of the changes introduced by
ANSI C++. (We should use instream_h if the compiler does not support ANSI C++ features.)

The header file iostream should be included at the beginning of all programs that use
inputfoutput statements. Note that the naming conventions for header files may vary. Some
implementations use iostream.hpp; yet others iostream.hxx. We must include appropriate
header files depending on the contents of the program and implementation.

Tables 2.1 and 2.2 provide lists of C++ standard library header files that may be needed
in C++ programs. The header files with .h extension are “old style” files which should be
used with old compilers. Table 2.1 also gives the version of these files that should be used
with the ANSI standard compilers,

Table 2.1 Commonly used old-style header files

3 : co met b R e
Header file Lo Contents and purpose ' ,ﬂ"i'ﬂ L
<assert.h= Contains macros and information for adding diagnostics that

aid program debugging

<ctype.he= Contains function prototypes for functions that test characters <cctype>
for certain properties, and function prototypes for functions
that can be used to convert lowercase letters to uppercase letters
and vice versa.

=flpat. h> Contains the floating-point size limits of the system, <cfloat>
<limits.h> Containg the integral size limits of the system. <climitas>
emath_h> Contains function prototypes for math library functions. srmaths>

«stdio. h> Contains function prototypes for the standard input/output <cstdio=
library functions and information used by them.

<stdlib.h= Contains function prototypes for conversion of numbers to text, <cstdlibs
text to numbers, memory allocation, random numbers, and
various other utility functions.

<gtring.h> Contains function prototypes for C-style string processing <cetring:>
funetions.

(Contd)

a

Copyrighted material

24 ®

Table 2.1 [Contd)

<time h= Emtnmn ftw:hun]J'I'ﬂ‘h:l'l-}’pﬂ u.nd typea fu-r ma.mpulatmg the
time and date.

<ipgtream.h> Contains function prototypes for the standard input and <ingtream>
standard output functions.

<iomanip.h> Contains function prototypes for the stream manipulators that <iomanips
enable formatting of streams of data.

<fstream. h> Contains function prototypes for functions that perform input <fstream:>
from files on disk and cutput to files on disk,

Object-Oriented Programming with C4++

Table 2.2 New h&uderﬁies included in ANSI C++

<limits:>

<typeinfos

E‘-untalnn l:lnmfmd fl.muhnna thnt are uned bg' mﬂ.m.r Etandard

library header files.

The header files contain classes that implement the standard
library containers. Containers store data during a program’'s
execution. We discuss these header files in Chapter 14.
Contains classes and functionz used by algorithms of the stan-
dard library.

Containg classes and functions used by the standard library to
allocate memory to the standard library containers.

Contains classes for manipulating data in the standard library
containers.

Contains functions for manipulating data in the standard library
containers,

These header files contain classes that are used for exception
handling.

Containg the definition of class string from the standard library.
Discussed in Chapter 15

Contains function protetypes for functions that perform input
from strings in memory and output to strings in memory.
Contains clazses and functions normally used by stream process.
ing to process data in the natural form for different languages
(e.g., monetary formates, forting strings, character presentation,
ete.)

Contains a class for defining the numerical data type limits on
each computer platform.,

Containg classes for run-time type identification (determining
data types at execution time).

Copyrighted maierial

Beginning with C++ & 25

Namespace

Namespace is a new concept introduced by the ANSI C++ standards committee. This defines
a scope for the identifiers that are used in a program. For using the identifiers defined in
the namespace scope we must include the using directive, like

using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are defined. All
ANSI C++ programs must include this directive. This will bring all the identifiers defined in
std to the current global scope. using and namespace are the new keywords of C++.
Namespaces are discussed in detail in Chapter 18.

Return Type of main()

In C4++, maini) returns an integer type value to the operating system. Therefore, every
main{} in C++ should end with a return{0) statement; otherwise a warning or an error
might occur. Since main() returns an integer type value, return type for main() is explicitly
gpecified as int. Note that the default return type for all functions in C++ is int. The following
main without type and return will run with a warning:

IE.-i More C+ + Statements

Let us consider a slightly more complex C4+ program. Assume that we would like to read
two numbers from the keyboard and display their average on the screen. C++ statements to
accomplish this iz shown in Program 2.2.

 AVERAGE OF THO NUMBERS

#include =iosStréeam=

using namespace std;

fnt main{)

{
float numberl, numbérg,
Sum, average;

{Conid)

Copyrighted material

26 ® Ohbject-Oriented Programming with C++

cout =< "Enter two nembers: “:
cin == numberl: /i Reads numbers
cin == number?; I from keyboord

sum = numberl + numberd;
average = sum/2;

cout << "Sum = * =< sum << "\n";
cout << "Average = " << average << *"\n";

return 0;

The output of Program 2.2 is:
Enter two numbers: 6.5 7.5

Sum = 14
Average = 7

Variables

/i prompt

PROGRAM Z.2

The program uses four variables numberl, number2, sum, and average. They are declared

as type float by the statement.

float numberl, number?, sum, average;

All variables must be declared before they are used in the program.

Input Operator
The statement

cin == numberl;

is an input statement and causes the program to wait for the user to type in a number. The
number keyed in is placed in the variable numberl. The identifier ein (pronounced ‘C in'} is
a predefined object in C++ that corresponds to the standard input stream. Here, this stream

represents the keyboard.

The operator >> is known as extraction or get from operator. It extracts (or takes) the
value from the kevboard and assigns it to the variable on itz right (Fig. 2.2). This corresponds
to the familiar scanfl) operation. Like =< , the operator >> can also be overloaded.

Copyrighted material

Beginning with C++ e 27

Object Extraction operator Variable

@® - |

1

Keyboard
Fig.22 & Input using extraction operator

Cascading of 1/0 Operators
We have used the inserfion operator << repeatedly in the last two statements for printing
results,

The statement

cout =< "Sum = * << sum << "\n";

first sends the string “Sum =" to cout and then sends the value of sum. Finally, it sends the
newline character so that the next output will be in the new line. The multiple use of << in
one statement is called cascading. When cascading an output operator, we should ensure
necessary blank spaces between different items. Using the cascading technique, the last
two statements can be combined as follows:

cout << "Sum = ¥ << sum << "\n"
=< "Average = " =< average << "\n";

This is one statement but provides two lines of output. If you want only one line of output,
the statement will be:

cout =< "Sum = * << sum =< " "
<< "Average = " =< average << "\n";

The cutput will be:
Sum = 14, Average = 7

We can also cascade input operator >> as shown below:
cin == numberl == numberZ;

The values are assigned from left to right. That is, if we key in two values, say, 10 and 20,
then 10 will be assigned to numberl and 20 to number2,

Copyrighted material

2.5 An Example with Class

One of the major features of C++ is classes. They provide a method of bindin, i A
‘and functions which operate on them, Like structures in C, ﬁm:ﬁmm
-

Copyrighted maferial

Beginning with C++ & 29
The output of Program 2.3 is:

Enter Mame: Ravinder

Enter Age: 30

MName: Ravinder
Age: 30

rnote

cin can read only one word and
therefore we cannot use names with
blank spaces.

The program defines person as a new data of
type class. The class person includes two basic
data type items and two functions to operate on
that data. These functions are called member
functions. The main program uses person to
declare variables of its type. As pointed out
earlier, class variables are known as objects. Here, p iz an object of type person. Class
ohjects are used to invoke the functions defined in that class. More about classes and objects
ia discussed in Chapter 5.

IE.E Structure of C++ Program

As it can be seen from the Program 2.3, a typical C++ program would contain four sections
as shown in Fig. 2.3. These sections may be placed in separate code files and then
compiled independently or jointly.

Include fies

Clags deckaration

bember functions definitions

Main funclion program

e — —

Fig- 2.3 < Structure of a C ++ program

It is a common practice to organize a program into three separate files. The class
declarations are placed in a header file and the definitions of member functions go into
another file, This approach enables the programmer to separate the abstract specification

Copyrighted material

30 & Ohyject-Onented Programming with C++

of the interface (class definition) from the
implementation details (member functions binaber knclons
definition). Finally, the main program that uses
the class iz placed in a third file which "includes”
the previous two files as well as any other files Server
required.

This approach is based on the concept of Class dafinition
client-server model as shown in Fig. 2.4. The
class definition including the member functions
constitute the server that provides services to
the main program known as client. The client Main function program Cliant
uses the server through the public interface of
the class.

Fig. 2.4 & The clienl-server mogdel

E;f Cn:al:ing the Source File

Like C programs, C++ programs can be created using any text editor. For example, on the
UNIX, we can use vi or ed text editor for creating and editing the source code. On the DOS
gystem, we can use edlin or any other editor available or a word processor system under
non-document mode.

Some systems such as Turbo C++ provide an integrated environment for developing and
editing programs, Appropriate manuals should be consulted for complete details.

The file name should have a proper file extension to indicate that it is a C++ program
file. C++ implementations use extensions such as .c, .C, .ce, .cpp and .cxx. Turbo C++ and
Borland C++ use .¢ for C programs and .cpp (C plus plus) for C++ programs. Zortech C++
ayetem uses .cxx while UNTX AT&T version uses .C (capital C)and .cc. The operating system
manuals should be consulted to determine the proper file name extensions to be used.

Iz.s Compiling and Linking

The process of compiling and linking again depends upon the operating system. A few popular
systems are discussed in this section.

Unix AT&T C++

The process of implementation of a C++ program under UNIX is similar to that of a C
program.We should use the "CC" (uppercase) command to compile the program. Remember,
we use lowercase "cc” for compiling C programs. The command

CC exomple.
at the UNIX prompt would compile the C++ program source code contained in the file example.C.

The compiler would produce an object file example.o and then astomatically link with the
library functions to produce an executable file. The default executable filename is a.out.

Copyrighted maierial

Beginning with C++ & 31
A program spread over multiple files can be compiled as follows:
o filel.C file?.o

The statement compiles only the file filel.C and links it with the previously compiled
file2.0 file. This is useful when only one of the files needs to be modified. The files that are
not modified need not be compiled again.

Turbo C++ and Borland C++

Turbo C++ and Borland C++ provide an integrated program development environment under
MS DOS. They provide a built-in editor and a menu bar which ineludes options such as File,
Edit, Compile and Run.

We can create and save the source files under the File option, and edit them under the
Edit option. We can then compile the program under the Compile option and execute it
under the Run option. The Run option can be used without compiling the source code. In
this case, the RUN command causes the system to compile, link and run the program in one
step. Turbo C++ being the most popular compiler, creation and execution of programs under
Turbo C++ system are discussed in detail in Appendix B.

Visnal C++

It is a Microsoft application development system for C++ that runs under Windows. Visual
C++ ig a visual programming environment in which basic program components can be selected
through menu choices, buttons, icons, and other predetermined methods. Development and
execution of C++ programs under Windows are briefly explained in Appendix C.

SUMMARY
\\ - —L/

C++ is a superset of C language.

I

C++ adds a number of object-oriented features such as objects, inheritance, function
overloading and operator overloading to C, These features enable building of programs
with clarity, extensibility and ease of maintenance.
¢ OC++ can be used to build a variety of systems such as editors, compilers, databases,
communication systems, and many more complex real-life application systems.
C++ supports interactive input and output features and introduces a new comment
syvmbaol // that ean be used for single line comments. It also supports C-style comments.
& Like C programs, execution of all C++ programs begins at main() function and ends at

return() statement. The header file iostream should be included at the beginning of
all programs that use input/output operations.

Copyrighted material

32 &

Tt ¢

Chject-Oriented Programming with C++

All ANSI C++ programs must include using namespace std directive.

A typical C++ program would contain four basic sections, namely, include files section,

class declaration section, member function section and main function sectiomn.

Tt ¢

Like C programs, C++ programs can be created using any text editor.

Most compiler systems provide an integrated environment for developing and executing

programs. Popular systems are UNIX AT&T C++, Turbo C++ and Microsoft Visual

Cw+.

#include

a.0ut

Borland C++
cascading

cin

class

client

comments

cout

edlin

extraction operator
float

free-form

get from operator
input operator
insertion operator
int

iosiream
iostream.h

¥ ¥ Y ¥ Y Y Y Y YYYYYYYYYYYY

keyboard

I Review Questions

Key Terms

maini)

member functions
ME-DOS
namespace
object

operating svstems
operator overloading
cutput operator
put‘to operator
return i)

SCTERT)

SErvVer

Simula&7

text editor

Turbo C++

Unix ATET C++
using

Visual s+
Windowsa

Zortech C++

¥ ¥ ¥ ¥y Yy ¥y Yy Y ¥YY Y YYYYYYYVYY

21 Stale whether the ﬁ.lﬂm.r.li.r:g statements are TRUE or FAILSE .
(a) Since Cis o subset of Ce+, all C ppograms will run under C4+4+ compilers.

® 33

2.2
2.3
2.4

2.5

Beginning with T+

ib) In C++, a function contained within a class is called a member function.
(c) Looking at one or fwo lines of code, we can easily recognize whether a program

is written in C or C++.

(d) In C++, it iz very easy fo add new features to the existing structure of an

object.

(e) The concept of using one operator for different purposes is known as oerator

overloading.

() The output function printfi} cannot be used in C++ programs.
Why do we need the preprocessor directive #include <iostream>

How does a main{) function in C++ differ from main() in C?

What do you think is the main advantage of the comment /[in C++ as compared

to the old C type comment?
Describe the major parts of a C++ program.

I Debugging Exercises

2.1

2.2

23

Identify the error in the following program.
#Finclude <iostream.hs=

void main()

{
int 1 = 0;
i=1+1;
cout =< 1 =< " "
fYcomment*/ /1 = 1 + 1;
cout =< i;

}

Identify the error in the following program.
#include <jostream.h>
void main()
{
short i=2500, j=3000;
cout == "i + j = " >> -(i+j);
}
What will happen when you run the following program?

#include =<iostream.h=
void main()

'i

Copyrighted material

34 e Object-Oriented Programming with C++

int =10, j=5:
int modResult=0;
' int divResult=0;

modResult = i%j;
cout << modResult =< " *;

e 5

divResult = i /modResult;
cout == divResult;
}
2.4 Find errors, if any, in the following C++ statements,
(a) cout =< "x="x;
by m=5n=1hFfe=m+n;
(£} oin >>x; >3y
(d) cout << “n"Name:" << name;
(e} eout =<"Enter value:"; cin >> x;
() FAddition* z=x+y;

I Programming Exercises

2.1 Write a program to display the following output using a single cout statement,

Maths = af
Physics =TT
Chemistry = 68

2.2 Write a program to read two numbers from the kevboard and display the larger
value on the screen.

2.3 Write a program to input an integer value from keyboard and display on screen
"WELL DONE" that many limes,

2.4 Write a program to read the values of o, b and ¢ and display the value of x, where
r=gfb-¢
Test your program for the following values:
(a) a=250,b=85c=25
(b) a=300, b=70,c=70
2.5 Write a C++ program that will ask for a temperature in Fahrenheit and display it
in Celgius,
2.6 Redo Exercise 2.5 using a class called temp and member functions.

Copyrighted material

Tokens, Expressions and \

Control Structures

Key Concepts

Tokens Seope resolution
Keywords Dereferencing
Idunt:iﬂurl Memory management

Data types Formatting the output

User-defined types Type casting
Derived types LConstruching expressions
Symbolic constanta Special assignment expressions
Declaration of variables [mplicit conversion

Initialization Operator overloading

Y O WY Y Y Y Y Y ¥ Y

Reference variables Control stroctires

Y ¥ ¥y Y Yy ¥ Y Y ¥Y¥Y¥Y

Type compatibility

3.1 Introduction

As mentioned earlier, C++ is a superset of C and therefore most constructs of C are legal in
C++ with their meaning unchanged. However, there are some exceptions and additions. In

36 @ Gb}em Oriented Programming with C++

this chapter, we shall discuss these éxﬂept.inns and additions with respect to tokens and
control structures.

IS.E Tokens

As we know, the smallest individual units in a program are known as tokens. C++ has the
following tokens:

® Keywords
® Identifiers
#® Constants
® Strings

® Operators

A Co+ program is written using these tokens, white spaces, and the syntax of the language.

Most of the C++ tokens are basically similar to the C tokens with the exception of some
additions and minor modifications,

I3.3 Keywords

Tha keywords implement specific Ca-+ language features, They are explicitly reserved identifiers
and cannot be used as names for the program variables or other user-defined program
elements.

Table 3.1 gives the complete set of C++ keywords. Many of them are comimon to both C and
C++. The ANSI C keywords are shown in boldface. Additional kevwords have been added to
the ANSI C keywords in order to enhance its features and make it an object-oriented language.
ANBSI C++ standards committee has added some more keywords to make the language more
versatile. These are shown separately. Meaning and purpose of all C++ keywords are given
in Appendix D,

I?r,ii Identifiers and Constants

Identifiers refer to the names of variables, functions, arrays, classes, ete. created by the
programmer. They are the fundamental requirement of any language. Each language has its
own rules for naming these identifiers. The following rules are common to both C and C++:

Only alphabetic characters, digits and underscores are permitted.
The name cannot start with a digit.

Uppercase and lowercase letters are distinct.

A declared keyword cannot be used as a variable name.,

Copyrighted material

Tokens, Expressions and Control Structures

Table 3.1 C++ keywords

® 37

MNote: The ANSI C keywords are shown in bold face.

asm double new switch
auto else operator template
break enum private this

case extern protected throw
catch float public try

char for register typedef
class friend return union
const goto short unsigned
continue if signed virtual
default ifline slzeol viold
delets int static volatile
do long struct while
Added by ANSI C++

hool export reinterpret_cast typename
const_cast false static_cast using
dynamic_cast mutable true wechar_t
explicit namespace typeid

A major difference between C and C++ is the limit on the length of a name. While ANSI
C recognizes only the first 32 characters in a name, ANSI C++ places no limit on its length

and, therefore, all the characters in a name are significant.

Care should be exercised while naming a variable which is being shared by more than one
file containing C and C++ programs. Some operating systems impose a restriction on the
length of such a variable name.

Conastants refer to fixed values that do not change during the execution of a program.

Like C, C++ supports several kindz of literal constants. They include integers, characters,
floating point numbers and strings. Literal constant do not have memory locations. Examples:

123 [/ decimal integer

12.34 // floating point integer
037 // octal integer

ox2 // hexadecimal integer
"C++" [/ string constant

‘A’ !/ character constant
L'ab’ // wide-character constant

The wehar_t type is a wide-character literal introduced by ANSI C++ and is intended for
character sets that cannot fit a character into a single byte. Wide-character literals begin
with the letter L.

38 & Ohjéct-Oriented Programming with C++

C++ alzo recognizes all the backslash character constants available in C.

note

C++ supports two types of string representation — the C-style character string and the
string class type introduced with Standard C++. Although the use of the string class type is
recommended, it is advisable to understand and use C-style strings in some situations, The

string class type strings support many features and are discussed in detail in
Chapter 15.

Iﬂ.i Basic Data Types

Data types in C++ can be classified under various categories as shown in Fig. 3.1.

C++ Dwta Types
/) \
User-dafined type Built-in type l Derfved type

structure array

union fumction

class poinker
anumeration refarence

Integral Type Wild Floating type
Int char | float | double

Both C and C++ compilers support all the built-in (also known as basic or fundamental)
data types. With the exception of void, the basic data types may have several modifiers
preceding them to serve the needs of various situations. The modifiers signed, unsigned,
long, and short may be applied to character and integer basic data types. However, the
maodifier long may also be applied to double. Data type representation is machine specific in
C++. Table 3.2 lists all combinations of the basic data types and modifiers along with their
gize and range for a 16-bit word machine.

Copyrighted material

Tokens, Expressions and Control. Structures -2 39

Table 3.2 Size and range of C++ basic data (ypes

Type Byte) R
char 1 —-128 to 127
unsigned char 1 0 to 255
signed char--. 1 - 128 to 127
int 2 — 32768 to 32767
unsigned int 2 0 to 65636
signed int 2 — 31768 to 32767
short int 2 — 31768 to 32767
unsigned short int a 0 to 655356
signed short int 2 -32768 to 32767
long int 4 ~2147483648 to 2147483647
signed long int 4 -214T483648 to 2147483647
unsigned long int 4 0 to 4294967285
float 4 3.4E-38 to 34E+38
double 8 1.7E-308 to 1.TE+308
long double 10 3.4E-4932 1w 1.1E+4932

ANSI C++ committee has added two more data types, bool and wehar_t. They are discussed
in Chapter 16.

The type void was introduced in ANSI C. Two normal uses of void are (1) to specify the
return type of a function when it is not returning any value, and (2) to indicate an empty
argument list to a function. Example:

void functl{void);
Another interesting use of void is in the declaration of generic pointers. Example:

void *gp; /{ ap becomes generic pointer

A generic pointer can be assigned a pointer value of any basic data type, but it may not be
dereferenced. For example,

int *ip; f! int pointer
gp = ip; /! assign int pointer to wveid pointer

are valid statements. But, the at,atemer;h
*ip = *gp;
is illegal. It would not make sense to dereference a pointer to a void value.
Assigning any peinter type to a void pointer without using a cast is allowed in both C++

and ANSI C. In ANSI C, we can also assign a void pointer to a non-void pointer without
using a cast to non-void pointer type. This is not allowed in C++. For example,

Copyrighted material

40 & Ohject-Oriented Programming with C++
void =ptrl;
char *ptrz;
ptrz = ptrl;

are all valid statements in ANSI C but not in C++. A void pointer cannot be directly assigned
to other type pointers in C++. We need to use a cast operator as shown below:

ptrz = (char *)ptrl;

3.6 User-Defined Data Types

Structures and Classes

We have used user-defined data types such as struet and union in C. While these data types
are legal in C++, some more features have been added to make them suitable for object-
oriented programming. C++ also permits us to define another user-defined data type known
as class which can be used, just like any other basic data type, to declare variables. The
class variables are known as objects, which are the central focus of object-oriented
programming. More about these data types is discussed later in Chapter 5.

Enumerated Data Type

An enumerated data type iz another user-defined type which provides a way for attaching
names to numbers, thereby increasing comprehensibility of the eode. The enum kevword
(from C) automatically enumerates a list of words by assigning them values 0,1,2, and so0 on.
This facility provides an alternative means for creating symbolic constants, The syntax of an
enum statement is similar to that of the struct statement. Examples:

enum shape{circle, square, triangle);
gnum colour{red, blue, green, yellow];
enum position{off, on};

The enumerated data types differ slightly in C++ when compared with those in ANSIC. In
C++, the tag names shape, colour, and position become new type names. By using these
tag names, we can declare new variables. Examples:

shape ellipse; /f ellipse is of type shape
colour background; /[background is of type colour

ANSI C defines the types of enums to be ints. In C++, each enumerated data type retains
its own separate tyvpe. Thiz means that C++ does not permit an int value to be automatically
converted to an enum value. Examples:

colour background = blue; Jf allowed
colour background = T7; Jf Error in C++
colour background = {colour) 7; S OK

Tokens, Expressions and Control Structures e 41
However, an enumerated value can be used in place of an int value.
int ¢ = red; {/ valid, colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first
enumerator, 1 for the second, and so on. We can over-ride the default by explicitly assigning
integer values to the enumerators. For example,

enum colour{red, blue=4, green=8};
enum colour{red=5, blue, green};

are valid definitions. In the first caze, red is 0 by default. In the second caze, blue is 6 and
green i 7. Note that the subsequent initialized enumerators are larger by one than their
predecessors.

C++ also permits the creation of anonymous enums (i.e., enums without tag names).
Example:

enumi{off, on};

Here, off is 0 and on is 1. These constants may be referenced in the same manner as
regular constants. Examples:

int switch 1 = off;
int switch 2 = on;

In practice, enumeration is used to define symbolic constants for a switch statement.
Example;

enum shape

{
circle,
rectangle,
triangle

K

int main{)

{

cout << "Enter shape code:";

int code;

cin >> code;

while(code »= circle && code <= triangle)

{

switch(code)

Copyrighted material

42 » Object-Oriented Programming with C++

case circle: -

break;

breaks

)

cout =< "Enter shape code:";
cin >= code;

)
cout =< "BYE \n";

return 0;

}

ANSI C permits an enum to be defined within a structure or a class, but the enum is
globally visible. In C++, an enum defined within a class (or structure) is local to that class (or
structure) only.

IS.T Derived Data Types

Arrays

The application of arrays in C++ is similar to that in C. The only exception is the way character
arrays are initialized. When initializing a character array in ANSI C, the compiler will allow
us to declare the array size as the exact length of the string constant. For instance,

char string[3] = "xyz";

is valid in ANSI C. [t assumes that the programmer intends to leave out the null character \0
in the definition. But in C++, the size should be one larger than the number of characters in
the string.

char string[4] = "xyz®; f/ 0.K. for C++

Functions

Functions have undergone major changes in C++. While some of these changes are simple,
others require a new way of thinking when organizing our programs. Many of these

Tokens, Expressions and Control Sfrictures ® 43

modifications and improvements were driven by the requirements of the object-oriented
concept of C++. Some of these were introduced to make the C++ program more reliable and
readable. All the features of C++ functions are discussed in Chapter 4.

Pointers
Pointers are declared and initialized as in C. Examples:

int *ip; ff int pointer
ip = &x: [/ address of x assigned to ip
*ip = 10; J/ 10 assigned to x through indirection

C++ adds the concept of constant pointer and pointer to a constant.
char * const ptrl = “GOOD®; // constant pointer

We cannot modify the address that ptrl is initialized to.
int const * ptr2Z = &m; // pointer to a constant

ptr2 is declared as pointer to a constant. It can point to any variable of correct type, but the
contents of what it points to cannot be changed.

We can also declare both the pointer and the variable as constants in the following way:
const char * const cp = “xyz";
This statement declares cp as a constant pointer to the string which has been declared a
constant. In this case, neither the address assigned to the pointer cp nor the contents it
points to ean be changed,

Pointers are extensively used in C++ for memory management and achieving
polymorphism.

I3.E Symbolic Constants

There are two ways of creating symbolic constants in Ca+:

® Using the qualifier const, and
® Defining a set of integer constants uzing enum keyword.

In both C and C++, any value declared as const cannot be modified by the program in
any way. However, there are some differences in implementation. In C++, we can use const in a

44 & Object-Ortented Programming with C++

constant expression, such as

const int size = 10;
char name[size];

This would be illegal in C. const allows us to create typed constants instead of having to
use #define to create constants that have no type information.

As with long and short, if we use the const modifier alone, it defaults td int. For example,

const size = 10;

means

const int size = 10;

The named constants are just like variables except that their values cannot be changed.

C++ requires a const to be initialized. ANSI C does not require an initializer; if none is
given, it initializes the const to 0.

The scoping of const values differs. A const in C++ defaults to the internal linkage and
therefore it is local to the file where it is declared. In ANSI C, eonst values are global in
nature. They are visible outside the file in which they are declared. However, they can be
made local by declaring them as statie. To give a const value an external linkage so that it
can be referenced from another file, we must explicitly define it as an extern in C++. Example:

extern const total = 100;
Another method of naming integer constants is by enumeration as under;
enum {X,Y,Z};

This defines X, ¥ and Z as integer constants with values 0, 1, and 2 respectively. This is
equivalent to:

const X = 0;
const ¥ = 1;
const I = 23

We can also assign values to X, Y, and Z explicitly. Example:
enum{X=100, ¥=50, I=200);

Such values can be any integer values. Enumerated data type has been discussed in detail
in Section 3.6.

Copyrighted material

Tokens, Expressions and Control Structures @ 45

IS-S‘ Type Compatibility

C++ is very strict with regard to type compatibility as compared to C. For instance, C++
defines int, short int, and long int as three different types. They must be cast when their
values are assigned to one another, Similarly, unsigned char, char, and signed char are
considered as different types, although each of these has a size of one byte. In C++, the types
of values must be the same for complete compatibility, or else, a cast must be applied. These
restrictions in C++ are necessary in order to support function overloading where two functions
with the same name are distinguished using the type of function arguments.

Another notable difference is the way ehar constants are stored. In C, they are stored as
ints, and therefore,

sizeof ('x')
ig equivalent to
sizeof(int)

in C. In C++, however, char iz not promoted to the size of int and therefore

sizeof('x")
equals

sizeof(char)

|3.ll] Declaration of Variables

We know that, in C, all variables must be declared before they are used in executable
statements. This is true with C++ as well. However, there iz a significant difference between
C and C++ with regard to the place of their declaration in the program. C requires all the
variables to be defined at the beginning of a scope. When we read a C program, we usually
come across a group of variable declarations at the beginning of each scope level, Their actual
use appears elsewhere in the scope, sometimes far awey from the place of declaration. Before
uging a variable, we should go back to the beginning of the program to see whether it has
been declared and, if so, of what type.

C++ allows the declaration of a variable anywhere in the scope. This means that a variable
can be declared right at the place of its first use. This makes the program much easier to
write and reduces the errors that may be caused by having to scan back and forth. It also
makes the program easier to understand because the variables are declared in the context of
their use.

Copyrighted material

46 & =, @hject-Oriented Programming with C++

The example below illustrates this point.

int main{)

{ float x; /[declaration
float sum = 0;
for{int i=1; i=5; i++) /[declaration
| cim »>> x;

sum = Sum +x;

float average; /[declaration
average = sum/(i-1);
cout =< average;

return ;

]

The only disadvantage of this style of declaration is that we cannot see all the variables
used in a scope at a glance.

|3.11 Dynamic Initialization of Variables

In C, a variable must be initialized using a constant expression, and the C compiler would fix
the initialization code at the time of compilation. C++, however, permits initialization of the
variables at run time. This is referred to as dynamic initialization. In C++, a variable can be
initialized at run time using expressions at the place of declaration. For example, the following
are valid initialization statements:

L LR

L L

int n = strien(string);

float area = 3.14159 * rad * rad;

Thus, both the declaration and the initialization of a variable can be done simultaneously at
the place where the variable is used for the first time. The following two statements in the
example of the previous section

float average; [/ declare where it is necessary
average = sum/i;

can be combined into a single statement:

Tokens, Expressions and Control Structures ® 47
float average = sum/i; [/ initiolize dynamicolly ot run time

Dynamie initialization is extensively used in object-oriented programming. We can create
exactly the type of object needed, using information that is known only at the run time.

lf-. 12 Reference Variables

C++ introduces a new kind of variable known as the reference variable. A reference variable
provides an alias (alternative name) for a previously defined variable. For example, if we
make the variable sum a reference to the variable total, then sum and total can be used
interchangeably to represent that variable. A reference variable is created as follows:

data-type & reference-name = wariable-name

Example:

flpoat total = 100;
flpat & sum = total;

total is a float type variable that has already been declared; sum is the alternative name
declared to represent the variable total. Both the variables refer to the same data object in
the memory, Now, the statements

cout =< total;
and
cout =< sum;

both print the value 100, The statement
total = total + 10;

will change the value of both total and sum to 110. Likewise, the assignment
sum = 0;

will change the value of both the variables to zero.

A reference variable must be initialized at the time of declaration. This establishes the
correspondence between the reference and the data object which it names. [t is important to
note that the initialization of a reference variable is completely different from assignment to
it.

48 » Object-Onented Programming with O+

C++ assigns additional meaning to the symbol &. Here, & is not an address operator. The
notation float & means reference to float. Other examples are:

int n[10];
int & x = n[10]; [l x is alias for n[10]
char & a = '\n'; J/ initiolize reference to o literal

The variable x is an alternative to the array element n[10]. The variable a is initialized to
the newline constant. This creates a reference to the otherwise unknown location where the

newline constant \n is stored.

The following references are also allowed:

i. int X3
int *p = Ax;:
int &m= *p;

ii. int & n = 50;

The first set of declarations causes m to refer to x which is pointed to by the pointer p and
the statement in {ii) creates an int object with value 50 and name n.

A major application of reference variables is in passing arguments to functions. Consider
the following:

—»void flint & x) /[uses reference
| = x+10; /{ % 15 incremented; so olsom
:nt main()
| int m=10;
—— f(m): {/ function caoll
}

When the function call fim) is executed, the following initialization ocours:
int & x = m;
Thus x becomes an alias of m after executing the statement

fm);

Copyrighted material

Tokens, Expressions and Control Struciures & 49

Such function calls are known as call by reference. This implementation is illustrated in
Fig. 3.2. Since the variables x and m are aliases, when the function increments x, m is also
incremented. The value of m becomes 20 after the function is executed. In traditional C, we
accomplish this operation using pointers and dereferencing technigques.

int m=10; - - T
. g oo location
w0 names
call
f{rm) . -
int & x = m;

Fig. 3.2 « Call by reference miechanism

The call by reference mechanism is useful in object-onented programming because it permits
the manipulation of objects by reference, and eliminates the copying of object parameters
back and forth. It is also impeortant to note that references can be created not only for built-
in data types but also for user-defined data types such as structures and classes. References
work wonderfully well with these user-defined data types.

|3.15 Operators in C++

C4++ has a rich set of operators. All C operators are valid in C++ also. In addition, C++ introduces
some new operators. We have already seen two such operators, namely, the insertion operator
<<, and the extraction operator >>. Other new operators are:

Hi- Scope resolution operator
i Pointer-to-member declarator

-2 Pointer-to-member operator
. Pointer-to-member operator
delete Memory release operator
end] Line feed operator

new Memory allocation operator
setw Field width operator

In addition, C++ also allows us to provide new definitions to some of the built-in operators.

That is, we can give several meanings to an operator, depending upon the types of arpuments
used. This process is known as operator overloading.

50 » Object-Oriented Programming with C++

I3.1f-i Scope Resolution Operator

Like C, C++ is also a block-structured language. Blocks and scopes can be used in constructing
programs. We know that the same variable name can be used to have different meanings in
different blocks. The scope of the variable extends from the point of its declaration till the end
of the block containing the declaration. A variable declared inside a block is said to be local to
that block. Consider the following segment of a program:

o EE R

EF @

int x = 10;

The two declarations of x refer to two different memory locations containing different
values. Statements in the second block cannot refer to the variable x declared in the first
block, and vice versa. Blocks in C++ are often nested. For example, the following style is

COMMOTL:

[-
int x = 10;

Block 2 | Block 1

Block2 is contained in block 1. Note that a declaration in an inner block hides a declaration
of the same variable in an outer block and, therefore, each declaration of x causes it to refer to

Tokens, Expressions and Control Structures e 51

a different data nl;juLWithmthamHmk the variahle = will ruhtnthlﬂlllnbut
declared therein.

In C, the global version of a variable cannot be accessed from within the inner block. C++
resolves this problem by introducing a new operator :: called the scope resolution operator. This
can be used to uncover a hidden variable. It takes the following form:

1z variable-name

This operator allows access to the global version of a variable. For example, :count
means the global version of the variable count (and not the local variable count declared in
that block). Program 3.1 illustrates this feature.

SLOPE RESOLUTION OPERATOR

The output of Program 3.1 would be:

We are in inner block
k= 20

Copyrighted material

52 @ Object-Oriented Programming with C++

m= 30
stm = 10

We are in outer block
m= 20
i:m = 10

In the above program, the variable m is declared at three places, namely, outside the main()
function, inside the main(), and inside the inner block.

nole

It is to be noted ::m will always refer to the global m. In the inner block, ::m refers to the
value 10 and not 20.

A major application of the scope resolution operator is in the classes to identify the class to
which a member function belongs. This will be dealt in detail later when the classes are
introduced.

IELIS Member Dereferencing Operators

As you know, C++ permits us to define a class containing various types of data and functions
as members. C++ also permits us to access the class members through pointers. Ih order to
achieve this, C++ provides a set of three pointer-to-member operators. Table 3.3 shows these
operators and their functions. L

Table 3.3 Member dereferencing apemmm

= AR SN RSP R £ <
AN LR B R e | R P i R
- To declare a pointer tﬂ- a m.emher of a class
- To access & membser using object name and a pointer to that member
To access a member using a pointer to the object and a pointer to that member

Further details on these operators will be meaningful only after we discuss classes, and
therefore we defer the use of member dereferencing operators until then.

3.16 Memory Management Operators

C uses malloe() and calloe() functions to allocate memory dynamically at run time. Similarly,
it uses the function free() to free dynamically allocated memory. We use dynamic allocation
techniques when it is not known in advance how much of memory space is needed. Although
C++ supports these functions, it also defines two unary operators new and delete that perform

Tokens, Expressions and Control Structures # 53

the task of allocating and freeing the memory in a better and easier way. Since these operators
manipulate memory on the free store, they are also known as free store operators.

An object can be created by using new, and destroyed by using delete, as and when
required. A data ohject created inside a block with new, will remain in existence until it is
explicitly destroyed by using delete. Thus, the lifetime of an object is directly under our
control and is unrelated to the block structure of the program.

The new operator can be used to create objects of any type. It takes the following general
form:

pointer-variable = new dota-type;

Here, pointer-variable is a pointer of type data-type. The new operator allocates sufficient
memory to hold a data object of type dafa-type and returns the address of the object. The
data-type may be any valid data type. The pointer-variable holds the address of the memory
gpace allocated. Examples:

p = new int;
q = new float;

where p is a pointer of type int and q is a pointer of type float. Here, p and q must have
already been declared as pointers of appropriate types. Alternatively, we can combine the
declaration of pointers and their assignments as follows;

int *p = new int;
float *g = new float;

Subsequently, the statements

253
1.5;

*p
q
asgign 25 to the newly created int object and 7.5 to the float object.

We can also initialize the memory using the new operator. This is done as follows:

pointer-variaoble = new doto-type(volue);

Here, value specifies the initial value. Examples:

int *p = new int(25);
float *q = new float(7.5);

54 & Object-Oriented Programming with C++

As mentioned earlier, new can be used to create a memory space for any data type
including user-defined types such as arrays, structures and classes. The general form for a

one-dimensional array is:

pointer-varighle = npew doto-typefsize];

Here, size specifies the number of elements in the array. For example, the statement
int *p = new int[10];

creates a memory space for an array of 10 integers. pl0] will refer to the first element, pl1]
to the second element, and so on.

When creating multi-dimensional arrays with new, all the array sizes must be supplied.

array ptr = new int[3] [5][4];: Jf Tegal
array _ptr = new int[m] [5][4]; [/ Tegal
array ptr = new int[3][51[1; /{ 11legal
array_ptr = new int[J[51[4]; // 11legal

The first dimension may be a variable whose value is supplied at runtime. All others
must be constants,

The application of new to class objectz will be discussed later in Chapter 6.

When a data object is no longer needed, it is destroyed to release the memory space for
reuse, The general form of its use is:

delete pointer-variable;

The pointer-variable is the pointer that points to a data ohject created with new. Examples:

delete p;
delete q;

If we want to free a dynamically allocated array, we must use the following form of
delete:

delete [size] pointer-varichle;

The zize specifies the number of elements in the array to be freed. The problem with this
form is that the programmer should remember the size of the array. Recent versions of C++

do not require the size to be specified. For example,

Tokens, Expressions and Control Structures & 55

delete []p;
will delete the entire array pointed to by p.

What happens if sufficient memory is not available for allocation? In such cases, like
malloe(), new returns a null pointer. Therefore, it may be a good idea to check for the
pﬂiﬂt&t‘ pcmdueed h}' new before using it. It 1s done as follows:

rrrrr

The new operator offers the following advantages over the function malloe().

1. It automatically computes the size of the data object. We need not use the operator
sizeof.

2. It automatically returns the correct pointer type, so that there is no need to use a

type cast.

It is possible to initialize the obhject while creating the memory space.

Like any other operator, new and delete can be overloaded.

e

3.17 Manipulators

Manipulators are operators that are used to format the data display. The most commonly
used manipulators are endl and setw.

The end]l manipulator, when used in an output statement, causes a linefeed to be inserted.
It has the same effect as using the newline character "\n". For example, the statement

cout == "m = " <= q << end]
< "'n = " 22 << gpd]
=< "p = " =< p << gndl;

would cause three lines of output, one for each variable. If we assume the values of the
variables as 25897, 14, and 175 respectively, the output will appear as follows:

56 & Object-Oriented Programming with C++

m = 5[9]7
o= (1]
P i.ﬁ

It is important to note that this form is not the ideal output. It should rather appear as
under:

Pl

m= 2597
n= 14
p= 175

Here, the numbers are right-justified. This form of output is possible only if we can specify
a common field width for all the numbers and force them to be printed right-justified. The
setw manipulator does this job. It is used as follows:

cout =< setw(5) =< sum << endl;

The manipulator setwi(5) specifies a field width 5 for printing the value of the variable
sum. This value is right-justified within the field as shown below:

| 1 [3]4]5]

Program 3.2 illustrates the use of endl and setw.

USE OF MARIPULATORS

Finclude <igstream>
#include <iomanip> // for setw

using namespace std;

int main()

i
int Basic = 950, Allowance = 95, Total = 1045;

cout =< setw{l0) =< “"Basic" << setw(10) =< Basic =< endl
<< setw(l0) =< "Allowance" << setw(l0) << Allowance << end]
<< setw(10) =< “"Total" << setw(10) << Total << endl;

return 0F

PROGRAM 3.2

Tokens, Expressions and Control Structures @ 57

Output of this program is given below:

Basic asn
Allowance 95
Total 1045

FEOE
Character strings are also printed right-justified.)

We can also write our own manipulators as follows:

#include <iostream=
ostream & symbol (ostream & output)

return output <= "\tRs";
I

The symbeol is the new manipulator which represents Rs.The identifier symbol can be
used whenever we need to display the string Rs.

|3.18 Type Cast Operator

C++ permits explicit type conversion of variables or expressions using the type cast
operator.

Traditional C casts are augmented in C++ by a function-call notation as a syntactic
alternative. The following two versions are equivalent:

(type-name) expression // C notation
type-name (expression) // C++ notation

Examples:

average = sum/{float)i; // C notation
average = sum/float(i); // C++ notation

A type-name behaves as if it is a function for converting values to a designated type. The
function-call notation usually leads to simplest expressions. However, it can be used only if
the type is an identifier. For example,

p = int * (q);

58 = Object-Oriented Programming with Ce+

is illegal. In such cases, we must use C type notation.
p = (int *) q;

Alternatively, we can use typedef to create an identifier of the required type and use it
in the functional notation.

typedef int * int_pt;
p = int_pt(q);

ANSI C++ adds the following new cast operators:

® const_cast

#® static_cast

dynamic_cast

® reinterpret_cast

Application of these operators is discussed in Chapter 16.

IS.]EI Expressions and Their Types

An expressgion is a combination of operators, constants and variables arranged as per the
rules of the language. It may also include function ealls which return values. An expression
may consist of one or more operands, and zero or more operators to produce a value.
Expressions may be of the following seven types:

Constant expressions
Integral expressions
Float expressions
Pointer expressions
Relational expressions
Logical expressions
Bitwise expressions

LR B B N N N

An expression may also use combinations of the above expressions. Such expressions are
known as compound expressions.

Constant Expressions
Constant Expressions consist of only constant values. Examples:

15
20+ 5 /2.0

I.".|

Tokens, Expressions and Control Structures @ 59

Integral Expressions

Integral Expressions are those which produce integer results after implementing all the
automatic and explicit type conversions, Examples:

m
m*n-=-5

m +* 1:|

5 + int(2.0)

where m and n are integer variables,

Float Expressions

Float Expressions are those which, after all conversions, produce floating-point results.
Examples:

X+ y
x *y /10

5 + float(10)
10.75

where x and y are floating-point variables.

Pointer Expressions
Pointer Expressions produce address values. Examples:

&m

ptr

ptr + 1
-:_lj'.!"

where m i= a variable and ptr is a pointer.

Relational Expressions
Relational Expressions yield results of type bool which takes a value true or false. Examples:

X <=y
a+h == ¢+d
mn > 100

When arithmetic expressions are used on either side of a relational operator, they will be
evaluated first and then the results compared. Relational expressions are also known as
Boolean expressions.

60 & Ohbject-Oviented Programming with C++

Logical Expressions

Logical Expressions combine two or more relational expressions and produces bool type
resultas. Examples:

a=bh &k x==10
I==1|} || 3'::5

Bitwise Expressions

Bitwize Expressions are used to manipulate data at bit level, They are basically used for
testing or shifting bits. Examples:

x << 3/ Shift three bit position to left
y == 1 Jf Shift one bit position to right

Shift operators are often used for multiplication and division by powers of two.

ANSI C++ has introduced what are termed as operator keywords that can be used as
alternative representation for operator symbaols. Operator keywords are given in Chapter 16.

I_’:Jﬂ' Special Assignment Expressions

Chained Assignment

x = (y = 10):
or
x =y = 10;
First 10 is assigned to y and then to x.

A chained statement eannot be used to initialize variables at the time of declaration, For
instance, the statement

float a = b = 12.34; I wrong
iz illegal. Thiz may be written as

float a=12.34, b=1Z.34 J[correct

Embedded Assignment
x = (y = 50) + 10;

Tokens, Expressions and Confrol Strucfures ® 61

(v = 50) iz an assignment expression known ag embeddeod assignment. Here, the value 50 is
assigned to v and then the result 50+10 = 60 iz assigned to x. This statement is
identical to

y = 504
x =y + 10;

Compound Assignment

Like C, C++ supports a compound assignment operator which is a combination of the
assignment operator with a binary arithmetic operator. For example, the simple assignment
statement

X = x + 10;
may be written as

X o+= 10;

The operator += is known as compound assignment operator or short-hand assignment
operator. The general form of the compound assignment operator is:

variablel op= variabled;
where op is a binary arithmetic operator. This means that

variablel = variablel op variable?;

IS.EI Implicit Conversions

We can mix data types in expressions. For example,
m = 5+2.75;

is a valid statement. Wherever data types are mixed in an expression, C++ performs the
conversions automatically. This process is known as implicit or automafic conversion.

When the compiler encounters an expression, it divides the expressions into sub-
expressions consisting of one operator and one or two operands. For a binary operator, if
the operands type differ, the compiler converts one of them to match with the other, using
the rule that the “smaller” type is converted to the “wider” type. For example, if one of the
operand is an int and the other is a float, the int is converted into a float because a float
18 wider than an int. The “water-fall” model shown in Fig. 3.3 illustrates this rule.

62 &

. }_ﬁ
sk

fi

—
N

unsigrad

Ohject-Onented Programming with C++

char

N

-

lang int

N

unsignad long int

~

float

~

double

r

long doubla

Fig. 3.3 <« Water-fall model of type conversion

Whenever a char or short int appears in an expression, it is converted to an int. This is
called integral widening conversion. The implicit conversion is applied only after completing
all integral widening conversions.

Table 3.4 Results of Mixed-mode Operations

LHO

short |
int
long
float
double
long double |

|
char !
I
int
int
int
long
Moat
double

short ind
int int
int int
int int
long long
float float

double | double
long

RHO - Right-hand operand
LHO = Left-hand operand

long ‘ floai double | long double
long float double long double
long float double long double
long float double long double
long | float | double long double
float float double long double
double double | double long double
long long long | long double

double

double

Tokens, Expressions and Control Structures @ 63

|3.22 Operator Overloading

As stated earlier, overloading means assigning different meanings to an operation, depending
on the context. C++ permits overloading of operators, thus allowing us to assign multiple
meanings to operators. Actually, we have used the concept of overloading in C also. For
example, the operator * when applied to a pointer variable, gives the value pointed to by the
pointer. But it is also commonly used for multiplying two numbers. The number and type of
operands decide the nature of operation to follow.

The input/output operators << and >> are good examples of operator overloading. Although
the built-in definition of the << operator is for shifting of bits, it is also used for displaying
the values of various data types. This has been made possible by the header file iostream
where a number of overloading definitions for << are included. Thus, the statement

cout =< 75.B86;
invokes the definition for displaying a double type value, and
cout =< "well done®;

invokes the definition for displaying a char value. However, none of these definitions in
tostream affect the built-in meaning of the operator.

Similarly, we can define additional meanings to other C++ operators. For example, we
can define + operator to add two structures or objects. Almost all C++ operators can be
overloaded with a few exceptions such as the member-access operators (. and .*), conditional
operator (7:), scope resolution operator (:;) and the size operator (sizeof). Definitions for
operator overloading are discussed in detail in Chapter 7.

3.23 Operator Precedence

Although C++ enables us to add multiple meanings to the operators, yet their association
and precedence remain the same. For example, the multiplication operator will continue
having higher precedence than the add operator. Table 3.5 gives the precedence and
associativity of all the C++ operators, The groups are listed in the order of decreasing
precedence. The labels prefix and postfix distinguish the uses of ++ and --. Also, the symbols
+, — ¥, and & are used as both unary and binary operators.

A complete list of ANSI C++ operators and their meanings, precedence, associativity and
use are given in Appendix E.

64 & Object-Oriented Programming with C++

Table 3.5 Operator precedence and associativity

Operator Associativity
= left to right
== . {)|] poatfix ++ postfix — - left to right
prefix ++ prefix —= - ~ | unary + unary -

unary * unary & (type) sizeof new delete right to left
- left to right
% left to right
+ = left to right
o B left to right
= o= left to right
=== left to right
& left to right
A left to right
| left to right
&& left to right
|| left to right
b left to right
=*z=/sTW=+== right to left
-r;-r;:::-}:&:“:': left to right

The unary operations assume higher precedence.

lﬂ.lti Control Structures

In C++, a large number of functions are used that pass messages, and process the data
contained in objects. A function is set up to perform a task. When the task is complex, many
different algorithms can be designed to achieve the same goal. Some are gimple to
comprehend, while others are not. Experience has also shown that the number of bugs that
occur is related to the format of the program. The format should be such that it is easy to
trace the flow of execution of statements. This would help not only in debugging but
also in the review and maintenance of the program later. One method of achieving the
objective of an aeccurate, error-resistant and maintainable code is to use one or any
combination of the following three control structures:

1. Sequence structure (straight line)
2. Selection structure (branching)
3. Loop structure (iteration or repetition)

Figure 3.4 shows how these structures are implemented using one-entry, one-exit concept,
a popular approach used in modular programming.

Tokens, Expressions and Control Structures # 65

Entry Entry

F
Action 2 ‘
N
Action 3
Action 2
Exit Exit
Aclion 3
] T
(a) Sequence (b) Selection (c) Loop

Fig.3.4 & Basic control structures |

It is important to understand that all program processing can be coded by using only
these three logic structures. The approach of using one or more of these basic control
constructs in programming is known as structured programming, an important technique
in software engineering.

Using these three basic constructs, we may represent a function structure either in
detail or in summary form as shown in Figs 3.5 (a), (b) and (c).

Like C, C++ also supports all the three basic control structures, and implements them
using various conirol statements as shown in Fig. 3.6. This shows that C++ combines the
power of structured programming with the object-oriented paradigm.

The if statement
The if statement is implemented in two forms:

@ Simple if statement
® if..else statement

Copyrighted material

Object-Oriented Programming with T4+

(b} Second level of abstraction

(&) First level of abstraction

Module A

lllllllllllllllllllllll

\[/E:Il
{c) Detailed flow chart

Fig. 35 & Different levels of abstraction |

Copyrighted material

Tokens, Expressions and Control Structures @ 67

-"j?fnnﬂ:runun
ST N

/ N\

Selection L Sequence Loop
AN | ZaN ’
£ 4 d -
f-else | | switch do-while | | while, for

Exit-conired Entry-conbral
Two way branch Multiple branch :

Fig. 3.6 <« C++ statements to implement in koo forms |

Examples:
Form 1
if(expression is true)

actionl;

action?;
action3;

Form 2

if(expression is true)

actionl;

else

{
)

action3;

actiong;

The switch statement

This is a multiple-branching statement where, based on a condition, the control is transferred
to one of the many possible points. This is implemented as follows:

68 » : Object-Oriented Programming with Ct+

switch{expression)

{
casel:

{
actionl;
|

cased:

{
. action2;

}

caseld:

{

action3;

}
default:

4

actiond;

}
)

actionS:

The do-while statement

The do-while is an extf-controlled loop. Based on a condition, the control is transferred back
to a particular point in the program. The syntax is as follows:

do

{
actionl;
|

while(condition iz true);
actionZ;

The while statement
This iz alzo a loop structure, but iz an enfry-controlled one. The syntax ig as follows:

while{condition is true)
{

actionl;

)

actiong:

The for statement

The for is an entry-entrolled loop and is used when an action is to be repeated for a
predetermined number of times. The syntax is as follows:

Tokens, Expressions and Control Structures & 69

for{initial value; test; increment)

{

actionl:
}

action?;

The syntax of the control statements in C++ is very much similar to that of C and therefore
they are implemented as and when they are required.

\ SUMMARY .

=]

¢t ¢

g ¢

C++ provides various types of tokens that include keywords, identifiers, constants,
strings, and operators.

Identifiers refer to the names of variables, functions, arrays, classes, etc.

C++ provides an additional use of void, for declaration of generic pointers.

The enumerated data types differ slightly in C++. The tag names of the enumerated
data types become new type names. That is, we can declare new variables using these
tag names.

In C4++, the size of character array should be one larger than the number of characters
in the string.

C++ adds the concept of constant pointer and pointer to constant. In case of constant
pointer we can not modify the address that the pointer is initialized to. In case of
pointer to a constant, contents of what it points to cannot be changed.

Pointers are widely used in C++ for memory management and to achieve polymorphism.

C++ provides a qualifier called const to declare named constants which are just like
variables except that their values can not be changed. A const modifier defaults to an
int.

C++ is very strict regarding type checking of variables. It does not allow to eguate
variables of two different data types. The only way to break this rule is type casting.

4» C++ allows us to declare a variable anywhere in the program, as also its initialization

at run time, using the expressions at the place of declaration.

A reference variable provides an alternative name for a previously defined variable.

Both the variables refer to the same data object in the memory. Hence, change in the
value of one will also be reflected in the value of the other variable.

A reference variable must be initialized at the time of declaration, which establishes
the correspondence between the reference and the data object that it names.

70 » Object-Onented Programming with C++

=

=]

¥ Y Y Y Y Y Y Y Y Y Y YYYYYYY

A major application of the scope resolution (2:) operator is in the classes to identify the
class to which a member function belongs.

In addition to malloe(), ealloe() and free() functions, C++ also provides two unary
operators, new and delete to perform the task of allocating and freeing the memory in a
better and easier way,

C++ also provides manipulators to format the data display. The most commonly used
manipulators are endl and setw.

C++ supports seven types of expressions, When data types are mixed in an expression,
C++ performs the conversion automatically using certain rules,

C++ also permits explicit type conversion of variables and expressions using the type cast
operators,

Like C, C++ also supports the three basic control structures namely, sequence, selection

and loop. and implementz them using various control statements such as, if, if..else,
switch, do..while, while and for.

Key Terms

array ¥ control structure

associativity » data types

automatic conversion » decimal integer

backslash character » declaration

bitwise expression *» delete

bool » dereferencing

boolean expression » derived-type

branching » do..while

call by reference » embedded assignment

calloc() > endl

character constant > entry control

chained assignment . » enumeration

class > exit control

ecompound assignment » explicit conversion

compound expression » expression

const » float expression

constant > floating point integers
> for

constant expression
' (Coned)

formatting

free store

free()

function
hexadecimal integer
identifier

if

if...else

implicit conversion
initialization
integer constant
integral expression
integral widening
iteration

keyword

literal

logical expression
loop

loop structure
malloc()
manipulator
memory

named constant
new

octal integer
operator

operator keywords
operator overloading
operator precedence
pointer

pointer expression

¥ Y Y Y VY Y Y YY Y YY Y YY Y YYYYYYYYYYYYYYY

pointer variable

l Review Questions

Y ¥ Y Y ¥ Y ¥ Y Y Y Y Y Y Y YYYYYYYYYYYYYYYYYY

Tokens, Expressions and Control Structures ® 71

reference
reference variable
relational expression
repetition

scope resolution
selection

selection structure
SEquUence

sequence structure
setw

short-hand assignment
sizeof()

straight line
string

string constant
struct

structure
structured programming
awitch

symbolic constant
token

type casting

type compatibility
typedef

union
user-defined type
variable

void

water-fall model
wchar t

while
wide-character

3.1 Enumerate the rules of naming variables in C++. How do they differ from ANSI C

rules?

T2 & Object-Oriented Programming with C++

3.2 An unsigned int can be fwice ag large as the signed int. Explain how?

3.3 Why doez C++ have type modifiers?

3.4 What are the applications of veid data type in C++¥

3.6 Can we ossign a void pointer fo an int type pointer? [If not, why? How can we
achieve this?

3.6 Desecribe, with examples, the uses of enumeration data types.

3.7 Describe the differences in the implementation of enum data type in ANSI C and
C++.

3.8 Why is an array called a derived data type?

3.9 The size of a char array that is declared to store a string should be one larger
than the number of characters in the string. Why?

3.10 The const was faken from C++ and incorporated in ANSI C, although guite
differently. Explain.

3.11 How does a constant defined by const differ from the constant defined by the
preprocessor statement $define?

3.12 In C++, a variable can be declared anywhere in the scope. What is the significance
of this feature?

3.13 What do you mean by dynamic initialization of a variable? Give an example.

3.14 What is a reference variable? Whal is its major use?

3.15 List at least four new operators added by C++ which aid OOP.

3.16 What is the application of the scope resolution operator :: in C++¢

3.17 What are the advantages of using new operator as compared to the funection
malloc()?

3.18 [Mlustrate with an example, how the setw manipulator works.
3.19 How do the following statements differ?

(a) char * const p;

(b} char const *p;

Debugging Exercises

3.1 What will happen when you execute the following code?
#include <iostream.h=
void main()

{
int i=0;

i=400*400/400;
cout =< i3
}
3.2 Identify the error in the following program.

Finclude =iostream.h=
void main()

Copyrighted material

int num[]={1,2,3,4,5,6};
num[1]==[1]num ?
]

Tokens, Expressions and Confrol Structures

cout=<"Success"

3.3 Identify the errors in the following program.

finclude <iostream.h=
void main()
{
int i=5;
while(i)
{
switch(i)
{
default:
case 4:
case 5:

break;

case 1:
continue;

case Z2:
case 3:
break;

]
i
|
}

3.4 ldentify the error in the following program.

#Finclude <iostream.h>
#define pi 3.14

int squareArea(int &);
int circleArea(int &):

void main()

{
int a=10;
cout =< sguareAreala) << "

® 73

cout=<"Error";

Copyrighted material

74 ®» Object-Oriented Programming with Cr+

cout << circleAreafa) =< " *;
cout << a << endl;

b

int squareArea(int &a)

{

return & *== a;
1

int circleArea(int &r)

{

}
3.5 Identify the error in the following program.

#include <jostream.h>
#include =malloc.h=

return r=pi *r * r;

char* allocateMemory():

void maing)

char* str;

str = allocateMemory();
cout <= sir;

delete str;

5tT' m i I:

cout =< strg

1

char* allocateMemory()

{
str = "Memory allocation test, ":
return str;

)
3.6 Find errors, if any, in the following C++ statements.

{a) long float x;

(b} char *cp = vp; / vp is a void pointer
(g} int code = three; A three is an enumerator
(d) int *p = new; / alloeate memory with new

(e) enum (green, yellow, red);

(f) int const *p = total;

(g) const int array_size;

th) for (i=1; int i<10; i++) cout << i << *\n";

Copyrighted material

Tokens, Expressions and Control Structure s 8 75

(i) int & number = 100;
(ji float *p = new int |10];
(k) int public = 1000;

1" char name[3] = “UUSA™

l Programming Exercises

3.1

3.2
3.3

3.4

3.5

3.6

Write a function using reference variables as arguments to swap the values of a
pair of integers.
Write a function that creates a vector of user-given size M using new operator.
Write a program to print the following output using for loops.

1

£

333

4444

55555
Write a program to evaluate the following invesiment equation
V=Pl1+r)\"
and print the tables which would give the value of V for various combination of
the following values of P, rand n:
P: 1000, 2000, 3000, ..., 10,000
r 0.10,0.11,0.12, ..., 020
n: 1,23 ... 10
(Hint: P is the principal amount and V is the value of money at the end of n years.
This equation can be recursively written as
V=PT+r
P=V
In other words, the value of money at the end of the first year becomes .ﬂhepn'm:ipaf
amount for the next year, and so on.
An election is contested by five candidates. The candidates are numbered 1 to 5
and the voting is done by marking the candidate number on the ballot paper.
Write a program to read the ballots and count the votes cast for each candidate
using an array variable count. In case, a number read is outside the range 1 io 5,

the ballot should be considered as a 'spoilt ballot', and the program should also
count the number of spoilt ballots.

A ericket team has the following table of batting figures for a series of ftest matches:

Sachin 8430 230 e
Saurav 4200 130 9
Rahul 3350 105 11

76 @ Object-Oriented Programming with C++

Write a program fto read the figures set out in the above form, to calculate the
batting averages and fo print out the complete table including the averages.

3.7 Write programs to evaluate the following functions to 0.00017% cocuracy.
a 8 7
X X

'[E.:' Eiﬂx:x—ﬁ+a—?_!+
(b) SUM =1+ (1/2)" + (1/37 + (1/4)" +
a 1_-1 Kﬁ
ic) coex=1- E+?_E+
3.8 Write a program to print a table of values of the function

=X
Y=
fpr x varying Iﬁ"l'.l-m 0 to 1) in steps of 0.1. The table should appear as follows.

TABLE FOR Y = EXP [-X]
X 0.1 0.2 0.3 0.4 0.5 .6 0.7 0.8 0.9

0.0
1.0

3.9 Write a program to calculate the variance and standard deviation of N numbers.

N
. 1 _.a
Variance = N E (2y = X)

[+ N
Standard Deviation = 'H%Eu' 3
i=l

_ 14
where x = N E‘xl
3.10 An electricity board charges the following rates to domestic users fo discourage
large consumption of energy:

For the first 100 units - 60F per unit
For next 200 units - 80P per unit
Beyond 300 units - S0P per unit

All users are charged a minimum of Rs. 50.00. If the total amount is more than
Rs. 300.00 then an additional surcharge of 15% is added.

Write a program to read the names of users and number of units consumed and
print out the charges with names.

Copyrighted material

| Functions in C++ |

Key Concepts

4.1 Introduction

We know that functions play an important
role in C program development. Dividing a

» Return types in main() program inte functions is one of the major
» Function prototyping principles of top-down, structured
programming. Another advantage of using
» Csll by reference functions iz that it is possible to reduce the
> (Call by value gize of & program by calling and using them
> Return by reference at different places in the program.
» Inline functions
Reeall that we have used a syntax similar
> Default arguments S .
to the following in developing C programs.
» Constant arguments
> Function overloading
void show(); /* Function declaration */
main()

i

¥ &8 F ¥

show() ; /* Function call */

'EEEE

)
void show() /* Function defimition */

78 ® Object-Oriented Programming with Cs+

/* Function body */

When the function 1s called, contrel is temastorrod tev Dhee Drst =Lcenaend e e T ion
body. The other statements in the function body are then executed and control returns to
the main program when the closing brace is encountered. C++ is no exception. Functions
continue to be the building blocks of C++ programs. In fact, C++ has added many new
features to functions to make them more reliable and flexible. Like C++ operators, a C++
function can be overloaded to make it perform different tasks depending on the arguments
passed to il Most of these modifications are aimed ot mecting the reguereaent= of ahjoe -
oriented facilities,

In this chapter, we shall briefly discuss the various new features that are added to C++
funetions and their implementation.

Iﬂiiz The Main Function

C does not specify any return type for the main() function which is the starting peoint for
the execution of a program. The definition of main() would look like this:

main()

{
i
This is perfectly valid because the main() in C doez not return any value.

[/ main progrom stotements

In C++, the main() returns a value of type int to the operating system. C++, therefore,
explicitly defines main() as matching one of the following prototypes:

int main();
int main(int argc, char * argv[]);

The functions that have a return value should use the return statement for termination.
The main() function in C++ is, therefore, defined as follows:

'{inr, main()

return 0;

Since the return type of functions is int by default, the kevword int in the main() header
is optional. Most C+4+ compilers will generate an error or warning if there is no return

Functions in Cé+ & 79

statement. Turbo C++ issues the warning

Function should return a value

and then proceeds to compile the program. It is good programming practice to actually
return a value from main().

Many operating systems test the return value (called exit value) to determine if there is
any problem. The normal convention is that an exit value of zero means the program ran
suecessfullv, while a nonzero value means there was a problem. The explicit use of a
returni()) statement will indicate that the program was successfully executed.

4.3 Function Prototyping

Function protoiyping is one of the major improvements added to C++ functions. The prototype
describes the function interface to the compiler by giving details such as the number and
type of arguments and the type of return values. With function prototyping, a femplate is
always used when declaring and defining a function. When a function is called, the compiler
uses the template to ensure that proper arguments are passed, and the return value is
treated correctly. Any violation in matching the arguments or the return types will be caught
by the compiler at the time of compilation itself. These checks and controls did not exist in
the conventional C functions.

Remember, C also uses prototyping. But it was introduced first in C++ by Stroustrup and
the succesa of this feature inspired the ANSI C committee to adopt it. However, there is a
major difference in prototyping between C and C++. While C++ makes the prototyping
essential, ANSI C makes it optional, perhaps, to preserve the compatibility with classic C.

Function prototype is a declaration sfatement in the calling program and is of the following form:

type function-name (argument-l1ist);

The argument-list contains the types and names of arguments that must be passed to the
function.

Example:
float volume(int x, float y, float z);

Note that each argument variable must be declared independently inside the parentheses.
That iz, a combined declaration like

float volume(int x, float y, z);

15 illegal.

80 » Object-Oriented Programming with C++

In a function declaration, the names of the arguments are dummy variables and therefore,
they are optional. That is, the form

float volume(int, float, float);

is acceptable at the place of declaration. At this stage, the compiler only checks for the type
of arguments when the function is called.

In general, we can either include or exclude the variable names in the argument list
of prototypes. The variable names in the prototype just act as placeholders and, therefore,

if names are used, they don't have to match the names used in the function call or function
definition.

In the function definition, names are required because the arguments must be referenced
inside the function. Example:

float volume(int a,float b.float c)

float v = a*b*c;

The function volume() can be invoked in a program as follows:
float cubel = volume(bl,wl,hl); // Function call

The variable bl, wl, and hl are known as the actual parameters which specify the
dimengions of eubel. Their types (which have been declared earlier) should match with the
tvpes declared in the prototype. Remember, the calling statement should not include type
names in the argument list.

We can also declare a function with an empfy argument list, as in the following example:
void display();

In C++, thiz means that the function does not pass any parameters. [t is identical to the
statement

void display(void);
However, in C, an empty parentheses implies any number of arguments. That is, we
'fhave foregone prototyping. A C++ function can also have an ‘open' parameter list by the use
itof ellipses in the prototype as shown below:

void do_something(...);

Copyrighted maierial

Functions in C++ ® 81

I%isi Call by Reference

In traditional C, a function call passes arguments by value. The called function creates a
new set of variables and copies the values of arguments into them. The function does not
have access to the actual variables in the calling program and can only work on the copies of
values. This mechanism is fine if the function does not need to alter the values of the original
variables in the calling program. But, there may arise situations where we would like to
change the values of variables in the calling program. For example, in bubble sort, we
compare two adjacent elements in the list and interchange their values if the first element
is greater than the second. If a function is used for bubble sort, then it should be able to alter
the values of variables in the calling function, which is not possible if the call-by-value
method is used.

Provision of the reference variables in C++ permits us to pass parameters to the functions
by reference. When we pass arguments by reference, the ‘formal’ arguments in the called
funetion become aliases to the ‘actual’ arguments in the calling function. This means that
when the function is working with its own arguments, it is actually working on the original
data. Consider the following function:

void swap(int &a,int &b) /f a and b are reference variables

{

a
b

int t = a; /f Dynamic initialization
b;
t;

}

Now, if m and n are two integer variables, then the function call
swap(m, n);

will exchange the values of m and n using their aliases (reference variables) a and b.
Reference variables have been discussed in detail in Chapter 3. In traditional C, this is
accomplished using pointers and indirection as follows:

void swapl(int *a, int *b) /* Function definition */

{

int t; '
t = *a; /* assign the value at address a to t */

*a = *h; J* put the value at b into a =/

h = t; / put the value at t into b */

}
'_I'h.is function can be called as follows:

Copyrighted material

B2 » Ohject-Oriented Programming with C++

swapl{ix, By):; /* call by passing */
J* addresses of variables */

This approach is also acceptable in C++. Note that the call-by-reference method is neaterin
its approach.

Ii.i Return by Reference

A function can also return a reference. Consider the following function:
int & max(int &x,int &y)
{

if (x = y)
return x;
else
return ¥;

}

Sinee the return type of max() is int &, the function returns reference to x or v (and not
the values). Then a function call such as max(a, b) will vield a reference to either a or b
depending on their values. This means that this function call can appear on the left-hand
side of an assignment statement. That is, the statement

max{a,b) = -1;

iz legal and assigns -1 to a if it is larger, otherwize -1 to b.

I-i.ﬁ Inline Functions

Omne of the objectives of using functions in a program is to save some memory space, which
becomes appreciable when a funetion is likely to be called many times. However, every time
a function is called, it takes a lot of extra time in executing a series of instructions for tasks
such as jumping to the function, saving registers, pushing arguments into the stack, and
returning to the calling function. When a funetion is small, a substantial percentage of
execution time may be spent in such overheads.

One solution to this problem iz to use macro definitions, popularly known as macros.
Preprocessor macros are popular in C. The major drawback with macros is that they are not
really functions and therefore, the usual error checking does not occur during compilation.

C++ has a different solution to this problem. To eliminate the cost of calls to small functions,
C++ proposes a new feature called inline function. An inline function is a function that is
expanded in line when it is invoked. That is, the compiler replaces the function call with the

Functions n C++ & B3

corresponding function code (something similar to macros expansion). The inline functions
are defined as follows:

inline function-heoder

function body
I

Exmuﬁlc:

inline double cube({double a)
{
return{a*a®a);

)
The above inline function can be invoked by statements like

¢ = cube(3.0);
d = cube(2.5+1.5);

On the execution of these statements, the values of c and d will be 27 and 64 respectively.
If the arguments are expressions such as 2.5 + 1.5, the function passes the value of the
expresgion, 4 in this ense. This makes the inline feature far superior to macros.

It is easy to make a function inline. All we need to do is to prefix the keyword inline to
the function definition. All inline functions must be defined before they are called.

We should exercize care before making a function inline. The speed benefits of inline
functions diminizh as the function grows in size. At some point the overhead of the function
call becomes amall compared to the execution of the function, and the benefitz of inline
functions may be lost. In such cases, the use of normal functions will be more meaningful.
Usually, the functions are made inline when they are small enough to be defined in one or
two lines. Example:

inline double cube(double a) {return(a*a*a);}

Remember that the inline keyword merely sends a request, not a command, to the compiler.
The compiler may ignore this request if the function definition is too long or too complicated
and compile the function as a normal function.

Some of the situations where inline expansion may not work are:

For functions returning values, if a loop, a switch, or a goto exists.
For functions not returning values, if a return statement exists.

If functions contain static variables.

If inline functions are recursive,

L

B4 ®» Ohject-Oriented Programming with C++

note

Inline expansion makes a program run faster because the overhead of a funection call and
return is eliminated. However, it makes the program to take up more memory because
the statements that define the inline function are reproduced at each point where the
function is called. So. a trade-off becomes necessary.

Program 4.1 illustrates the use of inline functions.

INLINE FUNCTIONS

#include <iostreams
using namespace std;

inline float mul(float x, float y)
i

}

return(x*y);
inline double div(double p, double g)
i
}

int main{)
{

return{p/o);

float a = 12.345;
fioat b = 9.82;

cout << mul(a,b) << "\n*;
cout << div({a,b) =< "\n";

return 03

PROGRAM 4.1

The output of program 4.1 would be

121.228
1.25713

4.7 Default Arguments

C++ allows us to call a function without specifying all itz arguments. In such cases, the
function assigns a default value to the parameter which does not have a matching argument

Functions in C++ : & B5

in the function call. Default values are specified when the function is declared. The compiler
looks at the prototype to see how many arguments a funection uses and alerts the program
for possible default values. Here is an example of a prototype (i.e. function declaration) with
default values:

float amount(float principal,int period,float rate=0.15);

The default value is specified in a manner syntactically similar to a variable initialization.
The above prototype declares a default value of 0.15 to the argument rate. A subsequent
funection call like

value = amount (5000,7); /[one argument missing

passes the value of 5000 to principal and 7 to period and then lets the function use default
value of 0.15 for rate. The call

value = amount(5000,5,0.12); /{ no missing aorgument
paszes an explicit value of 0.12 to rate.

A default argument is checked for type at the time of declaration and evaluated at the
time of call. One important point to note is that only the trailing arguments can have default
values and therefore we must add defaults from right to left. We cannot provide a default
value to a particular argument in the middle of an argument list. Some examples of function
declaration with default values are:

int mul(int 1, int j=5, int k=10); // legal
int mul(int i=5, int j); /f illegal
int mul(int i=0, int j, int k=10): /f illegal

~int mul(int i=2, int j=5, int k=10); [/ legal

Default arguments are useful in situations where some arguments always have the same
value, For instance, bank interest may remain the same for all customers for a particular
period of deposit. It also provides a greater flexibility to the programmers. A function can be
written with more parameters than are required for its most common application. Using

default arguments, a programmer can use only those arguments that are meaningful to a
particular situation. Program 4.2 illustrates the use of default arguments.

