

OCP Oracle Database 11g:
New Features for

Administrators

Exam Guide (Exam 1Z0-050)

®

http://dx.doi.org/10.1036/0071496823

This page intentionally left blank

OCP Oracle Database 11g:
New Features for

Administrators

Exam Guide (Exam 1Z0-050)

Sam Alapati

New York Chicago San Francisco Lisbon London Madrid
 Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

This publication and CD-ROM may be used in assisting students to prepare for the
OCP Oracle Database 11g: New Features for Administrators exam. Neither Oracle
Corporation nor The McGraw-Hill Companies warrant that use of this publication
and CD-ROM will ensure passing the relevant exam.

®

http://dx.doi.org/10.1036/0071496823

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-164372-9

The material in this eBook also appears in the print version of this title: 0-07-149682-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, spe-
cial, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071496823

http://dx.doi.org/10.1036/0071496823

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071496823

To the twins, Nina and Nicholas.

ABOUT THE AUTHOR

Sam Alapati (Irvine, TX) is an experienced Oracle DBA who holds the Oracle OCP
DBA (11g) certification and the Hewlett-Packard UNIX System Administrator
certification. He currently manages Oracle databases at the Boy Scouts of America’s
national office in Irving, Texas. Previously, Sam worked for AMR Holdings (Sabre)
and the Blanch Company in Dallas. Sam was a Senior Principal Consultant for
Oracle Corporation in New York, working with NBC and Lehman Brothers. In
addition to being a professional Oracle database administrator, Sam has also taught
Oracle DBA classes for many students and college-level courses at Kansas State
University, University of Texas at Austin, and Rutgers University.

About the Technical Editor
April Wells (Austin, TX) is an experienced Oracle DBA who holds multiple OCP
DBA certifications. She currently manages Oracle databases and Oracle data
warehouses at NetSpend Corporation in Austin, Texas. Previously, April worked
for Oracle Corporation in Austin as on-site support at Dell; at Corporate Systems
in Amarillo, Texas; and at US Steel in Pennsylvania and Minnesota.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

vii

CONTENTS AT A GLANCE

1 Installing, Upgrading, and Change Management 1

2 Diagnosing and Resolving Problems . 77

3 Intelligent Infrastructure and Database Security 147

4 Automatic SQL Tuning and SQL Plan Management 213

5 Automatic Storage Management and Partitioning
Enhancements . 263

6 Performance Enhancements . 321

7 RMAN and Flashback Enhancements . 383

8 Oracle SecureFiles and Miscellaneous New Features 449

 About the CD-ROM . 491

 Glossary . 493

 Index . 507

viii

CONTENTS

Acknowledgments . xv
Introduction . xvi

1 Installing, Upgrading, and Change Management 1
Installing Oracle Database 11g . 3

Changes in the Optimal Flexible Architecture 3
Automatic Diagnostic Repository . 5
Changes in the Installation Options . 6
New Database Components . 7
Role and Privilege Changes . 7
An Oracle Database 11g Installation . 8

New Features in Database Creation . 10
Summary of New Initialization Parameters 10
DBCA Enhancements . 12
Using the DBCA to Create a Database 13

Upgrading to Oracle Database 11g . 19
Moving Data as Part of the Upgrade . 19
New Privileges for Storage Management 20
Upgrading to Oracle Database 11g . 20
Exercise 1-1 Scripts to Run for Upgrading a Database 31

Real Application Testing . 32
Database Replay . 33
Exercise 1-2 Procedure for Capturing and Replaying

a Database Workload . 47
The SQL Performance Analyzer . 51
Exercise 1-3 Testing SQL Performance Following a Database

Upgrade . 61
✓ Two-Minute Drill . 63

Q&A Self Test . 68
Lab Question . 71
Self Test Answers . 72
Lab Answer . 75

2 Diagnosing and Resolving Problems 77
Automatic Diagnostic Repository . 80

The Structure of the ADR . 81
ADRCI . 83

For more information about this title, click here

http://dx.doi.org/10.1036/0071496823

Incidents and Problems . 88
Incident Packaging Service . 90
Exercise 2-1 Creating an Incident Package

with ADRCI . 95
Support Workbench . 96

Viewing Critical Error Alerts . 96
Examining Problem Details . 98
Collecting Additional Diagnostic Data 98
Creating a Service Request . 99
Packaging and Uploading Diagnostic Data 100
Tracking the Service Request . 102
Implementing Repairs . 103
Closing Incidents . 103
Generating a User-Created Problem . 103
Viewing the Alert Log . 104

Health Monitor . 105
Running a Health Check . 106
Exercise 2-2 Running a Health Check with Input

Parameters . 107
Viewing the Health Monitor Reports 110

SQL Repair Advisor . 110
Using the Support Workbench . 111
Using the DBMS_SQLDIAG Package 111
Exercise 2-3 Exporting a SQL Patch to Another

Database . 114
Data Recovery Advisor . 115

Failures . 117
Repair Options . 118
Using RMAN to Manage the Data Recovery Advisor 119
Proactive Checks . 126
Managing the DRA with Database Control 130
New Parameter to Detect Database Corruption 131

✓ Two-Minute Drill . 135
Q&A Self Test . 138

Lab Question . 142
Self Test Answers . 143
Lab Answer . 146

 Contents ix

x OCP Oracle Database 11g: New Features for Administrators Exam Guide

3 Intelligent Infrastructure and Database Security 147
Enhancements in AWR Baselines . 148

Managing Baseline Templates . 149
Renaming a Baseline . 152
Setting AWR Baseline Metric Thresholds 152
Moving Window AWR Baselines . 155
Managing the New Baseline Features 156

Controlling Automated Maintenance Tasks . 158
Predefined Maintenance Windows . 159
Managing the Automatic Maintenance Tasks 159
Implementing Automatic Maintenance Tasks 163
Configuring Resource Allocation for Automatic Tasks 163
I/O Calibration . 164
Exercise 3-1 Calibrating I/O Resources 164

Database Resource Manager New Features . 167
Per Session I/O Limits . 168
Pre-Created Mixed Workload Resource Plan 172

Using New Oracle Scheduler Features . 173
Lightweight Jobs . 173
Exercise 3-2 Creating an Array of Regular Scheduler Jobs 177
Remote External Jobs . 178
Scheduler Support for Data Guard . 184

Security Enhancements . 185
Secure Password Support . 186
Configuring Fine-Grained Access to Network Services 190
Encrypting Tablespaces . 194
Creating the Oracle Wallet . 195
Creating an Encrypted Tablespace . 196
Restrictions on Tablespace Encryption 198

✓ Two-Minute Drill . 201
Q&A Self Test . 204

Lab Question . 207
Self Test Answers . 208
Lab Answer . 211

4 Automatic SQL Tuning and SQL Plan Management . . . 213
Automatic SQL Tuning Advisor . 214

SQL Profiles . 216

Limitations . 217
The Automatic SQL Tuning Process . 217
Exercise 4-1 Using Enterprise Manager to Access

the SQL Tuning Advisor . 222
Interpreting Automatic SQL Tuning Reports 223
Data Dictionary Views . 224

SQL Plan Management . 225
SQL Plan Baselines . 226
Capturing SQL Plan Baselines . 227
Fixed SQL Plan Baselines . 235
SQL Plan Baseline Attributes . 235
Managing SQL Plan Baselines . 237
The SQL Management Base . 238
Managing SPM with the Enterprise Manager 240

SQL Access Advisor Enhancements . 240
New Procedures . 240
Partitioning Recommendations . 242
Publish Points . 243
Running a SQL Access Advisor Job Using PL/SQL 243
Using Enterprise Manager . 249

Using the Cursor Cache to Get SQL Access Advisor
Recommendations . 251

✓ Two-Minute Drill . 254
Q&A Self Test . 257

Lab Question . 259
Self Test Answers . 260
Lab Answer . 262

5 Automatic Storage Management and Partitioning
Enhancements . 263
Automatic Storage Management New Features 264

ASM Architecture . 264
ASM Fast Mirror Resync . 265
ASM Preferred Mirror Read . 269
ASM Scalability and Performance Enhancements 272
New SYSASM Privilege . 274
ASM Compatibility . 275
Changing ASM Disk Group Attributes 279
New Manageability Options for Commands 280

 Contents xi

xii OCP Oracle Database 11g: New Features for Administrators Exam Guide

Exercise 5-1 Using the md_backup and md_restore
Commands . 288

Partitioning Enhancements . 289
Interval Partitioning . 290
System Partitioning . 295
Virtual Column-Based Partitioning . 298
Reference Partitioning . 301
Composite Partitioning Enhancements 307

✓ Two-Minute Drill . 312
Q&A Self Test . 315

Lab Question . 316
Self Test Answers . 317
Lab Answer . 318

6 Performance Enhancements . 321
ADDM Enhancements . 322

ADDM for Real Application Clusters 322
New DBMS_ADDM Package . 324

Automatic Memory Management . 328
SGA, PGA, and the MEMORY_TARGET Parameter 329
Exercise 6-1 Using Automatic Memory Management 331
Monitoring Automatic Memory Management 332
DBCA and Automatic Memory Management 333

Enhancements in Optimizer Statistics Collection 334
Statistics Preferences . 334
Partitioned Tables and Incremental Statistics 337
New Sampling Technique . 338
Deferred Statistics Publishing . 338
Extended Statistics . 341

Result Cache . 347
Result Cache Memory Pool . 347
Managing the Result Cache . 348
Caching SQL Results with a Result_Cache Hint 348
Using the DBMS_RESULT_CACHE Package 350
Using Dynamic Performance Views . 353
The SQL Query Result Cache . 354
The PL/SQL Function Result Cache . 357
The Client Query Result cache . 359

Adaptive Cursor Sharing . 362

How Adaptive Cursor Sharing Works 364
Monitoring Adaptive Cursor Sharing 365

✓ Two-Minute Drill . 369
Q&A Self Test . 373

Lab Question . 376
Self Test Answers . 377
Lab Answer . 380

7 RMAN and Flashback Enhancements 383
RMAN Enhancements . 384

Active (Network-Based) Database Duplication 384
Parallel Backup and Restore of Large Files 392
Archival (Long-Term) Backups . 394
Fast Incremental Backups . 398
Improved Block Media Recovery Performance 398
New Persistent Configuration Parameters 401
Backup Failover to Non-Flash Recovery Areas 404

Recovery Catalog Management . 405
Merging Recovery Catalogs . 405
Virtual Private Catalogs . 408

New Flashback-Related Features . 413
Flashback Data Archive . 413
Flashback Transaction Backout . 427
Exercise 7-1 Using the TRANSACTION_BACKOUT

Procedure . 430
✓ Two-Minute Drill . 433

Q&A Self Test . 438
Lab Question . 442
Self Test Answers . 443
Lab Answer . 447

8 Oracle SecureFiles and Miscellaneous New Features . . . 449
Oracle SecureFiles . 450

Enabling SecureFiles . 451
Capabilities of SecureFiles . 452
Storage Options for SecureFiles . 453
Creating SecureFiles . 454
Managing and Monitoring SecureFiles 456
Migrating to SecureFiles . 457

 Contents xiii

xiv OCP Oracle Database 11g: New Features for Administrators Exam Guide

Online Enhancements . 458
Locking Enhancements . 458
Minimal Invalidation of Dependent Objects 460
Creating a Parameter File from Memory 461
Hot Patching . 462

Miscellaneous New Features . 463
Invisible Indexes . 463
Shrinking Temporary Tablespaces . 465
Tablespace Option for Creating Temporary Tables 467
PL/SQL and Java Automatic Native Compilation 467
Exercise 8-1 Setting Up a PL/SQL Program Unit for

Native Compilation . 468
OLTP Table Compression . 472
Direct NFS Client . 473

✓ Two-Minute Drill . 480
Q&A Self Test . 483

Self Test Answers . 487
Lab Answer . 490

Appendix About the CD-ROM . 491
System Requirements . 491
Installing and Running MasterExam . 491
MasterExam . 492
Electronic Book . 492
Help . 492
Removing Installation(s) . 492
Technical Support . 492
LearnKey Technical Support . 492

 Glossary . 493

 Index . 507

xv

ACKNOWLEDGMENTS

Iwish to acknowledge the excellent technical editing of the book by April Wells. Thanks to
April’s careful and expert technical vetting, I’ve been able to avoid errors and improve the
quality of the presentation.

In the last few years, over the course of writing three books for Oracle Press,
Timothy Green, Senior Acquisitions Editor, has also become my friend. Tim’s
sagacious replies to queries as well as excellent counsel and encouragement have
been extremely helpful. I also thank the excellent help and support provided by
the Acquisitions Coordinator, Jennifer Housh.

I appreciate the terrific job done by Laura Stone, the Project Editor, in seeing the
chapters through all the editing and production stages with great patience, skill, and
cheer. Laura has shown great alacrity and exceptional understanding at various stages
of the manuscript to keep the workflow moving steadily. Exceptional copy editing by
Nancy Rapoport has significantly enhanced the style and presentation of the contents
of the book. I’m also grateful to the great proofreading by Susie Elkind. I’m lucky to
have friends at work such as Myra Riggs and Dabir Haider. Myra always finds time to
talk about just about anything, and I can always count on her help and advice. Dabir
has been a source of help and support ever since he joined us last year. I couldn’t have
taken care of business without the kind help of Leticia Salazar, who has gone out of
her way to help me in numerous ways throughout the last year—thanks, Leticia! My
buddy Mark Potts has been a true friend over the years and I’m grateful to him for all
his help. My colleagues at work, Lance Parkes and Rob Page, are always helpful, and I
acknowledge their kindness as well. I’m fortunate to work with David Jeffress and Dave
Campbell, two exceptional managers, and thanks go out to both of them. I would also
like to express my appreciation for Dan Nelson and Debra Kendrew for their friendship
and caring.

Finally, I’d like to extend my profound thanks to both of my families. I’m grateful to
Mom; Dad; and my two brothers, Hari Hara Prasad and Siva Sankara Prasad; for their
love, affection, and support. Thanks also to Aruna, Vanaja, Ashwin, Teja, Aparna,
and Soumya for their love and kindness over the years. I wish to acknowledge the
enormous debt I owe to my wife, Valerie, who had to fill in the void left by my absence
from the home front during the writing of this book. Finally, thanks to Shannon and
the twins, Nina and Nicholas, who always love it when we get to look at the first
copies of a newly printed book!

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

xvi

INTRODUCTION

Oracle Database 11g offers several highly powerful enhancements to the management
of Oracle databases. Oracle databases are the leading commercial databases in the
world today, and it’s a great challenge as well as a matter of pride to certify in the latest

flagship offering of the Oracle Corporation. For more information about the Oracle certification
exams, requirements for certification, or recertification, please visit Oracle’s certification web site
(http://www.oracle.com/education/certification).

This book will help you in your endeavor to upgrade your Oracle OCP DBA
certification to the latest level—Oracle Database 11g. It is a study guide for Oracle
Database administrators who plan to take the OCP Oracle Database 10g: New Features
for Administrators Exam Guide (Exam 1Z0-050). This exam is also known commonly
as the DBA “Upgrade” exam because you can upgrade to the latest Oracle Database 11g
OCP certification from the Oracle10g OCP certification. In order to take this exam,
Oracle Corporation must have already certified you as an Oracle10g OCP.

If your goal is to update your credentials, you can do so by diligently working through
this book, doing all the exercises and practice tests. However, your goal should ideally
reach beyond passing the exam. Ultimately, you’ll need to use the new skills you learn
in your present job, and the only way to do so is by clearly understanding the nuances of
the various enhancements offered by the Oracle Database 11g release. To this end, I’ve
designed this book as much more than a simple exam guide, by carefully introducing the
topics and discussing them in sufficient detail to provide you with a solid understanding.

Some of you, I’m sure, are tempted to just learn the minimum necessary to pass the
upgrade exam. However, I urge you to delve deeper into the new release by testing
the new features on your own and exploring the many new capabilities of the Oracle
Database 11g release. In general, Oracle certifications are voluntary, in the sense that
in most cases they are not prerequisites for a job working with Oracle products. The
real value of certification comes in the mastery of a wide range of capabilities of the
Oracle database software. As the first chapter shows you, it is easier to install the new
Oracle software than ever before. Therefore, you really don’t have any excuses for not
installing the Oracle Database 11g software on your workstation or a test server and
exploring all the new features. I’ve found that testing the various features is the best
way to understand and remember the nuances of the new features, including the usage
of the new commands and SQL statements that help implement the features.

In This Book
This book is organized to serve as an in-depth review for the OCP Oracle Database
11g: New Features for Administrators Exam for Oracle professionals who already are
certified OCPs. Each chapter covers a major aspect of the exam; all the OCP official
certification objectives are carefully covered in the book.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

http://www.oracle.com/education/certification

Introduction xvii

On the CD-ROM
The CD-ROM contains the entire contents of the book in electronic form, as well as
two practice tests that simulate the real Oracle Database 11g OCP certification test.
For more information on the CD-ROM, please see the appendix.

Exam Readiness Checklist
At the end of this introduction, you will find an Exam Readiness Checklist. I
constructed this table to allow you to cross-reference the official exam objectives with
the certification objectives as I present and cover them in this book. The checklist
also allows you to gauge your level of expertise on each objective at the outset of your
studies. This should allow you to check your progress and make sure you spend the
time you need on more difficult or unfamiliar sections. I’ve provided a reference for
each objective exactly as Oracle Corporation presents it, including the section of the
study guide that covers that objective, as well as a chapter and page reference.

In Every Chapter
This book includes a set of chapter components that call your attention to important
items, reinforce important points, and provide helpful exam-taking hints. Take a
look at what you’ll find in every chapter:

■ Exam Watch notes call attention to information about, and potential pitfalls
in, the exam. As I mentioned earlier, I took the new OCP exam and received
my certification. I took the Beta exam in December, 2008—it had over 170
questions, so I know something about what you will go through!

■ Exercises are interspersed throughout the chapters, and they allow you to
get the hands-on experience you need in order to pass the exams. They help
you master skills that are likely to be an area of focus on the exam. Don’t
just read through the exercises; they are hands-on practice that you should
be comfortable completing. Learning by doing is an effective way to increase
your competency with a product.

■ On the Job notes describe the issues that come up most often in real-world
settings. They provide a valuable perspective on certification- and product-
related topics. They point out common mistakes and address questions that
have arisen from on-the-job discussions and experience.

■ Inside the Exam sections toward the end of each chapter are designed to
anticipate what the exam will emphasize. I provide pointers regarding key
topics to focus on, based on my own exam experience. You can get a leg up

xviii OCP Oracle Database 11g: New Features for Administrators Exam Guide

on how to respond to actual exam questions by focusing extra attention on
the contents referred to in the Inside the Exam sections.

■ The Certification Summary is a succinct review of the chapter and a
restatement of salient points regarding the exam.

■ The Two-Minute Drill at the end of every chapter is a checklist of the main
points of the chapter. You can use it for a quick, last-minute review before
the test.

■ The Self Test offers questions similar to those found on the certification
exam. The answers to these questions, as well as explanations of the answers,
can be found at the end of each chapter. By taking the Self Test after
completing each chapter, you’ll reinforce what you’ve learned from that
chapter, while becoming familiar with the structure of the exam questions.

■ The Lab Questions at the end of the Self Test sections offer a unique and
challenging question format that, in order to answer correctly, require the
reader to understand multiple chapter concepts. These questions are more
complex and more comprehensive than the other questions, as they test your
ability to take all the knowledge you have gained from reading the chapter
and apply it to complicated, real-world situations.

Some Pointers
Once you’ve finished reading this book, set aside some time to do a thorough review.
You might want to return to the book several times and make use of all the methods
it offers for reviewing the material:

■ Reread all the Two-Minute Drills or have someone quiz you. You also can
use the drills as a way to do a quick cram before the exam. You might want
to make some flash cards out of 3 × 5 index cards that have the Two-Minute
Drill material on them.

■ Reread all the Exam Watch notes. Remember that these notes are based on
the OCP exam that I took and passed. I’ve tried to draw your attention to
what you should expect—and what you should be on the lookout for.

■ Retake the Self Tests. It is a good idea to take the test right after you’ve read
the chapter because the questions help reinforce what you’ve just learned.
However, it’s an even better idea to go back later and do all the questions
in the book in one sitting. Pretend that you’re taking the live exam. (When
you go through the questions the first time, you should mark your answers
on a separate piece of paper. That way, you can run through the questions
as many times as you need to until you feel comfortable with the material.)

✓

Q&A

Introduction xix

I personally wouldn’t recommend taking the actual test until you’re able to
answer upwards of 95 percent of the Self Test questions correctly.

■ Complete the Exercises. Did you do the chapter Exercises and the Lab
Questions when you read each chapter? If not, do them! These exercises are
designed to cover exam topics, and there’s no better way to get to know this
material than by practicing. Be sure you understand why you are performing
each step in each exercise. If there is something you are not completely clear
about, reread that section in the chapter.

Test Structure
Because the exam for which I designed this book is an upgrade exam, all of the test
takers will be OCP certification holders; you shouldn’t dread the OCP test by any
means. The new test follows on the lines of the old tests, and there are no changes
to the style or format of the certification test. As in the older OCP tests, you’ll have
multiple choice questions only, with several questions having multiple correct answers.

The exam has 85 multiple-choice questions (time allowed is 105 minutes), and
you need to answer at least 61 percent of the answers correctly to pass the test. The
passing percentage translates to answering 52 out of the 85 questions correctly.

If you work your way through all eight chapters of this book, diligently completing
the exercises and paying close attention to the Exam Watches and Inside the Exam
sections, you shouldn’t have any problem passing the exam with flying colors.

A word of caution regarding questions for which there are several correct choices.
If you pick only part of the correct answers, you won’t get credit for the answer, even
if your pick is among the correct alternatives. Please be very careful that you picked
all the possible choices when there are multiple correct choices.

How to Prepare for the Exam
You are holding in your hands the only tool you’ll need to pass the OCP upgrade
exam. You should read the chapters, preferably from the beginning to the end, and
you must answer the end-of-chapter review questions correctly. However, most
chapters can be read in any particular order. So if, for example, you are interested
in RMAN new features, start with Chapter 7. Cover all eight chapters, in any order
you wish, and that will ensure you’re covering all the OCP official objectives.

I’ve covered every OCP certification objective carefully in this book. However,
this is a test guide; therefore, I’m limited as to the length of discussion of any
particular topic. I strongly recommend that you refer to the pertinent Oracle topics
in Oracle’s voluminous manuals (available at http://technet.oracle.com) for in-depth
discussion of all the new topics.

http://technet.oracle.com

xx OCP Oracle Database 11g: New Features for Administrators Exam Guide

OCP tests are rigorous, and you can’t expect to certify by merely “brushing
up” on the new features. You must really understand the new concepts, both from
a theoretical standpoint and a practical one. OCP exam questions typically are
divided into questions that test your knowledge of syntax and new commands, on
the one hand, and those that test in-depth your understanding of how a particular
new feature works in practice, on the other. Your basic strategy for questions that
test your knowledge of Oracle syntax is simply to learn and remember the new
commands and syntax. However, when it comes to preparing for the significant
number of questions (often called scenario-based questions) that test your grip on
how things work, there is no substitute to actually working out the Exercises and
Lab Questions in this book. In addition, you should try practicing all the relevant
commands shown in Oracle Corporation’s manuals.

Use the Exam Readiness Checklist to guide you in your preparation for the exam.
Check off each exam topic after you really understand how the command or feature
works. You’re ready to take the exam when you check off all the objectives on the
checklist!

Good luck and have fun!

Exam 1Z0-050 Readiness Checklist
OCP Official Objective Certification Objective Chapter Page

Installation and Upgrade Enhancements

Install Oracle Database 11g Installing Oracle Database 11g 1 3

Upgrade your database to Oracle Database 11g Upgrading to Oracle Database 11g 1 19

Oracle Direct NFS Direct NFS Client 8 473

Use online patching Hot Patching 8 462

Storage Enhancements

Set up ASM fast mirror resync ASM Fast Mirror Resync 5 265

Understand scalability and performance
enhancements

ASM Scalability and Performance
Enhancements

5 272

Set up ASM disk group attributes Changing ASM Disk Group
Attributes

5 279

Use various new manageability options New Manageability Options for
Commands

5 280

Use the md_backup, md_restore, and
ASMCMD extensions

Enhancements in ASMCMD 5 283

Intelligent Infrastructure Enhancements

Creating and using AWR baselines Enhancements in AWR Baselines 3 148

Setting AWR baseline metric thresholds Enhancements in AWR Baselines 3 148

Control automated maintenance tasks Controlling Automated
Maintenance Tasks

3 158

Using Database Resource Manager new
features

Database Resource Manager New
Features

3 167

Using new Scheduler features Using New Oracle Scheduler Features 3 173

Performance Enhancements

ADDM enhancements ADDM Enhancements 6 322

Set up automatic memory management Automatic Memory Management 6 328

Enhancements in statistics collection Enhancements in Optimizer
Statistics Collection

6 334

Partitioning and Storage-Related Enhancements

Implement the new partitioning methods Partitioning Enhancements 5 289

Employ data compression OLTP Table Compression 8 472

SQL Access Advisor overview SQL Access Advisor Enhancements 4 240

Exam 1Z0-050 Readiness Checklist xxi

xxii OCP Oracle Database 11g: New Features for Administrators Exam Guide

Exam 1Z0-050 Readiness Checklist
OCP Official Objective Certification Objective Chapter Page

Create SQL Access Advisor analysis session
using PL/SQL

SQL Access Advisor Enhancements 4 240

Using RMAN Enhancements

Managing archive logs Archived Redo Log Deletion Policy 7 403

Duplicating a database Active (Network-Based) Database
Duplication

7 384

Back up large files in multiple sections Parallel Backup and Restore of
Large Files

7 392

Perform archival backups Archival (Long-Term) Backups 7 394

Using Flashback and LogMiner

Overview of Flashback Data Archive Flashback Data Archive 7 413

Manage Flashback Data Archive Flashback Data Archive 7 413

Back-out transactions using Flashback
Transaction

Flashback Transaction Backout 7 427

Working with LogMiner Using LogMiner 8 476

Diagnosability Enhancements

Set up automatic diagnostic repository Automatic Diagnostic Repository 2 80

Use Support Workbench Support Workbench 2 96

Run health checks Health Monitor 2 105

Use SQL Repair Advisor SQL Repair Advisor 2 110

Database Replay

Overview of workload capture and replay Database Replay 1 33

Using workload capture and replay Database Replay 1 33

Using the Data Recovery Advisor

Overview of Data Recovery Advisor Data Recovery Advisor 2 115

Repairing data failures using Data Recovery
Advisor

Using RMAN to Manage the Data
Recovery Advisor

2 119

Perform proactive health check of the database Running a Health Check 2 106

Security: New Features

Configure the password file to use case-
sensitive passwords

Security Enhancements 3 185

Exam 1Z0-050 Readiness Checklist
OCP Official Objective Certification Objective Chapter Page

Encrypting a tablespace Encrypting Tablespaces 3 194

Configure fine-grained access to network
services

Security Enhancements 3 185

Oracle SecureFiles

Use Secure File LOBs to store documents with
compression, encryption, deduplication, caching

Creating SecureFiles 8 454

Use SQL and PL/SQL APIs to access
Securefile LOBs

Oracle SecureFiles 8 450

Miscellaneous New Features

Describe and use the enhanced online table
redefinition

Minimal Invalidation of Dependent
Objects

8 460

Enhanced finer-grained dependency
management

Minimal Invalidation of Dependent
Objects

8 460

Use enhanced DDL; apply the improved table
lock mechanism

Locking Enhancements 8 458

Create invisible indexes Invisible Indexes 8 463

Use Query Result Cache and PL/SQL Result
Cache

Result Cache 6 347

Adaptive cursor sharing Adaptive Cursor Sharing 6 362

Temporary tablespace enhancements Shrinking Temporary Tablespaces 8 465

SQL Performance Analyzer

Overview of SQL Performance Analyzer The SQL Performance Analyzer 1 51

Using SQL Performance Analyzer The SQL Performance Analyzer 1 51

SQL Plan Management

SQL plan baseline architecture SQL Plan Management 4 225

Set up SQL plan baseline SQL Plan Management 4 225

Using SQL plan baseline SQL Plan Management 4 225

Automatic SQL Tuning

Set up and modify automatic SQL tuning Automatic SQL Tuning Advisor 4 214

Interpret reports generated by Automatic
SQL Tuning

Automatic SQL Tuning Advisor 4 214

Exam 1Z0-050 Readiness Checklist xxiii

This page intentionally left blank

1
Installing, Upgrading,
and Change
Management

CERTIFICATION OBJECTIVES

 1.01 Installing Oracle Database 11g

 1.02 New Features in Database Creation

 1.03 Upgrading to Oracle Database 11g

 1.04 Real Application Testing

✓ Two-Minute Drill

Q&A Self Test

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

2 Chapter 1: Installing, Upgrading, and Change Management

This chapter reviews the new installation features of the Oracle server software for
Oracle Database 11g Release 1 (11.1). Although the installation process is essentially
the same as in the previous release, I review the important enhancements. Several

components are automatically installed now that were optional installations previously, and I’ll
review these components. The chapter then looks at changes in the database upgrade process. The
new installation features include changes in the server install options, new installable components,
and an enhanced optimal flexible architecture (OFA) for the flash recovery area and the datafiles.
Some old components aren’t available, and there are several new components that you can install
with the database server software.

Of course, one of the most important things you may be planning to do is to
upgrade your present database to the Oracle Database 11g release. This chapter will
describe changes in the manual upgrade method as well as in the Database Upgrade
Assistant (DBUA).

System changes, database version changes, and application upgrades often cause a
considerable amount of uncertainty in organizations. Oracle has made effective change
management a hallmark of the Oracle Database 11g release. Oracle provides an exciting
new feature called Real Application Testing, which contains two powerful solutions,
Database Replay and SQL Performance Analyzer. Together they can solve most of your
change management problems by letting you test database performance and SQL
query performance after a system change, including a database upgrade or an upgrade
to a new release of the database.

Following are the topics I discuss in this chapter:

■ Installing Oracle Database 11g

■ New features in database creation

■ Database upgrade new features

■ Real Application Testing

Please refer to the Oracle Database 11g documentation for complete details
on a particular feature. The main purpose of this book is to help you upgrade your
OCP certification from Oracle Database 10g to Oracle Database 11g. (The complete
name of the test required for upgrading your certification is “Oracle Database
11g: New Features for Administrators (Exam 1Z0-050).”) Unless a database feature
is completely new to Oracle Database 11g, I don’t attempt to fully explain it in
this book.

CERTIFICATION OBJECTIVE 1.01

Installing Oracle Database 11g
In this section, let’s review the important changes in the installation of the Oracle
Database 11g server software. These changes include changes in the optimal flexible
architecture (OFA), changes in the installation options, new database components
available during installation, and role and privilege changes. I’ll also take you
through an actual Oracle Database 11g server installation, to highlight the changes
in the installation procedures in the new release.

Changes in the Optimal Flexible Architecture
Oracle Database 11g includes changes in how you specify important Oracle
environmental variables such as the Oracle home and Oracle base, as well as
the location of the flash recovery area. Oracle Database 11g introduces the new
automatic diagnostic repository (ADR), which consolidates all database diagnostic
data. You must create a separate directory for the ADR. You’ll find a description of
the ADR later in this chapter, and Chapter 2 contains a thorough discussion of the
ADR as well as the new diagnostic framework introduced in this release.

In summary, the major changes made to the Oracle base to make it comply with
OFA are as follows:

■ ORACLE_BASE is a recommended environment variable and will be
mandatory in future releases.

■ You must not create an Oracle Clusterware home under the Oracle base.
During an Oracle Clusterware installation, the Oracle base and the Oracle
Clusterware home are at the same directory level.

■ Oracle recommends creating the flash recovery area and the datafiles under
the Oracle base.

■ Oracle recommends that you keep the flash recovery area and the datafiles on
separate disks.

Oracle Base Location The Oracle Installer now provides a list box for you to
select or edit the recommended Oracle base location. The Oracle base directory is
the starting point for the installation of Oracle software. The recommended path for

Installing Oracle Database 11g 3

4 Chapter 1: Installing, Upgrading, and Change Management

the Oracle base is /mount_point/app/oracle_software_owner. If the mount point is /u01
and the Oracle software owner is oracle, for example, the recommended Oracle base
location will be /u01/app/oracle.

The Oracle base environmental variable is only a recommended and not a
mandatory variable, but Oracle might make it a mandatory variable in a future
release. The Oracle home directory is where you install the Oracle binaries. The
Oracle Universal Installer will derive the Oracle home location from the Oracle
base location you choose.

Oracle recommends that you use the same Oracle base for multiple Oracle
homes created by a user.

Oracle logs the Oracle base location you provide during the installation in its
inventory. You can share a single Oracle base location among all the Oracle homes
you create on a server. If you don’t set an Oracle base location, you’ll see warnings in
the alert log.

Datafile and Flash Recovery Area Locations In Oracle Database 10g, by
default, the flash recovery area and the datafiles were placed one level above the
Oracle home directory. Depending on your storage and backup strategies, this posed
some problems in some installations. In Oracle Database 11g, the starting point for
both the flash recovery area and the datafiles is the Oracle base. Oracle recommends
that you place the flash recovery area on different disks from those you assign to the
datafiles. Assuming your Oracle base location is /u01/app/oracle, the datafiles and
the flash recovery area would have the following locations:

/u01/app/oracle/oradata
/u01/app/oracle/flash_recovery_area

In Oracle Database 11g, the Oracle Universal Installer tries to install
its inventory one level beneath the Oracle base ($ORACLE_BASE/..).
You must, therefore, ensure that the $ORACLE_BASE/.. directory is
writable by the user installing the Oracle software. Of course, if you
have installed Oracle software from an earlier release, the installer
will use the pre-existing Oracle inventory.

You’ll receive a warning from the Oracle Universal Installer if you try to place the
datafiles and the flash recovery area in the same location.

Automatic Diagnostic Repository
Oracle Database 11g offers a new automatic diagnostic repository (ADR), which
provides a single directory location for all the diagnostic data needed for diagnosing
and repairing database problems. The ADR uses standard methods to store diagnostic
data for the database as well as other Oracle products. Various automatic diagnostic
tools then use this diagnostic data to quickly diagnose and resolve problems. The
ADR also provides a consolidated location for the collection of all diagnostic data
you want to send to Oracle Support for diagnosing and resolving problems.

You specify the ADR directory location by providing the directory location as
the value for the diagnostic_dest initialization parameter. Using the ADR
isn’t mandatory, and specifying the diagnostic_dest parameter means that the
traditional diagnostic directories such as bdump, cdump, and udump are redundant.

The ADR contains several subdirectories such as alert and cdump, where the
traditional diagnostic data as well as new types of diagnostic data are stored. You
have two versions of the alert log in Oracle Database 11g, one a regular text file

and the other an XML-formatted file. You can
read the alert log using a normal text editor,
the Enterprise Manager, or the new ADRCI
tool, which lets you perform a variety of tasks
pertaining to problem diagnosis.

You must provide the Oracle Universal
Installer a directory location for the ADR base
if you want to use the ADR. The ADR base

is the root directory for the ADR, under which various “ADR homes” live. Oracle
recommends that you choose the same ADR base for all Oracle products in order to
consolidate diagnostic data.

The Oracle Universal Installer will set the ADR’s base directory to the Oracle
base location by default. You can set an alternate location for the ADR base directory
by setting a value for the diagnostic_dest initialization parameter. The default
ADR base directory is then of the form $ORACLE_BASE. Under this directory,
there is a directory named rdbms, which contains all diagnostic files for Oracle
databases on that server. In the rdbms directory, the diagnostic files for each database
are organized by the database name and instance name. For example, if the Oracle
base is /u01/app/oracle and the database name and the instance name are both orcl2,
the subdirectories such as alert and trace are located in the following directory:

/u01/app/oracle/diag/rdbms/orcl2/orcl2

Chapter 2 discusses the new fault diagnosability infrastructure in detail.

Understand the changes
made with regard to the ORACLE_BASE
environment variable to make it compliant
with the Oracle Flexible Architecture.

Installing Oracle Database 11g 5

6 Chapter 1: Installing, Upgrading, and Change Management

Changes in the Installation Options
Following are the important changes in the server installation options in Oracle
Database 11g.

■ The Oracle Configuration Manager, which gathers software configuration
information, is integrated with the Oracle Universal Installer as an optional
component. The Oracle Configuration Manager was previously called the
Customer Configuration Repository (CCR).

■ The Oracle Data Mining option is chosen by default when you install the
Enterprise Edition; the catproc.sql script that you run after creating a new
database will automatically install this option.

■ The Oracle XML DB option isn’t an optional component in the new release.
The Database Configuration Assistant will install and configure this option
for you. If you’re creating a database manually, the catproc.sql script will
create the XML DB automatically.

■ Oracle Database Vault is an optional component when you select the Custom
Installation option.

The following components aren’t part of the Oracle Database 11g installation
(but were part of the Oracle Database 10g release 2):

■ iSQL*Plus

■ Oracle Workflow

■ Oracle Enterprise Manager Java Console

■ Oracle Data Mining Scoring Engine

■ Raw storage support for datafiles (installer only)

The following features are deprecated, although they are retained for backward
compatibility:

■ Oracle Ultra Search

■ Java Development Kit (JDK) 1.4

■ CTXXPATH index

Oracle recommends that you migrate from the components listed here. For the
JDK, Oracle recommends using JDK 5.0. Instead of CTXXPATH index, Oracle
recommends using XMLIndex.

New Database Components
You have the following new components in Oracle Database 11g server installation,
some of which are optional; the others are automatically installed by the Oracle
Universal Installer:

■ Oracle Application Express (APEX) Oracle’s browser-based rapid
application development tool, known earlier as Oracle HTML DB, now
contains prepackaged applications for blogs, storefronts, and discussion
forums, in addition to new reporting capabilities and support for drag-and-
drop forms layout. APEX is now installed with Oracle database 11g as part
of the base Oracle installation CD instead of the companion CD.

■ Oracle SQL Developer Oracle’s free database development productivity
tool, SQL Developer, is installed automatically when you choose a template-
based database installation by selecting an installation option such as General
Purpose/Transaction Processing and Data Warehousing. SQL Developer
contains new tuning enhancements such as database activity reporting
and expanded support for version control and visual query building.

■ Oracle Real Application Testing This new component, which consists
of two new features—Database Replay and SQL Performance Analyzer—is
automatically installed when you select the Enterprise Edition installation
option.

■ Oracle Configuration Manager (OCM) This is an optional component.
The OCM gathers software configuration information and uploads it to the
Oracle configuration repository.

■ Oracle Warehouse Builder This tool is installed as part of the Oracle
Database server software.

■ Oracle Database Vault This tool is now installed with the Oracle Database
11g, but as an optional component, instead of as a component of the
companion CD. The Oracle Database Vault installation provides a baseline
security policy for the database. When you install the Oracle Database Vault,
all security-related initialization parameters are assigned default values.

Role and Privilege Changes
Oracle Database 11g seeks to demarcate database administration and ASM
administration. Oracle now recommends that you create an optional operating
system–level group for the users who’ll manage automatic storage management

Installing Oracle Database 11g 7

8 Chapter 1: Installing, Upgrading, and Change Management

(ASM). You can do this during the installation or later on. Oracle also recommends
that you assign a new ASM-related system privilege for ASM administrators. Even
if you are performing both regular DBA chores as well as the ASM tasks in your
organization, it may be a good idea to formally separate the two types of tasks, so
it’s easy to remember which environment you’re operating in.

Oracle Database 11g introduces the new operating system OS group named
OSASM, exclusively for users who’ll manage ASM. Oracle recommends that you
grant ASM access only to users who are members of the OSASM group.

There is also a new ASM-related system privilege called SYSASM, which Oracle
recommends that you grant to those users who perform ASM administrative tasks.
For example, a user who needs to create an ASM instance must have the SYSASM
privilege. This means that you must not assign the SYSDBA privileges for users who
perform only ASM-related tasks and not general database administration.

The OSASM operating system group and the SYSASM system privilege are purely
optional in this release. However, Oracle may make them mandatory in a future
release by requiring that users not belonging to the OSASM group be denied access
to ASM and by requiring ASM administrators to have the SYSASM system privilege.

An Oracle Database 11g Installation
There are no major innovations in the installation process itself in Oracle Database
11g, although there are a few changes during the installation, which I’ll point out
in this section. Whether you’re installing from the DVD or from the downloaded
Oracle software files, you’ll start the installation by executing the runInstaller script
as usual. To start the installation, invoke the Oracle Universal Installer by moving
to the directory where the runInstaller script is located and typing in the following:

$./runInstaller

If you’re installing from a DVD, invoke the Oracle Universal Installer by supplying
the full path for the database directory:

$ /<directory_path>/runInstaller

You’re ready to start the installation of the Oracle software once the Oracle
Universal Installer confirms that the server passes all the requirements regarding
space, operating system patches, and so on. Here are the steps in the installation
of Oracle Database 11g:

 1. On the Select Installation Method page, Select Advanced Installation and
click Next.

 2. On the Select Installation Type page, choose Enterprise Edition and
click Next.

 3. On the Install Location page, specify the path for the Oracle base and Oracle
home locations and click Next.

 4. On the Product-Specific Prerequisite Checks page, the Oracle Universal
Installer verifies that your system meets the minimum requirements for
installation. Click Next.

 5. On the Select Configuration Option page, choose Install Software Only and
click Next.

 6. On the Privileged Operating System Groups page, which is new in Oracle
Database 11g, Oracle prompts you to create the optional new system privilege
called SYSASM for managing ASM and the new UNIX/Linux group called
OSASM for ASM administrators. Figure 1-1 shows the Privileged Operating
System Groups page.

 FIGURE 1-1 The Privileged Operating System Groups page

Installing Oracle Database 11g 9

10 Chapter 1: Installing, Upgrading, and Change Management

 7. On the Summary page, click Next after reviewing the summary.

 8. On the Install page, once the installation completes successfully, exit the
Oracle Universal Installer by first clicking Exit and then clicking Yes.

If you choose to create a new database during installation itself by choosing
the Create a Database option in Step 5, you can select new Oracle Database 11g
features such as automatic memory management. You’ll also get to configure the
Oracle Configuration Manager if you choose to create a starter database during the
installation. Oracle Configuration Manager gathers configuration information so you
can link your Oracle Support service requests in MetaLink with the configuration
information. Chapter 2 shows how the Configuration Manager can facilitate the
transmission of configuration information to Oracle Support.

CERTIFICATION OBJECTIVE 1.02

New Features in Database Creation
There are some key changes in creating an Oracle database when you use the DBCA
to create the database. Whether you create a database with the DBCA or manually
by using the create database SQL statement, you must be aware of the
important new initialization parameters in Oracle Database 11g. I thus summarize
the key new initialization parameters before moving on to the new features in
database creation. I discuss all the important new initialization parameters in more
detail subsequently, in the relevant chapters.

Summary of New Initialization Parameters
None of the new parameters that I discuss here are mandatory, but you must use
most of them if you want to take advantage of the new features offered by the Oracle
Database 11g release. In Chapter 8, you learn about a new feature that lets you
create an initialization parameter file (init.ora) or server parameter file (SPFILE)
from the current values of the parameters in memory. In Oracle Database 11g,
the initialization parameters are listed in the alert log in such a way that you can
conveniently copy and paste them to create a new parameter file.

Your Oracle9i or Oracle Database 10g databases can run with the Oracle 11g software
(after upgrading, of course) without making significant changes to the initialization
parameters. You must set the value of the initialization parameter compatible to

at least 10.0.0 before the upgrade to the new oracle Database 11g release. The default
value for the compatible parameter is 11.1.0 and the maximum value is 11.1.0.n.n. The
following review of the important initialization parameters provides a quick overview,
and I discuss these in the relevant portions of the book in greater detail:

■ Two new memory-related parameters—memory_target and memory_
max_target—provide support for the new automatic memory management
feature, discussed in Chapter 6.

■ The plsql_code_type parameter lets you turn on PL/SQL native
compilation, as explained in Chapter 8.

■ The diagnostic_dest parameter lets you set the ADR base directory.
This parameter replaces the traditional background_dump_dest, user_
dump_dest, and core_dump_dest parameters. The diagnostic_dest
parameter’s value defaults to $ORACLE_BASE. The diagnostic_dest
parameter is recommended but not mandatory. If you do set this parameter, the
database will ignore any *_dump_dest parameters you may have set.

■ The result_cache_mode parameter supports result caching, a major
new feature. In addition to the result_cache_mode parameter, you
have other result cache–related initialization parameters, such as the
result_cache_max_result, result_cache_max_size, and
result_cache_remote_expiration parameters. The new parameters
client_result_cache_size and client_result_cache_lag
support the new client-side result caching feature. Both server-side and
client-side result caching are discussed in Chapter 4.

■ The ddl_time_lockout parameter enables you to control the duration
for which a DDL statement will wait for a DML lock. Chapter 8 describes the
new capability to control the length of time a DDL statement will wait for a
necessary DML lock.

■ The db_securefile parameter enables you to specify whether to treat a
LOB file as a traditional Oracle LOB or the new Oracle SecureFiles format.
Oracle SecureFiles is a new Oracle Database 11g feature that offers a more
efficient approach to storing file content such as images, audio, video, PDFs,
and spreadsheets. Chapter 8 discusses the Oracle SecureFiles feature.

■ The db_ultra_safe parameter enables you to control three corruption-
checking parameters—db_block_checking, db_block_checksum,
and db_lost_write_protect.

New Features in Database Creation 11

12 Chapter 1: Installing, Upgrading, and Change Management

■ The sec_case_sensitive_logon parameter lets you manage the
enabling and disabling of password case sensitivity in the database. By
default, Oracle Database 11g enforces password case sensitivity.

■ The parameter sec_max_failed_login_attempts enables you
to specify the maximum number of times a client can make a connection
attempt. Chapter 3 explains how to use the sec_max_failed_login_
attempts parameter.

■ The parameters optimizer_capture_sql_plan_baselines and
optimizer_use_sql_baselines support the SQL Plan Management
feature, which replaces the stored outlines feature. The parameter
optimizer_use_private_statistics enables you to create private
optimizer statistics. Another optimizer-related new initialization parameter,
optimizer_use_invisible_indexes, enables you to manage
invisible indexes, as discussed in Chapter 8.

■ The new parameter control_management_pack_access determines
which Server Manageability Pack can be active in the database. You can
choose to activate either or both of these management packs:

■ Diagnostic pack, which includes the AWR, ADDM, and other
 diagnostic tools.

■ Tuning pack, which includes the SQL Tuning Advisor, the SQL Access
 Advisor, and related tools.

You must have a license for the diagnostic pack in order to use the tuning pack.
The possible values for the control_management_pack_access parameter
are NONE, DIAGNOSTIC, and DIAGNOSTIC+TUNING. The last value is the
default value for this parameter.

DBCA Enhancements
The Database Configuration Assistant (DBCA) includes several enhancements in
Oracle Database 11g. I summarize the main changes to the DBCA in the following
sections.

New Database Configuration Options
Oracle Database 11g contains quite a few changes in configuring databases through the
DBCA. These include the configuration of the new automatic memory management
feature, secure database configuration by default, and others. Following is a review of
the important database configuration options in the new release.

Automatic Memory Management The DBCA doesn’t specify values for the
memory-related initialization parameters sga_target and pga_aggregate_
target by default. Instead, it uses the memory_target parameter, which
allows you to configure the new automatic memory management feature. You select
automatic memory management in the Memory Management page, as you’ll see
later in the DBCA database creation example.

Automatic Secure Configuration The DBCA will configure a secure database
by default in Oracle Database 11g. If you want, you can even configure this later on,
but Oracle recommends that you opt for automatic secure configuration when you
create the database.

Automatic switching to Grid Control In previous releases, it took quite a bit
of work to reconfigure a database from Database Control to Grid Control. In Oracle
Database 11g, you can use the Enterprise Manager plug-in provided by the DBCA to
automate the switching of a database from Database Control to Grid Control.

Configuration of Oracle Base and Diagnostic Destination
DBCA now uses the values for the Oracle base directory, stored in the Oracle home
inventory, to derive the default locations for datafiles and the diagnostic_dest
initialization parameter, which is the ADR base directory.

The initialization parameter diagnostic_dest replaces the traditional
parameters used for setting the background dump, user dump, and core dump
destinations.

Using the DBCA to Create a Database
There are a couple of new features to be aware of when using the DBCA to create an
Oracle Database 11g release database. The changes concern security settings and the
new automatic memory management feature.

Here are the steps to follow in order to create a new database with the DBCA.
I’ll emphasize the changes in the database creation process. First, invoke the DBCA
by typing in dbca after setting your environment variables to point to the Oracle
Database 11g binaries.

 1. On the DBCA Operations page, select the Create a Database option.

 2. On the Database Templates page, select one of the following database types:
Data Warehouse, General Purpose, or Transaction Processing.

New Features in Database Creation 13

14 Chapter 1: Installing, Upgrading, and Change Management

 3. On the Database Identification page, select the database name and the
system identifier (SID).

 4. On the Management Options page, select Database Control.

 5. On the Database Credential page, specify passwords for database accounts
such as SYS and SYSTEM.

 6. On the Security Settings page (shown in Figure 1-2), you must choose the
security settings for the database you’ll be creating. In Oracle Database 11g,
the DBCA provides secure database configuration by default. You have the
option of turning off this default security configuration if you want. The
secure database configuration applies to the following entities:

■ Audit settings

■ Password profiles

■ Revoking grants to the public role

 FIGURE 1-2 DBCA’s Security Settings page

 7. On the Network Configuration page, you are offered a choice of listeners
for the new database. Select the listener or listeners for which you want to
register the database. This is also new in Oracle Database 11g. Figure 1-3
shows the new Network Configuration page.

 8. On the Storage options page, select the storage mechanism you want to use
for the new database, such as automatic storage management or file system–
based storage.

 9. On the Database File Locations page, specify the Oracle software home and
the directory for the database files. You can also select the Oracle-Managed
Files (OMF) option.

 10. On the Recovery Configuration page, choose archivelog or noarchivelog
mode as well as the flash recovery area location.

 FIGURE 1-3 DBCA’s new Network Configuration page

New Features in Database Creation 15

16 Chapter 1: Installing, Upgrading, and Change Management

 11. On the Database Content page, specify the sample schemas and custom
scripts you want the DBCA to run after database creation.

 12. On the Initialization Parameters page (shown in Figure 1-4), you can either
accept the default settings for various initialization parameters such as
memory and character sets, or provide different values for the parameters.
You have a choice of three types of memory allocation—automatic memory
management (new in Oracle Database 11g), automatic shared memory
management, or manual memory management. Note that automatic memory
management is a new feature introduced in Oracle Database 11g, so this page
in DBCA is different from the one from previous releases. (This option has
been modified in Oracle Database 11g.)

 13. On the Database Storage page, make changes in the storage structure of the
database.

 14. On the Database Creation Options page, you can choose from three options:
Create Database, Save As a Database Template, or Generate Database
Creation Scripts. Select Create Database and click Finish; then click OK.

 FIGURE 1-4 DBCA’s new Initialization Parameters page

When you’re on the Security Setting page (Step 6), you don’t have to choose
the new Secure Configure option during the creation of the database, but Oracle
strongly recommends that you do so. Choosing the Secure Configure option at this
point means you choose to use the new default enhanced security settings for the
newly created database. If you disable the default security settings by checking the
Disable Security Settings box, you can always configure the Secure Configuration
option later on by using the DBCA again. If you disable the default enhanced security
settings, DBCA will create the database with the default security options for Oracle
Database 10g Release 2.

During the creation of a new database, Oracle recommends that you enable
the default security settings offered through the Security Settings window. These
default security settings mainly affect two areas of security: password and auditing.
Let’s examine how the default security settings regarding password management and
auditing work.

A profile, as you are aware, is a set of parameters that specifies a limit on a user’s
use of various types of resources in the database. A key resource in a user’s profile is
the password resource, and here are the password-specific default security settings
you can enable when you’re creating a new Oracle database, by configuring the
password settings in the default profile:

■ FAILED_LOGIN_ATTEMPTS Specifies the maximum number of times
a user can try to log in. The default value for this parameter is 10, which is
the same as in the previous release.

■ PASSWORD_GRACE_TIME Specifies the number of days within which
users must change their password before it expires. The default value for this
setting is 7 days, whereas it was unlimited before.

■ PASSWORD_LIFE_TIME Sets the duration for which users can use the
same password. This is set to 180 days by default, whereas it was unlimited
before.

■ PASSWORD_LOCK_TIME Sets the number of days for which an
account will remain locked after a set number of failed attempts to log in.
The default value is 1, compared to unlimited in the previous release.

■ PASSWORD_REUSE_MAX Sets the number of days that must pass
before you can reuse a password after it expires. The default value is set to
unlimited, the same value as before.

■ PASSWORD_REUSE_TIME Sets the number of new passwords you must
use before you are permitted to reuse the current password. By default, there
is no limit on the number of times you can reuse a password.

New Features in Database Creation 17

18 Chapter 1: Installing, Upgrading, and Change Management

If you don’t enable the default password-specific settings when you create the
database, you can always enable or modify the settings later on by using the
create profile or alter profile SQL statement.

Note that in Oracle Database 11g, the following resources are much more restricted:

■ PASSWORD_GRACE_TIME is now 7 days by default, instead of being
unlimited.

■ PASSWORD_LIFE_TIME is set by default to 180 days, instead of being
unlimited.

■ PASSWORD_LOCK_TIME is 1 day, instead of being set to the value of
DEFAULT as in the Oracle Database 10g release.

If you install Oracle Database Vault, you can’t change the Secure
Configuration option using DBCA.

If you choose to accept the default security settings, Oracle will set the audit_
trail initialization parameter to db and automatically audit security-relevant SQL
statements and privileges. The database will audit all privileges and statements by
access in a SQL statement. Here are some of the privileges the database will audit
by default when you choose the default security settings:

■ alter any procedure, alter any table, alter database

■ create any procedure, create any job, create external job, create public
database link, create user, create session

■ drop any table, drop user, drop any procedure

■ alter system, alter user, audit system, audit system by access, audit role
by access

■ grant any privilege, grant any role

Oracle strongly supports auditing by default, for security reasons as well to comply
with requirements specified by laws such as the Sarbanes-Oxley Act. Depending on the
types of applications your database supports, the audit-related default security settings
may not be appropriate for you. If this is true, simply choose the Oracle 10g Release 10.2
settings for auditing, which will disable the default auditing. Because the default audit
settings may impose a server performance overhead in some organizations, you may
have to decide if the default security settings are appropriate for you.

When you’re on the Initialization Parameters page, you can choose the type of
memory management for the new database you’re creating. The choice of Typical

means you don’t have to configure anything really. The DBCA will create a database
with minimal configuration or use the amounts of memory you input on this page.
Oracle believes that for the less experienced DBA, this option is plenty. If the DBA
enters a value in the PERCENTAGE field, Oracle will allocate the most efficient
amount of memory based as a percentage of the total available system memory.

Choosing the Custom option means you have to provide configuration values
for memory, but this also means that you can exert more control over how the
database uses the system memory. By selecting the Typical option, you can let Oracle
automatically tune both SCA and PGA with the new Oracle Database 11g memory
allocation method called automatic memory management. Oracle also
determines the memory to be allocated to the new instance, based on the amount
of memory available with the operating system.

Choosing the Custom option means that you get to select both the amount of
memory to allocate to the new instance, as well as the type of memory allocation,
which can be one of the following:

■ Automatic memory management (new in Oracle Database 11g)

■ Automatic shared memory management

■ Manual shared memory management

In order to choose automatic memory management, you must first select the
Typical option and then select the Use Automatic Memory Management option.
You can change the amount of memory allocated to Oracle later on by specifying
the new initialization parameters memory_target and memory_max_target.

CERTIFICATION OBJECTIVE 1.03

Upgrading to Oracle Database 11g
There are a few changes in the database upgrade process in Oracle Database 11g,
which I summarize in the following sections.

Moving Data as Part of the Upgrade
You can now move datafiles to ASM, OFS, SAN, and NAS during the upgrade to
the 11g release. You can not only avoid downtime, but also rebalance disks and move
datafiles to more efficient storage devices.

Upgrading to Oracle Database 11g 19

20 Chapter 1: Installing, Upgrading, and Change Management

New Privileges for Storage Management
Oracle Database 11g introduces a new system privilege called SYSASM, for
performing ASM administration tasks. Although you can still perform these tasks
using the SYSDBA system privilege, Oracle recommends that you use the new
SYSASM privilege instead for performing ASM-related tasks. Although using the
SYSASM privilege is optional, Oracle wants to separate database administration
and ASM administration, and intends to require the use of the SYSASM privilege
in future releases. The SYSASM privilege enables you to separate the SYSDBA
database administration privilege from the ASM storage administration privilege.

Oracle Database 11g also introduces a new optional operating system group called
OSASM, for the ASM administrators. You create the OSASM group in addition
to the normal dba and oper operating system groups before installing Oracle.
Again, creating and using the OSASM group is purely optional, but the OSASM
group will most likely be mandatory in a future release. You can grant a user access
to the SYSASM privilege by granting the user membership in the new OSASM
operating system group. When you install ASM, you can divide system privileges
so that DBAs, storage administrators, and database operators each have a distinct
operating system privilege group. The following are the different operating system
authentication groups for ASM and the privileges that the members of each group
are granted:

■ OSASM SYSASM privilege, which provides full administrative privileges
for administering an ASM instance.

■ OSDBA for ASM SYSDBA privilege on the ASM instance. The privilege
grants access to data stored on ASM as well as the SYSASM administrative
privileges.

■ OSOPER for ASM SYSOPER privilege on the ASM instance.

Regardless of whether you create separate operating system groups or provide
operating system authentication for all system privilege through a single group,
you must use the SYSASM privilege to manage an ASM instance. If you use the
SYSDBA privilege for managing an ASM instance, Oracle will place warnings in
the alert log. In future releases, Oracle plans to remove the ability to administer an
ASM instance with the SYSDBA privilege.

Upgrading to Oracle Database 11g
Oracle Database 11g uses similar pre-upgrade and post-upgrade scripts as the Oracle
Database 10g release. However, the pre-upgrade checks are more refined and there is

also simpler error management. The database upgrade process is, on the whole, faster
than in Oracle Database 10g.

Enhancements in the Upgrade Process
Oracle Database 11g provides the following enhancements to the database upgrade
process.

■ There are improvements to the Pre-Upgrade Information Tool in statistics
gathering, space estimation, initialization parameters, and warnings.

■ For both major releases and patch upgrades, use the catupgrd.sql script for the
upgrades and the catdwdgrd.sql script for downgrades.

■ The Post-Upgrade Status Tool collects and displays errors for each
component as it is being upgraded.

■ The DBUA automatically performs parallel object recompilation for multi-
CPU systems.

The Compatibility Factor
One of the things you must pay close attention to before upgrading your pre–Oracle
Database 11g databases is the database compatibility issue. If you don’t set a value for
the initialization parameter compatible, it defaults to 11.1.0. However, Oracle
recommends that you set the value of the compatible parameter to 10.0.0,
which is the minimum allowable for upgrading to Oracle Database 11g. The reason
for doing this is that in the unlikely event that your upgrade process is messed up,
your database still remains compatible with the previous release. Of course, you
must change the compatibility setting to 11.1 after the upgrade process completes
successfully, so you can take advantage of all the nice new features in the Oracle
Database 11g release. Once you set the compatibility level to 11.1 and restart the
database, you must be aware that you can’t downgrade to the older release. You must
restore the backups of the pre-upgrade database instead.

After you complete upgrading a database to the Oracle Database 11g release and
are thinking about changing the compatibility level to 11.1 (compatible=11.1.0,
for example), first back up the database. Then, make the following change to the
current SPFILE:

SQL> alter system set compatible ='11.1.0' scope=spfile;

Once you change the compatible parameter’s value to 11.1 or higher and restart
the database, you can’t go back to the older release without restoring the pre-upgrade
backup of the database.

Upgrading to Oracle Database 11g 21

22 Chapter 1: Installing, Upgrading, and Change Management

The Upgrade Path to Oracle 11g
Depending on your current database release, you may or may not be able to directly
upgrade to the Oracle Database 11g Release 1 (11.1) version. You can directly
upgrade to Oracle Database Release 1 if your current database is based on an Oracle
9.2.0.4 or newer release. For Oracle database releases older than Oracle 9.2.0.4, you
have to migrate via one or two intermediate releases, as shown by the following
upgrade paths:

■ 7.3.3 (or lower) => 7.3.4 => 9.2.0.8 => 11.1

■ 8.0.5 (or lower) => 8.0.6 => 9.2.0.8 => 11.1

■ 8.1.7 (or lower) => 8.1.7.4 => 9.2.0.8 => 11.1

■ 9.0.1.3 (or lower) => 9.0.1.4 => 9.2.0.8 => 11.1

■ 9.2.0.3 (or lower) => 9.2.0.8 => 11.1

For example, if you want to upgrade a database from the 8.1.6 release, the following
would be your game plan: upgrade release 8.1.6 to 8.1.7; upgrade 8.1.7 to release
9.2.0.8; upgrade release 9.2.0.8 to release 11.1

Upgrading to Oracle Database 11g
You can upgrade to Oracle Database 11g with the Oracle-provided upgrade scripts
or with the help of the DBUA. Of course, for smaller databases, you can also use the
Data Pump export and import utilities to migrate the database to the new release. As
far as the Oracle clients are concerned, you can upgrade an Oracle 8i, Oracle 9i, or
Oracle Database 10g client to the Oracle 11.1 release. You can use the Oracle 11.1
client to access an Oracle 8i, Oracle 9i, Oracle Database 10g, and Oracle Database
11g (11.1) database.

Let’s first look at the manual upgrade process using Oracle-supplied upgrade
scripts. Then, we’ll review the upgrade process using the DBUA.

Upgrading Using the Manual Method You use Oracle-supplied pre- and post-
upgrade scripts to upgrade to Oracle Database 11g. You can find all these scripts in
the $ORACLE_HOME/rdbms/admin directory. There is a different set of upgrade
scripts you must use, depending on the release number of the database you’re
upgrading from. In this example, I’m upgrading from an Oracle Database 10g release
database to Oracle Database 11g and would need to use the scripts utlu111i.sql,
catupgrd.sql,utilu111s.sql, catuppst.sql, and utlrp.sql to perform the manual upgrade.
Following is a summary of the functions performed by each of the upgrade scripts:

■ utlu111i.sql This script, also known as the Pre-Upgrade Information Tool,
gathers information from the database and analyzes it to make sure that it

meets all the upgrade requirements, such as whether the database already
contains the SYSAUX tablespace or not. As you know, a pre–Oracle Database
10g database doesn’t have a SYSAUX tablespace; therefore, the Pre-Upgrade
Information Tool would recommend that you create the SYSAUX tablespace
to meet the requirements for the upgrade. The Pre-Upgrade Information Tool
will issue warnings about potential upgrade issues such as database version
and compatibility, redo log size, initialization parameters, and tablespace
size estimates, and generates warnings if your database doesn’t satisfy the
requirements for upgrading to Oracle Database 11g.

■ catupgrd.sql This is the script that performs the actual upgrading of the
database to the Oracle Database 11g release and it now supports parallel
upgrades of the database.

■ utlu111s.sql This is the Upgrade Status Utility script which lets you
check the status of the upgrade—that is, whether the upgraded database’s
components have a valid status.

■ catuppst.sql This is the script you run to perform post-upgrade actions. This
is new in Oracle Database 11g Release 1.

■ utlrp.sql This script recompiles and revalidates any remaining application
objects.

Because our pre-upgrade database is newer than the Oracle 9.2.0.4 release, you
can directly upgrade to the Oracle Database release. Before you start the upgrade
itself, run the Pre-Upgrade Information Tool by executing the Oracle supplied script
utlu111i.sql. Copy the utlu111.i sql file from the $ORACLE_HOME/rdbms/admin
directory to a staging directory such as /u01/app/oracle/upgrade. Log in as the owner
of the Oracle home directory of the older release and run the utlu111.i sql script
(from the /u01/app/oracle/upgrade directory). Spool the results so you can review the
output. Here’s an example showing the output of an execution of the utlu111i.sql
script on my system:

SQL> spool upgrade.log
SQL> @utlu111i.sql
Oracle Database 11.1 Pre-Upgrade Information Tool
01-30-2008 05:33:22

Database:

--> name: ORCL10
--> version: 10.2.0.1.0
--> compatible: 10.2.0.1.0
--> blocksize: 8192
--> platform: Linux IA (32-bit)

Upgrading to Oracle Database 11g 23

24 Chapter 1: Installing, Upgrading, and Change Management

--> timezone file: V2
.

Tablespaces: [make adjustments in the current environment]

--> SYSTEM tablespace is adequate for the upgrade.
.... minimum required size: 723 MB
.... AUTOEXTEND additional space required: 243 MB
--> UNDOTBS1 tablespace is adequate for the upgrade.
.... minimum required size: 471 MB
.... AUTOEXTEND additional space required: 441 MB
--> SYSAUX tablespace is adequate for the upgrade.
.... minimum required size: 412 MB
.... AUTOEXTEND additional space required: 182 MB
--> TEMP tablespace is adequate for the upgrade.
.... minimum required size: 61 MB
.... AUTOEXTEND additional space required: 41 MB
--> EXAMPLE tablespace is adequate for the upgrade.
.... minimum required size: 69 MB
.

Update Parameters: [Update Oracle Database 11.1
init.ora or spfile]

WARNING: --> "sga_target" needs to be increased to at
least 336 MB
.

Renamed Parameters: [Update Oracle Database 11.1
 init.ora or spfile]

-- No renamed parameters found. No changes are required.
.

Obsolete/Deprecated Parameters: [Update Oracle Database
 11.1 init.ora or spfile]
**
--> "background_dump_dest" replaced by "diagnostic_dest"
--> "user_dump_dest" replaced by "diagnostic_dest"
--> "core_dump_dest" replaced by "diagnostic_dest"
.
**
Components: [The following database components will be
 upgraded or installed]
**
--> Oracle Catalog Views [upgrade] VALID
--> Oracle Packages and Types [upgrade] VALID

--> JServer JAVA Virtual Machine [upgrade] VALID
--> Oracle XDK for Java [upgrade] VALID
--> Oracle Workspace Manager [upgrade] VALID
--> OLAP Analytic Workspace [upgrade] VALID
--> OLAP Catalog [upgrade] VALID
--> EM Repository [upgrade] VALID
--> Oracle Text [upgrade] VALID
--> Oracle XML Database [upgrade] VALID
--> Oracle Java Packages [upgrade] VALID
--> Oracle interMedia [upgrade] VALID
--> Spatial [upgrade] VALID
--> Data Mining [upgrade] VALID
--> Expression Filter [upgrade] VALID
--> Rule Manager [upgrade] VALID
--> Oracle OLAP API [upgrade] VALID
.
**
Miscellaneous Warnings

WARNING: --> Database is using an old timezone file version.
.... Patch the 10.2.0.1.0 database to timezone file version 4
.... BEFORE upgrading the database. Re-run utlu111i.sql after
.... patching the database to record the new timezone file
version.
WARNING: --> Database contains stale optimizer statistics.
.... Refer to the 11g Upgrade Guide for instructions to update
.... statistics prior to upgrading the database.
.... Component Schemas with stale statistics:
.... SYS
.... OLAPSYS
.... SYSMAN
.... CTXSYS
.... XDB
WARNING: --> Database contains schemas with objects dependent
 on network packages.
.... Refer to the 11g Upgrade Guide for instructions to
 configure Network ACLs.
.... USER SYSMAN has dependent objects.
WARNING: --> EM Database Control Repository exists in the
database.
.... Direct downgrade of EM Database Control is not supported.
 Refer to the
.... 11g Upgrade Guide for instructions to save
 the EM data prior to upgrade.

PL/SQL procedure successfully completed.
SQL> spool off

Upgrading to Oracle Database 11g 25

26 Chapter 1: Installing, Upgrading, and Change Management

Make sure you have enough free space in the SYSTEM and SYSAUX tablespaces,
as these are likely to run out of space during the upgrade. In my case, the Upgrade
Information Utility shows that no changes are necessary before I can upgrade to the
Oracle Database 11g release. You may have to adjust the size of a tablespace or the
redo log files.

The Upgrade Information Utility may recommend the following:

■ Removing obsolete initialization parameters

■ Adjusting the values of some initialization parameters

■ Adding space to tablespaces such as SYSTEM and SYSAUX

Here are the prerequisite steps you must follow before upgrading a database to
Oracle Database 11g.

 1. Make sure you have enough free space in the SYSTEM and SYSAUX
tablespaces as these are two tablespaces that are likely to fill up during an
upgrade process. In this case, the Upgrade Information Utility didn’t raise
any red flags or issue any recommendations to fix things, so we merrily move
to the next step.

 2. Shut down the Oracle Database 10g release database (tenner in this
example) by issuing the shutdown immediate command. On a Windows
system, make sure you stop the Oracle Service either from the Control Panel
or by using the net stop command. Then, delete this service by invoking
the oradim utility. You must then create a brand-new Oracle Database 11g
instance (eleven in this example), again by using the oradim utility from
the new Oracle home for Oracle Database 11g.

 3. Back up the Oracle Database 10g release database, so you can revert to it if
things don’t go right during the upgrade.

 4. Make sure you set the value of the compatible initialization parameter to
10.0, the minimum allowable compatibility level.

 5. If you’re using a password file for the pre–Oracle Database 11g release
database, copy it to the new Oracle Database 11g directory.

 6. Point all relevant Oracle environment variables such as ORACLE_HOME,
PATH, and LD_LIBRARY_PATH to the new Oracle Database 11g release
1 (11.1) directories. Set the value of the ORACLE_SID variable to the new
database name (eleven).

And here are the actual upgrade steps:

 1. Log in as the Oracle software owner (oracle in this example) and start
SQL*Plus from the 11g $ORACLE_HOME/rdbms/admin directory, as
the user sys.

 2. Start the new database in the upgrade mode as shown here:

SQL> startup upgrade

 The startup upgrade command lets you start a database based on an
older Oracle Database release and automatically handles the setting of system
parameters that may potentially cause problems during the upgrade. The
command disables all system triggers and prepares the environment for the
database upgrade.

 If you’re upgrading from the Oracle 9.2 release, you must create a SYSAUX
tablespace at this point. Since I’m upgrading from a more recent release, I
already have the SYSAUX tablespace in the database that’s being upgraded.

 3. Start a spool file so you can review the upgrade process later:

SQL> spool upgrade.log

 You can review the spool file later on to find out details about any errors
during the upgrade.

 4. Start the upgrade process by executing the catupgrd.sql script, as shown here:

SQL> @catupgrd.sql

 5. The catupgrd.sql script upgrades the database to the Oracle Database 11g
release and shuts down the upgraded database once the upgrade is completed.
Restart the database in the normal mode.

SQL> startup

 The starting of the upgraded database ensures that the database is consistent
after the upgrade.

 6. Once the upgrade is completed, run the utl111s.sql script, also known as the
Post-Upgrade Status Tool, to confirm the validity of the upgrade.

SQL> @utlu111s.sql

Oracle Database 11.1 Upgrade Status Utility
01-30-2008 22:05:04
Component Status Version HH:MM:SS

Upgrading to Oracle Database 11g 27

28 Chapter 1: Installing, Upgrading, and Change Management

Oracle Server VALID 11.1.0.1.0 00:14:01
JServer JAVA Virtual Machine VALID 11.1.0.1.0 00:11:08
Oracle Workspace Manager VALID 11.1.0.1.0 00:00:40
OLAP Analytic Workspace VALID 11.1.0.0.0 00:00:25
OLAP Catalog . VALID 11.1.0.1.0 00:00:50
Oracle OLAP API VALID 11.1.0.1.0 00:00:31
Oracle Enterprise Manager VALID 11.1.0.1.0 00:08:06
Oracle XDK VALID 11.1.0.1.0 00:00:58
Oracle Text VALID 11.1.0.1.0 00:00:45
Oracle XML Database VALID 11.1.0.1.0 00:09:29
Oracle Database Java Packages VALID 11.1.0.1.0 00:01:00
Oracle interMedia VALID 11.1.0.1.0 00:16:11
Spatial VALID 11.1.0.1.0 00:04:43
Oracle Expression Filter VALID 11.1.0.1.0 00:00:13
Oracle Rules Manager VALID 11.1.0.1.0 00:00:11
.
Total Upgrade Time: 01:13:55
PL/SQL procedure successfully completed.
SQL>

 The utlu111s.sql script (Post-Upgrade Status Tool) shows that all database
components have been successfully upgraded, as indicated by a status of
VALID for each of the database components. If you see the status INVALID
for one or more components, the next step, where you run the utlrp.sql script,
may fix the problem. If that doesn’t work, rerun the catupgrd.sql script. You
can rerun the catupgrd.sql script multiple times if you see problems in the
Post-Upgrade Status Tool’s output.

 7. Run the post-upgrade actions, by executing the following script:

SQL> @catuppst.sql

 The catuppst.sql script is new in Oracle Database 11g. This is a post-upgrade
script that performs the remaining upgrade actions that don’t require the
database to be open in the upgrade mode. You can run it simultaneously
with the utlrp.sql, which I describe in the next upgrade step.

 8. Execute the utlrp.sql script to recompile the stored PL/SQL and Java code:

SQL> @utlrp.sql

 The utlrp.sql script is a wrapper that’s based on the UTL_RECOMP package
supplied by Oracle, which provides a more general recompilation interface.
By default, this script database invokes the utlrp.sql script with 0 degrees of
parallelism for the recompilation. The UTL_RECOMP package determines
the degree of parallelism for the utlrp.sql script based on the cpu_count

and the parallel_threads_per_cpu initialization parameters. Thus,
In Oracle Database 11g, the utlrp.sql script can take advantage of multiple
CPUs to speed up the recompilation of PL/SQL and Java code. This is an
enhancement provided in the Oracle Database 11g release.

 9. Verify that there aren’t any invalid objects in the upgraded database:

SQL> select count(*) from dba_invalid_objects;

You’ve now upgraded your Oracle database to the Oracle Database 11g release.
If you encounter problems during the upgrade process that you can’t overcome by
rerunning the catupgrd.sql script, you must revert to the pre-upgrade release by
restoring the backup of the database that you made earlier. To rerun the upgrade,
shut down the database and restart the database by issuing the startup upgrade
command. All the steps after this remain the same as the ones shown earlier.

Oracle Database 11g offers a new password case-sensitivity feature, which is
explained in detail in Chapter 3. In order to take advantage of this feature, you’ll
have to manually reset all user passwords upon upgrading to Oracle Database 11g.

You can check the current status of the user passwords by querying the DBA_
USERS view, as shown here:

SQL> select username, password, password_versions
 from dba_users;

USERNAME PASSWORD PASSWORD
------------------------- -------------- --------
MGMT_VIEW 10G 11G
SYS 10G 11G
SYSTEM 10G 11G
DBSNMP 10G 11G
RMAN 10G 11G
...

Note the new column PASSWORD_VERSIONS in the DBA_USERS view,
which denotes the case sensitivity of the password. The value 10G 11G for the
PASSWORD_VERSIONS column means that the user has been upgraded from
an Oracle Database 10g version database or is a new user created in an Oracle
Database 11g version database. In addition, notice that the PASSWORD column
isn’t populated, unlike in the previous releases. Of course, the passwords do exist,
but not even the encrypted versions are displayed any longer in the DBA_USERS
view. If you need to use the encrypted version of a user’s password, say to log in as a
particular user, you can get the encrypted password from the PASSWORD column
in the USER$ view.

Upgrading to Oracle Database 11g 29

30 Chapter 1: Installing, Upgrading, and Change Management

You can also check if any users in the upgraded database are using default
passwords, which creates a security loophole. Use the new view DBA_USERS_
WITH_DEFPWD to identify the users with default passwords. The view has a
single column, USERNAME:

SQL> desc dba_users_with_defpwd
 Name Null? Type
 ------------ --------- -------------
 USERNAME NOT NULL VARCHAR2(30)

The following query in the DBA_USERS_WITH_DEFPWD view shows that
there are several users with default passwords in the upgraded database:

SQL> select * from dba_users_with_defpwd;

USERNAME

DIP
MDSYS
RMAN
HR
SCOTT
...
SQL>

You must change the passwords of all the usernames that appear in the output of
the query shown here. Ideally, the query must return no rows.

Downgrading a Database You can easily downgrade a database back to the release
from which you upgraded it to the Oracle Database 11g release. Here are the steps:

 1. Shut down the database and start it up in the downgrade mode.

SQL> startup downgrade

 2. Spool the results of the downgrade script.

SQL> spool downgrade.log

 3. Execute the downgrade script, called catdwgrd.sql.

SQL> @catdwgrd.sql

 4. After the catdwgrd.sql script finished executing, shut down the database
cleanly.

SQL> shutdown immediate

 5. Start up the database in the upgrade mode, from the pre-upgrade ORACLE_
HOME environment.

SQL> startup upgrade

 6. Reload the old PL/SQL packages and data dictionary views.

SQL> @catrelod.sql

 7. After the reloading of the old packages and views, shut down the database
and restart it.

SQL> shutdown immediate
SQL> startup

 8. Run the utlrp.sql script to recompile any packages, procedures, and types that
became invalid during the downgrading of the database.

SQL> @utlrp.sql

This completes the downgrading process. You can run the utlrp.sql script multiple
times if necessary.

Upgrading with the DBUA The DBUA is essentially unchanged from the
Oracle Database 10g release. There are a couple of important changes which you’ll
see when we go through a manual upgrade process. You’ll have an additional screen
during the upgrade process, which asks you to specify a location for the diagnostic
directory. The DBA automatically starts when you choose to upgrade your database
during the installation of the Oracle Database 11g server software. Note that when
you use the manual upgrade method, you must upgrade an ASM instance separately,
whereas the DBUA lets you perform the ASM upgrade along with the upgrade of
the database instance.

EXERCISE 1-1

Scripts to Run for Upgrading a Database
Upgrade an Oracle Database 10g release database to the Oracle Database 11g release
using the Oracle-supplied scripts for upgrading a database.

The following are the steps you use in upgrading a database to the Oracle
Database 11g release:

■ utlu111i.sql The Pre-Upgrade Information tool

Upgrading to Oracle Database 11g 31

32 Chapter 1: Installing, Upgrading, and Change Management

■ catupgd.sql The script that performs the actual upgrade process

■ utlu111s.sql The Post-Upgrade Status tool

■ catuppst.sql The post-upgrade actions script

■ utlrp.sql The script you run at the end of the upgrade process, to recompile
all objects that were invalidated during the upgrade

While the DBUA offers less control over the individual upgrade steps when
compared to a manual upgrade process, it provides significant benefits by automating
the entire upgrade process. DBUA supports RAC installations and can automatically
fix the upgrade prerequisites. It reports errors found in the spooled upgrade log and
provides a complete HTML report of the upgrade process. You can also run the
DBUA from the command line (silent mode), which enables the automation of
the upgrade process across your organization.

CERTIFICATION OBJECTIVE 1.04

Real Application Testing
The Real Application testing feature, which consists of two separate tools, Database
Replay and the SQL Performance Analyzer, is arguably the most significant new
feature in the Oracle Database 11.1 release. The two new features address significant
unmet needs regarding change management. Organizations often find that upgrading
operating system or database server software or making major application changes is
fraught with considerable risk. There simply is no way to predict how a production
system is going to perform pursuant to major changes. Real Application Testing
addresses this need by letting you quickly and exhaustively test changes using Oracle’s
own tools instead of your having to resort to third-party tools that may not be able to
capture all the required changes.

A snapshot standby database is a database that you activate from a physical standby
database. You could create a snapshot standby databases in the previous release, but
the setting up of a snapshot standby database is simpler in Oracle Database 11g. You
can temporarily open a physical standby database for reporting and testing. In the
snapshot standby mode, a physical standby database continues to receive redo data
from the primary database. You can use the snapshot standby database for writes for
application testing and discard the writes after the testing completes. You can then
reconcile the standby database with the primary database by applying the necessary

redo logs. Because the standby database continues to receive redo logs from the
primary database, it provides data protection. Thus, the snapshot standby database
can function as the primary database as far as testing goes and act as a physical
standby database by continuing to receive the redo logs from the primary database.
You thus will need only a single copy of the database to provide both testing and
disaster recovery functions. Using a snapshot standby database facilitates the use
of both Database Replay and SQL Performance Analyzer.

The new Oracle-supplied packages DBMS_WORKLOAD_CAPTURE and
DBMS_WORKLOAD_REPLAY provide the APIs for the Database Replay feature.
The DBMS_SQLPA package supports the SQL Performance Analyzer feature.
The following sections first look at the Database Replay feature and then the SQL
Performance Analyzer.

Database Replay
System changes such as a database upgrade require substantial testing and validation
before you can actually migrate the changes to a production system. The trick is to
simulate a real production workload on a test system. The Database Replay feature
enables you to perform real-life testing of major changes by letting you capture the
actual database workload on the production system and replay it on a test system.
Thus, you essentially re-create the production workload effortlessly on a test system.
Database Replay performs a sophisticated replay of the production workload by
adhering to the original concurrency and timing characteristics. Once you complete
the testing, you can analyze and review the reports produced by Database Replay
to see if there was a performance divergence between the two runs and also if there
were any errors. Finally, you can choose to implement the recommendations made
by Database Replay to fix any problems it encountered during the replay of the
production workload.

Currently, the main problem in using third-party software to test systems and
application changes is the inability of those tools to test real-world production
workloads, thus causing many issues to go undetected during testing. Database
Replay changes the entire ballgame in terms of the implementation and testing of
system changes by making real workload testing a reality. Database Replay enables
you to capture production workload with true load, timing, and concurrency
characteristics. You move the workload that you capture to a test system before
making the changes you’re planning to the test system. You then replay the captured
workload with the exact production load, timing, and concurrency characteristics.
The production data is captured over an illustrative period such as a peak period.
The goal is to use a workload on the test system that’s indistinguishable from the
production workload.

Real Application Testing 33

34 Chapter 1: Installing, Upgrading, and Change Management

The drive to add the Database Replay functionality to the Oracle database came
from Oracle customers, who evinced keen interest in having change-assurance
functionality within the database itself instead of relying on trial-and-error methods
and inadequate third-party tools. Database Replay lets you quickly, and with great
confidence, test and implement system changes, with a much lower risk than ever
before. Database Replay is especially useful when you’re evaluating a move from a
single-instance system to an Oracle RAC (real application clusters) environment.
You can first capture the single instance workload and replay it on a test RAC system
to compare database performance. Another use for Database Replay is debugging
applications. You can record and replay sessions to make it easier to reproduce bugs.
Database Replay is also ideal to test manageability feature testing. You can test the
effectiveness and stability for control strategies through multiple replay iterations.

The Database Replay tool first records all workload that’s directed at the RDBMS.
It then exercises the RDBMS code during the replay in a way that’s similar to the
way the workload was exercised during the data capture phase. You achieve this by
re-creating all the external client requests to the RDBMS. The ultimate objective
is to replay the exact production workload as seen by the RDBMS, in the form of
requests made by various external clients.

You can employ Database Replay to test significant system changes such as the
following:

■ Operating system and database upgrades and migrations

■ Configuration changes such as moving to an oracle RAC environment

■ Storage changes

Database Replay captures all external requests made while the production
database is running, including SQL queries, PL/SQL blocks, limited PL/SQL remote
procedure calls, logins and logoffs, session switches, DML and DDL statements, and
OCI calls. It doesn’t capture background jobs and requests made by internal clients
such as the Enterprise Manager, for example. To be precise, Database Replay doesn’t
capture the following types of client requests:

■ SQL*Loader direct path load of data

■ Oracle Streams

■ Data Pump Import and Export

■ Advanced replication streams

■ Non–PL/SQL-based Advanced Queuing (AQ)

■ Flashback Database and Flashback queries

■ Distributed transactions and remote describe/commit operations

■ Shared server

■ Non–SQL-based object access

In an RAC environment, during the workload capture, the captured data is
written in each instance’s file system. The data is then consolidated into a
single directory for the preprocessing and replay stages.

Following are the steps you must follow to use Database replay to analyze
significant changes in your system:

 1. Capture the production workload.

 2. Preprocess the captured workload.

 3. Replay the workload.

 4. Analyze the replayed workload and create a report.

In the following sections, let’s review the key steps in using the Database Replay
feature. Oracle recommends that you use Enterprise Manager to work with the
Database Replay feature, but in this chapter, I show you how to use Oracle APIs
to perform a replay of a production workload.

Capturing the Production Workload
Database Replay captures all requests made to the database by external clients
in binary files called capture files. You can transport these capture files to another
system for testing after the workload is completed. The capture files contain
key information regarding client requests such as SQL queries, bind values, and
transaction details. Note that background activities and work performed by database
scheduler jobs aren’t part of the captured database workload. The workload that
Database Replay captures pertains strictly to calls made to the database by the
external clients. While the capture process imposes minimal performance overhead,
you must allocate the necessary space to store the workload recording.

You use procedures from the DBMS_WORKLOAD_CAPTURE package to
capture workload data. Before you can capture the workload, you must follow the
steps shown in the sections that follow.

Restart the Database Restarting the database, while not mandatory, ensures that
you won’t have needless data divergences as a result of in-progress or uncommitted
transactions when you start the workload capture. To avoid partial capture of
transactions and errors due to dependent transactions in the workload, restart the

Real Application Testing 35

36 Chapter 1: Installing, Upgrading, and Change Management

production database and start clean. This also ensures an authentic replay of the
workload later on as well as minimizes the chances for errors and data divergence
since the application data at the start of the capture and replay processes will match.
You can restore this database for the database replay later by using a physical restore
method to perform a point-in-time recovery, a logical restore of the application data,
or even a flashback or snapshot standby technique.

Restart the database in the restricted mode using the startup restrict
command, in order to prevent users from connecting and starting transactions before
you start the workload capture. Once you start the workload capture, the instance
automatically switches to the unrestricted mode, allowing normal user connections
to the database. If you’re dealing with an Oracle RAC environment, you must
first shut down all instances and restart one of the instances in the restricted mode
and start the workload capture. You can then restart the other instances after the
workload capture starts.

Define Workload Filters You can use optional workload filters to restrict the
workload capture to only a part of the actual production workload. For example,
you can use an exclusion filter to exclude Enterprise Manager sessions. You can use
inclusion filters to capture subsets of the actual production workload by specifying
user sessions to capture in the workload. All other activity will be ignored by
Database replay as a result. Note that you can use either an inclusion filter or
an exclusion filter during any workload capture, but not both.

The following example shows how to add a workload filter using the ADD_
FILTER procedure:

SQL> begin
 dbms_workload_capture.add_filter (
 fname => 'user_salapati',
 fattribute => 'USER',
 fvalue => 'salapati'
 end;
 /

In the ADD_FILTER procedure, the various parameters are defined as follows:

■ fname specifies the filter name.

■ fattribute specifies the filter attributes such as program, module,
action, service, instance_number, and user.

■ fvalue specifies the value of the attribute corresponding to the
fattribute parameter you choose. In my example, I chose user as
the fattribute parameter’s value. The fvalue attribute specifies the
particular username of the user (salapati) whose actions will be captured.

The ADD_FILTER procedure example shown here restricts the workload capture
to external calls made by a single user, salapati. Everything else that happens in the
database is completely ignored by Database Replay. You can remove a filter by using
the DELETE_FILTER procedure, as shown here:

SQL> begin
 dbms_workload_capture.delete_filter (fname =>
 'user_salapati');
 end;

Note that there is only a single required parameter for the DELETE_FILTER
procedure, fname, which provides the name of the filter. Use the DBA_
WORKLOAD_FILTERS view to see all the workload filters defined in a database.

Set Up a Capture Directory Make sure you set up a directory on your file
system that’s large enough to hold the results of the workload capture process. You
don’t have to create a new directory specifically for the workload capture because
you can use a preexisting directory path. Of course, the workload capture will stop if
there isn’t sufficient free space in the directory you allocate for the data capture. For
an Oracle RAC environment, you can use a shared file system or a separate physical
directory for each of the instances, but it’s easier to use the shared file system.

Capturing the Production Workload You can select the workload capture
period based on a representative peak period. Use the AWR (automatic workload
repository) or ASH tools to select the appropriate period based on the workload
history of the production database. Note that although you don’t have to restart
the database before beginning the workload capture, you increase the potential for
data divergence during the replay phase because of the possible existence of in-flight
transactions. To minimize data divergences, restart the database before you start the
data capture.

Because your goal is to collect the production workload during a time of
heavy usage, the additional overhead imposed by the workload capture
process would be minimal.

Start the workload capture by using the START_CAPTURE procedure, as
shown here:

SQL>begin
 dbms_workload_capture.start_capture (name => '2008Jan',
 dir => 'jan08',
 duration => 1200);
 end;

Real Application Testing 37

38 Chapter 1: Installing, Upgrading, and Change Management

The three parameters of the START_CAPTURE procedure stand for the following:

■ name stands for the name of the workload capture.

■ dir specifies the directory object pointing to the workload capture directory.

■ duration specifies the number of seconds for which the workload will be
captured.

Of the three parameters shown here, only the DIR parameter is mandatory. If
you don’t specify the DURATION parameter, the workload capture will continue
indefinitely, until you stop it with the FINISH_CAPTURE procedure, as shown here:

begin
 dbms_workload.capture.finish_capture ();
end;
/

Once the time specified by the duration parameter is reached, or when you
execute the FINISH_CAPTURE procedure, the workload capture is completed.
When you execute the FINISH_CAPTURE procedure, the workload capture stops
and the database closes the open workload datafiles. Use the DBA_WORKLOAD_
CAPTURES view to see all the workload captures performed by the database.

Preprocessing the Workload
Before you can replay the captured workload, you must first preprocess the captured
data. Preprocessing involves creating replay files that you can use to replay the
workload on a test system. However, you need to preprocess the captured workload
only once, no matter how many times you replay the workload. Any files that
were created by the database aren’t modified when you run the preprocessing step
multiple times. The database will create new files but not modify the older files.
Thus, if you run into any errors, you can run the preprocess step multiple times
without any problem.

You can preprocess the captured workload on the production system, a test
system, or even a different system as long as the database versions are the
same.

In order to preprocess the captured workload data, first move the captured workload
datafiles to the test system where you’re planning to preprocess it. You can perform
the resource-intensive step of preprocessing on the test server where you plan to
replay the workload or on a different server.

Use the PROCESS_CAPTURE procedure to preprocess the captured workload,
as shown here:

begin
dbms_workload_replay.process_capture (capture_dir => 2008jan');
end;

The capture_dir parameter refers to the directory where the database has
stored the captured workload. Preprocessing the data will produce the metadata for
the captured workload and transform the captured workload datafiles into replay
streams called replay files that you can now replay on the test system.

Making the System Change
Once you move the captured workload to the test system, it’s time to make the
system change, such as an upgrade to a new version of the database. After making
the system change you are interested in testing, you’ll replay the workload on the
test system to see what changes the upgrade has made to the performance and other
characteristics of the workload.

As mentioned earlier, the system change can be a database or server upgrade,
schema changes or hardware changes, or a migration to an Oracle RAC environment
from a single instance setup.

Replaying the Captured Workload
You replay the captured workload on a test system, which must be a duplicate of
the production system. You must ensure that the state of the application data on
the replay system is the same as the production system. You can do this by creating
a duplicate database on the test server, or use Data Pump import and export to
re-create the production database. You can also use a snapshot standby database
for this purpose

After preprocessing the data as shown in the previous section, there are several
steps you must follow in order to replay the captured workload on the test system. Of
course, performing these steps is a whole lot easier if you use the Enterprise Manager
instead of the Oracle APIs. In my example, I show how to do this using the APIs to
present the underlying process clearly.

Setting up the Test System Prepare the test database by first restoring it
from the backups that you made of the production system, so it reflects the same
application state as the production system. As mentioned earlier, you may choose
to use a point-in-time recovery, flashback, or import and export to restore the

Real Application Testing 39

40 Chapter 1: Installing, Upgrading, and Change Management

application data. Oracle also recommends that you reset the system time on the
test system to the time when you started the workload capture in order to avoid
encountering invalid data when processing time-sensitive data, as well as to avoid
a potential failure of any scheduled jobs. The key to a successful replay is to have
the application transactions access an identical version of the application data as
that on the system where you captured the initial workload.

Set up the replay directory where you’ll copy the captured production workload.
You must make sure there’s a directory object for the directory when you want
to store the captured workload. Start the test database in the restricted mode
to prevent an accidental modification of data during the workload replay. The
following sections describe the steps involved in replaying the captured workload.

Resolving External References Before the replay, resolve all external
references from the databases such as database links. If these links exist in the
captured workload, you must fully disable or reconfigure them so they are fully
functional in the test system. In addition to database links, external references
include objects such as directory objects, URLs, and external tables that point to
production systems. You’re likely to encounter unexpected problems if you replay
a workload with unresolved external references. Also, resolving the external
references would ensure that replaying the production workload won’t cause any
harm to your production environment. For example, an external reference such as
a database link may be referencing a production database, and you don’t want to do
this during the workload replay.

Set up the Replay Clients The replay driver is a special application that
consumes the captured workload by sending replay requests to the test database. The
replay driver consists of one or more replay clients that connect to the test system
and send requests to execute the captured workload. The replay driver thus replaces
the multiple external clients that interact with the production system with a single
external client in charge of all interaction with the RDBMS. The replay client in
essence simulates the production system on the test database by sending appropriate
requests that make the test system behave as if those requests came from the
external clients during the workload capture. The replay driver distributes the replay
workload streams among the multiple replay clients based on network bandwidth,
CPU, and memory capabilities.

 The replay client is a multi-threaded client, capable of driving multiple
workload sessions.The program is included in both the standard Oracle
Client as well as the Oracle Instant Client.

Ideally, you should install multiple replay clients on non-production servers. You
must ensure that each of the replay clients can access the directory that contains the
replay files,

Before starting the workload replay, the database will wait for the replay clients
to connect to it (the database). Each of the workload clients, which you start with
the wrc executable from the command line, submits a session’s workload. It’s the
replay client that actually connects to the database and drives the replay. First make
sure you’ve moved the preprocessed workload files to the replay directory and that
the replay clients can access that directory. Also check to ensure that the replay user
has the correct credentials to connect to the database. Once you make these checks,
you’re ready to start the replay clients.

The wrc executable, which you execute from the command line, has the
following syntax.

$ wrc [user/password[$server]] mode=[value] [keyword=[value]]

The server parameter refers to the server where you installed the wrc executable.
The mode parameter specifies the mode in which you run the wrc executable. You can
run the wrc executable in three modes: REPLAY, CALIBRATE, and LIST_HOSTS.
The parameter keyword enables you to specify options for the execution, depending
on the mode you select. You can display all the keywords and their possible values by
typing in wrc at the operating system level, as shown here:

$ wrc
Workload Replay Client: Release 11.1.0.6.0 - Production on Sat
Feb 09 1:45:01 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
FORMAT:
=======
 wrc [user/password[@server]] [MODE=mode-value] KEYWORD=value
Example:
========
 wrc REPLAYDIR=.
 wrc scott/tiger@myserver REPLAYDIR=.
 wrc MODE=calibrate REPLAYDIR=./capture
 The default privileged user is: SYSTEM

Mode:
=====
wrc can work in different modes to provide additional
functionalities.
The default MODE is REPLAY.

Real Application Testing 41

42 Chapter 1: Installing, Upgrading, and Change Management

Mode Description
--
REPLAY Default mode that replays the workload in REPLAYDIR
CALIBRATE Estimate the number of replay clients and CPUs
 needed to replay the workload in REPLAYDIR.
LIST_HOSTS List all the hosts that participated in the capture
 or replay.

Options (listed by mode):
=========================
MODE=REPLAY (default)

Keyword Description
--
USERID username (Default: SYSTEM)
PASSWORD password (Default: default password of SYSTEM)
SERVER server connection identifier (Default: empty string)
REPLAYDIR replay directory (Default:.)
WORKDIR work directory (Default:.)
DEBUG FILES, STDOUT, NONE (Default: NONE)
 FILES (write debug data to files at WORKDIR)
 STDOUT (print debug data to stdout)
 BOTH (print to both files and stdout)
 NONE (no debug data)
CONNECTION_OVERRIDE TRUE, FALSE (Default: FALSE)
 TRUE All replay threads connect using SERVER,
 settings in DBA_WORKLOAD_CONNECTION_MAP
 will be ignored!
 FALSE Use settings from DBA_WORKLOAD_CONNECTION_MAP
SERIALIZE_CONNECTS TRUE, FALSE (Default: FALSE)
 TRUE All the replay threads will connect to
 the database in a serial fashion one after
 another. This setting is recommended when
 the replay clients use the bequeath protocol
 to communicate to the database server.
 FALSE Replay threads will connect to the database
 in a concurrent fashion mimicking the
 original capture behavior.
MODE=CALIBRATE
,,,
MODE=LIST_HOSTS
...
$

By default, the wrc executable mode is set to run in the REPLAY mode, but it’s
better to run it first in the CALIBRATE mode to get an estimate of the number

of replay clients and hosts you’ll need to replay the captured workload on the test
system. The number of replay clients you’ll need will depend on the number of user
sessions you need to replay in the captured workload. If you need multiple hosts
because of a large number of usr sessions, you must install the wrc executable on
each of the hosts.

You must open a new terminal window to start the wrc replay clients. You can
start multiple clients if you want, each of which will initiate one or more replay
threads with the database. Each of these replay threads represents a single stream
from the workload capture. Here’s the general syntax for starting the wrc replay
clients:

$ wrc userid=<user id> password=<password>
server=<server connection string>
Replaydir=<replay directory>
Workdir=<client work directory>

Before you can start the replay client, you must ensure that the replay client
software is installed on the hosts, and the client can access the replay directory
where you’ve stored the workload replay files. The replay user must be able to use
the workload replay.

Running the wrc executable in the LIST_HOSTS mode displays the hosts that
are part of the workload capture and workload replay, as shown in this example:

$ wrc mode=list_hosts replay_dir=./replay

Note that the host or hosts involved in capturing the workload as well as the
hosts involved in the replay of the workload are displayed.

The following example shows how to start the wrc executable in the
CALIBRATE mode:

$ wrc system/<system_passwordd> mode=calibrate
 replay_dir=./test_dir

In the example shown here, only the mode and the replay_dir parameters
are specified. The mode parameter is the only required parameter. If you don’t
specify the replay_dir parameter, the replay directory will default to the current
directory. In addition to these parameters, you can also specify the following optional
parameters:

■ process_per_cpu specifies the maximum number for client processes per
CPU and its default value is 4.

■ The threads_per_process parameter specifies the maximum number
of threads in a single wrc client process and its default value is 50.

Real Application Testing 43

44 Chapter 1: Installing, Upgrading, and Change Management

After the CALIBRATE mode execution enables you to determine the number
of hosts and wrc clients necessary for the replay, execute the wrc in the REPLAY
mode, as shown here:

$ wrc system/<system_password> mode=replay replay_dir=./test_dir

When you execute the wrc in the REPLAY mode, you can specify the following
parameters:

■ userid and password are optional parameters used to specify the credentials
of the replay user for the replay client. The default values for this parameter are
the credentials of the user SYSTEM.

■ server specifies the connection string to connect to the replay system; it
defaults to an empty string.

■ replay_dir specifies the directory containing the preprocessed workload;
it defaults to the current directory.

■ work_dir specifies the directory where the replay client logs are stored; it
defaults to the current directory.

■ debug is an optional parameter, with a default value of none. Possible values
are files, stdout, and both (debug data written to both files and stdout).

■ connection_override specifies whether wrc must override the
connection mapping stored in the DBA_WORKLOAD_CONNECTION_
MAP view. The default value of this parameter is FALSE, meaning all replay
threads will use the connection mappings in the DBA_WORKLOAD_
CONNECTION_MAP view to connect.

The database version of the system where you replay the workload must
match the version of the database where you captured the workload.

The following steps show how to initialize the replay data, remap external
connections used in the workload capture process, and start and stop a workload
replay, all by using the new DBMS_WORKLOAD_REPLAY package.

Initializing the Replay Data Use the INITIALIZE_REPLAY procedure to
initialize the data, which loads the metadata into tables required by the workload
replay process.

SQL> exec dbms_workload_replay.initialize_replay(replay_name =>
 'test_replay',replay_dir => 'test_dir');

The replay_name parameter specifies the replay name, and the replay_dir
parameter specifies the directory containing the captured workload. Among other
things, the initialization process will load captured connection strings so they can be
remapped for the database replay.

Remapping External Connections You can use the DBA_WORKLOAD_
CONNECTION_MAP view to check the external connection mappings made
by database users during the workload capture. You must remap the external
connections so the individual user sessions can connect to all the external databases.
Use the REMAP_CONNECTION procedure to remap external connections. On a
single-instance system, the capture and replay system connection strings are mapped
one-to-one.

The following example shows how to remap external connections:

SQL> exec dbms_workload_replay.remap_connection (connection_id =>
 111,replay_connection => 'prod1:1522/testdb');

In the REMAP_CONNECTION procedure, the connection_id parameter
shows the connection from the workload capture, and the optional replay_
connection parameter specifies the new connection string you want to use during
the workload replay. If the replay_connection parameter’s value is set to its
default value of null, all replay sessions will connect to the default host. When
dealing with an Oracle RAC environment, you can map all the connection strings
to a single load balancing connection string.

Setting Workload Options After initializing the replay data and remapping
necessary external connections, you must set various workload replay options. You
can specify the following four options while replaying the production workload.

■ synchronization By default, the value for this parameter is TRUE,
meaning that the commit order of the captured workload will be preserved
during the workload replay. Replay actions execute only after all the dependent
commit actions are completed successfully. This leads to the elimination of
data divergence that results when commit order is not followed correctly
among dependent transactions. If the captured workload consists primarily of
independent transactions, you can set the value of the synchronization
parameter to FALSE because you aren’t worried about data divergence in this
case. Synchronized commit-based replay ensures minimal data divergence
when compared with unsynchronized replay. Unsynchronized replay is useful
for load or stress testing where you don’t have to adhere to the original commit
ordering. Unsynchronized replay leads to high data divergence.

Real Application Testing 45

46 Chapter 1: Installing, Upgrading, and Change Management

Synchronized replay, which is commit-based, ensures minimal data divergence.

■ connect_time_scale This is an optional parameter. Use the
connect_time_scale parameter to calibrate the time between the
beginning of the workload capture and the time when a session connects
with the specified value. This parameter enables you to adjust the number
of concurrent users during the workload replay. The default value for this
parameter is 100.

■ think_time_scale An optional parameter that lets you calibrate the
speed at which you send user calls to the database. The parameter scales the
elapsed time between user calls from the same session. The default value for
this parameter is 100. If you set this value to 0, you’ll send client requests to
the database in the fastest time possible.

Note the difference between how elapsed time is computed during a workload
capture and a workload replay. During a workload capture, elapsed time is
the sum of two components: user time and user think time. User time is the
time it takes to make a user call to the database, and user think time is the
time the user waits between calls. Workload replay includes three components:
user time, user think time, and synchronization time.

■ think_time_auto_correct Also an optional parameter that
automatically corrects the think time set by the think_time_scale
parameter. By default, this parameter is set to FALSE, meaning there’s no
automatic adjustment of the think time. When you set it to TRUE, the
database will automatically reduce the value set for the think_time_
scale parameter if the replay is progressing slower than the data capture.
If the replay is going faster than the data capture, it’ll automatically increase
the think time.

Preparing the Workload for Replay To prepare the workload to replay
the test system, first prepare the workload by executing the PREPARE_REPLAY
procedure, as shown here:

SQL> dbms_workload_replay.prepare_replay (replay_name =>
 'replay1',replay_dir => 'test_dir',
 synchronization= FALSE);

In this example, the synchronization parameter is set to FALSE
(default value is TRUE). This means that the commit order of transactions in the

captured workload may not be preserved during the workload replay. This is a
good strategy if you believe that the workload is composed mostly of independent
transactions, which means the commit order need not be preserved by setting the
synchronization parameter to TRUE.

EXERCISE 1-2

Procedure for Capturing and Replaying a Database Workload
Summarize the steps involved in capturing and replaying a database workload when
you’re using the Database Replay feature.

Following is the sequence of steps you must follow when using Database Replay to
capture and replay a database workload:

 1. Start the workload capture using the DBMS_WORKLOAD_REPLAY.
START_CAPTURE procedure.

 2. Process the captured workload using the DBMS_WORKLOAD_REPLAY.
PROCESS_CAPTURE procedure.

 3. Prepare the workload for replay using the DBMS_WORKLOAD_REPLAY.
PREPARE_REPLAY procedure.

 4. Remap the captured external connections using the DBMS_WORKLOAD_
REPLAY.REMAP_CONNECTIONS procedure.

 5. Start the database reply using the DBMS_WORKLOAD_REPLAY.START_
REPLAY procedure.

Starting the Workload Replay After initializing the preprocessed data and
setting up the replay clients, you are finally ready to replay the captured workload on
the test system. You must start a minimum of one wrc client before you can start the
workload replay. Use the START_REPLAY procedure to begin the workload replay
on the test system:

SQL> exec dbms_workload_replay.start_replay();

Use the CANCEL_REPLAY procedure to stop the workload replay, as shown here:

SQL> exec dbms_workload_replay.cancel_replay();

Executing the CANCEL_REPLAY procedure results in a direction to the wrc
clients to stop submitting new workload for replay.

Real Application Testing 47

48 Chapter 1: Installing, Upgrading, and Change Management

The database automatically exports all AWR snapshots corresponding to the
replay period at the end of the workload replay process. You can also manually
export them by executing the EXPORT_AWR procedure if the automatic export of
the AWR fails for some reason. Once you export the AWR snapshots to the replay
system, you must import them into the AWR schema by executing the IMPORT_
AWR procedure.

Analyzing Workload Capture and Replay
After the workload replay process is completed, you must analyze the data replay
by creating a workload replay report. This will enable you to check the data and
performance differences between the captured workload and the replayed workload. In
addition, you can examine any errors that were generated during the workload replay
process. Use the REPORT function to generate a workload replay report.

declare
 cap_id number;
 rep_id number;
 rep_rpt clob;
begin
 cap_id := dbms_workload_replay.get_replay_info (dir =>
 'testdir');
 select max(id) into rep_id
 from dba_workload_replays
 where capture_id = cap_id;
 rep_rpt := dbms_workload_replay.report(replay_id
 => rep_id,
 format => dbms_workload_replay.type_text);
end;
/

The GET_REPLAY_INFO function provides a history of the workload capture
in the specified replay directory (testdir). The REPORT function generates a
workload replay report. The DBA_WORKLOAD_REPLAYS view will contain the
history of the replays as well. You can specify text, HTML, or XML as the value for
the REPLAY_TYPE parameter. Here’s a typical report produced by the REPORT
function:

Error Data
(% of total captured actions)
New errors:
 12.3%
Not reproduced old errors: 1.0%
Mutated errors:

 2.0%
Data Divergence

Percentage of row count diffs:
 7.0%
Average magnitude of difference (% of captured):
4.0%
Percentage of diffs because of error (% of diffs):
20.0%
Result checksums were generated for 10% of all
actions(% of checksums)
Percentage of failed checksums:
0.0%
Percentage of failed checksums on same row count:
0.0%
Replay Specific Performance Metrics
Total time deficit (-)/speed up (+):
-32 min
Total time of synchronization:
44 min
Average elapsed time difference of calls:
0.1 sec
Total synchronization events:
3675119064

Following are the key types of information you must focus on in order to judge the
performance on the test system:

■ Pay special attention to the divergence of the replay from the captured
workload performance. If an online divergence reveals serious divergence,
you can stop the replay. Alternatively, you can use offline divergence
reporting at the end of the replay to determine how successful the replay was.
Your goal is to minimize all types of negative record-and-replay divergence.
Data divergence is shown by the differences in the number of rows returned
by queries in response to identical SQL statements. Data divergences merit
your utmost scrutiny. Data divergences can be any one of the following:

■ Smaller or larger results sets

■ Updates to a database state

■ A return code or an error code

■ Errors generated during the workload replay.

■ Performance deviations between workload capture and workload replay. You
can see how long the replay took to perform the same amount of work as

Real Application Testing 49

50 Chapter 1: Installing, Upgrading, and Change Management

the captured workload. If the workload replay takes longer than workload
capture, it’s a cause for concern and you must investigate this further.

■ Performance statistics captured by AWR reports. You can also use ADDM
to measure the performance difference between the workload capture system
and the replay system.

You must investigate any of the data divergences listed in order to reduce the
divergence between recording and replaying the database workload. Any of the
following workload characteristics will increase data or error divergence between
capture and replay of the workload:

■ Implicit session dependencies due to things such as the use of the DBMS_
PIPE package

■ Multiple commits within PL/SQL

■ User locks

■ Using non-repeatable functions

■ Any external interaction with URLs or database links

In addition to data divergences, you can also have time divergences between the
capture and replay systems.

The following data dictionary views help you manage the Database Replay feature:

■ DBA_WORKLOAD_CAPTURES shows all workload captures you
performed in a database.

■ DBA_WORKLOAD_FILTERS shows all workload filters you defined in a
database.

■ DBA_WORKLOAD_REPLAYS shows all workload replays you performed
in a database.

■ DBA_WORKLOAD_REPLAY_DIVERGENCE helps monitor workload
divergence.

■ DBA_WORKLOAD_THREAD helps monitor the status of external replay
clients.

■ DBA_WORKLOAD_CONNECTION_MAP shows all connection strings
used by workload replays.

In addition to the data dictionary views listed here, the dynamic view
V$WORKLOAD_REPLAY_THREAD enables you to monitor the status
of all external replay clients.

One of the biggest advantages of Database Replay is that it can test virtually 100
percent of an actual Oracle database workload, as compared to a third-party tool
such as LoadRunner, which can only simulate workload that’s about 10 percent of
the actual workload. Database Replay, since it’s engineered to work as an integral
part of the Oracle database, executes much faster, completing its analysis long before
the other tools can.

The SQL Performance Analyzer
The Database Replay feature provides the capability to test the performance of the
workload in a database. Although you can use filters to restrict the workload, you
can’t use Database Replay to focus on SQL performance changes. SQL Performance
Analyzer, which, along with the Database Replay constitutes the Total Replay
feature, lets you test the impact of potential changes such as a server or database
upgrade on SQL workload response time. The SQL Performance Analyzer focuses
on comparing the performance of a specific SQL workload before and after a major
system change. The analyzer does this by building two versions of the SQL workload
performance, which includes both the SQL execution plans as well as their execution
statistics. After analyzing SQL performance both before and after you make a major
change, the SQL Performance Analyzer provides suggestions to prevent potential
performance degradation of SQL statements. This is especially handy when you’re
planning an upgrade of your database to a newer release of the Oracle database. The
SQL Performance Analyzer, by enabling you to compare SQL performance on two
systems running on different versions of the Oracle database, lets you know ahead of
the upgrade which of the SQL statements may show a deterioration in performance.
Thus, you can reengineer those statements prior to the actual upgrade.

The SQL Performance Analyzer executes SQL in a serial fashion and ignores
concurrency.

If the analysis of the SQL Performance Analyzer shows a potential performance
degradation following a system change such as a database upgrade, you can arrange
to preserve the original SQL execution plans using the SQL Plan Management
feature or by using the SQL Tuning Advisor to tune the regressed SQL statements.

You can use the SQL Performance Analyzer to predict performance changes
resulting from the following system changes:

■ Database and application upgrades

■ Hardware upgrades

■ Operating system upgrades

Real Application Testing 51

52 Chapter 1: Installing, Upgrading, and Change Management

■ Initialization parameter changes

■ SQL tuning actions such as the creation of SQL profiles

■ Statistics gathering

■ Schema changes

For example, to test an initialization parameter change, you create a SQL
Performance Analyzer task and perform an initial trial run with the initialization
parameter set to the original value. You execute the SQL Performance Analyzer task
a second time with the parameter set to the new value. You then compare the results
of the two runs to compare the performance. You can run the SQL Performance
Analyzer on the production system whose performance you’re analyzing, or use a test
system. If you’re using a test system, make sure it’s configured in a similar way as your
production system, with an identical database version and initialization parameters.
It’s probably a good idea to use a test system to avoid additional overhead on your
production database. Once you capture the SQL workload on the production system,
you can import it to the test system and run the SQL Performance Analyzer on the
test system—to compare a pre- and post-upgrade performance, for example.

In the following example, you learn how to predict SQL performance changes
following an upgrade from the Oracle Database 10.2 release to the Oracle Database
11.1 release, with the help of the SQL Performance Analyzer. Although Oracle
recommends that you use the Enterprise Manager to run the SQL Performance
Analyzer, I show you how to run the tool using the new Oracle-supplied PL/SQL
package, called DBMS_SQLPA, which offers a task-oriented interface for using the
SQL Performance Analyzer. Using the DBMS_SQLPA package, you can build and
compare two versions of workload performance—one before the change and one
after the change—and compare the differences between the two versions and easily
trap the SQL statements that are adversely affected by the system change.

In addition to the new DBMS_SQLPA package, you can also use several
procedures in the DBMS_SQLTUNE package to create the SQL Tuning Set that
you need to capture the SQL workload and conduct a performance analysis.

Running the SQL Performance Analyzer on the production database requires
additional resource usage but gives you the most representative results.
However, if performance is a concern, use a test system to run the analysis.

You use a SQL Tuning Set (STS) to capture the SQL workload on the production
system. The STS includes the SQL text, bind variables, as well as information
relating to the execution environment, execution plans, and execution statistics of
one or more SQL statements. You export the STS from the production system to the

test system to provide the SQL workload input to the SQL Performance Analyzer.
Because the STS is a persistent database object, you can modify the STS as you want
and even select data from the STS as you would from a table. You can use an STS’s
filtering capability to weed out any undesirable SQL.

You can use one of the following sources to load statements into an STS:

■ Automatic workload repository (AWR) snapshots

■ AWR baselines

■ A cursor cache

■ Another STS

You can either collect all the SQL statements at once or over a period of time.
The SQL Performance Analyzer, which is primarily designed to predict the impact
of major system changes on the SQL workload response time, does the following
things when analyzing the SQL workload performance:

■ Builds different versions of SQL workload performance

■ Executes SQL serially without respecting concurrency characteristics

■ Analyzes performance differences including the response time of the before-
and after-change SQL workloads

■ Uses the SQL Tuning Advisor to tune regressed SQL statements

Following is the workflow involved in using the SQL Performance Analyzer:

Note the characteristics
of how the SQL Performance Analyzer
analyzes the SQL workload. For example,

the tool executes SQL statements serially,
disregarding concurrency.

 1. Capture the pre-change SQL workload performance. Use the SQL Performance
Analyzer to capture the SQL workload in an STS that you create beforehand.
You may also use the AWR instead to capture the top SQL statements in
order to provide a complete SQL workload capture. You transport the SQL
workload to a test system for analysis.

 2. Analyze the pre-change SQL workload performance. The performance data
includes execution plans and execution statistics for metrics such as elapsed
time and disk reads.

Real Application Testing 53

54 Chapter 1: Installing, Upgrading, and Change Management

 3. Make the system changes. Once you capture the pre-change SQL workload
from the production system, make the necessary changes on the test system.
For example, if you want to test the impact of an upgrade to a new version of
the database, install the new Oracle release software on the test system and
upgrade a copy of the production database to the new release.

 4. Capture the post-change SQL workload performance. Use the SQL Performance
Analyzer to capture the workload, this time on the post-change test system.

 5. Analyze the post-change SQL workload performance. Examine the execution
plans and execution statistics for the same metrics you examined before you
made the system change.

 6. Compare and analyze the SQL performance. Use the SQL Performance
Analyzer to compare the SQL performance in the production system and
the post-change test system in order to identify changes in SQL execution
plans. You can also compare statistics relating to user-specified metrics such
as execution time, buffer gets, disk reads, and others. You can then calculate
the impact of the change on both individual SQL statements and on the
SQL workload as a whole. This enables you to foresee whether the change
would lead to an improvement or regression in SQL performance or whether
it would have no net impact on the SQL workload. The SQL Performance
Analyzer may recommend running the SQL Tuning Advisor to tune any
SQL statements that lead to a performance regression. You can also use the
results of the analysis to seed SQL Plan Management (SPM) baselines. SQL
Plan baselines let you prevent performance regressions, instead of using the
SQL Tuning Advisor to tune the statements. If the performance of a SQL
statement prior to the change is better than its post-change performance,
you can “freeze the performance” by using the SQL Plan baselines. I explain
the SQL Plan baselines feature in Chapter 4. Oracle recommends that you
implement changes piecemeal, one feature at a time, and retest.

In the following sections, let’s examine the workflow of the SQL Performance
Analyzer.

Capturing the Production SQL Workload
The SQL workload you must capture from the production system must be from a
representative peak period. The SQL workload contains environmental information
such as bind variables, execution frequency of statements, along with the actual SQL
text of the statements. In the following example, I show you how to use an STS to
capture the production SQL workload.

Create the SQL Tuning Set In order to capture the production workload,
you must first create an STS using the CREATE_SQLSET procedure of the DBMS_
SQLTUNE package, as shown here:

SQL> exec dbms_sqltune.create_sqlset(sqlset_name => 'test_set',
 description => '11g upgrade workload';

The new STS test_set is an empty STS that is used to store the captured SQL
workload on the production system.

Load the SQL Tuning Set The next step is to load the production system SQL
workload into the empty STS test_set that you created in the previous step, using the
SELECT_CURSOR_CACHE procedure of the DBMS_SQLTUNE package.

declare
 mycur dbms_sqltune.sqlset_cursor;
begin
 open mycur for
 select value (P)
 from table (dbms_sqltune.select_cursor_cache(
 'parsing_schema_name <> ''SYS'' AND elapsed_time >
 2500000',null,null,null,null,1,null,
 'ALL')) P;
 dbms_sqltune.load_sqlset(sqlset_name => 'test_set',
 populate_cursor => mycur);
end;
/

PL/SQL procedure successfully completed.
SQL>

The database uses an incremental capture method to populate the STS from the
cursor cache over a period of time. During the populating of the STS, the database
filters out any undesirable SQL.

The next step is to export the captured SQL workload in the form of the STS to
the test system so you can invoke the SQL Performance Analyzer there.

Transport the SQL Tuning Set Before you can transport the SQL tuning
set, you must first create a staging table using the CREATE_STGTAB_SQLSET
procedure, so you can use this table to export the STS that contains the production
SQL workload to the test system. After you export the STS, you must import it into
the test database.

SQL> exec dbms_sqltune.create_stgtab_sqlset (table_name =>
 'stagetab');

Real Application Testing 55

56 Chapter 1: Installing, Upgrading, and Change Management

The CREATE_SQLTAB_SQLSET procedure creates a staging table named
STAGETAB. Export the production STS into the staging table STAGETAB
that you just created, using the PACK_STGTAB_SQLSET procedure:

SQL> exec dbms_sqltune.pack_stgtab_sqlset (sqlset_name =>
 'test_sts',
 staging_table_name => 'stagetab');

Now you must import the STS into the test system where you’ll be running the
SQL Performance Analyzer to compare the SQL workload performance.

Import the STS into the Test System Use the Data Pump import utility
to import the staging table STAGETAB from the production system to the test
system. Once you import the staging table, run the UNPACK_STGTAB_SQLSET
procedure to import the STS into the test database where you’ll replay the SQL
workload.

SQL> exec dbms_sqltune.unpack_stgtab_sqlset (sqlset_name = '%',
 replace => true, staging_table_name => ('stagetab');

You’re now ready to create your SQL Performance Analyzer task.

Create the SQL Performance Analyzer Task Create a SQL Performance
Analyzer task using the DBMS_SQLPA package. Use the CREATE_ANALYSIS_
TASK procedure to create the tuning task:

SQL> exec dbms_sqlpa.create_analysis_task(sqlset_name => 'sts1',
 task_name => 'spa_task1');

The CREATE_ANALYSIS_TASK procedure enables you to create an analysis
task for one or more SQL statements. Once you create the SQL Performance
Analyzer task, you must perform three different analyses of the captured SQL
workload that you imported to the test system in the form of an STS. The three
analyses pertain to:

■ The pre-change SQL workload

■ The post-change SQL workload

■ Comparison of the pre- and post-change SQL workload

The STS includes both SQL execution plans and execution statistics.

Analyze the Pre-Change SQL Workload In this example showing how
to use the SQL Performance Analyzer, your goal is to compare the performance of
an identical SQL workload on the production system running an Oracle Database
10g database and the test system, which is running an Oracle Database 11g Release
1 (11.1) database. First, set the optimizer_features_enable initialization
parameter on the test system to the exact value of that parameter on the production
system:

optimizer_features_enable=10.2.0

You can now analyze the pre-upgrade SQL performance data using the EXECUTE_
ANALYSIS_TASK procedure of the DBMS_SQLPA package, as shown here:

SQL> exec dbms_sqlpa.execute_analysis_task (task_name =>
 'spa_task1',
 execution_type => 'test_execute',
 execution_name= 'before_change');

The EXECUTE_ANALYSIS_TASK procedure executes an analysis task that
you’ve already created. The execution_type parameter of the EXECUTE_
ANALYSIS_TASK procedure can take one of the following three values:

■ TEST_EXECUTE Executes all SQL statements in the captured SQL
workload. The database only executes the query portion of the DML
statements, in order to avoid adversely impacting user data or the database
itself. The database generates both execution plans and execution statistics
(for example, disk reads and buffer gets).

■ COMPARE_PERFORMANCE Compares performance between two
executions of the workload performance analysis.

■ EXPLAIN PLAN Lets you generate SQL plans only, without actually
executing them.

The EXECUTE_ANALYSIS_TASK procedure executes all DML statements
but ignores any DDL statements to avoid unduly affecting the test data. You can
view the before-change version of the SQL performance as the SQL workload
performance baseline.

You can specify execution parameters by using the execution_params
parameter that you can specify as DBMS_ADVISOR.arglist((name,value,...).
Use the time_limit parameter to specify a global time limit for processing all

Real Application Testing 57

58 Chapter 1: Installing, Upgrading, and Change Management

statements in the STS. Use the local_time_limit parameter to specify the time
limit to process a single statement in the STS.

Once you create the SQL Performance Analyzer pre-change task and execute
it, you can retrieve a report of the task execution by executing the REPORT_
ANALYSIS_TASK function, as shown here:

SQL> select dbms_sqlpa.report_analysis_task (task_name =>
 'spa_task1',
 type => 'text', section=> 'summary') from dual;

The previous step captures system performance consisting of both execution plans
and execution statistics such as elapsed time, buffer gets, disk reads, and the number
of rows processed. You can use the performance as a baseline to compare SQL
performance after you make the changes to the database.

Analyze the Post-Upgrade SQL Workload Our goal is to compare the
performance of an identical SQL workload on an Oracle 10.2 release database and
an Oracle Database 11g release database. To test the impact of upgrading to Oracle
Database 11g, change the value of the initialization parameter optimizer_
features_enable to match the Oracle Database 11g version:

optimizer_features_enable=11.1

Run the EXECUTE_ANALYSIS_TASK procedure again, with identical parameter
values as in the previous execution except for the parameters TASK_NAME and
EXECUTION_NAME in order to distinguish the task name and execution name from
the pre-change execution that you performed earlier.

SQL> exec dbms_sqlpa.execute_analysis_task (task_name =>
 'spa_task2',
 execution_type => 'test_execute',
 execution_name => 'after_change')

Once again, get a report of the task execution by executing the REPORT_
ANALYSIS_TASK function, as shown here.

SQL> select dbms_sqlpa.report_analysis_task (task_name =>
 'spa_task2,
 type => 'text', section=> 'summary') from dual;

You can use the contents of this report to review the performance after you made
the changes.

Compare the SQL Performance You have executed the EXECUTE_
ANALYSIS_TASK procedure twice thus far, once for the pre-change analysis and

the other for the post-change analysis, using test_execute as the value for the
execute_type parameter both times. To compare the SQL performance before and
after upgrading to Oracle Database 11g, you must execute the EXECUTE_ANALYSIS_
TASK procedure a third time, but with the value compare performance for the
execution_type parameter. This will let the SQL Performance Analyzer analyze
and compare the SQL performance data from the two previous runs.

SQL> exec dbms_sqltune.execute_analysis_task (task_name =>
 'spa_task3',
 execution_type => 'compare performance',
 execution_params =>
 dbms_advisor.arglist('execution_name1','before_change',
 execution_name2','after_change''comparision_metric',
 'disk_reads',);

The comparison metric I chose to compare in this case is DISK_READS, but you
can also use ELAPSED_TIME, OPTIMIZER_COST, DIRECT_WRITE, PARSE_
TIME, or BUFFER_GETS as a comparison metric, in order to compare the pre- and
post-change SQL performance.

Generating the SQL Performance Analyzer Report You can get a report
of the SQL performance comparison by executing the REPORT_ANALYSIS_TASK
function, as shown here:

var report clob;
exec :report := dbms_sqlpa.report_analysis_task('spa_task3',
 'text',
 'typical','summary');
set long 100000 longchunksize 100000 linesize 120
print :report

The REPORT_ANALYSIS_TASK function shows the results of an SQLPA
analysis task. The REPORT_EXECUTE_ANALYSIS_TASK function shown here
will print a text report. You can also choose to print an HTML or XML formatted
report if you want. The value of summary for the report format means that the
procedure will result in the printing of a summary report.

You can do the following during the compare and analysis phase:

■ Calculate the impact of the change on specific SQL statements.

■ Calculate the impact of the change on the SQL workload as a whole.

■ Assign weights to important SQL in the workload.

■ Detect performance regression and improvements.

■ Detect changes in the execution plans of the SQL statements.

Real Application Testing 59

60 Chapter 1: Installing, Upgrading, and Change Management

■ Recommend the running of the SQL Tuning Advisor to tune regressed
SQL statements. After using the advisor, you can create a new after-change
version of the SQL workload performance to ensure that you have acceptable
performance.

You can use the following views when working with the SQL Performance
Analyzer:

■ DBA_ADVISOR_TASKS shows details about the analysis task.

■ DBA_ADVISOR_FINDINGS shows analysis findings, which are classified
as performance regression, symptoms, informative messages, and errors.

■ DBA_ADVISOR_EXECUTIONS shows metadata information for task
executions.

■ DBA_ADVISOR_SQLPLANS shows a list of SQL execution plans.

■ DBA_ADVISOR_SQLSTATS shows a list of SQL compilation and
execution statistics.

Analyzing the Performance Report The SQL Performance Analyzer report
consists of three main sections:

■ General information

■ Result summary

■ Result details

The Result Summary section shows at a glance whether the system change
you’re putting in place will result in an improvement or a deterioration of the SQL
workload performance. You also get detailed execution statistics for all the SQL
statements in the STS you offered as input to the SQL Performance Analyzer. If the
report shows deterioration in SQL workload performance, it also performs a root
cause analysis and provides recommendations to improve the execution plans of the
affected SQL statements, which will help you easily tune the SQL statements that
have regressed following the system change.

As with the Data Replay tool, the SPA offers the unique advantage in that it’s
integrated with the Oracle database. This lets you take advantage of other tools such
as the SQL Tuning Advisor and features such as the SQL Plan Management to avoid
SQL performance deterioration. When you use Enterprise Manager to perform the

SQL Performance Analyzer tasks, you can invoke the SQL tuning Advisor directly
from the SQL Performance Analyzer Task result page. You can easily run a new
SQL tuning task that analyzes all the regressing SQL statements found by the SQL
Performance Analyzer. Alternately, you can prevent SQL regressions by using SQL
plan baselines, as I explain in Chapter 4, which discusses SQL Plan Management
with the help of SQL baselines.

EXERCISE 1-3

Testing SQL Performance Following a Database Upgrade
How would you test whether a database upgrade will affect the performance of the
SQL statements used in your database?

Use the SQL Performance Analyzer to test the changes in SQL performance
following a system change such as a database upgrade. Here are the steps:

 1. Capture the production SQL workload by first creating an STS to capture the
production workload.

 2. Load the STS.

 3. Transport the STS from the production database to a test database.

 4. Create a SQL Performance Analyzer task.

 5. Analyze the SQL performance before the upgrade by executing the
EXECUTE_ANALYSIS_TASK procedure. Use test_execute as
the value for the execution_type parameter.

 6. Upgrade the database to the new release.

 7. Analyze the SQL performance by executing the EXECUTE_ANALYSIS_
TASK procedure. Use test_execute as the value for the execution_
type parameter.

 8. Analyze the post-upgrade SQL workload.

 9. Compare the SQL performance by executing the EXECUTE_ANALYSIS_
TASK procedure. Use compare_performance as the value for the
execution_type parameter.

Real Application Testing 61

62 Chapter 1: Installing, Upgrading, and Change Management

INSIDE THE EXAM

The exam will test you about the setting of
the ORACLE_BASE environmental vari-
able. You must understand the modifications
made to the ORACLE_BASE environment
variable to bring it into conformity with
Oracle Flexible Architecture guidelines.
While the variable isn’t mandatory, it will be
in a future release. The exam is likely to test
your understanding of the startup up-
grade command.

The exam will test your understanding
of the SQL Performance Analyzer’s testing
characteristics. You must understand con-
cepts such as the serial execution of SQL
statements and the disregarding of transac-

tion concurrency. Expect to be tested on the
different values of the execution_type
parameter in the EXECUTE_ANALYSIS_
TASK procedure.

In the Database Replay feature, you
probably will see questions on the various
replay options such as synchronization,
think_time_scale, think_time_
auto_connect, and connect_time_
scale. For example, what do you have to
do if the users are taking longer to complete
their transactions during the replay than
during the capture phase? Remembering the
correct sequence of steps for replaying a work-
load can also be helpful on the exam.

INSIDE THE EXAM

CERTIFICATION SUMMARY
This chapter explained the most important new features in the installation of Oracle
Database 11g. You learned about the changes in the way the Oracle base location is
set, as well as the requirements for the datafile and flash recovery area locations.

This chapter introduced you to the automatic diagnostic repository and how
to use the diagnostic_dest initialization parameter. You learned about the
changes in the installation options and the new database components. This chapter
also explained the new OSASM operating system group and the SYSASM privilege
for ASM administrators. You also learned about the new initialization parameters in
Oracle Database 11g that are most relevant to DBAs.

As part of the review of the changes in the DBCA, I introduced both automatic
secure configuration and automatic memory management features. The section on
upgrading the database explained the compatibility factor when upgrading, as well
as the upgrade path to Oracle Database 11g. The chapter showed an actual database
upgrade to the new release.

The final part of the chapter explained two revolutionary new features—Database
Replay and SQL Performance Analyzer, which, together make change management
a much easier affair, without recourse to third-party tools.

TWO-MINUTE DRILL

Installing Oracle Database 11g

❑ The Oracle Installer provides a list box to select or edit the recommended
Oracle base location.

❑ The recommended Oracle base location is /mount_point/app/oracle_software_
owner.

❑ The Oracle Universal Installer derives the location of the Oracle home from
the Oracle base location you provide.

❑ The default location for both datafiles and the flash recovery area is one level
below the Oracle base.

❑ Oracle recommends that you place the datafiles and flash recovery area on
different disks.

❑ The ADR provides a single consolidated location for diagnostic data.

❑ Using the ADR is not mandatory.

❑ You use the diagnostic_dest initialization parameter to specify a non-
default location for the ADR.

❑ The ADR base is the root directory for the ADR.

❑ The default ADR base directory is $ORACLE_BASE/diag.

❑ Each Oracle product under the ADR base has a separate home.

❑ The Oracle Configuration Manager is integrated with the Oracle Universal
Installer as an optional component.

❑ Oracle Real Application testing option is automatically installed when you
select the Enterprise Edition installation option.

❑ The new OS group OSASM is designed for the exclusive use of users who
manage ASM.

❑ The new ASM-related system privilege, SYSASM, is recommended for users
who perform ASM administrative tasks.

❑ The OSASM operating system group and the SYSASM system privilege are
optional in the Oracle Database 11g release.

New Features in Database Creation

❑ The initialization parameters are listed in the alert log in a format that makes
it easy for you to copy and paste them to create a new parameter file.

✓

Two-Minute Drill 63

64 Chapter 1: Installing, Upgrading, and Change Management

❑ The minimum value for the compatible initialization parameter is 10.0.0.

❑ The default value for the compatible parameter is 11.1.0.

❑ The maximum value for the compatible parameter is 11.1.0.n.n.

❑ The DBCA lets you select automatic memory management during database
creation.

❑ You can use the Enterprise Manager plug-in to automatically switch from
Database Control to Grid Control.

❑ DBCA uses the value set for the Oracle base directory to derive the default
location for datafiles and the diagnostic_dest initialization parameter.

❑ You don’t have to set the bdump, cdump, and udump directories in
the parameter file if you provide a value for the diagnostic_dest
initialization parameter.

❑ In Oracle Database 11g, the DBCA provides secure database configuration by
default.

❑ You’re offered a choice of listeners for a new database when you create one
through the DBCA.

❑ You are offered the choice of automatic memory management when using the
DBCA to create a new database.

❑ If you disable the default security settings when using the DBCA to create a
new database, you can configure the Secure Configuration Option later on.

Upgrading to Oracle Database 11g

❑ You can directly upgrade to Oracle Database 11g Release 1 if your current
database is using an Oracle 9.2.0.4 or newer release.

❑ If you’re using 9.2.0.3 or older releases, you must go through intermediate
upgrades.

❑ The utlu111i.sql script serves as the Pre-Upgrade Information Tool.

❑ The utlu111s.sql script is the Post-Upgrade Status Tool.

❑ The catupgrd.sql script is the script that performs the actual upgrade of the
database.

❑ You can run the catupgrd.sql script multiple times if necessary.

❑ The utlrp.sql script recompiles stored PL/SQL and Java code.

❑ The DBUA lets you upgrade both the database instance and the ASM
instance simultaneously.

❑ If you’re using the manual method to upgrade the database, you must upgrade
the ASM instance separately from the database instance.

Real Application Testing

❑ Database Replay is part of Real Application Testing, which allows you to
perform real-world workload testing.

❑ The workload capture process captures all external requests made to the
database, such as SQL queries, logins and logoffs, remote procedural calls,
and OCI calls.

❑ The workload capture doesn’t include background jobs and requests made by
internal clients.

❑ Database Replay doesn’t capture flashback queries, Oracle Streams data,
distributed transactions, and other types of data.

❑ Capture files are binary files that contain the captured external requests made
to the database.

❑ Use the DBMS_WORKLOAD_CAPTURE package to capture the database
workload.

❑ Oracle recommends that you restart the production database before starting
the workload capture, although it isn’t mandatory to do so.

❑ After you start the database in the restricted mode, the database automatically
switches to an unrestricted mode after you start the workload capture.

❑ You can use inclusion and exclusion workload filters to restrict the captured
workload to a subset of the actual workload.

❑ The ADD_FILTER and DELETE_FILTER procedures enable you to add and
delete a workload filter.

❑ Oracle recommends that you capture the workload during a representative
peak period.

❑ Only the DIR parameter in the START_CAPTURE procedure is mandatory.

❑ You can either specify a value for the duration parameter in the START_
CAPTURE procedure, or execute the FINISH_CAPTURE procedure, to end
a workload capture.

❑ Preprocessing the workload data re-creates the replay files.

❑ Before replaying the captured workload on the test system, you must resolve
external references such as database links, directory objects, external tables,
and URLs.

Two-Minute Drill 65

66 Chapter 1: Installing, Upgrading, and Change Management

❑ The wrc is a special client application that acts as the replay driver.

❑ The replay driver consists of one or more replay clients that actually connect
to the test system and act as the external clients to the database.

❑ The replay driver allocates replay workload among multiple replay clients.

❑ You can run the wrc in the REPLAY, CALIBRATE, or LIST_HOSTS mode.

❑ The default mode of the wrc executable is REPLAY.

❑ The CALIBRATE mode lets the wrc estimate the number of replay clients
and CPUs necessary to replay the captured workload.

❑ The INITIALIZE_REPLAY procedure loads the metadata about the captured
workload into the tables required by the workload replay process.

❑ In the REMAP_CONNECTION procedure, if you set the replay_
connection parameter’s value to null, all replay sessions will connect
to the default host.

❑ A synchronized replay (synchronization=TRUE) will lead to minimal
data divergence.

❑ Synchronization preserves the commit order during the workload replay.

❑ Unsynchronized replay is useful for load testing and is faster. It doesn’t follow
the original commit ordering.

❑ Unsynchronized replay leads to a high data divergence.

❑ The connect_time_scale parameter lets you adjust the number of
concurrent users during the workload replay.

❑ The think_time_scale parameter lets you adjust the speed of user calls
to the database.

❑ The think_time_auto_correct parameter automatically corrects the
think time set by the think_time_scale parameter.

❑ By default, there’s no automatic adjustment of think time.

❑ The database automatically exports all AWR snapshots corresponding to the
replay period, after the completion of the workload replay.

❑ The replay_type parameter in the GET_REPLAY_INFO procedure can
take the values text, HTML, or XML.

❑ A data divergence can be desirable or undesirable.

❑ Multiple commits within PL/SQL can lead to increased data or error
divergence between capture and replay of the workload.

❑ User locks can also lead to increased data or error divergence between
capture and replay of the workload.

❑ The SQL Performance Analyzer focuses only on the effect of a system change
on SQL performance.

❑ You can run the SPA on the production system or on a test system.

❑ The DBMS_SQLPA package is a task-oriented interface for implementing
the SPA.

❑ The SPA analyzes SQL performance differences before and after a system
change.

❑ You use an STS to capture the production SQL workload.

Two-Minute Drill 67

68 Chapter 1: Installing, Upgrading, and Change Management

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all correct answers for each question.

Installing Oracle Database 11g

 1. What does a DBA need to do for Oracle to perform the automatic pre-installation requirements
check when you are beginning the installation of Oracle software?

 A. Run the Upgrade Information Tool.
 B. Do nothing—Oracle automatically performs the pre-installation checks.
 C. Use the upgrade database command first, to open the database.
 D. Execute the utlu111s.sql script.

 2. The Oracle Configuration Manager
 A. Is installed automatically.
 B. Is an optional component.
 C. Can be installed during the installation only.
 D. Can be installed during the installation or later.

 3. Which of the following is true?
 A. The OSASM OS group and the SYSASM privilege are both mandatory in Oracle

 Database 11g.
 B. The OSASM OS group and the SYSASM privilege are both optional in Oracle

 Database 11g.
 C. The OSASM OS group is mandatory and the SYSASM privilege is optional in

 Oracle Database 11g.
 D. The OSASM OS group is optional and the SYSASM privilege is mandatory in

 Oracle Database 11g.

 4. The Real Application testing feature is
 A. Automatically installed when you choose the custom installation method.
 B. Installed only if you license it separately.
 C. Installed from a separate CD as the server.
 D. Automatically installed when you select the Enterprise Edition installation option.

New Features in Database Creation

 5. Which of the following is a new initialization parameter in Oracle Database 11g?

 A. plsql_code_type

 B. sga_max_target

 C. result_cache

 D. memory_max

 6. Oracle Database 11g release 1 (11.1)
 A. Doesn’t enforce password case sensitivity.
 B. Doesn’t enforce password case sensitivity by default.
 C. Enforces password case sensitivity by default.
 D. Doesn’t use any initialization parameters to enforce password case sensitivity.

 7. Secure database configuration is
 A. Installed by default with the Oracle database server.
 B. Provided by DBCA by default.
 C. Something you can configure only after completing the creation of a new database.
 D. Not provided by the DBCA.

 8. The minimum value of the compatible initialization parameter is
 A. 10.0.0
 B. 11.2.0
 C. 11.1.0.n.n
 D. 11.1

Upgrading to Oracle Database 11g

 9. Which of the following Oracle database versions can you not use to upgrade directly to Oracle
Database 11g Release 1 (11.1)?

 A. 9.2.0.3
 B. 9.2.0.4
 C. 10.1.0.0
 D. 8.1.7.1

10. The Upgrade Information Tool provides information about which of the following?
 A. Optimal SQL allocation to various components of the SGA such as the shared pool.
 B. Optimal performance features of Oracle Database 11g.
 C. Recommendations for additional space for tablespaces.
 D. A time estimate for the upgrade.

Self Test 69

70 Chapter 1: Installing, Upgrading, and Change Management

11. What is the name of the Oracle-supplied script that runs the pre-upgrade requirements checks?
 A. utlu111s.sql
 B. utlui111i.sql
 C. utlu111x.sql
 D. utlu111p.sql

12. Which of the following scripts performs the post-upgrade validation when you upgrade to
Oracle Database 11g?

 A. utlu111s.sql
 B. utlu11x.sql
 C. utlu111i.sql
 D. utlu111p.sql

Real Application Testing

13. Which of the following external references must be resolved before you can replay a workload
with Database Replay?

 A. Database links
 B. Directory objects
 C. External tables
 D. URLs

14. To estimate the number of replay clients that need to be started to replay a particular workload,
you must run the wrc executable in which mode?

 A. REPLAY
 B. CALIBRATE
 C. PROCESS
 D. OVERRIDE

15. What happens if you don’t set a time for finishing a workload capture with database replay?
 A. The workload capture will run forever.
 B. The workload capture will not start.
 C. The workload capture will run until it runs out of space in the directory where it stores the

 workload files.
 D. There is a default maximum time limit for each workload capture process.

16. What can you use the think_time_auto_correct parameter for when setting workload
options for Database Replay?

 A. To automatically correct the think time set by the think_time_scale parameter.

 B. To automatically correct the think time set by the connection_time_scale
 parameter.

 C. To manually correct the think time set by the think_time_scale parameter.
 D. To manually correct the think time set by the connection_time_scale parameter.

17. Which one of the following can you not use as a source to load statements into an STS?
 A. AWR baselines
 B. A cursor cache
 C. AWR snapshots
 D. A user-created file with SQL statements stored in the file system

18. What are the modes in which you can execute the EXECUTE_ANALYSIS_TASK procedure?
 A. TEST EXECUTE, SPEED OF PERFORMANCE
 B. SIMULATE, SYNCHRONIZE, and COMPARE PERFORMANCE
 C. TEST EXECUTE, COMPARE PERFORMANCE, and EXPLAIN PLAN
 D. EXECUTE, PERFORMANCE, and EXPLAIN

19. Which of the following parameters doesn’t change during the three executions of the
EXECUTE_ANALYSIS_TASK procedure?

 A. task_name
 B. task type
 C. execution_type
 D. execution_params

20. Which of the following changes can the SQL performance not compare?
 A. Changing the application code
 B. Database upgrade
 C. Increase in the number of users
 D. Changes in the initialization parameter values

LAB QUESTION
You want to use the Database Replay feature to test your database workload before and after an up-
grade to Oracle Database 11g. Show how to prepare a database for a replay of a workload. You notice
two things during the data capture stage: long time periods elapse between the user logins, and quite
a bit of time is spent between the time users issue a call and the time the calls are completed by the
database. You want to increase the number of concurrent users during the workload replay and also
finish the workload replay in a shorter time than the time it took to capture the workload.

Self Test 71

72 Chapter 1: Installing, Upgrading, and Change Management

SELF TEST ANSWERS

Installing Oracle Database 11g

 1. � B is correct because the Oracle Universal Installer automatically makes the pre-installation
check of the requirements.
� A is incorrect because you run the Upgrade Information Tool to check the prerequisites for
upgrading the database, not for installing the server software. C is incorrect because you don’t
start the database before installing the software—there may not be a database yet. D is incorrect
because you use the utl111s.sql script for a post-upgrade status check.

 2. � B and D are correct. B is correct because the Oracle Configuration Manager is an optional
component during installation. D is correct because you can install the Oracle Configuration
Manager during the installation or later on.
� A is incorrect because the Oracle Configuration isn’t installed automatically. C is incorrect
because you can install the Oracle Configuration Manager after the installation.

 3. � B is correct because both the SYSASM privilege and the OSASM group are optional.
� A is incorrect because the SYSASM privilege and the OSASM group aren’t mandatory
in Oracle Database 11g. C and D are incorrect because both the SYSASM privilege and the
OSASM group aren’t mandatory in Oracle Database 11g.

 4. � D is correct because the Oracle Real Application Testing feature is automatically installed
when you select the Enterprise Edition installation option.
� A is incorrect because the feature isn’t installed as part of the custom installation method,
unless you choose the Enterprise edition Installation. B is incorrect because you don’t need a
separate license for using the Real Application Testing feature. C is incorrect because the Real
Application testing feature is installed from the same CD as the server software.

New Features in Database Creation

 5. � A is correct because the plsql_code_type initialization parameter is new in Oracle
Database 11g.
� B is incorrect because this parameter has been available from the Oracle 9i release. C and
D are incorrect because there are no such initialization parameters.

 6. � C is correct because Oracle Database 11g enforces password case sensitivity by default.
� A is incorrect because Oracle Database 11g enforces password case sensitivity by default.
B is incorrect because Oracle Database 11g enforces password case sensitivity by default. D is

incorrect because you do have to use a new initialization parameter to enforce password case
sensitivity.

 7. � B is correct because the DBCA provides secure database configuration by default.
� A is incorrect because secure database configuration is done during database creation
and not during server installation. C is incorrect because you can adopt secure database
configuration at database creation time or at a later time. D is incorrect because the DBCA
does offer secure database configuration.

 8. � A is correct because the minimum value for the compatible initialization parameter is
10.0.0.
� B, C, and D are incorrect because they refer to incorrect values for the compatible
parameter.

Database Upgrade New Features

 9. � A and D are correct because you can only directly upgrade from an Oracle 9.2.0.4 or newer
release.
� B and C are correct because they satisfy the direct upgrade requirement.

10. � C is correct because the Upgrade Information Tool makes recommendations for adding
space to key tablespaces such as the SYSTEM and SYSAUX tablespaces.
� A, B, and D are incorrect because the Upgrade Information Tool doesn’t provide
information regarding any of these.

11. � B is correct because the utlu111i.sql script is the Upgrade Information Tool.
� A is incorrect because the utlu111s.sql script is the Upgrade Status Tool. C and D are
incorrect because they refer to nonexistent upgrade scripts.

12. � A is correct because the utlu111s.sql script performs the post-upgrade checks.
� B is incorrect because there is no such script. C is incorrect because the utlu111i.sql script
runs the pre-upgrade checks. D is incorrect because it refers to a nonexistent script.

Database Replay

13. � A, B, C, and D are all correct. All of them are external references that must be resolved
before you can replay a workload.

14. � B is correct because you must run the wrc executable in the CALIBRATE mode to
estimate the number of replay clients that you must start.

Self Test Answers 73

74 Chapter 1: Installing, Upgrading, and Change Management

� A is incorrect because you use the replay mode when you’re actually replaying the
workload. C and D are incorrect because those modes actually don’t exist.

15. � C is correct because the workload will run until there is no longer room for storing the
workload files.
� A is incorrect because the workload can’t run forever because eventually the workload
capture will run out of room to store the workload files. B is incorrect because the workload
capture process will start even if you don’t specify a time limit for the workload capture. D
is incorrect because there isn’t an automatic maximum time limit for the workload capture
process.

16. � A is correct because you can use the think_time_auto_correct parameter to
automatically correct the think time set by the think_time_scale parameter.
� B is incorrect because you can’t affect the connection_time_scale parameter by
setting the think_time_auto_correct parameter. C and D are incorrect because you use
the think_time_auto_correct parameter to automatically correct the think time set by
the think_time_scale parameter.

SQL Performance Analyzer

17. � D is correct because you can’t load SQL statements into an STS from a user created file.
� A, B, and C are incorrect because all of them are valid sources to load statements into
an STS.

18. � C is correct because it correctly lists the three possible modes in which you can execute the
EXECUTE_ANALYSIS_TASK procedure.
� A, B, and D are incorrect because all of them contain one or more invalid execution
modes.

19. � A is correct because the task_name parameter remains the same in each of the three
executions of the EXECUTE_ANALYSIS_TASK procedure.
� B, C, and D are incorrect because you need to change all of these parameters during each
execution of the EXECUTE_ANALYSIS_TASK procedure.

20. � C is correct because the SQL Performance Analyzer isn’t really meant to test the effect of a
change in the system load.
� A, B and D are incorrect because you can compare the effects of all of these changes by
using the SQL Performance Analyzer.

LAB ANSWER
Use the DBMS_WORKLOAD_PREPARE_REPLAY procedure to prepare a database for a database
replay. The following are all the parameters you can specify and their default values:

DBMS_WORKLOAD_REPLAY.PREPARE_REPLAY (
 synchronization IN BOOLEAN DEFAULT TRUE,
 connect_time_scale IN NUMBER DEFAULT 100,
 think_time_scale IN NUMBER DEFAULT 100,
 think_time_auto_correct IN BOOLEAN DEFAULT TRUE);

And here is what you must do to increase the number of concurrent users during the workload replay:

■ Change the value of the connect_time_scale attribute to less than its default value of
100. The lower the value, the faster a session can connect to the database.

■ Change the value of the think_time_scale attribute to decrease the time that elapses
between successive calls from the same session. This will also potentially increase the number
of concurrent users in the database during the replay, in addition to letting you complete the
workload replay in a shorter time span than it took to capture the workload.

■ Keep the think_time_auto_correct parameter at its default value of TRUE, which en-
sures that the database automatically reduces think time if the data replay is progressing slower
than the data capture.

Self Test Answers 75

This page intentionally left blank

2
Diagnosing
and Resolving
Problems

CERTIFICATION OBJECTIVES

 2.01 Automatic Diagnostic Repository

 2.02 Incidents and Problems

 2.03 Support Workbench

 2.04 Health Monitor

 2.05 SQL Repair Advisor

 2.06 Data Recovery Advisor

✓ Two-Minute Drill

Q&A Self Test

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

78 Chapter 2: Diagnosing and Resolving Problems

One of the key new features of the Oracle Database 11g release concerns fault
management. An entire new fault management infrastructure is introduced in this
release to further the goals of both preventing and resolving problems caused by

critical errors such as data corruption, code bugs, and missing or renamed datafiles. This chapter
discusses the following important topics pertaining to fault management:

■ The Automatic Diagnostic repository

■ Incidents and problems

■ The Support Workbench

■ The Health Monitor

■ The SQL Repair Advisor

■ The Data Recovery Advisor

Following are the goals of the new fault diagnosability infrastructure:

■ Preventing problems

■ Proactive detection of problems

■ Limiting the damage caused by database problems

■ Reducing the time it takes to diagnose problems

■ Reducing the time it takes to resolve problems

■ Easier interaction with Oracle Support

The fault diagnosability infrastructure contains the following components:

■ Automatic diagnostic repository The automatic diagnostic repository
(ADR) is a special storage facility that is located outside the database (in
the file system), which you can access with a command-line utility or with
Enterprise Manager. The key to the new fault diagnosability feature is the
timely capturing of critical error information following a database failure.
You can use this information to create incident packages that you can send
to Oracle Support Services. A memory-based trace system collects diagnostic
data proactively and stores it in the ADR. The ADR contains the traditional
diagnostic files such as the alert log, trace files, dump files, and core files as
well as new content such as Health Monitor reports.

■ Health Monitor The Health Monitor is a new database framework that runs
diagnostic checks automatically following a critical error in the database. The
results of these health checks are merged with the diagnostic data collected for
an error. You can also run health checks manually as and when you need.

Automatic Diagnostic Repository 79

■ Incident packaging service The incident packaging service lets you easily
collect diagnostic data pertaining to a critical error in the form of trace files
and health check reports pertaining to a critical error and package it into a
Zip file for transmission to Oracle Support.

■ The ADR Command Interpreter The ADR Command Interpreter (ADRCI)
is a command-line tool that lets you view diagnostic data stored in the ADR
and package diagnostic information into Zip files that you can then transmit
to Oracle Support.

■ The Support Workbench This new Enterprise Manager wizard lets you
view problem and incident details, run manual health checks, collect
diagnostic data, and upload incident packages to Oracle Support.

■ Data Recovery Advisor This new advisor is integrated with both the
Health Monitor and RMAN, and lets you automate the repair process to fix
database problems. You can view database failures and recommendations to
fix those problems as well as implement repairs for the problems through the
Data Recovery Advisor.

■ SQL Repair Advisor The SQL Repair Advisor is a new tool that lets you
fix SQL statement failures by providing patches or workarounds for the failed
SQL statements that you can then implement in the database.

■ SQL Test Case Builder Automates the gathering of information about
a SQL-related problem, including the environment in which the SQL
statement(s) executed, so Oracle Support Services can easily re-create and
test the problem.

A new in-memory diagnostic tracing facility captures relevant diagnostic data
upon the appearance of a critical database error. This information is automatically
stored in the ADR and forms the nucleus of the incident packages that you can
then send to Oracle Support Services for problem resolution. The workflow for a
diagnostic session following an error in the database is as follows:

■ The database raises an alert following an incident.

■ You can view the alert in the Enterprise Manager on the EM Home page.

■ You can then drill down to the incident details level:

■ You can request EM to create an incident package for you and transmit that
automatically to Oracle Support Services, using your MetaLink credentials.
You can also add ancillary information such as trace files or scrub the diagnostic
data to remove proprietary data before sending the incident package to Oracle
Support Services (referred to simply as Oracle Support from here on).

80 Chapter 2: Diagnosing and Resolving Problems

Let’s review the main components of the new fault diagnosability infrastructure in
the following sections.

CERTIFICATION OBJECTIVE 2.01

Automatic Diagnostic Repository
The automatic diagnostic repository tracks all problems and incidents that occur
in the database. The ADR is a file-based repository that you create for storing
traditional diagnostic data such as the alert log and trace file, as well as new types
of diagnostic data such as the Health Monitor reports. Not only the database, but
the ASM, CRS, and other Oracle products and components store all their diagnostic
data in the ADR. It’s important to understand that each instance of an Oracle
product has its own separate ADR home directory within the ADR. Thus, each
database instance stores its diagnostic data in a separate directory in the ADR. For
example, in an environment with RAC and ASM storage, each of the database
instances and the ASM instances have their own home directory under the ADR.
The interesting thing is that the ADR uses a consistent diagnostic data format across
all Oracle products and all instances, thus making it easier for users and Oracle
Support to correlate diagnostic data from multiple instances.

Note that the ADR replaces the traditional diagnostic directories such as the
bdump and cdump directories we have been using for years. The traditional *_
dump_dest initialization parameters such as bdump still exist, but the database
will ignore them in the new release. You use the new initialization parameter
diagnostic_dest to set the location of the ADR base directory, which is
the root of the ADR structure.

Because the ADR is located in an operating
system directory and not within the database
tables, you can always access it, even when
you can’t access the database instance itself.
Consequently, the ADR has been likened to
the black box used in airplanes, which records
all vital activity of the plane, so officials can

diagnose what led to a plane crash. Of course, you had access to the alert log and
other dump and trace files at all times in the older releases; however, the addition
of additional powerful diagnostic files, incident reports, and the like and the fact

You can have multiple
ADR homes within the ADR base.

Automatic Diagnostic Repository 81

that all diagnostic information is centralized, makes the ADR stand apart from the
diagnostic framework in previous releases.

The Structure of the ADR
Use the new initialization parameter diagnostic_dest to set the location of
the ADR base. The diagnostic_dest parameter is optional, not mandatory, but
does let you pick your own choice for the location of the ADR. If you don’t specify
a value for the diagnostic_dest parameter, the database itself will set a value
for the parameter upon database startup. Here’s how Oracle determines the default
location of the ADR base:

■ If you set the ORACLE_BASE environment variable, the database sets the
diagnostic_dest parameter value to that of the $ORACLE_BASE
environment variable.

■ If you haven’t set the ORACLE_BASE environment variable, the database
sets the diagnostic_dest parameter value to $ORACLE_HOME/log.

It’s important to distinguish between the ADR base, which is the common root
directory for the ADR and an ADR home. The former is the location you set with the
help of the diagnostic_dest parameter. An ADR home represents the path of
the ADR home for the current database instance. An ADR base can contain multiple
ADR homes, each of them serving as the root directory for a specific instance of a
particular Oracle component or product. Each ADR home has the following path,
starting from the ADR base:

diag/product_type/product_id/instance_id

For example, for a database with the identical SID and database name of orcl2
and the ADR base being /u05/app/oracle, the ADR home would be the following:

/u05/app/oracle/diag/rdbms/orcl2/orcl2

Diagnostic data includes alert log contents, trace files, incident- and problem-
related data, and Health Monitor reports.

The XML-formatted alert
log is located in the ALERT directory of

each ADR home. The text-formatted alert
log is located in the TRACE directory.

82 Chapter 2: Diagnosing and Resolving Problems

ADR Home Subdirectories
Each database instance stores its diagnostic data in various subdirectories, the most
important of which are the following:

■ alert Oracle stores an alert log in the XML format in this directory.

■ hm Contains the checker run reports, which are generated by the new
Health Monitor facility.

■ incident Contains incident reports for the instance.

■ trace Contains the text-based alert log, similar to the traditional alert
log file.

Note that the alert directory contains an XML–formatted alert log. Oracle Database
11g provides two identical alert logs in different formats for each instance. Besides
the XML-formatted alert log, there is also a regular text-based alert log in the trace
directory. Later on, I show you how to use the new command-line diagnostic tool
ADRCI to strip the XML tags from the XML-formatted alert log file.

In an Oracle RAC environment, you can create an ADR base on each of the
nodes or set a central ADR base on shared storage. Setting up a central ADR
base on shared storage enables you to view aggregated diagnostics from
all instances in the RAC in addition to letting you use the powerful Data
Recovery Advisor to diagnose and repair data failures. You can’t use the Data
Recovery Advisor if you don’t use shared storage.

Viewing the ADR Locations
Use the V$DIAG_INFO view to see all the ADR locations for your Oracle database
instance, as shown here:

SQL> select * from v$diag_info;
INST_ID NAME VALUE
------- -------------- ----------------------------------
1 Diag Enabled TRUE
1 ADR Base /u01/app/oracle
1 Diag Trace /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/trace
1 Diag Alert /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/alert
1 Diag Incident /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/incident
1 Diag Cdump /u01/app/oracle/diag/rdbms/orcl2/

Automatic Diagnostic Repository 83

 orcl2/cdump
1 Health Monitor /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/hm1
1 Def Trace File /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/trace
 /orcl2_ora_4813.trc
1 Active Problem Count 2
1 Active Incident Count 4

11 rows selected.
SQL>

The following is a list of the important ADR locations:

■ ADR Base Directory path for the ADR base.

■ ADR Home Directory path for the ADR home for a specific database
instance.

■ Diag Trace The text-based alert file is stored here in addition to trace files.
This directory corresponds to the old bdump directory.

■ Diag Alert The XML-version alert log is found here.

■ Diag incident Location for the incident packages.

■ Diag Cdump Core dump directory corresponding to cdump.

■ Default trace file Path to the session trace files (SQL trace files).

Note that there really is no environment variable named $ADR_HOME to
enable the setting of the ADR home. You set the ADR home by using the set
homepath command after starting the ADRCI tool.

ADRCI
The ADR Command Interpreter (ADRCI) is a brand-new command-line tool that
is a key component of the new fault diagnosability infrastructure. The ADRCI tool
enables you to interact with the ADR from the command line. You can do the
following with the help of the ADRCI:

■ View ADR diagnostic data

■ Package together incident and problem data for transmission to Oracle
Support using the Incident Packaging Service (IPS)

■ View Health Monitor reports

84 Chapter 2: Diagnosing and Resolving Problems

All ADRCI commands work with data in the current ADR home and you can
have multiple ADR homes current at any given time. Some ADR commands work
with multiple ADR homes but other commands require a single ADR home to be
current in order for those commands to work. The key here is the ADR homepath,
which points to the directory under the ADR base. By default, the value of the
homepath is null when you start ADRCI, meaning that all ADR homes under the
ADR base are current. If you want to make a single ADR home the current ADR
home, you must set the homepath.

Starting ADRCI
You don’t need to log into ADRCI because the ADRCI data isn’t considered secure
data and is, therefore, merely secured by operating system permissions on the
ADR directories. Simply enter adrci at the command line to use the ADRCI in an
interactive mode, as shown here:

$ adrci

ADRCI: Release 11.1.0.6.0 - Beta on Thu Sep 27 16:59:27 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.

ADR base = "/u01/app/oracle"
adrci>

Once you start up the ADRCI utility, you can enter various ADR interactive
commands at the ADRCI prompt, and when you are done, leave the interpreter by
typing in exit or quit.

To view a list of all ADRCI commands, enter help at the ADRCI prompt:

adrci> help

To get detailed help on a specific command, enter the keyword help followed by
the name of the command you want help with. Here’s an example:

adrci> help ips create package
 Usage: IPS CREATE PACKAGE
 [INCIDENT <incid> | PROBLEM <prob_id> |
 PROBLEMKEY <prob_key> |
 SECONDS <seconds> |
 TIME <start_time> TO <end_time>]
 [CORRELATE BASIC | TYPICAL | ALL]

 Purpose: Create a package, and optionally select contents

Automatic Diagnostic Repository 85

 for the package.

Arguments:
<incid>: ID of incident to use for selecting package contents.
<prob_id> :ID of problem to use for selecting package contents.
<prob_key> Problem key to use for selecting package contents.
<seconds> :Number of seconds before now for selecting
 package contents.
<start_time>:Start of time range to look for incidents in.
<end_time>: End of time range to look for incidents in.
 Example:
 ips create package incident 861

adrci>

The help command shown here displays information about the ips create
package command, which lets you create incident packages to send to Oracle
Support.

Setting the ADR Homepath
As mentioned earlier, by default, the ADR homepath is set to null when you first
start up ADRCI. This means that all ADR homes for all the instances or components
you have under the ADR base are current. Here’s an example that shows this:

adrci> show homes
ADR Homes:
diag/rdbms/orcl/orcl
diag/rdbms/orcl2/orcl2
diag/rdbms/eleven/eleven
diag/rdbms/nina/nina
adrci>

The ADR homepath points to multiple ADR homes. Note that the ADR
homepath is shown relative to the ADR base. This means that if the ADR base
is /u01/app/oracle, the absolute homepath of the database and instance which are
both named orcl2, for example, would be the following:

/u01/app/oracle/diag/rdbms/orcl2/orcl2

If I want only the single ADR home for the orcl2 instance to be current, I
must set the ADR homepath in the following way, by using the set homepath
command.

adrci> set homepath diag/rdbms/orcl2/orcl2

86 Chapter 2: Diagnosing and Resolving Problems

Confirm the setting of the single ADR home with the following command:

adrci> show homes
ADR Homes:
diag/rdbms/orcl2/orcl2
adrci>

By setting the homepath to diag/rdbms/orcl2/orcl2, only the ADR home for the
instance with the SID orcl2 would be current. This means that when you execute
the various commands from ADRCI now, the ADRCI will access diagnostic data
from this ADR home, which pertains to just the orl2 instance.

As soon as you start ADRCI, set the homepath for the instance you want to
work with.

There are four types of ADRCI commands:

■ Commands that don’t need a current ADR home

■ Commands that work only with a single current ADR home and error out if
there are multiple current homes

■ Commands that prompt you to select a single ADR home if there are
multiple current ADR homes

■ Commands that work with one or more current ADR homes

To summarize, all ADRCI commands work with a single current ADR home, but
some commands won’t work with multiple current ADR homes.

Using ADRCI in Batch Mode
Thus far, you’ve seen how to use the ADRCI tool by invoking it from the operating
system command line. However, you can also use the ADRCI tool from the batch
mode, just as you do the SQL*Loader tool, for example, thus allowing you to
incorporate ADRCI commands in shell scripts and Windows batch files.

Two command line parameters—exec and script—help you perform batch
operations with ADRCI commands. The exec parameter enables you to submit
ADRCI commands in the batch mode, shown by the following general syntax:

 adrci exec="command [; command]..."

For example, to run the show homes command from the command line (in
batch mode), you enter the following command:

 adrci exec="show homes"

Automatic Diagnostic Repository 87

The other command-line parameter, script, helps you run ADRCI scripts.
Here’s the general syntax for using the script parameter:

adrci script =file_name

A script file can consist of any number of ADRCI commands, each separated by
a semicolon or a line break. For example, the ADRCI script adrci.txt consists of the
following commands:

set homepath diag/rdbms/orcl2/orcl2
show alert

In order to run the script file adrci.txt, enter the following command at the
operating system command prompt:

adrci script=adrci.txt

The script shown here will run the show homes and show incident
commands.

Viewing Alert Log Contents with ADRCI
As explained earlier, there are two alert logs for each database instance in an Oracle
Database 11g Release 1 database, one in the trace directory and the other in the alert
directory under the ADR base. You can use the ADRCI utility to view the alert log,
as shown in the following example. First, set the ADR homepath to the database
instance you’re interested in and issue the command show alert or show alert
–tail. The show alert -tail command shows the last few lines of the alert
log and continuously appends new messages as they arrive, thus letting you perform
a live monitoring of the alert log.

adrci> show alert –tail
2007-10-17 16:49:50.579000 -04:00
**
2007-10-17 16:49:58.405000 -04:00
Starting background process FBDA
Starting background process SMCO
SMCO started with pid=24, OS id=3841
FBDA started with pid=23, OS id=3839
replication_dependency_tracking turned off (no async multimaster
 replication found)
2007-10-17 16:50:03.386000 -04:00
Starting background process QMNC
QMNC started with pid=26, OS id=3849
2007-10-17 16:51:21.040000 -04:00
Completed: ALTER DATABASE OPEN
adrci>

88 Chapter 2: Diagnosing and Resolving Problems

You can return to the ADRCI command prompt after issuing the show alert
–tail command line by pressing CTL-C. You can also specify the number of lines to
be shown and also spool the results of the command, just as you can in SQL*Plus.

CERTIFICATION OBJECTIVE 2.02

Incidents and Problems
Oracle introduces two new diagnostic concepts in Oracle Database 11g: problems
and incidents. These concepts are crucial to the understanding of the new fault
diagnosability infrastructure:

■ Any critical error in the database is called a problem—for example, a critical
error such as the one manifested by the Oracle error ORA-4031 (unable to
allocate more bytes of shared memory). A problem is identified by a problem
key and includes Oracle error codes.

■ A single occurrence of a problem is called an incident. Multiple occurrences of
the same problem lead to multiple incidents. An incident is identified by
a unique incident ID.

The ADR tracks both problems and incidents in the database. When the database
encounters a critical error, it displays an incident alert in the Database Home page
of the Enterprise Manager. You then use either the Enterprise Manager or the
command-line utility ADRCI to view the incidents and the associated problem.

Following an incident, the database adds information about the incident to the
alert log and collects diagnostic data about the incident and attaches an incident ID
to this data before storing it in a subdirectory it creates for this incident in the ADR.
Each incident is tagged with a problem key that relates the incident to a problem.
ADR automatically creates a problem when the first incident of that problem key
occurs. It removes the problem metadata after the last incident with that problem
key is removed from the ADR.

The MMON background process is in charge of automatically purging expired
ADR data.

ADR uses what it refers to as a flood-controlled incident system, whereby it
allows only a certain number of incidents under a problem to log diagnostic data.

By default, ADR allows 5 diagnostic data dumps per hour for a single problem. If an
incident occurs 20 times but all the incidents are connected to the same problem,
you have to report to Oracle Support only one incident. Flood-controlled incident
reporting ensures that numerous incidents pertaining to the same problem don’t
overwhelm the ADR by taking up an inordinate amount of space.

The set of diagnostic data pertaining to an incident or incidents relating to a
problem (or problems) is called an incident package. When you ask for help from
Oracle Support, it’s this incident package that they will expect. You can add other
files, delete files, or scrub data from the incident package before sending it to Oracle
Support. As a DBA, you’ll most likely be dealing with problems instead of single
incidents, and you’ll package the problem data through the IPS to send to Oracle
Support.

By default, the database automatically creates incidents upon the occurrence of
a critical error. You can also create incidents yourself through the new Enterprise
Manager Support Workbench when you want to report problems to Oracle Support
that haven’t been raising any critical errors in the database.

ADR follows a retention policy so it can limit the amount of diagnostic data it must
store. The retention policy actually includes two different settings, one for metadata
retention and the other for incident files and dumps retention, as explained here:

■ The incident metadata retention policy, which has a default setting of one
year, determines how long ADR retains the incident metadata.

■ The incident files and dumps retention policy, with a default setting of one
month, determines how long ADR retains the dump files generated for
critical errors.

You can change either of the different policies pertaining to the ADR incidents
by using the Incident Package configuration link on the Support Workbench page
in Enterprise Manager.

The background process MMON (memory monitor) is in charge of removing
expired ADR data.

You can’t disable automatic incident creation for critical errors.

An incident can be in any one of the following states at a given point in time:

■ Collecting A newly created incident is currently collecting diagnostic data.

■ Ready The incident’s data collection phase is complete, and you can
package the incident to send to Oracle Support.

Incidents and Problems 89

90 Chapter 2: Diagnosing and Resolving Problems

■ Tracking The incident must be kept in the ADR indefinitely because the
DBA is currently working on it. You must manually set the incident status to
this value.

■ Closed The incident is resolved and the ADR will purge it once the
incident passes its retention period.

■ Data-Purged The incident metadata is still valid but the associated files
have been detached from the incident.

If an incident remains in the collecting or ready state for a period that’s twice
as long as its retention period, it automatically is moved to a closed state.

To check an incident’s current status, use either the Support Workbench or issue
the following ADRCI command:

adrci> show incident –mode detail

You can issue just the plain show incident command to get basic details
about all incidents currently considered open.

Incident Packaging Service
In previous releases of the Oracle database, you had to manually gather diagnostic
data from multiple sources to submit to Oracle Support when you notified them of
a problem. Oracle Database 11g provides a new feature called the incident packaging
service (IPS), which lets you automatically gather all diagnostic data pertaining to a
critical error such as the trace files and dump files that you’re familiar with, as well
as the new health check reports, SQL test cases, and related information, and package
the data into a Zip file for sending to Oracle Support. The IPS uses a critical error’s
incident number to automatically identify and gather all relevant diagnostic files and
adds them to the incident package. The IPS uses rules to package all dumps and traces
for a given problem and lets you package them easily for sending to Oracle Support.
You can use rules to gather files generated around a time period, or related to a
particular client or a specific error code, for example.

You are allowed the latitude to add, delete, or remove diagnostic files before
finalizing an incident package and sending it to Oracle Support. Here are some
things you need to know about incident packages:

■ An incident package is a logical construct that represents one or more problems.
By default, the first and the last three incidents for a problem are included in
an incident package. It contains just the metadata for a problem,

■ The package you need to send in the form of a Zip file to Oracle Support
is a physical package (Zip file) that contains all the files referenced by the
metadata in the logical incident package.

■ You must finalize a package before the ADRCI can generate a physical package
from the initial logical package. During the “finalizing” stage, you can add
other diagnostic information in the form of alert log entries, trace files, SQL
test cases, and configuration information. You can finalize a package manually
through the ADRCI utility and can remove any files you want after reviewing
the finalized package.

■ You can generate complete and incremental Zip files.

■ Oracle employs an incident flood control mechanism, as explained earlier,
to limit the amount of diagnostic data that a problem generates in the ADR.
Flood control in this context means that ADRCI lets only a certain number
of incidents under a given problem be dumped during a given time interval.
Once a certain threshold is reached, a flood controlled incident merely
generates an alert log entry but not any incident dumps. You can’t change
the preset threshold levels for incident flood control. Here’s how the
thresholds are determined:

■ After 5 incidents relating to a certain problem in one hour, further
 incidents are flood controlled for that hour.

■ After 25 incidents occur for any problem during one day, further
 incidents for that problem key are flood controlled for that day.

You manage the IPS through either the new Support Workbench, which you can
access from the Enterprise Manager, or through the ADRCI tool. You can create
packages and upload them to Oracle Support through either means, although the
Support Workbench is more intuitive. The ADRCI tool, however, makes up by
providing more capabilities to manage incidents and problems in the database. Let’s
first learn how to manage incidents through the ADRCI tool and then learn how to
do the same thing using the Support Workbench. You can set the IPS rules by using
the command ips set configuration.

Incidents and Problems 91

92 Chapter 2: Diagnosing and Resolving Problems

Viewing Incidents with the ADRCI
You can display information about all incidents by using the show incident
command, as illustrated here:

adrci> show incident

ADR Home = /u01/app/oracle/diag/rdbms/orcl2/orcl2:
**

INCIDENT_ID PROBLEM_KEY CREATE_TIME
------------ --------------- -----------------------------------
17060 ORA 1578 2007-09-25 17:00:18.019731 -04:00
14721 ORA 1578 2007-09-08 06:06:33.703485 -04:00
14658 ORA 600 2007-09-09 07:01:31.874206 -04:00
14657 ORA 600 2007-09-09 07:01:21.395179 -04:00

4 rows fetched

adrci>

The show incident command lists all incidents, including both open and
closed incidents, associated with the current ADR home. You can use the command
show incident -mode detail . . . to get more information about any
incident, including trace file names and other information. Here’s an example:

adrci> show incident -mode DETAIL -p "incident_id=1234"

The previous command uses the INCIDENT_ID attribute to identify a specific
incident. In this case, the command will show a detailed view for incident 1234.

Packaging Incidents with ADRCI
You use an incident package to transmit incident information to Oracle Support.
You can create and submit incident packages easily using the Support Workbench.
However, you can also create packages from the command line with the ADRCI
tool, as I explain in this section.

Creating a Logical Package Before you can create a physical incident package
and transmit it to Oracle Support, you must create a logical package, which the ADR
stores as metadata.

You can create a logical package as an empty package and add diagnostic information
later on. Or, you can create a logical package based on an incident number, problem
number, problem key, or a time interval. When you create a non-empty logical package,
diagnostic information is automatically added to the logical package.

You create a logical package with the ips create package command. To
create an empty package, use this command:

adrci> ips create package
Created package 4 without any contents,
correlation level typical

The package just created (Package 4) is an empty logical package. To create a
nonempty logical package with diagnostic information about an incident, use the
following command.

adrci> ips create package incident 17060
Created package 5 based on incident id 17060,
correlation level typical
adrci>

You can also create a logical package covering all incidents between two time
periods, as shown here:

adrci> ips create package time '2007-09-20 00:00:00 -12:00' to
 '2007-09-30 00:00:00 -12:00'

The previous command will create a logical package that includes diagnostic
information for all incidents that occurred between September 20 and September
30 of 2007. If you want, you can also use the following variations of the create
package command:

■ ips create package problem Create a package based on a
problem ID.

■ ips create package problemkey Create a package based on a
problem key.

■ ips create problem seconds Create a package that includes all
incidents generated from the specified number of seconds in the past until
the present time.

Adding Logical Information to a Logical Package If you create a logical
package by using the ips create package command without specifying an
incident ID, problem ID, or time range, the package will be empty and you must
then add diagnostic information to the existing logical package. Here’s how you
add diagnostic information for an incident to an empty logical package:

adrci> ips add incident 17060 package 4
Added incident 17060 to package 4
adrci>

Incidents and Problems 93

94 Chapter 2: Diagnosing and Resolving Problems

You can add files to an existing package by using the following command:

adrci> ips add file <file_name> package <package_number>

Note that you can add only those files that are located in the ADR directory
hierarchy (under the ADR base).

Generating a Physical Incident Package Once you load the logical package
with diagnostic data, it’s time to create the physical package so you can send it to
Oracle Support. Here’s how you create a physical incident package:

adrci> ips generate package 4 in /u01/app/oracle/diag
Generated package 4 in file
/u01/app/oracle/diag/IPSPKG_20070929163401_COM_1.zip,
mode complete
adrci>

The previous command generates a physical package in the directory /u01/
app/oracle/support from the logical package 4 that you created earlier. Note that
the physical file has the COM_1 suffix in its filename, indicating it’s a complete
incident file. You can create an incremental physical incident package by specifying
the keyword incremental, as shown here:

adrci> ips generate package 4 in /u01/app/oracle/diag
 incremental
Generated package 4 in file
/u01/app/oracle/diag/IPSPKG_20070929163401_INC_2.zip,
mode incremental
adrci>

Once you’ve incorporated all the diagnostic data and are ready to transmit the
physical package to Oracle Support, you can finalize the incident package using
the following command:

adrci> ips finalize package 4
Finalized package 4
adrci>

You’re now ready to upload the physical package you’ve just created to Oracle
Support. Note that you still have to send the file the old-fashioned way, by uploading
it manually. If you use the Support Workbench to package incidents, you can automate
the transmission of the package. We now turn to a review of the Support Workbench.

EXERCISE 2-1

Creating an Incident Package with ADRCI
Create an incident package using the ADRCI tool. Create an empty package first,
and then add information about an incident or incidents to the package. Also show
how you’d generate a package and add an incident file to the already generated
incident package.

Following are the steps you must follow to create an incident package and add
incidents and files to that package:

 1. Create an empty package using the following command:

adrci> ips create package;

 2. Once you create the empty package with the command shown in Step 1, add
information about an incident by using the following command:

adrci> ips add incident 17060 package 4

 In the ips add incident command, you must provide the incident
number and the package number. You can get the package number from the
output of the ips create package command.

 3. Issue the following command to generate a physical package from the logical
package you have now.

adrci> ips generate package 4 in /u01/app/oracle/support

 Note that you must provide both the logical package number and a location
to store the physical package.

 4. To add additional diagnostic files to the physical package created by the
previous command, issue the following command:

adrci> ips add file /u01/app/oracle/diag/orcl2/orcl2/
 trace/123456.trc package 4

 5. Finalize the package with the following command:

adrci> ips finalize package 4

Now you have a physical package that you can transmit to Oracle Support
Services.

Incidents and Problems 95

96 Chapter 2: Diagnosing and Resolving Problems

CERTIFICATION OBJECTIVE 2.03

Support Workbench
The Support Workbench is an Enterprise Manager wizard that enables you to easily
manage incidents and problems in the database caused by critical errors. You can
completely automate the process of viewing incidents, creating and submitting
incident packages, filing Service Requests with Oracle Support, and tracing the
Service Requests with the Support Workbench. The Support Workbench helps
you perform the following incident management–related tasks:

■ View problems and incident details.

■ Generate additional diagnostic data for a problem.

■ Run advisors to fix the problems.

■ Collect diagnostic data for an incident, create the incident package, and
transmit it to Oracle Support.

■ Close the problem upon its resolution.

In addition to these incident management features, you can also use the Support
Workbench to run health checks and for other purposes, as I explain later in this chapter.

The Support Workbench Wizard enables you to upload IPS incident files to
Metalink, but you must first install and configure the Oracle configuration manager
to use this feature. During the installation of Oracle Database 11g, you are given the
opportunity to enable the Oracle Configuration Manager, as shown in Figure 2-1.

If you don’t configure the Oracle Configuration Manager, you must upload the
incident packages to MetaLink the old-fashioned way, by manually sending them.
For details about the configuration of the Oracle Configuration Manager, please
refer to the Oracle manual titled Oracle Configuration Manager Installation and
Administration Guide.

In the following sections, let’s look at how you can use the Support Workbench to
investigate and resolve problems in your database.

Viewing Critical Error Alerts
You can investigate any outstanding problems in the database by directly going to
the Support Workbench homepage. However, the best way to access the Support

Workbench is to first check if there are any outstanding critical alerts in the database.
To do this, go to the Database Home page in Enterprise Manager and scroll down to
the Diagnostic Summary section, where you’ll see the Active Incidents link. You’ll
see a circle with a red X inside it if there are any active incidents in the database. You
can also click on the Critical Alert link in the Alerts section if you want, to go to
the Support Workbench. In addition to these methods of access, you can invoke the
Support Workbench by first clicking the Software and Support link and then clicking
Support Workbench under the Support section.

In this case, let’s access the Support Workbench by first clicking the Software and
Support link on the Database Home page. Click Support Workbench in the Support
section. On the Support Workbench home page that appears, select All from the
View list to view all problems. Figure 2-2 shows the Support Workbench page.

Note that you can also examine problems by reviewing the table of the Alerts
section at the bottom of the Database Home page. A critical error is denoted by a
red X under the Severity column, and the Message column describes the problem.

 FIGURE 2-1 The Oracle Configuration Manager registration screen

Support Workbench 97

98 Chapter 2: Diagnosing and Resolving Problems

Examining Problem Details
In order to view details about a problem, click View Incident Details on the
Incident page. The Problem Details page comes up, as in Figure 2-3, which shows
the Incidents subpage. Select an incident and click View to examine the incident
details. On the Incident Details page, click the Checkers Findings link to get to
the Support Workbench page. In order to examine the problem details from the
Support Workbench, click on a finding in the description column. The Support
Workbench page will now display details about the alert it showed you. Figure 2-3
shows the Incident Details page of the Support Workbench.

In our case, the problem details show one outstanding problem.

Collecting Additional Diagnostic Data
The database always automatically gathers diagnostic data based on the health
check it ran upon the detection of critical alerts. You can have the database collect
additional diagnostics by doing one or both of the following:

 FIGURE 2-2 The Support Workbench page

■ Invoke a health check.

■ Invoke the SQL Test case Builder.

I explain both of these later in this chapter.

Creating a Service Request
Your first step when seeking help from Oracle Support is to create a service request.
Follow these steps to create the service request:

 1. Go to Metalink by clicking the Go to Metalink button in the Investigate and
Resolve section of the Problem Details page.

 2. Log in to MetaLink using your normal MetaLink credentials and create a
service request.

 3. Click the Edit button in the Summary section and enter the service request
number in the window that opens. Click OK.

 FIGURE 2-3 The Support Workbench page showing incident details

Support Workbench 99

100 Chapter 2: Diagnosing and Resolving Problems

Following the steps enumerated here, you can create your service request with
MetaLink. If you want, you can go back to the Problem Details page and record the
Service Request number in that page for future reference.

Packaging and Uploading Diagnostic Data
There are two methods for creating and submitting incident packages through the
Support Workbench: the Quick Packaging method and the Custom Packaging
method. The Quick Packaging method offers you a simple way to package and update
diagnostic data. However, you can’t edit or customize the diagnostic data you upload
to Oracle Support generated in the Quick Packaging method. The Custom Packaging
method involves more steps but it enables you to edit and remove diagnostic data and
customize the incident package in other ways.

Let’s review how to create a package using both of these methods.

Using Quick Packaging
The Quick Packaging Wizard in the Enterprise Manager Support Workbench lets
you quickly package and transmit incidents to Oracle Support. Here are the steps
to use the Quick Packaging method to collect and send diagnostic data to Oracle
Support.

 1. Click Quick Package on the Problem Details page in the Investigate and
Resolve section. The Create New Package page, shown in Figure 2-4,
appears. You have the option of entering a name for your package.

 2. Enter your MetaLink credentials and your Customer Service Identifier. Select
the Yes option for the Send to Oracle Support button. Click Next.

 3. Complete the remaining pages of the Quick Packaging Wizard.

Once you create a package and upload it, the package remains available to you
in the Support Workbench. You can update and modify this package and resend to
Oracle Support if you want.

Using Custom Packaging
Custom Packaging involves more steps than Quick Packaging and provides more
control over the packaging process. You can add or remove problems and incidents,
trace files, external files, and other diagnostic data from a new or updated package,
using the Custom Packaging method.

Follow these steps to choose Custom Packaging:

 1. Click the Package link on the Incident Details page.

 2. On the Select Packaging Mode page, select Custom Packaging and click OK.

 3. On the Select Package page, you can select from existing packages or create
a new package. In this case, select the Create new Package option, enter a
package name, and click OK.

 4. The Customize Package page appears, with a confirmation that your new
package was successfully created. Figure 2-5 shows the Customize Package page.

 5. At this point, the package is created, but not finalized yet. You can perform
other tasks listed in the Packaging Tasks section on the Customize Package
page, such as editing the package contents, adding diagnostic data, or
scrubbing user data.

 6. In the Packaging Tasks section (Customize Package page), under the Send
to Oracle Support section, click Finish Contents Preparation to finalize the
package.

 FIGURE 2-4 The Create New Package page in Support Workbench

Support Workbench 101

102 Chapter 2: Diagnosing and Resolving Problems

 7. Click Generate Upload File to generate the upload file. Select Full or
Incremental to generate a full or an incremental Zip file for the incident
package. Click either Immediately or Later and then click Submit to
schedule the submission of the package to Oracle Support.

 8. After processing the Zip file and confirming it, the Customize Package page
returns. Click Send to Oracle. The View/Send Upload Files page appears,
with a list of Zip files, too. After selecting the Zip files to upload, click Send
to Oracle. Fill the MetaLink required information and select whether to
create a new service request. Click Submit after selecting either an immediate
or a scheduled upload.

Tracking the Service Request
Once you submit an incident package to Oracle Support, you can perform
the following additional activities to track your service request and implement
repairs:

 FIGURE 2-5 The Customize Package page

■ Add comments to the problem activity log so all the DBAs in your
organization have the latest information on the service request’s progress.

■ Add new incidents to the package and resend it to Oracle Support.

Implementing Repairs
You can use the Support Workbench to implement any recommendations made that
involve the use of an Oracle advisor. You can run the Data Recovery Advisor and/or
the SQL Repair Advisor to repair data corruption or SQL failures respectively, if they
are recommended. I discuss both of these new Oracle advisors later in this chapter.

Closing Incidents
Once a particular incident is resolved to your satisfaction, you can close the incident
from the Support Workbench home page. By default, Oracle purges all incidents
after 30 days, unless you disable the purging of an incident.

Generating a User-Created Problem
The database automatically adds critical errors (system-generated problems) to
the ADR and tracks them in the Support Workbench. You can use the Support
Workbench to add additional diagnostic data to these problems and upload the
diagnostic data to Oracle Support. However, there may be times when you want
Oracle Support to diagnose a problem that wasn’t trapped as a critical error by the
database. You can generate what’s known as a user-reported problem by using the
following steps:

 1. Go to the Support Workbench from the Software and Support tab on the
Database Control (or Enterprise Manager) Home page.

 2. Click Create User-Reported Problems under Related Links. Figure 2-6 shows
the Create User-Reported Problem page that appears.

 3. Select the issue type, such as System Performance or Resource Usage, and
click Run Recommended Advisor. If you need further help or if you didn’t
run the recommended advisor, you can do one of the following:

■ Select the issue type and click Continue with Creation of Problem.

■ Select the issue type None of the Above, enter the problem description,
 and click Continue with Creation of Problem.

 4. In the Problem Details page, follow the instructions to finish reporting the
problem.

Support Workbench 103

104 Chapter 2: Diagnosing and Resolving Problems

Viewing the Alert Log
As mentioned earlier, in Oracle Database 11g, there are two alert logs for each
instance, one a text-based file and the other an XML-formatted file. You can view
the alert log for an instance in several ways:

■ Use a text editor to view the text editor, whose location you can find by
looking at the path given for the Diag Trace entry in the V$DIAG_INFO
query results.

■ You can view the XML-formatted alert log after finding out its location from
the Diag Alert entry in the V$DIAG_INFO query results.

■ You can view the alert log by clicking Alert Log Contents in the Database
Home page in Enterprise Manager (under Related Links).

■ You can use the ADRCI utility to view the XML-formatted alert log after
stripping the XML tags.

 FIGURE 2-6 The Create User-Reported Problem page in the Support Workbench

CERTIFICATION OBJECTIVE 2.04

Health Monitor
Oracle Database 11g includes a new framework called the Health Monitor, which runs
diagnostic checks in the database. The data base automatically runs Health Monitor
checks in response to critical errors. The checks examine database components such
as memory, process usage, and transaction integrity. You can also run your own health
checks by using either Enterprise Manager or the new DBMS_HM package. Each time
a health check runs, it generates a report of its execution, which includes information
such as the health check’s findings graded accorded to priority (high, critical, or low)
and execution statistics.

You can run the Health Monitor checks in two ways:

■ Reactive checks are run automatically by the database.

■ Manual checks are run by the DBA.

You can query the V$HM_CHECK view to get a list of the possible health checks
that can be run, as shown here:

SQL> select name, description from v$hm_check;

NAME DESCRIPTION
--------------------- ---------------------------
HM Test Check Check for HM Functionality
DB Structure Integrity Check Checks integrity of all
 Database files
Data Block Integrity Check Checks integrity of a
 datafile block
Redo Integrity Check Checks integrity of redo
 log content
Logical Block Check Checks logical content of
 a block
Transaction Integrity Check Checks a transaction for
 corruptions
Undo Segment Integrity Check Checks integrity of an
 undo segment
All Control Files Check Checks all control files
 in the database
CF Member Check Checks a multiplexed copy
 of the control file

Health Monitor 105

106 Chapter 2: Diagnosing and Resolving Problems

All Datafiles Check Check for all datafiles
 in the database
Single Datafile Check Checks a datafile
Log Group Check Checks all members of a
 log group
Log Group Member Check Checks a particular member
 of a log group
Archived Log Check Checks an archived log
Redo Revalidation Check Checks redo log content
IO Revalidation Check Checks file accessibility
Block IO Revalidation Check Checks file accessibility
Txn Revalidation Check Revalidate corrupted txn
Failure Simulation Check Creates dummy failures
Dictionary Integrity Check Checks dictionary
 integrity

21 rows selected.
SQL>

At any given time, the database may be running only some of the checks listed in
the V$HM_CHECK view. The V$HM_RUN view shows details about the actual
checks performed by the Health Monitor, both automatic as well as the ones that
were run by the DBA.

There are two types of health checks: DB-online and DB-offline. The online
checks can be run when the database is in the open or mount mode. The offline checks
can also be run in the nomount mode. All checks are online except the Redo Check
and Data Crosscheck, which are offline checks.

Running a Health Check
You can run a health check from Enterprise Manager’s Health Monitor interface or
by using the DBMS_HM package. You can access the Health Monitor interface in
Enterprise Manager by clicking the Checkers tab on the Advisor Central page. From
this page, you can run checks (also called checkers) and view the findings of those
checks.

You can use the RUN_CHECK procedure of the DBMS_HM package to run any
check that’s listed in the V$HM_CHECK view. The RUN_CHECK procedure can
take the following four parameters:

■ check_name Provides the name of the check you want to invoke. Use the
following query to get the list of checks that you can manually run:

SQL> select name from v$hm_check where internal_check='N';

■ run_name A user-generated name for identifying a check’s run. If you pass
a NULL value, the Health Monitor creates a unique name for the check run.

■ timeout Provides a time limit for the checker run. If you pass a NULL
value for this parameter, there won’t be a time limit for the checker run.

■ input_params Lets you specify name/value pairs de-limited by a special
character (;), as shown in the following example in the case of a Data Block
Integrity Check.

BLC_DF_NUM=1;BLC_BL_NUM=23456

EXERCISE 2-2

Running a Health Check with Input Parameters
You can use input parameters for most health checks. Some of the input parameters
are optional and the others are mandatory. The following exercise shows how to pass
an input parameter for a transaction integrity check. First, use the following query
on the V$HM_CHECK_VIEW to find out the parameter values for different health
checks.

SQL> select c.name check_name, p.name parameter_name,
 p.type,p.default_value, p.description
 from v$hm_check_param p, v$hm_check c
 where p.check_id = c.id and c.internal_check = 'N'
 order by c.name;

To pass input parameters to a specific health check, use the name/value pair
notation, with the name and value separated by a semicolon (;). Here’s an example:

begin
dbms_hm run_check (
 check_name => 'Transaction Integrity Check',
 run_name => 'testrun1',
 input_params => 'TXN_ID=9.44.1');
end;

The example shows how to pass a value for the transaction id parameter,
with the check name being Transaction Integrity Check.

Health Monitor 107

108 Chapter 2: Diagnosing and Resolving Problems

Every check has its own specially defined set of inputs. You can view the input
parameters for each of the checks you can run by querying the V$HM_CHECK_
PARAM view.

The following example shows how to run a health check using the RUN_
CHECK procedure.

SQL> exec dbms_hm.run_check ('Dictionary Integrity
 Check','TestCheck1',0);

PL/SQL procedure successfully completed.
SQL>

The RUN_CHECK procedure in the example runs a dictionary integrity check.
You can provide a name for the check you’re running. In this example, the check
name is TestCheck1.

The Health Monitor stores its reports in the ADR. You can query the V$HM_
RUN, V$HM_FINDING, and V$HM_RECOMMENDATION views to get the
findings and recommendations made by the check you ran. Alternatively, you can
view the report of the check you just ran, with the help of the GET_RUN_REPORT
function, as shown here:

SQl> set long 100000

SQL> select dbms_hm.get_run_report('TestCheck1') from dual;

 DBMS_HM.GET_RUN_REPORT('TESTCHECK1')
--
Basic Run Information
 Run Name : TestCheck1
 Run Id : 42721
 Check Name : Dictionary Integrity Check
 Mode : MANUAL
 Status : COMPLETED
 Start Time : 2007-10-03 16:40:47.464989 -04:00
 End Time : 2007-10-03 16:41:23.068746 -04:00
 Error Encountered : 0
 Source Incident Id : 0
 Number of Incidents Created : 0
Input Parameters for the Run
 TABLE_NAME=ALL_CORE_TABLES
 CHECK_MASK=ALL

Run Findings And Recommendations
 Finding
 Finding Name : Dictionary Inconsistency
 Finding ID : 42722

 Type :FAILURE
 Status : OPEN
 Priority : CRITICAL
 Message : SQL dictionary health check:
 dependency$.dobj# fk 126 on object DEPENDENCY$ failed
 Message : Damaged rowid is AAAABnAABAAAOiHABI –
description: No further damage description available

SQL>

The GET_RUN_REPORT procedure relies on the HM_* views listed earlier
to provide you the findings and recommendations based on the check. The GET_
RUN_REPORT procedure can take three values: run_name, type, and level.
Of these, only the run_name parameter is mandatory. The default report type is
text and the other possible values are html and xml. The level parameter
determines the details shown in the report and the possible values are basic and
detail, although currently only the basic level of detail is supported.

You can also use the ADRCI utility to view the reports of Health Monitor checks.
After setting the homepath to point to the current database instance, issue the
show hm_run command first, as shown here:

adrci> show hm_run

**
HM RUN RECORD 2131
**
 RUN_ID 42721
 RUN_NAME TestCheck1
 CHECK_NAME Dictionary Integrity Check
 NAME_ID 24
 MODE 0
 START_TIME 2007-10-03 16:40:47.4649 -04:00
 RESUME_TIME <NULL>
 END_TIME 2007-10-03 16:41:23.0687 -04:00
 MODIFIED_TIME 2007-10-03 16:41:59.7867 -04:00
 TIMEOUT 0
 FLAGS 0
 STATUS 5
 SRC_INCIDENT_ID 0
 NUM_INCIDENTS 0
 ERR_NUMBER 0
 REPORT_FILE
 /u01/app/oracle/diag/rdbms/orcl2/orcl2/hm/HMREPORT_TestCheck1
2131 rows fetched

adrci>

Health Monitor 109

110 Chapter 2: Diagnosing and Resolving Problems

The show hm_run command shows all test runs that were run in the database.
Here, I’m showing only the single HM run we're interested in, called TestCheck1.
In my example, the output of the show hm_run command shows the filename
of the report under the report_file column. This means the report for this
particular check has already been generated. If the report_file column shows a
NULL value, you must first generate the report using the create report hm_run
command, as shown here:

adrci> create report hm_run TestCheck1

You can view a report by issuing the show report hm_run command, as
shown here:

adrci> show report hm_run TestCheck1

Note that you pass the check name as a parameter to both the create report
hm_run and the show report hm_run commands.

Viewing the Health Monitor Reports
The Health Monitor stores its checker reports in the ADR, and you can view the
reports through the Enterprise Manager, the ADRCI, the DBMS_HM package, and
the V$HM_RUN view.

CERTIFICATION OBJECTIVE 2.05

SQL Repair Advisor
When a SQL statement failure results in a critical error, the new SQL Repair Advisor
analyzes the statement and in many cases recommends a patch to fix the failed
statement. The fix is usually in the form of a recommendation to apply a SQL patch
to bypass the failure, without changing the SQL statement itself. Applying the
recommended patch leads the query optimizer to select an alternate execution plan
for the problem statement. If the SQL Repair Advisor fails to provide a patch, you
can, of course, use the Support Workbench to package the incident files and send
the diagnostic data to Oracle Support for help.

The SQL Repair Advisor tries to recommend a SQL patch when it’s unable to
find a fix for the problem SQL statement(s). A SQL patch is very similar to a SQL
profile, but it’s used mostly as a workaround to fix a failing SQL statement.

There are two ways you can invoke the SQL Repair Advisor. The first way is to
use the Support Workbench to launch the SQL Repair Advisor. You can also use the
new DBMS_SQLDIAG package to invoke the SQL Repair Advisor. First, let’s learn
how to invoke the advisor from the Support Workbench.

Using the Support Workbench
Here are the steps to invoke the SQL Repair Advisor from the Support Workbench
home page:

 1. From the Support Workbench home page, go to the Problem Details page by
clicking on the ID of the problem you’re investigating.

 2. Click the specific problem message resulting from the failed SQL statement.

 3. Click SQL Repair Advisor in the Investigate and Resolve section on the Self
Service tab.

 4. Enter the appropriate options to run the advisor immediately or at a scheduled
time later.

 5. Click Submit.

 6. On the SQL Repair Results page, click View to examine the Report
Recommendations page.

 7. Click Implement to carry out the SQL Repair Advisor’s recommendations.

 8. The implementation is completed when the SQL Repair Results page shows
you a confirmation message.

You can disable or remove the patches installed through the SQL Repair Advisor
by going to the Database Control home page and navigating to Server | SQL Plan
Control | SQL Patch | Disable (or Drop). You may want to do this when you
migrate to a new version of the database.

Using the DBMS_SQLDIAG Package
Although using the Enterprise Manager is the most straightforward way to invoke
the SQL Repair Advisor, you can also use the new DBMS_SQLDIAG package to

SQL Repair Advisor 111

112 Chapter 2: Diagnosing and Resolving Problems

invoke the advisor. In the following example, I first create a SQL Repair Advisor
task and then apply and test the SQL patch offered by it:

 1. Identify the problem SQL statement, as shown in the following example,
which results in an error:

SQL> delete from t t1 where t1.a = 'a'
 and rowid <> (select max(rowid)
 from t t2 where t1.a= t2.a and t1.b = t2.b and t1.d=t2.d);

 You can fix the error resulting from executing the SQL statement by using
the SQL Repair Advisor.

 2. Create a SQL Repair Advisor diagnostic task by passing the offending SQL
query as the value for the sql_text attribute:

SQL> declare
 2 report_out clob;
 3 task_id varchar2(50);
 4 begin
 5 task_id := dbms_sqldiag.create_diagnosis_task(
 6 sql_text=>' delete from t t1 where t1.a = 'a'
 and rowid <> (select max(rowid) from t t2
 where t1.a= t2.a and t1.b = t2.b
 and t1.d=t2.d)',
 8 task_name =>'test_task1',
 9 problem_type=>dbms_sqldiag.problem_type_compilation
 _error);
 10* end;
SQL> /

PL/SQL procedure successfully completed.
SQL>

 The previous code specifies the SQL statement you want the SQL Repair
Advisor to analyze. In addition, it specifies the task name and the problem
type. I chose problem_type_compilation_error as the value for the
problem_type parameter in this example. The other possible value for
the problem_type parameter is problem_type_execution_type.

 3. Once you create the new task, you can provide the new task parameters by
executing the set_tuning_task_parameter procedure, as shown here:

SQL> exec dbms_sqltune.set_tuning_task_parameter('task_id,
'-SQLDIAG_FINDING_MODE', dbms_sqldiag.SQLDIAG_FINDING_
FILTER_PLANS);

 You are now ready to execute the task, as shown in the next step.

 4. Execute the diagnostic task you created earlier, by passing the task name as a
parameter to the EXECUTE_DIAGNOSTIC_TASK procedure:

SQL> exec dbms_sqldiag.execute_diagnosis_task('test_task1');

PL/SQL procedure successfully completed.

SQL>

 The EXECUTE_DIAGNOSTIC_TASK procedure has only a single param-
eter, task_name.

 5. Use the REPORT_DIAGNOSTIC_TASK procedure to get an analysis of the
diagnostic task you executed:

SQL> declare rep_out clob;
 2 begin
 3 rep_out := dbms_sqldiag.report_diagnosis_task
 4 ('test_task1',dbms_sqldiag.type_text);
 5 dbms_output.put_line ('Report : ' || rep_out);
 6*end;
SQL> /

Report : GENERAL INFORMATION
SECTION

Tuning Task Name : test_task1
Tuning Task Owner : SYS
Tuning Task ID : 3219
Workload Type : Single SQL Statement
Execution Count : 1
Current Execution : EXEC_3219
Execution Type : SQL DIAGNOSIS
Scope : COMPREHENSIVE
Time Limit(seconds) : 1800
Completion Status : COMPLETED
Started at : 10/20/2007 06:33:42
Completed at : 10/20/2007 06:36:45
Schema Name : SYS
SQL ID : 44wx3x03jx01v
SQL Text : delete from t t1 where t1.a = 'a'
 and rowid <> (select max(rowid)
 from t t2 where t1.a= t2.a
 and t1.b = t2.b and t1.d=t2.d)
...
PL/SQL procedure successfully completed.

SQL>

SQL Repair Advisor 113

114 Chapter 2: Diagnosing and Resolving Problems

 6. If the SQL Repair Advisor recommends a patch, you can accept the patch by
executing the ACCEPT_SQL_PATCH procedure, as shown here:

SQL> exec dbms_sqldiag.accept_sql_patch (task_name=>
 'test_task1',task_owner=> 'SYS')

You can now execute the problem SQL statement to ensure that the workaround
patch did fix the problem. Check the explain plan output for the SQL statement to
make sure it shows use of the SQL patch. The DBA_SQL_PATCHES view contains
the names of all the patches recommended by the SQL Repair Advisor.

If you want to drop the SQL patch for any reason, you can do so by using the
DROP_SQL_PATCH procedure. You can remove the SQL patch, for example,
if you receive an official patch from Oracle to fix the problem. You can also drop
the SQL patches when you upgrade your database to the next patch set or Oracle
release.

You can export a SQL patch into another database by using a staging table. Inserting
a patch is called packing the staging table and creating patches using the staging table
is called unpacking. The following exercise shows how to export a SQL Patch.

EXERCISE 2-3

Exporting a SQL Patch to Another Database

 1. Create a staging table by executing the CREATE_STGTB_SQLPATCH
procedure:

SQL> exec dbms_sqldiag.create_stgtab_sqlpatch (
 table_name => 'mystagetab1',
 schema_name => 'hr');

 In the next step, you’ll use this table to store the SQL patch information.

 2. Execute the PACK_STGTAB_SQLPATCH procedure to write SQL patch
information to the staged table you created in Step 1.

SQL> exec dbms_sqldiag.pack_stgtab_sqlpatch (
 staging_table_name => 'mystagetab1');

 This will copy all SQL patches in the DEFAULT category to the staging table
mystgtab1. You can now move the staging table to the new database using the
Data Pump Export and Import utilities.

 3. Use the UNPACK_STGTAB_SQLPATCH procedure to create SQL patches
on the new system using the patches in the staging table.

SQL> exec dbms_sqldiag.unpack_stgtab_sqlpatch
 (staging_table_name => 'mystgtab1');

 By default, Oracle will unpack all patches in the staging table and apply those
patches to the target database.

In addition to the SQL Repair Advisor, Oracle Database 11g also provides the
new SQL Test Case Builder tool, to help you create test cases so Oracle Support
Services can reproduce and test a problem. The new tool simplifies the effort and
reduces the time involved in gathering information about SQL-related problems.
The SQL Test Case Builder tool gathers information about the following things: the
query that was being executed, table and index definitions, procedures, functions
and packages, initialization parameter settings, and optimizer statistics.

The following are the steps to access the SQL Test Case Builder from the Support
Workbench page:

 1. Click the Problem ID you are interested in to get to the problem details page.

 2. Click the Oracle Support tab.

 3. Click “Generate Additional Dumps and Test Cases.”

 4. On the “Additional Dumps and test Cases” page, click the icon in the Go to
Task column to start the SQL Test Case Builder analysis.

The SQL Test Case Builder produces a SQL script with the commands necessary
to re-create the necessary database objects in an identical environment. You can
also execute the DBMS_SQLDIAG.EXPORT_SQL_TESTCASE_DIR_BY_INC
function to manually invoke the SQL Test Case Builder.

CERTIFICATION OBJECTIVE 2.06

Data Recovery Advisor
The Data Recovery Advisor (DRA) is a new tool that automatically diagnoses
failures in the database, determines the repair options and, optionally, executes the
repairs if you want. A database failure could be a corruption or loss of data, including

Data Recovery Advisor 115

116 Chapter 2: Diagnosing and Resolving Problems

the loss of datafiles. You can access DRA through the RMAN client or Enterprise
Manager.

The DRA uses Oracle Database 11g’s new diagnosability infrastructure and the
new diagnostic concepts such as problems, incidents, and failures to automatically
diagnose data failures. The DRA can help you fix problems such as lost datafiles,
data block corruption, I/O failures, and a crashed database. Here are the main goals
of the DRA:

■ Early detection of data failures, which limits damage

■ Automatic detection of failures, along with recommendations and even repair
of the failures

■ Reduced database downtime

The Data Recovery Advisor can diagnose and help fix problems such as the
following:

■ Inaccessible datafiles and control files

■ Physical data corruption such as invalid block header field values

■ Inconsistencies such as one datafile being older than others

■ I/O failures such as hardware errors

A checker or check is a specific diagnostic procedure registered with the Health
Monitor. You can proactively invoke these checkers, known as data integrity checks,
yourself, and they are also run reactively by the database itself. The Health Monitor
automatically runs a data integrity check whenever it finds an error in the database.
The data integrity check searches the database for any failures that caused the errors.
A failure is defined as a problem such as data corruption that is diagnosed by the
database. All diagnosed failures are stored in the ADR.

You can use the DRA to fix the data failures that caused the errors, but you can
only do so after the failure diagnostics are stored in the ADR. You can use the Data
Recovery Advisor to diagnose a failure and in most cases, fix it, either through a
manual course of action or through an automated repair strategy. The failure data is
stored outside the database. Consequently, you can view failures and fix them even
when the database is in the nomount state.

All findings in the DRA are organized into groups pertaining to a specific failure.
The DRA also assigns severity levels such as critical and high to each database failure
it captures. Once the DBA requests the DRA for repair advice, the DRA provides
all the automatic and manual repair choices available to you, along with its advice.
You can choose to fix the problem yourself using the manual methods or to have the
DRA perform the repairs.

Note that the DRA consolidates related failures into a single failure. If 100 data
blocks are corrupted in a datafile, the DRA will show a single failure. You can drill
down to the level of an individual sub-failure.

The DRA doesn’t automatically tag a database error that is logged in the alert
log file, such as an ORA-600 error, as a failure. To be considered a failure, a problem
must be diagnosed by a check (or checker) registered with the Health Monitor.
So, the chain of causation is this: an error leads to a Health Monitor data integrity
check, which investigates the failures related to the error. If the database finds
related failures, it lodges the information about the failure in the ADR. It is at this
point that you can call on the DRA to generate repair advice.

The preceding chain of causation relates to a reactive data integrity check, but
the logic is the same when you launch your own proactive data integrity checks. A
failure that your check reveals will be treated just as a failure that’s detected by a
Health Monitor data integrity check. Also, any validate or backup commands
you issue through RMAN will invoke an automatic data integrity check.

Failures
You must be aware of three failure characteristics: status, priority and grouping:

■ Failure status When the database first reports a failure, the failure has a
status of open. Once the failure is repaired, the status changes to closed.
When you run the list failure command, it automatically closes all
failures that have been resolved. If, for some reason, the database doesn’t set
the status of a fixed failure to closed, you can do so by using the change
failure . . . closed command. But remember that if you try to set the
status of an unresolved failure to closed, the Data Recovery Advisor will
re-create the failure with a different ID following the next data integrity check,
when the check encounters the unresolved failure.

■ Failure priority A failure can be assigned three levels of priority: critical,
high, or low. A high priority level, such as the one assigned to a missing
current control file, could bring the database down. Events such as a missing
archived red log are assigned the high level of priority. The DRA, however,
assigns only the critical or high level of priority to a failure, and the
list failure command shows you only the failures with these two levels
of priority. If, in your opinion, a failure with a high priority isn’t really a
big deal and can wait for fixing, you can manually change the priority level
of that failure to low, thus keeping that failure from appearing in the list
failure output. You can’t, however, change the priority level of a failure
from critical to low.

Data Recovery Advisor 117

118 Chapter 2: Diagnosing and Resolving Problems

■ Failure grouping The DRA always groups related failures together under a
single parent failure. You can, however, use the detail option in the list
failure command to view details about the individual failures in a group.

Repair Options
The DRA offers you two types of repair options in some cases, manual and automatic.
It’s your responsibility to perform the manual repair actions, whereas the DRA performs
the automatic repair actions itself. The DRA first checks to see if it can perform the
automatic repair before offering the repair choice to you. For example, in the case
of a failure repair that involves restoring and recovering a datafile, the DRA will
offer to automatically perform this repair only after first verifying that the necessary
datafile backups and archived redo logs do exist and that RMAN can access them. It
may further divide the manual repair actions into mandatory or optional actions. If a
manual option is easier to perform than undertaking a more drastic repair in the way
of restoring and recovering datafiles, for example, the Data Recovery Advisor presents
both the manual and the automatic repair choices. If the Data Recovery Advisor knows
that a problem can’t be fixed with an automatic repair, the DRA will state that the
manual repair action is mandatory. If a repair action can be performed either manually
or automatically, such as restoring and replacing a missing datafile, the DRA will offer
both options.

Whenever the DRA offers an automatic repair option, it shows you the directory
location where the repair script it’s going to use is stored. You can then edit and
execute this file yourself, if you so desire.

Wherever it’s possible to do so, the DRA tries to consolidate its repairs for multiple
failures into a single repair consisting of several individual steps. If it can’t repair a
failure that results from, say, a missing controlfile, it’ll report that information to
you and suggest that you first fix those other problems. In this case, you may create a
new control file and issue the list failure, advise failure, and repair
failure commands once again, so the DRA can fix the failure for you.

Oracle does inform you that a DRA failure repair sometimes may not do the trick
because the DRA doesn’t check every single byte in a backup file or an archived
redo log. This leaves room for the possibility that a corrupt block in either a backup
file or an archived redo log may still keep you from fixing the database failure.

In Oracle Database 11g Release 1, the Data Recovery Advisor supports only a
single instance and not Oracle RAC databases. If all the instances of an Oracle
RAC setup crash, you can mount the database in the single instance mode and use
the DRA to fix certain problems as well as invoke data recovery checks. You can’t,
however, use the DRA to detect failures such as an inaccessible datafile, which is
local to another instance in the Oracle RAC configuration.

You can invoke the DRA through RMAN as well as through Enterprise Manager.
In Enterprise Manager, the DRA is integrated with both the Support Workbench
and the Health Monitor. Let’s first examine how to use the DRA through an RMAN
client.

Using RMAN to Manage the Data Recovery Advisor
You can use the RMAN interface to invoke the Data Recovery Advisor and manage
and resolve various types of data failures. Before you actually walk through a data
failure repair with RMAN, it’s important to review the key RMAN commands
pertaining to the DRA.

Viewing Failures
Use the list failure command to view a list of database failures that were caught
by invoking an automatic or manual database check prompted by an error in the
database. Here’s an example:

RMAN> list failure;

The V$IR_FAILURE view stores the results of all the list failure
commands you issue.

The list failure command lists a failure only if the database has
diagnosed a failure. The list failure command doesn’t initiate a data
integrity check by itself—it merely reports an already diagnosed failure.

You can view individual sub-failures by issuing the list failure . . . detail
command. Because the Data Recovery Advisor consolidates failures wherever
possible, you use the detail option to list individual failures. You can provide
options such as critical, high, low, or closed to limit the list failure
command’s output to only those failures that belong to a specific priority level. By
default, the list failure command shows all failures with a priority level of
critical or high. Here are some list failure command variations:

RMAN> list failure critical;
RMAN> list failure open;
RMAN> list failure closed;

The first command shows only those failures with a priority level of critical,
and the second, only those failures that are currently open. The failure status
remains open until you invoke a repair action; after the failure is repaired manually
or automatically by the DRA, its status will be closed. You can exclude some

Data Recovery Advisor 119

120 Chapter 2: Diagnosing and Resolving Problems

failures from the list failure output by adding the exclude failure
option, as shown here:

RMAN> list failure exclude failure 12345;

Once a failure is repaired, the Data Recovery Advisor will remove that failure
from the list failure output.

You must understand
the implications of using various Data
Recovery Advisor commands. For example,

you must know that the advise failure
command implicitly closes all open failures
that are already fi xed.

Dealing with Failures
Use the change failure command to change the priority level of a database
failure. This command is useful when you want to close a failure that’s really trivial.
Note that you can change a priority of high to low and vice versa, but you can’t
change a critical priority level. The default output list of the list failure
command shows all high-priority failures. If there are too many high-priority failures
that you’re already aware of, you may want to change a failure’s status from high to
low to avoid seeing those failures in the output of the list failure command.

The following example shows how to change the priority level of a command
from high to low:

RMAN> change failure 1 priority low;

You can change a problem’s status to closed any time you want, even if the
failure wasn’t really fixed. However, if the DRA gets new checker data pertaining to
that problem, it will re-create the failure with a different ID.

Getting Repair Advice
Use the advise failure command to get advice on a failure. The command
prints a summary of the failure. It also implicitly closes all open problems that have
been fixed. By default, the command reports on all critical and high priority
repairs. The command lists all failures that have a critical or high level of priority.
The command shows a summary of the repair options as well as a single repair option
for each failure. The repair options can be manual as well as automated. The two
repair options are a no-data-loss and a data-loss repair.

Manual repair options can be mandatory or optional. Often, a manual repair
option may be the best option, as it avoids more extreme measures such as restoring
and recovering entire datafiles, as in the automatic repair option. For this reason,
Oracle recommends that you try the manual repair options first before considering
the automatic repair options suggested by the advise failure command.

After showing the available repair options, RMAN generates a repair script to
implement the repair option it recommends. You can then use this script, also called
a manual checklist, after making any necessary changes to it, to repair the failure.

Using the RMAN-generated repair script may often help you fix a problem
quicker than letting RMAN perform the repair. For example, it’s far easier to
manually restore a lost table from another database rather than to let RMAN
perform a laborious restore and recover operation to fix the problem.

Once you issue the advise failure command, you can query the V$IR_
MANUAL_CHECKLIST view to examine the recommended repair, as shown here:

SQL> select advise_id, rank, message from v$ir_manual_checklist;

ADVISE_ID RANK MESSAGE
------ ------ ---
21 0 if file /u01/app/oracle/nick/users01.dbf
 was unintentionally renamed or moved,
 restore it
21 0 if file /u01/app/oracle/nick/example01.dbf
 was unintentionally renamed or moved,
 restore it

SQL>

In the V$IR_MANUAL_CHECKLIST view, the MESSAGE column shows
a summary of the repair advice offered by the DRA. Note that the DRA always
tries to consolidate the repair actions so multiple failures can be fixed with a single
repair job.

The repair script generated by RMAN shows the commands RMAN will use to
fix the failure. Here’s an example showing how RMAN might fix a failure involving
a missing datafile:

restore and recover datafile
restore check readonly datafile 1;
recover datafile 1;

You can choose to execute this repair script yourself, or fix the problem using a
less time-consuming option, such as the importing of a table or tables, instead of
letting the DRA automatically execute the repair script.

Data Recovery Advisor 121

122 Chapter 2: Diagnosing and Resolving Problems

Repairing Failures
Once the advise failure command reports its repair recommendations, you
can either manually repair the failures or choose the automatic repair option. If
you want the Data Recovery Advisor to automatically fix the failures, simply issue
the repair failure command so RMAN can fix the failure. Sometimes, the
advise failure command may ask you to perform some manual repairs first
before executing the repair failure command. Here’s the basic repair
failure command:

RMAN> repair failure;

You must issue the advise failure command before you can fix problems
with the repair failure command. Otherwise, you’ll get an error, as shown
in this example:

RMAN> repair failure;
using target database control file instead of recovery catalog
RMAN-00571: =======================
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ========
RMAN-00571:
==
RMAN-03002: failure of repair command at 10/21/2007 12:15:24
RMAN-06954: REPAIR command must be preceded by ADVISE command in
 same session
RMAN>

By default, the repair failure command will implement the single repair
recommendation shown in the output for the advise failure command. You
can also choose to merely view RMAN’s repair procedure without actually repairing
the failure by using the preview option with the repair failure command:

RMAN> repair failure preview;

The repair failure preview command is helpful in ascertaining the
actual steps of the RMAN repair procedure, without embarking on the repair process.

The V$IR_REPAIR view shows the results of the repair failure command.
Here’s the structure of the V$IR_REPAIR view:

SQL> desc v$ir_repair
 Name Null? Type
----------------------- ------ ---------------
 REPAIR_ID NUMBER
 ADVISE_ID NUMBER
 SUMMARY VARCHAR2(32)

 RANK NUMBER
 TIME_DETECTED DATE
 EXECUTED DATE
 ESTIMATED_DATA_LOSS VARCHAR2(20)
 DETAILED_DESCRIPTION VARCHAR2(1024)
 REPAIR_SCRIPT VARCHAR2(512)
 ESTIMATED_REPAIR_TIME NUMBER
 ACTUAL_REPAIR_TIMENUMBER
 STATUS VARCHAR2(7)

The following query on the V$IR_REPAIR view shows details about the current
repairs:

SQL> select repair_id,advise_id,summary,rank
 from v$ir_repair;

REPAIR_ID ADVISE_ID SUMMARY RANK
------------ -------- -------------------- --------
 23 21 NO DATA LOSS OPTION 1
 69 67 NO DATA LOSS OPTION 1
 82 80 NO DATA LOSS OPTION 1
SQL>

The NO DATA LOSS option under the summary column means that the failure
can be fixed without losing any data.

In addition to the V$IR_REPAIR view, there are also the following new views
that help you investigate database errors:

■ V$IR_MANUAL_CHECKLIST Lists the manual repair advice produced
by the advise failure command.

■ V$IR_FAILURE Lists all failures that result from the list failure
command and includes closed failures. For example, the following command
shows all failures detected on February 10, 2008:

SQL> select * from v$ir_failure
 where trunc(time_detected) = '10-FEB-2008';

■ V$IR_FAILURE_SET Is a cross-reference of failure and advice identifiers.

Using the DRA to Restore a Missing Datafile
In the following example, the database fails to start up because a datafile is missing:

SQL> startup
ORACLE instance started.
Total System Global Area 615055360 bytes

Data Recovery Advisor 123

124 Chapter 2: Diagnosing and Resolving Problems

Fixed Size 1324864 bytes
Variable Size 239757504 bytes
Database Buffers 369098752 bytes
Redo Buffers 4874240 bytes
Database mounted.
ORA-01157: cannot identify/lock data file 4 - see
DBWR trace file
ORA-01110: data file 4: 'C:\ORACLE\PRODUCT\10.2.0\ORADATA\NICK
\USERS01.DBF'
SQL>

You can fix this problem by using the Data Recovery Advisor as follows:

 1. Start RMAN and issue the list failure command:

RMAN> list failure;

List of Database Failures
Failure ID Priority Status Time Detected Summary
---------- -------- ------- ------------- ---------------
4 HIGH OPEN 20-OCT-07 multiple datafiles
 are missing

RMAN>

 You can get more details about the failure by issuing the list failure
command with the keyword detail and by passing the unique identifier for
the specific failure, as shown here:

RMAN> list failure 4 detail;

 The previous command shows all sub-failures under the failure identified by
the unique identifier 4.

 2. Issue the advise failure command to get recommendations from the
DRA to fix the missing datafiles problem.

RMAN> advise failure;

List of Database Failures
Failure ID Priority Status Time Detected Summary
---------- -------- --------- --------- ---------------
4 HIGH OPEN 20-OCT-07 multiple datafiles
 are missing

analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=152 device type=DISK

analyzing automatic repair options complete

Manual Checklist
===
if file C:\ORACLE\PRODUCT\10.2.0\ORADATA\NICK\USERS01.DBF
was unintentionally renamed or moved, restore it

if file C:\ORACLE\PRODUCT\10.2.0\ORADATA\NICK\EXAMPLE01.DBF
was unintentionally renamed or moved, restore it

Automated Repair Options
==
Option Strategy Repair Description
------ -------- ------------------
 no data loss restore and recover datafile 4,
 Restore and recover datafile
 Repair script: C:\ORCL11\APP\ORACLE\NICK\DIAG\diag\
 rdbms\nick\nick\hm\reco_1139896242.hm

RMAN>

 Note that RMAN provides you a manual set of options as well as an
automated repair options list. The manual options call for you to replace the
two missing datafiles. The automated repair option asks you to run an RMAN
repair script, which will do the same job as the manual repair actions.

 3. The following is an optional step, where you can examine RMAN’s plans to
repair the problem:

RMAN> repair failure preview;

Strategy Repair script
------------ -----------------------------------
no data loss C:\ORCL11\APP\ORACLE\NICK\DIAG\diag\
rdbms\nick\nick\hm\reco_1139896242.hm

contents of repair script:
 # restore and recover datafile
 restore check readonly datafile 4, 5;
 recover datafile 4, 5;

RMAN>

 The repair failure preview command shows that RMAN plans to
restore and recover datafiles 4 and 5 and that this is a “no data loss” strategy.

Data Recovery Advisor 125

126 Chapter 2: Diagnosing and Resolving Problems

 4. Once you’ve ascertained that the repair strategy is safe, issue the repair
failure command to let RMAN repair the missing datafile problem:

RMAN> repair failure;

Strategy Repair script
------------ --
no data loss
C:\ORCL11\APP\ORACLE\NICK\DIAG\diag\rdbms\nick\
nick\hm\reco_8213224112.hm

contents of repair script:
 # restore and recover datafile
 restore check readonly datafile 4, 5;
 recover datafile 4, 5;

Do you really want to execute the above repair
(enter YES or NO)? yes
executing repair script

Starting restore at 23-OCT-07
using channel ORA_DISK_1

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore
from backup set
Finished restore at 23-OCT-07

Starting recover at 23-OCT-07
starting media recovery
RMAN-08187:WARNING:media recovery until SCN 3212445 complete

Finished recover at 23-OCT-07
repair failure complete
Do you want to open the database (enter YES or NO)? yes

RMAN>

 By selecting the Yes option, you let RMAN automatically open the database
after completing the recovery.

Proactive Checks
Although the database runs reactive checks on its own, Oracle recommends that
your run proactive database health checks on a regular basis. It’s also best to run a
proactive check to dig deeper into a problem when a reactive check indicates there

is a database component failure. You can run these proactive checks through either
the Health Monitor or by executing the new validate database command.

The new validate database command in Oracle Database 11g lets
you invoke a proactive health check for the database and its components. The
validate database command is similar to the old validate backupset
command, but is more sophisticated. Any time the validate database
command detects a database failure, it initiates a failure assessment and logs the
failure in the ADR. You can view these failure findings when you issue the list
failure command. Here’s an example showing how to use the command:

RMAN> validate database;

Starting validate at 16-OCT-07
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=109 device type=DISK
RMAN-06169: could not read file header for datafile 7 error
 reason 7
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS =======
RMAN-00571: ===
RMAN-03002: failure of validate command at 10/16/2007 12:25:33
RMAN-06056: could not access datafile 7

RMAN>

You can employ the validate database command to validate at a fine level
of granularity because you can validate individual backup sets or even individual
data blocks now with the command. By default, the command checks for physical
and not logical database corruption. However, you can make the command check for
logical corruption by specifying the CHECK LOGICAL option. Of the two types of
block corruption, intrablock and interblock, the validate database command
checks for intrablock corruption only.

Issue the list failure command to review the failure:

RMAN> list failure;
List of Database Failures
=========================
Failure ID Priority Status Time Detected Summary
---------- -------- ------ ------------- -------
73427 HIGH OPEN 16-OCT-07 One or more
 non-system
 datafiles are corrupt

Data Recovery Advisor 127

128 Chapter 2: Diagnosing and Resolving Problems

Next, issue the advise failure command:

RMAN> advise failure;
List of Database Failures
=========================
Failure ID Priority Status Time Detected Summary
---------- -------- ------- ------------- -------
73427 HIGH OPEN 16-OCT-07 One or more
 non-system
 datafiles are corrupt

analyzing automatic repair options; this may take some time
using channel ORA_DISK_1
analyzing automatic repair options complete

Mandatory Manual Actions
========================
Optional Manual Actions
=======================
no manual actions available
Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 7

 Strategy: The repair includes complete media recovery with
 no data loss
 Repair script:
/u01/app/oracle/diag/rdbms/orcl2/orcl2/hm/reco_1899054268.hm
RMAN>

The advise repair command shows that you can fix the data corruption
without any data loss by automatically restoring and recovering the corrupted
datafile 7.

Although RMAN helped us in this case by providing a repair option and easily
let us fix the problem, the Data Recovery Advisor can’t fix every failure that occurs
in your database. Here’s an example:

RMAN> list failure;

using target database control file instead of recovery catalog
List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- --------------------
42725 CRITICAL OPEN 03-OCT-07 SQL dictionary
 health check:
dependency$.dobj# fk 126 on object DEPENDENCY$ failed
42722 CRITICAL OPEN 03-OCT-07 SQL dictionary
 health check:
dependency$.dobj# fk 126 on object DEPENDENCY$ failed

Issue the advise failure command, to view the repair options for the
failures:

RMAN> advise failure;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
42725 CRITICAL OPEN 03-OCT-07 SQL dictionary
 health check:
dependency$.dobj# fk 126 on object DEPENDENCY$ failed
42722 CRITICAL OPEN 03-OCT-07 SQL dictionary
 health check:
dependency$.dobj# fk 126 on object DEPENDENCY$ failed

Mandatory Manual Actions
========================
1. Please contact Oracle Support Services to resolve
failure 42725: SQLdictionary health check:
dependency$.dobj# fk 126 on object DEPENDENCY$
failed
2. Please contact Oracle Support Services to resolve failure
42722: SQLdictionary health check: dependency$.
dobj# fk 126 on object DEPENDENCY$failed

Optional Manual Actions
=======================
no manual actions available

Automated Repair Options
========================
no automatic repair options available

RMAN>

Data Recovery Advisor 129

130 Chapter 2: Diagnosing and Resolving Problems

The Data Recovery Advisor doesn’t provide either a manual or an automated
repair option in this case. Instead, it asks you to contact Oracle Support Services
to resolve the failure reported by the SQL dictionary health check.

Managing the DRA with Database Control
Although using RMAN to access the Data Recovery Advisor is simple enough,
Oracle recommends that you use Database Control to fix database failures. Suppose
a health check invoked by the database in response to an error results in an error
diagnosis, which you see in the Health Monitor on the Database Home page. You
can see from the Alerts section on the same page that a physical block corruption
caused the database failure. Here are the steps in the Oracle advised recovery strategy:

 1. Click Availability on the Database Home page.

 2. On the Availability page, click Perform Recovery under the Manage section.

 3. The Perform Recovery page appears, as shown in Figure 2-7. Based on the
failures listed in the Oracle Advised Recovery section, you can follow
the next steps.

 FIGURE 2-7 The Perform Recovery page

 4. Click Advise and Recover.

 5. Click the number next to the failure status.

 6. In the View and Manage Failures page, click All in the Priority list and click Go.

 7. Select Data Failures from the navigation tree.

 8. Select the failure you’re interested in and click Advise.

 9. Click Continue. You’ll see the Review page next, which summarizes the
proposed data recovery actions.

Note that the Perform Recovery page has two sections titled Oracle Advised
Recovery and User Directed Recovery. To access the Data Recovery Advisor, go to
the new Oracle Advised Recovery section. In the Oracle Advised Recovery section,
the Advise and Recover button is grayed out if the Data Recovery Advisor hasn’t
trapped any failures. However, when the DRA detects a failure, you can click the
Advise and Recover button.