DEFAULT ARGUMENTS

#Finclude <iostream

using namespace std;

(Contd}

86 e

int main{)

{

float amount:

float value(float p, int n, float r=0.15);
void printline{char ch="*", int ien=40);:

printline(); // uses default values for

amount = value(5000.00,5); ff default

cout <= "\n Final ¥alue

printline('=');

return 0;
I
T o L I SN P T S oy P P
float value(float p, int n, float r)
{

int year = 1;
float sum = p;

while[year == n)

{

sum = sum*{1l+r);
year = year+l:

}

returni{sum) ;

]

void printline(char ch, int len)

{

&
¥

for{int i=1;
printf{"\n");

i==len; i++] printf({"%c".ch)

The output of Program 4.2 would be

EEkFh R AR AR e kA k& Ao

10056.8

Final Walue

Advantages of providing the default arguments are:

Ohject-Oriented Programming with C++

{/ prototype
/[prototype

arguments

for 3rd argument

<< amount << "\n\n®:

S use default value for 2nd argument

PROGRAM 4.2

Copyrighted material

Functions in C++ & B7

1. We can use default arguments to add new parameters to the existing functions.
2. Defaunlt arguments can be used to combine similar functions into one.

4.8 const Arguments

In C++, an argument to a function can be declared as const as shown below.

int strlen{const char *p);
int length(const string &s);

The qualifier const tells the compiler that the function should not modify the argument.
The compiler will generate an error when this condition is violated. This type of declaration
is significant only when we pass arguments by reference or pointers.

I4.9 Function Overloading

As stated earlier, overloading refers to the use of the same thing for different purposes. C++
alzo permits overloading of functions. This means that we can use the same function name
to create funetions that perform a variety of different tasks. This is known as function
polymorphism in O0P.

Using the concept of function overloading; we can design a family of functions with one
function name but with different argument lists. The function would perform different
operations depending on the argument list in the function call. The correct function to be
invoked is determined by checking the number and type of the arguments but not on the
function type. For example, an overloaded add() function handles different types of data as
ghown below:

/f Declarations

int add{int a, int b); [/ prototype 1
int add{int a, int b, int c); [/ prototype 2
double add({double x, double y); [[prototype 3
double add{int p, double q); /[prototype 4
double add({double p, int q);: /[prototype 5
/) Function calls

cout =< add(5, 10); [/ uses prototype 1
cout =< add(15, 10.0); /[uses prototype 4
cout =< add(12.5, 7.5); /[uses prototype 3
cout =< add(5, 10, 15); [/ uses prototype 2
cout << add(0.75, 5); [/ uses prototype §

B8 & Ohject-Oriented Programming with Cs++

A function call first matches the prototype having the same number and type of arguments
and then calls the appropriate function for execution. A best match must be unique. The
function selection involves the following steps:

1. The compiler first tries to find an exact match in which the types of actual argu-
ments are the same, and use that funetion.

2. If an exact match is not found, the compiler uses the integral promotions to the
actual arguments, such as,

char to int
float to double
to find a match,

3. When either of them fails, the compiler tries to use the built-in conversions (the
implicit assignment conversions) to the actnal arguments and then uses the func-
tion whose match is unigque. If the conversion is possible to have multiple matches,
then the compiler will generate an error message. Suppose we use the following
two functions;

long square(long n)
double square(double x)

A funetion ecall such as
square(10)

will cause an error because int argument ¢an be converted to either long or double,
thereby creating an ambiguous situation as to which version of square() should be
used.

4. If all of the steps fail, then the compiler will try the user-defined conversions in
combination with integral promotions and built-in conversions to find a unique

match. User-defined conversions are often used in handling class objects.

Program 4.3 illustrates function overloading.

FUNCTION OVERLOADING

J/ Function volume() is owerloaded three times
#inciude <iostream

45ing namespace std;

/{ Declarations (prototypes)

int volume{int);

double volume({double, ‘int);

long wolume{long, int, int);

(Carea)

Copyrighted material

Functions in C++ —® 89

int main{)
1
cout << volume(l0} =< "\n*
cout << volume(Z?.5,8) == in
cout << volume lﬂl:IL 15,15) =< "m

return 0;

)
/i Function definitions
int volume{int s} // cube

return{s*s®s);

double volume{double v, int h) /f cylinder
i

|
iong volume(long 1, int b, int h) // rectangular box

return{1*b®h) ;

return(3. 18519*r*r¥*h);

——

PROGRAM 4.3

The output of Program 4.3 would be:

1000
157.26
112500

Owerloading of the functions should be done with caution. We should not overlead unrelated
functions and should reserve function overloading for functions that perform closely related
tasks. Sometimes, the default arguments may be used instead of overloading. This may
reduce the number of functions to be defined.

Owerloaded functions are extensively used for handling class objects. They will be
illustrated later when the classes are discussed in the next chapter,

Iai. 10 Friend and Virtual Functions

C++ introduces two new types of functions, namely, friend function and virtual function.
They are basically introduced to handle some specific tasks related to class objects, Therefore,
discussions on these functions have been reserved until after the class ohjects are discussed.
The friend functions are discussed in Sec. 5.15 of the next chapter and virtual functions in
Sec. 9.5 of Chapter 9.

90 & Object-Ortented Programming with C++

Ii.ll Math Library Functions

The standard C++ supports many math functions that can be used for performing certain
commonly used caleulations. Most frequently used math library functions are summarized
in Table 4.1.

Table 4.1 Commonly used math library functions
TR R T et

fuig
Rounds x tn the smallest integer not less than x ceil(B.1)
= 8.0 and ceil(-8.8) = -8.0

cog(x) Trigonometric cosine of x (x in radians)
explx) Exponential function e,
fabs(x) Absolute value of x.

If x>0 then abs(x) is x

If x=0 then absix) is 0.0
If x<l then abaix) is —x

floor(x] Rounds x to the largest integer not greater than x
floor{8.2) = 8.0 and floor(-8.8 = 8.0

logix) Natural logarithm of x(base &)

log10(x) Logarithm of x(base 10)

pow(x,y) x raised to power yix¥)

sinix) Trigonometric sine of x (x in radians)

sqrtix) Square root of x

tan(x) Trigonometric tangent of x (x in radians)

noteE
| The argument variables x and ¥ are of type double and all the functions return the dﬂtﬂj

double.

Touse the math library functions, we must include the header file math.h in conventional
C++ and emath in ANSI C++.

\ SUMMARY /

& It is possible to reduce the size of program by ealling and using functions at different
places in the program.
% In C++ the main() returns a value of type int to the operating system. Since the return

type of functions is int by default, the keyword int in the main{) header is optional.
Most C++ compilers issue a warning, if there is no return statement.,

Functions in C++ * 91

¢» Function prototyping gives the compiler the details about the functions such as the

number and types of arguments and the type of return values.

% Reference variables in C++ permit us to pass parameters to the functions by reference.

¢

&

¢

8

LI

A funetion can also return a reference to a variable.

When a function is declared inline the compiler replaces the function call with the
respective function code. Normally, a small size funection is made as inline.

The compiler may ignore the inline declaration if the function declaration is too long or
too complicated and hence compile the function as a normal function.

C++ allows us to assign default values to the function parameters when the fanction is
declared. In such a case we can call a function without specifying all its arguments.
The defaults are always added from right to left.

In C+4+4, an argument to a function can be declared as const, indicating that the function
should not modify the argument.

C++ allows function overloading. That is, we can have more than one function with the

same name in our program. The compiler matches the function call with the exact
function code by checking the number and type of the arguments.

C4++ supports two new types of functions, namely friend functions and virtual functions,

Many mathematical computations can be carried out using the library functions
supported by the C++ standard library.

Key Terms
» actual arguments » dummy variables
> argument list > ellipses
» hubble sort » empty argument list
» call by reference » exit value
» call by value » formal arguments
> called function » friend functions
» calling program » function call
» calling statement » function definition
» cmath » function overloading
> const arguments » function polymorphiam
» declaration statement » function prototype
» default arguments » indirection
» default values » inline

(Cond)

..
o
L]

inline functions
MACT0S

main()

math library
math.h
overloading
pointers
polymorphism

¥ Y Y ¥ YyYV¥Y¥

I Review Questions

Obpect-Ortented Programming with Ce+

Y Y Y Y ¥Yyvy¥yvyy

prototyping
reference variable
return by reference
return statement
return tyvpe
returni)

template

virtual funetions

4.1 State whether the following statements are TRUE or FALSE,
(a) A function argument is a value returned by the function to the calling

program.

(b) When argumenis are passed by value, the function works with the original

arguments in the calling program.

(c) When a function returns a value, the entire function call can be assigned fo

a variahle.

(d) A function can return a value by reference,
(e} When an argument is passed by reference, a temporary variable is created
in the calling program to hold the argument value.

(f} It iz not necessary to specify the variable name in the function prototype.
4.2 What are the advantages of function prototypes in C++7
4.3 Describe the different styles of writing prototypes.
4.4 Find errors, iff any, in the following function prototypes.

(a) float average(x,y);
(b) int muliint a,b);

(c) int displayi...);

(d) wvoid Vect(int? &V, int & sizel;

(e) wvoid print(float data [}, size = 20;

4.5 What is the main advantage of passing arguments by reference?

4.6 When will you make a function inline? Why?

4.7 How does an inline function differ from a preprocessor macro?

4.8 When do we need to use defoult arguments in a function?

4.9 What is the significance of an empty parenthesis in a function declaration?
4.10 What do you meant by overloading of a function? When do we use this concept?

Copyrighted maierial

Functions in C++

4.11 Comment on the following function definitions:

(a) int *f()
[
intme= 1;

LB

return{im) ;
}
(b) double f()
i

return(l);
)
{c) int & £()
{
int n = 10;
returnin);

b

I Debugging Exercises

4.1 ldentify the error in the following program.
#include <ipstream,h=
int fun()

{
return 1;
}
float fun()
{
return 10.23;
void main()
{

1 1

cout =< (int)fun() =< :
cout =< (float)fun() =< ' ';

94 & Ohject-Oriented Programming with C++
4.2 Identify the error in the following program.

#include <iostream.h=>

void display{const int constl=5)
{
const int const2=5;
int arrayl[constl];
int array2[const2];
for(int i=0; i<5; i++)
{
arrayl[i] = 1;
array2[i] = 1*10;
cout =< arrayl[i] == ' ' == array2[i] =< ' ' ;

)

void main()
{
display(5);
)
4.3 Identify the error in the following program.

finclude =iostream.h=
int g¥alue=10;
void extra()

ﬂ
|

vaid main()

cout << gValue =< * 3

extra();

{
int g¥alue = 20;
cout << gV¥alue =< ' ';
cout =< : gV¥alue =< ' ';

}
4.4 Find errors, if any, in the following function definition for displaying a matrix:
void display(int A[] [], int m, int n)

{
for{i=0; i=m; i++)

Funetions in C++ ® 95

for(j=0;: j<n; j++)
cout == " " << A[i][]];
cout =< "\n";

I Programming Exercises

4.1
4.2

4.3

4.4

4.5
4.6
4.7

‘4.8

Write a function to read a malrix of size m x n from the keyboard.

Write a program to read a matrix of size m x n from the keyboard and display
the same on the screen using functions.

Rewrite the program of Exercise 4.2 to make the row parameter of the matrix as a
defaull argumendt.

The effect of a default argument can be alternatively achieved by overloading.
Discuss with an example,

Write a macro that obtains the largest of three numbers.

Redo Exercise 4.5 using inline function. Test the function using a main program.
Write a function power{) to raise a number m to a power n. The function takes a
double value for m and int value for n, and returns the result correctly. Use a
default value of 2 for n to make the function to calculate squares when this argument
is omitled. Write a main that gets the values of m and n from the user to test the
function.

Write a function that performs the same operation as that of Exercise 4.7 but
takes an int value for m. Both the funclions should have the same name. Write a
main that calls both the functions. Use the concept of function overloading.

| Classes and Objects |

Key Concepts

Using structures

Creagting a class

Defining member functions
Creating olects

Using objects

Inline member functions
MNested member functions
Private member functions

Arrays as class members

Y Y Y Y YYYYYY

Storage of objects

5.1 Introduction

¥ Y Y Y Y YYV¥YV¥YY

Btatic data mombers

Static member functions

Using arrays of objects

Passing objects as parameters
Making functions friendly to classea
Functions returmng objects

const member functions

Pointers to members

Using dereferencing operators

Local classes

The most important feature of C++ is the “class”. Its significance is highlighted by the fact
that Stroustrup initially gave the name “C with classes™ to his new language. A class is an

Classes and Objects & 97

extension of the idea of structure used in C. It is a new way of creating and implementing a
user-defined data type. We shall discuss, in this chapter, the concept of class by first reviewing
the traditional structures found in C and then the ways in which classes ean be designed,
implemented and applied.

5.2 C Structures Revisited

We know that one of the unique features of the C language is structures. They provide a
method for packing together data of different types. A structure is a convenient tool for
handling a group of logically related data items, It is a user-defined data type with a template
that serves to define its data properties. Once the structure type has been defined, we can
create variables of that type using declarations that are similar to the built-in type
declarations. For example, consider the following declaration:

struct student

{
char name[20];
int roll_number;
float total marks;

i

The keyword struet declares student as a new data type that can hold three fields of
different data types. These fields are known as structure members or elements. The identifier
student, which is referred to as structure name or structure tag, can be used to create variables
of type student. Example:

struct student A; [/ C decloration

A ig a variable of type student and has three member variables as defined by the template.
Member variables can be accessed using the dot or period operator as follows:

strepy(A.name, “"John®);
A.roll_number = 999;

A.total _marks = 595.5;
Final total = A.total marks + 5;

Structures can have arrays, pointers or structures as members.

Limitations of C Structure

The standard C does not allow the struct data type to be treated like built-in types. For
example, consider the following structure:

Copyrighted material

98 » Ohject-Oriented Programming with C++

struct complex

flopat x;
float y;
| H
struct complex c¢l, ¢2, cl;

The complex numbers c1, ¢2, and ¢3 can easily be assigned values using the dot operator,
but we cannot add two complex numbers or subtract one from the other. For example,

cd = gl + c?;
is illegal in C.
Another important limitation of C structures is that they do not permit data hiding.

Structure members can be directly accessed by the structure variables by any function
anywhere in their scope. In other words, the structure members are public members,

Extensions to Structures

C++ supports all the features of structures as defined in C. But C++ has expanded its
capabilities further to suit its OOP philosophy. It attempts to bring the user-defined types
as close as possible to the built-in data types, and also provides a facility to hide the data
which is one of the main principles of OOP. Inheritance, a mechanism by which one type

can inherit characteristics from other types, is also supported by C++.

In C++, a structure can have both variables and functions as members, It can also declare
some of its members as 'private' so that they cannot be accessed directly by the external
functions.

In C++, the structure names are stand-alone and can be used like any other type names.
In other words, the keyword struct can be omitted in the declaration of structure variables.
For example, we can declare the student variable A as

student A; Jf C++ declarotion
Remember, this is an error in C.

C++ incorporates all these extensions in another user-defined type known as class, There
is very little syntactical difference between structures and classes in C++ and, therefore,
they can be used interchangeably with minor modifications. Since class is a specially
introduced data type in C++, most of the C++ programmers tend to use the structures for
holding only data, and classes to hold both the data and functions. Therefore, we will not
discuss structures any further.

reode

The only difference between a structure and a class in C++ is that, by default, the members
of a class are private, while, by default, the members of a structure are public.

Classes and Objects ¢ 99

|5.5 Specifying a Class

A class is a way to bind the data and its associated functions together. It allows the data
{and functions) to be hidden, if necessary, from external use. When defining a class, we are
creating a new abstract data type that can be treated like any other built-in data type.
Generally, a class specification has two parts:

1. Class declaration
2. Class function definitions

The class declaration describes the type and scope of its members. The class function
definitions describe how the class functions are implemented.

The general form of a class declaration is:

class class name
{
private:
variable declarations;
function declarations;
public:
variable declarations;
function declaration;

l:

The elass declaration is similar to a struet declaration. The keyword elass specifies,
that what follows is an abstract data of type class_name. The body of a class is enclosed
within braces and terminated by a semicolon. The class body contains the declaration of
variables and functions. These functions and variables are collectively called class members.
They are usually grouped under two sections, namely, private and public to denote which of
the members are private and which of them are public, The keywords private and public
are known as visibility labels. Note that these keywords are followed by a colon.

The class members that have been declared as private can be accessed only from within
the class. On the other hand, public members can be accessed from outside the class also,
The data hiding (using private declaration) is the key feature of ohject-oriented programming.
The use of the keyword private is optional. By default, the members of a class are private.
If both the labels are missing, then, by default, all the members are private. Such a class is
completely hidden from the outside world and does not serve any purpose.

The variables declared inside the class are known as data members and the functions are
known as member functions. Only the member functions can have access to the private data
members and private functions. However, the public members (both functions and data)
can be accessed from outside the class. This is illustrated in Fig. 5.1. The binding of data and
functions together into a single clazs-type variable ia referred to as encapsulation.

100@ Object-Oriented Programming with C++

CLASS
Mo entry 1o ___F'_I"[u?.l_El_ aea
private area | Data
% | P
| [Functions =t~
L ———— -ed]
s .
Public area .
Entry allowed to r———=_Dala__J+- |
public area L ; | ;
———--—===d | Functions |-~{---
i l
|

Fig. 5.1 = Data hiding in classes

A Simple Class Example
A typical class declaration would look like:

class item
{
int number; J/ variables decloration
float cost: /i private by defoult
public:
void getdata(int a, float b); // functions declaration
void putdata(void); [/ using prototype

1:// ends with semicolon

We usually give a class some meaningful name, such as item. This name now becomes a
new type identifier that can be used to declare instances of that elass type. The class item
contains two data members and two function members. The data members are private by
default while both the functions are public by declaration. The function getdata() can be
used to assign values to the member variables number and cost, and putdata() for displaying
their values. These functions provide the only access to the data members from outside the
class. This means that the data cannot be accessed by any function that is not 8 member of
the class item. Note that the functions are declared, not defined. Actual function definitions
will appear later in the program. The data members are usually declared as private and
the member functions as publie. Figure 5.2 shows two different notations used by the OOP
analysts to represent a class.

Creating Objects

Remember that the declaration of item as shown above does not define any objects of item
but only specifies what they will contain. Once a class has been declared, we can create
variables of that type by using the class name (like any other built-in type variable). For
example,

Classes and Objects 0101

Class : ITEM ITEM
DATA | geidatai)
nurmiber
ol
puidatal)
FURCTIONS
gﬂtdaﬂi | — |
putdatal)
(a) {b)

Fig.52 & Reprm:nmtﬁm .:y" a icligss i

item x3 [/ memory for x is creoted
creates a variable x of type item. In C++, the class variables are known as objects. Therefore,
x is called an object of type item. We may also declare more than one object in one statement.
Example:

item x, ¥, 23

The declaration of an object is similar to that of a variable of any basic type. The necessary
memory space is allocated to an object at this stage. Note that class specification, like a
structure, provides only a templafe and does not create any memory space for the objects.

Ohbjects can also be created when a class is defined by placing their names immediately
after the closing brace, as we do in the case of structures. That is to say, the definition

class item

would create the ohjects x, ¥ and z of type item. This practice is seldom followed because we
would like to declare the objects close to the place where they are used and not at the time
of class definition.

Accessing Class Members

As pointed out earlier, the private data of a class can be accessed only through the member
functions of that class. The main() cannot contain statements that access number and
cost directly. The following is the format for calling a member function:

Copyrighted material

1“2' ﬂhje:t-ﬂnented Programming with C++

object-name. function-name (actual-arguments);

For example, the function call statement
x.getdata(100,75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the object x by implementing
the getdata() function. The assignments occur in the actual function. Please refer Sec. 5.4
for further details.

Similarly, the statement
x.putdata();

would display the values of data members. Remember, a member function can be invoked
only by using an object (of the same class), The statement like

getdata(100,75.5);
has no meaning. Similarly, the statement
x.number = 100;

is also illegal. Although x is an ohject of the type item to which number belongs, the number
(declared private) can be accessed only through a member function and not by the object directly.

It may be recalled that objects communicate by sending and receiving messages. This is
achieved through the member functions. For example,

x.putdata();

sends a message to the object x requesting it to display its contents.
A variable declared as public can be accessed by the objects directly. Example:

class xyz
{
int x;
int y;
public:
int z;

p.x = 0; /{ error, x is privaote
p.z = 10 J 0K, z is public

Copyrighted material

Classes and Objects €103

be avoided.

|5.4 Defining Member Functions

Member functions can be defined in two places:

reote
The use of data in this manner defeats the very idea of data hiding and therefore a.huula

® Outside the class definition.
® Inside the class definition.

It is obwvious that, irrespective of the place of definition, the function should perform the
same task. Therefore, the code for the function body would be identical in both the cases.
However, there is a subtle difference in the way the function header is defined. Both these
approaches are discussed in detail in this section.

Outside the Class Definition

Member functions that are declared inside a class have to be defined separately outside the
class. Their definitions are very much like the normal functions. They should have a function
header and a function body. Since C++ does not support the old version of function definition,
the ANSI profotype form must be used for defining the function header.

An impertant difference between a member function and a normal function is that a
member function incorporates a membership 'identity label' in the header. This ‘label’ tells
the compiler which class the function belongs to. The general form of a member function
definition is:

return-type class-name :: functiom-nome (argument declaration)

{
)

The membership label class-name :: tells the compiler that the function function-name
belongs to the class class-name. That iz, the scope of the function is restricted to the class-
name specified in the header line. The symbol :; is called the scope resolution operator.

Function body

For instance, consider the member functions getdata() and putdata() as discuszed above.
They may be coded as follows:

void item :: getdata(int a, float b)
{

number = a;

cost = b;

104 Object-Oriented Programming with C++

void item :: putdata(void)
{

cout << “"Number :" << number =< “"\n";
cout =< "Cost =2 ppst << "Yn':

Since these functions do not return any value, their return-type is void. Function
arguments are declared using the ANSI prototype.

The member functions have some special characteristics that are often used in the program
development. These characteristics are ;

® Several different classes can use the same function name. The 'membership label’
will resolve their scope.

& Member functions can access the private data of the class. A non-member funetion
cannot do so. (However, an exception to this rule is a friend function discussed later.)

® A member function can call another member function directly, without using the
dot operator.

Inside the Class Definition

Another method of defining a member function is to replace the function declaration by the
actual function definition inside the class. For example, we could define the item class as
follows:

class item

{

int number;

float cost;
public:
void getdata(int a, float b); /' declaration
// inline function
void putdata(void) ff definition inside the closs
{

cout << number << "\n";
cout << cost cz "yt

|H

When a function is defined inside a class, it is treated as an inline function. Therefore, all
the restrictions and limitations that apply to an inline function are also applicable here.
Normally, only small functions are defined inside the class definition.

|5.5 A C++ Program with Class

All the details discussed so far are implemented in Program 5.1.

Copyrighted material

Claszes and Objects 2105

CLASS IMPLEMENTATION

Finclude <iostream= 1,; b 1}, » ;
using mamespace std; ' o
class item . R e IR ; il il
{ . SN i T
int number; // private by default = = U UOEEES s
' float costs -« /7 priyate by default.. . oouw omiaihie i mmity
public: ' T Al e
void getdata(int a, float b); /| ‘prototype 'ﬁffarﬂtm,
//-to be ﬁt.ﬂw v
// Function defimed inside class .q e dt
void putdata(void) it “¢=-._-. B
{ JEEe i
cout << "number :" << number << "Xo;. - U aariiel

cout << "cost " << cost << "\n";

l
)i i A pa L .
Ilr‘_r';-i-i-lli-l-ll-l-q-ll "HT'JE'I" Ful'lttiﬂl'l DEfiﬂ'ltiﬂﬂ -I-I-ll-l--i-l-l-l-.l-ll-ll-l 5w ..'.-T. oy _1 L
void item :: getdata(int a, float b) /[use mrﬂli_lm-' '

{ i A
number = a; [/ private variables © He?
cost = b; /] directly used gt

l , r . g F

ffil-il-'l-li-l-lll-l-lli-l-ll-l-l- m‘1n Frwrm EFFREFFREFREEF R R

int main() -
l ! L i ek

item x;// creote abject x . . 430

cout << "\nobject x * << "\n"; : £
?' '_

x.getdata(100, 299.95); I mﬂ member fmm
x.putdataf(); // coll member function

item y; /[create anuth&ryﬁﬁf!:t

cout << “mﬁlﬂect y* =< "\n"; |
y.getdata(200, 175.50); L
y.putdata(); : SLEE % R K
return 0; _ o 03

J

106® Object-Oriented Programming with C++

This program features the class item. This class contains two private variables and two
public functions. The member function getdata() which has been defined outside the class

supplies values to both the variables. Note the use of statements such as

number = a;

in the function definition of getdata(). This shows that the member functions can have
direct access to private data items.

The member function putdatal) has been defined inside the class and therefore behaves
like an inline function. This function displays the values of the private variables number
and cost.

The program creates two objects, x and y in two different statements. This can be combined
in one statement.

item x, y; [/ creates a list of objects
Here is the output of Program 5.1:

object x
number = 100

cost ;799,05

obhject ¥
fumber 200
cost :175.5

For the sake of illustration we have shown one member function as inline and the other
as an 'external’ member function. Both can be defined as inline or external functions.

Iﬁ.ﬁ Making an Outside Function Inline

One of the objectives of OOP is to separate the details of implementation from the class
definition. It i8 therefore good practice to define the member functions outside the class.

We can define a member function outside the class definition and still make it inline by
just using the qualifier inline in the header line of function definition. Example:

class tem

public:
void getdata(int a, float b): Jf declaration
P

Classes and Objects 2107

inline void item :: getdata(int a, float b) [/ definition
l
number

=a;
cost = bg

li.'f Nesting of Member Functions

We just discussed that a member function of a class can be called only by an ohject of that
class using a dot operator. Howewver, there is an exception to this. A member function can be
called by using its name inside another member function of the same class. This is known
as nesting of member functions. Program 5.2 illustrates this feature,

MESTING OF MEMBER FUNCTIONS

#include <iostream=
using namespace std;

class set

{
int m, n;
publie:
void input{void);
void display{void);
int largest(void);

IF

int set :: largest({woid)
[
if{m == p)
return(m);
else
return{n);

}

void set :: input{void)

|
cout =< "Input values of m and n® << "\n";
cim == m => n;

}

void set :: display(void)
1

(Conid)

108e Object-Oriented Programming with C++

cout =< "Largest value =

<< largest() =< "\n"; J/f colling member function
b
int main()
{
set A;
A.input();
A.display();
return 03
I
PROGRAM 5.2

The output of Program 5.2 would be:

Input values of m and n
25 18
Largest value = 25

5.8 Private Member Functions

Although it is nermal practice to place all the data items in a private section and all the functions
in public, some situations may require certain functions to be hidden (like private data) from
the outside calls. Tasks such as deleting an account in a customer file, or providing increment
to an employee are events of serious consequences and therefore the functions handling
such tasks should have restricted access. We can place these functions in the private section,

A private member function can only be called by another function that iz a member of its
class, Even an object cannot invoke a private function using the dot operator. Consider a
class as defined below:

class sample
{
int m;
void read(void); // privote member function
public:
void update(void);
void write(void);

bi
If 81 is an object of sample, then

sl.read(); /{ won't work; objects cannof occess
[/ private members

Classes and Objects —o109

ig illegal. However, the function read() can be called by the function update() to update
the value of m.

void sample :: update(void)

{
)

I5.9 Arrays within a Class .

The arrays can be used as member variables in a class. The following class definition is
valid.

read(); // simple coll; no object used

const int size=10; Jf provides value for array size

class array
{
int a[size]; ff "a' ts int type arroy
public:
void setval(void);
void display{vaid);
H

The array variable al] declared as a private member of the class array can be used in
the member functions, like any other array variable. We can perform any operations on it.
For instance, in the above class definition, the member function setval() sets the values of
elements of the array al], and display() function displays the values. Similarly, we may
use other member functions to perform any other operations on the array values.

Let us consider a shopping list of items for which we place an order with a dealer every
month. The list includes details such as the code number and price of each item. We would
like to perform operations such as adding an item to the list, deleting an item from the list
and printing the total value of the order. Program 5.3 shows how thaae operations are
implemented using a class with arrays as data members.

PROCESSING SHOPPING LIST

#nclude <iostreams
using namespace std;
const m=50;

class ITEMS
(i anid)

1100————— Object-Oriented Programming with C++

Copyrighted material

Copyrighted material

112@ Object-Oriented Programming with C++

The output of Program 5.3 would be:

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

PV o el ol b

What is your option?l
Enter item code :111
Enter item cost :100

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

L5 I P L]

What is your option?l
Enter item code :222
Enter item cost :200

You can do the following; Enter appropriate number
1 : Add an item

Z : Display total value

3 ¢ Delete an item

4 : Display all items

5 : Quit

What is your option?l
Enter item code :333
Enter item cost :300

You can do the following; Enter appropriate number
1 : Add an item

2 1 Display total value

3 : Delete an item

4 : Display all items

& 1 Quit

What is your option?Z
Total value :600

(Contd)

Classes and Objects #2113

You canm do the following; Enter appropriate number
1 : Add an item

2 : Display total value

3 : Delete an item

4 : Display all items

5 : Quit

What is your option?3
Enter item code :222

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

R e Lad B

What is your option?4

Code Price

111 100
222 0
333 300

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

LN Ew Lad M3

What 1s your option?5

note

The program uses two arrays, namely itemCode[| to hold the code number of items and
itemPrice| | to hold the prices. A third data member count is used to keep a record of
items in the list. The program uses a total of four functions to implement the operations
to be performed on the list. The statement

const int m = 50;
defines the size of the array members.
The first function CNT{)} simply sets the variable count to zero. The second function

getitem() gets the item code and the item price interactively and assigns them to the array
members itemCode[count] and itemPriee[eount]. Note that inside this function count

114 e Ohject-Oriented Programming with C++

is incremented after the assignment operation i8 over, The function displaySuml) first
evaluates the total value of the order and then prints the value. The fourth function remowe(}
deletes a given item from the list. It uses the item eode to locate it in the list and sets the
price to zero indicating that the item is not ‘active' in the list. Lastly, the function
displayItems() displays all the items in the list.

The program implements all the tasks using a menu-hased user interface.

Iilﬂ Memory Allocation for Objects

We have stated that the memory space for objects is allocated when they are declared and
not when the class is specified. This statement is only partly true, Actually, the member
functions are created and placed in the memory space only once when they are defined as a
part of a class specification. Since all the objectz belonging to that class use the same member
functions, no separate space is allocated for member functions when the objects are created.
Only space for member variables is allocated separately for each ohject. Separate memory
locations for the objects are essential, because the member variables will hold different data
values for different objects. This is shown in Fig. 5.3.

Commuon for all objects
mgmber lunction 1

rremilser function 2

TGy criated Wi
funchions defined

Oibject 4 Cbject 2 Cijeecd 3
memier variable 1 muember variable 1 mambar wariable 1
| I ['
L i
mamber variabla 2 member vanable 2 rmember variabla 2

| | L L

—_—]

mgmary creabed
whan objects defined

Fig. 5.3 <= Object of memory '

Copyrighted material

Classes and Objects 2115

|5.11 Static Data Members

A data member of a class can be qualified as static. The properties of a static member
variable are similar to that of a C static variable. A static member variable has certain
special characteristics, These are :

® It is initialized to zero when the first object of its class is created. No other initial-
ization is permitted.

® Only one copy of that member is created for the entire class and is shared by all the
objects of that class, no matter how many objects are created.

It is visible only within the class, but itz lifetime is the entire program.

Static variables are normally used to maintain values common to the entire class. For
example, a static data member can be used as a counter that records the occurrences of all
the objects. Program 5.4 illustrates the use of a static data member.

STATIC CLASS MEMEER

#include <iostream=
using namespace std;

class item

static int count;
int number;
public:
void getdata(int a)
{
number = a;
count ++;

}

void getcount(vpid)

l ° I
cout =< "count: “;
cout << count =< "\n";

b
int itm.:: count;

int na{nil
{

(Contd)

116® Ohject-Oriented Programming with C++

item a, b, c; Jf count is initialized to zero
a.getcount(): /1 display count

b.getcount();

c.getcount(});

a.getdata(100); I getting date into object o
b.getdatal200); {/ getting dota into obfect b
c.getdata(300); Jf getting doto into object ¢

cout =< "After reading data® =< "\n":

a.getcount(); Jf display count
b.getcount();
c.getcount();

return 03

PROGRAM 5.4

The output of the Program 5.4 would be:

caunt:
count
count:
After r
count:
count:
count;

ading data

Ll L L 3

rode
Notice the following statement in the program:

int item :: count; Jf definition of stotic dota member

Note that the type and scope of each static member variable must be defined outside the
class definition. This iz necessary because the static data members are stored separately
rather than as a part of an object. Since they are associated with the class itself rather than
with any class object, they are alzo known as elass variables,

The statie variable count is initialized to zero when the ohjects are ereated. The count is
incremented whenever the data is read into an object. Since the data is read into objects
three times, the variable count is incremented three times. Because there iz only one copy of
count shared by all the three objects, all the three output statements cause the value 3 to
be displayed. Figure 5.4 shows how a static variable is used by the objects.

Classes and Objects *117

Object 1 Object 2 Object 3
numkber - number ' number
100 200 1 ‘ 300

#
4
e

L3
¥

count
(common o all ihree obpects)

Fig. 54 <= Sharing of a static data member

Static variables are like non-inline member functions as they are declared in a class
declaration and defined in the source file. While defining a static variable, some initial
value can also be assigned to the variable, For instance, the following definition gives count
the initial value 10.

int item :: count = 10;

|5.12 Static Member Functions

Like static member variable, we can also have static member functions. A member fanction
that iz declared static hazs the following properties:

® A static function can have access to only other static members (functions or
variables) declared in the same class.

& A static member function can be called using the<lass name (instead of its objects)
ns follows:

claoss-nagme :: function-name;

Program 5.5 illustrates the implementation of these characteristics. The statie function
showecount() displays the number of objects created till that moment. A count of number of
objects created is maintained by the statie variable count.

The function showecode() displays the code number of each object.

1180——— Object-Oriented Programming with C++

STATIC MEMBER FUNCTION
ko

Copyrighted material

Classes and Objects e119

Output of Program 5.5
count: 2
count: 3

object number: 1
object number: Z
oghject number: 3

riode
-'."'|
III";»T!:ld:\vs: that the statement

code = ++count:

is exeruted whenever seteodel) funetion is invoked and the corrent value of eount is
assigned to code. Since each object has its own copy of code, the value contained in eode

I"'..hr:t.-'e|:|nrv|3!ain::!-|:1t,a:i a unigque number of its obyject. y

Remember, the following function definition will not work:

static void showcount()

!
J

cout =< code; J[code is not static

5.13 Arrays of Objects

We know that an array can be of any data type including struet. Similarly, we can also
have arrays of variables that are of the type elass. Such variables are ealled arrays of
objects. Consider the following class definition:

class employee

{
char name[30];
float age;
public:

void getdata(void);
void putdata(void);

i

The identifier employee is a user-defined data type and can be used to create objects
that relate to different categories of the employees. Example:

employee manager[3]; /[array of manager
employee foreman[15]; /[array of foreman
employee worker[75]; /! array of worker

Copyrighted material

120® Object-Oriented Programming with C#+

The array manager contains three ohjectsimanagers), namely, manager|0], manager{1]
and manager|2], of type employee class. Similarly, the foreman array contains 15 objects
(foremen) and the worker array contains 75 objects{workers).

Since an array of objects behaves like any other array, we can use the usual array-
arcessing methods to access individual elements, and then the dot member operator to access
the member functions. For example, the statement

manager[i].putdata();

will display the data of the ith element of the array manager. That is, this statement
requests the object manager{i] to invoke the member function putaatal().

An array of objects is stored inside the memory in the same way as a multi-dimensional
array. The array manager is represented in Fig. 5.5. Note that only the space for data items
of the objects iz created. Member functions are stored separately and will be used by all the

ohjects.
|
T
} manager|d]
age
AT
manager]1]
age
name
manager]d]
Bge

Fig. 55 « Storage of data items of an object array i

Program 5.6 illustrates the use of object arrays.

L..l.’...J . T

#include <iostream=
using namespace std;

class employee
(Contd)

Classes and Ohbjects 121

{
char name[30]; [/ string as closs member
float age;
public:

void getdata(void);
void putdata(void);
B
void employee :: getdata(void)
{
cout << "Enter name: *;
cin >> name;
cout =< "Enter age: *;
cin => age;

}
void employee :: putdata(veid)
{
cout =< "Name: ® =< pame << ""'.nu;
cout << "Age: ® << age << "\n";
}

const int size=3;
int main()

{

employee manager([size];

for{int 1=0; f<size; i++)

{
cout << "\nDetails of manager® << i+l << *\n";
manager([i] .getdata();

)

cout =< "\n";

for(i=0; {<size; i++)

{
cout << "\nManager® =< 41 =< "\n";
manager[i].putdata();

return 0;

}

This being an interactive program, the input data and the program output are shown below:

Interactive input
Details of managerl
Enter name: xxx
Enter age: 45

122 Object-Oriented Programming with Ce+

Details of manager2
Enter name: yyy
Enter age: 37

Details of manager3
Enter name: zz2?

Enter age: 50

Program output

Managerl
Name: xxx
Age: 45
Manager2
Name: yyy
Age: 37
Manager3
Name: zz2
Age: 50

l’.i.l-i- Objects as Function Arguments

Like any other data type, an object may be used as a function argument. This can be done
in two ways:

A copy of the entire object is passed to the function.
® Only the address of the object is transferred to the function.

The first method is called pass-by-value. Since a copy of the object is passed to the function,
any changes made to the object inside the function do not affect the object used to call the
function. The second method is called pass-by-reference. When an address of the object is
paszed, the called function works directly on the actual object used in the call. This means
that any changes made to the object inside the funetion will reflect in the actual ohject. The
pass-by reference method i more efficient since it requires to pass only the address of the
object and not the entire ohject.

Program 5.7 illustrates the use of objects as function arguments. It performs the addition
of time in the hour and minutes format.

Classes and Objects 123

OBJECTS AS ARGUMENTS

#include <iostream>
using namespace std;

class time
{
int hours:
o int . minutes;
-publicz

void gettime(int h, int m)

{ hours = h; minutes = m; }

void puttime(void)

{

cout == hours << " hours and ";
cout << minutes << " minutes " << "\n";

} .
void sum(time, time); // decloretion with objects as arguments
I} '
void time :: sum(time tl, time t2) /I tl, t2 ore objects
{

minutes = tl.minutes + t2.minutes;

hours = minutes/60; i

minutes = minutes%60; -

hours = hours + tl.hours + t2.hours;
} .
'“'lt I!'I-lil'IH . e, ! . £
{

time T1, T2, T3;

Ti.gettime(2,45); ~ // get TI ’ s
T2.gettime(3,30); .~ /[get T2 AT

T3.5um(T1,72); // T3=T14T2 By
cout << "TL = "; Tl.puttime(); /] display T1
cout =< "T2 = "; TZ.puttime(); fi display. T2:
cout << "T3 = "; T3.puttime(); iff display T3

réturn 03 ¢

PROGRAM 5.7

124 @ Object-Oriented Programming with C++
The output of Program 5.7 would be:

Tl = 2 hours and 45 minutes

T2 = 3 hours and 30 minutes
T3 = b hours and 15 minutes

-~ rote ~
Since the member function sum() is invoked by the object T3, with the objects T1 and T2
as arguments, it can directly access the hours and minutes variables of T3. But, the
members of T1 and T2 can be aceessed only by using the dot operator (like T1.hours and

Tl.minutes). Therefore, inside the function sum(), the variables hours and minutes refer
to T3, Tl.hours and Tl.minutes refer to T1, and T2.hours and T2.minutes refer to TE,J

Figure 5.6 illustrates how the members are accessed inside the function sumi().

hours g T1.hours 2 T2.hours 3
15 45 -
minutas T1.minutes T2 minuies 20
(T1+ T2)
T3, sumi{T1, T2Z)

Fig. 5.6 & Accessing mumshers of objects within a called function I

An object can also be passed as an argument to a non-member function. However, such
functions can have access to the public member functions only through the objects passed
as arguments to it. These functions cannot have access to the private data members.

|5i15 Friendly Functions

We have been emphasizing throughout this chapter that the private members cannot be
accessed from outside the elags. That is, a non-member function cannot have an acce=s to
the private data of a class. However, there could be a situation where we would like two
classez to share a particular function. For example, cun=sider a case where two classes,
manager and scientist, have been defined. We would like to use a function income_tax()
to operate on the objects of both these classes. In such situations, C++ allows the common
function to be made friendly with both the classes, thereby allowing the function to have
access to the private data of these classes, Sueh a function need not be a member of any of
these classes.

Classes and Objects ®125

To make an outside function “friendly” to a class, we have to simply declare this function
as a friend of the class as shown below:

class ABC

friend void xyz(void); [/ decloration

The function declaration should be preceded by the keyword friend. The function is
defined elsewhere in the program like a normal C++ function. The function definition does
not use either the keyword friend or the scope operator ::. The functions that are declared
with the keyword friend are known as friend functions. A function can be declared as a
friend in any number of classes. A friend function, although not a member ﬁmctmn. has
full access rights to the private members of the class.

A friend function possesses certain special characteristics:

It is not in the scope of the class to which it has been declared as friend.

Since it is not in the scope of the class, it cannot be called using the object of that
class.

It can be invoked like a normal function without the help of any object.

Unlike member functions, it cannot access the member names directly and has to
use an object name and dot membership operator with each member name.(e.g.
Ax).

It can be declared either in the public or the private part of a class without affect-
ing its meaning.

® Usually, it has the objects as arguments.

The friend functions are often used in operator overloading which will be discussed later.

a8 &9

Program 5.8 illustrates the use of a friend function.

“LFIIEHI FUNCTION

#include <iostream>
using namespace std;

class sample
(Conid)

126® Object-Oriented Programming with C++

int a;
int b;
public:
void setvalue() {a=25: h=40; |}
friend float mean(sample s);
[
float mean({sample s)
{
return float(s.a + s.b)/2.0;
i

int main()

{
sample X ;7 object-X
iosetvaliel):
cout << "Mean value = " << mean(X) << "\n",

return 03

PROGRAM 5.8

The output of Program 5.8 would be:

Mean value = 32.5

fLHe

The friend function accesses the class varables a and b by using the dot operator and the
ohject passed to it. The function call mean(X) passes the object X by value to the friend
function. -

Member functions of one class can be friend functions of another class. In such cases,
they are defined using the scope resolution operator us shown below:

1:1‘11.:.;*un1{]|; [/ member function of X

class Y

Copyrighted material

Classes and Objects 127

F 40 E

friend int X :: funl(); Jf funl() of X
» _ ff is friend of ¥

I
The function funl() is a member of c¢lass X and a friend of class Y.

We can also declare all the member functions of one class as the friend functions of
another class. In such eases, the class is called a friend class. This can be specified as follows:

friend class X; [f all member fumctions of X are
/[friends to Z

b

Program 5.9 demonstrates how friend functions work as a bridge between the classes.

A FUNCTION FRIENDLY TO TWd CLASSES

#include <iostream=
using namespace std;
class ABC; /| Forward declaration

class XYZ
i
int x;
publtic:
void setvalue(int 1) {x = 1;}
friend void max(X¥YZ, ABC);

class ABC
{
int a;
public:
void setvalue(int i) {a = i3}
friend void max(X¥Z, ABC);

(Cantd)

Copyrighted material

128 @ Object-Oriented Programming with C++

void max(XYZ m, ABC n) S Definition of friend
'
1F{m.x =="n.a)
cout =< m.x;

else
cout =< n.a;
}
s i i e e S B A R b a1 i
int main()
(
ABC abc:
abc.setvalue(10):
KYZ wvz;
xyz.setvalue{20):
max{xyz, abc);
return 0;
}
PROGRAM 5.9
The output of Program 5.9 would be:
20
- fote ~

The function maxi) has arguments from both XYZ and ABC. When the function max() is
declared as a friend in XYZ for the first time, the compiler will not acknowledge the
presence of ABC unless its name is declared in the beginning as

class ABC;

[\Thia i known as forward’ declaration. y

As pointed out earlier, a friend function can be called by reference. In this case, local
copies of the ohjects are not made. Instead, a pointer to the address of the object is passed
and the called function directly works on the actual object used in the call.

This method can be used to alter the values of the private members of a class. Remember,
altering the values of private members is against the basic principles of data hiding. It
ghould be used only when absolutely necessary.

Program 5.10 shows how to use a common friend function to exchange the private values
of two classes. The function is called by reference.

Clazzes and Objects

SHAPPING PRIVATE DATA OF CLASSES

#include <iostream=
using namespace std;
class class 2;

class class 1
{
int valuel;
public:
void indata(int a) {valuel = a;}

void display{void) {cout << valuel << "\n";}

friend void exchange(class_1 &, class_Z &);
F

class class 2
-l .
int valueZ;
public:
void indata(int a) {value2 = a;}

void display(void) {cout =< valueZ == '\n'*} o

friend void exchange(class_1 &, class_2 &);

void exchange(class 1 & x, class 2 & y)

{
int temp = x.valuel;

x.valuel = y.value?;
y.value2 = temp;

}

int main() .

{
class 1 Cl3

class_2 C2;

Cl.indata(100);

€2.indata(200); et

- 1 Wik
i

cout << "Walues before exchange® =< "\n";
C1.display();
c2.display();:

129

\(Contd)

Copyrighted material

130® Object-Ortented Programming with C++

exchange(Cl, €2); /[swapping
cout =< *Values after exchange * =< "\n";
Cl:display();

C2.display():

return Oz

PROGRAM 5.10

The objects x and v are aliases of C1 and C2 respectively. The statements

int temp = x.valuel
x.valuel = y.valueZ;
y.value2 = temp;

directly modify the values of valuel and value2 declared in class_1 and class 2.
Here is the output of Program 5.10:

Values before exchange
100
200
Values after exchange
200

100

l!i.lﬁ Returning Objects

A function cannot only receive ohjects as arguments but also can return them. The example
in Program 5.11 illustrates how an ohject can be created (within a funetion) and returned to
another function

RETURNING OBJECTS

#include <iostreams=

using namespace std;

class complex /% #+ iy form
{
float x; {f real part
float y: [/ imoginary port
public:

void input{float real, float imag)
{ x = real; y = imag; }
(Contd)

IR R) D
TR e T
H‘{J.--ile““"‘. 3y = gl ¥ +Cd.Y

Upon execution, Program 5.1 would generate the following output:
B= ;.;l's + ,-'#'1;?

mmmmmm A and B to produce a third complex number C
and displays all the three numbers.

Copyrighted material

1320 Object-Oriented Programming with C++

|5.1'J' const Member Functions

If a member function does not alter any data in the class, then we may declare it as a const
member function as follows:

void mul (int, int) const:
double get balance() const;

The qualifier const is appended to the function prototypes (in both declaration and definition).
The compiler will generate an error message if such functions try to alter the data values.

Ii.lﬂ Pointers to Members

It is possible to take the address of a member of a class and assign it to a pointer. The
address of a member can be obtained by applying the operator & to a *fully gqualified”™ class

member name. A class member pointer can be declared using the operator ¥ with the class
name. For example, given the class

class A

{
private:
int m;
public:
void show();
be

We can define a pointer to the member m as follows:

int Az:™ ip = BA :: m;

The ip pointer created thus acts like a class member in that it must be invoked with a
class object. In the statement above, the phrase As* means “pointer-to-member of A class”.
The phrase &A:zm means the “address of the m member of A class",

Remember, the following statement is not valid:
int *ip = &m; Jf won't work
This is because m is not simply an int type data. It has meaning only when it is associated

with the class to which it belongs. The scope operator must be applied to both the pointer
and the member.

Classes and Objects 2133

The pointer ip can now be used to access the member m inside member functions (or
friend functions). Let us assume that a is an object of A declared in a member function. We
can access m using the pointer ip as follows:

cout =< a.*ip; [/ display
cout << a.m; /[same as above

MNow, look at the following code:

ap = fa; [/ ap is pointer to object o
cout << ap -* *ip; ff display m
cout =< ap ->m; // some as above

The dereferencing operator ->* is used to access a member when we use pointers to both
the ohject and the member. The dereferencing operator.® iz used when the object itself is
used with the member pointer. Note that ®*ip is used like a member name.

We can alzo design pointers to member functions which, then, can be invoked using the
dereferencing operators in the main as shown below :

{object-name .* pointer-to-member function) (10);
(pointer-to-object -»* pointer-to-member function) (10)

The precedence of () is higher than that of .* and -=¥, so the parentheses are necessary.

Program 5.12 illustrates the use of dereferencing operators to access the class members,

DEREFERENCING OPERATORS

finclude <iostream>
using namespace std;

class M
{
int x;
int y;
public:
void set xy(int a, int b)
{

X o= A

!

friend int sum(M m);

{Contd)

1340— Object-Oriented Programming with C++

b

int sum(M m)

{
int M ::* px = &M ;2 x;
int M 2% py = EM 5+ yi
M *pm = &m;
int 5§ = m,.*px + pm=>*py;
return 5;

|

int main()

{
M n;
void (M :: *pf){int,int]) = M :: set xy;
{n.*pf} (10,20} ;

cout =< "SUM = * << sum{n) =< "\n";
M *ap = hn;

{op->*pf) {30,40);

cout =< "SUM = " << sum(n) =< "\n";

return 0;

PROGRAM 5.12

The output of Program 5.12 would be:

sum = 30
sum = J0

Ii.lﬂ' Local Classes

Classes can be defined and used inside a function or a block. Such classes are called local
classes. Examples:

void test(int a) [/ function

{
class student [local class
{

..... [l class definition

Copyrighted material

Classes and Objects #2135

};.

student sl(a); /| create student object
/[use student object
}

‘Local classes can use global variables (declared above the function) and static variables
declared inside the function but cannot use automatic local variables. The global variables
should be used with the scope operator (::).

There are some restrictions in constructing local classes. They cannot have static data
members and member functions must be defined inside the local classes. Enclosing function
cannot access the private members of a local class. However, we can achieve this by declaring
the enclosing function as a friend.

\ SUMMARY /

¢» A class is an extension to the structure data type. A class can have both variables and
functions as members.

By default, members of the class are private whereas that of structure are publie.
Only the member functions can have access to the private data members and private
functions. However the public members can be accessed from outside the class.

% In C++, the class variables are called objects. With objects we can access the public
members of a class using a dot operator.

& We can define the member funetions inside or outside the class. The difference between
a member function and a normal function is that a member function uses a membership
'identity’ label in the header to indicate the class to which it belongs.

& The memory space for the objects is allocated when they are declared. Space for member
variables is allocated separately for each object, but no separate space is allocated for
member functions.

4 A data member of a class can be declared as a static and is normally used to maintain
values common to the entire class.

The static member variables must be defined outside the class.

A static member function can have access to the static members declared in the same
class and can be called using the class name.

&» C++ allows us to have arrays of objects.

§ ¢

$ ¢

Copyrighted material

13'5- Object-Oriented Programming with C++

We may use objects as function arguments.

A function declared as a friend is not in the scope of the class to which it has been
declared as friend. It has full access to the private members of the class.

A function can also return an object.

If a member function does not alter any data in the class, then we may declare it as a
const member function. The keyword const is appended to the function prototype.

It is also possible to define and use a class inside a function. Such a elass is called a local
class.

g ¢ 40

1

Key Terms

» ahstract data type » objects

» arrays of objects » pass-by-reference

» ¢lass » pass-by-value

» class declaration » period operator

» class members » private

» class variables » prototype

» gonst member functions » public

» data hiding » scope operator

»* data members » acope resolution

» dereferencing operator » static data members
~» dot operator » static member functions

» elements » static variables

» encapsulation > struct

» friend functions » structure

» inheritance » structure members

» inline functions » structure name

> local class > structure tag

> member functions » template

» nesting of member functions

I Review Questions

5.1 How do structures in C and C++ differ?
5.2 What is a class? How does it accomplish data hiding?

Classes and Objects —-e137

5.3 How does a C++ structure differ from a C++ class?
5.4 What are objects? How are they created?
5.5 How is a member function of a class defined?

5.6 Can we use the same function name for a member function of a class and an
outside function in the same program file? If ves, how are they distinguished? If
ng, give reasons.

5.7 Describe the mechanism of accessing data members and member functions in the

following cases:
(a) Inside the main program.
(b) Inside @ member function of the same class.

(e)

Inside a member function of another class.

5.8 When do we declare a member of a class staticf

5.9 What is a friend function? What are the merits and demerits of using friend
functions?

5.10 State whether the following statements are TRUE or FALSE.

(a)
(b)

Data items in a class must always be private.
A function designed as private is accessible only to member functions of that
elasgs.

(e} A function designed as public can be accessed like any other ordinary
functions.
id) Member funciions defined inside a class specifier become inline functions by
default.
(e} Classes can bring together all aspects of an entity in one place.
if) Class members are public by default.
(gl Friend functions have access to only public members of a class.
{h) An entire class ean be made a friend of another class,
(i} Functions cannot return closs objects.
(j) Data members can be initialized inside class specifier.
Debugging Exercises

5.1 Identify the error in the following program.

f#include <iostream.h>
struct Room

'I

int width;
int length;

138®

5.2

6.3

Object-Oriented Programming with C++

void setValue(int w, int 1)

{
wWwidth = w3
length = 1;
)
|H
void main()
{
Room objRoom;
objRoom.setValue(12, 1,4);
1

Identify the error in the following program.

#include <iostream.h>
class Room

{
int width, height;

void setValue(int w, int h)

{
width = w;
height = h;
!
|
void main()

{
Room objRoom;
objRoom.width = 12;:

)

Identify the error in the following program.

#Finclude <iostream.h=>
class Item
{
private:

static int count;
public:

[tem()

{

Classes and Objects #1389

COUnt++;
]
int getCount()
{
return count;
I
int* getCountAddress()
(

return count:
}
|H

int Item::coumt = [;

void main()

{
Item objIteml;
Item objltem?;

cout << objlteml.getCount() =< ' ';
cout << objltem?.getCount() =< ' ';

cout =< objlteml,getCountAddress() << ' ';
cout << objltemZ.getCountAddress() << ' ';

5.4 Ildentify the error in the following program.

#include <iostream.h>
class staticFunction
{

static int count;
public:

static vold setCount()

{

count++;

}

void displayCount()

{

cout =< count;

140@

5.5

Object-Oriented Programming with C++

.

|H

int staticFunction::count = 10;

veid main()

{
staticFunction objl;
objl.setCount (5);
staticFunction: :setCount();
objl.displayCount();

1

Identify the error in the following program.

#include <iostream.h»
class Length

{
int feet;
float inches;
public:
Length()
{
feet = 5;

inches = 6.0;

)
Length(int f, float in)

feet = f;

inches=in;
;
Length addLength{Length 1)
{

1.inches += this->inches;
1.feet += this-=feet;
if(1.inches=12)
|
1.inches-=12;
1.feet++;

}
return 1;

Copyrighted material

*141

5.6

Classes and Objects
|
int getFeet()
{
return feet;

)
float getInches()

{

return inches;
)
1
yoid main{)
{
Length ocbjlLengthl;
Length objLengthl(5, 6.5);
objLengthl = objLengthl.addLength(objLengthZ);
cout << objLengthl.getFeet() << ' ';
cout << objLengthl.getInches{) << ' ';

}
Identify the error in the following program.

#include =iostream.h=
class Room;
void Area()
{
int width, height;
class Room
{
int width, height;
public:
void setValue(int w, int h)
{

width = w;
height = h;
]
void displayvalues()
{

cout =< (float)width << ' ' << (float)height;

142e

Object-Oriented Programming with C++

)
‘H
Room objRooml ;
objRooml.setValue(12, 8);
objRooml.displayValues();
}

void main()

{

Areal():
Room objRoom?2;

}

Iﬁtgrammﬂggw

a.1

6.2

5.3
0.4

Define a class to represent a bank account. Include the following members:
Data members

1. Name of the depositor

2. Account number

3. Twpe of account

4. Balance amount in the account
Member functions

1. To assign initial values

2. To deposit an amount

3. To withdraw an amount after checking the balance

4. To display name and balance

Write a main program to test the program.

Write a class to represent a vector (a series of float values). Include member
functions to perform the following tasks:

(a) To create the vector

(b) To modify the value of a given element

ic) To multiply by a scalar value

(d) To display the vector in the form (10, 20, 30, ...)

Write a program to test your class.
Modify the class and the program of Exercise 5.1 for handling 10 customers.
Modify the class and program of Exercise 5.2 such that the program would be

able to add lwo vectors and display the resultant vector. (Note that we can pass
objects as function arguments.)

Classes and Objects 2143

5.5 Create two classes DM and DB which store the value of distances. DM stores
distances in metres and centimetres and DB in feet and inches. Write a program
that can read values for the class objects and add one object of DM with another
object of DB.

Use a friend function to carry ouf the addition operation. The object that stores
the results may be a DM ohject or DB ohject, depending on the units in which the
resulls are required.

The display should be in the format of feet and inches or metres and cenfimetres
depending on the object on display.

| Constructors and Destructors |

Y YYYYYYYYYYY

Key Concepts

Constructing ohjects
Constructors

Conatructor overloading
Default argument construetor
Copy constructor
Constructing matrix objecta
Autematic initialization
Parameterized constructors
Default constructor
Dynamic initialization
Dynamic sonstructor
Destructors

6.1 Introduction

We have seen, so far, a few examples of
clazses being implemented. In all the caszes,
we have used member functions such as
putdata() and setvalue() to provide initial
values to the private member variables. For
example, the following statement

A.input();

invokes the member function input(),
which assigns the imitial values to the data
iteme of object A. Similarly, the statement

x.getdata(100,299.95);

passes the initial values as arguments to
the function getdata(), where these values
are assigned to the private variables of
object x. All these "function call' statements
are used with the appropriate ohjects that

hawve already been created. These functions cannot be used to initialige the member variables
at the time of creation of their ulyncta

Constructors and Destructors # 145

Providing the initial values as described above does not conform with the philosophy of
C++ language. We stated earlier that one of the aims of C++ is to create user-defined data
types such as class, that behave very similar to the built-in types. This means that we
should be able to initialize a class type variable (object) when it is declared, much the same
way as initialization of an ordinary variable. For éxample,

int m = 20;
float x = 5.75;

are valid initialization statements for basic data types.

Similarly, when a variable of built-in type goes 'out of scope, the compiler automatically
destroys the variable. But it has not happened with the objects we have so far studied. It is
therefore clear that some more features of classes need to be explored that would enable us

to initialize the objects when they are created and destroy them when their presence is no
longer necessary.

C++ provides a special member function called the constructor which enables an object to
initialize itself when it is created. This is known as automatic initialization of objects. It also
provides another member function called the destructor that destroys the objects when they
are no longer required.

IE.] Constructors

A constructor is a ‘special’ member function whose task is to initialize the objects of its class.
It is special because its name is the same as the ¢lass name. The constructor is invoked
whenever an object of its associated class is created. It is called constructor because it
constructs the values of data members of the class.

A constructor 18 declared and defined as follows:

{f class with o constructor

class integer
{
int m, m:
public:
integer(void); [/ constructor declared
|
integer :: integer(void) [/ constructor defined

{
m=0;n=10;

}

146® Object-Oriented Programming with O++

When a class contains a constructor like the one defined above, it is guaranteed that an
ohject created by the class will be initialized automatically. For example, the dq:-fEnrntinn

integer intl; !/ ebject intl created

not only creates the object intl of type integer but also initializes its data members m and
n to zero, There is no need to write any statement to invoke the constructor funetion (as we
do with the normal member functions). If a 'normal’ member function is defined for zero
initialization, we would need to invoke this function for each of the objects separately. This
would be very inconvenient, if there are a large number of objects.

A constructor that accepts no parameters is called the default constructor. The default
constructor for class A is AzA(). If no such constructor iz defined, then the compiler supplies
a default constructor. Therefore a statement such as

A a:

invokes the default constructor of the compiler to create the object a.

The constructor functions have some special characteristics, These are ;

They should be declared in the public section.

They are invoked automatically when the objects are created.

They do not have return types, not even void and therefore, and they cannot return
values,

They cannot be inherited, though a derived class can call the base class construc-
Lor.

Like other C++ functions, they can have default argumentsa.

Constructors cannot be virtual. (Meaning of virtual will be dizcussed later in
Chapter 9.)

We cannot refer to their addresses,

An object with a constructor (or destructor) cannot be used as a member of a union,
They make 'implicit calls’ to the operators new and delete when memory alloca-
tion iz required.

L

Remember, when a constructor is declared for a class, initialization of the class ohjects
becomes mandatory.

Iﬁ.i’r Parameterized Constructors

The constructor integer(), defined above, initializes the data memberz of all the ohjects to
zero, However, in practice it may be necessary to initialize the various data elements of
different objects with different values when they are created. C++ permits us to achieve this
objective by passing arguments to the constructor function when the objects are created.
The constructors that can take arguments are called parameterized conatructors.

Copyrighted material

Constructors and Destructors 8147

The constructor integer() may be modified to take arguments as shown below:

class integer

int m, n;
public: .
integer(int x, int y); // porometerized constructor

integer :: integer(int x, int y)
{

m= X n= ¥

}
When a constructor has been parameterized, the object declaration statement such as
integer intl;

may not work. We must pass the initial values as arguments to the constructor function
when an object is declared. This can be done in two ways:

& By calling the constructor explicitly.
® By calling the constructor implicitly.

The following declaration illustrates the first method:
integer intl = integer{0,100); // explicit call

This statement creates an integer object intl and passes the values 0 and 100 to it. The
second is implemented as follows:

integer int1{0,100); Jf implicit call

This method, sometimes called the shorthand method, is used very often as it is shorter,
looks better and is easy to implement.

Remember, when the constructor is parameterized, we must provide appropriate
arguments for the constructor. Program 6.1 demonstrates the passing of arguments to the
constructor functions.

Copyrighted material

no= 100

Copyrighted material

Constructors and Destructors 8149

DBJECTZ2
m= 25
n=74

The constructor functions can also be defined as inline functions. Example:

class integer

{
int m, n;
public:
integer(int x, int ¥y} // Inline constructor

me=x; ¥y =n;

F

The parameters of a constructor can be of any type except that of the class to which it
belongs. For example,

class A
{

public:
A(A);
I3

is illegal.

However, a constructor can accept a reference to its own class as a parameter. Thus, the
statement

Class A
{

EEE

puh'l-i.c. :. ‘
A(AL);
|H

i8 valid. In such cases, the constructor is called the copy constructor.

150 Ohject-Oriented Programming with C++

Iﬁ.4 Multiple Constructors in a Class

So far we have used two kinds of constructors. They are:

integer(); /f Mo arguments
integer{int, int); // Two arguments

In the first case, the constructor itself supplies the data values and no values are passed
by the calling program. In the second case, the function call passes the appropriate values
from main(). C++ permits us to use both these constructors in the same class. For example,
we could define a class as follows:

class integer

{

int m, n;
public:

integer() {m=0; n=0;} /{ constructor I
integer(int a, int b)
fm=a; m= hy} /[constructor 2
integer(integer & i}
fm=14i.m n=1.n;} [constructor 3

[}

This declares three constructors for an integer object. The first constructor receives no
arguments, the second receives two integer arguments and the third receives one integer
object as an argument. For example, the declaration

integer I1;

would automatically invoke the first constructor and set both m and n of I1 to zero. The
statement

integer IZ{20,40);

would call the second constructor which will initialize the data members m and n of I2 to 20
and 40 respectively. Finally, the statement

integer I3(12);

would invoke the third constructor which copies the values of 12 into I3. In other words, it
seta the value of every data element of I3 to the value of the corresponding data element of
I2. As mentioned earlier, such a constructor is called the copy constructor. We learned in
Chapter 4 that the process of sharing the same name by two or more functions is referred to
as function overloading. Similarly, when more than one construetor function is defined in a
class, we say that the constructor is overloaded.

Copyrighted material

Constructors and Destructors 2151

Program 6.2 shows the use of overloaded constructors.

OVERLOADED COMSTRUCTORS

finclude <iostream=
using namespace std;

class complex

{
float x, y;

public:

complex(}{ } /[constructor no arg
complex(float a) {x = y = a3} [[constructor-one arg
complex(float real, float imag) // constructor-two args
{x = real; y = imag;)

friend complex sum{complex, complex);
friend void show(complex);

P

complex sum{complex cl, complex c2) [/ friend

{
complex c3;
c3.x = cl.x + c2.x;
c3.y = cl.y + c2.y}
return{c3);

}

void show(complex c) [l friend

{
cout =< c.x =< " + j" =< c.y =< "\n";

)

int main()

{
complex A(2.7, 3.5); [/ define & initiaolize
complex B(1.6); [/ defime & initiolize
complex C; /! define
C = sum{A, B); J/ sum{) is a friend
cout =< "A = ": show(A); // show() is also friend
cout =< "B = "; show(B);
cout << "C = "; show(C);

/[Another way to give initial values (second method)
complex P,Q,R; ' /| define P, Q-and R

Contd)

Copyrighted material

152 Ohject-Oriented Programming with C++

P = complex(2.5,3.9); Sl initialize P
0 = complex{l.6,2.5); : Jf initialize
R = sum(P,Q);

cout << "\n";

cout =< "P = "; show(P);

cout << *Q = ": show(Q);

cout << *R = "; show({R);

return 0

PROGRAM 6.2

The output of Program 6.2 would be:

A= 2.7+ j3.5
B=1.6 + jl.6
C=4.3+ j5.1
P=2.5+ j3.9
Q=1.6 + j2.5
R=4,1+ j6.4

- rnote

There are three constructors in the class complex. The first constructor, which takes no
arguments, is used to create objects which are not initialized; the second, which takes
one argument, is used to create objects and initialize them; and the third, which takes
two arguments, i alzo used to create objects and initialize them to specific values. Note

Rt:‘tmt the second method of initializing values looks better.

Let us look at the first constructor again.
complex(}{ }

It contains the empty body and does not do anything. We just stated that this is used to
create objects without any initial values. Remember, we have defined objects in the earlier
examples without using such a constructor. Why do we need this constructor now?, As
pointed out earlier, C++ compiler has an implicit constructor which creates ohjects, even
though it was not defined in the class.

This works fine as long as we do not use any other constructors in the class. However,
once we define a constructor, we must also define the "do-nothing” implicit constructor.
This constructor will not do anything and is defined just to satisfy the compiler.

Constructors and Desfructors #153

IE.E Constructors with Default Arguments

It is possible to define constructors with default arguments. For example, the constructor
complex{() can be declared as follows:

complex(float real, float imag=0);:
The default value of the argument imag is zero. Then, the statement
complex C(5.0);

assigns the value 5.0 to the real variable and 0.0 to imag (by default). However, the
statement

complex C{2.0,3.0);

assigns 2.0 to real and 3.0 to imag. The actual parameter, when specified, overrides the
default value. As pointed out earlier, the missing arguments must be the trailing ones.

It is important to distinguish between the default constructor AsA() and the default
argument constructor AzA(int = 0). The default argument constructor can be called with
either one argument or no arguments. When called with no arguments, it becomes a default
constructor. When both these forms are used in a class, it causes ambiguity for a statement
such as

A a;

The ambiguity is whether to 'call' AzzA() or Az:Alint = 0).

Iﬁ.ﬁ Dynamic Initialization of Objects

Class objects can be initialized dynamically too. That is to say, the initial value of an object
may be provided during run time. One advantage of dynamie initialization is that we can
provide various initialization formats, using overloaded constructors. This provides the
flexibility of using different format of data at run time depending upon the situation,

Consider the long term deposit schemes working in the commercial banks. The banks
provide different interest rates for different schemes as well as for different periods of
investment. Program 6.3 illustrates how to use the class variables for holding account details
and how to construct these variables at run time using dynamic initialization.

154

DYMAMIC INITIALIZATION OF COMSTRUCTORS

/[Long-term fixed deposit system
#include <jostream>
using namespace std;
class Fixed_deposit

Object-Onented Programming with C++

{
Tong int P_amount; /| Principal omount
int Years; /| Period of investment
float Rate; /[Interest rate
float R_value; [/ Return value of omount
public: ’
Fixed deposit(){ }
Fixed deposit(long int p, int y, float r=0.12);
Fixed deposit(long int p, int y, int r);
void display(void); '
H
Fixed deposit :: Fixed deposit{long int p, int y, float r)
{
P_amount = p;
Years = y;
Rate = r;
R value = P_amount;
for{int 1 = 13 1 <= y; j++)
R value = R_value * (1.0 + r);
}
Fixed_deposit :: Fixed deposit(long int p, int y, int r)
{
P amount = p;
Years = y:
Rate = r;
R value = P_amount;
for(int i=1; j<my; i++)
R value = R value*(1.0+float(r)/100);
}

void Fixed deposit :: display(void)
{

cout =< "\n"

=< "Principal Amount = " =< P _amount << "\n"
<< "Return Value = " =< R _value =< "\n";

ontd)

Copyrighted material

int main()
{ .

long int p;

int ¥i
float r:

int R

Constructors and Destructors

Fixed deposit FD1, FD2, FO3; // deposits created

// principal amount

/[investment period,’ yéars
/[interest rote, decimal form
/[interest rote, percent form

®155

cout << "Enter amount,period,interest rate(in percent)=<"\n";

cin »= p >= y >> R;
FD1 = Fixed deposit(p,y.R):

cout =< "Enter amount,period,interest rate(decimal fnﬁm}' << "\n";:

cin >> p 2> y >>.r;
FD2 =. Fixed_deposit(p,y,r);

cout’ << “Enter amount and period* =< "\n";

cin »> p == y;
FD3 = Fixed deposit(p.y):

cout =< "\nDeposit 1";
FD1.display(); '

cout << "\nDeposit 2";
FD2.display();

cout =< "\nDeposit 3";
FD3.display();

return 0;

The output of Program 6.3 would be:

PROGRAM 6.3

Enter amount,period,interest rate(in percent)

10000 3 18

Enter amount,period,interest rate{in decimal form)

10000 3 0.18
Enter amount and period
10000 3

Deposit 1
Principal Amount = 10000
Return Value = 16430.3

Copyrighted material

156 @ Object-Oriented Programming with C#+

Deposit 2

Principal Amount = 10000 r
Return Value = 16430.3 .
Deposit 3

Principal Amount = 10000

Return Value = 14049.3

The program uses three overloaded constructors. The parameter values to these
constructors are provided at run time. The user can provide input in one of the following
forms: '

1. Amount, period and interest in decimal form.
2. Amount, period and interest in percent form.
3. Amount and period.

note

Since the constructors are overloaded with the appropriate parameters, the one that
matches the input values is invoked. For example, the second construetor is invoked for
the forms (1) and (3), and the third is invoked for the form (2). Note that, for form (3), the
constructor with default argument is used. Since input to the third parameter is missing,
it uses the default value for r.

6.7 Copy Constructor

We briefly mentioned about the copy constructor in See¢. 6.3. We used the copy constructor
integer(integer &i);

in Sec. 6.4 as one of the overloaded constructors.

As stated earlier, a copy constructor is used to declare and initialize an object from another
object, For example, the statement

integer 12(11);

would define the object I2 and at the same time initialize it to the values of 1. Another form
of this statement is

integer IZ2 = I1;

The process of initializing through a copy constructor is known as copy initialization.
Remember, the statement

12 = I1;

www___.—ﬂﬂ

will not invoke the copy constructor. However, if I1 and I2 are objects, this statement is

legal and simply assigns the values of I1 to I2, member-by-member. This is the task of the
overloaded assignment operator{=). We shall see more about this later.

A copy constructor takes a reference to an object of the same class as itself as an argument.

Let us consider a simple example of constructing and using a copy constructor as shown in
Program 6.4.

Copyrighted material

158 & Object-Oniented Programming with Cs+
The output of Program 6.4 is shown below

100
100
100

i
i
i
i 100

=N =R ==
o o I o]
— = — —h
2 e =

feoteE
A reference variable has been used as an argument to the copy constructor. We cannot
pass the argument by value to a copy constructor.

When no copy constructor is defined, the compiler supplies its own copy constructor.

lﬁ.a Dynamic Constructors

The constructors can also be used to allocate memory while creating objects. This will enable
the system to allocate the right amount of memory for each object when the objects are not
of the same size, thus resulting in the saving of memory. Allocation of memory to objects at
the time of their construction is known as dynamic construction of objects. The memory is
allocated with the help of the new operator. Program 6.5 shows the use of new, in constructors
that are used to construct strings in objects.

Finclude =iostreams
#include <string=

using namespace std:

class String
{

char *name;
int length;
public:
String() ff constructor-1
length = 0;

name = new char[iength + 1];

}

String{char *s) // constructor-?
1
length = strien(s);

(Cantd)

Copyrighted material

Constructors and Destructors #159

name = new char[length + 1]; // one odditional
/| character for \0
strcpy(name, s);

}

void display(void)

{cout << name << "\n";}

void join(String &a, String &b);
}i

void String :: join(String &a, String &b)
{
length = a.length + b.length;
delete name;
name = new char[length+1]; /] dymamic allocation

strcpy(name, a.name);
strcat(name, b.name);

int main{)
{
char *first = "Joseph *;
String namel(first), name2(“Louis "),name3("Lagrange"),sl,s2;

sl.join{namel, name2);
s2.join(sl, name3):
namel.display();
nameZ.display();
name3.display();:
sl.display();
s2.display();

return 0;

PROGRAM 6.5

The output of Program 6.5 would be:

Joseph

Louis

Lagrange

Joseph Louis

Joseph Louis Lagramge

Copyrighted material

160® Object-Oriented Programming with C++

rtode

This Program uses two constructors. The first is an empty constructor that allows us to
declare an array of strings. The second constructor initializes the length of the string,
allocates necessary space for the string to be stored and creates the string itself. Note
that one additional character space is allocated to hold the end-of-string character "\0'.