Oracle recommends that when dealing with data corruption or other data failures,
to access the Data Recovery Advisor through the Support Workbench. From the
Support Workbench, you can access the Data Recovery Advisor in either of these ways:

■ From the Checker findings subpage on the Support Workbench home page

■ From the Problem Details page

New Parameter to Detect Database Corruption
Oracle database 11g introduces a new initialization parameter called db_ultra_
safe, to help you manage the other corruption detection–related initialization
parameters. The value you set for the db_ultra_safe parameter affects the
default values of the parameters db_block_checking, db_block_checksum,
and the new parameter db_lost_write_protect. Here’s what the different
corruption detection–related parameters stand for:

By setting the db_ultra_
safe parameter, you can affect the default
values of the three corruption-detecting

initialization parameters—db_block_
checking,db_block_checksum, and
db_lost_write_protect.

Data Recovery Advisor 131

132 Chapter 2: Diagnosing and Resolving Problems

■ db_block_checking Checks database blocks to prevent memory and
data corruption. The default value is false, and Oracle recommends the
value full.

■ db_block_checksum Specifies the writing of checksums in the header
of every data block when writing to disk to detect corruption caused by the
storage system. The default value is typical, which is the same as the
recommended value.

■ db_lost_write_protect This is a new initialization parameter,
which initiates checking for any data block lost writes that may occur on
a physical standby database when the I/O subsystem signals block write
completion before it’s completely written to disk. The default value for this
parameter is typical, same as the value Oracle recommends that you use.

■ You can set values of the three corruption detection–related parameters
explicitly. However, you can control the values of this parameter by simply
setting a value for the db_ultra_safe parameter. The db_ultra_safe
parameter sets the default values for the three initialization parameters that
control protection levels. The db_ultra_safe parameter’s value implicitly
changes the values of the three parameters. The db_ultra_safe parameter
can take the following values: off, data_only, and data_and_index.
The data_and_index value means a more intensive form of corruption
checking than that specified by the data_only value. The value of the
three corruption detection parameters depends on the value you set for
the db_ultra_safe parameter. If the value of the db_ultra_safe
parameter value is off, the value of the db_block_checking parameter
is off (or false), the value of the db_block_checksum parameter is
typical, and the value of the db_lost_write_protect parameter
is typical. In brief, if you set any of the three parameters explicitly, no
changes are made to those values.

■ If the value of the db_ultra_safe parameter value is data_only,
the value of the db_block_checking parameter is medium, the value
of the db_block_checksum parameter is full, and the value of the
db_lost_write_protect parameter is typical. When the value of
the db_block_checking parameter is set to medium, the database will
check for logical corruption in the data blocks. Any time a block’s contents
change, say because of an update or insert operation, the database performs
block header checks, including semantic block checking, for all data blocks.

■ If the value of the db_ultra_safe parameter value is data_and_index,
the value of the db_block_checking parameter is full (or true), the
value of the db_block_checksum parameter is full, and the value of

the db_lost_write_protect parameter is typical. When the value
of the db_block_checking parameter is set to full, the database will
check for logical corruption in the data blocks as well as the index blocks.
Any time a block’s contents change, say because of an update or insert
operation, the database performs block header checks, including semantic
block checking, for both data and index blocks.

As you can see, you can calibrate the level of block checking by setting appropriate
values for the db_ultra_safe parameter. You can set the most stringent level of
checking by setting the value data_and_index for this parameter. Of course, if
you set the value off for this parameter, the database will enforce the least rigorous
form of block checking.

INSIDE THE EXAM

The exam is likely to have a question or two
regarding the new diagnostic_dest ini-
tialization parameter. If you don’t explicitly set
this parameter, what does it default to? What
is the relationship between the ADR base and
an ADR home? You must also know where the
alert log files are stored in the new release.

You must understand the steps involved in
creating an incident package. What do you
have to do first in order to upload Zip files
automatically to MetaLink? (You need to
configure the Oracle Configuration Man-
ager.) You must be familiar with the Incident
Packaging Service (IPS) commands to gather
diagnostic data and package the data into Zip
files for transmission to Oracle Support. You
may encounter a question dealing with Sup-
port Workbench. What are the two methods
to create and upload an Incident package?
(Be prepared to explain the Quick Packaging
method and the Custom Packaging method.)

You can expect the exam to contain a
question about the SQL Repair Advisor.

How does the advisor fix a SQL statement
failure? Expect questions about the different
Data Recovery Advisor commands such as
change failure, advise failure,
and list failure. For example, how
does the advise failure command
affect open failures that are fixed? How does
the list failure command deal with
new failures between multiple executions of
the command?

Expect to be tested on your understanding
of the new validate database com-
mand, which helps in performing proactive
health checks. Does the validate command
help in checking physical or logical corrup-
tion? What about intrablock and interblock
corruption checking with the validate
command? You must also review the new pa-
rameter to detect corruption, paying special at-
tention to how setting the db_ultra_safe
parameter affects the three corruption-detect-
ing initialization parameters.

INSIDE THE EXAM

Data Recovery Advisor 133

134 Chapter 2: Diagnosing and Resolving Problems

CERTIFICATION SUMMARY
This chapter started with a discussion of the automatic diagnostic repository, which the
new diagnostic framework introduced in Oracle Database 11g.You learned how to use
the diagnostic_dest parameter to set the ADR base. You learned how to use the
V$DIAG_INFO view to find out all the ADR locations for a database. The chapter
explained the ADRCI command-line tool, which helps you view the diagnostic data,
in addition to helping you package incidents and view Health Monitor reports. The
chapter showed how to set the ADR homepath and how to use ADRCI in batch mode.
You also learned how to view the alert log contents using ADRCI.

This chapter introduced the classification of incidents and problems, which is one
of the key concepts of the new diagnostic framework in Oracle Database 11g. You
learned about the incident packaging service and how to create logical and physical
packages and to finalize a package using ADRCI commands. The chapter showed
you how to use the Support Workbench to view critical errors. You learned how to
create incident reports through the Quick Packaging and the Custom Packaging
methods, how to upload incidents reports to Oracle Support through the Support
Workbench, and how to track and close incidents using the Support Workbench.

You can use the new Health Monitor to run both reactive and manual health checks.
You can use the show hm_run command to view all health checks performed by the
database. Use the DBMS_HM package to run health checks and to get the findings and
recommendations of those checks.

You can use the SQL Repair Advisor to fix SQL statement failures. The SQL
Repair advisor fixes the SQL statements by offering recommendations for a SQL
patch to bypass the problem SQL statement. You can use either the Support
Workbench or the DBMS_SQLDIAG package to access the SQL Repair Advisor.
The chapter also showed you how to use the new SQL Test Case Builder to enable
Oracle Support Services to easily re-create and test a problem.

The Data Repair Advisor diagnoses failures and determines repair options, and
can even automatically make the repairs. The three key failure characteristics are
status, priority, and grouping. You have both manual and automatic repair options
when using the Data Repair Advisor. You can use RMAN for accessing the Data
Recovery Advisor. RMAN offers commands such as list failure, advise
failure, and repair failure to fix database failures. You can also manage
the Data Recovery Advisor through Database Control, by choosing the Oracle
Advised Recovery option.

TWO-MINUTE DRILL
Automatic Diagnostic Repository

❑ The ADR tracks all problems and incidents that occur in the database.

❑ The ADR is a file-based repository for storing all diagnostic data for the
database and other Oracle products and components.

❑ Each instance of an Oracle product has its own ADR home directory within
the ADR.

❑ The diagnostic_dest parameter sets the location of the ADR home
directory.

❑ The diagnostic_dest parameter is an optional parameter.

❑ There can be multiple ADR homes under an ADR base.

❑ There is both an XML-formatted and a text-based alert log file in an Oracle
Database 11g database.

❑ The V$DIAG_INFO view shows you all the ADR locations for an instance.

❑ The ADRCI is a command-line tool that helps you work with the ADR.

❑ You can have multiple ADR homes current at a given time.

❑ All ADRCI commands work with the current ADR home.

❑ By default, the value of the ADR homepath is null.

❑ Use the set homepath command to set an ADR home.

❑ The command-line parameters exec and script let you perform batch
operations with ADRCI commands.

Incidents and Problems

❑ A critical database error is called a problem.

❑ A single occurrence of a problem is termed an incident.

❑ The database automatically collects diagnostic data about all incidents.

❑ You can’t disable the creation of automatic incidents for critical errors.

❑ An incident package is the set of diagnostic data pertaining to an incident or
incidents.

❑ ADR uses a retention policy to determine how long it retains diagnostic data
for incidents.

❑ An incident can be in any one of four states at a given point in time.

❑ The IPS automatically gathers and packages the diagnostic data to send to
Oracle Support.

Two-Minute Drill 135

✓

136 Chapter 2: Diagnosing and Resolving Problems

❑ You must first finalize a package before generating a physical package.

❑ You can create complete and incremental Zip files.

❑ Oracle uses a flood controlled incident system to limit the logging of
diagnostic data for similar incidents.

❑ You can manage IPS through the ADRCI or the Support Workbench.

❑ A logical package contains just the metadata about the incidents.

❑ A physical package is the actual package that you upload to Oracle Support.

Support Workbench

❑ You can upload incident packages to Oracle Support directly from the
Support Workbench, provided you’ve installed the Oracle Configuration
Manager.

❑ Quick Packaging lets you easily create and upload incident packages, but
doesn’t let you edit the packages.

❑ Custom Packaging enables you to edit the incident packages, but involves
more steps than the Quick Packaging method.

❑ The database automatically generates diagnostic data for critical errors, but
you can create your own “user-reported” problems.

Health Monitor

❑ A check or checker is a specific diagnostic procedure registered with the
Health Monitor.

❑ The Health Monitor runs diagnostic checks in the database automatically in
response to critical errors.

❑ You can run manual health checks.

❑ The V$HM_CHECK view shows all the possible health checks you can run
in the database.

❑ The V$HM_RUN view shows details and status of all reactive and manual
database Health Monitor checks.

❑ You can run health checks from the Enterprise Manager Health Monitor
interface or through executing procedures from the DBMS_HM package.

❑ Use the RUN_CHECK procedure to run a health check.

❑ The GET_RUN_REPORT function gets the report for a specified checker run.

❑ The show hm_run command shows all Health Monitor checks.

❑ The Health Monitor stores all its reports in the ADR.

SQL Repair Advisor

❑ Use the SQL Repair Advisor to fix SQL statement failures.

❑ The SQL Repair Advisor doesn’t recommend changing the failed SQL
statement.

❑ The SQL Repair Advisor recommends implementing a SQL patch as a
workaround for the failed SQL statement when it’s unable to find a fix for the
problem.

❑ You can access the SQL Repair Advisor through the Support Workbench or
through the DBMS_SQLDIAG package.

❑ The adoption of the SQL patch recommended by the SQL Repair Advisor
will change the execution plan of the SQL statement.

❑ You can drop the SQL Patch or export it into another database.

Data Recovery Advisor

❑ The DRA automatically diagnoses failures, determines the repair options, and
optionally, executes the repairs.

❑ The Health Monitor runs an automatic diagnostic check when it detects an
error in the database.

❑ The DRA consolidates related failures into a single failure.

❑ In order for a database error to be considered a failure, it must be first
diagnosed by a check registered with the Health Monitor.

❑ A validate or backup command issued through RMAN will initiate an
automatic data integrity check.

❑ The three important characteristics for a failure are status, priority, and grouping.

❑ If the database doesn’t automatically close a fixed failure, you can do so by
issuing the change failure . . . closed command.

❑ The three levels of failure priority are: critical, high, and low.

❑ The DRA offers you both manual and automatic repair options.

❑ DRA doesn’t support Oracle RAC installations.

❑ The list failure command lets you view the failures in the database.

❑ You must issue the advise failure command before issuing the
repair failure command.

Two-Minute Drill 137

138 Chapter 2: Diagnosing and Resolving Problems

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all correct answers for each question.

Automatic Diagnostic Repository

 1. How does the database determine the default location of the ADR base?
 A. If you set the ORACLE_BASE environment variable, the database sets the

diagnostic_dest parameter value to the $ORACLE_BASE directory.
 B. If you haven’t set the ORACLE_HOME environment variable, the database sets the

diagnostic_dest parameter value to $ORACLE_HOME/log.
 C. If you set the ORACLE_BASE environment variable, the database sets the

diagnostic_dest parameter value to $ORACLE_HOME/log.
 D. If you haven’t set the ORACLE_BASE environment variable, the database sets the

diagnostic_dest parameter value to $ORACLE_HOME/diag.

 2. The diagnostic_dest initialization parameter sets the location of
 A. The ADR home.
 B. The ADR base.
 C. The ADR home and ADR base.
 D. Neither the ADR home nor the ADR base.

 3. All ADRCI commands will work with
 A. The current single ADR home.
 B. All ADR homes that are current at a given time.
 C. All ADR homes, whether they are current or not.
 D. The Support Workbench.

 4. By default,
 A. No ADR homes under the ADR base are current.
 B. The homepath is null.
 C. All ADR homes under the ADR base are current.
 D. All ADR homes under the ADR base are null.

Incidents and Problems

 5. When a critical error occurs, the database

Self Test 139

 A. Automatically creates an incident report, but doesn’t send it to Oracle Support.
 B. Automatically creates and sends an incident report to Oracle Support.
 C. Automatically creates an incident.
 D. Does nothing—you must initiate the incident creation process manually.

 6. Which of the following statements is correct?
 A. If an incident remains in the closed state for a period that’s twice as long as its retention

 period, it automatically is moved to an expired state.
 B. If an incident remains in the collection or ready state for a period that’s as long as its

 retention period, it automatically is moved to a closed state.
 C. If an incident remains in the data_purged state for a period that’s twice as long as its

 retention period, it automatically is moved to a closed state.
 D. If an incident remains in the collection or ready state for a period that’s twice as long as its

 retention period, it automatically is moved to a closed state.

 7. Which of the following is the correct sequence of steps in creating and sending an incident
report to Oracle Support?

 A. Create the logical package, finalize the package, and generate the physical package.
 B. Create the physical package, finalize the package, and generate the logical package.
 C. Create an empty physical package, finalize the package, and generate the physical package.
 D. Create the logical package, generate the physical package, and finalize the package.

 8. Which of the following commands lets you add diagnostic information to a package?
 A. ips generate package 4 in /u01/app/oracle/diag

 B. ips add incident 17060 package 4

 C. ips generate package 4 in /u01/app/oracle/diag incremental

 D. ips create package

Support Workbench

 9. The Support Workbench can
 A. Collect only diagnostic data for an incident and transmit the incident package to Oracle

 Support
 B. Only create the incident package and transmit the package to Oracle Support
 C. Only transmit an incident package to Oracle Support
 D. Collect diagnostic data for an incident, create the incident package, and transmit the

 incident package to Oracle Support

140 Chapter 2: Diagnosing and Resolving Problems

10. You must manually upload an incident package to Oracle Support
 A. Only if you haven’t installed the Oracle Configuration Manager
 B. Whether you have installed the Oracle Configuration Manager or not
 C. Only if you have installed the Oracle Configuration Manager during installation of the server
 D. Only if you’ve installed the Oracle Configuration Manager separately, after completing the

 installation of the server

11. Which of the following statements is true?
 A. You cannot edit the diagnostic data you’re sending to Oracle Support when you use the

 Quick Packaging method, but you can customize the data.
 B. You cannot edit the diagnostic data you’re sending to Oracle Support when you use the

 Custom Packaging method, but you can customize the data.
 C. You cannot edit or customize the diagnostic data you’re sending to Oracle Support when

 you use the Quick Packaging method.
 D. You cannot edit or customize the diagnostic data you’re sending to Oracle Support when

 you use the Custom Packaging method.

12. Oracle purges all incidents automatically after a period of
 A. 30 days
 B. 7 days
 C. 90 days
 D. Oracle will never automatically purge an incident.

Health Monitor

13. Which of the following views provides you a list of all the health checks you can run in a
database?

 A. V$HM_CHECK
 B. V$HM_RUN
 C. V$CHECKERS
 D. V$HM

14. You can view the Health Monitor checker reports
 A. Only through the DBMS_HM package or the V$HM_RUN view
 B. Through the Enterprise Manager, the ADRCI, the DBMS_HM package, and the

 V$HM_RUN view
 C. Only through the Enterprise Manager or the ADRCI
 D. Only through the DBMS_HM package and the ADRCI

Self Test 141

15. Which of the following ADRCI commands will show you the recommendations of a database
health check?

 A. show report hm

 B. show hm_run <check_name>

 C. show hm_run

 D. show report hm_run <check_name>

16. Which of the following parameters are mandatory when you execute the GET_RUN_REPORT
procedure to get the findings of a database health check?

 A. run_name, type, and level

 B. type and level

 C. check_name, run_name, and type

 D. run_name

SQL Repair Advisor

17. You can invoke the SQL Repair Advisor
 A. Only from the Support Workbench
 B. From the Support Workbench or through the DBMS_SQLDIAG package
 C. From the Support Workbench or through the DBMS_DIAG package
 D. Only by using the DBMS_SQLDIAG package

18. The SQL Repair Advisor fixes a problem SQL statement
 A. By providing a patch as a workaround
 B. By providing a new SQL profile to fix the problem
 C. By rewriting the problem SQL statement completely
 D. By creating a new explain plan for the statement directly

19. By accepting the SQL Advisor’s recommendation, you ensure that
 A. The optimizer reuses the same execution plan.
 B. The optimizer will never use the failed SQL statement again.
 C. The optimizer collects new statistics for the objects referenced by the failed SQL statement.
 D. The optimizer use an alternate explain plan.

20. Once you apply a SQL patch,
 A. You can never remove the patch.
 B. You can drop the patch any time by using the REMOVE_SQL_PATCH procedure.
 C. You can drop the patch any time by using the DROP_SQL_PATCH procedure.
 D. You must obtain an official patch from Oracle to fix the error.

142 Chapter 2: Diagnosing and Resolving Problems

Data Recovery Advisor
21. You can access the Data Recovery Advisor through the
 A. Enterprise Manager and SQL Workbench
 B. Enterprise Manager and ADRCI
 C. Enterprise Manager and RMAN
 D. SQL Workbench and ADRCI

22. When you use the Data Recovery Advisor through RMAN, you can perform
 A. Only manual repair
 B. Manual and automatic repair
 C. Only automatic repair
 D. You can’t repair problems through RMAN.

23. When do you use the failure . . . closed command when dealing with the Data Recovery
Advisor?

 A. If the database doesn’t set the status of a fixed failure to closed, you can do so by using
 the change failure . . . closed command.

 B. If the database doesn’t set the status of an open failure to closed, you can do so by using
 the change failure . . . closed command.

 C. After the database fixes any problem, you must close the problem by running the
failure . . . closed command.

 D. Only if you manually fix a problem must you use the failure . . . closed command.

24. Which of the following is the correct sequence of commands when you use the Data Recovery
Advisor to fix failures?

 A. advise failure, list failure, fix failure

 B. list failure, repair failure, advise failure

 C. advise failure, list failure, repair failure

 D. list failure, advise failure, repair failure

LAB QUESTION
You receive an Oracle error ORA-01578, indicating that one more Oracle data blocks are corrupted.
How would you go about fixing the database corruption using the Data Recovery Advisor?

SELF TEST ANSWERS

Automatic Diagnostic Repository

 1. � A is correct because the default location of the ADR base is the value you assign to the
$ORACLE_BASE environment variable.
� B, C, and D are incorrect because they point to the wrong directory for the ADR base
location.

 2. � B is correct because the diagnostic_dest parameter sets the location of the ADR base.
� A, C, and D are incorrect because the diagnostic_dest parameter has nothing to do with
the setting of the ADR home.

 3. � A is correct because all ADRCI commands will work with the current ADR home.
� B and C are incorrect because some ADRCI commands don’t work with all ADR homes.
D is incorrect because you can’t use ADRCI commands from the Support Workbench. The
ADRCI is a command-line utility whereas the Support Workbench is a GUI.

 4. � B and C are correct. B is correct because, by default, the ADR homepath is null. C is
correct because all ADR homes under an ADR base are current if you don’t specify a single
database using the set homepath command.
� A is incorrect because all ADR homes are current by default. D is incorrect because all
ADR homes are current by default, rather than all of them being null.

Incidents and Problems

 5. � C is correct because the database will only create an incident following a critical error.
It’s up to you to generate the incident report, using either the ADRCI tool or the Support
Workbench.
� A and B are incorrect because the database doesn’t create an incident report automatically
on its own. D is incorrect because you don’t have to initiate the incident creation process—the
database does that automatically.

 6. � D is correct because the database will automatically move an incident to the closed status
if that incident is in the collection or ready state for a period that’s twice as long as its retention
period.
� A is incorrect because there is no such thing as an expired state. B is incorrect because an
incident is moved to the closed state after it’s in the collection or ready state for twice as long,
not merely as long as the retention period. C is incorrect because an incident isn’t moved from
the data_purged state to the closed state.

 7. � A is correct because it shows the correct sequence of steps in the incident reporting process.
� B, C, and D are incorrect because they don’t show the correct sequence of steps.

Self Test Answers 143

144 Chapter 2: Diagnosing and Resolving Problems

 8. � B is correct because the add incident command adds diagnostic information
pertaining to a specific incident to a previously created incident package.
� A is incorrect because the generate package . . . command generates a physical
package from a logical package. C is incorrect because this command will create an incremental
package. D is incorrect because the create package command just creates a logical
package with no diagnostic information in it.

Support Workbench

 9. � D is correct because Support Workbench can collect data, create an incident package, and
transmit the package to Oracle Support directly, provided you’ve installed and configured the
Oracle Configuration Manager.
� A, B, and C are incorrect because they specify only some of the tasks performed by the
Support Workbench.

10. � A is correct because you’ll have to perform a manual upload of the incident package only if
you haven’t installed the Oracle Configuration Manager.
� B is incorrect because you don’t have to perform a manual upload if you install the Oracle
Configuration Manager. C and D are incorrect because it doesn’t matter when you install the
Oracle Configuration Manager, as long as you’ve installed and configured it.

11. � C is correct because you neither edit nor customize the diagnostic data when you use the
Quick Packaging method.
� A and B are incorrect because you can’t edit the data or customize it when you use the
Quick Packaging method. D is incorrect because you can edit or customize data when you
choose the Custom Packaging method.

12. � A is correct because Oracle purges all incidents automatically 30 days after an incident is
created.
� B and C are incorrect because they specify the wrong duration for automatic purges of
incidents. D is incorrect because Oracle will automatically purge an incident, unless you
explicitly specify that it not do so.

Health Monitor

13. � A is correct because the V$HM_CHECK shows all the health checks you can run in the
database.
� B is incorrect because the V$HM_RUN shows only the various Health Monitor runs, but
doesn’t show the types of database checks you can run. C and D are incorrect because they refer
to nonexistent views.

14. � B is correct because you can view the Health Monitor reports through all of those methods.
� A, C, and D are incorrect because they list only two of the four ways you can view the
reports.

15. � D is correct. The show report hm_run command will show you the recommendations of a
database health check.
� A and B are syntactically incorrect. C is incorrect because the show hm_run command
shows only the various Health Monitor runs, but doesn’t report on the recommendations made
by the health checks.

16. � D is correct because only the run_name parameter is mandatory when you execute the
GET_RUN_REPORT procedure.
� A, B, and C are incorrect because only the run_name parameter is a required parameter.

SQL Repair Advisor

17. � B is correct because you can invoke the SQL Repair Advisor from the Support Workbench
or by using the DBMS_SQLDIAG package.
� A and D are incorrect because they refer to only one of the two ways in which you can
access the SQL Repair Advisor. C is incorrect because there is no DBMS_DIAG package.

18. � A is correct because the SQL Repair Advisor fixes problems by providing a patch as a
workaround.
� B is incorrect because the SQL Repair Advisor doesn’t provide new SQL profiles. C is
incorrect because the SQL Repair Advisor doesn’t rewrite the problem SQL statement. D is
incorrect because the SQL Repair Advisor doesn’t create the explain plan for the statement.

19. � D is correct because accepting the SQL Repair Advisor’s recommendation leads to the
application of a patch for the problem SQL statements and, therefore, the use of a new explain
plan by the optimizer.
� A is incorrect because once you accept the recommendations of the SQL Repair Advisor,
the optimizer will use a new execution plan. B is incorrect because the SQL Repair Advisor will
always use the same SQL statement, but applies a patch to it. C is incorrect because the SQL
Repair Advisor doesn’t require the database to collect new optimizer statistics.

20. � C is correct because you use the DROP_SQL_PATCH procedure to remove a SQL patch.
� A is incorrect because you can remove any patch that you apply. B is incorrect because
there is no procedure called REMOVE_SQL_PATCH. D is incorrect because you don’t have to
get an official patch from Oracle after you apply a SQL patch recommended by the SQL Repair
Advisor.

Self Test Answers 145

146 Chapter 2: Diagnosing and Resolving Problems

Data Recovery Advisor
21. � C is correct because you can access the Data recovery Advisor through either the Enterprise

Manager or RMAN.
� A is incorrect because you can’t access the Data Recovery Advisor through the SQL
Workbench. B and D are incorrect because you can’t access the Data Recovery Advisor by
using the ADRCI command-line tool.

22. � B is correct because RMAN lets you perform both manual and automatic repairs.
� A and C are incorrect because you can perform both types of repairs through RMAN. D is
incorrect because you can repair problems through RMAN.

23. � A is correct because you use the failure . . . closed command if the database doesn’t
set the status of a fixed failure to a closed status.
� B is incorrect because it is the fixed failures that must be set to a closed status, not the
open problems. C is incorrect because the database normally changes the status of all fixed
problems to a closed status by itself. D is incorrect because you don’t have to change the
status of a problem to closed after manually fixing a problem.

24. � D is correct because it shows the correct sequence of commands.
� A, B, and C are incorrect because they all show an incorrect sequence of commands.

LAB ANSWER
Follow these steps to resolve the problem.

 1. Confirm the data block corruption by running the following command from RMAN:

RMAN> validate database;

 2. Issue the list failure command to review the failure:

RMAN> list failure

 3. Issue the advise failure command to review RMAN’s repair recommendations:

RMAN> advise failure

 4. Issue the following command to preview the repair actions:

RMAN> repair failure preview;

 5. If the repair actions are simple, use the manual repair advice to fix the problem. If the repair
actions involve the restoring and recovering of a datafile, follow the automatic repair advice
and let RMAN do the repair. Issue the repair failure command to fix the failure:

RMAN> repair failure;

 The repair failure command repairs the specified failure and closes it. By default,
RMAN asks you to confirm the command execution.

3
Intelligent
Infrastructure and
Database Security

CERTIFICATION OBJECTIVES

 3.01 Enhancements in AWR Baselines

 3.02 Controlling Automated Maintenance
Tasks

 3.03 Database Resource Manager New
Features

 3.04 Using New Oracle Scheduler Features

 3.05 Security Enhancements

✓ Two-Minute Drill

Q&A Self Test

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

148 Chapter 3: Intelligent Infrastructure and Database Security

We start the chapter with a discussion of the enhancements in the AWR baselines. In
Oracle Database 11g, the various concepts of baselines are consolidated into the
single concept of the Automatic Workload Repository (AWR) baselines. You can

create dynamic and future baselines and easily manage performance data for comparing database
performance between two periods.

CERTIFICATION OBJECTIVE 3.01

Enhancements in AWR Baselines
A baseline is any set of snapshots taken over a period of time. The snapshots are
selected such that they yield a set of baselines that change during the period of time
that you’re collecting data. The baseline captures the time-based variations for a set
of baseline statistics and alerts you when the current values differ significantly from
the baseline values. An AWR baseline contains a set of AWR snapshots collected
over a period of time that provides a frame of reference for a known “good period,”
which you can then use as a reference period to compare performance during another
time period of interest. The snapshots in an AWR baseline are grouped to provide
a set of baseline values that change over time. For example, the I/O rate is highest
during the peak usage times in the database. One of the most difficult problems you
have in setting alert thresholds is setting those thresholds to the correct levels for
appropriate alerts. Arbitrary alerts that remain identical throughout are not optimal
because they will likely miss the natural peaks and valleys in the workload of a
real production database. Baselines, on the other hand, are ideal for setting time-
dependent alert thresholds because the baselines let the database compare apples with
apples and oranges with oranges, by enabling the comparison of present performance
with baseline data from a similar time period.

When a performance problem occurs, you can perform comparative performance
analysis with the help of AWR baselines. Oracle excludes the snapshots that are part
of an AWR baseline from the normal baseline purging process.

Oracle Database 11g enables you to collect two types of baselines: static baselines
and moving window baselines. A static baseline can be a single baseline collected
over a single fixed time period (for example, from Jan 1, 2008 at 10:00 A.M. to Jan 1,
2008 at 12:00 P.M.) or a repeating baseline collected over a repeating time period (for
example, every first Monday in a month from 10:00 A.M. to 12:00 P.M. for the year
2008). The moving window baseline captures data over a window that keeps moving
over time. Oracle Database 11g creates a system-defined moving window baseline by
default. This default moving window corresponds to the AWR data captured during

the AWR retention period, which is now eight days, rather than seven days, as it was
in the Oracle Database 10g release.

Baselines help you set alert thresholds, monitor performance, and compare advisor
reports. This is a definite improvement over the Oracle Database 10g release, where
all you can really do with an AWR baseline is to just create and drop static single
baselines. Oracle Database 11g provides several enhancements to the AWR baselines
feature, including the following:

■ Baseline templates to schedule the creation of a baseline

■ Moving window baselines from which you can specify adaptive thresholds

■ AWR Baseline Metric Thresholds

In addition, you can now rename AWR baselines and also set an expiration
period for them.

If you set the statistics_level parameter to typical or all, AWR baselines
are enabled by default.

In order to support the new functionality of AWR baselines, Oracle has added
several new procedures to the DBMS_WORKLOAD package:

■ CREATE_BASELINE_TEMPLATE Lets you create both one-time and
repeating baseline templates that you can use as the basis for creating new
baselines.

■ RENAME_BASELINE Enables you to rename an AWR baseline.

■ MODIFY_BASELINE_WINDOW_SIZE Lets you modify the size of the
system_moving_window.

■ DROP_BASELINE_TEMPLATE Lets you drop an AWR baseline.

There is also a new function named SELECT_BASELINE_METRICS, which
displays the metric thresholds corresponding to an AWR baseline. Let’s briefly
review how Oracle Database 11g enhances the AWR baselines.

Managing Baseline Templates
In Oracle Database 10g, you could create an AWR baseline only on those snapshots
that already existed in the database. New in Oracle Database 11g is the concept of a
baseline template. A baseline template helps you to automatically create baselines to
capture specified time periods in the future. That is, you can use a set of snapshots
for capturing performance data during a specified period in the future. This means

Enhancements in AWR Baselines 149

150 Chapter 3: Intelligent Infrastructure and Database Security

that you don’t have to explicitly use the CREATE_BASELINE procedure to create
a baseline for a set of two snapshots. Instead, you can schedule the creation of an
AWR baseline using a baseline template. If you want to capture the baseline for a
future time period that you know will be useful, use baseline templates to schedule
the baseline creation.

The time period spanned by a baseline template can lie in the future or it can
encompass a past timeline. No matter which timeframe you choose, the manageability
infrastructure automatically generates a task and creates a baseline right away. Each
night, the MMON (Memory Monitor background process) task checks to see whether
the end time has passed for any baseline templates you created. If it discovers that a
template for baseline generation contains a completed time range, it will create the
baseline for the period specified by the baseline template.

You can create two types of baseline templates—a single baseline template or a
repeating baseline template. Let’s examine the two types of baseline templates in the
following sections.

Single AWR Baseline Template
You can schedule the creation of an AWR baseline for a contiguous future time
period such as a known heavy usage period. Using the single AWR baseline
template, you can then automatically capture a baseline of the performance during
the period you specify. The following example shows how to create a single baseline
template using the CREATE_BASELINE_TEMPLATE procedure:

 SQL> begin
 2 dbms_workload_repository.create_baseline_template (
 3 start_time => '2008-03-02 22:00:00 CST',
 4 end_time => '2008-03-02 08:00:00 CST',
 5 baseline_name => 'test_baseline1',
 6 template_name => 'test_template1',
 7* expiration => 30);
 end;
SQL> /

The optional expiration parameter specifies that this baseline will expire in
30 days. The value you set for the expiration parameter specifies the length of

time for which the database will maintain a
baseline. If you don’t specify an expiration time
period (NULL), the baseline will never expire.
The baseline_name and template_name
parameters are self-explanatory. The start_
time and end_time parameters specify the
beginning and ending snapshot time periods. You
can also specify a DBID parameter, but its value
defaults to NULL if you omit it, as in this case.

Pay particular attention
to the CREATE_BASELINE_TEMPLATE
procedure and its parameters. How do
you automatically remove a baseline
after a specifi c time period?

The database will capture the performance data during a fixed time interval in
the future. In this example, the template will generate an AWR baseline that is
captured between 10 P.M. on March 1, 2008 through 8:00 A.M. on March 2, 2008.
Note that because you’re using a time-based template definition, you don’t have to
specify start and snapshot identifiers when creating the baseline template.

Creating a Repeating Baseline Template
You can create a repeating baseline template to schedule the creation of an AWR
baseline for a known period such as around 3:00 P.M. every Friday evening for an
entire year. The database will automatically create a new baseline every Friday and
you can have the database also automatically remove older baselines after a specified
expiration time. Here’s how you create a repeating baseline template using the
CREATE_BASELINE_TEMPLATE procedure again:

begin
dbms_workload_repository.create_baseline_template(
day_of_week => 'Friday',
hour_in_day => 15,
duration => 4,
expiration => 30,
start_time => '2008-10-01 22:00:00 PST'.
end_time => '2007812-31 22:00:00 PST',
baseline_name_prefix => 'Friday_Baseline',
template_name => Friday_Template',
dbid => 1234567899);
end;
/

The following is a brief explanation of the values of the various parameters in the
CREATE_BASELINE_TEMPLATE procedure:

■ DAY_OF_THE_WEEK Specifies the day of the week the baseline will
repeat and can be any of the seven days in a week.

■ HOUR_IN_DAY Allows you to specify a value between 0 and 23 to
determine when the baseline will start.

■ DURATION The number of hours for which the baseline should last.

■ START_TIME Time to start generating the baseline, determined by
converting to the nearest snapshot ID.

■ END_TIME Time to stop generating the baseline, determined by
converting to the nearest snapshot ID.

■ BASELINE_NAME_PREFIX Specifies the baseline prefix, which will be
appended to the date information.

Enhancements in AWR Baselines 151

152 Chapter 3: Intelligent Infrastructure and Database Security

■ TEMPLATE_NAME Specifies the name of the repeating baseline template.

■ EXPIRATION The number of days for which the database will maintain
the baseline. Default value is NULL, meaning the database will always
maintain the baseline and never drop it.

■ DBID The database identifier. Defaults to NULL.

Dropping a Baseline Template
When you don’t need a baseline template, you can save space by removing the
template, using the DROP_BASELINE_TEMPLATE procedure as shown here:

SQL> begin
 dbms_workload_repository.drop_baseline_template (
 template_name => 'mytemplate1',
 dbid => 22233344455);
 end;
 /

Only the template_name parameter is mandatory. If you don't specify a DBID
parameter, by default, the procedure uses the local database identifier.

Renaming a Baseline
You can now rename existing baselines, using the RENAME_BASELINE procedure.
Use the DBA_HIST_BASELINE view first, to find out the baselines you want to
rename. Here’s how you rename a baseline:

SQL> begin
 dbms_workload_repository.rename_baseline (
 old_baseline_name => 'mybaseline1',
 new_baseline_name => 'mynewbaseline1')
 end;
 /

There is also a third parameter, DBID, which is optional.

Setting AWR Baseline Metric Thresholds
Sometimes, you want to examine the metric threshold settings for the time period
spanned by a baseline. Using the AWR data contained in the baseline, you can
compute the metric threshold values. Use the SELECT_BASELINE_METRICS
function to display the metric value statistics during the period covered by a baseline.

SQL> begin
 dbms_workload_repository.select_baseline_metrics (

 baseline_name => 'peak_baseline',);
 end;

The previous code will display the metric thresholds for the baseline named
peak_baseline.

Oracle Database 11g provides a built-in alert infrastructure that warns you about
potential problems in the database. The default alerts include alerts pertaining to
tablespace usage, recovery area space problem, suspended resumable sessions, and the
“snapshot too old” error. However, you can also specify a custom performance alert
based on performance-related metric thresholds. For example, a blocked_user
threshold issues an alert when the number of users blocked by any one session
exceeds the metric threshold you set.

Performance alert thresholds can be difficult to determine because the expected
metric values do vary by the type and amount of the workload. Using baselines,
you can capture metric value statistics. If the baseline is static, you can manually
compute the metric value statistics over the baseline. If you’re using a system moving
window, the database can automatically compute the metric value statistics over the
moving window. You can then use the baseline metric statistics to define the alert
thresholds specific to the baseline.

Baselines capture metric values, which the database will then compare against
current performance metrics to judge how current performance measures up against
performance during a known good period. If there’s a serious discrepancy—that is, if
the expected values are very different from the actual present statistics—the database
will issue a performance alert. Whether you use a manually computed static baseline
or a baseline automatically computed over the system moving window, the baseline
values are compared to present statistics to see if an alert is justified. Adaptive
thresholds are so named because the thresholds aren’t fixed, but vary according to
the conditions in the database—they adapt to the type and amount of the workload.

The database computes statistics from the system moving window according
to the BSLN_MAINTAIN_STATS_SCHED schedule.

The database always compares the baseline statistics to the current database
performance. The metric statistics that you capture over a baseline enable you to
set thresholds for comparing baseline statistics to current activity. You can use three
different threshold types, as explained here:

■ Significance level Thresholds based on significance level use statistical
significance to determine whether the current levels observed are unusual
compared to baseline values, thus meriting an alert. For example, if you set
the significance level to 0.99 for a metric, the alert threshold will be set

Enhancements in AWR Baselines 153

154 Chapter 3: Intelligent Infrastructure and Database Security

where 1 percent of the observed metric values are outside the value set for
the metric. The database will thus issue an alert when 1 percent of the metric
values are different from the expected metric value. Note that the higher the
significance level, the fewer the number of alerts that will be issued by the
database. For example, a significance level of 0.9999 would cause fewer alerts
to be raised than a significance level of 0.99.

You must understand
the confi guration of adaptive thresholds,
including the setting of the various

attributes such as the signifi cance level.
What does the signifi cance level that you
select imply regarding the number of alerts?

■ Percentage of maximum An alert is generated if the observed metric is at
or above a percentage of the maximum that you specified. For example, if
you specify 120 as the percentage of maximum where the maximum value
captured by the baseline is 1000, the database will issue an alert when the
observed metric crosses 1200, which is 120 percent of the maximum (1000).

■ Fixed values Fixed values are standard Enterprise Manager fixed thresholds,
which the database compares with the actual metrics. The DBA sets the fixed
values, without the need for any AWR baselines.

Oracle Database 11g fully integrates the selection of adaptive thresholds for
performance metrics with the AWR baselines, with the baselines serving as the
source of the metrics. The database determines the alert thresholds by examining the
metric statistics captured over the baseline time period. Thus, the database sets the
thresholds based on data provided by the database itself, and you don’t have to know
any system-specific metrics. The database sets the thresholds based on system data
itself and some metadata provided by you. Using the Enterprise Manager, you can
choose a starter set of thresholds based on either the OLTP or the Data Warehouse
workload profile. Once you select the appropriate workload profile, the database will
automatically configure and maintain the adaptive thresholds based on the default
SYSTEM_MOVING_WINDOW baseline. The adaptive thresholds will cover all
metrics suitable for the chosen workload profile.

Once you configure the adaptive thresholds, you can edit the thresholds levels.
When you’re editing the threshold levels, Oracle recommends that you set the
initial significance level thresholds conservatively in the beginning because a very
high significance level will keep the number of alerts low.

It’s very easy to configure baseline metric thresholds from the Enterprise Manager.
On the Database home page, click the Adaptive Metric Thresholds link in the
Related Links section. The Baseline Metric Thresholds window appears, as shown in
Figure 3-1. You can configure thresholds from this page by selecting one of the three
threshold types: Significance Level, Percentage Of Maximum, or Fixed Values.

Moving Window AWR Baselines
Oracle Database 11g offers you a choice between a static baseline and a moving
window baseline. It also allows you to create both a single static baseline and a
repeating static baseline. You can create a moving window AWR baseline instead
of a mere fixed baseline corresponding to a fixed, contiguous past period in time.
Oracle creates and maintains a system-defined moving window baseline by default.
A moving window baseline encompasses AWR data during the AWR retention period,
which is, by default, eight days. (In Oracle Database 11g, the default retention
period has been increased to eight days from the previous retention period of seven
days.) This default moving window baseline is called the system_moving_window.

 FIGURE 3-1 The Baseline Metric Thresholds page

Enhancements in AWR Baselines 155

156 Chapter 3: Intelligent Infrastructure and Database Security

Oracle schedules the statistics collection for this window every Sunday at midnight.
The setting for days is always null for this baseline, thereby making the window size
exactly match the duration of the AWR retention setting. Enterprise Manager uses
the system-defined baseline as the default to compare performance with the current
database performance.

Moving window baselines are especially useful when you’re using adaptive
thresholds because you can then utilize the data from the entire AWR retention
period to compute the values for the metric thresholds you’ve selected. By default,
the adaptive thresholds feature uses statistics on the default moving window baseline
(SYSTEM_MOVING_WINDOW baseline). However, Oracle advises you to use
a larger moving window such as 30 days rather than the default AWR retention
period of 8 days, if you’re considering using adaptive thresholds. Because a moving
window baseline depends on the AWR data, it can range over the length of the
AWR retention period or a shorter time span. If you want to increase the size of the
moving window, make sure that you first increase the size of the AWR retention
period. Use the MODIFY_BASELINE_WINDOW_SIZE procedure to resize the
default moving window baseline size of 8 days. Here’s an example that sets the
moving window baseline size to 30 days:

SQL> exec dbms_workload_repository.modify_baseline_window_size(
 window_size => 30);

The window_size parameter lets you size the default moving window baseline
duration. Before you do this, however, you must first use the MODIFY_SNAPSHOT_
SETTINGS procedure to increase the AWR retention period to 30 days.

Managing the New Baseline Features
Oracle provides two new views to support the improvements in the AWR baselines.
The first new view is the DBA_HIST_BASELINE_TEMPLATE view, shown here,
which stores information about all baseline templates.

SQL> desc dba_hist_baseline_template
 Name Null? Type
------------------------------ ---------- ----------------
 DBID NOT NULL NUMBER
 TEMPLATE_ID NOT NULL NUMBER
 TEMPLATE_NAME NOT NULL VARCHAR2(30)
 TEMPLATE_TYPE NOT NULL VARCHAR2(9)
 BASELINE_NAME_PREFIX NOT NULL VARCHAR2(30)
 START_TIME NOT NULL DATE
 END_TIME NOT NULL DATE
 DAY_OF_WEEK VARCHAR2 (9)
 HOUR_IN_DAY NUMBER

 DURATION NUMBER
 EXPIRATION NUMBER
 REPEAT_INTERVAL VARCHAR2 (128)
 LAST_GENERATED DATE

SQL>

The database (actually the background process MMON) utilizes the information
in this view to determine which baselines it must create or delete. In the DBA_
HIST_BASELINE_TEMPLATE view, the following columns bear explanation:

■ TEMPLATE_TYPE Can take the values SINGLE or REPEATED.

■ EXPIRATION Number of days the database must retain the baseline.

■ REPEAT_INTERVAL Takes a string representing the interval timings in
the same format as that used by the DBMS_SCHEDULER package.

The DBA_HIST_BASELINE_DETAILS view shows details about all AWR
baselines.

SQL> desc dba_hist_baseline_details
 Name Null? Type
------------------------------ -------- --------------
 DBID NUMBER
 INSTANCE_NUMBER NUMBER
 BASELINE_ID NUMBER
 BASELINE_NAME VARCHAR2(64)
 BASELINE_TYPE VARCHAR2(13)
 START_SNAP_ID NUMBER
 START_SNAP_TIME TIMESTAMP(3)
 END_SNAP_ID NUMBER
 END_SNAP_TIME TIMESTAMP(3)
 SHUTDOWN VARCHAR2(3)
 ERROR_COUNT NUMBER
 PCT_TOTAL_TIME NUMBER
 LAST_TIME_COMPUTED DATE
 MOVING_WINDOW_SIZE NUMBER
 CREATION_TIME DATE
 EXPIRATION NUMBER
 TEMPLATE_NAME VARCHAR2(64)
SQL>

Following are the key new columns in this view:

■ SHUTDOWN Indicates whether the database was shut down during this
time period. The possible values are YES, NO, and NULL.

Enhancements in AWR Baselines 157

158 Chapter 3: Intelligent Infrastructure and Database Security

■ PCT_TOTAL_TIME The amount of time spanned by the snapshots
divided by the total possible time for the baseline.

■ ERROR_COUNT Number of errors in the snapshots in the baseline
snapshot range.

The DBA_HIST_BASELINE view has the following new columns in Oracle
Database 11g:

■ BASELINE_TYPE The possible values are STATIC, MOVING_WINDOW,
and GENERATED. Static windows are other ones that you manually created.
The start and end snapshot IDs are dynamic for a moving window baseline.
The generated baselines are the ones automatically created by the database
based on a template.

■ MOVING_WINDOW_SIZE The value of this attribute depends on the
value of the BASELINE_TYPE attribute. If BASELINE_TYPE is NULL,
the moving window size is the same as the value of the AWR retention
period. If the BASELINE_TYPE is MOVING_WINDOW, then the value of
the MOVING_WINDOW_SIZE attribute is the same number of days as the
moving window.

■ CREATION_TIME The time when the database created the baseline.

■ EXPIRATION How long the database must keep the baseline. NULL
means the database will never drop the baseline.

■ TEMPLATE_NAME Name of the template used to create this baseline,
if any.

■ LAST_COMPUTED Shows the last time the database computed statistics
for a baseline.

CERTIFICATION OBJECTIVE 3.02

Controlling Automated Maintenance Tasks
You’re familiar with the concept of automated maintenance tasks from the Oracle
Database 10g release. These are jobs that are run automatically by the database to
perform maintenance operations. In Oracle Database 10g, you had two automatic
maintenance tasks: the Automatic Optimizer Statistics collection and the
Automatic Segment Advisor. In Oracle Database 11g, there is a third automatic

maintenance task named Automatic SQL Tuning Advisor. The Automatic SQL
Tuning Advisor reviews all high resource consuming SQL statements in the database
and provides recommendations to tune them. If you want, you can configure the
database so it automatically implements some types of recommendations, such as
SQL profiles.

The Automatic SQL Tuning Advisor runs during the default system maintenance
window on a nightly basis, just as the other two automated maintenance tasks
do. A maintenance window is an Oracle Scheduler window that’s part of the
MAINTENANCE_WINDOW_GROUP. You choose low system load time interval
periods for the maintenance windows. A Scheduler resource plan specifies how the
database will allocate resources during the duration of a window. When a Scheduler
window opens, the database automatically enables the resource plan associated with
that window.

Please see Chapter 4 for a detailed discussion of the new Automatic SQL Tuning
Advisor feature.

Predefi ned Maintenance Windows
In Oracle Database 10g, you had two maintenance windows: weeknight_window
and weekend_window. In Oracle Database 11g, there are seven predefined
daily maintenance windows, one for each day of the week. Here are the predefined
maintenance windows and their descriptions:

MONDAY_WINDOW Starts 10 P.M. on Monday ends at 2 A.M.
TUESDAY_WINDOW Starts 10 P.M. on Tuesday ends at 2 A.M.
WEDNESDAY_WINDOW Starts 10 P.M. on Wednesday ends at 2 A.M.
THURSDAY_WINDOW Starts 10 P.M. on Thursday ends at 2 A.M.
FRIDAY_WINDOW Starts 10 P.M. on Friday ends at 2 A.M.
SATURDAY_WINDOW Starts 6 A.M on Saturday ends at 2.A.M
SUNDAY_WINDOW Starts 6 A.M. on Sunday ends at 2 A.M.

Note that the first five windows that run during the weekdays are open for 4 hours
and the two weekend maintenance windows are open for 20 hours. By default, all
seven daily windows belong to the MAINTENANCE_WINDOW_GROUP group.
You can change the time and duration of the daily maintenance windows, create new
maintenance windows, or disable or remove the default maintenance windows.

Managing the Automatic Maintenance Tasks
In Oracle Database 10g, you had to use the DBMS_SCHEDULER package to enable
and disable the automatic maintenance tasks. The ENABLE procedure lets you
enable an automatic maintenance job such as the automatic statistics collection job,

Controlling Automated Maintenance Tasks 159

160 Chapter 3: Intelligent Infrastructure and Database Security

and the DISABLE procedure lets you disable it, if you wanted to manually collect
the optimizer statistics. In Oracle Database 11g, use the new DBMS_AUTO_TASK_
ADMIN package to manage the automatic maintenance tasks. You can also use the
Enterprise Manager to access the controls for the automatic maintenance tasks. The
DBMS_AUTO_TASK_ADMIN package provides a more fine-grained management
capability to control the operation of the automatic maintenance tasks. For example,
the DBMS_SCHEDULER package only lets you enable or disable an automatic task.
With the new DBMS_AUTO_TASK_ADMIN package, you can now disable a task
only in selected maintenance windows instead of completely disabling the entire
task.

Before you start looking into the management of the automatic maintenance
tasks, it’s a good idea to get familiar with two new views that provide information
you might need to manage the tasks: the DBA_AUTOTASK_CLIENT view and the
DBA_AUTOTASK_OPERATION view. The two views contain several identical
columns. The DBA_AUTOTASK_CLIENT view shows data for all three automated
tasks over a 1-day and a 30-day period. The following query shows details about the
automatic maintenance tasks:

SQL> select client_name, status,
 2 attributes, window_group,service_name
 3 from dba_autotask_client;

CLIENT_NAME STATUS ATTRIBUTES
-------------------- -------- ------------------------------
auto optimizer ENABLED ON BY DEFAULT, VOLATILE,
statistics collection SAFE TO KILL
auto space advisor ENABLED ON BY DEFAULT, VOLATILE,
 SAFE TO KILL
sql tuning advisor ENABLED ONCE PER WINDOW,ON BY DEFAULT,
 VOLATILE, SAFE TO KILL
SQL>

You can see that all three of the automatic maintenance tasks are enabled.
When the maintenance window opens, Oracle Scheduler automatically creates the
automatic maintenance jobs and runs them. If the maintenance window is long,
Oracle restarts the automatic optimizer statistics collection and the automatic
segment advisor jobs every four hours. However, the automatic SQL advisor job
runs only once per maintenance window, as evidenced by the ONCE PER WINDOW
attribute for that job. The attributes column shows only ON BY DEFAULT as
the value for the other two automated maintenance tasks.

Each of the automatic maintenance tasks is called a client and is given a client
name. The actual Scheduler job associated with each of the three clients is called an

operation and is given an operation name. The following query on the DBA_AUTO
TASK_OPERATION view shows the operation names:

SQL> select client_name, operation_name from
dba_autotask_operation;
CLIENT_NAME OPERATION_NAME
---------------------- -------------------------
auto optimizer auto optimizer stats job
stats collection
auto space advisor auto space advisor job
sql tuning advisor automatic sql tuning task
SQL>

The DBA_AUTO TASK_OPERATION view shows all automatic task
operations for each of the clients.

Enabling a Maintenance task
Use the DBMS_AUTO_ADMIN.ENABLE procedure to enable a client, operation,
target type, or individual target that you previously disabled. Before you can do this,
you must first query the DBA_AUTOTASK_CLIENT and the DBA_AUTOTASK_
OPERATION views to find the values for the client_name and operation_
name attributes of the procedure.

SQL> begin
 2 dbms_auto_task_admin.enable
 3 (client_name => 'sql tuning advisor',
 4 operation => 'automatic sql tuning task',
 5 window_name => 'monday_window');
 6* end;
SQL> /
PL/SQL procedure successfully completed.
SQL>

If the default maintenance windows aren’t long enough to cover one of your
automated maintenance tasks, you can reconfigure the maintenance windows to
suit your needs.

Disabling a Maintenance Task
By default, all three maintenance jobs will run in every maintenance window. You
can use the DBMS_AUTO_ADMIN.DISABLE procedure to disable a client or
operation for a specific window, as shown here:

SQL> begin
 2 dbms_auto_task_admin.disable

Controlling Automated Maintenance Tasks 161

162 Chapter 3: Intelligent Infrastructure and Database Security

 3 (client_name => 'sql tuning advisor',
 4 operation => 'automatic sql tuning task',
 5 window_name => 'monday_window');
 6* end;
SQL> /
PL/SQL procedure successfully completed.
SQL>

In this example, the SQL tuning advisor task is disabled only during the
monday_window, but continues to run during all other defined maintenance
windows. You can enable and disable any maintenance task in one or all
maintenance windows.

You can also use the Enterprise Manager, shown in Figure 3-2, to effortlessly
configure and manage the three automated maintenance tasks. You can enable
or disable the three automated maintenance tasks, and you can select some or
all of the seven available maintenance windows for running the three automated
maintenance tasks.

 FIGURE 3-2 Automated Maintenance Tasks Configuration

Implementing Automatic Maintenance Tasks
The database doesn’t assign any permanent Scheduler jobs to the three automated
maintenance tasks. You therefore can’t manage the jobs with the usual DBMS_
SCHEDULER package. Use the new DBMS_AUTO_TASK_ADMIN package
instead to manage the automated maintenance tasks. The new background process,
Autotask Background Process (ABP), implements the automated maintenance
tasks. The ABP maintains a history of all automated maintenance task executions
in the repository that it maintains in the SYSAUX tablespace. Another background
process, MMON, spawns (usually when a maintenance window opens), monitors,
and restarts the ABP process.

The ABP is in charge of converting tasks into Scheduler jobs. The ABP creates a
task list for each maintenance job and assigns them a priority. There are three levels
of job priorities: urgent, high, and medium. The ABP creates the urgent
priority jobs first, after which it creates the high priority and the medium priority
jobs. Various Scheduler job classes are also created, in order to map a task’s priority
consumer group to the corresponding job class. The ABP is in charge of assigning
the jobs to the job classes. The job classes map the individual jobs to a consumer
group, based on the job priority.

The ABP stores its data in the SYSAUX tablespace. You can view the ABP
repository by querying the DBA_AUTOTASK_TASK view.

Confi guring Resource Allocation for Automatic Tasks
You can control the percentage of resources allocated to the maintenance tasks
during a given maintenance window. The default resource plan for each predefined
maintenance window is the DEFAULT_MAINTENANCE_PLAN. When a
maintenance window opens, the DEFAULT_MAINTENANCE_PLAN is activated
to control the amount of CPU used by the various automatic maintenance tasks.
The three default maintenance tasks run under the ORA$AUTOTASK_SUB_PLAN,
which is a subplan of the DEFAULT_MAINTENANCE_PLAN, with all three plans
sharing the resources equally. ORA$AUTOTASK_SUB_PLAN gets 25 percent of the
resources at the priority level 2. The consumer group SYS_GROUP takes priority
in the DEFAULT_MAINTENANCE_PLAN resource plan, getting 100 percent of
the level 1 resources in the DEFAULT_MAINTENANCE_PLAN. If you want to
change the resource allocation for the automatic tasks in a specific window, you must
change the resource allocation to the subplan ORA$AUTOTASK_SUB_PLAN in
the resource plan for that window.

Controlling Automated Maintenance Tasks 163

164 Chapter 3: Intelligent Infrastructure and Database Security

Priorities for the various tasks that run during the maintenance window (three tasks
altogether) are determined by assigning different consumer groups to the DEFAULT_
MAINTENANCE_PLAN. For example, the new Automatic SQL Tuning task is
assigned to the ORA$AUTOTASK_SQL_GROUP consumer group. The Optimizer
Statistics Gathering task is part of the ORA$AUTOTASK_STATS_GROUP, and the
Segment Advisor task belongs to the ORA$AUTOTASK_SPACE_GROUP.

I/O Calibration
Oracle Database 11g introduces an I/O Calibration mechanism, whereby you can
run I/O calibration tests either through the Enterprise Manager Performance page
or a PL/SQL package. Oracle’s I/O calibration is a variation on the Clarion tool. In
an Oracle database, the I/O workload is of two basic types—small random I/O and
large sequential I/O. OLTP applications usually experience the small random I/O
workload, where the speed with which small I/O requests are serviced is paramount.
Thus, disk spinning and seeking times are of critical importance. OLAP applications,
on the other hand, employ the large sequential I/O in general. For these types of
applications, the critical factor is the capacity of the I/O channel. The larger the
I/O channels between the database server and the storage system, the larger the I/O
throughput. Oracle uses the following two metrics, each measuring the efficacy of
one type of I/O workload:

■ IOPS (I/O per second) The IOPS rate is the number of small random I/Os
the system can perform in a second and depends on the spin speed of disks.
You can increase the IOPS rate by increasing the number of disks in the
storage array or by using faster disk drives, which have a high RPM and
lower seek time.

■ MBPS (megabytes per second) This metric measures the data transfer rate
between the server and the storage array and depends on the capacity of the
I/O channel between the two systems. A larger I/O channel means a higher
MBPS rate.

EXERCISE 3-1

Calibrating I/O Resources
The following exercise shows how to find out the capabilities of your I/O sub-system.
You can then monitor your I/O load in relation to its I/O capacity.

 1. On the Database control Home page, click the Performance tab.

 2. Click the I/O tab on the Performance page.

 3. Click the I/O Calibration button.

 4. If the Calibration page shows that filesystemio_options isn’t set, you’ll
have to set the following initialization parameter and restart the instance.

filesystemio_options = asynch

 5. Check the kernel parameters by viewing them in the /proc file system. If the
aio-nr (current number of asynch IO requests in the database) is equal
to the aio-max-nr (maximum asynch IO request that the database can
make), you must increase the value of aio-max-nr. You do this by adding a
line such as the following to the sysctl.conf file:

fs.aio-max-nr = 131072

 6. Apply the new parameter to the kernel by executing the following command
as the root user:

sysctl –p

Two important terms need clarification in this discussion: throughput and latency.
The throughput of a system determines how fast it can transfer data and is measured
by the MBPS metric. The channel capacity determines the overall throughput of the
system, and it thus puts the ceiling on the amount of data transfer. Latency refers to
the lag between the time an I/O request is made and when the request is serviced by
the storage system. High latency indicates a system that’s overloaded and you can
reduce latency by striping data across multiple spindles, so different disks can service
the same I/O request in parallel.

Oracle recommends that you use the new I/O Calibration tool to determine I/O
metrics in a database. It takes about 10 minutes to run the tools and you should pick
a time when the database workload is light to avoid overstressing the storage system.
You can run only a single calibration task at a time. If you perform the task in an
RAC environment, the workload is generated simultaneously from all instances in
the system. You can either run the tool with Enterprise Manager or through PL/SQL.

Calibrating I/O through Enterprise Manager
The easiest way to run the I/O calibration tool is through the Enterprise Manager.
Here are the steps:

 1. Click the Performance tab on the Home page of Database Control.

 2. Click the I/O calibration button.

Controlling Automated Maintenance Tasks 165

166 Chapter 3: Intelligent Infrastructure and Database Security

 3. You’ll be in the I/O Calibration page now. Specify the number of physi-
cal disks and the maximum tolerable latency for a single-block I/O request.
Specify when to execute the calibration task in the Scheduler section. Click
Submit to create a Scheduler job.

 4. On the Scheduler jobs page, you can find out the length of time for which
the calibration job will run.

 5. Once the Calibration task completes, you can view results of the calibration
task concerning the following metrics on the I/O Calibration page:

■ Maximum I/O per second

■ Maximum megabytes per second

■ Average latency metrics

Calibrating I/O Using PL/SQL
You can also use the new procedure CALIBRATE_IO from the DBMS_
RESOURCE_MANAGER package to run the I/O Calibration task. Here is an
example:

begin
 exec dbms_resource_manager.calibrate_io(-
 num_disks => 1, -
 max_latency => 10, -
 max_iops => :max_iops, -
 max_mbps => :max_mbps, -
 actual_latency => :actual_latency);
 end;
 /

In the CALIBRATE_IO procedure, the following are the key parameters:

■ num_disks Approximate number of disks in the storage array.

■ max_latency Maximum tolerable latency (in milliseconds) for an I/O
request.

■ max_ios Maximum number of random DB block-sized read requests that
can be serviced.

■ max_mbps Maximum number of randomly distributed 1MB reads that can
be serviced (in megabytes per second).

■ actual_latency Average latency of DB block-sized I/O requests at
max_iops rate (in milliseconds).

Once you execute the CALIBRATE_IO procedure, you can query the V$IO_
CALIBRATION_STATUS and the DBA_RSRC_IO_CALIBRATE views to check
the results. Here’s a sample query:

SQL> select max_iops, max_mbps, max_pmbps, latency
 from dba_rsrc_io_calibrate;

MAX_IOPS MAX_MBPS MAX_PMBPS LATENCY
---------- ------------ ------------ ----------
133 12 6 64
SQL>

Oracle Database 11g collects I/O statistics in three different dimensions to
provide a consistent set of statistics for I/O calls. These dimensions are

■ RDBMS components grouped into 12 functional groups. The V$IOSTAT_
FUNCTION view provides the details.

■ I/O statistics are collected for each consumer group that’s part of the currently
enabled resource plan. The V$IOSTAT_CONSUMER_GROUP view has
the details.

■ Individual file level I/O statistics are collected and stored in the V$IOSTAT_
FILE view for details.

CERTIFICATION OBJECTIVE 3.03

Database Resource Manager New Features
You’re familiar with the Database Resource Manager (Resource Manager) from the
earlier release. You use the Database Resource Manager to efficiently allocate resources
among competing database sessions. Here are the key elements of the Resource Manager:

■ Resource Consumer Group is a group of sessions that share similar resource
requirements. The Resource Manager allocates resources directly to the
resource consumer groups instead of the individual sessions.

You must understand
exactly how you can set the various
parameters of the CALIBRATE_IO

procedure, such as actual_latency,
max_iops, and max_mbps.

Database Resource Manager New Features 167

168 Chapter 3: Intelligent Infrastructure and Database Security

■ Resource Plan is a container for directives that dictate how the resources are
to spread about among the resource consumer groups. At any given time, a
certain resource plan is active.

■ Resource plan directives dictate which consumers belong to which resource
consumer group as well as how the individual resources are to be allocated to
that resource consumer group.

There are Database Resource Manager–related enhancements in the following areas:

■ Per Session I/O Limits

■ New mixed workload resource plan

The CPU_Pn parameters of the CREATE_PLAN_DIRECTIVE procedure are
deprecated now. Instead, use the new MGMT_Pn parameters. Also, in the same
procedure, use the new switch_call parameter instead of the switch_
time_in_call parameter.

I discuss each of these major innovations in detail in the following sections.

Per Session I/O Limits
The Resource Manager provides both manual as well as automatic methods to switch
a user’s session to a different resource consumer group. However, whether you
change a current resource consumer group manually or automatically, the changes
don’t persist and the user’s default resource consumer group remains the same when
the user logs in again. In Oracle Database 10g, automatic switching of a session
to another resource consumer group could be triggered by a change in a session
attribute. The change in session attributes could cause new session-to-consumer
group mapping rules to take effect that directed the Resource Manager to move the
session to another, typically lower, priority group, based on the dynamic change in
the session attribute(s).

The session limits examine the resource usage during a call to the database. A
top call is an entire PL/SQL block, which the database considers an individual
SQL statement.

Oracle Database 11g provides a second way to automatically switch a user’s
session from one consumer group to another. Now, automatic session switching can
also occur when a session exceeds a CPU or an I/O consumption limit set by the

consumer group to which that session is originally assigned. So, you can now specify
automatic resource consumer group switching with mapping rules as in the previous
release, and also by setting resource limits. If a user is using an excessive amount of
CPU, you don’t have to kill that user’s session; you can set up automatic resource
group switching so the user is automatically assigned to a resource group with a
lower CPU allocation.

Specifying Automatic Switching by Setting Resource Limits
You can now specify limits for CPU and I/O consumption for all sessions in a consumer
group when you’re creating a resource plan directive for that consumer group. More
specifically, you can dictate what the database can do when a single database call within
a session exceeds a CPU or I/O limit. You can choose one of the following actions when
a session exceeds a specific resource limit:

■ Switch the session to another resource consumer group with a lower resource
allocation. In order for this to happen, you must first grant the session owner
the “switch” privileges on the new resource consumer group.

■ The database can terminate the session.

■ The database can abort the SQL statement issuing the call.

The database allows only those sessions that are actually consuming resources to
dynamically switch their resource consumer group. A session that’s waiting either for
a user’s input or waiting on CPU doesn’t qualify for switching its resource consumer
group under the automatic switching feature.

Automatic session switching involves the use of the following resource plan directive
parameters, which you specify in the CREATE_RESOURCE_PLAN procedure. The
examples in the following section illustrate how to use the various parameters.

■ switch_group The consumer group a session is switched to automatically
when a switching criterion is satisfied. Here are some things to note about
this parameter:

■ The default value is NULL.

■ If the group name is CANCEL_SQL, the database cancels the current
database call.

■ If the group name is KILL_SESSION, the session is terminated.

■ switch_time Specifies the duration for which a call can execute before
the database switches the session to that specified by the switch_group
parameter. The default value is UNLIMITED.

Database Resource Manager New Features 169

170 Chapter 3: Intelligent Infrastructure and Database Security

■ switch_estimate If you set this parameter to TRUE, the database
will estimate the execution time of each call before the call begins. If the
estimated execution time for a call is greater than the limit specified by the
switch_time parameter, the database switches the session to the specified
group (specified by the switch_group parameter). The default value is
FALSE.

■ switch_io_megabytes Specifies the maximum I/O (in megabytes)
that a session can transfer in the form of read and write operations before
the database takes action. Default is NULL, which means it is unlimited.

■ switch_io_reqs Specifies the maximum number of I/O requests
a session can execute before the database takes the action specified by
the SWITCH_GROUP parameter. Default is NULL, which means it is
unlimited.

■ switch_for_call By setting this parameter to TRUE, you tell the
database to return a session that was automatically switched to a different
consumer group to its original consumer group, once the top level call is
completed. The default value is NULL. This parameter comes in handy for
three-tier applications where the middle tier is employing session pooling.

Note that the switch_io_megabytes and the switch_io_reqs
parameters enable you to specify I/O resource limits when creating a Resource Plan
directive. When the database dynamically switches a session’s resource consumer
group, the consumer group is allowed to run more sessions than permitted by its
active session pool.

Examples of Automatic Session Switching
Use the CREATE_PLAN_DIRECTIVE procedure to create resource plan directives.
When you want to specify automatic resource usage–based session switching, you
specify values for the relevant parameters such as switch_io_megabytes and
switch_io_reqs . Here are three examples of automatic session switching based
on a session exceeding its resource limits.

Switching to a Different Resource Group Based on CPU Usage In order
to prevent a single session from consuming a disproportionate amount of resources,
you can specify that a session will switch automatically to a low-priority consumer
group (LOW_GROUP) if a single call in a session uses the CPU beyond a preset
limit. Here’s an example:

SQL> begin
 dbms_resource_manager.create_plan_directive (

 plan => 'peaktime',
 group_or_subplan => 'oltp',
 mgmt_p1 => 75,
 switch_group => 'low_Group',
 switch_time => 10);
end;

In this example, the session is automatically switched to the LOW_GROUP,
which is a resource group with a low amount of resource allocation. It’s common to
assign a lower priority resource group as the switch group for sessions that exceed
resource limits. This allows the session to continue while allowing more critical
sessions to have an adequate chance to use the existing resources.

Switching to a Different Resource Group Based on I/O Limits The
following example shows how to automatically switch a session from one group to
another when it exceeds a certain number of I/O requests (switch_io_reqs) or
after it transfers more than a set amount of data (switch_io_megabytes).

SQL> begin
 dbms_resource_manager.create_plan_directive (
 plan => 'peaktime',
 group_or_subplan => 'oltp',
 mgmt_p1 => 75,
 switch_group => 'low_group',
 switch_io_reqs => 5000,
 switch_io_megabytes => 1000,
 switch_for_call => true);
 end;

Note that once the session completes the high resource using call, it goes back to
its original resource group.

Terminating a Session Based on CPU Usage You can also create a
resource plan directive that lets the database terminate a session that exceeds a
specified length of time during which it can use the CPU resource, as shown in this
example:

SQL> begin
 dbms_resource_manager.create_plan_directive (
 plan => 'peaktime',
 group_or_subplan => 'oltp',
 mgmt_p1 => 75,
 switch_group => 'kill_session',
 switch_time => 60);
 end;

Database Resource Manager New Features 171

172 Chapter 3: Intelligent Infrastructure and Database Security

When a user exceeds 60 seconds of CPU usage time, the database automatically
kills the session by moving the session to the kill_session group specified by the
switch_group parameter.

Pre-Created Mixed Workload Resource Plan
Oracle Database 11g provides a new predefined resource plan named MIXED_
WORKLOAD_PLAN. This Oracle-supplied plan gives priority to interactive
operations over batch jobs. The plan is disabled by default, and you must enable
it in order to assign this plan to user sessions. The MIXED_WORKLOAD_PLAN
resource plan consists of the following groups or subplans:

■ interactive_group, primarily intended for short online transactions

■ batch_group, primarily intended for long batch operations

Following is the way Oracle allocates CPU to the different resource consumer
groups in the MIXED_WORKLOAD_PLAN:

■ The sys_group gets 100 percent of the CPU at level 1.

■ The interactive_group gets preference over the batch_group because its
CPU resource allocation is 85 percent of the Level 2 allocation. The other
15 percent of the level 2 CPU allocation is equally distributed among the
following subplan and groups:

■ ORA$AUTOTASK_SUB_PLAN

■ ORA$DIAGNOSTICS

■ OTHER_GROUPS

■ The batch_group gets only Level 3 allocation of CPU, although it’s 100
percent. If a session that is mapped to the interactive_group goes over 60
seconds of execution time, the database automatically switches it to the
batch_group. For the interactive_group then, the following automatic
consumer resource group switching parameter values hold:

■ switch_group: batch-group

■ switch_time: 60 seconds

■ switch_for_call: true

You can take advantage of the pre-built resource plans by mapping your
online application users to the interactive_group consumer group and the batch

applications to the batch_group consumer group. You can modify the CPU resource
allocations to the batch_group and the interactive_group to suit the needs of your
workload.

CERTIFICATION OBJECTIVE 3.04

Using New Oracle Scheduler Features
The following are important new features related to the Oracle Scheduler in Oracle
Database 11g:

■ Lightweight jobs

■ Remote external jobs

■ Application to a Data Guard environment

I discuss the three major new Oracle Scheduler features in the following sections.

Lightweight Jobs
In Oracle Database 10g, there was only a single type of Scheduler job. In Oracle
Database 11g, you can also create what’s called a lightweight job (also referred to as
a persistent lightweight job), which derives its privileges, and in some cases, its job
metadata, from a job template. Regular jobs, which are fully self-contained unlike
the lightweight jobs, are still the more flexible type of jobs, but you incur overhead
each time you create one. In a situation in which the database may have to create
and delete thousands of jobs, it may be smarter to use a lightweight job instead. If
you’re going to use a small number of infrequent jobs, you are better off sticking to
the traditional regular jobs.

Lightweight jobs aren’t schema objects, as regular Scheduler jobs are. Thus, the
overhead in creating and dropping a lightweight job is much smaller when compared
with a regular job. Lightweight jobs are also faster to create and take up space only
for the job metadata and runtime data. Lightweight jobs help make recovery and
load balancing easier in an RAC environment because they have a smaller physical
footprint and require less redo because of the minimal amount of metadata that’s
created for the jobs. The overall goal is to reduce the time it takes to create jobs and
to lower the overhead involved in the job creation process.

Using New Oracle Scheduler Features 173

174 Chapter 3: Intelligent Infrastructure and Database Security

Unlike a regular Scheduler job, you must use a job template when creating a
lightweight job. The job template is a new type of database object that provides
the metadata for a lightweight job, in addition to providing privileges that the
lightweight jobs will inherit. Either a stored procedure or a Scheduler program
can serve as a template for lightweight job. The lightweight jobs thus inherit their
privileges from the parent job template. You must create and drop a database object
when you create and drop a regular job. Because they are not full fledged database
objects, lightweight jobs are much faster to create and run because they don’t require
the same overhead as regular jobs. Although they offer superior overhead cost,
lightweight jobs have the following disadvantages when compared to a regular job:

■ You can’t create a fully self-contained lightweight job. Instead, you must use
a template. You can use either a stored procedure or a Scheduler program as a
template for a lightweight job.

■ You can’t set the privileges on a per job basis because the lightweight jobs
inherit privileges from the parent job template.

■ Only a limited set of job attributes are applicable to lightweight jobs, whereas
a regular job offers more choices.

To summarize, then, lightweight jobs are a special type of Scheduler jobs that
you can use instead of traditional jobs if your database has to quickly create a large
number of jobs.

Creating a Job Template
You can create a job template, which is mandatory for lightweight jobs, by using the
CREATE_PROGRAM procedure from the DBMS_SCHEDULER package. Here’s
an example showing how to create a simple job template, with a Scheduler program
serving as the template.

begin
dbms_scheduler.create_program(
program_name => 'test_prog',
program_action =>
 'declare current_time date;
 begin
 select
 sysdate into current_time from dual;
 end;',
program_type => 'plsql_block',
enabled=> true);
end;
/

In the CREATE_PROGRAM procedure, the program_action attribute can
be an actual anonymous PL/SQL code block or a named procedure. In the example,
I used an anonymous PL/SQL code block. The Scheduler passes the following for
execution to the PL/SQL engine: DECLARE . . . BEGIN job_action END;.

If you want to use a named stored procedure
instead of an anonymous PL/SQL code block,
you can do so by specifying the name of the
procedure as the value for the program_
action attribute.

The program_type attribute lets you
specify the type of program you are creating.

For a lightweight job, you can use either plsql_block or stored_procedure
as the value for the program_type attribute. You specify the plsql_block value
for an anonymous PL/SQL block, which is the case in this example. You specify the
value stored_procedure for a program that’s a PL/SQL or Java stored procedure
or an external C subprogram.

Creating a Single Lightweight Job
You create a lightweight job using the CREATE_JOB procedure of the DBMS_
SCHEDULER package, just as you do for a regular Scheduler job. However, for a
lightweight job, you must use the new job parameter job_style and assign it a
value of LIGHTWEIGHT. You can create a lightweight job by specifying the time
and frequency directly within the CREATE_JOB procedure, or use a schedule
to set the timing and frequency attributes for the job. You can specify only a few
parameters for a lightweight job. These are the job parameters and the schedule
parameter. The lightweight jobs inherit the other metadata for running the job, as
well as its privileges, from the parent job template. Here’s an example that shows
how to create a lightweight Scheduler job by specifying the time and frequency
attributes directly in the CREATE_JOB procedure.

begin
dbms_scheduler.create_job (
job_name => 'test_ltwtjob1',
program_name => 'test_prog',
repeat_interval => 'freq=daily,by_hour=10',
end_time => '31-DEC-08 06:00:00 AM Australia/Sydney',
job_style => 'lightweight',
comments => 'A lightweight job based on a program');
end;
/

You must be aware of the
role of a template in creating a persistent
lightweight Scheduler job.

Using New Oracle Scheduler Features 175

176 Chapter 3: Intelligent Infrastructure and Database Security

Note that a lightweight job always needs a job template, which is based on
a procedure or a Scheduler program. Unlike a regular job, you can’t inline a
lightweight job, but must always use a named program. The program test_prog
in our example serves as the template for this lightweight job.

You can also create a lightweight job based on a named program (which acts as
the template) and a preexisting schedule, as shown in this example:

begin
dbms_scheduler.create_job (
job_name => 'test_ltwtjob2',
program_name => 'test_prog',
schedule_name => 'test_sched',
job_style_ => 'lightweight',
comments => 'A job based on a program and a schedule');
end;
/

The new lightweight job you create depends on the program test_prog and the
schedule test_sched, which already exist. Note that providing a named program
and schedule means that you don’t have to use the repeat_interval or the end_time
attributes when creating the new lightweight job.

Creating an Array of Lightweight Jobs
Oracle Database 11g offers you a way to create a set of jobs through the creation of a
job array. When you need to create a fairly large number of Scheduler jobs (regular
or lightweight), it’s far more efficient to create a job array and submit it once, instead
of submitting a large number of single job creation requests to the database. You can
use the concept of a job array for both regular jobs and the new lightweight jobs. In
the following example, I make use of a job array to create a set of lightweight jobs.

 1. Declare two variables, one to hold the job definition and the other to hold
the job array:

declare
testjob sys.job;
testjobarr sys.job_array;

 2. Initialize the job array using the sys.job_array constructor:

begin
testjobarr := sys.job_array();

 The array testjobarr is an array of JOB object types. The initialization of the
job array creates a slot for one job in the job array named testjobarr.

 3. Set the size of the new job array to the number of lightweight jobs you expect
to create in your database:

testjobarr.extend(500);

 Now the database allocates sufficient space in the array to hold information
on about 500 jobs.

 4. Create the jobs and place them in the job array:

for I in 1...500 loop
testjob := sys.job(job_name => ‘TESTJOB’||TO_CHAR(I),
job_style => ‘LIGHTWEIGHT’,
job_template => ‘TEST_PROG’,
enabled => TRUE);
testjobarr(i) := TESTJOB;
end loop;

The code within the loop will create 500 jobs at once, using the job_template
TEST_PROG<>. The I in 1...500 loop adds the definitions for the jobs.
The assignment testjobarr(i) := testjob adds jobs to the array. The jobs
are scheduled to run immediately because the start_time parameter defaults to
null when you omit it.

Submit the job array as a single transaction, using the CREATE_JOBS procedure:

dbms_scheduler.create_jobs (testjobarr, 'transactional');

The CREATE_JOBS procedure treats the testjobarr array as a single
transaction and creates all 500 lightweight jobs.

EXERCISE 3-2

Creating an Array of Regular Scheduler Jobs
In Oracle Database 11g, you can create an array of jobs at once, instead of creating
a single job at a time. The following example shows how to create a set of 1,000
regular Scheduler jobs.

declare
testjob sys.job;
testjobarr sys.job_array;
begin
testjobarr := sys.job_array();
testjobarr.extend(1000);
for I in 1...1000 loop

Using New Oracle Scheduler Features 177

178 Chapter 3: Intelligent Infrastructure and Database Security

testjob := sys.job(job_name => 'TESTJOB'||TO_CHAR(I),
job_template => 'TEST_PROG',
enabled => TRUE);
testjobarr(i) := TESTJOB;
end loop;
dbms_scheduler.create_jobs (testjobarr, 'transactional');

Because there is no job_style parameter, by default, Oracle creates regular
instead of lightweight jobs.

Monitoring Lightweight Jobs
Use the same views that you use for regular jobs to view information about
lightweight jobs. For example, you can query the DBA_SCHEDULER_JOBS view
to find out details about lightweight jobs, as shown here:

SQL> select job_name, program_name from dba_scheduler_jobs
 where job_style='LIGHTWEIGHT';
JOB_NAME PROGRAM_NAME
----------- -------------
TEST_JOB1 TEST_PROG1

Note that you can’t view any lightweight jobs in the DBA_OBJECTS view
because, unlike a regular Scheduler job, lightweight jobs aren’t database objects.

Remote External Jobs
An external job is a job that you can execute outside the database. Usually it’s an
operating system executable that you execute through the Oracle database, but runs
entirely outside the database. You specify the job_type parameter for an external
job as executable. You may also use a named Scheduler program for an external
job, in which case you must specify the job_type parameter as executable.
The job_action parameter (or program_action parameter if you’re using
a Scheduler program instead) points to the full path of the directory where the
operating system executable is stored. An external job can be an operating system–
based job or a database job. External jobs were available in the previous release.
What’s new in Oracle Database 11g are remote external jobs. The traditional external
jobs are now referred to as local external jobs and they run only on the server on
which the scheduling Oracle database runs. Remote external jobs can run on any
host, not just the server hosting the Oracle database that’s scheduling the external
job. You can thus administer operating system or Oracle database jobs across your
entire network from a centralized location.

The remote host on which you run a remote external job doesn’t need you to
install an Oracle database. You merely need to install a Scheduler agent so an Oracle
database can communicate with the agent to run external jobs on that remote host.
The agent listens to incoming job requests from the Oracle database issuing the job
requests and executes those requests on the target server. The agent is also responsible
for returning the job execution results to the database originating the external job.

You must install Oracle XML DB on the source database from where you’re
originating the job requests.

Running local external jobs is pretty straightforward. You may have to set the
credentials for the user account on which the OracleJobScheduler service runs on
a Windows system, to enable local external jobs. Running remote external jobs
involves the installation of the scheduler agent on all remote hosts where you want
to run an external job. In addition, you must also perform other tasks such as setting
the credentials for executing an external job. The following sections explain how to
set up remote external jobs.

Setting up the Database
Before you can run an external remote job, you must first set up the database from
which you want to originate the external job request, which involves the following
steps:

 1. Check that the Oracle XML DB option is installed on your database host.
This option is installed by default and you can confirm that it has been suc-
cessfully installed by issuing the following describe command to examine
the contents of the RESOURCE_VIEW view.

SQL> desc resource_view
 Name Null? Type
 ----------------- ----- ------------------------------
 RES
 XMLTYPE (XMLSchema "http://xm
 lns.oracle.com/xdb/XDBResour
 ce.xsd" Element "Resource")
 ANY_PATH VARCHAR2(4000)
 RESID RAW(16)

SQL>

 The results of the query show that Oracle XML DB is indeed installed on the
database host. If the Oracle XML DB wasn’t installed, you’d have to install it
before proceeding further.

Using New Oracle Scheduler Features 179

180 Chapter 3: Intelligent Infrastructure and Database Security

 2. Run the Oracle script prvtrsch.plb as the user SYS, as shown here:
SQL> connect sys/sammyy1 as sysdba
SQL> @$ORACLE_HOME/rdbms/admin/prvtrsch.plb
PL/SQL procedure successfully completed.
...
PL/SQL procedure successfully completed.
no rows selected
Package created.
Package body created.
No errors.
...
User altered.

SQL>

 3. Your final step in preparing the scheduling database is to set a registration
password for the Scheduler agent. The Scheduler agent will use this password
to register with the database.
SQL> exec dbms_scheduler.set_agent_registration_pass(
registration_password => 'sammyy1'.-
expiration_date => systimestamp + interval '7' day,-
max_uses => 25)
PL/SQL procedure successfully completed.

SQL>

The previous example sets the Scheduler agent registration password for the
database host to sammyy1. The expiration_date and the max_uses
parameter set an expiration time for the credential and limit the number of times
a credential can be invoked, respectively. In this case, the max_uses parameter is
set to 25, meaning that the credential is allowed to be used a maximum of 25 times
within a period of 7 days. Both the expiration_date and the max_uses
parameters are optional, serving to limit the usage of the password to a short time,
as recommended by Oracle.

Installing and Configuring the Scheduler Agent
To run a remote external job, you must install the Scheduler agent on all remote
hosts where you want to run a scheduled external job. The Scheduler agent isn’t
installed as part of the database server installation. You must install it either from
the installation media for the Oracle Database Gateway (included in the Database
CD pack) or download it from the Oracle web site.

The following are the steps to install the Scheduler agent on a remote host:

 1. On a UNIX/Linux system, log in as the owner of the Oracle software (user
Oracle, usually).

 2. Start the Oracle Installer from the directory where the Oracle Database
Gateway installation files are located.

$ /oracle11g/gateways/runInstaller

 3. On the Welcome screen, click Next.

 4. On the Select a Product page, select Oracle Scheduler Agent 11.1.0.6.0 and
click Next.

 5. On the Specify Home Details page, select a name and provide the directory
path for the Oracle Scheduler Agent home. Click Next.

 6. On the Oracle Scheduler Agent page, provide the host name where you are
installing the agent, as well as the port number you want the agent to use for
communicating with the database making the remote external job requests.
Click Next.

 7. On the Summary page, review the selections you made and click Install.

If you have a large number of remote sites, you can simplify the installation
of the agent by automating the procedure (silent install). This means that you
must include the database registration password in the installer file.

 8. The installer prompts you to log in as the root user and execute the root.sh
script. Once you execute the root.sh script, click OK.

 9. The End of Installation page appears, indicating that the installation of the
Scheduler agent was successful. Click Exit to leave the Oracle Universal
Installer.

The schagent.conf text file, located in the Scheduler Agent home, contains the
configuration parameters for the agent. Use the schagent executable to invoke
the Scheduler agent. Your first task is to register the Scheduler agent with all
databases that will run a remote external job on the host where you installed the
agent. Use the following command to register the agent with each database:

$ schagent –registerdatabase localhost 1522

Using New Oracle Scheduler Features 181

182 Chapter 3: Intelligent Infrastructure and Database Security

In this example, local host and 1522 are the database host and the port number
for the Scheduler agent. The Scheduler agent will then prompt you for the agent
registration password that you set earlier:

$./schagent -registerdatabase localhost.localdomain 1522
Agent Registration Password ? ******
$

You must repeat the previous step for each database from which you want to run
remote external jobs.

Finally, start the Scheduler agent by using the following command:

$./schagent –start
Scheduler agent started
$

You can stop the Scheduler agent by using the following command:

$./schagent –stop
Scheduler agent stopped
$

On a Windows server, you must install and start the OracleSchedulerExec
utionAgent service. You can install the service by using the following command:

$ schagent –installagentservice

Note that the service you create with the schagent command is different from
the regular Oracle service.

Creating and Enabling a Remote External Job
There is more involved in creating a remote external job than in creating a local
external job. The big difference is that you must create a credential so the remote jobs
can be executed. A credential is a schema object that contains a username/password
pair of values. The credential_name attribute of an external job specifies the
credential to be used for that job. Only a job whose owner has execute privileges
on a credential can use that credential. Use the following steps to create a remote
external job:

 1. Create a credential using the CREATE_CREDENTIAL procedure.

SQL> exec dbms_scheduler.create_credential('hrcredential,
 'hr','sammyy1');

 2. Once you create a credential, you must grant privileges on that credential so
a user can use those credentials.

SQL> grant execute on system.hrcrdential to sam;

 The DBA_SCHEDULER_CREDENTIALS view shows all credentials
created in a database.

 3. Create a remote external job named removelogs, as shown here:

SQL> begin
 2 dbms_scheduler.create_job(
 3 job_name => 'remove_logs',
 4 job_type => 'executable',
 5 job_action => '/u01/app/oracle/logs/removelogs',
 6 repeat_interval => 'freq=daily; byhour=23',
 7 enabled => false);
 8* end;
SQL> /

PL/SQL procedure successfully completed.

SQL>

 4. Use the SET_ATTRIBUTE procedure to set the credential_name
attribute of the remote job.

SQL> exec dbms_scheduler.set_attribute('remove_logs',
 'credential_name','hrcredential');
PL/SQL procedure successfully completed.
SQL>

 5. Using the SET_ATTRIBUTE procedure again, set the destination
attribute of the remote job,

SQL> exec dbms_scheduler.set_attribute('remove_logs',
 'destination', 'remotehost.remotedomain:1522');

PL/SQL procedure successfully completed.
SQL>

 Note that you must use the host and port numbers of the Scheduler agent in
order to specify the destination host or database.

 6. Enable the remote external job:

SQL> exec dbms_scheduler.enable('remove_logs');

PL/SQL procedure successfully completed.
SQL>

The remote external job you created is now enabled on the remote host.

Using New Oracle Scheduler Features 183

184 Chapter 3: Intelligent Infrastructure and Database Security

Disabling Remote External Jobs
You can disable the capability of a database to run remote external jobs by dropping
the user remote_scheduler_agent using the following command:

SQL> drop user remote_scheduler_agent cascade;

Once you drop the user remote_scheduler_agent, you can’t register new scheduler
agents or execute any remote external jobs. In order for the database to regain the
ability to run remote external jobs, you must re-execute the prvtrsch.plb script.

Scheduler Support for Data Guard
Oracle Database 11g provides support for the Scheduler in an Oracle Data Guard
setup. You can now set up Scheduler jobs to run based on the particular role that
the database is playing at a given time. That is, you can specify that a certain job
run only when the database is in the primary role and not in the logical standby
role and vice versa.

You use the new DATABASE_ROLE attribute in the DBMS_SCHEDULER
package’s SET_ATTRIBUTE procedure to denote the role of the database to the
Scheduler. The new functionality means that you can run a Scheduler job in the
following two ways:

■ Run a job only when the database is in one of the two roles, primary or
logical standby.

■ Run the job when the database is in both primary and logical standby roles.
In order to make the same job run in both roles, you must make a copy of
the job and assign each of the copies a separate role—primary and logical
standby.

The following example shows how to create a Scheduler job so it can run based
on the role the database is in:

 1. Create a regular Scheduler job on the primary database.

begin
 dbms_scheduler.create_job (
 job_name => 'primary_job',
 program_name => 'test_prog',
 schedule_name => 'test_sched');
end;
/

 The job named primary_job will run automatically in the primary database
because it was created when the database was in the primary database role.

The primary_job is also enabled to run because all Scheduler jobs are enabled
upon their creation.

 2. Make a copy of the job you created in the previous step, as shown here:

SQL> exec dbms_scheduler.copy_job ('primary_job',
 'standby_job');

 The copy you made of the original job is disabled by default.

 3. Set the database role of the copied job to logical standby, using the
database_role attribute.

SQL> exec dbms_scheduler.set_attribute('standby_job',
 'database_role', 'logical standby');

 4. Enable the copied job, using the enable procedure:

SQL> exec dbms_scheduler.enable (name=> 'standby_job');

You can confirm that you’ve correctly copied the original job to run when the
database is in the logical standby role, by issuing the following query:

SQL> select job_name,database_role
 from dba_scheduler_job_roles;
JOB_NAME DATABASE_ROLE
------------------- -----------------
PRIMARY_JOB PRIMARY
STANDBY_JOB LOGICAL STANDBY

You can see that your original job now will run when it’s in the primary database role
or the logical standby database role. Upon a switchover or a failover, the jobs specific to
the role (primary/logical standby) will be run automatically by the Scheduler.

CERTIFICATION OBJECTIVE 3.05

Security Enhancements
There are several new security-related features in Oracle Database 11g, but for the
purpose of the certification test, you must focus on the following new security-
related enhancements.

■ Secure password support

■ Configuring fine-grained access to network services

■ Encrypting a tablespace

Security Enhancements 185

186 Chapter 3: Intelligent Infrastructure and Database Security

In the following sections, I describe the three major security-related new features
in Oracle Database 11g.

Secure Password Support
Oracle Database 11g provides several new ways to make database passwords more
secure. Among these are the following new password-related features:

■ Case-sensitive passwords make databases more secure. I discuss this feature in
the following sections.

■ You can include multibyte characters in a password without enclosing them
in quotation marks.

■ All passwords entered by users are passed through the string hash algorithm
(SHA-1, which uses a 160-bit key) and compared with the stored credential
for that user.

■ Passwords always use salt, which is a random unique value added to the
passwords to ensure a unique output credential.

Configuring Case-Sensitive Passwords
In Oracle Database 11g, for the first time, database passwords are case-sensitive
by default. That is, when you create or modify a user account, the passwords are
automatically case sensitive. You can control case sensitivity in the database by
setting the new initialization parameter sec_case_sensitive_logon.
Because, by default, the database now enforces password case sensitivity, the default
value of this parameter is set to TRUE.

Although Oracle recommends that you adhere to the new default of case-
sensitive passwords, there may be times when you have to disable case sensitivity
in order to be compatible with some applications that, say, use hard-coded, case-
insensitive passwords. In such a case, you may reinstate the old-fashioned case
insensitivity if you want, by changing the value for this parameter to FALSE.

$ alter system set sec_case_sensitive_logon = false scope=pfile;

Case Sensitivity and Upgrading
When you upgrade from Oracle Database 10g or an older release of the database
to Oracle Database 11g, the passwords remain case insensitive. You must change
the passwords for the users in order to make the passwords case sensitive. Use the
following query on the DBA_USERS view to find out which of your users have
case-sensitive passwords, as shown here:

SQL> select username, password,
password_versions from dba_users;

USERNAME PASSWORD PASSWORD
-------------------- ----------------- ------------------
MGMT_VIEW 10G 11G
SYS 10G 11G
SYSTEM 10G 11G
DBSNMP 10G 11G
SYSMAN 10G 11G
RMAN 10G 11G
SH 10G 11G
...
39 rows selected.
SQL>

In the preceding query, the new Oracle Database 11g column PASSWORD_
VERSIONS shows the database release in which that password was originally
created or changed. In this case, it shows that all passwords were either created
in Oracle Database 10g (or earlier releases) and changed in Oracle Database
11g, or were created in Oracle Database 11g. When you upgrade from the Oracle
Database 10g release to the Oracle Database 11g release, all passwords remain case
insensitive. You must make the passwords case sensitive by using the alter user
<username> identified by <new_password> command. If you create a
new Oracle Database 11g database, on the other hand, the user accounts you create
will have case-sensitive passwords by default.

Is password sensitivity
automatically enforced upon upgrading
to Oracle Database 11g from Oracle

Database 10g? How about when you create
a database in Oracle Database 11g?

Security Enhancements 187

Note that unlike in the previous releases, the PASSWORD column is blank. In
the older releases, Oracle showed you the encrypted passwords. In Oracle Database
11g, you can’t see the encrypted passwords by querying the DBA_USERS view.
The encrypted passwords, of course, are still stored—in the USER$ view. In Oracle
Database 11g, user passwords are stored as a user credential after first passing them
through a hash algorithm. Whenever you log in, the database hashes the password
you enter and compares it with the stored credential. In Oracle Database 11g, when
a user tries to connect with a wrong password, the database will delay subsequent

188 Chapter 3: Intelligent Infrastructure and Database Security

login attempts after the third failed attempt. The database will gradually increase the
delay between consecutive attempts, up to a maximum of about ten seconds.

Case Sensitivity and Password Files
You are familiar with password files, which you use to specify passwords for users
with the SYSDBA and SYSOPER privileges. In Oracle Database 11g, there is
a new optional parameter you may specify when creating a new password file.
The parameter, named ignorecase, determines whether the passwords in the
password file are case sensitive or not. By default, the value of the ignorecase
parameter is set to no (n), meaning that all passwords inside a password file will
be automatically case sensitive. Here’s an example that shows how you specify the
ignorecase parameter:

$ orapwd file=orapw entries=30 ignorecase=y
Enter password for SYS:
$

In the preceding example, the value of the ignorecase parameter is set to y,
meaning the database will ignore the case in which you enter the password when
logging into the database. When you import users from an older database release, the
passwords of any users with the SYSDBA or SYSOPER privilege will be imported
into your current password file. These passwords will be case insensitive by default
and Oracle recommends that you have the users change their passwords. If you
enable case sensitivity (setting the sec_case_sensitive_logon parameter
to TRUE), when these users change their passwords they automatically become case
sensitive.

By the by, in addition to the new ignorecase parameter, the orapwd
command has other modifications in this release, as shown here:

$ orapwd
Usage: orapwd file=<fname> password=<password> entries=<users>
 force=<y/n> ignorecase=<y/n> nosysdba=<y/n>
 where
 file - name of password file (required),
 password - password for SYS (optional),
 entries - maximum number of distinct DBA (required),
 force - whether to overwrite existing file (optional),
 ignorecase - passwords are case-insensitive (optional),
 nosysdba - whether to shut out the SYSDBA logon (optional
 Database Vault only).
 There must be no spaces around the equal-to (=) character.
$

Oracle Database 11g comes with a new version of the Oracle PL/SQL script
utlpwdmg.sql, which provides you a simple password verification function. You
can customize this function.

Note the following differences in the usage of the orapwd command:

■ The password parameter is optional now, whereas it was required before.

■ The ignorecase parameter is new, as explained earlier.

■ The nosysdba parameter is also new, but is relevant only if you’ve installed
Oracle Database Vault.

New Password Management Function
Oracle provides a script named utlpwdmg.sql (stored in the $ORACLE_HOME/
rdbms/admin directory) to let you implement several password management features
such as the setting of the default password resource limits. The script contains code
for creating a password verification function named verify_function_11g,
for checking password complexity. The function checks only for minimal password
complexity and you can customize it to satisfy more complex password checks.

Oracle offers both the old verify_function creation code and the code
to create an updated Oracle Database 11g version of the function (verify_
function_11g). The new version of the function includes the following
additional password protection features:

■ Ensures that the password is at least eight characters long. In the previous
release, the minimum length of the password was only four characters.

■ Checks if the password is the same as the username reversed.

■ Checks if the password is the same or similar to the server name.

The following alter profile statement in the utlpwdmg.sql script will
first create the new 11g version of the verify_function and then alter the
DEFAULT profile.

alter profile default limit
password_life_time 180
password_grace_time 7
password_reuse_time_unlimited
password_reuse_max_unlimited
failed_login_attempts 10
password_lock_time 1
password_verify_function verify_function_11g;

Security Enhancements 189

190 Chapter 3: Intelligent Infrastructure and Database Security

As you are aware from earlier releases, the database assigns the DEFAULT profile
to all new users in the database who haven't been assigned a specific profile. It’s
the default profile inherited by all users in the database. Note the last part of the
SQL statement (password_verify_function verify_function_11g).
This means that if you create the password verify function in your database as
recommended by Oracle, any time a user (including the DBA) attempts to create
a new password or to change an existing password, the database will execute the
verify_function_11g function to ensure that the new password meets all the
requirements specified by that function.

New Security-Related Initialization Parameters
You’ve learned about the new parameter sec_case_sensitive_logon, which
allows you to control the case sensitivity of user passwords, thus reducing your
vulnerability to brute force attacks. In addition, there are also these new parameters
that affect security:

■ sec_protocol_error_further_action Specifies what action
the database must take when it receives bad packets from a client, the
presumption being that the client is acting with a malicious intent. The
possible actions you can specify are: continue, drop the connection, or delay
the acceptance of requests from the client.

■ sec_protocol_error_trace_action Specifies a monitoring
action such as none, trace, log, or alert.

■ sec_max_failed_login_attempts Drops a connection after a
specified number of failed login attempts. This policy remains enabled even
if you don’t enable a password profile.

■ ldap_directory_sysauth Specifies whether the database uses strong
authentication for database administrators. You must set the value of this
parameter to yes if you want to implement strong authentication such as
Kerberos tickets or certificates over a Secure Socket Layer (SSL). You disable
strong authentication when you specify the value no for this parameter.

Confi guring Fine-Grained Access to Network Services
It’s quite common for users to connect to external network hosts using PL/SQL
network–related packages such as UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP,
and UTL_INADDR. Because all the PL/SQL utility packages, including the ones
listed here, are created with the execute privilege granted to the user PUBLIC,

there is an inherent security hole in the database. Once an unauthorized user breaks
into the database, it’s a simple hop, skip, and jump from there to the network. At
least, it was. Oracle Database 11g offers you fine-grained access control capability
so you can control the access of users to external network services from within the
Oracle database. Fine-grained access means that you can now choose which host
computers a user can connect to from the Oracle database when using the previously
listed PL/SQL Oracle utility packages, by granting explicit privileges to do only that
and nothing else.

Oracle provides new packages—DBMS_NETWORK_ACL_ADMIN and DBMS_
NETWORK_ACL_UTILITY—to create and maintain access control lists (ACLs) for
database users. You can also create access control lists through Oracle XML DB.

Creating an Access Control List
An access control list is simply a list of users and their privileges. The database stores
the XML document containing the usernames and privileges in the /sys/acl folder
in Oracle XML DB. The following example demonstrates how to use the DBMS_
NETWORK_ACL_ADMIN.CREATE_ACL procedure to create an ACL:

SQL> begin
 dbms_network_acl_admin.create_acl (
 acl => 'test_xml',
 description => 'Permissions for my network',
 principal => 'APPOWNER',
 is_grant => 'TRUE',
 privilege => 'connect');
 end;

Here are the key things to note in the CREATE_ACL procedure:

■ The acl parameter specifies the name of the XML file holding the
usernames and privileges in the ACL.

■ principal indicates the username and must match the username of the
session.

■ is_grant shows whether a privilege is granted or denied.

■ privilege specifies the network privilege you want to grant or deny. The
two possible values for this parameter are connect and resolve. A user
will need the connect privilege to a network host if the user is connecting
through any one of the UTL_TCP, UTL_HTTP, UTL_SMTP, or UTL_MAIL
packages. The resolve privilege is necessary to resolve a host name that
was given the host IP address instead, or an IP address that was given the host
name instead, with the UTL_INADDR package.

Security Enhancements 191

192 Chapter 3: Intelligent Infrastructure and Database Security

You can also add multiple hosts in the same ACL and you can add more users
to the same ACL after you create an ACL. To add more users and privileges to the
ACL you just created, use the ADD_PRIVILEGE procedure, as shown here:

SQL> begin
 dbms_network_acl_admin.add_privilege (
 acl => 'test.xml',
 principal => 'test_users',
 is_grant => true,
 privilege => 'connect')
 end;

You can use the ADD_PRIVILEGE procedure to grant or deny network access to
users. If the ACL doesn’t already exist in the database, the procedure will create it.

Assigning the Access Control List to a Host
Use the ASSIGN_ACL procedure to associate the ACL with a network host.
Optionally, you can also associate the ACL with a range of ports. Here’s an example:

SQL> begin
 dbms_network_acl_admin.assign_acl (
 acl => 'test.xml',
 host => '*.us.mycompany.com',
 lower_port => 80,
 upper_port => null);
 end;

Understand exactly how
you can set up fi ne-grained access to
external network services through an ACL.
You must know how to set up values for

the various parameters such as lower_
port and upper_port when executing
the DBMS_NETWORK.ASSIGN_ACL
procedure.

You can use the ASSIGN_ACL procedure to assign an ACL to a host, domain, or
IP subnet. You can optionally also specify the TCP port range. Here are some things
to note about using the ASSIGN_ACL procedure:

■ You can assign only one ACL per host, domain, or IP subnet (or TCP port
range, if you specify it).

■ If you assign a new ACL to a network target, Oracle unassigns the previous
ACL list assigned to that target, but doesn’t drop it. You can drop the ACL
with the DROP_ACL procedure.

■ If you assign a TCP port range, make sure that both lower_port and
upper_port aren’t NULL. In addition, the upper_port value must
be at least as large as the port number you assign for the lower_port
parameter. You must take care that the port range must not overlap other
port ranges you may have already assigned for this host.

■ You can unassign an ACL by using the UNASSIGN_ACL procedure.

Precedence Order for a Host Computer
In the previous example, I used a wild card character (*) for the host name. This
means that the ACL is assigned to all the hosts in the domain specified there. Here’s
the order of precedence for the evaluation of host names in an ACL:

■ Fully qualified host names with ports are evaluated before hosts with ports.

■ Full qualified host names are evaluated before partially qualified host names.

■ Subdomains under a domain name are evaluated before the top-level
domain name.

For example, if your host name is www.us.mycompany.com, the following would
be the order of precedence, in decreasing order:

 www.us.mycompany.com
 *.us.mycompany.com
 *. mycompany.com
 *.com
 *

Similarly, ACLs assigned to individual IP addresses take the highest precedence,
followed by ACLs assigned to subnets, followed by the ACL assigned to smaller
subnets. If, for example, the IP address for a host is 192.168.0.100, the following is
the precedence, in decreasing order:

 192.168.0.100
 192.168.0.*
 192.168.*
 192.*
 *

As you can see, individual IP addresses get the highest precedence.

Security Enhancements 193

194 Chapter 3: Intelligent Infrastructure and Database Security

Checking the Privileges and Host Assignments
You can use the CHECK_PRIVILEGE function to check the privileges granted to or
denied to a user in an ACL, as shown here.

SQL> select decode (dbms_network_acl_admin.check_privilege (
 test.xml', 'hr','resolve'),
 1, 'granted', 0, 'denied', null) privilege
 from dual;

The CHECK_PRIVILEGE function will return 1 if a privilege is granted and 0 if
the privilege is denied. If a privilege is neither granted nor denied, it returns NULL.

Encrypting Tablespaces
Oracle has been gradually improving its encryption capabilities over the years.
In Oracle 8i, Oracle introduced the DBMS_OBFUSCATION_TOOLKIT, and
the Oracle 10.1 release introduced the DBMS_CRYPTO package to facilitate
encryption. Both the toolkit and the DBMS_CRYPTO package required that the
application manage the encryption keys and call the APIs to perform necessary
encryption/decryption operations.

In Oracle Database 10g, Oracle introduced the new Transparent Data Encryption
(TDE) feature, which let you easily encrypt a column’s data in a table. The
encryption is called transparent because the Oracle database takes care of all the
encryption and decryption details, with no need for you to manage any tables or
triggers to decrypt data. Now, in Oracle Database 11g, you can encrypt an entire
tablespace by simply using a pair of special clauses during tablespace creation.

The tablespace creation statement for an encrypted tablespace has the following
syntax:

create tablespace <tbsp_name>
encryption
default storage(encrypt)

The encryption clause in line 2 doesn’t actually encrypt the tablespace. You
provide the encryption properties by setting values for the keyword encryption.
You may additionally specify the using clause along with the encryption clause
(encryption using . . .) to specify the name of the encryption algorithm you
want to use, such as 3DES168, AES128, AES192, and AES256. If you want to use
the default algorithm of AES128, you can omit the using clause altogether. It is the
encrypt keyword passed to the storage clause in line 3 that encrypts the tablespace.

In the following sections, let’s review how to encrypt a tablespace. But before
I actually encrypt a tablespace, let me show you how to create an Oracle wallet,
because you’ll need the wallet when you encrypt a tablespace.

Creating the Oracle Wallet
An Oracle Wallet is a container to store authentication and signing credentials. The
tablespace encryption feature uses the wallet to protect the master key used in the
encryption. There are two kinds of Oracle wallets—encryption wallets and auto-open
wallets. You must manually open an encryption wallet after database startup, whereas
the auto-open wallet automatically opens upon database startup. The encryption
wallet is commonly recommended for tablespace encryption, unless you’re dealing
with unattended Data Guard environments, in which case the automatic opening
of the wallet comes in handy.

In order to use Oracle Wallet, you must create the wallet itself and then add a
master key to it. You can create a wallet in a couple of ways. You can create the
Oracle Wallet by:

■ Using the mkstore command from the operating system command line

■ Invoking the Oracle Wallet Manager either through a GUI interface or by
issuing the command owm at the command line

■ Executing the alter system statement from SQL*Plus

Here is the syntax to create a wallet from the OS:

$ mkstore -wrl $ORACLE_BASE/admin/$ORACLE_SID/wallet -create
Enter password:
Enter password again:

However, the simplest way to create the wallet is to simply use the following
command in SQL*Plus:

 SQL> alter system set encryption key identified by "password"

This command both creates the wallet if it doesn’t already exist and adds a master
key to it.

Oracle stores the encryption keys outside the database, in a file called an
Oracle Wallet. By default, this file is named ewallet.p12 under both Windows and
UNIX/Linux-based systems. The location where Oracle stores this file is operating
system–specific. However, you can specify a different location by using the parameter
encryption_wallet_location in the sqlnet.ora file.

ENCRYPTION_WALLET_LOCATION =
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=
 (DIRECTORY=/apps/oracle/general/wallet)))

Security Enhancements 195

196 Chapter 3: Intelligent Infrastructure and Database Security

You must have the alter system privilege as well as a password for an Oracle
Wallet. If you don’t have an Oracle Wallet, you must create one. You can create a
new Oracle Wallet using the Oracle Wallet Manager (OWM) or by using special
SQL statements. In the following example, we show you how to create and open an
Oracle Wallet using a SQL statement.

Before you create the Oracle Wallet, you must first create a directory named wallet
under the directory $ORACLE_BASE/admin/$ORACLE_SID. If you don’t do
this, you’ll get the error ORA-28368: cannot auto-create wallet. After you create the
directory named wallet, issue the following statement from SQL*Plus:

SQL> alter system set encryption key identified by "sammyy11";
System altered.
SQL>

The alter system statement you issued in the previous example works in the
following way:

■ If you already have an Oracle Wallet, it opens that wallet and creates (or
re-creates) the master encryption key.

■ If you don’t have an Oracle Wallet already, it creates a new wallet, opens the
wallet, and creates a new master encryption key.

Now that you’ve successfully created the Oracle Wallet and ensured it is open,
you’re ready to encrypt tablespaces using the new tablespace encryption feature.

Creating an Encrypted Tablespace
Once you create the Oracle Wallet, creating an encrypted tablespace is a breeze. The
following is an example showing how to create a simple encrypted tablespace that
uses the default DES128 encryption. Because you don’t have to specify the default
encryption level, you don’t specify the using clause for the encryption clause in line 3.

SQL> create tablespace encrypt1
 2 datafile 'c:\orcl11\app\oracle\oradata\eleven\
 3 encrypt_01.dbf' size 100m
 4 encryption
 5* default storage (encrypt);

Tablespace created.
SQL>

The storage parameter encrypt ensures that the tablespace is encrypted. The
encryption clause determines the tablespace encryption properties. In this

example, I use the encryption clause by itself, without specifying a particular
encryption algorithm for the tablespace. The database will use the default AES128
encryption algorithm to encrypt the tablespace. You can also specify the optional
using <algorithm> clause along with the encryption clause, as shown in
the following example, to specify the exact encryption algorithm you want.

SQL> create tablespace encrypt1
 2 datafile 'c:\orcl11\app\oracle\oradata\eleven\
 3 encrypt_01.dbf' size 100m
 4 encryption using '3des168'
 5* default storage (encrypt);

Tablespace created.
SQL>

The previous example shows how to specify a particular encryption algorithm,
3DES168, instead of the default AES128 algorithm.

The new column ENCRYPTED in the DBA_TABLESPACES view lets you
check the encryption status of a tablespace:

SQL> select tablespace_name, encrypted
 2 from dba_tablespaces;

TABLESPACE_NAME ENC
---------------- ----
SYSTEM NO
SYSAUX NO
UNDOTBS1 NO
TEMP NO
USERS NO
ENCRYPT1 YES
6 rows selected.
SQL>

Oracle encrypts the data in the tablespace upon writing it and decrypts it
upon reading the data. There is no additional memory requirement because the
tablespace encryption and decryption aren’t performed in memory, but there is an
encryption overhead on I/O. The encrypted data will remain encrypted in both the
undo segments as well as the redo logs, in addition to being encrypted in temporary
tablespaces during typical operations such as sort and join operations that make use
of a temporary tablespace.

If you want to change the key for an encrypted tablespace, the only method
in the present release is to create a new tablespace and move all the objects
in the encrypted tablespace to the new tablespace. You can then encrypt the
new tablespace.

Security Enhancements 197

198 Chapter 3: Intelligent Infrastructure and Database Security

Restrictions on Tablespace Encryption
When you encrypt a column(s) for a table, there are limitations on certain queries.
By encrypting the entire tablespace, some of these restrictions are removed. For
example, in Oracle Database 10g, if the column is part of a foreign key or used in
another Database Constraint, it cannot be encrypted. By encrypting the entire
tablespace instead of just a table or tables, this restriction is lifted. Note the
following restrictions on tablespace encryption. You

■ Can transport an encrypted tablespace only if the two operating system
platforms have the same endianness and the same wallet.

■ Can’t change the key for an encrypted tablespace.

■ Can’t encrypt temporary and undo tablespaces.

■ Can’t encrypt bfiles and external tables.

INSIDE THE EXAM

The exam will probe your understanding of
AWR baselines. You must know how to create
a static and a moving window baseline, as
well as a single and repeating window baseline
template. One of the questions might relate
to the expiration attribute in the CREATE_
BASELINE_TEMPLATE procedure. How
does the setting of the expiration attribute
affect the removal of a baseline? The exam
will review your understanding of the system
moving window and the adaptive threshold’s
functionality. How do baseline metric statistics
determine alert thresholds? You must know
how to use significance level, percentage of
maximum, and threshold values methods to
compare baseline metric statistics to current
database activity.

You must be familiar with both the new set
of maintenance windows in this new release
and how the default maintenance plan works,

as well as the role of the Autotask Background
Process (ABP) in scheduling the automated
maintenance tasks. The exam will test your
understanding of the new I/O calibration tool.
You must know the DBMS_RESOURCE_
MANAGER.CALIBRATE_IO procedure
thoroughly. Pay special attention to the
parameters of the CALIBRATE_IO procedure,
such as actual_latency and max_
latency, and how to set their values. The
exam will test your understanding of the I/O
resource limit thresholds, and using parameters
such as switch_io_megabytes. You
must know the difference between a workload
consisting of small random I/O and large
sequential I/O. You must know the meaning of
I/O metrics such as IOPS (I/O per second) and
MBPS (megabytes per second). Which metrics
can you use to measure throughput and I/O
latency?

INSIDE THE EXAM

CERTIFICATION SUMMARY
Oracle Database 11g offers several enhancements to the AWR baselines. These
enhancements include the ability to create baseline templates and moving window
baselines. You can also rename baselines now and create a single or repeating
baseline. There is also an integration of the selection of adaptive thresholds for
performance metrics with the AWR baselines. The database automatically configures
and maintains the adaptive thresholds, based on the system moving window baseline.

Oracle Database 11g offers seven pre-defined maintenance windows, one for each day
of the week. You must use the new package DBMS_AUTO_TASK_ADMIN to manage
the automated maintenance tasks. There is a new automated maintenance task known
as the Automatic SQL Tuning Advisor. You can now perform an I/O calibration test
either through Enterprise Manager or through the new CALIBRATE_IO procedure,
belonging to the DBMS_RESOURCE_MANAGER package. I/O calibration testing
enables you to measure the efficacy of different types of I/O workload.

Enhancements in the Database Resource Manager include the capability to
automatically switch heavy resource usage sessions based on per-session I/O limits and
a new default mixed workload resource plan. Oracle Scheduler now lets you create a
new type of small footprint job called a lightweight job. You must use a template to
create a lightweight job. You can also create remote external jobs in Oracle Database
11g by installing a Scheduler agent on the remote server to handle job requests. You
can also create arrays of both regular and lightweight jobs in Oracle Database 11g.
The Oracle Scheduler also supports Data Guard installations in this release.

Expect a question about the new lightweight
Scheduler jobs. How do you create a lightweight
job? What are the key differences between a
lightweight job and a regular Scheduler job?
Review the use of the CREATE_JOB procedure
in creating a lightweight job. What are the
advantages in creating a lightweight job?

The exam is likely to include a question
about the new automatic secure configuration
feature. You must know how to use the new
sec_case_sensitive_logon and other
security-related new initialization parameters.
Review the new password case-sensitivity

feature and how it is different in the case
of an upgrade and after creating a database.
You must also be familiar with the tablespace
encryption feature. Review the new initializa-
tion parameters ldap_directory_
sysauth and ldap_directory_
access and the role they play in setting up
directory authentication for administrative
users. The exam will certainly ask you about
the setting up of an ACL. What do the
connect and resolve privileges imply?
How do you add new users and privileges to
an ACL?

Certifi cation Summary 199

200 Chapter 3: Intelligent Infrastructure and Database Security

For the first time, database passwords are case sensitive. You can use the new
password management function to make passwords more complex than before. You
can also configure fine-grained network access through creating ACLs, to keep
unauthorized users from accessing the network through various UTL_* packages.
In Oracle Database 11g, you can encrypt an entire tablespace when you create a
tablespace.

TWO-MINUTE DRILL
Enhancements in AWR Baselines

❑ An AWR baseline contains representative performance data from a known
period.

❑ An AWR baseline consists of a set of AWR snapshots.

❑ The snapshots that are part of an AWR baseline are excluded from the
routine snapshot purging process.

❑ A baseline template helps in the automatic creation of baselines for time
periods in the future.

❑ You can create both a single baseline template and a repeating baseline
template.

❑ The expiration parameter in the CREATE_BASELINE_TEMPLATE
procedure specifies how long the database will retain a baseline.

❑ By default, the database will maintain baselines forever.

❑ In Oracle Database 11g, you can rename an AWR baseline.

❑ If you use a system moving window, the database automatically computes
metric statistics over the moving window.

❑ The three threshold types you can specify are: significance, percentage of
maximum, and fixed values.

❑ A moving window baseline encompasses AWR data during the AWR
retention period.

❑ Oracle maintains a system-defined moving window baseline by default.

❑ The default moving window size is the same as the AWR retention period.

Controlling Automated Maintenance Tasks

❑ There are three automated maintenance tasks in Oracle Database 11g.

❑ The Automatic SQL Tuning Advisor is the new automated maintenance task
in Oracle Database 11g.

❑ There are seven redefined maintenance windows in Oracle Database 11g.

❑ The new package DBMS_AUTO_TASK_ADMIN helps manage automated
maintenance tasks.

✓

Two-Minute Drill 201

202 Chapter 3: Intelligent Infrastructure and Database Security

❑ Oracle restarts the automatic optimizer collection task and the automatic
segment advisor task every four hours if the maintenance window is long.

❑ The DBA_AUTOTASK_OPERATION view shows all automatic task
operations for all clients.

❑ The new Oracle background process Autotask Background Process (ABP)
converts automated tasks into Scheduler jobs.

❑ The default resource plan for the maintenance windows is the
DEFAULT_MAINTENANCE_PLAN.

Database Resource Manager New Features

❑ In Oracle Database 11g, the database can automatically switch sessions to
other resource consumer groups based on resource usage by the sessions.

❑ switch_time is the time allowed for a session before it’s switched to a
different consumer group.

❑ switch_estimate directs the database to estimate the execution time for
database calls before the calls begin.

❑ switch_for_call lets you specify that the database return a session to its
original consumer group.

❑ You can have the database automatically switch sessions based on CPU and
I/O usage.

❑ Oracle Database 11g provides a new predefined resource plan named
MIXED_WORKLOAD_PLAN.

❑ You can take advantage of the pre-built resource plan by mapping users to
different predefined consumer groups.

Using New Oracle Scheduler Features

❑ Lightweight jobs have a small physical footprint and are faster to create.

❑ You must use a job template in order to create a lightweight job.

❑ You can’t set privileges on a per job basis for lightweight jobs.

❑ You specify lightweight as the value for the job_style parameter in
the CREATE_JOB procedure in order to create a lightweight job.

❑ Oracle Database 11g enables you to create a job array.

❑ Oracle Database 11g enables you to execute remote external jobs.

❑ The remote database doesn’t need to have Oracle installed on it.

❑ You must install Oracle XML DB on the external job originating database.

❑ You must run the prvtsch.plb script on the job originating database.

❑ The Scheduler agent is responsible for communicating with the job
originating database and handling the external job requests.

❑ The schagent.conf file contains the configuration parameters for the
Scheduler agent.

❑ The schagent command lets you manage the Scheduler agent.

❑ A credential is a schema object that holds username/password information.

❑ You can run a Scheduler job when the database is in either the primary or the
logical standby role.

Security Enhancements

❑ In Oracle Database 11g, passwords are case sensitive by default.

❑ You can control password case sensitivity by setting the initialization
parameter sec_case_sensitive_logon.

❑ When you upgrade to Oracle Database 11g, all passwords remain case insensitive.

❑ When you create a new Oracle Database 11g database, the passwords will be
case sensitive by default.

❑ The default value of the ignorecase parameter in the orapwd command
is no (n).

❑ You can use the utlpwdmg.sql script to enforce password verification.

❑ Fine-grained network access controls show how users connect to the network
from the Oracle database when using the UTL_* network-related packages.

❑ An access control list is a list of users and their privileges.

❑ Fully qualified host names are evaluated before hosts with ports.

❑ ACLs assigned to individual IP addresses take the highest precedence.

❑ The encryption clause in a create tablespace command provides the
encryption properties.

❑ The keyword encrypt in the storage clause encrypts the tablespace.

❑ The two types of Oracle wallets are encryption wallets and auto-open wallets.

❑ Oracle stores the encryption keys in the Oracle wallet.

Two-Minute Drill 203

204 Chapter 3: Intelligent Infrastructure and Database Security

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all correct answers for each question.

Enhancements in AWR Baselines
 1. An AWR baseline template allows you to
 A. Capture specific time periods in the past only
 B. Capture specific time periods in both the past and in the future
 C. Capture specific time periods in the future only
 D. Schedule the creation of AWR baselines

 2. What happens if you don’t specify a value for the expiration parameter when executing the
CREATE_BASELINE_TEMPLATE procedure?

 A. The database will never drop the baseline.
 B. You can never drop the template manually.
 C. You’ll have to maintain the template yourself.
 D. The database will not create any new baselines using this template

 3. How does a database determine the alert thresholds when it uses the new adaptive metric
thresholds?

 A. The database configures the adaptive thresholds based on the SYSTEM_MOVING_
 WINDOW baseline.

 B. You have to set the adaptive thresholds manually.
 C. The adaptive thresholds are already configured when you create the database.
 D. The database configures the adaptive thresholds based on the MAINTENANCE_WINDOW

 baseline.

 4. What must you do before increasing the size of the AWR moving window?
 A. Set the WINDOW_SIZE parameter to its default value.
 B. Increase the size of the AWR retention period to match the size of the moving

 window.
 C. Decrease the size of the AWR retention period to match the size of the moving

 window.
 D. You can’t change the size of the AWR moving window.

Controlling Automated Maintenance Tasks
 5. What is the duration of the predefined AWR maintenance windows?
 A. Weekday windows are 4 hours long and weekend windows are 24 hours long.
 B. Weekday windows are 12 hours long and weekend windows are also 12 hours long.
 C. Weekday windows are 4 hours long and weekend windows are also 4 hours long.
 D. Weekday windows are 4 hours long and weekend windows are 20 hours long.

 6. Which automatic maintenance task runs only once per maintenance window?
 A. SQL Tuning Advisor
 B. Auto Optimizer
 C. Auto Segment Advisor
 D. SQL Access Advisor

 7. If you want to change the resource allocation for the automatic tasks in a specific Scheduler
window, you must

 A. Change the resources allocation to the DEFAULT_MAINTENANCE_PLAN.
 B. Change the resource allocation to the sub-plan ORA$AUTOTASK_SUB_PLAN.
 C. Change the resources allocation to the DEFAULT_MAINTENANCE_WINDOW.
 D. Change the resources allocation to the ORA$AUTOTASK_SQL_GROUP resource

 consumer group.

 8. Which of the following statements is true?
 A. Oracle Scheduler assigns permanent Scheduler jobs for the automated maintenance tasks.
 B. The MMON background process assigns Scheduler jobs for the automated maintenance tasks.
 C. You must manually assign Scheduler jobs for the automated maintenance tasks.
 D. The Autotask background process converts the automated maintenance tasks into

 Scheduler jobs.

Database Resource Manager New Features
 9. You can enable automatic switching of resource-intensive active sessions to a lower priority

group by
 A. Specifying automatic resource consumer group switching with session-to-consumer group

 mapping rules
 B. Setting resource limits for a top call in a session
 C. Using the default value for the switch_time parameter
 D. Manually changing the session attributes while the session is active

Self Test 205

206 Chapter 3: Intelligent Infrastructure and Database Security

10. The switch_estimate parameter in the CREATE_PLAN_DIRECTIVE procedure
 A. Lets the database estimate the execution time of a call before the call begins
 B. Lets the database estimate the group to which it will switch a session to a different resource

 consumer group
 C. Specifies the duration for which a call can execute before the database automatically

 switches the session to a different resource consumer group
 D. Is true by default

11. The Oracle supplied resource plan named MIXED_WORKLOAD_PLAN
 A. Gives priority to batch jobs over interactive jobs
 B. Gives equal priority to batch and interactive jobs
 C. Gives priority to mixed workload jobs
 D. Gives priority to interactive jobs over batch jobs

12. Which of the following resource allocations are correct?
 A. The interactive_group gets 85% of the level 2 allocation.
 B. The interactive_group gets 15% of the level 2 allocation.
 C. The batch_group gets 85% of the level 1 allocation.
 D. The batch_group gets 100% of the level 2 allocation.

13. If you specify the switch_group value as cancel_sql, Oracle
 A. Cancels the session
 B. Kills the active session
 C. Cancels the current database call issued by the session
 D. Cancels resource allocation to the session immediately

Using New Oracle Scheduler Features
14. A lightweight Scheduler job
 A. Inherits its privileges from similar lightweight jobs
 B. Inherits its privileges from a similar regular job
 C. Inherits its privileges from a Scheduler program
 D. Inherits its privileges from the parent job template

15. You can create a lightweight job by using
 A. A job array
 B. A named program
 C. A schedule
 D. The CREATE_JOB procedure

16. You must install Oracle XML DB on the
 A. Database from which you issue a remote external job request
 B. Database that executes the remote external job
 C. On the database issuing the external job request and the database fulfilling the request
 D. On neither the database issuing the external job request nor the database fulfilling the request

17. When you use the SET_AGENT_REGISTRATION_PASS procedure, which of the following
sets of parameters are optional?

 A. registration_password and max_uses
 B. expiration_date and max_uses
 C. registration_password and expiration_date
 D. credential and expiration_date

Security Enhancements
18. Which of the following statements is true?
 A. By default, passwords are case insensitive in Oracle Database 11g.
 B. By default, passwords are case sensitive in Oracle Database 11g.
 C. When you upgrade from the 10.2 release to the 11.1 release, all the passwords remain

 case insensitive.
 D. When you upgrade from the 10.2 release to the 11.1 release, all the passwords are made

 case sensitive.

19. Which of the following statements are true, when you are using the ASSIGN_ACL procedure?
 A. You can assign multiple ACLs to a host.
 B. You can assign only one ACL to a host.
 C. If you assign a new ACL to a network target, Oracle drops the old ACL.
 D. If you’re assigning TCP port range, you must ensure that at least one of the two ports

 (lower_port and upper_port) isn’t NULL.

20. Which of the following clauses can be used in encrypting a tablespace?
 A. encryption using '3des168'

 B. encryption using default

 C. default storage (encrypt '3des168')

 D. default '3des168'

LAB QUESTION
What is the best way to create multiple privileges for multiple users and assign those privileges to
multiple host computers?

Self Test 207

208 Chapter 3: Intelligent Infrastructure and Database Security

SELF TEST ANSWERS

Enhancements in AWR Baselines

 1. � C and D are correct. C is correct because an AWR baseline template helps you capture
data for specific time periods in the past. D is correct because you can use baseline templates to
schedule the creation of AWR baselines, both for a single time period as well as for a recurring
time period
� A and B are incorrect because you can’t use the AWR baselines to capture data for past
time periods.

 2. � A is correct because the database retains the baseline forever if you omit the expiration
parameter.
� B is incorrect because you can always drop a baseline template manually. C is incorrect
because you don’t have to maintain the AWR baselines—the database manages them. D is
incorrect because the expiration parameter has nothing to do with the creation of new
baselines. It has to do with the retention of a baseline template.

 3. � A is correct because when a database uses adaptive metric thresholds, it configures the
thresholds based on the SYSTEM_MOVING_WINDOW baseline.
� B is incorrect because you don’t manually set the adaptive metric thresholds. C is incorrect
because adaptive thresholds aren’t preconfigured when you create the database. The database
configures the adaptive thresholds based on the activity in the database. D is incorrect because
the adaptive thresholds are based on the SYSTEM_MOVING_WINDOW baseline.

4. � B is correct. You must match the AWR retention period to the size of the AWR moving
window.
� A is incorrect because you don’t have to set the window_size parameter default value.
C is incorrect because you must increase, not decrease, the size of the AWR retention period,
assuming that you want to create an AWR moving window that’s larger than its default value.
D is incorrect because you can change the size of the AWR moving window.

Controlling Automated Maintenance Tasks

 5. � D is correct. The default weekday maintenance window duration is 4 hours, and the
duration of the two weekend windows is 20 hours.
� A, B, and C are incorrect because they offer the wrong window duration.

 6. � A is correct. The SQL Tuning Advisor runs only once during a maintenance window.
� B and C are incorrect because the database will rerun both of these tasks if the maintenance
window is long. D is incorrect because the SQL Access Advisor isn’t one of the three automated
maintenance tasks.

 7. � A is correct. You change resource allocation for automatic tasks by changing the resources
you allocate for the DEFAULT_MAINTENANCE_PLAN.
� B is incorrect because you must change the resource allocation to the DEFAULT_
MAINTENANCE_PLAN plan. C is incorrect because you don’t allocate resources to a
Resource Manager window. D is incorrect because you don’t directly allocate resources to a
resource consumer group.

 8. � D is correct. The new Autotask background process is in charge of converting the
automated maintenance tasks into Scheduler jobs.
� A is incorrect because the Oracle Scheduler doesn’t assign permanent Scheduler jobs
for automated maintenance tasks. B is incorrect because the MMON process doesn’t assign
Scheduler jobs to the automated maintenance tasks. C is incorrect because you don’t assign
the Scheduler jobs manually to the automated maintenance tasks.

Database Resource Manager New Features

 9. � A and B are correct. A is correct because you can specify consumer group switching by
sessions based on the session-to-consumer group mapping. B is correct because Oracle Database
11g introduces the capability whereby the database can automatically switch sessions among
resource groups based on the resource limits you specify for the top call in an active session.
� C is incorrect because the default value of the switch_time parameter is unlimited,
which means that a database will never switch a session automatically. D is incorrect because
manually changing the session attributes doesn’t fall under automatic switching of active
sessions by the database.

10. � A is correct. The switch_estimate parameter lets the database figure out how long a
call will take to execute, before the call starts.
� B is incorrect because the switch_estimate parameter tells you the estimated time
to complete a call, not the group to which the session will be switched. C is incorrect because
the switch_estimate parameter doesn’t have anything to do with the duration for which
a call can execute before it’s automatically switched to another consumer group. D is incorrect
because the switch_estimate parameter is FALSE by default.

11. � D is correct. The Oracle-supplied resource plan MIXED_WORKLOAD_PLAN gives
priority to interactive jobs over batch jobs.
� A, B, and C are incorrect because interactive jobs get a higher priority than batch jobs.

12. � A is correct. The interactive_group gets 85% of the level 2 allocation.
� B, C, and D are incorrect because they all show the wrong allocation of resources. The
interactive_group gets 85% of the level 2 allocation and the batch_job gets 100%
of the level 3 allocation. Neither gets any allocation at level 1.

13. � C is correct. If the switch_group parameter has the value cancel_sql, Oracle cancels
the currently executing database call made by the session once the session exceeds a resource limit.

Self Test Answers 209

210 Chapter 3: Intelligent Infrastructure and Database Security

� A is incorrect because Oracle doesn’t terminate the session. B is incorrect because Oracle
doesn’t terminate the session. D is incorrect because the database doesn’t alter the resource
allocation to the session—it simply cancels the currently running database call.

Using New Oracle Scheduler Features

14. � D is correct. You must use a template for creating a lightweight job and the job will inherit
all its privileges from the parent job template.
� A, B, and C are incorrect because a lightweight job inherits its privileges from the parent
job template.

15. � A, B, C, and D are correct. You can create a lightweight job with a job array, a named
program, a schedule, and with the CREATE_JOB procedure, so all alternatives are correct.

16. � A is correct. You must install Oracle XML DB on the database originating the remote
external job.
� B is incorrect because you don’t need the Oracle database to be installed on the job
executing host. You just need to install the Scheduler agent on that host. C is incorrect because
you need the Oracle database to be installed only on the job originating database. D is incorrect
because you do need to install Oracle on the job originating database.

17. � B is correct. Both the expiration_date and max_uses parameters are optional,
although Oracle recommends that you specify both parameters in order to tightly control
network access.
� A and C are incorrect because the registration_password parameter is mandatory.
D is incorrect because there is no credential parameter in the SET_AGENT_REGISTRATION_
PASS procedure.

Security Enhancements

18. � B and C are correct. B is correct because, by default, passwords are case sensitive in Oracle
Database 11g. C is correct because the password remains case insensitive when you upgrade to
Oracle Database 11g from an older release database.
� A is incorrect because passwords are case sensitive by default in Oracle Database 11g.
D is incorrect because when you upgrade to the 11.1 release, passwords continue to remain
case insensitive. You can make all the passwords casesensitive by using the alter user . . .
statement.

19. � B is correct. When you use the ASSIGN_ACL procedure to assign ACLs to a host, you can
assign only one ACL per host.
� A is incorrect because you can’t assign multiple ACLs to a host. C is incorrect because Oracle
doesn’t drop an ACL when you assign a new ACL to a network target. If you assign a new ACL

to a network target, Oracle unassigns the previous ACL list assigned to that target. D is incorrect
because you must ensure that both the lower_port and the upper_port aren’t NULL.

20. � A is correct. The encryption using '3des168' clause is syntactically correct. It
specifies the encryption algorithm to use for the tablespace you’re encrypting.
� B, C, and D are incorrect because they aren’t syntactically correct.

LAB ANSWER
You can specify multiple role privileges in a single ACL creation statement. You can assign the
privileges to multiple host computers in a single execution of the ASSIGN_ACL procedure. In the
following example, I create the ACL first and then assign privileges.

Create the access control list by executing the CREATE_ACL procedure, as shown here:

begin
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'test.xml',
 description => 'Network connection permission for -
 SUPERVISOR and CLERK',
 principal => 'SUPERVISOR',
 is_grant => TRUE,
 privilege => 'resolve');
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (acl => 'test.xml',
 principal => 'CLERK',
 is_grant => TRUE,
 privilege => 'connect',
 position => null);
end;

The CREATE_ACL procedure creates the first procedure and grants the resolve privilege to
the first user (principal), who is named SUPERVISOR. The ADD_PRIVILEGE procedure adds
the second user (clerk) and grants the connect privilege to that user.

Assign the access control list to multiple hosts by executing the ASSIGN_ACL procedure.

begin
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 host => '*.mycompany.com');
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl => 'test.xml',
 host => '*.us.mycompany.com',
 lower_port => 80,
 upper_port => 99);
end;

The first invocation of the ASSIGN_ACL procedure creates the first target host, and the second
invocation creates the second target host.

Self Test Answers 211

This page intentionally left blank

4
Automatic SQL
Tuning and SQL
Plan Management

CERTIFICATION OBJECTIVES

 4.01 Automatic SQL Tuning Advisor

 4.02 SQL Plan Management

 4.03 SQL Access Advisor Enhancements

✓ Two-Minute Drill

Q&A Self Test

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

214 Chapter 4: Automatic SQL Tuning and SQL Plan Management

Some of the most important enhancements in Oracle Database 11g pertain to the SQL
tuning process. The database can run the SQL Tuning Advisor automatically to tune high-
load SQL statements. SQL Plan Management is a brand feature that automatically controls

SQL plan evolution by maintaining what are called SQL plan baselines. Unlike stored outlines, SQL
Plan Management is a preventative mechanism that helps stabilize the performance of the database
by avoiding plan regressions. There are significant enhancements in the SQL Access Advisor,
including the ability to make partitioning recommendations for tables, indexes, and materialized
views. I’ll start the chapter with a review of the Automatic SQL Tuning Advisor.

CERTIFICATION OBJECTIVE 4.01

Automatic SQL Tuning Advisor
In Oracle Database 10g, Oracle introduced the Automatic Tuning Optimizer, which
is the name given to the optimizer when it is running in the tuning mode instead
of in the normal mode. In the normal mode, the optimizer creates an execution
plan under strict time constraints. In the tuning mode, the optimizer is given more
latitude to produce a better execution plan. The output of the optimizer isn’t an
execution plan but recommendations for improvements along with a summary of the
benefits you might expect by implementing those recommendations. Oracle offered
the Automatic Tuning Optimizer for complex and high-load SQL statements. The
advisor’s goal is to target poorly written SQL statements as well as SQL statements
that perform poorly because the optimizer generates a poor execution plan due to
the lack of up-to-date statistics. A good way to find these types of statements is to
use the Automatic Database Diagnostic Monitor (ADDM). The Automatic Tuning
Optimizer performs the following types of analysis for high-load SQL statements:

■ Statistics analysis

■ SQL profiling

■ Access path analysis

■ SQL structure analysis

The ADDM identifies high-load SQL statements and you can use the SQL
Tuning Advisor to fix these SQL statements. The SQL Tuning Advisor invokes the
Automatic Tuning Optimizer to tune the SQL statements it offers the Optimizer.
However, this still leaves the responsibility for reviewing the ADDM reports and
running the SQL Tuning Advisor in the hands of the Oracle DBAs, as the SQL
Tuning Advisor only makes recommendations and doesn’t automatically tune the
statements in any way.

In Oracle Database 11g, by default, the Automatic Tuning Optimizer runs
regularly during the Oracle Scheduler maintenance window, as the new automated
maintenance task called the SQL Tuning Advisor task. You can also customize
the maintenance window by changing attributes such as the days of the week, the
frequency, and the start and end time. The database can automatically tune problem
SQL statements by implementing the recommendations made by the SQL Tuning
Advisor during the nightly maintenance window. The Automatic SQL Tuning
Advisor is essentially the same as the Automatic Tuning Optimizer introduced in
Oracle Database 10g. The automatic part of the SQL Tuning Advisor is what’s new
in Oracle Database 11g. During its run each night, the Automatic SQL Tuning
Advisor picks the high-load SQL statements from the AWR and offers tuning
recommendations. The Automatic SQL Tuning Advisor can also automatically
implement any SQL profile recommendations without your intervention.

The Automatic SQL Tuning Advisor chooses the tuning candidates from the
AWR. When you manually run the SQL Tuning Advisor, you have to provide the
advisor the SQL queries you want it to analyze. You normally use SQL Tuning
Sets to provide the SQL statements to the optimizer. In automatic SQL tuning,
the SQL workload is automatically chosen by the Advisor, without the need for
the DBA to create and load any SQL tuning sets. The advisor also automatically
tests SQL profiles and can automatically implement them if you want. The advisor
also automatically retunes any SQL statements whose performance is found to
deteriorate over time.

The SQL Tuning Advisor still takes into account the same four things that it did
in Oracle Database 10g:

■ Statistical analysis Gathering missing or stale statistics

■ SQL profiling Creating new SQL profiles

■ Access path analysis Adding indexes

■ SQL structure analysis Modifying SQL statements to make them efficient.

Automatic SQL Tuning targets SQL statements for automatic tuning based
on the Automatic Workload Repository (AWR) Top SQL identification. The
SQL statements are identified if they are at the top of the list in four distinct time
periods: any hour in the past week, any day in the past week, the past week, or
single response time. When the Automatic SQL Tuning task executes during the
maintenance window, the candidate SQL statements identified by the AWR are
automatically tuned by it. The advisor will create any SQL profiles that are necessary
to improve the performance of the candidate SQL statements. Before implementing
the SQL profiles, the advisor tests the profiles first. You can request a report of the
tuning analysis and check the tuned SQL statements to determine if you want to
retain the new SQL profiles implemented by the tuning advisor or remove them.

Automatic SQL Tuning Advisor 215

216 Chapter 4: Automatic SQL Tuning and SQL Plan Management

SQL Profi les
Because of the limited nature of its run, often the cost optimizer’s estimates of
important things such as cardinality and selectivity and cost aren’t accurate, leading
the optimizer to pick less than optimal execution plans. When you run the SQL
Tuning Advisor with the comprehensive scope, it invokes the cost optimizer in the
tuning mode, requiring the optimizer to collect additional statistics beyond what it

usually collects by using partial execution and
sampling techniques. A SQL profile contains
these additional statistics. SQL Profiles, since
they don’t require changing of the SQL statement
itself, are ideal for use in packaged applications
where you can’t easily change the code.

Once a SQL profile is generated, the
optimizer uses its normal statistics that it gathers, along with the additional
information collected in the SQL profile, to turn out more accurate execution
plans. The Automatic SQL Tuning Advisor may recommend SQL profiles as part
of its overall recommendations and you can choose to have these SQL profiles
automatically implemented as well.

The SQL Tuning Advisor
doesn’t automatically implement all SQL
profi les.

Understand the steps in the
automatic tuning process. What happens

if the advisor fi nds that there are missing
statistics?

The auxiliary information contained in a SQL profile includes the following:

■ Customized optimizer settings based on past execution history for statements

■ Adjustments to compensate for missing or stale optimizer statistics

■ Adjustment for estimation errors in optimizer statistics resulting from factors
such as a skewed data distribution

The Automatic Tuning Optimizer (ATO) uses the additional time at its disposal
to gather the auxiliary information, which it stores in a SQL profile and makes a
recommendation for the acceptance of the SQL profile. Once you implement a SQL
profile, the query optimizer will make use of that profile to generate a more accurate
and efficient execution plan for a SQL statement.

Limitations
Automatic SQL tuning doesn’t tune the following types of SQL statements:

■ Recursive SQL statements.

■ Ad hoc or rarely repeated SQL statements. If a SQL statement isn’t
repeatedly run, or if a SQL statement isn’t repeated at least once a week,
it is deemed ad hoc.

■ Parallel queries.

■ A query that continues to show a long execution time even after SQL
profiling, thus making it impractical to test-execute those queries. The
advisor ignores such queries. As long as a new SQL profile makes a long
running query finish much faster, the advisor can accept them because it can
test-execute them.

■ SQL statements using the insert and delete statements.

■ Statements using DDL statements such as the create table as
select statement.

The interesting thing is that with the exception of the ad hoc statements, you can
tune all the other types of statements by running the SQL Tuning Advisor yourself!

The Automatic SQL Tuning Process
Automatic SQL tuning consists of first identifying candidates for the tuning
process, tuning the SQL statements, making recommendations, and automatically
implementing any SQL profile recommendations. In the following sections, I
describe the steps in the automatic SQL tuning process.

Identification of SQL Tuning Candidates
Using the sum of the CPU time and the I/O time as metrics, the database orders SQL
statements as candidates for tuning. Only those statements that offer a high potential
for improvement are accepted as candidates. The automatic SQL tuning process bases
the candidates on the top SQL identified by the AWR. The AWR prepares a candidate
list by putting the top queries in the past week into the following four “buckets”:

■ Top for the week

■ Top for any day in the week

■ Top for any hour during the week

■ Highest average single execution

Automatic SQL Tuning Advisor 217

218 Chapter 4: Automatic SQL Tuning and SQL Plan Management

Each of the buckets can have a maximum of 150 SQL statements in it. The SQL
tuning advisor combines the four buckets into a single group, by assigning weights to
each of the buckets. The advisor then ranks the candidate SQL statements based on
the impact they’ll have on performance. The advisor figures the performance impact
of each SQL statement by combining the CPU time and the I/O time statistics
captured by the AWR for the statement.

Tuning and Making Recommendations
The SQL Tuning Advisor tunes each of the candidate SQL statements in the order
of their performance impact. If a SQL profile is found for a statement, the advisor
verifies that the base optimizer statistics are current for the SQL profile. If not—that
is, if the advisor finds stale or missing statistics—it passes along this information
to the GATHER_STATS_JOB job, which gathers statistics. The advisor makes
different types of recommendations and reports them, but it can automatically
implement only those recommendations that involve the creation of SQL profiles.
In order for the advisor to automatically implement SQL profiles, you must set
the accept_sql_profiles task parameter to true when executing the
DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER procedure. The other
types of recommendations (besides SQL profiles) include the creation of new
indexes, refreshing stale statistics, and restructuring SQL statements.

Testing the Recommendations for New SQL Profiles
For each SQL profile it recommends, the automatic SQL Tuning Advisor will run the
problem statement with and without the SQL profile and compare the performance.
The database will accept a new SQL profile only if it offers a potential performance
improvement of at least threefold. The advisor creates all SQL profiles in the standard
EXACT mode. The SQL Tuning Advisor will have to consider implementing a new
SQL profile only if the profile results in a new explain plan for a SQL statement. The
advisor will implement a new SQL profile after tests reveal that it will result in at least
a threefold improvement in performance. The benefit is computed by summing the
CPU and I/O time savings that result from the adoption of the new SQL profile. The
advisor will not only look for a threefold improvement in the sum of the CPU and
I/O usage, but it also stipulates that neither statistic must become worse as a result of
implementing the new SQL profile. Thus, the adoption of a new SQL profile by the
advisor will ensure that the SQL statement in question will run much faster.

The benefit percentage for each recommendation uses the formula
benefit%=(time_old – time_new)/(time_old).

Implementing the SQL Profiles That Meet the Criteria
Besides the threefold improvement in performance, a new SQL profile may have to
satisfy other requirements as well, such as the objects involved in the query having
recent optimizer statistics.

You must set the statistics_level initialization parameter to at least
typical in order for automatic SQL tuning to work. If you set the value of
the parameter to basic, automatic SQL tuning will be disabled because this
setting will also disable the functioning of the AWR, which is the source of the
SQL statements.

Use the DBA_SQL_PROFILES view to determine which SQL profiles have been
automatically implemented by the database. The value of the TYPE column in this
view will be set to AUTO for all automatically implemented SQL profiles.

Configuring Automatic SQL Tuning
The DBMS_SQLTUNE package provides several procedures to control various
aspects of the Automatic SQL Tuning task (SY_AUTO_SQL_TUNING_TASK).
Use the SET_TUNING_TASK_PARAMETERS procedure to configure automatic
SQL tuning in your database. You must log in as the user SYS to configure automatic
SQL tuning because SYS owns the automatic SQL tuning task. The following are
the various parameters you can specify for an automatic SQL tuning task, using the
SET_TUNING_TASK_PARAMETERS procedure:

■ accept_sql_profiles determines whether the database must
automatically accept a SQL profile.

■ replace_user_sql_profiles determines whether the task should
replace the SQL profiles created by the user.

■ max_sql_profiles_per_exec specifies the maximum number of SQL
profiles that can be accepted for a single automatic SQL tuning task.

■ max_auto_sql_profiles determines the total number of SQL profiles
that are accepted by the database.

■ execution_days_to_expire specifies the maximum number of days
for which the database saves the task history. Default is 30 days.

The five parameters shown here are applicable only to the automatic tuning
task and not to the manual SQL tuning tasks.

Automatic SQL Tuning Advisor 219

220 Chapter 4: Automatic SQL Tuning and SQL Plan Management

The database implements Automatic SQL Tuning as an automated maintenance
task some time after the start of the maintenance window. The job’s name is SYS_
AUTO_SQL_TUNING_TASK. The job first sorts the candidate SQL statements
that it gets from the AWR. The job then tunes each statement according to its
performance rank. If it creates a SQL profile recommendation for any candidate
statement, it tests that profile before moving on to the tuning of the next SQL
statement. By default, the automatic SQL Tuning Advisor runs for a maximum of
one hour but you can change this by specifying a higher value for the time_limit
parameter in the SET_TUNING_TASK_PARAMETERS procedure, as shown in
this example:

SQL> exec dbms_sqltune.set_tuning_task_parameters
 ('SYS_AUTO_SQL_TUNING_TASK', 'TIME_LIMIT', 14400);

In the example, the TIME_LIMIT parameter has a value of 14400 seconds, which
means that the Automatic SQL Tuning task will run for 4 hours (14400 seconds)
during a maintenance window.

Automatic SQL Tuning will be disabled if you set the statistics_level
initialization parameter to BASIC, turn off the AWR snapshots, or set the AWR
retention period to less than seven days.

You can control the SYS_AUTO_TUNING_TASK, which runs the Automatic SQL
Tuning Advisor job, by using the following procedures from the DBMS_SQLTUNE
package:

■ SET_TUNING_TASK_PARAMETERS You’ve already seen how you can
use the special task parameters such as max_sql_profiles_per_exec
to control the automatic tuning task.

■ EXECUTE_TUNING_TASK Use this to manually run the turning task in
the foreground.

■ REPORT_TUNING_TASK Lets you produce a text report of the task
execution.

You can disable and re-enable the Automatic SQL Tuning Advisor job by using
the DBMS_AUTO_TASK_ADMIN package.

Managing Automatic SQL Tuning
The Automatic SQL Tuning process runs as part of a single automated maintenance
task on a single instance, during the maintenance window. Use the new PL/SQL
package DBMS_AUTO_TASK_ADMIN to manage all automated maintenance

tasks including the automatic SQL tuning task. For example, you can enable the
automatic SQL tuning advisor task using the ENABLE procedure, as shown here:

begin
 dbms_auto_task_admin.enable (
 client_name => 'sql tuning advisor',
 operation => 'NULL',
 window_name='NULL');
end;

In the previous example, the window_name parameter has a value of NULL,
meaning that the task is enabled in all maintenance windows. You can specify a
window name instead, to enable the task only in a specific maintenance window,
as shown in the following example:

begin
 dbms_auto_task_admin.enable (
 client_name => 'sql tuning advisor',
 operation => 'NULL',
 window_name='monday_night_window');
end;

The Automatic SQL Tuning Advisor task (SYS_AUTO_SQL_TUNING_TASK),
which runs nightly as part of the automated maintenance tasks infrastructure, generates
a list of candidate SQL statements for tuning from the AWR data and tunes the
statements in order of importance, one SQL statement at a time. After it tests each
recommendation successfully, it accepts the recommendation and moves on to the next
SQL statement in the candidate list. To disable the automatic SQL tuning advisor task,
just replace the ENABLE procedure with the DISABLE procedure, as shown here:

begin
 dbms_auto_task_admin.disable (
 client_name => 'sql tuning advisor',
 operation => 'NULL',
 window_name='NULL');
end;

Because I specified NULL as the value for the window_name attribute, that task
is disabled in all maintenance windows. As in the case of enabling the task, you can
disable the task only in a specific maintenance window by providing the window
name as the value for the window_name attribute.

Here’s an example that shows how to configure an automatic SQL tuning task to
automatically accept SQL profiles recommendations made by the SQL Tuning Advisor:

SQL> begin
 2 dbms_sqltune.set_tuning_task_parameters(

Automatic SQL Tuning Advisor 221

222 Chapter 4: Automatic SQL Tuning and SQL Plan Management

 3 task_name => 'SYS_AUTO_SQL_TUNING_PROG',
 4 parameter => 'accept_sql_profiles', value => 'true');
 5* end;
SQL> /

By setting the value of the accept_sql_profiles parameter to true, you
ensure that the task will accept SQL profiles automatically. Similarly, you can specify
the maximum number of automatic SQL profiles allowed by setting a value for the
max_auto_sql_profiles parameter and the maximum number of SQL
profiles that the database can automatically implement per execution a task by
setting a value for the max_sql_profiles_per_exec parameter.

Note that the accept_sql_profiles, max_sql_profiles_per_exec,
and the max_auto_sql_profiles parameters apply exclusively to the Automatic
SQL Tuning task.

You can run the SQL Tuning Advisor in the test-execute mode to save time.
The test-execute mode will use just the costs of executing a plan to test
performance. You can run the advisor in the test-execute mode by using the
test_execute parameter when you execute the SET_TUNING_TASK_
PARAMETERS procedure.

You can configure various Automatic SQL Tuning task parameters easily by using the
Enterprise Manager. To configure using Database Control, you use the Automatic SQL
Tuning Settings page, which you can access by clicking the Configure button on the
Automated Maintenance tasks page. This takes you to the Automated Maintenance
Tasks Configuration page, where you’ll see all the predefined maintenance windows.
SQL Tuning Advisor will run in all these predefined maintenance windows by default,
but you can disable it from any window you like. You can click the Edit Window Group
button to edit the windows.

You can specify all the Automatic SQL Tuning parameters just discussed on the
Automatic SQL Tuning Settings page. Note that by default, automatic implementation
of SQL profiles is deactivated.

EXERCISE 4-1

Using Enterprise Manager to Access the SQL Tuning Advisor
The following exercise shows how to use the SQL Tuning Advisor to get
recommendations for fixing a SQL statement to improve its performance. In

this example, use the ADDM finding with the highest impact as the source of the
SQL statement that you want the SQL Tuning Advisor to tune. Here are the steps:

 1. On the Database Home page, click the finding with the highest impact on
database time.

 2. The SQL Details page appears. Click Schedule SQL Tuning Advisor.

 3. Click Submit on the Scheduler Advisor page that appears.

 4. When the advisor task is completed, the database displays the recommendations.
Click Implement if you want to adopt the recommendations.

 5. Click Yes on the Confirmation page. This will create a new SQL profile to
improve the performance of the statement that the advisor is tuning.

 6. Once you implement the SQL Profile that the advisor recommends, access
the Performance page after the database executes the tuned SQL statement
the next time, to view the benefits of the tuning.

You can view information about the recent runs of the Automatic SQL Tuning
task by going to the Automated Maintenance Tasks page. On the Database Control
home page, click the Server tab. Under the Tasks section in the Server page, click
the Automated Maintenance Tasks link. You’ll see all predefined tasks on the
Automated Maintenance Tasks page. Click either the Automatic SQL Tuning task
or the most recent execution icon to get to the Automatic SQL Tuning Result
Summary page.

Interpreting Automatic SQL Tuning Reports
Execute the REPORT_AUTO_TUNING_TASK function from the DBMS_SQLTUNE
package to get the automatic SQL tuning reports. The report you get contains all
SQL statements analyzed in the most recent execution of the Automatic SQL Tuning
task. The report includes recommendations that were implemented as well as those
that weren’t.

SQL> begin
 2 :test_report :=dbms_sqltune.report_auto_tuning_task (
 3 type => 'text',
 4 level => 'typical',
 5 section => 'all');
 6* end;
SQL> /

Automatic SQL Tuning Advisor 223

224 Chapter 4: Automatic SQL Tuning and SQL Plan Management

PL/SQL procedure successfully completed.
SQL>
print :test_report

The text report produced by the REPORT_AUTO_TUNING_TASK procedure
contains all SQL statements that the Automatic SQL Tuning Advisor analyzed in
its last execution, including both the implemented as well as the unimplemented
recommendations made by it. The text report contains the following sections:

■ General information section describes the task and the inputs for the report
and the number of SQL profiles created.

■ Summary section lists the tuned SQL statements, the estimated benefits for
each SQL profile, and the test execution statistics for the SQL statements
after incorporating the SQL profiles.

■ Tuning Findings section shows all findings and information as to whether the
profiles were accepted or not.

■ Explain Plans section shows explain plans for the SQL statements both
before and after tuning.

■ Errors section lists all errors produced during the tuning task.

Data Dictionary Views
The following views provide information on automatic SQL tuning job executions:

■ DBA_ADVISOR_EXECUTIONS Shows metadata information for each task.

■ DBA_ADVISOR_SQLSTATS Shows a list of all SQL compilation and
execution statistics.

■ DBA_ADVISOR_SQLPLANS Shows a list of all SQL execution plans.

For example, you can use the following statement to get a list of all the SQL
Tuning Advisor task executions:

SQL> select execution_)name, status, execution_start,
 execution_end
 from dba_advisor_executions
 where task_name='SYS_AUTO_SQL_TUNING_TASK';

Note that the SYS_AUTO_SQL_TUNING_TASK is the name given to the
automated maintenance task that runs the SQL Tuning Advisor.

CERTIFICATION OBJECTIVE 4.02

SQL Plan Management
Once the cost optimizer provides an efficient execution plan for a SQL statement,
you can’t assume that the optimizer will always use that execution plan. There
may be any number of changes in the database, ranging from changes such as the
addition or deletion of an index, changes in the composition of data that affects
factors such as selectivity and cardinality, to the obvious changes such as a database
or server upgrade. In previous releases, Oracle provided the stored outlines feature
to preserve SQL execution plans to prevent unexpected performance deterioration
caused by a major system change such as a database upgrade. In Oracle Database 11g,
Oracle provides a brand-new feature called SQL Plan Management (SPM), to preserve
SQL performance across major system changes. You can use SPM to preserve SQL
performance when you encounter the following types of system changes:

■ Database upgrades

■ New optimizer versions

■ Changes in optimizer parameters

■ Changes in system settings

■ Changes in schema and metadata definitions

■ Deployment of new application modules

Although the SQL Tuning Advisor does provide you SQL profiles to improve
SQL performance of high-load statements, that’s done only after the database
identifies the SQL statements as poor performing. If the poor performance resulted
from an execution plan change brought about by one of the large sets of factors that
influence the explain plan, you still have to wait for the ADDM to capture the bad
SQL statements and for the Automatic SQL Tuning Advisor to tune that statement.
This, in other words, is a reactive mechanism at best, to cope with poorly performing
SQL statements. Using stored outlines is a practical alternative, but also requires
manual intervention. Oracle intends SPM as a preventative mechanism from the outset.
The database automatically controls SQL plan evolution with the help of what are
called SQL plan baselines. SPM’s job is to capture and evaluate the execution plans
over time and build SQL plan baselines containing only efficient execution plans.
A new execution plan will be allowed to be part of the SQL plan baseline for a

SQL Plan Management 225

226 Chapter 4: Automatic SQL Tuning and SQL Plan Management

specified SQL statement only if the new plan doesn’t cause performance regression.
During the execution of any SQL statement, only a plan that’s a part of that SQL
statement’s SQL plan baseline can be selected for execution. The database uses these
SQL plan baselines to preserve the SQL statement performance in the face of system
changes such as the ones listed previously. The goal is to avoid plan regressions,
while minimizing the time that you have to spend tracking down and analyzing SQL
performance regressions and fixing them.

The SQL plan verification is managed by the new automated maintenance task,
Automatic SQL Tuning Advisor, discussed earlier in this chapter. Because SQL
plan baselines are at the heart of the new SQL Plan Management feature, I review
those next.

SQL Plan Baselines
A SQL plan baseline is a set of all accepted plans in the plan history that the database
maintains for each repeatable SQL statement that the database executes. The plan
history contains all the SQL Plans generated for a particular SQL statement over
time by the optimizer, but only some of those plans may be accepted plans. The
database maintains a plan history for only repeatable SQL statements, but not for
ad-hoc statements. This plan history thus contains all the plans generated for a
specific SQL statement over time and is the key to determining whether a plan has
been changing over time and if newer versions are better than the previous plan
versions stored in the plan history. The plan history includes all information used by
the optimizer when figuring out an optimal execution plan, including information
regarding the SQL text, bind variables, and the environment in which the SQL
statement is being compiled.

Earlier, I said that the SQL plan baseline consists of the set of accepted plans for
a SQL statement. The database defines a plan as acceptable when it verifies that
the plan doesn’t lead to a performance regression when compared to the other plans
in the plan history. Note that the very first execution plan the database generates
for a SQL statement is always considered acceptable by the optimizer and becomes
the original SQL plan baseline as well as the plan history for that statement. Later
execution plans for that statement will automatically become part of the plan history
but not the SQL plan baseline initially. The database will include them in the SQL
plan baseline only if it verifies that they don’t lead to a performance regression.

The database verifies SQL plans as part of the Automatic SQL Tuning task that
runs as one of the automated tasks in the maintenance windows. You don’t have to
configure this automatic verification of SQL plans by the database. The Automatic
SQL Tuning aims strictly at high load SQL statements and automatically converts a
successfully verified plan into an accepted plan.

Using SQL plan baselines helps minimize potential performance regressions and
stabilize SQL performance over time. Oracle Database 11g provides the new package
DBMS_SPM to support the SQL Plan Management feature. Of course, you can also
use the Enterprise Manager to manage SPM. I explain both methods of managing
the SPM in the following sections.

Capturing SQL Plan Baselines
You capture SQL plan baselines by either having the database automatically capture
SQL plans or you can manually load them yourself. Let’s look at both methods in the
following sections.

Automatic Plan Capture
Set the new initialization parameter optimizer_capture_sql_plan_
baselines to true to let the datable automatically create and maintain a
SQL plan history. By default, this parameter is set to a value of false. Because
the parameter is dynamic, you can enable automatic SQL plan capturing on-the-fly,
with the following statement:

SQL> alter system set
 optimizer_capture_sql_plan_baselines=true scope=pfile;

Once you set the optimizer_capture_sql_plan_baselines parameter
to true, as shown here, the database will automatically recognize all repeatable
SQL statements and capture the SQL plans for those SQL queries for each SQL
statement. Setting the parameter to true will also generate SQL plan baselines
for the repeatable SQL statements. The database will automatically create a
plan history for each repeatable SQL statement when you set the optimizer_
capture_sql_plan_baselines parameter to true. Of course, as explained
earlier, the very first SQL plan that the database generates for any SQL statement
is automatically integrated into the corresponding SQL plan baseline. You can use
the automatic SQL plan capturing mechanism to retain good execution plans for
use after a database upgrade. Once you complete the upgrade to Oracle Database
11g, for example, leave the optimizer_features_enable parameter set to
10.2 (or whatever release you upgraded from, as long as it’s at least equal to 10.0.0,
which is the minimum level you can set the compatible parameter to). The SQL
Plan Management feature will collect the pre-Oracle Database 11g execution plans
and store them as SQL plan baselines in the upgraded database. Once you’re sure
that the database has had a chance to capture all the necessary SQL plan baselines,
you can set the optimizer_features_enable parameter to 11.1, to take
advantage of the new features offered by Oracle Database 11g. You can thus have

SQL Plan Management 227

228 Chapter 4: Automatic SQL Tuning and SQL Plan Management

your cake and eat it too, because you’ll be taking advantage of the new features
without suffering a possible performance regression of the SQL statements.

When you turn automatic SQL plan capture on, the database recognizes repeatable
SQL statements and automatically retains a plan history for those statements. The first
SQL plan that the optimizer generates will be part of the original SQL plan baseline
for any given statement. Obviously, if there is but a single execution plan for a SQL
statement it has nothing to compare against. You can also use the SQL Performance
Analyzer that you learned about in Chapter 1 to help you seed a newly upgraded
database with known SQL plans that don’t cause a performance regression upon
upgrading to a new release of the Oracle database. For example, you can use the SQL
Performance Analyzer to find out which SQL statements are likely to regress following
an upgrade to Oracle Database 11g Release 1 from Oracle Database 10g Release 2. You
can then capture all the execution plans for the likely-to-regress SQL statements from
the 10.2 release database and load them manually into the SQL Management Base in
the 11g release database.

Manual Plan Loading
You can use manual plan loading instead of, or together with, automatic plan capture.
There is a major difference between manual plan loading and automatic loading of
plans. When you load plans manually, the database doesn’t verify them for performance.
It immediately adds the plans you manually load as accepted plans to the SQL plan
baseline.

One of the biggest worries when upgrading to a new release of the Oracle database is
the possibility of SQL plan regressions following the use of the new optimizer. You can
now cross this hurdle either by capturing the current SQL plans manually and exporting
them to the target database after the upgrade or by first capturing your SQL workload
into SQL tuning sets before upgrading the database. Once the database upgrade is
completed, you can bulk load the SQL plans into the SQL plan baselines. Note that
even though you start off with manual bulk loading of the SQL execution plans, you
can still have the database automatically capture SQL plans from that point on.

There are two basic ways you can manually load SQL plans to create SQL plan
baselines—using a SQL Tuning Set (STS) and AWR snapshots and loading from the
database cursor cache. In both cases, you make use of the DBMS_SPM package to
manually manage the SQL plan baselines.

Loading SQL Plans from a SQL Tuning Set In order to load plans from
an STS, use the LOAD_PLANS_FROM_SQLSET function of the DBMS_SPM
package, as shown in the following set of steps:

 1. Create an empty SQL Tuning Set, as shown here:

begin
dbmns_sqltune.create_sqlset(
sqlset_name => 'testset1',
description => 'Test STS to capture AWR Data');
end;
/

 You can now use the STS you just created to load selected SQL statements
from the AWR. If you’re loading plans from a remote database, you can load
the plans into the STS first and then export and import the STS into the
target database where you want to load the SQL plans.

 2. Use the LOAD_SQLSET procedure to populate the empty STS with SQL
statements from the AWR snapshots. In this example, I load the STS from
the AWR baseline peak baseline. The STS will include the top 20 statements
from the AWR peak baseline, based on the elapsed time attribute.

declare
test_cursor1 dbms_sqltune.sqlset_cursor;
begin
open baseline_cursor for
select value(p) from table (dbms_sqltune.
select_workload_repository(
'peak baseline',null,null,'elapsed_time',null,null,null,20)) p;
dbms_sqlset.load_sqlset (
sqlset_name => 'testset1',
populate_cursor => test_cursor1);
end;
/

 Before you can load the top 20 SQL statements into the STS, you must first
select them from the AWR baseline using a ref cursor and a predefined table
function to select the columns you need. The STS testset1 now contains the
top 20 SQL statements in the AWR, ordered by elapsed time.

 3. In order to load the SQL plans from the STS as SQL plan baselines, use the
LOAD_PLANS_FROM_SQLSET function of the DBMS_SPM package:

declare
test_plans pls_integer;
begin
 test_plans := dbms_spm.load_plans_from_sqlset(
 sqlset_name => 'testset1');
end;
/

The previous three steps showed how to load SQL plans from an STS. In the next
section, I show you how to load SQL plans from the cursor cache instead.

SQL Plan Management 229

230 Chapter 4: Automatic SQL Tuning and SQL Plan Management

Loading SQL Plans from the Cursor Cache Instead of using an STS to
load SQL plans, you can use the cursor cache to directly load the plans or the SQL
statements stored in the cache. Here’s the syntax of the LOAD_PLANS_FROM_
CURSOR_CACHE function:

dbms_spm.load_plans_from_cursor_cache (
sql_id in varchar2,
plan_hash_value in number := null,
sql_text in clob,
fixed in varchar2 :='no',
enabled in varchar2 := 'yes')
return pls_integer;

Note that the LOAD_PLANS_FROM_CURSOR_CACHE function is overloaded.
You can use the SQL_ID, PLAN_HASH_VALUE, or the ATTRIBUTE_NAME and
ATTRIBUTE_VALUE pair in the function. Here’s what the key parameters of the
LOAD_PLANS_FROM_CURSOR_CACHE function mean:

■ sql_id represents the SQL statement ID used to identify a statement in the
cursor cache.

■ plan_hash_value identifies the plan. A value of null (default) for this
parameter means the database must capture all execution plans for the SQL
statements with a particular SQL ID that are in the current cache.

■ The sql_text parameter helps identify the SQL plan baseline into which
you are loading the plans from the cursor cache.

■ sql_handle identifies the SQL plan baseline into which you’re loading
the plans from the cursor cache.

■ fixed means that the optimizer will consider only those plans and not
others. If you assign the value of yes for the fixed parameter, the plans you
load will be treated as fixed plans and the database will not evolve the SQL
plan baseline. The default is yes.

■ attribute_name can take the following values:

■ SQL_TEXT

■ PARSING_SCHEMA_NAME

■ MODULE

■ ACTION

■ attribute_value helps specify a selection filter if it is being used as a
search pattern of a like predicate. If not, it’s used as an equality search value.

■ The default value for enabled is yes, which means that all loaded plans
are usable by the optimizer.

Here’s an example that shows how to load SQL plans from the cursor cache, using
the LOAD_PLANS_FROM_CURSOR_CACHE function:

declare
test_plans pls_integer;
begin
 test_plans := dbms_spm.load_plans_from_cursor_cache (
 sql_id => '123456789999')
 return pls_integer;
end;
/

In this example, I used a make-believe value for the sql_id parameter. In a
real-life situation, you must provide the actual sql_id for the SQL statement
whose plans you want to load from the cursor cache.

Selecting SQL Plan Baselines
Once you collect the SQL plans either from the AWR or from the cursor cache,
the next step is to enable use of the SQL plan baselines. To do this, you must set the
optimizer_use_sql_plan_baselines initialization parameter to true.
The parameter is set to false by default, meaning SQL plan baselines aren’t
enabled by default. When the optimizer compiles any SQL statements, it follows
a conservative explain plan selection strategy when you use SQL plan baselines,
which I summarize here.

Know the role played
by the two initialization parameters
optimizer_capture_sql_plan_

baselines and optimizer_use_
sql_plan_baselines in the SQL Plan
Management feature.

■ When the database recognizes a new SQL statement as a repeatable statement
for the first time, it adds the lowest cost plan for that statement to the SQL
plan baseline for that statement. The database will then use this SQL plan
baseline to execute the SQL statement.

SQL Plan Management 231

232 Chapter 4: Automatic SQL Tuning and SQL Plan Management

■ When the initialization parameter optimizer_use_sql_plan_
baselines is set to its default value of true, it enables the use of the SQL
plan baselines stored by the database in the SQL Management Base (SMB).
The optimizer will look for a SQL plan baseline for the SQL statement the
database is compiling. If a SQL plan baseline exists for that SQL statement,
the database uses a comparative plan selection policy—that is, the optimizer
will figure out the cost of each of the baseline plans and pick the one with the
lowest cost. The optimizer will create a best cost plan and try to match it to a
plan in the SQL plan baseline. If it finds a match, it goes ahead and executes
the statement using the best cost plan. If the database fails to match the best
cost plan with any plan in the SQL plan baseline, it will add the new plan to
the plan history as a non-accepted plan first. It then chooses the lowest cost
plan from the set of accepted plans in the SQL plan baseline and executes the
statement using that plan for the statement after comparing it with all the
accepted plans in the SQL plan baseline. If it matches a plan in the baseline,
it will go ahead and use that plan. In reality, only the outline for each plan
is stored in the SMB. Therefore, the optimizer will reproduce the actual
execution plan from the stored outline of the selected plan and execute the
statement using that plan.

■ If the database can’t reproduce any of the accepted plans in the baseline, say
because you dropped an index, then the optimizer uses the lowest cost plan
for a newly compiled SQL statement.

You can view the execution plan for the specified SQL_HANDLE of a plan
baseline by executing the DBMS_XPLAIN.DISPLAY_SQL_PLAN_BASELINE
function.

■ The end result is that the optimizer will always produce a plan that’s either the
best cost plan or a baseline plan. You can query the OTHER_XML column in
the PLAN_TABLE after running an explain plan on a SQL statement, to find
out exactly what strategy the optimizer has adopted in a specific case.

Evolving SQL Plan Baselines
The database routinely evaluates new plan performance with a view to integrating
plans with superior performance into the SQL plan baseline for the corresponding
SQL statement. Evolving SQL plan baselines is the critical phase when the database
changes a non-accepted plan in the plan history to an accepted plan and makes it
part of the SQL plan baseline. In order to deem a plan in the history an accepted

plan, its performance must be better than already
accepted plans that are in the SQL plan baseline.
To successfully verify a non-accepted plan, the
database compares the plan’s performance to that
of a plan it selects from the SQL plan baseline
and ensures that the former delivers superior
performance.

You need to formally evolve a SQL plan
baseline only if you’re using automatic plan

capture. If you’re using the manual capture process through an STS or a cursor cache,
the moment you load a new plan into a SQL plan baseline, they are considered
accepted plans and thus don’t have to go through the evolution process described
here. You must, however, formally evolve all SQL plans that the database captures
automatically.

You can evolve SQL plan baselines in two ways: with the EVOLVE_SQL_PLAN_
BASELINE function or the SQL Tuning Advisor. I describe both methods in the
following sections.

Using the EVOLVE_SQL_PLAN_BASELINE Function The EVOLVE_
SQL_PLAN_BASELINE function determines whether a new plan added to the
plan history performs better than a plan from the corresponding SQL plan baseline.
If so, it adds the new plan to the SQL plan baseline as an accepted plan. Here’s an
example:

SQL> exec dbms_spm.evolve_sql_plan_baseline (sql_handle =>
 '123456789999');

In this example, I used the sql_handle attribute to evolve a plan for a
particular SQL statement. However, you can also provide a list of plans or simply
provide no value for the sql_handle attribute. In this case, the database will
evolve all non-accepted plans that are in the SQL Management Base.

Let’s look at the EVOLVE_SQL_PLAN_BASELINE procedure in more detail.
Here’s the syntax of the function:

dbms_spm.evolve_sql_plan_baseline (
sql_handle in varchar2 :=null,
plan_name in varchar2 :=null,
time_limit in integer :=dbms_spm.auto_limit,
verify in varchar2 := 'YES',
commit in varchar2 := 'YES')
return clob;

It’s important to
understand how a plan becomes an
accepted plan. You must understand
the difference between an accepted
and an enabled plan.

SQL Plan Management 233

234 Chapter 4: Automatic SQL Tuning and SQL Plan Management

There is also a second form of the EVOLVE_SQL_PLAN_BASELINE function,
where you can use a PLAN_LIST attribute instead of the SQL_HANDLE and the
PLAN_NAME attributes.

Here are the different parameters of the EVOLVE_SQL_PLAN_BASELINE
function:

■ sql_handle identifies the SQL statement. If you don’t specify a plan_name,
a null value for this parameter requests the database to evaluate all non-
accepted plans.

■ plan_name is the plan identifier. If this is null (the default) and the
sql_handle parameter is null as well, the database evaluates all SQL
statements. If the plan_name parameter is null but the sql_handle
parameter isn’t, the database evaluates all non-accepted explain plans for
the specified SQL statement.

■ plan_list provides a list of plan names.

■ The time_limit parameter specifies the time limit for the evolution of
the SQL plans. The default is dbms_spm.auto_limit, which means the
database will select the time limit based on the number of plan verifications
it has to perform. You can use the dbms_spm.no_limit value for the
time_limit parameter to remove a time limit for the plan verification
process.

■ The verify parameter can take a value of yes (default) or no. The yes
value means that the database will verify a non-accepted plan to make sure
it does yield better performance than a plan chosen from the SQL plan
baseline for the relevant statement. If you pass the value no for the verify
parameter, the database will change non-accepted plans into accepted plans
without any plan execution and performance comparison.

■ The commit parameter specifies whether the database should update the
accepted status of non-accepted plans to yes. The default is yes, meaning
the status of qualifying non-accepted plans is updated. A value of no for the
commit parameter means the database will not update the accepted status
of non-accepted plans.

■ The return parameter is a CLOB that contains a text report showing all
non-accepted plans, with the changes in their accepted status. If you specify
yes as the value for the verify parameter, the text report will also contain
the result of the performance verification of plans.

You can export SQL baseline plans from the SQL Management Base into a
staging table and then import the baselines from the staging table into the
SQL Management Base in a different database.

Evolving SQL Plans with the SQL Tuning Advisor You can also evolve
SQL plan baselines by running the SQL Tuning Advisor. This applies to both
manual and automatic executions of the SQL Tuning Advisor task. When the SQL
Tuning Advisor recommends accepting a SQL profile, it does so because the explain
plan with the SQL profile is better than the original explain plan for the untuned
statement. Once you accept the SQL profile recommendation and implement it, the
advisor automatically adds the plan to the SQL plan baseline for that SQL statement.

Fixed SQL Plan Baselines
If a SQL plan baseline contains one or more enabled plans for which the fixed
attribute value is set to yes, the baseline is considered fixed. You can set the fixed
attribute to YES for any plan you want, thereby limiting the set of possible plans for

a given SQL statement. You usually fix one plan
per baseline and, because the optimizer will give
preference to the fixed plans over the nonfixed
plans in the SQL plan baseline, it will use the
fixed plan. Remember that this will make the
optimizer pick the fixed plan even if some of
the nonfixed plans are actually cheaper, with a
lower cost of execution.

The database doesn’t evolve a fixed SQL plan baseline because the optimizer doesn’t
add any new execution plans to a fixed SQL plan baseline. You may, however, evolve
even a fixed SQL plan baseline by manually loading a new plan either from the
cursor cache or a SQL Tuning Set.

SQL Plan Baseline Attributes
A SQL plan baseline has several attributes that you can change in order to fine-tune
the SQL Plan Management feature. The DBA_SQL_PLAN_BASELINES view
provides detailed information about all the SQL plan baselines stored in the SMB.
Here’s a query that shows how to find out key information about the SQL plan
baselines in your database:

SQL> select sql_handle, sql_text, plan_name,
 origin, enabled, accepted, fixed, autopurge
 from dba_sql_plan_baselines;

You must know the
implications of marking a plan as fixed
when there are multiple plans that are
marked as fixed.

SQL Plan Management 235

236 Chapter 4: Automatic SQL Tuning and SQL Plan Management

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC IX AUT
---------- ----------- -------- ------ --- ---- --- ---
SQL_TEXT
SYS_SQL_02a delete from... SYS_SQL_PL AUTO YES YES NO YES

SYS_SQL_a6f SELECT... SYS_SQL_PL AUTO YES YES NO YES

 SQL>

If you’re using a fixed plan, the explain plan for that statement will indicate at
the end that the plan is a fixed plan.

The following is a brief explanation of the key attributes of a SQL plan baseline:

■ SQL_HANDLE, SQL_TEXT, and PLAN_NAME identify the SQL statement.

■ The ORIGIN attribute denotes whether the plan was loaded manually
(MANUAL-LOAD) and tuned by you (MANUAL-SQLTUNE), or if the
database automatically captured the load (AUTO-CAPTURE) and tuned
it (AUTO-SQLTUNE).

■ enabled specifies whether the baseline plan is enabled by the optimizer for use.

■ accepted shows whether the plan has been verified and found not to lead
to a performance regression.

■ fixed indicates whether this plan is one of the “fixed” cases. If any of the
plans in a baseline are fixed, the database will consider the best plan among the
fixed plans only. All other plans are ignored in preference to the fixed plans.

■ auto_purge shows whether the plan is automatically purged by the database.

Note that any plans that you load manually will always have the accepted
status because they are deemed to be verified plans. The database can also
automatically change the status of a plan to accepted after its verification. In
addition, you can manually set the status of any SQL plan to accepted through
the ALTER_SQL_PLAN_BASELINE procedure, as shown here:

SQL> exec dbms_spm.alter_sql_plan_baselines(
 sql_handle => SYS_SQL_122222222',
 plan_name => 'SYS_SQL_PLAN_b5429522ee05ab0e',
 attribute_name => 'accepted-status',
 attribute_value => 'YES');

You can also disable an accepted plan by removing the enabled setting through
the ALTER_SQL_PLAN_BASELINE view. Here’s an example:

declare
 ctr binary_integer;

begin
 ctr := dbms_spm.alter_sql_plan_baseline (
 sql_handle => 'SYS_SQL_e0b19f65b5429522',
 plan_name => 'SYS_SQL_PLAN_b5429522ee05ab0e',
 attribute_name => 'ENABLED',
 attribute_value => 'NO'
);
end;

A job must have the enabled and the accepted status in order for the
optimizer to consider its use.

Once you disable a plan, the optimizer won’t consider that plan any longer. When
you re-enable the plan, the optimizer starts taking the plan into account again.

Managing SQL Plan Baselines
You can view the SQL plans stored in the SQL plan baseline for a specific
SQL statement, using the DISPLAY_SQL_PLAN_BASELINE function of
the DBMS_XPLAN package, as shown the following example:

SQL> set serveroutput on
SQL> set long 100000
SQL> select * from table(
 2 dbms_xplan.display_sql_plan_baseline(
 3 sql_handle => 'SYS_SQL_ba5e12ccae97040f',
 4* format => 'basic'));
PLAN_TABLE_OUTPUT
--

--
SQL handle: SYS_SQL_ba5e12ccae97040f
SQL text: select t.week_ending_day, p.prod_subcategory, sum(s.
 amount_sold) as dollars, s.channel_id,s.promo_id
 from sales s,times t, products p where s.time_id =
 t.time_id and s.prod_id = p.prod_id and
 s.prod_id > 10 and s.prod_id <50 group by
 t.week_ending_day, p.prod_subcategory,
PLAN_TABLE_OUTPUT
--
 s.channel_id,s.promo_id
--
--
Plan name: SYS_SQL_PLAN_ae97040f6b60c209
Enabled: YES Fixed: NO Accepted: YES Origin: AUTO-CAPTURE
--

SQL Plan Management 237

238 Chapter 4: Automatic SQL Tuning and SQL Plan Management

Plan hash value: 1944768804
--
PLAN_TABLE_OUTPUT
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	HASH GROUP BY	
2	HASH JOIN	
3	TABLE ACCESS FULL	TIMES
4	HASH JOIN	
5	TABLE ACCESS BY INDEX ROWID	PRODUCTS
6	INDEX RANGE SCAN	PRODUCTS_PK
7	TABLE ACCESS FULL	SALES
--
29 rows selected.
SQL>

The output of the DISPLAY_PLAN_BASELINE function shows the following
information:

■ The plan was captured automatically.

■ The plan is enabled and accepted.

■ The plan is not fixed.

If the SQL Tuning Advisor finds an execution plan to be superior to a plan in
the statement’s SQL plan baseline, it will recommend that you accept a SQL
profile. If you accept the SQL profile, the Tuning Advisor automatically adds
the tuned plan to the SQL plan baseline of the SQL statement.

The SQL Management Base
The database stores all SPM related information, such as statement logs, plan histories,
and SQL profiles as well as the SQL plan baselines, in a new component of the data
dictionary called the SQL Management Base (SMB). The database stores the SMB in
the SYSAUX tablespace. You must, therefore, ensure that the SYSAUX tablespace is
online because SPM will be disabled if it can’t access the SYSAUX tablespace.

Configuring the SQL Management Base
You configure the SQL Management Base by setting values for two parameters,
space_budget_percent and plan_retention_weeks. You can
view the current values of these two parameters by querying the DBA_SQL_
MANAGEMENT_CONFIG view, as shown here:

SQL> select parameter_name, parameter_value from
 dba_sql_management_config;

PARAMETER_NAME PARAMETER_VALUE
----------------------- ----------------
SPACE_BUDGET_PERCENT 30
PLAN_RETENTION_WEEKS 105
SQL>

The space_budget_percent parameter determines the percentage of space
the SMB can take up in the SYSAUX tablespace. You can select a value between 1
and 50 percent for this parameter. The default space limit is 10 percent of the size
of the SYSAUX tablespace. A new Oracle background process will generate daily
warnings that it writes to the alert log when the SMB exceeds its allocated space
limit. You can do one of the following to make the alert warnings go away:

■ Increase the size of the SYSAUX tablespace

■ Increase the SMB space limit

■ Purge outdated SQL plan baselines or SQL profiles to clear up space in the SMB

You can modify the value of the space_budget_percent parameter by
executing the DBMS_SPM.CONFIGURE procedure, as shown here:

SQL> exec dbms_spm.configure ('space_budget_percent', 40);

The previous procedure will increase the space allocation of the SMB in the
SYSAUX tablespace to 40 percent.

Purging Policies
A weekly purging task that’s part of the automated tasks that run during the
maintenance windows takes care of removing older unused baselines, to conserve
space in the SQL Management Base. By default, the database purges all SQL plans
that the database hasn’t used in over a year (53 weeks, to be precise). You can, however,
change this setting by adjusting the value of the plan_retention_weeks
parameter to a value between 5 weeks and 523 weeks. The following example shows
how to change the plan retention period to 2 years:

SQL> exec dbms_spm.configure ('plan_retention_weeks', 105);

In addition to the automatic purging of unused SQL baselines, you can manually
purge the plan baseline for a specific statement by using the PURGE_SQL_PLAN_
BASELINE procedure, as shown here:

SQL> exec dbms_spm.purge_sql_plan_baseline(
 ''SYS_SQL_PLAN_b5429522ee05ab0e');

SQL Plan Management 239

240 Chapter 4: Automatic SQL Tuning and SQL Plan Management

A query on the DBA_SQL_MANAGEMENT_CONFIG view shows the current
configuration settings for the SQL Management Base.

Managing SPM with the Enterprise Manager
Instead of using the DBMS_SPM package, you can simply use the Enterprise Manager
to perform SQL Plan Management tasks. Use the SQL Plan Management page to
manage both SQL profiles and SQL plan baselines. You can get to the SQL Plan
Management page by going to Home page | Server | SQL Plan Control (under the
Query Optimizer section).

CERTIFICATION OBJECTIVE 4.03

SQL Access Advisor Enhancements
Oracle introduced the SQL Access Advisor in the Oracle database 10g Release to
help you create efficient access structures to optimize SQL queries. The advisor
accepted either an actual workload as input (from the cursor cache or an STS from
the automatic workload repository) or used a hypothetical workload created by you
to recommend which indexes, materialized views, or materialized view logs to create
and drop to improve SQL performance. In Oracle Database 11g, there are several
enhancements to the SQL Access Advisor:

■ New procedures.

■ In addition to its usual table, index, materialized view, and materialized view
log recommendations, the advisor now also recommends partitioning of tables,
indexes, and materialized views.

■ Reporting of intermediate results at publish points.

I explain the enhancements in more detail in the followings sections.

New Procedures
Although you can use other sources for the workload, in Oracle Database 11g, Oracle
seems to suggest using a SQL Tuning Set (STS) as the source for the SQL Access
Advisor. An STS has the benefit of being a separate identity and can be shared by
various Advisor tasks, not just the Advisor that creates it. Once an Advisor task

references an STS, that STS can’t be deleted or changed until all Advisor tasks
remove their dependency on it. An STS also lets you capture and store different types
of SQL workload together as a persistent object in the database. As in Oracle Database
10g, you use the DBMS_SQLTUNE package to create the initial empty STS.

In Oracle Database 10g, you used a SQL Workload object to capture the workload,
which you can create by using the CREATE_SQLWKLOAD procedure. Because
the SQL Workload is independent, you used the ADD_SQLWKLD_REF procedure
to link the SQL Workload object to a SQL Advisor task to protect the workload
from being removed or modified. Finally, you used the DELETE_SQLWKLD_REF
procedure to remove the workload reference manually from the Advisor task (you
could also drop the Advisor task to make the SQL Workload go away).

When using the SQL Access Advisor, you can choose your workload from one
of the following sources: Current and Recent SQL Activity, an existing STS, or
a hypothetical workload.

In Oracle Database 11g, you make use of two new procedures that are part of
the DBMS_ADVISOR package: ADD_STS_REF and DELETE_STS_REF, to link
and unlink SQL Access Advisor tasks and SQL Tuning Sets, which contain the
workload for the advisor.

The ADD_STS_REF Procedure
The ADD_STS_REF procedure, shown here, links the current SQL Access Advisor
task and a SQL tuning set.

DBMS_ADVISOR.ADD_STS_REF(
 task_name IN VARCHAR2 NOT NULL,
 sts_owner IN VARCHAR2,
 sts_name IN VARCHAR2 NOT NULL);

Oracle recommends using the ADD_STS_REF procedure for any advisor runs
that use a SQL tuning set.

The DELETE_STS_REF Procedure
The DELETE_STS_REF procedure is the counterpart of the ADD_STS_REF
procedure. You use it to remove the link between the current SQL Access Advisor
task and a SQL tuning set.

DBMS_ADVISOR.DELETE_STS_REF (
 task_name IN VARCHAR2 NOT NULL,
 sts_owner IN VARCHAR2,
 sts_name IN VARCHAR2 NOT NULL);

SQL Access Advisor Enhancements 241

242 Chapter 4: Automatic SQL Tuning and SQL Plan Management

Oracle recommends using the DELETE_STS_REF procedure for any advisor runs
that use a SQL tuning set. Don’t confuse the DELETE_STS_REF procedure with
the DELETE_TASK procedure, which you use to remove an advisor task from the
repository.

Partitioning Recommendations
In addition to its usual table, index, and materialized view recommendations, the
SQL Access Advisor makes the following recommendations in Oracle Database 11g.

■ Partition a table The partitioning methods are range, interval, list, hash,
range-hash, and range-list.

■ Partition an index The partitioning methods are local, range, and hash.

■ Partition materialized view The partitioning schemes are range, interval,
list, hash, range-hash, and range-list.

The SQL Access Advisor invokes the DBMS_REDEFINITION package to
implement its partition recommendations online. The SQL Access Advisor can
make partitioning recommendations both under the limited tuning option and the
comprehensive tuning option. The comprehensive tuning option uses SQL profiles
and also allows you to specify a time limit for the tuning task, which is 30 minutes,
by default. Partitioning is usually a more time-consuming and complex task when
compared to, say, the creation of a simple index. Follow these guidelines when
using the SQL Access Advisor in Oracle Database 11g, if you want to get good
partitioning recommendations:

■ The tables must be large, with a minimum of 10,000 rows.

■ If the base tables have a bitmap index defined on them, you must remove them
before running the advisor recommendation script because you can’t migrate
the bitmap indexes correctly. After the advisor creates a partitioned table
from an unpartitioned table, you can re-create the dropped bitmap index.

■ The advisor will generate partitioning recommendations for only columns of
type DATE and NUMBER. If a SQL statement in the workload doesn’t use
a predicate or join with these types of columns, the database won’t make any
partitioning recommendations.

■ Interval is the default partitioning mode. Hash partitioning is offered only to
facilitate partition-wise joins.

■ You must ensure that you have enough space to hold the original table and a
copy of it because the DBMS_REDEFINITION packages make a temporary
copy of the source table.

■ If the recommendations include a partitioning recommendation along with
other types of recommendations such as creating a new index, it’s not a good
idea to decide to only create the index and leave the table as is, without
partitioning it. If you can’t partition the table for some reason, you must
run the SQL Access Advisor again, this time with the partitioning option
disabled. The reason for this is that the index recommendation in this case
was predicated on the existence of a partitioned table. Therefore, skipping the
partitioning recommendation but accepting the indexing recommendations
isn’t a correct choice.

Back up your database before starting the advisor session because that’s probably
the quickest and easiest way to undo a major table partitioning task.

Publish Points
Previously, once the SQL Access Advisor started its recommendation analysis, the
only way to access the results was to wait until the processing was completed or to
interrupt the task. In Oracle Database 11g, you can access the results even before the
advisor task is completed. This offers you the potential to save considerable time in

implementing key advisor recommendations
because you can interrupt a long running task
and glean an idea about the recommendations.
You can break down a large workload into
smaller chunks using your own criteria and have
the advisor analyze each chunk of the workload
and report its intermediate results at the publish
points.

Once you interrupt a task, the advisor will
mark the task as INTERRRUPTED, and you can view the intermediate results and
generate the recommendation scripts. You also have the choice to tell the advisor
to resume the task that you interrupted. A word of caution, however: in order to
make any base table partitioning recommendations, the SQL Access Advisor needs
to analyze almost the entire workload. If you interrupt a task early, you probably
won’t see any type of partition-related recommendations. However, a late stage
intermediate result may quite possibly yield partition recommendations if the advisor
figures out it’s beneficial to do so.

Running a SQL Access Advisor Job Using PL/SQL
In this section, I show you how to run the SQL Access Advisor using procedures and
functions from the DBMS_ADVISOR and DBMS_SQLTUNE packages.

Understand how you can
get a quick “partial” recommendation
from the SQL Access Advisor. Can you
resume an advisor job after interrupting
it for partial results?

SQL Access Advisor Enhancements 243

244 Chapter 4: Automatic SQL Tuning and SQL Plan Management

Creating the SQL Access Advisor Task
You can create an advisor task by using the CREATE_TASK procedure and
specifying the various attributes of the task or creating your task from a template.
If you specify a template at task creation time, the SQL Access Advisor will copy
the parameter settings from the template to the new task. You may also specify an
already existing task as the template. Here’s an example that shows you how to use
the CREATE_TASK procedure to create a new SQL Access Advisor task:

SQL> exec dbms_advisor.create_task(
 advisor_name => 'SQL Access Advisor',
 task_name => 'test_task1')

The previous code creates a new advisor task named test_task1.

Creating a SQL Tuning Set
First, create an empty STS to hold the SQL workload that you want to pass to the
SQL Access Advisor task as input for its analysis:

SQL> exec dbms_sqltune.create_sqlset (-
 sqlset_name => 'test_sts1', -
 description => 'Test STS for Access Advisor');

In this case, we created a new empty STS named teststs1. If you wish to transfer
existing SQL objects to a SQL Tuning Set, use the COPY_SQLWKLD_TO_STS
procedure to copy the workload to an STS. Here’s an example:

SQL> exec dbms_advisor.copy_sqlwkld_to_sts('test_workload',
 'test_sts1','new');

Loading the SQL Tuning Set
In this step, I show you how to load the STS with a set of SQL statements. By
default, the LOAD_SQLSET procedure will load only new statements to the STS,
but you can also update existing statements in the STS if you want.

SQL> declare
 2 mycursor dbms_sqltune.sqlset_cursor;
 3 begin
 4 open mycursoror
 5 select value(p)
 6 from table (
 7 dbms_sqltune.select_cursor_cache(
 8 'parsing_schema_NAME <> ''SYS''',NULL,NULL,NULL,NULL,1,
 NULL,'ALL')) p;
 9 dbms_sqltune.load_sqlset(sqlset_name => 'test_sts1',
 populate_cursor => mycursor);
 10* end;

SQL> /
PL/SQL procedure successfully completed.
SQL>

Note that the LOAD_SQLSET procedure uses a cursor reference with which to
populate the STS. In this case, I use the SELECT_CURSOR_CACHE function
to collect the SQL statements from the SQL cursor cache. The function returns a
sqlset_row per SQL_ID and PLAN_HASH_VALUE combination it finds in the
cursor cache. The LOAD_SQLSET procedure is called after first opening the cursor
mycursor and selecting all statements in the cursor cache with the exclusion of those
that were parsed by the user SYS.

In this example, I showed how to load SQL statements from the SQL cursor
cache. You can also use the SELECT_WORKLOAD_REPOSITORY function to
select SQL statements from the automatic workload repository instead.

Linking the Advisor Task and the Workload
Now you have both the SQL Access Advisor task and a SQL Tuning Set with the
SQL statements you want the advisor to analyze. Your next task is to link the task
to the STS, by using the new ADD_STS_REF procedure, as shown here:

SQL> exec dbms_advisor.add_sts_ref (
 task_name => 'test_task1',
 sts_owner => 'SH',
 sts_name =>'test_sts1');

You can create as many links to SQL Tuning Sets as you like.

Oracle advises that you use the ADD_STS_REF procedure instead of the
older procedure, ADD_SQLWKLD_REF, which is supported only for backward
compatibility.

Setting the Task Parameters
Use the SET_TASK_PARAMETER procedure to set the task parameters. There are
a large number of parameters you can set, but if you don’t explicitly set any of these
parameters, the database will use default values for them. Execute the SET_TASK_
PARAMETER procedure as many times as you have parameters to set. Here are
some examples:

SQL> exec dbms_advisor.set_task_parameter ('test_task1',
 'valid_table_list','SH.SALES,SH.CUSTOMERS);'
SQL> exec dbms_advisor.set_task_parameter ('test_task1',
 'mode', 'comprehensive');
SQL> exec dbms_advisor.set_task_parameter ('test_task1',
 'journaling',4);

SQL Access Advisor Enhancements 245

246 Chapter 4: Automatic SQL Tuning and SQL Plan Management

SQL> exec dbms_advisor.set_task_parameter ('test_task1',
 'analysis_scope','all');

The first example (the valid_task_list parameter) filters out all SQL queries
that don’t reference the sales and customers tables in the SH schema. The second
example (the mode parameter) sets the tuning mode to comprehensive rather
than limited. The third example (the journaling parameter) shows how to set the
journaling attribute, which controls the logging of messages to the journal, which
you can view by querying the DBA_ADVISOR_JOURNAL view. The higher the
setting for this parameter, the more detailed will be the messages. The final example
(the analysis_scope parameter) shows how to set the analysis_scope attribute to all,
which will generate recommendations for indexes, materialized views, and partitions.

If you want only to get partition recommendations, you can do so by specifying
the option partition along with the index, table, or mview (materialized
view) options. You may also use the def_partition_tablespace attribute
to specify the default tablespace for the partitioned tables. If you don’t specify
this attribute, the partitioning recommendations in the script will not contain
a tablespace name for the partitioned table. One other useful attribute is max_
number_partitions, which specifies the maximum number of partitions for
a table, index, or materialized view. This attribute can range from 1 to 4294967295
and the default value is advisor_unlimited.

Execute the Task
Execute the task by issuing the following command:

SQL> exec dbms_advisor.execute_task (task_name => 'test_task1');

Once the SQL Access Advisor task finishes executing, you can view the
recommendations made by the advisor.

Viewing the Recommendations
The SQL Access Advisor links each of its recommendations to a specific SQL
statement from the workload. You can use the GET_TASK_REPORT function
to view a report, as shown here:

SQL> exec DBMS_ADVISOR.GET_TASK_REPORT (
 task_name IN VARCHAR2,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'TYPICAL',
 section IN VARCHAR2 := 'ALL',
 owner_name IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL,
 object_id IN NUMBER := NULL)
RETURN CLOB;

The function creates the task report and presents it to you.
You can stop the task anytime using the CANCEL_TASK procedure, but

you won’t be able to see any recommendations. Use the INTERRUPT_TASK
procedure to terminate an advisor task before it reaches its end. You can still
get any recommendation that has been created up to that point. The following
example shows how to interrupt a task:

SQL> exec dbms_advisor.interrupt_task ('test_task1');

One you interrupt a task midway, you can’t restart it.

Generating SQL Scripts
You can view the SQL script that the advisor creates to implement its recommendations
by executing the GET_TASK_REPORT procedure, which will save the script
containing the executable SQL statements in a file. Note that you must first create a
directory with the create directory statement before you execute the previous
code. Here’s how you create the directory:

SQL> create directory access_adv_rslts as
 '/u01/app/oracle/access';
Directory Created.

Once you create the directory, execute the CREATE_FILE procedure to generate
the SQL script in that directory, as shown here:

SQL> execute dbms_advior.create_file (
 dbms_advisor.get_task_script ('test_task1'),
 'access_adv_rslts', 'testscript1.sql');

Review the SQL script before you execute it. Here’s the SQL script showing the
SQL Access Advisor recommendations for the example task:

Rem SQL Access Advisor: Version 11.1.0.6.0 - Production
Rem Username: SH
Rem Task: SQLACCESS9252895
Rem Execution date:
Rem Repartitioning table "SH"."SALES"
SET SERVEROUTPUT ON
SET ECHO ON
Rem Creating new partitioned table
CREATE TABLE "SH"."SALES1"
("PROD_ID" NUMBER,
 "CUST_ID" NUMBER,
 "TIME_ID" DATE,
 "CHANNEL_ID" NUMBER,
 "PROMO_ID" NUMBER,
 "QUANTITY_SOLD" NUMBER(10,2),

SQL Access Advisor Enhancements 247

248 Chapter 4: Automatic SQL Tuning and SQL Plan Management

 "AMOUNT_SOLD" NUMBER(10,2)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
NOCOMPRESS LOGGING
TABLESPACE "USERS"
PARTITION BY HASH ("PROD_ID") PARTITIONS 32;
Rem Copying constraints to new partitioned table
ALTER TABLE "SH"."SALES1" MODIFY ("PROD_ID" NOT NULL ENABLE);
Rem Copying indexes to new partitioned table
Rem
CREATE UNIQUE INDEX "SH"."PRODUCTS_PK1" ON "SH"."SALES1"
("PROD_ID")
PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
TABLESPACE "EXAMPLE";
Rem Populating \partitioned table with data from original table
INSERT /*+ APPEND */ INTO "SH"."SALES1"
SELECT * FROM "SH"."SALES";
COMMIT;
begin
dbms_stats.gather_table_stats('"SH"', '"SALES1"', NULL, dbms_
stats.auto_sample_size);
end;
/
Rem Renaming tables to give new partitioned table the original
 table name
ALTER TABLE "SH"."SALES" RENAME TO "SALES1";
ALTER TABLE "SH"."SALES1" RENAME TO "SALES";
Rem Revalidating materialized views for use with new
partitioned table
BEGIN DBMS_MVIEW.REFRESH('"SH"."FWEEK_PSCAT_SALES_MV"',
'C',atomic_refresh => FALSE); END;
/
BEGIN DBMS_MVIEW.REFRESH('"SH"."CAL_MONTH_SALES_MV"',
'C',atomic_refresh => FALSE); END;
/

The script shows what the SQL Access Advisor will do to partition a table if you
choose to accept its partition recommendations:

■ Create a new partitioned table named sales1.

■ Copy the constraints on the table sales to the new empty table sales1.

■ Copy the indexes (in this case, a single index) on the table sales to the new
empty table sales1.

■ Load data into the new table sales1 from the original sales table.

■ Execute the DBMS_STATS.GATHER_TABLE_STATS procedure to collect
statistics on table sales1.

■ Rename the old table sales to sales1 and the new table sales1 to sales.

■ Execute the DBMS_MVIEW.REFRESH procedure to revalidate the
materialized views on the partitioned
sales table.

Using Enterprise Manager
Although I explained how to utilize the SQL
Access Advisor through the execution of
PL/SQL procedures, Oracle recommends that

you use the Oracle Enterprise Manager (Database Control/Grid Control) to manage
the SQL Access Advisor. Here are the steps you must follow to get recommendations
from the SQL Access Advisor.

 1. In the Database Home page, click the Advisor Central link at the bottom of
the page, under Related Links.

 2. In the Advisor central page, click SQL Advisors under the Advisors section.

 3. In the SQL Advisors page, click SQL Access Advisor.

 4. In the Initial Options page, select Recommend new access structures. The
other option will merely verify the use of existing access structures such as
indexes, but doesn’t recommend new access structures. Click Next.

 5. In the Workload Source page, select Current and Recent SQL Activity. This
means that the advisor will select the SQL statements to analyze from the
SQL cache. Click Next.

 6. In the Recommendations Options page, shown in Figure 4-1, select all three
access structures: indexes, materialized views, and the new partitioning
recommendation option. Click Next.

 You can customize the task name and description and the scheduling of the
task on the Schedule page. By default, the SQL Access Advisor runs the job
immediately. Click Next.

 7. The Review page shows the options you selected for the SQL Access Advisor
task. Click Submit after verifying the options.

 8. The Confirmation page appears, indicating that your job was submitted
successfully.

 9. Once the STATUS column shows that the access advisor job is completed,
click View Result after selecting the task first. You can view the potential
for improvement in a graphical form. The Workload I/O Cost chart shows

What objects can the
SQL Access Advisor make partitioning
recommendations for?

SQL Access Advisor Enhancements 249

250 Chapter 4: Automatic SQL Tuning and SQL Plan Management

the new cost (69591) and the old cost (144178). The Query Execution Time
Improvement chart shows that the Query Improvement factor is about 2. You
can view the next page, the Results For Task page, where the advisor presents
a chart of the potential benefits from adopting the various recommendations.
You can also review a table that shows each recommendation and the cost
improvement that you can gain by adopting that recommendation. Figure 4-2
shows the Results For Task page.

 10. Click Schedule Implementation if you want to accept the recommendations.
If you want to modify the recommendations, click SQL to view the actual
SQL statements to implement the recommendations, which can consist
of new indexes, new materialized views, new materialized view logs, or
recommendations to partition existing base tables.

 FIGURE 4-1 The SQL Access Advisor Recommendation Options page

EXERCISE 4-2

Using the Cursor Cache to Get SQL Access Advisor Recommendations
The following exercise shows how to use statements from the SQL Cache to obtain
recommendations from the SQL Access Advisor. Here are the steps:

 1. On the bottom of the Database Home page, click Advisor Central under
Related Links.

 2. Click the SQL Advisors link.

 3. Click the SQL Access Advisor link.

 4. Select Recommend new access structures. Click Continue.

 5. Make sure that the Current and Recent SQL Activity shows up in the box.
Expand Filter Options and select Filer Workload Based on these Options. In
the Users field, select the name of the user who is the owner of the structures.
Click Next.

 6. Select indexes, materialized views, and partitioning, and then click Next.

 FIGURE 4-2 The Results For Task page

SQL Access Advisor Enhancements 251

252 Chapter 4: Automatic SQL Tuning and SQL Plan Management

 7. Enter the task name and, under Scheduling Options, select Standard as the
schedule type.

 8. Click Submit in the Review page.

 9. The Confirmation page appears, showing that your SQL Access Advisor job
was submitted successfully.

 10. Monitor the task to ensure it’s completed and click on the task name on the
SQL Access Advisor main page to view the recommendations.

INSIDE THE EXAM

The exam will review your understanding
of the new Automatic SQL Tuning Advisor.
You must know how to configure an
automatic SQL tuning task and how to
enable and disable the feature. Under what
circumstances will the SQL Tuning Advisor
implement a SQL profile? Review the
accept_sql_profiles task parameter
and how it determines the acceptance of
SQL profiles. You must also be familiar with
the SET_TUNING_TASK _PARAMETER
procedure and the use of various attributes
such as accept_sql_profiles and
max_auto_sql_profiles, for example.

In terms of the SQL Plan Management
feature, you can expect the exam to test your
understanding of how the optimizer maintains
SQL plan baselines. What’s the difference
between a verified and an unverified plan?
When does a plan become an accepted plan?
What is a SQL plan baseline? Understand
what the fixed attribute implies for a plan
in the SQL plan baseline. The exam is likely

to ask you about the SQL plan baseline
attributes such as enabled and accepted.
Can you manually change the status of a plan
to accepted?

You must know how to manage the SQL
Management Base. How does the plan
retention period work? The exam will
probably query your understanding of the
new initialization parameters, optimizer_
capture_sql_plan_baselines
and optimizer_use_sql_plan_
baselines. You must also understand how
to use the DBMS_SPM package to load SQL
plan baselines. How does the database purge
the SMB to make more room for new SQL
plan baselines? What type of objects does the
SMB store besides SQL Plan baselines?

The exam will contain at least one
question about the new capabilities of the
SQL Access Advisor, such as its ability to
make table, materialized view, and index
partitioning recommendations.

INSIDE THE EXAM

CERTIFICATION SUMMARY
In Oracle Database 11g, the database runs a new automated maintenance task named
the Automatic SQL Tuning Advisor during the maintenance window. The advisor
makes recommendations to improve heavy load SQL statements that it picks from the
AWR. It can also automatically implement SQL profiles for those statements. You can
configure automatic SQL tuning by using the SET_TUNING_TASK_PARAMETER
procedure in the DBMS_SQLTUNE package.

SQL Plan Management replaces stored outlines as the way to maintain plan
stability when your system is undergoing changes such as a database upgrade. The
database now maintains SQL plan baselines, which consist of all accepted plans
in the plan history of each repeatable SQL statement. You can capture SQL plans
yourself or let the database automatically capture them by specifying the value true
for the initialization parameter optimizer_capture_sql_plan_baselines.
To enable the use of the SQL plan baselines, you must set the parameter
optimizer_use_sql_plan_baselines to true. In order for a non-accepted
plan to become an accepted plan, the database must evolve the SQL plan baseline.
You can do this by running the SQL Tuning Advisor or by executing the EVOLVE_
SQL_PLAN_BASELINE function. The optimizer always prefers a fixed plan baseline
over all other accepted plans. You use the new package DBMS_SPM to manage the
SQL Management Base, which is the repository for the SQL plan baselines.

In Oracle Database 11g, the SQL Access Advisor can also make partitioning
recommendations for tables, indexes, and materialized views. You can also get
intermediate results from a SQL Access Advisor run.

Certifi cation Summary 253

254 Chapter 4: Automatic SQL Tuning and SQL Plan Management

TWO-MINUTE DRILL

Automatic SQL Tuning Advisor

❑ The Automatic SQL Tuning Advisor runs automatically during the
maintenance window as part of the automated maintenance tasks feature.

❑ Automatic SQL Tuning Advisor chooses the tuning candidates from the AWR.

❑ Automatic SQL Tuning Advisor takes into account statistical analysis, SQL
profiling, access path analysis, and SQL structure analysis.

❑ A SQL profile contains auxiliary information such as customized optimizer
settings, adjustments for missing or stale statistics, and adjustments for errors
in optimizer statistics.

❑ You can’t use the Automatic SQL Tuning Advisor for recursive statements,
ad-hoc statements, parallel queries, and queries using certain DDL statements.

❑ The database orders SQL statements as candidates for tuning, based on the
sum of the CPU time and the I/O time usage.

❑ The Automatic SQL Tuning Advisor can automatically implement only
recommendations that involve the creation of SQL profiles.

❑ The Automatic SQL Tuning Advisor will accept a new SQL profile for
implementation only if the profile offers a threefold improvement in
performance.

❑ Use the SET_TUNING_TASK_PARAMETER procedure to configure
automatic SQL tuning.

❑ You can enable and disable the Automatic SQL Tuning Advisor by using the
DBMS_AUTO_TASK_ADMIN package.

❑ The actual name of the Automatic SQL Tuning Advisor task is SYS__AUTO_
SQL_TUNING.

SQL Plan Management

❑ SQL Performance Management lets you preserve SQL performance across
major system changes such as an upgrade of the database to a new release.

❑ SQL Performance Management is intended as a preventative mechanism to
control SQL plan evolution with little manual effort from the DBA.

❑ A SQL plan baseline is a set of accepted plans in the plan history the
database maintains for each distinct repeatable SQL statement.

✓

Two-Minute Drill 255

❑ Not all plans in the plan history for a statement are accepted plans.

❑ A plan becomes an accepted plan only if the plan doesn’t lead to a performance
regression when compared to other plans in the plan history of a SQL statement.

❑ The DBMS_SPM package supports the SQL Plan Management feature.

❑ In order for the database to automatically capture and maintain SQL plans, set
the parameter optimizer_capture_sql_plan_baselines to true.

❑ The very first SQL plan that’s captured for a repeatable statement is part of
the SQL plan baseline for that statement.

❑ When you load a plan manually, it automatically is regarded as an accepted plan.

❑ You can manually load plans from a SQL Tuning Set or from the SQL cursor
cache.

❑ In order to enable the use of SQL plan baselines, you must set the
optimizer_use_sql_plan_baselines parameter to true.

❑ Evolving a SQL plan baseline entails making a non-accepted plan an accepted
plan and integrating it with the SQL plan baseline for a SQL statement.

❑ You must formally evolve all automatically captured plans.

❑ You can use the EVOLVE_SQL_PLAN_BASELINE procedure or the SQL
Tuning Advisor to evolve SQL plan baselines.

❑ By changing the status of a SQL plan baseline to fixed, you limit the set of
possible plans for SQL statement.

❑ The database can’t evolve a fixed plan baseline, but you can manually do it
by loading a new plan into the SQL plan baseline for a statement.

❑ In order for the optimizer to consider using a specific plan, its status must
have both the enabled and accepted status.

❑ The database stores all SPM-related information in the SQL Management Base.

❑ The space_budget_percent parameter determines the percentage of
space allocated to the SQL Management Base in the SYSAUX tablespace.

❑ The plan_retention_weeks parameter specifies how long the database
retains unused SQL plans in the SQL Management Base.

SQL Access Advisor Enhancements

❑ The SQL Access Advisor in Oracle Database 11g can also recommend the
partitioning of tables, indexes, and materialized views.

❑ You can interrupt a SQL Access Advisor execution to get intermediate results
at “publish points.”

256 Chapter 4: Automatic SQL Tuning and SQL Plan Management

❑ The new ADD_STS_REF and the DELETE_STS_REF procedures in the
DBMS_ADVISOR package enable you to link and unlink a SQL Access
Advisor task and a SQL tuning set, respectively.

❑ The SQL Access Advisor recommends partitioning only those tables with
columns of type DATE and NUMBER.

❑ The default partitioning mode for a table is interval. You can also use range,
hash, range-hash, and range-list partitioning schemes.

❑ Use the SET_TASK_PARAMETERS procedure in the DBMS_ADVISOR
package to set task parameters.

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all correct answers for each question.

Automatic SQL Tuning Advisor

 1. The Automatic SQL Tuning Advisor tunes only one of the following types of SQL statements:
 A. Recursive SQL statements
 B. Parallel queries
 C. Queries involving the select statement
 D. Queries involving the insert or delete statement

 2. The SET_TUNING_TASK procedure in the DBMS_SQLTUNE package enables you to do the
following:

 A. Specify whether the database must automatically accept a SQL profile
 B. Specify the total number of SQL profiles that can be accepted by the database
 C. Specify whether the SQL Tuning Task must be manual or automatic
 D. Specify the format of the report of the test execution

 3. The actual name of the Automatic SQL Tuning Advisor task is
 A. AUTO_SQL_TUNING_TASK
 B. <username>_AUTO_SQL_TUNING_TASK
 C. SQL_AUTO_TUNING_TASK
 D. SYS_AUTO_SQL_TUNING_TASK

 4. If you leave the window_name parameter in the DBMS_AUTO_TASK_ADMIN.ENABLE
procedure as NULL

 A. The task is disabled in all windows.
 B. The task is enabled in all windows.
 C. The task can’t be run automatically by the database.
 D. You’ll receive an error.

SQL Plan Management

 5. The plan history for a SQL statement includes
 A. Only the accepted plans for an ad-hoc statement
 B. Both accepted and non-accepted plans for an ad-hoc statement
 C. Both accepted and non-accepted plans for a repeatable statement
 D. Only the non-accepted plans for a repeatable statement

Self Test 257

258 Chapter 4: Automatic SQL Tuning and SQL Plan Management

 6. If you assign the value yes for the fixed parameter in the LOAD_PLANS_FROM_
CURSOR_CACHE procedure, Oracle will

 A. Treat the plans you load as fixed plans and continue to evolve the SQL plan baseline
 B. Treat the plans you load as fixed plans and stop evolving the SQL plan baseline
 C. Drop that plan from the SQL plan baseline
 D. Prevent you from manually loading further plans for that SQL statement

 7. If the best cost plan the optimizer evolves doesn’t match any of the accepted plans in a SQL
plan baseline, what will the optimizer do?

 A. It will first add the new plan to the plan history and select the accepted plan with the least cost.
 B. It will first add the new plan to the SQL plan baseline and select the accepted plan with

 the least cost.
 C. It won’t add the new plan to the plan history for that SQL statement.
 D. It will use the new best cost plan it just evolved.

 8. What are three ways to make alert warnings about the SMB exceeding its allocated space limit
go away?

 A. Decrease the percentage of space allocated to the SMB in the SYSAUX tablespace.
 B. Increase the percentage of space allocated to the SMB in the SYSAUX tablespace.
 C. Increase the size of the SYSAUX tablespace.
 D. Purge outdated SQL plan baselines.

SQL Access Advisor Enhancements

 9. The SQL Access Advisor will make partitioning recommendations for only those tables with
the following data types:

 A. Date
 B. Integer
 C. Varchar2
 D. Number

 10. What does the SET_TASK_PARAMETER procedure in the DBMS_ADVISOR package
specify when you use the valid_table_list attribute?

 A. It includes all SQL queries that reference valid tables.
 B. It includes only those SQL queries that refer to the tables passed as arguments for the

valid_table_list attribute.
 C. It makes partitioning recommendations only for the tables specified as arguments for the

valid_table_list attribute.

 D. It ensures that only SQL statements in the VALID_TABLE_LIST table are used in making
 recommendations.

 11. Which of the following statements about the SQL Access Advisor are true?
 A. Once you interrupt a task, you can’t restart it.
 B. You can always restart an interrupted task by manually restarting the SQL Access Advisor.
 C. You can sometimes get intermediate recommendations after interrupting a task.
 D. You can always get intermediate recommendations after interrupting a task.

 12. When you adopt the SQL Access Advisor recommendations concerning partitioning a table,
the recommendations script will

 A. Copy the constraints from the old table to the partitioned table
 B. Copy the indexes from the old table to the partitioned table
 C. Load the data from the old table to the partitioned table
 D. Analyze the data in the newly partitioned table

LAB QUESTION
How can you use the SQL Performance Analyzer and the SQL plan baselines features together during
a database upgrade in order to prevent SQL performance regression?

Self Test 259

260 Chapter 4: Automatic SQL Tuning and SQL Plan Management

SELF TEST ANSWERS

Automatic SQL Tuning Advisor

 1. � C is correct. The Automatic SQL Tuning Advisor always tunes SQL select statements.
� A, B, and D are incorrect because the Automatic SQL Tuning Advisor doesn’t tune any
of these types of statements.

 2. � A and B are correct. A is correct because you can use the accept_sql_profiles parameter
in the SET_TUNING_TASK_PARAMETER procedure to specify whether the database can
automatically accept a SQL profile. B is correct because you can specify the max_auto_sql_
profiles parameter in the SET_TUNING_TASK procedure to determine the total number of
profiles that the database can accept.
� C is incorrect because the SET_TUNING_TASK_PARAMETERS procedure helps you to
set the task parameters for an advisor run. It doesn’t specify whether the task must be automatic
or manual. D is incorrect because you use the report_auto_tuning_task parameter to
specify the format of the Automatic SQL Tuning Advisor.

 3. � D is correct. The actual name of the Automatic SQL Tuning Advisor task is SYS_AUTO_
SQL_TUNING_TASK.
� A, B, and C are incorrect because they provide the wrong name for the task.

 4. � B is correct. If you omit the window_name parameter in the DBMS_AUTO_TASK-
ADMIN.ENABLE procedure, the task is enabled in all windows.
� A is incorrect because the task is enabled in all windows, not disabled. C is incorrect
because the task will be run automatically by the advisor in all windows. D is incorrect because
you can leave the window_name parameter out if you want, to let the task run in all windows.

SQL Plan Management

 5. � C is correct. The plan history for a SQL statement includes both accepted and non-
accepted execution plans for a repeatable statement.
� A and D are incorrect because both accepted and non-accepted execution plans become
part of the plan history for a SQL statement. B is incorrect because only exaction plans for
repeatable statements are stored, but not those for ad-hoc statements.

 6. � B is correct. When you specify a plan as fixed when you load it, Oracle will treat the plan
as a fixed plan and stops evolving the SQL plan baseline for that SQL statement.

� A is incorrect because when you specify a plan as fixed, Oracle will stop evolving the SQL
plan baseline for that statement. C is incorrect because the database doesn’t drop a plan from
the SQL plan baseline because you specify it as a fixed plan. Rather, it prefers to use the fixed
plan over all other plans. D is incorrect because you can continue to load new plans, even after
specifying a plan as fixed.

 7. � A is correct. The optimizer will first add the new plan to the plan history and select the
accepted plan with the least cost to execute the statement.
� B is incorrect because the optimizer adds the new plan first to the plan history, not the SQL
plan baseline. Only accepted plans are added to the SQL plan baseline. C is incorrect because
the optimizer adds the new plan to the plan history. D is incorrect because it won’t necessarily
use the new best cost plan it has evolved.

 8. � B, C, and D are correct. By taking any of the steps indicated in these three alternatives,
you could potentially make the space alerts stop.
� A is incorrect because decreasing the space allocation to the SMB actually could make
matters worse regarding the availability of space in the SMB.

SQL Access Advisor Enhancements

 9. � A and D are correct. The SQL Access Advisor will make partitioning recommendations for
only those tables with the DATE and NUMBER data types.
� B and C are incorrect because the advisor doesn’t make any partitioning recommendations
for tables with these two data types.

 10. � C is correct. You can use the valid_table_list attribute to limit the partitioning
recommendations to only those SQL queries that refer to a specified table or tables.
� A is incorrect because the valid_table_list parameter has nothing to do with a
table being valid. B is incorrect because the valid_table_list attribute limits only the
partitioning recommendations. D is incorrect because the tables specified by the valid_
table_list parameter don’t contain any SQL statements.

 11. � A and C are correct. A is correct because once you interrupt a SQL Access Advisor task,
you can’t restart it. C is correct because you can get intermediate advisor recommendations after
interrupting a task, provided the advisor has run long enough to provide recommendations. If
you interrupt too soon, you may not get any intermediate recommendations.
� B is incorrect because you can’t restart an interrupted task. D is incorrect because you are
not guaranteed intermediate results when you interrupt a task.

 12. � A, B, C, and D are correct. The SQL Access Advisor scripts for implementing its
partitioning recommendations include the code for performing all four of the tasks.

Self Test Answers 261

262 Chapter 4: Automatic SQL Tuning and SQL Plan Management

LAB ANSWER
Let’s assume that you are upgrading from the Oracle Database Release 2 to Oracle Database 11g
Release 1. You can seed the SQL Management Base in the upgraded database with known execution
plans that guarantee that there won’t be a performance regression by using the SQL Performance
Analyzer and the SQL plan baselines in the following sequence:

 1. Capture the pre-upgrade SQL plans in an STS.

 2. Upgrade your database on a test server.

 3. Change the optimizer_features_enable parameter to 10.2.

 4. Import the captured SQL workload to the upgraded database.

 5. Run the SQL Performance Analyzer, using the imported STS as the source for the SQL
workload.

5
Automatic Storage
Management
and Partitioning
Enhancements

CERTIFICATION OBJECTIVES

 5.01 Automatic Storage Management New
Features

 5.02 Partitioning Enhancements

✓ Two-Minute Drill

Q&A Self Test

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

264 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Oracle Database 11g introduces several enhancements in the Automatic Storage
Management (ASM) area. The new features in ASM enhance performance while making
it easier to manage the storage system. Oracle has had the table partitioning capability

since Oracle 8. In this release, several new and exciting partitioning schemes have been introduced.
I’ll start with a review of the new features in ASM and then discuss the partitioning innovations.

CERTIFICATION OBJECTIVE 5.01

Automatic Storage Management New Features
Oracle Database 11g contains several important enhancements to Automatic
Storage Management. These changes include the following:

■ Fast mirror resync feature

■ Preferred mirror read feature

■ ASM compatibility–related enhancements

■ The SYSASM privilege for managing ASM

I discuss the main new ASM features in the following sections after a quick
review of the ASM architecture.

ASM Architecture
Before we delve into the ASM enhancements in Oracle Database 11g, let’s quickly
review the main features where Oracle has provided enhancements.

■ An ASM disk group is the fundamental unit of storage management in ASM,
and contains a set of disks. ASM assigns all files from the disk groups and not
directly from the disks. An ASM disk group can contain files from multiple
Oracle databases and, conversely, a single Oracle database can use files from
multiple disk groups.

■ ASM disks are the actual physical storage devices that are assigned to disk
groups. An ASM disk could be a disk from storage array, an entire disk or
partition of a disk, a logical volume, or a network-attached file system (NFS).

■ ASM spreads files evenly across all the disks that are in the disk groups to
ensure I/O load balancing among the disks.

The database divides each ASM disk into an allocation unit (AU), which is the
basic unit of allocation in a disk group. An ASM file consists of one or more file
extents and a file extent consists of one or more allocation units. Each extent resides
on a single disk.

A failure group is a set of ASM disks that share a common failure mechanism, such
as a set of SCSI disks that share a common SCSI Controller. ASM uses separate
failure groups to store redundant copies of data when you specify two-way or three-
way mirroring for a file. You can create failure groups only if you use normal or high
redundancy disk groups.

When you add a new disk or remove disks from a disk group, ASM automatically
redistributes evenly across all disks of a disk group while the database is online. This
feature is known as automatic rebalancing. Thus, when a disk fails, ASM automatically
rebalances data to maintain the full redundancy for all files with extents on the failed
disk. Similarly, when you replace a failed disk with another disk, ASM rebalances
data to include the new disk.

ASM uses striping to spread data evenly across disks in a disk group, thus
balancing load and also lowering I/O latency. ASM uses coarse-grained striping
for load balancing and fine-grained striping for reducing I/O latency. ASM separates
files into stripes, thus spreading the data across all disks in the disk group. The fine-
grained striping size is 128KB and the coarse-grained striping size is equal to the size
of the allocation unit.

ASM Fast Mirror Resync
In Oracle Database 10g, when an ASM disk failure occurs, say, because of a bad
cable or controller, ASM won’t be able to complete the writing of an extent to the
failed disk if it’s in the middle of doing so. This is true, of course, only if you’re using
ASM redundancy. ASM will then take the failed disk offline. Once it re-creates
the failed disk’s extents on the other disks in the disk group using redundant extent
copies, ASM drops the failed disk. ASM doesn’t read from the offline disk any longer
because it assumes that the disk contains only stale data. You’d have to manually add
the failed disk back after the failure is fixed, by migrating all its extents back onto
it. Or, you must add a new disk to the disk group to take the place of the dropped
disk. In either case, the two-step process of writing and rewriting of the failed disk’s
extents takes time and resources. Even when a disk failure is transient, caused by a
failure of cables, controllers, or disk power supply interruptions, you’ll still have to
go through this time-consuming process to take care of a failed disk by fixing the
transient failure, adding the dropped disk back to its disk group, and incurring the
cost of migrating the extents back to the fixed disk after that.

Automatic Storage Management New Features 265

266 Chapter 5: Automatic Storage Management and Partitioning Enhancements

In Oracle Database 11g, the ASM fast mirror
resync feature lowers the overhead involved
in resynchronizing disk groups following a
transient disk failure. Following a temporary
failure, ASM tracks the extents that were
changed during the failure and after the failure
is fixed, resynchronizes only the changed

extents. Thus, the database has to rewrite only a miniscule portion of the contents
of the failed disk. The database fixes only the damaged portions of the affected disk
and doesn’t have to copy the contents of the entire disk when you take a disk offline
and bring it back online after repairing it. Of course, the feature works under the
assumption that the offline disk’s contents haven’t been damaged or modified. When
you enable this feature, the database will merely take the affected disk offline but
won’t drop it.

The ASM fast mirror resync feature works only in cases where there is no
actual disk damage or any modification in the disk’s contents. For the ASM disk
to be taken offline but not dropped following a transient failure, you must have
set the disk_repair_time attribute for the disk group to which the offline
disk belongs. The length of time specified by the disk_repair_time attribute
determines how long ASM will wait for you to complete the repair and still be able
to resynchronize the disk.

Note that the fast mirror resync feature is applicable to only those cases where
you are forced to take a disk offline for issues unrelated to the data on the disk.
The fast mirror resync feature dramatically lowers the time it takes to bring a disk
online after you take it offline and drop it from the disk group to fix the problem.
The reason for this is that, without this feature, once you take a disk offline and fix
the problem, you must wipe off the disk first with the dd command before adding it
back to the disk group. The dd command is a popular UNIX/Linux command used
to make a copy of a file system. (dd is especially useful for copying regions of raw
device files and reading fixed amounts of data from special files such as /dev/zero.)

In Oracle Database 10g, you have to follow these steps to offline, drop, and add a
disk back to a disk group.

 1. First take the disk offline and then specify the drop after clause. By
setting the disk repair time to 0, the after disk group command
instructs the database not to wait to drop the database.

SQL> alter disk group dgroup1 disk data_00001 drop after 0 h;

 When you drop the offline disk as shown here, ASM rebalances the list mirrored
extents that were on the disk across the remaining disks in the disk group.

Know what the
disk_repair_time attribute can be
used for, as well as its default value.

 2. Wipe the dropped disk before adding it back to the disk group:

$ dd if=/dev/zero of=asm_disk1 bs=1024k count=100

 You must log in as root to perform the preceding operation.

 3. Add the repaired disk back to the disk group using the alter diskgroup
command.

SQL> alter diskgroup dgroup1 add disk '/dev/raw/raw1'
 size 100 M;

Once you add the disk back, ASM will perform a rebalance operation so the
new disk has approximately the same amount of data as the rest of the disks in
the disk group.

In Oracle Database 11g, you don’t have to wipe off the dropped disk. When you’re
ready to add it back to the disk group, just add the disk without wiping off the contents.
ASM will add the disk back immediately without the long rebalance operation it
used to perform without the fast mirror resync feature.

Setting Up ASM Fast Mirror Resync
You enable the fast mirror resync capability by specifying the disk_repair_time
attribute for a disk group, after you create the disk group. That is, you must use the
alter diskgroup command to enable fast mirror resync. The disk_repair_
time attribute accepts time as a value, which it then uses to determine the length
of time after a disk failure for which ASM can ensure it will resynchronize the disk.
That is, the setting of this parameter determines the duration for which ASM can
tolerate a disk outage and still be able to resynchronize the contents of the disk after
you repair the disk failure. Here’s an example that shows how to specify ASM fast
mirror resync for a disk group:

SQL> alter diskgroup dgroupA
 set attribute 'disk_repair_time'='2h';

The value of the disk_repair_time attribute in this example is set to 6h,
which means two hours. Let’s say the disk group dgroupA has two disks, DISK1
and DISK2. If you have to take DISK1 offline because a few blocks went bad,
ASM will wait for two hours before dropping the disk. You can fix DISK1 and
bring it back online within two hours. If you do that, ASM will copy the extents
on the bad blocks from DISK2, which mirrors the data in DISK1. This process of
resynchronizing the damaged extents by copying the few blocks that were damaged
is much shorter than copying the entire disk’s contents.

Automatic Storage Management New Features 267

268 Chapter 5: Automatic Storage Management and Partitioning Enhancements

The default value for the disk_repair_time attribute is 3.6 hours. You can
also enable fast mirror resync by setting more complex time duration, as shown here:

SQL> alter diskgroup dgroupA
 set attribute 'disk_repair_time'="2D6H30M";

The previous example shows how to set the duration to two days, six hours, and
30 minutes.

Once you repair a disk, you bring it online using the following command:

SQL> alter diskgroup dgroupA online;

Once you issue the diskgroup <diskgroup_name> online command,
the database starts copying all extents on the redundant copies of the disk that
are marked stale. Initially, the disk is brought online only for write operations
while the database synchronizes the stale data with the current data. Once the
resynchronization process is complete, the database brings the disk online for read
operations as well.