The member function join() concatenates two strings. It estimates the combined length
of the strings to be joined, allocates memory for the combined string and then creates the
same using the string functions strepy() and streat(). Note that in the function join(),
length and name are members of the ohject that callz the function, while alength and
aname are members of the argument object a. The main() function program mncatenatas
three strings into one string. The output is as shown below:

Joseph Louis Lagrange

IE Constructing Two-dimensional Arrays

We can construct matrix variables using the class type objects. The example in Program 6.6
illustrates how to construct a matrix of size m x n.

* CONSTRUCTING MATRIX OBJECTS

#include <iostream
using namespace std;
class matrix

int **p: /f pointer to motrix
int d1,d2; /| dimensions
public:
matrix{int 20 -Int-y):
void get element{int i, int j, int valué)
{plil[j]1=value;}
int & put element(int i, int j)
{return pli](il:}

matrix :: matrix{int x, int ¥}
{
dl = X3
dZ = y:
p = new int *[dl]; [creotes an arroy pointer

for(int i = 0; i < dl; i++)

(Contd)

-2 161

Constructors and Destructors

pli] = new int[d2]; // creates spoce for each row

|

int main()

L
int m, m;

cout << "Enter size of matrin: ";
cin =>.m >> n;

matrix Alm,n); // motrix object A constructed

cout =< "Enter matrix elements row by row ‘n";
int i, j. value;

for(i = 03 i < my i++)
for{j = 0; j < n; j+t)
{
cin = value;
A.get element(i,j,value);
t
cout =< "\n";
cout <= A.put_element(1,2);

return 0;
s
The output of a sample run of Program 8.6 is as follows.

Enter size of matrix: 3 4
Enter matrix elements row by row

PROGRAM &.6

11 17 13 14
15 16 17 18
19 20 21 22 D

[i] i 2 3 -]
17

Pointer P [0] ———

17 is the value of the

element (1,2). Potnier P 1]
The constructor first Pointer P [2] "
creates a vector pointer to an

d1 mws

int of size dl1. Then, it

: : . F P [3] it
allocates, iteratively an int ointer P [3]

type vector of size d2 pointed repressnb the slsiment PT2] (3]
at by each element plil.

Thus, space for the elements of a d1 » d2 matrix is allocated from free store as shown above.

162 @ Ohject-Oriented Programming with C++

Iﬁ.lﬂ const Objects

We may create and use constant objects using const keyword before object declaration. For
example, we may create X as a constant object of the class matrix as follows:

const matrix X(m,n): // object X is constant

Any attempt to modify the values of m and n will generate compile-time error. Further,
a constant object can call only const member functions. As we know, a const member is a
function prototype or function definition where the keyword const appears after the function's
signature.

Whenever const objects try to invoke non-const member functions, the compiler generates
ETrTors.

Iﬁ.l 1 Destructors

A destrucitor, as the name implies, is used to destroy the ohjects that have been ereated by
a eonstructor. Like a constructor, the destructor is a member function whose name is the
same as the class name but is preceded by a tilde. For example, the destructor for the class
integer can be defined as shown below:

~integer(){ }

A destructor never takes any argument nor does it return any value. It will be invoked
implicitly by the compiler upon exit from the program (or block or function as the case may
be) to clean up storage that is no longer accessible. It is a good practice to declare destructors
in a program since it releases memory space for future use.

Whenever new is used to allocate memory in the constructors, we should use delete to
free that memory. For example, the destructor for the matrix class discussed above may be
defined as follows:

matrix :: -matrix()

{
for(int i=0; 1=dl; 1++)
delete p[i];
delete p;

I

This iz required because when the pointers to objects go out of scope, a destructor is not
called implicitly.

Constructors and Destructors ——————————@ 163

 Tho example below illustrates that the destrustor has been invoked implicily by the

Copyrighted material

164@ Object-Oriented Programming with C++
The output of a sample run of Program 6.7 is shown below:
ENTER MAIN

No.of object created 1
No.of object created 2
No.of object created 3
No.of ohject created 4

ENTER BLOCK1

No.of object created 5
No.of object destroved 5

ENTER BLOCKZ

No.of object created 5
No.of object destroyed 5

RE-ENTER MAIN

No.of object destroyed 4
No.of object destroyed 3
Mo.of object destroyed 2
No.of object destroyed 1

ot e

As the ohjects are created and destroyed, they increase and decrease the count. Notice
that after the first group of objects is created, AS is created, and then destroved, A6 is
created, and then destroved. Finally, the rest of the objects are also destroved. When the
closing brace of a scope is encountered, the destructors for each object in the scope are
called. Note that the objects are destroyed in the reverse order of creation.

~_ SUMMARY | .

C++ provides a special member function called the constructor which enables an object
to initialize itself when it is created. This is known as automatic initialization of objects.

A constructor has the same name as that of a class.
Constructors are normally used to initialize variables and to allocate memory.
Similar to normal functions, constructors may be overloaded.

t¢¢ O

Consiructors and Destructors

4 When an ohject is created and initialized at the same time, a copy constructor gets

called.

¢ ¢

objects when they are no longer required.

automatic initialization
Const

Constructor
constructor overloading
copy constructor

copy initialization
default argument
default constructor
Delete

Destructor

dynamic construction
dynamic initialization

Yy Y Y Y Y Y YYYYYY

Review Questions

We may make an ohject const if it does not modify any of its data values.
C++ also provides another member function called the destructor that destroys the

Key Terms

YYY Y Y YYYYYYY

explicit call

implicit call
implicit constructor
initialization

new
parameterized constructor
reference
shorthand method
streat()

strepyi)

strlen()

virtual

6.1 What is a constructor? Is it mandatory to use constructors in a class?
6.2 How do we invoke a constructor function?

6.3 List some of the special properties of the constructor functions.

6.4 What is o parameterized constructor?
6.5 Can we have more than one constructors in a class? If yes, explain the need for

sch a situwation,

6.6 What do you mean by dynamic initialization of objects? Why do we need to do

this?

6.7 How is dynamic initialization of objects achieved?
6.8 Distinguish between the following fwo statements:

time T2(T1);
time T2 = Tl

T1 and T2 are ohjects of time class.

166

6.9 Describe the importance of destructors.

6.10 State whether the following statements are TRUE or FALSE.
{a) Constructors, like other member [unctions, can be declared anywhere in

the class.
(b) Constructors do not return any values.

{c) A constructor that accepts no parameter is known as the defaultf constructor.
(d}) A class should have at least one constructor.

(e} Destructors never take any argument,

Debugging Exercises

6.1 Identify the error in the following program.

6.2

#include =jostream.h=

class Room
{
int length;
int width;
public:
Room{int 1, int w=0):
width{w),
Tenath{l)
{
}
F
void main()

{
Room objRooml;
Room objRoomZ(12, 8);

Identify the error in the following program.

#include <iostream.h>

class Room

{
int length;
int width;

public:

Object-Oriented Programming with C++

Constructors and Destructors

6.3

Room()

{
length = 03
width = 0;

)
Room{int value=8)
{
length = width = 8;
I
void display()
{
cout =< length == ' ' <= width;
|
b

void main()
{
Room objRoom];
objRooml.display();
I

Identify the error in the following program.

#include <jostream.h=>
class Room

{
int width;

int height;
static int copyConsCount;
public:
void Room()
{
width = 12;
height = 8;
I

Room(Room& r)

{
width = r.width;
height = r.height;

* 167

168@ Object-Onented Programming with Ce+

copvConsCount+s;

vald displopyConsCount ()
{

cout == copyConsCount;
b
int Room::copyConsCount = 0

void main()

{

Room objRoom] ;

Room objRoom? (objRooml);
Room objRoom3 = objRooml;
Room objRoomd;

pbjRoomd = objRoom3;

obhjRoomd . dispCopyConsCount();

6.4 Identify the error in the following program.

#include <iostream.h=

class Room

{
int width;
int height;
static int copyConsCount;

public:
Room()
{
width = 12;
height = &;
I

Room(Roomd r)

!

Constructors and Destructors # 169

width = r.width;
height = r.height;
copyConsCount++;

)

void disCopyConsCount()
{

cout << copyConsCount;
]
}

int Room::copyConsCount = 0;

void main()

{
Room objRooml;
Room objRoom2 (objRooml);
Room objRoom3 = objRooml;
Room objRoomd;
objRoomd = objRoom3;

objRoomd ., dispCopyConsCount () ;

Programming Exercises

6.1

6.2

Design constructors for the classes designed in Programming Exercises 5.1 through

5.5 of Chapter 5.

Define a class String that could work as a user-defined string type. Include

constructors that will enable us to create an uninitialized string

String s1; // string with length 0

and also to inifialize an object with a string constant at the time of creation like
String s2("Well done!");

Include a function that adds two strings to make a third string. Note that the

statement

sd = 51;
will be perfectly reasonable expression to copy one string tq another.
Write a complete program to test your class to see that it does the following tasks:
(a) Creates uninitialized string objects.
(b) Creates objects with string constanis.

170® Object-Oriented Programming with C++

(e} Concatenales lwo strings properly.

(d) Displays a desired string ohject.

6.3 A book shop maintains the inventory of books that are being sold at the shop. The
list includes details such as author, title, price, publisher and stock position.
Whenever a cusfomer wanfs a book, the sales person inputs the title and author
and the syatem searches the {ist and displays whether it is available or not, If it is
not, an appropriate message is displayed. If it is, then the system displays the
book details and requests for the number ﬂfmpie# required. [f the requested copies
are available, the total cost of the requested copies is displayed; otherwise the
message "Regquired copies nof in stock"” is displayed.

Design a system using a class called books with suitable member functions and
constructors. Use mew operator in constructors to allocate memory space required.

6.4 Improve the system design in Exercise 6.3 to incorporate the following features:
(a) The price of the books should be updated as and when required. Use a private

member function to implement this.

(b) The stock value of each book should be automatically updated as soon as a
transaction is completed.

(e} The number afnueeeufuf and unsuccessful transactions should be recorded
for the purpose of statistical analysis. Use statie data members to keep count
of transactions.

6.5 Modify the program of Exercise 6.4 to demonstrate the use of pointers to access the
members.

Copyrighted maierial

¥ Y Y Y Y Y Y YYYYY

Operator Overloading and
Type Conversions

Key Concepts

Overloading

Dperator functions
Owerloading unary operators
String manipulations

Basic to class type

Class to class type

Crperator overloading
Owverloading binary operators
Using friends for overloading
Type conversions

Clags to basic type

Chverloading rules

IT. 1 Introduction

Operator overloading is one of the many
exciting features of C++ language. It is an
important technique that has enhanced the
power of extensibility of C++. We have
stated more than once that C++ tries
to make the user-defined data types behave
in much the same way as the built-in types.
For instance, C++ permits us to add
two variables of user-defined types with the
same syntax that is applied to the
basie types. This means that C++ has the
ability to provide the operators with a
special meaning for a data type. The
mechanism of giving such special meanings
to an operator iz known as operator
overloading.

Operator overloading provides a flexible
option for the creation of new definitions
for most of the C++ operators. We can

172 @ Object-Oriented Programming with C++

almost create a new language of our own by the creative use of the function and operator
overloading techniques. We can overload (give additional meaning to) all the C++ operators
except the following:

® (lass member access operators (., .*).
® Scope resolution operator ().

® Size operator (sizeof).
® Conditional operator (7:).

The excluded operators are very few when compared to the large number of operators
which qualify for the operator overloading definition.

Although the semantics of an operator can be extended, we cannot change its syntax, the
grammatical rules that govern its use such as the number of operands, precedence and
associativity. For example, the multiplication operator will enjoy higher precedence than
the addition operator. Remember, when an operator is overloaded, its original meaning is
not lost. For instance, the operator +, which has been overloaded to add two vectors, can still
be used to add two integers.

I?,E Defining Operator Overloading

To define an additional task to an operator, we must specify what it means in relation to the
class to which the operator is applied. This is done with the help of a special function, called
operator function, which describes the task. The general form of an operator funetion is:

return type classmame :: operator oplarglist)

[

}

where return type is the type of value returned by the specified operation and op is the
operator being overloaded. The op is preceded by the keyword operator. operator op is
the function name.

Function body // task defined

Operator functions must be either member functions (non-static) or friend functions. A
basic difference between them is that a friend function will have only one argument for
unary operators and two for binary operators, while a member function has no arguments
for unary operators and only one for binary operators. This is because the object used to
invoke the member function is passed implicitly and therefore is available for the member
function. This iz not the case with friend functions. Arguments may be passed either by
value or by reference. Operator functions are declared in the class using prototvpes as
follows: '

Operator Overloading and Type Conversions 2173

vector operator+(vector); ff vector addition
vector operator—(}; {f umary minus
friend vector operator+({vector,vector); {1 vector oddition
friend vector operator—(vector): J I unory minus
vector operator—{vector &a); f/ subtroction
int operator=={vector); /! comparison
friend int operator=s{vector,vector) M} comporison

vector is a data type of clags and may represent both magnitude and direction (as in
physics and engineering) or a series of points called elements (as in mathematics)

The process of overioading involves the following steps:

1. Create aelass that defines the data type that is to be used in the overloading operaion.
2. Declare the operator function operator op() in the public part of the class.

[t may be either a member function or a friend function.
3. Define the operator function to implement the required operations.

COrwerloaded operator functions can be invoked by expressions such as
ap X or X op
for unary operators and

X opy
for binary operators. op x (or x op) would be interpreted as
operator op (x)
for friend functions. Similarly, the expression x op v would be interpreted as either
x.operator op (y)
in case of member functions, or
operator op (x,y)
in case of friend functionz. When both the forms are declared, standard argument matching

iz applied to resolve any ambiguity.

7.3 Overloading Unary Operators

Let us consider the unary minus operator. A minus operator when used as a unary, takes
Just one operand. We know that this operator changes the sign of an operand when applied
to a basic data itermn. We will see here how to overload this operator so that it can be applied

1740——m Object-Oriented Programming with C++

to an object in much the same way as is applied to an int or float variable. The unary minus
when applied to an object should change the sign of each of its data items.

Program 7.1 shows how the unary minus operator is overloaded.

OVERLOADING UNARY MINUS

(Contd)

Copyrighted material

Operator Overloading and Type Conversions 175

cout =< "§ : ";

S.display();:
-5; [/ activates operator-()} function

cout =< "5 2 %
S.display();

return 03

PROGRAM 7.1

The Program 7.1 produces the following output:

5 : 10 -20 30
S : =10 20 =30

reode

The function operator —() takes no argument. Then, what does this operator function do?. It
changes the sign of data members of the ohject 8. Since this function is a member function
of the same class, it can directly access the members of the object which activated it.

Remember, a statement like
§2 = =51;

will not work because, the function operator—{) does not return any value. It can work if
the funetion is modified to return an object.

It is possible to overload a unary minus operator using a friend function as follows:

friend wvoid operator-(space &s); // declaration
void operator-(space &s) // definition
{
E.X = —5.K;
5. = —5.¥:
5.2 = -5,2;
}
rele

Note that the argument is passed by reference. It will not work if we pass argument
by value because only a copy of the object that activated the call is passed to operator-().
Therefore, the changes made inside the operator function will not reflect in the
called ohject.

176 @ Object-Oriented Programming with C++

I?.4 Overloading Binary Operators

We have just seen how to overload an unary operator. The same mechanism can be used to
overload a binary operator. In Chapter 6, we illustrated, how to add two complex numbers
using a friend function. A statement like

C = sum(A, B); [/ functional notation.
was used. The functional notation can be replaced by a natural looking expression
C=A+8; [/ arithmetic nototion

by overloading the + operator using an operator+() function. The Program7.2 illustrates
how thizs is accomplished.

OVERLOADING + OPERATOR
- ginclude <ipstream
using namespace std;

class complex

{
float x; /! real part
float y; /[imoginary port
public:
complex(}{ } J/ constructor 1
complex{float real, float imag) /] constructor 2

{ x = real; v = imag; }
complex operator+({complex);
void display(void);

bi

complex complex :: operator+{complex c)

1

complex temp; /{ temporary
temp.x = X + C.X; I/ these are
temp.y = ¥ + C.¥; ! float odditions

return(temp);
i

void complex :: display(void)
{

cout =< =< " 4 " e ¥ == FinTs

(Contd)

Operator Overloading and Type Conversions o177

}

fnt main()

{ :
complex CI, C2, C3; [/ invokes constructor l
C1 = complex(2.5, 3.5); // invokes constructor 2
CZ = complex(l.6, 2.7);
£3 = C1 + C2;

cout << "C1 = *; Cl.display();
cout =< "C2.= ': C2.display();
cout << "C3 = *; C3.display();

return 0z

PROGRAM 7.2

The output of Program 7.2 would be:

€l
c2
c3

&

1] 1] n
— o oan
+ + +
Lx L £
RS

3
2.
6

-ﬂ-lll-il\.l

*

note

Let us have a close look at the function operator+() and see how the operator overloading
is implemented.

complex complex :: operator+(complex c)

{
complex temp;
temp.x = x + C.xj
temp.y = y + C.¥;
return(temp);

1

We should note the following features of this function:

1. It receives only one complex type argument explicitly.
2. It returns a complex type value.
3. It iz a member function of complex.

The function is expected to add two complex values and return a complex value as the
result but receives only one value as argument. Where does the other value come from?
Now let us look at the statement that invokes this function:

C3i = Cl + C2; [/ invokes operator+() function

178® Object-Oriented Programming with C++

We know that a member function can be invoked only by an ohject of the same class.
Here, the object C1 takes the responsibility of invoking the function and C2 plays the role of
an argument that is passed to the function. The above invoecation statement is equivalent
to

Ll

€3 = Cl.operator+{C2); /f usual function call syntax

Therefore, in the operator+() function, the data members of C1 are accessed directly
and the data members of C2 (that is passed as an argument) are accessed using the dot
operator. Thus, both the ohjects are available for the function. For example, in the statement

temp.x = X + C.X;
¢.x refers to the object C2 and x refers to the object Cl. temp.x is the real part of temp that
has been created specially to hold the results of addition of C1 and C2. The funetion returns
the complex temp to be assigned to C3. Figure 7.1 shows how this is implementoed.

As a rule, in overloading of binary operators, the feft-fiand operand is used to invoke the
operator function and the right- hand operand is pas=ed as an argument.

R . i
i complex operator + {complex c) i
i i
i]
! complex temp ; i
| i
termp i H
4,10 E tﬂ'ﬂp‘.ﬂ: = [+ X i
I 1
6.20 ! wrmpy = | Gy + y | ¢
i i
| 1
1 1
i i
| retum (temp) ; i
retum ’7 ’7
C3 = 1 + C2;
410 = 250 x 160 =
820 y 350 y 270 ¥

Fig. 7.1 & Implementation of the overloded + operator :

L,

Copyrighted maierial

Operatar Cverloading and Type Conversions e179

We can avoid the creation of the temp object by replacing the entire function body by the
following statement:

return complex((x+c.x), (y+c.¥)); !/ invokes constructor 2

What does it mean when we use & chiss name with an arguisent list? When the compiler
comes across a statement like this, it invokes an appropriate constructor, initializes an
object with no name and returns the contents for copying into an object. Such an object is
called a temporary object and goes oul of space as soon as the contents are assigned to
another object. Using temporary objects can make the code shorter, more efficient and better
to read.

I‘L.’r Overloading Binary Operators Using Friends

Ag stated earlier, friend functions may b u=id in the place of member functions for
overloading a binary operator, the only difference being that a friend function requires two
arguments to be explicitly passed to it, while a member function requires only one.

The complex number program discussed in the previous section can be modified using a
friend operator function as follows:

1. Replace the member function declaration by the friend function declaration.
friend complex operator+(complex, complex):

2. Redefine the operator function as follows:
complex operator+{complex a, complex b)

[
}

return complex{(a.x+b.x), (a.y+b.y));

In this caze, the statement
€3 = € + C2;
is equivalent to
€3 = operator+(Cl, CZ);
In most cases, we will get the same results by the use of either a friend function or a
member function. Why then an alternative is made available? There are certain situations
where we would like to use a friend function rather than a member function. For instance,

consider a situation where we need to use two different types of operands for a binary
operator, say, one an object and another a built-in tyvpe data as shown below,

AwB+2 {orA=B=*2;)

Copyrighted material

180 @ Object-Oriented Programming with C++

where A and B are ohjects of the same class. This will work for a member function but the
statement

A=¢2 +B; (orA=2*B)

will not work. This is because the left-hand operand which is responsible for invoking the
member function should be an object of the same class. However friend function allows
both approaches. How?

It may be recalled that an object need not be used to invoke a friend function but can be
passed as an argument. Thus, we can use a friend function with a built-in type data as the
feft-hand operand and an object as the right-hand operand. Program 7.3 illustrates this,

using scalar multiplication of a vector. It also shows how to overload the input and output
operators >> and <<.

. OVERLOADING OPERATORS USING FRIENDS :
finclude =<jostream.hs
const size = 3;

class wvector

[

int w[size]:

public:
vector(); {1 constructs null vector
vector{int *x); {f constructs vector. from arraoy
f~iend vector operator *(int a, vector h); H o friend 1
friend vector operator *(vector b, int a); i friend 2

friend istream & operator >> (istream &, vector &);
friend ostream & operator << (ostream &, vector &);

ki
vector :: vector()
{
for{int i=0; i<size; i++)
v[i] = 0;
]
vector :: vector{int *x)
{

for{int 1=0; fesize; i++)

vli] = x[i];

fContd)

Operatar Overloading and Type Conversions ®181

vector operator *(int a, vector b)

{

vector c;
for{int i=0; i < size; i++)
c.v[i] = a * b.v[1];
return ci
vector operator *(vector b, int a)
vector cj
for{int i=0; i<size; i++)
c.v[i] = b.v[i] ™ a3

return c;
|

istream & operator >> (istream &din, vector &b)

{
for{int 1=0; f<size; 1++)
din >= b.v[i];
return({din);
}
ostream & operator << (ostream Adout, vector &h)
{
dout << "(" << b.v [0];
for(int i=1; i<size; i++)
dout << ", ® << h.v[i];
dout =< ")";
return(dout);
}
int x[size] = {2,4,6}:"
int main{)
|
vector m; /[invokes constructor]
vectar n = x; [/ tnvokes constructor 2

cout << “Enter elements of vector m ® << "\n";
cin == m; !l invokes operator=={) function
{Contd)

Copyrighted material

182 & Object-Oriented Programming with C++

cout =< “in":

cout << "m = " << @ << "\n%; [{ invokes operator <<({)
vector p, Qi

p=2*m ., invokes friend I

q=n*2; [/ invokes friend 2

cout << "\n¥;

cout =< "p = " << p << "\n"; /[invokes ppergtors<{)
cout. =< g = " << g =< "\pn";

return 0;

PROGRAM 7.3

Shown below is the output of Program 7.3;

Enter elements of wvector m
510 15

m = (5, 10, 15)
p = (10, 20, 30)
q = (4, 8, 12)

The program overloads the operator * two times, thus overloading the operator funetion
operator®(} itself. In both the cases, the functions are explicitly passed two arguments and
they are invoked like any other overloaded function, based on the types of its argumentsa.
This enables us to use both the forms of scalar multiplication such as

p=2*m /[equivalent to p = operotor*(2,m);
gq=n"2; [/ equivalent to q = operator*(n,2);

The program and its output are largely self-explanatory. The first constructor
vector();

constructs a vector whose elements are all zero. Thus
vector m;

creates a vector m and initializes all its elements to 0. The second constructor
vector(int &x);

creates a vector and copies the elements puintéd to by the pointer argument x into it.
Therefore, the statements

Operator Overloading and Type Conversions ®183

int x[3]
vector m

(2. 4, B};

L

create n as a vector with components 2, 4, and 6.

- e

We have used vector variables like m and n in input and output statements just like
simple variables. This has been made possible by overloading the operators >> and <<
using the functions:

friend istream & operator==(istream &, vector &);
friend ostream & operator<<(ostream &, vector &)

istream and ostream are classes defined in the iostream.h file which has been included
'\if the program. y

IT.E Manipulation of Strings Using Operators

ANSI C implements strings using character arrays, pointers and string functions. There
are no operators for manipulating the strings. One of the main drawbacks of string
manipulations in C is that whenever a string is to be copied, the programmer must first
determine its length and allocate the required amount of memaory.

Although these limitations exist in C++ as well, it permits us to create our own definitions
of operators that can be used to manipulate the strings very much similar to the decimal
numbers. (Recently, ANSI C++ committee has added a new class called string to the C++
class library that supports all kinds of string manipulations. String manipulations using
the string claszs are discussed in Chapter 15.

For example, we shall be able to use statements like

stringd = stringl + string2;
if(stringl »= stringZ) string = stringl;

Strings can be defined as class objects which can be then manipulated like the built-in
types. Since the strings vary greatly in size, we use new to allocate memory for each string
and a pointer variable to point to the string array. Thus we must create string objects that
can hold these two pieces of information, namely, length and location which are necessary
for string manipulations. A typical string class will look as follows:

class string

(
char *p; /! pointer to string

Copyrighted material

Object-Onented Programming with C++

len; [/ length of string

. [/ member functions
o ff to initiaglize and
. [monipulote strings

We shall consider an example to illustrate the application of overloaded operators to
strings. The example shown in Program 7.4 overloads two operators, + and <= just to show
how they are implemented. This can be extended to cover other operators as well.

MATHEMATICAL OPERATIONS ON STRINGS

#include <string.h>
#include <iostream.h>

class string

i

public:

char-*p;

int len;

string{) {len = 0; p = 03} {{ creote null string
string{const char * s); /| create string from orraoys
string{const string & s): /[copy constructor

- string{){delete p;) // destructor

/f + operator
friend string operator+{const string &s, const string &t);

{f == operator
friend int operator<={const string &S, const string &t);
friend void show(const string s);

:: string(const char *s)
len = strien{s);

p = new char[len+l];
strepy(p,.s);

11 string(const string & s)

tenm = 5. len:
p = new char[len+l];

(Contd}

Operator Overloading and Type Conversions

} strepy(p.s.p):

// overloading + operator
string operator+{const string &s, const string ltl
{
string temp;
temp.len = s.len + t.len;
temp.p = new char[temp.len+l];
strcpy(temp.p,s.p);
strcat(temp.p,t.p);
return(temp);
}
// overloading <= operator
int operator<=({const string &s, const string &t)
{
int m = strien{s.p);:
int n = strlen(t.p);

if(m <= n) return(l);

else return(0);

}
void show{const string s)
{
cout << §.p;
}
int main()
{

string s1 = "New *;
string 52 = "York";
string 53 = "Delhi®;
string tl,t2,t3;

tl = 51;

t2 = s2;

t3 = s1+53;

cout << "\ntl = "; show(tl);
cout =< "\nt2 = "; show(t2);
cout << "\n";

cout << "\nt3 = ": show(t3);
cout << "\n\n";

2185

(Contd)

186® Ohject-Oriented Programming 10zh 2+

if(tl <= t3)
{
show(tl);
cout =< " smaller than ";
show(t3):
cout << "\n";

else
{
show(t3);
cout << " smaller than ";
show(tl);
cout << *\n";
i
return 0;

| PROGRAM 7.4

The following is the output of Program 7.4

tl = Mew
t2 = York

t3 = Mew Delhi

Hew smaller than MNew Delhi

IT.T Rules for Overloading Operators

Although it looks simple to redefine the operators, there are certain restrictions and
limitations in overloading them. Some of them are listed below:

1. Omnly existing operators can be overloaded. New operators cannot be created.

2. The overloaded operator must have at least one operand that is of user-defined
type.

3. We cannot change the basic meaning of an operator. That is to say, we cannot
redefine the plusi+) operator to subtract one value from the other.

4. Overloaded operators follow the syntax rules of the original operators. They cannot

be overridden.

There are some operators that cannot be overloaded. (See Table 7.1.)

We cannot use friend functions to overload certain operators. (See Table 7.2.) How-

ever, member functions can be used to overload them.

el

Operator Overloading and Type Conversions ® 187

7. Unary operators, overloaded by means of a member function, take no explicit argu-
ments and return no explicit values, but, those overloaded by means of a friend
function, take one reference argument (the object of the relevant class).

8. Binary operators overloaded through a member function take one explicit argu-
ment and those which are overloaded through a friend function take two explicit
arguments.

8. When using binary operators overloaded through a member function, the left hand
operand must be an ohject of the relevant class.

10. Binary arithmetic operators such as +, -, *, and / must explicitly return a value.
They must not attempt to change their own arguments,

Table T.1 Operators that cannot be overloaded

Sizeof Bize of operator

. Membership operator

S Pointer-to-member operator
= Scope resolution operator
T Conditional operator

Table 7.2 Where a friend cannot be used

= Assignment operator

{} Function eall operator

i) Subscripting operator

=3 Class member access operator

I'.-".B Type Conversions

We know that when constants and variables of different types are mixed in an expression,
C applies automatic type conversion to the operands as per certain rules. Similarly, an
assignment operation also causes the automatic type conversion. The type of data to the
right of an assignment operator iz automaticallv converted to the type of the variable on the
left, For example, the statements

int m;
float x = 3.14159;

m= x;

convert x to an integer before its value is assigned to m. Thus, the fractional part is truncated.
The type conversions are automatic as long as the data types involved are built-in types.

What happens when they are user-defined data types?

Copyrighted material

188e Object-Oriented Programming with C++

Consider the following statement that adds two objects and then assigns the result to a
third object.

w3 = vl + vi; ffovl, v2 and v3 are closs type objects

When the objects are of the same class type, the operations of addition and assignment
are carried out smoothly and the compiler doezs not make any complaints. We have seen, in
the case of class objects, that the values of all the data members of the right-hand object are
simply copied into the corresponding members of the object on the left-hand. What if one of
the operands is an object and the other is a built-in type variable? Or, what if they belong to
two different classes?

Since the user-defined data types are designed by us to suit our requirements, the compiler
does not support automatic type conversions for such data types. We must, therefore, design
the conversion routines by ourselves, if such operations are required.

Three types of situations might arise in the data conversion between uncompatible types:

1. Conversion from basic type to class type.
2. Conversion from class type to basic type.
3. Conversion from one class type to another elass type.

We sghall discuss all the three cases in detail.

Basic to Class Type

The conversion from basic type to class type is easy to accomplish. It may be recalled that
the use of constructors was illustrated in a number of examples to initialize objects. For
example, a constructor was used to build a vector object from an int type array. Similarly,
we used another constructor to build a string type object from a char® type variable. These
are all examples where constructors perform a defacto type conversion from the argument's
type to the constructor's class type.

Consider the following constructor;

string :: string(char *a)

{
length = strlen(a);
P = new char[length+1];
strepy(P,a);

}

This constructor builds a string tyvpe object from a char* tyvpe variable a. The variables
length and p are data members of the class string. Once this constructor has been defined

Copyrighted material

Operator Dverloading and Type Conversions @189

in the string class, it can be used for conversion from char® type to string type. Example:
string 51, s5&;
char* namel = "IBM PC";
char* namez = “Apple Computers™;
s1 = string(namel);
52 = name?;
The statement

sl = string(namel);

first converts namel from char* type to string type and then assigns the string type
values to the object 81. The statement

s¢ = nameZ;
also does the same job by invoking the constructor implicitly.

Let us consider another example of converting an int type to a elass type.

class time
{
int hrs;
int mins;
public:
time(int t) /[constructor
!
hours = t/60; fft in minutes
minsg = t%60;
I
s
The following conversion statements can be used in a function:
time T1; J/ object T1 created
int duration = B85;
Tl = duration; f/ int to class type

After this conversion, the hrs member of T1 will contain a value of 1 and mins member
a value of 25, denoting 1 hours and 25 minutes,

Copyrighted material

190 & Object-Oriented Programming with C++

rrole

The constructors used for the type conversion take a single argument whose type is to be
converted.

In both the examples, the lefi-hand operaicl of = operator 15 aiwayz a class vhjoct,
Therefore, we can also accomplish this conversion using an overloaded = operator.

Class to Basic Type

The constructors did a fine job in type conversion from a basic to class tvpe. What about the
conversion from a class to basic type? The constructor functions de nol support this operation,
Luckily, C++ allows us to define an overloaded casting operator that could be used to convert
a class type data to a basic type. The general form of an overloaded casting operator function,
usually referred to as a conversion funcfion, is:

operator typename()

cese» (Fumction statements)

EE 4 RS

)

This function converts a class type data to fypename, For example, the operator double()
converts a class object to type double, the operator int() converts a class type object to
type int, and s0 on.

Consider the following conversion function:

vector :: operator double()
{
double sum = 0
for{int i=0; i<size; i++)
sum = sum + v[i] * v[i];
return sqrt(sum);

}

This function converts a vector to the corresponding scalar magnitude. Recall that the
magnitude of a vector is given by the square root of the =um of the squares of its components.
The operator double() can be used as follows:

double length = double(Vl);

or
double length = ¥1;

Copyrighted material

Operator Overloading and Type Conversions *191

where V1 is an object of type vector. Both the statements have exactly the same effect.
When the compiler encounters a statement that requires the conversion of a class type to a
basic type, it quietly calls the casting operator funetion to do the job.

The casting operator function should satisfy the following conditions:

® [t must be a elass member.
®» [t must not =pecify a return type.
® [t must not have any arguments.

Since it is a member function, it is invoked by the object and, therefore, the values used
for conversion inside the function belong to the object that invoked the function. This means
that the function does not need an argument.

In the string example described in the previous secvon, we ran do the converzion from
string to char®* a= follows:

string :: operator char*()
{

)

return{p);

One Class to Another t lass Type

We have just seen data conversion techniques from a basic to class type and a class to basic
type. But there are situations where we would like to convert one class type data to another
class type.

Example:

ogbjX = objY; /[objects of different types

objX is an object of class X and objY is an object of class Y. The elass Y type data is

converted to the elass X type data and the converted value is assigned to the objX. Since
the conversion takes place from class Y to elass X, Y is known as the source class and X is
known as the destination class.

Such conversions between objects of different classes can be carried out by either a
constructor or a conversion function. The compiler treats them the s=ame way. Then, how do
we decide which form to use? It depends upon where we want the type-conversion function
to be located in the source class or in the destination class.

We know that the casting operator function

operator typename()

Copyrighted material

192 Object-Oriented Programming with C++

converts the class object of which it is a member to typename. The tvpename may be a built-
in type or a user-defined one (another class type). In the case of conversions between objects,
typename refers to the destination class. Therefore, when a class needs to be converted, a
casting operator function can be used (i.e. source class). The conversion takes place in the
source class and the result is given to the destination class object.

Now consider a single-argument constructor function which serves as an instruction for
converting the ﬂrgumenf'a type to the class type of which it is @ member. This implies that
the argument belongs to the source class and is passed to the destination class for conversion.
This makes it necessary that the conversion constructor be placed in the destination class.
Figure 7.2 illustrates these two approaches.

T objx = objy WY isa source class
f [Class ¥
r casting oparator
convered value of functian .
| type X Conversion here
{source class)
Class X Class Y
Constructor |, dala access
function | argument of functions
Converslon here type Y
(destinaton class)

DT S s |

Table 7.3 provides a summary of all the three conversions. It shows that the conversion
from a class to any other type (or any other class) should make use of a casting operator in
the source class. On the other hand, to perform the conversion from any other type/class to
a class type, a constructor should be used in the destination class.

Table 7.3 Type conversions

Conversion required | Conversion takes place in
' Source class Destination class
Basic =* class Not applicable Constructor
Clasz = basic Casting operator T -hTL:p_;Iu:uhl: .
Class =¥ class I Casting operator I Constructor

When a conversion using a constructor is performed in the destination class, we must be
able to access the data members of the object sent (by the source class) as an argument.
Since data members of the source class are private, we must use special access functions in
the source class to facilitate its data flow to the destination class.

Copyrighted material

A Data Conversion Example

Operater Overloading and Type Conversions

2193

Let us consider an example of an inventory of products in store. One way of recording the
details of the products is to record their code number, total items in the stock and the cost of
each item. Another approach is to just specify the item code and the value of the item in the
stock. The example shown in Program 7.5 uses two classes and shows how to convert data of

one type to another.

) DATA CONYERSIONS

#finclude =iostream>
using namespace std;
class invent?

class inventl

{

int code:

int items;

float price;
public:

LB
'
Il 'll

.I.-' '_,-'

destination class declared

source closs

{7 item code

na..of tEems
cost of each item

inventl(int a, int b, float c)

{
code = a;
Ttens = O3
price = ¢3

}

vold putdata()

{

cout << “Code:

cout == “[tems:
cout << *Walue:

}

int getcode() {return code;}
int getitems({) {return items:}

float getprice() {return price;}

operator fleat{) {return{items * price);}

/* operator invent2()

|II ll.

<< cofde << "\n";
<< {tems =< "\p¥;
<< price << "\n";

inventl to invent?

i
invent? temp;
temp.code = code;
temp.value = price * items;
return temp;
) *f
ha f// End of source class

(Contd)

Copyrighted material

Copyrighted material

Operator Overloading and Type Conversions 0195

Following is the output of Program 7.5:

Product details-inventl type
Code: 100

[tems: 5

Value: 140

Stock value

Value = 700

Product details-invent? type
Code: 100

Value: 700

-~ nrote ~

We have used the conversion function

operator float()
in the class inventl to convert the inventl type data to a float. The constructor

invent2 (inventl)
is used in the class invent2 to convert the inventl type data to the invent2 type data.

Remember that we can also use the casting operator function
operator inventZ()
in the class inventl to convert inventl type to invent2 type. However, it is important

that we do not use both the constructor and the casting operator for the same type
conversion, since this introduces an ambiguity as to how the conversion should be

kperfurmed. y

\ SUMMARY -

Operator overloading is one of the important features of C++ language. It is called
compile time polymorphism.

& Using overloading feature we can add two user defined data types such as objects, with
the same syntax, just as basic data types.

& We can overload almost all the C++ operators except the following:
* class member access operators(,, .*)
+ scope resolution operator (::)

196 @ Object-Oriented Programming with C++

= size operator{sizeofl)
» conditional operator(?:)

& Operator overloading is done with the help of a special function, called operator function,
which describes the special task to an operator.

&» There are certain restrictions and limitations in overloading operators. Operator

functions must either be member functions (non-static) or friend functions. The
overloading operator must have at least one operand that is of user-defined type.

% The compiler does not support automatic type conversions for the user defined data
tvpes. We can use casting operator functions to achieve this. .

¢ The casting operator function should satisfy the following conditions:
s [t must be a class member.
= [t must not specify a return type.
= [t must not have any arguments.

Key Terms

» arithmetic notation » operator
» hinary operators » operator function
» casting » operator overloading
» casting operator » scalar multiplication
» constructor » semantics
> conversion function » sizeof
» destination class » source class
» friend » syntax
» friend function » temporary object
» functional notation » type conversion
» manipulating strings > unary operators
I Review Questions

7.1 What is operator overloading ?
7.2 Why is it necessary to overload an operator?
7.3 What is an operator function? Describe the syntax of an operator function.

T4 How many arguments are required in the definition of an overloaded unary
operator?

Operator Overloading and Type Conversions ®197

7.5 A class alpha has a constructor as follows:

alphafint a, double b);

Can we use this constructor fo convert types?

7.6 What is a conversion function How is if created Explain its syntax.

7.7 A friend function cannot be used to overload the assignment operator =. Explain
why#

7.8 When is a friend function compulsory? Give an example.

7.9 We have two classes X and Y. If a is an object of X and b is an object of ¥ and we
want to say a = b; What type of conversion routine should be used and where?

T7.10 State whether the following statements are TRUE or FALSE.

(a)

(b}
ie)
(d)

(e)

{f)
(g)

(h)

Using the operator overloading concept, we can change the meaning of an
operator.

Operator overloading works when applied to class objects only.

Friend functions cannot be used to overload operators.

When using an overloaded binary operator, the left operand is implicitly
passed to the member function.

The overloaded operator must have at least one operand that is user-defined
type.

Operator functions never return a value,

Through operator overloading, a class type data can be converted to a basic
tvpe data.

A constructor can be used to convert a basic fype to a class iype data.

I Debugging Exercises

7.1 Identify the error in the following program.

finclude <iostream.h=
class Space

{

int mCount;

public:

Space()
{
mCount = 0;

!

Space operator ++()

{

mCount++;

198#

1.2

Object-Oriented Programming with C+4

return Space(mCount):

}

ks

void main()

{
Space objSpace;
objSpace++;

I

Identify the error in the following program.

fFinclude =iostream.h=

enum WeekDays

{
maunday,
mMonday,
mTuesday,
mWednesday,
mThursday,
mFriday,
miaturday

tH

bool op==(WeekDaysk wl, WeekDayshk wZ)

if{wl== mSunday L& w2 == mSunday)
return 1;

else 1f(wl== mSunday B& w2 == mSunday)
return 1;

else if(wl== mSunday &R w2 == mSunday)
return 1;

else if(wl== mSunday && wZ == mSunday)
return 1;

glse if(wl== mSunday A& w2 == mSunday)
return 1;

else if(wl== mSunday L& w2 == mSunday)
return 1;

else if(wl== mSunday && w2 == mSunday)
return 1;

else
return 0;

7.3

Operator Overloading and Type Conversions

void main()
{
WeekDays wl = mSunday, w? = mSunday;
if(wl==w2)
cout << "Same day";
else
cout << "Different day";
}
Identify the error in the following program.

finclude =iostream.h=
class Room

{

float mWidth;

float mlLength;
public:

Room()

{

|

Room(float w, float h)
:midth{w), mLength(h)

[

}
operator float()
{
return (float)mWidth * mLength:
1

float getWidth()

i
!

float getLength()
(

return mLength;

bs

yoid main()

#199

Copyrighted material

200@

Object-Ortented Programming with C++

Room objRooml (2.5, 2.5);
float fTotalArea;
fTotalArea = objRooml;
cout << fTotalArea;

Programming Exercises

NOTE:
code.

7.1

7.2

7.3

7.4
7.0

For all the exercises that follow, build a demonstration program to test your

Create a class FLOAT that containg one
float data member. Overload all the four Point {r, &)
arithmetic operators so thal they operate Radius B

on the objects of FLOAT.,

Design a closs Polar which describes a
point in the plane using polar coordinates
radius and angle. A point in polar
coordinates is shown in Fig. 7.3.
Use the overloaded + operator to add twe Anghs
objects of Polar, L
Nate that we cannot add polar values of .
two points directly. This requires first the
conversion of points into rectangular co-
ordinates, then adding the corresponding
reciangular co-ordinates and finally
converting the result back into polar co-ordinates. You need to use the following
trigonometric formidlae:

x = r * cos{a);

y = r * sin(a);

a = atan{y/x); // arc tangent

r o= sqri(x*x + y*y);
Create a class MAT of size m x n. Define all possible malrix operations for MAT
tvpe objects.

Define a elass String. Use overloaded == operator lo compare two strings.

Define two classes Polar and Rectangle to represent poinis in the polar and
rectangle systems. Use conversion routines to convert from one system lo the other,

Fig. 7.3 <« Polar coordinales of a poin! I

Copyrighted material

Inheritance: I
‘ Extending Classes

Y ¥ Y Y Y Y Y Y YYYYYYY

Key Concepts

Heusahility

Inheritance

Single inheritance

Multiple inheritance
Multilevel inheritance
Hybrid inhertance
Hierarchical imheritance
Defiriing a derived class
Inhenting prvate members
Virtual base class

Dhrect base class

Indirect base class

Abstract class

Defining derived class constructors

Mesting of classes

8.1 Introduction

Reusability is yet another important
feature of O0P. It is always nice if we could
reuse something that already exists rather
than trying to create the same all over
again. It would not only save time and
money but also reduce frustration and
increase reliability. For instance, the reuse
of a class that has already been tested,
debugged and used many times can save
us the effort of developing and testing the
same again.

Fortunately, C++ strongly supports the
concept of reusability. The C++ classes can
be reused in several ways, Once a class has
been written and tested, it can be adapted
by other programmers to suit their
requirements. This is basically done by
creating new classes, reusing the properties
of the existing ones. The mechanism of
deriving a new class from an old one is
called inheritance (or derivation). The old
class is referred to as the base class and
the new one is called the derived closs or
subclass,

202e Ohject-Oriented Programming with C++

The derived class inherits some or all of the traits from the base class. A class can also
inherit properties from more than one class or from more than one level. A derived class
with only one base class, is called single inheritance and one with several base classes is
called multiple inheritance. On the other hand, the traits of one clazs may be inherited by
more than one class. This process is known as hierarchical inheritance. The mechanism of
deriving a class from another ‘derived class’ is known as multilevel inheritance. Figure 8.1
shows various forms of inheritance that could be used for writing extensible programs, The
direction of arrow indicates the direction of inheritance. (Some authors show the arrow in
opposite direction meaning “inherited from”.)

| S——

{a) Single inhertance

] [[+

|-
-t

| i
c | B | | C D
() Mustipde iniritang {c) Hisrarchical inharitance
A | A |
|
B B C

B N

{d) Multievel inheritance : {e) Hybnd inheritance

Fig. B.1 < Forms of inheritance i

IB.Z Defining Derived Classes

A derived class can be defined by specifying its relationship with the base class in addition
to its own details. The general form of defining a derived class is:

Copyrighted material

Inheritance; Extending Classes 203

class derived-closs-nome : visibility-mode base-class-name

{
R
..... /{ members of derived closs

cesedff
b
The colon indicates that the derived-class-name is derived from the base-class-name. The
visibility-mode is optional and, if present, may be either private or publie. The default
visibility-mode is private. Visibility mode specifies whether the features of the base class
are privately derived or publicly derived. :

Examples:

class ABC: private XYZ [/ private derivation
1

members of ABC

class ABC: public XYZ [/ public derivation

| members of ABC

i

class ABC: XYZ /! private derivation by defoult
| members of ABC

bs

When a base class is privately inherited by a derived class, ‘public members’ of the base
class become ‘private members’ of the derived class and therefore the public members of the
base class can only be accessed by the member functions of the derived class. They are
inaccessible to the objects of the derived class. Remember, a public member of a class can be
accessed by its own objects using the dot operator. The result is that no member of the base
class is accessible to the objects of the derived class.

On the other hand, when the base class is publicly inherited, ‘public members’ of the
base class become "public members’ of the derived class and therefore they are accessible to
the ohjectz of the derived class. In both the cases, the private members are not inherited and
therefore, the private members of a base class will never become the members of its derived
class.

In inheritance, some of the base class data elements and member functions are 'inherited’
into the derived class. We can add our own data and member functions and thus extend the

204» Object-Oriented F‘rngrurﬁming with O++

[]

functionality of the base class. Inheritance, when used to modify and extend the capabilities
of the existing classes, becomes a very powerful tool for incremental program development.

Ia.a Single Inheritance

Let us consider a simple example to illustrate inheritance, Program 8.1 shows a base class
B and a derived class D. The class B contains one private data member, one public data
member, and three public member functions. The class D contains one private data member
and two public member functions.

SINGLE TNHERITANCE : PUBLIC

finclude <iostream=

using namespace std;

class B
i
int a; {/ private; not imheritable
public:
int b; ' !/ public; ready for inheritonce

void get ab();
int get a(void);
void show a(void);

ba
class 0 : public B / public derivation

{
int ¢
public;
void mul {vaid):
yoid display(void);
|
T T e
void B :: get ab{void)
i
A= Bi b= 10z
!
int B :: get af)

{

return a;
I
void B :: show a()
{

(Corntd)

Copyrighted material

cout << "a = " << g << "\pn";

1

void O z: mul()

{
c=b*geta();

1

void D :: display()

{ .
cout << "a = " << get_a() << "\n";
cout =< "h = ® << b << "\n";
cout =< "¢ = " << ¢ << "\n\n";

}

e

int main()

{
0 d;
d.get_ab(};
d.mul();
d.show_a();
d.display();
d.b = 20;
d.mul{);
d.display();
return 0;

}

Given below is the output of Program 8.1:

a=5

a=5

B = 10

c = 50

a=25

b = 20
= 100

inheritance: Extending Classes

PROGRAM 8.1

The class I} i= a public derivation of the base class B. Therefore, I) inherits all the public
members of B and retains their visibility. Thus a public member of the base class B is also
a public member of the derived class D. The private members of B cannot be inherited

Copyrighted material

206® Object-Oriented Programming with C++

by D. The class D, in effect, will have more members than what it contains at the time of
declaration as shown in Fig. 8.2,

Class D

Private Saction

L

Public Section
T T T Inharited B
i b i fram B 2
! get_abi() !
i l
1 _ai) l
{ [showan | |

mui()

digplay()

Fig. 82 < Adding more members to @ class (by public derivation)

The program illustrates that the objects of class I) have access to all the public members
of B. Let us have a look at the functions show_a() and mul():

void show_a()
{

void mul()
{

Although the data member a is private in B and cannot be inherited, objects of D are able
to access it through an inherited member function of B.

cout << "a = " =< g << "\n";

c="hb*get_a(); [fe=b™*a

Let us now consider the case of private derivation.

Inheritance: Extending Classes —8 207

class B

{
int a;
public:
int b;

void get_ab();
void get a();

vold show a();
F

class D : private B /[private derivation
{
int c;
public:
void mul();
void display():
|H

The membership of the derived class D is shown in Fig. 8.3. In private derivation, the
public members of the base class become private members of the derived class. Therefore,
the objects of I can not have direet access to the public member functions of B.

Class D

Fig. 8.3 <3 Adding more members to a class (by private derivation)

Copyrighted material

208 e Object-Oriented Programming with C++
The statements such as

d.get_ab(); // get_ab{) is private
d.get_a(); /i s0 also get_af)
~ d.show_a(); /f and show af)

will not work. However, these functions can be used inside mul() and display() like the
normal functions as shown below:

void mul()

get_ab();
c = b*getal);
}

void display()

{
show_a(); // outputs value of 'a’
cout =< "h = ® << b << "\p"
g "p = W ge ¢ o2 l’l..n"‘nli

}

Program 8.2 incorporates these modifications for private derivation. Please compare this
with Program 8.1,

Copyrighted material

Inheritance: Extending Classes

public:
void mul {void);
void display(void);

:n1d B :: get_ab(void)

cout << "Enter values for a and b:";
cin == a == b;

Teadal

g ¥ 1l

)
int B :: get_a()

return a;
!
void B :: show a()
{

cout =< g = " <2< j << '\n';
i
void D :: mul() : T ':.'
{ .

get_ab(); .

c=b*getaf); /{ 'a' connot be used divectly’ - oc
I / el Ak e 0 bl Rl

gl orr 17 %0 4 @ mdi R ErUIN? LAy JI'L:.-

void D :: display() NI R L frf e
{ d g

show_a(); [/ outputs value of 'a’

cout << "h = " << ph << "\n" :

=< "¢ = " << ¢ << "\n\n";

)
[=mmmmmm e e
:nt main() _ e e 3

Dd; - i

J/ d.get_ab(); NON'T WORK |

d.mul();

/f d.show a(); WON'T WORK

d.display();

(Contd)

Copyrighted material

210@ Object-Oriented Programming with C++

[/ d.b = 20; WON'T WORK; b has become private
d.mul();
d.display();

return 0;

PROGRAM 8.2

The output of Program 8.2 would be:

Enter values for a and b:5 10

a=»5

b = 10

c = 50

Enter values for a and b:12 20
a=12

b = 20

c = 240

Suppose a base class and a derived class define a function of the same name. What will
happen when a derived class object invokes the function?. In such cases, the derived clazs
function supersedes the base class definition. The base class function. will be called only if
the derived class does not redefine the function.

IE.-’i Making a Private Member Inheritable

We have just seen how to increase the capabilities of an existing class without modifying it.
We have also seen that a private member of a base class cannot be inherited and therefore
it is not available for the derived class directly. What do we do if the private data needs to
be inherited by a derived clasas? This can be accomplished by modifying the visibility limit of
the private member by making it public. This would make it accessible to all the other
functions of the program, thus taking away the advantage of data hiding.

C++ provides a third visthility modifier, protected, which zerve a limited purpose in
inheritance, A member declared as protected is accessible by the member functions within
its class and any class immediately derived from it. It cannot be accessed by the functions
outside these two classes, A class can now usge all the three visibility modes as illustrated
below:

class alpha
{
private: /f optional

Py /f visible to member functions

Inheritance: Extending Classes €211

“urie J[within its closs
protected:
[/ visible to member functions
. [f of its own ond derived closs
public:
ceeas [/ visible to oll functions
- [/ in the program

ks

When a protected member is inherited in publie mode, it becomes protected in the
derived class too and therefore is accessible by the member functions of the derived class. It
is also ready for further inheritance. A protected member, inherited in the private mode
derivation, becomes private in the derived class. Although it is available to the member
functions of the derived class, it is not available for further inheritance (since private
members cannot be inherited). Figure 8.4 iz the pictorial representation for the two levels
of derivation.

Mot inheritable X . X, Mot inharitable

. class D1 : public B class D2 : private B

| | Private | _ i Private s

' | Protected | i Protected
—_— . j

. | - Public) : Public |

class X : public D1 : protected D2

|
| Private i
J

Protectad

Public

212e Object-Oriented Programming with C++

The keywords private, protected, and public may appear in any order and any number
of times in the declaration of a class. For example,

class beta

protected:

LN O I

rrrrr

is a valid class definition.
However, the normal practice is to use them as follows:
class beta

cenas {f private by default

It is also possible to inherit a base class in protected mode (known as profected derivation).
In protected derivation, both the public and protected members of the base class become
protected members of the derived class. Table 8.1 summarizes how the visibility of base
class members undergoes modifications in all the three types of derivation.

Now let us review the access control to the private and protected members of a class.
What are the various functions that can have access to these members? They could be:

1. A function that is a friend of the class.
2. A member function of a class that is a friend of the class,
3. A member function of a derived class.

While the friend functions and the member functions of a friend class can have direct
access to both the private and protected data, the member funetions of a derived class can
directly access only the protected data. However, they can access the private data through
the member functions of the base class. Figure B.5 illustrates how the access control

Copyrighted material

Inheritance: Extending Classes @213

mechanism works in various situations. A simplified view of access control to the members
of a class iz shown in Fig. 8.6.

Table 8.1 Visibility of inherited members

Derived class visibility
Base class visibility Public Private Protected
derivaiion derivation derivaiion
Private —y Mot inherited i Not inherited Mot inherited
Protected — Protected Private Protected
Public —— Public Private Protected
class X
friend class Y
class ¥
. private

i LU e - data [ropemomes o s

i e e ’

I -~ protected " o=

E ity data -..—‘-:- S [

* L

P NN |

: ! R y friend of X

I 1 rd E L]

! i 5 . i %

[} : |'I "'\- ""

: I class Z § . K i

I 1 ! 1\. 5

: _I_L_] .-": ll"'\- k"'

1 L ._.d [[

: - !

: . function 1

i friend of X

[EE 1

Inharited from X

Fig. 8.5 < Access mechanism in classes

IB.E Multilevel Inheritance

It is not uncommon that a class is derived from another derived class as shown in Fig. 8.7.
The class A serves as a base class for the derived class B, which in turn serves as a base
class for the derived class C. The class B iz known as intermediate base class since it provides
a link for the inheritance between A and C. The chain ABC is known as inheritance path.

2140 Object-Oriented Programming with C++

All users

derived class —— own member functions
member and friendly functions
functions and classes

Fig. B6 <= A simple view of access control to the members of a class]

Base class A I Grandfathar

Intermiediale
base class B Father
N
[)
Derived ciass | c Child
e 1

Fig. 8.7 « Multilevel inheritance

- A derived class with multilevel inheritance is declared as follows:

class Af..... | B /! Base class
class B: public A {.....}; // B derived from A
class C: public B {.....}; /€ derived from B

This process can be extended to any number of levels.

Let us consider a simple example. Assume that the test results of a bateh of students are
stored in three different classes. Class student stores the roll-number, class test stores the
marks obtained in two subjects and class result contains the total marks obtained in the
test. The class result can inherit the details of the marks obtained in the test and the roll-
number of students through multilevel inheritance. Example:

Inhentance; Extending Classes _ *215

class student
1
protected:
int roll_number;
public:
void get number{int);
void put_number{void);

Qnid student :: get_number(int a) -
[

L]

|
void student :: put_number()
{

b

roll_number = a;

cout << "Roll Mumber: " << roll number << "\n";

class test : public student {/ First level derivation
{
protected:
float subl;
float subZ;
public:
void get marks({float, float);
void put marks(void);

bs
void test :: get marks(float x, float y)
(
subl = x;
subd = y;
;
void test :: put_marks()
{
cout =< "Marks in SUBl = " <= subl =< "\n";
cout =< *"Marks in SUB2 = " << sub? =< "\n";
} .
class result : public test /f Second level derivation
{
float total; /! private by defoult
public:

void display(void);
[

The class result, after inheritance from ‘grandfather’ through ‘father’, would contain the
following members:

Copyrighted material

2168 Ohject-Oriented Programming with C++

private:
float total; J/{ own member
protected:
int roll_number; // inherited from student vio test
float subl; J inherited from test
float sub2; /i inherited from test
public:
void get_number(int); // from student vig test
void put number(void); /{ from student vig test
void get marks(float, float); /! from test
void put_marks(void); [from test
void display(void); // own member

The inherited functions put_number() and put_marks() can be used in the definition
of display() function:

void result :: display(void)

{
total = subl + sub2;
put_number() ;
put_marks(};
cout << "Total = " << total =< "\n";

)
Here iz a simple main() program:

int main()

result studentl; // student]l created
studentl.get number(111);

studentl.get marks(75.0, 59.5):

studentl.display();

return 0f

}
This will display the result of studentl. The complete program is shown in Program 8.3,

MULTILEVEL INHERITAWCE

#include <iostream=
using namespace std;

class student
(Contd)

Copyrighted maierial

Inheritance: Extending Classes *217

{
protected:
int roll_number;
public: .
void get_number{int);
void put number(void);
Vs

void student :: get number(int a)

{
}

void student :: put_number()

[
}

class test : public student [First level derivation
{
protected:
float subl;
float sub2;
public:
void get marks(float, float);
void put_marks(void);

rell number = a;

cout << "Roll Number: " << roll_number << "\n®;

B

void test :: get marks(float x, float y)

i -
subl = x;

sub2 = y; i
| -

void test :: put marks()

{
cout << "Marks in SUB1 = " << subl << "\n";
cout <= "Marks in SUBZ = " << subZ << "\n":

}

class result : public test J/ Second level derivation
{
float total; /f private by defoult
public:

} void display(void);
void result :: display(void)

{Contd)

Copyrighted material

218 Ohject-Oriented Programming with Ces

total = subl + sub2;

put_number() ;

put_marks();

cout =< "Total = * << total =< "\n";

|
int main()
result studentl; [/ studentl] created

studentl.get number(111);
studentl.get marks(75.0, 59.5);

studentl.display();

return 0;

Program 8.3 displays the following output:

Roll Mumber: 111
Marks in SUBl1 = 75
Marks in SUBZ = 539.5
Total = 134.5

IB.E Multiple Inheritance

PROGRAM 8.3

A class can inherit the attributes of two or more classes as shown in Fig. 8.8, This is known
as multiple inheritance, Multiple inheritance allows us to combine the features of several
existing classes as a starting point for defining new classes. It is like a child inheriting the

physical features of one parent and the intelligence of another.

B-1 B-2 B-n

Fig. 8.8 «= Multiple inheritance

Inheritance: Extending Classes 0219

The syntax of a derived class with multiple base classes is as follows:

class D: visibility B-1, visibility B-2 ...
!

+se0+(Body of D)

where, visibility may be either public or private. The base classes are separated by commas.
Example:

class P : public M, public N

{
public:
void display(void);

i
Classes M and N have been specified as follows:

class M
{

protected:
int m;
public:
void get m{int):
H
vold M :: get m(int x)
{

|

class N
[
protected:
int n;’
public:
void get _n(int);

m = X3

bi
void N :: get_n(int y)

[

220@ Object-Oriented Programming with C++
n=y:

The derived class P, as declared above, would, in effect, contain all the members of M and
N in addition to its own members as shown below:

class P
I -
protected:
int m; f! from M
int n; [/ from N
public:
void get m(int); J/ from M
void get_n(int); // from N
void display(veid); /| own member

H
The member funetion display() can be defined as follows:

void P :: display(void)

{
cout << "m = * << m << "\pn*;
cout =< "p = " == p =< "yp".
cout =< "m*n =" =< m*n << "\n";:

H

The main{) function which provides the user-interface may be written as follows:

main()

{
Pp:
p.get_m(10);
p.get_n(20);
p.display();

]

Program 8.4 shows the entire code illustrating how all the three classes are implemented
in multiple inheritance mode.

Inheritance: Extending Classes 2221

MULTIPLE INHERITANCE

#include <iostreams
using namespace std;

class M

{
protected:

int m;
public:

class N
{
protected:
int n;
public:
void get n(int);
H

class P : public M, public N
{
public:

void display(void);

void get m{int);

b

void M :: get_m{int x)
{

m= X3 -
|
void N :: get n(int y)
{ -
n =¥
}
void P :: display(void)
{
cout << "m = " << g << "\n";
cout == "p = " << g << "\p";
cout == "m*n = " << m*n << "\n";
)
int main()

{
(Contd)

2228 Object-Oriented Programming with C++

P p:

p.get m(10);
p.get_n{20);
p.display();

return 0;

PROGRAM .4

The output of Program 8.4 would be:

m= 10
n=20
m*n = 200

Ambiguity Resolution in Inheritance

Occasionally, we may face a problem in using the multiple inheritance, when a funetion
with the same name appears in more than one base class. Consider the following two classes.

class M

{
public:

void display(void)
{

cout =< "Class Min";

}:
class N
{
public:
void display(void)
i
cout == "Class Nvn";
)
H

Which display() function is used by the derived class when we inherit these two classes?
We can solve this problem by defining a named instance within the derived class, using.the
class resolution operator with the function as shown below:

class P : public M, public N

Inheritance: Extending Classes €223
4

public:
void display(void) // overrides display() of MW and N
{
M :: display();
}

B
We ean now use the derived class as follows:

int main()
{
Fops
| p.display();

Ambiguity may also arise in single inheritance applications. For instance, consider the
following situation:

class A

{
public:
void display()
{

cout << "A\n";
}
I
class B : public A

{
public;

void display()
{

}

cout =< "B\n";
bs

In this case, the function in the derived class overrides the inherited function and,
therefore, a simple call to display() by B type object will invoke function defined in B only.

However, we may invoke the function defined in A by using the scope resolution operator to
specify the class.

Example:

int main()
{

2240 Object-Oriented Programming with C++

B b; Jf derived class object
b.display(); /{ invokes display() in B
b.A::display(); [/ invokes display() in A
b.B::display(); [/ invokes display() in B
return 0

I
This will produce the following output:

B
A
B

IB.T Hierarchical Inheritance

We have discussed so far how inheritance can be used to modify a class when it did not
satisfy the requirements of a particular problem on hand. Additional memberz are added
through inheritance to extend the capabilities of a class. Another interesting application of
inheritance is to use it as a support to the hierarchical design of a program. Many
programming problems can be cast into a hierarchy where certain features of one level are
ghared by many others below that level.

As an example, Fig. 8.9 shows a hierarchical elassification of students in a university.
Another example could be the classification of accounts in a eommercial bank as shown in
Fig. 8.10. All the students have certain things in common and, similarly, all the accounts
possess certain common features.

Sudenlts
R LR
¢ ,
x,-"
e |
. — + . € 0
Arts - : Enginearing | Medical
| - - | L
P I B N
Mech. Elac. Clwll

Fig- 8.9 & Hierarchical classification of students I

Copyrighted material

At

Savings account

e

Inheritance: Extending Classes

Mediurm-berm.

Long-term

Fig. 8.10 <> Classification of hank accounts

In C++, such problems can be easily converted into class hierarchies. The base class will
include all the features that are common to the subelasses. A subclass can be constructed by
inheriting the properties of the base class, A subclass can serve as a base class for the lower

level elasses and so on.

8.8 Hybrid Inheritance

There could be situations
where we need to apply two
or more types of inheritance
to design a program. For
ingtance, consider the case of
pracessing the student
results diseussed in Sec. 8.5.
Agsume that we have to give
weightage for sports before
finahising the results. The
weightage for sports is stored
in a separate class called
sports. The new irheritance
relationship between the
various classes would be as
shown in Fig. 8.11.

I

+

[= |

T

7

b
b
L]

Fig. 8.11 = Multilevel, multiple inheritance '

226% Ohject-Oriented Programming with C++

The sports class might look like:

class sports

{

protected:
float score;

public:
void get_score(float);
void put_score(void);

HE

The result will have both the multilevel and multiple inheritances and its declaration
would be as follows:

class result : public test, public sports

Where test itself is a derived class from student. That is
class test : public student

Program 8.5 illustrates the implementation of both multilevel and multiple inheritance.

HYBRID INHERITANCE

finclude <iostream
using namespace std; N

class student

{

protected:
int roll_number;
public:
void get_number{int a)
1

rol]_number = a;
(Contd)

Copyrighted material

|

void put_number(void)

I

Inheritance: Extending Classes

€227

cout =< "Roll No: " << roll_number << *\n";

!
}3

class test : public student

protected:
float partl, part2;
public:
void get_marks(float x, float y)
{
partl = x; part2 = y;
1
void put marks(void)
{

cout << “"Marks obtained: " << -"\n"
<< "Partl = " << partl =< "\p"
<< "Part? = " << part? =< "\n";

1
}3
class sports
{
protected:
float score;
public:
void get_score(float s)
{
score = 5;
)
void put_score(void)
{
cout == "Sports wt:
)
F

class result : public test, public sports
{
float total;
public:
void display(void);

" << score =< "\n\n";

(Contd)

Copyrighted material

228% Object-Oriented Programming with C++

H

void result :: display(void)
]

total = partl + part2 + score;

put_number();
put marks();
put_scorel);

cout << "Total Score: " =< total << "\n";

]

int main()

I
result student 1;
student 1.get number{1234);
student 1.get marks(27.5, 33.0);
student 1.get score(6.0);
student _1.display(};

return 0;

PROGRAM B.5

Here is the output of Program 8.5:

Roll No: 1234
Marks obtained:
Partl = 27.5
Part? = 33
Sports wt: 6

Total Score: B6.5

IE.S‘ Virtual Base Classes

We have just discussed a situation which would require the use of both the multiple and
multilevel inheritance. Consider a situation where all the three kinds of inheritance, namely,
multilevel, multiple and hierarchical inheritance, are involved. This is illustrated in
Fig. 8.12. The ‘child’ has two direct base classes ‘parentl’ and ‘parent2’ which themselves
have a common base class ‘grandparent’. The ‘child' inherits the traits of ‘grandparent’ via
two separate paths. It can also inherit directly as shown by the broken line. The ‘grandparent’
is sometimes referred to as indirect base class.

Inheritance: Extending Classes 2229

(Grandparent

i
- Child

Fig. 8.12 - e Multipath inhertitance

Inheritance by the ‘child’ as shown in Fig. 8.12 might pose some problems. All the public
and protected members of ‘grandparent’ are inherited into ‘child’ twice, first via ‘parentl’
and again via ‘parent2’, This means, ‘child’ would have duplicate sets of the members inherited
from ‘grandparent’. This introduces ambiguity and should be avoided.

The duplication of inherited members due to these multiple paths can be avoided by
making the common base class (ancestor class) as virfual base class while declaring the
direct or intermediate base classes as shown below:

class A /{ grandparent
{

}!

class Bl : virtual public A /! parentl

{

I
class B2 : public virtual A /! parentZ
{

EER NI

. ceeas
class C : public Bl, public B2 // child

{
/[only one copy of A
J/ will be inherited

When a class is made a virtual base class, C++ takes necessary care to see that only one
copy of that class is inherited, regardless of how many inheritance paths exist between the
virtual base class and a derived class,

230® Ohject-Oriented Programming with O+

For example, consider again the student

rnote results processing system discussed in Sec. 8.8.
The keywords virtual and public | Assume that the class sports derives the
may be used in either order. roll_number from the class student. Then, the
inheritance relationship will be as shown in
Fig. 8.13.
Shucieni
As virtual basae class As virtual base class
best Sports
result

Fig 813 < Virtual hase class

A program to implement the concept of virtual base class is illustrated in Program 8.6.

VIRTUAL BASE CLASS

f#include =iostream=

using namespace std;

class student
B .
protected:
int roll_nwember;
publie:
void get_number(int a)
.["

(Contd)

Inheritance: Extending Classes

roll_number = a;

)
void put_number(void)

{
}

cout =< "Roll No: " << roll number << *\n";

class test : virtual public student

protected:
float partl, part2;
public:
void get marks(float x, float y)
{
partl = x; part2 = y;:
}
void put_marks(void)
{
cout =< "Marks obtained: " << "\n"
<< "Part]l = " << partl << "\n"
<< "Part? = " << part? =< "\n";
1
F
class sports : public virtual student
{
protected:
float score;
public:

void get_score(float s)

score = §;
}
yoid put score(void)
| -

cout == “Sports wt: * =< score =< "\n\n";
}
bi

class result : public test, public sports
i
float total;

public:
void display(void);
|

®231

(Cantd)

Copyrighted material

2320 Object-Oriented Programmung with C++

}rnid result ;: display(void)
total = partl + part2 + score;

put_number();
put_marks():
put_score();

cout =< “"Total Score: " =< total =< "\n";

int main()

i
result student_1;
student 1.get number({678);
student 1.get marks(30.5, 25.5);
student l.get score(7.0);
student_1.display();

return 0;
'

PROGRAM 8.8

The output of Program 8.6 would be

Roll No: 678
Marks obtained:
Partl = 30.5
Part? = 25.5
Sport wt: 7

Total Score: 63

Iﬂ.lﬂ Abstract Classes

An abstract class is one that is not used to create objects. An abstract class is dEﬁigne-d only
to act as a base class (to be inherited by other classes). It is a design concept in program
development and provides a base upon which other classes may be built. In the previous
example, the student class is an abstract class since it was not used to create any objects.

Iﬂ.ll Constructors in Derived Classes

As we know, the constructors play an important role in initializing objects. We did not use
them earlier in the derived classes for the sake of simplicity. One important thing to note

Inheritance: Extending Classes 233

here is that, as long as no base class constructor takes any arguments, the derived class
need not have a constructor funection. However, if any base class contains a constructor with
one or more arguments, then it is mandatory for the derived class to have a constructor and
pass the arguments to the base class constructors. Remember, while applying inheritance
we usually create objects using the derived class. Thus, it makes sense for the derived class
to pass arguments to the base class constructor. When both the derived and base classes
contain constructors, the base constructor is executed first and then the constructor in the
derived class is executed.

In case of multiple inheritance, the base classes are constructed in the order in which
they appear in the declaration of the derived class. Similarly, in a multilevel inheritance,
the constructors will be executed in the order of inheritance.

Since the derived class takes the responsibility of supplying initial values to its base
classes, we supply the initial values that are required by all the classes together, when a
derived class object is declared. How are they passed to the base class constructors so that
they can do their job? C++ supports a special argument passing mechanism for such
situations.

The constructor of the derived class receives the entire list of values as its arguments and
paszes them on to the base constructors in the order in which they are declared in the
derived class. The base constructors are called and executed before executing the statements
in the body of the derived constructor.

The general form of defining a derived constructor is:

Derived-constructor (Arglistl, Arglist2, ... ArglistN, Arglist(D)

basel (arglistl), .J
base? (arglist2),

EERXR]

baseN(arglistN), arguments for base(N)

Body of derived constructor-= —

}

The header line of derived-constructor function contains two parts separated by a coloni(:),
The first part provides the declaration of the arguments that are passed to the derived-
consiructor and the second part listz the function calls to the base constructors.

baze Ifarglistl), bose2(arglist2) ... are function calls to base constructors basel(), base2(),
... and therefore arglistl, arglist2, ... etc. represent the actual parameters that are passed
to the base constructors. Arglist] through ArglistN are the argument declarations for base
constructors basel through baseN. ArglistD provides the parameters that are necessary to
initialize the members of the derived class.

234 e Object-Oriented Programming with C++

Example:

D{int al, int a2, float bl, float b2, int d1):
Alal, a?), J/* call to constructor A */
B(bl, b2) /* call to constructor B */

{

b

d = dl; [executes its own body

Alal, a2) invokes the base constructor A() and B(b1, b2) invokes another base constructor
B{). The constructor D{) supplies the values for these four arguments. In addition, it has

one argument of its own, The constructor D) has a total of five arguments. IM) may be
invoked as follows:

These values are assigned to various parameters by the constructor Di() as follows:

] — s al
12 —s a2
2.5 —s Bl

7.54 — b2
30 — dl
The conzstructors for virtual base classes are invoked before any non-virtual base classes.
If there are multiple virtual base classes, they are invoked in the order in which they are
declared. Any non-virtual bases are then constructed before the derived class constructor is
executed, See Table 8.2

Table B.2 Execution of base class constructors
Method of inheritance Order of execution

Class B: public A Al) ; base constructor

| Bi) ; derived constructor
H

class A : public B, public C Bi) ; base{first)

{ Ci) ; baselsecond)
I; Al) ; derived

class A : public B, virtual public C Ci) ; virtual base

i B) ; ordinary base

k Al) ; derived

Inheritance; Extending Classes €235

Program 8.7 illustrates how constructors are implemented when the classes are inherited.

CONSTRUCTORS IN DERIVED CLASS

#include <iostream>
using namespace std; .

class alpha
{
int x; .
public:
alpha(int i)
{
X = iz
cout =< "alpha initialized \n";
1
void show x(void)
[cout << *x = * << x << "\n%; }

F "

class beta
{
float y;
public:
beta(float j)
{
¥ = J;
cout =< "beta initialized \n";
}
void show y(void)
| cout << "y = ® << y << *\pn"; }

H
class gamma: public beta, public alpha
{
int m, n;
public:

gamma(int a, float b, int ¢, int d):
alpha(a), beta(b)
{

m= C:
n = d;
cout << "gamma initialized \n";

(Comtd)

Copyrighted material

236® Ohbject-Oriented Programming with Ce+

void show mn{void)

{
cout <= "m = " << '@m =< "\n"
cc "pom M ose plwe "'|.r|.i.
i
Is

int main{)
{
gamma g{5, 10.75, 20, 30);
cout =< "\n";
g.show x();
g.show ¥();
g.show mn(};

return 03

PROGRAM 8.7

The output of Program B.7 would be:

beta initialized
alpha initialized
gamma initialized

5
10.75
20

30

=T

riode

beta is initialized first, although it appears second in the derived constructor. This is
because it has been declared first in the derived class header line. Also, note that alphaia)
and beta(b) are function calls. Therefore, the parameters should not include types.

C++ supports another method of initializing the class objects. This method uses what is
known as initialization list in the constructor function. This takes the following form:

constructor (aorglist) : intielizotion-section

II
b

assignment-section

The assignmeni-section is nothing but the body of the constructor function and is used to
assign initial values to its data members. The part immediately following the colon is known

Inheritance: Extending Classes 2237

as the initialization section. We can use this section to provide initial values to the base
constructors and also to initialize its own class members. This means that we can use either
of the sections to initialize the data members of the constructors class. The initialization
section basically contains a list of initializations separated by commas. This list is Im:rwn as
initialization list. Consider a simple example:

class XYZ
{
int a:
int b;
publics
X¥Z(int 1, int j) : a(i), b(2 * §) { }
s

main()

{
}

This program will initialize a to 2 and b to 6. Note how the data members are initialized,
just by using the variable name followed by the initialization value enclozsed in the parenthesis
(like a function call). Any of the parameters of the argument list may be used as the
initialization value and the items in the list may be in any order. For example, the constructor
XYZ may also be written as:

XYZ x(2, 3);

XYZ(int i, int 3) & b(i), a{i + 3) { }

In this case, a will be initialized to 5 and b to 2. Remember, the data members are initialized
in the order of declaration, independent of the order in the initialization list. This enables us
to have statements such as

XYZ(int 1, int 3) : a(i), bla * 3) { |

Here a1z initialized to 2 and b to 6. REemember, a which has been declared first is imtialized
first and then its value is used to initialize b. However, the following will not work:

X¥Z{int i, int j) : b(i), a(b * j) { }
because the value of b is not available to a which is to be initialized first.
The following statements are also valid:

XYZ(int 1, int j) : a{i) {b = j;}
XYZ(int i, int J) { a = i; b = j;}

238 Ohject-Oriented Programming with C++

We can omit either section, if it iz not needed. Program 8.8 illustrates the use of

initialization lists in the base and derived constructors.

INITIALTZATION LIST IN CONSTRUCTORS

Finclude =iostream>
using namespace std;

class alpha

{
int x;
public:
alpha(int 1)
{
Xx=1;
cout << -"\n alpha constructed";
l
void show_alpha(void)
{
cout << ® x = " @< x << "\n";
}
}s
class beta
{
float p, q:
public:
beta{float a, float b): pla), qlbep)
{
cout << "\n beta constructed";
}
void show beta(void)
{
cout << " p =" =< p << “\n";
cout =< " g = " <= g =< "\n";
I
iH
class gamma : public beta, public alpha
{
int w,v;
public:

(et}

Inheritance: Extending Classes ®239

gamma(int a, int b, float c):
alpha(a*2), beta(c,c), ufa)
[v = b; cout =< "\n gamma constructed™; |}

void show gamma(void)

cout == " g
cout == " y

}

Boee y =< "\n";
= ==y =< ||'|||nu‘il

1:

int main()

{
gamma g2, 4, 2.5);

cout =< "\n\n Display member values " << "\n\n";
g.show_alpha();
g.show beta();

g.show_gamma();

return 0;

PROGRAM 8.8

The output of Program 8.8 would be:

beta constructed
alpha constructed
gamma constructed

Display member values

o O 0T m
oW om M
B3 A P B

st

The argument list of the derived constructor gamma contains only three parameters a,
b and e which are used to initialize the five data members contained in all the three
classes.

Copyrighted material

2408 Object-Oriented Programming with C++

IH.IE Member Classes: Nesting of Classes

Inheritance is the mechanism of deriving certain properties of one class inte another. We
have seen in detail how this is implemented using the concept of derived classes. C++ supports
vet another way of inheriting properties of one class into another. This approach takes a
view that an object can be a collection of many other oljects. That is, a class can contain
ohjects of other classes azs its members as shown below:

class alpha {....};

class beta {....};

class gamma

{
alpha a; /f a is an object of alpha class
beta b; /b is an object of beto class

All objects of gamma class will contain the objects a and b. This kind of relationship i=s
called containership or nesting. Creation of an object that contains anether object is very
different than the creation of an independent object. An independent object is created by its
constructor when it is declared with arguments. On the other hand, a nested object is created
in two stages. First, the member objects are created using their respective eonstructors and
then the other ‘ordinary' members are created. This means, constructors of all the member

ohjects should be called before its own constructor body is executed. This is accomplished
using an initialization list in the constructor of the nested class.
Example:

class gamma

alpha a; [a is object of alpha
beta b; [/ b is object of beto
public:

gamma(arglist): afarglistl), b(arglist2)
{
[constructor body
i
ks

arglist is the list of arguments that is to be supplied when a gamma object is defined. These
parameters are used for initializing the members of gamma. arglistl is the argument list

Inheritance: Extending Classes *241

for the constructor of a and arglist2 is the argument list for the constructor of b. arglisi]
and arglist2 may or may not use the arguments from arglisi. Remember, alarglist]) and
biarglist2) are function calls and therefore the arguments do not contain the data types.
They are simply variables or constants.

Example:
gamma({int %, int y, fleat z) : a(x), bix,z)
{
Assignment section(for ordinary other members)
1

We can use as many member objects as are required in a class. For each member ohject
we add a constructor call in the initializer list. The constructors of the member objects are
called in the order in which they are declared in the nested class.

~— —

% The mechanism of deriving a new class from an old clas= is called inheritance. Inheritance
provides the concept of reusability. The C++ classes can be reused using inheritance.

SUMMARY

&» 'The derived class inherits some or all of the properties of the base clasa.

4 A derived class with only one base class is called single inheritance.

4 A class can inherit properties from more than one class which is known as multiple
inheritance. ,

& A class can be derived from another derived class which is known as multilevel
inheritance.

4» When the properties of one class are inherited by more than one class, it is called
hierarchical inheritance.

& A private member of a class cannot be inherited either in public mode or in private
mode. _

& A protected member inherited in public mede becomes protected, whereas inherited in
private mode becomes private in the derived clazs.

4 A public member inherited in public mode becomes public, whereas inherited in private
mode becomes private in the derived class.

< The friend functions and the member functions of a friend class can directly access the

private and protected data.

Copyrighted material

242 e

=

I

Ohject-Orfented Programming woith O+

The member functions of a derived class can directly access only the protected and
public data. However, they can access the private data through the member functions
of the basze class.

Multipath inheritance may lead to duplication of inherited members from a ‘grandparent’
base class. This may be avoided by making the common base class a virtual base elass.

In multiple inheritance, the base classes are constructed in the order in which they
appear in the declaration of the derived class.

In multilevel inheritance, the constructors are executed in the order of inheritance.
A elass can contain objects of other classes. This is known as containership or nesting,

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYYYY

ahstract class
access control
access mechani=m
ancestor class
aggignment section
bhase class

base constructor
child class
common hase class
containership
derivation

derived class
derived constructor
direct base class
dot operator
duplicate members
father class

friend
grandfather class
grandparent class
hierarchical inheritance
hybrid inheritance
indirect base class

inheritance

Key Terms

¥ ¥ ¥ ¥ ¥ Y Y ¥ ¥ ¥y Y Yy ¥y Yy Y Yy Yy Yy Y Y Y VY¥YY¥YY

inheritance path
initialization list
initialization section
intermediate base
member clagses
multilevel inheritance
multiple inheritance
nesting

private

private derivation
private members
privately derived
protected
protected members
public

public derivation
public members
publicly derived
reusability

single inheritance
subclass

virtual base class
visibility mode

vizibility modifier

Inheritance: Extending Classes €243

Review Questions

8.1 What does inheritance mean in C++F7
B.2 What are the different forms of inheritance? Give an example for each.
8.3 Describe the syntax of the single inheritance in C++.

8.4 We know that a private member of a base class is not inheritable. Is it anyway
possible for the objects of a derived class to access the private members of the base

class? If yes, how? Remember, the base class cannot be modified.
8.5 How do the properties of the following two derived classes differ?
la} class DI: private B(//...);
(b} elass D2: public B{//..};
8.6 When do we use the protected visibility specifier to a class member?
8.7 Describe the syntax of multiple inheritance. When do we use such an inheritance?
8.8 What are the implications of the following two definitions?
(a} class A: public B, public C{//...};
(b} class A: public C, public B{//....};
8.9 What is a virtual base class?
8.10 When do we make a class virtual?
8.11 What is an abstract class?
8.12 In what order are the class constructors called when a derived class object is
created?
8.13 Class D is derived from class B. The class D does not contain any data members
of its own. Does the class D require constructors? If yes, why?
8.14 What is containership? How does it differ from inheritance?
8.15 Describe how an object of a class that contains objects of other classes created?
B.16 Stafe whether the following statements are TRUE or FALSE:
ia) Inheritance helps in making a general class into a more specific class.
(b) Inheritance aids data hiding.

(e} One of the advantages of inheritance is that it provides a conceptual
framework.

(d) Inheritance facilitates the creation of class libraries.

(e) Defining a derived class requires some changes in the base class.

(f1 A base class is never used to create ohjects.

(g) It is legal to have an object of one class as a member of another class.

th) We can prevent the inheritance of all members of the base class by making
base class virtual in the definition of the derived class.

I?e'ﬁuggt;ig Exercises

8.1 Identify the error in the following program.

#finclude <iostream.h=

244 e Object-Oriented Programming with C++

class Student |
char® name;
int rollNumber;
private:
Student() {
name = "Alankay®;
rol1Number = 1025;
!
void setNumber(int no) |
rol 1Number = no;
!
int getRollNumber{) {
return rollNumber;
1
b

class AnualTest: Student |
int markl, markZ;
public:
AnualTest(int ml, int m2)
:markl(ml), markz(m2) {
|
int getRol1Number() |
return Student::getRol1Number();
1
B

void main()
{
AnualTest testl(92, 85);
cout =< testl.getRollNumber();
|
8.2 Identify the error in the following program.

#include =iostream.h>
class A
{
public:
A()
{

Copyrighted material

[nheritance: Extending Classes

cout << "A";

1
1
class B: public A
{
public:
B()
{
cout == "B%;
)
b
class C: public B
{
public
c{)
{
cout << "C";
1
¥
class D
{
public:
B()
{
cout =< "D%:
]
B
class E: public C, public D
{
public:
E()
{
cout << *D";
]
)4
class F: B, wvirtual E
{
public:
F()

®245

Copyrighted material

2468

8.3

8.4 Find errors in the following program. State reasons.

cout =< "F";

¥
void main()

(
F f;

Identify the error in the following program.

finclude <iostream.h>

class A
{
int 1;
H
class AB: wirtual A
i
int j;
B
class AC: A, ABAC
{
int k;

}i
class ABAC: AB, AC
{
int 13
1
yoid main()
{
ABAC abac;
cout << "sizeof ABAC:“ =< sizeof(abac);

|

/[Program test
fFinclude <iostream.h>

class X

Object-Onented Programming unth C++

Copyrighted material

{
private:
int xi;
protected:
int x2;
public:
int x3;
b
?1ass ¥: public X
public:
void ()
{
int yl,¥2,.v3;
¥l = x1;
¥y = x2;
¥y3 = x3;
¥
IH
class Z: X
{
publics
void f()
!
int z1,22,23;
zl = xl;
22 = N3
3 = 13z
}
maini}
{
int m,n,p;
LH
me= y,xl;
o= ¥.%23
po= ¥.ud;
Iz
m=z.xl;
n=z.x2;
p = Z.x3;
}

Inheritance: Extending Closses

Copyrighted material

248% Object-Oriented Programming with C++

8.5 Debug the following program. -

/[Test progrom
Finclude <=iostream.h=

class Bl

{
int bl;

public:
vold display();
{

}

cout =< bl =<"yn":
b3

class B2
!
int b2;
public:
void display():
{
cout =< bZ =<"\n";
)
IH
class D: public Bl, public B2

.
{
[nothing here
b
main{)
1
HI
d.display()
d.Bl::display();
d.B2::display();
i
Programming Exercises

8.1 Assume thof a bank maintoing fwo kinds of accounts for customers, one called as
savings account and the other as current account. The savings account prrmidg.q
compound interest and withdrawal facilities but no cheque book facility. The
current account provides chegue book facility but no interest. Current account
holders should also maintain a minimum balance and if the balance falls below
this level, a service charge is imposed.

Copyrighted material

Inheritance; Extending Classes & 249

Create a class account that stores customer name, account number and type of
account. From this derive the classes eur_acet and sav_acct to make them more
specific to their requirements. Include necessary member functions in order to
achieve the following tasks:

(a) Accept deposit from a customer and update the balance.

{(b) Display the balance.

(e} Compute and deposit interest.
(d) Permit withdrawal and update the balance.

(el Check for the minimum balance, impose penalty, necessary, and update the
balance.

Do not use any constructors, Use member functions to initialize the class members.

8.2 Modify the program of Exercise 8.1 to include constructors for all the three classes.

8.3 An educational institution wishes to maintain a database of its employees. The

dotabase iz divided into a number of classes whose hierarchical relationships are

shown in Fig. 8.14. The figure also shows the minimum information required for

each class. Specify all the classes and define functions to create the database and
retrieve individual information as and when required.

staff

code
name

—/’—’/

teachar | officer |
subject | : |
publication | tymst i grada I

spaed

regular casual

daily
wages

Fig. 814 <= Class relationships (for Exercise 8,19)

8.4 The database created in Exercise 8.3 does not include educational information of
the staff. It has been decided fo add this information to teachers and officers (and
not for typists) which will help the managemendt in decision making with regard
to training, promotion, etc. Add another data class called education that holds

Copyrighted material

8.5

5.6

BT

Object-Oriented Programming with C++

two preces of educational information, namely, highest gqualification in general
education and highest professional qualification. This class should be inherited
by the classes teacher and officer. Modify the program of Exercise 819 to
inearporale these additions.

Consider a class nefwork of Fig. 8.15. The closs master derives information from
both account and admin classes which in turn derive information from the class
person, Define all the four classes and write a program to create, update and
display the information contained in master objects.

person

FuATIES
coda

N

account admin

pay BxpaeTiance

e

Parson

name
code
axparience
ey

| .: inheritance (for Exercise 8.21) I

In Exercise 8.3, the classes teacher, officer, and typist are derived from the
class staff. As we know, we can use container classes in place of inherifance in
some situations. Redesign the program of Exercise 8.3 such that the classes
teacher, officer, and typist contain the objects of staff.

We have learned that OOP is well suited for designing simulation programs.
Lsing the technigues and tricks learned so far, design a program that would
simulate a simple real-world system familiar to vou.

Copyrighted material

Pointers, Virtual Functions
and Polymorphism

Key Concepts

Polymorphism
¥
Pointers
Pointers to objects
thig pointer
Pointers to derived classes

Virtual functions

¥YY ¥ ¥v¥YyV¥YYy

Pure svirtual function

9.1 Introduction

Polymorphism is one of the crucial features
of OOP. It simply means ‘one name,
multiple forms". We have already seen how
the concept of pelymorphism is
implemented using the overloaded
functions and operators. The overloaded
member functions are ‘selected’ for invoking
by matching arguments, both type and
number. This information is known to the
compiler at the compile time and, therefore,
compiler is able to select the appropriate
function for a particular call at the compile

- time itself. This is called early binding or

static binding or static linking. Also known

as compile time polymorphism, early binding simply means that an ohject iz bound to its

function call at compile time.

Now let us consider a situation where the function name and prototype is the same in
both the base and derived classes. For example, consider the following class definitions:

class A

{
int x:
publig:

252® Object-Oriented Programming with C++

void show() {....} J/ show(} In base closs
-
class B: public A
{
int y;
public:
void show() {....} [l show(}) in derived closs
|

How do we use the member function show() to print the values of ohjects of both the
classes A and B?. Since the prototype of show() is the same in both the places, the function
is not overloaded and therefore static binding does not apply. We have seen earlier that, in
such situations, we may use the class resolution operator to specify the class while invoking
the functions with the derived class ohjects. :

It would be nice if the appropriate member function could be selected while the program
is running. This is known as run time polymorphism. How could it happen? C++ supports a
mechanism known as virtual function to achieve run time polymorphism. Please refer
Fig. 9.1.

Polymorphism
."---.‘
__.-"' “"x,
~ -
i l— -
Compile time " Runtima 'ﬁ
' polymorphism . Polymomhism
™
"—\—|_,_.—-—""'-
- ‘H
- H“HH
O SN S 1
Funciion | ' Operator | Wirtual

overloading i | overloading | functions

Fig 9.1 = Achieving polymorphizm |

At run time, when it is known what class objects are under consideration, the appropriate
version of the function is invoked. Since the function is linked with a particular class much
later after the compilation, this process is termed as late binding. It is also known as dynamic
binding because the selection of the appropriate function is done dynamically at run time.

Dynamic binding is one of the powerful features of C++. This requires the use of pointers
to ohjects. We shall discuss in detail how the object pointers and virtual functions are used
to implement dynamic binding.

Pointers, Virtual Functions and Polymorphism # 253

9.2 Pointers

Pointers is one of the key aspects of C++ language similar to that of C. As we know, pointers
offer a unigue approach to handle data in C and C++. We have seen some of the applications
of pointers in Chapters 3 and 5. In this section, we shall discuss the rudiments of pointers
and the special usage of them in C++.

We know that a pointer is a derived data type that refers to another data variable by
storing the variable’s memory address rather than data. A pointer variable defines where to
get the value of a specific data variable instead of defining actual data.

Like C, a pointer variable can also refer to (or point to) another pointer in C++, However,
it often points to a data variable. Pointers provide an alternative approach to access other
data ohjects.

Declaring and Initializing Pointers

As discussed in Chapter 3, we can declare a pointer variable similar to other variables in
C++. Like C, the declaration is based on the data type of the variable it points to. The
declaration of a pointer variable takes the following form:

data-type *pointer-variable;

Here, pointer-variable is the name of the pointer, and the data-type refers to one of the
valid C++ data types, such as int, char, float, and so0 on. The data-type is followed by an
asterizk (*) symbol, which distinguishes a pointer variable from other variables to the
compiler.

rLoe

We can locate asterisk (*) immediately before the pointer variable, or between the data
type and the pointer variable, or immediately after the data type. It does not cause any
effect in the execution process.

As we know, a pointer variable can point to any type of data available in C++. However,
it is necessary to understand that a pointer is able to point to only one data type at the
specific time. Let us declare a pointer variable, which points to an integer variable, as follows:

int *ptr;

Here, ptr iz a pointer variable and points to an integer data type. The pointer variable,
ptr, should contain the memory location of any integer variable. In the same manner, we
can declare pointer variables for other data types also.

254 @ Object-Oriented Programming with C++

Like other programming languages, a variable must be initialized before using it in a
C++ program. We can initialize a pointer variable as follows:

int *ptr, a; // declaration
ptr=Ba; // initialization

The pointer variable, ptr, contains the address of the variable a. Like C, we use the
‘address of operator or reference operator i.e. ‘&’ to retrieve the address of a variable. The
second statement assigns the address of the variable a to the pointer ptr.

We can also declare a pointer variable to point to another pointer, similar to that of C,
That is, a pointer variable contains address of another pointer, Program 9.1 explains how to
refer to a pointer's address by using a pointer in a C++ program.

EXAMPLE OF USING POINTERS

Finclude <iostream.h=
Finclude =conio.h=

void main()

{

int a, *ptrl, **ptr?;

clrscr();

ptrl = fa;

ptre=Rptrl;

cout << "The address of a : ™ =< ptrl == "\n";
cout =< "The address of pirl :." =< piré;

cout =< "\n\n";

cout =< "After incrementing the address values:\n\n";

ptril+=2;

cout =<'""The address of '@’ " == ptrl € "\n";
ptri+=2;

cout << "The address of ptrl : " =< ptr2 << "\n";

)

PROGRAM 9.1

Copyrighted material

Pointers, Virtual Functions and Polymorphism # 255

The memory location is always addressed by the operating system. The output may vary
depends on the system. Output of Program 9.1 would look like:

The address of a : OxBfbGffT4
The address of ptrl: OxBfbefff2
After incrementing the address values:
The address of a : Ox8fbefffR
The address of a : DxBfbETTTE

We can also use void pointers, known as generic pointers, which refer to variables of any
data type. Before using void pointers, we must type cast the variables to the specific data
types that they point to. :

L E

The pointers, which are not initialized in a program, are called Null pointers. Pointers of
any data type can be assigned with one value i.e., 0° called null address.

Manipulation of Pointers

As diseussed earlier, we can manipulate a pointer with the indirection operator, Le. ',
which iz also known as dereference operator. With this operator, we can indirectly access
the data variable content. It takes the following general form:

| *pointer_variable |

As we know, dereferencing a pointer allows us to get the content of the memory location
that the pointer points to, After assigning address of the variable to a pointer, we may want
to change the content of the variable. Using the dereference operator, we can change the
contents of the memory location.

Let us consider an example that illustrates how to dereference a pointer variable. The
value associated with the memory address is divided by 2 using the dereference operator.
The division affects only the memory contents and not the memory address itself.
Program 9.2 illustrates the use of dereference operator in C++.

MANIPULATION OF POINTERS

finclude =iostream,h=
finclude =conio.h=

void main()
{Contd)

256® Object-Oriented Programming with C++

int a=1l}; “ptr;

ptr = &a;

clrscr();

cout << "The value of a is : " =< a:

cout <<= "\n\n";

*ptr=(*ptr)/2:

cout << "The value of a is ¢ N << {*ptr);
cout =< "Ynyn";

;

PROGRAM 9.2

Output of Program 9.2:

The value of a is : 10

The value of a is = §

CaLliorn

Before dereferencing a pointer, it is essential to assign a value to the peinter. If we attempt
to dereference an uninitialized pointer, it will cause runtime error by referring to any
other location in memory.

Pointer Expressions and Pointer Arithmetic

As discussed in Chapter 3, there are a substantial number of arithmetic operations that can
be performed with pointers. C++ allows pointers to perform the following arithmetic
operations:

® A pointer can be incremented (++) (or) decremented (— -)
® Any integer can be added to or subtracted from a pointer
#® Omne pointer can be subtracted from another

Example:

int a[6];
int *aptr;
aptr=Ra[0];

Obwviously, the pointer variable, aptre, refers to the base addreas of the variable a. We can
increment the pointer variable, shown as follows:

Copyrighted material

aptres for) +eaptr
ThmMuthmhﬂmmmm we can decrement
the pointer variable, as follows:
aptr—— {or) ——aptr

reen nﬂaﬁwﬂhmxfmpdﬁm-.
statement ﬁmhﬂmmm
*mﬂmﬁn the same array can be subtracted from each other.

cannot perform pointer arithmetic on variables which are not stored in contiguous
b locations. Program 9.3 M&mmmnmm
memory
with pointers,

Copyrighted material

cout<<"\nYalue of ptr+?
cout =< "\n";
ptr=ptr-1;

cout =<"\n¥alue of ptr-I:

cout =< "\n";

ptr+=3;

cout<=<"\n¥alue of ptre=3:

ptr-=2:
cout << "\n";

cout<<"\n¥alue of ptr-=2:

cout <= " Y\n":

getch();
i
Crutput of Program 9.3:
The array values are:
56
75
22
18
ag
Value of ptr : 56
¥alue of ptr++ @ 75
Value of ptr== : B&b
Value of ptr+2 1 22
Value of ptr-1 : 75
Value of ptr+=3 : G0
Value of ptr-=2 : 22

Using Pointers with Arrays and Strings

Object-Oriented Programming with Ces

R 1

PROGRAM 9.3

Pointer is one of the efficient tools to access elements of an array. Pointers are useful to
allocate arrays dynamically, i.e. we can decide the array size at run time. To achieve this,
we use the functions, namely malloe() and calloe(), which we already discussed in
Chapter 3. Accessing an array with peointers is simpler than accessing the array index.

In general, there are =ome differences between pointers and arrays; arrays refer to a
block of memory space, whereas pointers do not refer to any section of memory. The memory
addresses of arrays eannot be changed, whereas the content of the pointer variables, such

as the memory addresses that it refer to, can be changed.

Copyrighted material

Pointers, Virtual Functions and Polymorphism #259

Even though there are subtle differences between pointers and arrays, they have a strong
relationship between them.

fode

There iz no error checking of array bounds in C++. Suppose we declare an array of size
25. The compiler issues no warnings if we attempt to access 26th location. It is the
programmer’s task to check the array limits,

We can declare the pointers to arrays as follows:

int *nptr;
nptr=number[0];

nptr=number;

Here, nptr points to the first element of the integer array, number[0]. Also, consider the
following example:

float *fptr;
fptr=price[0];
Or

fptr=price;

Here, fptr points to the first element of the array of float, price(0]. Let us consider an
example of using pointers to access an array of numbers and sum up the even numbers of
the array. Initially, we accept the count as an input to know the number of inputs from the
user. We use pointer variable, ptr to access each element of the array. The inputs are checked
to identify the even numbers. Then the even numbers are added, and stored in the variable,
sum. If there is no even number in the array, the output will be 0. Program 9.4 illustrates

how to access the array contents using pointers.

POINTERS WITH ARRAYS

#include <jostream.h>

verid main)

{
int numbers{50], *ptr;
ntim;i;
cout =< "\nEnter the countin";
cin == n;

{Contd)

260 @ Dbject-Oriented Programming with C++

cout == "\nEnter the numbers one by onekn";

far{i=0zi<ns1++)

£in »= numbersiil;

/* Assigning the base address of numbers to ptr and ipitializing
the sum to O0*/

ptr = numbers;

int sum=0;

/* Check out for even inputs and sum up them*/
for{i=0gicnji++)

if (*ptri2==0) e
 sumsSumeeptry
ptire+;

}

cout =< "\n\nSum of even numbers: * << sum;

!
Cutput of Program 5.4:

PROGRAM 9.4

Enter the count

2

Enter the numbers one by one
10

16

23

45

34

Sum of even numbers: &0

Arrays of Pointers

Similar to other variables, we can create an array of pointers in C++. The array of pointers
represents a collection of addresses. By declaring array of pointers, we can save a substantial
amount of memory space.

An array of pointers point to an array of data items. Each element of the pointer array
points to an item of the data array. Data items can be accessed either directly or by
dereferencing the elements of pointer array. We can reorganize the pointer elements without
affecting the data items.

Copyrighted material

Pointers, Virtual Functions and Polymorphism ® 261
We can declare an array of pointers as follows:
int *inarray[10];

This statement declares an array of 10 pointers, each of which points to an integer. The
address of the first pointer is inarray|(0], and the second pointer is inarray(1], and the final
pointer points to inarray[9)]. Before initializing, they point to some unknown values in the
memory space. We can use the pointer variable to refer to some specific values. Program 8.5

explains the implementation of array of pointers.

(Contd)

Copyrighted material

262@ Object-Oriented Programming with C++

|

if{i==4)
cout =< "\m\nYour favorite " =< " not available here" << endl;
getch(};
!
PROGRAM 9.5
Crutput of Program %.5H:

Enter your favorite leisure pursuit: books

Your favorite pursuit is available here

Pointers and Strings

We have seen the usage of pointers with one dimensional array elements. However, pointers
are also efficient to access two dimensional and multi-dimensional arrays in C++. Thereis a
definite relationship between arrays and pointers. C++ also allows us to handle the special
kind of arrays, i.e. strings with pointers.

We know that a string i= one dimensional array of characters, which start with the index
0 and ends with the null character “\0" in C++. A pointer variable can access a string by
referring to its first character. As we know, there are two ways to assign a value to a string.
We can use the character array or variable of type char *. Let us consider the following
string declarations:
char num{]="one";

const char *numptr= "one";

The first declaration ereates an array of four characters, which contains the characters,
‘o0’ e’ A\, whereas the second declaration generates a pointer variable, which points to
the first character, i.e. ‘o’ of the string. There is numerous string handlirg functions available
in C++. All of these functions are available in the header file <estring.

Program 9.6 shows how to reverse a string using pointers and arrays.

ACCESSING STRINGS USING POINTERS AND ARRAYS

#include <iostream.h>
#include =<string.h=

void main()

(Contd)

Copyrighted material

Pointers, Virtual Functions and Polymorphism #263

char strf] = "Test";

int len .= strien(str);

for{int i=0; i<len; i++)

{
cout =< str[f] << 1[str] <= *{str+i) << *{{+str);

}

cout == endl;

J//5tring reverse

int lenM = len / 2;

len——;

for(f=0; i<lenM; 14+)

1
strfi] = strli] + strllen-i);
strilen~i] = str[i] - str[len-i];
strfi] = str[i] - strlen-1];

|

cout << " The string reversed : * << 8tr;

PROGRAM 9.6

Qutput of Program 9.6:

TTTTeeeasssstitt
The string reversed : tsel

Pointers to Functions

Even though pointers to functions (or function pointers) are introduced in C, they are widely
used in C++ for dynamie binding, and event-based applications. The concept of pointer to
function acts as a base for pointers to members, which we have discussed in Chapter 5.

The pointer to function is known as callback function. We can use these function pointers
to refer to a function. Using function pointers, we can allow a C++ program to select a
function dynamically at run time. We can also pass a function as an argument to another
function. Here, the function is passed as a pointer. The function pointers cannot be
dereferenced. C++ also allows us to compare two function pointers.

C++ provides two types of function pointers; function pointers that point to static member
functions and function pointers that point to non-static member functions. These two function
pointers are incompatible with each other. The funetion pointers that point to the non-static
member function requires hidden argument.

264 e Object-Oriented Programming with C++

Like other variables, we can declare a function pointer in C++. It takes the following form:

data_type(*function_name)(); 1

As we know, the data_tyvpe is any valid data types used in C++. The function_name is the
name of a function, which must be preceded by an asterisk (*). The function_name is any
valid name of the function.

Example:
int (*num function(int x));:

Remember that declaring a pointer only creates a pointer. It does not create actual function.
For this, we must define the task, which is to be performed by the function. The function
must have the same return type and arguments. Program 9.7 explains how to declare and
define function pointers in C++.

POINTERS TO FUMCTIONS

finciyde <iostream.h>
typedef void (*FunPtr){int, int);
vaid Add{int i, int j)

Egutﬁcﬁtd“a"etjcc'-r"-\:-\:'iaJ';

void Sobtract(int i, int j)

cout =5 | = e Mg jowx P2 F s i .

woid main{)

FunPtr ptr;

ptr = EAdd;
ptril,2);

cout << endl;
ptr =-ASubtract;
ptr(3.2);

PROGRAM 9.7

Copyrighted maierial

Pointers, Virtual Funetions and Polymorphism 9 265

Output of Program 9.7:

| 1+2=3
j=-2m=1

i |9+3 Pointers to Objects

We have already seen how to use pointers to access the class members. As stated earlier, a
pointer can point to an object created by a class. Consider the following statement:

item x;

where item is a class and x is an ohject defined to be of type item. Similarly we can define a
pointer it_ptr of tyvpe item as follows:

item *it_ptr;

Object pointers are useful in creating objects at run time. We can also use an object
pointer to access the public members of an object. Consider a class item defined as follows:

class item
{
int code;
float price;
public:

void getdata(int a, float b)
{

code = a;

price = b;

vold show(void)
{
cout =< "Code : " =< code =< "\n";
<< "Price; " =< price =< "\n\n";
}
|
Let us declare an item variable x and a pointer ptr to x as follows:

item x;
item *ptr = &x;

Copyrighted material

266® Object-Oriented Programming with C++

The pointer ptr is initialized with the address of x.

We can refer to the member functions of item in two ways, one by using the dot operator
and the object, and another by using the arrow operator and the object pointer. The statements

x.getdata(100,75.50) ;
x.show();

are equivalent to
ptr->getdata(100, 75.50);
ptr->show();
Since *pitr is an alias of x, we can also use the following method:
(*ptr).show();

The parentheses are necessary because the dot operator has higher precedence than the
indirection operator ¥,

We can also create the objects using pointers and new operator as follows:
item *ptr = new item;
This statement allocates enough memory for the data members in the object structure
and assigns the address of the memory space to ptr. Then ptr can be used to refer to the
members as shown below:

ptr == show();

If a clas= has a constructor with arguments and does not include an empty constructor,
then we must supply the arguments when the ohject is created.

We can also create an array of objects using pointers. For example, the statement
item *ptr = new item[10]; Jf array of 10 objects

creates memory space for an array of 10 objects of item. Remember, in such cases, if the
class contains constructors, it must also contain an empty constructor.

Program 9.8 illustrates the use of pointers to objects.

Copyrighted material

Copyrighted material

2688 ~ Object-Oriented Programming with C++

d->show();
d#+;

!

return 0;

PROGRAM 9.8

The output of Program 9.8 will be:

Input code and price for iteml 40 500
Input code and price for itemZ 50 600
Item:1

Code : 40

Price: 500

[tem:2

Code : 50

Price: B00

In Program 9.8 we created space dynamically for two objects of equal size. But this may
not be the case always. For example, the ohjects of a class that contain character strings
would not be of the same size. In such cases, we can define an array of pointers to ohjects
that can be used to access the individual objects. This iz illustrated in Program 9.9,

ARRAY OF POINTERS TO OBJECTS

¥include <iostream>
Finclude <cstrimg=

using namespace std;

class city
{
protected:
char *name;
int len:
public:
city()

{
len = 0;
name = new char[len+l]:
(Contd)

Copyrighted material

Pointers, Virtual Functions and Polymorphism 9269

}
void getname(void)
[
char *s;
5 = pnew char[30];

cout << "Enter city name:";
cin == 5

len = strlen(s); .
name = new char[len + 1];
strcpy(name, s);

I
void printname(void) .
[b
cout << name << "\n"; .
1
|F
int main()
city *eptr[10]; I array af 10 pu[ﬁ:erﬁ to cities
int.m = 1:
int option;
do
{
cptrln] = new city; [/ create new city
cptr[n] ->getname() ;
n-+ ! &
cout << "Do you want to anfer one more: name?tn':
cout << "(Enter 1 for yes 0 for no):"
cin == option;
)
while(option);
cout << "\n\n";
for(int i=1; f==ng $H4):0 0o T
{ b T i i] _,'.---'-I:h:':;-
cptr[i]-=printname(); s
I
. return 0;
} : :

Copyrighted material

270 ® Object-Oriented Programming twith Ce+

The output of Program 9.9 would be:

Enter city name:Hyderabad

Do you want to enter one more name?
(Enter 1 for yes 0 for no);l

Enter city name:Secunderabad

Do you want to enter one more name?
(Enter 1 for yes 0 for no):l

Enter city name:Malkajgiri

Do you want to enter one more name?
(Enter 1 for yes 0 for no);0

Hyderabad
Secunderabad
Malkajgiri

|9.4 this Pointer

C++ uses a unique keyword called this to represent an object that invokes a member function.
this is a pointer that points to the object for which this function was called. For example,
the function call A.max() will set the pointer this to the address of the object A. The starting
address is the same as the address of the first variable in the class structure.

This unigque pointer is automatically passed to a member function when it is called. The
pointer this acts as an implicit argument to all the member functions, Consider the following
simple example:

class ABC
{

int a;

FPw o ow

b
The private variable ‘a’ can be used directly inside a member function, like
a = 123;
We can also use the following statement to do the same job:
this->a = 1233
Since C++ permits the use of shorthand form a = 123, we have not been using the pointer

this explicitly so far. However, we have been implicitly using the pointer this when
overloading the operators using member function.

Pointers, Virfual Functions and Polymorphism #2271

Recall that, when a binary operator is overloaded using a member function, we pass only
one argument to the function, The other argument is implicitly passed using the pointer
this. One important application of the pointer this is to return the ohject it points to. For
example, the statement

return *this;
inside a member function will return the object that invoked the function. This statement
assumes importance when we want to compare two or more objects inside a member function
and return the invoking object as a result. Example:

person & person :: greater(person & x)

{
if x.age > age
return x; /! orgument object
else
return *this; [/ invoking object
;

Suppose we invoke this function by the call
max = A.greater(B);

The function will return the object B (argument object) if the age of the person B is
greater than that of A, otherwise, it will return the object A {invoking object) using the
pointer this. Remember, the dereference operator * produces the contents at the address
contained in the pointer. A complete program to illustrate the use of this is given.in

Program 9.10.

this POINTER

Finclude =iostream=
#include <cstring=

using namespace std;

class person
1
char name[20];
float age;
public:
person(char *s, float a)

{
(Contd)

The output of Program 9.10 would be:

Elder person is:
Name: Hebber
Age: 40.25
Elder persom is:
Mame: John

Age: 37.5

Pointers, Virtual Functions and Polymorphism 2273

l9.5 Pointers to Derived Classes

We can use pointers not only to the base objects but also to the objects of derived classes.
Pointers to objects of a base class are type-compatible with pointers to abjects of a derived
class. Therefore. a single printer variahle ran e made to prant o nhjects helanging tn different
classes. For example, if B is a base class and D is a derived class from B, then a pointer
declared as a pointer to B can also be a pointer to D). Consider the following declarations:

B *cptr; /! pointer to closs B type varioble
B b; [/ bose object

b d; /[derived object

cptr = &b; /{ cptr points to object b

We can make eptr to point to the object d as follows:
cptr = &d; // cptr points to object d
This is perfectly valid with C++ because d is an object derived from the class B.
However, there i2 a problem in using eptr to access the public members of the derived
class D. Using eptr, we can access only those members which are inherited from B and not
the members that originally belong to D. In case a member of D has the same name as one

of the members of B, then any reference to that member by eptr will always access the base
class member.

Although C++ permits a base pointer to point to any object derived from that base, the
pointer cannot be directly used to access all the members of the derived class. We may have
to use another pointer declared as pointer to the derived type.

Program 9.11 illustrates how pointers to a derived object are used.

#include =iostream-

using namespace std;

class BC
{
public:
int b;
void show()

* cout =< "h = " < p =< "".In";:.
HE
(Conid)

274 e Object-Oriented Programming iwith C++

class DC : public BC

{
public:
int d;
void show()
[cout << "b = * << b << *\n"
== "d = " =2 g =« "\n®:
i
bs
int main()
{
BC *bptr; // base pointer
BC base;
bptr = &base; /[base address
bptr->b = 100; /[occess BC vio bose pointer

cout =< "bptr points to base object \n";
bptr -> show();
J/ derived class

DL derived;
bptr = Ederived; // oddress of derived object
bptr -= b = 200; [/ occess DC via base polnter

J* bptr -> d = 300;%/ // won't work

cout <= "bptr now points to derived object \n";

bptr -= show(); /! bptr now points to derived object
/* accessing d using a pointer of type derived class DC */

DC *dptr; /[derived type pointer
dptr = Aderived;
dptr->d = 300;

cout =< ‘dptl‘ is derived type Fﬂ'll"lt-El"I'I.“Ii
dptr == show():

cout << "using ((DC *)bptr)\n";
((DC *)bptr) -> d = 400;
((DC *)bptr) -> show();

return 03

PROGRAM 9.11

Pointers, Virtual Funetions and Polymorphism 275

Program 9.11 produces the following output:

bptr points base aobject

b = 100

bptr now points to derived object
b = 200

dptr is derived type pointer

b = 200

d = 300

using {{OC *)}bptr)

b = Z00

d = 400

— e
We have used the statement

bptr == show();

two times. First, when bptr points to the base object, and second when bptr i= made to
point to the derived object. But, both the times, it executed BCushow() function and
digplayed the content of the base object. However, the statements

dptr -= show();
((DC *) bptr) == show(); /[cast bptr to DC type

display the contents of the derived ohject. This shows that, although a base pointer can
be made to point to any number of derived objects, it cannot directly access the members
Qieﬁnad by a derived class. .)

IELﬁ Virtual Functions

Az mentioned earlier, polymorphism refers to the property by which objects belonging to
different classes are able to respond to the same message, but in different forms. An essential
requirement of polymorphism is therefore the ability to refer to objects without any regard
to their classes. This necessitates the use of a single pointer variable to refer to the ohjects
of different classes. Hore, we use the pointer to base class to refer to all the derived objects.
But, we just discovered that a base pointer, even when it is made to contain the address of
a derived clazs, always executes the function in the base class. The compiler eimply ignores
the contents of the pointer and chooses the member function that matches the type of the
pointer. How do we then achieve polymorphism?. It is achieved using what is known as
“virtual’ functions.

Copyrighted material

276%

When we use the same function name in both the base and derived classes, the function
in base class is declared as virtual using the keyword virtual preceding its normal
declaration. When a funetion is made virtual, C++ determines which function to use at run
time based on the type of object pointed to by the base pointer, rather than the type of the
pointer. Thus, by making the hase pointer to point to different nbjects, we can execute

Ohject-Oriented Programming wath C++

different versions of the virtual fonction. Program 9,12 illustrates this point.

VIRTUAL FUNCTIONS

fFinclude =<jostream=

using namespace std;

class Base
{
public:
void display() {cout =< "\n Display base ";}
yirtual void show() {cout =< “\n show base®;}
I
class Derived : public Base
{
public:

I
I

void display() (cout << "\n Display derived";}

void show() {cout == "\n show derived"s)

int main()

{

Base B;
Derived D:
Base *bptr;

cout << *\n bptr points: to Base \n";

bptr = &B;
bptr -= display(); // calls Base version
bptr == show(): J[calls Base version

cout =< "\n\n bptr points to Derived\n";

bptr = &D;

bptr -= display(): . f/ calls Base version
bptr -> show(): /i calls Derived version
return 0;

PROGRAM 9.12

Pointers, Virtual Functions and Polymorphism 277

The output of Program 9.12 would be:
bptr points to Base

Display base
Show base

bptr points to Derived

Display base
Show derived

rnote

Fl"
When bptr is made to point to the object I, the statement

bptr -> display();

calls only the function associated with the Base (i.e. Base = display()}, whereas the
statement

bptr -= show();

calls the Derived version of show(). This is because the function display() has not
I'.'len-ua-lan. made virtual in the Base class. y

One important point to remember is that, we must access virtual functions through the
use of a pointer declared as a pointer to the base class. Why can't we use the object name
(with the dot operator) the same way as any other member function to call the virtual
functions?. We can, but remember, run time pelymorphism is achieved only when a virtual
function is accessed through a pointer to the base class.

Let us take an example where

virtual functions are imple- AT
mented in practice. Consider a T s
book shop which sells both books
and video-tapes. We can create a 2
class known as media that stores
the title and price of a publication. hook
We can then create two derived
classes, one for storing the num-
ber of pages in a book and another Fig. 92 <« The class hierarchy for the book shop '
for storing the playing time of a

tape. Figure 9.2 shows the class

hierarchy for the book shop.

tape

278® Object-Oriented Programming with C++

The classes are implemented in Program 9.13. A function displayi() iz used in all the
classes to display the class contents. Notice that the function display() has been declared
virtual in media, the base class.

In the main program we create a heterogeneous list of pointers of type media as shown
below:

media *1ist[2] = { &bookl, Atapel};

The base pointers list[0] and list[1] are initialized with the addresses of objects bookl
and tapel respectively.

RUNTIME POLYMORPHISH

fFinclude <iostream
#include <cstring>

using namespace std;

class media
{
protected:
char title[50]:
float price;
public:
media(char *s, float a)
{
strepy(title, s);
price = a;
)
virtual void display() { } // empty virtual function
I

class book: public media
{
int pages;
public: "
book (char *s, float a, int p):media(s,a)

|

i
vold displayl);

pages = p;

(Contd)

Copyrighted material

Pointers, Virtual Functions and Polymorphism

class tape :public media

{
float time;
public:
tape(char * s, float a, float t):media(s, a)

3

|
void display();

time = t;

void book :: display()

{
cout << "\n Title: " =< title;
cout << "\n Pages: " << pages;
cout << "\n Price: " << price;
}

vold tape :: display()

{
cout =< "\n Title: " =< title;
cout =< "\n play time: " << time << "mins";
cout << "\n price: " << price;

}

int main()

{
char * title = new char[30];
float price, time;
int pages;

// Book details

cout << "\n ENTER BOOK DETAILS\n";
cout =< " Title:"; cin == title;
cout =< " Price: "; cin »> price;
cout =< " Pages: "; cin >> pages;

book bookl(title, price, pages);

[/ Tape details

cout =< "\n ENTER TAPE DETAILS\n";

cout << " Title: "; cin>> title;

cout =< " Price: "; cin »> price;

cout << " Play time (mins): =; cin »> time;

€279

(Contd}

280e— Object-Oriented Programming with C++

tape tapel(title, price, time);
media* 1ist[Z2];

1ist[0] = Abookl:

1ist{1] = Atapel;

cout << "\n MEDIA DETAILS®;

cout << "\n [..... BOOK. ny
1ist[0] -> display();// display book details

cout << "W ... TRPE...... =1
1ist[1] == display(); // display tape details

result 0:

PROGRAM 9.13

The output of Program 9.13 would be:

ENTER BOOK DETAILS
Title:Programming in ANSI C
Price: 88

Pages: 400

ENTER TAPE DETAILS

Title: Computing Concepts
Price: 90

Play time (mins): 55

MEDIA DETAILS
r+11--Em“i-|I-|-l-+
Title:Programming in ANSI C
Pages: 400

Price: 88

sesasTAPE......

Title: Computing Concepts
Play time: 55mins

Price: 90

Rules for Virtual Functions

When virtual functions are created for implementing late binding, we should observe some
basic rules that satisfy the compiler requirements:

Pointers, Virtual Functions and Polymorphism #281

The wirtual functions must be members of some class.
They cannot be static members.

They are accessed by using object pointers.

A virtual function can be a friend of another class.

A virtual function in a base class must be defined, even though it may not be
used.

6. The prototypes of the base class version of a virtual function and all the derived
clags versions must be identical. If two functions with the same name have differ-
ent prototypes, C++ congiders them as overloaded functions, and the virtual fune-
t'on mechanism is ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.

8. While a base pointer can point to any type of the derived object, the reverse is not
true. That is to say, we cannot use a pointer to a derived class to access an object of
the base type.

9. When a base pointer points to a derived class, incrementing or decrementing it will
not make it to point to the next object of the derived class. It iz incremented or
decremented only relative to its base type. Therefore, we should not use this method
to move the pointer to the next object.

10. [If avirtual function is defined in the base class, it need not be necessarily redefined
in the derived class. In such cases, calls will invoke the base function.

IEI.? Pure Virtual Functions

It is normal practice to declare a funetion virtual inside the base class and redefine it in the
derived classes. The funetion inside the base elass is seldom used for performing any task. It
only serves as a placeholder. For example, we have not defined any object of class media and
therefore the function display() in the base class has been defined 'empty’. Such functions
are called "do-nothing” functions.

oo o e

A “do-nothing” function may be defined as follows:
virtual void display() = 0;

Such functions are called pure virfual fonctions. A pure virtual function is a function
declared in a base class that has no definition relative to the base class. In such cases, the
compiler requires each derived class to either define the function or redeclare it as a pure
virtual function. Remember that a class containing pure virtual functions cannot be used to
declare any objects of its own. As stated earlier, such classes are called abstract base classes.
The main ohjective of an abstract base class is to provide some traits to the derived classes
and to create a base pointer required for achieving run time polymorphism.

282 Object-Oriented Programming with C++

MMARY
L SUMMA 3
— L
% Polymorphism simply means one name having multiple forms.
¢ There are two types of polymorphism, namely, compile time polymorphism and run

¢t ¢

time polymorphizm.

Functions and operators overloading are examples of compile time polymorphism. The
overloaded member functions are selected for invoking by matching arguments, both
type and number. The compiler knows this information at the compile time and,
therefore, compiler is able to select the appropriate funection for a particular call at the
compile time itself. This is called early or static binding or static linking. It means that
an object is bound to its function call at compile time.

In run time polymorphism, an appropriate member function is selected while the program
is running. C++ supports run time polymorphism with the help of virtual functions. It
is called late or dynamic binding because the appropriate function is selected dynamically
at run time. Dynamic binding requires use of pointers to objects and is one of the
powerful features of C++.

Object pointers are useful in creating objects at run time. It can be used to access the
public members of an object, along with an arrow operator.

A this pointer refers to an object that eurrently invokes a member function. For example,
the function call a.show() will set the pointer 'this' to the address of the object 'a’.
Pointers to objects of a base class type are compatible with pointers to objects of a
derived class. Therefore, we can use a single pointer variable to point to objects of base
class as well as derived classes.

When a function is made virtual, C++ determines which function to use at run time
based on the type of object pointed to by the base pointer, rather than the type of the
pointer. By making the base pointer to point to different objects, we can execute different
versiong of the virtual function.

Run time polymorphism is achieved only when a virtual function is accessed through
a pointer to the base class. It cannot be achieved using object name along with the dot
operator to access virtual fanction.

We can have virtual destructors but not virtual constructors.

If a virtual function is defined in the base class, it need not be necessarily redefined in
the derived class. In such cases, the respective calls will invoke the base class function.

& A virtual function, equated to zero is called a pure virtual function. It i= a function

declared in a base class that has no definition relative to the base class. A class containing
such pure function is called an abstract class.

Pointers, Virtual Functions and Polymorphism

Key Terms

Abstract base classes
‘address of operator
argument object
arravs of pointers
arrow operator

base address

base object

bage pointer

call back function
class hierarchy
compile time
compile time polymorphism
dereference operator
Derived object
do-nothing function
dot operator
dynamic binding
early binding
function overloading
function pointer
Implicit argument
indirection operator

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYYY

Review Questions

Y Y Y Y Y Y Y YY Y Y YYYYYYYYYY

invoking object

late binding

new operator

Null pointers

object pointer
operator overloading
placeholder

pointers

pointer arithmetic
pointers to functions
polymorphism

pure virtual function
run time

run time polymorphism
static binding

static linking

this pointer

virtual constructors
virtual destructors
virtual function

void pointers

9.1 What does polymorphism mean in C++ language?
9.2 How is polymorphism achieved af (a) compile time, and (b} run time?
9.3 Discuss the different ways by which we can access public member functions of an

ohject.

9.4 Ezplain, with an example, how you would create space for an array of objects

using pointers.

9.5 What does this pointer point tof

Copyrighted material

e ——

284e

9.6
9.7
9.8
9.9

Object-Oriented Programming with C++

What are the applications of this pointer?

What is a virtual function?

Why do we need virtual functions?

When do we make a virtual function "pure”? What are the implications of making
a function a pure virtual function?

9.10 State which of the following statements are TRUE or FALSE.

(a)
(b)

(e)
(d)
ie)

(f)

(g)

Virtual functions are used to creale pointers lo base classes.

Virtual functions allow us to use the same function call to invoke member
functions of objects of different classes.

A pointer to a base class cannot be made to point to objects of derived class.
this pointer points to the object that is currently used o inveke a function.

this pointer can be used lihe any other pointer fo access the members of the
ohject if points to.

this pointer can be made to point to any object by assigning the address of
the object.

Pure virtual functions force the programmer to redefine the virtual function
inside the derived classes.

I.Deb:qgging Exercises

Identify the error in the following program.

#ginclude <iostream.h=
class Info

2.1

{

char *name;
int number;

public:

H

void getInfo()
{

cout << "Info::getInfo “;
getName();
}

void getName()
{

cout << "Info::getName *;

}

Pointers, Vintual Functions and Polymorphism

9.2

class Name: public Info

{
char ®*name;
public:
void getName()
{

cout << “"Name::getName “;

void main()
{
Info *p;
Name n;
P =N
p=>getInfo():
)
I||'ﬂ-
Identify the error in the following program.
#include <iostream.h>
class Person
{
int age;
public:
Person()
{
i
Person(int age)
J

this.age = age;

I
Personk operator < (Person &p)
{
return age < p.age 7 p: *this;
}
int getAge()
{

return age;

285

Copyrighted material

9.3

Ohject-Orfented Programming wsith O+

Void main ()
{
Person P1 (15);
Person P2 (11);
Person P3;
JAf pl is Tess than p2
pd = pl = p2; pl. lessthan(pZ)
cout << p3.gethge();
1
lllll'
Identify the error in the following program.

#include *iostream.h"

class Human
i

public:

Human()

[

I

virtual -Human()

{

cout << "Human::~Human";

1

b

class Student: public Human
{
public:

Student()

{

|

~5tudent ()

{

cout =< "Student::-Student()”:

Copyrighted material

Pointers, Virtual Functions and Polymorphism @287

i
void main()
i
Human *H = new Student();
delete H;
!
9.4 Correct the errors in the following program.
class test
{
private:
int mg
public:
void getdata()
{
cout <<"Enter number:";
cin == m;
}
void display()
{
cout << m;
)
¥
main()
{
test T;

T->getdata();
T-=display();

test *p;

P = new test;
p.getdata();:
{(*p) .display();

9.5 Debug and run the following program. What will be the output?

f#include <iostream.h>
class A

{
protected:

288 Object-Onented Programming with C++

int a,b;
public:z
Afint x = 0, int y)
{
ams x;
b = y;
}
virtual void print();
}i
class B: public A
{
private:
float p.q;
public:
B(int m, int n, float u, float v)
{
po=u
q=v
)
B() {p = q = 0;}
void input(float u, float v);
virtual void print(float);
):
void A::print(void)
{
cout << A values: << g <<""<< b <<"\pn":
I

void B::print(float)
(
cout =<B values:<< u <<""<< y <<"\n";

vold B::input(float x, float y)
{

P = i

q=x:

main()

{
A al(10,20), *ptr;
B bl: .
bl.input(7.5,3.142);

ptr = Ral;
ptr-=print();

ptr = Ebl;
ptr=>print():

Copyrighted maierial

Pointers, Virtual Functions and Polymorphism # 289

I Programming Exercises

8.1 Create a base class called shape. Use this class to store two double type values
that could be used to compute the area of figures. Derive two specific classes called
triangle and rectangle from the base shape. Add to the base class, a member

function gel_datal) to initialize base class data members and another member
function display_areaf() to compute and display the area of figures. Make
display_area() as a virtual function and redefine this function in the derived
classes fo suif their requirements.
Using these three classes, design a program that will accept dimensions of a triangle
or a rectangle interactively, and display the area.
Remember the two values given as input will be treated as lengths of two sides in
the case of rectangles, and as base and height in the case of triangles, and used as
follows:

Area of rectangle = x * ¥

Area of triangle = 1/2 * x * y

9.2 Extend the above program to display the area of circles. This requires addition of
a new derived class ‘circle' that computes the area of a circle. Remember, for a
circle we need only one value, its radius, but the get_datal) function in the base
class requires two values to be passed. (Hint: Make the second argument of
get_datal) function as a defaulf one with zero value.)

9.3 Run the above program with the following modifications:
(a) Remove the definition of display_area() from one of the derived classes.

(b) In addition to the above change, declare the display_area() as virtual in
the base cless shape.

Comment on the output in each case,

Copyrighted material

Managing Console
I/O Operations

Key Concepts

Streamas

Stream classes

Linformatted output
Character-oriented i:1;|:rul:a"1::utput
Line-oriented inputfoutpit
Formatted output

Formatting functions
Formatting flags

Manipulators

¥ Y ¥ ¥ ¥ Y VY YV¥Y

User-defined manipulators

I 10.1 Introduction

Every program takes some data as input
and generates processed data as output
following the familiar input-process-output
eycle. It is, therefore, essential to know how
to provide the input data and how to
present the results in a desired form. We
have, in the earlier chapters, used cin and
cout with the operators >> and << for the
input and output operations. But we have
not so far discussed as to how to control
the way the output is printed. C++ supports
a rich set of /0 functions and operations
to do this. Since these functions use the
advanced features of C++ (such as classes,
derived classes and virtual functions), we
need to know a lot about them before really
implementing the C++ /0 operations,

Remember, C++ supports all of C's rich set of I'O functions. We can use any of them in the
C++ programs. But we restrained from using them due to two reasons. First, V'O methods in
C++ support the concepts of OOP and secondly, I/0 methods in C cannot handle the user-

defined data types such as class ohjects.

Managing Consele I/ 0 Operations ®291

C++ uses the concept of stream and stream classes to implement its IO operations with
the console and disk files. We will discuss in this chapter, how stream classes support the
console- oriented input-output operations. File-oriented 'O operations will be discussed in
the next chapter. i

Ilu.z C+ + Streams

The IfO gystem in C++ is designed to work with a wide variety of devices including terminals,
disks, and tape drives. Although each device is very different, the /O system supplies an
interface to the programmer that is independent of the actual device being accessed. This
interface is known as stream.

A stream is a sequence of bytes. It acts either as a source from which the input data can
be obtained or as a destination to which the output data can be sent. The source stream that
provides data to the program is called the input stream and the destination stream that
receives output from the program is called the output stream. In other words, a program
extracts the bytes from an input stream and inserts bytes into an output stream as illustrated
in Fig. 10.1.

Inpart straam
Input l ___ exiraction
devica 1 | from input
| stream
Program
Oulput stream ::::"ﬁ“"
Dutput _. slream
device

Fig. 10.1 <= Data sfreams

The data in the input stream can come from the keyboard or any other storage device.
Similarly, the data in the output stream can go to the screen or any other storage device. As
mentioned earlier, a stream acts as an interface between the program and the inputfoutput
device. Therefore, a C++ program handles data (input or output) independent of the devices
used.

C++ contains several pre-defined streams that are automatically opened when a program
begins its execution. These include cin and cout which have been used very often in our
earlier programs. We know that cin represents the input stream connected to the standard
input device (usually the keyboard) and cout represents the output stream connected to the
standard output device (usually the screen). Note that the keyboard and the screen are
default options. We can redirect streams to other devices or files, if necesaary.

292% - Object-Onented Programming with C++

I]ﬂ.ﬂr C+ + Stream Classes

The C++ /O system contains a hierarchy of classes that are used to define various streams
to deal with both the console and disk files. These classes are called stream classes.
Figure 10.2 shows the hierarchy of the stream classes used for input and output operations
with the console unit. These classes are declared in the header file fostream. This file should
be included in all the programs that communicate with the console unit.

| ...'.r.'_ X
pesinlir J
istream | streambuf ostream |
imput | _ outpul
L
s ik ey
sl e e
|
'
istream_withassign iosiream_withassign oslream_withassign |

P}Ehlﬂ.: == Sfream dwﬁrr console [0 operations

As seen in the Fig. 10.2, ios is the basze class for istream (input stream) and ostream
{output stream) which are, in turn, base classes for lostream (input/output stream). The

class ios is declared as the virtual base class so that only one copy of its members are
inherited by the iostream.

The class ios provides the basic support for formatted and unformatted 10O operations.
The class istream provides the facilities for formatted and unformatted input while the
clazs ostream (through inheritance) provides the facilities for formatted output. The class
iostream provides the facilities for handling both input and output streams. Three classes,
namely, istream_withassign, ostream_withassign, and iostream_withassign add
assignment operators to these classes. Table 10.1 gives the details of these classes.

Ilﬂ.4 Unformatted I/0 Operations

Overloaded Operators >> and <<

We have used the objects ein and cout (pre-defined in the iostream file) for the input and
output of data of various types. Thiz has been made possible by overloading the operators
»» and << to recognize all the bazsic C++ types. The >> operator iz overloaded in the

Copyrighted material

Managing Console [0 Operations .2‘93

Table 10.1 Stream classes for console operations

E"ﬂ"m _Wm.-.xe.b";ﬁ"‘.{ S TR
ios = Contains basic facilities that are used by all othe
(General inputfoutput stream class) input and output classes

= Also contains a pointer to a buffer object (streambuaf
object)

= Declares constants and functions that are necessary
for handling formatted input and cutput operations

istream » Inherita the properties of ios
{input stream) * Declares input functions such as get(), getline()
and read()

* Contains overloaded extraction operator >>
ostream * Inherits the properties of ios
{output stream) * Declares output functions put() and write()

Contains overloaded insertion operator <<
instream * Inherits the properties of ios istream and ostream
(input/output stream) through multiple inheritance and thus contains all

the input and output functions
streambuf * Provides an interface to physical devices through
buffers ‘

Acts as a base for filebuf class used ios fles

istream class and << 15 overloaded in the ostream class. The following is the general
format for reading data from the keyvboard:

cin == variablel == variable? == ,... == variablel

variablel, variable2, ... are valid C++ variable names that have been declared already. This
statement will cause the computer to stop the execution and look for input data from the
keyboard. The input data for this statement would be:

datol doted dotoN

The input data are separated by white spaces and should match the type of variable in
the ein list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated
location. The reading for a variable will be terminated at the encounter of a white space or a
character that does not match the destination type. For example, consider the following code:

int code;
cin == code;

Suppose the following data is given as input:

42580

Copyrighted material

294 e Object-Oriented Programming with C++

The operator will read the characters upto 8 and the value 4258 is assigned to code. The
character D remains in the input stream and will be input to the next cin statement. The
general form for displaying data on the screen is:

cout <<iteml << item? <<,...<<{itemN

The items item I through itemN may be variables or constantz of any basic type. We have
used such statements in a number of examples illustrated in previous chapters.

put() and get() Functions

The classes istream and ostream define two member functions get{) and put{) respectively
to handle the single character input/output operations, There are two types of get() functions.
We can use both getichar *) and get(void) prototypes to fetch a character including the
blank space, tab and the newline character. The get{char *) version assigns the input
character to its argument and the get{void) version returns the input character.

Since these functions are members of the input/foutput stream classes, we must invoke
thern using an appropriate ohject.
W

Example:
char c;
cin.get(c); // get o charocter from keyboard
Jf and assign it to ¢

while(c 1= '"\n')

{
cout =< ¢} /[display the charocter on screen
cin.get{c): /[get another charocter

}

This code reads and displays a line of text (terminated by a newline character). Remember,
the operator »>> can also be used to read a character but it will skip the white spaces and
newline character. The above while loop will not work properly if the statement

cin == ;3

is used in place of

cin.get(c);

rote
Try using both of them and compare the results. j

Copyrighted material

Managing Console I/0 Operations @ 295

The getivoid) version is used as follows;

char c;
c = cin.get(); // cin.get(c); reploced

The value returned by the function get() is assigned to the variable e.

The function puti(), a member of ostream class, can be used to output a line of text,
character by l:ha‘ra-:ter. For example,

cout.put('x');

displays the character x and
cout.put{ch);

displays the value of variable ch.

The variable ¢h must contain a character value. We can also use a number as an argument
to the function put(). For example,

cout.put (68);

displays the character D. This statement will convert the int value 68 to a char value and
display the character whose ASCII value is 68.

The following segment of a program reads a line of text from the keyboard and displays it
on the sereen.

char c;
cin.get(c); J/ read o charocter

while(c I= '\n')

{
cout.put(c); J/ display the character on screen
cin.get(c);

}

Program 10.1 illustrates the use of these two character handling functions.

Copyrighted material

296e Object-Oriented Programming with C++

CHARACTER 1/0 WITH get() AND put()

#include =iostreams

using namespace std;

int main()

{
int count = O;
char c;

cout =< “"INPUT TEXT\n";
cin.get(c);

whilefc 1= '"\n')

{
cout.put{c);
count++;
cin.get(c);

b

cout == "\nNumber of characters =

== Count =< TN

return 0;

PROGRAM 10.1 i

Imput
Object Oriented Programming
Output
Object Oriented Programming
Number of characters = 27

rrodle

When we type a line of input, the text is sent to the program as soon as we press the
RETURN key. The program then reads one character at a time using the statement
cin.get(c); and displays it using the statement cout.putic);. The process i terminated
when the newline character is encountered.

getline() and write() Functions

We can read and display a line of text more efficiently using the line-oriented input/foutput
functions getline() and write(). The getline() function reads a whole line of text that ends
with a newline character (transmitted by the RETURN kev). This function ean be invoked
by using the object cin as follows: '

Managing Console [/O Operations 297

[Ein.gﬂliu (line, size);|

This function call invokes the function getline{) which reads character input into the
variable line. The reading is terminated as soon as either the newline character ‘\n’' is
encountered or size-1 characters are read (whichever-occurs first). The newline character is
read but not saved. Instead, it is replaced by the null character. For example, consider the
following code:

char name[20];
cin.getline(name, 20);

Assume that we have given the following input through the keyboard:
Bjarne Stroustrup <press RETURN=>

This input will be read correctly and assigned to the character array name. Let us suppose
the input is as follows:

Object Oriented Programming <press RETUEN >
In this case, the input will be terminated after reading the following 19 characters:
Object Oriented Pro
Remember, the two blank spaces contained in the string are also taken into account.
We can also read strings using the operator >> a=s follows:
cin >> name;

But remember ein can read strings that do not contain white spaces. This means that
cin can read just one word and not a series of words such as “Bjarne Stroustrup”. But it can
read the following string correctly:

Bjarne Stroustrup

After reading the string, ein automatically adds the terminating null character to the
character array.

Program 10.2 demonstrates the use of >> and getline() for reading the strings.

finclude <jostream»

using namespace std;

(Corntd)

Copyrighted material

The output of Program 10.2 would be:

First run

Enter city name:
Delhi
City name: Delhi

Enter city name again:
City name now:

Enter another city name:
Chennai

New city name: Chennai

Second run

Enter city name:
New Delhi
City name: New

Enter city name in:
City name now: Delhi

Enter another city nur':
Greater Bombay
New city name: Grealer Bombay

Object-Oriented Programming with C++

Copyrighted material

Managing Console I/ O Operations €299

-~ note: ~
During first run, the newline character *\n' at the end of “Delhi” which is waiting in the
input queue is read by the getline() that follows immediately and therefore it does not
wait for any response to the prompt ‘Enter city name again:". The character '\n’ is read
as an empty line. During the second run, the word “Delhi” (that was not read by cin) is
read by the function getline() and, therefore, here again it does not wait for any input to
the prompt ‘Enter city name again:’. Note that the line of text “Greater Bombay” is correctly

km‘i by the second ein.getline(city,size); statement. ¥

The write() function displays an entire line and has the following form:

cout.write (line, size)

The first argument line represents the name of the string to be displayed and the second
argument size indicates the number of characters to display. Note that it does not stop
displaying the characters automatically when the null character is encountered. If the size
i greater than the length of line, then it displays beyond the bounds of line. Program 10.3
illustrates how write() method displays a string.

DISPLAYING STRINGS WITH write()

#include <iostream>
#include <string=

using namespace std;

int main()

1
1

char * stringl = "(++ *;
char * siring? = "Programming”;
int m = strlen(stringl);
int n = strien(string2);

for{int i=1; i=n; 1++)

1
cout.write(string?,1):
cout =< "\n";

]

for{i=n; i=0; 1--)

{
cout.write(string2,i);
cout << "\n";

(Clontd)

300@ Object-Oriented Programming with C++

{/ concatenating strings
cout.write{stringl,m).write {stﬂ nn:.'.n} :

cout =< "\n":

[f cressing the boundary
cout.write(stringl,10);

return 0; PR S r-\:ﬁ-d

Look at the output of Program 10.3:

P
Fr

Pro

Prog

Progr
Progra
Program
Programm
Programmi
Programmin
Programming
Programmin
Programmi
Programm
Program
Progra
Progr

Frog

Pro

Pr

P

C++ Programming
C++ Progr

The last line of the output indicates that the statement

cout.write(stringl, 10);

displays more characters than what is contained in stringl.

PROGRAM 10.3

It is possible to concatenate two strings using the write() function. The statement

cout.write(stringl, m).write(string2, n);

Copyrighted maierial

Managing Console /0 Operations ® 301

is equivalent to the following two statements:

cout.write{stringl, m);
cout.write(string2, n);

Il[l.S Formatted Console 1/0 Operations

C++ supports a number of features that could be used for formatting the output. These
features include: _

® jos class functions and flags.
® Manipulators.
® User-defined output functions.

The ios class contains a large number of member functions that would help us to format
the output in a number of ways. The most important ones among them are listed in
Table 10.2.

Table 10.2 ios format functions

Function Task
Width () To specify the required field size for displaying an output value
precision () To specify the number of digits to be displayed after the decimal point
of a float value
fill(} To specify a character that is used to fill the unused portion of a field
setfi) To specify format flags that can contrel the form of output display (such
a8 left-justification and right-justification)
To clear the flags specified

Manipulators are special functions that can be included in the I/O statements to alter the
format parameters of a stream. Table 10.3 shows some important manipulator functions
that are frequently used. To access these manipulators, the file iomanip should be included

in the program.

Table 10.3 Manipulators

Manipulators ¥ 3i; -] . Eguivalent ios function
setwi) widthi)
setprecision() precision()
setfill())

setiosflags() setfl()
resetiosflags() unsetfy)

302e Object-Oriented Programming wurth C++

In addition to these functions supported by the C++ library, we can create our own
manipulator functions to provide any special output formats. The following sections will
provide details of how to use the pre-defined formatting functions and how to create new

Defining Field Width: width()

We can use the width() function to define the width of a field necessary for the output of an
itemn. Since, it is a member function, we have to use an obhject to inveoke it, as shown below:

! cout.widthiw) ;

where w is the field width (number of columnsg). The output will be printed in a field of w
characters wide at the right end of the field. The width{) function can specify the field
width for only one item (the item that follows immediately). After printing one item (as per
the specifications) it will revert back to the default. For example, the statements

cout.width(5);
cout =< 543 << 12 =< "\n";

will produce the following output:

L1 [5]af3]1]2]

The value 543 is printed right-justified in the first five columns. The specification width(5)
does not retain the setting for printing the number 12. Thiz can be improved as follows:

cout.width(5);

cout =< 543;
cout . width(5);

cout =< 12 << "\n";

This produces the following output:

(| [sfef3] [1| [2]2]

Remember that the field width should be specified for each item separately. C++ never
truncates the values and therefore, if the specified field width is smaller than the size of the
value to be printed, C++ expands the field to fit the value. Program 10.4 demonstrates how
the function width() works.

Managing Console /0 Operations @303

SPECIFYING FIELD 5IZE WITH widthi()

#include <fostreams A TN o 1ot R e B
using namespace std; HE et et e T A

int main()

{ " : E .
int items[4] = (10,8,12,15);
int cost[4] = {75,100,60,99}; : Rt

cout . width(5);

cout << “ITEMS";
cout.width(B); _ T UL ERTPPE e S Mk e
cout << "COST"; T R B akh i e

cout.width(15); :
cout << "TOTAL VALUE" << "\n®;

int sum = 0;

for(int i=0; i<d; i++) ; - s

{) . 2
cout.width(s); ° A
cout << items[i];

cout.width(8);
cout << cost[i];

int value = items[i] * cost[i]:
cout.width(15);

cout =< value << "\n"; j
sum = sum + value;

}

cout << "\n Grand Total = *; ' o

Cﬂ“t.'ﬂidth{g}"-) .:_ 1% i, R TRy T '.‘_:_.'-;.'_“.'_.-:.E i) .; i iy I.'.._ L

cout << sum =< "\n"; 0 b I:ta?l"fh M ':-'i:“::_ T R v g
B : - I;j... fJ; '

I‘EtLlI'I'l n".' i . . 1-1 - - I.,-.l-li'?_-_ R, ki . :I

i ak
, 0.

v
-L- n) k,

304 Ohject-Oriented Programming with Ce+

The output of Program 10.4 would be:

ITEMS COST TOTAL VALUE
10 73 730
8 100 800
12 60 720
15 99 1485

Grand Total = 3755

reode

A field of width two has been used for printing the value of sum and the result is not
truncated. A good gesture of C++ |

Setting Precision: precision()

By default, the floating numbers are printed with six digits after the decimal point. However,
we ¢can specify the number of digits to be displayed after the decimal point while printing
the floating-point numbers. This can be done by using the precision() member function as
follows:

| cout.precision(d); |

where d is the number of digits to the right of the decimal point. For example, the statements

cout.precision(3);

cout =< sgrt(2) =< "\n";
cout == 3,.14159 =< "\n";
cout =< 2.50032 =< "\n";

will produce the following output:
1.141 ([truncated)
3.142 (rounded to the nearest cent)
2.5 (no trailing zeros)
Not that, unlike the function width(), precision() retains the setting in effect until it is
reset. That is why we have declared only one statement for the precision setting which is
used by all the three outputs.

We can set different values to different precision as follows:

cout.precision(3);

Copyrighted material

Managing Console [/0 Operations 305

cout =< 5qrt{Ej =< "\p";
cout.precision(5); // Reset the precision
cout << 3.14158 << "\n";

We can also combine the field specification with the precision setting. Example:
cout.precision(2);

cout . .width(5);
cout =< 1.2345;

The first two statements instruct: “print two digits after the decimal point in a field of five
character width”. Thus, the output will be:

Program 10.5 shows how the functions width() and precision() are jointly used to control
the output format.

d PRECISION SETTING WITH precision()

#include =jostream
#include <cmath=

using namespace std;

int main{)
{

cout =< “Precision set to 3 digits \m\n";
cout.precision{3);

cout .width(10);

cout =< "VALUE";

cout.width(15);

cout << "SORT OF VALUE" =< "\n";

for(int n=1; n<=5: n++)
i
cout .width{8);
cout =< n;
cout, width(13);
cout << sqrt{n}) =< "\n";

(Canid)

Copyrighted material

306 8— Object-Oriented Programming with C++

cout =< "\n Precision set to 5 digits \n\n";
c::m_t-prer:'is1-:m{h}; {{ precision parameter changed
cout =< ™ sqrt(10} = * << sqrt{10) << "\n\n";

cout.precision(0); {{ precision set. to defoult
cout =< ¥ sqre(l0) = ® =< sgrt(10) =< * (default setting)in";

return 0;

PROGRAM 10.5 1

Here iz the output of Program 10.5

Precision set to 3 digits
VALUE SORT OF VALUE
1 1
1.41
1.73

2
2.24

L T - S R L

Precision set to 5 digits

sqrt{10) = 3.1623
sgrit(10) = 3.162278 (default setting)

ftoe ~

Observe the following from the output:

1. The output is rounded to the nearest cent (i.e., 1.6666 will be 1.67 for two digit
precigion but 1.3333 will be 1.33).
2. Trailing zeros are truncated.
3. Precision setting stays in effect until it is reset.
. 4. Default precision is 6 digits. y

Filling and Padding: fill()

We have been printing the values uging much larger field widths than required by the
values. The unused positions of the field are filled with white spaces, by default. However,
we can use the fill() fanction to fill the unused positions by any desired character. It is used
in the following form:

Copyrighted material

Managing Console 170 Operations # 307

cout.fill (ch);

Where ch represents the character which iz used for filling the unuzed positions. Example:

cout. . fill{'*");
cout.width(10);
cout << 5250 =< "\n";

The output would be:

Financial institutions and banks use this kind of padding while printing cheques so that
no one can change the amount easily. Like precision(), fill() stays in effect till we change
it. See Program 10.6 and its output.