You can always bring a disk offline for maintenance reasons. Once you finish
the disk maintenance, you can use the alter diskgroup <diskgroup_
name> online statement to bring the disk back online.

You can override the time defined at the disk group level by specifying the drop
after clause in an alter diskgroup <diskgroup_name> offline . . .
command, as shown here:

SQL> alter diskgroup dgroupA
 offline disks in failuregroup controller1
 drop after 4h;

The previous command uses the drop after clause to specify that the
database take the disk group dgroupA offline only after waiting for four hours. You
can similarly require the database to wait for a specific period before bringing a disk
online by specifying the wait option, as shown in this example:

SQL> alter diskgroup dgroupA
 online disks in failuregroup controller1 power 2 wait;

This command requires the database to wait for two hours before bringing the
disk group dgroupA online again.

If you can’t repair an offline disk group, you can use the force option to drop
the disk group, as shown here:

SQL> alter diskgroup dgroupA
 drop disks in failuregroup controller1 force;

ASM reconstructs the data that was stored on the dropped disk from the
redundant copies of the data it stores on other disks in the same disk group.

Using Enterprise Manager
You can also use Enterprise Manager to perform an ASM fast mirror resync operation.
Once you offline the selected disk or disk, the ASM instance waits for the time period
you specify with the disk_repair_time attribute and then drops the disk (or
disks). You can repair the disk and place it online during the interval specified by the
disk_repair_time attribute. Once you successfully place a disk online, ASM
cancels the pending disk drop operation and starts the data resynchronization process.

When you change the value of the disk_repair_time attribute, it doesn’t
affect the disks you’ve previously taken offline.

Monitoring
You can monitor the fast mirror resync process using the V$ASM_DISK and the
V$ASM_DISK_IOSTAT views. The V$ASM_OPERATION view also shows a row
corresponding to each disk resync operation, with the OPERATION column set to
the value of sync.

ASM Preferred Mirror Read
Mirroring is an ASM feature that protects the integrity of data by storing copies of
data on multiple disks. ASM offers you different levels of mirroring, ranging from
less stringent to more stringent mirroring strategies. You can specify different disk

Know the procedures you
must follow in order to repair a disk when

using the ASM fast mirror resync feature.

Automatic Storage Management New Features 269

270 Chapter 5: Automatic Storage Management and Partitioning Enhancements

group types to assign each disk group to a different level of mirroring strategy. You
can specify an ASM disk group based on the following three redundancy levels:

■ For 2-way mirroring, choose a normal type.

■ For 3-way mirroring, choose a high disk group type.

■ If you don’t want to use ASM mirroring and prefer to configure hardware
RAID for redundancy, choose external redundancy.

The disk group type you specify then determines the mirroring level for a file in
a disk group. The redundancy level determines how many disk failures the database
can tolerate before losing data or having to drop a disk. ASM uses a failure group to
place the mirrored copies of a disk, storing different copies of the data in a different
failure group. For a normal redundancy file, when ASM allocates a new extent,
it allocates a primary copy and a secondary copy, storing the secondary copy in a
different failure group than the primary group. A normal redundancy disk group
requires a minimum of two disk groups for 2-way mirroring. A high redundancy
disk group, because it requires 3-way mirroring, requires at least three failure groups.
Because a disk group with external redundancy doesn’t use ASM mirroring, it
doesn’t require any failure groups at all.

In Oracle Database 10g, ASM always reads the primary copy of a mirrored extent
whenever you configured an ASM failure group for normal or high redundancy
disk groups. That is, ASM only read from the primary failure group and not the
secondary failure group, unless the primary failure group wasn’t available. This was
true even in cases where it is more efficient to read from a secondary failure group
extent that’s closer to the node. In Oracle Database 11g, the database can read from
a list of preferred group names that you provide. That is, you can configure a node
to read from a specific failgroup instead of automatically reading from the primary
failgroup. Thus, if reading from a local copy of an extent is more efficient, the
database will do so. Once you configure a preferred mirror read, every node can read
from its local disks. This is called the ASM preferred mirror read feature. In order for
the ASM instance to read from specific fail groups, you create a preferred read group
for the disk groups. The preferred mirror read feature proves very efficient when it
comes to reads that involve stretch clusters, which are clusters in which the nodes
are spread out far in terms of distance.

Setting Up ASM Preferred Mirror Read
You can configure the preferred mirror read feature by using the new initialization
parameter, asm_preferred_read_failure_groups. Using this parameter,
you can specify the list of preferred mirrored read failure group names. The database

will, from then on, prefer to read from disks in
the failure groups you specify in the list. The
ultimate effect of setting up the ASM preferred
read feature is that every node will always
read from its local extents, thus improving
performance and decreasing network activity.

Here’s an example that shows how to set
up ASM preferred mirror read by using the

initialization parameter asm_preferred_read_failure_groups:

asm_preferred_read_failure_groups=data.locationA,data.locationB

The asm_preferred_read_failure_groups initialization parameter
contains a string that you can use to list multiple failure groups, with each name
separated by a comma (asm_preferred_read_failure_groups =
<diskgroup_name>.<failure_group_name>,...). You must prefix
each failure group with its disk group name and a dot or period (.) character. ASM
treats the disks in the failure groups that you specify as the preferred read disks.
You can specify only disks that are local to the corresponding instance. The asm_
preferred_read_failure_groups parameter is dynamic so you can change
it using the alter system statement, as shown here:

SQL> alter system set asm_preferred_read_failure_groups =
 'DGRP1.DGRP1_0000','DGRP2.DGRP2_0000'

The alter system statement shown here makes the database prefer the
failure groups DGRP1_0000 and DGRP2_0000 in the disk groups DGRP1 and
DGRP2, respectively.

You can see which disks are in a preferred read failure group, by issuing the
following command:

SQL> select preferred_read from v$asm_disk;

If a disk belongs to a disk group that is a preferred read failure group, the value of
the PREFERRED_READ column will be Y.

Using Enterprise Manager
You can use Enterprise Manager to specify a set of disks as preferred disks for each
ASM instance. The ASM configuration page in Oracle Database 11g contains the new
Preferred Read Failures Group field. The values shown in this field show the failure
groups you specified as values for the asm_preferred_read_failure_groups
initialization parameter. The asm_preferred_read_failure_groups

Review the setting up of
the asm_preferred_read_failure_
groups initialization parameter. How do
you specify the failure groups?

Automatic Storage Management New Features 271

272 Chapter 5: Automatic Storage Management and Partitioning Enhancements

initialization parameter takes effect when ASM mounts a disk group or when you
create a disk group.

If you haven’t already migrated your instances to ASM, you can do so easily
using the Enterprise Manager. Figure 5-1 shows the Migrate Database to ASM:
ASM Instance page in Database Control. You can configure and start up your ASM
instance from this page.

Configuration Best Practices
Following are some best practices to configure the ASM preferred mirror read feature
to achieve the best performance and availability in a two-site stretch cluster.

■ If you use normal redundancy, you must use only two failure groups and all
local disks must belong to the same failure group.

■ Each instance can specify only one failure group as its preferred read failure
group. If you specify more than one failure group, ASM may not be able to
mirror a virtual extent across both groups in the two sites.

■ If you create a high redundancy failure group, you can have a maximum of
two failure groups on each site with its local disks. You can specify both local
failure groups as preferred read failure groups for the ASM instance.

In a three-site stretch cluster, you must use a high redundancy disk group with
three failure groups so that ASM can ensure that each virtual extent has a local
mirror copy. In addition, this protects the database in the event of a disaster in any
one of the three sites.

ASM Scalability and Performance Enhancements
An AU is the basic unit of allocation within an ASM disk group. In Oracle Database
10g, each AU had a single extent, which created problems with memory usage. If
you have a large database with numerous default-sized allocation units, the database
would need a very large amount of memory in the shared pool. The default AU size
is only 1MB. File extents contain a minimum of one AU and an ASM file consists of
at least one extent. You can set variable size extents with extents of size 1, 4, 16, 32,
and 64 megabytes. The ability to set variable-size ASM extents means that ASM can
now support larger file size extents while using less memory. ASM sets thresholds for
each file and, as a file grows, ASM will increase the extent size based on the file size
thresholds. Thus, a file can start with 1MB extents, with ASM increasing the extent

size to 4, 16, 32, or 64 megabytes as the file size grows. Note that the size of an extent
can vary among files as well as within a file. As a result of the variable extents feature,
the database needs fewer extent pointers to describe an ASM file and less memory to
manage the extent maps in the shared pool, thus making it easier to implement large
ASM configurations.

Variable size extents raise the maximum possible ASM file size and also reduce
shared pool memory requirements. You can periodically rebalance a disk group to
avoid external fragmentation, which may occur because of allocating and freeing
up of small data extents. However, the database will also automatically perform
defragmentation when it has a problem finding the right size extent during extent
allocation.

ASM is also more scalable in Oracle Database 11g as compared to Oracle
Database 10g. The maximum ASM file size for external redundancy is now 140
petabytes, instead of 35 terabytes in Oracle Database 11g. Variable extent sizes
enable you to configure ASM installations that are several hundred terabytes or
even several petabytes in size.

 FIGURE 5-1 The Migrate Database to ASM: ASM Instance page in Enterprise Manager

Automatic Storage Management New Features 273

274 Chapter 5: Automatic Storage Management and Partitioning Enhancements

You can set the au_size attribute easily in Oracle Database 11g, by using the
new attribute clause in the create diskgroup command, as shown here:

create diskgroup dg6
external redundancy
disk
'/dev/raw/raw1'
attribute 'au_size' = '8M'

You can also specify the au_size in bytes instead of megabytes. You can set an
au_size of 1, 2, 4, 8, 16, 32, or 64 megabytes.

You can find out the allocation unit sizes for all disk groups by executing the
following query on the V$ASM_DISKGROUP view:

SQL> select name, allocation_unit_size
 from v$asm_diskgroup;
NAME ALLOCATION_UNIT_SIZE
------- --------------------
DGROUP1 1048576
DGROUP3 1048576
DGGROUP4 1048576
DGGROUP2 1048576

The variable extent sizes feature means that you can tailor the allocation unit
sizes to meet the needs of your system.

New SYSASM Privilege
Oracle Database 11g introduces a new system privilege called SYSASM to enable
you to separate the SYSDBA database administration privilege from the ASM
storage administration privilege. To improve security, Oracle recommends that you
use the new privilege called SYSASM when performing ASM-related administrative
tasks. The SYSASM privilege is quite similar to the SYSDBA and SYSOPER
privileges, which are system privileges given to users that perform administrative
tasks in the database.

Oracle recommends that you use the SYSASM privilege rather than the
SYSDBA privilege to administer an ASM instance.

Although the default installation group for the users with the SYASM privilege
is the dba group, Oracle intends to require the creation of a separate OS group for
ASM administrators in future releases. In this release, Oracle recommends that

you create a new operating system group called the OSASM group, and grant the
SYSASM privilege only to members of this group. ASM users will then be limited

to ASM instances and won’t be able to use the
SYSDBA privilege for the main database. The
key behind the creation of the new SYSASM
privilege is to provide distinct operating system
privileges for database administrators, storage
administrators, and database operators.

In Oracle Database 11g, the default operating system group for SYSASM is the
same group as that for the SYSDBA users—the dba group. If a user is a member
of the dba group, the user can connect to the ASM instance using the following
command:

SQL> connect / as sysasm

You can execute the grant SQL statement to grant the SYSASM privilege to a
user, as shown here:

SQL> grant sysasm to salapati;

The V$PWFILE_USERS view includes a new column called SYSASM, which
shows whether a user can connect with the SYSASM privilege or not. You can
revoke the SYSASM privilege from a user by using the revoke sysasm SQL
statement.

You can still log into an ASM instance as a user with the SYSDBA privilege, but
the database will issue a warning that’s recorded in the alert log for the database.

ASM Compatibility
ASM in Oracle Database 11g can support databases from both the 11g release as well
as the 10g release. The ASM version must be the higher version or at least the same
as the RDBMS version for ASM to support that database.

How do you grant the
new SYSASM privilege to a user?

The compatible.asm
and compatible.rdbms attributes
enable environments with disk groups from
Oracle Database 10g Release 1 (10.1),
Oracle Database 10g Release 2 (10.2), and

Oracle Database 11g Release 1 (11.1) to
work together. Both attributes are set to
10.1 by default, and you must advance the
two attributes to take advantage of the
enhancements offered by the new releases.

Automatic Storage Management New Features 275

276 Chapter 5: Automatic Storage Management and Partitioning Enhancements

ASM’s disk group compatibility feature lets an Oracle Database 10g client
use disk groups created under Oracle Database 11g. You can advance the Oracle
database and the ASM disk group compatibility settings across software versions.
There are two attributes that determine compatibility settings for each disk
group—compatible.asm and compatible.rdbms. The compatible.
asm attribute specifies the minimum software version required to use a disk
group for ASM. The compatible.rdbms attribute enables you to specify the
minimum software version required to use an ASM disk group for a database. The
compatible.asm attribute determines the ASM compatibility and controls the
ASM metadata on disk structures. The compatible.rdbms setting determines
the RDBMS compatibility and controls the minimum client level. I explain the two
compatibility-related attributes further here:

■ compatible.rdbms indicates the minimum Oracle Database version for
the RDBMS instance. This parameter controls the minimum client level
and indicates the minimum compatible version of the RDBMS instance
that would let the instance mount the ASM disk group. For example, if the
RDBMS compatibility is set to 10.1, the Oracle Database client version must
be at least 10.1. An ASM instance can support different RDBMS clients
running at different compatibility settings. The compatible.rdbms
setting specifies the minimum compatible RDBMS version for the ASM
instance to mount the disk groups. Each instance supported by ASM must
have a database compatible version setting that’s at least equal to or greater
than the RDBMS compatibility of all disk groups used by that instance. The
database compatible initialization parameter setting for each of the instances
must be at least equal to the compatible.rdbms setting. Thus, the
compatible parameter setting for each instance and the compatible.
rdbms setting together determine if an instance can mount a disk group.

■ The compatible.asm setting controls the format of data structures for
ASM metadata on disks that are part of the ASM disk groups. For example, if
you set the compatible.asm attribute to 11.1, the ASM software version
must be at least 11.1. The ASM compatibility level must be at least equal
to the RDBMS compatibility for that disk group. Remember that the ASM
compatibility is concerned with just the format of the ASM metadata while
the format of the actual file contents is determined by the compatibility
of the database instance. Let’s say the compatible.asm setting is 11.0
and the compatible.rdbms setting is 10.1. This means that ASM can
manage the disk group only if the ASM software version is 11.0 or higher.

At the same time, a database client needs to have a software version at least
at 10.1 to use that disk group.

The default for both the compatible.asm and compatible.rdbms
attributes is 10.1. As with the database compatibility feature where you use the
initialization parameter compatible in the spfile to set the compatibility level
of the database, higher disk group RDBMS and ASM compatibility settings enable
you to take advantage of the new ASM-related features in Oracle Database 11g.
Once you advance the compatible.rdbms attribute, you can’t revert to the old
setting. If you want to go back to the previous value, you must create a new disk
group with the previous compatibility setting and restore all the database files that
were part of the disk group.

If you’ve made backups with the md_backup command before updating the
disk group compatibility settings, the backup is useless once you update the
disk group. However, you can use an older backup to revert to the previous
compatibility setting.

Specifying the Compatibility Settings
You can specify both the compatible.rdbms and the compatible.asm
attributes in a create diskgroup SQL statement. The following example
shows how to create a normal redundancy disk group with the ASM compatibility
set to 11.1:

SQL> create diskgroup dgroup1 disk '/dev/raw*'
 attribute 'compatible.asm' = '11.1';

The compatible.rdbms setting would be set to the default value of 10.1 in
this case.

The following example shows how to create a normal redundancy disk group and
set both the ASM and the RDBMS compatibility to 11.1:

SQL> create diskgroup dgroup1 disk '/dev/raw*'
 attribute 'compatible.asm' = '11.1';
 attribute 'rdbms.asm' = '11.1';

You can also use the alter diskgroup statement to change the compatible
attribute settings for a disk group. When you are advancing the disk compatibility
you must first advance the compatible.asm attribute before advancing
the compatible.rdbms attribute. In the following example, the alter
diskgroup statement advances the compatible.asm setting to 11.1:

SQL> alter diskgroup dgrp2 set attribute
 'compatible.asm' = '11.1';

Automatic Storage Management New Features 277

278 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Once you execute the previous alter diskgroup statement, you can then
advance the RDMBS compatibility of the disk group to 11.1 with the following
statement:

SQL> alter diskgroup dgrp2 set attribute
 'compatible.rdbms' = '11.1';

Note that the fact that you set the
compatibility at the disk group level rather
than at the ASM instance level means that
the same ASM instance can support multiple
database versions.

You can view the current compatibility
setting by querying the V$ASM_ATTRIBUTE

or the V$ASM_DISKGROUP views. Here’s an example:

SQL> select compatibility, database_compatibility
 2 from v$asm_diskgroup
 3 where name = 'DGRP1';

COMPATIBILITY DATABASE_COMPATIBILITY
----------------- ----------------------
10.1.0.0.0 10.1.0.0.0

The column COMPATIBILITY shows the ASM compatibility, which is set to
10.1.0.0.0. This means that the disk group DGRP1 supports only the 10.1 ASM
structures. The column DATABASE_COMPATIBILITY shows the RDBMS
compatibility setting, which is also 10.1.0.0.0. This means that databases from the 10.1
release and higher can use the disk group DGRP1.

Compatibility Considerations
Here are some things to note regarding the compatibility settings:

■ You can’t change the compatibility settings during a rolling upgrade.

■ You can only advance compatibility settings. That is, you can’t reverse a
compatibility setting that you have advanced.

■ Various new disk group features are enabled only if you use a valid combination
of the compatible.asm and compatible.rdbms settings.

Know the relationship
between ASM compatibility and RDBMS
compatibility, including their differences.

Changing ASM Disk Group Attributes
You can use the new attribute clause—either when creating a disk group or
when altering a disk group—to specify or change several types of attributes for
that disk group. The following sections offer a brief explanation of the new ASM
attributes you can control with the attribute clause.

Allocation Unit Size
As you learned earlier in this chapter, in Oracle Database 11g, ASM lets you specify
multiple allocation unit (AU) sizes when you create a disk group. The allocation
units can be any of the following sizes: 1, 2, 4, 8, 16, 32, or 64 megabytes.

RDBMS Compatibility
Use the compatible.rdbms parameter to specify the RDBMS compatibility
level, as I explained earlier in this chapter.

ASM Compatibility
Use the compatible.asm parameter to specify the ASM compatibility level, as I
explained earlier in this chapter.

Disk Repair Time
The default value for the disk_repair_time attribute, which controls the length
of time the database waits before dropping an offlined disk, is 3.6 hours. You can issue
the alter diskgroup . . . disk offline statement to specify a different value
for the disk_repair_time attribute, in units of minutes, hours, or days.

Template Redundancy
You can use the template.tname.redundancy attribute to set the redundancy
of a template. You can choose among the values unprotect, mirror, and high.

Template Striping
You can use the template.tname.striping attribute to specify the striping
attribute of a template. The possible values for this attribute are coarse and fine.

Automatic Storage Management New Features 279

280 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Here’s an example showing how to use the attribute clause in a create
diskgroup statement to set a value for the compatible.asm attribute.

SQL> create diskgroup data normal redundancy
 disk '/dev/raw/raw1', '/dev/raw/raw2'
 attribute 'compatible.asm'='11.1';

As you learned earlier in this chapter, the default ASM and database
compatibility for a pre-11g ASM instance is 10.1. For an 11g ASM instance, the
default ASM compatibility is 11.1 and the default database compatibility is 10.1.

New Manageability Options for Commands
Oracle Database 11g enhances several management options for ASM, including
the check command, mounting and dropping disk groups, and the ASMCMD
command-line utility. The following sections describe these enhancements.

Changes in the check Command
The check command lets you verify if the ASM disk group metadata is consistent.
If there are any inconsistencies, the command shows you a summary of the errors
and records the details in the alert log. In Oracle Database 10g, you could specify the
following values with the check command:

■ all

■ disk

■ disks in failgroup

■ file

You must understand the
new options in the check command. Which

new operations does the check command
perform now?

In Oracle Database 11g, the check command syntax is much simpler and checks
all metadata directories by default. The check command performs the following
checks in Oracle Database 11g:

■ The file and disk options will perform the same checks as the all
option in the previous release.

■ Checks disk consistency, acting as an equivalent command to the check
disk and check disks in failgroup clauses in the Oracle Database
10g release.

■ Cross checks all file extent maps and allocation tables, which is equivalent to
what the check file command did in Oracle Database 10g.

■ Checks to ensure that the alias metadata directory and the file directory are
correctly linked.

■ Checks that the alias directory tree is correctly linked.

■ Checks to ensure that the ASM metadata directories don’t contain any
allocated blocks that are unreachable.

You can specify the repair/norepair clause to tell ASM whether you
want it to attempt to repair any errors found during the disk group checks. The
default value is repair, meaning ASM will attempt to automatically fix any
inconsistencies it finds during its disk group checks.

The New restricted Mount Mode
ASM automatically mounts the disk groups that you specify in the asm_diskgroups
initialization parameter so they are available to the database instances. Similarly,
when you shut down the ASM instance, the disk groups are automatically dismounted.

In addition to the automatic mounting and dismounting described here,
you can also manually mount or dismount a disk group any time. You use the
alter diskgroup . . . mount command to mount a disk group and the
alter diskgroup . . . dismount statement to dismount a disk group.

Oracle Database 11g introduces a new mount mode for disk groups, called the
restrict mode. Whenever you add a disk to a disk group, ASM immediately starts a
rebalance operation, which requires an elaborate system of locks to ensure that the
correct blocks are accessed and changed. Mounting a disk group in the restricted
mode improves the performance of a rebalance operation because the ASM instance
doesn’t have to message the database client for locking and unlocking extent maps,
thus reducing the locking overhead during rebalancing of disks. Once you finish all
maintenance operations in the restrict mode, you must dismount the disk group and
mount it again in the normal mode so database clients can use the disk group.

Here’s how you can mount a disk group in the restrict mode:

 1. Dismount the mode before mounting it again in the restrict mode.

SQL> alter diskgroup test dismount;

Automatic Storage Management New Features 281

282 Chapter 5: Automatic Storage Management and Partitioning Enhancements

 2. Mount the disk group in the restricted mode with the following statement:

SQL> alter diskgroup test mount restrict;

 The ASM clients won’t be able to access the disk group test now.

 3. Perform your maintenance tasks such as adding and removing disks.

 4. Dismount the disk group once you finished your maintenance tasks, as
shown here:

SQL> alter diskgroup test dismount;

 5. Mount the disk group in the normal unrestricted mode so users can access it
once again:

SQL> alter diskgroup test mount;

Note the following when you mount a disk group in the mount mode:

■ You can mount a disk group only on a single instance in the mount mode.

■ Database clients can’t have access to the disk group.

■ A rebalancing operation won’t have any locking overhead when you mount
a disk group in the restricted mode.

The previous example showed how to manually mount a single disk group in
the restricted mode. Mounting a disk group in the restricted mode tells ASM that
it doesn’t need to use extensive locking that slows down the rebalance operation
because there are no other users in the system that are accessing the disks. If you
want to perform maintenance operations on several or all of the disk groups, you can
simply use the startup restrict command when starting the ASM instance.
This will mount all the disk groups that you defined in the asm_diskgroups
initialization parameter in the restricted mode.

The FORCE option in the DROP DISKGROUP Command
In Oracle Database 10g, Oracle mounts a disk group even when there are potentially
missing or damaged failure groups. That is, a command to mount an incomplete
group will succeed as long as there are enough failure groups to mount the disk group.
If ASM finds at least one complete set of extents in the disk group, it will mount the
disk group. The problem with this approach is that ASM is liable to drop a missing
ASM disk, which means you have to add them back after repairing them and
perform an expensive rebalancing operation.

In Oracle Database 11g, ASM won’t mount an incomplete disk group
automatically. Rather, you must specify the force option when mounting a
disk group, for the operation to succeed. This means that if there are any errors,

in say, the asm_diskstring parameter or if there are any connectivity issues,
you can correct them before mounting the disk group.

By default, the mount diskgroup operation uses a noforce option. Under
this option, the database will mount a disk group only if all the disks belonging to
that disk group are available. Use the force option when you know beforehand
that some of the disks are unavailable. ASM will then mount the disk group, even
when some disks are unavailable, as long as it finds enough disks to form a quorum.
When you mount a disk group with the force option, if one or more disks aren’t
available at mounting time, the disks can be offlined. You must restore those devices
before the duration set by the disk_repair_time attribute expires to avoid a
costly rebalancing operation to restore redundancy for all files in the disk group.

drop disk group force Command
In Oracle Database 10g, you’d sometimes run into a problem when dealing with a
badly damaged disk or lost disk. Because of the problem with the damaged or lost
disk, you may want to drop the entire disk group or rearrange the disks in the disk
group in other disk groups. If a disk is missing, you can’t mount the disk group,
however. The only alternative you have is to use the dd command to wipe the
disk headers off, as shown here:

 $ dd if=/dev/zero of=asm_disk1 bs=1024k count=100

The example shown here would use the dd command to wipe off the disk asm_disk1.
In Oracle Database 11g, it’s much easier to drop disk groups that you can’t mount.

You can use the new drop disk group force command to drop disk groups
that can’t be mounted by an ASM instance, as shown here:

SQL> drop diskgroup dgroup1 force including contents;

Note that you must specify the including contents clause when executing
the drop diskgroup command with the force option. The command will fail
if the disk group you’re dropping is being used by the ASM instance anywhere in
the subsystem. If the disk group is in the same cluster or on the same node and
is in use, the command fails. However, if the disk group is on another cluster,
the command fails if ASM verifies that the disk group is in use. Once the drop
diskgroup . . . force command succeeds, it results in the marking of the
headers of the disks in the disk group that wasn’t mounted as FORMER.

Enhancements in ASMCMD
The ASMCMD utility is a command-line tool that helps you view and manage
files and directories within an ASM disk group. You can list the contents of disk

Automatic Storage Management New Features 283

284 Chapter 5: Automatic Storage Management and Partitioning Enhancements

groups, perform a search, and create and remove directories with the help of the
ASMCMD utility. In Oracle Database 11g, there are new options you can use with
the ASMCMD utility to help you perform ASM metadata backup and recovery
operations. In Oracle Database 10g, you could use RMAN to restore lost files when
an ASM disk group was lost, but this required you to re-create the ASM disk group
as well as any user directories or templates. In Oracle Database 11g, the new md_
backup and md_restore options let you re-create an ASM disk group with an
identical template and alias directory structure.

The new ASM metadata backup and restore (AMBR) functionality works in the
backup and restore modes. In the backup mode, AMBR gathers information about disk
groups and failure group configuration, templates, and alias directory structures, and
stores this metadata in a text file. In the restore mode, AMBR reconstructs the disk
group from the information it saves to the text file. In addition to the md_backup
and md_restore options, ASMCMD also has the new cp, lsdsk, and remap
commands. You look at each of these new options in detail in the following sections.

cp The cp command helps copy one or more files to another destination.
For example, you can use this command to copy files between ASM disk groups
on a local instance and a remote instance. The destination is of the form
target/connect_identifier, where connect_identifier can be a HOSTNAME,
HOSTNAME.SID, or HOSTNAME.[PORT.]SID (where PORT is an optional
attribute). You can use the cp command to copy an ASM file to the operating
system. With the cp command, you can:

■ Copy a file locally:

cp +DATA/ORCL/DATAFILE/TBSFV.256.123456789 +DATA/ORCL/tbsjfv.bak

■ Copy an ASM file to the operating system:

cp +DATA/ORCL/DATAFILE/TBSFV.256.123456789
/home/oracle/tbsjfv.dbf

■ Copy an operating system file to an ASM directory:

cp /home/oracle/tbsjfv.dbf +data/jfv

■ Copy an ASM file from a local ASM instance to a remote ASM instance:

cp +DATA/orcl/datafile/tbsjfv.256.123456789
\sys@mydb . +ASM2 : +D2/jfv/tbsjfv.dbf

lsdsk The lsdsk command lists ASM-visible disks. You can restrict the output
to only those disks that match a pattern, which can include wildcard characters

and slashes. You can run this command in either the connected mode or the non-
connected mode. In the connected mode, the command retrieves disk information
from the V$ and the GV$ tables. In the non-connected mode, the command scans
disk headers to retrieve the disk information. Unless you specify the -i flag, the
lsdsk command runs in the connected mode when you are connected to an ASM
instance.

Here is an example of the lsdsk command.

ASMCMD> lsdsk
/dev/raw/raw1
/dev/raw/raw3
...

You can also specify the following flags with the lsdsk command:

■ The -k flag provides a detailed set of information about disks, including their
total size and free sizes, failgroups, and their paths.

■ The -s flag shows I/O statistics relating to the disks.

■ The -p flag provides the status of the disks.

■ The -t flag provides repair related information.

The -d flag along with another flag such as -t, limits the output to a specific
disk group, as shown here:

ASMCMD> lsdsk -t -d dgrp1

Use the help lsdsk command to get information about all the options of
the lsdsk command.

You can also attach the -l flag to any other flag to make ASM retrieve the
information directly from the file headers instead of the V$ views. For example:

ASMCMD> lsdsk -lk

The preceding command gets detailed disk information from the disk headers. If
the ASM instance isn’t available for some reason, you can still get the information
you need by letting ASM extract the information from the file headers.

You can get information for a specific disk group by using the -d flag with any of
the other flags, as shown here:

ASMCMD> lsdsk -t -d dgrp1

The previous lsdsk command gets detailed information about the disks in disk
group dgrp1.

Automatic Storage Management New Features 285

286 Chapter 5: Automatic Storage Management and Partitioning Enhancements

remap The remap command lets you remap a range of unreadable bad disk
sectors. It can’t, however, remap blocks with incorrect content, whether they are
readable or not. Here’s an example showing how to use the remap command:

 ASMCMD> remap DATA DATA_0001 5000-7500

md_backup As you are aware, an ASM instance doesn’t store data. It merely
maintains the storage metadata such as the names of the disk groups, directories, and
so on and stores this metadata in the disk headers. This means that if there is a disk
crash and you lose the disk headers, you’re in trouble. You can use RMAN to restore
a backup for the database itself, but you’ll have to first re-create the ASM disk
groups and directories. If you haven’t kept careful records, you’re in trouble again.
Even if you have the records, you must still take the time to re-create the necessary
ASM metadata.

In Oracle Database 11g, the ASMCMD utility is extended to provide ASM metadata
backup and restore functionality through the md_backup and md_restore
commands. This functionality is known as the ASM metadata backup and restore
(AMBR). The goal is to enable you to easily re-create an ASM disk group with
an identical template and alias directory structure, using the backup of the ASM
metadata. This eliminates the need for manually re-creating the disk groups and
the necessary directories or templates following the loss of an ASM disk group.

The new md_backup option in Oracle Database 11g lets you perform an ASM
metadata backup for a disk group. The command will back up into a backup text file,
disk group metadata including fail groups, disks, attributes, aliases, and templates.
Here’s the syntax of the md_backup command:

md_backup [-b <backup_file>]
 [-g '<diskgroup_name>,<diskgroup_name>,...']

■ The -b option lets you specify the backup file to store the information. By
default, the filename is ambr_backup_intermediate_file.

■ The -g option lets you specify the disk groups to back up. The command
backs up all disk groups by default.

Here’s an example showing how to use the md_backup command to back up a
single disk group named admdsk1.

ASMCMD> md_backup -b /tmp/asmbkp1 -g admdsk1

The md_backup command shown here uses the -g option to create a backup of the
disk group admdsk1 and saves it in the /tmp/dgbackup07022 file. The -b option specifies
that the backup information containing the ASM metadata be recorded in the file
named asmblp1 instead of in the default file named ambr_backup_intermediate_file.

md_restore The md_restore command is the counterpart of the md_backup
command and helps you restore the ASM metadata for a disk group. Before you
can restore data files in a disk group, you must first restore the disk group using this
command. The md_restore command has the following syntax:

md_restore -b <backup_file> [-li]
 [-t (full)|nodg|newdg] [-f <sql_script_file>]
 [-g '<diskgroup_name>,<diskgroup_name>,...']
 [-o '<old_diskgroup_name>:<new_diskgroup_name>,...']

The following lists the various flags and their meanings:

■ -b Read metadata information from <backup_file>.

■ -l Print messages to a file (Not implemented).

■ -i Ignore errors. Normally, if md_restore encounters an error, it will stop.
When you specify the -i flag, errors are ignored.

■ -t Specify diskgroup creation.

■ full Create disk group and restore metadata.

■ nodg Restore metadata only.

■ newdg Create disk group with a different name and restore metadata.

■ -f Write SQL commands to <sql_script_file> instead of executing them.

■ -g Select the disk groups to be restored. If no disk groups are defined, all of
them will be restored.

■ -o Rename disk group <old_diskgroup_name> to <new_diskgroup_name>.

You can initiate the creation of a disk group as well as restore its metadata by
executing the md_restore command. The following examples show how to use
this command in various scenarios:

■ Restoring a disk group from the backup script and creating a copy:

ASMCMD> md_restore -t full -g asmdsk1 -i backup_file

■ Restoring an existing disk group’s metadata:

ASMCMD> md_restore -t nodg - asmdsk1 -i backup_file

■ Restoring a disk group and creating a new disk group:

ASMCMD> md_restore -t newdg -o 'DGNAME=asmdsk1:asmdsk2'
 -i backup_file

The md_restore command restores the disk groups, creates the attributes such
as disk_repair_time, modifies the templates, and creates the directories. It’s

Automatic Storage Management New Features 287

288 Chapter 5: Automatic Storage Management and Partitioning Enhancements

important to understand that any data in the disk groups will be lost, however. The
md_restore command creates a disk group and the directories without any data.
The md_restore uses the backup file created by the md_backup command,
which backs up just the ASM metadata. You must use your RMAN database backups
to restore the information on the re-created disk groups.

The following md_restore command example specifies the -f flag to create a
text file with the commands to create the disk groups, directories, and so on.

ASMCMD> md_restore -b dgroup1.backup -t full -f create_dgroup1.sql

You can execute the md_restore command with the -f option on a regular
basis to maintain a record of the ASM metadata.

EXERCISE 5-1

Using the md_backup and md_restore Commands
This exercise shows you how to use the new ASM commands md_backup and
md_restore to quickly restore lost data in an ASM instance.

 1. Take an RMAN backup of the USERS tablespace:

RMAN> backup tablespace users;

 2. Create a new directory called abc in the disk group dgroup1. Once you create
the directory, create an alias called +DGROUP1/abc/users.f. This alias will
point to the ASM datafile in which the USERS tablespace is stored:

ASMCMD> mkdir +DGROUP1/abc
ASMCMD> mkalias TBSJFV.254.434252532 +DGROUP1/abc/users.f

 3. Back up the ASM metadata for the DGROUP1 disk group:

ASMCMD> md_backup -g dgroup1

 The md_backup command produces the restore script, named ambr_
backup_intermediate_file, in the current directory. You’ll need this file
to perform the restore operation later on.

 4. Drop the disk group DGROUP1 to simulate the failure. You can use the
dismount force clause to dismount the disk group and then force drop it.

SQL> alter diskgroup dgroup1 dismount force;
SQL> drop diskgroup dgroup1 force including contents;

 5. Edit the ambr_backup_intermediate_file to remove the au_size entry.
Once you make the change and save the restore file, run the md_restore
command to restore the ASM metadata for the dropped disk group.

ASMCMD> md_restore -b ambr_backup_intermediate_file
 -t full -g data

 6. Once you restore the ASM metadata for the disk group, you must restore the
USERS tablespace that was in the dropped disk group. You use the backup
you made earlier of the USERS tablespace for this.

RMAN> restore tablespace users;

 Once RMAN competes restoring the tablespace, exit from RMAN.

CERTIFICATION OBJECTIVE 5.02

Partitioning Enhancements
Oracle partitioning lets you manage large tables, allowing scalability and performance
when dealing with data warehouses and other large databases. Partitioning is well
known to provide super fast access to data. Oracle Database 11g has made significant
enhancements in partitioning tables and indexes, which include the following new
partitioning schemes:

■ Interval partitioning

■ System partitioning

■ Virtual column–based partitioning

■ Reference partitioning

■ Enhancements to composite partitioning

In the following sections, I describe each of the partitioning enhancements.

Review the mount force
diskgroup command, including the

conditions under which the command
will fail.

Partitioning Enhancements 289

290 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Interval Partitioning
Interval partitioning is an extension of the familiar range partitioning scheme.
Range partitioning is ideal for partitioning historical data. You use range partitioning
to organize data by time intervals on a column of type DATE. The boundaries you
set for the range partitions determine how the database orders the partitions in the
table or indexes. Let’s first briefly review range partitioning, as interval partitioning
is an extension of the range partitioning scheme.

Range partitioning is Oracle’s most common partitioning scheme and you use
it mostly with data involving dates. For example, if your query is something like:
“Select data from a period that is 18 months in the past,” you can employ interval
partitioning to cut back drastically on the amount of data the database needs to
scan. If you divide your table into partitions representing data for a single month,
the database has to scan only a small fraction of the table’s data. This method of
limiting the data to be scanned by the database is an optimization method called
partition pruning.

Under range partitioning, you map data to different partitions in a table based
on a range of values for each partition. You set the range of values by specifying a
partition key for each partition. For example, when you use the DATE column as the
partitioning key for a table, the December-2008 partition will include all rows where
the date column has values ranging from 01-DEC-2008 to 31-DEC-2008. Each of the
partitions will have a value less than clause that specifies a (non-inclusive)
upper bound for the date column values. Any rows with a date column value higher
than this upper bound value are added to the next partition. Thus, the partitions
will contain successively higher values of the date column. Under range partitioning,
you can also define a maxvalue literal for the highest partition. The maxvalue is
a virtual infinite value that is larger than any possible value for the partitioning key.

Think of interval partitioning as the old range partitioning, with the partitions
defined by an interval after a set point, although the table or index starts off as a
range partitioned table. Under range partitioning, you had to explicitly define the
range of values for each partition. As the number of partitions grows, explicitly
defining the partition bounds is not an easy task. This is especially so in the case
of range partitions covering small ranges, such as adding a new partition every day.
If a user enters a row with the partition key value greater than the highest or most
recent partition, the database issues an error and the insert operation fails. Interval
partitioning takes the management of partitions completely out of the DBA’s hands,
by creating partitions on demand as the data is added to the table. The new internal
partitioning automates the creation of range partitions. Interval partitioning tells the
database to create partitions of the interval that you specify when new data exceeds
all the range partitions.

In order to use interval partitioning, you must specify a minimum of one range
partition. When you set up interval partitioning, the database will create range
partitions for all the ranges you specified. The high value of the range partitions,
called the transition point, determines when interval partitioning kicks in. In other
words, the database will start off by creating one or more range partitions. Once
the data reaches a value that’s beyond the transition point, the database will start
creating interval partitions. The following example makes this point clear:

SQL> create table interval_sales
 (prod_id number(6)
 , cust_id number
 , time_id date
 , channel_id char(1)
 , promo_id number(6)
 , quantity_sold number(3)
 , amount_sold number(10,2)
)
 partition by range (time_id)
 interval(numtoyminterval(1, 'month'))
 (partition p0 values less than
 (to_date('1-1-2005', 'DD-MM-YYYY')),
 partition p1 values less than
 (to_date('1-1-2006', 'DD-MM-YYYY')),
 partition p2 values less than
 (to_date('1-7-2006', 'DD-MM-YYYY')),
 partition p3 values less than
 (to_date('1-1-2007', 'DD-MM-YYYY')));

Note that in the create table statement, while the partition clause
creates the mandatory range partition(s), it’s the interval clause that sets
up the interval partitions. The single argument to the interval clause,
numtoyminterval, is a constant of the interval type. The interval clause
instructs the database to create monthly partitions. In the example, the database will
create four range partitions, with different widths for the partitions. The first four
partitions, p0, p1, p2, and p3, are range partitioned, each with a width of one year.
Once the transition point, which is the high value 1-1-2007 contained in partition p3
is reached, the database will start creating interval partitions, all with a width of one
month. The new partition Pi1 is automatically created when a row with a TIME_ID
value corresponding to January 2007 is inserted into the INTERVAL_SALES table.

You can use the optional store in clause to instruct the database to store
the interval partitions in multiple tablespaces, as shown here:
interval (numtoyminterval(1,'MONTH'))
store in (TS1,TS2,TS3)

Partitioning Enhancements 291

292 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Remember that interval partitioning extends range partitioning by automating
the creation of the range partitions. Instead of your having to add new range
partitions daily, the database will automatically create new partitions as the data is
inserted into the table. Each time the new data exceeds a range partition value, the
database will automatically create a new partition with a width of one month.

Initially, before you insert any data, the INTERVAL_SALES table will show the
following partitions.

SQL> select partition_name, partitioning_type, high_value
 dba_tab_partitions
 where table_name ='INTERVAL_SALES'
 order by partition_position;

PARTITION_NAME PARTITIONING_TYPE HIGH_VALUE
-------------- ----------------- ------------------------------
P0 RANGE TO_DATE('2005-01-01 00:00:00')
P1 RANGE TO_DATE('2006-01-01 00:00:00')
P2 RANGE TO_DATE('2005-07-01 00:00:00')
P1 RANGE TO_DATE('2007-01-01 00:00:00')

4 rows selected.
SQL>

As you can see, initially there are only range partitions. This table in the example
has four range partitions, but only a minimum of one range partition is required.
Whether you choose to create the minimum necessary single range partition or more
range partitions initially, the highest bound of the most recent range partition will
be the transition point. In the example, the transition point is the high bound of the
partition p3, which is 1-1-2007. Let’s see what happens when I insert new data into the
INTERVAL_SALES table whose ORDER_ID column values fall beyond 1-1-2007.
When I insert the new data into the INTERVAL_SALES table, the insertion forces the
creation of new partitions to accommodate the rows. These new partitions are interval
partitions, created by the clause interval(numtoyminterval(1, 'month'))
in the table creation statement. When I query the DBA_TAB_PARTITIONS views,
this is what I see:

SQL> select partition_name, partitioning_type, high_value
 dba_tab_partitions
 where table_name ='INTERVAL_SALES'
 order by partition_position;

PARTITION_NAME PARTITIONING_TYPE HIGH_VALUE
-------------- ------------------ -------------
P0 RANGE TO_DATE('2005-01-01 00:00:00')
P1 RANGE TO_DATE('2006-01-01 00:00:00')

P2 RANGE TO_DATE('2005-07-01 00:00:00')
P1 RANGE TO_DATE('2007-01-01 00:00:00')
SYS_P01 INTERVAL TO_DATE('2007-02-01 00:00:00')
SYS_P02 INTERVAL TO_DATE('2007-03-01 00:00:00')...
SQL>

When new data that has an ORDER_DATE column value higher than the
maxvalue of the last range partition is inserted into the table, the database creates
interval partitions to store the new data. The new interval partitions are created for
monthly intervals. The database assigns system-generated names to the new interval
partitions.

Note the following when you’re considering interval partitioning:

■ You can only specify a single partitioning key column, of the type NUMBER
or DATE.

■ You can perform interval partitioning on an index-organized table.

■ You can’t create domain indexes on an interval-partitioned table.

Moving the Transition Point
You can use Oracle’s partition merging capability to merge any two adjacent interval
partitions. You can even merge the very first interval partition with the highest range
partition. When you merge any two adjacent partitions, the new partition you create
will have as its upper bound the higher of the upper bounds of the merged partitions.

When you merge two adjacent interval partitions, the transition point automatically
moves to the higher of the two upper bounds. Remember that the transition point
is defined as the high value of the range partitions. Thus, whenever you merge any
two interval partitions, the range partition component of the interval-partitioned
table will move up to the higher bound of the two merged partitions. If you have any
interval partitions with boundaries below this new merged partition, the database will
automatically convert them into range partitions. Let’s use the following example to
make this automatic conversion of interval partitions clearer. The create table
statement in the example creates the one mandatory range partition and a single
interval partition.

SQL> create table transactions
 (id NUMBER
 , transaction_date DATE
 , value NUMBER
)
 partition by range (transaction_date)
 interval (numtodsinterval(1,'DAY'))
 (partition p_before_2008 values less than
 (to_date('01-JAN-2008','dd-MON-yyyy')));

Partitioning Enhancements 293

294 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Now let’s insert some data into this table. The single range partition will accept
all rows with a transaction_date value of 01-JAN-2008 or earlier. If you insert
any rows with a date higher than 01-JAN-2008, the database will automatically
create new interval partitions and insert the rows into those partitions. Because the
interval clause specifies 1 day as the interval, the database will create a separate
interval for each day after January 1, 2008. The following three insert statements
insert data into three newly created adjacent partitions. The database will create the
two partitions, give them a system-generated name, and place the three new rows in
the three new partitions, all adjacent to one another.

 insert into transactions values
(1,TO_DATE('15-JAN-2008','dd-MON-yyyy'),100);
 insert into transactions values
(2,TO_DATE('16-JAN-2008','dd-MON-yyyy'),600);
 insert into transactions values
(3,TO_DATE('30-JAN-2008','dd-MON-yyyy'),200);

Because you can merge any two adjacent interval partitions into a single partition,
let’s now merge the first two new partitions. You don’t have to provide the names of
the partitions because Oracle will automatically figure out the names of the partitions
in the merge partitions clause by looking up their values and seeing which
partitions they fall into. Here’s the alter table statement to merge two partitions:

alter table transactions
merge partitions for(to_date('15-JAN-2008','dd-MON-yyyy'))
, for(to_date('16-JAN-2008','dd-MON-yyyy'));

The alter table . . . merge statement will do the following:

■ Move the transition point for the table to January 17, 2008, which is the
non-inclusive high value of the two merged partitions.

■ Create a new range partition, combining the values of the partition key in
the two merged partitions as the value for its own partition key. The partition
key for this new range partition is January 17, 2008.

Where the database will place a newly inserted row will depend on the value of
the TIME_ID column in that row:

■ If the value of the TIME_ID column is less than 01-JAN-2008, the data goes
into the first range partition.

■ If the value of the TIME_ID column is between 01-JAN-2008 and 16-JAN-
2008, both values inclusive, it will go into the newly created range partition.

■ If the value of the TIME_ID column is greater than JAN-17-2008, it will be
placed in an interval partition.

Note that in Oracle Database 11g, the partition syntax is extended so that you
can use it to refer to a partition without specifying a name for the partition. If
you use a value that represents a possible value for the partition, the database will
know which partition the value belongs to. You can use this new syntax for all
partition management operations such as a drop, truncate, merge, and split
partition. You can use the syntax not just for the new interval partitioning
scheme, but also to existing range, list, and hash partitioning schemas. Here is an
example of the new syntax:

SQL> select * from sales_data partition
 for (to_date('01-JUN-2008','dd-MON-yyyy'));

You use the new for clause to specify a value with which to directly reference
a partition, instead of providing a partition name. In cases such as interval
partitioning, where the database provides system-generated partitions, you may
not even know the name of the partition you’re interested in. The new syntax of
addressing a partition indirectly by the values contained in it rather than by its name
is of great help in cases like this.

When to Use Interval Partitioning
Because interval partitioning is an extension of range partitioning, if range
partitioning is ideal for a situation, interval partitioning is ideal as well. Use interval
partitioning in the following situations:

■ When your SQL statements that access a large table use a range predicate on
a partitioning column such as ORDER_DATE, using interval partitioning
helps you reap the benefits of partition pruning.

■ If you constantly load new data and purge old data to maintain a rolling
window of data, interval partitioning is ideal because it lets the database
automatically create new interval partitions as the data is inserted.

■ If you want to cut up a large table into smaller logical pieces to complete
administrative operations in short maintenance windows, once again,
interval partitioning is the way to go.

System Partitioning
System partitioning is quite different from all other types of data partitioning. System
partitioning is meant to enable application controlled table partitioning. Just for
starters, there aren’t any partitioning keys when you use system partitioning. Under

Partitioning Enhancements 295

296 Chapter 5: Automatic Storage Management and Partitioning Enhancements

system partitioning the database lets you break a table down into meaningless
partitions and you don’t control the partitioning ranges for the actual data placement.
The application controls the partitioning and actual data placement.

Because a system-partitioned table doesn’t use partitioning keys, you can’t direct
the mapping of the rows to a particular partition. Instead, the application must
specify the actual partition in which the database must place a row. Thus, insert
statements must use the partition information explicitly. It’s important to remind
yourself that system partitioning doesn’t use any partitioning method and thus
can’t distribute table rows to partitions. It’s the application’s job to do the data
distribution to the partitions.

System partitioning provides the benefit of easier manageability that comes
with equipartitioning a table. You can, for example, create a nested table as a system-
partitioned table with the same partitions as the base table. System partitioning
doesn’t support the normal partition pruning and partition-wise joins like the other
types of partitioned tables. You thus lose the performance benefits inherent in
partitioning a table.

A System Partitioning Example
Use the partition by system clause to create a system-partitioned table. The
following example shows you how to create a system-partitioned table:

SQL> create table test (c1 integer, c2 integer)
 partition by system
 (
 partition p1 tablespace tbs_1,
 partition p2 tablespace tbs_2,
 partition p3 tablespace tbs_3,
 partition p4 tablespace tbs_4
);

The partition by system clause specifies system partitioning.
The big difference between a system-partitioned table and the other types of

partitioned tables is seen during the insertion of data into the partitioned table.
Unlike the traditional partitioned tables, when inserting data into a system-
partitioned table, you must specify the specific partition into which you want to
insert the new data. If you use the normal insert statement for other types of
partitioned tables, it will fail, as shown here:

SQL> insert into test values (1,999);
insert into test values (1,999)
 *
ERROR at line 1:
ORA-14701: partition-extended name or bind variable must be

used for DMLs on tables partitioned by the System method
SQL>

Because there is no partitioning key under system partitioning, the database
doesn’t know into which partitions it should insert the new data. Thus, it issues an
error when you issue an insert statement without any partition information.
Because the partition bounds are unknown, you must provide that information using
the new partitioning syntax that I explained earlier in this chapter. You’ll recall that
this new syntax lets you refer to a specific partition based on the values you cite for
a column in the partitioned table. The following example shows you how to insert a
row into our new system-partitioned table named TEST, using the new partitioning
syntax:

SQL> insert into test partition (p1) values (1,999);

Note that it is mandatory to use the partition clause when inserting data into
a system-partitioned table. The insert statement uses the partition-enhanced syntax
(the partition clause) to tell the database into which partition it must insert the
new row. In this case, the insert statement tells the database to insert the row in
partition p1, but you could have chosen any of the four partitions that you created in
the table TEST.

In addition to the insert statement, the merge statement also requires that
you specify the partition-extended syntax to identify the partition into which you
want the database to place the merged partition rows. Here’s an example:

SQL> alter table test merge
 partitions p1,p2 into partition p1;

The previous statement specifies that the database must merge the partitions
p1 and p2 into the partition p1. You don’t have to specify the partition for a
delete or update operation. However, Oracle recommends that you use the
partitioned enhanced syntax as in the case of an insert statement. If you omit the
partition clause during a delete or update statement, the statement will
work fine. However, the database will have to scan the entire table because a system-
partitioned table can’t avail itself of the partition pruning capability, which reduces
search time for data in other types of partitioning.

You can perform the following operations with a system-partitioned table:

■ Partition maintenance operations

■ All DML and DDL operations

■ Creation of local indexes, as long as they are not unique

■ Creation of local bitmapped indexes

■ Creation of global indexes

Partitioning Enhancements 297

298 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Restrictions on System Partitioning
You can’t use system partitioning for the create table as select (CTAS)
operation. Because system partitioning can’t distribute the rows to the partitions,
your only alternative is to create a new table and insert the data from the source
table, providing the partition names in the statement. For a similar reason, you
can’t employ system partitioning when using the insert into table_name
as statement. However, you can use an insert as select operation with the
partition extended syntax, as shown here:

SQL> insert into table_name
 partition (
 PartitionName)
 dataobj_to_partition(base_table, :physical_partid))
 as SubQuery...

You also can’t use the alter table split partition and the alter
index split partition operations with a system-partitioned table.

Virtual Column-Based Partitioning
Oracle Database 11g lets you include a virtual column in a table. Unlike normal
columns, a virtual column’s values aren’t inserted directly into a table. The column’s
values are derived on-the-fly by computing a function or an expression. Once you
create a table with one or more virtual columns, you can then employ the new virtual
column-based partitioning scheme to partition that table. Before I provide a virtual
column-based partitioning example, let me first explain virtual columns in more detail.

The virtual column you specify is always based on computing an expression or a
function based on one or more other columns in the same table. Once you create
a virtual column, you can query it just as you do any other column.

Virtual columns have the following important features:

■ You can index a virtual column.

■ You can use a virtual column in all types of DDL and DML statements.

■ The database doesn’t store the values of the virtual column on disk because
these values are only computed on-the-fly when you reference the virtual
column.

■ The datatype for a virtual column is optional. If you don’t explicitly specify
the datatype, the virtual column will inherit the same datatype as the
underlying expression.

■ You can collect optimizer statistics on a virtual column.

■ You can partition a table or an index on a virtual column.

Creating a Table with a Virtual Column
You can create a virtual column either when you create a table, or later on, by
using the alter table statement. There are two ways to create a virtual
column. The first method, shown here, is to create the virtual column when
you create the table:

SQL> create table hr.admin_emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 ssn NUMBER(9) ENCRYPT,
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 photo BLOB,
 sal NUMBER(7,2),
 hrly_rate NUMBER(7,2) GENERATED ALWAYS
 AS (sal/2080),
 comm NUMBER(7,2),
 deptno NUMBER(3) NOT NULL
);

The column HRLY_RATE is a virtual column. You must specify the generated
always as clause when you create a virtual column. Actually, the generated
always part of this clause is optional. The generated always clause tells us that
the database doesn’t store the column values on disk, but rather, generates them only
when a SQL statement refers to this virtual column. The last part of the clause (as)
shows the expression the database uses to compute the values for the virtual column.
In this example, the values of the HRLY_RATE column are generated from the SAL
column, by computing the expression sal/2080. Because the SAL column provides the
annual salary, the expression sal/2080 gives you the hourly salary for an employee.

The following restrictions apply to the creation of a virtual column:

■ You create a virtual column only on a heap table, which is the normal Oracle
table. You can’t create a virtual column on an index-organized, temporary,
external, object, or cluster table.

■ A virtual column can’t refer to another virtual column.

■ A virtual column can be built only on the columns from the same table as the
virtual column is in.

■ The output of the virtual column must always be a scalar value.

■ The virtual column can’t be an Oracle-supplied datatype or a user-defined
type, LOB, or LONG RAW type.

Partitioning Enhancements 299

300 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Note that you can’t directly update a virtual column. That is, the following
statement would fail if we assume that HRLY_RATE is a virtual column:

SQL> update table employees
 set hrly_rate ...

You can, however, specify a virtual column in the where clause of an update
statement. Similarly, you can specify a virtual column in the where clause of a
delete statement.

The second way to create a virtual column is to do so after table creation, by
using the alter table statement, as shown here:

SQL> alter table employees add (income AS
 (salary + (salary*commission_pct)));

All the restrictions that apply in the case of creating a virtual column through a
create table statement apply in this case as well.

Now that you have learned how to create a virtual column and what you can and
can’t do with a virtual column, let’s turn to the partitioning of a table based on a
virtual column.

Partitioning a Table on a Virtual Column
Sometimes, a business requirement to logically partition a table may not match
any of the existing columns in the table. In cases such as these, you can devise a
partitioning strategy based on one or more virtual columns, thus enabling a better
match between business requirements and data. When you partition on a virtual
column of a table, you can think of the virtual column as any other column. You
can use all the available partitioning methods, including composite partitioning
methods, with a virtual column.

Make sure that the virtual column you want to use for partitioning doesn’t
use calls to a PL/SQL function. These types of columns are ineligible for
partitioning.

Following is an example that shows how to partition a table using a range-range
composite partitioning scheme on a virtual column. The example uses the virtual
column for the subpartitioning key. The virtual column TOTAL_AMOUNT calculates
the total value of sales using an expression that multiplies the AMOUNT_SOLD and
the QUANTITY_SOLD columns.

SQL> create table sales
 (prod_id NUMBER(6) NOT NULL
 , cust_id NUMBER NOT NULL

 , time_id DATE NOT NULL
 , channel_id CHAR(1) NOT NULL
 , promo_id NUMBER(6) NOT NULL
 , quantity_sold NUMBER(3) NOT NULL
 , amount_sold NUMBER(10,2) NOT NULL
 , total_amount AS (quantity_sold * amount_sold)
)
 partition by range (time_id)
 interval (numtoyminterval(1,'month'))
 subpartition by range(total_amount)
 subpartition template
 (subpartition p_small values less than (1000)
 , subpartition p_medium values less than (5000)
 , subpartition p_large values less than (10000)
 , subpartition p_extreme values less than (maxvalue)
)
 (partition sales_before_2008 values less than
 (to_date('01-JAN-2008','dd-MON-yyyy'))
)
enable row movement;

This example shows a range-range partitioning scheme (this is a new composite
partitioning scheme in Oracle Database 11g, and I explain this in detail later
in this chapter). The original range partitioning is on the TIME_ID column.
The subpartitioning is also range partitioning, on the virtual column named
TOTAL_AMOUNT. What you must remember is that the values for the TOTAL_
AMOUNT column are never directly inserted into the table. Because it is a virtual
column, the TOTAL_AMOUNT column’s values are generated dynamically based
on the values inserted for the columns QUANTITY_SOLD and AMOUNT_SOLD,
which are used to generate the TOTAL_AMOUNT column. The last line of the
code in the example shows that you can specify row movement when partitioning
on a virtual column. When you enable row movement, if the virtual column’s value
belongs to another partition, a row migrates to the appropriate partition from its
current partition.

Reference Partitioning
Reference partitioning is a new partitioning scheme in Oracle Database 11g that
lets you partition a table on the basis of the partitioning scheme of the table that
its reference constraint refers to. Reference partitioning is probably the hardest new
partitioning scheme to grasp. The partitioning key is determined through the parent-
child relationship between the tables, as enforced by the active primary key or
foreign key constraints. Reference partitioning thus lets you logically equipartition

Partitioning Enhancements 301

302 Chapter 5: Automatic Storage Management and Partitioning Enhancements

a table inheriting the partitioning the key from its parent table. You thus don’t have
to duplicate the key columns. Partition maintenance operations are no problem
because the database automatically maintains the logical dependency between the
two tables during those operations.

Let’s walk through a reference partitioning example by looking at two tables,
ORDERS and ORDER_ITEMS, which are related by a referential constraint. The
referential constraint is named orderid.refconstraint. This constraint reflects the fact
that the ORDER_ITEMS table’s column ORDER_ID references the ORDER_ID
column in the ORDERS table. Figure 5-2 shows that the foreign key references the
ORDER_ID column in the ORDERS table. Let’s say you partition the ORDERS
table by range on the ORDER_DATE column. If you then use reference partitioning
on the orderid.refconstraint for ORDER_ITEMS, it will create a partitioned table
that is equipartitioned with respect to the ORDERS table.

If you used a non-reference partitioning scheme to partition the ORDERS and
ORDER_ITEMS table to equipartition on the ORDER_DATE column, both
tables must define the ORDER_DATE column, of course. Because we know there
is a primary key/foreign key relationship between the two tables, however, it is
redundant to define the ORDER_DATE column in the ORDER_ITEMS table as

 FIGURE 5-2 The ORDER_ITEMS table’s columns and its constraints

well. Reference partitioning lets you define the ORDER_ITEMS column only in
the ORDERS table. The ORDER_ITEMS table will then inherit its partition key
from the existing primary key/foreign key relationship. You thus take advantage of
the relationship between the two tables to avoid duplicating the key columns, which
entails unnecessary storage and maintenance overhead.

You can’t use interval partitioning with reference partitioning.

Unlike in Oracle Database 10g, where partition-wise joins would work only if
the partitioning and predicates were identical, reference partitioning has no such
limitation. That is, a partition-wise join will work even when query predicates are
different. For example, you can partition on the ORDER_DATE column and issue
a query on ORDER_ITEMS.

A Reference Partitioning Example
The first thing you must do is ensure that the referential constraint between the two
tables is created, enabled, and enforced. You create a reference-partitioned table by
specifying the clause partition by reference. You must specify the name
of the referential constraint in this clause when you create the reference-partitioned
table. It is this referential constraint that will be the basis for the reference partitioning
and used as the partitioning referential constraint.

The following example shows you how to create a reference-partitioned table.

SQL> CREATE TABLE ORDERS
 (order_id NUMBER(12),
 order_date TIMESTAMP WITH LOCAL TIME ZONE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6),
 CONSTRAINT orders_pk PRIMARY KEY(order_id)
)
 PARTITION BY RANGE(order_date)
 (PARTITION Q1_2008 VALUES LESS THAN
 (TO_DATE('01-APR-2008','DD-MON-YYYY')),
 PARTITION Q2_2008 VALUES LESS THAN
 (TO_DATE('01-JUL-2008','DD-MON-YYYY')),
 PARTITION Q3_2008 VALUES LESS THAN
 (TO_DATE('01-OCT-2008','DD-MON-YYYY')),
 PARTITION Q4_2008 VALUES LESS THAN
 (TO_DATE('01-JAN-2009','DD-MON-YYYY'))
);

Partitioning Enhancements 303

304 Chapter 5: Automatic Storage Management and Partitioning Enhancements

The previous create table statement creates the parent table ORDERS,
which is range-partitioned on the ORDER_DATE column. There are four partitions
in the ORDERS table, based on the ORDER_DATE partitioning key.

Because you know that the ORDER_ITEMS table is a child table of the parent
table ORDERS, you can use reference partitioning to partition the ORDER_ITEMS
table, as shown here:

CREATE TABLE ORDER_ITEMS
 (order_id NUMBER(12) NOT NULL,
 line_item_id NUMBER(3) NOT NULL,
 product_id NUMBER(6) NOT NULL,
 unit_price NUMBER(8,2),
 quantity NUMBER(8),
 CONSTRAINT ORDER_ITEMS_fk
 FOREIGN KEY(order_id) REFERENCES orders(order_id)
)
 PARTITION BY REFERENCE(ORDER_ITEMS_fk);

You must ensure that the foreign key relationship between the master and the
reference table is enabled and enforced in order to use reference partitioning.

The ORDER_DATE column appears only in the parent table ORDERS and
isn’t repeated in the child table ORDER_ITEMS. The clause partition by
reference in the reference-partitioned child table simply inherits the partitioning
key from the parent table ORDERS to perform the partitioning of the table. Thus,
we don’t duplicate the ORDER_DATE column in the child table. The child table
ORDER_ITEMS is also created with the same four partitions as the parent table—
Q1_2008, Q2_2008,Q3_2008, and Q4_2008. Each of these four partitions contains
the same ORDER_ITEMS rows as the corresponding partition in the parent table
ORDERS.

The new table will have one partition for each partition in the parent table. If the
parent table is subpartitioned, the new partitioned table will have one partition for
each subpartition in the parent table. Note the following:

■ If you don’t specify a tablespace for the new table, the database creates its
partitions in the same tablespace as the corresponding partition of the parent
table. In a partitioned table in an Oracle database, by default, the database
creates the partitions in the same tablespace as that of the parent table.

■ You can’t specify partition bounds for the partitions of a reference-partitioned
table.

■ You can name the partitions of a reference-partitioned table as long as there’s
no conflict with any inherited names. In the case of a conflict, the database
will assign the partition a system-generated name.

■ You can’t disable the foreign key constraint of a reference-partitioned table.

■ You can’t directly perform a partition management operation such as adding
or dropping a partition belonging to a reference partitioned table. However,
when you perform a partition maintenance operation on the parent table, the
operation automatically cascades to the child table.

You don’t see a high value for the partitions in the child table ORDER_ITEMS,
as shown by the following query.

SQL> select partition_name, high_value
 from dba_tab_partitions
 where table_name = 'ORDER_ITEMS'';

PARTITION_NAME HIGH_VALUE
--------------- ----------
P1
P2
SQL>

You don’t see a high value because the child table derives the partition boundaries
from the parent table. You can use the following query to view information about
the reference partitioned table ORDER_ITEMS:

SQL> select table_name,partitioning_type,
 ref_ptn_constraint_name
 from dba_part_tables
 where table_name in ('ORDERS','ORDER_ITEMS');

TABLE_NAME PARTITION REF_PTN_CONSTRAINT_NAME
------------- ------------------ ------------------------
ORDERS RANGE
ORDER_ITEMS REFERENCE ORDER_ITEMS_ORDERS_FK
2 rows selected.
SQL>

The partitions for the child table are named the same as the parent table’s
partitions. The PARTITION column shows the type of partitioning and it shows
RANGE for the parent table ORDERS, and REFERENCE for the partitioned table
ORDER_ITEMS. The REF_PTN_CONSTRAINT_NAME column shows the name
of the foreign key constraints used to partition the child table.

The following query shows how the ORDERS and ORDER_ITEMS tables share
the same partitions:

SQL> select table_name,partition_name,high_value
 from dba_tab_partitions
 where table_name in ('ORDERS','ORDER_ITEMS')
 order by partition_position,table_name;

Partitioning Enhancements 305

306 Chapter 5: Automatic Storage Management and Partitioning Enhancements

TABLE_NAME PARTITION_NAME HIGH_VALUE
----------- -------------- ------------------------------
ORDERS P_2006_JAN TO_DATE ('2006-02-01 00:00:00')
ORDER_ITEMS P_2006_JAN
SQL>

You manage a reference partitioned table just as you would a normal partitioned
table. Whenever you add a partition to the ORDERS table, the ORDER_ITEMS
table automatically inherits that partition. The following example shows this:

SQL> alter table orders
 add partition p2007_01
 values less than (to_date('01-feb-2007','dd-mon-yyyy'))
 tablespace test

Table altered.
SQL>

You can issue the following query next, to see how the parent and child table
partitions are co-located:

SQL> select table_name, partition_name,
 tablespace_name,high_value
 from dba_tab_partitions
 where table_name in ('ORDERS','ORDER_ITEMS')
 order by partition_position,table_name;

TABLE_NAME PARTITION_NAME TABLESPACE HIGH_VALUE
------------ --------------- ---------- ------------------
ORDERS P2007_01 TEST TO_DATE
 ('2007-02-01 00:00')
ORDER_ITEMS P2007_01 TEST

When to Use Reference Partitioning
You can benefit from reference partitioning in the following types of situations:

■ Whenever you are thinking of duplicating a column in a child table to get
partition pruning benefits, you might want to consider reference partitioning
instead. For example, you might want to duplicate a column such as
ORDER_DATE that’s already in the parent table ORDERS, in the child
table ORDER_ITEMS, so the ORDER_ITEMS table can utilize partition
pruning. With reference partitioning, you can avoid this duplication of data.
When a query joins the ORDERS and ORDER_ITEMS tables and uses a

predicate on the ORDER_ITEMS column, it automatically takes advantage
of the partition pruning for both tables.

■ In cases where you frequently join two large tables that aren’t partitioned
on the join key, you can use reference partitioning to take advantage of
partition-wise joins. This is because reference partitioning implicitly enables
the use of full partition-wise joins.

■ Reference partitioning helps manage tables that share the same life cycle,
by automatically cascading partition operations on the master table to its
descendants.

Composite Partitioning Enhancements
In previous releases, you could use only range partitioning as the top-level partitioning
method. Thus, the only composite partitioning methods that you could use were the
range-list and range-hash partitioning schemes. In Oracle Database 11g, you can
also use the list partitioning and the new interval partitioning method as top-level
partitioning methods. You can thus use the following composite partitioning methods:

■ Range-list

■ Range-hash

■ List-list

■ List-hash

■ List-range

■ Range-range

■ Interval-range

■ Interval-list

■ Interval-hash

Creating a Composite Interval-Range Partitioned Table
You must use subpartition templates to define range subpartitions for future interval
partitions. Without a subpartition template, you will be able to create only range
subpartition with a maxvalue upper boundary for every interval partition.

The following example shows you how to create a composite interval-list
partitioned table (as is the case for all interval-partitioned tables, you start with
at least one range partition). I use daily intervals on the TIME_ID column for the
interval partitioning and the CHANNEL_ID column for the list subpartitioning.

Partitioning Enhancements 307

308 Chapter 5: Automatic Storage Management and Partitioning Enhancements

I use a partition template to subpartition the table, with CHANNEL_ID as the
partitioning key.

SQL> CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id)
 INTERVAL (NUMTODSINTERVAL(1,'DAY'))
 SUBPARTITION BY LIST (channel_id)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_catalog VALUES ('C')
 SUBPARTITION p_internet VALUES ('I')
 SUBPARTITION p_partners VALUES ('P')
 SUBPARTITION p_direct_sales VALUES ('S')
 SUBPARTITION p_tele_sales VALUES ('T')
)
 (PARTITION before_2000 VALUES LESS THAN (
 TO_DATE('01-JAN-2000','dd-MON-yyyy')))
PARALLEL;

Because I use a template in this example, all the partitions will have an equal
number of subpartitions, with identical bounds specified by the template. If you don’t
specify a partition template, the database creates a single default partition, with a
maxvalue upper bound for the range partition or the default value for the list partition.
This example illustrates the interval-list composite partitioning technique. The other
new composite partitioning methods use a similar syntax. In addition, all the new
composite methods support partition pruning for all queries on the subpartitioning key.

Creating a Composite Range-Range Partitioned Table
Here’s an example that shows how to use range-range partitioning to logically partition
a table along two dimensions. Composite range-range partitioning enables you to
partition a table in tune with your business needs. The original range partitioning is on
the ORDER_DATE column and the subpartitioning, which is also a range partition, is
on the SHIP_DATE column.

SQL> create table shipments
(order_id number not null,
order_date date not null,
ship_date date not null,
customer_id number not null,
sales_amount number not null)
partition by range (order_date)
subpartition by range (ship_date)
(partition p_2008_jul values
less than (to_date('01-AUG-2008','dd-MON-yyyy'))
(subpartition p_2008_jul_early values
less than (to_date('15-AUG-2008','dd-MON-yyyy')),
subpartition p_2008_jul_agreed values
less than to_date('01-SEP-2008','dd-MON-yyyy')),
subpartition p_2008_jul_late values less than (maxvalue)
),
(partition p_2008_aug values
less than (to_date('01-SEP-2008','dd-MON-yyyy'))
(subpartition p_2008_aug_early values
less than (to_date('15-SEP-2008','dd-MON-yyyy')),
subpartition p_2008_aug_agreed values
less than to_date('01-OCT-2008','dd-MON-yyyy')),
subpartition p_2008_jul_late values less than (maxvalue)
),
(partition p_2008_sep values
less than (to_date('01-OCT-2008','dd-MON-yyyy'))
(subpartition p_2008_sep_early values
less than (to_date('15-OCT-2008','dd-MON-yyyy')),
subpartition p_2008_sep_agreed values
less than to_date('01-NOV-2008','dd-MON-yyyy')),
subpartition p_2008_jul_late values less than (maxvalue)
));
Table created.
SQL>

The example first creates range partitions for each month based on the ORDER_
DATE column. Each of these monthly partitions is then subpartitioned by range in
the SHIP_DATE column, into two partitions. The example shows how to take each
month’s orders and put them into three different partitions, the first one storing the
orders that were delivered before the promised delivery date, the second partition
storing orders delivered in the agreed upon time frame, and the last partition storing
deliveries that were made after the promised delivery date.

Partitioning Enhancements 309

310 Chapter 5: Automatic Storage Management and Partitioning Enhancements

INSIDE THE EXAM

Review the important new ASM features
such as fast mirror resync, preferred mirror
read, and variable extents. You must under-
stand how to set up the ASM fast mirror
resync feature, including things such as when
to take disks offline and online. Expect ques-
tions on using the disk_repair_time
attribute of the alter diskgroup
command. What is the default value for this
attribute?

The exam will test your understanding
of the ASM compatibility and the RDBMS
compatibility levels. You must know whether
a disk group can be managed by ASM
software from a certain release based on the
ASM and RDBMS compatibility levels.

Understand how the enhanced disk group
checks work. For example, what are the ad-
ditional checks performed in the new release?
How do the different clauses of the check
command (such as repair and norepair)
work? The exam will test your understanding
of the new restricted mode of mounting a disk
group as well as the mount force option
and the drop diskgroup . . . force

command. You must understand the way the
lsdsk command works, including how it
works in the connected and nonconnected
modes.

Expect a question or two on the md_
backup and md_restore commands.
Review the various flags you can specify for
both commands and their meanings.

In terms of the new partitioning methods,
there will be questions on the new interval
partitioning method. You must know how
interval partitioning relates to the old range
partitioning. Expect a question on the role a
transition point plays in creating an interval
partitioned table. How do you move a transi-
tion point? Similarly, you can expect to be
queried about the new system and reference
partitioning methods. Pay particular atten-
tion to how system partitioning is different
from all other types of Oracle partitioning
methods in that it doesn’t use a partitioning
key and how reference partitioning relies on
an existing referential constraint. Understand
how a virtual column works and how you can
partition a table on a virtual column.

INSIDE THE EXAM

CERTIFICATION SUMMARY
ASM’s fast mirror resync feature lowers the overhead involved in resynchronizing the
disk system following a transient disk failure. You can use the disk_repair_time
attribute to specify how long ASM can wait for you to complete a disk repair. The
default value for the disk_repair_time attribute is 3.6 hours. The ASM preferred
mirror read feature lets ASM read from a local copy of an extent in cases when it is
efficient to do so. You use the initialization parameter asm_preferred_read_
failure_groups to specify the list of preferred mirrored read failure group names.

ASM scalability and performance enhancements include the new variable size
extents feature, which raises the maximum ASM file size while reducing the memory
requirements. The new SYSASM privilege is meant to separate the management
of ASM and the database. The new compatible.asm attribute determines ASM
compatibility, and the compatible.rdbms attribute determines the RDBMS
compatibility.

There are improvements in several ASM commands such as the check
command. The check command in Oracle Database 11g is simpler and checks all
metadata directories by default. The new restricted mount mode lets you perform
maintenance tasks without incurring an overhead. The new force option when
mounting a disk group is necessary to automatically mount an incomplete disk
group. You can use the new drop disk group force command to drop a disk
group that can’t be mounted by an ASM instance. There are also enhancements in
the cp and lsdsk commands. The new ASM metadata backup and restore feature
enables you to back up and restore ASM metadata easily by using the md_backup
and md_restore commands.

Interval partitioning is an extension of the range partitioning scheme and lets the
database automatically create interval partitions as new data is inserted into a table.
System partitioning enables application-controlled table partitioning. You don’t use
any partitioning keys under system partitioning, with the application controlling the
partitioning and actual data placement. Virtual column–based partitioning enables
you to create partitions based on a virtual column. Reference partitioning enables
you to partition a table on the basis of the partitioning scheme of another table that
the first table’s reference constraint points to. Reference partitioning lets you avoid
storing the same data in two different tables, if the two tables are related to each other.

Certifi cation Summary 311

312 Chapter 5: Automatic Storage Management and Partitioning Enhancements

TWO-MINUTE DRILL

Automatic Storage Management New Features

❑ The ASM fast mirror resync feature lowers the overhead involved in
resynchronizing a failed disk.

❑ ASM tracks the changed extents on a disk during a temporary failure and
uses these extents to resynchronize just the changed extents.

❑ When you enable the fast mirror resync feature, the database takes a failed
disk offline but doesn’t drop it.

❑ You enable the fast mirror resync capability by setting the disk_repair_
time attribute for a disk group. When you bring a disk online, initially the
database allows only write operations to the disk. After it resynchronizes the
disk, it allows read operations.

❑ You can specify the drop after clause in an alter diskgroup
statement to override the time you specify with the disk_repair_time
attribute.

❑ You can specify the force option to drop a disk group that you are unable to
repair.

❑ The ASM preferred mirror read capability lets you specify a list of preferred
mirror read names.

❑ By setting up preferred mirror read capability, each node will read from its
local extents, leading to a better performance.

❑ Use the initialization parameter asm_preferred_read_failure_
groups to configure the preferred mirror read capability.

❑ In a two-site stretch cluster, with normal redundancy, each instance can
specify, at most, one failure group as its preferred read failure group.

❑ In a two-site stretch cluster, with high redundancy, you can specify both local
failure groups as preferred read failure groups.

❑ In a three-site stretch cluster, you must use a high redundancy disk group with
three failure groups.

❑ You can set variable size extents for extents of size 1, 4, 16, 32, and 64
megabytes.

✓

Two-Minute Drill 313

❑ Oracle recommends that you use the new SYSASM system privilege to
administer an ASM instance.

❑ The disk group compatibility feature lets an Oracle Database 10g client use a
disk group created under Oracle Database 11g.

❑ The compatible.asm attribute determines ASM compatibility and
controls ASM metadata on disk structures.

❑ The compatible.rdbms attribute determines the RDBMS client and
controls the minimum Oracle Database version for the RDBMS instance.

❑ The value for the compatible.asm attribute must be at least equal to the
value of the compatible.rdbms attribute.

❑ The default value for both the compatible.asm and the compatible.
rdbms attributes is 10.1.

❑ You can’t revert to the older RDBMS version once you advance the
compatible.rdbms attribute.

❑ You must first advance the compatible.asm attribute before advancing
the compatible.rdbms attribute.

❑ You can use the new attribute clause to change the AU size, RDBMS
and ASM compatibility, disk repair time, template redundancy, and template
striping for a disk group.

❑ The check command in Oracle Database 11g has been enhanced to perform
additional checks such as testing for disk consistency, and checking the file
extents maps, the alias metadata directory, and so on.

❑ You can use the new restrict mode to mount a disk group when you want to
perform maintenance operations on a disk group.

❑ Issue the startup restrict command to start an entire ASM instance
in the restricted mode.

❑ You must specify the force option for the database to automatically mount
an incomplete disk group.

❑ Use the drop disk group force command to drop a disk group that
an ASM instance can’t mount.

❑ The new command md_backup lets you back up ASM metadata for a disk
group.

314 Chapter 5: Automatic Storage Management and Partitioning Enhancements

❑ The md_restore command lets you restore the ASM metadata for a disk
group.

❑ The full option for the md_backup command creates the disk group and
restores the metadata, whereas the nodg option just restores the data.

❑ The newdg option creates a disk group but with a different name and also
restores the metadata.

Partitioning Enhancements

❑ Interval partitioning is an extension of the range partitioning scheme.

❑ Interval partitioning automates the creation of range partitions.

❑ You must specify at least one range partition when using the interval
partitioning scheme.

❑ The high value for the range partitions in an interval-partitioned table
is called the transition point because the table transitions into interval
partitioning at this point.

❑ When you merge two interval partitions, the transition point automatically
moves to the higher of the two upper bounds for the partitions.

❑ The partition syntax is extended so you can refer to a partition by specifying a
value that falls into that partition, without providing a name for the partition.

❑ In system partitioning, it’s the application and not the DBA that controls the
partitioning and actual data placement.

❑ System partitioning doesn’t use partitioning keys and therefore you can’t map
rows to partitions.

❑ In system partitioning, you must specify the partition information when using
an insert statement.

❑ System partitioning hurts performance because it doesn’t provide the normal
partition pruning and partition wise joins.

❑ Reference partitioning enables you to partition a child table according to the
partitioning scheme of the table that the child table references.

❑ Reference partitioning lets you avoid duplicating data into two related tables.

❑ You can’t use interval partitioning with reference partitioning.

❑ Reference partitioning automatically cascades partitioning operations on the
master table to the descendant tables.

❑ You have more composite partitioning schemes available in Oracle Database
11g because you can use the list and interval partitioning schemes as top-level
partitioning methods now.

Self Test 315

SELF TEST
Automatic Storage Management New Features
 1. When you enable the ASM fast mirror resync feature, the database
 A. Will take an affected disk offline and never drop it.
 B. Will take an affected disk offline first and then drop it.
 C. Will never take an affected disk offline.
 D. Will drop the disk online, without taking it offline.

 2. How many failure groups can you configure in a preferred read failure group, when using normal
redundancy in a two-site stretch cluster?

 A. At least two
 B. Only one
 C. One or two
 D. Only two

 3. When you’re advancing disk compatibility in ASM, you
 A. Must first advance the compatible.rdbms attribute before the compatible.asm

 attribute
 B. Must advance the compatible.asm and the compatible.rdbms attributes at the

 same time
 C. Can only advance the compatible.asm attribute because you can’t change the setting

 of the compatible.rdbms attribute
 D. Must first advance the compatible.asm attribute before the compatible.rdbms

 attribute.

 4. Which of the following statements(s) is (are) correct?
 A. By default, the mount diskgroup operation uses a noforce option.
 B. By default, the mount diskgroup operation uses a force option.
 C. In Oracle Database 11g, ASM will automatically mount an incomplete disk group.
 D. In Oracle Database 11g, ASM will not automatically mount an incomplete disk group.

 5. What do the newdg and the nodg flags stand for in the md_restore command?
 A. newdg stands for “create new group with the same name” and nodg stands for “don’t

 create a disk group.”
 B. newdg stands for “create new group with a new name” and nodg stands for “don’t restore

 metadata for the disk group.”
 C. newdg stands for “create new group with a new name” and nodg stands for “don’t create

 a disk group.”
 D. newdg stands for “create new group with a new name” and nodg stands for “restore

 metadata and create a disk group.”

316 Chapter 5: Automatic Storage Management and Partitioning Enhancements

Partitioning Enhancements
 6. There are no partitioning keys in
 A. Interval-range partitioning
 B. Interval partitioning
 C. Range-interval partitioning
 D. System partitioning

 7. You can’t name the partitions of a
 A. Reference-partitioned table
 B. System-partitioned table
 C. Interval-partitioned table
 D. Range-partitioned table

 8. What are the three top-level partitioning methods when you are considering composite
partitioning in Oracle Database 11g?

 A. Range, list, hash
 B. List, range, system
 C. Range, list, interval
 D. Range, list, reference

 9. Which of the following is true when you’re using interval partitioning?
 A. You must have at least one range partition before the database can create any interval

 partitions.
 B. The first partition is always an interval partition.
 C. The high value of the interval partitions is called the transition point.
 D. The high value of the range partitions is called the transition point.

10. If your database constantly gets new data and purges old data to maintain a rolling window of
data, which of the following partitioning methods is ideal for it?

 A. System
 B. Reference
 C. Interval
 D. List

LAB QUESTION
You have a non-data issue in one of the disks that belongs to the ASM storage. You want to fix the
problem and replace the disk through Database Control, by performing an ASM Fast Mirror Resync
operation. What are the steps you must follow for this operation?

Self Test Answers 317

SELF TEST ANSWERS

Automatic Storage Management New Features

 1. � B is correct. When you enable the fast mirror resync feature, the database always takes the
affected disk offline first. It then waits for the interval you specify with the disk_repair_time
attribute and then drops the disks if you don’t bring it online before the interval is up.
� A is incorrect because ASM will drop the disk after the time you specify with the disk_
repair_time attribute. C is incorrect because the database does take the affected disk
offline. D is incorrect because ASM doesn’t drop a disk while it’s still online.

 2. � B is correct because you can specify a maximum of one failure group in a preferred read
failure group configuration for a two-site stretch cluster.
� A, C, and D are incorrect because you must specify only one failure group in a two-site
stretch cluster.

 3. � A is correct because you must first advance the compatible.asm attribute before you
can advance the compatible.asm attribute.
� B, C, and D are incorrect because you must first advance the compatible.asm
attribute.

 4. � A and D are correct. A is correct because the mount diskgroup operation uses the
noforce option, by default. ASM will mount a disk group only if the entire set of disks
belonging to the disk group is available. D is correct because in Oracle Database 11g, ASM
won’t automatically mount an incomplete disk group.
� B is incorrect because the database uses the noforce option, not the force option, by
default. C is incorrect because ASM will not automatically mount an incomplete disk in Oracle
Database 11g.

 5. � C is correct because the newdg option specifies that ASM must create a new disk group
with a new name, and the nodg option specifies that ASM must restore only the metadata.
� A, B, and D are incorrect because they specify either an incorrect or nonexistent value for
the two flags.

Partitioning Enhancements

 6. � D is correct because there are no partitioning keys under system partitioning. The
database creates arbitrary partitions instead of using a specific partitioning key as in the other
partitioning methods.

318 Chapter 5: Automatic Storage Management and Partitioning Enhancements

� A, B, and C are incorrect because all partitioning methods except system partitioning
employ a partitioning key.

 7. � B and C are correct. B is correct because under system partitioning, the database creates
arbitrary partitions into which it places the table data. C is correct because under interval
partitioning, the database creates new interval-based partitions based on the values of the newly
inserted data and the interval you specify with the interval clause in the create table
statement. The database assigns system-generated names to the interval partitions it creates.
� A and D are incorrect because you can name the partitions under each of these partitioning
methods.

 8. � A is correct because the range, list, and hash partitioning methods are the only three top-
level partitioning methods.
� B, C, and D are incorrect because they all contain a partitioning method that you can’t use
as a top-level partitioning method in Oracle Database 11g.

 9. � A and D are correct. A is correct because you must always start off with a range partition
before the database can create interval partitions. You can have as many range partitions as
you like, but the minimum is one. D is correct because the max value of the range partitions
is called the transition point. It is at this value that interval partitioning kicks in.
� B is incorrect because under interval partitioning, the first partition must be a range
partition. C is incorrect because it is the highest value of the range partitions that is called the
transition point.

10. � C is correct because interval partitioning is ideal for databases where new data is being
constantly loaded and old data is being purged as well to maintain a rolling window of data.
Interval partitioning allows the database to automatically create the new partitions as the new
data is inserted into the partitioned table.
� A is incorrect because system partitioning is ideal for cases where the developers want
to maintain control over data placement instead of letting the database do it. B is incorrect
because reference partitioning is ideal for related tables where you don’t want to unnecessarily
duplicate a column in a child table if the parent table that it references is already partitioned
on that column. D is incorrect because list partitioning is ideal for data that contains discrete
column values.

LAB ANSWER
Here are the steps you must follow to perform an ASM Fast Mirror Resync operation using Database
Control.

 1. Your first task is to take the affected disk offline. You do this by going to the Disk Group: DATA
General page, selecting the affected disk, and clicking offline.

 2. Change the Disk Repair Time on the Confirmation page to 0 from its default value of 3.6 hours.
Click return.

 3. At the Confirmation page, click Yes.

 4. On the Disk Group: DATA General page, refresh the browser page until the offlined disk stops
showing up.

 5. Log in as the root user to wipe off the dropped disk, so you can add it back. Here’s the dd
command that will accomplish this:

$ dd if=/dev/zero of=asm_disk1 bs=1024k count=100

 6. In this example, I’m using asm_disk1 as the name for the affected disk.

 7. On the Disk Group: DATA General page, click Add.

 8. On the Add Disk page, select the device for the disk you want to add—for example,
/dev/raw/raw1 from the Member Disks table.

 9. On the Add Disks page, click OK.

10. On the Disk Group: DATA General page, refresh the browser until the rebalance activity
completes.

Self Test Answers 319

This page intentionally left blank

6
Performance
Enhancements

CERTIFICATION OBJECTIVES

 6.01 ADDM Enhancements

 6.02 Automatic Memory Management

 6.03 Enhancements in Optimizer Statistics
Collection

 6.04 Result Cache

 6.05 Adaptive Cursor Sharing

✓ Two-Minute Drill

Q&A Self Test

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

322 Chapter 6: Performance Enhancements

Oracle Database 11g introduces several powerful performance-related features, besides
enhancing existing features such as the Automatic Database Diagnostic Monitor (ADDM).
Among the most important of the new performance-related features is the server-side

result cache, which stores the results of both SQL queries as well as PL/SQL functions. You can also
use a new client-side caching feature in this release to improve performance and reduce the load
on the server. Adaptive cursor sharing is a brand-new feature that seeks to resolve the tradeoffs of
cursor sharing with the help of bind variables and query optimization.

The new release improves cost optimizer statistics collection by providing for
the gathering of statistics for expressions and related columns. You can now run the
ADDM in different modes. You can run it at the instance level as before, and you
can also run it at the cluster level in an Oracle RAC environment. This chapter
begins by reviewing the ADDM new features in Oracle 11g.

CERTIFICATION OBJECTIVE 6.01

ADDM Enhancements
The Automatic Database Diagnostic Monitor, which Oracle introduced in Oracle
Database 10g, analyzes the AWR data, diagnoses the root causes for performance
problems, and makes recommendations for fixing those problems. The database
performs an ADDM analysis on a pair of AWR snapshots, which determine the
time period for the ADDM analysis. In Oracle Database 11g, the ADDM has the
following new features:

■ ADDM for Real Application Clusters

■ New DBMS_ADDM package

■ Naming Advisor Findings and Directives

■ New ADDM views

In the following sections, I explain the main ADDM enhancements in Oracle
Database 11g.

ADDM for Real Application Clusters
In Oracle Database 11g, you can deploy the ADDM to perform a cluster-wide
performance analysis. In addition to analyzing a single instance, you can now use
the ADDM to analyze an entire Oracle Real Application Cluster (RAC). The

traditional single instance–wide analysis you’re familiar with from Oracle Database
10g is called Instance ADDM and the cluster-wide mode is called Database ADDM.
The cluster-wide mode is a special mode of the ADDM, in which the tool reports on
the performance of the entire cluster in addition to the individual instances in the
cluster. When operating in an Oracle RAC environment, you can deploy ADDM in
the following three analysis modes.

■ Database ADDM Analyze all instances of the RAC

■ Instance ADDM Analyzes a particular instance (equivalent to the Oracle
Database 10g ADDM analysis)

■ Partial ADDM Analyzes a subset of the instances in the RAC

Of course, if you’re not using a RAC
environment, you have only one mode
available—the instance mode.

Run the ADDM in the Database analysis
mode if you’re using an Oracle RAC system,
to analyze performance of all instances in the
database. The Database ADDM accesses the

AWR data of all instances in the system and identifies critical performance problems
for an entire RAC cluster. As with the single-instance ADDM that you’re familiar
with from Oracle Database 10g, Database ADDM runs automatically by default
when a new AWR snapshot is taken by the database. In this mode, the ADDM will
add the DB time for all instances in the RAC to come up with the DB time for the
database. The Database analysis mode presents the problems and recommendations
for each instance in a single report, instead of your having to peruse multiple reports
for the same information.

In the Database mode (Database ADDM), the ADDM accesses the AWR
data generated by all the instances in a RAC system to analyze the throughput
performance of the entire cluster instead of any single instance in the cluster.
Database ADDM performs an analysis of the following entries:

■ Global resources such as global locks and global I/O usage

■ High-load SQL

■ Contention across the instances

■ Global cache interconnect traffic

■ Network latency issues

■ Skew in instance response times

You can utilize Database ADDM’s reports to analyze the entire RAC performance.

What are three modes in
which you can run the ADDM in Oracle
Database 11g?

ADDM Enhancements 323

324 Chapter 6: Performance Enhancements

The ADDM will aggregate any findings across instances if they affect the entire
database. If a finding pertains to a global resource such as I/O, that finding will be
deemed as a global finding affecting multiple resources. On the other hand, if a
finding pertains to a local resource such as a CPU-bound instance, it results in just
a local finding for a single instance.

By default, Database ADDM analysis is performed automatically after each AWR
snapshot. If you want, you can run the ADDM in the partial analysis mode by
having the ADDM analyze only a subset of the instances in the cluster. Database
ADDM is mainly targeted for use by DBAs so they can test the cluster performance
as a whole, whereas Instance ADDM is more useful for application development to
test application or system changes.

Automatic database diagnostic monitoring is enabled by default. You can control
automatic database diagnostic monitoring by setting the control_management_
pack_access parameter, which has the default value diagnostic+tuning. You
must specify either the value diagnostic or the value diagnostic+tuning
(default value) to enable the ADDM. If you set the value to none, you disable
the ADDM. Of course, you must also ensure that the initialization parameter
statistics_level is set to either typical or all (but not basic) to
enable automatic database diagnostic monitoring.

New DBMS_ADDM Package
Oracle Database 11g introduces the DBMS_ADDM package to facilitate the
managing of the ADDM. You can use the DBMS_ADDM package to create an
ADDM task and view the results. The following list offers a brief description of the
important procedures and functions of the DBMS_ADDM package:

■ ANALYZE_DB Creates a global ADDM task

■ ANALYZE_INST Creates an instance ADDM task

■ ANALYZE_PARTIAL Creates an ADDM task to analyze a set of instances

■ DELETE Deletes an ADDM task

■ GET_REPORT Gets a text report of an ADDM task

The following example shows how to create and execute a database ADDM task
for an Oracle RAC configuration:

SQL> begin
 2 :tname := 'Test ADDM Run1';
 3 dbms_addm.analyze_db(:tname,1664,1665);
 4* end;
SQL> /

PL/SQL procedure successfully completed.
SQL>

In the example, I use the ANALYZE_DB procedure to create a global ADDM task
that pertains to all instances in an Oracle RAC configuration. The numbers 1664
and 1665 are specified as values for the begin_snapshot and end_snapshot
parameters for the ADDM analysis. You use the ANALYZE_INST procedure to run
the ADDM in the Instance mode, to analyze a particular instance of a database. You
execute the ANALYZE_PARTIAL procedure to run the ADDM in a Partial analysis
mode, which analyzes a subset of all instances in the RAC system.

To get the ADDM report, use the DBMS_ADDM.GET_REPORT function, as
shown here:

SET LONG 100000
SET PAGESIZE 50000
 1* select dbms_addm.get_report(:tname) from dual;
DBMS_ADDM.GET_REPORT(:TNAME)

 ADDM Report for Task 'Test ADDM Run3'

AWR snapshot range from 1664 to 1665.
Time period starts at 10-NOV-07 03.00.04 PM
Time period ends at 10-NOV-07 04.00.12 PM
Analysis Target

Database 'ORCL2' with DB ID 611115374.
Database version 11.1.0.6.0.
ADDM performed an analysis of instance orcl2,
numbered 1 and hosted at localhost.localdomain.
...
SQL>

Naming Advisor Findings and Directives
Oracle Database 11g classifies and names all ADDM advisor findings. The database
stores the ADDM findings in the DBA_ADVISOR_FINDINGS and the USER_
ADVISOR_FINDINGS views. The classification of ADDM findings enables you
to query the DBA_ADVISOR_FINDINGS view to find which findings occur most
frequently in the database. You can query the new DBA_ADVISOR_FINDING_
NAMES view to see all the finding names, as shown here:

SQL> select finding_name from dba_advisor_finding_names;

FINDING_NAME

normal, successful completion

ADDM Enhancements 325

326 Chapter 6: Performance Enhancements

"Administrative" Wait Class
"Application" Wait Class
"Cluster" Wait Class
"Concurrency" Wait Class
"
...80 rows selected.
SQL>

Understand how named
fi ndings and directives work. For example,
what does the INSERT_FINDING_

DIRECTIVE procedure do? What are the
other key fi nding directives you can use
with the DBMS_ADDM package?

In Oracle Database 11g, you can create an ADDM task by inserting a finding
directive to limit or filter the findings. The DBMS_ADDM package contains several
“directive” procedures to add specific directives to create directives of various
kinds. For example, the following code shows how to use the INSERT_FINDING_
DIRECTIVE procedure to stipulate that the ADDM report show an “Undersized
SGA” finding only if it meets two specific conditions: The first condition specifies
that the finding must be responsible for at least two average active sessions during
the analysis period (MIN_ACTIVE_SESSIONS), and the second condition
specifies that the finding must cover at least 10 percent of the total database time
during the same period (MIN_PERC_IMPACT).

SQL> var tname varch2(60);
SQL> begin
 dbms_addm.insert_finding_directive(NULL,
 'SGA Directive',
 Undersized SGA',
 2,
 10);
 :tname := 'Test ADDM Task';
 dbms_addm.analyze_inst(:tname,1634,1635);
 end;
 /

The previous directive specifies that an undersized SGA finding be reported only if:

■ The finding is responsible for at least two average active sessions (MIN_
ACTIVE_SESSIONS) during the period of the ADDM analysis.

■ The finding constitutes at least 10 percent (MIN_PERC_IMPACT) of the
total DB time during the period of the ADDM analysis.

In addition to the INSERT_FINDING_DIRECTIVE illustrated here, which helps
you create a directive to limit the reporting of a specific finding type, you can also
use the following ADDM directives:

■ INSERT_SQL_DIRECTIVE Creates a directive to limit reporting of
actions on specific SQL statements

■ INSERT_SEGMENT_DIRECTIVE Creates a directive to prevent the
ADDM from creating actions to run the Segment Advisor on certain segments

■ INSERT_PARAMETER_DIRECTIVE Creates a directive to prevent
the ADDM from creating actions that alter the value of a specific system
parameter

You can delete any of the four INSERT_* procedures by replacing the INSERT
with DELETE at the beginning of the procedure name. For example, you can
execute the DELETE_FINDING_DIRECTIVE procedure to delete a finding
directive you created through the INSERT_FINDING_DIRECTIVE procedure.

New ADDM Views
Oracle Database 11g introduces the following new ADDM views:

■ DBA_ADDM_TASKS Shows all executed ADDM tasks

■ DBA_ADDM_INSTANCES Shows instance-level information for all
completed ADDM tasks

■ DBA_ADDM_FINDINGS An extension of the corresponding advisor view

■ DBA_ADVISOR_FINDING_NAMES Provides a list of all registered
finding names

Each of the four views shown here also has a corresponding USER_* view
associated with it. In addition, the DBA_ADVISOR_FINDINGS, DBA_ADVISOR_
RECOMMENDATIONS, and DBA_ADVISOR_ACTIONS views have a new
column named FILTERED, which shows if a row in the view was filtered out by a
directive. If the FILTERED column shows a value of Y, it means that row was filtered
out by a directive or directives. A value of N means the row wasn’t filtered.

ADDM Enhancements 327

328 Chapter 6: Performance Enhancements

CERTIFICATION OBJECTIVE 6.02

Automatic Memory Management
Oracle database 10g offered you both automatic shared memory management and
automatic PGA management. You could set two memory-related parameters, sga_
target and sga_max_target, to control memory allocation to the SGA. You
could use the pga_aggregate_target to enable the database to automatically
manage the PGA memory available to the instance. Oracle Database 11g automates
memory management even further, by introducing the automatic memory management
feature. With automatic memory management, you set only a pair of new memory-
related parameters—memory_target and max_memory_target, to manage
both SGA and PGA. The database transfers memory between the SGA and PGA
as necessary and automates the sizing of these two components according to the
database workload. For the first time, Oracle unifies the SGA and PGA memory
management and maximizes memory utilization by automatically adapting to
workload changes, besides helping prevent out-of-memory errors. The operating
system frees up the shared memory that’s not being used by Oracle and allocates it
to other components that request it.

The automatic memory management feature is currently implemented on the
Linux, Solaris, HP-UX, AIX, and Windows platforms.

The memory_target parameter is also known as the target memory size
initialization parameter and the memory_max_target parameter, the maximum
memory size initialization parameter. In order to convert to the new, automatic
method of memory management, use the memory_target initialization parameter,
as shown here:

SQL> alter system set memory_target=900M scope spfile;

If you’ve set the sga_target and the pga_target parameters previously, you
must also use the following statements to set those two components to zero:

SQL> alter system set sga_target=0 scope=spfile;
SQL> alter system set pga_target=0 scope=spfile;

Once you execute the alter system statements, restart the instance for automatic
memory management to take effect. You can also set a memory_max_target
parameter in your parameter file to specify the upper bound of the memory_target
parameter. Note that setting the memory_target parameter automates the sizing
of both the SGA and the PGA. The memory_target parameter is dynamic, so you

can change it while the instance is running. If you want, you can still set lower bound
values for the individual components of the SGA, such as the shared pool and the
database cache. If you decide to do so, these lower bounds will act as the minimum
values below which the database can’t size these caches. The database won’t let you
set the memory_target parameter below a specific level in order to enable adequate
memory for certain SGA components that require a minimum size or that can’t be
easily shrunk.

Once you set automatic memory management, you can confirm the choice by
using the show parameter target command, as shown here:

SQL> show parameter target
NAME TYPE VALUE
-------------------- ----------- -------
archive_lag_target integer 0
db_flashback_retention_target integer 1440
fast_start_io_target integer 0
fast_start_mttr_target integer 0
memory_max_target big integer 252M
memory_target big integer 252M
pga_aggregate_target big integer 0
sga_target big integer 0
SQL>

The two automatic memory related initialization parameters show positive values,
which means that automatic memory management is enabled for this instance.
Note that the values of the memory_target and memory_max_target
parameters are identical. If you set the memory_target parameter but don’t set
the memory_max_target parameter, the value of the latter parameter defaults to
the value you specify for the memory_target parameter. The sga_target and
the pga_target parameters are zero, which means that manual or automatic
shared memory management techniques are not in use. In addition, it also means
that there are no DBA-set minimum levels for the SGA or the PGA.

SGA, PGA, and the MEMORY_TARGET Parameter
If you set the memory_target parameter to a positive value for an instance, the
following is true:

■ If you don’t set the sga_target and the pga_aggregate_target
parameters, then the database will set the sizes for these two components and
calibrate them according to the database workload. There are no minimum or
default values for either the SGA or the PGA. The usual policy is to give 60
percent of the initial memory_target size to the SGA and 40 percent to
the PGA component.

Automatic Memory Management 329

330 Chapter 6: Performance Enhancements

■ If you also set the sga_target and the pga_aggregate_target
parameters, the database will consider them the minimum values for the
SGA and PGA allocations of memory. The memory_target parameter
can take a value anywhere between the sum of SGA and PGA to the high
value set by the memory_max_target parameter.

■ If you set the SGA but not the PGA, the database will automatically tune
both parameters and set the initial size of the PGA to the value of the
memory_target parameter minus the value of the SGA (memory_
target – SGA).

■ If you set the PGA but not the SGA, the database will automatically tune
both parameters and set the initial size of the SGA to the value of the
minimum of the following two entities: value of the memory_target
parameter minus the PGA and the sga_max_target parameter value,
if you’ve set it.

If you exclude the memory_max_target parameter but use automatic
memory management by setting the memory_target parameter, the
database sets the memory_max_target parameter to the value of the
memory_target parameter.

The default value of the memory_target parameter is zero. If you don’t set the
memory_target parameter or explicitly set it to zero, the following would be true:

■ If you set neither the pga_aggregate_target nor the sga_target
parameters, SGA is not automatically tuned, but the PGA is.

Review the relationships
among the various memory-related
initialization parameters such as memory_
target,memory_max_target,sga_

target, and sga_max_size. Can you
set just one of the memory_target and
memory_max_target parameters? What
are the implications?

■ If only the sga_target parameter is set, the database automatically tunes
only the subcomponents of the SGA. PGA is auto-tuned whether you set it
or not.

■ If you set the memory_max_target parameter in an initialization parameter
file (init.ora) but not the memory_target parameter, the database will set
the memory_target parameter’s size to its default value of zero. That is,
automatic memory management will be disabled.

 If you set the memory_target parameter in the initialization parameter
file but leave out the memory_max_size parameter, the database sets the
memory_max_size parameter’s value to that of the memory_target_
size parameter.

EXERCISE 6-1

Using Automatic Memory Management
The following example shows how to set up automatic memory management and
monitor how the database allocates memory to the various components of Oracle’s
memory allocation.

 1. Set up automatic memory management by issuing the following statements

SQL> alter system set pga_aggregate_target = 0 scope=spfile
SQL> alter system set sga_target = 0 scope=spfile
SQL> alter system set memory_target = 280M scope=spfile
SQL> alter system set memory_max_target = 900M scope=spfile

 2. Restart the database:

SQL> shutdown immediate;
SQL> startup

 3. Confirm that the database is now using automatic memory management:

SQL> show parameter target

 If the memory_target parameter shows a positive value, it means that the
instance is set up for automatic memory management.

 4. Check the current allocation of memory to the various components by
issuing this query:

SQL> select component, current_size, user_specified_size
 2 from v$memory_dynamic_components
 3* where current_size!=0;

 Make a note of the current allocations to the SGA, PGA, and the Large Pool
components.

Automatic Memory Management 331

332 Chapter 6: Performance Enhancements

 5. Execute a few SQL statements that use a lot of SGA memory, such as an
expensive parallel query, for example, or an expensive PL/SQL code block
that consumes a lot of PGA memory. Issue the following command:

SQL> select component, current_size, user_specified_size
 2 from v$memory_dynamic_components
 3* where current_size!=0;

You'll see the Large Pool grow at the expense of the buffer cache in the first case.
In the second case (PL/SQL block execution), the database automatically raises
the PGA component and shrinks the SGA component. When you use automatic
memory management, the database automatically shrinks and grows the component
that requires less or more memory based on the instance workload.

Monitoring Automatic Memory Management
Use the V$MEMORY_DYNAMIC_COMPONENTS view to monitor the current
sizes of all dynamically tuned memory components, as shown here:

 SQL> select component, current_size, user_specified_size
 2 from v$memory_dynamic_components
 3* where current_size!=0;
COMPONENT CURRENT_SIZE USER_SPECIFIED_SIZE
------------------- -------------- -------------------
shared pool 109051904 0
large pool 4194304 0
java pool 12582912 0
SGA Target 134217728 0
DEFAULT buffer cache 4194304 0
PGA Target 130023424 0
6 rows selected.
SQL>

As you can see, the query also shows the current total size of the SGA and the
PGA components. The V$MEMORY_RESIZE_OPS view contains a circular buffer
of the 800 most recent completed memory resizing operations. You can find the
current memory resize operations that are in progress by querying the V$MEMORY_
CURRENT_RESIZE_OPS view. You can use the Enterprise Manager to easily
monitor how the database is allocating memory between the SGA and the PGA
components, as well as the Large Pool and other components. Figure 6-1 shows the
Memory Advisors page in Database Control, which shows a history of the memory
allocation between the SGA and the PGA over time.

DBCA and Automatic Memory Management
When you upgrade to Oracle Database 11g using the DBUA (Database Upgrade
Assistant), by default, the memory_target parameter is set to zero, meaning
automatic memory management is disabled by default. However, when you create
a new database using the DBCA (Database Creation Assistant), you can specify
automatic memory management. You specify your choice in the Initialization
Parameters page by clicking the Memory tab on that page. Following are two
options offered on that page:

■ The Typical option lets you configure memory for a new database with
minimal input and is ideal for most environments. Just enter a value in the
Memory Size field and check the Use Automatic Memory Management
option in the Typical section of the page to institute automatic memory
management for the new database.

 FIGURE 6-1 Allocation history under Automatic Memory Management

Automatic Memory Management 333

334 Chapter 6: Performance Enhancements

■ The Custom option provides you more control over the allocation of memory
to the database. You can select the Automatic option to allocate specific
amounts of memory to the SGA and PGA components of database memory.
You can select the Manual option to set specific memory allocations for SGA
subcomponents such as the buffer pool and the shared pool.

CERTIFICATION OBJECTIVE 6.03

Enhancements in Optimizer Statistics Collection
Oracle recommends that you let the database automatically gather optimizer statistics.
The automatic optimizer statistics collection process collects statistics by invoking
the DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC procedure during
the nightly maintenance window. The database will automatically collect statistics
on all objects that have either no statistics or have stale statistics because a significant
number of a table’s rows have changed. To ensure that it collects the most needed
statistics before the maintenance window closes, the database processes objects that
most need new statistics first. You need to manually collect optimizer statistics only in
the case of volatile tables or objects that are loaded with large bulk loads. Because the
optimizer statistics collection job runs only during the night when the data in table
changes significantly during the day, as in the case of the previous two types of tables,
manual loading of statistics is warranted.

There are two major innovations in optimizer statistic collection in the Oracle
Database 11g release: pending statistics and extended statistics. In addition, the
Statistics Preferences feature has been enhanced so you can easily change statistics
collection settings that are different from the database default settings for specific
objects. Let’s examine the optimizer statistics collection improvements in the
following sections.

Statistics Preferences
Although automatic statistics gathering takes the burden of collecting statistics off the
DBA, it isn’t perfect. Often, you have to manually collect statistics or provide non-
default options for subsets of database objects for which the default statistics collection
options aren’t appropriate. For example, you’d have to specify your own sample size
for tables with a heavily skewed data distribution, instead of letting the database
automatically determine the sample size by using the AUTO_SAMPLE_SIZE value

for the estimate_percent attribute. The Statistics Preference feature enables
automatic statistics gathering to function better, by allowing you to easily customize
statistics collection settings for specific objects that need special treatment. Under
the Statistics Preferences feature, when you execute any of the GATHER_*_STATS
procedures or the database runs the automatic Optimizer Statistics Gathering task,
you can override the default behavior of the procedure and the task at the object
or schema level.

You can view the current settings for statistics preferences by querying the
DBA_TAB_STAT_PREFS view, which has the following structure:

SQL> desc dba_tab_stat_prefs
 Name Null? Type
 ------------------------------ ----------- -------------
 OWNER NOT NULL VARCHAR2(30)
 TABLE_NAME NOT NULL VARCHAR2(30)
 PREFERENCE_NAME VARCHAR2(30)
 PREFERENCE_VALUE VARCHAR2(1000)
SQL>

You can set preferences at the table, schema, database, and global level. A
preference set at the database level applies to all tables in the database, whereas
the global preferences apply to all tables for which you don’t set any preferences.
Preferences you set at a lower granularity level override preferences at a higher level.
That is, the preferences are in decreasing order of priority in this list: table level,
schema level, database level, global level. A table level preference setting, for example,
overrides a database level preference setting.

You could set preferences such as estimate_percent, degree, and
method_opt in Oracle Database 10g. In Oracle Database 11g, you can set the
following three new options:

■ publish Determines whether the database should make the statistics
it collects public by storing them in the data dictionary. This is called
publishing the statistics, and it was the only option when the database
gathered statistics for any object in Oracle Database 10g. In Oracle Database
11g, if you choose not to automatically make the new statistics public, but
rather wait until you confirm that the new statistics are conducive to better
performance, the database treats the statistics as pending statistics. I explain
pending statistics in detail later in this chapter. You can set the values of
TRUE or FALSE for the publish preference.

■ stale_percent Lets you specify the threshold level for classifying an
object’s statistics as stale. The parameter uses a percentage of the rows that

Enhancements in Optimizer Statistics Collection 335

336 Chapter 6: Performance Enhancements

were modified since the database collected statistics. If, for example, the
default is 10 percent for a table, you can change it to 20 percent if you want.

■ incremental Lets the database incrementally collect global statistics on
partitioned tables. The two possible values for this parameter are TRUE and
FALSE. I explain incremental statistics collection in the following section.

You can use either the SET_PREFS procedure
of the DBMS_STATS package or the Enterprise
Manager to set preferences at various levels. You
can also use Enterprise Manager to easily modify
preferences for various attributes. Figure 6-2 shows
the Add Table Preferences page, which enables
you to configure various table level preferences,
including the three new preferences: stale_

percent, incremental, and publish.

What do the three new
statistics collection preference options—
publish,stale_percent, and
incremental—enable you to do?

 FIGURE 6-2 The Add Table Preferences page

Query the DBA_TAB_STATS_PREFS view to find out all the current statistics
preference settings for any table in the database.

Partitioned Tables and Incremental Statistics
For a partitioned table, the optimizer maintains statistics both at the global level for
the entire table as well as partition-level statistics for each partition. However, in most
types of partitioned tables, the data remains the same in most of the older partitions,
and DML changes are made only to the data in the new or more recent partitions.
In Oracle Database 11g, the database collects statistics only for those partitions that
show a significant change in data. The default value of the threshold for significant
change is 10 percent of the rows in a partition. Traditionally, the database had
to scan the entire table for global statistics. In Oracle Database 11g, the database
maintains global statistics incrementally, by scanning only those partitions that
have undergone significant changes and using the old statistics for all partitions that
remain unchanged since the last statistics collection job. The end result is that you
can now collect global statistics much faster on large partitioned tables because the
database doesn’t have to scan the entire table to collect the statistics.

The incremental statistics feature for partitioned tables doesn’t incrementally
maintain histograms.

Use the DBMS_STAT package to specify the granularity on a partitioned table.
You can specify a granularity level of auto,
global, global and partition,
all, partition, or subpartition.
The database collects global statistics on
an incremental basis if you specify the
granularity level as global and mark the
table as incremental. The database will also
automatically collect statistics for the changed

partitions of the table.
If you want the database to update global table statistics by scanning only

the changed partitions instead if the entire table, you must satisfy the following
conditions:

■ Set the incremental value for the table to TRUE.

■ Se the publish value for the table to TRUE.

■ Specify the auto_sample_size value for the estimate_percent
attribute and the auto value for the granularity attribute when
executing the GATHER_TABLE_STATS procedure to collect the statistics.

Explain the strategy to
effi ciently collect optimizer statistics
for large partitioned tables in Oracle
Database 11g.

Enhancements in Optimizer Statistics Collection 337

338 Chapter 6: Performance Enhancements

New Sampling Technique
Selectivity of the data in a table is of critical importance when the optimizer is figuring
out an execution plan. The optimizer normally uses the number of distinct values in a
column to figure out the selectivity of a predicate using a column. In Oracle Database
10g, you had to choose a sample size when gathering table statistics. It’s well known
that you could complete the statistic gathering task faster by choosing a small sample
size, but the results were of dubious value, especially when dealing with a skewed data
distribution. On the other hand, using a very large sample or even a full table scan
gives you more accurate results but at the expense of a longer execution time for the
statistics collection job. DBAs often had a tough time meddling with the sample size
factor, alternately trying to lower it if the statistic gathering job took too long to finish,
and raising the sample size if the job finished quickly but was yielding bad results.

Oracle Database 11g provides the best of both the worlds, by providing a row-
sampling technique that uses a small sample such as 1 or 5 percent of the data but
provides results that are as accurate as those from a full table scan. Simply let the
estimate_percent option remain at its default value of auto_sample_
size. Oracle recommends this option when collecting statistics.