PADDING WITH fi114()

#i n{: Tude <i ostream>-

using namespace std;

int main{)
{ cout.fil11('<");
cout.precision(3);

for{int n=1; n<=G; n++)
{
cout.width(5);
cout =< m; .
cout.width{10);
cout =< 1.0 / float(n) =< "\n";
if (n == 3)
cout.fi11 ('=');
1
cout << "\nPadding changed ‘n\n";
cout.fill ('#'); ff fill{) reset
cout.width (15);
cout =< 12.345678 << "\n“;

return 0;

PROGRAM 10.6

3J08@ Ohject-Oriented Programming with C++
The output of Program 10.6 would be:

coes] eeeaaeaes]

o doccoocs) 5

sl JusaCael] 333

*aam]annnnnl] 75
22> hararna] 2

*aamfaennnl] 167

Padding changed

FEHHHIR12.346

Formatting Flags, Bit-fields and setf()

We have seen that when the function width() is used, the value (whether text or number)
is printed right-justified in the field width created. But, it is a usual practice to print the
text left-justified. How do we get a value printed left-justified? Or, how do we get a floating-
point number printed in the scientific notation?

The setf(), a member function of the ios class, can provide answers to these and many
other formatting questions. The setf() (seif stands for set flags) function can be used as
follows:

| cout.setf(argl,arg2) |

The argl is one of the formatting flags defined in the class ios. The formatting flag
specifies the format action required for the output. Another ios constant, argZ, known as bit
field specifies the group to which the formatting flag belongs.

Table 10.4 shows the bit fields, flags and their format actions. There are three bit fields
and each has a group of format flags which are mutually exclusive. Examples:

cout.setf(ios::left, ios::adjustfield);
cout.setf{ios::scientific, ios::floatfield);

Note that the first argument should be one of the group members of the second argument.
Consider the following segment of code;

cout.fil1{"'*");

cout.setf(ios::left, ios::adjustfield);

cout.width(15);
cout << “TABLE 1% =< "\n";

Managing Console I/ 0 Operations @309

Table 10.4 Flags and bit fields for setff] function

Left-justified output ing :: left ios :: adjustfield
Right-justified output i0s iz right ios :: adjustfield
Padding after sign or base ios internal ios o adjustfield
Indicator (like +##20)

Scientific notation ios :: scientific ios :: floatfield
Fixed point notation ios :: fixed ioa :: floatfield
Decimal base 108 3 dec 105 :: basefield
Octal base 108 1 oct ios :: basefield
Hexadecimal base 108 = hex o4 - basefield

This will produce the following output:

T[ATBJLE] [L[*[*[*[*]*[*[*[*

The statements

cout.fill ("*');

cout.precision(3);

cout.setf(ios::internal, ios::adjustfield);
cout.setf(ios::scientific, fos::floatfield);
cout.width(15);

cout << -12.34567 =<<""\n";

will produce the following output:

1= [*[*|1]-]2]|3]5[e[+]|0]1]

role

The sign is left-justified and the value is right left- justified. The space between them is
padded with stars. The value is printed accurate to three decimal places in the scientific
notation.

Displaying Trailing Zeros and Plus Sign

If we print the numbers 10.75, 25.00 and 15.50 using a field width of, say, eight positions,
with two digits precision, then the output will be as follows:

110

——rhem

7
2

il
-
3

310# Object-Oriented Programming with C++
Note that the trailing zeros in the second and third items have been truncated.

Certain situations, such as a list of prices of items or the salary statement of employees,
require trailing zeros to be shown. The above output would look better if they are printed as

follows:

10.75
25.00
15.50

The setf{) can be used with the flag iosu:showpoint as a single argument to achieve this
form of output. For example,

cout.setf({ios::showpoint) J! display troiling zeros

would cause cout to display trailing zeros and trailing decimal point. Under default precision,
the value 3.25 will be displayed as 3.250000, Remember, the default precision assumes a
precision of six digits.

Similarly, a plus sign can be printed before a positive number using the following statement:

cout.setf(ios::showpos); [show +sign
For example, the statements

cout.setf(ios: :showpoint);
cout.setf({ios::showpos);

cout.precision(3);

cout.setf(ios::fixed, ios::floatfield);
cout.setf(ios::internal, fos::adjustfield);
cout.width(10);

cout << 275.5 << *\n";

will produce the following output:

+ 2(7|5|-|(5]0]|0

The flags such as showpoint and showpos do not have any bit fields and therefore are
used as single arguments in setf{). This is possible because the setf() has been declared as
an overloaded function in the class ios. Table 10.5 lists the flags that do not possess a
named bit field. These flags are not mutually exclusive and therefore can be set or cleared
independently.

Copyrighted maierial

Managing Console [/ O Operations 311

Table 10.5 Flags that do not have bit fields

.. Flag
ioa :: showhase
ina 1 showpos
ioa : showpoint
108 I uUppercase
08 skipus
ios 1 unithuf
iog : stdio

Meaning

Use base indicator on output
Print + before positive numbers
Show trailing decimal point and zeroes
Use uppercase letters for hex output
Skip white space on input

Flush all streams after insertion

Flush stdout and stderr after insertion

Program 10.7 demonstrates the setting of various formatting flags using the overloaded
setf() function.

FORMATTING WITH FLAGS IN setf({)

#Finclude =<iostream=
#include =cmath=

using namespace std;

:nt main()
cout.fil11({"*"');

cout.setf(ios::left, ios:

cout.width{10);
cout =< "VALUE®;

radjustfield);

cout.setf(ios::right, ios::adjustfield);

cout.width(15):

cout << "SORT OF VALUE" << "\n";

cout . Filn{'.");
cout.precision(4);

cout.setf(ios: :showpaint);

eout.setf(ios: :showpos):

cout,setf(ios::fixed, ios;

for{int n=1l; n<=10: n++)

:floatfield);

cout.setf(ios::internal, io0s::adjustfield):

cout.width(5);
Cout =< n;

cout.setf(ios::right, ios::adjustfield};

cout.width(20);
cout =< sgrt(n)

e -thu:

(Comtd)

312e Object-Orented Programming with C++

/i floatfleld changed
cout.setf({ios::scientific, ios::floatfield);
cout =< "\nSQRT(100) = " =< sqrt(100) =< "\n*:

return 0;

PROGRAM 10.7

The output of Program 10.7 would be:

VALUE®#w#=®*¥*=50RT OF VALUE
+I'+11II-I-+-I1'I'I'+111I'I'+11W'Jﬂ
+|“|“|EI|‘|‘+‘|Ilr|‘+‘|llrr+1‘|!l42

Fooadeosonasnsnnnans +1.7321
L . +2.0000
FowaBeuwacvrsunninsun +2.2361
L - T, +2.4495
T +2 . 6458
toeaBiiiiiiiiaa .. +2.8284
T +3.0000

+++1Erl- I-++11I'I'I'+1ll'l'++3'l1623

SQRT(100) = +1.0000e+001
rote

The flags set by setf() remain effective until they are reset or unset.

A format flag can be reset any number of times in a program.

We can apply more than one format controls jointly on an output value.
The setfl) sets the specified flags and leaves others unchanged.

o L 1D

10.6 Managing Output with Manipulators

The header file iomanip provides a set of functions called manipulators which can be used
to manipulate the output formats, They provide the same features as that of the ios member
functions and flags. Some manipulators are more convenient to use than their counterparts
in the class ios. For example, two or more manipulators can be used as a chain in one
statement as shown below:

cout =< manipl << manip2 << manip3 << item;
cout =< manipl << iteml =< manip2 << itemZ;

This kind of concatenation is useful when we want to display several columns of output.

Managing Console I O Operations €313

The most commonly used manipulators are shown in Table 10.6. The table also gives
their meaning and equivalents. To access these manipulators, we must include the file

iomanip in the program.
Table 10.6 Manipulators and their meanings

5o : [rin - 4 TP
setw (int w)
setprecision{int d) Set the field width to w, widthi)

Set the floating point precigion to o, precision()
setfilllint c) Set the fill character to c. filli)
setiosflags(long) Set the format flag setfl)
resetiosflags{long f) Clear the flag specified by f. unsetfl)
endl Insert new line and flush stream. “\n"

Some examples of manipulators are given below:

cout =< setw(10) =< 12345;

This statement prints the value 12345 right-justified in a field width of 10 characters.
The output can be made left-justified by modifying the statement as follows:

cout =< setw(10) =< setiosflags(fos::left) =< 12345;

One statement can be used to format output for two or more values. For example, the
statement

cout << setw(5) << setprecision(2) << 1.2345
<< setw(10) << setprecision{4) << sgrt(2)
=< getw(15) =< setiosflags(ios::scientific) =< sqrt(3);
<< endl;

[,

will print all the three values in one line with the field sizes of 5, 10, and 15 respectively.
Note that each output is controlled by different sets of format specifications.

We can jointly use the manipulators and the ios functions in a program. The following
segment of code 15 valid:

cout,setf(ios::showpoint);
cout.setf(ios::showpos);

cout << setprecision(d);

cout << setiosflags(ios::scientific);
cout << setw(10) << 123.45678;

314 e Object-Oriented Programming with Ce+

- e ~
There is a major difference in the way the manipulators are implemented as compared to
the ios member functions. The ios member function return the previous format state
which can be used later, if necessary. But the manipulator does not return the previous
format state. In case, we need to save the old format states, we must use the ios member

Ql.mctiuns rather than the manipulators. Example: ¥

cuut.précisinn{?]: /f previous stote
int p = cout.precision(d); Jf current stote;

When these statements are executed, p will hold the value of 2 (previous state) and the
new format state will be 4. We can restore the previous format state as follows:

cout . precision{p); fp=2

Program 10.8 illustrates the formatting of the output values using both manipulators
and ios functions.

FORMATTING WITH MANIPULATORS

#include <iostream -
#include <iomanip=>

using namespace std;

int main()

i

cout.setf(ios;: :showpoint);

cout << setw(5} << "n"
<< setw(15) << "Inverse_of n"
<< setw(15) << "Sum_of_terms\m\n“;

doubie term, sum = 0;

for(int n=l: n<=10; n++)

{
term = 1.0 / float(n):
sum = sum + term;

cout =< setw(f) =< n
=< satw(l4) =< setprecision(d)

(CCerrbed)

Copyrighted material

Hidden page

316 @ . Object-Oriented Programming with C++
The statement

cout == 36 =< unit;

will produce the following output

36 inches

We can also create manipulators that could represent a sequence of operations. Example:

ostream & show(ostream & output)

{
output.setf{ios::showpoint);
putput.setf(ios::showpos);
output =< setw(10);
return output;

i

This function defines a manipulator called show that turns on the flags showpoint and
showpos declared in the class ios and sets the field width to 10.

Program 10.9 illustrates the creation and use of the user-defined manipulators. The
program creates two manipulators called currency and form which are used in the main
Program.

USER-DEFINED MANIPULATORS

#include =iostream=
#include <iomanip=

using namespace std:

{/ user-defined manipulotors

ostream & currencyl(ostream & output)
!

output =< "Rs";

return outputs

)

ostream & form(ostream & output)

!

output.setf(ios::showpos);
output.setf(ios::showpoint);

(Condd)

Copyrighted material

Managing Console I/ 0 Operations 2317

output.fili('*"});
output.precision(2);
output << setiosflags(ios::fixed)
<< setw(10);
return output;
!
int -main()

{

cout =< currency << form << 7864.5;

return 0;

PROGRAM 10.9

The output of Program 10.9 would be:
Rs*=+7864 .50

Note that form represents a complex set of format functions and manipulators.

\ SUMMARY _L,//

-~

g ¢

In C++, the I/O system is designed to work with different IO devices. This /O system

supplies an interface called ‘stream’ to the programmer, which is independent of the
actual device being used.

A stream is a sequence of bytes and serves as a source or destination for an IO data.
The source stream that provides data to the program is called the input sfream and the
destination stream that receives output from the program is ealled the output stream.
The C++ /0 system containe a hierarchy of stream claszes used for input and output
operations. These clazses are declared in the header file ‘iostream®.

cin represents the input stream connected to the standard input deviee and count
represents the output stream connected to the standard output device.

The istream and ostream classes define two member functions get() and put() to
handle the single character I'O operations.

%» The »>> operator i8 overloaded in the istream class as an extraction operator and the

<< operator is overloaded in the ostream class as an insertion operator.

¢ Wecan read and write a line of text more efficiently using the line oriented I'O functions

getline() and write() respectively.

318

=

o

Ohject-Oriented Programming tith O++

The ios class contains the member functions such as width(), precision(), fill{), setf(),
unsetf{) to format the output.

The header file ‘iomanip’ provides a set of manipulator functions to manipulate output
formats. They provide the same features as that of ios class functions.

We can also design our own manipulators for certain special purposes,

Key Terms

¥ Y Y Y Y ¥y Y Yy ¥y Yy Y Y Yy Y Y Y Y Y Y Y Y Y Y YYYYY

adjustfield

basefield

bit-fields

console /O operations
decimal base
destination stream
flield width

fill()

filling

fixed point notation
flags

floatfield

formatted console 'O
formatting flags
formatting functions
get()

getline()
hexadecimal baze
mput stream
internal

ios

iomanip

lostream

istream

left-justified
manipulator

octal base

ostream

Y Y Y Y Y Y Y Y Y Y Y Y YY YY Y Y YYYYYYYYY

output stream
padding
precision()

puti)
resetiosflags()
right-justified
scientific notation
setli)

setfill()
setiosflags()
setprecision()
setting precision
setwi)

showbase
showpoint
showpos

skipus

source stream
standard input device
standard output device
stream classes
etreambuf
streams

unithbuaf

unsetil)

widthi)

writel)

Managing Console I/0 Operations 319

Review Questions

10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8

10.9
10.10

10.11

10.12
10.13
10.14
10.15

10.16

What is a stream?

Describe brieflv the features of 1/0 system supported by C++.

How do the I/ 0 facilities in C++ differ from that in C?

Why are the words such as ein and cout nof considered as keywords?

How iz cout able to display various types of data without any special instructions #
Why is it necessary to include the file iostream in all our programs?

Discuss the various forms of get() function supported by the input stream. How
are they used?

How do the following two statements differ in operation?

cin == ¢;
cin.get(c);

Both ein and getline() function can be used for reading a string. Comment.
Discuss the implications of size parameter in the following statement:

cout.write{line, size):

What does the following statement do¥

cout . write(sl,m).write(s2,n);

What role does the iomanip file play?
What is the role of filef) function? When do we use this function?
Discuss the syntax of set() function.

What is the basic difference between manipulators and los member functions in
implementation? Give examples.

State whether the following statements are TRUE or FALSE. *
{a) A C++ stream is a file. '
(b} C++ never truncates data.

{c) The main advantage of width() function is that we can use one width
specification for more than one items.

id) The getivoid) function provides a single-character input that does not skip
over the white spaces.

(e} The header file iomanip can be used in place of ilostream.

ifi We cannot use both the C I/ O functions and C++ [/0 functions in the same
program.

(g} A programmer can define a manipulator that could represent a set of formai
functions.

Copyrighted material

L}

Hidden page

Managing Console I/ O Operations 2321

10.2 Will the statement cout.setf{ios::right) work or not?

#include <ipstream.h>
void I:nn1r1I[]'
{
cout.width(5);
cout =< “99° =< endl;

cout.setf(ios::left);
cout.width(5);
cout << "99" << end];

cout.setf(ios::right);
cout == "99" << endl;

10.3 State errors, if any, in the following statements.
(a) cout =< (void*) amount;
(b) cout =< put("John");
(e} cout =< width({);
(d) int p = cout.width({10);
(@) cout.width(10).precision(3);
(fi cout.setf(ios::scientific,ios::left);
(g) ch = cin.get():
(h) cin.get().get();
(i} cin.get({c).get();
(i) cout == setw(5) =< setprecision(2):
(k) cout =< resetiosflags(ios::left |ios::showpos);

mgﬂlmmﬁ:g Exercises

10.1 Write a program fo read a list containing item name, item code, and cost
interactively and produce a three column output as shown below.

NAME CODE CO5T
Turbo C++ 1001 250.95
C Primer 905 95.70

L] L] LI

----- PN TEETY

Note that the name and eode are lefi-justified and the cost is right-justified with
a precision of two digits. Trailing zeros are shown.

322e Object-Oriented Programming with C++

10.2 Modify the above program to fill the unused spaces with hyphens.

10.3 Write a program which reads a text from the keyvboard and displays the following
information on the screen in two columns!
(a) Number of lines
(b) Number of words
(e) Number of characters
Strings should be left-justified and numbers should be right-justified in a suitable
field width. *

| Working with Files |

Y Y Y Y Y Y YYYYYYY

Key Concepts

Congole-user interaction
Input stream

Oatput stream

File stream classes
Opening a file with open()
Opening a file with constructors
End-of-file detection

File modes

File pointers

Sequential file operations
Random access files
Error handling

! .
Command-line arpuments

11.1 Introduction

Many real-life problems handle large
volumes of data and, in such situations, we
need to use some devices such as floppy disk
or hard disk to store the data. The data is
stored in these devices using the concept
of files. A file is a collection of related data
stored in a particular area on the disk.
Programs can be designed to perform the
read and write operations on these files.

A program typically involves either or
both of the following kinds of data
communication:

1. Data transfer between the console
unit and the program.

2. Data transfer between the program
and a disk file.

324e Ohject-Oriented Programming wwith C++

This is illustrated in Fig. 11.1.

External memoy
Deata files ___T__
data read data Program-file ineraction
(to files) (from files)
Irfarmal memany
Program + Data - o e -

cin == Consaole unit b Screen) I

{get data
£
B~

Keyboard

- Fige 11.1 e Consol-program-file interaction |

We have already discussed the technique of handling data communication between the
console unit and the program. In this chapter, we will discuss various methods available for

The /0 system of C++ handles file operations which are very much similar to the console
input and output operations. It uses file streams as an interface between the programs and
the files, The stream that supplies data to the program is known as input stream and the
one that receives data from the program is known as output stream. In other words, the
input stream extracts (or reads) data from the file and the output stream inserts (or
writes) data to the file. This iz illustrated in Fig. 11.2.

Input stream
read data .
Irpast
Disk files Program-
L
Output stream dana
write data outpul

Hs. 11.2 &= Filr :r'upul.m'ld cutpel streams

Copyrighted maierial

Working with Files # 325

The input operation involves the ereation of an input stream and linking it with the
program and the input file. Similarly, the output operation involves establishing an output
stream with the necessary links with the program and the output file.

Il].E Classes for File Stream Operations

The /O aystem of C++ contains a set of classes that define the file handling methods. These
include ifstream, ofstream and fstream. Thesze classes are derived from fstreambase
and from the corresponding iostream clazs az shown in Fig. 11.3. These classes, designed to

manage the disk files, are declared in fsiream and therefore we must include this file in any
program that uses files.

[

I
iosirearm ! }

Fig. 113 & Shream classes for file operations (conbeined in fsireams file) I

= e e rma T

Table 11.1 shows the details of file stream classes. Note that these classes contain many
more features. For more details, refer to the manual.

|11.3 Opening and Closing a File

If we want to use a disk file, we need to decide the following things about the file and its
intended use:

1. Suitable name for the file.
2. Data type and structure,

326 Object-Oriented Programming with C++

3. Purpose,
4. Opening method.

Table 11.1 Details of file stream classes

Class Confents
filebuf Itz purpose is to set the file buffers to read and write. Contains Openprot con-
stant used in the open) of file stream classes. Also contain close() and open) as
members,

fstreambase Provides operationg common to the file streams, Serves as a base for fstream,
ifstream and ofstream class. Contains open() and close() functions,

ifstream Provides input operations. Contains openi) with default input mode. Inherits the
functions get(), getline(), read(}, seekgi) and tellg(} functions from istream.

Ofstream Provides output operations. Contains open() with default output mode. Inherits
puti), seekpl), tellpi); and writel), functions from ostream,

fstream Provides support for simultaneous input and output operations. Contains open()
with default input mode. Inherits all the functions from istream and ostream

classes through iostream,

The filename is a string of characters that make up a valid filename for the operating
system. It may contain two parts, a primary name and an optional period with extension.
Examples:

Input.data
Test.doc
INVENT .ORY
student
salary
QUTPUT

As stated earlier, for opening a file, we must first create a file stream and then link it to
the filename. A file stream can be defined using the claszes ifstream, ofstream, and fstream
that are contained in the header file fstream. The class to be used depends upon the purpose,
that is, whether we want to read data from the file or write data to it. A file can be opened
in two ways:

1. Using the constructor function of the class,
2. Using the member function open() of the class.

The first method is useful when we uze only one file in the stream. The second method is
used when we want to manage multiple files using one stream.

Opening Files Using Constructor

We know that a constructor is used to initialize an object while it is being created. Here, a
filename is used to initialize the file stream object. This involves the following steps:

Copyrighted material

Working with Files €327

1. Create a file stream object to manage the stream using the appropriate class. That
is to say, the class ofstream is used to create the output stream and the class
ifstream to create the input stream.,

2. Initialize the file object with the desired filename.

For example, the following statement opens a file named “results” for output:
ofstream outfile("results"); // output only
This creates outfile as an ofstream object that manages the output stream. This ohject

can be any valid C++ name such as o_file, myfile or fout. This statement also opens the
file results and attaches it to the output stream outfile. This is illustrated in Fig. 11.4.

Disk
Output stream
— — results
File
cutfile
i
Input stream
data
e
irtfile

Fig. 11.4 <= Two file streams working on separale files

Similarly, the following statement declares infile as an ifstream object and attaches it
to the file data for reading (input).

ifstream dinfile("data"): // input only

The program may contain statements like:

outfile =< "TOTAL";
outfile =< sum;
infile => number;

infile »» string;

We can also use the same file for both reading and writing data as shown in Fig. 11.5. The
programs would contain the following statements:

Programl

3288 Ohject-Oriented Programming with C++

ofstream outfile("salary"); Jf creates outfile and connects
S "salary” to it

EFEEE

Program?
ifstream infile("salary"); /f creates infile and connects
J/ "salary" to it
Program 1
DI put
outfila data
galary
file
Program 2 get
diala

- & & &

infile

Fig. 11.5 <« Tuw file streams working on one file

The connection with a file is closed automatically when the stream object expires (when
the program terminates). In the above statement, when the program! is terminated, the
salary file iz disconnected from the outfile stream. Similar action takes place when the
program 2 terminates,

Instead of using two programs, one for writing data (output) and another for reading
data (input), we can use a single program to do both the operations on a file. Example.

aaaaa

outfile.close(); /[Disconnect salary from outfile
ifstream infile(“salary"); [/ and connect to infile

infile.close(); // Disconmect salary from infile

Copyrighted material

Working with Files #329

Although we have used a single program, we created two file stream objects, outfile (to
put data to the file) and infile (to get data from the file). Note that the use of a

statement like

outfile.close();

displays the same on the screen.

[WORKING WITH SINGLE FILE

disconnects the file salary from the output stream outfile. Remember, the object outfile
still exists and the salary file may again be connected to outfile later or to any other
stream. In this example, we are connecting the salary file to infile stream to read data.

Program 11.1 uses a single file for both writing and reading the data. First, it takes data
from the keyboard and writes it to the file. After the writing is completed, the file is closed.
The program again opens the same file, reads the information already written to it and

fI Creating files with constructor fumction

#include <iostream.h>
#include <fstream.h=

int main()

{
ofstream outf("I1TEM");
cout == "Enter item name:";
char name[30];
cin >> name;
outf =< name <= "\n";
cout =< “"Enter {item cost:";
float cost;
cin »>> cost;
outf =< cost =< "\n";
outf.close();
ifstream inf(*ITEM");

inf == name;
inf == cost;

/{ connect ITEM file to outf

[/ get nome from key board and

[write to file ITEM

/[get cost from key board and

[/ write to file ITEM

[DMsconnect ITEM file frow outf
/{ connect ITEM file fo inf

// read nome from file ITEM
ff reod cost from file ITEM

(Conéd)

330e Ohject-Oriented Programming with C++

cout << "\n";
cout << “Item name:" =< pname =< "\n";
cout <= "Item cost:" =< cost =< "\n";

inf.close(); {{ Disconnect ITEM from inf

return 03

PROGRAM 11.1

The output of Program 11.1 would be:

Enter item name:CD-ROM
Enter item cost:250

Item name:CD-ROM
[tem cost:250

cawlion
When a file is opened for writing only, a new file is created if there is no file of that name.
If a file by that name exists already, then its contents are deleted and the file is presented

as a clean file. We shall discuss later how to open an existing file for updating it without
losing its original contents.

Opening Files Using open()

As stated earlier, the function open() can be used to open multiple files that use the same
stream object. For example, we may want to process a set of files sequentially. In such cases,
we may create a single stream object and use it to open each file in turn. This is done as
follows:

file-stream-class stream-object;
gstream-object.open ("filename");

Example:
ofstream outfile; /{ Create stream (for output)
outfile.open("DATAL"); // Connect stream to DATAI
EMIHI.H'IE.EMEEE}; // Disconnect stream from DATAI
outfile.open("DATAZ); /| Connect stream to DATAZ

-Enutf:ile.ﬂ osel();: {/ Disconnect stream from DATAZ

Warking with Files & 331

The previous program segment opens two files in sequence for writing the data. Note
that the first file iz closed before opening the second one. This is necessary because a stream
can be connected to only one file at a time. Sec Program 11.2 and Fig. 11.6.

/[Creating files with open() function

#include <iostream.h=
#include <fstream.h>

int main()

{
ofstream fout; [/ create output stream
fout.open("country"); // connect “country® to it

fout << "United States of America\n";
fout << "United Kingdomin";
fout << "South Korea\n";

fout.close(); /{ disconnect “"country" and
fout.open(“capital); {{ connect “capital®

fout << "Washington\n";

fout =< "Londonin®;

fout << "Seoulin";

fout.close(); // disconnect "capital™

// Reading the files

const int N = 80; [/ size of line

char 1ine{N];

ifstream fing J/ create input stream
fin.open("country"); [/ connect “country® to it

cout <<"contents of country file\n®;

while{fin) /f check end-of-file
{
fin.getline(line, N); J/ read a line
cout << line ; [/ display it
|
fin.close(); // disconnect "country” and

(Contd)

Copyrighted material

332e Object-Oriented Programming with C++

fin.open("capital®); : J/ connect "capital®
cout << "\nContents of capital file \n";

while{fin)
{

fin.getline{line, N);
cout =< line ;

}

fin.close();

return 0;

}

PROGRAM 11.2

The output of Program 11.2 would be;

Contents of country file
United States of America
United Kingdom

South Korea
Contents of capital file
Washington
London
Seoul
Disk conneci one
file to fout —

——([111 Program

fin
‘ ———[T [[[—~{Program)

oonnect one
film 1o firn

Fig. 11.6 ¢ Streams working on multiple files |

At times we may require to use two or more files simultaneously. For example, we may
require to merge two sorted files into a third sorted file. This means, both the sorted files
have to be kept open for reading and the third one kept open for writing. In such cases, we

Copyrighted material

Working with Files 2333

need to create two separate input streams for handling the two input files and one output
stream for handling the output file. See Program 11.3.

READING FROM TWO FILES SIMULTAMEOUSLY

f{ Reads the files creoted in Progrom 11.2

finclude <jostream.h=
finclude =fstream.h= L
#include <stdlib.h> {/ for exit() function

int main()

const int SIZE = BO;
char 1ine[SIZE];

ifstream finl, finZ; /f create two input streams
finl.open{"country®);
finZ.open("capital®);

for{int 1=1; 1==10; 1++)

{
if(finl.eof () I= 0)
(
cout =< "Exit from coumtry \n"“;
exit(l);
}

finl.getline(line, SIZE);
cout =< "Capital of "<=< line ;

{
cout << "Exit from capital\n®;
exit(l);

1

fin2.getline(line,SIZE);
cout =< line =< "\n";

)

return 0;

The output of Program 11.3 would be:

Capital of United States of America
Washington

334e Object-Oriented Programming with C++

Capital of United Kingdom
Landan

Capital of South Korea
Seoul

Il 1.4 Detecting end-of-file

Detection of the end-of-file condition 12 necessary for preventing any further attempt to
read data from the file. This was illustrated in Program 11.2 by using the statement

while(fin)

An ifstream ohbject, such as fin, returns a value of 0 if any error occurs in the file
operation including the end-of-file condition. Thus, the while loop terminates when fin
returns a value of zero on reaching the end-of-file condition. Remember, this loop may
terminate due to other failures as well. (We will discuss other error conditions later.)

There iz another approach to detect the end-of-file condition. Note that we have used the
following statement in Program 11.3;

if(finl.eof ()} 1= 0) {exit{l);]

eofi() iz a member function of ios class. It returns a non-zero value if the end-of-filelEOF)
condition is encountered, and a zero, otherwise, Therefore, the above statement terminates
the program on reaching the end of the file.

|11.5 More about Open(): File Modes

We have used ifstream and ofstream constructors and the function open() to create new
files as well as to open the existing files. Remember, in both these methods, we used only
one argument that was the filename. However, these functions can take two arguments,
the second one for specifving the file mode. The general form of the function epen() with
two arguments is:

| stream-object .open("filename", mode);

The second argument mode (ealled file mode parameter) specifies the purpase for which
the file is opened. How did we then open the files without providing the second argument in
the previous examples?

The prototype of these class member functions contain default values for the second
argument and therefore they use the default values in the absence of the artual values. The

Copyrighted material

default

Working with Files 9335

values are as follows:

iogs::in for ifstream functions meaning open for reading only.
fos::out for ofstream functions meaning open for writing only.

The file mode parameter can take one (or more) of such constants defined in the class ios.

Table 1

1.2 lists the file mode parameters and their meanings.

Table 11.2 File mode parameters

' Parameter . xl na s n e O AR e SR
ios : app | Append to end-of-file
ios ;1 ate Go to end-of-file on opening
ioa : binary Binary file
i0g ;: in Open file for reading only
i0s : nocreate Open fails if the file does not exist
105 noreplace Open fails if the file already exists
08 31 out Open file for writing only
iog 1 trunc Delete the contents of the file if it exista
-~ nole ~

1. Opening a file in ios:zout mode also opens it in the ios:trunc mode by default.

2. Both ios:app and ios:ate take us to the end of the file when it is opened. The
difference between the two parameters is that the ios::app allows us to add data
to the end of the file only, while ios:ate mode permits us to add data or to modify
the existing data anywhere in the file. In both the cases, a file is created by the
specified name, if it does not exist.

3. The parameter ioszapp can be used only with the files capable of output.

4. Creating a stream using ifstream implies input and creating a stream using
ofstream implies output. So in these cases it is not necessary to provide the
mode parameters.

5. The fstream class does not provide a mode by default and therefore, we must
provide the mode explicitly when using an object of fstream class.

6. The mode can combine two or more parameters using the bitwise OR operator
(symbol |) as shown below:

fout.open(“data”, ios::app | ios:: nocreate)
_ This opens the file in the append mode but fails to open the file if it does not 1;::1':“._.."'i

Ill.ﬁ File Pointers and Their Manipulations

Each file has two associated pointers known as the file pointers. One of them is called the
input pointer (or get pointer) and the other is called the output pointer (or put pointer). We

336e Object-Onented Programming with C++

can use these pointers to move through the files while reading or writing. The input pointer
is used for reading the contents of a given file location and the output pointer is used for
writing to a given file location. Each time an input or output operation takes place, the
appropriate pointer is automatically advanced.

Default Actions

When we open a file in read-only mode, the input pointer is automatically set at the beginning
s0 that we can read the file from the start. Similarly, when we open a file in write-only
maode, the existing contents are deleted and the output pointer is set at the beginning. This
enables us to write to the file from the start. In case, we want to open an existing file to add
more data, the file is opened in ‘append’ mode. This moves the output pointer to the end of
the file (i.e. the end of the existing contents). See Fig. 11.7. '

"helio” file
Open for readingonly |H |E |L |L | © wanl.n1
input poinksr
Oipen in append mdsde
ot s geey |H- & L] o w|o|R|L |[D]
output pointer |
:
Cpan for writing anly i
1 output poinber

Fig. 11.7 - <= Action on file poinfers while opering a file

Functions for Manipulation of File Pointers

" All the actions on the file pointers as shown in Fig. 11.7 take place automatically by default.
How do we then move a file pointer to any other desired position inside the file? This is
possible only if we can take control of the movement of the file pointers ourselves. The file
stream classes support the following functions to manage such situations:

* seekg() Moves get pointer (input) to a specified location.
® seekpl) Moves put pointer{output) to a specified location.
& tellgl() Gives the current position of the get pointer.

& tellp() Gives the current position of the put pointer.

For example, the statement

infile.seekg(10);

Working with Files @337

maoves the file pointer to the byte number 10. Remember, the bytes in a file are numbered
beginning from zero. Therefore, the pointer will be pointing to the 11th byte in the file.

Consider the following statements:

ofstream fileout;
fileout.open{"hello", ios::app):
int p = fileout.tellp();

On execution of these statements, the output pointer is moved to the end of the file "hello”
and the value of p will represent the number of bytes in the file.

Specifying the offset

We have just now seen how to move a file pointer to a desired location using the ‘seek’
functions. The argument to these functions represents the absolute position in the file. Thas
is shown in Fig. 11.8.

file
start i and

oulfile.seakp(m);

e 11 BylEs —=

file poindier

Fig. 118 < Action of single argument seck function |

= e = e T Tae PR B R

‘Beek” functions seekg() and seekp() can also be used with two arguments as follows:

seekg (offset, refposition);
seekp (offset, refposition);

The parameter offset represents the number of bytes the file pointer is to be moved from
the location specified by the parameter refposition. The refposition takes one of the following
three constants defined in the jos class:

#® ios:beg start of the file
® jos:cur current position of the pointer
® jos:zend End of the file

The seekg() function moves the associated file's ‘get’ pointer while the seekp() function
moves the associated file's ‘put’ pointer. Table 11.3 lists some sample pointer offset calls and
their actions. fout is an ofstream ohject.

3388 Ohject-Oriented Programming with C++

Table 11.3 Fointer offset calls

Seek call Aetion
fout.seekglo, ios:beg); Go to atart
fout.seekgio, 1os:cur); Stay at the current position
fout.seekgio, ios:iend); o to the end of file
Fout.seekgim,ios;: beg); Move to {m + 1ith byte in the file
fout.seekgim, jos;cur): Go forward by m byte form the current position
fout. seekgl-m,ios:curl; o backward by m bytes from the current position
fout. seekgl-m,ioz;end); Go backward by m byvtes form the end

Il].? Sequential Input and Output Operations

The file stream classes support a number of member functions for performing the input and
output operations on files. One pair of functions, put() and get(), are designed for handling
a single character at a time. Another pair of functions, write() and read(), are designed to
write and read blocks of binary data.

put() and get() Functions

The function put({) writes a single character to the associated stream. Similarly, the funetion
get() reads a single character from the associated stream. Program 11.4 illustrates how
these functions work on a file. The program requests for a string. On receiving the string,
the program writes it, character by character, to the file using the put() function in a for
loop. Note that the length of the string is used to terminate the for loop.

The program then displays the contents of the file on the screen. It uses the function
get() to fetch a character from the file and continues to do so until the end-of-file condition
is reached. The character read from the file is displayed on the screen using the operator <<.

T1/0 OPERATIONS 0N CHARACTERS |

Finclude <fostream.h=
#include =fstream.h=
Finclude: =string.h=

int mainl)

{
char strina[80];

cout << "Enter.a string \n";
cin == string;

(Contd)

Hidden page

Hidden page

Working with Files & 341

for(int i=0; i=<d; i++) J/ clear array from memory
height[i] = 03

ifstream infile;
infile.open(filename);

infile.read({char *) & height, sizeof(height));

for(i=0; i<d: i++) '

{
cout.setf(ios::showpoint);

cout =< setw(l0) << setprecision(2)
<< height[i];
)

infile.close();

return 03

PROGRAM 11.5

The output of Program 11.5 would be:
175,50 153.00 167.25

- Reading and Writing a Class Object

We mentioned earlier that one of the shortcomings of the /0 system of C is that it cannot
handle uzer-defined data types such as class objectz. Since the class objects are the central
elements of C++ programming, it i# quite natural that the language supports features for
writing to and reading from the disk files ohjects directly. The binary input and output
functions read() and write() are designed to do exactly this job. These functions handle the
entire structure of an object as a single unit, using the computer’s internal representation
of data. For instance, the function write() copies a class object from memory byte by byte
with no conversion. One important point to remember is that only data memberz are written
to the dizk file and the member functions are not.

Program 11.6 illustrates how class objects can be written to and read from the disk files.
The length of the object is obtained using the sizeof operator. This length represents the
sum total of lengths of all data members of the object.

READING AND WRITING CLASS OBJECTS

#include <iostream.h>
#include =fstream.h=
#include <iomanip.h=
(Contd)

3420 Ohject-Oriented Programming with C++

class INVENTORY

{
char name[10]; // 1tem name
int code; [/ item code
float cost; [/ cost of each item
public:
void readdata(void);
void writedata(veid);
B
void INVENTORY :: readdata(void) f/ read from keyboard
{
cout =< "Enter name: *; cin >> name;
cout =< "Enter code: ®:; cin =» code;
cout =< "Enter cost: "; cin >> cbst;
}
void INVENTORY :: writedata(void) // formatted display on
{ /f screen
cout =< setiosflags(ios::left)
<< setw(l0) << name
<< setiosflags({ios::right)
<< setw(10) =< code
<< setprecision(2) °
<< setw(10) =< cost
== pnd];
}
int main()
{
INVENTORY item[3]; // Declare array of 3 objects
fstream file; {/ Input and output file

file.open("STOCK.DAT®, ios::in | 1os::0ut);
cout << "ENTER DETAILS FOR THREE ITEMS \n";
for(int i=0;i<3;i++)
i item[1] . readdata();
file.write((char *) & item[i],sizeof(item[i]));

(Contd)

Copyrighted material

Working with Files ® 343

file.seekg(D); J/ reset to start

cout =< "\nOUTPUT\nA\n";

for{i = 0z 1 <= 31 i++)

I file.read({({char *) & item[i], sizeof(item[i]));
item[i] .writedata();

}

file.close();

return 0;

PROGRAM 11.6

The output of Program 11.6 would be:

ENTER DETAILS FOR THREE ITEMS
Enter name: C++

Enter code:; 101

Enter cost: 175

Enter name: FORTRAN

Enter code: 102

Enter cost: 150

Enter mame: JAVA

Enter code: 115

Enter cost: 225

OUTPUT

(++ 101 175
FORTRAN 102 150
JAVA 115 225

The program uses “for’ loop for reading and writing objects. This is possible because we
know the exact number of objects in the file. In case, the length of the file is not known, we
can determine the file-size in terms of objects with the help of the file pointer functions and

use it in the “for’ loop or we may use whileifile) test approach to decide the end of the file.
These technigues are discussed in the next section.

Ill.E Updating a File: Random Acess

Updating is a routine task in the maintenance of any data file. The updating would include
one or more of the following tasks:

@ Displaying the contents of a file.

Hidden page

Hidden page

3460—

Object-Oriented Programming with C++

cout << "CONTENTS OF APPEMDED FILE \n";

while(inoutfile.read((char *) & item, sizeof item))
i

item.putdata();
)

[/ Find number of objects in the file
int last = inoutfile.tellg();
int n = last/sizeof(item);

cout << "Mumber of objects = " << n << "\n";
cout =< "Total bytes in the file = ™

< last == "hn":
J* >322322= MODIFY THE DETAILS OF AN ITEM =<<<<c<<< */
cout =< "Enter object pumber to be updated \n®;

int object;

cin == pbject;

cin.get(ch);

int location = (object-1) * sizeof(item):

if{inoutfile.eof())
inoutfile.clear();

inputfile.seekp(location);

cout =< "Enter new values of the object \n";
item.getdata();

cin.get(ch);

inoutfile.write{(char *) & itam, sizeof item) =< flush:
J* >5533333555>> SHON UPDATED FILE c<cccecccecce<e */
inoutfile.seeka(0}); //ao to the start

cout << "CONTENTS OF HPDATED FILE \n";

while{inoutfile.read({char *) & item, sizeof item})
{
(Contd)

Hidden page

Hidden page

Working with Files @349

5. We may use an invalid file name.
6. We may attempt to perform an operation when the file is not ﬂpened for that

Purpose.,

The C++ file stream inherits a 'stream-state’ member from the class ios. This member
records information on the status of a file that is being currently used. The stream state
member uses bit fields to store the status of the error conditions stated above.

The class ios supports several member functions that can be used to read the status
recorded in a file stream. These functions along with their meanings are listed in

Table 11.4.

Table 11.4 Error handling ﬁm::h'an.s

e

Bt gl

eof() Returns ¢rue (non-zero value) if end- l'.'rfﬁlﬂ ia &nmunterﬂd Whl]; readmg'.
Otherwise returns falze(zera)

fail() Returns ¢rue when an input or output operation has failed

bad() Returns frue if an invalid operation is attempted or any unrecoverable

error has eccurred. However, if it is false, it may be possible to recover
from any other error reported, and continue operation.

goodi) Returns true if no error has occurred. This means, all the above functions
are false, For instance, if file.good(} is frue, all is well with the stream

file and we can proceed to perform [0 operations. When it returns fafse,
no further operations can be carried out.

These functions may be used in the appropriate places in a program to locate the status
of a file stream and thereby to take the necessary corrective measures. Example:

ifstream infile;
infile.open(“ABC");
while(linfile.fail())

..... (process the file)

if(infile.eof())
{

else

ceens (terminate program normally)

Hidden page

Working with Files # 351

The command-line arguments are typed by the user and are delimited by a space. The
first argument iz always the filename (command name) and contains the program to be
executed. How do these arguments get into the program?

The main() functions which we have been using up to now without any arguments can
take two arguments as shown below:

main{int arac, char * argv([])

The first argument arge (known as argument! counter) represents the number of
arguments in the command line. The second argument argv (known as argument vector) is
an array of char type pointers that points to the command line arguments. The size of this
array will be equal to the value of arge. For instance, for the command line

C > exam data results

the value of arge would be 3 and the argv would be an array of three pointers to strings as
shown below:

argv[0] =--> exam
argv[l] ---> data
argy[2] =--> results

Note that argv[0] always represents the command name that invokes the program. The
character pointers argv[l] and argv[2] can be used as file names in the file opening
statements as shown below:

infile.openlargv(l]);: // open data file for reading

& 'ER]

putfile,open{argv[2]); // open results file for writing

Program 11.8 illustrates the use of the command-line arguments for supplying the file
names. The command line is

test 0DD EVEM

The program creates two files called ODD and EVEN using the command-line arguments,
and a set of numbers stored in an array are written to these files. Note that the odd
numhbers are written to the file ODD and the even numbers are written to the file EVEN.
The program then displays the contents of the files.

Copyrighted material

4
.

e g E"'l!:l,_',{ ""EE"‘:E-

?.

W

T e B e
kS BE B

Copyrighted material

Warking with Files # 353

foutl.close();
foutZ.close();

ifstream fing;
char ch;
for(1=1; i<argc; 1++)
{
fin.open{argv[i]);
cout =< “"Contents of " =< argv[i] << "\n";

do
{ .
fin.get{ch);: // read a value
cout <= ch; // display it
}
while(fin);
cout << "\n\n";
: fin.close();
]
return 0;

}

PROGRAM 11.8

The output of Program 11.8 would be:

Contents of ODD
11 33 55 77 99

" Contents of EVEN
22 44 66 &8

\ - SUMMARY _ -

4% The C++ I/ system contains classes such as ifstream, ofstream und fstream to deal

with file handling. These classes are derived from fstreambase class and are declared
in a header file insfream.

< A file can be opened in two ways by using the constructor function of the class and
using the member function open() of the class.

% While opening the file using constructor, we need to pass the desired filename as a
parameter to the constructor.

& The openl) function can be used to opon multiple files that use the same stream object.

The second argument of the open() function called file mode, specifies the purpose for
which the file is opened.

Copyrighted material

354 @ Object-Oriented Programming with Ce+

¢ If we do not specify the second argument of the open() function, the default values

gpecified in the prototype of these class member functions are used while opening the
file. The default values are as follows:

ios :: inm - for ifstream functions, meaning=open for reading omly.
ios :: out — for ofstream functions, meaning-open for writing omly.

4 When a file iz opened for writing only, a new file is created only if there is no file of that
name. If a file by that name already exists, then its contents are deleted and the file is
presented as a clean file.

4> To open an existing file for updating without losing its original contents, we need to
open it in an append mode.
4> The fstream class does not provide a mode by default and therefore we must provide

the mode explicitly when using an object of fstream class. We can specify more than
one file modes using bitwise OR operator while opening a file.

&» Each file has associated two file pointers, one is called input or get pointer, while the
other is called output or put pointer, These pointers can be moved along the files by
member functions.

< Functions supported by file stream classes for performing 'O operations on files are as
follows:

put{) and get() functions handle single character at a time,
write() and read() functions write and read blocks of binary data.

¢» The class ios supports many member functions for managing errors that may oecur
during file operations.

4% File names may be supplied as arguments to the main() function at the time of invoking
the program. These arguments are known as command-line arguments,

Key Terms

» append mode » binary format

» arge » character format
» argument counter > clear()

» argument vector » command-line

> argv » end-of-file

> bad() > eofi()

» binary data > fail()

(Contd)

file mode

file mode parameters
file pointer
file stream classes
file streams
filebuf

files

fstream
fatreambase
get pointer
gotl()

goodi)
ifstream
input pointer
input stream
ins

ioscapp
ios:ate
ios:beg
ios:binary
iosscur
ios:zend

I Review Questions

Y Y Y Y Y Y Y Y Y YY Y YYYYYYYYYY

Working with Files

11.1 What are input and output streams?

11.2

¥ Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYYYY

@355

ios:in
iosznocreate
o8 ;out
ios:moreplace
ios:iirune
iostream
ofstream
open()

output ponter
output stream
put pointer
put()

random gccass
read()
seekg()
seekp()
sizeof()
streams
tellg()

tellp()
updating
write()

What are the steps involved in using a file in a C++ program?

11.3 Describe the various classes available for file operations.

11.4

What is the difference between opening a file with a constructor function and

opening a file with open() function? When is one method preferred over the

other?

11.5
fin stream

11.6
11.7

if with a file name DATA.

Explain how while(fin) statement detects the end of a file that is connected to

What is a file mode? Describe the various file mode options available.
Write a staternent that will create an object called fob for writing, and associale

356 Object-Oriented Programming with C++

11.8 How many file objects would you need to create to manage the following situations?
ta) To process four files sequentially.
ib) To merge two sorted files into a third file.
Explain.

11.9 Both ios::ate and fos:app place the file pointer at the end of the file (when it is
opened). What then, is the difference between them#

11.10 What does the “current position” mean when applied to files?
11.11 Write stafements using seekg() to achieve the following:
(a) To move the pointer by 15 positions backward from current position.
(b} To go to the beginning after an operation is over.
(e} To go backward by 20 bytes from the end.
(d} To go to byte number 50 in the file.
11.12 What are the advantages of saving data in binary form?

11.13 Describe how would you determine number of objects in a file. When do you
need such information?

11.14 Describe the various approaches by which we can detect the end-of-file condition

successfully.
11.15 State whether the following statements are TRUE or FALSE.
(a) A stream may be connected fto more than one file at a time.
(b} A file pointer alwavs contains the address of the file,
(el The statement
outfile.write((char *) & obj,sizeof{obj));
writes only doto in obj fo outfile.
{d) The ios:ate mode allows us to write data anywhere in the file.
(e) We can add data to an existing file by opening in write mode.
(f)y The parameter iosmapp can be used only with the files capable of output,

(g) The data written to a file with write() function can be read with the get()
function.

th) We can use the functions tellp() and tellg() interchangeably for any file.

(i) Binary files store floating point values more accurately and compactly than
the text files.

(j) The fin.fail() call returns non-zero when an operation on the file has failed.

I Debugging Exercises

11.1 Identify the error in the following program.

#include =jostream.h=
#include <fstream.h>

void mainl)

Copyrighted maierial

Hidden page

358 Ohject-Oriented Programming with C++

while(!in.getline(buffer, 80))
{

cout =< buffer << endl;

while{!in.getline(buffer, 80).eof())
{

cout =< puffer =< endl;

}

11.4 Find errors in the following statements.
(a) ifstream.infile("DATA");
(b) finl.getline(); //finl 15 input stream
(¢) if(finl.eof() == 0) exit{l);
(dy close(fl);
(e) infile.open{arge);
(fH sfinout.open(file,fos::in |fos::out| ios::ate);

I Programming Exercises

11.1 Write a program that reads a text file and creates another file that iz identical
except that every sequence of conseculive blank spaces is replaced by a single
space.

11.2 A file containg a {ist of telephone numbers in the following form:;

John 23456

Ahmed 9876

separated by white spaces. Write a program to read the file and output the list in
two columns, The names should be left-justified and the numbers right-justified.

11.3 Write a program that will create a data file containing the list of telephone numbers
given in Exercise 11.2. Use a class object lo store each sel of data,

11.4 Write an interactive, menu-driven program thal will access the file created in
Exercise I11.8 and implement the following tasks.
(a) Determine the telephone number of the specified person.
(b) Determine the name if a telephone number s known.

ic) Update the telephone number, whenever there (s a change.

Copyrighted material

12

| Templates |

Key Concepts 12.1 Introduction
Templates is one of the features added to
» Generic programming C++ recently. It iz a new concept which
» Multiple parameters in class enable us to define generic classes and
templates funr:t%nns and th}lE pruvidlea support F'ur
» Function templates it ”‘ﬁmmmmﬁ'ﬂﬂm Programiving
P late functions manappmachmfhereget_wnct}'paam'eused
Pyipiake funchons as parameters in algorithms so that they
» Member function templates work for a variety of suitable data types

» (Class templates and data structures.

: IE';l]lTI]tF:]]?F;?I.::J:;: ::H:H in class A template canlbe used to create a family
SR ; of classes or functions. For example, a class
templates template for an array class would enable
» Overloading of template funetions us to create arrays of various data types
> Nﬂn-‘r:lr"pf_ﬁ r.:_:-'|'|1_'|_'_|'|;1_1:|_- aArguments such as int Array and float array.

Similarly, we can define a template for a
function, say mul(), that would help us create various versions of mul() for multiplying int,
float and double type values.

A template can be considered as a kind of macro. When an object of a specific type is
defined for actual use, the template definition for that class is substituted with the required
data type. Since a template iz defined with a parameter that would be replaced by a specified
data type at the time of actual use of the class or function, the templates are sometimes
called parameterized classes or functions.

360 e Object-Ortented Programming with Cs+
12.2 Class Templates

Consider a vector class defined as follows:

class vector
{
int *v;
int size;
public:
vector(int m) /[create a null vector
{
v = new int[size = m];
for(int i=0; i<size; i++)

v[i] = 03
I
vector(int *a) /[create a vector from an array
{
for{int 1=0; i<size; i++)
v[i] = a[i];
}
int operator*(vector &y) /! scalar product
{
int sum = 0;

for(int i=0; i<size; i++)
sum += this -> y[i] * y . v[i]:
return sum;
}
1B

The vector class can store an array of int numbers and perform the scalar product of two
int vectors as shown below:

int main()

{
int x[3] = {1.2,3);
int y[3] = {4,5.6};

vector v1(3); /[Creates o null vector aof 3 integers
vector vZ(3):

vl = x3 /[Creates vl from the array x

v = ¥}

int B = vl * w2;
cout =< "R = " << R
return 0;

Copyrighted material

Templates # 361

Now suppose we want to define a vector that can store an array of float values. We can
do this by simply replacing the appropriate int declarations with float in the vector class.
This means that we have to redefine the entire class all over again.

Assume that we want to define a vector class with the data type as a parameter and then
use this class to ereate a veetor of any data type instead of defining a new class every time.
The template mechanism enables us to achieve this goal.

As mentioned earlier, templates allow us to define generic classes. It is a simple process _
to ereate a generic class using a template with an anonymous type. The general format of a
class template is:

template<class =
class claossnome
{
I —
Jf class member spectificotion
/{ with enonymous type T
[/ wherever appropriote
L —
¥

The template definition of vector class shown below illustrates the syntax of a template:

template<class T>
class vector

{
T v; /{ Type T vector
int size;
public:
vector(int m)

v = new T [size = m];
for(int i=0; i=size; i++)
w[i] = O
i
vector(T* a)

for{int i=0; i<size, i++)

v[1] = a[i];:
T operator*(vector Ly)
T sum = 0;
for(int 1=0; i=size; i++)

sum += this -= v[i] *y . v[i];
return sum:

s

Copyrighted material

362e Object-Oriented Programming with C++

- reote ~
The class template definition is very similar to an ordinary class definition except the
prefix template<class T> and the use of type T. This prefix tells the compiler that we
are going to declare a template and use T as a type name in the declaration. Thus, vector
has become a parameterized class with the type T as its parameter. T may be substituted
by any data type including the user-defined types. Now, we can create vectors for holding

\gil’l’emnt data types. ,
Example:
vector <int> v1{10); ff 10 element int wvector
vector =float> vZ(25); {! 25 element floot vector
note

The type T may represent a class name as well. Example:

vector <complex> vi(5); ff vector of § complex numbers

A class created from a class template is ealled a template class. The syntax for defining an
ohject of a template class is:

classname<type> objectname(arglist);

This process of creating a specific class from a class template is called instantiation. The
compiler will perform the error analysis only when an instantiation takes place. It is,
therefore, advisable to create and debug an ordinary class before converting it into a template.

Programs 12.1 and 12.2 illustrate the use of a vector class template for performing the
scalar product of int type vectors as well a= float tvpe vectors.

Example of Class Template

finclude <iostream=
using namespace std;
const size = 3;

template =class T=
class vector
{
T" v; [l type T vector
public:
vector()

{
(Contd)

The output of the Program 12.1 would be:

R =32

ANOTHER EXAMPLE OF CLASS TEMPLATE

Copyrighted material

364 e Chyect-Oniented Programming with C++

class yector

{
T wv; I/ type T vector
public:
vectar()
{
v = new Tlsizel;
for(int i=0;i<size;i++)
v[i] = 0;
]
vector(T* a)
1
for(int i=0;i<size;i++)}
w[i]l = a[il;
}
T operator*(vector &y)
{
T sum = 0y
for{int i=0;i<size;i++)
sum += this -= v[i] * y.v[1];
return sum;
)
H
int main{)
{
float x[3] = {1.1.2.2.3:3};
float v[3] = {4.4.5.5.6.6};

vector =float> vl;

vector =float> v2;

wl = x;

V2 = y:

Tlpat R = v1 * vZ;

cout =< "R = " << R <= "\n";

return 0

PROGRAM 12.2

The output of the Program 12.2 would be;

R = 38.720001

Templates # 365

IIZ.S Class Templates with Multiple Parameters

We can use more than one generic data type in a class template. They are declared as a
comma-separated list within the template specification as shown below:

template<class 71, class 72, .»
class clossmame

{

{Body of the class)

];..

Program 12.3 demonstrates the use of a template class with two generic data types.

TWl GEMERIC DATA TYPES IN A CLASS DEFINITION

#include <iostream
using namespace std;

template=class T1, class T2=
class Test

{
Tl a;
T2 b;
public:
{est{?l x, T2 ¥)

a=x;
b =y;

void show()

{ cout << g =< " and " << b << "\n";
b
1nt main()

Test <float,int> testl (1.23,1

.123):
Test <int,char> test2 (100,'W")

testlishnuE}:_
test2.show();

return 0;

PROGRAM 12.3

366 @ Ohject-Orented Programming with C++
The output of Program 12.3 will be would be:

1.23 and 123
100 and W

|1z.-i Function Templates

Like class templates, we can alzo define function templates that could be uzed to create a
family of functions with different argument types. The general format of a function template is:

template<class T>
returntype functionome (arguments of type T)

[

[/ Body of function
[/ with type T
/! wherever appropriate
P
}

The function template syntax is similar to that of the class template except that we are
defining functions instead of classes. We must use the template parameter T as and when
necessary in the function bedy and in its argument list.

The following example declares a swap() function template that will swap two values of
a given type of data.

template=class T»>
void swap(Thx, Thy) -~

{
T temp = x;
X =y
y = temp;
|

This essentially declares a set of overloaded functions, one for each type of data. We can
invoke the swap() function like any ordinary function. For example, we can apply the
swap() function as follows:

void f(int m,int n,float a,float b)

{
swap({m,n); [/ swap two integer volues
swap{a,b): /[swap two float valuwes
Il cenas

Hidden page

Hidden page

Hidden page

370

Obfect-Oriented Programming with C++

AN APFLrtiilnI'ﬁ

#include <iostream=
#Finclude <iomanip>
#include <cmath>

using namespace sitd;

template <class T=
void roots(T 2,7 b,T c)

}

Td=b*h - d*ascy

if(d == Q) // Roots are equal
{
cout << "Rl = R2 = " << -b/(2%a) << endl;
else if(d = 0) , {{ Two real roots
{

cout << "Roots are real \n";
float R = sqrtid);

float R1 = (-b+R)/{2%a);
float R2 = (-b-R)/(2%a);

cout == "Rl = ¥ == Rl =< " and ";

cout == A2 = * =< BF =< ppd]; .
! I
glse /f Roots are complex

cout =< “"Roots are complex \n®;

float R1 = -b/(2*a}:

float R2 = sgrt(-d}/(2*a);

cout =< "Real part = " << Rl =< endl;
cout << "Imaginary part = " << RZ;
cout =< endl;

int main()

{

cout =< “"Integer coefficients \n";
roots(1,-5,6);

cout =< "\nFloat coefficients Yn";
roots{1.5,3.6,5.0);

return 0;

PROGRAM 12.6

Copyrighted material

Templates 2371
The output of Program 12.6 would be:

Integer coefficients
Roots are real

Rl = 3 and RZ = 2

Float coefficients

Roots are complex

Real part = -1.2
Imaginary part = 1.375985

|12.5 Function Templates with Multiple Parameters

Like template classes, we can use more than one generic data type in the template statement,
using a comma-separated list as shown below:;

template<class 71, class 72, .»
returntype functionnome (arguments of types T1, T2,.)

vrees (Body of function)

EE+AE

}

Program 12.7 illustrates the concept of using two generic types in template functions.

FUNCTION WITH TWO GENERIC TYPES

#Finclude <iostream=
#include =string>

using namespace std;

template=class T1, class T2»
void display(Tl x, TZ y)
{

Ccout === T sy Yipf

int main()

{

display(1999, “EBG");
display(12.34, 1234);
return 0;

PROGRAM 12.7

372e Object-Oriented Programming with C++

The output of Program 12.7 would be:

1999 EBG
12.34 1234

I 12.6 Overloading of Template Functions

A template function may be overloaded either by template functions or ordinary functions
of its name. In such cases, the overloading resolution is accomplished as follows:

1. Call an ordinary function that has an exact match.
2. Call a template function that could be created with an exact match.
3. Try normal overloading resolution to ordinary functions and call the one that matches.

An error is generated if no match is found. Note that no automatic conversions are applied
to arguments on the template functions. Program 12.8 shows how a template function is
overloaded with an explicit function.

TEMPLATE FUNCTION WITH EXPLICIT: FUNCTION

#include <iostream
#include =<string>

using namespace std;

template =class T=
vold display(7 x)
{

|
void display({int x) [/ overlogds the generic displayi)

|
}

cout =< "Template display:

o€ N =t *yn":

" oo ox = "\n":

cout << “Explicit display:

int main()

{
display(100);
display(12.34):
display('C'):

return 03

PROGRAM 12.8

Hidden page

374e Ohject-Oriented Programming with C++

vector<T> :: vector(int m)

{
v = new T[size = m]:
for{int i=0; i=<size; i++)
v[i] = Oy
}

template< class T=
vector<T> :: vector{T* a)
i
for(int 1=0; i<size; i++)
v[i] = ali];
)

template< class T>
T vector<T> :: operator*(vector & y)
{
T sum = 0;
for(int 1 = 05 1 < size; i++)
sum += this == v[i] * y.v[i];
return sum;

i '

I 12.8 Non-Type Template Arguments

We have seen that a template can have multiple arguments. It is also possible to use non-
type arguments. That ig, in addition to the type argument T, we can also use other arguments
such as strings, function names, constant expressions and built-in types. Consider the
following example:

template=class T, int size=
class array
{

T a[size]; /[outomgtic orray initiolizotion

This template supplies the size of the array as an argument. This implies that the size of
the array is known to the compiler at the compile time itself. The arguments must be
specified whenever a template class is created. Example:

array<int, 10> al; / Arrgy of 10 integers
array<float,5> aZ; ff Array of § floots
array<char,20> aj; S String of size 20

The size is given as an argument to the template class.

Copyrighted material

Templates 8375

\ . SUMMARY /

C++ supports a mechanism known as template to implement the concept of generic
programming.

% Templates allows us to generate a family of classes or a family of funetions to handle

&t ¢

& ¢

different data types.

Template classes and functions eliminate code duplication for different types and thus
make the program development easier and more manageahle.

We can use multiple parameters in both the class templates and function templatas.
A specific class created from a class template is called a template clazs and the process

of creating a template class is known as instantiation. Similarly, a specific function
created from a function template 12 called a template function.

Like other functions, template functions can be overloaded.

Member functions of a class template must be defined as function templates using the
parameters of the class template.

¢ We may also use non-type parameters such basic or derived data types as arguments

templates.
Key Terms

» bubble sort » parameteriged classes
» - class template » parameterized functions
> displayi) > swapping
» . explicit fonction * swapl)
» . function template » template
¥+ generic programming » template class
» 1 inetantiation » template definition
» “member function template > template function
»- multiple parameters » template parameter
» overloading » template specification
> parameter > templates

12.1
12.2

12.3
12.4
12.6

12.6

12.7

Object-Oriented Programming with C++

What is generic programming? How is it implemented in C++?
A termnplate can be considered as a kind of maero. Then, what is the difference
between themf
Distinguish between overloaded funections and function templates.
Distinguish between the terms class template and template class.
A elass (or function) template is known as a parameterized class (or function).
Comment.
State which of the following definitions are illegal.
(a) template<class T=>
class city
R -
{h) template=class P, R, class 5=
class city
{ o}
(c) template=class T, typename 5=
class city
{— 1
{d) template<class T, typename 5=
class city
| P T
(@) class<class T, int size=1l(0=
class 1ist
 — }
(f) class<class T = int, int size>
class list
[-}
Identify which of the following function template definitions are illegal.
{a) template=class A, B>
void fun(A, B)
{ —};
{b) template=class A, class A=
void fun(A, A)
{ — 1
(c) template=class A=
void fun{A, A)
[}}

2377

{ F
Debugging Exercises
12.1 Identify the error in the following program.
#include <ipstream.h>
class Test
{
int intNumber;
float floatMumber;
public:
Test()
{
intNumber = 0;
floatNumber = 0.0;
}
int getNumber()
{
return intNumber;
I
float getNumber()
{
return floatMumber;
I
bi
vold main()
{
Test objTestl;
objTestl.getNumber();
}
12.2 Identify the error in the following program.

Templates

{d) template<class T, typename R>
T fun(T, R)
[

() template<class A=»
A fun(int *A)

#include <jostream.h>
template =class Tl, class T2=

Hidden page

Hidden page

. - o

¥Y¥¥Yy ¥ ¥ ¥ ¥¥YY¥%

13

Exception Handling |

Key Concepts

Errors and exceptions
Throwing mechanism

Multiple catching

Rethrowing exceptions
Exception handling mechanism
Catching mechanism

Catehing all exceptions

Restricting exceptions thrown

13.1 Introduction

We know that it is very rare that a program
works correctly first time. It might have
bugs. The two most common types of bugs
are [ogic errors and syntactic errors. The
logic errors oceur due to poor understanding
of the problem and sclution procedure. The
syntactic errors arise due to poor
understanding of the language itself We
can detect these errors by using exhaustive
debugging and testingr procedures.

We often come across some peculiar
problemsa other than logic or syntax errors.
They are known as exceptions. Exceptions
are run time anomalies or unusual
conditions that a program may encounter
while executing. Anomalies might include

conditions such as division by zero, access to an array outside of its bounds, or running out
of memory or disk space. When a program encounters an exceptional condition, it is important
that it is identified and dealt with effectively. ANSI C++ provides built-in language features
to detect and handle exceptions which are basically run time errors.

Exception handling was not part of the original C++. It is a new feature added to ANSI
C++. Today, almost all compilers support this feature. C++ exception handling provides a

Exception Handling 8 381

type-safe, integrated appi'oach, for coping with the unusual predictable problems that arise
while executing a program.

|13.2 Basics of Exception Handling

Exceptions are of two kinds, namely, synchronous execeptions and asynchronous exceptions.
Errors such as "out-of-range index" and "over-flow" belong to the synchronous type exceptions.
The errors that are caused by events bevond the control of the program (such as keyboard
interrupts) are called asynchronous exceptions. The proposed exception handling mechanism
in C++ is designed to handle only synchronous exceptions.

The purpose of the exception handling mechanism is to provide means to detect and
report an "exceptional circumstancs” so that appropriate action can be taken. The mechanism
suggests a separate error handling code that performs the following tasks:

1. Find the problem (Hif the exception).

2. Inform that an error has occurred (Throw the exception).
3. Receive the error information (Catch the exception).

4. Take corrective actions (Handle the exception).

The error handling codiz basically consists of two segments, one to detect errors and to
throw exceptions, and the other to catch the exceptions and to take appropriate actions.

|15.3 Exception Handling Mechanism

C++ exception handling mechanizm is

basically built upon three k eywords, namely,

try, throw, and catch. The keyword try is try block
used to preface a block of statements

{surrounded by braces) which may generate Detects and throws
exceptions. This block of stsitements is known an exception

as try block. When an exce:ption is detected,
it is thrown using a throw statement in the

try block. A catch bloclk defined by the Exception
keyword eateh ‘catches’ the exception obpect
‘thrown’ by the throw statement in the try cateh block
block, and handles it appropriately. The
relationship is shown in Fijz. 13.1. Catches and handies
the exception
The eateh block that catiches an exeeption

must immediately follow the try block that

throws the exception. The general form of Fig. 13.1 4= The block Hirowing exception
these two blocks are as follows:

382e Object-Oriented Programming with C++

try
{
throw exception; J/ Block of statements which
srara ' J[detects and throws an exception
-}
catch(type arg) /| Catches exception
{
..... J/ Block of stotuments that
..... /[handles the evception
}

When the try block throws an exception. the program control leaves the try block and
enters the catch statement of the catch block. Note that exceptionz are objects used to
transmit information about a problem. If the type of object throw'n matches the arg type in
the catch statement, then catch block is executed tor handling the exception. If they do not
match, the program is aborted with the help of the abort() furiction which is invoked by
default. When no exception i=s detected and thrown, the control goes to the statement
immediately after the catch block. That is, the catch block is skiproped. This simple try-catch
mechanism is illustrated in Program 13.1.

TRY BLOCKE THROWING AN EXCEFTIDN

#nclude <iostreams

using namespace std;
int main()
{
. int a,b;
cout << "Enter Values of a and b ‘\n";
cin *> a3
cin »> b;
int x = a-b;
try
{

“Af(x 1= 0)

{

(Cantd)

Copyrighted maierial

Exreption Hondiing # 383

colt == *Result{a/x) = " <@ fn << "\n";
I
else : {/ There is an exception
{
throw(x); // Throws int object
I
|
catch(int 1) [/ Catches the exception

{

cout <= "Exception caught: x = ® << x =< "\n";
|
cout <= "END";

return 0;

PROGRAM 13.1

The output of Program 13.1:

First H'un
Enter Yalues of a and b
20 165
Result({a/x) = 4
END

Second Run
Enter Values of a and b
10 10
Exception caught:; x = 0
END

Program detects and catches a division-by-zero problem. The output of first run shows a
successful execution. When no exception is thrown, the eateh block is skipped and execution
resumes with the first line after the eateh. In the second run, the denominator x becomes
zero and ther-efore a division-by-zero situation occurs. This exception is thrown using the
ohject . Sinoe the exception object is an int type, the cateh statement containing int type
argument catches the exception and displays necessary message.

Most often, exceptions are thrown by functions that are invoked from within the try
blocks. The point at which the throw is executed is called the throw point. Once an exception
is thrown to thiz cateh block, control eannot return to the throw point. This kind of relationship
is shown in Fig. 13.2.

384e Ohject-Oriented Programming with C++

Throw point

Function that causes
an exception

Throw Iinvokes a function that
exception containg an exception

Catches and handies
thi exception

The general format of code for this kind of relationship is shown below:

Copyrighted material

Exception Handling *385

riode

The try block is immediately followed by the ecatch block, irrespective of the location of
the throw point.

Program 13.2 demonstrates how a try block invokes a function that generates an exception.

INVOKING FUNCTION THAT GENERATES EXCEPTION

/! Throw point outside the try block
#include <ipstream=
using namespace std;

void divide(int x, int y, int z)

{
cout == "\nWe are inside the fumction \n";
if{{x-y) 1= 0) J/ 1t is OK

int R = z/({x-y};
cout =< "Result = " =< R =< "\p";

else /| There is a problem . -
throw(x-y); [/ Throw point :

|

int main()

{

try

{
cout << "We are inside the try block \n";
divide(10,20,30); // Invoke divide[)
divide(10,10,20); // Invoke divide()

I

catch(int 1) /! Catches the exception

{

cout << "Caught the exceptiom \n";
1
return 03

PROGRAM 13.2

Hidden page

Exception Handling @ 387

braces. The catch statement catches an exception whose type matches with the type of
catch argument. When it is caught, the code in the cateh block is executed.

If the parameter in the catch statement is named, then the parameter can be used in the
exception-handling code. After executing the handler, the control goes to the statement
immediately following the catch block.

Due to mismatch, if an exception is not caught, abnormal program termination will occur.,
It is important to note that the catch block is simply skipped if the catch statement does
not catch an exception.

Multiple Catch Statements

It is possible that a program segment has more than one condition to throw an exception. In
such cases, we ean associate more than one cateh statement with a try (much like the
conditions in a switch statement) as shown below:

try
{
// try block
}
catch(typel arg)
{
/[catch blockl
I
catch(type? arg)
{
J/ catech block2
I

EFFFEE

& F R

catch(typeN arg)
{

}

When an exception is thrown, the exception handlers are searched in order for an
appropriate match. The first handler that yields a match is executed. After executing
the handler, the control goes to the first statement after the last catch block for that
try. (In other words, all other handlers are bypassed). When no match is found, the program
i8 terminated.

f/ catch blockN

It is possible that arguments of several catch statements match the type of an exception.
In such cases, the first handler that matches the exception type is executed.

Hidden page

Hidden page

Hidden page

Exception Handling @391

reode

Remember, catch(...) should always be placed last in the list of handlers. Placing it
before other cateh blocks would prevent those blocks from catching exceptions.

I 13.6 Rethrowing an Exception

A handler may decide to rethrow the exception caught without processing it. In such
situations, we may simply invoke throw without any arguments as shown below:

Ehrow;

This causes the current exception to be thrown to the next enclosing try/cateh sequence
and is caught by a catch statement listed after that enclosing try block. Program 13.5
demonstrates how an exception is rethrown and caught.

#include <iostream-
using namespace std;
void divide(double x, double y)

(
cout << "Inside function \n";

try
{
tf(y == 0.0)
throw wi /! Throwing double
else
cout << "Division = " =< xfy << "\n";
|
catch({double) {{ Catch o double

{
cout << "Caught double inside funmction ‘n";
Ehrow; /f Rethrowing double

]

cout << "End of function \n\n®;

|

int main{)
{
cout =< "Inside main \n";

(Comid)

3928 Object-Oriented Programming with Ces

try
|

divide(10.5,2.0)¢
: divide(20.0,0.0);
Eatch{duuh]e]

'l
|

cout << "End of main \n*":

cout << "Caught double inside main ‘n®;

return 03

PROGRAM 13.5

The output of the Program 13.5:

Inside main

Inside function
Diwigsion = 5.25
End of function

Inside function

Caught double inside function
Caught double inside main
End of main

When an exception is rethrown, it will not be caught by the same catch statement or any
other catch in that group. Rather, it will be caught by an appropriate catch in the outer
try/eatch sequence only.

A eatch handler itself may detect and throw an exception. Here again, the exception
thrown will not be caught by any catch statements in that group. It will be passed on to the
next outer try/cateh sequence for processing.