Deferred Statistics Publishing
By default, the database automatically allows the optimizer to immediately make use
of the statistics that it collects. In other words, by default, once the statistics gathering
is complete for the database, table, or schema, the database automatically publishes
the new optimizer statistics into the dictionary tables. Oracle Database 11g introduces
the concept of pending statistics, wherein you have the option to save new statistics
as pending until you validate those statistics. You have the option now of publishing
only those statistics that you consider are satisfactory, but not all statistics. This means
that as a DBA, you can test the new statistics before publishing them for use by the
optimizer. This also means that you can have two types of statistics in your database,
based on their publication status: current statistics (published statistics) and pending
statistics. Current or published statistics are for public use by the optimizer, and pending
statistics are private statistics that you may or may not choose to make public.

In addition to permitting testing by the DBA before allowing the optimizer to
use the new statistics, the concept of pending statistics provides another significant
benefit. In the prior release of Oracle Database, the database could end up with
inconsistent statistics when a table’s statistics were published before the statistics
for its index or partition. This could occur because the statistics gathering job failed
midway through its execution. In Oracle Database 11g, the entire statistics gathering
job is treated as one atomic transaction. The database publishes the statistics for all of
a schema’s objects at the same time. Thus, you can ensure that the statistics viewed by

the optimizer are always consistent. If a statistics gathering job fails, you can resume
it with the RESUME_GATHER_STATS procedure and publish the entire schema’s
statistics at a single point in time after you’ve verified and tested the statistics.

Determining the Status of the Statistics
The DBMS_STATS package’s GET_PREFS function tells you whether the database
will automatically publish optimizer statistics or not. The GET_PREFS function
is new in Oracle Database 11g. The function returns the default values of various
preferences, including estimate_percent, stale_percent, and others.
The preference that is of interest to us with regard to publishing statistics is the
preference named publish. Here’s the query to determine whether new statistics
will be published automatically or not:

SQL> select dbms_stats.get_prefs('PUBLISH') publish from dual;

PUBLISH

TRUE

The query returns a value of TRUE, meaning the database will automatically publish
the new statistics once the statistics gathering process completes. If the query returns
a value of FALSE, it means that the database will keep the new statistics in the
pending status until you decide to publish them. By default, the database publishes
all statistics automatically, so the default value for the previous query is TRUE. You
can determine the publishing mode for a single table by executing the get_prefs
function with the table parameters, as shown in the example here:

SQL> select dbms_stats.get_prefs('PUBLISH','stats','test_table')
 from dual;

The database stores the published statistics in the DBA_TAB_STATS and the
DBA_IND_STATS views. The database stores the pending statistics in the DBA_
TAB_PENDING_STATS and the DBA_IND_PENDING_STATS views.

Changing the Status of Statistics
In order to change the default behavior of automatically publishing all newly gathered
statistics, use the SET_TABLE_PREFS procedure or the SET_SCHEMA_PREFS
procedure. You can change the publishing setting at the table or the schema level.
By default, the database publishes the statistics for all objects immediately upon
the gathering of the statistics. In order to change the publishing setting of the
EMPLOYEES table in the HR schema from the default value of TRUE to FALSE,
execute the SET_TABLE_PREFS procedure, as shown here:

SQL> exec dbms_stats.set_table_prefs ('HR','EMPLOYEES',
 'PUBLISH','FALSE');

Enhancements in Optimizer Statistics Collection 339

340 Chapter 6: Performance Enhancements

Once you execute the previous statement, the current statistics for the EMPLOYEES
table continue to be available for use by the optimizer. However, the next time the
database collects statistics for the EMPLOYEES table, those statistics will not be
published. Instead of storing the newly collected statistics with the other published
statistics in the DBA_TAB_STATS view, the database will store them in the new
DBA_TAB_PENDING_STATS view.

Making Pending Statistics Public
Once you decide to keep some statistics in the pending status, you can test them
against a workload to see how the unpublished statistics affect performance. If the
statistics seem like they are helping performance, you can publish the statistics. If
not, you can drop the statistics. In order to make pending statistics available to the
optimizer, set the new initialization parameter optimizer_use_pending_
statistics to TRUE. The default value of this parameter is FALSE, meaning
the optimizer doesn’t use pending statistics by default, as shown here:

SQL> show parameter optimizer_use_pending_statistics
NAME TYPE VALUE
-------------------------------- ------- ------
optimizer_use_pending_statistics boolean FALSE
SQL>

The setting shown for the optimizer_use_pending_statistics
parameter (FALSE) means that the database will parse SQL statements in your
session by using the current optimizer statistics that the database had previously
collected and stored in the data dictionary. In order for the session to switch to using
the new pending statistics, you issue the following alter session statement:

SQL> alter session set optimizer_use_pending_statistics=TRUE

Once you execute the alter session command shown here, when the
optimizer compiles a SQL statement that refers to objects with pending statistics,
it will make use of the new pending statistics.

Review the role of
the optimizer_use_pending_
statistics initialization parameter and

the DBMS_STATS.PUBLISH_PENDING_
STATS procedure in gathering and
publishing optimizer statistics.

If your tests show that the new statistics that you just enabled for public use in the
session with the alter session statement shown in the example aren’t satisfactory,
you don’t want to make these statistics public in the production database. If, however,
your tests show that the new statistics enhance performance, you can then change the
status of these statistics to current statistics in the production database. You can change
the status of all pending statistics in the database to current statistics, by executing the
PUBLISH_PENDING_STATS procedure, as shown here:

SQL> exec dbms_stats.publish_pending_stats (NULL,NULL);

You can also publish the pending statistics for only a single table in the following
manner:

SQL> exec dbms_stats.publish_pending_stats('HR','EMPLOYEES');

If, after testing a workload that includes a table with pending statistics, you decide
you’re better off with the older statistics, delete the pending statistics by executing
the DELETE_PENDING_STATS procedure, as shown here:

SQL> exec dbms_stats.delete_pending_stats('HR','EMPLOYEES');

The DELETE_PENDING_STATS procedure helps you delete any pending
statistics that you haven’t published. You can also test the new pending statistics
against a workload in a test database by exporting the pending statistics to another
database with the EXPORT_PENDING_STATS procedure, as shown here:

SQL> exec dbms_stats.export_pending_stats('HR', 'EMPLOYEES');

The EXPORT_PENDING_STATS procedure exports any statistics that the
database has gathered and kept as pending statistics.

Extended Statistics
In this release, Oracle has introduced major new capabilities in statistics gathering,
which are referred to as extended statistics, to make the optimizer statistics reflect
the true selectivity of the data. There are two types of extended statistics: multi-
column statistics, which involve collecting statistics for column groups, and expression
statistics. Extended statistics include the statistics collected for both column groups
and expressions and use the following new procedures:

■ CREATE_EXTENDED_STATS function

■ DROP_EXTENDED_STATS procedure

■ SHOW_EXTENDED_STATS_NAME function

In the following sections, you learn how to use the new functions and procedure.

Enhancements in Optimizer Statistics Collection 341

342 Chapter 6: Performance Enhancements

Multicolumn Statistics (Column groups)
The selectivity of a column is a crucial optimizer statistic, playing a key role in
the execution plan that the cost optimizer creates for a SQL statement. Currently,
Oracle collects statistics by computing the selectivity of each of a table’s columns
separately, and ignores the relationship between the columns. However, the
relationship between certain columns may be so strong that it can affect the
combined selectivity of the two columns. In most cases, the optimizer assumes that
the values of the different columns in a complex predicate are independent. Based
on this assumption, the optimizer simply multiplies the selectivity of individual
predicates to arrive at the selectivity of a conjunctive predicate, which usually leads
to an underestimation of the selectivity.

In Oracle Database 10g, when figuring out the selectivity of multiple predicates,
the query optimizer took into account the correlation between related columns only
under a limited set of circumstances, as I summarize here:

■ The optimizer used the number of distinct keys in an index to estimate
selectivity provided all columns of a conjunctive predicate match all columns
of a concatenated index key. In addition, the predicates must be equalities
used in equijoins.

■ If you set DYNAMIC_SAMPLING to level 4, the optimizer used dynamic
sampling to estimate the selectivity of predicates involving multiple columns
from a table. Because the sampling size is quite small, the results are dubious
in most cases.

With the exception of the two cases presented here, the optimizer always assumed
that the values of all columns in a table that were used in a complex predicate
were independent of each other. Based on this naïve assumption, the optimizer
simply multiplied single column selectivity estimates to arrive at the selectivity of
a conjunctive predicate involving multiple columns. The end result of this strategy
was a severe underestimation of the real selectivity of those types of predicates in
a SQL statement. Oracle Database 11g attempts to alleviate this major problem by
letting you collect the following types of statistics on multiple columns in a table,
which it refers to as a group of columns:

■ Number of distinct values

■ Density

■ Number of nulls

■ Frequency histograms

The idea behind the capturing of statistics for a group of columns as a single entity is
to capture the underlying functional dependency between related columns in a table.

The database collects the number of distinct values, the number of null values,
frequency histograms, and density for groups of columns.

Let’s use an example from the CUSTOMERS table in the SH schema to drive
home this point. In this table, the two columns CUST_STATE_PROVINCE and
COUNTRY_ID are strongly correlated. The CUST_STATE_PROVINCE column
determines the value of the COUNTRY_ID column for a customer. The following
query using California as the value for the CUST_STATE_PROVINCE column
shows this:

SQL> select count(*)
 from sh.customers
 where cust_state_province = 'CA';

COUNT(*)

 3341

The query returns the value 3341. That is, there are a total of 3341 customers in
the customers table who are from the state of California. Of course, if you issue the
following query, which asks how many customers are from the state of California and
the U.S. (country_id=52790), you get the same result as before:

SQL> select count(*)
 from customers
 where cust_state_province = 'CA'
 and country_id=52790;

COUNT(*)

 3341

But it is clear that if you repeat this query for any COUNTRY_ID other than the
U.S., the result would be, in all likelihood, zero because California is a state in the U.S.
but not in the other countries. In cases such as these, it makes sense for the optimizer to
rely not merely on the selectivity of the individual columns, but on the selectivity for
the group of related columns as well. Oracle Database 11g lets you do precisely that—
you can now gather statistics on related columns as a group, called a column group. The
optimizer uses the statistics on column groups to account for the correlation between
two columns. If, for example, your query has the predicates c1=1 and c2=1 and if you

Enhancements in Optimizer Statistics Collection 343

344 Chapter 6: Performance Enhancements

collect statistics on (c1, c2) as a single group, the optimizer will use the column group
statistics for estimating the combined selectivity of the two predicates.

Oracle creates column groups for related columns based on its analysis of the
database workload. You can, however, create a column group yourself using the
DBMS_STATS package. You can execute the CREATE_EXTENDED_STATS
function to create a column group, as shown in the following section.

Creating Column Groups Use the CREATE_EXTENDED_STATS function
to create a new column group. The function returns a system-generated name for the
column group. Here’s the structure of the CREATE_EXTENDED_STATS function:

DBMS_STATS.CREATE_EXTENDED_STATS (
 ownname VARCHAR2,
 tabname VARCHAR2,
 extension VARCHAR2)
 RETURN VARCHAR2;

The function creates a column statistics entry for the column group you’re creating.
When the database next collects statistics for a table, it also collects statistics for the
column group you create. To create the column group for the COUNTRY_ID and
CUST_STATE_PROVINCE columns, execute the CREATE_EXTENDED_STATS
function, as shown here:

declare
 cg_name varchar2(30);
begin
 cg_name := dbms_stats.create_extended_stats(null,'customers',
 '(cust_state_province',country_id)');
end;
/

The CREATE_EXTENDED_STATS function returns a system-generated virtual
column name, which you can see in the next query. You can verify that you’ve
successfully created the extension by issuing the following query on the DBA_STAT_
EXTENSIONS view:

SQL> select extension_name, extension
 from dba_stat_extensions
 where table_name='CUSTOMERS';

EXTENSION_NAME EXTENSION
----------------------------- -----------------------------------
SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ ("CUST_STATE_PROVINCE","COUNTRY_ID")

To view the name of the column group for a pair of columns in a table, you can also
use the SHOW_EXTENDED_STATS_NAME function, as shown in this example:

SQL> select
 sys.dbms_stats.show_extended_stats_name ('sh','customers',
 '(cust_state_province,country_id)') col_group_name
 from dual;

COL_GROUP_NAME

SYS_STU#S#WF25Z#QAHIHE#MOFFMM

The SHOW_EXTENDED_STATS_NAME function returns the name of the
statistics entry that the database creates for a user-specified extension. You can
drop a column group from a table by using the DROP_EXTENDED_STATS
procedure:

SQL> exec dbms_stats.drop_extended_stats('sh','customers','
 (cust_state_province, country_id)');

The DROP_EXTENDED_STATS function helps you drop the statistics entry
that the database created for a user-specified extension.

Collecting Statistics for Column Groups Use the method_opt argument
of the DBMS_STATS.GATHER_TABLE_STATS procedure to have the database
collect optimizer statistics on column groups. If you set the method_opt argument
to the value for all columns, the optimizer will collect statistics for all column
groups in the database.

You can also have the database create a new column group automatically as
part of its statistics gathering process, by using the for columns clause when
executing the DBMS_STATS package, as shown here:

SQL> exec dbms_stats.gather_table_stats (null,
 'customers',method_opt =>
 'for all columns size skewonly
 for columns (cust_state_province,country_id) skewonly');

Executing the GATHER_TABLE_STATS procedure as shown here results in the
creation of a new column group as well as the collection of statistics for that column
group.

Expression Statistics
When you apply a function to a column inside a query, the value of the column in
the resulting output would, of course, change as a result. Here’s a simple example:

SQL> select count(*)
 from customers
 where lower(cust_state_province)='ca';

Enhancements in Optimizer Statistics Collection 345

346 Chapter 6: Performance Enhancements

The lower function in the example returns a string in lowercase. The optimizer,
however, has only the original column statistics and not the estimates of the actual
values of the column or columns after they are transformed by the lower function.
The application of the function will affect the selectivity of the column, but the
optimizer has no way of knowing this. For computing statistics on predicates that
use expressions on a column, the optimizer used to simply assume a fixed selectivity
value of 1 percent, which led it to arrive at suboptimal plans for such predicates in
many occasions.

In Oracle Database 10g, the optimizer can collect expression statistics on some
types of expressions on columns, thus deriving more accurate selectivity estimates.
This functionality applies only to certain special cases where a function preserves
the data distribution characteristics of the original column, as is the case when you
use an expression such as TO_NUMBER. In addition, the database in the previous
release used dynamic sampling to get better estimates of built-in functions on
columns. In Oracle Database 11g, the database uses expression statistics that include
user-defined functions as well as function-based indexes. The new feature relies on
the virtual column infrastructure to create expression statistics, that is, statistics on
predicates involving expressions on columns.

As with multicolumn statistics (column groups), you can use the CREATE_
EXTENDED_STATS function to create statistics on a column expression, as shown
in this example:

SQL> select
 dbms_stats.create_extended_stats(null,'customers',
 '(lower(cust_state_province))')
 from dual;

You can also create expression statistics by using the for columns clause in
the GATHER_TABLE_STATS procedure, as shown here:

SQL> exec dbms_stats.gather_table_stats(null,'customers',
 method_opt =>'for all columns size skewonly
 for columns (lower(cust_state_province)) skewonly');

You can view the DBA_STAT_EXTENSIONS view to make sure your expression
statistics have been created successfully, as shown here:

SQL> select extension_name, extension
 from DBA_STAT_EXTENSIONS
 where table_name='CUSTOMERS';

EXTENSION_NAME EXTENSION
------------------------------ ------------------------------
SYS_STUBPHJSBRKOIK9O2YV3W8HOUE (LOWER("CUST_STATE_PROVINCE"))

The DBA_STAT_EXTENSIONS view shows information about all statistics
extensions in the database.

CERTIFICATION OBJECTIVE 6.04

Result Cache
The shared pool component of the SGA, as you are aware, stores the parsed
and compiled versions of SQL queries, which lets the database quickly execute
frequently run SQL statements and PL/SQL functions. In Oracle Database 11g, the
database uses the result cache, a new component of the SGA, to store the results of
both SQL queries and PL/SQL functions, thus letting it quickly return query and
function results without having to re-execute the code. Once a session executes
a query, it retrieves the results and stores them in the SQL query result cache. A
second session that executes the same query will retrieve the result directly from the
cache instead of from the disk. Obviously, this leads to tremendous improvements
in database performance. You don’t have to develop your own cache-management
policies, letting the database automatically cache the results for you. You can turn on
result caching only on a database-wide level. When any of the objects in the cached
results are modified, the database automatically invalidates the cached results that
reference the modified objects. Good candidates for caching are queries that access
many rows and return only a few rows, which is quite common in data warehousing
applications.

The result cache consists of two components: the SQL Query Result Cache
and the PL/SQL Function Result Cache, both sharing the same infrastructure. In
addition, there is also a new client result cache, which caches results on the client
side. In the following sections, I discuss the different types of result caches.

Result Cache Memory Pool
The result cache component of the SGA is formally called the Result Cache Memory
pool and it contains the results of both SQL queries as well as PL/SQL function
results. Within the Result Cache Memory pool, the SQL Query Result Cache
component stores the results of SQL queries and the PL/SQL Function Result Cache
component stores the values returned by PL/SQL functions. The default value of
the Result Cache Memory pool is based on the size of the initialization parameter
memory_target if you have set that parameter, or based on the sga_target
parameter or the shared_pool_size parameter if you have set one or both of
those instead.

Result Cache 347

348 Chapter 6: Performance Enhancements

Managing the Result Cache
Three new initialization parameters—result_cache_max_size, result_
cache_max_result, and result_cache_remote_expiration—help
you manage the result cache. The result cache draws its share of the memory from
the shared pool component of the SGA. You set the size of the result cache by
specifying a value for the initialization parameter result_cache_max_size.
The value of the result_cache_max_size parameter sets the high limit to the
memory allocated to the result cache from the SGA. As mentioned in the previous
section, by default, the database derives the size of the result cache from the values
of the shared_pool_size, sga_target, and memory_target initialization
parameters, depending on which of these parameters you have set. The value for the
result_cache_max_size parameter can range from 0 to a system-dependent
maximum.

By default, the result cache is always set to a positive number, which automatically
enables the result cache. You can disable the result cache by setting the result_
cache_max_size parameter to zero through an alter system statement, as
shown here:

SQL> alter system set result_cache_max_size=0;

Of course, if the result cache is disabled, the database can’t use the SQL Result
Cache or the PL/SQL Function Result Cache. The default value of the result_
cache_max_size parameter is dependent on other memory settings set through
initialization parameters such as memory_target and sga_target. The
minimum is 0.25 percent of the memory_target parameter, 0.5 percent of the
sga_target parameter, and 1 percent of the shared pool, depending on the
memory management system you choose for the instance. However, the cache
can’t be greater than 75 percent of the shared pool.

Use the result_cache_max_result parameter to specify the maximum
percentage of the result cache that a single cached result can use. The default value
is 5 percent and you can specify a value between 1 percent and 100 percent.

The result_cache_remote_expiration parameter specifies the length
of time for which a result that depends on remote objects will remain valid. The
default value for this parameter is 0, which implies that you mustn’t use remote
objects. Setting a positive value could lead to invalid results because it gives time
for the remote objects to be modified.

Caching SQL Results with a Result_Cache Hint
Let me use a simple example to show how to make the database cache the results
of a SQL query in the result cache. If the result_cache_mode initialization
parameter is set to manual, you must specify the ResultCache operator in the SQL

statement to cache the query results. In the following example, I specify a result_
cache hint to direct the database to cache the query results in the result cache:

SQL> select /*+ result_cache +*/
 2 department_id, avg(salary)
 3 from hr.employees
 4* group by department_id;
SQL>

The result_cache hint in Line 1 tells the database to cache this query’s
results. The hint will introduce the ResultCache operator into the execution plan
for this query. You can get an explain plan for this statement to verify that the
database caches the results for the query.

SQL> explain plan for select /*+ result_cache +*/
 2 department_id,avg(salary)
 3 from hr.employees
 4* group by department_id
SQL> /
Explained.
SQL>

You can view the explain plan for the query by using the DBMS_XPLAN.
DISPLAY procedure, as shown here:

SQL> select plan_table_output from table(DBMS_XPLAN.DISPLAY());
PLAN_TABLE_OUTPUT
--
Plan hash value: 1192169904
--
| Id | Operation | Name | Rows | Bytes | Cost |
(%CPU)| Time |
--
PLAN_TABLE_OUTPUT
--
| 0 | SELECT STATEMENT | | 11 | 77 | 4 |
 (25)| 00:00:01 |
| 1 | RESULT CACHE | 8nk7a7rfhymzy0s0b89ksn9bfz | | |
| 2 | HASH GROUP BY | | 11 | 77 | 4 |
 (25)| 00:00:01 |
| 3 | TABLE ACCESS FULL | EMPLOYEES | 107 | 749 | 3 |
 (0)| 00:00:01 |
PLAN_TABLE_OUTPUT
--
--
Result Cache Information (identified by operation id):
--
 1 - column-count=2; dependencies=(HR.EMPLOYEES);
name="select /*+ result_cache +*/

Result Cache 349

350 Chapter 6: Performance Enhancements

department_id,avg(salary)
from hr.employees
group by department_id"

15 rows selected.
SQL>

The ResultCache operator would lead the database to check the result cache
every time you execute the previous query to see if the results for this query are in
the cache from a previous execution of the query. If so, the database retrieves the
results from the result cache. Otherwise, the database executes the query and returns
the results, as well as stores the results in the result cache. The explain plan for the
statement shows that the optimizer will use the ResultCache operator when you
execute this query.

The previous example showed how to override the manual setting of the
result_cache_mode parameter, under which the database will cache a
query’s results only if you specify the result_cache hint in a SQL query. If the
result_cache_mode parameter is set to force, the database will cache query
results wherever it can. However, you can still force the database to bypass the
result cache by specifying the no_result_cache hint. The result_cache
and the no_result_cache hints always take precedence over the setting of the
result_cache_mode initialization parameter.

Using the DBMS_RESULT_CACHE Package
The new Oracle-supplied PL/SQL package DBMS_RESULT_CACHE contains
various procedures and functions that help you manage the portion of the shared
pool that the database allocates to the result cache, which is used by both the
SQL result cache and the PL/SQL function result cache. You can use the DBMS_
RESULT_CACHE package to perform operations such a checking whether the
result cache is open or closed, retrieving statistics on the result cache usage, and
flushing the result cache.

You must be able to explain
how the different procedures of the

DBMS_RESULT_CACHE package enable
you to manage the result cache.

Execute the MEMORY_REPORT function to view the current result cache
memory allocation, as shown here:

SQL> set serveroutput on
SQL> exec dbms_result_cache.memory_report
R e s u l t C a c h e M e m o r y R e p o r t
[Parameters]
Block Size = 1K bytes
Maximum Cache Size = 672K bytes (672 blocks)
Maximum Result Size = 33K bytes (33 blocks)
[Memory]
Total Memory = 5132 bytes [0.005% of the Shared Pool]
... Fixed Memory = 5132 bytes [0.005% of the Shared Pool]
... Dynamic Memory = 0 bytes [0.000% of the Shared Pool]

PL/SQL procedure successfully completed.
SQL>

The MEMORY_REPORT function shows the default allocation of memory to
the result cache. When you turn off result caching for the entire instance by setting
the result_cache_max_size initialization parameter to zero, executing the
MEMORY_REPORT procedure will show you this:

SQL> set serveroutput on
SQL> exec dbms_result_cache.memory_report
R e s u l t C a c h e M e m o r y R e p o r t
Cache is disabled.

PL/SQL procedure successfully completed.
SQL>

You can see that the result cache is disabled because you set the initialization
parameter max_result_cache_size to zero. Because the parameter is static,
you’ll have to restart the instance after making the change in the initialization
parameter file.

Here’s how to use the DBMS_RESULT_CACHE.STATUS function to ascertain
whether the result cache is enabled:

SQL> SELECT dbms_result_cache.status() FROM dual;

DBMS_RESULT_CACHE.STATUS()

ENABLED
SQL>

Result Cache 351

352 Chapter 6: Performance Enhancements

The DBMS_RESULT_CACHE.STATUS function tells you whether the cache
is available for use or not. In a RAC environment, it also shows if the cache is
available but synchronizing with the RAC nodes. Use the FLUSH procedure to
remove the contents of the result cache, as shown here:

SQL> begin
 2 dbms_result_cache.flush;
 3 end;
 4 /
PL/SQL procedure successfully completed.
SQL>

The DBMS_RESULT_CACHE package contains both a procedure as well as a
function named FLUSH. By default, both the procedure and the function will clear
the cache of existing results and return the freed memory to the system. In addition,
the DBMS_RESULT_CACHE.FLUSH function will return the value TRUE if it is
successful in removing all the objects from the result cache.

The Result Cache doesn’t automatically release memory that you allocate
to it. The cache will grow until it reaches its maximum size limit. You use the
DBMS_RESULT_CACHE.FLUSH procedure to purge the Result Cache.

The DBMS_RESULT_CACHE.FLUSH procedure comes in handy when you
load a new version of a function or a package that contains a function that includes
the result_cache hint. When you replace the function, the database doesn’t
automatically flush the contents of the result cache, which includes the results from
the earlier version of the function. In a case like this, first flush the contents of the
result cache after putting the result cache in the bypass mode, as shown here:

SQL> begin
 2 dbms_result_cache.bypass(TRUE);
 3 dbms_result_cache.flush;
 4 end;
 5 /
PL/SQL procedure successfully completed.
SQL>

Because both the SQL result cache and the PL/SQL function result cache use
the same result cache, the BYPASS procedure will affect both caches. Similarly,
executing the FLUSH procedure removes the cached results for both SQL
queries and PL/SQL functions.

The result cache doesn’t automatically release memory; it grows until it
reaches its maximum size. You can use the DBMS_RESULT_CACHE.FLUSH
procedure to purge the result cache. Make sure you disable the cache before
executing the DBMS_RESULT_CACHE.FLUSH procedure.

Once you put the result cache in the bypass mode, the database bypasses the
result cache and results aren’t cached any longer. Once you flush the contents of
the result cache, replace the function or the package with the result_cache
hint with new code that doesn’t use the hint. You can then execute the BYPASS
procedure with the value FALSE to turn off the bypassing of the result cache, as
shown here:

SQL> begin
 2 dbms_result_cache.bypass(FALSE);
 3 end;
 4 /
PL/SQL procedure successfully completed.
SQL>

Once you run the DBMS_RESULT_CACHE.BYPASS procedure, the result cache
is active again and when the database executes the new version of the function, it’ll
cache the function results once again and use them for subsequent executions of that
function. The database immediately stops using the cached results when you turn the
bypass mode on. It also stops saving new results in the result cache. The result cache
resumes its normal operation when you turn off the bypass mode.

Using Dynamic Performance Views
Use the following views to manage the query result cache:

■ V$RESULT_CACHE_STATISTICS Lists cache settings and memory
usage statistics

■ V$RESULT_CACHE_OBJECTS Lists all cached objects and their
attributes

■ V$RESULT_CACHE_DEPENDENCY Shows the dependency
information between the cached results and dependencies

■ V$RESULT_CACHE_MEMORY Shows all memory blocks and their
statistics

Result Cache 353

354 Chapter 6: Performance Enhancements

In the V$RESULT_CACHE_OBJECTS view, the STATUS column can take the
following values.

■ new The cached result is still being built

■ published The cached result is available for use by other queries

■ bypass Other queries will bypass the cached result

■ expired The cached result has crossed the expiration time limit

■ invalid The cached result is unavailable for use by other queries

You can find out information about the objects currently in the result cache by
using the following query:

SQL> select type,status,name from v$result_cache_objects;
TYPE STATUS NAME
------------ ----------- ------------------------------------
Dependency Published HR.COUNT_EMP
Result Published select /* + result_cache
 query name(q1) */
 last_name, salary from hr.employees
 order by salary
SQL>

The output of the previous query shows that there are two cached results in the
result cache.

The SQL Query Result Cache
You can ask the database to cache the results of a SQL query or a PL/SQL function.
The database caches the SQL query results in the SQL Query Result Cache component
of the Result Cache. You control the use of the SQL query result cache by setting
the result_cache_mode initialization parameter. This parameter specifies when
the optimizer will include the ResultCache operator inside a query’s execution plan.
Once you turn query result caching on, the database will cache all SQL query results

from that point on. The database uses a least
recently–used algorithm to age out the cached
results, thus making room for fresh query results.

Whether the database caches a SQL
query’s results in the Result Cache depends on
the setting of the result_cache_mode

How do you set up
the SQL Query Result Cache in your
database?

initialization parameter. Following is an explanation of how the values you specify
for the result_cache_mode parameter determine the caching behavior for SQL
results.

The result_cache_mode parameter has two possible values—manual
and force. The default value is manual. It’s a dynamic parameter that you can
modify with the alter session and the alter system statements. If you
set the value to manual (result_cache_mode=manual), the database won’t
automatically cache SQL query results. You must use the result_cache hint
in a query to make the database cache the query results. The optimizer adds the
ResultCache operator only if you annotate the query by adding a hint to it. Once
you specify the result_cache hint, the database executes the query once and
will serve the results to subsequent executions of that statement. As mentioned
earlier, the result_cache_mode parameter is set to manual by default, as
shown here:

SQL> show parameter result_cache_mode

NAME TYPE VALUE
------------------ ------- -------
result_cache_mode string MANUAL
SQL>

If you set the value of the parameter to force (result_cache_mode=force),
the database caches the results of all SQL queries, as long as it’s valid to do so, subject
to the availability of space in the cache. You can change the default value of manual
for the result_cache_mode parameter by specifying the value force in the
initialization parameter file. You can also dynamically change the setting at the session
level by executing the following alter session statement:

SQL> alter session set result_cache_mode=force;

Even if you set the result_cache_mode parameter to force, you can still
specify the no_result_cache hint in a SQL query to tell the database to bypass
the cache, as shown in this example:

SQL> select /*+ no_result_cache */ department_id, avg(salary)
 from employees
 group by department_id;

The no_result_cache hint takes precedence over the force setting for the
result_cache_mode initialization parameter, thus preventing the caching of
this SQL query’s results in the result cache.

Result Cache 355

356 Chapter 6: Performance Enhancements

The ResultCache Operator
As I mentioned earlier, when you set the result_cache_mode parameter to
manual, you can make the database use the result cache only by specifying the
result_cache hint in the query, as shown here:

SQL> select /*+ result_cache */ deptno, avg(sal)
 from emp
 group by deptno;

When you use the result_cache hint as shown in the example, the database
uses the ResultCache operator in the execution plan for the query. The ResultCache
operator will search the result cache when you execute the query. If the result exists
in the cache, the operator fetches the result from there. If the result doesn’t exist in
the cache, the operator executes the query and stores the result in the result cache.

Restrictions on Using the SQL Query Result Cache
You can’t use the SQL Query Result Cache for the following objects or SQL
functions.

■ Temporary tables

■ Dictionary tables

■ Non-deterministic PL/SQL functions

■ The currval and nextval pseudo functions

■ The sysdate, sys_timestamp, current_date, current_
timestamp, local_timestamp, userenv, sys_context
and sys_quid functions

If you’re trying to cache a user-written function used in a function-based index,
ensure that the function is declared with the deterministic keyword, meaning the
function will always return an identical output for a given set of input values. The
database won’t cache a query result that is based on a read-consistent snapshot of
data that’s older than the most recently committed version of the data. The database
also won’t cache a result involving any tables that are undergoing modifications in
an ongoing transaction during the current session. The database can cache flashback
queries, however.

You can’t cache subqueries, but you can use a result_cache hint inside an in-
line view. Doing this will disable certain optimizations between the outer query and
the inline view, such as view merging, predicate push-down, and column projection.
This means that the initial execution of the query takes a longer time in order to
maximize the reusability of the cached result. Here’s an example:

SQL> select prod_subcategory, revenue
 from (select /*+ result_cache */
 p.prod_category,p.prod_subcategory,
 sum(s.amount_sold) revenue
 from products p, sales s
 where s.prod_id = p.prod_id and
 s.time_id between to_date('01-JAN-2008','dd-MON-yyyy')
 and
 to_date(('01-DEC-2008','dd-MON-yyyy')
 group by rollup (p.prod_category, p.prod_subcategory))
 where prod_category = 'Men');

Once you execute this query, all subsequent executions of the query will run
much faster because the database stores the results of the query in the result cache.
Note that even queries with a different predicate value for PROD_CATEGORY in
the last line will execute much faster.

The PL/SQL Function Result Cache
The PL/SQL function result cache uses the same infrastructure as the SQL query
result cache, and caches the results of the PL/SQL functions in the result cache
component of the SGA. Ideal candidates for caching are functions that the database
invokes frequently but which depend on information that changes infrequently or
never. If you invoke a function with different combinations of parameter values, the
database will cache one result for every unique combination of parameter values.
The database uses the input parameters of the function as the lookup key. As with
the SQL result cache, the database employs a least recently used algorithm to age
out cached results. You can optionally specify the database objects that the cached
result depends on, and the database will invalidate the cached results when those
database objects change.

Creating a Cacheable Function
To make the database cache the results of a PL/SQL function, simply include the
result_cache clause in the function definition. You can optionally specify the
relies_on clause to make the database invalidate the cache when the database
modifies any of the listed tables or views. The following example shows how to
create a function that specifies that the database cache its results:

SQL> create or replace function
 get_dept_info (dept_id number) return dept_info_record
 result_cache relies_on (employees)
 is
 rec dept_info_record;
 begin

Result Cache 357

358 Chapter 6: Performance Enhancements

 select avg(salary), count(*) into rec
 from employees
 where department_id = dept_id;
 return rec;
 end get_dept_info;
/

The GET_DEPT_INFO function fetches the number of employees and their
average salary from a department that you specify. The result_cache clause
ensures that the database saves the results of the function’s execution in the result
cache. The optional relies_on clause specifies that the database must invalidate
the cached results of this function whenever the EMPLOYEES table changes.

How the PL/SQL Function Cache Works
The very first time you execute the body of a result-cached PL/SQL function with
a set of parameter values, the function will execute. The function will re-execute
under the following circumstances:

■ When the cached result for the parameter values is invalid because an object
specified in the relies_on clause has changed

■ When the function bypasses the result cache

■ When the cached result for the set of parameter values has aged out because
the system needs memory

Restrictions
In order for the database to cache its results, a function must satisfy all of these criteria:

■ It can’t be a pipelined table function.

■ It can’t have any out or in out parameters.

■ It is not defined in an anonymous block; it must be a named function.

■ It isn’t defined in a module that has invoker’s rights.

■ It can’t have any in parameters belong to the LOB type, ref cursor, and
collection, object, or record types.

In addition, the function must not have any side effects or depend on session-
specific settings or session-specific application contexts.

The Client Query Result cache
In addition to the SQL result cache and the PL/SQL function result cache, which
are server-side caches, Oracle Database 11g also provides a new Oracle Call
Interface (OCI) result cache to enable client-side caching of SQL result sets. All
OCI applications and drivers, such as JDBC-OCI, ODP.NET, OCCI, Pro*C/C++,
Pro*COBOL, and ODBC, can take advantage of the client result cache. The
OCI result cache, which is transparent to OCI applications, keeps the result data
set consistent with any changes in the session attributes or in the database itself.
OCI client caching leads to a tremendous improvement in query performance for
frequently repeated statements because the results are cached on the client itself,
thus avoiding the expensive round trip to the server. Because you use fewer server
resources as a result, this feature also enhances server scalability. In addition to a
lower server CPU usage, client result caching also relieves the server of additional
I/O burden to process frequently repeated queries.

The OCI result cache, which is on a per-process basis among multiple client
sessions, can use the same cached result sets. The database automatically refreshes the
result sets in the cache and manages memory allocation to the cache. If, during the
round trips the OCI process makes to the server, any database changes affect the result
set, the database automatically invalidates the cached result sets. That is, the database
keeps the client result set transparently consistent with changes on the server.

The big difference between the server-side result cache and the OCI client result
cache, of course, is that the OCI result cache is located on the client and, therefore,
doesn’t make any use of the server SGA. While the server result cache is enabled by
default, the client result cache is not. The server result cache and the client result
cache work independent of each other. You can enable the client result cache even
if you decide to disable the server result cache. Note that while the client result
cache caches only the results of top-level SQL queries, the server result cache can
also cache query fragments.

Client result caching is especially useful when applications produce repeatable or
small result sets, which tend to be static over time. Frequently executed queries are
also candidates for caching on the client. Lookup tables are particularly attractive
candidates for client caching.

Enabling and Disabling the Client Result Cache
As with the server-side result cache, you set the result_cache_mode initialization
parameter to control whether the database caches the query results on the client.

Result Cache 359

360 Chapter 6: Performance Enhancements

Here’s how the result_cache_mode initialization parameter settings affect
client-side result caching:

■ If you set the result_cache_mode parameter to manual, you must
annotate a query with the result_cache hint for the database to store
it in the client cache, as shown here:

SQL> select /*+ result_cache */ deptno, avg(sal)
 from emp
 group by deptno;

■ If you set the result_cache_mode parameter to force, the database
will store all SQL query results in the client cache whenever it’s possible to
do so. If you don’t want the database to use the client cache for a query, you
must specify the /*+ no_result_cache */ hint in the query, as shown here:

SQL> select /*+ no_result_cache */ deptno, avg(sal)
 from emp
 group by deptno;

You can set the result_cache_mode parameter with the alter system
or alter session statement.

As mentioned earlier, the no_result_cache hint overrides the force
setting of the result_cache_mode parameter, which would cause result caching
behavior without the hint.

How Client Result Caching Works
As I explained earlier, if you set the result_cache_mode initialization
parameter to force, the database automatically caches all query results on the
client side, and you don’t have to do anything to cache results on the client. You
can, however, explicitly specify that the database not cache the results by using the
/*+ no_result_cache */ hint in a query. And if you set the parameter to a
value of manual, you must include the /* result_cache */ hint in a query
for the database to cache the result on the client.

When you specify either the result_cache or the no result_cache hint,
you must add the hint to the SQL text you pass to the OCIStmtPrepare() and
the OCIStmtPrepare2() calls.

Managing the Client Result Cache
You manage the client result cache by setting the following initialization parameters:

■ client_result_cache_size This parameter determines the
maximum size of the client per-process result set cache (in bytes). The
setting of the parameter also determines if the cache is enabled. By setting
this parameter to its default value of zero, you can disable the client
result cache. By default, the database allocates every OCI client process the
maximum size specified by this parameter. As I explain later, you can override
this parameter with the server-side configuration parameter oci_result_
cache_max_size. If you disable client result caching on the server itself,
the client result cache will remain disabled, even if you set the client_
result_cache_size parameter to a positive value on the client.
The following query shows the current value of the client_result_
cache_size parameter:

SQL> show parameter client_result_cache_size

NAME TYPE VALUE
--------------------------- ----------- -----
client_result_cache_size big integer 0
SQL>

 As this parameter is static, you must restart the database to affect a change in
the maximum size of the client result cache.

■ client_result_cache_lag This parameter determines the lag time
for the client result cache. If you set a low value for this parameter, it results
in more round trips to the database from the OCI client library to keep the
client result cache in sync with the database. If your OCI application accesses
the database only infrequently, you can set this parameter to a low value.

You can also use a client configuration file, which overrides the parameters you
set in the server initialization parameter file. You can use the sqlnet.ora file to specify
the parameter values on the client side. When you use the client configuration file,
you can specify the following three parameters:

■ oci_result_cache_max_size enables you to set the maximum size
of the query cache for a process (in bytes). This parameter overrides the
value you set for the client_result_cache_lag_size initialization
parameter on the server.

■ oci_result_cache_max_rset_size enables you to set the maximum
size (in bytes) of a single query result in the query cache for a process.

■ oci_result_cache_max_rset_rows enables you to set the maximum
size of a query result set (in rows) for a process.

Result Cache 361

362 Chapter 6: Performance Enhancements

You can specify the result_cache and the no_result_cache hints in
OCI applications, as with the SQL statements for the SQL query cache. However,
the OCIStmtExecute() mode settings override the SQL hints.

Monitoring the Client Result Cache
The CLIENT_RESULT_CACHE_STATS$ view shows the client result cache settings
and the cache usage statistics. The view includes information such as the number of
results cached on the client, the number of cache hits, and the number of invalidated
result sets.

Restrictions
You can’t cache queries that include the following objects on the OCI client, even
though you may cache them in the server-side result cache:

■ Views

■ Remote objects

■ Complex types in the select list

■ Flashback queries

■ Queries that include PL/SQL functions

■ Queries that reference VPD polices on the tables

CERTIFICATION OBJECTIVE 6.05

Adaptive Cursor Sharing
You use the cursor_sharing initialization parameter to specify whether only
identical SQL statements or statements that differ in some literals can share a
cursor. It is well known that using bind variables improves both performance and
scalability because they reduce parse time and memory usage, especially in databases
with heavy concurrent usage. However, what is not as well known is the fact that
using literal values instead of bind variables leads to better execution plans because
the optimizer has better information when dealing with literal values. Thus, forced
cursor sharing (by specifying cursor_sharing=exact or similar) can lead

to suboptimal execution plans for some statements because of the specific values of
the bind variables in a SQL query.

Oracle uses the bind peeking technique, which allows the optimizer to peek at or
to examine the bind values when you first execute a SQL statement. Based on the
values it sees, the optimizer will formulate execution plans for subsequent executions
of the same statement. The database performs bind peeking when it first hard parses
a statement. If the data is heavily skewed, you run into a major problem with this
bind peeking technique. The optimizer will base its execution plans on the initial
values it sees during bind peeking. If, based on the values it observes, it decides that
the plan needs to use an index, it will continue to include the index, even if the
majority of values of the bind variable may indicate that using a full scan is actually
a better strategy.

Under bind peeking, when you first execute a query, the optimizer hard-parses the
statement and peeks at the bind variable in the process to glean an idea about the
variable’s actual values. The optimizer creates an explain plan based on the values
it observed during its peeking and uses the same plan for subsequent executions
of the query. If, during bind peeking, the optimizer sees representative values for
the bind variable, everything is fine because that means the variable has a uniform
selectivity. If the table is heavily skewed, on the other hand, the initial values the
optimizer gleans during the bind peeking stage are critical. The skewed distribution
means the optimizer’s execution plan for the statement is likely to be correct only
for those executions that use the same values for the bind variable as those observed
by the optimizer during the initial “peeking.” For other values of the bind variables,
the execution plan could be way off. Traditionally, you avoided this problem by
abandoning the use of bind variables altogether and using hard-coded values for
the variables instead.

Oracle Database 11g introduces an adaptive cursor sharing feature to resolve
the conflict between cursor sharing, which is supposed to increase efficiency, and
query optimization. Under adaptive cursor sharing, when the database thinks that
the cost of generating a new execution plan for a SQL statement is low enough
that it outweighs the benefits of using the same cursor, it will generate new child
cursors. The database still tries to keep the number of child cursors it generates to
a minimum so the database can take advantage of cursor sharing, while avoiding
automatically sharing the same cursor, as was the behavior in the previous release.

Adaptive cursor sharing is an automatic feature of Oracle Database 11g, and
you can’t turn it off. You don’t have to configure any initialization parameters
to avail yourself of this feature.

Adaptive Cursor Sharing 363

364 Chapter 6: Performance Enhancements

How Adaptive Cursor Sharing Works
Oracle Database 11g uses two key concepts—bind sensitivity of a cursor and a
bind-aware cursor—to implement the new adaptive cursor sharing feature. A
bind-sensitive cursor is one where caching the values of the bind variable could
potentially lead to different execution plans. The database observes the different
values passed to the bind variable before deciding whether to change the execution
plan or to keep it the same. If the database estimates that the values are so different
that it must work out a new execution plan, it marks the cursors as bind sensitive.
If the database marks a cursor for bind-sensitive cursor sharing, the cursor is termed
bind-aware. Adaptive cursor sharing works independent of the cursor sharing feature.
Whether a user provides the bindings or the database replaces the literal values of a
variable with system-generated bind variables doesn’t matter.

Let’s consider an example to demonstrate how adaptive cursor sharing works. The
database executes the following query multiple times:

SQL> select * from hr.employees where salary = :1
 and department_id = :2;

The statement shown here uses two bind variables, one for the SALARY column
and the other for the DEPARTMENT_ID column.

The very first time the database executes the SQL statement, it hard parses the
statement and marks the cursor as a bind-sensitive cursor if it peeks at the bind
values and uses histograms to compute the selectivity of the predicate with the
two bind variables. The database stores the selectivity information, such as (0.15,
0.0025), in a selectivity cube. The database associates each plan with a selectivity
cube. The selectivity cube provides a selectivity range for an execution plan. If
the new bind values fall in the cube—that is, if the values lie in the selectivity
range—the database will use the same plan. Otherwise, the optimizer generates a
new execution plan for the statement. The database then monitors the execution of
the statement to decide whether it should treat the cursor as a bind-aware cursor for
each subsequent execution. The database soft parses the statement and compares the
execution statistics to those of the first execution.

If the database determines that a cursor is bind-aware, it uses bind-aware cursor
matching during the next execution of the query. Using the selectivity estimates
that it stored in the selectivity cubes, the database performs a cursor check for the
query. If the new bind values fall in the selectivity cube, the database will use the
same plan. Otherwise, the database assumes that a matching child cursor hasn’t
been found and performs a hard parse to generate a new child cursor with a different
execution plan. If the new hard parse produces an identical execution plan, it merges
the child cursors. This means that when the bind values are approximately the same,
SQL statements will share an execution plan.

If you’re using SQL Plan Management by setting the parameter optimizer_
capture_sql_plan_baselines to TRUE, the very first plan that the database
captures for a SQL statement with bind variables is marked as the SQL plan baseline
for that statement. If new plans are found later on, they are added to the plan history
for that SQL statement and marked for verification, but aren’t used. Only the first
generated plan based on the first set of bind values is used, even though the adaptive
cursor sharing feature comes up with new plans based on a new set of bind values.
Under SQL Plan Management, the database doesn’t use the other plans until it has
verified them not to cause performance deterioration. The workaround is to disable
the SQL Plan Management feature to begin with, by setting the optimizer_
capture_sql_plan_baselines parameter to FALSE. Run your application
and once the database populates the cursor cache with several plans with different
bind values, manually load the entire plan from the cursor cache in the SQL plan
baseline for that SQL statement. Now, by default the database marks all the plans
for a statement as SQL plan baselines.

Monitoring Adaptive Cursor Sharing
You can monitor adaptive cursor sharing by using the new IS_BIND_SENSITIVE and
IS_BIND_AWARE columns in the V$SQL view. The IS_BIND_SENSITIVE column
indicates whether a cursor is bind sensitive. The IS_BIND_AWARE column indicates
whether the database has marked a cursor to use bind-aware cursor sharing. Here’s a
query that uses the two columns described here:

SQL> select sql_id, executions, is_bind_sensitive, is_bind_aware
 from v$sql;
SQL_ID EXECUTIONS I I
-------------- ----------- --- ---
57pfs5p8xc07w 21 Y N
1gfaj4z5hn1kf 4 Y N
1gfaj4z5hn1kf 4 N N
...
294 rows selected.
SQL>

The IS_BIND_SENSITIVE column shows
whether the optimizer will generate multiple
execution plans based on the bind variable
values. In the example, the columns show Y as
the value, meaning the database considers the
cursor bind sensitive.

Explain the difference
between the IS_BIND_SENSITIVE and
IS_BIND_AWARE columns in the V$SQL
view.

Adaptive Cursor Sharing 365

366 Chapter 6: Performance Enhancements

If, during its observation of the initial values of the bind variable, the database
figures that the various values for the variables could potentially result in a different
execution plan, it marks the cursor as bind sensitive, storing a value of Y in the
IS_BIND_SENSITIVE column. Thus, a cursor marked as bind sensitive is a
potential candidate for a change in its execution plan. The database waits for some
more executions of the statement to find out more about the cursors, and either
changes the execution plan or decides to keep it intact. If it changes the execution
plan for a statement, it marks the cursor as bind aware and stores the value of Y in
the IS_BIND_AWARE column. Cursors marked as bind aware are cursors for which
the database has actually changed the execution plans based on its observation of
the bind variable values.

If the IS_BIND_AWARE column shows a value of Y, the optimizer is planning to
use multiple execution plans, depending on the value of the bind variable. This means
that the optimizer knows that the bind variable values result in different data patterns
and thus the statement may need hard parsing when the database executes it again.

In addition to the new columns in the V$SQL view, there are three new views to
support the adaptive cursor sharing feature, as shown here:

■ V$SQL_CS_HISTOGRAM Shows the distribution of the execution count
across the execution history histogram.

■ V$SQL_CS_SELECTIVITY Shows the selectivity cubes or ranges stored in
cursors for predicates with bind variables.

■ V$SQL_CS_STATISTICS Contains the execution statistics of a cursor
using different bind sets gathered by the database to decide on whether it
should use bind-aware cursor sharing. The view contains execution statistics
such as buffer gets and CPU time.

INSIDE THE EXAM

The exam will definitely query your
understanding of the new ADDM features.
You must be aware of the new global mode
and the instance mode of the ADDM.
Pay particular attention to the procedures
that add directives to the ADDM, such as
INSERT_SQL_DIRECTIVE and INSERT_

SEGMENT_DIRECTIVE. How does the
execution of the INSERT_SEGMENT_
DIRECTIVE procedure constrain ADDM?

In terms of the new automatic memory
management feature, you can expect to be
questioned about the setting of the new
initialization parameters memory_target

INSIDE THE EXAM

CERTIFICATION SUMMARY
In Oracle Database 11g, you can use the ADDM in a special database mode to analyze
the performance of an entire RAC system. You can also use DDM in a partial mode
to analyze a subset of the instances in a cluster. You could also use several new finding
directives to limit or filter the ADDM advisor findings.

The initialization parameters memory_target and memory_max_target let
you enable automatic memory management. Under automatic memory management,
the instance automatically calibrates the sizes of the SGA and the PGA based on the
database workload.

You can set preferences such as publish, stale_percent, and incremental
at the table, schema, database, and global level to override the default behavior of the
GATHER_STATS procedure and automatic statistics gathering job. You can now
collect global statistics for a partitioned table on an incremental basis, which is much
faster than collecting statistics for the whole table. The deferred statistics publishing
feature lets you test new statistics before publishing them. Until you publish the new
statistics, they remain as pending statistics in a pending area.

and memory_max_target. What happens
if you omit the memory_target parameter
but set the memory_max_target parameter?

The exam will review the optimizer statistics
collection new features such as extended
statistics. The exam is likely to contain a
question about the new multicolumn statistics
enhancement. You must know how to use
the DBMS_STATS.CREATE_EXTENDED_
STATS function. What kind of column name
does this function return? You must know how
to set the appropriate attributes (granulari
ty=incremental) for efficiently gathering
global statistics. The exam will likely contain a
question or two on the new pending statistics
feature. Review the process of publishing
pending statistics with the help of the DBMS_
STATS.PUBLISH-PENDING_STATS
procedure. You must know how to set the new
initialization parameter result_cache_

mode and the values it can take. In terms
of the SQL Query Result Cache, you should
understand how to use the new parameters
result_cache_max_size, result_
cache_max_result, and result_
cache_max_expiration. How do you
use the DBMS_RESULT_CACHE package to
manage memory allocation for the result cache
and to view the status of the cache? Regarding
the new client-side query cache, you must
know how to set the initialization parameters
client_result_cache_size and
client_result_cache_lag.

You should understand how the adaptive
cursor sharing feature works. Under what
circumstances does the optimizer create new
plans and when does it reuse an existing plan?
What are bind-aware and bind-sensitive
cursors?

Certifi cation Summary 367

368 Chapter 6: Performance Enhancements

You can use the multicolumn statistics feature to collect statistics for related
column groups, thus improving the selectivity estimates. Expression statistics enable
you to collect statistics of some types of expressions on columns, enhancing the
accuracy of the selectivity estimates.

The result cache is a special area in the database where the database stores the
results of frequently executed SQL statements and PL/SQL functions. Performance
is significantly better when the database uses the result cache because the database
simply retrieves the results for these statements and functions from memory instead
of re-executing the code. The client query result cache operates on the client side to
cache the results of frequently executed queries, saving resources and reducing network
usage in the process. The Adaptive Cursor sharing feature is an attempt to resolve the
inherent conflict between query optimization and efficient processing of queries.

Two-Minute Drill 369

TWO-MINUTE DRILL

ADDM Enhancements

❑ You can use the ADDM to analyze an entire RAC system.

❑ You can deploy the ADDM in Database, Instance, and Partial analysis modes.

❑ The Database analysis mode analyzes performance of all instances.

❑ The Instance mode analyzes a particular instance.

❑ The Partial mode analyzes a subset of the instances in an Oracle RAC.

❑ Use the SET_DEFAULT_TASK_PARAMETER procedure to specify the
mode in which you want to run the ADDM.

❑ Use the new package DBMS_ADDM to manage the ADDM.

❑ Oracle Database 11g classifies and names the ADDM advisor findings.

❑ The new DBA_ADVISOR_FINDINGS view shows which findings occur
most frequently in the database.

❑ You can use an ADDM finding directive to limit or filter the ADDM findings.

❑ You can create directives to limit findings reports of a specific finding type, a
specific SQL statement, or a segment or a set of segments.

❑ The FILTERED column in the DBA_ADVISOR_ACTIONS view shows if a
row was filtered out by a directive.

Automatic Memory Management

❑ Under automatic memory management, the database moves memory between
the SGA and the PGA as necessary based on the workload.

❑ You set up automatic memory management by using the initialization
parameters memory_target and memory_max_target.

❑ If you set the sga_target and pga_target parameters along with the
memory_target parameter, the database will consider them the minimum
values for the SGA and PGA.

❑ By default, the memory_max_target parameter’s value is set to that of the
memory_target parameter.

❑ The default value of the memory_target parameter is zero, which means
that automatic memory management is disabled by default.

✓

370 Chapter 6: Performance Enhancements

❑ If you set the memory_max_target parameter but leave out the memory_
target parameter, automatic memory management will be disabled.

❑ You can specify automatic memory management when you create a database
using the DBCA.

Enhancements in Optimizer Statistics Collection

❑ The Statistics Preference feature allows you to easily modify statistics
collection settings for specific database objects by overriding default behavior
of procedures in the DBMS_STATS package.

❑ The DBA_TAB_STATS_PREFS view shows current settings for statistics
preferences.

❑ You can set preferences at the table, schema, database, and global level.

❑ Preferences you set at the table level override database and global-level
preferences.

❑ The three new statistics preferences you can set in Oracle Database 11g are
publish, stale_percent, and incremental.

❑ You can use the SET_PREFS procedure of the DBMS_STATS package to set
preferences at various levels.

❑ In Oracle Database 11g, the database maintains global statistics incrementally,
by scanning only the changed partitions and using the old statistics for the
unchanged partitions.

❑ You must specify the granularity level as global and mark a table as
incremental, to collect global statistics on an incremental basis.

❑ Oracle recommends that you let the estimate_percent attribute remain
at the default value of auto_sample_size to take advantage of a new row
sampling technique that offers very accurate results with small sample sizes.

❑ Pending statistics are private statistics that aren’t yet made available to the
optimizer.

❑ The GET_PREFS procedure can tell you whether the database will
automatically publish new optimizer statistics.

❑ Use the SET_TABLE_PREFS and the SET_SCHEMA_PREFS procedures to
change the publishing setting for statistics.

❑ Set the initialization parameter optimizer_pending_statistics to
TRUE, to make all pending statistics available to the optimizer.

Two-Minute Drill 371

❑ You can also use the PUBLISH_PENDING_STATS procedure to make all
pending statistics public.

❑ Using statistics for a column group enables you to estimate the combined
selectivity of related columns in a table.

❑ You use the CREATE_EXTENDED_STATS function to create a new column
group.

❑ You can have the database collect statistics for column groups by using the
METHOD_OPT parameter of the GATHER_TABLE_STATS procedure.

❑ The optimizer can now collect expression statistics that include user-defined
functions as well as function-based indexes.

❑ You can execute either the CREATE_EXTENDED_STATS function or the
GATHER_TABLE_STATS procedure to collect extension statistics.

Result Cache

❑ The result cache is a component of the shared pool, and the database uses it
to store the results of both SQL queries and PL/SQL functions.

❑ Good candidates for result caching are queries that access many rows and
return only a few rows.

❑ Both components of the server-side result cache—the SQL query result cache
and the PL/SQL function cache—share the same infrastructure.

❑ The database automatically determines the size of the Result Cache Memory
pool.

❑ You set the size of the result cache by using the result_cache_max_
size parameter.

❑ You can disable the result cache by setting the result_cache_max_
size parameter to zero.

❑ The result_cache_max_result parameter specifies the maximum
percentage of the result cache that can be used by a single cached result.

❑ The result_cache_remote_expiration period determines the
length of time for which a result that uses remote objects will remain valid.

❑ There are several procedures in the DBMS_RESULT_CACHE procedure
that help you manage the result cache.

❑ If you set the result_cache_mode parameter to manual, the database
won’t cache any results unless you use a result_cache hint in a query.

372 Chapter 6: Performance Enhancements

❑ If you set the result_cache_mode parameter to force, the database
caches all results, unless you specify the no_result_cache hint in a query.

❑ When you use the result_cache hint in a query, the database uses the
ResultCache operator in the execution plan for that query.

❑ The relies_on clause inside a PL/SQL function specifies that the database
invalidate the cached results of the function when the tables listed under this
clause are modified.

❑ The OCI result cache enables client-side caching of SQL result sets.

❑ The server result cache and the client result cache work independent of each
other.

❑ As with the server-side result cache, you use the result_cache_mode
initialization parameter to manage the client-side result caching.

❑ You set the client_result_cache_size parameter to a positive value
to enable client-side result caching.

❑ The client_result_cache_lag parameter determines the lag time
for the client result cache. You can use a client configuration file to set
parameters that will override the parameters affecting the client result cache
that you set in the server initialization parameter file.

Adaptive Cursor Sharing

❑ Bind peeking by the optimizer can lead to inefficient execution plans,
because of skewed data distributions.

❑ Adaptive cursor sharing attempts to resolve the inherent conflict between
the efficiency brought about by using bind variables and query optimization.

❑ Adaptive cursor sharing is automatic in Oracle Database 11g.

❑ If the optimizer generates multiple execution plans based on the bind variable
values, the database considers the cursor bind sensitive.

❑ If the optimizer knows that the bind variable values result in different data
patterns, the database considers the SQL statement bind aware.

SELF TEST

ADDM Enhancements
 1. In the Partial mode of analysis, ADDM analyzes performance for
 A. Part of the day
 B. Part of the database
 C. Part of all tables in a database
 D. A subset of instances in the RAC

 2. In the following example, what do the numbers 5 and 50 mean?

SQL> begin
 dbms_addm.insert_finding_directive(NULL,
 'SGA Directive',
 Undersized SGA',
 5,
 50);
: tname := 'Test ADDM Task';
 dbms_addm.analyze_inst(:tname,1634,1635);
end;

 A. The number of average active sessions and the percent of the total database time
 B. Total number of sessions and the percent of the total database time
 C. The number of average active sessions and the total database time
 D. The number of average active sessions and the time for which the ADDM analysis must run

 3. What does the insert_sql_directive do when you are executing an ADDM job?
 A. Inserts SQL statements that the directive must test
 B. Inserts SQL statements that the ADDM must test
 C. Creates a directive to limit a reporting on specific SQL statements
 D. Inserts a directive to limit a reporting on specific SQL statements

Automatic Memory Management
 4. If you set the memory_target parameter, which of the following would be true?
 A. If you set the sga_target and the pga_aggregate_target parameters, then the

 database will override your settings for these two components.
 B. If you also set the sga_target and the pga_aggregate_target parameters, they

 will be considered the minimum values for the SGA and PGA allocations of memory.
 C. If you set the SGA but not the PGA, the database will not automatically tune SGA.
 D. If you set the PGA but not the SGA, the database will not automatically tune PGA.

Self Test 373

374 Chapter 6: Performance Enhancements

 5. If you don’t set the memory_target initialization parameter or explicitly set it to zero, the
following would be true:

 A. If you set neither the pga_aggregate_target nor the sga_target parameters,
 SGA is not automatically tuned, but the PGA is.

 B. The database will not automatically tune the SGA or the PGA.
 C. The database will always automatically tune the SGA.
 D. Automatic memory management will be disabled.

 6. What happens if you exclude the memory_max_target parameter when you use automatic
memory management?

 A. The database will have no maximum memory usage setting.
 B. The memory_max_target parameter will be set to the value of the memory_target

 parameter.
 C. The database can only manage the SGA automatically, but not the PGA.
 D. If you set the memory_max_target initialization parameter but not the memory_

 target parameter, the memory_target parameter’s value will be the same as the value
 of the memory_max_target parameter.

Enhancements in Optimizer Statistics Collection

 7. What does the database do when collecting statistics if you specify the granularity level as
global and mark a table as incremental?

 A. The database collects global statistics on an incremental basis.
 B. The database collects partition statistics on an incremental basis.
 C. The database won’t collect any statistics at all.
 D. The database collects incremental statistics on a global basis.

 8. Which of the following statements or commands will let the optimizer make use of pending
statistics for its execution plans?

 A. exec dbms_stats.export_pending_stats('hr','employees');

 B. exec dbms_stats.import_pending_stats('hr','employees');

 C. exec dbms_stats.publish_pending_stats(null, null);

 D. exec dbms_stats.delete_pending_stats('hr','employees');

 9. What argument in the DBMS_STATS package do you use to make the database collect
optimizer statistics on column groups?

 A. method_opt argument of the GATHER_TABLE_STATS procedure
 B. estimate_only argument of the GATHER_TABLE_STATS procedure
 C. method_opt argument of the CREATE_EXTENDED_STATS function
 D. method_opt argument of the CREATE_PREFS procedure

Result Cache

10. What does the result_cache_max_result parameter do?
 A. It sets the maximum time for which a result will remain valid in the result cache.
 B. It sets the maximum number of times the database can reuse a result in the result cache.
 C. It specifies the maximum percentage of the result cache that a single cached result can use.
 D. It specifies the maximum number of cached results in the result cache at any given time.

11. When the result cache grows until it reaches its maximum size,
 A. The result cache automatically releases the memory.
 B. You must use the BYPASS procedure to bypass the result cache.
 C. You must restart the result cache.
 D. You must use the FLUSH procedure to purge the result cache.

12. If you set the result_cache_mode parameter to the value force in order to make the
database cache SQL query results,

 A. The database determines which queries to cache.
 B. You can override the default behavior by specifying the result_cache hint in a query.
 C. You can override the default behavior by specifying the no_result_cache hint in a query.
 D. The database will cache only the results with the result_cache hint in a query.

Adaptive Cursor Sharing

13. A bind-sensitive SQL query is one where
 A. During its observation of the initial values of the bind variable, Oracle comes to the

 conclusion that the various values could potentially result in a different execution plan,
 so it marks the cursor as bind sensitive.

 B. Caching the bind variable values leads to only a single execution plan.
 C. A query’s results depend on the bind variable values.
 D. The database determines that changing the execution plan will lead to inefficient results.

14. If you’re using SQL Plan Management,
 A. The very first plan captured for a statement is the only plan that the database can ever use.
 B. If new plans are found, they automatically become a part of the SQL plan baseline for that

 statement.
 C. If new plans are found, they are added to the plan history for that statement, verified, and

 used automatically.
 D. If new plans are found, they are added to the plan history for that statement and marked for

 verification, but they aren’t automatically used.

Self Test 375

376 Chapter 6: Performance Enhancements

15. When you use adaptive cursor sharing, if new values for a bind variable are within the
selectivity cube of bind values for that cursor,

 A. The database will use a different execution plan.
 B. The database will use the same execution plan and perform a hard parse.
 C. The database will use the same execution plan and doesn’t perform a hard parse.
 D. The database doesn’t use an explain plan for that SQL statement.

LAB QUESTION
Show you can use the deferred statistics publishing feature to test the statistics the optimizer collects
before publishing them. Use the HR schema and the EMPLOYEES table to demonstrate how you’d
implement the feature.

SELF TEST ANSWERS
ADDM Enhancements

 1. � D is correct because you use this mode of analysis to let the ADDM analyze a subset of the
instances in a RAC system.
� A is incorrect because the partial mode has to with a subset of instances in the RAC
system, not the length of time for which the ADDM analysis task runs. B is incorrect because
you can’t use the ADDM to analyze only a part of the database. C is incorrect because the
ADDM analyzes all the tables in a database under all three modes in which you can run it.

 2. � A is correct because the first name refers to the number of average active sessions and the
second number, the percent of total database time.
� B, C, and D are incorrect because they refer to the wrong parameters.

 3. � C is correct because you use the insert_sql directive to limit the ADDM findings on
specific SQL statements.
� A is incorrect because the insert_sql directive doesn’t insert SQL statements for
the directive to test. B is incorrect because you can’t use this directive to specify any SQL
statements for the ADDM to test. The ADDM can only use the SQL statements it finds in the
Automatic Workload Repository. D is incorrect because the insert_sql directive doesn’t
insert a directive, but creates a directive.

Automatic Memory Management

 4. � B is correct. If you set the memory_target parameter, the database will treat any values
you assign that you set for the sga_target and the pga_aggregate_target parameters
as the minimum values for the SGA and the PGA, respectively.
� A is incorrect because the database doesn’t ignore the values you set for the sga_target
and the pga_aggregate_target parameters under automatic memory management.
Rather, the database considers the values you set for these two parameters as the minimum
values for the SGA and the PGA, respectively. C is incorrect because the database will
automatically tune the SGA. D is incorrect because the database will always tune the PGA.

 5. � A and D are correct. A is correct because if you don’t set the pga_aggregate_target
and the sga_target parameters, the database won’t automatically tune the SGA component.
The database always automatically tunes the PGA. D is correct because setting the memory_
target parameter to zero disables automatic memory management.
� B is incorrect because even if you don’t institute automatic memory management, the
database always automatically tunes the PGA. C is incorrect because if you don’t set the
memory_target parameter or set it to zero, the database doesn’t automatically tune the
SGA. You must specify the sga_target parameter to set your own value for this parameter.

Self Test Answers 377

378 Chapter 6: Performance Enhancements

 6. � D is correct. If you don’t set the memory_max_target parameter, it defaults to the value
you set for the memory_target parameter.
� A is incorrect because the database will have a maximum memory usage setting, which
will be the same as the value for the memory_target parameter. B is incorrect because the
instance will have a maximum memory setting, the value being that set by the memory_max_
target parameter. C is incorrect because the database automatically manages both SGA and
PGA when you set the memory_target parameter. The fact that you didn’t set a value for
the memory_max_target has no bearing on whether the database automatically manages
the SGA or the PGA.

Enhancements in Optimizer Statistics Collection

 7. � A is correct because the database will collect global statistics for the partitioned table on an
incremental basis. The database will look at only the changed contents of the table instead of
scanning the entire table when it collects statistics.
� B is incorrect because the database collects global statistics on incremental basis, not
partition statistics on an incremental basis. C is incorrect because the database does collect
global incremental statistics. D is incorrect because the database collects global statistics on an
incremental basis.

 8. � C is correct. The PUBLISH_PENDING_STATS procedure allows the optimizer to make
use of the pending statistics for a table.
� A is incorrect because the EXPORT_PENDING_STATS procedure only allows you to
export the pending statistics on objects to a test database, where you can test their impact. B is
incorrect because the IMPORT_PENDING_STATS procedure enables you to import pending
statistics from one database to another for testing purposes, but won’t help you publish the
statistics. D is incorrect because the DELETE_PENDING_STATS procedure lets you delete the
pending statistics on an object if they don’t prove useful after testing.

 9. � A is correct. You use the method_opt argument of the GATHER_TABLE_STATS
procedure to let the database collect optimizer statistics on a column group.
� B, C, and D are incorrect because they either refer to a wrong or nonexistent argument of a
function or procedure.

Result Cache

10. � C is correct. The result_cache_max_result parameter lets you specify the maximum
percentage of the result cache that any single cached result can use.
� A is incorrect because the parameter has nothing to do with the amount of time a result will
remain valid. A result will remain valid as long as the underlying objects don’t change and there
is enough free memory in the result cache. B is incorrect because there is no limit on the number

of times the database can reuse a result stored in the result cache. D is incorrect because you can’t
specify the number of cached results that the database can store in the result cache. The number
of results in the cache depends on the memory the database allocates to the result cache.

11. � A is correct because the result cache automatically releases the memory being used by
stored results when the result cache reaches its maximum size. The results are removed on the
basis of a least recently used (LRU) algorithm.
� B is incorrect because if you use the BYPASS procedure, you won’t be able to take
advantage of the result cache any longer. You can free up space by executing the FLUSH
procedure instead to purge the result cache. C is incorrect because you don’t have to resort to
disabling and enabling the result cache to free up space for new results. While this will provide
room for storing new results, the fact that the result cache has reached its maximum size implies
that there are several results already cached there. By disabling and then enabling the result
cache, which has the effect of restarting the result cache, you’ll be removing all the cached
results. D is incorrect because while you can execute the FLUSH procedure to free up space in
the result cache, you don’t have to do it.

12. � C is correct because you can override the default behavior of the database when you set the
auto option, which is to cache a query result based on its frequency of execution, by specifying the
no result cache hint in a query.
� A, B, and D are incorrect. A is incorrect because the database doesn’t make a determination as
to which queries to cache. It simply caches all queries wherever it is possible to do so. B is incorrect
because you don’t have to set the result cache hint in the statements; the database determines
which queries to cache. D is incorrect because you don’t need to specify the result_cache hint
when you set the result_cache_mode parameter to force. Under the force option, the
database will cache all results wherever it’s possible to do so.

Adaptive Cursor Sharing

13. � A is correct. If, during its observation of the initial values of the bind variable, the database
determines that the various values could potentially result in a different execution plan, it
marks the cursor as bind sensitive, The IS_BIND_SENSITIVE column in the V$SQL view
shows whether the optimizer will generate multiple execution plans based on the bind variable
values. If the column shows Y as the value, it means that the database considers the cursor bind
sensitive.
� B is incorrect because the database doesn’t use the same execution plan for a bind-sensitive
query. C is incorrect because a bind-sensitive query doesn’t mean that its results depend on the
bind variable values. Even a query that’s not bind sensitive will depend on the bind variable
values. D is incorrect because a bind-sensitive query will actually benefit from the use of
different execution plans.

Self Test Answers 379

380 Chapter 6: Performance Enhancements

14. � D is correct. If you’re using SQL Plan Management, the database adds all new plans for
a query to the plan history for that statement. The database will mark these new plans for
verification and will mark them as accepted plans only after it successfully verifies that the new
plans offer better performance than the plan or plans already in the plan baseline.
� A is incorrect because while the very first plan in the plan baseline is always marked as
an accepted plan, it isn’t the only plan that the database uses. The database may also use any
new plans that it finds because it verifies that they offer superior performance. B is incorrect
because when the database finds new plans, it doesn’t automatically make them part of the SQL
plan baseline for a statement. A plan becomes a part of the SQL plan baseline only after its
verification by the database. C is incorrect because the database doesn’t automatically use a new
plan. It uses a new plan only after it verifies it first. The verification may lead to the acceptance
of the new plan into the SQL plan baseline or its rejection, if the new plan doesn’t offer the
required improvement in performance.

15. � C is correct. Under adaptive cursor sharing, if the new bind values fall in the selectivity
cube, the database doesn’t see any need to create a new execution plan. It reuses the same
execution plan and performs a soft parse instead of a hard parse for the next execution of the
cursor.
� A is incorrect because the database uses the same execution plan when the new set of bind
values doesn’t differ much from the original set of values. B is incorrect because the database
performs a soft parse if the new bind values fall in the selectivity cube. D is incorrect because
the database will always use an explain plan. The big question is whether it will use the same
execution plan or a new plan. If the new sets of bind values aren’t that much different from the
old set of values, there isn’t any need to change the execution plan.

LAB ANSWER
Follow these steps to use the deferred statistics publishing feature in Oracle Database 11g. I use the
HR schema and the EMPLOYEES table to demonstrate the feature.

 1. Execute the SET_TABLE_PREFS procedure to keep the optimizer from automatically
publishing the statistics for the EMPLOYEES table as current statistics.

SQL> exec dbms_stats.set_table_prefs('hr','employees',
 'publish','false');

 2. Collect the statistics for the EMPLOYEES table.

SQL> exec dbms_stats.gather_table_stats('hr','employees');

 The statistics are stored in the pending area instead of the data dictionary.

 3. In order to test the new pending statistics before making them public, you must execute the
following statement:

SQL> alter session set optimizer_use_pending_statistics=true;

 4. You can now issue various queries that refer to the HR.EMPLOYEES table to test performance.

 5. If you’re satisfied with the test results, you can make the pending statistics on the EMPLOYEES
table public using the PUBLISH_PENDING_STATS procedure.

SQL> exec dbms_stats,publish_pending_stats('hr','employees');

 The pending statistics on the EMPLOYEES table will be current (published) statistics now.

Self Test Answers 381

This page intentionally left blank

7
RMAN and
Flashback
Enhancements

CERTIFICATION OBJECTIVES

 7.01 RMAN Enhancements

 7.02 Recovery Catalog Management

 7.03 New Flashback-Related Features

✓ Two-Minute Drill

Q&A Self Test

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

384 Chapter 7: RMAN and Flashback Enhancements

This chapter discusses the enhancements to Oracle’s backup and recovery tool, the
Recovery Manager (RMAN), and the additions to the flashback feature, which Oracle
introduced in the Oracle9i release. There are two major enhancements to Oracle’s

flashback capability: the flashback data archive feature lets you archive all changes to a table and
the flashback transaction backout feature enables you to back out a transaction with a single click.

CERTIFICATION OBJECTIVE 7.01

RMAN Enhancements
RMAN includes several interesting new features, including the following:

■ Active (network-based) database duplication

■ Parallel backup and restore of large files (multisection backups)

■ Archival (long-term) backups

■ Fast incremental backups

■ Improved lock media recovery performance

■ New persistent configuration parameters

■ Backup failover to non-flash recovery areas

I start with a discussion of RMAN’s exciting active database duplication feature.

Active (Network-Based) Database Duplication
Oracle Database 11g extends the well-known duplicate database command
to let you duplicate a database over the network without any need for prior backups
of the source database. This feature is called active database duplication or network-
aware database duplication. Using the active duplication method, you can duplicate
a live or active database, with a minimal network and CPU overhead. You can
perform the duplication on the same or a different server in your network. You don’t
need to make any copies of the source database, which saves you time and storage
space. You can use active database duplication techniques to clone a database or
create a standby database. You can use either RMAN to perform the backup or use
Database Control.

The source database can remain open to the users while you’re performing the
active database duplication. This means that you don’t have to suffer any downtime
to perform the database duplication. RMAN always performs an incomplete
recovery when you use the active database duplication method because it doesn’t
copy the online redo log files to apply them to the duplicate database. RMAN can
recover only up to the most recent archived redo log on the source database.

Requirements
You must satisfy the following requirements in order to perform active database
duplication:

■ You must make sure you can connect to both the target and the duplicate
databases through Oracle Net.

■ Both the target and the duplicate databases must use an identical operating
system platform.

■ You must use password files on both databases to register the SYSDBA
password.

■ You can run the source database in the mount or open state. If it is in the
open state, it must be in the archivelog mode.

■ You can make the database automatically copy the source database password
file to the server hosting the duplicate database by specifying the password
file clause in the duplicate database statement.

You must understand
all the important clauses you use in the
duplicate database command when
performing active database duplication.

What’s the relationship between the set
clause and the db_file_name_convert
and the log_file_name_convert
parameters?

In order to name the files of the duplicate database, you can use one or more file
naming techniques. Oracle recommends that you specify the new clause spfile
to name the duplicate database’s datafiles. You can supplement this file-naming
technique with one or more other file-naming techniques, such as specifying the
db_file_name_convert parameter. The following are various options you can
use to set filenames for the duplicate database:

■ spfile . . . parameter_value_convert 'string_pattern'
Specifies conversion strings for all initialization parameters specifying path

RMAN Enhancements 385

386 Chapter 7: RMAN and Flashback Enhancements

names, except the db_file_name_convert and log_file_name_
convert parameters. You can also specify the parameter_value_
convert clause to update string values.

■ spfile . . . set 'string_pattern' Enables you to specify the log_
file_name_convert parameter for the online redo log files. The set
clause enables you to specify initialization parameters such as sga_target,
for example. The set clause in effect stops the duplication process midway
and alters the initialization parameter values in the restored parameter file by
issuing multiple alter system set statements. Because the set clauses
are processed after the parameter_value_convert clause, the value
you set for a parameter using a set clause will override the values for the
same parameters set through the parameter_value_convert clause.

■ db_file_name_convert 'string_pattern' Enables you to
specify file-naming rules for creating the duplicate database’s datafiles and
tempfiles.

Specifying the spfile clause is straightforward and simple. The following
example demonstrates how to specify the spfile clause within the duplicate
database command to name data files and log files for the new database you’re
creating from the source database.

RMAN> duplicate database to dupdb
 2> from active database
 3> db_file_name_convert '/u01/app/oracle','/u05/app/oracle'
 4> spfile
 5> parameter_value_convert '/u01/app/oracle','/u05/app/oracle'
 6> set log_file_name_convert '/u01/app/oracle',
 '/u05/app/oracle'
 7> set sga_max_size '3000m'
 8> set sga_target '2000m';

In the example,

■ The from active database clause specifies that the files for the
duplicate (or standby) database must be provided directly from the source
database and not from the source database backups.

■ The db_file_name_convert clause substitutes the string /u05/app/
oracle in the names of the duplicate database’s datafiles (and tempfiles).

■ The spfile clause copies the server parameter file from the source database to
an operating system–specific default location on the server hosting the duplicate
database. This means that an SPFILE and not a text-based initialization

parameter file must be in use by the source database instance. RMAN will
use the SPFILE to start the auxiliary instance for creating the duplicate
database. The database will process all remaining options in the duplicate
database command after it starts the new duplicate database instance
(auxiliary instance) with the source database’s SPFILE.

■ The parameter_value_convert clause in the example specifies the
string /u05/app/oracle to be used in all initialization parameters that
specify filenames for the duplicate database, except the db_file_name_
convert and log_file_name_convert parameters.

■ The set clauses specify initialization parameters, including the log_file_
name_convert parameter, which specifies the substitution of /u05/app/
oracle in the filenames of the duplicate database’s online redo log files.

Oracle has enhanced the well-known duplicate database command
to enable you to perform active database duplication. To perform network-based
duplication, add the new clause from active database to the duplicate
database command. The following command creates a duplicate database on a
different server using the same directory structure as the source database:

RMAN> connect target sys/oracle@prod1
RMAN> connect auxiliary sys/oracle@prod1
RMAN> duplicate target database to dupdb
 2> from active database
 3> spfile
 4> nofilenamecheck;

The spfile clause directs the database to copy the target database’s spfile to the
duplicate database. All the initialization parameters you specify for the source database
in its spfile will also apply to the duplicate database. However, this is an exception
because you usually want to alter some parameters, in which case you specify the set
clause to specify the values of the parameters right in the duplicate database
command. The following examples demonstrate how to use the set clause to specify
parameter values:

■ set db_file_name_convert '/disk1','/disk10'

■ set log_file_name_convert '/disk1','/disk10'

■ set sga_max_size '500m'

■ set sga_target '250m'

If you specify the same parameter in both the SPFILE and the set clause, the values
you specify in the set clause will override those in the SPFILE for that initialization

RMAN Enhancements 387

388 Chapter 7: RMAN and Flashback Enhancements

parameter. You must use the nofilenamecheck clause because the two databases
are on different hosts and you want the database to bypass the needless checks to
ensure that the datafile and online redo log file names in the primary and the duplicate
databases are different. You worry about filenames on the source and the target being
identical only when you are duplicating a database to the same host. If the two
databases are on separate hosts and you want the duplicate database filenames to be
the same as the source database files, you must specify the nofilenamecheck clause.

An Active Database Duplication Example
Let’s learn how to use the active database duplication technique by duplicating a
database on the same server. This means, of course, that you must have different
datafile names for the target and the duplicate database. Because you’re using
network-enabled duplication, you must first ensure that both databases are known to
Oracle Net. Use the following steps to perform the network-enabled duplication of a
database:

 1. Add the name of the duplicate instance, which is test1 in this example, to
the listener.ora file on the host of the source database.

SID_LIST_LISTENER =
(SID_DESC =
(GLOBAL_DBNAME = prod1)
(ORACLE_HOME = /u01/app/oracle/product/10.1g/)
(SID_NAME =prod1)
)
(SID_DESC =
(GLOBAL_DBNAME = test1)
(ORACLE_HOME = /u01/app/oracle/product/11.1/)
(SID_NAME =test1)
)
)

 2. Restart or reload the listener after making the changes shown here. Make
sure you also update the tnsnames.ora file with the information about the
duplicate database, test1.

test1 =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = prod1)(PORT = 1521))
)
(CONNECT_DATA =
(SERVER = DEDICATED)

(SERVICE_NAME = test1)
)
)

 3. When you execute the duplicate database command with the
spfile clause, you must have already started the auxiliary instance with a
text-based initialization parameter file. Create an initialization parameter file
for the duplicate databases with just the db_name parameter in it. The new
database will use the db_file_name_convert and the log_file_
name_convert parameters in the duplicate database command
to specify filenames. The text-based initialization parameter file for the
duplicate database then will contain just one parameter:

db_name=test1

 Since I specify the spfile clause in the duplicate database command,
RMAN will copy the source database’s SPFILE to the server hosting the
auxiliary instance, make changes to the initialization parameters according to
the parameter settings specified in the spfile clause, and then restart the
auxiliary instance with the modified SPFILE.

 4. Create a password file to connect to the auxiliary instance during the database
duplication. The password you specify for SYSDBA in the password file must be
the same as the password in the source database.

$ orapwd file=orapwtest1 password=<sys_pwd>
 entries=20 ignorecase=n

 You can also specify the password file clause in the duplicate
database statement to copy the source database’s password file to the
target database.

 5. Start the auxiliary instance in the nomount mode, as shown here:

$ sqlplus /nolog
SQL> connect sys/sammyy1 as sysdba
Connected to an idle instance
SQL> startup nomount
Oracle Instance started.
Total System Global Area 113246208 bytes
Fixed Size 1218004 bytes
Variable Size 58722860 bytes
Database Buffers 50331648 bytes
Redo Buffers 2973696 bytes
SQL>

RMAN Enhancements 389

390 Chapter 7: RMAN and Flashback Enhancements

 You don’t yet have a control file for the auxiliary instance and therefore can’t
mount the new database. The startup nomount command uses the
SPFILE to start the auxiliary instance in the nomount mode. The spfile
clause specifies that RMAN copy the entire SPFILE belonging to the source
database to the server hosting the auxiliary database.

 6. Connect to the target database using the RMAN client. The source database
must be running in the archivelog mode for you to duplicate it.

$rman target sys/sammyy1@eleven
connected to target database: ELEVEN (DBID=3481681133)

 7. Once you connect to the target database, establish a connection to the
auxiliary instance, as shown here:

RMAN> connect auxiliary sys/sammyy1@test1
connected to auxiliary database: TEST1 (not mounted)
RMAN>

 8. Issue the duplicate target database command to create the
duplicate database. The from active database clause tells RMAN to
copy the source datafiles over the network to create the duplicate database.

RMAN> duplicate target database
 2> to test1
 3> from active database
 4> spfile
 5> parameter_value_convert
 '/u01/app/oracle/eleven','/u10/app/oracle/test1'
 6> set log_file_name_convert
 '/u05/app/oracle/eleven', '/u10/app/oracle/test1'
 7> db_file_name_convert '/u10/app/oracle/eleven',
 '/u10/app/oracle/test1';

Starting Duplicate Db at 28-DEC-07
using target database control file instead of recovery
 catalog
contents of Memory Script:
{
 sql "declare worked boolean;
 begin worked := dbms_backup_restore.networkFileTransfer(
 ''auxdb'', null, null,
...
executing Memory Script
...
Starting backup at 28-DEC-07
...

Finished backup at 28-DEC-07
...
contents of Memory Script:
{
 set until scn 901715;
 recover
 clone database
 delete archivelog
 ;
}
...
starting media recovery
...
media recovery complete, elapsed time: 00:00:01
Finished recover at 28-DEC-07
...
database opened
Finished Duplicate Db at 28-DEC-07
RMAN>

When you issue the duplicate target database command, RMAN
updates the SPFILE of the duplicate database using the values you supply through
the parameter_name_convert and the set clauses. RMAN then starts the
auxiliary instance using this SPFILE and starts copying the source datafiles over the
network. After it completes the copying of the datafiles, RMAN performs a recovery
of the duplicate database and opens it.

During the database duplication, RMAN

■ Copies the datafiles

■ Doesn’t copy the flash recovery area files

■ Copies the archived redo logs if they are necessary for the duplication

■ Copies the SPFILE to the server where you are creating the duplicate
database, if you specify the spfile clause

■ Copies the password file if you specify the password file clause

■ Re-creates the control files

■ Re-creates the tempfiles in the directory you specify with the db_create_
file_dest parameter

■ Re-creates the online redo logs

As you can see from our example, active database duplication offers an attractive
alternative to the traditional backup-based RMAN database duplication technique;
you don’t have to use any backup files or incur any downtime for the duplication.

RMAN Enhancements 391

392 Chapter 7: RMAN and Flashback Enhancements

Parallel Backup and Restore of Large Files
Oracle Database 11g enables you to back up and restore large files in sections,
with a section-level backup known as a multisection backup. A section is
a contiguous set of blocks in a file. Each backup piece in a backup set will contain
blocks from a file section. The multisection backup capability enables you to easily
handle larger datafile size standards by breaking up a large file into sections and
backing up or restoring each section separately. When faced with large file sizes

such as 32 GB, multisection backups offer faster
backups, because you can back up the different
sections in parallel.

Since each RMAN channel backs up a
different section of a datafile under multisection
backups, you can get better performance
when backing up large data files with multiple

channels. If your backup of a large file fails midway, you can back up only the sections
that weren’t backed up, after resuming the backup. RMAN creates uniform-sized
sections for all but the very last section, which may or may not be of the same size as
the other sections. You can create as many as 256 sections per datafile. RMAN allows
you to specify different section sizes for different datafiles in the same backup job.

Performing Multisection Backups
You must specify the backup command clause section size for RMAN to
create a multisection backup. You must specify a value for the section size
parameter. If you omit a value for the section size parameter, RMAN assigns
a default value for section size. Each section corresponds to a backup piece in the
backup set for a backup.

The following example shows how to specify the section size clause to
perform a multisection backup.

 1. Connect to the target database:

$ rman target sys/<sys_password>@target_db

 2. In order to take advantage of parallelism, configure multiple channels. In this
example, I use a parallel setting of four and create four SBT channels.

RMAN> run
{{allocate channel c1 device type sbt
 parms 'env=(ob device 1=testtape1)';
allocate channel c2 device type sbt

Demonstrate that you
can make a multisection backup using
the new section size attribute.

 parms 'env=(ob device 2=testtape2)';
allocate channel c3 device type sbt
parms 'env=(ob device 3=testtape3)';
 {allocate channel c4 device type sbt
 parms 'env=(ob device 4=testtape4)';
 }

 3. Issue the backup command, specifying the section size parameter:

RMAN> backup
 2> section size 200m
 3> tablespace example;

If the tablespace EXAMPLE uses a single datafile that’s 800m, RMAN backs it up
into four sections, each 200m in size, with each section in a different backup piece.

You can’t specify the section size attribute along with the
maxpiecesize attribute.

In addition to the backup command, you can also specify the section size
clause with the validate datafile command, as I show later in this chapter.

Managing Multisection Backups
You can query the V$BACKUP_DATAFILE and the RC_BACKUP_DATAFILE
views to get information about multisection backups. The SECTION_SIZE column
in both of these views reveals the size of each section in a multisection backup, in
blocks. If this column shows a zero value, it means that it’s a whole file backup and
not a multisection backup. You can query the V$BACKUP_SET and the RC_
BACKUP_SET views to see which backups are multisection backups, as shown by
the following query on the V$BACKUP_DATAFILE view:

SQL> select piece, multi_section from v$backup_datafile;
PIECES MUL
------- ----
1 NO
2 YES
7 YES
4 NO
SQL>

The two backup pieces, 2 and 7, show a value of YES for the MULTI_SECTION
column and are multisection backups.

RMAN Enhancements 393

394 Chapter 7: RMAN and Flashback Enhancements

Archival (Long-Term) Backups
Oracle Database 10g offered the backup . . . keep command to enable you to
override the configured retention policies for a backup. In Oracle Database 11g, you
can use the refined backup . . . keep command to create long-term backups called
archival backups, which you can retain for years if you want. An archival
backup contains all the files necessary to restore and recover a database. You can
create an archival backup for testing purposes or to retain data for long periods to
satisfy regulatory requirements.

In Oracle Database 10g, you can specify the keep and nokeep options to
determine if a backup was exempt from RMAN’s configured retention policies. The
forever and until time clauses enable you to specify the length of time for
which RMAN must exempt a backup from a retention policy. Thus, the keep . . .
forever option within a backup command meant that RMAN kept a backup
forever without removing it. You could specify the logs and nologs options to
specify whether RMAN should keep or not keep the archived redo logs necessary
to recover a database.

In Oracle Database 11g, you can’t specify the logs or nologs options with the
keep command. However, you now have a new option, restore point, which
you can specify with the keep command. You can specify the restore point
option to tell RMAN to create a restore point corresponding to the SCN up to
which RMAN must recover the database in order to make the database consistent.
Thus, the restore point determines the time point to which RMAN can restore an
archival backup.

In Oracle Database 11g, the main reason for using the backup . . . keep
command is to create a self-contained archival backup. This archival backup is all-
inclusive, meaning it contains all the backups and the archived redo logs necessary
to restore and recover the database. Of course, the archival backup is immune from
any retention policies you may have configured, but that’s not the main purpose
behind using the backup . . . keep command—it’s to create archival backups. It’s
important to understand that when you create an archival backup, your goal is to
save the backup of the database along with a set of archived redo logs necessary to
restore and recover the database. RMAN doesn’t have to save all archived redo logs
from the time you create the archival backup because the purpose behind making an
archival backup isn’t to perform a point-in-time recovery. Of course, this means that
RMAN needs far less storage space to save the backup and the set of archived redo
logs to recover a consistent database. You must store the archival backups in a non-
flash recovery area because you may fill up the flash recovery area quickly if you store
the archival backups in that location.

Creating an Archival Backup
You can issue the backup . . . keep command to create a new archival backup
from the database files. You can also change the status of an existing backup to that
of an archival backup, by issuing the change command.

Specify the keep until time option to create an archival backup and store
it for a specified period of time, as shown in the following example:

RMAN> backup database
 2> format 'c:\archives\db_%U.bkp'
 3> tag quarterly
 4> keep until time 'sysdate + 365'
 5> restore point firstquart07;
Starting backup at 29-DEC-07
using channel ORA_DISK_1
backup will be obsolete on date 29-DEC-08
archived logs required to recover from this backup will be backed up
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00001
...
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:08
Finished backup at 29-DEC-07
RMAN>

Know how to specify
the keep forever clause in order

to archive a database backup.

The keep until time clause in the previous example dictates that RMAN
keep the backup for a year (365 days). If you want to create an archival backup
that RMAN stores forever, you use the keep forever clause, as shown in this
example:

RMAN> backup database
 2> format 'c:\archives\db_%U.bkp'
 3> tag quarterly
 4> keep forever'
 5> restore point finyear2007;
RMAN>

RMAN Enhancements 395

396 Chapter 7: RMAN and Flashback Enhancements

The keep forever clause specifies that RMAN never treat the backup
as obsolete. When you issue a backup . . . keep command with either option
(forever or until time), this is what happens:

■ The database switches the redo logs so it can archive the current online
redo log. RMAN needs the current redo information to make the database
consistent upon a database restoration.

■ RMAN backs up all the datafiles, archived redo logs, the control file, and the
server parameter file.

■ RMAN backs up only those archived redo logs necessary to recover the
database to a consistent state.

■ If you specify the optional restore point clause, the database will
create a restore point that captures the SCN at the time the RMAN backup
completes.

■ The control file autobackup stores the restore point so RMAN can utilize it
when you restore the control file.

You can create archival backups only if you are using a recovery catalog.

Instead of creating a brand-new archival backup as shown in the previous
example, you can simply alter the status of a normal RMAN backup to that of an
archival backup by using the change command, as shown in this example:

RMAN> change backup
 2> tag 'weekly_bkp'
 3> keep forever;

The change command in this example alters the status of a normal weekly
backup into an archival backup that RMAN will store forever (keep forever).
The backup’s status never becomes obsolete, thus making it immune to any configured
RMAN backup retention policies.

You can change the status of an archival backup to a regular backup that’s subject
to the configured retention polices by using the change . . . nokeep command, as
shown here:

RMAN> change copy of database controlfile nokeep;

The previous change . . . nokeep command will make the backup of the database
and the control file eligible for the obsolete status again, and thus also make it eligible for
eventual deletion. You can’t issue the change . . . keep command to alter the status of
backups that RMAN has stored in the flash recovery area.

Restoring an Archival Backup
You can issue the duplicate database command to restore an archival backup.
Here are the steps to restore and recover the database using an archival backup:

 1. Create an auxiliary instance after creating the usual password file and the
parameter files. Connect to the auxiliary instance and start it.

 2. Connect to the recovery catalog, the target, and the auxiliary instances, as
shown here:

RMAN> connect target sys/<sys_password>@prod1
RMAN> connect catalog rman/rman@catdb
RMAN> connect auxiliary /

 3. Issue the list restore point all command to find out the name of
the restore points that are available.

RMAN> list restore point all;

SCN RSP Time Type Time Name
------- ------------- ---------- ------------
3074299 30-DEC-07 FIRSTQUART07

RMAN>

 4. Issue the duplicate database command, making sure you specify the
correct restore point name to restore the database to the point in time the
restore point stands for.

RMAN> duplicate database
 2> to newdb
 3> until restore point firstquart07
 4> db_file_name_convert='/u01/prod1/dbfiles/',
 5>'/u01/newdb/dbfiles'
 6> pfile = '/u01/newdb/admin/init.ora';

The restore point you specify in the duplicate database command and the
SCN that corresponds to it are recorded in the target database control file as well as
the recovery catalog, if you’re using one. The duplicate database command
doesn’t restore the target database control file, but rather creates a new control file
instead. You must therefore use the recovery catalog or the target database control
file to get the SCN corresponding to the recovery point, until the point in time to
which RMAN will recover the database.

RMAN Enhancements 397

398 Chapter 7: RMAN and Flashback Enhancements

Fast Incremental Backups
The block change tracking feature introduced by Oracle in the previous release helps
back up a file faster because RMAN will back up the change data blocks during an
incremental backup. By instituting block change tracking, you let RMAN avoid
scanning the entire file looking for changed data. By tracking the changed blocks
in a special file, RMAN can quickly find out which data blocks have been changed.

In Oracle Database 11g, you can enable block change tracking on a physical
standby database. When you do this, RMAN will track the changed blocks during
a standby managed recovery. The result is faster incremental backups of physical
standby databases.

Improved Block Media Recovery Performance
Oracle’s block media recovery feature helps you recover from data block corruption
by restoring just the corrupted blocks in a datafile. Recovery is thus faster because
you are recovering only the corrupt blocks and not the entire datafile. Database
availability is enhanced by the block media recovery feature because you don’t have
to take affected datafiles offline. The block media recovery feature is an attractive
alternative to the traditional restore and recovery of a datafile to fix a few corrupted
data blocks. In a block media recovery, RMAN restores the good data blocks from
the database backups to replace the corrupted data blocks. Once it restores the good
data blocks, it performs a recovery using archived redo logs. Because you have to
restore and recover only the few corrupted blocks, the entire restore and recovery
process is much faster than a normal datafile restore and recovery operation.

In Oracle Database 10g, the blockrecover command helped you perform
a block media recovery. In Oracle Database 11g, the new recover . . . block
command replaces the blockrecover command, which is no longer available.
The recover . . . block command is more efficient than its predecessor, the
blockrecover command, because it searches the flashback logs before looking in
the backup files. It’s much faster to read the flashback logs than to read an archived
database backup when the database is looking for a good copy of corrupted data block.
This means that you must implement the Flashback Database feature, which enables
the database to make use of the flashback logs to fix data block corruption quickly.

The database must be either open or in the mounted state for you to issue the
recover . . . block command. Because RMAN makes use of archived redo logs
to perform the block recovery, the database must be in the archivelog mode. You
can use either full or level 0 backups, but not proxy copies when performing a block
recovery with the recover . . . block command.

Identifying the Corrupt Blocks
Block media recovery helps you repair physical or media corruption, which occurs
when a database fails to recognize the corrupted data blocks. You can use one of the
following commands to discover block corruption:

■ analyze table and analyze index

■ list failure

■ validate

■ backup . . . validate

■ export to dev/null?

Each time one of the preceding commands reveals a database corruption, the
database logs the information in the V$DATABASE_BLOCK_CORRUPTION
view.You can also use the dbverify utility to reveal block corruption. A message such
as the following accompanies a typical block corruption in the database:

ORA-01578: ORACLE data block corrupted (file # 2, block # 4)
ORA-01110: data file 2: '/u01/app/oracle/prod1/data01.dbf'
ORA-01578: ORACLE data block corrupted (file # 3, block # 95)
ORA-01110: data file 3: '/u01/app/oracle/prod1/data01.dbf'

Use the new recover . . . block command to recover the corrupted data
blocks, as I explain in the following section.

Using the Recover…Block Command
You can fix each corrupted block separately by issuing the recover . . . block
command for a data block or set of data blocks, or fix all corrupted blocks with
a single execution of the command. To recover a specific database block or a set
of data blocks, specify the datafile number and the corrupted data blocks in the
recover . . . block command:

RMAN> recover datafile 2 block 24
 datafile 4 block 10;

You can specify the exact backup from which you want RMAN to recover the
corrupt data blocks by specifying the backup tag with the recover . . . block
command, as shown here:

RMAN> recover datafile 2 block 24
 datafile 4 block 10
 from tag=sundaynight;

RMAN Enhancements 399

400 Chapter 7: RMAN and Flashback Enhancements

The from tag clause in the recover . . . block command specifies that RMAN
should get copies of the corrupted blocks from backup with the tag sundaynight.

Instead of fixing each corrupted data block one data block at a time, you can choose
to fix all corrupted data blocks in one step. To do this, first execute the validate
database command so the database populates the V$DATABASE_BLOCK_
CORRUPTION view with all corrupt data block information. Here’s an example:

RMAN> validate database;
Starting validate at 30-DEC-2007
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=174 device type=DISK
channel ORA_DISK_1: starting compressed full datafile backup set
channel ORA_DISK_1: specifying datafile(s) for validation
input datafile file number=00002 name=C:\ORCL11\APP\ORACLE\ORADATA\ORCL1101.DBF
input datafile file number=00001 name=C:\ORCL11\APP\ORACLE\ORADATA\ORCL1101.DBF
input datafile file number=00003 name=C:\ORCL11\APP\ORACLE\ORADATA\ORCL11S01.DBF
input datafile file number=00005 name=C:\ORCL11\APP\ORACLE\ORADATA\ORCL11E01.DBF
input datafile file number=00004 name=C:\ORCL11\APP\ORACLE\ORADATA\ORCL111.DBF
channel ORA_DISK_1: validation complete, elapsed time: 00:12:05
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined SCN
---- ------ -------------- ------------ --------------- --------
1 OK 0 12499 72960 12591563
 File Name: C:\ORCL11\APP\ORACLE\ORADATA\ORCL11\SYSTEM01.DBF
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 48999
 Index 0 9146
 Other 0 2316
File Status Marked Corrupt Empty Blocks Blocks Examined SCN
---- ------ -------------- ------------ --------------- --------
2 OK 37 20609 91976 12673599
 File Name: C:\ORCL11\APP\ORACLE\ORADATA\ORCL11\SYSAUX01.DBF
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 26850
 Index 0 22864
 Other 0 21653
channel ORA_DISK_1: specifying datafile(s) for validation
including current control file for validation
channel ORA_DISK_1: validation complete, elapsed time: 00:00:02
List of Control File and SPFILE
===============================

File Type Status Blocks Failing Blocks Examined
------------ ------ -------------- ---------------
Control File OK 0 594
Finished validate at 30-DEC-07
RMAN>

The validate database command reveals that file 2 has some data blocks
that are marked corrupt. Issue the recover corruption list command to
recover all corrupted data blocks, as shown here:

RMAN> recover corruption list;
Starting recover at 31-DEC-07
using channel ORA_DISK_1
channel ORA_DISK_1: restoring block(s)
channel ORA_DISK_1: specifying block(s)
 to restore from backup set
restoring blocks of datafile 00002
channel ORA_DISK_1: reading from backup piece
 C:\ORCL11\APP\ORACLE\PRODUC0\DB_1\DATABASE\5SIFHTAF_1_1
...
channel ORA_DISK_1: restored block(s) from backup piece 1
channel ORA_DISK_1: block restore complete,elapsed time:00:00:12
channel ORA_DISK_1: restoring block(s)
channel ORA_DISK_1: specifying block(s) to restore from bkup set
restoring blocks of datafile 00002
channel ORA_DISK_1: reading from backup piece ...
starting media recovery
starting media recovery
media recovery complete, elapsed time: 00:00:01
Finished recover at 31-DEC-07
RMAN>

After the database recovers the corrupt blocks, it will delete the information
about them from the V$DATABASE_BLOCK_CORRUPTION view.

New Persistent Confi guration Parameters
There are a couple of new persistent configuration parameters in Oracle Database
11g for RMAN. The following output for the show all command shows the new
configuration parameters.

RMAN> show all;
using target database control file instead of recovery catalog
RMAN configuration parameters are:

RMAN Enhancements 401

402 Chapter 7: RMAN and Flashback Enhancements

CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default
CONFIGURE BACKUP OPTIMIZATION OFF; # default
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
CONFIGURE CONTROLFILE AUTOBACKUP OFF; # default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK
TO '%F'; # default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE SBT_TAPE
TO '%F';default
CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COMPRESSED
 BACKUPSET PARALLELISM 1;
CONFIGURE DEVICE TYPE 'SBT_TAPE' BACKUP TYPE TO COMPRESSED
 BACKUPSET PARALLELISM 1;
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK
 TO 1; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE SBT_TAPE
 TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK
 TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE SBT_TAPE
 TO 1; # default
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE ON;
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE COMPRESSION ALGORITHM 'ZLIB'; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO 'C:\ORCL11\APP\ORACLE\
11.1.0\DB_1\DATABASE\SNCFORCL11.ORA'; # default
RMAN>

The two major changes pertaining to RMAN configuration are the new
archivelog deletion policy configuration and the enhanced compression algorithm
configuration. In the following sections, I discuss the two major new RMAN
configuration parameters.

New Compression Algorithm
You now have a choice between two compression algorithms. In the previous release
you could only use the default BZIP2 compression algorithm. In Oracle Database
11g, you can also choose the new ZLIB compression algorithm, which Oracle claims
can be 40 percent faster than the older BZIP2 algorithm. The following query
on the V$RMAN_COMPRESSION_ALGORITHM view shows the differences
between the two compression algorithms you can choose from:

SQL> select algorithm_name,algorithm_description, is_default
 2 from v$rman_compression_algorithm;

ALGORITHM ALGORITHM DESCRIPTION IS_DEFAULT
--------- -- ---------
ZLIB fast but little worse compression ratio YES
BZIP2 good compression ratio but little slower NO
SQL>

The new compression algorithm, ZLIB, is the default algorithm in Oracle
Database 11g. The ZLIB compression algorithm is 40 to 50 percent faster than the
older BZIP2 compression algorithm, according to Oracle. However, the BZIP2
compression algorithm provides a better compression ratio. Oracle’s real-world data
warehousing database study showed that the BZIP2 algorithm had a compression
ratio of 2.0:1, compared to a ratio of 1.68:1 with the ZLIB algorithm. You can
choose the configuration algorithm you want to use by executing the configure
command, as shown here:

RMAN> configure compression algorithm 'bzip2';
new RMAN configuration parameters:
CONFIGURE COMPRESSION ALGORITHM 'bzip2';
new RMAN configuration parameters are successfully stored
RMAN>

As mentioned earlier, ZLIB is the default compression algorithm.

Archived Redo Log Deletion Policy
In Oracle Database 11g, you can configure a persistent parameter to specify an archived
redo log deletion policy. By default, the value of the configure archivelog
deletion policy parameter is set to NONE, meaning there’s no archived redo log
deletion policy by default. Configuring an archived redo log policy allows you to specify
when the archived redo logs become eligible for deletion. The configured deletion
policy applies to all archived redo logs stored on disk, regardless of the destination,
including the flash recovery area.

Criteria for Deleting Archived Redo Logs RMAN uses criteria such as
the number of backups it made of a certain archived redo log and whether it has
successfully moved the archived redo logs to their destinations, to decide if the
archived redo logs are eligible for deletion. If you don’t configure an archived redo
log deletion policy, Oracle will mark an archived redo log for deletion when the log
satisfies the following conditions:

■ If you specify the log_archive_dest_n initialization parameter, the
database must first successfully transfer the archived redo log to all the
specified remote destinations.

RMAN Enhancements 403

404 Chapter 7: RMAN and Flashback Enhancements

■ The archived redo log must be backed up at least once or it must be obsolete.
The current backup retention policy in force determines whether the archived
redo log is obsolete.

Note that regardless of RMAN’s backup retention policy, RMAN won’t mark a
backup as obsolete under the following circumstances:

■ If an archived redo log is necessary to support a guaranteed restore point

■ If an archived redo log is needed to support the Flashback Database feature

Once you configure an archived redo log deletion policy, both the backup . . .
delete and the delete . . . archivelog commands will take the policy into
account. In addition, the flash recovery area will also comply with the archived redo
log deletion policy that you configure.

Configuring an Archived Redo Log Deletion Policy You configure an
archivelog deletion policy by executing the following configure command.

RMAN> configure archivelog deletion policy
 2> to backed up 2 times to sbt;
new RMAN configuration parameters:
CONFIGURE ARCHIVELOG DELETION POLICY TO
 BACKED UP 2 TIMES TO 'SBT_TAPE';
new RMAN configuration parameters are successfully stored
RMAN>

The configure command shown here specifies that all archived redo logs
are eligible for deletion after they are backed up at least twice to tape (sbt). Once
you create an archived redo log policy as shown here, the policy comes into force
immediately. To disable the policy, issue the following command:

RMAN> configure archivelog deletion policy to none;

The previous command will let RMAN revert to the default setting of no
archived redo log policy.

You can also execute the configure archive log deletion policy
command to specify an archived redo log deletion policy in a Data Guard setup.
You can specify a deletion policy for any standby destination or only for mandatory
standby destinations.

Backup Failover to Non-Flash Recovery Areas
RMAN backs up the redo logs from the flash recovery area for archiving. When RMAN
discovers that an archived redo log file in the flash recovery is either corrupt or missing,

it automatically uses an archived redo log from a non-flash recovery area location. This
automatic failover to a non-flash recovery area destination is new in Oracle Database
11g. This feature guarantees that an RMAN backup of the flash recovery area won’t fail
even if a disk on which the flash recovery area resides is damaged.

CERTIFICATION OBJECTIVE 7.02

Recovery Catalog Management
There are two important innovations in the way you manage the recovery catalog in
Oracle Database 11g. The first of these is the ability to merge catalogs with the new
import catalog command. You can also use this command to move a recovery
catalog to a different database. The second big innovation is the concept of a virtual
private catalog, which lets you limit a user’s access to only part of the recovery catalog
instead of the entire catalog. Let’s start with a discussion of the merging of recovery
catalogs with the import catalog command.

Merging Recovery Catalogs
In prior releases, the only way to combine the contents of two or more recovery
catalogs was to use the export and import utilities (or Data Pump) to migrate data
between two recovery catalogs. Oracle Database 11g lets you combine multiple
recovery catalogs into a single catalog schema for several databases through the new
import database command. Using the import catalog command, you
can completely merge two or more recovery catalogs or just the metadata for specific
databases.

In the following example, the list incarnation command shows two
databases as being registered in the recovery catalog stored in database rman11.

RMAN> list incarnation;
List of Database Incarnations
DB Inc DB Name DB ID STATUS Reset SCN ResetTime
--- ---- ------ ---------- -------- ---------- ---------
192 207 ELEVEN 3481526915 PARENT 1 22-NOV-06
192 193 ELEVEN 3481526915 CURRENT 909437 13-MAR-07
1 15 ORCL11 3863017760 PARENT 1 22-NOV-06
1 2 ORCL11 3863017760 CURRENT 909437 03-MAR-07
RMAN>

Recovery Catalog Management 405

406 Chapter 7: RMAN and Flashback Enhancements

Let’s say you have an Oracle Database 10.2 release recovery catalog schema with
just a single database (named TENNER) registered in it, as shown here:

RMAN> list incarnation;
List of Database Incarnations
DB Inc DB Name DB ID STATUS Reset SCN ResetTime
------ -- ------ ----------- ------- --------- -----------
1 8 TENNER 1166569509 PARENT 1 30-AUG-05
1 2 TENNER 1166569509 CURRENT 534907 13-MAR-07
RMAN>

Let’s see how you can merge the two recovery catalogs—one from the 10.2 release
and the other from the 11g release—into a single recovery catalog schema that
will register all three databases. Here are the steps to perform the merge using the
import catalog command.

 1. Connect to the destination recovery catalog.

$ rman
RMAN> connect catalog rman/rman@rman11

 2. Issue the import catalog command while connecting to the recovery
catalog you want to import to the target you’ve connected to in Step 1.

RMAN> import catalog rman1/rman1@rman10;
Starting import catalog at 08-JAN-08
connected to source recovery catalog database
import validation complete
database unregistered from the source recovery catalog
Finished import catalog at 08-JAN-08
RMAN>

 3. Issue the list incarnation command to verify that the two recovery
catalogs have been correctly merged.

RMAN> list incarnation;
RMAN> list incarnation;
List of Database Incarnations
DB Inc DB Name DB ID STATUS ResetSCN Reset Time
----- ----- ------- ----------- ------ -------- --------
1411 1418 TENNER 66569509 PARENT 1 30-AUG-05
1411 1412 TENNER 1166569509 CURRENT 534907 13-MAR-07
192 207 ELEVEN 3481526915 PARENT 1 22-NOV-06
192 193 ELEVEN 3481526915 CURRENT 909437 13-MAR-07
1 15 ORCL11 3863017760 PARENT 1 22-NOV-06
1 2 ORCL11 3863017760 CURRENT 909437 03-MAR-07
RMAN>

The import catalog command imports the metadata for all databases that
are registered in the source recovery catalog. You can limit the import to a specific
database or databases by specifying the DBID or database name, as shown here:

RMAN> import catalog rman10/rman10@tenner
 dbid = 123456, 123457;
RMAN> import catalog rman10/rman10@tenner
 db_name = testdb, mydb;

After the import catalog command finishes executing, the source database
from which you imported the TENNER database won’t show any database registered
in it, as the following list incarnation command reveals:

RMAN> list incarnation;
RMAN>

Importing all the databases from the source recovery catalog means that the
source recovery catalog will now be empty.

By default, when you merge two recovery catalogs with the import catalog
command, RMAN automatically deregisters all databases from the source recovery
catalog after it imports those databases to the target catalog. You can, however,
override this default behavior by specifying the no unregister clause when you
issue the import catalog command, as shown here:

RMAN> import catalog rman1/rman1@rman10 no unregister;

Show how to import
metadata from one recovery catalog
schema into another recovery catalog.

What does the no unregister clause do
in this connection?

Using the no unregister clause tells RMAN not to remove the imported
databases from the source recovery catalog after importing them to the target catalog.

If the same databases are registered in more than one recovery catalog, you
must remove it from one of the catalogs by unregistering it, before issuing the
import catalog command.

In order to use the import catalog commands, the source database must
be from the same version as the RMAN client. Otherwise, you must first upgrade
the source recovery catalog schema. If a global stored script has the same name in

Recovery Catalog Management 407

408 Chapter 7: RMAN and Flashback Enhancements

different catalogs, RMAN renames the source catalog script using the format copy
of script_name.

In addition to merging multiple recovery catalogs, you can also use the import
catalog command to move the recovery catalog to a different database. To move
a recovery catalog, you must first create an empty recovery catalog in the destination
database. You must then connect to the destination recovery catalog and issue the
import catalog command. The following example shows this:

$ rman
RMAN> connect catalog rman/rman@target_db
RMAN> import catalog rman10/rman10@source_db;

The import catalog command imports the source_db recovery catalog
contents to a catalog in the target_db database.

Virtual Private Catalogs
In previous releases, if a user needed access to even a single database in the recovery
catalog, you were forced to grant that user access to the entire recovery catalog. You
can now restrict access to all databases in the recovery catalog by granting access to
a subset of the recovery catalog, known as the virtual private catalog or
virtual catalog. You can create a virtual catalog for one or more users. The
central or source recovery catalog itself is now also referred to as the base recovery
catalog. Oracle recommends that you merge all the recovery catalogs in your system
into a central base recovery catalog. You can then create multiple virtual catalogs to
grant access to one or more databases to a user or users.

The virtual private catalog doesn’t exist as a separate entity, like the base
recovery catalog. The virtual private catalog is merely a set of synonyms and views
based on the central catalog. The main or base recovery catalog owner must grant
the privilege to the virtual catalog owners to connect to one or more databases or
even register the databases on their own. Once a virtual catalog owner logs into
the virtual catalog, all recovery catalog functions remain the same as in the base
recovery catalog. The virtual recovery catalog owner can, however, operate with
only a limited set of databases compared to the base catalog owner, who has access
to all the databases registered in the base catalog.

Creating a Virtual Private Catalog
In order to create a virtual private catalog, you must create a virtual private catalog
user, who will own the virtual catalog. Follow these steps to create a virtual private
catalog:

 1. Create a new database user, who you will designate as the owner of the virtual
private catalog.

SQL> connect sys/<sys_password> as sysdba
SQL> create user virtual1 identified by virtual1
 temporary tablespace temp
 default tablespace vp_users
 quota unlimited on vp_users;

User created.
SQL>

 2. Grant the new user you created, VIRTUAL1, the privileges to work with a
virtual recovery catalog in the next step. You first grant the recovery_
catalog_owner role to the new user from the SQL*Plus interface, as
shown here:

SQL> grant recovery_catalog_owner to virtual1;
Grant succeeded.
SQL>

 The recovery_catalog_owner role grants the new user privileges to
use the new private virtual catalog you’re going to create.

 3. Start the RMAN client and connect as the base recovery catalog owner.
Grant the new user privileges to work with various databases. You do this
with the grant register database and the grant catalog
statements, as shown here:

$ rman
RMAN> connect catalog rman/rman@nick
connected to recovery catalog database
RMAN> grant register database to virutal1;
RMAN> grant catalog for database test1, test2 to virtual1;
Grant succeeded.
RMAN>

 The first execution of the grant command (grant register database)
grants user VIRTUAL1 the ability to register any database in the virtual
private catalog. The grant catalog for database statement grants
user VIRTUAL1 access to databases in the base recovery catalog, in this case
providing access to a subset of two databases in the base catalog, TEST1 and
TEST2. You may specify the DBID for a database instead of the database
name when granting access to them with the grant catalog for
database statement.

Recovery Catalog Management 409

410 Chapter 7: RMAN and Flashback Enhancements

As a virtual catalog owner, a user can create only local stored scripts and
not global scripts. However, the virtual catalog owner has read-only rights
to global stored scripts.

 4. Log in as the virtual catalog owner to the base recovery catalog and create
the virtual catalog, as shown here:

RMAN> connect catalog virtual1/virtual1@catdb
connected to recovery catalog database
RMAN> create virtual catalog;
found eligible base catalog owned by RMAN
created virtual catalog against base catalog owned by RMAN
RMAN>

User VIRTUAL1, who owns the new virtual catalog, can access two databases
from the base recovery catalog—test1 and test2. Thus, these two databases are
registered in the private recovery catalog as well, as you can see with the list
incarnation command:

RMAN> list incarnation;
List of Database Incarnations
DB Inc DB Name DB ID STATUS Reset SCN Reset Time
------ ------- ---------- -------- ---------- ---------
192 207 TEST1 3481526915 PARENT 1 22-NOV-06
192 193 TEST1 3481526915 CURRENT 909437 3-MAR-07
1 15 TEST2 3863017760 PARENT 1 2-NOV-06
1 2 TEST2 3863017760 CURRENT 909437 03-MAR-07
RMAN>

You must understand the
correct sequence of steps you need to
follow in order to create a virtual private

catalog. Which commands are issued by
the base catalog owner and which by the
virtual private catalog owner?

In order to use the virtual private catalog, the virtual catalog owner must log in
to the base recovery catalog (catdb) by specifying the VIRTUAL1 schema in the
connect catalog command. The following example shows how the virtual
catalog owner registers a new database in the catalog:

RMAN> connect target / catalog virtual1/virtual1@catdb;
RMAN> register database;

Once the virtual private catalog owner registers the database, she can use her
virtual private catalog that’s stored in the VIRUTAL1 schema in catdb (the base
recovery catalog) to perform a backup of the database, as shown here:

RMAN> connect target /catalog virtual1/virtual1@catdb;
RMAN> backup database plus archivelog;

The backup metadata for the target database will be stored in the VIRTUAL1
schema in the base recovery catalog, catdb. The virtual private catalog owner will
be able to perform all RMAN operations on those databases in the base recovery
catalog that have been registered by the virtual private catalog owner.

Managing Virtual Private Catalogs
When you create a virtual private catalog owner, that owner has no access to the
base recovery catalog. You use the grant command to grant privileges for a virtual
recovery catalog schema to a user.

After you create the new Oracle database user that will own the virtual private
catalog schema, first grant that user the recovery_catalog_owner role. Then,
connect to the base recovery catalog as the base recovery catalog owner (RMAN)
and use the grant command to assign privileges on the recovery catalog to the new
virtual catalog owner. Once you grant the privileges, you create the virtual catalog
schema for the new user.

You can issue the grant command with the clauses catalog for database
or register database. The grant catalog (for database) command
grants recovery catalog access for a specific database to a user. Here’s an example:

RMAN> grant catalog for database test1 to virtual1;

You can grant access to any of the databases that are currently registered in the base
recovery catalog with the grant catalog command. You may also grant access to
databases that aren’t currently registered in the base recovery catalog. This will enable
the virtual private catalog owner to register those databases. Note that you must
specify the DBID of the database instead of the database name when granting access
to databases that aren’t currently registered in the base recovery catalog.

You can also grant a user the ability to register and unregister target databases
(that is, databases that aren’t currently known to the base recovery catalog) by
issuing the grant register database command, as shown here:

RMAN> grant register database to virtual1;

When you grant the register database privilege to a user, you implicitly
grant the catalog for database privileges for any databases that the user

Recovery Catalog Management 411

412 Chapter 7: RMAN and Flashback Enhancements

registers in the recovery catalog. Any database that a virtual catalog owner registers
in a virtual private catalog will automatically be a part of the base recovery catalog
as well. The base recovery catalog owner can unregister any database registered by
the virtual catalog owner.

You can issue the revoke command to revoke a virtual catalog owner’s privileges.
Issue the revoke catalog for database command to revoke a virtual
catalog owner’s access to a specific database. Here’s an example:

RMAN> connect catalog rman/<password>@catdb;
RMAN> revoke catalog for database test1 from virtual1;

You may also use the revoke register database command to revoke the
ability of the recovery catalog owner to register new databases, as shown here:

RMAN> connect catalog rman/<password>@catdb;
RMAN> revoke register database from virtual1;

The revoke register database command will keep a virtual catalog
owner from registering new databases. However, if the user still has the catalog
for database privilege, that user can still register and unregister the specific
databases for which the catalog for database privilege was granted.

Finally, you can issue the revoke all privileges from command to
revoke both the catalog and the register privileges in the same command,
as shown here:

RMAN> revoke all privileges from virtual1;

As a result of revoking all privileges on the virtual catalog to the user virtual1,
that user can no longer register a new database in the catalog or even log into a
currently registered database.

Dropping a Virtual Private Catalog
A virtual private catalog owner can drop the catalog by issuing the drop
catalog command, as shown here:

 1. Log in as the virtual catalog owner to the base recovery catalog:

RMAN> connect catalog virtual1/<password>@catadb;

 2. Issue the drop catalog command:

RMAN> drop catalog;

The issuing of the drop catalog command results in the removal of all
metadata for the virtual catalog schema from the base recovery catalog.

The previous drop catalog command works only for an Oracle Database 11g
or higher release. If you’re using a pre–Oracle 11g release RMAN executable, you
must issue the following command to work with a virtual private catalog:

SQL> exec
 base_catalog_owner.dbms_rcvcat.create_virtual_catalog;

The previous command doesn’t actually create a virtual private catalog. You need
to issue this command before working with any pre–Oracle 11.1 release databases.

And to drop a virtual catalog, you must issue the following command:

SQL> exec
 base_catalog_owner.dbms_rcvcat.drop_virtual_catalog;

Dropping the virtual catalog doesn’t have any impact on the base recovery
catalog. All databases that were part of the virtual catalog will remain in the base
recovery catalog.

CERTIFICATION OBJECTIVE 7.03

New Flashback-Related Features
One of the best new features of the Oracle Database 9i and 10g releases was the set
of flashback-related features, which let the DBA retrieve older data without having
to perform a time-consuming traditional recovery operation. Oracle Database 11g
offers significant enhancements in the flashback area by introducing two major
flashback-related features—flashback data archive and the flashback transaction backout
feature. A flashback data archive is a logical container for storing older versions
of data over a long period of time. You can use the archive to retrieve an older
version of a table or to perform queries involving data from the past. The flashback
transaction feature provides the capability to easily back out a transaction, including
its dependent transactions. Let’s start with a review of the flashback data archive.

Flashback Data Archive
While you can rely on the undo data in the undo tablespace to query older versions
of a row or even perform a logical recovery, there’s a limit on how far back you
can go. Because the main purpose of the undo data is to provide data consistency,
you can’t expect to find very old versions of a row in the undo segments. Undo
tablespaces are usually sized by the DBA to provide read consistency for the longest
transactions run in a database. The undo tablespace was never meant to be a
historical repository of all the changes made to a row in a table.

New Flashback-Related Features 413

414 Chapter 7: RMAN and Flashback Enhancements

In addition, the undo tablespace contains all the data changes made in the
database, not just changes for a specific table. If you want to go back, say, two years
in time to find out what values a certain table’s row had then, the undo tablespace
can’t help you. Your only choice was to maintain the change records in separate
tables and maintain them yourself. Oracle Database 11g’s new flashback data archive
feature enables you to automatically store changes made to a table’s data over time.
The flashback data archive lets you store data changes for any length of time you
want. An undo tablespace can only help you if the SCN of the transaction you
are interested in exists in one of the undo segments. A flashback data archive has
nothing to do with the SCN of the transactions—it will simply store the data for the
period of time you specify. Once the retention period is up, the archive will purge
the older data automatically. Thus, the archive imposes hardly any administrative
burden on you. You simply create the flashback data archive and walk away from it!
You don’t turn on the flashback data archive for the entire database, as you do with
automatic undo management. You specify the table or tables for which you want the
archive to track and store changes.

In order to satisfy regulatory requirements of legislative acts such as HIPAA and
Sarbanes-Oxley, many organizations must maintain historical data. In addition,
financial concerns all too often have a need to keep older data for a specific number
of years. Using traditional solutions to implement a historical data management
system is not only tedious, but it also doesn’t provide any built-in safety features.
The flashback data archive is easy to implement and has built-in safety features
to protect the historical data. You can use the flashback data archive feature for
change tracking, information lifecycle management (ILM), auditing and regulatory
compliance, and for generating reports that use historical data.

One of the problems with querying data from a past period of time is that the data
you’re looking for may have been overwritten by the database, which results in the
familiar “snapshot too old” error. With a flashback data archive you can confidently
query data from the past, a period that could be as far back in the past as you want.
The database automatically deletes data beyond the time period you specified, thus
enforcing a built-in digital shredding. Aged data will simply disappear from the
table, without any intervention from the DBA.

You can’t modify any data stored in a flashback data archive, but you are
allowed to purge data from it.

Flashback Data Archive and Flashback Database
The flashback data archive is quite different from the Flashback Database feature,
although both involve some kind of flashing back to a previous state of the database.
However, the two features are quite distinct, as follows:

■ The Flashback Database feature lets you take the database back in time. A
flashback data archive doesn’t change the current data. That is, the database
remains in its current state—the flashback data archive simply lets you access
the data from a previous point in time.

■ You must enable table tracking for the flashback data archive to function,
whereas you must configure the Flashback Database feature.

■ The flashback data archive is an online feature, while the Flashback Database
is an offline feature.

■ You can use the Flashback Database only at the database level, whereas you
can enable the flashback data archive at the table level.

■ A Flashback Database operation enables you to take back the entire database
to the same point in time in the past, whereas the flashback data archive
feature enables you to go to different points in time for different tables.

How Flashback Data Archiving Works
The flashback data archive itself is a logical container for historical data for one
or more tables in the database. The archive contains the data itself along with the
retention and purging policies for the data. The flashback data archive stores its data
in one or more tablespaces that you assign to the archive. In order for the database to
archive a table’s changes, you must first enable that table for the flashback archiving.
Once you do this, the new Oracle background process fbda (Flashback Data Archiver)
writes the changed data in the tables to the flashback data archive.

You should be aware of the following aspects of the flashback data archive feature:

■ A flashback data archive can contain data from multiple tables.

■ You can set different retention periods for different tables, by assigning them
to different flashback data archives.

■ You can create multiple flashback data archives. In fact, Oracle recommends
that you do this so that you can dedicate one flashback area, say, for long-
term storage, such as five years, and the other flashback data archive for a
shorter period, such as a year or six months.

■ You can assign one of the flashback data archives as the default flashback
archive for the database. Any table for which you don’t specify a flashback
data archive will then use the default flashback archive for archival storage.

■ The database automatically purges the flashback data archive by deleting the
necessary data a day after the expiration of the retention period you set for
that table.

New Flashback-Related Features 415

416 Chapter 7: RMAN and Flashback Enhancements

■ Once you enable a table for flashback data archiving, the database creates an
internal history table for that table to hold the historical data. In addition
to the columns of the original table, the historical table will have a few
additional columns showing the time stamp of the transactions in order to
track transactions.

An insert operation won’t cause the database to add any rows to the historical
table because that row doesn’t have a before change image. But when you update
or delete a row in the original table, the fbda process marks the undo records
corresponding to these operations for archival. The fbda records the pre-commit
image of the row that was affected by the delete or update operation in the
history table. The fbda process first tries to use the undo in the buffer cache. If the
undo is gone from the buffer cache already, fbda will read the necessary values from
the undo segments. At system-determined intervals (default is 5 minutes), the fbda
process wakes up and copies the necessary undo data to the history table. To enable
the functioning of the flashback data archiving process, the database ensures that
any undo records that the fbda has marked for recording to the history table aren’t
recycled. The database automatically adjusts the sleep time of the fbda process
by lowering it when the database is generating a large amount of undo data, thus
enabling fbda to read frequently from the buffer cache. Because the fbda doesn’t
work continuously, there will be a lag between the time an update or delete
operation commits and the time the changed data shows up in the history table.

Let’s use some simple examples to demonstrate how the flashback data archive
feature works. Let’s first insert a new row into the DEPARTMENTS table owned by
the user HR.

SQL> insert into hr.departments
 values (300,'New Department',200,1700);

1 row created.
SQL> commit;
Commit complete.
SQL>

Because it involves an insertion of a new row, the preceding transaction won’t
result in the addition of a history record to the history table. But let’s say a user
updates a row in the DEPARTMENTS table, as shown here:

SQL> update departments
 set department_name='Last Department'
 where department_id=300;

1 row updated.
SQL> commit;

The fbda background process will mark this transaction as a candidate for recording
in the history table. As soon as it can, fbda will add a record to the history table
showing the pre-change value of the DEPARTMENT_NAME column. Let’s next
delete the row that was just updated in the previous transaction:

SQL> delete from hr.departments where department_id=300;
1 row deleted.

SQL> commit;
Commit complete.
SQL>

If you query the history table, which is given a system-generated name, you’ll see
that the fbda process has successfully tracked and recorded all versions of the row
with the DEPARTMENT_ID value of 300.

SQL> select department_id, department_name, manager_id,
 location_id from hr. SYS_FBA_HIST_70308;

DEPT_ID DEPT_NAME MANAGER_ID LOCATION_ID
------- ---------------- ----------- ------------
300 New Department 200 1700
300 Last Department 200 1700

SQL>

The historical table shows both the pre-delete and the pre-update values of the
row with the DEPARTMENT_ID value of 300. You can use these values for a query
or to fix the values in a row. I show you some scenarios of the usage of the flashback
data archive later in this chapter, to illustrate how you can take advantage of this
feature.

Benefits of Using a Flashback Data Archive
The flashback data archive feature provides the following important benefits:

■ You can set a common retention policy for a related group of tables.

■ The database automatically purges older data from the flashback archive.

■ Instead of writing your own administrative interface, you can use a
centralized management interface to manage the data archive.

■ You can use the as of flashback query to retrieve historical data.

■ The database makes the retrieval of historical data efficient by automatically
partitioning the internal history tables using a range-partitioning scheme.

■ You don’t need to make any application changes to implement the feature.

New Flashback-Related Features 417

418 Chapter 7: RMAN and Flashback Enhancements

■ There is a very small overhead for implementing data archiving because the
fbda process archives the data so efficiently.

■ The database stores the archived data in a compressed format, saving storage
space.

■ Archiving data is safe because no one, including the DBA, can directly update
the historical data—they can only query it. Because you can’t modify the
archived data, the archive remains tamper proof, which is a big objective behind
using the archive. In fact, the data in the archive is safer than the original data
because the archived data is tamper-proof.

Creating a Flashback Data Archive
A user must either have the DBA role or have the flashback archive
administer system privilege in order to create a flashback data archive. The
flashback archive administer privilege allows a user to execute the
following statements:

■ create flashback archive

■ alter flashback archive

■ drop flashback archive

You can query the DBA_SYS_PRIVS view, as shown here, to find out which users
have the flashback archive administer privilege.

SQL> select * from dba_sys_privs where privilege like '%FLASH%';
GRANTEE PRIVILEGE ADM
----------- --------------------- ----
SYS FLASHBACK ANY TABLE NO
DBA FLASHBACK ANY TABLE YES
DBA FLASHBACK ARCHIVE ADMINISTER YES
SQL>

You grant the flashback archive administer privilege to a user as follows:

SQL> grant flashback archive administer to hr;
Grant succeeded.
SQL>

It’s probably a good idea to designate a DBA or some other user as your flashback data
archive administrator and grant the flashback data archive privilege
to that user alone in order to make the archive secure. The flashback archive

administer system privilege allows a user to execute the following statements
pertaining to the administration of the flashback data archives.

■ create flashback archive

■ alter flashback archive

■ drop flashback archive

Later in this chapter, you’ll see how to use the three statements listed here to
create, alter, and drop a flashback archive.

You allow a user access to a specific flashback data archive by granting the
flashback archive object privilege on that flashback data archive to
the user, as shown here:

SQL> grant flashback archive on flash1 to oe;

The previous grant flashback archive statement confers the
privilege to the user OE to use the flashback archive flash1. Once you grant the
flashback archive object privilege to a user, that user can enable flashback
archiving for a specific table in the flashback archive for which the user was
granted the flashback archive privilege. You must also grant the users the
flashback and select privileges on all the objects referenced in a query, so
the users are allowed to access to those objects. You must also grant a user the
execute privilege on the DBMS_FLASHBACK feature, so the user can use the
DBMS_FLASHBACK.ENABLE and DBMS_FLASHBACK.DISABLE procedures
to enable and disable the flashback data archive for which they’ve been granted the
flashback archive object privilege.

Use the create flashback statement to create a flashback data archive.
Remember that the flashback data archive, while it’s a database object, is only a
logical construct. The tablespace you assign to the archive stores the data. Thus, you
first create a new tablespace to assign to the flashback data archive you’re about to
create. You may also use an already available tablespace for this purpose because the
archive doesn’t require a dedicated tablespace.

Review the steps to create
a fl ashback data archive. How do you
set up a default fl ashback data archive?
Show how to use the alter flashback

command to maintain a fl ashback data
archive. How do you enable and disable
archiving changes in a table?

New Flashback-Related Features 419

420 Chapter 7: RMAN and Flashback Enhancements

When creating a flashback data archive with the create flashback
statement, you can specify the following:

■ A flashback data archive name

■ Whether the flashback data archive is the default archive for the database
(you don’t have to create a default archive)

■ The name of the tablespace to which you want to assign the flashback data
archive

You must first create the tablespace that will host the flashback data archive. You
may specify the following things while creating a new flashback data archive:

■ A quota for the flashback data archive in the tablespace you’re assigning for
the archive: If you don’t assign a quota, the archive can take up all the space
available in that tablespace.

■ A retention period for the archive: This is a mandatory attribute, because it
determines how long the database must retain the data in the archive before
purging it.

The following example demonstrates how to create a flashback data archive in
the FLASH_TBS1 tablespace:

SQL> create flashback data archive flash1
 tablespace flash_tbs1
 retention 4 year;
Flashback Data Archive created.
SQL>

The clause retention 4 year specifies that the database must retain the
data in the new flashback data archive flash1 for four years before purging it. The
absence of the quota clause means the flash1 archive can occupy the entire
tablespace FLASH_TBS1. If you want to limit the archive to only a part of the
tablespace, specify the quota clause, as shown here:

SQL> create flashback data archive flash2
 tablespace flash_tbs1
 quota 2000m
 retention 4 year;
Flashback Data Archive created.
SQL>

You size the flashback data archive based on the amount of transactions you
anticipate the database will be archiving and the length of time for which you want

the archive to retain the data. If the flashback data archive runs out of space, Oracle
issues an out-of-space alert and marks it in the archive log for the database. You
can then either purge older data to free up space in the archive or add space to the
tablespace that you assigned for the flashback data archive.

Use the drop flashback archive statement to drop a flashback data
archive, as shown here:

SQL> drop flashback archive flash1;

When you drop the flashback data archive, the data stored in that archive will be
gone for good, but the tablespace remains.

Altering a Flashback Data Archive
You can alter flashback data archive attributes such as the length of the retention period,
or you can add space to an archive by issuing an alter flashback archive
statement. The following examples show you how to use the alter flashback
archive statement to modify different attributes of a flashback data archive.

SQL> alter flashback archive flash1
 set default # makes flash1 the default archive

SQL> alter flashback archive flash1
 add tablespace
 flash_tbs1 # adds space to the flashback archive

SQL> alter flashback archive flash1
 modify tablespace

flash_tbs1 quota 10G; # changes the quota for the archive

SQL> alter flashback archive flash1
 modify retention
 2 year; # changes the archive retention time

SQL> alter flashback tablespace flash1
 add tablespace flash_tbs2; #adds a tablespace to an archive

SQL> alter flashback tablespace flash1
 remove tablespace
 flash_tbs2; #removes a tablespace from an archive

SQL> alter flashback archive flash1
 purge all; # purges all archived data

SQL> alter flashback archive flash1
 purge before

New Flashback-Related Features 421

422 Chapter 7: RMAN and Flashback Enhancements

 timestamp (systimestamp - interval '2' day); # purges data
 older than 2 days

SQL> alter flashback archive flash1
 purge before scn 123456; # purges all data before
 the specified SCN

All tables in a flashback data archive are subject to the same flashback
archive attributes, such as the length of the retention period for data.

Although you can purge data from the archive yourself using any of the purge
clauses shown in the last three examples here, the database will automatically purge
all data in the archive a day after the expiration of the retention period for the
archive.

Enabling and Disabling Flashback Data Archiving
Once you create a flashback data archive, the database is set up for archiving
changes to a specified table or tables. As mentioned earlier, unlike in the case of
undo data, the database doesn’t automatically store changes database wide. It does so
only for a table or tables for which you enable flashback logging. You must be either
the DBA or have the flashback data archive system privilege and the
create tablespace system privileges to turn flashback logging on for a table.

You can enable flashback logging in the flashback data archive for a table either
when you create the table or even later. Of course, if you enable it after you create
the table, only those changes made after you enable the table for flashback logging
will be stored in the archive.

You enable a table for flashback logging by including the flashback archive
clause in the create table statement:

 SQL> create table test1 (
 2 name varchar2(30),
 3 address varchar2(50))
 4* flashback archive fla4;

Table created.
SQL>

In the previous example, I specified the flashback archive fla4 for archiving changes
in the table TEST1. Because you can have more than one flashback archive in a
database, you can specify the appropriate flashback archive based on an attribute
such as the retention period—for example, for a certain table. However, you don’t
have to specify the name of the flashback archive. If you have created a default

flashback data archive and want to use this for archiving the data, you can leave
out the name of the flashback archive in the create table statement shown
here. If you don’t include the flashback archive name, the database will use the
default flashback archive when you issue a create table or an alter table
statement that includes a flashback archive clause.

You can query the DBA_FLASHBACK_ARCHIVE_TABLES view to find
out information about all tables that are enabled for flashback data archiving, as
shown here:

SQL> select * from dba_flashback_archive_tables;
TABLE_NAME OWNER FLASHBACK_ARCH_NAME ARCH_TABLE_NAM
----------- ------ ------------------- -------------------
EMPLOYEES HR FLASH1 SYS_FBA_HIST_70313

The query shows that the user HR owns the EMPLOYEES table, which is enabled
for flashback data archiving. The flashback archive name is FLASH1 and the history
table where the database stores the archived data is given the system-generated
name SYS_FBA_HIST_70313.

Instead of specifying the flashback archive clause when creating a table,
you can enable flashback archiving for a table by issuing the alter table
statement, as shown here:

SQL> alter table employees
 flashback archive;

The absence of the flashback archive name in the flashback archive clause
means that the database will use the default flashback data archive. You can specify a
specific flashback archive by providing the flashback archive name, as follows:

SQL> alter table employees
 flashback archive flash2;

You can disable flashback archiving for a specific table by executing the alter
table command, as follows:

SQL> alter table employees
 no flashback archive;

When you include the no flashback archive clause, the database will
remove all the flashback data for that table from the flashback data archive. The
previous statement would only affect flashback logging for the EMPLOYEES table.
The flashback logging for the other tables would continue and the flashback archive
itself remains in place. In order to remove the flashback archive itself, you must use
the drop flashback archive statement.

New Flashback-Related Features 423

424 Chapter 7: RMAN and Flashback Enhancements

Flashback Data Archive Limitations
Following are the limitations on using the flashback data archive feature:

■ You can’t execute the drop column command, although you can execute
the add column command. If you want to drop a column in a table for
which you enabled flashback data logging, you must first turn off flashback
logging for that table with the alter table . . . no flashback
statement. However, you’ll lose all the archived data for the table.

■ You also can’t use the alter table statement to rename or modify a
column on a table enabled for flashback data archive.

■ You can’t use the alter table statement to perform a partition or
subpartition operation or convert a LONG column to a LOB column on a
table enabled for flashback data archive.

■ You can’t use the drop table or the truncate table statement on a
table enabled for flashback data archive.

Monitoring Flashback Data Archives
You can use several new views to manage a flashback data archive. The following list
offers brief descriptions of the new views:

■ The DBA_FLASHBACK_ARCHIVE_TABLES view shows details about the
tables that are enabled for flashback data archiving.

■ The DBA_FLASHBACK_ARCHIVE view shows all flashback data archives
that you’ve created.

SQL> select flashback_archive_name,retention_in_days
 from dba_flashback_archive;
 FLASHBACK_ARCHIVE_NAME RETENTION_IN_DAYS
 ---------------------- -----------------
 FLASH1 365

■ The DBA_FLASHBACK_ARCHIVE_TS view shows details about the
tablespaces hosting the flashback data archives.

SQL> select flashback_archive_name, tablespace_name, quota_in_mb
 from dba_flashback_archive_ts;
FLASHBACK_ARCHIVE _NAME TABLESPACE_NAME QUOTA_IN_MB
------------------------ --------------- ------------
FLASH1 FLASH1_TBS 100

Using Flashback Data Archives: Examples
As I mentioned earlier in this chapter, you can use the flashback data archive feature
for several types of tasks, including the querying of historical data, auditing, and
even to recover from logical errors. The following examples illustrate the versatility
of the flashback data archive feature.

Accessing Older Data You can use an as_of clause in your select
statement to query historical data, as shown by this query:

SQL> select transaction_number, doctor_name, count
 from patient_info as of
 timestamp to_timestamp ('2007-01-01 00:00:00',
 'YYYY-MM-DD HH23:MI:SS');

You can use the as_of clause to recover from logical errors, by retrieving
older data, even when you don’t know the exact time when the wrong data entry
was made. The following example shows how to use the as_of clause to correct
wrongly updated data in a table.

The following query shows the current salary data for the employee with the
last_name Zlotkey in the EMPLOYEES table owned by the user HR.

SQL> select salary from hr.employees where
 last_name='Zlotkey';
 SALARY

 10500
SQL>

A user raises Zlotkey’s salary by a wrong amount, by updating the SALARY
column by 50000 instead of 5000.

SQL> update hr.employees set salary=salary+50000
 where last_name='Zlotkey';
1 row updated.
SQL> commit;
Commit complete.
SQL>

You can correct the error if you know the correct salary of Zlotkey before the
database committed the results of the update statement. You don’t know the exact
time the user issued the update statement, but it doesn’t matter. If you can roughly
estimate when the error was made, you can still retrieve the pre-change data. If you

New Flashback-Related Features 425

426 Chapter 7: RMAN and Flashback Enhancements

know that the erroneous update was made about two hours ago, you can set Zlotkey’s
salary to its value at that time by using the following update statement.

SQL> update hr.employees set salary =
 (select salary from hr.employees
 as of timestamp (systimestamp - interval '120' minute);
 where last_name='Zlotkey')
 where last_name='Zlotkey';
1 row updated.
SQL> commit;
Commit complete.
SQL>

The update shown here uses historical values made possible by the use of the
flashback data archive but the use of the flashback data archive is transparent.
That is, in order to correct the logical error by retrieving the historical value of the
SALARY column, you don’t have to query the history table directly. The database
will use that information automatically because you specified the as of clause in
your update statement. The systimestamp - interval '120' clause tells
the database to retrieve the values that prevailed two hours before for the SALARY
column for the user Zlotkey. If you want, you can specify seconds, days, and months
as well in the systimestamp clause, as shown here:

systimestamp - interval '60' second
systimestamp - interval '7' day
systimestamp - interval '12' month

Generating Reports You can use the historical data stored in the flashback
data archive to create reports that span a long period of time in the past. Use the
versions between timestamp clause as shown here to get values for a
table’s columns that prevailed during a time interval that you specify.

SQL> select * from patient_info
 versions between timestamp
 to_timestamp('2008-01-01 00:00:00','YYYY-MM-DD HH23:MI:SS')
 and maxvalue
 where name ='ALAPATI';

The query uses the versions between timestamp clause to capture all
versions of the data in the PATIENT_INFO table between January 1, 2008 and
today for the patient named ALAPATI.

Information Lifecycle Management You can also use the versions
between clause to retrieve multiple versions of a row to satisfy the requirement

of information lifecycle management (ILM) applications. Instead of your having to
collect and store the multiple versions over time, you can simply enable flashback
data archiving for the tables that you need to track for an ILM application. Here’s
an example that shows how you can specify the versions between clause to
retrieve all versions of a table’s rows during a specific interval of time.

SQL> select * from patient_info
 versions between timestamp
 to_timestamp ('2008-01-01 00:00:00',
 'YYYY-MM-DD HH24:MI:SS')
 and
 to_timestamp ('2008-06-01 00:00:00',
 'YYYY-MM-DD HH24:MI:SS')
 where name='ALAPATI';

The select statement shown here utilizes the flashback data archive to retrieve
all versions of the rows in the PATIENT_INFO table for the first six months of the
year 2008.

Flashback Transaction Backout
The flashback version query and the flashback transaction query features introduced
in Oracle Database 10g helped you to correct logical errors in a table by first querying
the data from the past and then updating it, thus undoing wrong transactions.
Oracle Database 11g introduces the flashback transaction backout feature, which lets
you perform logical recovery by undoing changes made by a transaction as well as
its dependent transactions. It is easy to maintain data consistency because you can
back out transactions that include a sequence of insert, update, and delete
statements with a single execution of the TRANSACTION_BACKOUT procedure
belonging to the DBMS_FLASHBACK package. You can do the same thing through
the Enterprise Manager, which uses the TRANSACTION_BACKOUT procedure as
well, to back out the changes made by a transaction or set of transactions with just a
single click on your part.

A dependent transaction can have either a write-after-write or a primary key
constraint relationship with the parent transaction:

■ In a write-after-write relationship, the dependent transaction modifies the data
that was previously modified by the parent transaction.

■ Under a primary key constraint relationship, the dependent transaction
reinserts the primary key deleted by the parent transaction.

New Flashback-Related Features 427

428 Chapter 7: RMAN and Flashback Enhancements

In order to undo the changes brought about by a transaction, the database executes
appropriate compensating transactions to return the data to its original state. Because
the flashback transaction backout feature needs both the undo as well as the redo
data generated for the undo blocks to execute the compensating transactions, you’ll
need the necessary undo data and the archived redo logs to undo a transaction.

Prerequisites for Flashback Transaction Backout
You must enable supplemental logging in the database to enable the flashback
transaction backout feature. So, first issue the following statements to turn
supplemental logging on in the database:

SQL> alter database add supplemental log data;
SQL> alter database add supplemental log data
 (primary key) columns;

You must also grant the following privileges to any user that wants to use the
flashback transaction backout feature. The following statements grant the necessary
privileges to the user HR:

SQL> grant execute on dbms_flashback to hr;
SQL> grant select any transaction to hr;

The first privilege grants the user HR the flashback system privilege and the
second, the select any transaction privilege. If a user wants to perform a
transaction backout operation in another user’s schema, the first user must also have
the necessary DML privileges on the table or tables in the second user’s schema.

Using the DBMS_FLASHBACK.TRANSACTION_BACKOUT
Procedure
You can use the new DBMS_FLASHBACK.TRANSACTION_BACKOUT
procedure to back out transactions. Here’s the structure of the DBMS_
FLASHBACK.TRANSACTION_BACKOUT procedure:

PROCEDURE TRANSACTION_BACKOUT
 Argument Name Type In/Out Default?
 ---------------- -------------- --------- ----------
NUMBEROFXIDS NUMBER IN
XIDS XID_ARRAY IN
OPTIONS BINARY_INTEGER IN DEFAULT
SCNHINT TIMESTAMP IN

Here’s a brief explanation of the four key parameters in the DBMS_
FLASHBACK.TRANSACTION_BACKOUT procedure:

■ numberofxids is the number of transactions you want to back out in this
operation.

■ xids A list of transaction identifiers that are passed as an array.

■ options Enables you to specify the order in which to back out the parent
and the child transactions. You can use the following four values for the
options parameter:

■ The nocascade value is the default and you use it when you don’t
expect a transaction to have any dependent transactions.

■ The cascade value backs out the dependent transactions before
backing out the parent transaction.

■ The nocascade_force value backs out only the parent transactions.
It ignores any dependent transactions.

■ The noconflict_only option backs out only those rows in the
parent transaction that don’t have any conflicts.

If you use the default value of nocascade for the options parameter,
it means that you’re expecting the parent transaction doesn’t have any
dependent transactions.

■ scnhint You use the scnhint parameter to specify the SCN at the start
of the transaction. The SCN must be before the start of the first transaction
in the transaction set to be backed out.

Note that you can use several variations of the TRANSACTION_BACKOUT
procedure. In our example here, I showed how you can use the xids parameter to
specify an array of transaction identifiers to list the transactions. You can alternately

You must understand all
the possible values that the options
parameter can take in the DBMS_

FLASHBACK.TRANSACTION_BACKOUT
procedure.

New Flashback-Related Features 429

430 Chapter 7: RMAN and Flashback Enhancements

use the parameter txnames to pass an array of transaction names. Similarly, you can
replace the scnhint parameter with the timehint parameter, which enables you
to provide a time hint on the start of the transaction. You must provide a timehint
parameter if you’re using transaction names instead of transaction identifiers.

The length of time for which the DBMS_FLASHBACK.TRANSACTION_
BACKOUT operation executes depends directly on the amount of redo generated
by the transactions being backed out. Once you execute the DBMS_FLASHBACK.
TRANSACTION_BACKOUT procedure, the transactions you name aren’t
automatically backed out by the database. The procedure checks the dependencies
among transactions and performs the DML operations, but doesn’t commit them.
Instead, it provides you with a report of its work. In the meantime, it holds locks on
the rows and the tables in order to keep new transactions from affecting the backout
operation. In order for the transactions to be backed out for good, you must issue a
commit statement.

EXERCISE 7-1

Using the TRANSACTION_BACKOUT Procedure
The following exercise shows you how to use the DBMS_FLASHBACK.
TRANSACTION_BACKOUT procedure to back out a transaction along with
its dependent transactions. Before you can execute the DBMS_FLASHBACK
.TRANSACTION_BACKOUT procedure, you must first create a variable of an
XID_ARRAY type. This array will hold a set of transaction identifiers as the starting
point of the dependency search. Alternately, you can use a set of transaction names
to identify the transactions.

declare
 trans_arr xid_array;
begin
 trans_arr := xid_array('030003000D02540','D10001000D02550');
 dbms_flashback.transaction_backout (
 numtxns => 1,
 xids => trans_arr,
 options => dbms_flashback.nocascade
);
end;

The column XIDS passes an array of transactions as input to the procedure. The
default value for the options parameter is cascade, but I chose nocascade in
this example. When you execute this procedure, the primary transaction and its
dependent transaction are rolled back in one step.

Although the database names the backout operation, for auditing purposes, Oracle
recommends that you name your backout operation. Successful execution of the
TRANSACTION_BACKOUT procedure means that the database backed out a
single parent transaction.

TRANSACTION_BACKOUT Reports
The TRANSACTION_BACKOUT procedure populates the views DBA_
FLASHBACK_TRANSACTION_STATE and DBA_FLASHBACK_
TRANSACTION_REPORT. Once the database successfully backs out a transaction,
the database records the transaction in the DBA_FLASHBACK_TRANSACTION_
STATE view. You can query the DBA_FLASHBACK_TRANSACTION_REPORT
view to get detailed reports about the transaction backout operations.

INSIDE THE EXAM

The exam will most certainly ask you at least
one question about the new active duplication
feature in RMAN. Be prepared to answer
questions relating to the syntax of the active
database duplication command, including the
use of the set parameter. Is the use of the
password file mandatory during active database
duplication?

The new multisection backup feature
is likely to appear in a question. Again, it’s
important to know the syntax of the command
for creating a multisection RMAN backup.
Other new RMAN features such as archival
backups and the new archivelog deletion policy
are likely to play a role in the test. How does
the change . . . nokeep command affect the
retention of a backup?

There are several key enhancements in
recovery catalog management and you can
expect to be tested on at least one of them.
How do you import a catalog into another

catalog? What is the syntax for the import
catalog command? You must know the precise
sequence of steps to follow to create a virtual
private catalog. Which commands can the
virtual private catalog owner execute?

The two major flashback-related
features—flashback data archive and
transaction backout—are likely to appear
on the exam. The exam is very likely to
contain a question about creating a flashback
archive. You must know the syntax of the
create flashback archive command
thoroughly. How do you set the retention
period for a flashback archive? There probably
will be a question on maintaining a flashback
data archive, such as purging the archive. You
are expected to understand how to enable
and disable history tracking for a table. Do
you have to specify the name of the flashback
data archive when you enable history tracking
for a table? In the flashback transaction

INSIDE THE EXAM

New Flashback-Related Features 431

432 Chapter 7: RMAN and Flashback Enhancements

CERTIFICATION SUMMARY
The first section of this chapter described the major RMAN enhancements. Active
database duplication enables you to duplicate a database across the network without
any prior backups for the source database. You can use the new section size
clause to perform multisection backups and restores, which are much faster because
you can parallelize the backup or restore. You can now use the backup . . . keep
command to perform an archival backup, whose purpose is to enable you to restore
a consistent version of the database. The recover . . . block command lets you
recover corrupt data blocks faster because it searches in the flashback logs first before
looking for the good blocks in the backup files.

You have a choice between two compression algorithms in Oracle Database
11g. The new compression algorithm ZLIB is much faster than the older BZIP2
algorithm. You can now configure an archived redo log policy, which controls the
behavior of any commands that delete the archived redo logs. The new import
database command in RMAN enables you to merge two recovery catalogs or
import databases from one recovery catalog to another. The virtual private catalog
feature enables you to control access to the base recovery catalog.

A flashback data archive stores the changes made to a table that you enabled
for flashback archiving. You can use the historical data for auditing, querying older
data, generating reports, and information lifecycle management. The flashback
transaction backout feature enables you to easily back out a transaction along with
all of its dependent transactions.

feature, you must understand how to set
the various options such as nocascade,
nonconflict_only, and cascade
when you execute the TRANSACTION_
BACKOUT procedure. Which of these

options must you specify, if you want to
forcibly back out a set of transactions
without paying attention to the dependent
transactions?

Two-Minute Drill 433

TWO-MINUTE DRILL

RMAN Enhancements

❑ Active database duplication doesn’t use any backups for duplicating the database.

❑ You can perform active database duplication with the database open or in the
mount state.

❑ When you perform active database duplication, you must use password files
on both the source and the auxiliary databases so you can use the same
SYSDBA password.

❑ Use the spfile . . . parameter_name_convert clause to specify
conversion strings for all initialization parameters except the db_file_
name_convert and the log_file_name_convert parameters.

❑ The set clause in the duplicate database command enables you to
specify initialization parameters for the new database.

❑ The db_file_name_convert parameter enables you to specify file-
naming rules for creating datafiles and tempfiles.

❑ The log_file_name_convert parameter enables you to specify the file-
naming rules for online redo log files.

❑ The spfile clause in the duplicate database statement specifies the copying
of the source database’s SPFILE to the duplicate database.

❑ Specify the nofilenamecheck clause in the duplicate database
statement when duplicating a database to a different server.

❑ The section size backup command parameter enables RMAN to back
up and restore a large datafile a section at a time.

❑ RMAN creates uniform-sized sections for all but the very last section size,
which may or may not be the same size as the other sections.

❑ RMAN assigns a default value for section size, if you omit a value for the
section size parameter.

❑ You can also specify the section size clause with the validate
datafile command.

❑ You can use the revised backup . . . keep command to create long-term
archival backups.

✓

434 Chapter 7: RMAN and Flashback Enhancements

❑ An archival backup contains all the backups and archived redo log files
necessary to restore and recover a database.

❑ You can specify the restore point option with the keep command.

❑ The restore point clause determines the time until which RMAN can
restore an archival backup.

❑ Specify the keep . . . until time option to create an archival backup and
store it for a specified period of time.

❑ Specify the keep . . . forever clause to create an archival backup that
RMAN stores forever.

❑ You can also alter the status of a normal backup to that of an archival backup
by using the change (change backup) command.

❑ You can’t use the change . . . keep command to alter the status of backups
stored in the flash recovery area.

❑ You can enable block change tracking on a physical standby database.

❑ The recover . . . block command replaces the blockrecover command.

❑ The recover . . . block command searches the flashback logs before the
backup files, when it’s looking for good copies of a corrupted data block.

❑ Each time a command such as validate or backup . . . validate
reveals a database corruption, the database logs that information in the
V$DATABASE_BLOCK_CORRUPTION view.

❑ You can use the recover . . . block command to recover a specific data
block or all corrupt data blocks at once.

❑ Issue the recover corruption list command to recover all corrupt data
blocks in the database.

❑ RMAN uses the new compression algorithm ZLIB as the default algorithm.

❑ The ZIB algorithm is faster than BZIP2 but doesn’t offer as good a
compression ratio.

❑ An archived redo log deletion policy enables you to specify when an archived
redo log becomes eligible for deletion.

❑ By default, no archived redo log deletion policy is set.

❑ The backup retention policy won’t mark an archived redo log as obsolete if
the log is necessary to support a guaranteed restore point or the Flashback
Database feature.

Two-Minute Drill 435

❑ Both the backup . . . delete and the delete . . . archivelog
commands will take an archived redo log deletion policy into account.

❑ RMAN automatically fails over to a non-flash recovery area when archiving
a redo log, if an archived redo log file in the flash recovery area is missing or
corrupt.

Recovery Catalog Management

❑ A virtual recovery catalog enables you to restrict a user to only a part of the
base recovery catalog.

❑ The import catalog command enables you to merge recovery catalogs.

❑ By default, RMAN unregisters all databases from the source recovery catalog
after it imports those databases to another recovery catalog.

❑ Use the no unregister clause if you want RMAN to retain the imported
database in the source recovery catalog after importing them to another
recovery catalog.

❑ If a global store script has identical names in different catalogs, RMAN will
rename the source recovery catalog script.

❑ You can use the import catalog command to move a recovery catalog to
a different database.

❑ A virtual private catalog is a set of synonyms and views based on the central
base recovery catalog.

❑ The catalog privilege grants the user the ability to register and unregister a
database from the recovery catalog.

❑ The revoke catalog for database command is used to revoke a
virtual catalog owner’s access to a database.

❑ You can use the revoke register database or the revoke all
privileges command to revoke privileges from a virtual catalog owner.

New Flashback-Related Features

❑ A flashback data archive is a logical container for storing older versions of
data over a long period of time.

❑ The flashback transaction feature lets you easily back out a transaction, along
with its dependent transactions.

436 Chapter 7: RMAN and Flashback Enhancements

❑ The flashback data archive will automatically purge older data.

❑ The flashback data archive is an online feature.

❑ You must enable flashback data archiving at the table level.

❑ You can use different retention periods for different flashback data archives.

❑ You can create a default flashback data archive, but it isn’t a requirement.

❑ You must first enable a table for flashback data archiving before the database
can start archiving data for that table.

❑ The Oracle background process fbda writes the changed data to the flashback
data archive.

❑ A flashback data archive can contain data from multiple tables.

❑ You can set different retention periods for different tables.

❑ If you don’t specify a flashback data archive, a table will use the default
flashback data archive.

❑ The database stores the history data in an internal history table it creates for
each table it tracks.

❑ The database doesn’t add any rows to the history table when you insert rows
into the original table.

❑ The fbda background process marks the undo data for an update or
delete command for archiving to the history table.

❑ The database automatically adjusts the sleep time of the fbda process.

❑ You can use the as of construct to retrieve flashback data.

❑ No one can update the history data. You can query the data but you can’t
modify it.

❑ You must grant the flashback archive administer system privilege
for a user to be able to create a flashback data archive.

❑ You must always assign a retention period for a flashback data archive by
specifying the retention clause in the create flashback data
archive command.

❑ When you drop a flashback data archive, the archived data will be gone but
the tablespace hosting the data archive remains intact.

❑ You must specify the flashback archive clause when you create a table
in order to archive the changes to that table’s data.

Two-Minute Drill 437

❑ You can also specify the flashback archive clause with an alter
table statement in order to archive the changes made to a table.

❑ You can disable flashback archiving for a table by issuing the alter table
statement with the no flashback archive clause.

❑ You can’t issue an alter table statement to drop, rename, or modify a
column on a table enabled for a flashback data archive.

❑ You can’t execute the drop table or truncate table statement
against a table enabled for a flashback data archive.

❑ You can back out transactions with the DBMS_FLASHBACK.
TRANSACTION_BACKOUT procedure.

❑ In a write-after-write relationship, the dependent transaction modifies the
data that was modified earlier by the parent transaction.

❑ In a primary key constraint relationship, the dependent transaction reinserts
the primary key deleted by the parent transaction.

❑ In the flashback transaction backout feature, the database executes
compensating transactions to return data to its original state.

❑ You must enable supplemental logging to enable the flashback transaction
backout feature.

❑ In the TRANSACTION_BACKOUT procedure, the nocascade value for
the options parameter is the default.

❑ The nocascade value for the options parameter is used when you don’t
expect any dependent transactions.

❑ The cascade value for the options parameter backs out the dependent
transactions first.

❑ The nocascade_force value for the options parameter backs out only
the parent transactions.

❑ The noconflict_only option for the options parameter backs out
only those rows in the parent transaction that don’t have any conflicts.

438 Chapter 7: RMAN and Flashback Enhancements

SELF TEST

RMAN Enhancements

 1. The set clause in the duplicate database command lets you specify the
 A. Initialization parameters
 B. log_file_name_convert parameter
 C. db_file_name_convert parameter
 D. parameter_value_convert clause

 2. The password file clause in the duplicate database command
 A. Copies the source database’s password file to the target database
 B. Copies the target database’s password file to the source database
 C. Isn’t necessary if the SYSDBA password is the same in the source and the target databases
 D. Is mandatory when duplicating a database

 3. When you perform a multisection backup,
 A. Each section corresponds to a backup piece in the backup set.
 B. Each section corresponds to a backup set in a backup.
 C. The very last section may or may not be the same size as the rest of the sections.
 D. You don’t have to specify a value for the section size parameter.

 4. An archival backup
 A. Includes all archived redo logs from the time the backup was taken
 B. Includes all archived redo logs necessary to make the backup consistent
 C. Is immune from any retention policies you may have configured
 D. Can include a restore point option

 5. Which of the following statements is true?
 A. If an archived redo log is necessary to support a normal restore point, the backup retention

 policy won’t make it obsolete.
 B. If an archived redo log is necessary to support a guaranteed restore point, the backup

 retention policy won’t make it obsolete.
 C. The delete . . . archivelog command doesn’t take a configured archived redo

 log deletion policy into account.
 D. An archived redo log deletion policy determines when RMAN can delete all archived redo

 log files.

 6. What does the parameter_value_convert clause in the duplicate database command do?
 A. It specifies the string to be used in all initialization parameters that specify filenames, except

 the db_file_name_convert and the log_file_name_convert parameters.
 B. It specifies the substitution of the appropriate file path in the filenames of the duplicate

 database’s online redo log files.
 C. It specifies all initialization parameters for the duplicate database.
 D. It substitutes the appropriate string in the names of the duplicate database’s datafiles and

 tempfiles.

 7. When you execute the recover . . . block command, the database
 A. Searches the archived redo logs first for the good data blocks
 B. Searches the online redo logs first for the good data blocks
 C. Searches the backed up data files for the good data blocks
 D. Searches the flashback logs for the good data blocks

Recovery Catalog Management

 8. When merging two recovery catalogs with the import catalog command, the no
unregister clause

 A. Instructs RMAN not to unregister the imported database in the destination recovery
 catalog

 B. Instructs RMAN not to register the imported database in the destination recovery catalog
 C. Instructs RMAN not to remove the imported databases from the source recovery catalog

 after their import to the target catalog
 D. Is always used by RMAN by default

 9. A virtual catalog owner
 A. Can create only global stored scripts
 B. Can create only local stored scripts
 C. Can create both local and global stored scripts
 D. Has read-only rights to global stored scripts

10. The grant catalog for database command
 A. Grants recovery catalog access on a specific database to a user
 B. Grants recovery catalog access on all databases to a user
 C. Lets you grant access to only databases that are currently registered in the base recovery catalog.
 D. Lets you grant access to target databases that are not yet registered in the base recovery

 catalog.

Self Test 439

440 Chapter 7: RMAN and Flashback Enhancements

11. The grant register database to <username> command
 A. Grants recovery catalog access to a specific database to a user
 B. Grants recovery catalog access to all databases to a user
 C. Grants the ability to a user to execute the register database command to register

 databases that are currently unknown to the database
 D. Grants the ability to execute the register database command to register a database

 currently known to the recovery catalog in that user’s virtual private catalog

12. The DBMS_RCVCAT.CREATE_VIRTUAL_CATALOG procedure
 A. Creates a virtual private catalog when you’re using a pre–Oracle 11g release RMAN

 executable
 B. Lets you work with a pre–Oracle 11.1 release database
 C. Must always be executed before you can start working with a virtual recovery catalog
 D. Is a procedure you must execute in order to create a virtual catalog

13. You must use the following set of commands in the correct sequence to create a recovery catalog
and register a new database in that catalog, following the creation of the base catalog.
1. grant recovery catalog owner to vpcowner;
2. grant catalog for database test1 to vpcowner;
3. register database;
4. create virtual catalog;
5. grant register database to vpcowner;
Which of the following shows the correct sequence of steps?

 A. 5, 4, 3, 2, 1
 B. 1, 2, 3, 4, 5
 C. 1, 5, 2, 4, 3
 D. 1, 5, 4, 2, 3

14. When you execute the import catalog command to merge two recovery catalogs,
 A. You can only import metadata of a single database at a time.
 B. You can import the metadata of all registered databases in the source catalog.
 C. You can specify only the DBID of the databases you’d like to import.
 D. You can specify the database name or the DBID of the databases you’d like to import.

New Flashback-Related Features

15. A flashback data archive
 A. Will store data up to the SCN you specify
 B. Will automatically purge older data
 C. Never purges data on its own
 D. Can be activated for the entire database

16. How do you set different retention periods for tables when you use the flashback data archive?
 A. By assigning the tables to different flashback data archives
 B. By using the alter table statement to change the retention period for the tables
 C. By purging the flashback data archive after the retention period for a table is over
 D. By changing the retention period for the history table that the database maintains for each

 of the tables in the flashback data archive

17. Which of the following items must you specify when you create a flashback data archive?
 A. Quota
 B. Retention period
 C. Flashback data archive name
 D. Name of the tablespace

18. How can you free up space in the flashback data archive when it runs out of space?
 A. Purge older data
 B. Add space to the tablespace hosting the flashback data archive
 C. Delete the history tables
 D. Add space to the flashback data archive by executing the alter flashback archive

 statement

19. How do you enable flashback data archiving for a set of tables?
 A. By creating a flashback data archive
 B. By specifying the flashback archive clause when you create a table
 C. By executing the alter table . . . flashback archive statement
 D. By using the initialization parameter enable_flashback_archive and setting it

 to TRUE

20. In the DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure, the nocascade
value for the options parameter

 A. Is the default value for the options parameter
 B. Backs out dependent transactions before backing out the parent transaction
 C. Backs out only the parent transactions and ignores any dependent transactions
 D. Backs out only those rows in the parent transaction that don’t have any conflicts

Self Test 441

442 Chapter 7: RMAN and Flashback Enhancements

21. In the DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure, the nocascade_
force value for the options parameter

 A. Is the default value for the options parameter
 B. Backs out dependent transactions before backing out the parent transaction
 C. Backs out only the parent transactions and ignores any dependent transactions
 D. Backs out only those rows in the parent transaction that don’t have any conflicts

LAB QUESTION
Show how to create a virtual private catalog and enable a user to use that virtual catalog for a pre–
Oracle Database 11g client.

SELF TEST ANSWERS

RMAN Enhancements

 1. � A and B are correct. A is correct because the set clause enables you to specify the
initialization parameters directly in the duplicate database command, without
specifying them in the SPFILE for the duplicate database. The values you set for any
initialization parameters by specifying the set clause override the values for the same
parameters in the SPFILE for the duplicate database. B is correct because the set clause
enables you to specify the value for the log_file_name_convert parameter.
� C is incorrect because you must specify the db_file_name_convert parameter on its
own, not by specifying the set command. D is incorrect because you specify the parameter_
value_convert parameter separately, not as part of the set command.

 2. � A is correct because the password file clause enables you to copy the source
database’s password file to the duplicate database.
� B, C, and D are incorrect. B is incorrect because the password file clause copies the
source database’s password file over to the target database. C is incorrect because the need for
the password file clause has nothing to do with the SYSDBA password being the same
in the two databases. D is incorrect because the password file clause is optional, not
mandatory.

 3. � A and C are correct. A is correct because each section in a multisection backup job
corresponds to a backup piece in the resulting backup set. C is correct because all sections
are of the same size, but the last section may or may not be.
� B is incorrect because each section in a multisection backup corresponds to a backup piece,
not a backup set. D is incorrect because the section size parameter is mandatory—there’s
no default size for the section size parameter.

 4. � B, C, and D are correct. B is correct because an archival backup includes all the necessary
archived redo logs that are necessary to make a backup consistent. The goal of an archival
backup isn’t to make a point-in-time recovery, but to create a consistent database from the
backups. C is correct because an archival backup ignores any retention policies you might have
configured for RMAN backups. D is correct because you can include an optional restore
point option when creating an archival backup.
� A is incorrect because an archival backup doesn’t include all archived redo logs from the
time the backup was made. It simply includes the archived redo logs to make the recovery
consistent, but not up-to-date.

Self Test Answers 443

444 Chapter 7: RMAN and Flashback Enhancements

 5. � B and D are correct. B is correct because when you configure an archived redo log deletion
policy, RMAN won’t mark a backup as obsolete if that archived redo log is necessary to support
a guaranteed restore point. D is correct because when you configure an archived redo log policy,
the policy determines when RMAN can delete all the archived redo log files.
� A and C are incorrect. A is incorrect because RMAN may mark as obsolete archived redo
logs that are necessary to support a normal restore point. It will not, however, mark the archived
redo logs necessary to support a guaranteed restore point as obsolete. C is incorrect because the
delete . . . archivelog command takes the archived redo log policy that you configured
into account when it deletes archived redo logs.

 6. � A is correct because the parameter_value_convert clause specifies the string names
for all initialization parameters that specify filenames, with the exception of the db_file_
name_convert and the log_file_name_convert parameters.
� B, C, and D are incorrect. B is incorrect because it’s the log_file_name_convert
parameter that specifies the string for the filenames of the duplicate database’s online redo log
files. C is incorrect because the parameter_name_convert parameter doesn’t specify
any initialization parameters or the duplicate database—it’s the set clause in the duplicate
database command that specifies the initialization parameters for the duplicate database. The
parameter_name_convert clause merely specifies the string names for all initialization
parameters that specify filenames, with the exception of the log_file_name_convert
and the db_file_name_convert parameters. D is incorrect because it’s the db_file_
name_convert parameter that substitutes the string to be used in the names of the duplicate
database’s datafiles and tempfiles.

 7. � D is correct because when you issue the block . . . recover command, the database first
searches the flashback logs for the good data blocks that it restores in place of the corrupted
data blocks.
� A, B, and C are incorrect because the database first looks in the flashback logs for the good
data blocks, which is why the recover . . . block command is more efficient than the old
blockrecover command. The flashback logs are always online, and enable a quick restore of
the corrupt data blocks.

Recovery Catalog Management

 8. � C is correct because the no unregister clause tells RMAN not to automatically
unregister the database that it imported from the source recovery catalog database.
� A, B, and D are incorrect. A is incorrect because the no unregister clause deals with
unregistering already registered databases from the source recovery catalog. B is incorrect because
the no unregister clause deals with the unregistering of previously registered databases,
not with the registering of new databases in either of the two recovery catalogs. D is incorrect
because the no unregister clause is optional and RMAN doesn’t use it by default.

 9. � B and D are correct. B is correct because a virtual catalog owner can create only local
stored scripts. D is correct because even though the virtual catalog owner can’t create any global
stored scripts, the owner has read-only rights to global stored scripts.
� A and C are incorrect because the virtual catalog owner can’t create any global scripts.

10. � A and D are correct. A is correct because the grant catalog for database . . .
command grants recovery catalog access on a specific database to a user. The command is used
in the following way:

SQL> grant catalog for database test1 to vpcuser;

 D is correct because you can grant access to databases that aren’t yet registered in the base
recovery catalog. You must grant access by using the DBID of the database in such cases.
� B and C are incorrect. B is incorrect because the grant catalog for database
command doesn’t grant access to all databases, but only to the databases that you explicitly
specify. C is incorrect because the command lets you grant access to target databases that are
not yet registered in the base recovery catalog.

11. � C is correct because the grant register for database . . . command grants
the ability to execute the register database command to register new databases in the
virtual catalog, and therefore in the base recovery catalog as well.
� A, B, and D are incorrect. A is incorrect because the register database command
doesn’t automatically grant access to a database. B is incorrect because the grant register
database command grants the privilege only on a specific database and not on all databases.
D is incorrect because the grant register for database command grants the ability
to register databases that are currently unknown to the database.

12. � B is correct because you must execute the CREATE_VIRTUAL_CATALOG procedure
from the DBMS_RCVCAT package before working with any pre–Oracle 11.1 release database.
� A, C, and D are incorrect. A is incorrect because the CREATE_VIRTUAL_CATALOG
procedure doesn’t actually create a virtual private catalog. C is incorrect because you have to
execute this procedure only when you want to work with a pre–Oracle 11.1 release database. D is
incorrect because you don’t use this procedure to create a virtual catalog, but to work with one.

13. � C is correct because it shows the correct sequence of steps.
� A, B, and D are incorrect because they all show an incorrect sequence of steps.

14. � B and D are correct. B is correct because when you issue the import catalog
command without either the database or the DBID clause, the command will import metadata
for all databases from the source recovery catalog into the destination recovery catalog. D is
correct because you can specify either the DBID or the database when naming the database or
databases you want to import from the source database.
� A and C are incorrect. A is incorrect because you don’t have to import one database at
a time. When you issue the import catalog command without any database or DBID

Self Test Answers 445

446 Chapter 7: RMAN and Flashback Enhancements

clauses, you import the metadata for all database registered in the source recovery catalog. C is
incorrect because you can specify either the DBID or the database when naming the database or
databases you want to import from the source database.

New Flashback-Related Features

15. � B is correct because the flashback data archive will purge data automatically, based on the
retention period that you specify for that archive.
� A, C, and D are incorrect. A is incorrect because the flashback data archive doesn’t take
into account any SCNs when storing historical data for a table. After you enable a table for
the flashback data archive, the database simply records all changes made to that table until you
disable archiving for the table. C is incorrect because the flashback data archive automatically
manages the purging of its data, as explained earlier. D is incorrect because you can’t activate
flashback data archiving for the entire database. You can enable only specific tables for
archiving, one table at a time. You can enable a table for archiving either when you create the
table, or later on, with the alter table statement.

16. � A is correct because you can assign tables to different flashback data archives, each of
which is configured with a different retention period that’s appropriate to a table.
� B, C, and D are incorrect. B is incorrect because you can’t change the retention period
with the alter table statement. You can change the retention period with the alter
flashback data archive statement. C is incorrect because purging the flashback data
archive removes all data for a table. D is incorrect because you can’t change the retention
period for the history table.

17. � B and D are correct. B is correct because it’s a mandatory attribute you must specify
when creating a flashback data archive. D is correct because you must specify the name of the
tablespace when creating a flashback data archive.
� A is incorrect because you don’t have to specify the quota attribute. C is incorrect because
the flashback data archive isn’t mandatory—you can omit the attribute as long as you have
already created a default flashback data archive for the database.

18. � A, B, and D are correct because doing any one or all of these will create more free space in
the flashback data archive for new history records for a table.
� C is incorrect because you can’t delete the history table for a table that is enabled for
flashback data archiving.

19. � B and C are correct. B is correct because you can specify the flashback archive
clause when you create a table with the create table statement. C is correct because you
can also enable flashback data archiving for a table with the alter table statement.
� A is incorrect because you can’t enable flashback data archiving by merely creating a
flashback data archive. You must follow this by explicitly enabling a table for flashback data

archiving, either when you create the table or with the alter table statement later on.
D is incorrect because there is no initialization parameter named enable_flashback_
archive.

20. � A is correct because nocascade is the default value for the options attribute. You use
the nocascade value when you don’t expect the transaction you’re backing out to have any
dependent transactions.
� B, C, and D are wrong. B is incorrect because it’s the cascade value that backs out
dependent transactions before backing out the parent transaction. C is incorrect because it is
the nocascade_force value that backs out only the parent transaction while ignoring any
dependent transactions. D is incorrect because it is the noconflict_only value for the
options parameter that backs out only those rows in the parent transaction that don’t have
any conflicts.

21. � C is correct because the nocascade_force value results in backing out only the parent
transaction while ignoring any dependent transactions.
� A, B, and D are incorrect. A is incorrect because nocascade is the default value for the
options attribute. B is incorrect because it is the cascade value that backs out dependent
transactions before backing out the parent transaction. D is incorrect because it is the
noconflict_only value for the options parameter that backs out only those rows in the
parent transaction that don’t have any conflicts.

LAB ANSWER
The process for creating a virtual catalog for a pre–Oracle Database 11g client is essentially the same
as that for an Oracle Database 11g client, with one small difference. I show the sequence of steps here.

 1. Create an RMAN base catalog and connect to it as shown here:

RMAN> connect catalog rman/rman@catdb;

 2. Grant the recovery_catalog_owner privilege to the new virtual catalog owner, virtual1:

SQL> connect sys/sammyy1@catdb as sysdba
SQL> grant recovery_catalog_owner to virtual1;

 3. Grant one of the following privileges to the virtual catalog owner virtual1, after first connecting
to the base recovery catalog as the recover catalog owner, rman.

RMAN> grant register database to virtual1;
RMAN> grant catalog for database testdb to virutal1

 4. Create a virtual catalog for a pre–Oracle Database 11g client after first logging in as the virtual
catalog owner, virtual1.

SQL> connect virtual1/virtual1@catdb
SQL> exec rman.dbms_rcvcat.create_virtual_catalog;

Self Test Answers 447

448 Chapter 7: RMAN and Flashback Enhancements

 5. Register a new database in the catalog.

RMAN> connect target/catalog virtual1/virtual1@catdb
RMAN> register database;

 6. Use the virtual catalog to create a backup of a database.

RMAN> connect target / catalog virtual1/virtual1@catdb;
RMAN> backup database;

8
Oracle SecureFiles
and Miscellaneous
New Features

CERTIFICATION OBJECTIVES

 8.01 Oracle SecureFiles

 8.02 Online Enhancements

 8.03 Miscellaneous New Features

✓ Two-Minute Drill

Q&A Self Test

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

450 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

This final chapter of the book deals with Oracle SecureFiles, which is a newly re-
engineered LOB data type for large objects. Oracle SecureFiles is a completely
new storage infrastructure for data that’s a drop-in replacement of Oracle’s previous

implementation of large object infrastructure. The Oracle SecureFiles architecture has been
designed to offer improved performance and security while reducing disk usage with its advanced
compression features. This chapter shows you how to create LOBs as Oracle SecureFiles and how
to migrate from traditional LOBs to the new Oracle SecureFiles infrastructure.

The second part of this chapter is a quick round-up of miscellaneous new features
in Oracle Database 11g. These features include several online enhancements such as
locking enhancements and minimal invalidation of dependent objects during online
redefinitions. The chapter shows how to replace your parameter file by using the
parameter values currently in use by the instance. Online patching with the opatch
utility offers several benefits, and you learn about this new feature as well. The new
release also lets you create what are called invisible indexes, which the optimizer
can’t “see” until you explicitly make those indexes visible. You’ll learn about the
enhancements to temporary tablespace management. The chapter discusses the new
method to easily enable you to set up native PL/SQL compilation in a database. You
can now use table compression for OLTP databases and compress data during DML
operations. The chapter concludes by introducing the Oracle Direct Network File
System (NFS) implementation that offers you considerable benefits over using the
kernel NFS layer.

Let’s start by learning how to implement Oracle SecureFiles.

CERTIFICATION OBJECTIVE 8.01

Oracle SecureFiles
Contemporary organizations deal with data that includes traditional data stored in
relational tables, semi-structured data such as XML and word processing documents,
and unstructured data such as media and imaging data. Oracle has used LOBs since
the Oracle 8i release to take care of semi-structured and unstructured data, but the
implementation of LOBs suffered from several drawbacks, as follows:

■ The LOBs were created for mostly “write once, read many times” operations
and couldn’t handle frequent updates.

■ LOBs assumed low concurrent usage data.

■ You had to control the amount of undo retained by setting the retention
and pctversion parameters, which led to additional management burden.

■ LOBs weren’t expected to be very large in size.

■ It was assumed that the LOB sizes were uniform. The chunk size could be
only 32 KB at its maximum.

■ LOBs were not planned with the concurrent usage requirements in Oracle
RAC in mind.

The reality is that unstructured and semi-structured data today are very different
from the way they were just a few years ago. Today’s LOBs can be quite large, and
they could come in all sizes. High concurrency in a LOB environment is quite
common, and the LOBs in the previous release couldn’t efficiently deal with highly
concurrent RAC environments.

In Oracle Database 11g, Oracle offers a completely new way of handling unstructured
data to address the concerns resulting from the way LOBs are currently implemented.
The newly reengineered LOB data type is called Oracle SecureFiles. You can refer
to the older LOB implementation as BasicFiles. Oracle SecureFiles offer intelligent
compression and transparent encryption capabilities and improve performance while
being easy to manage and implement.

Oracle SecureFiles use variable chunk sizes, which can be as large as 64 MB.
By storing these chunks next to one another, Oracle also minimizes fragmentation.
SecureFiles relieve the user from version control tasks by determining whether
to generate full redo records or to generate them only for the changed data. Read
and write performance is also higher with SecureFiles because they offer a new
client/server network layer that allows fast data transfer. SecureFiles also maintain
internal memory and space usage statistics that enable the database to maintain the
SecureFiles with minimal specification of parameters by you.

Enabling SecureFiles
You can continue to create the older LOBs, which are now also referred to as
BasicFiles. You must set the compatible initialization parameter to at least 11.0.0.0 in
order to use SecureFiles. This means that when you set the compatible parameter to
11.0.0.0, you can create both BasicFiles and SecureFiles in the same database if you
want. By default, the database allows the creation of SecureFiles. You can control
the ability of the database to create SecureFiles by setting the db_securefile
initialization parameter. The parameter can take the following values:

■ always Creates all LOBs as SecureFile LOBs. However, if you use
a tablespace that is not enabled for ASSM (automatic segment space
management), the database can create only the traditional BasicFile LOBs.

Oracle SecureFiles 451

452 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

■ force Creates all LOBs as SecureFile LOBs, regardless of whether the
tablespace in which the LOB is created is an ASSM-enabled tablespace or not.

■ permitted This is the default value for the parameter, under which the
database allows the creation of SecureFiles.

■ never The database won’t allow the creation of new SecureFile LOBs.

■ ignore The database won’t allow the creation of new SecureFile LOBs
and also ignores errors caused by creating a BasicFile with SecureFile options.

If you use any SecureFile options such as encryption, compression, and
deduplication for a BasicFile, you’ll get an error.

As you can see, only the never option will disallow the creation of SecureFile
LOBs. If you don’t specify a certain storage option when creating SecureFiles, the
database applies the BasicFile defaults.

You can also use the Enterprise Manager to modify the SecureFile storage options.
Simply access the Initialization Parameters link from the Server tab on the Database
Control Home page to change the settings of the db_securefile initialization
parameter. You can use the alter system and alter session statements to
modify a SecureFile storage setting. The following example shows you how to issue
an alter system statement to prevent the creation of SecureFile LOBs:

SQL> alter system set db_securefile = 'never' scope=spfile;

Once you execute the alter system statement shown here, the database will
disallow any attempts to create SecureFiles.

Capabilities of SecureFiles
By implementing Oracle SecureFiles instead of the traditional BasicFiles, you can
take advantage of three new advanced capabilities: compression, deduplication, and
encryption. I explain each of these new capabilities here.

■ Compression You can choose to compress SecureFiles. The database
will uncompress only those blocks that are necessary for read and write
operations.

■ Deduplication This feature automatically detects duplicate data and saves
only one copy of any duplicated data, thus saving disk storage space and
lowering I/O. You can specify deduplication at the table or the partition level.

You need to choose the Advanced Compression option if you want to use the
deduplication feature. Similarly, you must use the Advanced Security Option if
you want to employ encryption for SecureFiles.

■ Encryption SecureFiles offer transparent encryption, which the database
can use for random reads and writes, thus enhancing database security. The
database uses Transparent Data Encryption to encrypt the SecureFile LOBs on
a per-column basis and uses an identical encryption algorithm for all partitions
within a LOB column. You can specify the standard 3DES168, AES128,
AES192, and the AES256 encryption algorithms for the encryption of

SecureFiles. By default, the database uses the
AES128 encryption algorithm.

You can set up the three advanced
features—deduplication, encryption, and
compression—either independently or
together. If you adopt all three features, Oracle
will first perform deduplication of the data and
then compress it before encrypting the data.

Storage Options for SecureFiles
Specifying the old storage clauses chunk, pctversion, freepools,
freelists and freelistgroups isn’t necessary when you use SecureFiles.
If you do specify any of these clauses, the database will parse but not interpret
these clauses. Instead of these clauses, you now have the following new storage-
related clauses.

■ maxsize Specifies the maximum LOB segment size.

■ retention Specifies the version control policy by telling the database
which versions it must retain. Here are the options you can specify for the
retention parameter:

■ max Specifies that the database start reclaiming the old version once a
segment reaches its maxsize value.

■ min Specifies that the database retain old versions for at least the
minimum time specified (in seconds).

■ auto Lets the database automatically determine the retention time.
This is the default setting.

■ none Specifies that the database use old versions as much as possible.

Show how you can specify
the compression, deduplication, and
encryption features when creating a table
with a SecureFile LOB.

Oracle SecureFiles 453

454 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

You specify the storage attributes when you create a SecureFile object. However,
you can issue the alter table statement to modify the storage settings, in which
case the database will apply the new settings only to the space created after the
database executes the alter table statement.

Creating SecureFiles
When you create a table with a LOB column or you add a LOB column to a table,
you can specify whether the database must create the LOB as a traditional BasicFile
or the new SecureFile. You can create a SecureFile by specifying the storage clause
store as securefile in a create table statement to tell the database
the storage type of the new LOB. You create a BasicFile (traditional LOB) by
specifying the clause store as lob. If you don’t specify any storage type clause,
by default, the database will create a traditional LOB, now called a BasicFile.

The following example shows you how to create a SecureFile by specifying the
store as securefile clause:

SQL> create table secure1 id number, doc clob)
 LOB(doc) store as securefile;

The database will store all documents in the SECURE1 table as SecureFiles. You
can create SecureFiles with the deduplication option, as shown here, to specify that
the database not store any duplicates for the LOBs.

SQL> create table secure2
 id number, doc clob)
 LOB(doc) store as securefile
 (deduplicate lob cache nologging);

The deduplicate clause, of course, specifies that the database not keep LOB
duplicates. The cache clause specifies that the database cache the LOB upon reading
it by placing the LOB pages in the buffer cache for speedier access. You can also specify
the nocache option, the default for LOB caching, to specify that the database not
store the LOB values in the buffer cache. The third caching option, cache reads,

Carefully review the
different values you can assign to the db_

securefile initialization parameter. What
does it mean to set the value to always?

specifies that the database can store LOB values in the buffer cache only during read
operations but not for write operations. The nologging clause specifies that the
database not generate any redo during update operations.

In order to specify encryption of the LOBs, you can use either of the following
two specifications, one specifying the encryption when declaring the CLOB and the
other specifying encryption by using the encrypt storage clause.

SQL> create table secure2
 id number, doc clob)
 LOB(doc) store as securefile (ENCRYPT);

SQL> create table secure3
 id number, doc clob encrypt using 'AES256')
 LOB(doc) store as securefile;

The database encrypts the SECURE3 table with the encryption algorithm I
specify, AES256. Because I didn't specify an encryption algorithm in the first case,
the database uses the default AES128 encryption algorithm for the table SECURE2.

The following example shows you how to specify compression when creating a
LOB as a SecureFile:

SQL> create table secure4
 id number, doc clob)
 LOB(doc) store as securefile
 (compress high keep duplicates);

The compress high clause specifies compression at the high level (you can
also specify the medium level, which is the default option). In addition, the keep
duplicates clause specifies that the database may store duplicates for the LOB
column.

You can issue the alter table statement to alter Securefile storage options.
The following examples show how to change various SecureFile storage options:

■ Enable duplication by specifying the keep duplicates option:

SQL> alter table test modify LOB(one) (keep duplicates);

■ Disable duplication by specifying the deduplicate lob option:

SQL> alter table test modify LOB(one) (deduplicate lob);

■ Disable compression by specifying the nocompress option:

SQL> alter table test modify LOB(one) (nocompress);

Oracle SecureFiles 455

456 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

■ Enable a high level of compression by specifying the compress high
clause:

SQL> alter table test modify LOB(one) (compress high);

■ Specify encryption using the 3DES168 encryption algorithm:

SQL> alter table test modify
 (one clob encrypt using '3des168');

■ Specify encryption and build the encryption key using a password:

SQL> alter table test modify LOB
 (one clob encrypt identified by abcdef);

You can update the encryption algorithm or encryption key by using the alter
table rekey syntax.

Managing and Monitoring SecureFiles
You can use the familiar DBA_SPACE and DBA_LOB packages to manage the new
SecureFiles implementation of LOBs. You can use the LOB locator API to configure
LOB column settings such as encryption and deduplication on a per-LOB level.
However, you can’t use the LONG API to configure the SecureFile LOB settings.
Use the following new DBMS_LOB function and procedure to manage the setting
of LOB functions:

■ The GETOPTIONS function gets you the LOB settings.

■ The SETOPTIONS procedure helps set the LOB features. You can use this
procedure to override default LOB settings and set the attributes on a per-
LOB basis.

You can use the SPACE_USAGE procedure of the DBMS_SPACE package to
determine the amount of disk space used by all the LOBs in the LOB segment. You
can use this procedure only for tablespaces with the ASSM (automated segment
space management) feature.

The DBA_SEGMENTS, DBA_LOBS, DBA_LOB_PARTITIONS, and the
DBA_PART_LOBS views have been enhanced to show information about
SecureFiles usage. Here’s a typical query using the DBA_SEGMENTS view.

SQL> select segment_name, segment_type,segment_subtype
 from dba_segments
 where tablespace_name = 'TEST_SECFILS'
 and segment_type = 'LOBSEGMENT';

SEGMENT_NAME SEGMENT_TYPE SEGEMENT_SU
------------------------- ---------------- ------------
SYS_LOB0000063424C00003$$ LOBSEGMENT SECUREFILE
SQL>

The SEGMENT_SUBTYPE column shows if a LOB is implemented as a
SecureFile.

Migrating to SecureFiles
You can use two basic methods to migrate to SecureFiles: partition exchange and online
redefinition. Let’s see how you migrate to SecureFiles using both of these approaches.

When you use partition exchange to migrate to SecureFiles, you have to make
sure that a number of factors are taken care of such as ensuring you have enough
space to accommodate the largest of the partitions of the table. The migration job

takes a long time and therefore, you must have
a long maintenance window to perform the
migration. You must also maintain the indexes
during the partition exchange. In addition, the
table or partition must be offline in order for you
to perform the partition exchange.

Oracle recommends that you use the online
redefinition method to migrate to SecureFiles. Online redefinition means you don’t
take the table offline. You can perform the migration in parallel. You must rebuild
global indexes and must have additional storage equal to the entire table. You can,
however, cut back on the additional space requirements by performing the online
redefinition on a partition basis.

Let me use a simple example to demonstrate how to perform online redefinition
to migrate to SecureFiles from a traditional BasicFiles LOB implementation:

 1. Create a table using BasicFiles:

SQL> create table tab1 (id number not null, c clob)
 lob(c) store as lob);

 The store as lob clause creates a BasicFile LOB.

 2. Insert some test data into the BasicFile-based table.

 3. Create a new, interim table using SecureFiles, but with the same columns as
the first table:

SQL> create table tab2 (id number not null, c clob)
 lob(c) store as securefile);

 The store as securefile clause creates a SecureFile LOB.

Show the steps involved in
migrating to SecureFiles using the online
redefi nition technique.

Oracle SecureFiles 457

458 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

 4. Execute the DBMS_REDFINITION procedure to convert the BasicFile-
based table into a SecureFile-based table:

begin
dbms_redefinition.start_redef_table
('scott','tab1','tab2','id id c c');
dbms_refinition.copy_table_dependents
('scott','tab1','tab2'
,1,true,true,true,true,false,error_count);
dbms_redefinition.finish_redef_table
('scott','tab1','tab2');
end;

 You can perform the redefinition in parallel to make it faster.

CERTIFICATION OBJECTIVE 8.02

Online Enhancements
Oracle Database 11g provides several significant enhancements in the performing of
online operations, which I summarize in the following sections.

Locking Enhancements
Oracle Database 11g provides more efficient capabilities relating to the implementation
of object locking. These new capabilities include allowing a DDL lock to wait for a
DML lock instead of failing if it can’t get one right away. In addition, the database
makes less use of exclusive locks.

Allowing DDL Locks to Wait for DML Locks
One of the problems with DDL statements is that if they can’t immediately obtain
a DML lock on the tables, they fail. In Oracle Database 11g, you can specify a time
interval for which the DDL statement will wait for a DML lock, instead of the DDL
failing automatically when it can’t get an immediate DDL lock.

Use the new ddl_lock_timeout parameter to specify the length of time a
DDL statement can wait for a DML statement. The default value of zero for this
parameter produces the default Oracle behavior. Execute the alter session
statement, shown here, to set the duration that the DDL statement can wait for a
DML lock:

SQL> alter session set ddl_lock_timeout = 30;
Session altered.
SQL>

The alter session statement here will enable a DDL statement to wait for
30 seconds for a necessary DML lock, after which the DDL statement fails. You can
set a value as high as 1,000,000 seconds (11.5 days) for the ddl_lock_timeout
parameter.

Explicit Table Locking
In addition to the new feature that lets you control the time for which a DDL
statement waits to obtain a DML lock, Oracle Database 11g also has enhanced
the lock table statement so you can specify the time a statement will wait
for a DML lock on that table. Any DDL statement you issue on a table, such as
a statement that adds a column, needs to acquire an exclusive DML lock on the
table. Currently, an attempt to add a column to a table will fail if the database can’t
immediately acquire an exclusive lock on the table.

If your users frequently update a table to which you are planning to add a column,
the new lock table syntax provides a way to control the time for which your
DDL statements will wait to acquire the necessary exclusive DML lock on the table.
Here’s the syntax of the enhanced lock table command:

lock table...in lockmode mode [nowait | wait integer]

The mode parameter can take two values—wait and nowait. Here’s how the
two options affect the waiting behavior for a DML lock:

■ The nowait option immediately returns control to you if the table is already
locked by others.

■ The wait option lets the statement wait for execution for the period you
specify. You can set any value for the nowait parameter.

■ If you omit the mode parameter altogether, the database locks the table once
it becomes available and returns control to you. Thus, the default behavior
now is for a DDL statement to wait until it gets an exclusive DML lock,
however long the wait may be.

Reduced Need for Exclusive Locks
When you perform an operation such as online index creation or rebuild, there is
a requirement for acquiring an exclusive DML lock. In a database that has heavy
concurrent usage, this requirement of applying a DML exclusive lock to a table leads

Online Enhancements 459

460 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

to a severe drop in performance, as user sessions are kept waiting for the online
operation to complete. Oracle Database 11g removes the requirement for an
exclusive lock on tables during the following operations:

■ create index online

■ create materialized view log

■ alter table enable constraint novalidate

Minimal Invalidation of Dependent Objects
In the previous release, Oracle automatically invalidated all dependent views
and PL/SQL packages during an online redefinition, even if those objects weren’t
logically affected. For example, if you dropped a table column during redefinition,
all procedures and views that referenced the table were automatically invalidated.
Unlike in the previous releases, Oracle Database 11g invalidates only the logically
affected objects such as views and synonyms during an online redefinition. It doesn’t
automatically invalidate all dependent views and PL/SQL packages as before. In
the case of a dropped column, Oracle will invalidate a procedure or view only if
the object used the dropped column. This new concept of minimal validation of
dependent objects is called fine-grained dependency management, under which the
database tracks object dependencies at the level of the element within a unit.

Triggers continue to be automatically invalidated as before during an online
redefinition.

Objects such as views, synonyms, and other similar table-dependent objects
aren’t logically affected by a table redefinition and thus aren’t invalidated. Thus, for
example, if an object referenced during an online redefinition isn’t modified during
the redefinition, the object remains valid. All triggers that are defined on a redefined
table will be invalidated, but the database automatically revalidates them when the
next DML statement execution takes place.

The use of fine-grained dependencies leads to more precise dependency metadata.
In Oracle Database 10g, the object dependency metadata was looked at from the
object level. For example, let’s say a view depends on a specific table. Even though
the addition of a new column to the table has no bearing on the view, the database
still invalidates the view because it treats the entire object as the unit of reference.
In Oracle Database 11g, the fact that a new column has been added to a table doesn’t
invalidate a view that uses a table if the view doesn’t use the newly added column.

Similar fine-grained dependency management applies to PL/SQL objects such as
procedures and functions. If you add a new procedure or function to a package, that

will invalidate other procedures and functions in that package only if those objects
have a dependency on the altered or new procedure or function.

The fine-grained dependency management is easy to use, as it doesn’t need any
configuration on your part. Your application availability will be higher as a result,
especially during an application upgrade.

Creating a Parameter File from Memory
You can now create a text initialization parameter file (PFILE) or a server parameter
file (SPFILE) from the system-wide parameters currently in use by the instance. Here’s
how you generate the initialization parameter file from the settings in memory:

SQL> create pfile from memory;
File created.
SQL>

You can also create an SPFILE from the parameter settings in memory, as follows:

SQL> create spfile from memory;
File created.
SQL>

You can use this ability to create a text parameter file or an SPFILE from memory
when you can’t access your parameter file because it’s corrupted or lost. The following
example demonstrates this:

SQL> create pfile from spfile;
create pfile from spfile
*
ERROR at line 1:
ORA-01565: error in identifying file
'/u01/app/oracle/product/11.1/db_1/dbs/spfileauxdb.ora'
ORA-27037: unable to obtain file status
Linux Error: 2: No such file or directory
Additional information: 3
SQL>

The example shows that you can’t create a new parameter file from the SPFILE
because the database can’t find the SPFILE. When you lose an SPFILE, it’s easy to
recover from it because of the new ability to re-create the SPFILE from memory.
If the instance can’t find the parameter file and you therefore can’t create the new
parameter file, you can execute the create pfile from memory statement
instead to re-create an init.ora file from memory. The new file that you create from
memory will have values for all the 150 or so initialization parameters, even though
you haven’t set the values for most of them in your parameter file when starting the
database. Oracle uses the default value for all the parameters that you ignored.

Online Enhancements 461

462 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

Hot Patching
Traditional patching of database server code always involves downtime for the
database. While the downtime doesn’t pose any problems on a test database, it’s not
so easy when you are working with production databases. Hot patching (or online
patching) enables you to apply bug fixes or diagnostic patches on a live database,
without incurring any downtime. Live application of patches makes a lot of sense,
especially when you are dealing with a small bug fix or a diagnostic patch. The
opatch command-line utility lets you perform online patching. Using opatch, you can
install, enable, and disable patches. You can continue to use the opatch utility as in
the previous release to perform normal offline code patching. In Oracle Database
11g, you can use opatch to perform online patching as well.

Benefits of Hot Patching
Hot patching with the opatch utility offers the following benefits:

■ No need to restart the database, thus preventing any downtime for patching.

■ Quick installation and de-installation of patches. Unlike conventional
patches, hot patches take seconds, not minutes to apply.

■ Automatic listing in patch inventory.

■ Ability to work in an Oracle RAC environment, which lets you perform a
rolling patch application. You don’t have to worry about whether the hot
patch can be applied as a rolling upgrade or as an upgrade.

■ Hot patches persist across instance shutdowns.

Review the benefi ts and
drawbacks of using hot patching. Do you
need more or less memory for performing

an online patch compared to an offl ine
patch?

Installing a Hot Patch
As mentioned earlier, you use the opatch utility to perform an online patching.
Oracle automatically detects any conflicts between two hot patches. You can issue
the following command to determine if a patch is a hot patch:

$ opatch query -is_online_patch <patch location>

You can also use this variant of the previous command for the same purpose:

$ opatch query -is_online_patch <patch location> -all

Once you confirm that a patch is indeed an online patch, you can use the opatch
utility to perform the patching.

Considerations
Currently, hot patching is available only on some platforms such as Linux x86,
Linux x86-64, and Solaris SPARC64. The opatch utility does consume extra
memory depending on the size of the patch and the number of currently running
concurrent Oracle processes. You’ll need a minimum of one OS page of memory for
each running Oracle process when you apply a patch. An OS page usually is 4 KB on
a Linux x86 server and 8 KB on a Solaris SPARC64 system. If there are 500 Oracle
concurrent processes running on a Solaris SPARC64 server, for example, you can
expect to need only about 4 MB of memory for applying a small patch online.

CERTIFICATION OBJECTIVE 8.03

Miscellaneous New Features
In the last section, I summarize miscellaneous Oracle Database 11g new features,
such as invisible indexes and PL/SQL native compilation.

Invisible Indexes
In Oracle Database 11g, you can create invisible indexes. An invisible index is
similar to regular indexes in most respects. However, you can hide the index from
the optimizer, thus making it invisible to the optimizer. You can also change the
status of an index from visible to invisible any time you want, and you can set an
initialization parameter at the database level to make all invisible indexes visible to
the optimizer, thus treating the invisible indexes as any other regular indexes. You
can use the invisible indexes feature to use a temporary index for specific operations
without forcing all operations to use that index. You can also use invisible indexes to
test the effects of removing an index before you get rid of an index for good.

You can create an invisible index by specifying the invisible clause, as shown
here:

SQL> create index invib_idx1 on test_tab(name) invisible;

Miscellaneous New Features 463

464 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

You can also modify a regular index into an invisible index by using the alter
index statement, as shown here:

SQL> alter index indx1 invisible;

The database maintains an invisible index during DML statements.

The previous statement will make the index INDX1 invisible to the optimizer.
Therefore, the optimizer disregards the index when creating an execution plan that
involves the table column indexed by INDX1.Whether you create a new index as
invisible or you modify a regular index to an invisible index with the alter index
statement, you can make an index visible again by issuing the following statement:

SQL> alter index invisib_idx1 visible;

Once you issue the previous statement, the index becomes a regular index visible
to the optimizer.

The new initialization parameter optimizer_use_invisible_indexes
helps you enable or disable invisible indexes. You can make the cost optimizer take
into account all invisible indexes in the database by setting the optimizer_use_
invisible_indexes parameter to true. You can do this at the session or at the
system level, as shown here:

SQL> alter system set optimizer_use_invisible_indexes = true
 scope=spfile;

When you set the optimizer_use_
invisible_indexes parameter to true,
the database treats all invisible indexes as visible
(normal) indexes. The default value of the
optimizer_use_invisible_indexes
initialization parameter is false, which means
that the optimizer doesn’t consider any invisible

indexes, although the database will maintain the invisible indexes through all DML
operations, just as if they were normal indexes.

You can check whether an index is visible or not by issuing a query such as the
one shown in this example:

SQL> select index_name, visibility from dba_indexes
 where index_name like '%NAME_IDX%';

INDEX_NAME VISIBILITY
------------ -----------
NAME_IDX2 INVISIBLE
NAME_IDX1 INVISIBLE
SQL>

You must know how to
switch an index from invisible to visible
and vice versa.

The VISIBILITY column in the DBA_INDEXES view shows whether an index is
visible. In the preceding example, both indexes retrieved by the query are invisible
to the optimizer.

Shrinking Temporary Tablespaces
When a large job that uses a temporary tablespace finishes executing, the database
doesn’t immediately release the space used by the job in the temporary tablespace,
even after the job completes. You can get the free space back faster sometimes by
dropping the temporary tablespace and creating a smaller one instead, but then
it may not be easy to do this on a live database because users may require the
temporary tablespace for various operations. Oracle Database 11g lets you shrink
a temporary tablespace online, thus enabling you to control the space allocated to
temporary operations in the database. You can shrink both temporary tablespaces
and individual tempfiles.

How do you shrink
space from a temporary tablespace
using the shrink space and the

shrink tempfile clauses in an alter
tablespace statement?

Use the shrink space clause within an alter tablespace command to
shrink a temporary tablespace, as shown here:

SQL> alter tablespace temp shrink space;

To shrink a tempfile, use the shrink tempfile clause, as shown here:

SQL> alter tablespace temp shrink
 tempfile '/u01/app/oracle/oradata/or11/temp01.dbf';

The shrink space command in the first example shrinks all tempfiles to a
database-determined minimum size, 1 MB. The database takes into account the
temporary tablespace storage requirements when determining the minimum size of
the tempfiles. You can override this default behavior by specifying a minimum size
for the temporary tablespace after a shrink operation, as shown here:

SQL> alter tablespace temp shrink space
 keep 100m;

Miscellaneous New Features 465

466 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

The keep clause lets you specify the minimum value for the temporary tablespace
named TEMP. The following examples illustrate how Oracle approaches a temporary
tablespace shrinking operation. In this example, the temporary tablespace TEMP
has two tempfiles, each sized at 1 GB, thus making the total size of the temporary
tablespace 2 GB. You issue the following alter tablespace statement to shrink
the temporary tablespace to 1 GB.

SQL> alter tablespace temp shrink space keep 1000m;
Tablespace altered.
SQL>

Because the combined size of the two tempfiles in the TEMP tablespace is 2 GB,
you’d assume that Oracle would shrink both tempfiles to about 500 MB each, to get
a total of 1 GB, when you issue the alter tablespace statement shown here.
However, this isn’t what happens, as you can see by issuing the following query:

SQL> select file#, name, bytes/1024/1024 MB from v$tempfile;

FILE# NAME MB
------ ------------------------------------ --------
1 /u01/app/oracle/temp/temp01.dbf 999.9375
2 /u01/app/oracle/temp/temp02.dbf
SQL>

Oracle does shrink the TEMP tablespace from 2 GB to 1 GB, but not by
shrinking both tempfiles by an equal amount. It shrinks the file temp01.dbf by less
than 1 MB and the file temp02.dbf by over 999 MB. You can specify a minimum
space that the database must retain in a specific tempfile, by specifying the keep
clause in the alter tablespace . . . shrink statement, as follows:

SQL> alter tablespace temp shrink space
 tempfile '/u01/app/oracle/temp02.dbf'
 keep 500m;
Tablespace altered.
SQL>

This statement will shrink just the datafile temp02 and leave the other tempfiles
in the tablespace alone.

You can query the new DBA_TEMP_FREE_SPACE view to get information
about temporary tablespace usage, as shown in this example:

SQL> select * from dba_temp_free_space;

TABLESPACE_NAME TABLESPACE_SIZE ALLOCATED_SPACE FREE_SPACE
--------------- --------------- --------------- -----------
TEMP 41943040 41943040 40894464
SQL>

The DBA_TEMP_FREE_SPACE view shows the total free space available,
including the space currently allocated to a temporary tablespace and available for
reuse as well as space that’s currently unallocated.

Tablespace Option for Creating Temporary Tables
When you created a global temporary table in Oracle Database 10g, you didn’t have
to specify a tablespace. In Oracle Database 11g, you can specify a tablespace clause
when creating a temporary table. If you omit the tablespace clause, the database
creates the global temporary table in the default temporary tablespace for the
database. The database also stores the indexes you create on the global temporary
table in the same tablespace as the temporary table.

The ability to specify the tablespace when creating a global temporary table means
that you can now assign a proper extent size for a temporary table to deal with its sort
usage. Different tables might use the temporary space differently, and the capability
to assign different extent sizes to them leads to better performance.

PL/SQL and Java Automatic Native Compilation
Up until the Oracle Database 11g release, the database always transformed PL/SQL
code to C code first before executing it. This meant you needed a third-party C
compiler to execute the C code. In Oracle Database 11g, the database skips the C
compiler by directly translating PL/SQL source code to DLL for the server. The
feature is called PL/SQL native compilation. Oracle also performs the linking and
delinking itself and bypasses the file system directories for doing that. Oracle claims
that its test show performance improvements as large as two-fold, with the native
compilation of PL/SQL.

The really good news for DBAs is that it is extremely easy to take advantage of
the native PL/SQL compilation capability. You simply set the appropriate value for
the new initialization parameter plsql_code_type to turn automatic native
PL/SQL compilation on, as the next section explains.

Using Real Native Compilation
Use the initialization parameter plsql_code_type to specify the compilation mode
for PL/SQL library units. The parameter can take two values, interpreted and
compiled. Setting the value of this parameter to compiled produces the default
behavior where the database compiles PL/SQL code first to a PL/SQL bytecode format
using the C compiler. The PL/SQL interpreter engine then executes the bytecode. By
setting the parameter to the value native, you let the database compile the PL/SQL
code to machine code and execute it natively without the need for an interpreter. The

Miscellaneous New Features 467

468 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

database stores the DLLs it generates from the PL/SQL source code in the database
catalog, from where the Oracle executable loads the code directly without first using a
file system to stage them.

By default, the plsql_code_type parameter is set to the value interpreted,
and you can turn native PL/SQL compilation on in the database by setting the
plsql_code_type parameter to native, as shown here:

plsql_code_type=native

You can check that the database is using the correct mode of PL/SQL compilation
by issuing the following statement:

SQL> select name, value from v$parameter where
 name like '%plsql%;

NAME VALUE
--------------------- ------------
plsql_code_type INTERPRETED
plsql_optimize_level 2
...
9 rows selected.
SQL>

You can also use the alter system or alter session statements to
change the value for the plsql_code_type parameter dynamically, without
restarting the database. Any PL/SQL units that are already compiled won’t be
affected by a change in the compilation mode. Also, even after you change the
compilation mode, say from compiled to native, PL/SQL units that the database
has already compiled will be recompiled in the original compilation mode.

EXERCISE 8-1

Setting Up a PL/SQL Program Unit for Native Compilation
In order to set up a single PL/SQL program unit for native compilation, you must
change the value of the plsql_code_type parameter to native from its
default value of interpreted, by making the change and restarting the database
or by using the alter system/session statement to change the value of the
parameter.

You can also issue the alter <PLSQL unit type> statement to enable
native compilation for a single PL/SQL program unit. Let’s use a simple example
that illustrates how to do this:

 1. First, create a simple procedure, called TEST_NATIVE.

SQL> create or replace procedure test_native as
 2 begin
 3 dbms_output.put_line('Test Procedure.');
 4* end test_native;
SQL> /
Procedure created.
SQL>

 2. Check the current PL/SQL compilation mode by issuing the following
statement:

SQL> select plsql_code_type
 2 from all_plsql_object_settings
 3 where name='TEST_NATIVE';

PLSQL_CODE_TYPE

INTERPRETED
SQL>

 The query shows that, currently, the procedure TEST_NATIVE is set for
interpreted compiling and not native compilation.

 3. Issue the following alter procedure statement to change the
compilation mode to native for just the TEST_NATIVE procedure.

SQL> alter procedure test_native compile plsql_code_type=native;
Procedure altered.
SQL>

 4. Confirm that the procedure TEST_NATIVE will now use native compilation,
by issuing the following query on the DBA_PLSQL_OBJECT_SETTINGS view:

SQL> select plsql_code_type
 2 from all_plsql_object_settings
 3* where name='TEST_NATIVE';

PLSQL_CODE_TYPE

NATIVE
SQL>

The value of native for the PLSQL_CODE_TYPE column means that from
here on, the database will use native compilation for the TEST_NATIVE procedure.

Miscellaneous New Features 469

470 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

Recompiling a Database for PL/SQL Native Compilation
You can use the dbmsupgnv.sql script provided with Oracle Database 11g to
recompile all the PL/SQL modules in the database to compile natively. Follow these
steps to recompile all the PL/SQL modules:

 1. Shut down the database using the shutdown normal or shutdown
immediate commands.

SQL> shutdown immediate;

 In the initialization parameter file, set the plsql_code_type parameter
to native so it will allow native compilation.

plsql_code_type=native

 2. You must also check to ensure that the value of the plsql_optimize_
level parameter is at least 2. The default value for this parameter is 2.

plsql_optimize_level=3

 Because the value of the plsql_optimize_level parameter is more
than 2, you don’t have to change the setting of this parameter.

 3. Start the database with the startup upgrade command, which you
specify when upgrading to a new release of the Oracle database.

SQL> connect sys/sammyy1 as sysdba
Connected to an idle instance.
SQL> startup upgrade
ORACLE instance started.
...
Database opened.

 4. After the database is opened in the upgrade mode, execute the script
dbmsupgnv.sql, located in the $ORACLE_HOME/rdbms/admin directory.

SQL> @$ORACLE_HOME/rdbms/admin/dbsupgnv.sql
OC>###
DOC>##
DOC> dbmsupgnv.sql completed successfully.
DOC> All PL/SQL procedures, functions, type bodies, triggers,
DOC> and type bodies objects in the database have been
DOC> invalidated and their settings set to native.
DOC>
DOC> Shut down and restart the database in normal mode and
DOC> run utlrp.sql to recompile invalid objects.
SQL>

 When the dbmsupgnv.sql script completes executing, all PL/SQL procedures
in the database are natively compiled.

 5. Once the script finishes running, shut down the database and start it back
up again. Run the utlrp.sql script located in the $ORACLE_HOME/rdbms/
admin directory to recompile the invalidated PL/SQL program units.

SQL> shutdown immediate;
SQL> startup
ORACLE instance started.
...
Database opened.
SQL> @$ORACLE_HOME/rdbms/admin/utlrp.sql
...
SQL> Rem END utlrp.sql
SQL>

As a result of upgrading the database and compiling all PL/SQL units in the
native mode, you don’t need to individually enable PL/SQL procedures for native
compilation. You can always change the compilation mode back to the default

value of interpreted by reversing the
recompilation process shown here. You
follow a procedure similar to the one shown
here to compile all PL/SQL program units in
the interpreted mode by running the script
dbmsupgin.sql, also located in the $ORACLE_
HOME/rdbms/admin directory.

Java Native Compilation
Oracle Database 11g uses the new initialization parameter java_jit_enabled to
set the Java compilation mode. By default, the value of the java_jit_enabled
initialization parameter is true, meaning Java native compilation is enabled in the
database. As in the case of the PL/SQL native compilation, this feature allows the
database to compile Java in the database natively without using a C compiler.

Oracle claims that native compilation offers a 100 percent faster
performance for both pure PL/SQL and Java code.

Oracle’s Java native compilation is similar to that of the Java Development Kit
and runs as an independent session in the server process that is transparent to the
user. There’s only one compiler session per Oracle instance and the database stores

Be familiar with the
sequence of steps to recompile an entire
database for PL/SQL native compilation.

Miscellaneous New Features 471

472 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

the Java code for future recompilations. Java native compilation offers you the high
performance of pure Java execution and is very easy to implement because you can
enable it for the entire database, not merely when you actually execute the Java code
in the database. The absence of a C compiler means you save on licensing and other
costs involved in maintaining the compiler.

OLTP Table Compression
In earlier releases, you could compress data only during bulk load operations such as
during a direct load or a create table as select operation. You couldn’t,
however, compress data during a DML operation such as an insert operation.
Oracle Database 11g extends its table compression capability to OLTP workloads,
meaning you can now compress data during a data insertion job, for example. The
compression technology Oracle uses works independent of the application, meaning
you can use compression for packaged applications such as SAP and PeopleSoft.

OLTP compression saves you storage by reducing space consumption by 50 to 75
percent. A major concern when compressing data is the impact on performance,
especially during read operations, when the database usually has to uncompress the
data before reading it. Oracle’s new OLTP compression technology doesn’t degrade
write performance, while improving the read performance. Write performance
doesn’t degrade because of Oracle’s batched compression strategy. The read
performance is better because Oracle reads compressed data directly without first
uncompressing the data.

When new data comes in, the database inserts that data into a data block, but
in an uncompressed format. Once the block reaches its PCTFREE level, Oracle
compresses the data in the block. This compression strategy is efficient and also
uses space efficiently by eliminating the holes made by the deleted data in the data
blocks.

Setting Up Table Compression You can use either the traditional
compress clause or the new compress for direct_load operations
clause in a create table statement to let the database compress data during
a direct load insert. The following examples show how to specify the compress
and the compress for direct_load operations clauses in a create
table statement:

SQL> create table sales_history (...)
 compress;
SQL> create table sales_history
 (...) compress for direct_load operations;

The previous two create table statements show how to set up traditional
compression for a data warehouse table. To enable the new compression for DML
operations, you must specify the compress for all operations clause, as
shown here:

SQL> create table sales_history (...)
 compress for all operations;

The compress for all operations clause compresses data during all
DML operations.

Monitoring Table Compression Use the columns COMPRESSION and
COMPRESS_FOR in the DBA_TABLES view to find out information about
whether compression is enabled for a table and, if so, the type of compression.
Here’s the query:

SQL> select table_name, compression, compress_for
 from dba_tables;

 TABLE_NAME COMPRESS COMPRESS_FOR
----------- -------- ------------------
T1 DISABLED
T2 ENABLED DIRECT LOAD ONLY
T3 ENABLED FOR ALL OPERATIONS

The previous query shows that compression is enabled for tables T2 and T3.
The COMPRESSED_FOR column shows that table T3 is enabled for compression
for all operations including DML operations, whereas table T2 is enabled only for
compression for direct load operations.

Direct NFS Client
NAS storage devices use the Network File System (NFS) to access data. In Oracle
Database 10g, NAS devices were accessed using operating system–specific kernel
NFS drivers. This required that you tune many parameters, and the configuration
varied across the platforms. The NFS clients tended to be inconsistent across the
different operating system platforms. Manageability wasn’t easy because you had to
contend with over 20 configuration parameters.

In Oracle Database 11g, the Oracle NFS implements the NFS Version 3 protocol
in the Oracle RDBMS kernel. Implementing the Oracle Direct NFS offers the
following benefits:

■ Avoids the bottlenecks and resource constraints by avoiding the kernel
NFS layer.

Miscellaneous New Features 473

474 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

■ Provides a common NFS interface for Oracle for use on all operating system
platforms and supported NFS servers.

■ Provides load balancing across multiple connections to the NFS servers, thus
improving performance.

■ Performance is predictable because the Oracle NFS implementation enables
you to completely control the input/output path to the Network File Servers.

■ Easier management including simpler configuration and superior diagnosability.

Configuring Direct NFS
You don’t have to configure much to implement Oracle Direct NFS Client. Specify
the mount point you want Direct NFS to mount in the /etc/mtab file. Direct NFS
will first attempt to mount the entries it finds in the /etc/mtab file, by default. You
can also use the oranfstab file to specify any Oracle-specific options to Direct NFS

such as additional paths to a mount point,
but this is an optional step. You can use the
oranfstab file to provide mount points for all
Oracle databases, by placing the file in the /etc
directory. In order to provide just the entries for
a specific database, you must place the oranfstab

file in the $ORACLE_HOME/dbs directory.
Direct NFS searches for the mount point entries in the following order:

■ $ORCLE_HOME/dbs/oranfstab

■ /etc/orafnstab

■ /etc/mtab

The database uses the first match as the mount point. Oracle always requires that
even when you use Direct NFS, the kernel NFS system must perform the mounting.
For this reason, Oracle will always crosscheck the information about mount points in
the oranfstab file with the operating system NFS mount points. If there’s a mismatch,
Direct NFS can’t act as a client to the NFS server and stops serving the NFS server.

Enabling Direct NFS
You must follow these steps to enable Direct NFS:

 1. You must mount all NFS mount points with your kernel NFS client. You
must make sure you mount any file systems you plan on using through ODM
NFS and make the file systems available to Oracle over regular NFS mounts.

Review the correct lookup
order for the oranfstab fi le.

 2. If you want to specify Oracle-specific options to Direct NFS, you’ll need an
oranfstab file. This is an optional step. The oranfstab file must have the following
attributes so the database can access all NFS servers through Direct NFS:

■ server Provides the NFS server name.

■ mount Provides the local mount point for the NFS server.

■ export Provides the exported path from the NFS server.

■ path Provides the network path to the NFS server. You can specify up to
four network paths with an IP address or by name. Using multiple network
paths enables the Direct NFS client to use an alternate path if the current
path fails. Multiple paths also enable the client to perform load balancing.

 A typical oranfstab file looks similar to the following:

■ server: TestServer1

■ path: 130.33.34.11

■ export: /vol/oradata1

■ mount: /mnt/oradata1

In order to remove an NFS path that the database is using currently, you must
restart the database.

 3. You must replace the standard ODM library, libnfsodm10.so, with the ODM
NFS library, as shown here:

$ cd $ORACLE_HOME/lib
$ cp libodmll.so libodmll.so_stub
$ ln -s libnfsodm11.so libodm11.so

 You can disable the Direct NFS client by using any of the following three
methods.

■ Delete the oranfstab file.

■ Replace the ODM NFS library with the stub libodm11.so file.

■ Modify the oranfstab file by deleting the specific NFS server or the
network paths to the NFS server.

If the database can’t open the NFS server using Direct NFS, it will use the
operating system kernel client instead.

Monitoring Direct NFS
You can query the following views in order to manage Direct NFS:

■ V$DNFS_STATS Shows performance statistics for Direct NFS.

Miscellaneous New Features 475

476 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

■ V$DNFS_SERVERS Shows servers accessed by Direct NFS.

■ V$DNFS_FILES Shows files currently using Direct NFS.

■ V$DNFS_CHANNELS Shows the open network paths being used by
Direct NFS.

Using LogMiner
The LogMiner tool helps you identify changes in the database and provides a way
to roll back logical data corruptions and user errors. The LogMiner tool directly
accesses the Oracle redo logs to enable you to use older data to correct logical errors.

In previous releases, you could manage LogMiner through SQL*Plus or through
a special GUI interface, which required you to install a standalone Java console. In
Oracle Database 11g, Enterprise Manager Database Control provides an interface
to the LogMiner. Select Availability | Manage | View and Manage Transactions to
access LogMiner. Figure 8-1 shows the LogMiner page in Database Control.

 FIGURE 8-1 The LogMiner page

INSIDE THE EXAM

Oracle SecureFiles is a key new feature in the
new release. You must understand how to set the
db_securefile initialization parameter.
You must understand what the setting of the
values ignore or permitted for the db_
securefile parameter implies regarding
the ability to create LOBs as SecureFiles. You
must also know how to take advantage of the
important capabilities of SecureFiles such
as deduplication. The exam might question
you about the use of the various clauses
such as cache and duplicate when
creating SecureFile LOBs. There could be a
question on the methods you use to migrate
to SecureFiles. Which of the two methods,
partition exchange or online redefinition,
needs more space? You must know the steps
involved in using the online redefinition
method to migrate to SecureFiles.

In terms of online enhancements, the
key topic is the new minimally dependent
recompilation feature. What happens
when an online redefinition operation
drops a column that refers to only a few
procedures and views? Review the new
online enhancements that involve the use
of the ddl_lock_timeout initialization
parameter to control the time a DDL
statement waits for a DML lock. You must
also understand how to use the lock
table . . . in lockmode . . . statement
to control the wait time for a DML lock.

The exam will probably test you on how
to create a text initialization parameter file

or an SPFILE from the current values of the
initialization parameters being used by an
instance. Expect a question on performing
online patching. Review how to use the
opatch utility to perform an online code
patch. You may also want to review the
memory requirements for online patching.

You can probably expect the exam to
ask you a question about the new invisible
indexes feature. You must know how to set
the initialization parameter that controls if
an index is visible. In terms of native PL/SQL
compilation, you must know how to set it up,
including the initialization parameters you
must set in order to enable native PL/SQL
compilation in the database.

The exam will test your understanding of
the new Direct NFS feature. Pay particular
attention to the configuration of Direct NFS.
You must understand the role of the oranfstab
file in the configuration of Direct NFS and
where the file is located. In which order does
Direct NFS look for the mount points? The
exam might test your understanding of the
relationship between the kernel NFS system
and the Direct NFS system. What happens if
there’s a mismatch between the kernel NFS
mounts and the operating system NFS mount
points? You are also expected to know the
procedure to enable Direct NFS. For example,
how do you replace the standard ODM library
with the ODM NFS library?

INSIDE THE EXAM

Miscellaneous New Features 477

478 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

CERTIFICATION SUMMARY
Oracle Database 11g offers SecureFiles to handle unstructured data. SecureFiles offer
better performance than the traditional Oracle LOBs. In addition, SecureFiles offer
compression, deduplication and encryption capabilities. SecureFiles are also easier to
implement, needing only a minimal specification of parameters to maintain them.

You use the db_securefile initialization parameter to control the ability
of the database to create SecureFiles. Old LOB storage clauses such as chunk,
pctversion, and freepools are necessary when using SecureFiles. In order
to create a table with a LOB as a SecureFile, you must add the clause store as
securefile to the create table statement. You can modify the storage
options by executing the alter table statement.

There are two basic methods to migrate to SecureFiles: partition exchange and
online redefinition. Oracle recommends that you use the online redefinition method
to migrate to SecureFiles.

The invisible indexes feature offers you a way to test the use of an index before
making it available to the cost optimizer. You can make all invisible indexes visible to
the optimizer by setting the initialization parameter optimizer_use_invisible_
indexes to true. In Oracle Database 11g, you can shrink temporary tablespaces
online. You can shrink both temporary tablespaces and tempfiles. You can also specify
a tablespace clause when creating a temporary table, thus enabling you to assign the
proper extent size for a temporary table to deal with its sort usage.

PL/SQL native compilation directly translates PL/SQL code to the DLL to the
server. Native compilation provides considerable performance improvements over using
a third-party C compiler. You set the initialization parameter plsql_code_type to
the value native in order to turn on automatic native PL/SQL compilation. Use the
dbmsupgrnv.sql script to recompile all the PL/SQL modules in the database for native
compilation.

Oracle Database 11g allows DDL locks to wait for a DML lock. You can control
the wait time by specifying the ddl_lock_timeout parameter. The new syntax
for the lock table statement enables you to control the duration for which a
DDL statement will wait for a DML lock. The database invalidates only the logically
affected objects during an online redefinition in Oracle Database 11g, instead
of automatically invalidating all dependent views and PL/SQL packages. This is
called the fine-grained dependency management feature. Oracle Database 11g
extends its table compression capability to OLTP jobs such as data insertion. Use
the new compress for all operations clause when you create a table to set up
compression for DML operations.

You can now create an initialization parameter file or an SPFILE from the system-
wide parameters currently in use by the instance. This feature lets you easily recover
from the loss of an SPFILE.

Implementing Oracle Direct NFS enables you to avoid the kernel NFS layer and
provides load balancing and predictable performance while being easy to manage.
You can configure Direct NFS by specifying the mount points in the /etc/mtab file
and Oracle-specific options in the oranfstab file.

The hot patching feature enables you to apply bug fixes or diagnostic patches
online. You can use the opatch utility to perform online patching.

In Oracle Database 11g, the Enterprise Manager provides an interface to the
LogMiner tool.

Certifi cation Summary 479

480 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

TWO-MINUTE DRILL

Oracle SecureFiles

❑ Oracle SecureFiles are a newly engineered LOB data type that is an
alternative to the traditional LOB implementation.

❑ SecureFiles offer compression, encryption, and deduplication features.

❑ Oracle SecureFiles minimize fragmentation by using variable chunk sizes,
with the chunks stored next to one another.

❑ SecureFiles provide better read and write performance than traditional LOBs.

❑ SecureFiles relieve the user from version control tasks.

❑ You enable the creation of SecureFiles by setting the db_securefile
initialization parameter.

❑ The db_securefile parameter can take the values always, force,
permitted, never, and ignore.

❑ Only the never option will disallow the creation of SecureFiles.

❑ The deduplication feature automatically detects duplicate data and saves only
one copy of the duplicated data.

❑ You don’t need to specify the old storage clauses such as chunk,
pctversion, and freelists when using SecureFiles.

❑ You use the store clauses maxsize, retention, max, min, auto, and
none when creating a SecureFile LOB.

❑ Use the store as securefile clause when creating a table with a LOB
column as a SecureFile. Specify the encrypt clause to create a SecureFile
with encryption.

❑ You can specify compression with the key word compression.

❑ You can specify compression at the high or the default medium level.

❑ The keep duplicates and no keep duplicates clauses specify
whether the database can or can’t store duplicates for the LOB column.

❑ You can use the partition exchange technique or the online redefinition
method to migrate to SecureFiles.

❑ Oracle recommends that you use the online redefinition method to migrate
to SecureFiles.

✓

Two-Minute Drill 481

Online Enhancements

❑ You can use the new ddl_lock_timeout parameter to specify the time
for which a DDL statement can wait for a DML statement.

❑ The lock table . . . in lockmode . . . statement lets you control the
time for which a DDL statement will wait to acquire a necessary DML lock
on a table.