13.7 Specifying Exceptions

It is possible to restrict a function to throw only certain specified exceptions. This is achieved
by adding a throw list clause to the function definition, The general form of using an

exceplion specification is:

type function(arg-1ist) throw (type-list)

...... Function body

Hidden page

Hidden page

Exception Handling @ 395

< A try block may throw an exception directly or invoke a function that throws an
exception. Irrespective of location of the throw point, the catch block iz placed
immediately after the try block.

% We can place two or more catch blocks together to catch and handle multiple types of
exceptions thrown by a try block.

& It is also possible to make a catch statement to catch all types of exceptions using
ellipses as its argument.

% We may also restrict a function to throw only a set of specified exceptions by adding a
throw specification clause to the function definition.

Key Terms
» abort() function » multiple catch
» asynchronous exceptions » out-of-range index
» bugs > overflow
» eatch block » rethrowing exceptions
» eatchi...) statement » synchronous exceptions
» catching mechanism » syntactic errors
> errors > throw
» exception handler » throw point
» exception handling mechanism > throw statement
» exception specifyving » throwi)
» exceptions » throwing mechanism
» logic errors » try block

IReuierum

13.1 What is an exception?
13.2 How is an exception handled in C++7

13.3 What are the advantages of using exception handling mechanism in a program?
13.4 When should a program throw an exception?

13.5 When is a catch(...) handler is used?

13.6 What iz an exception specification? When is if used?

13.7 What should be placed inside a try block?

13.8 What should be placed inside a cafch block?

13.9 When do we used multiple cateh handlers?

Hidden page

13.2

Exception Handling

break;
case 30:

throw "Employee®;

break;

}

void operator ++()

[

age+=10;

F

void main()

{
Person objPerson(10);
objPerson.getOccupation();
++objPerson;
objPerson.getOccupation();
++objPerson;
objPerson.getOccupation();

}

Identify the error in the following program.

fFinclude <iostream.h>

void callFunction{int i)
1
(1)
throw 1;
else
throw 03

|

void callFunction({char *n)
{
try
{
ifin)

throw "StringOk";

® 397

Copyrighted material

3%se Object-Oriented Programming with C++

else
throw “StringError®;
!

catch{char® name)

{

cout =< name =< " ";

}
void main()
{
try
1
callFunction("test3tring”);
callFunction(1);
callFunction(0);
!
catch(int i)
1
cout <= § <2 U " »
|
catch{char *name)
1
cout =< name =< * "3
| .
}

13.3 Identify the error in the following program.

#include <iostream.h>

class Mammal
{

public:
Mammal ()

{
|

class Human
{

Copyrighted material

B
class Student
{
F
class Employee :
{
¥
void getObject()
{
throw Employee();
|
I3
void main()
{
Mammal mg
try
{
m.getObject();
}
catch(Mammal : :Human&)
{
cout << "Humam "
|
catch(Mammal : :Studentd)
{
cout == "Student ";
|
catch(Mammal : : Employesh)
{
cout == "Employee “;
)
catch({...)
{
cout =< "A11";
)
)

Exception Handling

: virtual public Human

virtual public Human

-8 399

Copyrighted material

400 @
13.4

Object-Oriented Programming with C++

[Identify errors, if any, in the following statements.

(m) catch(int a, float b)
{...}
{b) try
{throw 100;};
(e) try
[funl{)}
{d) throw a, b;
{e) wvoid divide(int a, int b) throw(x, y)

(f catch({int x, ..., float y)

(g) try
(throw x/y;:}
(hl try
{if{1x) throw x;}
catch(x)
[cout =< "x is zero \n";}

Programming Exercises

13.1
13.2
13.3
13.4

13.5
13.6

13.7

Write a program containing a possible exceplion. Use a try block to throw it and

a cateh block to handle it properly.

Write a program that illustrates the application of multiple catch statements,

Write a program which uses catehd...) handler.

Write a program that demonstrates how certain exceplion types are not allowed

to be thrown.

Write a program to demonstrate the concept of rethrowing an exception.

Write a program with the following:

{a) A function to read two double type numbers from kevboard

(b) A function fo calculate the division of these two numbers

(c) A try block to throw an exception when a wrong type of data is keved in

(d) A try block fo detect and throw an exception if the condition “divide-by-zero”
OCCUrs

(e} Appropriate catch block to handle the exceptions thrown

Write a main program that calls a deeply nested funetion containing an exception.

Incorporate necessary exception handling mechanism.

14

Introduction to the |

Standard Template Library

YYy ¥ Yy Yy Y ¥Y¥¥YV¥%

Key Concepts

sottwrare evoalution

standard templates

sStandard C++ library

Containers

:I;E'Q'-\JL'IZ'.I.I."L COontamers
Agsociative containers

Derived container:

Algorithma
Iterators

Function object

=1

I 14.1 Introduction

We have seen how templates can be used
to create generie classes and funetions that
could extend support for generic
programming. In order to help the C++
users in generic programming, Alexander
Stepanov and Meng Lee of Hewlett-
Packard developed a et of general-purpose
templatized classes (data structures) and
functions (algorithms) that could be used
as a standard approach for storing and
processing of data. The collection of these
generic classes and functions is called the
Standard Template Library (STL). The
STL has now become a part of the ANSI
standard C++ class library.

STL is large and complex and it is difficult to discuss all of its features in this chapter., We
therefore present here only the most important features that would enable the readers to
begin using the STL effectively. Using STL can save considerable time and effort, and lead
to high quality programs. All these benefits are possible because we are basically “reusing”
the well-written and well-tested components defined in the STL.

402 Ohject-Oriented Programming with C++

STL components which are now part of the Standard C++ Library are defined in the
namespace std. We must therefore use the using namespace directive

using namespace std;

to inform the compiler that we intend to use the Standard C++ Library. All programs in this
chapter use this directive,

|14.2 Components of STL

The STL contains several components. But at its core are three key components. They are:

containers,
® algerithms, and
#® iterators.

These three components work in conjunction with one another to provide support to a
variety of programming solutions. The relationship between the three components is shown
in Fig. 14.1. Algorithms employ iterators to perform operations stored in confainers.

lterator 3

Fig- 14.1 & Relationship between e three STL components

A container is an object that actually stores data. It is a way data is organized in memory.
The STL containers are implemented by template elasses and therefore can be easily
customized to hold different tvpes of data.

An algorithm is a procedure that is used to process the data contained in the containers.
The STL includes many different kinds of algorithms to provide support to tasks such as
initializing, searching, copying, sorting, and merging. Algorithms are implemented by tem
plate functions.

Introduction to the Standard Template Library 2403

An tterator i8 an objectilike a pointer) that points to an element in a container. We can
use iterators to move through the contents of containers. Iterators are handled just like
pointers. We can increment or decrement them. Iterators connect algorithms with containers
and play a key role in the manipulation of data stored in the containers.

14.3 Containers

As stated earlier, containers are objects that hold data (of same type). The STL defines ten
containers which are grouped into three categories as illustrated in Fig. 14.2. Table 14.1
gives the details of all these containers as well as header to be included to use each one of
them and the type of iterator supported by each container class.

Sequence Associative Derived
containers containers coniainers
s yacior * sit . almck
» deque » multiset . queus
list
- * map s priority_queue
o multimap

Fig. 142 & Three major categories of containers |

Table 14.1 Containers suppﬂﬂed by the STL

vector A d}fn.n.m}c ﬂ.r.rn].r Allows umemans ami
deletions at back. Permits direct access to
any element

list A bidirectional, linear list. Allows insertions <list> Bidirectional

and deletions anywhere,

deque A double-ended quewe. Allows insertions and cdsgques Random
deletions at both the ends. Permits direct ACCESS
access to any element.

set An associate container for storing unique sets. <gets Bidirectional
Allows rapid lookup. (No duplicates allowed)

{Contd)

404 @ Object-Oriented Programming with Ce+

multiset An associate container for storing non-unique <set> Bidirectional
gets, (Duplicates allowed)
Map An associate container for storing unique <map=> Bidirectional

kevivalue pairs. Each key 15 associated with
only one value {One-to-one mapping). Allows
kev-based lookup.
multimap An associate container for storing kev/value <HAps Bidirectional
pairs in which one key may be associated with
more than one value (one-to-many mappingl.

Allows key-based lookup.

stack A standad stack. Last-in-first-out{LIF D). zstecks No iterator
gueue A standard queuve. First-in-first-outiFTF0) <uenes Mo iterator
priority— A priority quene. The first element cut ‘s < JUELE Mo iterator

uee alwayvs the highest priority element.
TR | PRSI Y T T I I S S S 9 WM T TL T BET R !

Each container class defines a set of functions that can be used to manipulate its contents,
For example, a vector container defines functions for inserting e’ erments, erasing the contents,
and swapping the contents of two vectors.

Sequence Containers

Sequence containers storz elements in a linear sequence, like a4 line as shown in Fig. 14.3.
Each element is related to other elements by its position along the line. They all expand
themselves to allow insertion of elements and a!l of them suppert a number of operations on
them.

Elarment 0 ———= Elemient 1 ElEII'I"'EI'ItEJ"—'—" =+ +— Last Elemeni |' -
‘ iaralor ‘
bagin{) end(}

Fir 14.3 o= Elsments (i g goquerce conlainer J

The STL provides three types of sequence containers:

® vector
® list
® deque

Elements in all these containers can be accessed using an iterator. The difference between

the three of them i= related to only their performance. Table 14.2 compares their performance
in terms of speed of random access and insertion or deletion of elements.

Copyrighted material

Hidden page

Hidden page

Table 14.4 Contd

fill_nf }
generatel }
generate_ni)
iter_swap{)
random_shufflel)
removel)
remove_copy()
remove_copy _ifl |
remove_ifl)
replace()
replace_copy()
replace_copy_ifl)
replace_iff)
reversel)
reverse_copyl |
rotate)
rotate_copy()
swapl)
swap_ranges()
transform()
umigquel |
unique_copyl

Introduction to the Standard Template Library

Fills first n elements with a specified value

Replaces all elements with the result of an operation
Replaces first n elements with the result of an operation
Swaps elements pointed to by iterators

Places elements in random order

Deletes elements of a specified value

Copies a sequence after removing a specified value
Copies a sequence after removing elements matching a predicate
Deletes elements matching a predicate

Heplaces elements with a specified value

Copies a sequence replacing elements with a given value
Copies a sequence replacing elements matching a predicate
Replaces elements matching a predicate

Reverses the order of elements

Copies a sequence into reverse order

Rotates elements

Copies a sequence into a rotated

Swaps two elements

Swaps two sequences

Applies an operation to all elements

Deletes equal adjacent elements

Copies after removing equal adjacent elements

Table 14.5 Sorting algorithms

upper_bound()

s TR
binary_searchi | Conducts a binary search on an ordered sequence
equal_rangel() Finds a subrange of elements with a given valoe
inplace_merge!) Merges two consecutive sorted sequences
lower_bound() Finds the first occurrence of a specified value
make_heapl() Makes a heap from a sequence
mergel) Merges two sorted sequences
nth_elements) Puts a specified element in its proper place
partial_sort{) Sorts a part of a sequence
partial_sort_copyi) Sorts a part of a sequence and then copies
Partition() Places elements matching a predicate first -
_heapd) Deletes the top element
push_heapl } Adds an element to heap
sort] } Soris a sequence
sort_heap() Sorts a heap
stable_partitiond | Places elements matching a predicate first matching relative order
stable_sorti) Sorts maintaining order of equal elements

Finds the last eccurrence of a specified value

® 407

408 Object-Oriented Programming with C+4+

Table 14.6 Set algorithms

Operations Deseription

includesi) Finds whether a sequence iz a subsequence of another

set_difference(} Constructs a sequence that is the difference of two

. ordered seta

set_intersection() Constructs a sequence that contains the intersection of
ordered sets

set_symmetric_difference!) Produces a set which is the symmetric difference
between two ordered sets

get_umionl) Produces sorted union of two ordered sets

Table 14.7 Relational algorithms

Operations Deseription

equall | Finds whether two sequences are the same
lexicographical _compare() Compares alphabetically one sequence with other
max | (Fives maximuom of two values

max_element]) Finds the maximum element within a sequence

min{ } Gives minimum of two values

min_element{) Finds the minimum element within a sequence
mismatchi } Finds the first mismatch between the elements in two

BEQuUEnces

Table 14.8 Numenc algorithms

Operations Deseription

accumulatel | Aceumulates the results of operation on a sequence
adjacent_dilferencel) Produces a sequence from another sequence

inner_product{) Accumulates the results of operation on a pair of sequences

Produces a sequence by operation on a pair of sequences

partial_sum(}

[Il-i.ﬁ Iterators

Iterators behave like pointers and are used to access container elements. They are often
used to traverse from one element to another, a process known as iterating through the
container.

There are five types of iterators as deseribed in Table 14.9,
Table 14.9 [lterators and their characteristics

Tterator Aceess method Direction of movement 'O capability Remark

Input Linear Forward only Read only Cannot be saved
Chatput Linear Forward only Write only Cannot be saved
Forward Linear Forward only ReadWrite Can be saved
Bidirectional Linear Forward and backward ReadWrite Can be saved

Random HRandom Forward and backward ReadWrite Can be saved

Introduction to the Standard Template Library -2 409

Different types of iterators must be used with the different types of containers (See
Table 14.1). Note that only sequence and associative containers are traversable with iterators.

Each type of iterator is used for performing certain functions. Figure 14.4 gives the
functionality Venn diagram of the iterators. It illustrates the level of functionality provided
by different categories of iterators.

random accass

bidirectional

forward

Fig. 144 < Functionality Venn diagram of iterators I

The input and output iterators support the least functions. They can be used only to
traverse in a container. The forward iterator supports all operations of input and output
iterators and also retains its position in the container. A bidirectional iterator, while
supporting all forward iterator operations, provides the ability to move in the backward
direction in the container. A random access iterator combines the functionality of a
bidirectional iterator with an ability to jump to an arbitrary location. Table 14.10 summarizes
the operations that can be performed on each iterator type.

Table 14.10 Operations supported by iterators

Tterator Element access Read Write Increment Comparison
' operation

Input + v e="*p 4 p—_—

Chatpoet D= v -+

Forward -z v ="*p *‘p=v “+ ==, b=

Hidirectional -= v =*p p=v ++, == ==, =

Bandom access == [] v = *p D= i, - - -, ==, =, <, =,

|14.ﬁ Application of Container Classes

It is bevond the scope of this book to examine all the containers supported in the STL and
provide illustrations. Therefore, we illustrate here the use of the three most popular
containers, namely, vector, list, and map.

410 Object-Oriented Programming with C44+

Vectors

The vector is the most widely used container. It stores elements in contiguous memory
locations and enables direct access to any element using the subscript operator | |. A vector
ean change its size dynamieally and therefore allocates memory as needed at run time.

The vector container supports random access iterators, and a wide range of iterator
operations (See Table 14.10) may be applied to a vector iterator. Class veetor supports a
number of constructors for creating veetor obhjects.

vector<int> wvl; // Zero-length int vector
vector<double= v2({10); // 10-element double vector
vector<int> v3(vd); /! Creates v3 from w4
vector<int> w[5, 2); /! 5-element vector of Zs

The vector class supports several member functions as listed in Table 14.11. We can
also use all the STL algorithms on a vector.

Table 14.11 Important member functions of the vector class

. , SApLET : P Maed
atl) Gives a reference (o an element

backi) Gives a reference to the last element

bexgind) Gives a reference to the first element

capacity]) Gives the current capacity of the vector

clear) Dieletes all the elements from the vector

empty] } Determines if the vector is empty or not

endl) Gives a reference to the end of the vector

erasel) Deletes specified elements

insert() Inserts elements in the vector

pop_back() Deletes the last element

push_backi } Adds an element to the end

resized) Modifies the size of the vector to the specified value
sizel) Gives the number of elements

awapl) Exchanges elements in the specified two vectors

Program 14.1 illustrates the use of several functions of the vector class template. Note
that an iterator is used as a pointer to elements of the vector. We must include header file
=vector> to use vector class in our programs.

#include <iostream>
#include <vector> /! ¥ector header file

using namespace std;

vold display(vector=int> Bv)
Conid)

Introduction to the Standard Template Library

& 411

for{int 1=0;i<v.size();i++)
{

}

cout == "\n";

cout =< y[i] =< * ";

}

int main()
{) .
vector<int> v; /[Create o vector of type int
cout << "Initial size = " << v, size() =< "\n";
J// Putting values into the vector
int x; ’
cout =< “"Enter five integer values: ";
for(int i=0; 1<5; 1++)
{

cin »= x;

v.push_backtx);
}
cout =< "5ize after adding 5 values: ";
cout =< w.size() << "\n*;

[/ Display the contents
cout =< "Current contents: \n";
display(v);

/f Add one more value _
v.push back(6.6); // float value truncated to int

{{ Display size ond contents

cout << "\nSize = " << v .size() << "\n";
cout << "Contents now: \n";

- display(v);

// Inserting elements

vector<int> :: iterator itr = v.begin(); // iterator
itr = itr + 3; Jf itr points to 4th element
v.insert(itr,1,9);

// Display the contents
cout == "\nContents after inserting: \n";

. L N
Tl L

{Conid)

Copyrighted material

412. Object-Oriented Programming with C++

display(v);

f/ Removing 4th ond 5th elements
v.erase(v.begin()+3,v.begin()+5); // Removes 4th and 5th element

{/ Display the contents

cout =< "\nContents after deletion: \n";
display(v);

cout << "END\n":

return(0);

Prograa 14.1 J

Given below is the output of Program 14.1:
Initial size = 0

Enter five integer values: 12 34 5
Size after adding 5 values: 5
Current contents:

1 2 3 4 5§

Bize = B
Contents now:
1 2 3 4 5 &

Contents after inserting:
1 2 3 9 4 5 6

Contents after deletion:
1 2 3 5 6
EMD

The program uses a number of functions to create and manipulate a vector. The member
function sizel() gives the current size of the vector. After ereating an int type empty vector
v of zero size, the program puts five values into the veetor using the member function
push_back(). Note that push_back() takes a value as its argument and adds it to the back
end of the vector. Since the vector v is of type int, it can accept only integer values and
therefore the statement

v.push_back(6.6);

truncates the values 6.6 to 6 and then puts it into the vector at its back end.

Introduction to the Standard Template Library 2413

The program uses an iterator to access the vector elements. The statement
vector<int= :: iterator itr = v.begin();

declares an itera tor itr and makes it to point to the first position of the vector. The statements

itr = itr + 3;
v.insert(itr,9);

ingerts the value 9 as the fourth element. Similarly, the statement
v.grase(v.begin()+3, v.begin{)+5);

el ter 4™ and 5™ elements from the vector. Note that eraseim,n) deletes only n-m elements
sta ting frem ©0™ element and the n™ element is not deleted.

The elements of a vector may also be accessed using subscripts (as we do in arrays).
bedee the use of vi] in the function display() for displaying the contents of v. The call
v.cized) in the for loop of display() gives the current size of v,

Lisits

The list is another container that is popularly used. It supports a bidirectional, linear list
and provides an efficient implementation for deletion and insertion operations. Unlike a
v rtor, which supports random access, a list can be accessed sequentially only.

Bidirectional iterators are used for accessing list elements. Any algorithm that requires
ir. put, output, forward, or bidirectional iterators can operate on a list. Class list provides
rcany member functions for manipulating the elements of a list, Important member functions
o' th= list class are given in Table 14.12. Use of some of these functions is illustrated in
Frogram 14.2. Header file <list> must be included to use the container class list.

, USING LISTS

Pincluda =1 pst reams
ginclude <list=
#include <cstdlib> // For using rand() function

using namespace std;
void display(list=int= &l1st}
{

list=int> :: iterator p;

Copyrighted material

Hidden page

Introduction to the Standard Template Library o415

Output of the Program 14.2 would be:

Listl
0, 184, 63,

List2
265, 191, 157, 114, 293,

Wow Listl
1m| u- 1“- Hl zml

Now List2
191, 157, 114, 293,

Merged unsorted 1ists
100, 0, 184, 63, 191, 157, 114, 200, 293,

Merged sorted lists
0, 63, 100, 114, 157, 1B4, 191, 200, 293,

Reversed merged 1ist
293, 200, 191, 184, 157, 114, 100, 63, 0O,

The program declares two empty lists, listl with zero length and list2 of size 5. The listl

ig filled with three values using the member function push_back() and math function
rand(). The list2 is filled using a list type iterator p and a for loop. Remember that

Copyrighted material -

416@ Object-Oriented Programming with Ce+

list2.begin() gives the position of the first element while list2.end() gives the position
immediately after the last element. Values are inserted at both the ends using push_front()

and push_back() functions. The function pop_front() removes the first element in the
list. Similarly, we may use pop_back() to remove the last element.

The objects of list can be initialized with other list objects like

listA = listl;
listB = listZ;

The statement
listl.merge(list2);
simply adds the list2 elements to the end of listl. The elements in a list may be sorted in
increasing order using sort() member function. Note that when two sorted lists are merged,
the elements are inserted in appropriate locations and therefore the merged list is also a
sorted one.

We usze a display() function to dizplay the contents of various lists, Note the difference
between the implementations of display() in Program 14,1 and Program 14.2,

Table 14.12 [mportant member finctions of the list class

Function Task
back() Gives reference to the last element
begint) Gives reference to the first element
clear() Deletes all the elements
empty(| Decides if the list is empty or not
endl Gives reference to the end of the list
erasel) Deletes elements as specified
inserti } Inserts elements as specified
mergel) Merges two ordered lists
pop_back(§ Deletes the last element
pop_frontl) Deletes the first element
push_back() Adds an element to the end
push_front(} Adds an element to the front
removel) Removes elements as specified
resizel | Modifies the size of the hst
reversel | Reverses the list
sized | Gives the size of the list
sortl) Sorts the list
aplical) Inserts a list into the invoking list
swapl) Exchanges the elements of a list with those in the invoking list
unigue{ Deletes the duplicating elements in the list

Introduction to the Standard Template Library 417

Maps

A map is a sequence of (key, value) pairs where a single value is associated with each
unique key as shown in Fig. 14.5. Retrieval of values is based on the key and is very fast.
We should specify the key to obtain the associated value.

L]

Fig. 145 & The key-value pairs in a map |

A map is commonly called an associative array. The key is specified using the subseript
operator | | as shown below:

phone["John® 1 = 1111;

This creates an entry for "John" and associates(i.e. assigns) the value 1111 to it. phone is
a map object. We can change the value, if necessary, as follows:

phone["John®] = 9999;

This changes the value 1111 to 9999, We can also insert and delete pairs anywhere in
the map using insert() and erase() functions. Important member functions of the map
class are listed in Table 14.13.

Table 14.13 Important member functions of the map class

begini } Gives reference to the first element

clear|) Deletes all elements from the map

emptyl Decides whether the map is empty or not

end{) Gives a reference to the end of the map

erase|) Deletes the specified elements

find(} Gives the location of the specified element

insert]) Inserts elements as specified

sizel) Giives the size of the map

swapl | Exchanges the elements of the given map with those of the

invoking map

Program 14.13 shows a simple example of 8 map used as an associative array. Note that
=map> header must be included.

Hidden page

Hidden page

420 Object-Oriented Programming with C++

Function objects are often used as arguments to certain containers and algorithms. For
example, the statement

sort{array, array+5, greater<int=());

uses the function object greater<int>() to sort the elements contained in array in
descending order.

Besides comparisons, STL provides many other predefined function objects for performing
arithmetical and logical operations as shown in Table 14.14. Note that there are function

objects corresponding to all the major C++ operators. For using function objects, we must
include <functional> header file.

Table 14.14 STL function objects in <functional=

divides<T> arithmetic xly
equal_to<T> relational K==y
greater<Tx> relational X>¥
greater_equal<T> relational XKr=y
lesa<T> relational X<y
less_equal<T> relational Xe=¥
logical_and<T> logical x &&y
logical_not<T> logical x
logical_or<T> logical x||¥
minus<T> arithmetic X-¥
moedulus<T> arithmetic X%y
negate<T= arithmetic -X
not_equal_to<T= relational xl=y
plus<T=> arithmetic X+¥
multiplies<T=> arithmetic

Note: The variables x and y represent objects of class T passed to the function object as
arguments.

Program 14.4 illustrates the use of the function ohject greater<>() in sort() algorithm.

USE OF FUNCTION OBJECTS IN ALGORITHMS

finclude <iostream>
#include =algorithm=
#include =functional=
using namespdce std;
;nt main()

int x[] = {10,50,30,40,20};

int y[J = {70,90,60,80};
FConitd)

Copyrighted material

Introduction to the Standard Template Library 421

sort(x,x+5,greater<int=());

sort{y,y+4);
for(int i=0; i<5; i++)
cout << x[i] =< " "

cout =< "\n";
for{int j=0; j<4; j++)

cout <= ,}r[.]] e W W,
cout =< "\n";
int z[%];
merge(x,x+5,y,y+d,2);
for{i=0; i<9; i++)

cout << z[i] == }
cout =< "\n";
retern(0);

Program 14.4

Qutput of Program 14.4:

50 40 30 20 10

60 70 80 90
50 40 30 20 10 60 70 80 90

nole

The program creates two arrays X and ¥ and initializes them with specified values. The
program then sorts both of them using the algorithm sort(). Note that x is sorted
using the function object greater<int>() and ¥ is sorted without it and therefore the
elements in x are in descending order.

The program finally merges both the arrays and displays the content of the merged array.
Note the form of merge() function and the results it produces.

\ SUMMARY . -

v A collection of generic classes and functions i called the Standard Template
Library (STL). STL components are part of C++ standard library.

¢ The S8TL consists of three main components: containers, algorithms, and
iterators.

t» Containers are objects that hold data of same type. Containers are divided into
three major categories: sequential, associative, and derived.

Hidden page

Introduction to the Standard Template Library 2423

¥ sorting algorithms > templatized classes
> stack » tree

» standard C++ library » using namespace
» standard template library » values

» templates » vector

I Review Questions

14.1

14.2
14.3

14.4
14.5
14.6
14.7

14.8
14.9

14.10
14.11

14.12

What is STL? How is it different from the Cs++ Standard Library? Why is it
gaining importance among the programmers?
List the three types of containers.

What is the major difference between a sequence container and an associative
container?

What are the best situations for the use of the sequence containers?
What are the best situations for the use of the associative containers?
What is an iterator? What are its characteristics?

What is an algorithm? How STL algorithms are different from the conventional
algorithmas?

How are the STL algorithms implemented?

Distinguish befween the following:

(a) lists and vectors

(b) sets and maps

(c) maps and multimaps

(d) gueue and deque

(e) arravs and vectors

Compare the performance characteristics of the three sequence containers.
Suggest appropriate containers for the following applications:

(a) Insertion at the back of a container.

(h) Freguent insertions and deletion at both the ends of a container.

(e) Frequent insertions and deletions in the middle of a container.

{d) Freguent random access of elements.

State whether the following statements are true or false.

(a) An iterator is a generalized form of pointer.

ib) One purpose of an iterator is to connect algorithms to containers.

(e) STL algorithms are member functions of containers.

(d) The size of a vector does not change when its elements are removed.
(e} STL algorithms can be used with c-like arrays.

(f) An iterator can always move forward or backward through a container.

Copyrighted material

424 @ Object-Oriented Programming with C++

(g) The member function end() returns a reference to the last element in the
container.
{h) The member function back() removes the element at the back of the container,
(i) The sori() algorithm requires a random-access iterator.
(j) A map can have two or more elements with the same key value.

'ﬂe&uggmg Exercises

14.1 Identify the errror in the following program.

#include <iostream.h=
#include =vector=

#define NAMESIZE 40
using namespace std;

class EmployeeMaster

private:
char name[MAMESIZE];
int id;

public:

EmployeeMaster()
{

strcpy(name, ""):
id = 0;
}

EmployeeMaster{char name[NAMESIZE], int id)
id{id)
{

|

EmployeeMaster™ getValuesFromUser()

strepy(this-=name, name);

EmployesMaster *temp = new EmployesMaster();
cout << endl << "Enter user name : ";
cin == iemp=>name;

cout =< endl =< "Enter user ID : “;
cin >> temp->id;

return temp;:

Introduction to the Standard Template Library 9425

void displayRecord()
{

cout << endl << "Mame : * << name;
cout =< endl =< "I : " =< id =< end];

4

void main()

{
vector <EmployeeMaster®> emp;
EmployeeMaster *temp = new EmployeeMaster();
emp.push_back{getValuesFromlser(});
emp [0] ->displayRecord();
delete temp;

temp = new EmployeeMaster(*AlanKay®, 3);
emp.push_back(temp);
emp[emp.capacity()]->displayRecord();
emp[emp.5size()] ->displayRecord();
)
14.2 Identify the error in the following program.

#include <iostream=
#include =vectore

using namespace std;

int main()

{
vector <int> vl;
v1.push_back(10);
v1.push_back(30);

vector <int> v2;
vZ.push_back(20);
vZ.push back(40);

if{vl==v2)
cout=<"vectors are egual”;
else
cout<<"vectors are unequal\t";
vl.swap(20);
for(int y=0; yevl.size(); y++)

Copyrighted material

.

426 @

14.3

Object-Oriented Programming with C++

cout=s"¥1="=<y] [}-] ot W .
cout=s"Y2="=ey? [_l'l] et :

}

return 0;

)
Identify the error in the following program.

#include<iostream>
#include=list=

void main()

{
list =int= 11;

11.push front(10);
11.push back(20);
11.push_front(30);
11.push_front (40);
11.push_back(10);
11.pop_front (40);

1l.reverse();
11.unique();

Programming Exercises

14.1

14.2
14.3

14.4

Write a code segment that does the following:

ia) Defines a vector v with a maximum size of 10

(h) Sets the first element of v to 0

ic) Setfs the last elementf of v fo 9

(d) Sets the other elements to 1

{e) IDisplays the contents of v

Write a program using the find() algorithm to locate the position of a specified
value in a sequence confainer.

Write a program using the algorithm ecounit() to count how many elements in a
confainer have a specified value,

Create an array with even numbers and a list with odd numbers. Merge two
sequences of numbers into a vector using the algorithm merge(). Display the
vector,

Introduction to the Standard Template Library 0427

14.5

14.6
14.7

14.8

Create a student class that includes a student’s first name and his
roll_number. Create five objects of this class and store them in a list thus creating
a phone_lii. Write a program using this list to display the siudent name if the
roll_number iz given and vice-versa.

Redo the Exercise 14.17 using a set.

A table gives a list of car models and the number of units sold in each fype in a
specified period. Write a program to store this table in a suitable container, and
to display interactively the total value of a particular model sold, given the unit-
cost of that model.

Write a program that accepts a shopping list of five items from the keyboard and
stores them in a vector. Extend the program to accomplish the following:

(a) To delete a specified item in the list

(h) To add an item at a specified location

ic) To add an item at the end

(d) To print the contents of the vector

Copyrighted material

—

Y YYYY¥YVY¥YV¥YY

15

| Manipulating Strings |

Key Concepts

C-strings

The string class

Creating string objects
Manipulating strings
Relational operations on stnngs
Comparing strings

String characteristics

Swapping strings

15.1 Introduction

A string is a sequence of characters. We
know that C++ does not support a built-in
string type. We have used earlier null-
terminated character arrays to store and
manipulate strings. These strings are called
C-strings or C-stvle strings. Operations on
C-strings often become complex and
inefficient. We can also define our own
string classes with appropriate member
functions to manipulate strings. This was
illustrated in Program 7.4 (Mathematical
Operation of Strings).

ANSI standard C++ now provides a new
class called string. This class improves on
the conventional C-strings in several ways.

In many situations, the string objects may be used like any other built-in type data. Further,
although it is not considered as a part of the STL, string is treated as another container
class by C++ and therefore all the algorithms that are applicable for containers can be used
with the string objects. For using the string class, we must include <string= in our program.

The string class is very large and includes many constructors, member functions and
operators. We may use the constructors, member functions and operators to achieve the
following:

Manipulating Strings -8429

Creating string objects

Reading string objects from keyboard
Displaying string objects to the screen
Finding a substring from a string
Modifying string ohjects

Comparing string objects

Adding string objects .
Accessing characters in a string
Obtaining the size of strings

And many other operations

L E RN N R X N ¥ ¥

Table 15.1 gives prototypes of three most commonly used constructors and Table 15.2
gives a list of important member functions. Table 15.3 lists a number of operators that can
be used on string objects,

Table 15.1 Commaonly used string constructors

. Constructor MR G S A
Eh'iﬁ.gt]: For creating an empty string -
String{const chat “str); For creating a string object from a null-terminated string
Stringlconst string & str; For creating a string object from other string object

Table 15.2 Important functions supported by the string class

© Funclion Task

- append!) Appends a part of string to another string
Assign() Asaignsa a partial string
at() Obtains the character stored at a specified location
Begini} Returns a reference to the start of a string
capacity) Gives the total elements that can be stored.
comparel) Compares string against the invoking string
emptyi) Returns true if the string is empty; Otherwise returns false
end() Returns a reference to the end of a string
erasel) Removes characters as specified
fime() Searches for the occurrence of a specified substring
inserti) Inserts characters at a specified location
lengtht) Gives the number of elements in a string
max sizel) Gives the maximum possible size of a string object in a give system
rep-].e-u:e{] Replace specified characters with a given string
resize]) Changes the size of the string as specified
sizel) Gives the number of characters in the string
swapl) Swaps the given string with the invoking string

430

Table 15.3 Operators for string objects

Object-Oriented Programming wwith O+

Meaning

Assignment
Concatenation

Concatenation assignment

+ Equality
Imequality
Less than
Less than or equal
Greater than

Greater than or equal

Subseription
Cutput
Imput

|15.2 Creating (string) Objects

We can create string objectz in a number of ways as illustrated below:

string sl;

string s2("xyz");
51 = 523

53 = "abc" + 52
cin == 51;

getline{cin, sl);

/[Using constructor with no argument

[/ Ustng one-argument constructor

Jf Assigning string objects
/[Concaotenating strings

// Reading through keyboord (one word)
/{ Reading through keyboord o line of text

The overloaded + operator concatenates two string objects. We can also use the operator
+= to append a string to the end of a string. Examples:

53 += sl;
53 += "abc®;

ff 53 = 53 + 5]
ff 83 = 53 % "gbhc"

The operators << and >> are overloaded to handle input and output of string ohjects.

Examples:

cim >> 52;
cout == 52;
getline(cin, s2);

Jf Imput to string ohject (one word)

[/ Displays the contents of 52
/{ Reods embedded blanks

F2OE

Using cin and >> operator we can read only one word of a string while the getline()
function permits us to read a line of text containing embedded blanks.

Program 15.1 demonstrates the several ways of creating string objects in a program.

Copyrighted material

—8 431

Manipulating Sirings

CREATING STRING OBJECTS

#include <iostream> ' e : i
#include <string> : :

using namespace std;

P

int main() LR L SRR A U :".-"-"J."”'
{ i .4.:: aTi A A S T SR I T E Tt T
/[Creating string objects - .. '3 ii5]
string s1; . h hﬂ::ﬂﬁmm
string s2(" New"); Il t.l'ﬂm*#fr_il_'lg l:mst_ﬂnt'j
string s3(" Delhi"); e _
/] Assigning volue to string objects B e BN "i-_ A
51 = 52; e /i Using -altr‘iﬂg ﬂ-lfi'ﬂ"! :
cout =< "§] = " << g] < "\n"; 2
// Using o string constant
s1 = "Standard C++";
cout << "Mow 51 = "' << gl << "\pn":
// Using another object : Ltk b o
string sd4(sl); . i '
cout <= "S4 = " << g4 <= "\p\p"; - yp
[/ Reoding through keyboord
cout =< "ENTER A STRING \n"; ¥
cin >> sd; o mmuﬂ ﬂy blank spﬁet
cout << "Now S4 = " << g4 e< "h.n‘h.n'
| // Concotenating strings _ o
sl = 52 + 53; g
cout << “51 finally cunta‘lns* " ee g] =< "l.n"-' :
t :, i ;1-' -.,."'.I.'h.-:l,.l'l.l. '-l. .-.'-..- 5_. = -1. o -'...' '
} return -0 ik 5 l't‘-‘ﬂ? ﬁ_ﬂ,:,x:-ﬂ‘ ;f Pt

1 L : .

The output of Program 15.1 would be:

51 = New
Wow 51 = Standard Cée+
54 = Standard C++

432«

ENTER A STRING
COMPUTER CENTRE
Now 54 = COMPUTER

51 finally contains: MNew Delhi

I 15.3 Manipulating String Objects

We can modify contents of string objects in several ways, using the member functions such

as insert(), replace(), erase(), and append(). Program 15.2 demonstrates the use of some
of these functions.

MODIFYING STRING OBJECTS

#include =iostream
#include =string=

using namespace std;

int main{)

i

string s1("12345"};
string s2("abcde®);

cout =< "Qriginal Strings are: \n";
cout == "51:; " =< 5] == "\p";

cout == "52: " =< §F =< "\p\n":

f Inserting o string inte onother

cout == “Place 52 inside §1 yn";
sl.insert{4,s52});

cout << "Modified 51: " <= sl << "\n\n";

/| Removing chorecters in o string

cout << "Remove 5 Characters from 51 “n";
sl.erase(4,5);
cout =< "Now 51:

o §] € '\nxn";

/{ Replacing choracters in o string
cout =< "Replace Middle 3 Characters in 52 with 51 \n"

Ohject-Oriented Programming with Cv+

(Contd)

Copyrighted material

Hidden page

434 Dbpect-Onented Programmeng with C++

int main()

{
string s1{"ABC");
string sZ2{"XYZ"):
string sd = 31 + 53

if(sl 1= 52)

cout =< "sl is not equal to s2 \n";
if{s1 > 52)

cout =< “s] greadtér thap 52 Wn%;
else

cout es "2 greater than 51 kn";
if{s3 == 51 + s2)

cout == "3 {5 equdl to sl+s2-\nin":
int % = sl.compare(s?);:
if(x == 0)

cout ==
glse if(x > 0)

cout <= "s] = 52 \n";

1 ==52 \n";

elsa Sl =<0

cout << "s] <52 \n":

return O0;

PROGRAM 15.3

Program 15.3 shows how these operators are used.
This program produces the following output:

gl is not equal to s2

52 greater than sl

53 is egual to sl+s2

51 < 52

Il!’-.S String Characteristics

Clazs string supports many functions that could be used to obtain the characteristics of
strings such as size, length, capacity, etc. The size or length denotes the number of elements

Manipulating Strings 2435

currently stored in a given string. The capacity indicates the total elements that can be
stored in the given string. Another characteristic is the maximum size which is the largest
possible size of a string object that the given system can support. Program 15.4 illustrates
how these characteristics are obtained and used in an application.

DBTAINING STRING CHARACTERISTICS

#include <iostream=
#include =string>

using namespace std;

void display(string Astr)

{
cout =< "Size = " << str.size() =< "\n";
cout =< “"Length = * << str.length() << "\n";
cout << "Capacity = " << str.capacity() =< "\n";
cout << "Maximum Size = " << str.max_size() << "\n";
cout << "Empty: " << (str.empty() ? "yes" : "no"):
cout =< "\n\n";

} 1 - i
int main() N
string strl;

cout << "Initial status: \n®; toh ;
display(strl); : - S

cout << "Enter a string (one word) \n*:
cin == strl;

cout =< "Status now: \n“;
display(strl);

strl.resize(15);

cout =< "Status after resizing: \n"; .
display(strl);

cout =< *\n";

return 0;

PROGRAM 15.4

Shown below is the output of Program 15.4:

Initial status:
Size = 0

Hidden page

*Eﬁﬁni[iiﬁﬁnm’!m
ONE TWO THREE FOUR

THO is found at: 4
T is found first at: 4
R is last fount at: 17

o and print substring T

Copyrighted material

438» Object-Oriented Programming with C++

We can access individual characters in a string using either the member function at() or
the subscript operator [|. This is illustrated by the following statements:

cout =< s.at(i);
cout << s[i];

The statement
int x1 = s.find("TWO");
locates the position of the first character of the substring "T'WO0". The statement
cout =< s,substr(xl,3);

finds the substring "TWO", The first argument x1 specifies the lecation of the first character
of the required substring and the second argument gives the length of the substring.

Ili.‘! Comparing and Swapping

The string supports functions for comparing and swapping strings. The compare() function
can be used to compare either two strings or portions of two strings. The swap() function
can be used for swapping the contents of two string objects. The capabilities of these functions
are demonstrated in Program 15.6.

COMPARING AND SWAPPING STRINGS

#include <iostream
#include =string>

using namespace std;

int main{)

{
string s1{"Road”);
string s2(“Read®);
string s3("Red");
cout <= "s] = " =< 5] <= "\p";
cout =< "52 = " =< 57 << "\p";
cout =< "53 = " =< 53 =< "\p";

int x = sl.compare(s?);
if(x == 0)

(Conid)

Manipulating Strings 2439

cout <= "s] == 52" <= "\p";
else if(x = 0)

cout =< "sl > 52" << "\p";
elze

cout =< "s] = 52" =< "\n";

int a = sl.compare(0,2,52,0,2);
1nt b = 52+Eﬂﬂ“{ﬂl2|5110|2]i
int ¢ = s2.compare(0,2,53,0,2);
int d = s2.compare(s2.sfze()-1,1,53,53.5ize()-1,1);

cout =< "g = " =< g =< "'I,.h' 2 "h = ¥ 22 b == "\p¥;
cout =< "¢ = " e ¢ 2 "\p" =e g = " 2« g << "yp";

cout << "\nBefore swap: \n";
cout =< "gl = * =< g] <= "\p";
cout << "s2 = " << 52 << "\n";
sl.swap(s2);

cout << "\nAfter swap: \n";
cout << "sl = " << 5] << "\p";
cout << "s2 = " << 52 << "\n";

return 0;

}
PROGRAM 15.6
The output of Program 15.6:

51 = Road
52 = Read
£3 = Red
£] = g2
a m
b = -1
c =10
d=10
Before swap:
51 = Road
g2 = Read

After swap:
51 = Read
52 = Road

Copyrighted material

[

440@ Object-Oriented Programming with C++

The statement
int x = sl.compare(s2);

compares the string sl against 82 and x is assigned 0 if the strings are equal, a positive
number if sl is lexicographically greater than s2 or a negative number otherwise.

The statement
int a = sl.compare(0,2,52,0,2);

compares portions of 81 and s2. The first two argumentz give the starting subscript and
length of the portion of 81 to compare to s2, that is supplied as the third argument. The
fourth and fifth arguments specify the starting subscript and length of the portion of s2 to be
compared. The value assigned to a is 0, if they are equal, 1 if substring of 81 is greater than
the substring of 82, -1 otherwise.

The statement
s2.swap(s2);

exchanges the contents of the strings s1 and s2.

\ SUMMARY I'/,,

4+ Manipulation and use of C-style strings become complex and inefficient. ANSI C++ provides
a new class called string to overcome the deficiencies of C-strings.

&> The string class supports many constructors, member functions and operators for creating
and manipulating string objects. We can perform the following operations on the strings:

Reading strings from kevboard

Assigning strings to one another

Finding substrings

Modifying strings

Comparing strings and substrings

Accessing characters in strings)

Obtaining size and capacity of strings

Swapping strings

Sorting strings

<string>
append()

assigni)

at()

begin(}
capacity
capacity()
comparel()
comparing strings
C-strings
C-style strings
emptyl()

end()

erasel()

find()
find_first_of()
find_last_of()
getline()

Y Y Y Y Y Y Y YV YYYYYYYYY

I Review Questions

Manipulating Strings

* 441

Key Terms

Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYY

insert()

length

lengthi()
lexicographical
max_size()
maximum size
relational operators
replace()

size

sizel)

string

string class

string constructors
string objects
substr()

gsubstring

swapl()

SWApPpPINg strings

15.1 State whether the following statements are TRUE or FALSE:
{a) For using string class, we must include the header <string>.

{b) string objects are null terminated.

(¢} The elements of a string object are numbered from 0.
(d) Cbjects of string class can be copied using the assignment operator.
(e) Function end() returns an iterator to the invoking string object.

15.2 How does a string type string differ from a C-type string?
15.3 The following statements are available to read strings from the keyvboard.

(a) cin »> sl;

(b} getline{cin, sl);)
where 81 is a string object. Distinguish their behaviour.

442e

15.4

15.5

15.6

15.7

Object-Orfented Programming with O+

Consider the following segment of a program.
string s1({"man"), s2, 53;
s?.assign(sl);

53 = 51;

string s4("wo" + s1);
52 += "age";
s3.append("ager®):
si[0] = "v';

State the contents of the objecis 81, 82, 83 and sd when executed.

We can access string elements using

(a) a#f) function

(b) subscript operator []

Compare their behaviour,

What does each of the following statements do?

(a) s.reploce(n,1,"f");

(b) s.erase(10);

(¢} sl.insert(10,52);

(d) int x = sl.compare{0, s2.size(), 52);

(e) s = sl.substr(10, 5);

Diztinguish between the following pair of functions.

(a) maeax_size() and capacity()

ib) find() and rfind()

el begin() and rbegini)

Iﬂebuggiugﬂmrcﬁes

15.1

15.2

Identify the error in the following program.

#include =iostream.h=
#include <string=

using namespace std;

void main()
{
string stri(“ghi");
string strZ("abc" + “def");
str2+=strl;
cout << str2.c str();

Identify the error in the following program.

#include =iostream.h=

15.3

Manipulating Strings

Finclude =string=>

using namespace std;

void main()

{
string strl("ABCDEF");
string str2("123");
string str3;

strl.insert{2, str2);
strl.erase(2,2);
strl.replace(2,s5tr2);

cout =< strl.c_str(};
cout =< endl;
!
Identify the error in the following program.

#ginclude <iostream=
#include <string=>

using namespace std;

class Product
{
int iProductNumber;
string strProductName;
public:
Product()
{
}

Product(const int &number, const string &name)

|
setProductNumber(number) ;

setProductName(name) ;

|

void setProductNumber(int n)

{
iProductNumber = nj;

443

Copyrighted material

444 e

Object-Ortented Programming with O+
}

void setProductName(const string str)

1

strProductName = str;

int getProductMumber()
i

return iProductNumber:
i

const string getProductName()

return strProductName

Productd operator = (Product &source)

{
setProductNumber(source. iProducthumber) ;
string strTemp = sfource.strProductlame;

setProductMame(strTemp);
return *this;

1
void display()
{
cout << "ProductName : " =< getProductName();
cout =< " " ;
cout =< "ProductNumber : " =< getProductNumber();
cout << endl;
l
1
void main()

{

Product pl(l, 5);
Product p2(3, "Dates®);
Product p3;

p3 = pZ = pl;

Manipulating Strings #445

p3.display();
p2.display();
}

15.4 Find errors, if any, in the following segment of code.

int len = s1. length();
for {int 1=0; l<len;++i)
cout =< s).at[];

I Programming Exercises

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

Wrife a program that reads the name
Martin Luther King

from the keyboard info three separate string objects and then concatenates them
into a new string ohject using

(a) + operator and

(b) append() function.

Write a program using an iterator and while() construet to display the contents
of a string object.

Write a program that reads several city names from the keyboard and displays
only those names beginning with characters "B" or "C".

Write a program that will read a line of text containing more than three words
and then replace all the blank spaces with an underscore(_).

Write a program that counts the number of occurrences of a particular character,
say 'e’, in a line of text.

Write a program that reads the following text and counts the number of times
the word "It" appears in it.

It is new, It is singular.
It 15 simple. It must succeed!

Modify the program in Exercise 15.14 to count the number of words which start
with the character 's',

Write & program that reads a list of countries in random order and displays
them in alphabetical order, Use comparison operators and functions.

 (fiven a string

string s("123456789");
Write a program that displays the following:
1
232
34543

4567654
b67888765

Y Y Y Y Y Y Y Y YYYYY

New Features of ANSI C++
Standard

Key Concepts

.
Boolean type data
Wide-character literals
Constant casting

Static casting

Dvnamic casting
Reinterpret casting
Runtime type information
Explicit constructors
Mutable member data
MNamespaces

Nesting of namespaces
Operator keywords

Using new keywords

MNew style for headers

I 16.1 Introduction

The IS0/ ANSI C++ Standard adds several
new features to the original C4+4+
specifications, Some are added to provide
better control in certain situations and
others are added for providing conveniences
to C++ programmers.
important to note that it is technically
possible to write full-fledged programs
without using any of the new features.

Important features added are:

1.

New data types

® hool

® wchar_t

New operators

® const_cast
static_cast
dynamic_cast
reinterpret_cast
typeid

Class implementation
& Explicit constructors
s Mutable members
Namespace scope

It 15 therefore

New Features of ANSI C++ Standard @447

5. Operator keywords
6. New kevwords
7. New headers

We present here a brief overview of these features.

I 16.2 New Data Types

The ANSI C++ has added two new data types to enhance the range of data types available
in C++. They are bool and wechar t.

The bool Data Type

The data type bool has been added to hold a Boolean value, true or false. The values true
and false have been added as keywords to the C++ language. The bool type variables can
be declared as follows.

bool bl; /[declare bl as bool type
bl = true; /[ossign true value to it
bool b2 = false; J[declare and initialize

The default numeric value of true is 1 and false is 0. Therefore, the statements

cout =< "pl = " =< bl; J/ bl is true
cout =< "h2 = " == hZ; [/ b2 is false

will display the following output:

bl = 1
b2 = 0

We can use the bool type variables or the values true and false in mathematical
expressions. For instance,

int x = false + 5*m - bl;

ig valid and the expression on the right evaluatez to 9 assuming bl is true and m is 2,
Values of type bool are automatically elevated to integers when used in non-Boolean
EXPIressions.

It is possible to convert implicitly the data types pointers, integers or floating point values
to bool type. For example, the statements

448 @ Object-Oriented Programming with C++
bool x = 0;
bool y = 100;
bool z = 15.75;

assign false to x and true to y and =z
Program 16.1 demonstrates the features of bool type data.

USE OF bool TYPE DATA

#include <iostream>

using namespace std:

int main()
|
int xI = 10,xZ = 20,m = 2;
bool bl, bZ:
bl = x1 == xZ; !/ Folse
b2 = x1 < x2: 1 True

cout << "bl 15 " =< bl =< "\n";
cout << "hZ f3 " == b2 << "\n";

bool b3 = true;
cout <= "h3 {5 " =< B3 == "\pn";

if(b3)

cout =< "Very Good" << "\n";
else

cout =< "Yery Bad® <= "\n";

int x3 = false + 5*m-b3;

bl = x%3;

bz = 0

cout << "x3 = " << x3 << "\n";

cout =< "Now Bl = " =< pb) << " and b2 = * << b2 << "\n";

reaturn 0;

PROGRAM 16.1

The output of Program 16.1 would be:

bl 150
b2 1z 1

New Features of ANSI C++ Standard €449

b3 is 1

Very Good

¥3 =0

Now bl = § and b2 =

The wchar_t Data Type

The character type wehar_t has been defined in ANSI C++ to hold 16-bit wide characters,
The 16-bit characters are used to represent the character sets of languages that have more
than 255 characters, such as Japanese. This is important if we are writing programs for
international distribution.

ANSI C++ al=o introduces a new character literal known as wide_character literal which
uses two bytes of memory, Wide_character literals begin with the letter L, as follows:

L'uy’ /{ wide_character literal

|16.3 New Operators

We have used east operators (also known as casts or type casts) earlier in a number of
programs. A= we know, casts are used to convert a value from one type to another. This is
necessary in situations where automatic conversions are not possible. We have used the
following forms of casting: -

double x = double(m); ff C++ type casting
double ¥ = (doublen; i C-type casting

Although these casts still work, ANSI C++ has added several new cast operators known
as static casts, dynamic easts, reinterpret casts and constant ecasts. It also adds another
operator known as typeid to verify the types of unknown ohjects.

The static_cast Operator

Like the conventional cast operators, the static_cast operator is used for any standard
conversion of data types. It can also be used to cast a base class pointer into a derived class
pointer. Its general form is:

static_cast<type>(object)

Here, type specifies the target type of the cast, and object iz the object being cast into the
new type. Examples:

int m= 10z

double x = static_cast<double> (m);
char ch = static cast<char> (m};

Copyrighted material

Hidden page

New Features of ANSI C++ Standard @ 451

The type must be a pointer or a reference to a defined class type. The argument object
must be expression that resolves to a pointer or reference. The use of the operator
dynamic_cast() is also called a fype-safe downcast.

The typeid Operator

We can use the typeid operator to obtain the types of unknown objects, such as their class
name at runtime. For example, the statement

char *onjectType = typeid{object).name():

will assign the type of "object" to the character array objectType which can be printed out,
if necessary. To do this, it uses the name() member funetion of the type_info class, The
object may be of type int, float, ete. or of any class.

We must include <typeinfo> header file to use the operators dynamic_cast and typeid
which provide run-time type information (RTTT).

Ilﬁ.-i- Class Implementation

ANSI C++ Standard adds two unusual keywords, explieit and mutable, for use with class
members.

The explicit Keyword

The explicit keyword is used to declare class constructors to be "explicit” constructors. We
have seen earlier, while discussing constructors, that any constructor called with one
argument performs implicit conversion in which the type received by the constructor is
converted to an object of the class in which the constructor is defined. Since the conversion
is automatic, we need not apply any casting. In case, we do not want such automatic
conversion to take place, we may do so by declaring the one-argument constructor as explicit
as shown below:

class ABC

[
int m;

public:
explicit ABC (int i) [/ constructor
{
m=1;

I
F B

Copyrighted material

452@ Object-Oriented Programming with C++

Here, ohjectz of ABC class can be created using onlv the following form:
ABC abcl(100);

The automatic conversion form
ABC abcl = 100:

is not allowed and illegal. Remember, this form is permitted when the keyword explicit is
not applied to the conversion.

The mutable Keyword

We know that a class object or a member function may be declared as const thus making
their member data not modifiable. However, a situation may arise where we want to create

a const object (or function) but we would like to modify a particular data item only. In such
situations we can make that particular data item modifiable by declaring the item as mutable.
Example:

mutable int m;

Although a function{or class) that contains m is declared const, the value of m may be
modified. Program 16.2 demonstrates the use of a mutable member.

#include =iostream=
using namespace std;

class BBLC
{
private:
mutable int m; /) sutoble member
public:
explicit ABC{int x = 0)
{
m o= X;
I
void change() const [/ const function

}
int display() const [f const function
|

}

m = m+li;

return mg

(Coandd)

New Features of ANSI C++ Standard 9 453

int-main()

{
const ABC abe(100): /{ const ohject
cout << "abc contains: " << abc.display();

abc.change(): /[chonges mutoble data
cout == "\nabc now contains: " =< abc.display();

cout =< "\n";:

return O;

PROGRAM 16.2

The output of Program 16.2 would be:

abc comtaims: 100
abc now containms: 110 .

rtote

Although the function change() has been declared constant, the value of m has been
modified. Try to execute the program after deleting the keyword mutable in the program.

IlﬁZS Namespace Scope

&
We have been defining variables in different scopes in C++ programs, such as classes,

functions, blocks, etc. ANSI C++ Standard has added a new keyword namespace to define
a scope that could hold global identifiers. The best example of namespace scope is the C++
Standard Library. All classes, functions and templates are declared within the namespace
named std. That is why we have been using the directive

using namespace std;

in our programs that uses the standard library. The using namespace statement specifies
that the members defined in std namespace will be used frequently throughout the program.

Defining a Namespace
We can define our own namespaces in our programs. The syntax for defining a namespace
is similar to the syntax for defining a class. The general form of namespace is:

namespage Mamespace_name

{
[/ Declaration of
// varigbles, functions, closses, etc.

454 @ Object-Oriented Programming with C++

rote
There is one difference between a class definition and a namespace definition. The

namespace is concluded with a closing brace but no terminating semicolon.

Example:

namespace TestSpace

{
int m;
void display(int n)
{

}

I // No semicolon here

cout =< n:

Here, the variable m and the function display are inside the scope defined by the
TestSpace namezpace. If we want to aszign a value to m, we must use the scope resolution
operator as shown below.

TestSpace::m = 100;
Note that m is qualified using the namespace name.

This approach becomes cumbersome if the members of a namespace are frequently used. In
such cases, we can use a using directive to simplify their access. This can be done in two ways:

using namespace namespace_name; Jf using divective

using namespace name::member name; J/ using declaration

In the first form, all the members declared within the specified namespace may be accessed
without using qualification. In the second form, we can access only the specified member in
the program. Example:

using namespace TestSpace;
m = 100; [oK
display(200); // Ok

using TestSpace::m;

m = 100; J oK
display(200); J/ Not ok, display not visible

Nesting of Namespaces

A namespace can be nested within another namespace. Example:
namespace NSl

{

Copyrighted maierial

Hidden page

456 Object-Orlented Programming with C++

]
}
namespace Jf Unnomed nomespoce
{
int m = 200;
;
int main()
{
cout << "x = " =< Namel::x << "\n"; Hox s gualified
cout << "m = " =« Namel::m =< "\n";
cout =< "y = " << Namel::MameZ::y << "\n"; f ¥y is fully quolified
cout =< "m = " << m <= "\n%; /{ m is global
return 0;
}
PROGRAM 16.3
The output of Program 16.3 is:
x = 4,56
m = 100
y = 1.23
m = 200
rote
We have used the variable m in two different scopes.)

Program 16.4 shows the application of both the using directive and using declaration.

ILLUSTRATING .JHE; using KEYWORD . ° 0.

#include <iostream=
ustng namespace std;

[! Defining o namespace
namespace Namel

double x = 4, 56;
int m = 1003

namespace Mame? I/ Nesting namespaces

(Contd)

Hidden page

458 e Object-Oriented Programming with C++

int divide{int x,int v} /) definition
i
return(x,/y);

int prod(int x,int y); /f declaration only
)

int Functioms::prod(int x,int y) // quolified
|

int main()
{

return{x*y) ;

using namespace Functions;

cout << "Diyision: " << divide(20,10) << "\n";
cout << "Multiplication: * =< prod{(20,10) =< "\n";

return 03

PROGRAM 16.5

The output of Program 16.5 would be:

Diwision: 2
Multiplication: 200

s e
When a function that is declared inside a namespace 15 defined outside, it should be
qualified.

Program 16.6 demonstrates the use of classes inside a namespace.

USING CLASSES -IN NAMESPACE SCOPE

include <iopstream>
using namespace stdj

namespace Classes

{
{

class Test

(Contd)}

New Features of ANSI Cs+ Standard 2459

private:
int m:

public:

Test(int a)
{

m= a;

void display()
{
cout << "m = " << m << "\p";

s
)

int main()

{
J/ using scope resolution
Classes::Test T1(200);
Tl.display();

/[using directive
using namespace Classes;
Test TZ2(400);

T2.display();

return 0;

PROGRAM 16.6
The output of Program 16.6 would be:
m = 200
m = 400

Ilﬁ.ﬁ Operator Keywords

The ANSI C++ Standard proposes keywords for several C++ operators. These keywords,
listed in Table 16.1, can be used in place of operator symbels in expressions. For example,
the expression

x>y & m =100

may be written as

Copyrighted material

460 @ Object-Criented Programming with C++
x>y and m not_eq 100

Operator keywords not only enhance the readability of logical expressions but are also
useful in situations where keyboards do not support certain special characters such as &,
A and -,

Table 16.1 Operator keywords

el and logical AND
| 1 or logical OR
I not logical NOT
= not_eq inequality
& bitand bitwise AND
| bitor bitwise inclusive OR
= HOF bitwise exclusive OR
- compl bitwise complement
= and_eq hitwise AND assignment
|= OT_i bitwise inclusive OR
assignment
M= XOT_eq bitwise exclugive OR
asgignment

16.7 New Keywords

ANSI C#+ has added several new keywords to support the new features. Now, C++ contains
64 keywords, including main. They are listed in Table 16.2. The new keywords are boldfaced.

Table 16.2 ANSI C++ keywords

asm - elae namespace template
auto BN new thiz
bool explicit operator throw
break export private true
CASE extern protected try
catch false public typedefl
char float register typeid
class for reinterpret_cast typename
conat friend return union
const_cast goto ghort unsigned
continue if signed using
default inline sizeol virtual
delete int static void
do long static-cast volatile
douhble main atruct wihar_t
dynamic_cast mutable switch while

New Features of ANSI C++ Standard # 461

Ilﬁ.ﬂ New Headers

The ANSI C++ Standard has defined a new way to specify header files. They do not use .h
extension to filenames. Example:

#Finclude <iostream=
finclude <fstream>

However, the traditional style <iostream.hs, <fstream.hs, ete. is still fully supported.
Some old header files are renamed as shown below:

0ld style New style
<assert.h> <cassert>
<ctype.h= <cetype>
<float.h> <cfloat>
<limits.h= «climita=
<math. hs <emaths
watdin he <eatdios
<stdlib.h> <catdlib>
<string.h> westring>
wtimeh> <ctime:s

\ SUMMARY -

L=

$¢ ¢ ¢ ¢ ¢o0 ¢

ANSI C++ Standard committee has added many new features to the original C++
language specifications.

Two new data types bool and wechar_t have been added to enhance the range of data
types available in C++,

The bool type can hold Boolean values, true and false.

The wehar_t type is meant to hold 16-bit character literals.

Four new cast operators have been added: static_cast, const_cast, reinterpret_cast
and dynamic_cast.

The static_cast operator is used for any standard conversion of data types.

The const_cast operator may be used to explicitly change the const or volatile
attributes of objects,

We can change the data type of an ohject into a fundamentally different type using the
reinterpret_cast operator.

Casting of an object at run time can be achieved by the dynamic_cast operator.
Another new operator known as typeid can provide us run time type information about
ohjects.

A constructor may be declared explicit to make the conversion explicit.

We can make a data item of a const object or function modifiable by declaring it mutable.

Hidden page

New Features of ANSI C++ Standard & 463

» RTTI » typeid

» source type » typeinfo header

» standard librarv » unnamed namespaces
» static casts » using declaration

> static_cast » using directive

> std namespace » using namespace

» target type » volatile

» true value » wchar t

> Lype casts » wide character literal
> type_info class > xor

» type_safe casting » xor_eq

| Review Questions

16.1 List the two data types added by the ANSI C++ standard commitiee.

16.2 What is the application of beel type variables?

16.3 What is the need for wehar_t character type?

16.4 List the new operators added by the ANSI C++ standard commiitee,

16.5 What iz the application of const_cast operator?

16.6 Why do we need the operator static_cast while the old style cast does the same
Job?

16.7 How does the reinterpret_cast differ from the statie_cast?

16.8 What is dynamic casting?. How s it achieved in C4++7

16.9 What iz typeid operator?. When is it used?

16.10 What is explicit conversion?. How is it achieved?

16.11 When do we use the keyword mutable?

16.12 What is a namespace conflict? How is it handled in C++¢

16.13 How do we access the variables declared in a named namespace?

16.14 ‘What is the difference betiveen using the using namespace directive and using
the using declaration for accessing namespace members?

16.15 What is wrong with the following code segment?

const int m = 100;
int *ptr = &m;

Copyrighted material

464 e Object-Oriented Programming with C++

16.16 What is the problem with the following statements?

const int m
double *ptr

100;
const_cast<double*=(&m);

16.17 What will be the output of the following program?

#include<iostream. h=
class Person
i

i
int matin()

Person John;
cout << " John 15 a ";

cout << typeid{John).name() << "\n";
]

16.18 What is wrong with the following namespace definition?

namespace Main

: int main()
LA
] o
1

I Debugging Exercises

16.1 ldentify the error in the following program.
ginclude <ipstream=

class &

{

public:
Al)
{
}

Alint 1)
(
1

Copyrighted material

16.2

New Features of ANSI C++ Standard

i
class B
{
puhlic:
B()
{
i
explicit B(int)
{
i
¥
void main()
{
A al=12:
A aZ;
A ajd=al;
B bl = 12:
!

Identify the error in the following program.

#include <iostream.h>

class A
{
protected:
int i;
public:
Al)
{
i=10;
}

int getI()
{

@465

Copyrighted material

466 8-

16.3

Ohject-Oriented Programming with C++

return 1;
5

class B: public A

{
public:

B()
1
I

int getl()

return i + i;
B

yoid main()

{
A *a = new A();
B *b = static_cast<B*>(a);
cout << b->getI();

Identify the error in the following program.

#include <iostream.h=

namespace A

{
int 1
void displ()
{
cout =< {;
)
}

void main()

{
namespace Inside

New Features of ANSI C++ Standard -2 467

int insidel;
void dispInsidel()
{

cout << insidel;

}

Arzi = 10
cout =< A::i;
A::displI();

Inside::insidel = 20;
cout =< Inside::insidel;
Inside: :dispInsidel();

I Programming Exercises

16.1 Write a program to demonstrate the use of reinferpret_cast operator,

16.2 Define a namespace named Constanis thai contains declarations of some
constants. Write a program that uses the constants defined in the namespace
Constanis.

YYYYYYYYYYYYYYYY

Object-Oriented Systems \

Development

Key Concepts

Software development components
Procedure-oriented development tools
Object-oriented paradigm

DOP notations and graphs

Data flow diagrams

Object-oriented design

Top-down decomposition

Syetem implementation
Procedure-oriented paradigm

Classic software development life cyele
Fountain model

Ohject-oriented analysis

Textual analvsis

Class hierarchics

Structured design

Prototyping paradigm

17.1 Introduction

Software engineers have been trying
various fools, methods, and procedures to
control the process of software development
in order to build high-quality software with
improved productivity. The methods
provide "how to 's" for building the software
while the tools provide automated or semi-
automated support for the methoeds. They
are used in all the stages of software
development process, namely, planning,
analysis, design, development and
maintenance. The software development
procedures integrate the methods and tools
together and enable rational and timely
development of software systems (Fig.17.1).
They provide guideines as to how to apply
the methods and tools, how to produce the
deliverables at each stage, what controls
to apply, and what milestones to use to
assess the progreas.

Object-Oriented Systems Development 2469

Software development
Procedures
Methods

Tools

Fig. 17.1 < Software development components |

There exist a number of software development paradigms, each using a different set of
methods and tools. The selection of a4 particular paradigm depends on the nature of the
application, the programming language used, and the controls and deliverables required.
The development of a successful system depends not only on the use of the appropriate
methods and techniques but also on the developer's commitment to the objectives of the
aystem. A successful aystem must:

satisfy the user requirements,

be easy to understand by the users and operators,

be easy to operate,

have a good user interface,

be easy to modify,

be expandable,

have adequate security controls against misuse of data,
handle the errors and exceptions satisfactorily, and

be delivered on schedule within the budget.

In this chapter, we shall review some of the conventional approaches that are being
widely used in software development and then discuss some of the current ideas that are
applicable to the object-oriented software development.

IIT.E Procedure-Oriented Paradigms

Software development iz usually characterized by a series of stages depicting the various
tasks involved in the development process. Figure 17.2 illustrates the classic software life
eycle $hat is most widely used for the procedure-oriented development. The classic life cycle
is based on an underlying model, commonly referred to as the "water-fall" model. This model
attempts to break up the identifiable activities into series of actions, each of which must be

el e R R ol ol

470 Object-Criented Programming with C++

completed before the next begins. The activities include problem definition, requirement
analysis, design, coding, testing, and maintenance. Further refinements to this model include
iteration back to the previous stages in order to incorporate any changes or missing links.
Problem Definition: This activity requires a precise definition of the problem in user terms.
A clear statement of the problem is erucial to the success of the software. It helps not only
the developer but also the user to understand the problem better.

Problem
Jafinils

Analysis

T esting

Fig. 17.2 &= Classic software development life cycle (Embedded "water-fall' mode) '

Analysiz: This covers a detailed study of the requirements of both the user and the software.
This activity is basically concerned with what of the system such as

what are the inputs to the system?
what are the processes required?
what are the outputs expected?
what are the constraints?

Design: The design phase deals with various concepts of system design such as data
structure, software architecture, and algorithms. This phase translates the requirements
into a representation of the software. This stage answers the questions of how.

Coding: Coding refers to the translation of the design into machine-readable form. The
more detailed the design, the easier is the coding, and better its reliability.

LR N N

Object-Oriented Systems Development 2471

Testing: Once the code is written, it should be tested rigorously for correctness of the code
and results. Testing may involve the individual units and the whole system. It requires a
detailed plan as to what, when and how to test.

Maintenance: After the software has been installed, it may undergo some changes. This
may occur due to a change in the user's requirement, a change in the operating environment,
or an error in the software that has not been fixed during the testing. Maintenance ensures
that these changes are incorporated wherever necessary.

Each phase of the life cycle has its own goals and outputs. The output of one phase acts as
an input to the next phase. Table 17.1 shows typical outputs that could be generated for
each phase of the life cycle.

Table 17.1 Culputs of classic software life cycle

Phase Output
Problem definition " Problem statement sheet
{why) . Project request
. Analysis » Requirements document
{what) * Feasibility report
. Specifications document
* Acceptance test criteria
Design » Design document
{how) * Test class design
Coding & Code document (program)
(how) s Test plan
» User manual
Testing o Tested code
(what and how) # Test resulis
* Bystem manual
Maintenance * Maintenance log sheets
* Version documents

The software life cycle, as described above, is often implemented using the functional
decomposition technigue, popularly known as top-down, modular approach. The functional
decomposition technique is based on the interpretation of the problem space and its translaion
into the solution space as an inter-dependent set of functions. The functions are decomposed
into a sequence of progressively simpler functions that are eventually implemented. The
final system is seen as a set of functions that are organized in a top-down hierarchical
structure.

There are several flaws in the top-down, functional decompeosition approach. They inelude:

1. It does not allow evolutionary changes in the software.
2. The system is characterized by a single function at the top which is not always
true. In fact many systems have no top.

472 Object-Oriented Programming with Ce+

3. Data is not given the importance that it deserves,
4. It does not encourage reusability of the code.

Il'.-".?j Procedure-Oriented Development Tools

A large number of tools are used in the analysis and design of the systems. It is important
to note that the process of systems development has been undergoing changes over the
years due to continuous changes in the computer technology. Consequently, there has been
an evolution of new system development tools and techniques. These tools and techniques
provide answers to the how questions of the system development.

The development tools available today may be classified as the first generation, second
generation, and third generation tools. The first generation tools developed in the 1960's
and 1970's are called the traditional tools. The second generation tools introduced in the
late 1970's and early 198(0's are meant for the structured systems analysis and design and
therefore they are known as the structured tools. The recent tools are the third generation
ones evolved since late 1980's to suit the object-oriented analysis and design.

Table 17.2 shows some of the popular tools used for various development processes
under the three categories. Although this categorization is questionable, it gives a fair idea
of the growth of the tools during the last three decades.

Table 17.2 System development tools

T‘T'*" Pr- < Firsl generation Second generation Third generation
Physical processes System flowcharts Context diagrams Inheritance graphs
Object-relationship charta
Data Layout forms Data dictionary Ohjects obhject dictionary
representation Grid charts
Logical processes Playseript English Decision tables &trees Inberitance graphs
narrative Data flow diagrams Data flow diagrams
Program Program flowcharta Structure charta State change diagrams
representation 'O layouts Warnier /Orr diagrams Ptech diagrams
CoadYourdon charts

This section gives an overview of some of the most frequently used first and second
generation tools. Object-oriented development tools will be discussed later in this chapter
(as and when they are required).

System flowcharts: A graphical representation of the important inputs, outputs, and data
flow among the key points in the system.

Program flowcharts: A graphical representation of the program logie.

Playscripts: A narrative description of executing a procedure.

Layout forms: A format designed for putting the input data or displaying results.

Grid charts: A chart showing the relationship between different modules of a system.
Context diagrams: A diagram showing the inputs and their sources and the outputs and
their destinations. A context diagram basically outlines the system boundary.

Object-Oriented Systems Development 473

Data flow diagrams: They describe the flow of data between the various components of a
system. It is a network representation of the system which includes processes and data
files. -
Data dictionary: A structured repository of data about data. It contains a list of terms and
their definitions for all the data items and data stores.

Structure chart: A graphical representation of the control logic of functions (modules)
representing a system.

Decision table: A table of contingencies for defining a problem and the actions to be taken.
It presents the logic that tells us what action to take when a given condition is true or
otherwise.

Decision free: A graphic representation of the conditions and outcomes that resemble the
branches of a tree.

Warnier/Orr diagrams: A horizontal hierarchy chart using nested sets of braces, psuedo-
codes, and logic symbols to indicate the program structure.

17.4 Object-Oriented Paradigm

The object-oriented paradigm draws heavily on the general systems theory as a conceptual
background. A system can be viewed as a collection of entities that interact together to
accomplish certain ohjectives (Fig. 17.3). Entities may represent physical objects such as
equipment and people, and abstract concepts such as data files and functions. In object-
oriented analy=is, the entities are called objects.

PROCESS

Entity Entity

INPUT ———s | . QUTPUT
{Objectives)

Enlity | Entity

Fig. 17.3 < A system showing inter-relationship of entities |

As the name indicates, the ohject-oriented paradigm places greater emphasis on the ohjects
that encapsulate data and procedures. They play the central role in all the stages of the
software development and, therefore, there exists a high degree of overlap and iteration

between the stages. The entire development process becomes evolutionary in nature. Any

Hidden page

Hidden page

476e

Classname
Clagsname |
Data Functions 1
|
Fumctions 2 Data
Functions]
Functions 3
(@} &)

Object-Orfented Programming with Ces

(=)

Person

<>

Clags

DOhbjiect A

Object B

Copyrighted material

Hidden page

Hidden page

Object-Oriented Systems Development 2479

X ¥
Servar Client
Fig. 1713 < Clienf-server relationship

Fig.17.14 < Process layering (A process may have typically five to seven obpects)

I 17.6 Steps in Object-Oriented Analysis

Object-oriented analysis provides us with a simple, yet powerful, mechanism for identifying
objects, the building block of the software to be developed. The analysis is basically concerned
with the decomposition of a problem into its component parts and establishing a logical
maodel to describe the system functions.

The ohject-oriented analysis ((00A) approach consists of the following steps:

Understanding the problem.
Drawing the specifications of requirements of the user and the software.
Identifying the objects and their attributes.
Identifying the services that each object is expected to provide (interface).
Establishing inter-connections (collaborations) between the objects in terms of ser-
vices required and services rendered.

Although we have shown the above tasks as a series of discrete steps, the last three
activities are carried out inter-dependently as shown in Fig. 17.15.

o G2 b

480 Object-Oriented Programming with C++

Problem |
defimition

— 1
Requiremeani |
specilicabinn

i

' R —

| |
‘ donily safvitas Idantify s

| ’V collabarations

Fig. 17.15 ' &= Achitnties of object-orienfed analysis :

Problem Understanding

The first step in the analysis process is to understand the problem of the user. The problem
statement should be refined and redefined in terms of computer system engineering that
could suggest a computer-based solution. The problem statement should be stated, as far as
poasible, in a single, grammatically correct sentence. This will enable the software engineers
to have a highly focussed attention on the solution of the problem. The problem statement
provides the basis for drawing the requirements specification of both the user and the
software.

Requirements Specification

Once the problem is clearly defined, the next step is to understand what the proposed
system is required to do. It is important at this stage to generate a list of user requirements.
A clear understanding should exist between the user and the developer of what is required.
Bazed on the user requirements, the specifications for the software should be drawn. The
developer should state clearly

#® What outputs are required.

® What processes are involved to produce these outputs.
® What inputs are necessary.

® What resources are required.

These specifications often serve as a reference to test the final product for its performance
of the intended tasks.

Identification of Objects

Objects can often be identified in terms of the real-world objects as well as the abstract
ohjects. Therefore, the best place to look for objects is the application itself. The application
may be analyzed by using one of the following two approaches:

Copyrighted material

Ohbject-Oriented Systems Development ® 481

1. Data flow diagrams (DFD)
2. Textual analysis (TA)

Data Flow Diagram

The application can be repregented in the form of a data flow diagram indicating how the
data moves from one point to another in the system. The boxes and data stores in the data
flow diagram are good candidates for the objects. The process bubbles correspond to the
procedures. Figure 17.16 illustrates a typical data flow diagram. It is also known as a data
flow graph or a bubble chart.

A DFD can be used to represent a system at any level of abstraction. For example, the
DFD shown in Fig. 17.16 may be expanded to include more information (such as payment
details) or condensed as illustrated in Fig. 17.17 to show only one bubble.

Data
storg | DOOKS database
I
o ey Shipping
Fooo] Order { Process " instuctions [
Booksaller i | Siores
__,k_‘ ."'xh A o l——.-"—
s, T r.
Check y
credit status i
\ Omte T omer | .
o | database | _
h l r
Shipping ™. /" Shipment
niotice ", 4 information
-\.m .___.-'_-\-.\. .-._,
%, . I_-' C‘D"Eﬂt\'l.__-"
| customer
ey

Fig. 17.16 & Data flow diagram for order processing and shipping for a publishing company

Oeder /—\ linstructions
Cuslomer Process Warehouse

Fig. 17.17 <= Fundamental data flow diagram

Copyrighted material

482 @ Ohject-Oriented Programming with C++

Textual Analysis

This approach is based on the textual description of the problem or proposed solution. The
description may be of one or two sentences or one or two paragraphs depending on the type
and complexity of the problem. The nouns are good indicators of the objects. The names
can farther be classified as proper nouns, common nouns, and mass or abstract nouns.
Table 17.3 shows the various types of nouns and their meaning.

Table 17.3 Types of nouns

Type of noun Meaning Example
Common noun Deacribe classes of things Vehicle, customer
(entites) income, deduction
Proper noun Names of specific things Maruti car, John, ABC
COMPATY
Mase or abstract noun Describe a quality, Quantity or an Salaryv-ineome house-loan,
activity associated with a noun feet, traffic

It is important to note that the context and semantics must be used to determine the
noun categories. A particular word may mean a common noun in one context and a mass or
abstract noun in another,

These approaches are only a guide and not the ultimate tools. Creative perception and
intuition of the experienced developers play an important role in identifying the objects.

Using one of the above approaches, prepare a list of objects for the application problem.
This might include the following tasks:

1. Prepare an object table.

2. Identify the objects that belong to the solution space and those which belong to the
problem space only, The problem space objects are outside the software boundary.

3. Identify the attributes of the solution space objects.

Remember that not all the nouns will be of interest to the final realization of the solution.
Consider the following requirement statements of a system:

Identification of Services

(mce the objects in the solution space have been identified, the next step is to identify a set
of services that each object should offer. Services are identified by examining all the verbs
and verb phrases in the problem description statement. Verbs which can note actions or
occurrences may be classified as shown in Table 17.4.

Doing verbs and compare verbs usually give rise to services (which we call as functions in

C++). Being verbs indicate the existence of the classification structure while having verbs
give rise to the compesition structures.

Copyrighted material

Hidden page

Hidden page

Object-Oriented Systems Development . # 485
The knowledge of such relationships is important to the design of a program.

Organization of Class Hierarchies

In the previous step, we examined the inheritance relationships. We must re-examine them
and create a class hierarchy so that we can reuse as much data and/or functions that have
been designed already. Organization of the class hierarchies involves identification of commaon
attributes and functions among a group of related classes and then combining them to form
a new class. The new class will serve as the super class and the others as subordinate
classes (which derive attributes from the super class). The new class may or may not have
the meaning of an object by itself. If the object is created purely to combine the common
attributes, it is called an abstract class.

This process may be repeated at different levels of abstraction with the sole objective of
extending the classes. As hierarchy structure becomes progressively higher, the amount of
specification and implementation inherited by the lower level classes increases. We may
repeat the process until we are sure that no new class can be formed. Figure 17.18 illustrates
a two-level iteration process.

{a) Objects in solution space

] 1 [5] [o] [

b} First level of hierarchy

Z

| | I |
A B c D E

{c) Second level of hierarchy

Fig.17.18 &> Level of cass hierarchies |

Copyrighted material

486% Object-Oriented Programming with C++

The process of a class organization may finally result in a single-tree model as shown in
Fig. 17.18(a) or forest model as shown in Fig. 17.1%b).

(a) Single-tree modeal

b} Forast modal

Fig. 17.19 < Organisation of classes |

Design of Classes

We have identified classes, their attributes, and minimal set of operations required by the
concept a class is representing. Now we must look at the complete details that each class
represents, The important issue is to decide what functions are to be provided. For a class
to be useful, it must contain the following functions, in addition to the service functions:

Copyrighted material

Hidden page

Hidden page

Hidden page

490 e Object-Oriented Programming with C++

The driver program is the gateway to the users. Therefore, the design of user-system
interface (UUST) should be given due consideration in the design of the driver program. The
svstem should be designed to be user-friendly so that users can operate in a natural and
comfortable way.

I 17.8 Implementation

Implementation includes coding and testing. Coding includes writing codes for classes,
member functions and the main program that acts as a driver in the program. Coding
becomes easy once a detailed design has been done with care.

No program works correctly the first time. So testing the program before using is an
essential part of the software development process. A detailed test plan should be drawn as
to what, when and how to test. The class interfaces and class dependencies are important
aspects for testing. The final goal of testing is to see that the system performs itz intended
job satisfactorily.

IIT-','} Prototyping Paradigm

Most often the real-world application problems are complex in nature and therefore the
structure of the system becomes too large to work out the precise requirements at the
beginning. Some particulars become known and clear only when we build and test the
system. After a large system is completed, incorporation of any feature that has been
identified as “missing” at the testing or application stage might be too expensive and time
consuming. One way of understanding the system design and its ramifications before a
complete system is built is to build and test a working model of the proposed system. The
model system is popularly known as a profotype, and the process is called prototyping. Since
the object-oriented analysis and design approach is evolutionary, it is best suited for
prototyping paradigm which iz illustrated in Fig. 17.22.

A prototype is a scaled down version of the system and may not have stringent performance
criteria and resource requirements. Developer and customer agree upon certain “outline
specifications” of the system and a prototype design is proposed with the outline requirements
and available resources. The prototype is built and evaluated. The major interest is not in
the prototype itself but in its performance which iz used to refine the requirement
specifications. Prototypes provide an opportunity to experiment and analyze various aspects
of the system such as system structure, internal design, hardware requirements and the
final system requirements. The benefits of using the prototype approach are:

We can produce understandable specifications which are correct and complete as
far as possible,

® The user can understand what is being offered.

® Maintenance changes that are required when a system is installed, are minimized.

® Development engineers can work from a set of specifications which have been tested
and approved.

Object-Oriented Systems Development * 491

System

Dutling
! requirements

Dasign

Build
prototype
Make
. ierlaied
Fu -
Evaluate system
prototype

Fig. 1722 < Profotype paradigm

Prototype iz meant for experimenting. Most often it cannot be tuned into a product.
However, occasionally, it may be possible to tune a prototype into a final product if proper
care is taken in redesigning the prototype. The best approach is to throw away the prototype
after use.

17.10 Wrapping Up

We have discussed various aspects of the object-oriented analysis and design. Remember,
there is no one approach that iz always right. You must consider the ideas presented here as
only guidelines and use your experience, innovation and creativity wherever possible.

Following are some points for your thought and innovation:

1. Set clear goals and tangible objectives.
2. Try to use existing systems as examples or models to analyze your system.

492 Object-Oriented Programming with C++

LUse classes to represent concepts.

Keep in mind that the propozed system must be flexible, portable, and extend-
able.

Keep a clear documentation of everything that goes into the system.

Try to reuse the existing functions and clazses.

Keep functions strongly typed wherever possible.

Use prototypes wherever possible.

Match design and programming style.

Keep the system clean, simple, small and efficient as far as possible.

W £0

= il e

\ SUMMARY -

¢ The classic system development life cycle most widely used for procedure oriented
development consists of following steps.
® Problem definition

Analyzis

Design

Coding

Testing

Maintenance

¢» In object oriented paradigm, a system can be viewed as a collection of entities that *
interact together to accomplish certain objectives.

&> Inobject oriented analysis, the entities are called objects. Object oriented analysis ((0A)
refers to the methods of specifying requirements of the software in terms of real world
ohjects, their behaviour and their interactions with each other.

> Ohbject oriented design (O0D) translates the software requirements into specifications
for objects, and derives class hierarchies from which the objects can be created.
Object oriented programming (OOP) refers to the implementation of the program using
ohjects, with the help of object oriented programming language such as C++.
& The object oriented analysis (QO0A) approach consists of the following steps:
Defining the problem.
Estimating requirements of the user and the software.
Identifying the objects and their attributes.
Identifving the interface services that each object is supposed to provide.
Establishing interconnections between the objects in terms of services required and
services rendered.
<« The object oriented design (O0OD) approach involves the following steps:

® Review of objects created in the analysis phase.

a Specification of class dependencies.

g

Copyrighted material

Hidden page

:
L

data dictionary

data flow diagrams
decision table

deczion tree

design

development tools

doing verbs

driver program

entities

entity relationship diagram
entity-relationship

fist generation
flowcharts

forest model

fountain model
functional decomposition
grid charts

has-a relationship
having verbs
hierarchical chart
information flow diagram
inheritance relationship
instances of objects

is-a relationship

Y Y Y Y Y Y Y Y Y Y Y Y Yy Y Y Y Y Y Y YYYYYY

layout forms

| Review Questions

Ohject-Oriented Programming with Ce+

Y Y Y Y Y Y Y Y Y Y YY YY YYYYYYYYYY

proper nouns
prototype
protolyping
prototyping paradigm
second peneration
zelection

SO LIETIee
aingle-tree model
software life cycle
solution space
stative verhs
structure chart
structured design
structured tools
system flowcharta
testing

textual analysis
third generation
tools

top-down approach
traditional tools
use relationship
Warnier diagrams
water-fall model

17.1 List five most important features, in your opinion, that a software developer
should keep in mind while designing a sysfem.

17.2 Deseribe why the testing of software is important.

17.3 What do you mean by maintenance of software? How and when is it done?

17.4 Who are the major players in each stage of the systems development life cycle?

17.5 Is it necessary to study the existing system during the analysis stage? [If ves,

why? If no, why not?

17.6 What are the imitations of the classic software development life cycle?
17.7 “Software development process is an iferafive process”. [Discuss,

Hidden page

Appendix A

| Projects |

IA.I Minor Project 1: Menu Based Calculation System

Learning Objectives
The designing of the Menu Based Caleulation System project will help the students to:

Create C++ classes with static functions
Generate and call static functions

L

L]

® Use the functions of Math.h header file

® Develop and display the main menu and its submenus

Understanding the Menu Based Calculation System

The Menu Based Calculation System project is aimed at performing different types of
calculations including normal and scientific caleulations. In this project, two calculators,
Standard and Scientific, are used for performing the caleulations. The Standard ealculator
helps in performing simple calculations such as addition, multiplication, ete. while the
Scientific calculator helps in performing mathematical operations such as finding the square
or cube of a number.

The first screen contains a menu from which you ean select the type of caleulator: Standard,
or Scientific. The first screen also provides the Quit option to terminate the exeeution of the
application. Figure A.1 shows the first screen of the menu based calculation system.

To select a calculator, enter the integer corresponding to the calculator name. For instance,
if vou select 1, the Standard calculator will open up, while selecting 2 will open the Scientific
calculator,

Appendix A 2497

Tuirho T 4+ + TDE

F Calculatops=
1 t i | il Calculator
¥ 4 e] L T '...1fII||.1|_|||"
| [P TR A
Choose=the L e of“paloculator:

Fig. A.1 |

Developing the Menu Based Calculation System

The code of the calculator application mainly comprises of two classes stand_cale and
scien_cale. The stand_cale class helps to perform standard calculations. The scien_cale class,
on the other hand, helps to perform scientific calculations. Both classes contain static functions
80 as to ensure that these functions can be called in the main function through class name.

Creating the stand_calc class

The stand_cale class aims at performing specific tasks related to standard calculations. These
tasks are:

Adding two numbers

Subtracting the second number from the first number
Multiplying two numbers

Divading the first number by the second number
Muodulus of the first number by the second number

To perform the above-mentioned tasks, the stand_cale class implements the following
member functions:

LR N N

E-M M’fﬂﬂ R by it] o .-._!."'."‘; |E:"=:__' . 14 “F F ;
Addition Returns the addition of two input numbers,
Bubtraction Returns the subtraction of two numbers accepted as input from the user,
Multiplication Returns the multiplication of two numbers accepted as input from the nser,
Divigron Returns the output obtained after performing the division operation on the
input numbers,
Modulus Returng the output obtained after performing the modulus operation on the

input numbers.

498 @ Object-Oriented Programming with C++

Creating the scien_calc class

You need to create the scien_calc class to perform tasks related to scientific calculations,
which include finding the square or cube of a number, etc. The scien_cale class performs the
following tasks:

Determines the square of a number

Determines the cube of a number

Determines the firat number to the power of the second number
Determines the square root of a number

Determines the factorial of a number

Determines the value of sin, cos and tan by passing a number

To perform the above-mentioned tasks, the scien_cale class implements the following member
functions:

Functions Description A o] 1~ s 4k
Square Accepts a number and returns the square of that number
Cube Accepts a number and returns the cube of that number
Power Accepts two numbers and returns the first number to the power of the
second number
sq_root Acrepts a number and returns its square root
Fact Returns the factorial of an input number
gin_fune Returns the sin value af an input number
cos_fune Returns the cos value of an input number

tan_fune Returns the tan value of an input number

Calc

/* calc.cpp is a calculator. Initially, it displays a main menu to choose the calculator
type. If a user chooses 5tandard calculator, then a menu appears for standard calculator
options. If a user chooses Scientific calculator, then a menu appears for scientific
calculator options and the Tast option is to Quit.
In standard calculator, options are to add, subtract, sultiply etc. and in scientific
calculator, options are power, factorial, square root, etc.
In this program, preprocessor are defined for new calculation and old calculation. Mew
calculation will accept an operand whereas in old calculation, one operand is already
assumed from the result of previous calculation.
Exception handling is not implemented in this project, so do not enter a string when
system asks you for a number.

o

JfFile including and preprocessor declaration

#include <iostream. h=

#Finclude =conio.h=

#Finclude =math.h=

Appendix A €499

#include <stdlib.h=

#define new cal 1

#define old cal 0

{/stand calc class to define standard calculator functions
class stand _calc

{

/*Protyping of standard calculator functions. These functions are static, therefore
calling of these functions is possible with the name of the class. There is no need
to create an object of the class. */

public:

static double addition({double,double);

static double subtract(double,double);

static double multiplication(double,double);

static double division{double ,double *);

static double modulus(double *,double *);
¥
[fscien calc class to define scientific calculator functions
class scien_calc
{

public:

static double square(double);

static double cube(double);

static double power(double,double);

static double sq_root(double);

static long int fact({double);

static double sin_func(double);

static double cos_func(double);

static double tam func(double);

H
Jfaddition function will add two numbers
double stand calc::addition(double a, double b)

J
//subtract function will subtract the second number from the first number

double stand calec::subtract(double a, double b)
{

I
f/multiplication function will multiply two numbers

double stand_calc::multiplication{double a, double b)

(
}

return{a+h);

return{a-b);

return{a*h);

500® Object-Oriented Programming with C++

Jf*division function will divide the first number by the second number. This function
accepts two arguments, one is copy of a variable and another is pointer type because
if accepting divisor is zero, then this function will show a message to entér the
divisor again. Using pointer means that the entered value of the divisor for this
function should be updated at the main function also.*/
double stand calc::division(double a, double *h)
i
while(*b==0)
{
cout=="\nCannot divide by zero.";
cout<=<"\nEnter second number again:";
cin==*h;
b
return(a/(*b));

1
J/*Modulus function will divide the first number by the second number and return the

remainder part of the division. Similar to division fumction, it will not accept
zero in the divisor. Modulus cannot be performed on a double number, so we need to
convert it into an integer.*/
double stand calc::modulus(double *a, double *b)
{
while(*b==0)
{
cout=<"\nCannot divide by zero.";
cout<<"\nEnter second number again:";
cin=>*h;
|
J/Converting double into am integer
int x={int)*a;
int y={int)*b;
if(=a-x>0| | *b-y=0)
cout<<*\nConverting decimal number into an integer to perform modulus®;
*a=ny
*b=y;
return(xiy);
1
//Declaration of scien_calc class functions starts from here.
Jfsquare function of scien calc class to return accepting number to the power 2
double scien calc::square(double x)

{
I

/fcube function of scien calc class to return accepting number to the power 3
double scien_calc::cube(double x)

{
}

return(pow(x,2));

return(pow(x,3});

Appendix A @ 501

/fpower function of scien calc class to return the first number to the power of the
second number
double scien_calc::power({double x,double y)

I
|

{/sq_rrot function of scien_cale class to return the square root of the entered number
double scien_calc::sq_root(double x)

(

I
f*fact function of the scien_calc class to return a long integer as factorial of an

accepting number, This will convert accepting number into an integer before calculating
the factorial®*/
long int scien_calec::fact(double x)

{

return(pow(x,¥));

return(sqrt(x));

int n=(int)x;
lang int f=1;
while(n=1)
{
fE=p3
N3
|

return f;

]

Jfsin_func of the scien_calc class to return the sin value of x
double scien calc::sin_func(double x)

{

)
/fcos_func of the scien calc class to return the cos value of x
double scien calc::cos func(double x)

{
I

fftan_func of the scien_calc class to return the tan value of x
double scien_calc::tan_func(double x)

return(sinfx));

return(cos(x));

return(tan(x));
b

J/Displaying the menus to enter the options and values
void main()
{
double numl,numZ,num3, temp;
int choicel=0,choiceZ,flag;
J/Loop of main menu from where the program starts. It will show the menu to choose
the type of calculator.

502 Object-Oriented Programming with C++

cirscr();
cout<<*ssasssssType of Calculatorsg=ssssa=";
coute<*\nl\tStandard Calculator\nZ\tScientific Calculator\n3\tQuit";
cout<<*\nChoose the type of calculator:";
cin>>choicel;
flag=new cal;
[{To perform an operation according to the entered option in the main menu
switch{choicel)
{
case 1:
ffLoop to display the standard calculator menu
do
{
clrscr():
cout<c" sssssmssssitandard Calculatorssssesssssa";

coute<"\nl\tAddi tion\n2\tSubtraction\n3\tMultiplication'nd\ tDivision\ns tModulus\n6\ tReturn
to Previous Menulni?\tQuit";
/fOption 8 will be displayed only when working on
old calculations. Here, already a number is saved in the calculator memory.
if(flag==o1d_cal)
cout<<"\nB\tClear Memory™;
cout<=<"\nChoose the type of calculation:";
cin==choiced;
//To perform operation and call functions of the
stand_calc class
switch(choice?)
{
case 1:
J/1f a new calculation is there, then
accept the first number else previous calculation result will be the first number.
if (flag==new cal)
{
cout=<"Enter first number:";
cin==num]l ;

el 5e

numl=temp;
cout=<"YnFirst number s
"<<numl=<end] ;
}
cout<<"Enter second number:";
£l A==nume ;

Appendix A @503

num3=stand calec::addition(numl,num?};
r cout=<"\nAddition of "<<numl<<" and
"eepumZ=<" i5 "<<num3;
cout=<="YnPress any key to
CONtiNUB. . eananana}
getch();
temp=num3;
flag=old cal;
break;
case £:
if (flag==new cal)
{
cout=<"Enter first number:";
Cin®>num] ;

else

numl=temp;
cout<<"\nFirst number is
"ccnuml<<end] ;
J
cout=<"Enter second number:";
cin==num;

num3=stand calc::subtract{numl,num?};
cout=="Y\nSubtraction of "<<numZ<<®
from "<<numl<<" is "<<num3;
cout<<*‘\nPress any key to
CONLIMUE, e s enanas
getch();
temp=num3;
flag=old cal;
break;
case 3:
if (flag==new cal)
{
cout=<"Enter first number:";
Cin==numl ;

else

numl=temp;
cout<<"\nFirst number is
"zenuml<<end] ;
}
cout=<"Enter second number:":
cin==numa ;

504 & Object-Oniented Programmung with C++

num3l5tand_cal:::mu]tip]fcatinn{numl,numE];
and "<<pumZ<<" is “<<num3;

continue....ovues."}

case 4:

Mexppm] =<end] ;

num3d=stand calc::division(numl,bnumz2);
feepumZ=<" 15 "s<numd;

CONEIAUR. o reeenn -

case §:

"ccnuml<<endl;

cnqttc"\HWu1t1p11cat1ﬂﬂ of ®conum]oc”
cout<<"‘\nPress any key to

getch();
temp=num3i;
flag=old_cal;
break;

if [flag==new cal)
{

cout=="Enter first number:";
cin==numl;

else

numl=temp;
cout=<"vnFirst number is%

)

cout=<"Enter second number:";
cine>num? ;

cout<<"\nDivision of "<<numl<<" by

cout=<"YnPress any key to

getch();
temp=num3;
flag=ald _cal;
break:
if (flag==new cal)
{
cout=<"Enter first number:";
cin==numl;
}
elge
{

numl=temp;
cout<<"\nFirst number is

}

cout=<"Enter second number:®;
cin=>num;

Appendix A
num3=stand_calc: :madul us (&nwml, Anum?) ;
"ecpumZ<<® i5 "<<num3;

Eunti“uE4r1r1r1r1r.;

case 6:
continue.....oouua”s

case 7:
continue...........":

case B:

®505

cout=<"\nModulus of “<<numle<" by
cout<<"\nPress any key to

getch();
temp=num3l;
flag=old cal;
break;

cout=<"\nReturning to previous menu.";
cout<<"\nPress any key to

getch();
break;

couts<s"\nluitting..cvvvacnnana™}
cout=="%“nPress any key to

geteh();
extt{0);

J/1f a new calculation is going on

then 8 is an invalid option, else B is an option to start & new calculatiom

CONtiMUB. o vuwnea s

defaul t

CONLINUe, . .vvrrrrnss"]

t
Iwhile (choiceZl=g);
break;

if(flag==new cal)

{
cout<<"\nInvalid choice.";
cout=<"‘nPress any key to

getch();
1
else
{
temp=0;
f1 ag=neu_¢;a'| -
|
break;

cout=="Y\nlnvalid choice.";
cout=<"\nPress any key to

getch();
break;

506 Object-Oriented Programming with C++

cace 2:
JfLoop to display scientific calculator menu
do
{
cirscr();
coutes =e=zze====fefentific Calcul ator====s======",

cuut**'\nl\tSquareEnEHtEuhE\nlktPuuer\nﬂ\tFactur1al\n53151n\ﬂﬁ\tﬂus\n?\tTaninB\tHeturn
to previous menubnSYtQuit®;
if(flag==01d_cal)
cout=="ynl0\tClear Memory";
cout<<"\nChoose the type of calculation:";

cin>>choice?;
switch{choiceZ)
{
case 1@
if (flag==new cal)
{
cout=<"Enter number to find
square:":
cin==numl;
1
else
{
numl=temp;
cout=="\nNumber is
"eznuml<<end] ;
|
num3=scien calec::square(numl);
cout=="\nSquare of “=<numl=<" is
"qqm-ﬁ:
cout=="%nPress any key to
CONLIAUR. essnanans ol
getchi);
temp=num3;
flag=old_cal;
break;
case 2:
if (flag==new _cal)
{
cout=<*Enter mumber to find
Clube:®;

cin>=numl ;
else

numl=teamp:
cout<<"\nNumber is

"eenuml<<end] ;

“esnumd ;

CONEIMUB. s v s wanansn .

for base to find power:®;

"eenuml<<end] ;

to find power:";

"wequmd=<" {5 "=<numd;

COnEinWE. . oursnan. 3

factorial:";

Appendix A

case 3:

case 4:

* 507

1
num3=scien_calc::cube(numl) ;
cout=<"\nCube of "<<numl<<® is

cout<=<"\nPress any key to
getch();

temp=num3;

flag=old_cal;

break;

if (flag==new_cal)

{
cout<<"Enter first number
cin==numl;

|

else

{
numl=temp;

cout=<"\nFirst number is

]
cout<<"Enter second number for power

cin==num? ;
num3d=scien_cale: :power(numl,num2) ;
cout=<"\n"<<numl=<" to the power

cout<<"\nPress any key to

geteh() ;

temp=num3 ;

flag=old_cal;

break;

if (flag==new cal)

{
cout=="Enter number to find
cim==numl;

else

numl=temp;
cout<<"\nNumber to find

508 e Object-Oriented Programming with C++

factorial is “<<numl<<endl;

}

Tong int numd=scien calc::fact(numl);

cout<<"\nFactorial of "<<puml<<" is
®oonumd ;

cout<<*\nPress any key to
continue.cac." 3

getch();

temp=rium4 ;

flag=01d_cal;

break:

case 5:
if {F1ag==nen_ca1]

cout=<"Enter number to find
s5in value:";
cim>>numl;

numl=temp;
cout=<" aNumbar for 2in valus
is "eenuml=<end];

num3=scien_calc::sin_func(numl);
cout<<®ynSin value of "ecnumle<® is

Ueenumd ;

cout<<"\nPress any key to
continue. ..ovenvas"; {

getch();

temp=num3;

flag=old_cal;

break;

case b:
if (flag==new cal)

cout=<"Enter number to find
cos value:";
cin==numl ;

numl=temp;
cout=<"\nMumber for cos value
is "=<puml<<end];

num3=scien_calc::cos_func(numl);
cout=<"\nCos value of "<<puml<<" is

'ttnum};

contimue. .ccvevans §

tan wvatwe:";

{5 "e<numl<<end] ;

‘qtnumsi

oA IMUE. e rnnnaat}

COnEimuE. «.vuvuvan')

contimUE. s csvannna H

Appendix A -2 509
cout=="\nPress any key to
getch();
temp=num3;
flag=old_cal;
break;

case 7:
if (flag==new cal)
{
cout=<"Enter number to {ind
cin==numl ;
|
else
{
numl=temp;
cout<="\nNurber for tan value
i
num3=scien_calc::tan_func{numl) ;
coutes"\nTan value of "senumlec" 13
cout=<*\nPress any key to
getch();
temp=numi ;
flag=old cal;
break;
case &:
cout=="\nReturning to previous menu.”;
cout=<"\nPress any key to
getch();
break:
case 9:
cout<<"\AQuitting. .coonennronsy
cout=<*\nPress any key to
getch();
anit(0);
case 10:

if(flag==new_cal}

{
cout<<"\nInvalid choice.";
cout<<"\nPress any key to

210

I:ﬂﬂt'inue-irp-r-.r-r.:

CONEANUE. ccovivenncan &

|
}while (choicell=3);

}

Object-Onented Programming wath C++

getch();

}

glse

{
temp=0;
flag=new cal;

|

break;

default:

cout<="\nlnvalid choice.":
cout=<"\nPress any key to

getch();
break;
I
Iwhile {(choicez|=8);
break:
case 3:
cout=<"\nQuitting...... LC
cout<<"\nPress any key to continue........";
getchi():
break:
default:

cout<=="\nlnvalid Choice.";

cout<<*\nPress any key to continue........";
getch();

break:

I_&.Z Major Project 1: Banking System

Learning Objectives

The designing of the Banking System project helps the students to:

Create C++ classea and call the functiong declared in the classes

Develop and display main menu and its submenus

Change the menu options during runtime

Programmatically create files using File System objects

Perform file transactions such as Updntiun, Deletion and Ihsplay from files

Use iomanip header file in C++ to display formatted output of data using setw()

function for setting width of the text to be displaved.

Hidden page

S12e Ohject-Oriented Programming with C++

Creating the dispRecords Class

You need to create the dispRecords class to implement the functionality of displaying the
information related to the customers of a bank and their accounts. In the dispRecords class,
data related to customers is retrieved from the newrecords.dat data file for displaying customer
information or adding and cloging of customer accounts. You can create the dispRecords
class by defining the variables required for displaying customer and account information and
the member funetions such as displayCustomer and deleteAccount. The following table
lists the member functions that need to be defined in the class dispRecords:

addDetails(int, char name[30], Adds the information related to a new customer of the bank

char address[60], float) who becomes an account holder.

digplayCustomers(void) Digplays a list of all the account holders of the bank along with
their account numbers and balance,

deleteAccount(int) Deletes the information related to the account holder from the
newrecords.dat data file.

updateBalance{int, float) Updates the balance after a customer has performed a deposit
or withdrawal transactismn.

lastAccounti) Displays the account number of the last entry.

accountExists{int) Checks whether an account exists or not.

getameiint) Retrieves the name of the account holder.

petAddress{int) Retrieves the address of the account holder.

fetBalance(int) Retrieves the balanece of the account holder,

getRecord{int) Returns the record number from the newrecords.dat data file
when an emplovee of the bank enters the account number
related to an account holder.

display(int) Digplays all the information related to an account holder from
the newrecords. dat file on the bagis of specified account number,

Creating the accountTransactions Class .

You need to create the aceountTransactions class so that transactions related to an account
can be performed. The data related to the transactions are stored in the transaction.dat data
file. The accountTransactions class also uses some member functions defined in the
dispRecords class. In the class accountTransactions, the Object Oriented Programming (OOP)
concepts of Polymorphism are used to manipulate data, which need to be stored in the
transaction.dat data file. You can ereate the accountTransactions class by defining variables
and member functions, which include new_aecount and showAceount. The following
table lists the member functions of the accountTransactions class:

Appendix A #513

. Functions " A Descriptions '.:':"ﬁ -rr. ! _1 T e
new_aceount{void) Validates the information related to a new customer and
adda the information to the transaction.dat data file wsing
the addDetails member function.

closeAceount() Clnses the acoount of an account holder after verifying the
gecount number,

showAccount(int) Displays the headings Customer Name, Deposit and
Withdrawal, Interest and Balance.

display_account(void) DMsplays the data related to a specific account holder,

deleteAccount{int) Deletes the data related to a transaction from the

transaction.dat data file on the basis of the account
number of that account holder,
tranaaction(void) Helps to perform deposit and withdrawal transactions,
dateDiffer{int, int, int, int, int, int) Checks the current and account creation dates. If the
account in the bank has completed one year, then interest
for that account is ealeulated.

getInterest(int, float) Generates interest when one year has mmpletéd for a
particular account,
showInterest(void) Digplays the interest generated using the getinterest

member function. The showInterest member function also
helps to update the balance of the account holder.

Banking Application

f** A Banking System with normal transactions **/

#include <iostream.h=
#include =fstream.h=
#include <process.h>
#include <string.h=
#Finclude =<stdlib.h=
#Finclude =stdio.h=
Finclude =ctype.h=
finclude =conio.h>
#include <dos.h=
#include <iomanip.h=

/f The Menus Class displays the Menu
class Menus

{
public :
void showmenu(void) ;

514 - Object Orented Programming with Ce+

private :

void closemenul(void) ;
§

J/ The Class displays all the Customer Account related functions
class dispRecords
{
publig =
void addDetails{int, char name[30], char address[60], float) ;
vold displayCustomers{vaoid) ;
void deleteAccount(int) ;
void updateBalance(int, float) ;
void updatefustomer{void) :
int lastAccount(void) ;
int accountExists{int) ;
char *getName(int);
char *getAddress{int);
float getBalance(int) ;
int getRecord(int) ;
vold display(int) ;
void displayList{wvaid) ;
int AccountMumber ;
char name[50], address[50] ;
float intBalance ;

bi

J/ The Class has all the transaction related methods
class accountTransactions
{
public :
void new_account{void);
void closeAccount(void);
void display account{veid);
void transaction{void);
void addDetails(int, int, int, int, char, char typeTransaction[15],
float, float, float);
void deletedccount(int);
int datepiffer(int, int, int, int, int, int);
float getInterest(int, float);:
void display(int);
void showlcoount{int);
int AccountMNumber; //variable for Account Number
char trantype[10]; // variable of cheque or cash input or output
int dday, wmonth, yyear; [/ transaction date
char transactions; // type of transactions - Deposit or
Withdrawal of Amount

Copyrighted material

i

Appendix A

float intInterest, intAmount, intBalance:;
static float calcinterest;
void showInterest{void);// /added

J/ showmenu() method to display the Main Menu in the application
void Menus :: showmenu(void)

{

char choice:

while (1)

i
clrscr();
cout=<s"in —=Welcome to Banking System Application=-
Eﬂu tq{ B i i g o e o i i v o i o e v ool oo e o ol o e o i i ol i o ol ol i l|I n '|L|-| H =
coute<® Choose from Options ‘\n*;
cout-<® \n";
cout =<" 1: Open an Account\n®;
cout =<® £: Yiew an Account n®;
cout =<" 3: Show all Accounts 'n";
cout =<® 4: Make a Transaction ‘\n";
cout =<* 5: Calculate Interesti\n®;
cout =<® 6: Close an Accountin®;
cout <<" 7: Exitinin";
cout =<" Please select a choice : ¥;

choice = getche();

if {choice == '1')

{
accountTransactions objAT;
objAT.new_account();

|

else

if (choice == '2')

{
accountTransactions objAT;
objAT.display account();

}

else

if {choice == '3'}

{
dispRecords newRec;
newRec.displayCustomers();

I

else

if (choice == '4')

€515

"

Copyrighted material

Hidden page

Hidden page

518e Object-Oriented Programming with C++

int record ;

record = getRecord(retrieve_AccNa) ;
fstream filename
filename.open("newrecords.dat®, ios::in);
filename.seekg(0,ios::end);

int location;

location = (record) * sizeof(dispRecords);
filename.seekp({location);

while (filename.read{(char *) this, sizeof(dispRecords)))

{

if {retrieve_hcch == AccountNumber)

1
cout =<*\n ACCOUNT NOD. : " =<AccountNumber ;
cout =="\n Mame : M=spame
cout <=<"\n Address : " <<address ;
cout =<"yn Balance : ™ <<intBalance ;
break

]
I
filename.close() ;

]

/f getName() method returns the Account Holder's Name from the newrecords.dat file
char *dispRecords :: getName(int retrieve_AccNo)

{
fetream filename;
filename . open(*newrecords.dat”, ios::in);
filename.seekg(0,ios: :heg);
char retrieve CustMame[30];

while (filename.read((char *) this, sizeof(dispRecords)))
(
if (AccountMumber == retrieve AccNo)
1
strocpy(retrieve_CustName,name);
}
t
filename,close();
return retrieve_CustName;
J
/[getAddress () method returns the Address of the Account Holder from the newrecords.dat
file
char *dispRecords :: getAddress(int retrieve AccNe)

Copyrighted material

Hidden page

520@ Ohject-Oriented Programming with C++

{
count = 1;
break;
}
}
filename.close();
return count;

}

J* displayList() method displays the output of all the Accounts in a proper format
for the Choice 3%/

void dispRecords :: displaylList()

{

coute<"

int dayl, monthl, yearl ;

struct date dateval;

getdate(&dateval);

dayl = dateval.da day ;

monthl = dateval.da_mon ;

yearl = dateval.da year ;

cout <<"\n Date: " ==dayl <<"/" —<monthl <<"/" <<yparl<<"\n";

cout==setw(B0)=<" An";

cout<=<setw(23)<<" ACCOUNT ND.";

cout<<setw(23)<<" NAME OF PERSON™;

coutecsetw(23)<<" BALANCE\n";

cout==setw(B0)<=<" n";
}

/! displayCustomers() method displays all the Account Holders/Customers from the
newrecords.dat file
void dispRecords :: displayCustomers(void)
{
clrscr()
int lenl;
int row=8, check ;
fstream filename ;

FILE * pFile;
pFile = fopen(*newrecords.dat","r");
if (pFile == NULL)
{
cout=<"\n No Account exists. Please go back to the previous menu. \n";
getch();
return ;
Jifclose (pFile);

} else {

Appendix A ®521

displaylist();

filename.open(“newrecords.dat”, ios::in);
filename.seekg(0,i0s: :beg);

while (filename,read({(char *) this, sizeof(dispRecords)))

{
check = 0 ;

cout. fill(' *):

cout <<setw(20);
cout.setf(ios::right,los:zadjustfield);
cout<<AccountMumber;

cout Fi11{" *):

cout =<setw(25);
cout.setf(ios::internal,ios::adjustfield);
cout<<name;

cout =<setw(23);
cout.setf(ios::right,i0s::adjustfield):
coute<intBalances<"\n" ;
ToWH
if (row == 23)
{
check = 1 ;
row = § ;
cout =<" ‘n\n Continue the application... \n";
getch()
clrscr() ;
displayList() ;

1

|

filename.close()

if (!check)

{
cout =<"\n\n Continue the applicatiom... “n";
getch() ;

]

1

/) addDetails() method adds new records of Account Holders/Customers in the
newrecords.dat file
void dispRecords :: addDetails(int retrieve AccNo, char retrieve CustMame[30],
char retrieve Address[60], float iBalance)
{

AccountNumber = retrieve AccNo ;

stropy (name,retrieve_CustName) ;

strcpy(address,retrieve_Address) ;

intBalance = iBalance ;

Hidden page

Appendix A @523

intBalance = iBalance ;

int location ;

location = (record-1) * sizeof(dispRecords) ;
filename.seekp(location) ;

filename.write((char *) this, sizeof(dispRecords)) ;
filename.close() ;

}

{/ addDetails() method adds the details of a transaction in the transactions.dat file
void accountTransactions :: addDetails(int retrieve AccNo, int dayl, int monthl, int
yearl, char t_tran, char typeTransaction[10], float interest_accrued. float t_amount,
float iBalamce)
{

fstream filename ;

filename.open(“transactions.dat”, ios::app) ;

AccountMumber = retrieve AccNo ;

dday = dayl ;

mmonth = monthl ;

yyear = yearl ;

transactions = t_tran ;

strcpy (trantype, typeTransaction) 3

intInterest = fntenest_at:cnu:d]

intAmount = t_amount ;

intBalance = iBalance ;

filename.write((char *) this, sizeof(accountTransactions)) ;

filename.close();

[deletefccount () method deletes the record of a transaction from the transactions.dat
file
void accountTransactions :: deleteAccount(int retrieve AccNao)
{
fstream filename ;
filename.open(*transactions.dat", {foes::in) ;
fstream temp :
temp.open{"calculations.txt", ios::out) ;
filename.seekg(0,ios::beg) ;
while [1filename.eaf())

{
filename.read((char *) this, sizeof{accountTransactions)) ;

if (filename.eof())
break ;
if { AccountNumber != retrieve Accho)
temp.write((char *) this, sizeof{accountTransactions)) ;
!
filename.close() ;
temp.close() ;

524e

}

Object-Onented Programming with C++

filename.open("transactions.dat”, 1os::out) ;
temp.open(“calculations.txt®, ios::in) ;
temp.seekg(0,io0s::beg) ;

while { !temp.eof())

{

temp.read((char *) this, sizeof(accountTransactions)) ;
if (temp.eof())
break
filename.write((char *) this, sizeof({accountTransactions)) :
}
filename.close() 3

temp.close() ;

{/ new_account() method adds a new record in the newrecords file and transaction.dat
files(choice 1)
void accountTransactions :: new_account(void)

{

char chaice ;

int i, check ;
clrser() ;
dispRecords newRec ;

cout <<* Please press 0 to go back to previous menu. \n" ;
cout=<" n®;
cout<<" —Open a New Bank Account- \n";

ooy t_ﬂl i v ol o ol ol o ol ol e i 'lllnl :

int dayl, monthl, yearl ;

struct date dateval;

getdate(Adateval);

dayl = dateval.da_day ;

monthl = dateval.da mon ;

yearl = dateval.da year ;

int retrieve Accho ;

retrieve AccNo = newRec.lastAccount() ;
retrieve_AcchNo#+ ;

if (retrieve_AccNo == 1)

(
newRec.addDetails(retrieve_AccNo,"Ravi","Delhi", 1.1} ;
newRec.deleteAccount(retrieve_Accho) ;
addDetails(retrieve_AcchNe,1,1,1997,'D’,"default value®,1.1,1.1,1.1) ;
deleteAccount(retrieve_Acche) ;

|

char retrieve CustName[30], tran acc[l0], retrieve Address[60] ;

float t_bal, iBalance ;

cout =<" Date : "<«dayl <<"/" <emonthl <<"/" <=yparle<"\n" ;

cout =<' Account no. # " <<retrieve_AccNo;

Hidden page

526® Ohbject-Oriented Programming with C++

gets(chr_VerifyingPerson);
if (chr VerifyingPerson[0] == '0')

{
cout=<"Yn\t Invalid Verifying Person Mame.";
getch();
réeturng

;

strupr{chr_VerifyingPerson) ;
if (strlen{chr VerifyingPerson) <1 || strien{chr VerifyingPerson) = 30)
{
check = 0 ;
cout=<"\thn The Yerifying Person's Name is either blank or
greater than 30 characters. Please try again.\n";
getch{) ;
1

} while (!check) ;

do
i
cout =="\n Please enter the Deposit Amount while opening a Mew Account : ";
check = 1 ;
gets(tran_acec) ;
t bal = atof(tran acc) ;
iBalance = t_bal ;
if (strien(tran_acc) =< 1) {
cout<<"\n Invalid Transaction value. Exiting from the current
Menu.\n *;

getch();
return 3
}
if (iBalance = 1000)
{
check = 0 ;

cout=<"%t\n The Minimum Deposit Amount should be Rs.1000. Please
try again. \n";
getch(} :
}

I while [icheck) ;

do

{
cout =<"\n Do you want to save the record? (y/n) : * ;
choice = getche() ;
choice = toupper(choice) ;

Copyrighted material

Appendix A 2527

} while (choice != 'N' & choice I= 'Y') ;
if (choice == 'N' || choice == 'n")

{
cout<<"\n The Customer Account is not createdin.
Please continue with the application.\n";
getch();
return ;

float t_amount, interest_accrued ;
t_amount = iBalance ;
interest_accrued = 0.0 ;

char t_tran, typeTransaction[10] ;
t tran = 'D' ;
strepy(typeTransaction,” “) ;

newkec.addDetails(retrieve AccMo,retrieve CustName,retrieve Address,iBalance) ;
addDetails(retrieve AccNo,dayl,monthl,yearl,t tran,typeTransaction,
interest accrued,t amount,iBalance);

cout<<" \n\n The New Account 15 successfully created.\n
Please continue with the application.\n";
getch();

}

// showAccount() method formats the display of the records from the transactions.dat
file for a particular account(choice 2).
void accountTransactions :: showAccount(int retrieve_AccNo)
{
cout=<"
\n";
int dayl, monthl, yearl ;
struct date dateval;
getdate(&dateval);
dayl = dateval.da_day ;
monthl = dateval.da mon ;
yearl = dateval.da_year ;
cout=<"Date: " <<dayl <<*/* <amonthl <<*/" <<yparle<"\n* ;
cout <<"Account mo. * <<retrieve_Accho ;
dispRecords newRec ;

char retrieve_CustMame[30] ;
stropy(retrieve_CustName, newRec.getName (retrieve_AccNo)) ;
char retrieve Address[60] ;
strepy(retrieve_Address,newRec.getAddress(retrieve_AccNo)) :

cout<<setw(25)<<"\n Account Holder's Name : ‘"<<retrieve CustName;
cout=="YnAddress : “=z<retrieve_Address<<"\n";
cout<<setw(80)<<"\n \n";

528e Object-Oriented Programming with C++

cout<=<setw(10)<<"Dated";
cout=<setw(12)<<"Details";
cout<=setw(l12)=<"Deposited”;
cout<<setw(15)<<"Withdrawn";

cout==setw[12) ==" e
coutecsetw(10)<<"Balanca";
cout=<setw(80)=<"\n \n";

}

{/ display account() method displays records from the transactions.dat file
void accountTransactions :: display_account(void)
{

clrscr() ;

char t_acc[10] ;

int tran _acc, retrieve AccMo;

dispRecords objZ;

cout =<" Press 0 to go back to previous menu.\n" ;

cout =<" Please enter Account Mo. you want to view : " ;

gets(t acc);

tran acc = ath[t_al:-t]; f/* converting Account Number to integer value */

retrieve_AccNo = tran_acc;

if {retrieve AccNo == 0){
cout<<*yn You have pressed 0 to exit. W\n";
getch();
return 3

i

clrser():

dispRecords newRec;
accountTransactions aa;
int row=8, check ;
fatream filename

FILE * pFile;
pFile = fopen(®"newrecords.dat®,*r®);
if (pFile == NULL)
{
cout=<"\n No such Account Exists. Please create a New Account. \n";
getch();
return ;

| else if (InewRec.accountExists(retrieve AccNo)) |
cout =<"\tin Account does not exist.\n®;
getch(];
return;

| else {

showAccount (retrieve AccNo) ;
filename.open{“transactions.dat™, 1ios::in);

Hidden page

530 Object-Oriented Programming with C++

// dateDiffer() method displays the difference between 2 dates.
int accountTransactions :: dateDiffer(int dayl, int monthl, int yearl, int day2,
int monthZ, int year?)
{
static int monthArr[] = {31,28,31,30,31,30,31,31,30,31,30,31}; [fArray of
months for storing the no. of days in each array
int days = 0 ;
while (dayl != day2 || monthl != month2 || yearl != yearZ)
{
/* checking if the two dates in days,months and years differ and incrementing
the number of days.*/
days++ ;
dayl++ ;
if {(dayl = monthArr[monthl-1])
{
dayl = 1 ;
monthl++ ;
)
if (monthl = 12)
{
monthl = 1 ;
yearl++ ;
!
} return days ;
}

/f getinterest() function calculates interest on the balance from the transaction.dat
file
float accountTransactions :: getInterest({int retrieve AccMo, float iBalance)
{

fstream filename ;

filename.open{"transactions.dat", ios::in);

dispRecords newRec;

filename.seekg(0,i0s::beg) ;

int dayl, monthl, yearl, month_day;

while (filename.read((char *) this, sizeof(accountTransactions)))

{

if [AccountNumber == retrieve AccMo)

{
dayl = dday ;
monthl = mmonth ;
yearl = yyear ;
iBalance = newRec.getBalance(retrieve AccMo);
break ;
}

b
int day2, monthd, yearZ;
struct date dateval;

Copyrighted material

Appendix A @531

getdate(Rdateval);

day? = dateval.da day;

monthZ = dateval.da_mon;
year2 = dateval.da_year;
float interest accrued=0.0;
int yeardiff = year? - yearl;

if ((yearZ<yearl) || (year2==yearl &% month2<monthl) || (yearZ==yearl &&

month2==monthl A& dayZ<dayl)) {

]

return interest accrued;
}
month day = dateDiffer(dayl,monthl,yearl,day2,month2, year);
int months;
if (month day == 30)

{

months = month_day/30;
} alse {

months = month_day/30;
l

if(interest_accrued == 0 A& yeardiff == 1) |{
interest_accrued = ((iBalance*0.5)/100) * (months);
} else if (yeardiff > 1 &% yeardiff < 25 84 interest_accrued == Q) |
interest accrued = (({iBalance*0.5)/100) * {months);
| else |
interest accrued = 0;

filename.close();
return interest accrued;

/*Method for generating Interest and updation of the Balance and addDetails

methods. (Choice 5)*/
void accountTransactions :: showlnterest(void)

{

clrscr();
char t_acec[10];
int tran_acc, retrieve Accho, check;

cout =<strupr(*\n Important Information: Interest should be generated only\n

once in a Year.\n\n\t If you have already generated interest for an Account,\n\t
please ignore that Account.\m\t Thank you.\n®);

cout =<"\n Press 0 to go back to previous menu.\n" ;
cout =<"\n To view the transaction of the Account, please enter it: " ;
gets(t_acc) ;

Hidden page

Appendix A ®533

/* This method does all the Deposit/Withdrawal transactions in the transaction.dat
file{Choice 4)*/
void accountTransactions :: tramsaction(void)

{

clrscr();
char t _ace[10];
int tranm_acc, retrieve AccMo, check;
cout =< Press 0 to go back to previous menu.\n" ;
cout =<® To wiew the transaction of the Account, please enter it: " ;
gets(t acc) ;
tran_acc = atoi(t_acc) ;
retrieve_AccNo = tran_acc ;
if (retrieve Accho ==)
return ;
clrscr() ;
dispRecords newRec ;
if (!newRec.accountExists(retrieve Accho))

{
cout =<"\t\n Account does not exist.\n";
getch();
return;
!
cout ==" Press 0 to go back to previous menu.yn";
Ccout=<" n";
cout=<"\n —Make correct entry for the Transaction below- \n®;

Lu“t{tl iy g oo v o ol ol o vk ool il ol o o o ool il e ol i o ol e ol o o ol il ii’.i’ii’ii’\i n n :

int dayl, monthl, yearl;

struct date dateval;

getdate(Bdateval);

dayl = dateval.da_day;

monthl = dateval.da_mon;

yearl = dateval.da_year;

cout =<" Date : "<<dayl <<"/" <amonthl =<"/" <<yearl<<"\n"; &
cout =<* Account no. ® <<retrieve AccMNo=<"\n";

char retrieve CustName[30] ;

char retrieve Address[60] ;

float iBalance;

float interest accrued = 0.0;
strepy(retrieve_CustMame,newRec.getName (retrieve AccNo)) ;
strcpy(retrieve Address,newRec.getAddress(retrieve_Accho)) ;
iBalance = newRec.getBalance(retrieve Accho);

cout =<" Customer Mame : " <<retrieve_CustMame;
cout =<"\n Customer Address: " <<retrieve_Address ;
cout <<"yn Bank Balance: * =<iBalance ;

char tranDetails, typeTransaction[10], tm[10] ;
float t amount, t amt ;

534e Object-Oriented Programming with C++

cout =<"\n Please enter D for Deposit or W for Withdrawal of Amount : * ;
tranDetails = getche() ;
if({tranDetails == '0") {
cout=="Y\nkn You have pressed 0 to Exit.";
getch();
return;
]
tranDetails = toupper(tranDetails) ;
| while (tranDetails I= "W' && tranDetails != 'D') ;

do
{
cout <<"\n The Transaction type is either Cash or Chegque..\n" ;
check = 1 ;
cout =<" (Cash/Cheque) : " ;
gets (typeTransaction) ;
strupr(typeTransaction);
if(typeTransaction[0] == "0') |
cout=="Ynyn You have pressed 0 to Exit.";
getch();
return;
I
if [strlen{typeTransaction) = 1 || (stromp(typeTransaction,CASH") &&
stremp(typeTransaction, "CHEQUE")))
{
check = 0 ;
cout<<"Yn The Transaction is invalid. Please enter either
Cash or Cheque. ‘\n" ;
getch() ;

3 !
} while {!check);

do
(
cout =<"\n Please enter the Tramsaction Amount : \n";
check = 1 ;
cout =<" Amount :© Hs. "
gets(tm) ;

t amt = atof(tm) ;
t amount = t_amt ;

if (t_amount = 1 || (tranDetails == "W" && t_amount = jBalance))

Hidden page

536e Ohbject-Oriented Programming with C++

tran_acc = atei(t acc) ; /* changing account no. to integer type. */
retrieve AccNo = tram_acc ;
clrser() :
dispRecords newRec ;
if ([InewRec.accountExists(retrieve AccNo))
{
cout <=<"\t\n You have entered an invalid Account or it does not exist.\n";
cout =<" Please try again.\n";
getch();
return ;
]
cout <<"\n Press 0 to go back to previous menuin" ;
cout=<"\n Closing this Account.\n";
:uu tq{liti (A a bRt s i a s i e dn b sdedndndndy II'-" ‘I.n. :
int dayl, monthl, yearl ;
struct date dateval;
getdate(&dateval);
dayl = dateval.da day ;
monthl = dateval.da_mon ;
yearl = dateval.da year ;

cout <<"Date: “<<dayl <<"/* <<monthl <<"/" <<yearl<<"\n";

char choice;

newRec.display(retrieve AccMNo); /*Displaying the Account Details on the basis of
the retrieved Account MNumber*/

do
{

cout =<"\n Are you sure you want to close this Account? (y/n): ";
choice = getche();
choice = toupper(choice)

} while (choice I= 'N' &4 choice I= 'Y');

if (choice == 'N' || choice == 'n'} |{
cout=="\n The Account is mot closed.\n";
getch();
return;
1
newRec.deleteAccount (retrieve_AccNo);
deleteAccount (retrieve_AccNo);
cout =<*\tin\n Record Deleted Successfully.\n";
cout =<" Please continue with the application....\n";
getch();

}

/* The Login method checks for the username and the password for accessing the
Banking Application*/

Appendix A

int login (void)

{

char wsername[9] ,ch;

char usernamel[]="banking®;

int 1=0;

char a,b[9],pass[]="tatahill";

cout=<"Yn\n";

cout=<"Yn\t Login to the Banking Applicatiom.\n";

in i kol i oo ik oo ol ol ol o v o o o ol il ol o ool ik e n
cout=="\t \n":

cout=<"\nYn\tPlease enter Username I H
cip == username;

cout=="Y\n'n\tPlease enter Password to authenticate yourself :

fflush{stdin);
do

{

ch=getch();

iflisalnumich))
{
b[i]=ch;
Coutes® ¥,
1+
I

else

if(ch=="\r")
bli]="\0";
else if{ch=="\b')
{
1=
cout=<*YbY\b" ;
]

}
while(chl="\r');

bli]1="\0";
fflush(stdin);

if({strcmp(b,pass)==0)h&(strcmp({usernamel ,username)==0))

{

cout==*"YnYn'\t You have entered successfully\nn";

return{l);

2537

}

else

{ .
cout=<*\thn\n Incorrect Username or Password.”;
cout<<"\n";

return(0);

Hidden page

Appendix B

| Executing Turbo C++ |

B.1

Introduction

All programs in this book were developed and run under Turbo C++ compiler Version 3.0, in
an MS5-DOS environment on an IBM PC compatible computer. We shall discuss briefly, in
this Appendix, the creation and execution of C++ programs under Turbo C++ system.

IB.Z Creation and Execution of Programs

Executing a computer program written in any high-level language involves several steps,

as listed below:

1. Develop the program [(source code).

2. Select a suitable file name under which you would like to store the program.

3. Create the program in the computer and save it under the filename you have de-
cided. This file is known as source code file,

4. Compile the source code. The file containing the translated code is called object
eode file. If there are any errors, debug them and compile the program again.

5. Link the object code with other library code that are required for execution. The
resulting code is called the executable code. If there are errors in linking, correct
them compile the program again.

6. Run the executable code and obtain the results, if there are no errors.

7. Debug the program, if errors are found in the output.

8., Go to Step 4 and repeat the process again.

These steps are illustrated in Fig. B.1. The exact steps depend upon the program
environment and the compiler used. But, they will resemble the steps described above.

540 Object-Oriented Programming with C++

Frogram !l File narme |

COMP DEBUG P—

ILE
1 |
| i
Compiler Yes | |
Mo) |
cod

&l
Qject
1

e fila |

s
s z
ogars |

1
N
Linkgsr
frors

Yas

RESULTS
)

Fig. B.1 < Program development and execuhion i

Turbe C++ and Borland C++ are the two most popular C++ compilers. They provide ideal
platforms for learning and developing C++ programs. In general, both Turbo C++ and Borland
C++ work the same way, except some additional features supported by Borland C++ which
are outside the scope our discussions. Therefore, whatever we discuss here about Turbo
C++ applies to Borland C++ as well.

Copyrighted maierial

Appendix B ® 541

IH.3 Turbo C++

Turbo C++ provides a powerful environment called Integrated Development Environmeni
(IDE) for creating and executing a program. The IDE is completely menu-driven and allows
the user to create, edit, compile and run programs using what are known as dialogue
boxes. These operations are controlled by single keystrokes and easy-to-use menus.

We first use the editor to create the source code file, then compile, link and finally run it.
Turbo C++ provides error messages, in case errors are detected. We have to correct the
errors and compile the program again.

IB.-i IDE Screen

It is important to be familiar with the details of the IDE screen that will be extensively used
in the program development and execution. When we invoke the Turbo C++, the IDE screen
will be displayed as shown in Fig. B.2. Az seen from the figure, this screen contains four
parts:

® Main menu (top ling)
® Editor window
® Message window
Status line (bottom line)
= Filg Edit Search Run Comgpie Debug Project Options Window Help
3 Main
WONAME 00.CPP 1 menu
Editos
windiow
— 1:1
Message 2 -
KMassage
windiow
F1Help F2Sawa F3 OpenAH-FE Compile FA Make F10 Manu i:nﬂ

Fig. B2 « IDE opening screen

542 e Object-Orented Programming with C++

Main Menu

The main menu lists a number of items that are required for the program development and
execution. They are summarized in Table B.1.

Table B.1 Main menu ifems

i) : : e
fﬁ.—ﬁ#ﬂw&:*. o i e R T g B] i RHE L -:,'_;..

_ Displays the version number, clears or restores the screen, and execute
various utility programmes supplied with Turbo C++

File Loads and saves filea, handless directories invokes DOS, and exists
Turbo C+

Edit Performe various editing functions

Search Performs various text searches and replacements

Rumn Complies, links and runs the program currently loaded in the environ-
ment

Compile Compiles the program currently in the environment

Debug Bets various debugger options, including setting break points

Projects Manages multifile projects

Options Sets various compiler, linker, and environmental options

Window Controla the way various windows are displaved

Help Activates the context—-sensitive Help system

The matn ment can be activated by pressing the F10 key. When we select an item on the
main menu, a puli-down menu, containing various options, is displayed. This allows us
to select an action that relates to the main menu item.

Editor Window

The editor window is the place for creating the source code of C++ programs. This window
is named NONAMEOQDQ.CPP. This is the temporary name given to a file which can be changed
while we save the file.

Message Window
The other window on the screen is called the message window where various messages are

displayed. The messages may be compiler and linker messages and error messages generated
by the compiler.

Status Line

The status line which is displayed at the bottom of the sereen gives the status of the current
activity on the sereen. For example, when we are working with FILE option of main menu,
the status line displays the following:

F1 Help | Locate and open a file

Appendix B @543

|ﬂ.5 Invoking Turbo C+ +

Assuming that you have installed the Turbo C++ compiler eorrectly, go to the directory in
which you want to work. Then enter TC at the DOS system prompt:

C:>TC

and press RETURN. This will place you into the IDE screen as shown in Fig. B.2. Now, you
are ready to create your program.

Iﬂ.ﬁ Creating Source Code File

Unce you are in the IDE screen, it is simple to create and save a program. The F10 key will
take you to main menu and then move the cursor to File. This will display the file dialogue
window containing various options for file operations as shown in Fig. B.3. The options
include, among others, opening an existing file, creating a new file and saving the new file.

= File Edit Search Run Compile Debug Project Oplions Window Halp

1 New — NOMAME 00,CPP 1
Open.. F3
Save F2

Save as ...
Save all

Changa dir ...
Print

DOS shell

i Al + X
— 1:1

F1 Hedp | Locate and open afile

Fig. B3 «. File dialogue unndpur

Since you want to create a new file, move the cursor to New option. This opens up a blank
window called editing window and places the cursor inside this window. Now the system is
ready to receive the program statements as shown in Fig. B.4.

Hidden page

Hidden page

546e

Object-Oriented Programming with Céd

* Flle Edit Search Run Compile Debug Project Opbions Window Help

—

1 — |

- TEST.CPP
Hinclude <iostresm. k>
rreing)
{
coul << “Ce+ g batier than L~
resdurn 0
}
Compiling
Main file . \TEST.CPP
Compding: EDIT OR -~ TEST.CPP
Total File
Lines complled: 882 883
Warmnings : 0 0
1] Errors ;0 0
Avallable mamory | 10408
|
Success : Press any key

F1 Help Al-FB Mext hMsg AlL-FT Prev Meg AR-FS Compile F2 Make F10 Men

R

——

Fig. B.T <« Compilation window l

IB-? Running the Program

You have reached successfully the final stage of your excitement. Now, select the Run from
the main menu and again Run from the run dialogue window (See Fig. B.8). You will see
the screen flicker briefly. Surprisingly, no output is displayed. Where has the output gone?
It has gone to a place known as user screen.

In order to see the user screen, select window from the main menu and then select user
gereen from the window dialogue menu (See Fig.B.9). The IDE screen will disappear and
the user screen is displayed containing output of the program test.cpp as follows:

C=>TC

Note that, at this point, you are outside the IDE. To return to IDE, press RETURN key.

Copyrighted material

Appendix B

@547

= File Edit Search Run Compile Debug Project Options Window Help

#include <iostream= Run Cirl+Fg
main{) Program reset Ciri+F2
! Ga o cursor Fd
cout << " Ce+is Tewca into F7
raturn Slep over Fa
} Arguments
1:1
Message 2

F1 Halp | Execuis or single-step through a program

Fig. B8 e Run dislogie mems” |

= File Edit Search Run Compile Debug Project Options Window Help

SizaMove Cird+F5
Binchude <iostream, h> Zoom F5

main(} Tile
{ Cascade
cout << G+ Ig betler than C°) Mext F&
reibuen O Closa Alt+F3
1 Clase all

Message

Output

Waitch

User Screen AlR+FS
Registar

- Project

— 1:1 Projec t Notes

Messaga ={ List all AR+

F1 Help | Make the next window acthve

Copyrighted material

548 e Object-Oriented Programming with C#+

Eln Managing Errors

It iz rare that a program runs succeasfully the first time itself. It iz common to make some
syntax errors while preparing the program or during typing. Fortunately, all such errors
are detected by the compiler or linker.

Compiler Errors

All syntax errors will be detected by the compiler. For example, if you have missed the
semicolon at the end of the return statement in test.cpp program, the following message
will be displayed in the message window.

Error...\TEST.CPP 6 Statement missing;
Warning...\TEST.CPP 7: Function should return a value

The number 6 is the possible line in the program where the error has occurred. The
screen now will look like the one in Fig. B.10.

= File Edit Search Run Compile Debug Project Options Window Help
TEST.CPP ; 1

#Hinclude <sdstneam, h>
maing)

{
cout << *C++ ig batier than C™

return 0
}

—_— 11

Message 2 —
Compiling _\TEST.CPP:

Errar ATEST.CPP 6: Statemant migsing;

Waming _\TEST.CPP T: Functions should raturn valus

F1 Help AH-FB Nex! Msg AR FT Prev Msg A-F3 Compile F9 Make F10 Menu

Fig. B10 <= Display of error message I

Press ENTER key to go to Edit window that contains your program. Correct the errors
and then compile and run the program again. Hopefully, you will obtain the desired results.

Appendix B ® 549

Linker Errors

It iz also possible to have errors during the linking process. For instance, you may not have
included the file iostream. k. The program will compile correctly, but will fail to link. It will
display an error message in the linking window. Press any key to see the message in the
message window,

Run-time Errors

Remember compiling and linking successfully do not always guaranty the correct results.
Sometimes, the results may be wrong due logical errors or due to errors such as stack
overflow. System might display the errors such as nuli pointer assignment. You must consult

the manual for the meaning of such errors and modify the program accordingly.

Iﬂ.ll Handling an Existing File

After saving your file to disk, your file has become a part of the list of files stored in the disk.
How do we retrieve such files and execute the programs written to them? You ean do this in
two ways:

1. Under DOS prompt
2. Under IDE

Under DOS prompt, you can invoke as follows:
C>TC TEST.CPP

Remember to type the complete and correct name of the file with .cpp extension. This
command first brings Turbo C++ IDE and then loads edit window containing the file
test.cpp.

If you are working under IDE, then select open option from the file menu. This will
prompt yvou for a file name and then loads the file as you respond with the correct file name,
Now vou can edit the program, compile it and execute it as before.

I'BJ.IE Some Shortcuts

It is possible to combine the two steps of compiling and linking into one. This can be achieved
by selecting Make EXE file from the compile dialogue window.

We can shorten the process by combining the execution step as well with the above step.
In this case, we must select Run option from the run dialogue window. This causes the
program to be compiled, linked and executed.

550@ Object-Oriented Programming with C++

Many common operations can be activated directly without going through the main
menu, again and again. Turbo C++ supports what are known as hot keys to provide these
shortcuts. A list of hot keys and their functions are given Table B.2. We can use them
whenever necessary.

e —

Hot Key. Mocning | TR
F1 Activates the online Help system
F2 Baves the file currently being edited
F3 Loads a file
F4 Executives the program unit the cursor is reached
F5 Looms the active window
Fa Bwitches between windows
F7 Traces program; skips function calls
Fa Traces program; skips function calls
Fa Compiles and links programs
F10o Activates the main menu
ALT-O Lists open windows
ALT-n Activates window n (n must be 1 through 9)
ALT-F1 Ehowsa the previous help screen
ALT-F35 Deletes the active window
ALT-F4 Opens an Inapector window
ALT-F5 Dpens an Inspector window
ALT-F7 _ Previous error
ALT-F8 Mext error
ALT-F9 Compiles fle to OB
ALT-SPACEBAR Activates the main menu
ALT-C Activates the Compile menu
ALT-D Activates the Debug menu
ALT-E Activates the Edit menu
ALT-F Activates the File menu
ALT-H Activates the Help menu
ALT-O Activates the Options menu
ALT-F Activates the Project menu
ALT-R Activates the Hun menu
ALT-B Activates the Run menu
ALT-W Activates the Window menu
(Conid)

Copyrighted maierial

Hidden page

Appendix C

Executing C++ Under ‘

‘ Windows

C.1 Imtroduction

C++ is one of the most popular languages due to its power and portability. It is available for
different operating svstems such as DOS, 08/2, UNIX, Windows and many others. C++
programs when implemented under Windows are called Visual C++ programs. Therefore,
there is no difference between C++ and Visual C++ programs in terms of programming but
the difference lies in terms of implementation.

A C++ compiler designed for implementation under Windows is known as Visual C++. A
C++ program running under MS-DOS will also run successfully under Windows. This i=s
because, the rules of programming are the same; only the environment of implementation is
different and is shown in Fig. C.1.

L4+ Implementation

Conventional C++ Visual C++ !

.- Fig. C.1 - & C++ Implemeniation environmenis

Appendix C #553

A C++ programmer can easily become a Visual C++ programmer if he knows how to use
the implementation tools of his Visual C++ system. In this Appendix, we introduce the
features of Microsoft Visual C++ and discuss how to create, compile and execute C++ programs

under Windows.

The Microsoft Corporation has introduced a Windows based C++ development environment
named as Microsoft Visual C++ (MSVC). This development environment integrates a set
of tools that enable a programmer to create and run C++ programs with ease and style.
Microsoft calls this integrated development environment (IDE) as Visual Workbench.
Microsoft Visual Studio, a product sold by Microsoft Corporation, also includes Visual
C++, in addition to other tools like Visual Basie, Visual J++, Visual Foxpro, ete.

IE.E The Visual Workbench

It is important to be familiar with the Visual Workbench that will be extensively used in the
program development. The Visual Workbench is a visual user interface designed to help
implement C++ programs. This containz various tools that are required for creating, editing,
compiling, linking and running of C++ programs under Windows. These tools include File,
Edit, Search, Project, Resource, Debug, Tools, Window and Help.

. Microsot Weaual Cos - [Testl)
[f Ed e et Proct fuld Trok Wiedss Heb e =18 ——— Title bar
T B o OEE A e ————
HzEHd —-EL“ "-‘Kﬂ-‘_\h T Main manu
|) ow o
“"I ! - ™ Tool bar
. 4 Docment
—— window
D | Developer
i = VWF'EM} wincow
il ’
F e —————— — ...‘
1 . — _ Message
window
[#7 tsin {Tibugy s, FrndmFien 1 5 FradmFiemd] 400 1
Faaty ni. ol Status line

Fig. C.2 & Visual workbench epening screem

554e Object-Oriented Programming with C++

When we invoke the Microsoft Visual C++ (Version 6.0), the initial screen of the Visual
Workbench will be displayed as shown in Fig. C.2. As seen from the figure, this screen
contains five parta: 1) Title bar 2) Main menu 3) Tool bar 4) Developer window 5) Status
line.

Main Menn
The main menu lists a number of items that are required for program development and
execution. They are summarized in Table C.1.

Table C.1 Main menu of visual workbench

File Creates a new file or opens an existing file for editing. Closes and saves files. Exits
the Visual Workbench.

Edit Performs various editing functions, such as searching, deleting, copving, cutting
and pasting.

Wiew Enable different views of sereen, output, workspace,

Insert Insertion of Graphics resources like pictures, icons, HTML, ete, can be done,

Project Sets up and edits a project (a list of files).

Build Compiles the source code in the active window,. Builds an executable file. Detects
ETrOrs,

Tesnls Customizes the environment, the editors and the debugger

Window Controls the visibility of various Windows involved in an application development.

Help Provides help about using Visual C++ through Microsoft Developer Metwork
Library (MSDN Library). Online help also can be received provided an Internet
connection.

Once a main menu item is selected, a pull-down menu, containing various options, is
displayed. This allows us to select an action/ecommand that relates to the main menu item.

It iz likely that an option in the pull-down menu is grayed. This means that the particular
option is currently not available or not valid. For example, the Save option in the File menu
will be grayved if the workspace is empty.

Some options are followed by three periods (...). Such an option, when selected, will display
a submenu known as dialog box suggesting that some more input iz required for that option
to get implemented. Options followed by the symbol p means we have to select a choice
from the list.

Tool Bar

The tool bar resides just below the main menu. This provides a shortcut access to many of
the main menu's options with a single mouse click. Figure. C.3 shows sgome important tool

Appendix C -8 555

bar eommands that ean be used from anywhere within the Workbench. Several tool bars like
Standard, Build, Edit, Wizard Bar, ete. are available which can be enabled/disabled from the
screen using Tools/Customize option.

*.. Microzolt Visual Ces - [Tenll]

Lﬁﬁiﬂmmwﬂﬂlﬂfmﬂm

rum%rm Al
e ST s

| S -

Open new edit windows Open an existing file Saves current file

Fig. C:3 <> Tool bar actions I

Developer Window

Just below the tool bar is the developer window. It is initially divided into three parts as
shown in Fig. C.2.

® View Panec (on the left)
® Document window (on the right)
® Message window (at the bottom)

The view pane has three tabs for ClassView, FileView and InfoView. Once we have a
project going, the ClassView will show us the class hierarchy and the FileView will show us
the files used. InfoView will allow us to navigate through the documentation.

The document window, also known as workspace, i= the place where we enter or display
our programs. The message window displays messages such as warnings and errors when
we compile the programs.

Accessing Menu ltems
Before we proceed further, it is important to know how to aceess the menu items. There are
two ways of accomplishing this:

1. Using the mouse
2. Using the keyboard

Mouse Actions

Using the mouse for accessing an item is the most commen approach in Windows
programming. We can perform the following actions with the mouse:

g, P [R
L "..l'r..":l'll'.|.| =L

1 material

556e Ohject-Oriented Programming with C++

® Move the mouse pointer to a desired location by moving the mouse without pressing
any button,
#& Click the left mouse button when the pointer is over the preferred option.

Keyboard Actions

Though the use of mouse is a must for Windows-based applications, the accessing can also
be done through keyboard. Simultaneously pressing the ALT key and the underscored letter
of the menu item required will activate the corresponding pull-down menu. The underscored
latter iz known ag hot key. Once a pull-down menu iz displayed, using the down/up arrow
keys an option can be highlighted and then pressing the ENTER key will activate that
option.

Some of the options in a pull-down menu can be directly activated by using their hot key
combinations shown against these options. For example, Ctrl+N is the hot kev combination
for the New option in the File menu. Similarly by pressing Ctrl+S, a file can be saved
without using pull-down menu. This shortcut approach can be used from anywhere within
the Visual Workbench.

IC.S Implementing Visual C++ Programs

Developing and implementing a computer program written in any high-level language
involves several steps already described in Appendix B.

ICJi Creating a Source Code File

When vou have installed the Microsoft Visual C++ compiler correctly, vou can start the
Visual Workbench from Microsoft Windows. To start the Visual Workbench, simply select
the Visual C++ icon from the Programs group and click on it. This will bring up the Visual
Workbench screen as shown in Fig. C.2. Onece yvou are in the Visual Workbench screen, it is
simple to create and save a program.

Entering the Program

The first thing you need to do before entering a program is to open a new file. Select the File
menu from the main menu. This will display a pull-down file menu as shown in Fig. C.4.
The options include, among others, opening an existing file, creating a new file and saving
the new file.

Since, you want to create a new file, choose New ... option which will bring up the New
dialog box as shown in Fig. C.5 displaying a list of different types of programming files.

Appendix C @557

. Microsolt Visgal Cas ||.|_||:|'| ‘I
|[B)/ e £t Vow ot Froject Buid Took Window Heb _ alBlx
e el B = -1
S e Bpen Cubsd =
e '-H;;-'! ._i T E
[
Elime Dis
Save Au
& swais
Page Setun.
QB DeRL
— Fimcart Fies v d =
Recent Woakspaces » | {]4] | i
Eﬂ = - = — — ::
s (DabE) FedAE T} FrdnreZ N« | o
[£ . [ARTGor [REE o 15wl FEAn

Fig. C.4 < Visual C++ Workbench file memu |

For entering a new program, select File/C++ Source File option and then click on the OK
button. This opens up a blank window (similar to Fig. C.2} with the window title as 'Microsoft
Visual C++ - [CPP|' and places the cursor inside this edit window. Now the system is ready
to receive the program statements as shown in Fig. C.6.

Saving the Program

Once the typing is completed, you are ready to execute the program. Although a program
can be compiled and run before it is saved, it is always advisable to gave the program in a file
before compilation. You can do so by doing one of the following:

1. Using File/Save command
2. Pressing the Ctrl+8 hot key combination
3, Clicking on the third button from left on the toolbar.

Hidden page

Appendix € —e 559

*.. Miciogolt Vivual Cas - [Cpp =]

ﬂﬁuuvmnmnmamxmwﬂm =8l
@ SES me |2 DEE R =l 'w
l | demx 1d
al s THTIRG & STRIMN al
finclude iostream) B
using hnsmespeces shd
10t maznt)
! somt 64 TC44 1g better than O "

F
3
T8 et {Tinkag), FrdinFiee 1) Fnd i Fised 1] 4] | ™
Alaady Ln I3 Gl WEL oo T0rTe R
Fig. C.6 & Edit window with the sample progran
Table C.2 Three ways of compiling
. -""'T" T R
' Commiand ©. . detlom; HIT S nt Sl i__-é:ﬁ;iff_ o S
Build/Compile Compiles a single program ﬁl& The result is an ﬂh]l.‘-l-‘t- file. This option

18 used when we want to check a particular file for syntax errors. Note

that it does not hink and therefore does not produce any executable Gle.
BuildBuild Compiles all the modifiedmew source files and then links all the object

files to create a new executable file, When we are working on a project, we

usually use this command. That 15 because we may change a few things
here and there and want to compile only those modified programs.

BuildRebuild All Compiles all the filea in a project and links them together to create
an executable file. This eommand is usually used when we want to make
gure that everything in the project has been built again.

The compile option in the Build menu when selected will compile the source code into an
executable code if there is no errors or warnings as shown in Fig. C.7.

560@ Ohject-Oriented Programming with C++

to st - Microsodt Visus Les - || ext cpp]

[Fie Ecl Yeew besd Proiect Buld Tooh 'Wedow Help o - |
A FLP L Re - MEE R dw

|-...

: #If i Dok =] P N

I 1

T T
(00 Tesl olaases
N 9% B 1

- E I3 B » N -
Caia t 4+ 15 Detter than]

+ | L
- :I'm.'.-'m‘E - B] File'viesn | | |41 Ll;l

Lonbigural 1omn lemt Wimdd Debug -

Lab, Lol I IREAL:

Fig. C.7 & Output windowo after compiling and linking |

While compiling a C++ source file the Visual C++ application will prompt a message to
build a new workspace. Workspace is nothing but an area where we can have a number of
source files, their compilation files and linking files saved altogether known as Project. This
will be used when we have to create a application with multiple source files.

Executable File

The executable file TEST EXE will be added to the Build menu as shown in the Fig. C.8
after a zero error{s) and zero warning(s) compilation.

The output window indicates that there are no warnings and no errors. The Compile
command has successfully generated the executable file TEST.EXE.

C.6 Running the Program

You have reached successfully the final stage of vour excitement. Now, to run the program,
click the Execute TEST.EXE option in Build menu, The output will be generated in a new
windows as shown in Fig. C.9.

Copyrighted material

Appendix C

"o Tesl - Micinselt Vsl L - |18l cp) !
¥t o ot Bl [Lok e e L aleix
I 1y g & Compie Testepp i 7 =
.“{J :ﬂ_ n“- h_ i ikl T st s FF -
[JTeu - 22 e iy B 48 RS TR

— = —— a4 Bk Byt

- m Tmeh chawwes Clgan e |

St g b
Dietuagges Flmmnd e Croprescron

--.Illi Ilt'.re:r tham © 5"

Sal fpvee Dgnbhpaseon

s
Teat cpp
|
|

Tezt oby = 0 errori=). O warningis)
=

:_:glﬂxw=:{m1m.n.ﬂn.r.kMrs-.z IR
InT o1 PG S0 s R

Eimcriipy thes procdsam

Fig. C.B & Butld menu after successful compilation

Fig. C9 < Output generated

@ 561

562e Object-Oriented Programming with C++

I C.7 Managing Errors

It is rare that a program runs successfully the first time itself. When the program contains
errors, they are displayed in the message window as shown in Fig, C.10,

Yo Test - Miciozsoft Visual Ces - [Test.cppl

'S Fle Edl Ww lrest Prowct Bul Tock Window Heb =% =
2l | @ e By & 20w Oz |(E R | Gal =]
iie." ﬂi'--n.:.-.L-:I'.u; . _3 E:.I | ! rl
2 = r BRINTIHG & STRIHG 3 =
ﬂ. -
@ | est classes) =
Finclude <{iostrean
A5109 LANESDACE std
amt maani
== T *C++ 1% betier than . wp®

raturn

|
"'il'_‘lus?’n-w]j']me] . fel} ﬂ'ﬂ
Lonl iguration T 1 Uindd |:T-.|_._q:|. ———————— [-

ki

Compiling
Te=st cpp
LMy Docunssts~]est cpplill) arror L2143 syntax &rror niszing b= o
lError sxecuting cl. exe

Te=xt oby — 1 arror(=s), 0 warningis)

|EIeh, ura (Debug s FndinFles 1 5 odmories2 oot | o
n8 a1 [REC |COL [5VA [READ

Fig. C.10 <> Outpul window error messages

You can double-click on a syntax error in the message window to go to the line containing
that problem. Fix all the errors, recompile and execute the program.

IEB ?thcr Features

Windows programmers now have a wider range of tools that can be used for the development
of object-oriented systems. Microsoft has provided, among others, the following three tools
that would benefit the programmers:

® Foundation Clasa Library

Copyrighted material

Appendix C —& 563

® Application Wizard
#® (Class Wizard

The Microsoft Foundation Class (MFC) library contains a set of powerful tools and provides
the users with easy-to-use objects. Proper use of MFC library would reduce the length of
code and development time of an applicution.

The AppWizard, short for Application Wizard, helps us to define the fundamental structure
of a program and to create initial applicationz with desired features. However, remember
that it only provides a framework and the actual code for a particular application should be
written by us.

The ClassWizard, a close associate of the AppWizard, permits us to add classes or customize
existing classes. The ClassWizard is normally used after designing the framework using the
AppWizard, -

It is the power of the Wizards that make the Microsoft Visual C++ so useful and popular.

It is therefore important that you are familiar with these tools. You must consult appropriate
reference material for complete details.

Copyrighted material

Appendix D

Glossary of ANSI C++
Keywords

aAsm It is to embed the assembly language statements in C++ programs. Its use
is implementation dependent.
auto It is a storage class specifier for the local variables. An auto variable is

vigible only in the block or function where it is declared. All the local
variables are of type auto by default,

hool It is a data type and is used to hold a Boolean value, true or false.

break A break statement is used to cause an exit from the loop and switch
statements. It is used to provide labels in a switch statement.

catch catch is used to describe the exception handler code that catches the
exceptions (unusual conditions in the program).

char It is a fundamental data type and is used to declare character variables
and arrays. '

class class iz used to create user-defined data types. It binds together data and

functions that operate on them. Class variables known as objects are the
building blocks of OOF in C++.

const It is a data type qualifier. A data type qualified as const may not be
maodified by the program.

const_cast It is a casting operator used to explicitly override const or volatile objects.

continue It causes skipping of statements till the end of a loop in which it appears.
It is similar to saying “go to end of loop”.

default It is a default label in a switch statement. The control 15 transferred to
this statement when none of the case labels match the expressions in
awitch.

delete It is an operator used to remove the objects from memory that were created

using new operator,

double

dynamic_cast

else

explicit
export
extern
false
loat

for

Appendix D # 565

do is a control statement that creates a leop ufupernhﬂna It is used with
another keyword while in the form:
do
{
statements
}
while(expression);
The loop is terminated when the expression becomes zero.
It is a floating-point data types specifier. We use this specification to double
the number of digits after decimal point of a floating-point value.
It is a casting operator used to cast the type of an object at runtime. Its
main application is to perform casts on polymorphie objects.
else is used to specify an alternative path in a two-way branch control of
execution. It is used with if statement in the form:
if(expression)
statement-1;
else
statement-2;

The statement-1 is executed if expression is nonzero; otherwise statement-
2 18 executed,
It iz used to create a user-defined integer data type. Example:

enum E{el,e?,...}:
where ¢l, 2, are enumerators which take integer values. E is a data
type and can be used to declare variables of its type.
It is a specifier to a constructor. A construetor declared as E.Ipl.ill'it. cammnot
perform implicit conversion.
It is used to instantiate non-inline template classes and functions from
separate files,
extern is a storage class specifier which informs the compiler that the
variable so declared is defined in another source file.
It i= a Boolean type constant. It can be assigned to only a bool type variable.
The default numeric value of false is 0.
It iz a fundamental data type and i used to declare a variable to store a
single-point precision value,
for is a control statement and is used to create a loop of iterative operations.
It takes the form:

for(el; e2; e3) statement;
The statement is executed until the expression 2 becomes zero. The

expression €1 is evaluated once in the beginning and e3 is evaluated at
the end of every iteration.

Copyrighte

d material

566 e Object-Oriented Programming with C++

friend friend declares a function as a friend of the class where it is declared. A
function can be declared as a friend to more than one class. A friend
function, although defined like a normal function, can have access to all
the members of a class to which it is declared as friend.

goto goto is a transfer statement that enables us to skip a group of statements
unconditionally. This statement is very rarely used.
if if is a control statement that is used to test an expression and transfer the

control to a particular statement depending upon the value of expression.
if statement may take one of the following forms:

(i} if (expression)
statement-1;
statement-2;
(ii) if (expression)
statement-1;
else
statement-2;
In form (i), if the expression is nonzero (true), statement-1 is executed
and then statement-2 is executed. If the expression is zero (false),
statement-1 is skipped. In form (ii), if the expression is nonzero, statement-
1 is executed and statement-2 will be skipped; if it is zero, statement-2 is
executed and statement-1 is skipped.

inline inline is a function specifier which specifies to the compiler that the
function definition should be substituted in all places where the function
iz called.

int It is one of the basic data types and is used to declare a variable that
would be assigned integer values.

long long is a data type modifier that can be applied to some of the basic data
types to increase their size. When used alone az shown below, the variable
becomes signed

long int.
long m;
mutable It is a data type modifier. A data item declared mutable may be modified
even if it is a member of a const object or const function.
namespace It is used to define a scope that could hold global identifiers. Example:
namespace naome
{

Declaration of identifiers

}

new It is an operator used for allocating memory dvnamically from free store.
We can use new in place of mallee() function.

Copyrighted material

public

register

Appendix D @ 567

operator is used to define an operator function for overloading an operator
for use with class objects. Example:

int operator*(vector &vl, vector BvZ);
It is a visibility specifier for class members. A member listed under private
is not accessible to any function other than the member functions of the
clazs in which it is used.
Like private, protected is also a visibility specifier for class members. It
makes a member accessible not only to the members of the class but also
to the members of the classes derived from it.
This is the third visibility specifier for the class members. A member
declared as public in a class is accessibld publicly. That is, any function
can access a public member. '
register is a storage class specifier for integer data types. It tells the
compiler that the object (variable) should be accessible as quickly as
poasible. Normally, a CPU register is used to store such variables,

reinterpret_cast It is a casting operator and is used to change one type into a fundamen

return

short

signed

static_cast

tally different type.
It is used to mark the end of a function execution and to transfer the
control back to the calling function. It can also return a value of an
expreasion to the calling function. Example:

return(expression);
Similar to long, it is also a data type modifier applied to integer base
types. When used alone with a variable, it means the variable is signed
short int.
It is a gualifier used with character and integer base type variables to
indicate that the variables are stored with the sign. The high-order bit is
used to store the sign bit, 0 meaning positive, 1 meaning negative. A
signed char can take values between =127 to +127 whereas an unsigned
char can hold values from 0 to 255. The default integer declaration assumes
a signed number.
sizeof i= an operator used to obtain the size of a type or an object, in
bytes. Example:

int m = sizeof(char);

int m = sizeof(x);
where x is an ohject or variable.
static iz a storage class specifier. This can be used on both the local and
global variables, but with a different meaning. When it is applied to a
local variable, permanent storage is created and it retains its value between
function calls in the program. When it is applied to a global variable, the
variable becomes internal to the file in which it is declared.
It is a casting operator and may be used for any standard conversion of
data types.

switeh

virtual

void

Object-Oriented Programmuing with C++

struct i= similar to a class and is used to create user-defined data types. It
can group together the data items and functions that operate on them. The
only difference between a class and struct is that, by default, the struct
members are public while the class members become private.
It is a control statement that provides a facility for multiway branching
from a particular point. Example:

switch (expression)

{

case labels

t
Depending on the value of expressgion, the control is transferred to a
particular label,
template is used to declare generic classes and functions.
It is a pointer that points to the current ohject. This can be used to access
the members of the current object with the help of the arrow oparator.
throw is used in the exception handling mechanism to *throw™ an exception
for further action.
It is a Boolean type constant. It can be assigned to only a bool type variable.
The default numeric value of true is 1.
It iz also a keyword used in the exception handling mechanizsm. It is used
to instruct the compiler to try a particular function.
typedef is used to give a new name to an existing data type. It is usually
used to write complex declarations easily.
It is an operator that can be used to obtain the types of unknown objects.
It is used to specify the type of template parameters.
It is similar to struct in declaration but is used to allocate storage for
several data items at the same location.
It is a namespace scope directive and is used to declare the accessibility of
identifiers declared within a namespace scope.
It iz a type modifier used with integer data types to tell the compiler that
the variables store non-negative values only. This means that the high-bit
is also used to store the value and therefore the size of the number may be
twice that of a signed number.
virtual is a qualifier used to declare a member function of a base class as
“virtual” in order to perform dynamic binding of the function. It is also
used to declare a base class as virtual when it is inherited by a elass through
multiple paths. This ensures that only one copy of the basge class members
are inherited.
void is a data type and is used to indicate the objects of unknown type.
Example:

void *ptr;

Appendix D #® 569

is a generic pointer that can be assigned a pointer of any type. It is also
used to declare a function that returns nothing. Another use is to indicate
that a function does not take any arguments. Example:

void print(void);

volatile It is a qualifier used in variable declarations. It indicates that the variable
may be modified by factors outside the control of the program.

wchar_t It is a character data type and is used to declare variables to hold 16-bit
wide characters.

while while is a control statement used to execute a set of statements repeatedly

depending on the outcome of a test. Example:
while (expression)

{

statements
1
The statements are executed until the expression becomes zero.

Copyrighted material

Appendix E

| C++ Operator Precedence |

The Table E.1 below lists all the operators supported by ANSI C++ according to their precedence
(i.e. order of evaluation). Operators listed first have higher precedence than those listed next.
Operators at the game level of precedence (between horizontal lines) evaluate either left to
right or right to left according to their associativity.

Table E.1 C++ Operators

Operator Mearing Associativity Ulze
global scope right to left CTIAME
class, namespace scope left to right name : - member
. direct member left to right object. member
- indirect member pointer->member
[1 gubgcript pointer|expr]
function call expriarg)
type construction typelexpr)
postfix increment mi++
— postfix decrement m
Sizeof aize of object right to left sizeof expr
sizeof size of type gizeof (Evpe)
++ prefix increment ++m
- prefix decrement m
typeid type identification typeid(expr)
const_cast specialized cast const_cast<expr=
dynamic_cast specialized cast dynamic_rcast<expr=
reinterpret_cast specialized cast reinterpret_cast<exprs>
static_cast spoecialized cast static_cast<exprs
] traditional cast (typejexpr
= one's complement ~gXpr

{Conid)

B4 |

now
new |)

delete

o

n
%

+ F o~

v ¥R

> 8 T

delete []

logical NOT

URATY Minus

unary plus

address of
dereference

create object

credate array

destroy object
destroy arrary
member derefarence
indirect member dereference
Multiply

Divide

Modulus

add
subtract

left shift

right shift

less than

leas than or equal to
greater than

greater than or equal to

equal

not equal

bitwise AND
hitwise XOR
bitwise OR

logical AND

logical OR
conditional expression
assignment
multiply updats
divide update
modulus update
add update
substract update
left shift update
right shift update
bitwise AND update
bitwise OR update
bitwise XDOR update
throw exception

COTTLITLA

Appendix E

right to left
left to right

left to right

left to right
left to right

left to right

left to right

left to right
left to right
left to right
left to right
left to right

left to right
right to left

right to left
left to right

*571

! expr

— Bxpr
+ expr

& walue

* expr

new type
new type []
delete ptr
delete [] ptr

object. *ptr_to_member
pte->*pir_to_member

exprl * expr2
exprl / expra

exprl % expr2
exprl + expr2
exprl — expr2

exprl =< exprid
exprl >> expr2

exprl < expr2
exprl <= expr2
exprl > expr
exprl == axpr2
exprl == gxpr2
exprl = expr2

exprl & expr2
exprl * expr2
exprl | expr2
expr] && expr2

exprl | | expr2

exprl T expr2: exprd
X = eXpr

X *= axpr

x /= expr

X W= expr
X += expr
X — = expr
N <<= gXPr
X 3= gxpr
X &= exXpr
% |= expr
x "= axpr
throw expr

exprl, expr2

Copyrighted material

Appendix F

| Points to Remember |

Computers use the binary number svstem which uses binary digits called as bits.

The basic unit of storage in a computer is a byvte represented by eight bits.

A computer language is a language uzed to give instructions to a computer.

A compiler translates instructions in programming language to instructions in

machine language.

Application software is a software that is designed to solve a particular problem or

to provide a particular service.

6. Systems software 15 a software that is designed to support the development and
execution of application programs.

7. Anoperating system is a system software that controls and manages the computing
resources such as the memory, the input and output devices, and the CPU.

8. An algorithm is a detailed, step-by-step procedure for solving a problem.

9, The goal of a software design 18 to produce software that 1s rehiable, understandahle,
cost effective, adaptable, and reusable.

10. Abstraction is the proceas of highlighting the ezsential, inherent aspects of an entity
while ignoring irrelevant details.

11. Encapsulation {(or information hiding) is the process of separating the external
aspects of an object from the internal implementation details which should be hidden
from other objects.

12. Modularity i the process of dividing a problem into smaller pieces so that each
smaller module can be dealt with individually.

13. Organizing a set of abstractions from most general to least general is known as
inheritance hierarchy.

14. Object-oriented programming is a paradigm in which a svstem 18 modeled as a set
of objecta that interact with each other.

15. In C++ an abstraction is formed by creating a class. A clase encapsulates the
attributes and behaviors of an object.

16. The data members of a class represent the attributes of a class.

L8

&

Copyrighted maierial

Appendix F #573

17.
18,

31,
32.

33.

34.

35,

The member functions of a class represent the behaviors of a class.

A base class is one from which other, more specialized classes are derived.

A derived elass is one that inherits properties from a base class.

Polymorphism is the capability of something to assume different forms. In an object-

oriented language, polvmorphism is provided by allowing a message or member

function to mean different things depending on the type of object that receives the

Mmessage,

Instantia“inn is the process of creating an object from a class.

We must use the statement #include <iostream> a preprocessor directive that

includes the necessary definitions for performing input and output operations.

The C++ operator << , called the insertion operator, 18 used to insert text into an

output stream.

The C++ operator >>, called the extraction operator, 1s used to insert text into an

input stream.

All C++ programs begin executing from the main. Function main returns an integer

value that indicates whether the program executed successfully or not. A value of

0 indicates suceessful execution, while the value 1 indicates that a problem or error

occurred during the execution of the program.

A value 18 returned from a function using the return statement. The statement
return 0;

returns the value 0,

A C++ ptyle comment begins with // and continues to the end of the line,

A C++ identifiers consists of a sequence of letters (upper and lowercase), digits, and

underscores. A valid name eannot begin with a digit character.

C++ identifiers are cage sensitive. For example, Name and name refer to two

different identifiers.

A variable must be defined before it can be used. Smart programmers give a variable

an initial value when it is defined.

The automatic conversion specifies that operands of type char or short are converted

to type int before proceeding with operation.

For an arithmetic operation involving two integral operands, the automatic

conversion specifies that when the operands have different types, the one that is

type int is converted to long and a long operation is performed to produce a long

result.

For an arithmetic operation involving two floating-point operands, the automatic

conversion specifies that when the operands are of different types, the operand

with lesser precision is converted to the type of the operand with greater precision.

A mixed-mode arithmetic expression involves integral and floating-point operands.

The integral operand is converted to the type of the floating-point operand, and the

appropriate floating-point operation is performed. -

The precedence rules of C++ define the order in which operators are applied to

operands. For the arithmetic operators, the precedence from highest to lowest is

unary plus and minus; multiplication, division, and modules; and addition and

subtraction.

It is a good programming practice to initialize a variable or an object when it is

declared.

Copyrighted material

Hidden page

Hidden page

Hidden page

Appendix F 8577

101. The location®f a variable can be obtained using the address operator &.

102. The literal 0 can be assigned to any pointer type object. In this context, the literal
) iz known as the null addreas,

103. The value of the object at a given location can be obtained using the indirection
operator * on the location.

104. The indirection operator produces an lvalue,

1056. The null address is not a location which can be dereferenced.

106, The member selector operator -> allows a particular member of object to be
dereferenced.

107. Pointer operators may be compared using the equality and relational operators.

108. The increment and decrement operators may be applied to pointer objects.

109. Pointers can be passed as reference parameters by using the indirection operator.

110. An array name is viewed by C++ ag constant pointer. This fact gives us flexibility in
which notation to use when accessing and modifving the values in a list.

111. Command-line parameters are communicated to programs using pointers.

112. We can define variables that are pointers to functions. Such variables are typically
used as function parameters, This type of parameter enables the function that uses
it to have preater flexibility in accomplishing its task.

113. Inecrement and decrement of pointers follow the pointer arithmetic rules. If ptr
points to the first element of an array, then ptr+l points to the second element.

114. The name of an array of type char contains the address of the first character of the
string.

115. When reading a string into a program, always use the addreas of the previously
allocated memory. This address can be in the form of an array name or a pointer
that has been initialized using new.

116. Structure members are publie by default while the class members are private by
default.

117. When accessing the class members, use the dot operator if the class identifier is the
name of the class and use the arrow operator if the identifier is the pointer to the
class.

118, Use delete only to delete the memory allocated by new.

119. Itis a good practice to declare the size of an array as a constant using the qualifier
const.

120. C++ supports two tvpes of parameters, namely, value parameters and reference
parameters.

121. When a parameter is passed by value, a copy of the variable is passed to the called
function. Any modifications made to the parameter by the called function change
the copy, not the original variable.

122, When a reference parameter is used, instead of passing a copy of the variable, a
reference to the original variable is passed. Any modifications made to the parameter
by the called function change the original variahle.

123. When an jostream object 12 passed to a function, either an extraction or an insertion
operation implicitly modifies the stream. Thus, stream objects should be passed a
reference,

124. A reason touse a reference parameter is for efficiency. When a class object is passed
by value, a copy of the object is passed. If the object is large, making a copy of it can

Copyrighted material

578e

125.

128.

127.

128.

129.

130.

131.

132.

133.

134,

135,

1386,

137,

138,

138,

140,
141.
142,
143.

144.

145.

Object-Oriented Programming with C++

be expensive in terms of execution time and memory space. Thus ohjects that are
large, or objects whose size is not known are often passed by reference. We can
ensure that the objects are not modified by using the const modifier.

A const modifier applied to a parameter declaration indicates that the function
may not change the object. If the function attempts to modify the object, the compiler
will report a compilation error.

A reference variable must be initialized when it is declared.

When you are returning an address from a function, never return the address of
local variable though, syntaetically, this is acceptable.

If a function call arpument does not match the type of a corresponding reference
parameter, C++ creates an anonvmous variable of the correct tvpe, assigns the
value of the argument to it and causes the reference parameter to refer the variable.
A function that returns a reference is actually an alias for the “referred-to” variable,
We can assign a value to a C++ function if the function returns a reference to a
variable. The value is assigned to the referved-to variable.

C++'s default parameter mechanism provides the ability to define a function so
that a parameter gets a default value if a eall to the function does not give a value
for that parameter.

Function overloading occurs when two or more function have the same name.,
The compiler resolves overloaded function calls by calling the function whose
parameters list best matches that of the call.

Casting expressions provide a facility to expheitly convert one type to another,

A ecast expression is useful when the programmer wants to foree the compiler to
perform a particular type of operation such as floating-point division rather than
integer division.

A cast expression 18 useful for converting the values that hbrary function return to
the appropriate type. This makes it clear to other programmers that the conversion
was intended. ’
An inline function must be defined before it 1s called.

An inline function reduces the function call overhead. Small functions are best
declared inline within a class.

In a multiple-file program, you can define an external variable in one and only one
file. All the other files using that variable have to declare it with the kevword
extern.

An abstract data type (ADT) is well-defined and complete data abstraction that
uses the principle of information-hiding.

An ADT allows the ereation and manipulation of objects in a natural manner.

If a function or operator can be defined such that it iz not a member of the class, then
do not make it a member. This practice makes a nonmember function or operator
generally independent of changes to the class’s implementation.

In C++, an abatract data type is implemented using classes, functions, and operators.
Constructors initialize objects of the class type. It i8 standard practice to endure
that every object has all of its data members appropriately initialized.

A default constructor is a constructor that requires no parameters,

146,

147.

148,

149,

150.

151.

154.

155.

156.

157.

158.

159.

1640.

161.
182,
163.

164.

Appendix F #579

A copy constructor initializes a new object to be a duplicate of a previously defined
source object. If a class does not define a copy constructor, the compiler automatically
supplies a version.

A member assignment operator copies a source object to the invoking target object
in an assignment statement. If a class does not define a member assignment operator,
the compiler automatically supplies a version.

‘When we call a member function, it uses the data members of the object used to

invoke the member function.

A class constructor, if defined, 1s called whenever a program creates an object of
that class,

When we create constructors for a class, we must provide a default constructor to
create uninitialized objects.

When we assign one object to another of the same elass, C++ copies the contents of
each data member of the source abject to the corresponding member of the target
object.

A member function operates upon the object used to invoke it, while a friend function
operates upon the objects passed to it as arguments.

The gualifier const appended to function prototype indicates that the function
does not modify any of the data members. A const member function can be used by
const objects of the class.

The client interface to a class object occurs in the public section of the class
definition.

Any member defined in any section — whether publie, prl:rtm:t-l!d, or private —
18 accessible to all of the other members of its class.

Members of a protected section are intended to be used by a class derived from
the class.

Data members are normally declared in a private. By restricting outside access to
the data members in a class, it is easier to ensure the integrity and consistency of
their values,

Members of private section of a class are intended to be used only by the members
of that class.

An & in the return type for a funetion or operator indicates that a reference return
is being performed. In a reference return, a reference to the actual ohject in the
return expression rather than a copy is returned. The scope of the returned object
ghould not be local to the invoked funetion or oparator.

When creating a friend function, use the kevword friend in the prototype in the
clags definition, but do not use this keyword in the actual function definition. Friend
functions are defined outside the class definition.

Friend functions have access to the private and protected members of a class.

An operator can be overloaded many times using distinct signatures.

If we want to overload a binary operator with two different types of operands with
non class as the first operand, we must use a friend funetion to define the operator
overloading. :

Do not use implicit type conversions unless it is necessary. If they are used
arbitrarily, it can cause problems for future users of the class.

580e

165,

166.
167.

168,
169,

170.

171.

172.

173.

174.

175.

176.

177,

178.

179.

180.

181.

182,

183,

184,

186.

Object-Oriented Programming writh C++

Whenever we use new in a constructor to allocate memory, we should use delete in
the corresponding destructor to free that memory.

The relationship “is_ a” indicates inheritance. For example, a car is a kind of vehicle.
The relationship “has_a" indicates containment. For example, a car has an engine.
Aggregate objects are constructed using containment.

Both inheritance and containment facilitate software reuse,

A new class that 18 created from an existing class using the principle of inheritance
i called a derived class or subclass. The parent class is called the base closs or
superclass.

When an ﬂhj&rrt that is a instance of derived class is instantiated, the constructor
for the base class is invoked before the body of the constructor for the derived class
is invoked.

A class intended to be a base class usually should use protected instead of private
members.

When a derived class obyect 1s being created, first its base classes constructors are
called before its own constructor. The destructors are called in the reverse order,
A conetructor of a derived class must pass the arguments required by itz base class
constructor.

A derived class uses the member functions of the base class unless the derived clasa
provides a replacement function with the same name.

A derived class object is converted to a base class object when used as an argument
to a base class member function.

Derived class constructors are responsible for initializing any data members added
to those inherited from the base class. The base class eonstructors are responsible
for initializing the inherited data members.

-When passing an object as an argument to the function, we usually use a reference

or a pointer argument to enable function calls within the function to use virtual
member function.

Declare the destruetor of a base class as a virtual function.

Destructors are called in reverse order from the constructor calls. Thus, the
destructor for a derived class is called before the destructor of the base or superclass.
With public inheritance, the public members of the base class are public members
of the derived class. The private members of the base class are not inherited and,
therefore, not accessible in the derived class.

With protected inheritance, public and protected members of the base class
become protected members of the derived class, The private members of the base
class are not inherited.

With multiple inheritance, a derived class inherits the attributes and behaviors of
all parent classes.

With private inheritance, public and protected members of the base class become
private members of the derived class. Private members are not inherited.

If a derived class has a base class as a multiple ancestor (through multiple
inheritance), then declare the base class as virtual in the derived class definition.
This would ensure the inheritance of just one object of the base class.

A pointer to a base class can be used to access a member of the derived class, as long
as that class member 18 inharited from the base,

Hidden page

Hidden page

235,

236.
237,

238.
239.

240,
241.
242,
243.
244,

245.

Appendix F ®583

The member function eof of ios determines if the end of the file indicator has been set.
End-of-file is set after an attempted read fails.

To use C++ strings, we must include the header file <string> of C++ standard
library.

C+4+ strings are not null terminated.

Using STL containers can save considerable time and effort, and result in higher
guality programs.

To use containers, we must include appropriate header files.

STL includes a large number of algorithms to perform certain standard operations
on containers.

STL algorithms use iterators to perform manipulation operations on containers.
We may use const-cast operator to remove the constantness of objects.

We may uze mutable specifier to the members of const member functions or const
objects to make them modifiable.

We must restrict the use of runtime type information functions only with
polymorphic types.

When we suspect any side-effects in the constructors, we must use explieit
constructors.

We must provide parentheses to all arguments in macro functions.

Appendix G

Glossary of Important C++ and
OOP Terms

#include

Abstract Class

Abstract Data

Type (ADT)
Abstraction

Access

Operaiions
Address

Alias

Anonymous
Union

ANSI C

ANSI C++

Array

ASCII

A C++ preprocessor directive that defines a substitute text for a name.

A preprocessor directive that causes the named file to be inserted in
place of the #include.

A class that serves only as a base class from which classes are derived.
No objects of an abstract base class are created. A base class that contains
pure virtual functions is an abstract base class.

An abstraction that describes a set of objects in terms of an encapsulated
or hidden data and operations on that data,

The act of representing the essential features of something without
including much detail.

COperations which access the state of a variable or object but do not
maodify it.

A value that identifies a storage location in memory.

Two or more variables that refer to the same data are said to be aliases
of one another.

An unnamed union in C++. The members can be used like ordinary
variables.

Any version of C that conforms to the specifications of the American
National Standards Institute Committee X3.J.

Any version of C++ that conforms to the specifications of the American
National Standards Institute. At the time of writing this, the standards
exist only in draft form and a lot of details are still to be worked out.
A collection of data elements arranged to be indexed in one or more
dimensions. In C++, arrays are stored in contiguous memory.
American Standard Code for Information Interchange. A code to
represent characters.

585

Assignment
Statement

Attribute

Automatic
Variable

Base Class

Bit
Bit Field

Bit Flip

Bitmapped
Graphics

Bitwise Operator

Block
Borland C++

Breakpoint
Byte

C

C++

Call by
Referenece

Call by Value

Cast
Class

Class
Hierarchy

Appendix G

An operation that stores a value in a variable.

A property of an object. It cannot exist independently of the object.
Attributes may take other objects as values.

See temporary variable.

A class from which other classes are derived. A derived class ecan inherit
members from a base class.

Binary digit; either of the digits 0 or 1.

A group of contiguous bits taken together as a unit. This C++ language
feature allows the aceess of individual bits.

The inversion of all bits in an operand. See also complement.

Computer graphics where each pixel in the graphic output device is
controlled by a single bit or a group of bits.

An operator that performs Boolean operations on two operands, treating
each bit in an operand as individual bits and performing the operation
bit by bit on corresponding bits.

A section of code enclosed in curly braces.

A version of the C++ language for personal computers developed by
Borland. This is the high-end version of Borland's Turbo-C++ product.
A location in a program where normal execution is suspended and
control is turned over to the debugger.

A group of eight bits.

A general-purpoze computer programming language developed in 1974
at Bell Laboratories by Dennis Ritchie. C is considered to be medium-
to high level language.

An object-oriented language developed by Bjarne Stroutstrup as a
successor of C.

A function call mechanism that passes arguments to a function by
passing the addresses of the arguments.

A function call mechanism that passes arguments to a function by
passing a copy of the value of the arguments.
To convert a variable from one type to another type by explicitly.

A group of objects that share common properties and relationships. In
C++, a class iz a new data type that contains member variables and
member 0 functions that operate on the variables. A Class is defined
with the kevword class.

Class hierarchy consists of a base class and derived classes. When a
derived class has a single base class, it is known as single inheritance.

Copyrighted material

586e

Class Network

Class Ohject
Classification
structure

Class-oriented

Client

Coding
Comment

Comment Block

Compiliation
Compiler
Complement
Composition
Structure

Conditional
Compilation

Constructor

Container Class
Control
Statement
Control
Variables

Object-Ortented Programming with C++

When a derived class has more than one base class (multiple inheritance),
it is known as class network,

A collection of clazses, some of which are derived from others. A class
network is a class hierarchy generalized to allow for multiple
inheritance. It is sometimes known as forest model of classes.

A variable whose type is a class. An instance of a clasa.

A tree or network structure based on the semantic primitives of inclusion
and membership which indicates that inheritance may implement
specialization or generalization. Objects may participate in more than
one such structure, giving rise to multiple inheritance.

Ohject-based svstems in which every instance belongs to a class, but
classes may not have super classes.

An object that uses the services of another ohject called server. That is,
clients can send messages to servers.

The act of writing a program in a computer language.

Text included in 4 computer program for the sole purpose of providing
information about the program. Comments are a programmer’s notes
to himself and future programmers. The text is ignored by the compiler.
A group of related comments that convey general information about a
program or a section of program.

The translation of source code into machine code.

A system program that does compilation.

An arithmetic or logical operation. A logical complement is the same as
an invert or NOT operation.

A tree structure based on the semantie primitive part of which indicates
that certain objectz may be assembled from the collection of other objects.
Objects may participate in more than one such structure.

The ability to selectively compile parts of a program based on the truth
of conditions tested in conditional directives that surround the code.

A special member function for automatically creating an instance of a
elags. This function has the same name as the class.

A classe that contains objects of other classes,
A statement that determines which statement is to be executed next
based on a conditional test.

A variable that is systematically changed during the execution of the
lpop. When the variable reaches a predetermined value, the loop is
terminated.

Copyrighted material

Copy
Constructuor

Curly Braces

Data Flow
Diagram (DFD)

Data Hiding

Data Member
Debugging
Decision
Statement
Declaration
Default
Argument

De-referencing
Operator
Derived Class

Destructor
Directive

Dynamic
Binding

Dynamie

Memory
Allocation

Early Binding
Encapsulation

Enumerated

Data Tvpe
Error State

Appendix G # 587

The constructor that creates a new class ohject from an existing object
of the same class.

One of the characters { or |. They are used in C++ to delimit groups of
elements to treat them as a unit.

A diagram that depicts the flow of data through a system and the
processes that manipulate the data.

A property whereby the internal data structure of an object iz hidden
from the rest of the program. The data can be accessed only by the
functions declared within the class (of that object).

A variable that is declared in a class declaration,

The process of finding and removing errors from a program.

A statement that tests a condition created by a program and changes
the flow of the program based on that deeision.

A specification of the type and name of a variable to be used in a program.

An argument value that is specified in a function declaration and is
used if the corresponding actual argument is omitted when the function
is called.

The operator that indicates access to the value pointed to by a pointer
variable or an addressing expression. See also indirection operator.

A eclasz that inherits some or all of its members from another class,
called base class.

A function that is called to deallocate memory of the objects of a class.

A command to the preprocezsor (as opposed to a statement to produce
machine code).

The addresses of the functions are determined at run time rather than
compile time. This is also known as late binding.

The means by which data objects can be created as they are needed
during the program execution. Such data objects remain in existence
until they are explicitly destroyved. In C++, dvnamic memory allocation
iz accomplished with the operators new (for creating data objects) and
delete (for destroying them).

See static binding,

The mechanism by which the data and functions (manipulating this
data) are bound together within an object definition.

A data type consisting of a named set of values. The C++ compiler
assigns an integer to each member of the set.

For a stream, flags that determine whether an error has occurred and,
if so, give some indication of its severity.

Hidden page

0589

Heterogeneous

List

Homogeneous

List

/O Manipulators

Implementation

Include File
Index

Indirect
Operator
Indirection
Operator

Information
Hiding
Inheritance

Inheritance
Path

Initialization
List

Inline Funetion

Insertion

Operator
Instance

Instance
Variable

Instantiation

Appendix G

A list of class objects, which can belong to more than one class.
Processing heterogeneous lists is an important application of
polymorphism.

A list of class objects all of which belong to the same class.

Funetions that when “output” or “input” cause no /O, but set various
conversion flags or parameters.

The source code that embodies the realization of the design.

A file that is merged with source code by invocation of the preprocessor
directive #include. Also called a header file.

A value, variable or expression that selects a particular element of an
array.

See de-referencing operator.

The operator *, which is used to access a value referred to by a pointer.

The principle which states that the state and implementation of an
object or module should be private to that object or module and only
accessible via its public interface. See encapsulation.

A relationship between classes such that the state and implementation
of an object or module should be private to that object or module and
only accessible via its public interface. See encapsulation.

A series of classes that provide a path along which inheritance can
take. For example, if class B is derived from A, class C is derived from
class B, and class D is derived from class C, then class D inherits from
class A via the inheritance path ABCD,

In the definition of a constructor, the function heading ean be followed
by a colon and a list of calls to other constructors. This initialization
list can contain calls to (1) constructors for base classes and (2)
constructors for class members that are themselves class ohjects.

A function definition such that each call to the function is, in effect,
replaced by the statements that define the function.

The operator <<, which is used to send output data to the screen.

An instance of a class is an object whose type is the class in question.

A data member that is not designated as static. Each instance of a class
contains a corresponding data object for each nonstatic data member of
the class. Because the data objects are associated with each instance of
the class, rather than with the class itself, we refer to them a=s instance
variables.

The creation of a data item representing a variable or a class (giving a
value to something).

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

This
Translation

Truncation
Turbo C++

Type Conversion
Typecast
Union

Value
Variable

Variable Name
Virtual Base

Visibility
Void

Windows

Appendix G # 595

This i8 a pointer to the current object. It is passed implicitly to an
overloaded operator function.

Creation of a new program in an alternate language logically equivalent
to an existing program in a source language.

An operation on a real number whereby any fractional part is discarded.
A version of the C++ language for personal computers developed by
Borland.

A conversion of a value from one type to another.
See cast.

A name given to a type via a type-name definition introduced by the
key-word typedef.

A data type that allows different data types to be assigned to the same
storage location.

A guantity assigned to a constant.

A name that refers to a value. The data represented by the variable
name can, at different times during the execution of a program, assume
different values.

The symbolic name given to a section of memory used to store a variable.
A base class that has been qualified as virtual in the inheritance
definition. In multiple inheritance, a derived class can inherit the
members of a base class via two or more inheritance paths. If the base
class is not virtual, the derived class will inherit more than one copy of
the members of the base class. For a virtual base class, however, only
one copy of its members will be inherited regardless of the number of
inheritance paths between the base class and the derived class.

A function qualified by the virtual keyword. When a virtual function
is called via a pointer, the class of the object pointed to determines
which function definition will be used. Virtual funetions implement
polymorphism, whereby objects belonging to different classes can
respond to the same message in different ways.

The ability of one object to be a server to others.

A data type in C++. When used as a parameter in a function ecall, it
indicates there is no return value. void+ indicates that a generie pointer
value is returned. When used in casts, it indicates that a given value is
to be discarded.

A graphical partition ni; screen for user interface.

Appendix H

| C++ Proficiency Test |

Part A

IT}HEIEI&EQHEM

State whether the following statements are true or false

l. A C++program isidentical to a C program with minor changes in coding

Bundling functions and data together is known as data hiding.

In C++, a function contained within a class is called a member function.

Object modeling depicts the real-world entities more closely than do functions.

In using object-oriented languages like C++, we can define our own data types.

When a C++ program is executed, the function that appears first in the program 1s

executed first.

In a 32-bit system, the data types float and long occupy the same number of bytes.

In an assignment statement such as int x = expression; the value of x iz always equal

to the value of the expression on the right.

9, In C++, declarations can appear almost anywhere in the body of a function.

10. C++ does not permit mixing of variables of different data types in an arithmetic
EXPTEasion.

11. The value of the expression 13%4 is 3.

12. Assuming the value of variable x as 10, the output of the statement cout << x--; will
be 10.

13. The expression for(:;) is the same as a while loop with a test ex presgion of true.,

14. In C++, arithmetic operators have a lower precedence than relational operators.

15. In C++, only int type variables can be used as loop control variables in a for loop.

16. A do loop iz executed at least once.

=20 =L e

&

Sok5

21

SHEER

36,

~EB8ES

42,

SHEE

47.

49,

Appendix H @597

The && and | | operators compare two boolean values,

The control variable of a for loop can be decremented inside the for statement.

The break statement is used to exit from all the nested loops.

The default case is required in the switch selection structure,

The continue statement inside a for loop transfers the control to the top of the loop.
The goto statement cannot be used to transfer the control out of a nested loop.

A conditional expression such as (x < y¥) 7 x : ycan be used anywhere a value can be.
A structure and a class use similar syntax.

Memory space for a structure member is created when the structure is declared.

If item1 and item2 are variahles of type structure Item, then the assignment operation
iteml = item?Z; iz legal.

When calling a function, if the arguments are passed by reference, the function works
with the actual variables in the calling program.

A structure variable cannot be passed as an argument to a function,

A C++ function can return multiple values to the calling function.

A funetion call of a function that returns a value can be used in an expression like any
other variable.

We need not specify any return type for a function that does not return anything.

A set of functions with the same return type are called overloaded functions.

Only when an argument has been initialized to zero value, it is called the default

argument.
A variable declared above all the functions in a program can be accessed only by the
main() funetion.

A static automatic variable retains its value even after exiting the function where it is
defined.

We can use a function call on the left side of the equal sign when the funetion returns
a value by reference.

Returning a reference to an automatic variable in a ealled function is a logic error.
Reference variables should be initialized when they are declared.

Using inline functions may reduce execution time, but may increase program size.
A C++ array can store values of different data types.

Referring to an element outside the array bounds is a syntax error.

When an array name is passed to a function, the function access a copy of the array
passed by the program.

The extraction operator == stops reading a string when a space 16 encountered.
Objects of the string class can be copied with the assignment operator.

Strings created as objects of the string class are zero-terminated.

Pointers of different types may not be assigned to one another without a cast operation.
Not initializing a pointer when it is declared is a syntax error.

Data members in a class must be declared privat.a.

Data members of a class cannot be initialized in the class definition.

Copyrighted material

598e Object-Oriented Programming with C++

50. Members declared as private in a class are accessible to all the member functions of
that class. '

In a class, we cannot have more than one constructor with the same name.

A member function declared const cannot modify any of its class's member data.

In a class, members are private by default.

In a structure, members are public by default.

A member variable defined as statie is visible to all classes in the program.

An object declared as const can be used only with the member functions that are also

declared as const.

57. A member function can be declared statie, if it does not access any non-statie class
members,

58. A non member function may have access to the private data of a class if it is declared
as a friend of that class.

59. The precedence of an operator can be changed by overloading it.

60. Using the keyword operator, we can create new operators in C++,

61. We ecan convert a user-defined class to a bagic type by using a one-argument constructor.

We can always treat a base-class object as a derived-clasa object.

A derived class cannot directly access the private members of its base class.

In inheritance, the base-class constructors are called in the order in which inheritance

is specified in the derived class definition.

Inheritance is used to improve data hiding and encapsulation.

We can convert a base-class pointer Lo a derived class pointer using a cast.

When deriving a class from a base class with protected inheritance, public members

of the base clazs became protected members of the derived class.

68. When deriving a class from a base class with public inheritance, protected members
of the base class become public members of the derived class.

69. A protected member of a base class cannot be accessed from a member function of the
derved class,

70. In case constructors are not specified in a derived class, the derived class will use the
constructors of the base class for constructing its objects.

71. The scope-resolution operator tells us what base class a class is derived from.

72. A derived class is often called a subclass because it represents a subset of its base class,

73. It is permitted to make an object of one class a member of another class.

74. Virtual functions permit us to use the same function call to execute member functions
of different classes.

75, A pointer to a base clasa can point to an object of a derived class of that base class.

T6. An abstract class is never used as a base class.

A pure virtual function in a class will make the class abstract.

A derived class can never be made an abstract class.

A statie function can be invoked using its class name and function name.

The input and output stream features are provided as a part of C++ language.

A file pointer always contains the address of the file.

SHEBERE

ZER

SE&

2EE2FEA

Copyrighted material

Appendix H #5989

Templates create different versions of a function at runtime.

Template classes can work with different data types.

A template function ean be overloaded by another template function with the same

function name.

A function template can have more than one template argument.

Class templates can have only class-type as parameters.

A program cannot continue to execute after an exception has occurred.

An exception is always caused by a syntax error.

After an exception i8 processed, control will return to the first statement after the

throw.

An exception should be thrown only within a try block.

If no exceptions are thrown in a try block, the eatch blocks for that try block are

skipped and the control goes to the first statement after the last cateh block.

The statement throw; rethrows an exception.

Two catch handlers cannot have the same type.

Exceptions are thrown from a throw statement to a catch block.

STL algorithms can work successfully with C-like arrays.

Algorithms can be added easily to the STL., without modifving the container classes.

A map can store more than one element with the same key value.

A vector can store different types of objects.

In an associative container, the keys are stored in sorted order.

In a deque, data can be quickly inserted or deleted at either end.

. Two functions cannot have the same name in ANSI C++.

. The modulus operator(%) can be used only with integer operands,

Declarations can appear anywhere in the body of a C++ function.

All the bitwise operators have the same level of precedence in Java.

105. Ifa=10and b = 15, then the statement x = (a™> b) 7 a : b; assigns the value 15 to x.

106. In evaluating a logical expression of type boolean expression — 1 && boolean
expression — £ both the boolean expressions are not always evaluated.

107. Inevaluating the expression (x =y && a < b) the boolean expression ¥ ==y is evaluated
first and then a < b is evaluated.

108, The default case 1s required in the switch selection structure,

109, The break statement is required in the default case of a switch selection structure.

110. The expression (x ==y && a < b) ie true if either x == ¥ is true or a < b is true.

111. A variable declared inside the for loop control cannot be referenced outside the loop.

112. Objects are passed to a function by use of call-by-reference only.

113. Wecan overload functions with differences only in their return type.

114. Itis an errorto have a function with the same signature in both the super elass and its
aubeclass.

115. Derived classes of an abstract class that do not provide an implementation of a pure
virtual function are also abstract.

116, Members of a class specified as private are accessible only to the functions of the class.

=8 BEIERE XEBR

EESRGESE

i e i
EBERES

Copyrighted material

Hidden page

Hidden page

602% Object-Oriented Programming with C++

A6, is a way to add features to existing classes without rewriting them.
47. When the class B is inherited from the class A, class A is called the
class and class B is called the class.

48, The process of inheriting features from many basic classes 18 known as

49, The members declared as or in the
base class may be accessed from a member function of the derived class.

50. In protected derivation, public members of the base class become
members of the derived class,

51. Inamultipath inheritance, the duplication of inherited members from the grandpar-
ent class can be avoided by declaring the grandparent class as
while declaring the intermediate base classes.

52. A class that is designed only to act as a base class but not used to create objects 15
known as class,

53. Inheritance represents relationship between classes and com-
position represents relationship between classes,

54. The operator i8 used to specify a particular class.

65, A function eall resolved at run time is referred to as hinding.

56. When we use the same function name in both the base and derived classes dynamic

binding iz achieved by declaring the base class function as
57. A function causes its class to be abstract.
A virtual function can be made pure virtual function by placing
at the end of its prototype in the class definition.
The only integer that can be assigned to a pointer is —
A pointer is a variable for storing .
The content of an int type pointer increases by bytes whenever
the increment operator is applied to it.
A pointer to can hold pointers to any data type.
While passing arguments to a function, passing them by pointers allow the function to
the arpuments in the calling function.
The base class for most of the input and output stream classes is the
class.
Output operations are supported by the class.
The class declares input functions such as get() and read().
When using manipulator functions to alter the output format parameters of streams,
we must include the header file .
The default precision for printing floating point numbers is
digits.
The flag causes the display of trailing zeros.
To write data that contains variables of type to an object of type of stream, we should
use function.
71. The function writes a single character to the associated stream.

=

Z28

S8 F BN

Z

S8

4.
0.

76.
7.

78.

g2

S8 BIREREE B

[y

SEBEIR & IEREEZ

Appendix H # 603

To place the input pointer in a specified location in the file, we must use the

function.
Opening a file in ios::out mode also opens it in the mode by
default.
The read() and write) functions handle data in form.
We must open the file using option for performing both input
and output operations.
Command-line arguments are accessed through arguments to
A provides a convenient way to create a family of classes and
functions.
A function template definition begin with the keyvword

A call instantiated from a class template is called a

All functions instantiated from a function template have the same name; themfﬂre.

the compiler applies the concept of resolution to invoke the

required function.

A template argument is preceded by the keyword

A template function works with data types.

An exception is typically caused by SrTor.

Exception are thrown from a statement to a
block.

The code that is likely to produce an exception is enclosed ina

hlock.

The catch handler will eatch all types of exceptions.

By default, if no handler is found for an exception, the program

The container deque is a type container.

The three STL container adapters are stack, queue, and

The STL algorithms operate on container elements indirectly using ;

A is an appropriate container if we are given an element’s key

value and we want to quickly access the corresponding value,

Ina container, the data can be quickly inserted or deleted at

either end.

In containers, keye are stored in sorted order.

For using function objects, we must include the header file

For using the algorithm aceumulate(), we must include the header file .

The operator i uged to change the constantneas of objects.

The operator returns a reference to a type-info object.
Non standard casts between unrelated types may be achieved by using the operator

The operator gualifies a member with its namespace.
The use of specifier toa data item permits us to modify it even
when it is 8 member of a const object.

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

Hidden page

Appendix H 2611

E. Tohide the details of base classes
42, Consider the following class definition.

class Person

{

H

class Student : protected Person

i
H

What happens when we try to compile this class?
A. Will not compile because class body of person is not defined
B. Will not compile because the class body of Student is not defined
C. Will not compile because class Person is not public inherited
D. Will compile successfully.
43. Consider the following class definitions:

class Maths

{
Student studentl;
| H
class Student
{
S5tring name;
|H

This code represents:
A. an'is a° relationship
B. a 'has a' relationship
C. both
D. neither
44, Which of the following are overloading the function

int sum(int x, int ¥y} { }

int sum(int x, int v, int z) { }
float sum(int x, int ¥) { }

int sum(float x, float y) | }

int sumf(int a, int b} { }

float sum(int %, int v, float z) | }
45, What i8 the error in the following code”

mUO®p

class Test

i
)

virtual void display():

612e®

47.

48,

49,

Ohbject-Oriented Programming with C++

Noerror
Function display() should be declared as static
Function display() should be defined
Test class ghould contain data members
Whmh of the following declarations are illegal?
void *ptr;
char *strl = "xyz™
char str2 = "abe";
const *int pl;
int * const p2;
Th& function show() iz a member of the class A and abj i2 a object of A and ptrisa
pointer to A. 'Which of the following are valid access statementa”
abj.show();
abj—sshow();
ptr—sshow();
ptr.show():
pir*show();
(*ptr).ghow();
We can make a class abstract by
A. Declaring it abstract using the static keyvword
B. Declaring it abstract using the virtual keyword
C. Making at least one member function as virtual funetion
. Making at least one member function as pure virtual function
E. Making all member functions const.
Consider the following code:

ivowp

mEOWE

e

TED0®

class A
{ public : virtual void show() = 0; };

class B : public A
{ public : void display()
{ cout =< "B"; } };

class C : public A
{ public : void show()
{ cout =< *C"; } };

Which of the following statements are illegal?

A Ccl;

B. Aal;

C. Bhbl; .
D. A*arr[2];
E. arr[0] = &cl;

Hidden page

6140 Object-Oriented Programming with C++

57. Which of the following keywords are used to control access to a class member?
A, default

B. break
C. protected
D. goto
E. public
58. Which of the following keywords were added by ANSI C++7
asm
explicit
EMum
extern
typename
. using
59. Which of the following statements are valid array declaration?
A int number(5);
B. float average[5];
C. double[5] marks;
D, ecounterint[5];
E. int x[5], y[10];
60. What will be the content of array variable table after executing the following code

SIzE=R=0-=

for(int i=0; i<3; i++)
for{int j=0, j<3; Jj++)
if(j == 1) table[i][j] = 1;
else table[i][j] = O;

A 00O B. 100 C.001 D100
000 110 010 010
000 111 100 001

61. Which of the following methods belong the string class?

A, lengthi)

B. compareTol)

C. equals()

D. substring()

E. All of them

F. None of them
62, (mven the cods

string sl = "yes";
string s2 = "yes";
string 53 = string s3(sl);

Which of the following would equate to true?
A 8l == 52

Copyrighted material

Appendix H 2615

B. sl=s2

C. 83 ==&l
D. sl.equals{s2)
E. s3.equals(sl)

Suppose that 51 and s2 are two strings. Which of the statements or expressions are
correct?

A, string 53 = sl + s82;

B. string 53 = sl —s2;

C. 81 == 82

D. sl.compareTo(s2);

E. int m = sl.length();
Given the code

string s("abc"):

Which of the following calls are valid?
A, strim()
B. sreplace(a’,"A’)
C. s.substring(3)
D. s.toUpperCase()

. Given the declarations

bool b;
int x1 = 100, xZ2 = 200, x3 = 300;

Which of the following statements are evaluated to frue?
A b=x1%*2 == x2;
B. b xl+ x2 '= 3*x1:
C. b=(x3-2%*x2<0) || ((x3 = 400) < 2*x2);
D. b= (x3-2%x2>0) || ({x3 = 400) < 2*x2);
In which of the following code fragments, the variable x is evaluated to 8.
A intx=32;
X=x>2
B. intx=233;
X =x20>3
C. int x=35;
X =x>>2;
D. int x=16;
X =x>>]1;
Whach of the following represent legal flow control statements?
A break;
B. break();

C. continue outer;

Hidden page

75,

76,

Appendix H @617

Which of the following containers support the random access iterator?
priorty-gquens
multimap
list
visrtor
multiset
Wlm:huf the following are non-mutating algorithms?
A search()
B. accumulate()
C
D
E.

mEowp

. for_each()
. rotate()

count()
Which ufthe following functions give the current size of a string object?

E. length()
Consider the following code:

class Base

{
private : int x;
protected : int y;

H

class Derived : Public Base

{
int a, bj

void change()
{

a = x;
b = y;

)
b
int main()

{
Base base;

Derived derived;
base.y = 03
derived.y = 0;
derived.change();

}
Which of the lines in the above program will produce compilation errors?

Hidden page

10.

11.

12,

13.
14.
15.
16.

17.

18.

Appendix H 2619
What is the advantage of using named constants instead of literal constants in a pro-

gram?
What is the difference between the following two declarations?

extern int m;
int m = 0:

How do the following two compare?

(a) #define max(x,y) (((x)=(y) 7 (x} : (¥))
(b) inline int max(int x, int y)
{ return (x>y) 7 x : y; }

When the following code is executed, what will be the values of x and y?

int x=1, y=0;
y = utt

What are the values of m and n after the following two statements are executed?

int m=hi
int n=mt+ * +Hmg

Use type casts to the following statements to make the conversion explicit and clear,

float x = 10 + intNumber;
int m = 10.0 * intNumber/floatNumber:

What are Ivalues and rvalues?

What are new and delete?

What is the difference between using new and malloe() to allocate memory?

In the following statements, state whether the functions funl and fun2 are value-
returning functions or void functions.

fa) x = 10 * funl(m,n) + 5;
(b) funZ(m,n);

What is the difference between using the following statements?

(a) cin > ch;
(b) cin.getich);

Write a single input statement that reads the following three lines of input from the
SCreen.

Hidden page

27.

3l

5EE

Appendix H *621

Given the statements

int y[5];:
int *p = y;

is the following statement legal?
p[3] = 103
How does a C-string differs from a C++ type string?
Does an array of characters represent a character string?
What is the difference between the following two statements?

const int W = 100;
#define M 100

Given the statement
caonst int size = §;
can we declare an array as follows?
int x[size];
A character array name is defined as follows:
char name[30] = “"Anil Kumar®;
what will be the values of m and n in the following statements?

int m = sizeof(name);
int n = strien{name);

Write a function change() to exchange to double values.
Write a function to sort a list of double values using the function change().
What will be the value of test after the following code is executed?

int m= 10, n = =1, test = 1;
if{melh)
if(n=1)
test = 2Z;
else
test = 3;

Hidden page

Appendix H 2623

42, Rewrite the following sequence of if ... then statements using a single if ... then ...
else sequence.

if(m&2 == 0)
cout << "m is even number ‘n";
if(ms2 1= 0)
{
cout << "m is odd number \n";
cout =< "m = " << m << "\n":

l
43. Bimplify the following code segment, if possible,

if(value = 100}

cout << "Tax = 10";
if(value = 25)

cout << *Tax = 0%
if(value »>= 25 B& value <= 100)

cout =< "Tax = 5%;

44, What does the following loop print out?

int m = 1:
while{m < 11)
{

3

COUt =< mrk+;

!

45. Write a code segment, uging nested loops, to display the following output:

i 4 5
a4
3

b b b
P P S P

46, A program uses a function named convert() in addition to its main funection. The
function main declares a variable x within its body and the function convert() de-
clares two variables ¥ and z within its body, z is made static. A fourth variable m is
declared ahead of both the functions. State the vigibility and lifetime of each of these
variables,

47. What is the output of the following program?

finclude <jostream=

624 % Object-Oriented Programming with C++

using namespace std;
void stat()

{
int m= 0;
static int n = 0;
mi+;
n++s
cout == m << " " <<p o< "\n";
)
int main()
{
stat();
stat();
return 0;
}
48. Replace if ... else ladder by a switch statement in the following code segment.
if(x == §)
at+ig
else if(x == B)
h++;
else if(x == 9)
CHéy

489. What is the output of the following code segment?

int m = 0
inti=1;
do
{
cout =< i3
i+
i

while(i == n)

50. What is the output of the following code segment?
int n = 0;
for(int i=1l;i<=n;i++).

cout =< 1;

51. Why is it inappropriate to use a float type variable as a loop control variable?

FHRED

BEIRGEBRIBE B3

Appendix H 2625

. What is the sutput of the following statement?

cout=< "He ‘n said ‘n \" Hello \ " \n";

What is the primary purpose of C++ union types?

What are the two bagic differences between a struecture and an array?

Distinguish between a struct and a class in C++.

MName the three language features that characterize object-oriented pmgrﬂmmmglan
Euages.

What is the difference between static and dynamic binding of an operation to an object?
How would you write a generic version of max function that would return the largest
of the two given values of any data type?

Compare the relationship between classes in composition and inheritance,
Distinguish between virtual functions and pure virtual functions.

Distinguish between static typing and dynamic typing.

What is the application of reinterpret_cast operator”

What is an abstract base class?

What is a pure virtual member function?

What is the application of publie, protected, and private keywords?

Why do we declare some data members of a class as private?

Where and why do we need to use virtual functions?

What is dynamic binding? When do we use it?

What is a down cast? When do we use it?

Why do we need to use constructors?

What 18 a copy constructor? What is its purposa?

What is a default constructor?

What is ‘this"

How are the overloaded operator functions useful in object-oriented design?

What 18 'has a' relationship? How is this implementsd?

What is 'is a' relationship? How is this implemented?

Will the following code work correctly?

void fun(int m)

{
/[code here

void fun{unsigned char m)
{
[/ code here

int main()

{
fun{"X'):
return 0;

Hidden page

Appendix H

100. What is the use of the following code?

class student

{
static int m = 0;
student()
{
M+
}
}:

101. Which of the following expressions are wrong?

(a) 11% 2

by -11 %2
© 11% -2
dy -11 % -2
(e) 11.0 % 2.0

102. What will be the output of the following program segment.
{

intm=1;
{
intn=2;
cout == m << ® " =< p =< endl;

cout << m =<

<< n << endl;

}
103. What will be output of the following program?

#include <iostream=
using namespace std;

bool test = false;

int main{)

{
bool test = true;
cout =< "test = " <= test =< "\n";
cout =< "test = " =< ;; test =< "\n";
return 0;

627

Hidden page

Hidden page

Hidden page

Appendix H # 631
118. What is wrong with the following code?

class A

{

H
class B : public A
{
public:
void set(A a, int y)
{

)

protected: int x;

a.x = yi
b

119, What is the difference between a set and a map.
120. What is the difference between the C header <string.h> and C++ header <string>"

| l Bibliography |

Balagurusamy, E, Programming in ANSI C, Tata McGraw-Hill, 1992,
Barkakati, Nabajyoti, Object-Oriented Programming in C++, SAMS, 1991,
Cohoon and Davidson, C++ Program Design, McGraw-Hill, 1999

Cox, B J and Andrew J Novobilski, Object-Oriented Programming —An Evolutionary Approach,
Addison-Wesley, 1991,

Dehurst, Stephen C and Kathy T. Stark, Programming in C++, Prentice-Hall, 1989

Deitel and Deitel, C++ How to Program, Prentice Hall, 1998,

Eckel, Bruee, Using C++, Osborne MeGraw-Hill, 1989

Gorlen K, Data Abstraction and Object-Oriented Programming in C++, Wiley, 1990.

Ladd S. Robert, C++ Technigues and Applications, M&T Books, 1990

Lafore, Robert, Object-Oriented Programming in Turbo C++, Waite Group, 1999,
Lippman, Stanley B and Josee Lajoie, C++ Primer, Addison-Wesley, 1998,

Schildt, Herbert, Using Turbo C++, Osborne MeGraw-Hill, 1990.

Stroustroup, Bjarne, The C++ Programming Language, 3rd edition, Addison-Wesley, 1997,

Stroustroup, Bjarne and Margaret A Ellis, The Annotated C++ Reference Manual, Addison-
Wesley, 1990,

Voas, Groy, Object-Oriented Programming — An Introduction, Osborne McGraw-Hill, 1991,
Wiener, Richard 8 and Lewis J Pinson, The C++ Workbook, Addison-Wesley, 1990,

Abstract base class 281 Cascading 27

Abstract class 206 Casting operator 150
Abstract data types 9,899 Catchblock 381

Accessing class members 101 Catching mechanism 386
Algorithms 402 Chained assignment 60
Anonymous enum 41 char 45

ANSI prototype 102 cin 26

ANSI standards 20, 446 class 40, 99

ANSIC 20,38 Class dependency 484
ANSIC++ 20,36, 446 Class hierarchies 485
Argument counter 351 Class templates 360
Argument vector 351 Class variables 121
Arguments 19 Classes B8, 40, 96

Arrays 42, 109, 124, 166 Classification relationship 477
Arrays of objects 124 Client server 30

Associative containers 405 Client server relationship 479
Asynchronous exceptions 381 Command-line arguments 350
ATE&T C++ 30 Comments 21

Attnhut%s 9] Comparing strings 428
Automatic conversion 61 Compile time polymorphism 251
Automatic initialization 144 Compiling 30

Composition relationship 478

bad(=348 Compound assignment &1

Basic data types 38

Binary Operators 176, 179 Compound assignment

Bit fields 308 operatar @1

Bitwise expressions 60 const 41, 83, 132

bool 38, 60 const arg:umenta 83

Boolean expressions 59 const objects 162

Borland C++ 31 const_cast operator 450

Bottom-up programming 4 Constant expressions 58

Built-in data types 38 Constants 37
Constructors 144, 232, 326

Call by reference 49, 81 Container adaptors 405

calloe() 52 Containers 403

634®

Containership 240
Containment relationship 484
Context diagrams 473
Control structures 64
Conversion function 180
Conversions 61, 172, 1892
Copy constructor 149, 156
Copy initialization 156
cout X2

C-strings 428

#define 44

Data abstraction 8

Data dictionary 473

Data flow diagram 473, 483
Data hiding 8

Data members 8, 89
Decision table 473

Decision tree 473
Declaration statement T9
Declarations 45

Default arguments 84, 153
Default constructor 146
delete 49 52

Dereferencing operator &2
Derived classes 201, 273
Derived containers 405
Derived data types 42
Destination class 191
Destructors 144, 162

Dot operator 97

double 38

do-while statement 68
Driver program 489
Dummy variables 79
Dynamic binding 10, 12, 253
Dyvnamic constructors 158
Dynamic initialization 46, 153
dynamic_cast operator 450

Early hinding 251
Embedded assignment 60
Encapsulation 8,89
endl 49,55

End-of-file 334

Index

Entry-controlled loop &8
enum 37

Enumerated data type 40
eof() 304

Error handling 348
Exception handling 380
Exception specification 392
Exceptions 380
Exit-controlled loop 68
explicit 451

Explicit call 147
Expressions &8

extern 45

Extraction operator 286

fail() 454

File mode 334

File pointers 335

Files 323

fill) 303,307

Float expressions 59
Flowchart &

for statement 68

Forest model 486
Fountain model 475
free() 52

Free store operators 53
Friendly function B89, 124, 179
fstream 3325

Function objects 420,
Function overloading 10, 88
Funection polymorphism 87
Function prototyping 79
Function templates 366
Functions 6, 42, 77
Fundamental data types 38

Generic programming 307
get() 293,338

Get from operator 26
Get pointers 336
getline() 297

Global data §

good() 349

Grid charts 472

header file 23

hierarchical char 478
hierarchical classification &
hierarchical inheritance 202, 224

Identifiers 37
if statement 65
Implicit argument
Implicit call 147
Implicit constructor 152
Implicit conversions &1
Indirection 81

Information hiding &
Inheritance 8§, 12, 201250
Inheritance relationship 477, 484
Initialization 46

Initialization list 238

Inline 82

Inline constructor 149

Inline functions 8284, 145
Input operator 26

Input stream 291, 324
Instantiation 362

int 25

Integral expressions 59
Integral widening 62

iostream 20, 292, 325

IS0 standard 20

Iterators 402, 408

270

Keywords 36

Late binding 252
Layout forms 472
Linking 28
Lists 413
Local classes
Local data 5
Logic errors 380
Logical expressions 60
long 38

Loop structure 63

134

main() 22
malloe{) 52

Index

635

Manipulators 54,312

Mapped values 4056

Maps 417

Math functions 90

math.h 290

Member function templates 373

Member functions 8, 101, 117, 132, 487

Memory management

oprators 52
Message passing 10
Methods 8
Modifiers 38
Modular programming 4
multi-level inheritance 202, 214
multipath inheritance 229
Multiple inheritance 202, 218
mutable 452

Named constants 44

Namespace 25, 463

namespace 25, 453

Nesting 76, 241

Nesting of classes 240

Nesting of member functions 107
Nesting of Namespaces 454

new 48, 5d

Object-based programming 12
Object-oriented analysis 474, 479
Object-oriented design 474, 483
Object-oriented languages 12
Object-oriented notations 475
Object-oriented paradigm 6, 473

Object-oriented programming 4, 6, 12, 474

Object-oriented system 468
Objects 6, 7, 28, 96, 101
openi) 330

Operator function 172

Operator keywords 60, 459

Operator overloading 9, 23, 49, 63,

186
Operator precedence 63
Operators 489
Output operator 22
Output stream 291, 324

172

—-—=1

6l6® Index

Owverloaded constructors 151 selection structure 64
Sequence containers 404
Parameterized classes 359 sequence structure 64
Parameterized constructors 146 Sequential access 338
Parameterized functions 359 set precision() 302
Pass-by-reference 122 setf() 301,307
Pass-by-value 122 setfill) 302
Period operator 97 setiosflags() 302
Play scripts 472 setw 49, 5d
Pointer expressions 589 setw() 50, 302
Pointers 43, 132, 251 short 2338
Pointers to derived classes 273 Shorthand assignment operator 61
Pointers to members 132 Signed 38
Pointers to object 253 Single inheritance 202, 204
Polymorphism 9, 251 Software crisis 1
precision() 301,304 Software evolution 3
private 99 Source class 191
Private derivation 203 Standard template library 401
Procedure-oriented 4 static 45, 251
programming Program flowchart 472 Static binding 251
protected 211 Statie class member 115
Prototype paradigm 490 Static data members 115
Prototyping 79, 103, 400 Static linking 251
public 99 Static member functions 117
Public derivation 203 static_cast operator 449
Pure virtual functions 281 Stream 291, 292, 326
put() 293, 338 Stream classes 29], 292
Put pointer 336 string class 428
put to operator 23 string ohjects 428
struct 40
BRandom access 343 Structure chart 473
read() 339 Structure elements 97
References 47 Structure tag 97
Reference variable 47, 81 Structured programming 64
reinterpret_cast operator 385 Structured 40, 96
Relational expressions 59 swaping strings 438
resetioeflags() 302 awitch 41
Return by reference 82 switch statement 67
Return statement 25 Symbolic constants 44
Reusability 8,201 Synchronous exceptions 381
Run time polymorphism 252 Syntactic errors 380

System flow chart 472
Scope resolution operator 49
seckg() 336 tellg() 336
seekp() 336 tellp 337

Template 81, 96, 359
Template arguments 374
Template class 362
Template function 368
Textual analysis 482

this pointer 270

Throw point - 383
Throwing mechanism 386
Tokens 35

Top-down programming 4
Tree model 488

Try block 381

Turbo C++ 31

Type cast operator &7
Type compatibility 45
Type conversions 171, 187
typedef 58

typeid operator 451

Unary operators 173
union 40

e 637

UNIX 29

unsetf() 301
Unsigned 38

Use relationship 484
using 25

Variables 27,45

Vectors 400

Virtual base class 228

Virtual function B9, 251, 262, 275
Visibility mode 203

Visibility modifier 210

Visual C++ 38

void 30

Warnierforr diagrams 473
Waterfall mode 47, 470
wechar t 39, 440

while statement 68
width() 301,302
write() 287, 339

Hidden page

Hidden page

The McGraw-Hill Companies

OBJECT ORIENTED PROGRAMMING
WITH c.|_|.
FOURTH EDITION

The fourth edition of Object Oriented Programming with C++, explores the language
| in the light of its Object Criented nature and simplifies it for novice programmers.

The simple and lucid presentation of the concepts, the hallmark of this book, has been
further enhanced in this edibion.

Salient features:
‘ Detailed cover 1E o f Object Oriented Svstems Devels e

'. Programming Projects — Two new projects on ‘Menu Based Calculation System’ and

'f1.r|?A.'f|5_' Systern for imprernentation
‘ Hr:.'J‘ o] siep _'-.f.n..'n.".':'ll. s 1O IMPpiermeniaiian of progecis
‘ Model C++ Prafciency Test included to stre gL the concapts legrnt 1n the boak.
' Excellent ped: gy includes

3 N II'| FTIINE fXPTCISER
T L "‘l:ll-ﬂ.-..'.."l-:'-. TTTRITIE & varnpe

.DEdfca!Ed Website: FEEp: / www. e com/ Dalagurssamy/ oobde

S L 0 e | S RO e
I"1-I-I"'~I 3 WTR-ORA T 740

i MK
=) Tuta McGraw-Hill

1T A e & DTN