❑ The nowait option for DML locks immediately returns control if the table
is already locked by others.

❑ The wait option lets the statement wait for the period that you specify.

❑ There is no limit to the value you can set for the nowait parameter.

❑ The default behavior is for a DDL statement to wait indefinitely for an
exclusive DML lock.

❑ There is no requirement for an exclusive lock on tables during the following
operations: create index online, create materialized view
log, and alter table enable constraint novalidate.

❑ Fine-grained dependency management invalidates only the logically affected
objects during an online redefinition instead of invalidating all dependent
views and PL/SQL packages as before.

❑ You can create a text initialization parameter file or an SPFILE from the
initialization parameters in memory.

❑ Hot patching enables you to apply bug fixes and diagnostic patches online,
without any downtime.

❑ You can use the opatch utility to perform an online patch.

Miscellaneous New Features

❑ An invisible index is like any normal Oracle index, but is hidden from the
Oracle optimizer.

❑ You create an invisible index by specifying the clause invisible to the
create index statement.

❑ You can change a normal index into an invisible index by issuing the alter
index statement.

❑ By setting the initialization parameter optimizer_use_invisible_
indexes to true, you can make all invisible indexes in a database visible
to the optimizer.

482 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

❑ You can shrink a temporary tablespace and individual tempfiles in Oracle
Database 11g.

❑ The keep clause enables you to specify a minimum value for the temporary
tables.

❑ You can specify a tablespace clause when creating a temporary table.

❑ PL/SQL native compilation directly translates PL/SQL code into DLLs, thus
eliminating the need to use a third-party C compiler for executing PL/SQL.

❑ Use the plsql_code_type parameter to set up native compilation.

❑ The default value of the pls_sql_code parameter is interpreted.

❑ You must set the plsql_code_type parameter to native to set up real
native compilation.

❑ You can use the alter <PLSQL unit type> . . . statement to enable
native compilation of a single PL/SQL program unit.

❑ You can recompile the entire database for native compilation by executing
the dbmsupgnv.sql script.

❑ Use the java_jit_enabled parameter to set up Java native compilation
in a database.

❑ You can compress data during an OLTP workload, such as an insert operation.

❑ You can enable compression for DML operations by specifying the compress
for all operations clause in a create table statement.

❑ Oracle NFS implements the NFS Version 3 protocol in the Oracle RDBMS
kernel.

❑ Oracle NFS provides load balancing and predictable performance, in addition
to greater manageability.

❑ You can specify the mount points for the NFS mounts in the /etc/mtab file.

❑ Optionally, you can use the oranfstab file to specify Oracle-specific options to
Direct NFS.

❑ Direct NFS searches for mount point entries in a specific order and uses the
first match as the mount point.

❑ Even when you use Direct NFS, the kernel NFS system must perform the
mounting.

❑ The oranfstab file has the following attributes that you can set: server,
mount, export, and path.

❑ You can disable the direct NFS client by deleting the oranfstab file.

Self Test 483

SELF TEST

Oracle SecureFiles

 1. When you assign the value force for the db_securefile initialization parameter, the
 database

 A. Creates all LOBs as SecureFile LOBs, as long as you have an Automatic Segment Space
 Management tablespace enabled.

 B. Creates all LOBs as SecureFile LOBs.
 C. Allows the creation of SecureFiles.
 D. Will not allow the creation of new SecureFile LOBs; it also ignores errors that result from

 creating a BasicFile with SecureFile options.

 2. When you assign the value ignore for the db_securefile initialization parameter, the
database

 A. Creates all LOBs as SecureFile LOBs, as long as you use an ASSM-enabled tablespace.
 B. Creates all LOBs as SecureFile LOBs.
 C. Allows the creation of SecureFiles.
 D. Will not allow the creation of new SecureFile LOBs; it also ignores errors that result from

 creating a BasicFile with SecureFile options.

 3. Which two of the following storage clauses are applicable to the new SecureFiles?
 A. maxsize

 B. chunk

 C. retention

 D. pctversion

 4. Which of the following are valid SecureFiles caching options?
 A. cache

 B. nocache

 C. cache writes

 D. cache reads

 5. How do you enable duplication in a SecureFile LOB?
 A. With the duplicates option
 B. With the keep duplicates option
 C. With the deduplication clause
 D. With the no deduplication clause

484 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

 6. Which of the following are valid methods for migrating to Oracle SecureFiles?
 A. Partition transfer
 B. Partition exchange
 C. Online redefinition
 D. Online exchange

 7. Which of the following methods does Oracle recommend for migrating to Oracle SecureFiles?
 A. Partition transfer
 B. Partition exchange
 C. Online redefinition
 D. Online exchange

Online Enhancements

 8. Which of the following statement(s) is/are true with regards to allowing DDL locks to wait for a
DML lock?

 A. The default value is 0 for the ddl_lock_timeout parameter.
 B. The default value is unlimited for the ddl_lock_timeout parameter.
 C. By default, if a DDL statement can’t get an immediate DML lock on the table, it will fail.
 D. By default, a DDL statement will wait forever for a DML lock.

 9. In the lock table ... in lockmode mode ... command, what happens if you leave
out the mode parameter?

 A. The attempt to lock the table will immediately fail.
 B. The database locks the table once it becomes available and returns control to you.
 C. It is the same as setting the nowait option for the mode parameter.
 D. It is the same as setting the wait option for the mode parameter.

10. The opatch utility lets you
 A. Enable patches
 B. Disable patches
 C. Install patches
 D. Create patches

11. What does the create pfile from memory command do?
 A. Creates the SPFILE from the current parameter values in use
 B. Creates the text initialization parameter file from the current initialization parameter values

 in use

 C. Creates the parameter file from the SPFILE in use
 D. Creates a copy of the parameter file that is currently in use

12. Which of the following statements are correct, when a view (V) depends on a table (T)?
 A. If the addition of a new column to table T has no bearing on the view V, the database

 invalidates V.
 B. If the addition of a new column to table T has no bearing on the view V, the database

 doesn’t invalidate V.
 C. The database invalidates V only if the view uses the new column.
 D. The database invalidates V only if the view doesn’t use the new column.

13. When you create a new parameter file from memory,
 A. The file will have values for all the 150 or so initialization parameters, even if you haven’t

 set values for all of them.
 B. The file will have values only for those parameters that you set.
 C. The file will use default values for all initialization parameters.
 D. The file will use default values for all parameters that you ignored.

14. When you hot patch with the opatch utility,
 A. You must always restart the database.
 B. It takes longer than conventional patches.
 C. You can’t work in an Oracle RAC environment.
 D. The hot patches persist across instance shutdowns.

Miscellaneous New Features

15. Which of the following statements are true when dealing with invisible indexes?
 A. By default, all indexes are created as visible indexes.
 B. By default, all indexes are created as invisible indexes.
 C. You can make an index invisible only when you create an index.
 D. You can make an index invisible when you create the index or later on, with the help of the

 alter index statement.

16. When you create a global temporary table in Oracle Database 11g,
 A. You must specify a tablespace.
 B. You can specify a tablespace.
 C. The attempt to create the temporary table will fail if you omit the tablespace.
 D. If you omit the tablespace clause, the database creates the global temporary table in the

 default temporary tablespace for the database.

Self Test 485

486 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

17. Which of the following clauses can you use with a create table statement to set up OLTP
table compression?

 A. compress for direct_load operations

 B. compress for OLTP operations

 C. compress

 D. compress for all operations

18. Which of the following files does Direct NFS search for mount point entries first?
 A. $ORACLE_HOME/dbs/oranfstab
 B. /etc/oranfstab
 C. /etc/mtab
 D. $ORACLE_HOME/dbs/mtab

19. You can disable the Direct NFS client by
 A. Deleting the oranfstab file
 B. Replacing the stub libodm11.so file with the ODM NFS library
 C. Replacing the ODM NFS library with the stub libodm11.so file
 D. Deleting the specific NFS server by editing the oranfstab file

20. To set up native compilation for PL/SQL, you must
 A. Set the plsql_code_type parameter to interpreted
 B. Set the plsql_code_type parameter to native
 C. Set the plsql_optimimize level to at least 2
 D. Set the plsql_native_compilation parameter to true

21. Which of the following commands will shrink a temporary tablespace?
 A. alter tablespace temp shrink space;

 B. alter tablespace temp shrink tempfile '/u01/app/oracle/tem01.
 dbf';

 C. alter tablespace temp shrink space keep 500m;

 D. alter tablespace keep 500m;

Lab Question

Show how you would apply an online “hot” patch to a running database and roll the patch back with-
out shutting down, using the opatch utility.

Self Test Answers 487

SELF TEST ANSWERS

Oracle SecureFiles

 1. � B is correct because the value force for the db_securefile initialization parameter
forces the database to create all LOBs as Securefile LOBs, without any exceptions.
� A, C, and D are incorrect. A is incorrect because you must specify the value always
create LOBs as SecureFiles, but only as long as they use an ASSM-enabled tablespace. C
is incorrect because it is the value permitted (default value) that allows the creation of
SecureFiles. D is incorrect because you must set the value to ignore for the database to
disallow the creation of SecureFiles and the errors caused by creating BasicFiles with SecureFiles
options.

 2. � D is correct because when you set the db_securefile parameter to ignore, the
database won’t allow the creation of new SecureFiles. It also ignores errors that result from the
creation of BasicFiles with SecureFiles options.
� A, B, and C are incorrect. A is incorrect because you must specify that the value always
creates LOBs as SecureFiles, but only as long as they use an ASSM-enabled tablespace. B is
incorrect because it is the value force for the db_securefile initialization parameter
that forces the database to create all LOBs was Securefile LOBs, without any exceptions. C
is incorrect because it is the value permitted (default value) that allows the creation of
SecureFiles.

 3. � A and C are correct. A is correct because you use the maxsize parameter to specify the
maximum LOB segment size. C is correct because you use the retention clause to specify
which versions the database must retain.
� B and D are incorrect because both of these parameters are old storage clauses that aren’t
necessary when you use SecureFiles.

 4. � A, B, and D are correct. All of these are valid caching options for SecureFiles.
� C is incorrect. It is not a valid caching attribute for SecureFiles.

 5. � B is correct. You enable duplication by specifying the keep duplicates option.
� A, C, and D are incorrect. A is incorrect because it is a nonexistent option. C is incorrect
because the deduplication option specifies that the database not keep any LOB duplicates.
D is incorrect because it refers to a nonexistent option.

 6. � B and C are correct because partition exchange and online redefinition are the methods
you can use to migrate to Oracle SecureFiles.
� A and D are incorrect because both of these are nonexistent methods.

488 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

 7. � C is correct. Oracle recommends that you use online redefinition to migrate to SecureFiles.
� A, B, and D are incorrect. A and D are incorrect because they are nonexistent methods. B
is incorrect because while partition exchange is a valid method to migrate to SecureFiles, it isn’t
the recommended method to do so.

Online Enhancements

 8. � A and C are correct. A is correct because the default value is 0 for the ddl_lock_
timeout parameter. C is correct because, by default, a DDL statement will fail if it can’t get an
immediate lock on a table.
� B and D are incorrect. B is incorrect because the default value is 0, not unlimited. D
is correct because, by default, a DDL statement doesn’t wait, but fails immediately if it can’t
acquire a DML lock on a table.

 9. � B and D are correct. B is correct because the database locks the table once it becomes
available and returns control to you. D is correct because omitting the mode parameter is the
same as setting the wait option for the mode parameter because it’s the default value for the
mode parameter.
� A and C are incorrect. A is incorrect because the attempt to lock a table won’t fail.
The statement will wait indefinitely for execution. C is incorrect because leaving the mode
parameter out is the same as setting the wait option, not the nowait option for the mode
parameter.

10. � A, B, and C are correct because the opatch utility lets you do all of these.
� D is incorrect because the opatch utility doesn’t create patches, but helps you install them
and enable or disable them.

11. � B is correct because the create pfile from memory command creates a text
initialization parameter file from the current parameter values being used by the instance.
� A, C, and D are incorrect. A is incorrect because the command creates a text initialization
parameter file, not the SPFILE. C is incorrect because the database creates the parameter
file from the parameter values in memory, not from the SPFILE. D is incorrect because the
command doesn’t make a copy of the current parameter file—it simply creates a new parameter
file by using the parameter values in memory.

12. � B and C are correct. B is correct because if the new column doesn’t affect the view, the
database won’t invalidate the view. C is correct because the database will invalidate a view only
if that view uses the new column.
� A and D are incorrect. A is incorrect because if the new column has no bearing on the
view, the database doesn’t invalidate the view. D is incorrect because if the view doesn’t use the
new column, the database doesn’t invalidate the view.

13. � A and D are correct. A is correct because the new parameter file that you create with the
create pfile from memory command will contain values for all 150 or so initialization
parameters, regardless of whether you’ve set values for all of those parameters. D is correct
because the newly created file will use the default values for all the initialization parameters you
didn’t specify in the PFILE or the SPFILE.
� B and C are incorrect. B is incorrect because the file will have values for parameters,
including those you haven’t explicitly set. C is incorrect because the file will contain default
values only for those parameters you haven’t set.

14. � D is correct because the hot patches that you apply will persist across instance shutdowns.
� A, B, and C are incorrect. A is incorrect because you don’t have to restart the database
after you apply a hot patch. B is incorrect because it actually is much faster to apply a patch
online with the opatch utility than to apply a conventional patch. C is incorrect because you
use the hot patching with the opatch utility in a RAC environment.

Miscellaneous New Features

15. � A and D are correct. A is correct because, by default, all indexes are visible to the
optimizer, as in the previous releases of the database. D is correct because you can make an
index invisible either when you create it or later on, by issuing the alter index statement.
� B and C are incorrect. B is incorrect because, by default, all indexes are visible. C is
incorrect because you can also make an index invisible after you create it, by issuing the alter
index statement.

16. � B and D are correct. B is correct because the specification of a tablespace is optional,
not mandatory. D is correct because if you don’t specify a tablespace when creating a global
temporary table, the database creates the table in the database’s default temporary tablespace.
� A and C are incorrect. A is incorrect because you don’t have to specify the tablespace—it’s
optional. C is correct because you can create the global temporary table without specifying the
tablespace.

17. � D is correct because you must specify the compress for all operations clause to
set up OLTP table compression.
� A, B, and C are incorrect. A is incorrect because you use this option for data warehouse
compression only. B is incorrect because it is a nonexistent option. C is incorrect because the
compress option by default command compresses only data warehouse workloads,
not OLTP workloads.

18. � A is correct because the Direct NFS first searches the $ORACLE_HOME/dbs/oranfstab
directory for mount point entries.
� B, C, and D are incorrect because none of these is the first choice for a search by Direct
NFS for mount point entries.

Self Test Answers 489

490 Chapter 8: Oracle SecureFiles and Miscellaneous New Features

19. � A, B, and D are correct because you can disable Direct NFS by doing any one of these.
� C is incorrect because you must actually do the opposite—replace the stub libodm11.so file
with the ODM NFS library.

20. � B and C are correct. B is correct because you must set the plsql_code_type parameter
to native to set up PL/SQL native compilation. C is correct because you must ensure that
the plsql_optimize_level parameter is set to at least 2 before the database can natively
compile PL/SQL.
� A and D are incorrect. B is incorrect because you must set the plsql_code_type
parameter to native to set up PL/SQL native compilation. D is incorrect. It isn’t a valid
option for the plsql_code_type parameter.

21. � A, B, and C are correct because all of these commands will shrink a temporary tablespace.
� D is incorrect because you can’t use this command to shrink a temporary tablespace. This is
a command with an incorrect syntax that will fail.

LAB ANSWER
Let’s assume you identified a code bug in your database. Let’s also assume that the patch you must
apply to fix the code bug is in the /u01/app/oracle/OP directory in the hotpatch.zip file. Here are the
steps to apply the patch and, if necessary, to roll back the patch.

 1. Unzip the hotpatch.zip file to retrieve the patch you must apply to fix the code bug.

$ unzip hotpatch.zip

 2. Check if the patch is indeed an online patch that you can apply while the database is running.

$ $ORACLE_HOME/Opatch/opatch query -is_online_patch “pwd”

 3. Once the opatch query command shows that the path is an online patch, proceed to the
next step.

 4. Apply the patch using the opatch apply command.

$ $ORACLE_HOME/Opatch/opatch apply

 5. Issue the opatch lsinventory command to ensure that the patch you just applied shows
up in the patch inventory.

$ $ORACLE_HOME/Opatch/opatch lsinventory

 6. To roll back the patch, use the opatch rollback command, as shown here:

$ $ORACLE_HOME/Opatch/opatch rollback -id1234567

 Note that you must provide the patch ID as part of the opatch rollback command.

Appendix
About the CD-ROM

The CD-ROM included with this book comes complete with MasterExam and the electronic
version of the book. The software is easy to install on any Windows 98/NT/2000/XP/Vista
computer and must be installed to access the MasterExam feature. You may, however,

browse the electronic book directly from the CD-ROM without installation. To register for a second,
bonus MasterExam, simply click the Online Training link on the main page and follow the directions to
the free online registration.

System Requirements
Software requires Windows 98 or higher and Internet Explorer 5.0 or above and
20 MB of hard disk space for full installation. The electronic book requires Adobe
Acrobat Reader.

Installing and Running MasterExam
If your computer CD-ROM drive is configured to auto run, the CD-ROM will
automatically start up upon inserting the disk. From the opening screen you can install
MasterExam by pressing the MasterExam button. This will begin the installation
process and create a program group named LearnKey. To run MasterExam, use Start |
Programs | LearnKey. If the auto run feature did not launch your CD-ROM, browse to
the CD-ROM and click the LaunchTraining.exe icon.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

492 Appendix: About the CD-ROM

MasterExam
MasterExam provides you with a simulation of the actual exam. The number of
questions, the type of questions, and the time allowed are intended to be an accurate
representation of the exam environment. You have the option to take an open book
exam, including hints, references, and answers; a closed book exam; or the timed
MasterExam simulation.

When you launch MasterExam, a digital clock display will appear in the upper-
left corner of your screen. The clock will continue to count down to zero unless you
choose to end the exam before the time expires.

Electronic Book
The entire contents of this exam guide are provided in PDF format. Adobe’s Acrobat
Reader has been included on the CD-ROM.

Help
A help file is provided through the help button on the main page in the lower-left
corner. An individual help feature is also available through MasterExam.

Removing Installation(s)
MasterExam is installed to your hard drive. For best results when removing programs,
use the Start | Programs | LearnKey | Uninstall option to remove MasterExam.

Technical Support
For questions regarding the technical content of the electronic book or MasterExam,
please visit www.osborne.com or e-mail customer.service@mcgraw-hill.com. For
customers outside the 50 United States, e-mail international_cs@mcgraw-hill.com.
If you would like clarifications regarding the questions or answers, you may reach the
author directly at salapati@netbsa.org.

LearnKey Technical Support
For technical problems with the software (installation, operation, removing
installations), please visit www.learnkey.com or e-mail techsupport@learnkey.com.

www.osborne.com
www.learnkey.com

Glossary

Autotask Background Process (ABP) A new Oracle background process
that converts the automated scheduled tasks into Scheduler jobs.

ABP See Autotask Background Process.

accepted plans An accepted plan is a plan that is verified not to cause a
performance regression. All accepted plans are integrated into the SQL plan
baseline for a SQL statement.

access control list (ACL) A group of directives that you define to grant
appropriate levels of access to specific data for specific clients or groups of clients
when they access the database through the network.

ACL See access control list.

active database duplication A database duplication process wherein you
transfer files over the network instead of restoring backups of the target database.

adaptive cursor sharing A new type of cursor sharing that allows for
intelligent cursor sharing only for statements that use bind variables; offers a
compromise between traditional cursor sharing and optimization.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

494 OCP Oracle Database 11g: New Features for Administrators Exam Guide

adaptive metric thresholds The adaptive metric thresholds feature enables
the selection of better alert thresholds for database performance metrics and uses the
AWR baselines as the source for metric statistics.

ADDM See Automatic Database Diagnostic Monitor (ADDM).

ADR base The ADR base is the ADR root directory. You set its location with
the diagnostic_dest initialization parameter.

ADR Command Interpreter The ADR Command Interpreter (ADRCI) is
a command line–based tool that enables you to investigate database incidents and
problems, view the database alert log and health check reports, and package and
upload diagnostic data to Oracle Support.

ADR Home An ADR home is the root directory for all diagnostic data for
a particular instance of an Oracle product or component, such as a database, for
example. With an ADR base, there can be multiple ADR homes.

ADR See Automatic Diagnostic Repository.

ADRCI See ADR Command Interpreter.

allocation unit An allocation unit is the basic unit of allocation in an ASM disk
group. An ASM file consists of one or more file extents with each extent consisting
of one or more AUs.

AMBR See ASM metadata backup and restore.

ASM metadata backup and restore Consists of the md_backup command,
which enables you to back up the metadata for ASM disk groups and the md_restore
command, which helps you restore a disk group backup.

ASM disk group compatibility ASM disk group compatibility, indicated by
the value of the compatible.asm attribute, determines the minimum software
version required to use the disk group for ASM.

ASM Fast Mirror Resync This new ASM feature reduces the time to
synchronize a failed disk by letting ASM quickly resynchronize the ASM disk
extents.

Glossary 495

ASM Preferred Mirrored Read Under this feature, ASM reads from the
closest extent (local copy), rather than always reading the primary copy. You can
specify a list of failure group names by setting the asm_preferred_read_
failure_groups initialization parameter.

ASMCMD An ASM command-line utility to view and manage files and
directories within ASM disk groups.

AU See allocation unit.

Automatic Database Diagnostic monitor (ADDM) A tool to diagnose
Oracle database performance; offers solutions to problems it identifies. It runs
automatically after each AWR statistics capture.

automatic diagnostic repository (ADR) A new repository for system-wide
tracing and error logging. The repository is file-based and is used to store diagnostic
information of all types, including alert log files.

automatic memory management This is a new method of memory
management that lets the database automatically manage and tune the memory
allocated to the Oracle instance, including the SGA and the PGA components.

automatic plan capture The setup where the database automatically creates
and maintains the plan history for SQL statements.

automatic secure configuration When creating a new database with the
DBCA, the new automatic secure configuration feature lets you enable secure
configuration settings by default. These settings include the password-specific
settings in the default profile and auditing for specific database events such as
connecting to the database.

Automatic SQL Tuning Advisor This is an advisor that runs nightly during
the default maintenance window, automatically invoking the SQL Tuning Advisor
on selected high-load SQL statements captured by the AWR.

Automatic Storage Management (ASM) Vertically integrates the file
system and the volume manager, especially for Oracle database files; uses striping
and mirroring capabilities to optimize performance.

496 OCP Oracle Database 11g: New Features for Administrators Exam Guide

AWR baselines These are baselines that let you accurately compare database
performance by letting you mark a representative time as the base against which
you can compare performance during other periods in the future.

base recovery catalog The base or central recovery catalog is the actual
recovery catalog, based on which you can create a virtual recovery catalog.

basicfile This refers to the original LOB implementation, which is supplemented
by the SecureFiles implementation in Oracle Database 11g.

bind-aware A cursor in the cursor cache that the database has marked to use
bind-aware cursor sharing is called bind-aware.

bind peeking The process where the query optimizer looks at the values of the
user-defined bind variables when the database invokes a cursor for the first time.

bind-sensitive A query for which a change in a bind variable value may lead
to a different execution plan is called bind-sensitive.

capture files Platform-independent transportable binary files in which the
database tracks and stores all external client requests when using the Database
Replay feature.

checker See Health Monitor checks.

checks See Health Monitor checks.

client_query result cache The client query result cache (also called the OCI
result cache) is separate from the server-side result cache and stores OCI application
results that are shared across all sessions.

connect_time_scale This parameter scales the elapsed time from the time the
workload capture started to when the session connects with the specified value.

control_management_pack_access This initialization parameter
specifies which of the Server Manageability Packs should be active. There are two
management packs: the diagnostic pack and the tuning pack.

Glossary 497

custom packaging A manual incident packaging method that involves more
steps than the Quick Packaging method. Custom packaging offers more control over
the packaging process, by enabling you to add or remove problems or incidents, trace
files, and additional diagnostic data.

Data Recovery Advisor A new automated data repair tool designed to reduce
the mean time to recover from failures. It automatically diagnoses data failures,
presents a report of the repair options, and, optionally, executes those repairs.

database ADDM In this mode, ADDM analyzes all instances of the databases in
a cluster.

Database Replay Is A new change management tool that enables you to
realistically test the effect of system changes on database workload. You capture the
production workload and replay it on a test system, the simulation helping you assess
the impact of the system change on performance.

db_securefile This initialization parameter specifies whether the database will
treat a LOB file as the new SecureFile or a traditional BasicFile LOB.

db_ultra_safe This new initialization parameter sets the default values for the
initialization parameters that control protection levels (db_block_checking,
db_block_checksum, and db_lost_write_protect).

DBMS_SQLPA This new Oracle-supplied PL/SQL package provides procedures
and functions to use the SQL Performance Analyzer feature. The interface lets you
compare and analyze the workload between two versions and isolate SQL statements
whose performance is affected by making system changes.

ddl_lock_timeout This initialization parameter specifies the time limit for
which a DDL statement will wait to acquire a DML lock.

diagnostic_dest This initialization parameter specifies the directory where the
diagnostic information for an instance of an Oracle product is stored.

evolving SQL plan baselines In this phase, the database evaluates the
performance of new plans and adds plans with better performance into the SQL
plan baseline for a SQL statement.

498 OCP Oracle Database 11g: New Features for Administrators Exam Guide

expression statistics Statistics on an expression on a column, valuable to
gather so the cost optimizer will have a better selectivity value.

extended statistics Statistics on a group of columns (multicolumn statistics)
or an expression on a column (expression statistics).

fixed SQL plan baselines A SQL plan baseline that contains at least one
enabled plan whose fixed attribute is set to Yes.

flashback data archive A flashback data archive is a historical repository of the
changes made to every row in a table for the duration of the row’s lifetime.

flashback transaction backout A feature that lets you selectively remove the
effect of individual transactions.

forced dropping of diskgroups You can drop disk groups that you are unable
to mount by specifying the force option of the drop diskgroup command.

health check See Health Monitor checks.

Health Monitor A new framework for running diagnostic checks on the
database.

Health Monitor checks Health Monitor checks, also known as checkers or
health checks, detect various types of database corruption and generate reports
of findings as well as recommendations for resolving the problems causing the
corruption. The database can run reactive checks automatically in response to a
critical error or you can manually invoke a health check anytime.

I/O calibration The I/O calibration feature in Oracle Database 11g enables you
to assess the I/O performance of the storage subsystem and determine whether the
problem lies in the storage subsystem or the database.

importing recovery catalogs You can use the import catalog command to
import one recovery catalog’s metadata into a different recovery catalog schema,
thus allowing you to maintain a single recovery catalog schema for all databases.

Glossary 499

incident flood control A strategy to avoid overloading the ADR with
diagnostic data in the ADR for a single problem. After a problem is logged a certain
predetermined number of times, the database applies a flood control mechanism. A
flood controlled incident is an incident that is recorded in the alert logs, without
generating new incident dumps in the ADR.

incident package A collection of metadata pertaining to diagnostic data files
both within and outside the ADR. After you create a package, you add one or more
problems to it and the Support Workbench will automatically add the incident
information and diagnostic data associated to the selected problems to the package.
Only the first three and the last three incidents for each problem are added to a
package.

Incident Packaging Service A facility that automatically identifies all the
required diagnostic files and adds them to an incident package. You can use the
service to edit and modify the package and transmit the Zip file to Oracle Support.

incidents An incident is a single occurrence of a database problem. The database
creates an incident for each occurrence of a problem.

incremental statistics A term used for a statistics collection strategy to save
time when collecting statistics for large partitioned tables. If you set the incremental
value for a partitioned table to TRUE and gather statistics for that table with the
granularity set to auto, Oracle will gather statistics only on the new partition added
since the last time statistics were collected for the table. Oracle updates the global
table statistics with the statistics it collects for the new partition, thus saving time.

instance ADDM In this mode, ADDM analyzes only a particular instance in a
cluster.

interval partitioning An extension of range partitioning, which tells the
database to automatically create partitions of a specified interval when new data that
is inserted into the table exceeds all the range partitions.

invisible index An invisible index can’t be used by the cost optimizer, although
the database maintains it during all DML operations like a regular index.

500 OCP Oracle Database 11g: New Features for Administrators Exam Guide

IOPS I/O per second.

IPS See Incident Packaging Service.

large objects Large objects (LOBs) are designed for storing data that is large in
size and includes the following SQL data types: BLOB, CLOB, NCLOB, and BFILE.

latency Describes the delay or the time it takes for a response.

ldap_directory_sysauth Enables or disables directory-based authorization for
the SYSDBA and SYOPER privileges.

lightweight job An easy-to-create type of Scheduler job that is based on a job
template that is the source of the privileges and the job metadata.

LOB See large objects.

lsdsk Command to list disks visible to ASM. Uses the V$ASM_DISK_STAT and
the V$ASM_DISK views.

MBPS Megabytes of I/O per second.

md_backup Creates a backup file (named ambr_backup_intermediate_file)
containing metadata for one or more ASM disk groups.

md_restore Restores an ASM disk group backup.

memory_max_target This initialization parameter provides the maximum
value to which you can set the memory_target initialization parameter.

memory_target This initialization parameter is used to specify the memory
allocated to the Oracle instance when you use automatic memory management to
automatically manage the SGA and the PGA components of memory.

merging recovery catalogs You can use the import catalog command to
merge one catalog schema into another. You can merge a complete recovery catalog
schema or just the metadata for specified databases.

Glossary 501

mixed workload resource plan A predefined Oracle Scheduler resource plan
that gives priority to interactive operations over batch operations.

moving window baselines A moving window baseline corresponds to the
entire set of AWR data covering the AWR retention period, which is eight days
by default. A moving window baseline is particularly helpful when you’re using
adaptive thresholds. The database automatically maintains a system-defined moving
window baseline with a default window size of eight days.

multicolumn statistics Gathering statistics on a group of columns within a
table to provide better selectivity value for the column group instead of generating
selectivity values based on individual columns statistics.

multisection backups An RMAN backup set in which each backup piece
contains a section of the file that is being backed up. You create a multisection
backup by specifying the section size parameter in the backup command.

Opatch A platform-independent utility that helps you apply a patch, which is a
small collection of files, the application of which results in an upgrade to the version
of a product.

optimizer_capture_sql_plan_baselines This initialization parameter enables
and disables the generation of SQL plan baselines for repeatable SQL statements.

optimizer_use_invisible_indexes This initialization parameter enables and
disables the use of invisible indexes.

optimizer_use_sql_baselines This initialization parameter enables or disables
the use of the SQL plan baselines stored by the database in the SQL Management
Base, when it compiles a SQL statement.

Oracle Direct NFS You can use the Oracle internal Direct NFS client to take
advantage of a network-attached storage (NAS) system.

Oracle wallet A container that stores public key security credentials and can be
read by the Oracle Database, Oracle Application Server 10g, and the Oracle Identity
Management infrastructure.

502 OCP Oracle Database 11g: New Features for Administrators Exam Guide

OSASM This is an optional operating system group, which you create if you want
to grant the SYSASM system privilege.

partial ADDM In this mode, ADDM analyzes a subset of the instances in a cluster.

partition exchange loading A technique to improve performance when
loading or purging data in a database.

pending statistics Statistics that are not published for use by the optimizer. You
can publish the statistics after a satisfactory test.

PL/SQL Function Result This cache stores the results of PL/SQL functions in
the SGA and makes them available to all sessions that use your application.

PL/SQL Native Compilation Under PL/SQL native compilation, PL/SQL
code units are compiled into native code and stored in the SYSTEM tablespace.
The code runs faster than the traditional execution that consists of compiling into an
intermediate machine readable code first and then interpreting it at runtime. You use
the plsql_code_type initialization parameter to specify whether PL/SQL code is
natively compiled or interpreted.

Problems A problem is a critical error in the database such as an ORA-00600 or
ORA-07445 error.

quick packaging The simplest and fastest way to create an incident package;
uses a minimum number of steps. You can’t add, edit, or remove package files and
other diagnostic data.

RDBMS compatibility This is shown by the value of the disk group
compatible.rdbms attribute; determines the minimum compatible database
initialization parameter setting for a database instance that uses the disk group.

read-only table You can use the alter table statement to make a table
read-only even for the owner of the table.

Real Application Testing This is a feature that helps you test the effect of
system changes on applications before deploying the changes in production. Oracle
Real Application Testing consists of the Database Replay and the SQL Performance
Analyzer features.

Glossary 503

reference partitioning A method of partitioning where the partitioning key is
resolved through an existing parent-child relationship between two tables, with the
relationship enforced by active primary key or foreign key constraints.

remap An ASM command that repairs a range of physical blocks on a disk that
have read I/O errors.

remapping connections The process of using the connection strings used to
connect to the production system to connect to the replay system during a database
workload replay.

remote external jobs A remote external job that runs on a different server
from the server on which the Oracle database that scheduled the job runs.

repeating baseline A baseline that repeats during a specific time interval over a
specific period.

replay client The replay client, represented by the wrc executable, is a program
used by Database Replay to submit a workload from a captured session.

restricted mount mode in ASM You can use the startup restrict
command to restrict access to an ASM instance while you perform maintenance
chores. Databases can’t connect to the ASM instance because all ASM diskgroups
are mounted in the restricted mode.

result cache The result cache is a part of the SGA memory that is used to cache
the results of queries. The result cache consists of the SQL result cache and the
PL/SQL function result cache.

result_cache hint This parameter determines if the SQL query results will be
cached. If you set the value to force, the database will cache all results if possible.
If you set it to manual, you must specify the result_cache hint in order for a
particular result to use the result cache.

result_cache_max_result This initialization parameter specifies the percentage
of the result_cache_max_size parameter that a single result can use.

result_cache_mode This initialization parameter specifies under what conditions
the database splices the ResultCache operator into a query’s execution plan.

504 OCP Oracle Database 11g: New Features for Administrators Exam Guide

ResultCache operator The database inserts the ResultCache operator
into the execution plan for a SQL statement when the statement contains the
result_cache hint.

Scheduler agent A Scheduler agent runs on a remote host and communicates
with the Oracle database on a different host that originates a remote external job.
The agent is responsible for starting the remote jobs and returning the execution
results to the originating database.

sec_case_sensitive_logon This initialization parameter lets you enable or
disable password case sensitivity.

sec_max_failed_login_attempts This initialization parameter specifies the
maximum number of authentication attempts a client can make when connecting to
a server before the connection is automatically dropped.

SecureFiles A new paradigm for LOBs designed to supplement the original LOB
implementation.

single baseline A single baseline is captured at a single fixed-time interval.

SMB See SQL Management Base.

snapshot standby database A snapshot standby database is a fully updateable
standby database. You can apply the redo data from the primary database to convert
the snapshot standby database into a physical standby database, thus providing
you with disaster recovery and data protection benefits just as a physical standby
database does.

SQL Access Advisor The SQL Access Advisor is a tool that helps you improve
performance by recommending the creation of materialized views, table partitions,
and indexes for a database workload.

SQL Management Base Located in the SYSAUX tablespace, this is a
repository for statement logs, SQL plan histories, SQL profiles, and SQL plan
baselines. The database adds plans automatically to the SMB, which you can also do
manually.

SQL Performance Analyzer Helps you automate the testing of the effects of
changes in the SQL workload on database performance. SQL Performance Analyzer’s

Glossary 505

goal is to efficiently find out if SQL changes would lead to an improvement. SQL
Performance Analyzer also provides tuning recommendations for SQL statements
whose performance regresses following the changes.

SQL plan baseline The set of all accepted plans in the plan history is the SQL
plan baseline for a SQL statement.

SQL Plan Management SQL Plan Management is a preventative mechanism
designed to prevent performance regressions resulting from changes in the execution
plans of SQL statements. It uses SQL baselines, composed of known efficient
execution plans to preserve the performance of SQL statements in the face of system
changes.

SQL profile A SQL profile is additional information beyond the usual statistics
that helps the query optimizer create an optimal execution plan for a SQL statement.

SQL Query Result Cache A part of the result cache where the database
caches the results of queries and query fragments.

SQL Repair Advisor The SQL Repair Advisor analyzes a SQL statement that
fails with a critical error and in many cases recommends a patch as a workaround for
the failed statement. Applying the patch leads the optimizer to choose a different
explain plan for future executions of the statement.

SQL Test Case Builder The SQL Test Case Builder collects and packages all
information necessary to reproduce a problem.

SQL Tuning Set A SQL Tuning Set (STS) is a database object that includes one
or more SQL statements along with their execution statistics and execution context.

STS See SQL Tuning Set.

support workbench The Support Workbench (formal name: Enterprise
Manager Support Workbench) is a GUI tool that helps you investigate, report,
and even repair some problems. You can save time in resolving problems by using
the tool to gather diagnostic data and easily uploading diagnostic data to Oracle
Support. You can view diagnostic information, run health checks, and package
incident data with the help of the Support Workbench.

506 OCP Oracle Database 11g: New Features for Administrators Exam Guide

SYSASM A new system privilege designed to separate the database
administration tasks from ASM administration tasks.

system partitioning Enables application-controlled data partitioning. The
database merely provides the ability to break up the table into meaningless partitions,
without using any partitioning key. The application controls all aspects of partitioning.

table compression Table compression compresses data in a table by eliminating
duplicate values in a database block. Oracle supports all DML operations such as
insert, update, and delete on compressed tables in Oracle Database 11g, thus making
compression viable for both OLTP and data warehousing applications.

tablespace encryption Enables you to encrypt an entire tablespace to secure
all the data stored in a tablespace.

think_time_auto_correct This parameter corrects the think time between
calls. The value is based on the value of the think_time_scale parameter.

think_time_scale This parameter scales the elapsed time between two
successive user calls from the same session.

throughput A measure of the amount of data transferred in a specific amount of
time, which is usually expressed as bits per second (bps).

transition point In an interval partitioning, the range partitioning key value
determines the high value of the range partitions and is called the transition point
because the database creates interval partitioning beyond this point.

virtual column partitioning A partitioning method that uses partitioning key
columns defined on virtual columns of a table.

virtual private catalog A virtual private catalog is a subset of the metadata in
the base or central recovery catalog to which you grant access to a user, called the
virtual catalog owner.

workload filters You use these filters in Database Replay to specify that only
a subset of the database workload should be captured or that certain session types
should be ignored when capturing the workload.

wrc See replay client.

INDEX

A

ABP (Autotask Background Process), 163, 493
accepted attribute, 236
accepted plans, 226, 232–234, 236, 493
accept_sql_profiles parameter, 219
access control lists. See ACLs
ACLs (access control lists)

assigning to hosts, 192–193
checking privileges/host assignments, 194
creating, 191–194
described, 191, 493
host name evaluation, 193
privileges and, 194

active database duplication, 384–391, 493
adaptive cursor sharing, 362–366, 493
adaptive metric thresholds, 494
add column command, 424
ADD_FILTER procedure, 36–37
ADDM (Automatic Database Diagnostic Monitor)

advisor findings/directives, 325–327
cluster-wide mode, 323
database ADDM, 323–324, 497
DBMS_ADDM package, 324–327
described, 322, 495, 497
enabling/disabling, 324
instance ADDM, 323, 499
managing, 324–327
new views, 327
partial ADDM, 323, 324, 502
performance enhancements, 322–327
Real Application Clusters, 322–324
reports, 325
tuning process and, 214, 216

ADD_STS_REF procedure, 241, 245
ADR (Automatic Diagnostic Repository), 80–88

home subdirectories, 82
homepath, 84, 85–86
overview, 5, 78, 80–81, 495
structure of, 81–83
viewing incidents, 88
viewing locations, 82–83

ADR base directory
ADRCI and, 84
described, 494
location of, 5
path for, 83
setting, 11
shared storage and, 82
vs. ADR home, 81

ADR Command Interpreter. See ADRCI
ADR home directory

ADRCI commands and, 84
described, 80, 494
location of, 5
multiple, 84, 86
path for, 83
setting homepath for, 85–86
single, 86
vs. ADR base, 81

ADR homepath, 83, 84, 85–86
ADRCI (ADR Command Interpreter), 83–88

batch mode for, 86–87
IPS management via, 91
overview, 79, 83–84, 494
packaging incidents with, 92–95
starting, 84–85
viewing alert log contents, 87–88
viewing heath check reports, 109–110
viewing incidents, 88, 92

ADRCI commands
help for, 84–85
listing, 84–85
script file for, 87
types of, 86

ADRCI scripts, 87
advise failure command, 120–123, 124,

128, 129
AES128 encryption, 453
alert directory, 81, 82
alert logs. See also log files

location of, 81, 82
text-based, 5, 82, 104
versions, 5
viewing with ADRCI, 87–88
viewing with Support Workbench, 104
XML-formatted, 5, 81, 82, 83, 104

alert thresholds, 148, 152–155
alerts, 79, 96–98. See also errors
allocation units (AUs), 265, 272, 279, 494
alter diskgroup command, 267, 268, 277–278,

281–282
alter flashback archive statement, 421–422
alter profile statement, 18, 189
alter session statement, 340–341, 452, 458–459
alter system statement, 195, 348, 452
alter table statement, 294, 299, 300, 455, 489, 490
ALTER_SQL_PLAN_BASELINE procedure, 236–237
always value, 451

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use.

508 OCP Oracle Database 11g: New Features for Administrators Exam Guide

AMBR (ASM metadata backup and restore), 284, 286,
288–289, 494

ANALYZE_DB procedure, 324, 325
ANALYZE_INST procedure, 324, 325
ANALYZE_PARTIAL procedure, 324, 325
APEX (Application Express), 7
Application Express (APEX), 7
applications

debugging, 34
OLAP, 164
OLTP, 164
testing. See Real Application Testing

archival backups, 394–397
archived redo logs, 394, 403–405
archives. See flashback data archives
arrays. See job arrays
as of clause, 417, 425
ASM (Automatic Storage Management), 264–289

architecture, 264–265
compatibility issues, 275–278, 494
described, 495
disk failures, 265–266, 267, 270
fast mirror resync feature, 265–269
group attributes, 279–280
manageability options, 280–289
new features, 264–289
performance, 272–274
preferred mirror read feature, 269–272, 495
restricted mount mode, 281–282, 503
role/privilege changes, 7–8
scalability, 272–274
SYSASM privileges, 8, 9, 20, 274–275, 506
using Enterprise Manager with, 269, 271–272

ASM disk groups
backing up/restoring data, 286–289
compatibility issues, 275–278, 494
copying files between, 284
described, 264
dropping, 282–283, 498
mount options, 281–283

ASM disks, 284–286
adding, 267
damaged, 266, 267, 282–283
described, 264
dropping, 266–267
failures, 265–266, 267, 270
mirrored, 265–272
offline, 266
repairing, 266–269, 279, 281, 283

ASM Fast Mirror Resync, 494

ASM files, 265, 272–273, 284
ASM metadata backup and restore (AMBR), 284, 286,

288–289, 494
ASMCMD utility, 283–288, 495
asm_diskgroups parameter, 281, 282
asm_preferred_read_failure_groups parameter,

270–272
ASSIGN_ACL procedure, 192–193
ATO (Automatic Tuning Optimizer), 214, 215, 216. See also

Automatic SQL Tuning Advisor
attribute clause, 274, 279–280
attribute_name parameter, 230
attribute_value parameter, 230–231
audit-related security settings, 18
audit_trail parameter, 18
AUs (allocation units), 265, 272, 279, 494
au_size attribute, 274
automated maintenance tasks, 158–167

clients, 160–161
converting to Scheduler jobs, 163
default, 163, 164
details about, 160
enabling/disabling, 160, 161–162
implementing, 163
I/O calibration, 164–167
maintenance windows, 159
managing, 159–162
operations, 160–161
overview, 158–159
priority, 163, 164
resource allocation for, 163–164

automatic balancing, 265
Automatic Database Diagnostic Monitor. See ADDM
Automatic Diagnostic Repository. See ADR
automatic memory management

DBCA and, 333–334
monitoring, 332–333
overview, 13, 328–329, 495
performance enhancements, 328–334
setting up, 331
using, 331–332

Automatic Memory Management option, 19
automatic plan capture, 495
automatic secure configuration, 13, 495
automatic session switching, 169–172
Automatic SQL Tuning Advisor, 214–224. See also

Automatic Tuning Optimizer; SQL Tuning Advisor
configuration, 219–220
data dictionary views, 224
limitations, 217

Index 509

managing, 220–223
overview, 158, 214–215, 495
recommendations, 218
reports, 223–224
SQL profiles, 215, 216–224
tuning process, 217–223

automatic storage management. See ASM
automatic switching, 169–172
Automatic Tuning Optimizer (ATO), 214, 215, 216. See also

Automatic SQL Tuning Advisor
Automatic Workload Repository. See AWR
auto-open wallets, 195
auto_purge attribute, 236
Autotask Background Process (ABP), 163, 493
auxiliary instance, 387, 389–391, 397
AWR (Automatic Workload Repository)

exports, 48
tuning process and, 215, 217–221, 229, 231

AWR baselines
creating, 149
described, 148, 496
details about, 157–158
dropping, 149
enabling, 149
expiration period for, 149
loading statements, 53
managing new features, 156–158
metric threshold settings, 152–155
modifying, 149
moving window, 148–149, 155–156, 501
naming, 149–152
new features, 148–158
static, 148
templates, 149–152, 156–157
types of, 148–149
working with, 149

AWR snapshots
described, 148
exporting, 48
loading statements with, 53
tuning process and, 220, 229
workload replay and, 48

B

background_dump_dest parameter, 11
backup command, 458, 459
backup failover, 404–405
backup . . . keep command, 394–396
backups

archival, 394–397

ASM metadata backup and restore, 284, 286,
288–289, 494

disk group compatibility and, 277
fast, 398
incremental, 398
long-term, 394–397
md_backup command, 277, 286, 288–289, 500
multisection, 392–393, 501
obsolete, 404
redo log files, 404–405
RMAN, 392–398

base recovery catalog, 408–412, 496
baselines. See also snapshots

AWR. See AWR baselines
moving window, 148–149, 155–156, 501
repeating, 503
single, 504
SQL plan. See SQL plan baselines

BASELINE_TYPE column, 158
BasicFiles, 451–452, 454, 457, 496. See also SecureFiles
batch_group, 172–173
bdump directory. See ADR
bdump parameter, 80
bind peeking technique, 363, 496
bind sensitivity, 364, 496
bind-aware cursor, 364–366, 496
block change tracking feature, 398
block media recovery feature, 398–401
blockrecover command, 398
BSLN_MAINTAIN_STATS_SCHED schedule, 153
buffer cache, 416
bug fixes, 462–463
BYPASS procedure, 352–353
BZIP2 compression algorithm, 402–403

C
cache

buffer, 416
cursor. See cursor cache
parameters for, 11
result. See result cache

cache clause, 454
cache reads clause, 454–455
CALIBRATE_IO procedure, 166–167
calibration, I/O, 164–167
CANCEL_TASK procedure, 247
capture directory, 37
capture files, 35, 496
capturing client requests, 34–35
capturing/replaying workloads, 35–51

510 OCP Oracle Database 11g: New Features for Administrators Exam Guide

cascade value, 429, 430
catalog for database privileges, 411–412
catdwgrd.sql script, 30
catproc.sql script, 6
catupgrd.sql script, 21, 23, 27, 28, 32
catuppst.sql script, 22, 23, 28, 32
CCR (Customer Configuration Repository). See OCM
CD-ROM, included with book, 491–492
cdump directory, 80, 83. See also ADR
central recovery catalog. See base recovery catalog
change command, 395, 396
change failure command, 117, 120
change management, 2
change . . . nokeep command, 396
check command, 280–281
checker run reports, 82
checkers, 116. See also health checks
CHECK_PRIVILEGE function, 194
checksums, 132
client requests, 34–35
client_result_cache_lag parameter, 361
client_result_cache_size parameter, 361
CLIENT_RESULT_CACHE_STATS$ view, 362
clients

automated maintenance tasks, 160–161
replay, 40–44, 503
result cache, 359–362, 496

client-side caching, 11
column groups, 342–345
commit parameter, 234
COMPARE_PERFORMANCE value, 57
compatibility issues, 21, 275–278, 502
compatible parameter, 26, 451
compatible.asm attribute, 275–278, 279
compatible.rdbms attribute, 275–278
compensating transactions, 428
compiled value, 467
composite partitioning, 307–309
compress clauses, 472–473
compress high clause, 455, 456
compression

BZIP2, 402–403
OLTP, 472–473
SecureFiles, 11, 450–456, 504
tables, 506
ZLIB, 402–403

compression algorithms, 402–403
configuration

new options for, 12–13
persistent configuration parameters, 467–470
Secure Configure option, 17

configure archive log deletion policy
command, 404

configure archivelog deletion policy
parameter, 403

configure command, 404
connect catalog command, 410–411
connect_time_scale parameter, 46, 496
control_management_pack_access parameter,

12, 496
COPY_SQLWKLD_TO_STS procedure, 244
core_dump_dest parameter, 11
corrupted data blocks, 398–401
corruption, database, 131–133
corruption-checking parameters, 11
cp command, 284
CPU usage

per session limits, 168–172
resource groups based on, 169–172
terminating sessions based on, 171–172

CPU_Pn parameters, 168
create database SQL statement, 10
create diskgroup command, 274, 277, 280
create flashback statement, 419–420
create pfile from memory command, 461
create profile statement, 18
create table as select (CTAS) operation,

298, 472
create table statement, 291, 293, 300, 304, 472–473
CREATE_ACL procedure, 191–192
CREATE_BASELINE procedure, 149–150
CREATE_BASELINE_TEMPLATE procedure, 149, 150–152
CREATE_EXTENDED_STATS function, 341, 344, 346–347
CREATE_FILE procedure, 247
CREATE_JOB procedure, 175–177
CREATE_PLAN_DIRECTIVE procedure, 168, 170
CREATE_PRIVILEGE procedure, 192
CREATE_PROGRAM procedure, 174, 175
CREATE_RESOURCE_PLAN procedure, 169
CREATE_TASK procedure, 244
CREATION_TIME column, 158
credentials, 182, 186, 187
critical errors, 88, 89, 96–98
critical failures, 117, 119–120
CTAS (create table as select) operation, 298, 472
CTXXPATH index, 6
current statistics, 338
cursor cache

loading SQL plans from, 230–231
loading statements, 53
SQL Access Advisor recommendations, 251–252

cursor sharing, 362–366, 493

Index 511

cursor_sharing parameter, 362
Custom option, 334
custom packaging, 100–102, 497
Customer Configuration Repository (CCR). See OCM

D

daily maintenance windows, 159
data

accessing older, 425–427
archived, 394–397
backing up. See backups
flashback. See flashback data archives
historical, 414, 415–417, 425
moving with upgrades, 19
replay, 44–45
undo feature, 413–414

data blocks, 398–401
data dictionary views, 224
Data Guard, 184–185, 404
data integrity checks, 116. See also health checks
Data Mining option, 6
Data Mining Scoring Engine, 6
Data Pump, 405
Data Recovery Advisor (DRA), 115–133

managing with Database Control, 130–131
overview, 79, 115–117, 497
repair options, 118–119
restoring datafiles, 123–126
RMAN and, 79, 117, 119–126, 134
shared storage and, 82

Data Resource Manager, 169–172
data transfer rate, 164
database ADDM, 323–324, 497
Database Configuration Assistant. See DBCA
Database Control, 13, 130–131
database creation

with DBCA, 13–19
default security settings, 14, 17–19
new features in, 10–19
password-specific settings, 17–18
Secure Configure option, 17

database failures. See failures
database health checks. See health checks
database identifier (DBID), 152, 407, 409, 411
Database Replay feature, 33–51

client request capture, 34–35
debugging applications with, 34
managing, 50
overview, 7, 33–35
preprocessing workloads, 38–39

RAC system and, 34–35
testing system changes, 34–35, 39–48
workload capture/replay, 35–51
workload filters, 36–37

Database Resource Manager
mixed workload resource plan, 172–173
new resources, 167–173
overview, 167–168
session I/O limits, 168–172

Database Upgrade Assistant (DBUA), 21, 22, 31–32
DATABASE_ROLE attribute, 184
databases. See also Oracle Database

compatibility issues, 21, 275–278, 502
corruption, 131–133
creating. See database creation
downgrading, 30–31
duplication of, 384–391
exporting SQL patches to, 114–115
initialization parameters, 10–12
restarting, 35–36
restricted mode, 36
snapshot standby, 32–33, 36, 39, 504
target, 387–392

datafiles. See also files
corrupted blocks in, 398–401
location of, 3, 4, 13
missing, 123–126
raw storage support for, 6
restoring, 123–126

data-loss repair, 120
DBA_ADDM_FINDINGS view, 327
DBA_ADDM_INSTANCES view, 327
DBA_ADDM_TASKS view, 327
DBA_ADVISOR_EXECUTIONS view, 224
DBA_ADVISOR_FINDING_NAMES view, 325, 326–327
DBA_ADVISOR_FINDINGS view, 325, 327
DBA_ADVISOR_JOURNAL view, 246
DBA_ADVISOR_SQLPLANS view, 224
DBA_ADVISOR_SQLSTATS view, 224
DBA_AUTOTASK_CLIENT view, 160
DBA_AUTOTASK_OPERATION view, 160, 161
DBA_FLASHBACK_ARCHIVE view, 424
DBA_FLASHBACK_ARCHIVE_TABLES view, 423, 424
DBA_FLASHBACK_ARCHIVE_TS view, 424
DBA_FLASHBACK_TRANSACTION_REPORT view, 431
DBA_HIST_BASELINE view, 158
DBA_HIST_BASELINE_DETAILS view, 157–158
DBA_HIST_BASELINE_TEMPLATE view, 156–157
DBA_INDEXES view, 463–464
DBA_LOB package, 456

512 OCP Oracle Database 11g: New Features for Administrators Exam Guide

DBA_SCHEDULER_CREDENTIALS view, 183
DBA_SEGMENTS view, 456–457
DBA_SPACE package, 456
DBA_SQL_MANAGEMENT_CONFIG view, 238–239
DBA_SQL_PLAN_BASELINES view, 235
DBA_SQL_PROFILES view, 219
DBA_STAT_EXTENSIONS view, 342, 346–347
DBA_SYS_PRIVS view, 418
DBA_TAB_STATS_PREFS view, 337, 339, 340
DBA_TEMP_FREE_SPACE view, 466–467
DBA_USERS view, 29
db_block_checking command, 131, 132–133
db_block_checksum command, 131, 132
DBCA (Database Configuration Assistant)

automatic memory management and, 333–334
configuring database with, 14–19
database creation, 13–19
new features, 12–13

db_file_name_convert clause, 386
db_file_name_convert parameter, 385–386, 387, 389
DBID (database identifier), 152, 407, 409, 411
db_lost_write_protect command, 131, 132–133
DBMS_ADDM package, 324–327
DBMS_AUTO_TASK_ADMIN package, 160, 163, 220–222
DBMS_CRYPTO package, 194
DBMS_FLASHBACK feature, 419, 427
DBMS_FLASHBACK.TRANSACTION_BACKOUT

procedure, 428–431
DBMS_HM package, 106
DBMS_NETWORK_ACL_ADMIN package, 191
DBMS_NETWORK_ACL_UTILITY package, 191
DBMS_REDEFINITION package, 242
DBMS_REDEFINITION procedure, 458
DBMS_RESULT_CACHE package, 350–353
DBMS_SCHEDULER package, 174, 175
DBMS_SPM package, 228–229
DBMS_SQLDIAG package, 111–115
DBMS_SQLPA package, 33, 52, 56–59, 497
DBMS_SQLTUNE package, 52, 219, 241
DBMS_STATS package, 336
dbmsupgnv.sql script, 470–471
DBMS_WORKLOAD_CAPTURE package, 33, 35, 36–37
DBMS_WORKLOAD_REPLAY package, 33, 39, 44–48
DBMS_XPLAN package, 237
DBMS_XPLAN.DISPLAY procedure, 232, 349
db_securefile parameter, 11, 451–452, 497
DBUA (Database Upgrade Assistant), 21, 22, 31–32
db_ultra_safe command, 131–133
db_ultra_safe parameter, 11, 497
dbverify utility, 399
dd command, 266, 283

DDL locks, 11, 458–459
DDL statements, 11, 57, 458–460
ddl_lock_timeout parameter, 458–459, 497
ddl_time_lockout parameter, 11
debugging applications, 34
deduplicate clause, 454, 455
deduplication feature, 452–453
default trace file, 83
deferred statistics publishing, 338–341
def_partition_tablespace attribute, 246
DELETE function, 324, 327
delete operation, 416
DELETE_FILTER procedure, 37
DELETE_FINDING_DIRECTIVE procedure, 327
DELETE_PENDING_STATS procedure, 341
DELETE_STS_REF procedure, 241–242
dependency metadata, 460
dependent objects, 460–461
dependent transactions, 427
deterministic keywords, 356
Diag Alert location, 83
Diag Cdump directory, 83
Diag incident location, 83
Diag Trace file, 83
diagnostic data

collecting with Support Workbench, 98–99
packaging/uploading, 100–102

diagnostic directories. See ADR
diagnostic pack, 12
diagnostic patches, 462–463
diagnostic_dest parameter, 5, 11, 13, 80, 81, 133, 497
Direct NFS, 473–476, 501
directories. See also ADR base directory; ADR home

directory
capture, 37
cdump, 80, 83
hm directory, 82
incident directory, 82
Oracle base, 3–4, 13
Oracle home, 4
rdbms, 5
trace, 81, 82

disk groups. See ASM disk groups
disk_repair_time attribute, 266–269, 279, 283
DISPLAY_SQL_PLAN_BASELINE function, 237–238
DML locks, 458–460
DML statements, 57, 464
domain names, 193
DRA. See Data Recovery Advisor
drop after clause, 268
drop catalog command, 412–413

Index 513

drop column command, 424
drop diskgroup option, 282–283, 498
drop flashback archive statement, 421, 423
drop table statement, 424
DROP_BASELINE_TEMPLATE procedure, 149, 152
DROP_EXTENDED_STATS procedure, 341, 345
dropping items

disk groups, 282–283, 498
disks, 266–267
flashback data archives, 421, 423
virtual private catalogs, 412–413

dump files, 89
*_dump_dest initialization parameters. See ADR
duplicate database command, 384, 385–391, 397
duplicate target database command, 390–391
DVDs, installing from, 8
dynamic performance views, 353–354
dynamic sampling, 342

E

electronic book, 492
enabled attribute, 236
encrypt clause, 455
encryption. See also security

AES128, 453
SecureFiles, 11, 450–458, 504
tablespaces, 194, 196–198, 506
Transparent Data Encryption, 194, 453

encryption keys, 456
encryption wallets, 195
Enterprise Manager

accessing SQL Tuning Advisor, 220–223
I/O calibration via, 165–167
managing SPM with, 240
modifying SecureFile options, 452
using with ASM, 269, 271–272
using with SQL Access Advisor, 249–251
viewing incidents, 88

Enterprise Manager Java Console, 6
Enterprise Manager Support Workbench. See Support

Workbench
environment variables, 26
ERROR_COUNT column, 158
errors. See also alerts; failures; problems

critical, 88, 89
diagnostic session workflow, 79
SQL statements, 110–115

estimate_percent option, 338
EVOLVE_SQL_PLAN_BASELINE function, 233–235
evolving SQL plan baselines, 232–235, 497

exam simulation, 492
exclusive locks, 459–460
exec parameter, 86
EXECUTE_ANALYSIS_TASK procedure, 57–59, 61, 62
EXECUTE_TUNING_TASK procedure, 220
execution plans, 214, 216, 224–228, 232, 238
execution_days_to_expire parameter, 219
execution_type command, 57
EXPIRATION column, 157, 158
EXPLAIN PLAN value, 57
EXPORT_PENDING_STATS procedure, 341
expression statistics, 341, 345–347, 498
extended statistics, 341–347, 498

F

failure groups, 265
failures. See also errors; problems

characteristics, 117–118
closed, 117, 119, 120
critical, 117, 119–120
grouping, 118
open, 117
overview, 115–118
priority, 117
repair options, 118–119
severity levels, 80
status, 117
sub-failures, 117, 119, 124

fast mirror resync feature, 265–269
fault diagnosability infrastructure, 78–81
fault management, 88
fbda (Flashback Data Archiver) process, 415,

416–418
files. See also datafiles

ASM, 265, 272–273, 284
BasicFiles, 451–452, 454, 457, 496
capture, 35, 496
copying between disk groups, 284
dump, 89
LOB, 11
log. See log files
OMF, 15
parameter, 461
password, 26, 188–189, 385, 389, 391
redo. See redo log files
script, 87
SecureFiles, 11, 450–458, 504
tempfiles, 465–466
trace, 83

filters, workload, 36–37, 506

514 OCP Oracle Database 11g: New Features for Administrators Exam Guide

finding directives, 325–327
fine-grained dependency management, 460–461
fixed attribute, 236
fixed parameter, 230
fixed SQL plan baselines, 235, 236, 498
flash recovery area, 3, 4, 404–405
flashback archive clause, 422, 423
Flashback Data Archiver process (fbda) process, 415,

416–418
flashback data archives, 413–427

advantages, 417–418
altering, 414, 421–422
creating, 418–421
dropping, 421, 423
enabling/disabling, 422–423
examples, 425–427
limitations, 424
monitoring, 424
names, 423
new features, 413–427
overview, 413–417, 498
privileges, 418–419, 422, 428
quotas, 420
reports, 426
retention period, 420
size, 420–421
vs. Flashback Database feature, 414–415

Flashback Database feature, 404, 414–415
flashback logging, 422
flashback transaction backout, 427–431, 498
flood control, 91
flood-controlled incident reporting, 88, 89
FLUSH procedure, 352–353
force option, 282–283, 498
force value, 452
forever option, 394
from active database clause, 386, 387, 390
from tag clause, 400

G

GATHER_TABLE_STATS procedure, 337, 345, 346
generated always clause, 299
GETOPTIONS function, 456
GET_PREFS function, 339
GET_RUN_REPORT function, 108–109
GET_TASK_REPORT function, 246–247
global statistics, 337, 339
global temporary table, 467
glossary, 493–506

grant catalog command, 409, 411
grant command, 409, 411
Grid Control, 13

H

health checks. See also Health Monitor
described, 78, 116, 498
manual, 105
proactive checks, 126–130
reactive, 105
running, 106–110
types of, 105–106

Health Monitor, 105–110. See also health checks
checker run reports, 82
overview, 78, 105–106
reports, 108–110

help command, 85
help file, 492
historical data, 414, 415–417, 425
history table, 416–417
hm directory, 82
host assignments, 194
host names, 193
hot patching, 462–463
HTML DB. See Oracle Application Express

I

ignore value, 452
ILM (information lifecycle management), 426–427
import catalog command, 85, 405, 406–408, 500
import database command, 405
incident directory, 82
incident files and dumps retention policy, 89
incident flood control, 91, 499
incident metadata retention policy, 89
incident packages, 89, 90–95, 499
incident packaging service. See IPS
incident reports, 82
incidents, 88–95. See also problems

automatic creation of, 89
described, 88, 499
packaging with ADRCI, 92–95
status, 89–90
viewing, 88, 92

incremental backups, 398
incremental option, 336
incremental statistics, 336, 337, 499
indexes, invisible, 450, 463–465, 499
information lifecycle management (ILM), 426–427

Index 515

initialization parameters, 10–12, 190
insert operation, 416
insert statement, 296
INSERT_FINDING_DIRECTIVE procedure, 326–327
INSERT_PARAMETER_DIRECTIVE procedure, 327
INSERT_SEGMENT_DIRECTIVE procedure, 327
INSERT_SQL_DIRECTIVE procedure, 327
installing Oracle Database 11g, 3–10
instance ADDM, 323, 499
interactive_group, 172–173
interpreted value, 467, 468, 471
INTERRUPT_TASK procedure, 247
interval clause, 291, 297
interval partitioning, 290–295, 303, 499
interval-range partitioned tables, 307–308
invalid objects, 29, 460–461
INVALID status, 28
invisible clause, 463
invisible indexes, 450, 463–465, 499
I/O calibration, 164–167, 498
I/O latency, 265
I/O limits, 168–172
I/O per second (IOPS), 164, 500
IOPS (I/O per second), 164, 500
IOPS rate, 164
IP addresses, 193
IPS (incident packaging service), 79, 90–95, 499
ips add incident command, 95
ips create package command, 93, 95
IPS rules, 91
ips set configuration command, 91
IS_BIND_AWARE column, 365–366
IS_BIND_SENSITIVE column, 365–366
iSQL*Plus, 6

J

Java Development Kit (JDK) 1.4, 6
Java native compilation, 467, 471–472
java_jit_enabled parameter, 471
JDK (Java Development Kit) 1.4, 6
job arrays, 176–178
jobs, Scheduler. See Oracle Scheduler

K

keep clause, 466
keep command, 394
keep duplicates clause, 455
keep forever clause, 395–396
keep option, 394

keep until time clause, 395
keys

encryption, 456
partitioning, 290, 295–297, 301
subpartitioning, 308, 350

keywords, deterministic, 356

L
large objects. See LOBs
LAST_COMPUTED column, 158
latency, 165, 500
ldap_directory_sysauth, 500
ldap_directory_sysauth parameter, 190
LearnKey group, 491
learnkey.com website, 492
lightweight jobs, 173–178, 500
list failure command, 117–120, 124, 127, 133
list incarnation command, 405–407, 410
list restore point all clause, 397
LOAD_PLANS_FROM_CURSOR_CACHE function,

230–231
LOAD_PLANS_FROM_SQLSET function, 228–229
LOAD_SQLSET procedure, 229, 244–245
LOB data types, 450, 451
LOB files, 11
LOBs (large objects), 450–457, 500
local external jobs, 178, 179
lock table statement, 459
locking enhancements, 458–460
locking tables, 458–459
locks

DDL, 458–459
DML, 458–460

log files, 385, 386, 387, 390. See also alert logs; redo log files
log_archive_dest_n parameter, 403
log_file_name_convert parameter, 385, 386, 387, 390
logical incident packages, 92–93
logical recovery, 427
LogMiner tool, 476
logs option, 394
lost writes, 132
lsdsk command, 284–285, 500

M
maintenance tasks. See automated maintenance tasks
maintenance windows, 159
manual checklist, 121, 123
MasterExam, 491, 492
max_auto_sql_profiles parameter, 219
max_number_partitions attribute, 246

516 OCP Oracle Database 11g: New Features for Administrators Exam Guide

max_sql_profiles_per_exec parameter, 219
MBPS (megabytes of I/O per second), 164, 500
MBPS rate, 164
md_backup command, 277, 286, 288–289, 500
md_restore command, 287–289, 500
megabytes of I/O per second (MBPS), 164, 500
memory

automatic. See automatic memory management
creating parameter files from, 461
Custom option, 19
manual, 19
shared, 19
Typical option, 19

memory monitor (MMON) process, 88, 89, 163
memory pool, 347
memory_max_target parameter, 11, 328–331, 500
MEMORY_REPORT function, 351
memory_target parameter, 11, 13, 328–331, 500
merge partitions clause, 294
merge statement, 293–294, 297
merging partitions, 293–294, 297
merging recovery catalogs, 405–408, 500
metadata, 460
MetaLink, 96, 99–100
metric value statistics, 152–155
MGMT_Pn parameters, 168
mirrored disks, 265–272
mixed workload resource plan, 172–173, 501
mkstore command, 195
MMON (memory monitor) process, 88, 89, 163
mode parameter, 459
MODIFY_BASELINE_WINDOW_SIZE procedure,

149, 156
MODIFY_SNAPSHOT_SETTINGS procedure, 156
moving window baselines, 148–149, 155–156, 501
MOVING_WINDOW_SIZE column, 158
multicolumn statistics, 341, 342–345, 501
multisection backups, 392–393, 501

N

native compilation, 467–472, 502
native value, 467, 468, 469
net stop command, 26
Network File System. See NFS
network services, 190–194
network-aware database duplication, 384–391
never value, 452
NFS (Network File System), 473–476, 501
NFS client, 473–476
NFS server, 474–475

no flashback archive clause, 423
no unregister clause, 407
nocascade value, 429, 430
nocascade_force value, 429
nocompress clause, 455
noconflict_only option, 429
nofilenamecheck clause, 388
nokeep option, 394
nologging clause, 455
nologs option, 394
nomount mode, 389–390
non-flash recovery area, 404–405
no_result_cache hint, 350, 355, 360, 362
nowait option, 459
numberofxids parameter, 429

O
objects

dependent, 460–461
invalid, 29, 460–461

OCI (Oracle Call Interface), 359–360
oci_result_cache_max_rset_rows parameter, 361
oci_result_cache_max_rset_size parameter, 361
oci_result_cache_max_size parameter, 361
OCM (Oracle Configuration Manager), 6, 7, 96
ODM library, 475
ODM NFS library, 475
OFA (Optimal Flexible Architecture), 3–4
OLAP applications, 164
OLTP applications, 164
OLTP table compression, 472–473
OMF (Oracle-Managed Files), 15
online operations, 458–463
online patching, 462–463
online redefinition method, 457, 460
opatch utility, 462–463, 501
Optimal Flexible Architecture (OFA), 3–4
optimization. See performance
optimizer statistics collection, 334–347
optimizer_capture_sql_plan_baselines

parameter, 12, 227, 231, 365, 501
optimizer_features_enable command, 57, 58,

227–228
optimizer_use_invisible_indexes parameter, 12,

464, 501
optimizer_use_pending_statistics parameter, 340
optimizer_use_private_statistics parameter, 12
optimizer_use_sql_baselines parameter, 12, 231,

232, 501
options parameter, 429

Index 517

Oracle Application Express (APEX), 7
Oracle base directory

configuration of, 13
diagnostic destination, 13
location of, 3–4

Oracle Call Interface (OCI), 359–360
Oracle Clusterware home, 3
Oracle Configuration Manager. See OCM
Oracle Data Guard, 184–185
Oracle Data Mining option, 6
Oracle Data Mining Scoring Engine, 6
Oracle Database 10g Release, compatibility issues, 275–276
Oracle Database 11g Release. See also databases

change management and, 2
compatibility issues, 21, 275–278, 502
configuration options, 12–13
deprecated features, 6
downgrading, 30–31
installing, 3–10
new features/components, 7, 10–19
role/privilege changes, 7–8
testing changes to. See Real Application Testing
upgrading to, 19–32

Oracle Database Vault, 6, 7, 18
Oracle Direct NFS, 473–476, 501
Oracle Enterprise Manager Java Console, 6
Oracle home directory, 4
Oracle HTML DB. See Oracle Application Express
Oracle Real Application Testing, 2, 7
Oracle Scheduler, 173–185

Data Guard, 184–185
job arrays, 176–178
job templates, 174–175
lightweight jobs, 173–178, 500
local external jobs, 178, 179
monitoring jobs, 178
new features, 173–185
regular jobs, 173, 174, 176
remote external jobs, 178–184, 503

Oracle SecureFiles, 11, 450–458, 504
Oracle SQL Developer, 7
Oracle Ultra Search, 6
Oracle Universal Installer, 4, 8–10
Oracle Wallet, 195–196
Oracle Wallet Manager (OWM), 195–196
Oracle Warehouse Builder, 7
Oracle Workflow, 6
Oracle XML DB option, 6, 179
ORACLE_BASE variable, 3, 4, 5, 81
Oracle-Managed Files (OMF), 15
oranfstab file, 475

orapwd command, 189
ORIGIN attribute, 236
OSASM group, 8, 9, 20, 502
osborne.com website, 492
OWM (Oracle Wallet Manager), 195–196

P

parameter file (PFILE), 461
parameter_name_convert clause, 391
parameter_value_convert clause, 385–386, 387
partial ADDM, 323, 324, 502
partition by reference clause, 304
partition by system clause, 296
partition clause, 291, 297
partition exchange, 457, 502
partition option, 246
partition pruning, 290
partitioned tables, 336–337
partitioning, 289–309

composite, 307–309
enhancements, 289–309
incremental statistics, 337, 499
interval, 290–295, 303, 499
merging partitions, 293–294, 297
partitioning keys, 290, 295–297, 301
range, 290–295, 307–309
reference, 301–307
SQL Access Advisor, 242–243
subpartitioning keys, 308, 350
system, 295–298, 506
transition point, 291, 293–295, 506
virtual column, 298–301, 506

partitioning keys, 290, 295–297, 301
password file clause, 385, 389, 391
password files, 26, 188–189, 385, 389, 391
passwords

case sensitivity, 12, 29, 186–189
checking status of, 29
default, 30
encryption keys, 456
expiration of, 17
managing, 189–190
new features, 186–190
reusing, 17–18
Scheduler agent, 180
settings for, 17–18
SYSDBA, 385, 389
versions, 29

patches
database server code, 462–463

518 OCP Oracle Database 11g: New Features for Administrators Exam Guide

diagnostic, 462–463
SQL, 110–115

PCT_TOTAL_TIME column, 158
pctversion parameter, 451, 453
pending statistics, 335, 338, 502
Perform Recovery page, 130–131
performance, 321–366

adaptive cursor sharing, 362–366, 493
ADDM enhancements, 322–327
alert thresholds, 152–155
ASM, 272–274
automatic memory enhancements, 328–334
AWR baselines and, 148
DML locks and, 459–460
query result cache, 353–354, 505
result cache, 347–362

Performance Analyzer, 2, 7
performance metrics, 152–155
performance regressions, 226–227, 228
permitted value, 452
persistent configuration parameters, 467–470
pga_aggregate_target parameter, 13, 328–331
physical incident packages, 94–95
plan history, 226
plan_hash_value parameter, 230
plan_list parameter, 234
plan_name parameter, 234
PL/SQL

compilation, 11, 467–471
function result, 502
I/O calibration via, 166–167
native compilation, 467–471, 502
network access and, 190–191
result cache, 350–353, 357–358, 503
using with SQL Access Advisor, 243–249

PL/SQL code block, 175
PL/SQL objects, 460
plsql_code_type parameter, 11, 467–470
Post-Upgrade Status Tool, 21, 27–28
preferred mirror read feature, 269–272, 495
preprocessing captured workloads, 38
Pre-Upgrade Information Tool, 22–23
primary key constraint relationship, 427
Privileged Operating System Groups page, 9
privileges

ACLs and, 194
changes to, 7–8
flashback data archives, 418–419, 422, 428
recovery catalog, 411–412

storage management, 20
SYSASM, 8, 9, 20, 274–275, 506
SYSDBA, 8, 20, 274
SYSOPER, 20
virtual catalogs, 411–412

proactive checks, 126–130
problems, 88–95. See also errors; failures; incidents;

troubleshooting
described, 88, 502
system-generated, 103–104
user-reported, 103–104
viewing details about, 98

production workload, capturing, 37–38
publish option, 335, 339
publish points, 243
publishing statistics, 335, 338–341
PUBLISH_PENDING_STATS procedure, 341
PURGE_SQL_PLAN_BASELINE procedure, 239

Q

query result cache, 353–357, 505. See also result cache
Quick Packaging method, 100, 502
quotas, 420

R

RAC environment, 34–35, 82, 352
RAC installations, 32
RACs (Real Application Clusters), 322–324, 502
range partitioning, 290–295, 307–309
range-range partitioned tables, 308–309
raw storage support, 6
RDBMS compatibility, 21, 275–278, 502
rdbms directory, 5
read-only tablespaces, 502
Real Application Clusters. See RACs
Real Application Testing, 32–61

Database Replay. See Database Replay feature
overview, 7, 32–33
snapshot standby databases, 32–33, 36, 39, 504
SQL Performance Analyzer, 51–61

real native compilation, 467–468
recover corruption list command, 401
recover . . . block command, 398–401, 465–467
recovery. See also Data Recovery Advisor; RMAN

base recovery catalog, 408–412, 496
block media recovery feature, 398–401
catalogs. See recovery catalogs
logical, 427
Perform Recovery page, 130–131

patches (continued)

Index 519

recovery catalogs, 405–413
importing, 498
merging, 408–408, 500
privileges, 411–412
virtual private catalogs, 405, 408–413, 506

recovery_catalog_owner role, 409, 411
redo log files

accessing via LogMiner, 476
archived, 403–404
backups, 404–405
deletion policy, 403–404
obsolete, 404
standby database and, 33

reference partitioning, 301–307, 503
register database privilege, 411
regression, performance, 226–227, 228
remap command, 286, 503
REMAP_CONNECTION procedure, 45
remapping connections, 503
remote external jobs, 178–184, 503
RENAME_BASELINE procedure, 149, 152
repair failure command, 122, 126
repair failure preview command, 122, 125
repair script, 118, 121, 125–126
repairs

automatic, 118, 121, 122, 124–125
manual, 118, 121, 122, 123

repeating baseline, 503
REPEAT_INTERVAL column, 157
replace_user_sql_profiles parameter, 219
replay clients, 40–44, 503
replay driver, 40
replaying captured workloads, 39–48
REPORT_AUTO_TUNING_TASK function, 223–224
reports

ADDM, 325
Automatic SQL Tuning, 223–224
checker run, 82
flashback data archive, 426
Health Monitor, 82, 108–110
incident, 82
SQL Performance Analyzer, 59–61
TRANSACTION_BACKOUT, 431
workload capture/replay, 48–51

REPORT_TUNING_TASK procedure, 220
resource allocation, 163–164
Resource Consumer Group, 167
resource limits, 169–172
Resource Manager. See Database Resource Manager
resource plan directives, 168
resource plans, 168, 172–173, 501

restarting database, 35–36
restore point clause, 394, 396
restore points, 394–397, 404
restoring

archival backups, 397
ASM metadata backup and restore, 284, 286,

288–289, 494
corrupted data blocks, 398–401
Data Recovery Advisor, 123–126
Recovery Manager, 124–126

restricted mount mode, 281–282, 503
result cache, 347–362

caching SQL results, 348–350
client, 359–362, 496
DBMS_RESULT_CACHE package, 350–353
described, 347, 503
dynamic performance views, 353–354
managing, 348
memory pool, 347
Oracle Call Interface, 359–360
performance, 347–362
PL/SQL, 350–353, 357–358, 503
removing contents of, 352
SQL, 353–357, 503, 505

result_cache hint, 349, 352, 355, 356, 503
ResultCache operator, 348–350, 354–355, 356, 504
result_cache_max_result parameter, 348,

351, 503
result_cache_max_size parameter, 348, 351, 503
result_cache_mode parameter, 11, 348–350, 354–355,

360, 503
result_cache_remote_expiration parameter, 348
RESUME_GATHER_STATS procedure, 339
retention 4 year clause, 420
retention parameter, 451, 453
retention period, 420
retention policy, 89
return parameter, 234
revoke all privileges from command, 412
revoke catalog for database command, 412
revoke command, 412
RMAN (Recovery Manager), 384–405

active database duplication, 384–391
archives, 394–397
backups, 392–398
block media recovery, 398–401
DRA and, 79, 117, 119–126, 134
enhancements, 384–405
persistent configuration parameters, 467–470
restoring datafiles, 124–126
restoring files, 392–397

520 OCP Oracle Database 11g: New Features for Administrators Exam Guide

roles, changes to, 7–8
RUN_CHECK procedure, 106, 108
runInstaller script, 8

S

sampling techniques, 338
schagent executable, 181–182
Scheduler. See Oracle Scheduler
Scheduler agent, 179–183, 504
Scheduler jobs, 163
SCN (System Change Number), 394, 396–397, 414, 430
scnhint parameter, 429, 430
script files, 87
script parameter, 86, 87
scripts

generating SQL scripts, 247–249
repair, 118, 121, 125–126
upgrade, 22–32

sec_case_sensitive_logon parameter, 12, 186,
190, 504

sec_max_failed_login_attempts parameter, 12,
190, 504

sec_protocol_error_further_action
parameter, 190

sec_protocol_error_trace_action parameter, 190
section size parameter, 392–393
sections, 392
SecureFiles, 11, 450–458, 504
security

default settings, 14, 17–19
encryption. See encryption
initialization parameters, 190
new features, 185–198
Oracle SecureFiles, 11, 450–458, 504
Oracle Wallet, 195–196
passwords. See passwords
settings, 14

select any transaction privilege, 428
SELECT_BASELINE_METRICS function, 149, 152–153
Server Manageability Pack, 12
server parameter file (SPFILE), 385–391, 461
server-side caching, 11
service requests

creating, 99–100
tracking with Support Workbench, 102–103

session limits, 168–172
session switching, 169–172
set clause, 386, 387–388, 391
set homepath command, 85
SET_ATTRIBUTE procedure, 183, 184

SETOPTIONS procedure, 456
SET_PREFS procedure, 336
SET_SCHEMA_PREFS procedure, 339
SET_TABLE_PREFS procedure, 339
SET_TASK_PARAMETER procedure, 245–246
SET_TUNING_TASK_PARAMETERS procedure, 219–222
sga_target parameter, 13, 329–331, 347
shared cursors, 362–366, 493
shared memory, 19
show alert command, 87
show alert -tail command, 87, 88
show all command, 401–402
show hm_run command, 109–110
show homes command, 86
show incident command, 90
SHOW_EXTENDED_STATS_NAME function, 341, 344–345
shrink space clause, 465–466
shrink tempfile clause, 465
SHUTDOWN column, 157
shutdown immediate command, 26
single baseline, 504
SMB. See SQL Management Base
snapshot standby database, 32–33, 36, 39, 504
snapshots, 48, 148. See also baselines
source recovery catalog. See base recovery catalog
space_budget_percent parameter, 238, 239
SPACE_USAGE procedure, 456
SPFILE (server parameter file), 385–391, 461
spfile clause, 385–389, 391
SPM. See SQL Plan Management
SQL Access Advisor, 240–252

creating SQL Tuning Sets, 244
creating tasks, 244
described, 240, 504
enhancements, 240–252
executing tasks, 246
generating SQL scripts, 247–249
linking tasks/workloads, 245
new procedures, 240–242
partitioning recommendations, 242–243
publish points, 243
SQL Workload and, 241
task parameters, 245–246
using cursor cache with, 251–252
using Enterprise Manager with, 249–251
using PL/SQL with, 243–249
using SQL Tuning Advisor with, 240–241
viewing recommendations, 246–247

SQL Developer, 7
SQL Management Base (SMB)

configuring, 238–239

Index 521

described, 238, 504
purging policies, 239–240

SQL patches, 110–115
SQL Performance Analyzer, 51–61

analyzing post-change SQL workload,
58–59

analyzing pre-change SQL workload, 57–58
capturing SQL workload, 54–61
comparing SQL performance, 58–59
creating tasks, 56
overview, 7, 51–53, 504–505
reports, 59–61
SQL Tuning Set, 52–61
testing performance changes, 51–52
workflow, 53–54

SQL plan baselines, 226–238
accepted plans, 226, 232–234, 236, 493
attributes, 235–237
capturing, 227–235
disabling, 236–237
enabled, 231, 233, 235–238
evolving, 232–235, 497
execution plans, 214, 216, 224–228, 232, 238
fixed, 235–236, 498
managing, 237–238
non-accepted, 232–235
overview, 226–227, 505
plan history, 226
plan loading, 228–231
selecting, 231–232
verified plans, 226, 236
viewing SQL plans in, 237–238

SQL Plan Management (SPM), 225–240
baselines. See SQL plan baselines
described, 214, 505
managing with Enterprise Manager, 240

SQL plans, 226–235, 239–240
SQL profiles, 215, 216–224, 505
SQL query result cache, 353–357, 505
SQL Repair Advisor, 110–115

DBMS_SQLDIAG package, 111–115
overview, 79, 110–111, 505
SQL patches, 110–115
using Support Workbench with, 111

SQL result cache, 503
SQL scripts, 247–249
SQL statements

loading STS with, 244–245
repairing statement failures, 110–115
tuning. See Automatic SQL Tuning Advisor; SQL

Tuning Advisor

SQL Test Case Builder
accessing from Support Workbench, 115
overview, 79, 505

SQL Tuning Advisor. See also Automatic SQL Tuning
Advisor

creating, 244
described, 214–215
evolving SQL plans with, 235
loading, 244–245
SQL Access Advisor and, 240–241
using, 54, 60–61

SQL tuning reports, 223–224
SQL Tuning Set (STS), 52–61, 228–231, 505
SQL workload, 51–61, 241
SQL_HANDLE attribute, 236
sql_handle parameter, 230, 234
sql_id parameter, 230
SQL_PLAN_NAME attribute, 236
SQL*Plus, 409
SQL_TEXT attribute, 236
sql_text parameter, 230
staging table, 114
stale_percent option, 335–336
standby databases, 32–33, 36, 39
startup nomount command, 390
startup restrict command, 36, 282, 503
startup upgrade command, 29
static baselines, 148
statistics

current, 338
deferred statistics publishing, 338–341
deleting, 341
exporting, 341
expression, 341, 345–347, 498
extended, 341–347, 498
global, 337, 339
incremental, 336
multicolumn, 341, 342–345, 501
optimizer statistics collection, 334–347
pending, 335, 338, 502
preferences, 334–337
private, 338
public, 335, 338, 340–341
publishing, 335, 338–341
stale, 335–336
status, 339–340

statistics_level parameter, 149, 219, 220
storage management privileges, 20
store as securefile clause, 454, 455, 457
store in clause, 291
striping, 265

522 OCP Oracle Database 11g: New Features for Administrators Exam Guide

STS. See SQL Tuning Set
subpartitioning keys, 308, 350
supplemental logging, 428
support, technical, 492
Support Workbench, 96–104

closing incidents, 103
diagnostic data, 98–102
IPS management via, 91
overview, 79, 96, 505
packaging diagnostic data, 100–102
problem details, 98
repairs, 103
service request creation, 99–100
tracking service requests, 102–103
user-reported problems, 103–104
using SQL Repair Advisor with, 111
viewing alert logs, 104
viewing critical error alerts, 96–98

switch_call parameter, 168
switch_estimate parameter, 170
switch_for_call parameter, 170
switch_group parameter, 169
switch_io_megabytes parameter, 170
switch_io_reqs parameter, 170
switch_time parameter, 169
switch_time_in_call parameter, 168
synchronization parameter, 45–46
synchronized replay, 45–46
SYSASM privileges, 8, 9, 20, 274–275, 506
SYS_AUTO_SQL_TUNING_TASK procedure, 220
SYSAUX tablespace, 23, 163, 238, 239
SYSDBA password, 385, 389
SYSDBA privileges, 8, 20, 274
sys_group, 172
SYSOPER privilege, 20
System Change Number (SCN), 394, 396–397, 414, 430
system partitioning, 295–298, 506
system requirements, CD-ROM, 491
system-generated problems, 103–104
systimestamp - interval '120' clause, 426

T

table compression, 506
tables

compressing, 472–473
history, 416–417
locking, 458–459
OLTP, 472–473

partitioned. See partitioning
temporary, 467

tablespace clause, 467
tablespaces

encrypting, 194, 196–198, 506
flashback data archives, 419
free space in, 466–467
shrinking, 465–467
temporary, 465–467
undo tablespace, 413–414

target databases, 387–392
TCP ports, 193
TDE (Transparent Data Encryption), 194, 453
technical support, 492
tempfiles, 465–466
TEMPLATE_NAME column, 158
templates

baseline, 149–152, 156–157
redundancy, 279
Scheduler job, 174–175
striping attribute, 279

template.tname.redundancy attribute, 279
template.tname.striping attribute, 279
TEMPLATE_TYPE column, 157
terminology, 493–506
TEST_EXECUTE value, 57
testing. See also Real Application Testing

SQL performance. See SQL Performance Analyzer
system changes with Database Replay, 34–35, 39–48

text initialization parameter file (PFILE), 461
text-based alert logs, 82, 104
think_time_auto_correct parameter, 46, 506
think_time_scale parameter, 46, 506
throughput, 165, 506
timehint parameter, 430
time_limit parameter, 57–58
Total Replay feature, 51
trace directory, 81, 82
trace files, 83
TRANSACTION_BACKOUT procedure, 427
transactions

backing out, 427–431, 498
compensating, 428
dependent, 427

transition point, 291, 293–295, 506
Transparent Data Encryption (TDE), 194, 453
troubleshooting, 77–146. See also errors

Automatic Diagnostic Repository, 80–88
Data Recovery Advisor, 115–133

Index 523

Health Monitor, 105–110
incidents, 88–95
overview, 78–80
problems, 88–95
SQL Repair Advisor, 110–115
Support Workbench, 96–104

truncate table statement, 424
tuning. See Automatic SQL Tuning Advisor; SQL Tuning

Advisor
tuning pack, 12
txnames parameter, 430
Typical option, 333

U
Ultra Search, 6
undo data feature, 413–414
undo tablespace, 413–414
update operation, 416
Upgrade Status Utility script, 23
upgrades, 19–32

changes in process, 20–21
compatibility issues, 21
Database Upgrade Assistant, 21, 22, 31–32
manual method, 22–31
moving data during, 19
new privileges, 20
Post-Upgrade Status Tool, 21, 27–28
Pre-Upgrade Information Tool, 22–23
procedure for, 20–32
scripts for, 22–32
status of, 23

user_dump_dest parameter, 11
user-reported problems, 103–104
UTL_RECOMP package, 28–29
utlrp.sql script, 23, 28–29, 31, 32
utlu111i.sql script, 22–25, 31
utlu111s.sql script, 23, 27–28, 32

V
validate backupset command, 127
validate database command, 127, 400–401
V$ASM_DISKGROUP view, 274, 278
V$DATABASE_BLOCK_CORRUPTION view, 399,

400–401
V$DIAG_INFO view, 82–83
V$DNFS_CHANNELS view, 476
V$DNFS_FILES view, 476
V$DNFS_SERVERS view, 476

verified plans, 226, 236
verify parameter, 234
verify_function command, 189–190
versions between timestamp clause, 426–427
V$HM_CHECK view, 105–106
V$IR_FAILURE view, 119, 123
V$IR_FAILURE_SET view, 123
V$IR_MANUAL_CHECKLIST view, 119, 123
V$IR_REPAIR view, 122–123
virtual column partitioning, 298–301, 506
virtual private catalogs, 405, 408–413, 506
V$MEMORY_CURRENT_RESIZE_OPS view, 332
V$MEMORY_DYNAMIC_COMPONENTS view, 332
V$MEMORY_RESIZE_OPS view, 332
V$RESULT_CACHE_DEPENDENCY view, 353
V$RESULT_CACHE_MEMORY view, 353
V$RESULT_CACHE_OBJECTS view, 353, 354
V$RESULT_CACHE_STATISTICS view, 353
V$RMAN_COMPRESSION_ALGORITH view, 402–403
V$SQL view, 365, 366
V$SQL_CS_HISTOGRAM view, 366
V$SQL_CS_SELECTIVITY view, 366
V$SQL_CS_STATISTICS view, 366

W

wait option, 459
Warehouse Builder, 7
workload capture/replay, 35–51, 241
workload filters, 36–37, 506
workload, SQL, 51–61
wrc. See replay clients
wrc executable, 41–43
write-after-write relationship, 427

X

xids parameter, 429, 430
XML DB option, 6, 179
XML-formatted alert logs, 81, 82, 83, 104
XMLIndex, 6

Z

ZLIB compression algorithm, 402–403

FREE SUBSCRIPTION

YOU MUST ANSWER ALL TEN QUESTIONS BELOW.

100103

Yes, please send me a FREE subscription to Oracle Magazine. NO
To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date it
(incomplete cards cannot be processed or acknowledged). You can also fax your application to +1.847.763.9638.
Or subscribe at our Web site at otn.oracle.com/oraclemagazine

n a m e t i t l e

c o m p a n y e - m a i l a d d r e s s

s t r e e t / p . o . b o x

c i t y / s t a t e / z i p o r p o s t a l c o d e t e l e p h o n e

c o u n t r y f a x

s i g n a t u r e (r e q u i r e d) d a t e

x

From time to time, Oracle Publishing allows
our partners exclusive access to our e-mail
addresses for special promotions and
announcements. To be included in this pro-
gram, please check this circle.

Oracle Publishing allows sharing of our
mailing list with selected third parties. If you
prefer your mailing address not to be
included in this program, please check here.
If at any time you would like to be removed
from this mailing list, please contact
Customer Service at +1.847.647.9630 or send
an e-mail to oracle@halldata.com.

W H A T I S T H E P R I M A R Y B U S I N E S S
A C T I V I T Y O F Y O U R F I R M A T T H I S
L O C A T I O N ? (check one only)
▫ 01 Aerospace and Defense Manufacturing
▫ 02 Application Service Provider
▫ 03 Automotive Manufacturing
▫ 04 Chemicals, Oil and Gas
▫ 05 Communications and Media
▫ 06 Construction/Engineering
▫ 07 Consumer Sector/Consumer Packaged Goods
▫ 08 Education
▫ 09 Financial Services/Insurance
▫ 10 Government (civil)
▫ 11 Government (military)
▫ 12 Healthcare
▫ 13 High Technology Manufacturing, OEM
▫ 14 Integrated Software Vendor
▫ 15 Life Sciences (Biotech, Pharmaceuticals)
▫ 16 Mining
▫ 17 Retail/Wholesale/Distribution
▫ 18 Systems Integrator, VAR/VAD
▫ 19 Telecommunications
▫ 20 Travel and Transportation
▫ 21 Utilities (electric, gas, sanitation, water)
▫ 98 Other Business and Services

W H I C H O F T H E F O L L O W I N G B E S T
D E S C R I B E S Y O U R P R I M A R Y J O B
F U N C T I O N ? (check one only)
C o r p o r a t e M a n a g e m e n t / S t a f f
▫ 01 Executive Management (President, Chair,

CEO, CFO, Owner, Partner, Principal)
▫ 02 Finance/Administrative Management

(VP/Director/ Manager/Controller,
Purchasing, Administration)

▫ 03 Sales/Marketing Management
(VP/Director/Manager)

▫ 04 Computer Systems/Operations Management
(CIO/VP/Director/ Manager MIS, Operations)

I S / I T S t a f f
▫ 05 Systems Development/

Programming Management
▫ 06 Systems Development/ Programming Staff
▫ 07 Consulting
▫ 08 DBA/Systems Administrator
▫ 09 Education/Training
▫ 10 Technical Support Director/Manager
▫ 11 Other Technical Management/Staff
▫ 98 Other

W H A T I S Y O U R C U R R E N T P R I M A R Y
O P E R A T I N G P L A T F O R M ? (select all that apply)
▫ 01 Digital Equipment UNIX
▫ 02 Digital Equipment VAX VMS
▫ 03 HP UNIX

▫ 04 IBM AIX
▫ 05 IBM UNIX
▫ 06 Java
▫ 07 Linux
▫ 08 Macintosh
▫ 09 MS-DOS
▫ 10 MVS
▫ 11 NetWare
▫ 12 Network Computing
▫ 13 OpenVMS
▫ 14 SCO UNIX
▫ 15 Sequent DYNIX/ptx
▫ 16 Sun Solaris/SunOS
▫ 17 SVR4
▫ 18 UnixWare
▫ 19 Windows
▫ 20 Windows NT
▫ 21 Other UNIX
▫ 98 Other
99 ▫ None of the above

D O Y O U E V A L U A T E , S P E C I F Y ,
R E C O M M E N D , O R A U T H O R I Z E T H E
P U R C H A S E O F A N Y O F T H E F O L L O W I N G ?
(check all that apply)
▫ 01 Hardware
▫ 02 Software
▫ 03 Application Development Tools
▫ 04 Database Products
▫ 05 Internet or Intranet Products
99 ▫ None of the above

I N Y O U R J O B , D O Y O U U S E O R P L A N T O
P U R C H A S E A N Y O F T H E F O L L O W I N G
P R O D U C T S ? (check all that apply)
S o f t w a r e
▫ 01 Business Graphics
▫ 02 CAD/CAE/CAM
▫ 03 CASE
▫ 04 Communications
▫ 05 Database Management
▫ 06 File Management
▫ 07 Finance
▫ 08 Java
▫ 09 Materials Resource Planning
▫ 10 Multimedia Authoring
▫ 11 Networking
▫ 12 Office Automation
▫ 13 Order Entry/Inventory Control
▫ 14 Programming
▫ 15 Project Management
▫ 16 Scientific and Engineering
▫ 17 Spreadsheets
▫ 18 Systems Management
▫ 19 Workflow

H a r d w a r e
▫ 20 Macintosh
▫ 21 Mainframe
▫ 22 Massively Parallel Processing
▫ 23 Minicomputer
▫ 24 PC
▫ 25 Network Computer
▫ 26 Symmetric Multiprocessing
▫ 27 Workstation
P e r i p h e r a l s
▫ 28 Bridges/Routers/Hubs/Gateways
▫ 29 CD-ROM Drives
▫ 30 Disk Drives/Subsystems
▫ 31 Modems
▫ 32 Tape Drives/Subsystems
▫ 33 Video Boards/Multimedia
S e r v i c e s
▫ 34 Application Service Provider
▫ 35 Consulting
▫ 36 Education/Training
▫ 37 Maintenance
▫ 38 Online Database Services
▫ 39 Support
▫ 40 Technology-Based Training
▫ 98 Other
99 ▫ None of the above

W H A T O R A C L E P R O D U C T S A R E I N U S E
A T Y O U R S I T E ? (check all that apply)
O r a c l e E - B u s i n e s s S u i t e
▫ 01 Oracle Marketing
▫ 02 Oracle Sales
▫ 03 Oracle Order Fulfillment
▫ 04 Oracle Supply Chain Management
▫ 05 Oracle Procurement
▫ 06 Oracle Manufacturing
▫ 07 Oracle Maintenance Management
▫ 08 Oracle Service
▫ 09 Oracle Contracts
▫ 10 Oracle Projects
▫ 11 Oracle Financials
▫ 12 Oracle Human Resources
▫ 13 Oracle Interaction Center
▫ 14 Oracle Communications/Utilities (modules)
▫ 15 Oracle Public Sector/University (modules)
▫ 16 Oracle Financial Services (modules)
S e r v e r / S o f t w a r e
▫ 17 Oracle9i
▫ 18 Oracle9i Lite
▫ 19 Oracle8i
▫ 20 Other Oracle database
▫ 21 Oracle9i Application Server
▫ 22 Oracle9i Application Server Wireless
▫ 23 Oracle Small Business Suite

T o o l s
▫ 24 Oracle Developer Suite
▫ 25 Oracle Discoverer
▫ 26 Oracle JDeveloper
▫ 27 Oracle Migration Workbench
▫ 28 Oracle9i AS Portal
▫ 29 Oracle Warehouse Builder
O r a c l e S e r v i c e s
▫ 30 Oracle Outsourcing
▫ 31 Oracle Consulting
▫ 32 Oracle Education
▫ 33 Oracle Support
▫ 98 Other
99 ▫ None of the above

W H A T O T H E R D A T A B A S E P R O D U C T S A R E
I N U S E A T Y O U R S I T E ? (check all that apply)
▫ 01 Access ▫ 08 Microsoft Access
▫ 02 Baan ▫ 09 Microsoft SQL Server
▫ 03 dbase ▫ 10 PeopleSoft
▫ 04 Gupta ▫ 11 Progress
▫ 05 IBM DB2 ▫ 12 SAP
▫ 06 Informix ▫ 13 Sybase
▫ 07 Ingres ▫ 14 VSAM
▫ 98 Other
99 ▫ None of the above

W H A T O T H E R A P P L I C A T I O N S E R V E R
P R O D U C T S A R E I N U S E A T Y O U R S I T E ?
(check all that apply)
▫ 01 BEA
▫ 02 IBM
▫ 03 Sybase
▫ 04 Sun
▫ 05 Other

D U R I N G T H E N E X T 1 2 M O N T H S , H O W
M U C H D O Y O U A N T I C I P A T E Y O U R
O R G A N I Z A T I O N W I L L S P E N D O N
C O M P U T E R H A R D W A R E , S O F T W A R E ,
P E R I P H E R A L S , A N D S E R V I C E S
F O R Y O U R L O C A T I O N ? (check only one)
▫ 01 Less than $10,000
▫ 02 $10,000 to $49,999
▫ 03 $50,000 to $99,999
▫ 04 $100,000 to $499,999
▫ 05 $500,000 to $999,999
▫ 06 $1,000,000 and over

W H A T I S Y O U R C O M P A N Y ’ S Y E A R L Y
S A L E S R E V E N U E ? (please choose one)
▫ 01 $500, 000, 000 and above
▫ 02 $100, 000, 000 to $500, 000, 000
▫ 03 $50, 000, 000 to $100, 000, 000
▫ 04 $5, 000, 000 to $50, 000, 000
▫ 05 $1, 000, 000 to $5, 000, 000

1

2

3

4

8

9

10

6

5

7

LICENSE AGREEMENT

THIS PRODUCT (THE “PRODUCT”) CONTAINS PROPRIETARY SOFTWARE, DATA AND INFORMATION (INCLUDING
DOCUMENTATION) OWNED BY THE McGRAW-HILL COMPANIES, INC. (“McGRAW-HILL”) AND ITS LICENSORS. YOUR
RIGHT TO USE THE PRODUCT IS GOVERNED BY THE TERMS AND CONDITIONS OF THIS AGREEMENT.

LICENSE: Throughout this License Agreement, “you” shall mean either the individual or the entity whose agent opens this package. You
are granted a non-exclusive and non-transferable license to use the Product subject to the following terms:
(i) If you have licensed a single user version of the Product, the Product may only be used on a single computer (i.e., a single CPU). If you
licensed and paid the fee applicable to a local area network or wide area network version of the Product, you are subject to the terms of the
following subparagraph (ii).
(ii) If you have licensed a local area network version, you may use the Product on unlimited workstations located in one single building
selected by you that is served by such local area network. If you have licensed a wide area network version, you may use the Product on
unlimited workstations located in multiple buildings on the same site selected by you that is served by such wide area network; provided,
however, that any building will not be considered located in the same site if it is more than five (5) miles away from any building included in
such site. In addition, you may only use a local area or wide area network version of the Product on one single server. If you wish to use the
Product on more than one server, you must obtain written authorization from McGraw-Hill and pay additional fees.
(iii) You may make one copy of the Product for back-up purposes only and you must maintain an accurate record as to the location of the
back-up at all times.

COPYRIGHT; RESTRICTIONS ON USE AND TRANSFER: All rights (including copyright) in and to the Product are owned by
McGraw-Hill and its licensors. You are the owner of the enclosed disc on which the Product is recorded. You may not use, copy, decompile,
disassemble, reverse engineer, modify, reproduce, create derivative works, transmit, distribute, sublicense, store in a database or retrieval
system of any kind, rent or transfer the Product, or any portion thereof, in any form or by any means (including electronically or otherwise)
except as expressly provided for in this License Agreement. You must reproduce the copyright notices, trademark notices, legends and logos
of McGraw-Hill and its licensors that appear on the Product on the back-up copy of the Product which you are permitted to make hereunder.
All rights in the Product not expressly granted herein are reserved by McGraw-Hill and its licensors.

TERM: This License Agreement is effective until terminated. It will terminate if you fail to comply with any term or condition of this
License Agreement. Upon termination, you are obligated to return to McGraw-Hill the Product together with all copies thereof and to purge
all copies of the Product included in any and all servers and computer facilities.

DISCLAIMER OF WARRANTY: THE PRODUCT AND THE BACK-UP COPY ARE LICENSED “AS IS.” McGRAW-HILL, ITS
LICENSORS AND THE AUTHORS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE RESULTS TO BE OBTAINED
BY ANY PERSON OR ENTITY FROM USE OF THE PRODUCT, ANY INFORMATION OR DATA INCLUDED THEREIN AND/OR
ANY TECHNICAL SUPPORT SERVICES PROVIDED HEREUNDER, IF ANY (“TECHNICAL SUPPORT SERVICES”).
McGRAW-HILL, ITS LICENSORS AND THE AUTHORS MAKE NO EXPRESS OR IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE WITH RESPECT TO THE PRODUCT.
McGRAW-HILL, ITS LICENSORS, AND THE AUTHORS MAKE NO GUARANTEE THAT YOU WILL PASS ANY
CERTIFICATION EXAM WHATSOEVER BY USING THIS PRODUCT. NEITHER McGRAW-HILL, ANY OF ITS LICENSORS NOR
THE AUTHORS WARRANT THAT THE FUNCTIONS CONTAINED IN THE PRODUCT WILL MEET YOUR REQUIREMENTS OR
THAT THE OPERATION OF THE PRODUCT WILL BE UNINTERRUPTED OR ERROR FREE. YOU ASSUME THE ENTIRE RISK
WITH RESPECT TO THE QUALITY AND PERFORMANCE OF THE PRODUCT.

LIMITED WARRANTY FOR DISC: To the original licensee only, McGraw-Hill warrants that the enclosed disc on which the Product is
recorded is free from defects in materials and workmanship under normal use and service for a period of ninety (90) days from the date of
purchase. In the event of a defect in the disc covered by the foregoing warranty, McGraw-Hill will replace the disc.

LIMITATION OF LIABILITY: NEITHER McGRAW-HILL, ITS LICENSORS NOR THE AUTHORS SHALL BE LIABLE FOR ANY
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, SUCH AS BUT NOT LIMITED TO, LOSS OF ANTICIPATED PROFITS
OR BENEFITS, RESULTING FROM THE USE OR INABILITY TO USE THE PRODUCT EVEN IF ANY OF THEM HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF LIABILITY SHALL APPLY TO ANY CLAIM OR
CAUSE WHATSOEVER WHETHER SUCH CLAIM OR CAUSE ARISES IN CONTRACT, TORT, OR OTHERWISE. Some states do
not allow the exclusion or limitation of indirect, special or consequential damages, so the above limitation may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS: Any software included in the Product is provided with restricted rights subject to
subparagraphs (c), (1) and (2) of the Commercial Computer Software-Restricted Rights clause at 48 C.F.R. 52.227-19. The terms of this
Agreement applicable to the use of the data in the Product are those under which the data are generally made available to the general public
by McGraw-Hill. Except as provided herein, no reproduction, use, or disclosure rights are granted with respect to the data included in the
Product and no right to modify or create derivative works from any such data is hereby granted.

GENERAL: This License Agreement constitutes the entire agreement between the parties relating to the Product. The terms of any Purchase
Order shall have no effect on the terms of this License Agreement. Failure of McGraw-Hill to insist at any time on strict compliance with
this License Agreement shall not constitute a waiver of any rights under this License Agreement. This License Agreement shall be construed
and governed in accordance with the laws of the State of New York. If any provision of this License Agreement is held to be contrary to law,
that provision will be enforced to the maximum extent permissible and the remaining provisions will remain in full force and effect.

	Copyright © 2008 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	1 Installing, Upgrading, and Change Management:
	Installing Oracle Database 11g:
	Changes in the Optimal Flexible Architecture:
	Changes in the Installation Options:
	New Database Components:
	Role and Privilege Changes:
	An Oracle Database 11g Installation:
	New Features in Database Creation:
	Summary of New Initialization Parameters:
	DBCA Enhancements:
	Using the DBCA to Create a Database:
	Moving Data as Part of the Upgrade:
	New Privileges for Storage Management:
	Upgrading to Oracle Database 11g:
	Exercise 1-1 Scripts to Run for Upgrading a Database:
	Real Application Testing:
	Database Replay:
	Exercise 1-2 Procedure for Capturing and Replaying a Database Workload:
	The SQL Performance Analyzer:
	Exercise 1-3 Testing SQL Performance Following a Database Upgrade:
	2 Diagnosing and Resolving Problems:
	Automatic Diagnostic Repository:
	The Structure of the ADR:
	ADRCI:
	Incidents and Problems:
	Incident Packaging Service:
	Exercise 2-1 Creating an Incident Package with ADRCI:
	Support Workbench:
	Viewing Critical Error Alerts:
	Examining Problem Details:
	Collecting Additional Diagnostic Data:
	Creating a Service Request:
	Packaging and Uploading Diagnostic Data:
	Tracking the Service Request:
	Implementing Repairs:
	Closing Incidents:
	Generating a User-Created Problem:
	Viewing the Alert Log:
	Health Monitor:
	Running a Health Check:
	Exercise 2-2 Running a Health Check with Input Parameters:
	Viewing the Health Monitor Reports:
	SQL Repair Advisor:
	Using the Support Workbench:
	Using the DBMS_SQLDIAG Package:
	Exercise 2-3 Exporting a SQL Patch to Another Database:
	Data Recovery Advisor:
	Failures:
	Repair Options:
	Using RMAN to Manage the Data Recovery Advisor:
	Proactive Checks:
	Managing the DRA with Database Control:
	New Parameter to Detect Database Corruption:
	Two-Minute Drill:
	Q&A: Self Test:
	Lab Question:
	Self Test Answers:
	Lab Answer:
	3 Intelligent Infrastructure and Database Security:
	Enhancements in AWR Baselines:
	Managing Baseline Templates:
	Renaming a Baseline:
	Setting AWR Baseline Metric Thresholds:
	Moving Window AWR Baselines:
	Managing the New Baseline Features:
	Controlling Automated Maintenance Tasks:
	Predefined Maintenance Windows:
	Managing the Automatic Maintenance Tasks:
	Implementing Automatic Maintenance Tasks:
	Configuring Resource Allocation for Automatic Tasks:
	I/O Calibration:
	Exercise 3-1 Calibrating I/O Resources:
	Database Resource Manager New Features:
	Per Session I/O Limits:
	Pre-Created Mixed Workload Resource Plan:
	Using New Oracle Scheduler Features:
	Lightweight Jobs:
	Exercise 3-2 Creating an Array of Regular Scheduler Jobs:
	Remote External Jobs:
	Scheduler Support for Data Guard:
	Security Enhancements:
	Secure Password Support:
	Configuring Fine-Grained Access to Network Services:
	Encrypting Tablespaces:
	Creating the Oracle Wallet:
	Creating an Encrypted Tablespace:
	Restrictions on Tablespace Encryption:
	4 Automatic SQL Tuning and SQL Plan Management:
	Automatic SQL Tuning Advisor:
	SQL Profiles:
	Limitations:
	The Automatic SQL Tuning Process:
	Exercise 4-1 Using Enterprise Manager to Access the SQL Tuning Advisor:
	Interpreting Automatic SQL Tuning Reports:
	Data Dictionary Views:
	SQL Plan Management:
	SQL Plan Baselines:
	Capturing SQL Plan Baselines:
	Fixed SQL Plan Baselines:
	SQL Plan Baseline Attributes:
	Managing SQL Plan Baselines:
	The SQL Management Base:
	Managing SPM with the Enterprise Manager:
	SQL Access Advisor Enhancements:
	New Procedures:
	Partitioning Recommendations:
	Publish Points:
	Running a SQL Access Advisor Job Using PL/SQL:
	Using Enterprise Manager:
	Using the Cursor Cache to Get SQL Access Advisor Recommendations:
	5 Automatic Storage Management and Partitioning Enhancements:
	Automatic Storage Management New Features:
	ASM Architecture:
	ASM Fast Mirror Resync:
	ASM Preferred Mirror Read:
	ASM Scalability and Performance Enhancements:
	New SYSASM Privilege:
	ASM Compatibility:
	Changing ASM Disk Group Attributes:
	New Manageability Options for Commands:
	Exercise 5-1 Using the md_backup and md_restore Commands:
	Partitioning Enhancements:
	Interval Partitioning:
	System Partitioning:
	Virtual Column-Based Partitioning:
	Reference Partitioning:
	Composite Partitioning Enhancements:
	6 Performance Enhancements:
	ADDM Enhancements:
	ADDM for Real Application Clusters:
	New DBMS_ADDM Package:
	Automatic Memory Management:
	SGA, PGA, and the MEMORY_TARGET Parameter:
	Exercise 6-1 Using Automatic Memory Management:
	Monitoring Automatic Memory Management:
	DBCA and Automatic Memory Management:
	Enhancements in Optimizer Statistics Collection:
	Statistics Preferences:
	Partitioned Tables and Incremental Statistics:
	New Sampling Technique:
	Deferred Statistics Publishing:
	Extended Statistics:
	Result Cache:
	Result Cache Memory Pool:
	Managing the Result Cache:
	Caching SQL Results with a Result_Cache Hint:
	Using the DBMS_RESULT_CACHE Package:
	Using Dynamic Performance Views:
	The SQL Query Result Cache:
	The PL/SQL Function Result Cache:
	The Client Query Result cache:
	Adaptive Cursor Sharing:
	How Adaptive Cursor Sharing Works:
	Monitoring Adaptive Cursor Sharing:
	7 RMAN and Flashback Enhancements:
	RMAN Enhancements:
	Active (Network-Based) Database Duplication:
	Parallel Backup and Restore of Large Files:
	Archival (Long-Term) Backups:
	Fast Incremental Backups:
	Improved Block Media Recovery Performance:
	New Persistent Configuration Parameters:
	Backup Failover to Non-Flash Recovery Areas:
	Recovery Catalog Management:
	Merging Recovery Catalogs:
	Virtual Private Catalogs:
	New Flashback-Related Features:
	Flashback Data Archive:
	Flashback Transaction Backout:
	Exercise 7-1 Using the TRANSACTION_BACKOUT Procedure:
	8 Oracle SecureFiles and Miscellaneous New Features:
	Oracle SecureFiles:
	Enabling SecureFiles:
	Capabilities of SecureFiles:
	Storage Options for SecureFiles:
	Creating SecureFiles:
	Managing and Monitoring SecureFiles:
	Migrating to SecureFiles:
	Online Enhancements:
	Locking Enhancements:
	Minimal Invalidation of Dependent Objects:
	Creating a Parameter File from Memory:
	Hot Patching:
	Miscellaneous New Features:
	Invisible Indexes:
	Shrinking Temporary Tablespaces:
	Tablespace Option for Creating Temporary Tables:
	PL/SQL and Java Automatic Native Compilation:
	Exercise 8-1 Setting Up a PL/SQL Program Unit for Native Compilation:
	OLTP Table Compression:
	Direct NFS Client:
	Appendix: About the CD-ROM:
	System Requirements:
	Installing and Running MasterExam:
	MasterExam:
	Electronic Book:
	Help:
	Removing Installation(s):
	Technical Support:
	LearnKey Technical Support:
	Glossary:
	Index:

