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Course Goals

This course provides you with knowledge and skills to:

e CreateJava™ technology applications that leverage the
object-oriented features of the Java language, such as
encapsulation, inheritance, and polymorphism

e EXxecute a Java technology application from the
command-line

e Use Java technology data types and expressions
e Use Java technology flow control constructs
« Use arrays and other data collections

e Implement error-handling techniques using exception
handling

Java™ Programming Language Preface, slide xvii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Course Goals

« Create an event-driven graphical user interface (GUI)
by using Java technology GUI components: panels,
buttons, labels, text fields, and text areas

e Implement input/output (I/0) functionality to read
from and write to data and text files

« Create multithreaded programs

e Create a simple Transmission Control Protocol/
Internet Protocol (TCP/IP) client that communicates
through sockets

Java™ Programming Language Preface, slide xviii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Course Overview

This course describes the following areas:

e The syntax of the Java programming language

e Object-oriented concepts as they apply to the Java
programming language

e GUI programming
e Multithreading
e Networking

Java™ Programming Language Preface, slide xix of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Course Map

The Java Programming Language Basics

Object-Oriented Identifiers,
Getting Started P ) Keywords, and
rogramming Types

Expressions

and Flow Control I

More Object-Oriented Programming

Advanced

Class Design Class Features

Exceptions, Collections, and 1/O

Exceptions Collections and 1/O
and Assertions (Generics Framework Fundamentals

Developing Graphical User Interfaces

Console /O and GUI Event GUI-Based
File 1/0 Handling Applications

Advanced Java Programming

Threads Networking

Java™ Programming Language About This Course, xx of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Topics Not Covered

e Object-oriented analysis and design — Covered In

O0-226: Object-Oriented Application Analysis and Design
Using UML

« General programming concepts — Covered in SL-110:
Fundamentals of the Java™ Programming Language

Java™ Programming Language Preface, slide xxi of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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How Prepared Are You?

Before attending this course, you should have completed
SL-110: Fundamentals of the Java™ Programming Language, or
have:

e Created and compiled programs with C or C++
e Created and edited text files using a text editor

e Used a World Wide Web (WWW) browser, such as
Netscape Navigator™

Java™ Programming Language Preface, slide xxii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Introductions

 Name

e Company affiliation

« Title, function, and job responsibility

e EXperience related to topics presented in this course
e Reasons for enrolling in this course

e Expectations for this course

Java™ Programming Language Preface, slide xxiii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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How to Use the Icons

Additional resources

R

Discussion

Note

Caution

P <0

Visual Aid

AT

Java™ Programming Language

Preface, slide xxiv of xxvii
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Typographical Conventions and Symbols

Courier IS used for the names of commands, files,
directories, programming code, programming
constructs, and on-screen computer output.

Courier boldis used for characters and numbers that
you type, and for each line of programming code that is
referenced in a textual description.

Courier italicsisused for variables and command-
line place holders that are replaced with a real name or
value.

Courier italics boldis used to represent variables
whose values are to be entered by the student as part of
an activity.

Java™ Programming Language Preface, slide xxv of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Typographical Conventions and Symbols

= Palatino italics is used for book titles, new words or
terms, or words that are emphasized.

Java™ Programming Language Preface, slide xxvi of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Additional Conventions

Java programming language examples use the following
additional conventions:

e (Courier IS used for the class names, methods, and
keywords.

e Methods are not followed by parentheses unless a
formal or actual parameter list is shown.

e Line breaks occur where there are separations,
conjunctions, or white space in the code.

e |f acommand on the Solaris™ Operating System
(Solaris OS) is different from the Microsoft Windows
platform, both commands are shown.

Java™ Programming Language Preface, slide xxvii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Module 1

Getting Started
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Objectives

e Describe the key features of Java technology

< Write, compile, and run a simple Java technology
application

e Describe the function of the Java Virtual Machine
(JVM™)

« Define garbage collection

e Listthe three tasks performed by the Java platform that
handle code security

NOTE: The terms “Java Virtual Machine” and “JVM”
mean a Virtual Machine for the Java™ platform.

Java™ Programming Language Module 1, slide 2 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Relevance

e Isthe Java programming language a complete
language or is it useful only for writing programs for

the Web?
< Why do you need another programming language?

e How does the Java technology platform improve on
other language platforms?

Java™ Programming Language Module 1, slide 3 of 23
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What Is the Java™ Technology?

e Java technology is:
e A programming language
« A development environment
« An application environment
« A deployment environment
e [tissimilar in syntax to C++.

« |tis used for developing both applets and applications.

Java™ Programming Language Module 1, slide 4 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Primary Goals of the Java Technology

e Provides an easy-to-use language by:

« Avoiding many pitfalls of other languages

e Being object-oriented

« Enabling users to create streamlined and clear code
< Provides an interpreted environment for:

e Improved speed of development

e Code portability

Java™ Programming Language Module 1, slide 5 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Primary Goals of the Java Technology

e Enables users to run more than one thread of activity

e Loads classes dynamically; that is, at the time they are
actually needed

e Supports changing programs dynamically during
runtime by loading classes from disparate sources

e Furnishes better security

Java™ Programming Language Module 1, slide 6 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Primary Goals of the Java Technology

The following features fulfill these goals:

e The Java Virtual Machine (JVM™)!

e Garbage collection

e The Java Runtime Environment (JRE)
e JVM tool interface

1. The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java platform

Java™ Programming Language Module 1, slide 7 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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The Java Virtual Machine

« Provides hardware platform specifications

e Reads compiled byte codes that are
platform-independent

e |s implemented as software or hardware

« |simplemented in a Java technology development tool
or a Web browser

Java™ Programming Language Module 1, slide 8 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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The Java Virtual Machine

JVM provides definitions for the:

e Instruction set (central processing unit [CPU])
e Register set

e Class file format

e Stack

e Garbage-collected heap

e Memory area

e Fatal error reporting

< High-precision timing support

Java™ Programming Language Module 1, slide 9 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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The Java Virtual Machine

< The majority of type checking is done when the code is
compiled.

e Implementation of the JVM approved by Sun
Microsystems must be able to run any compliant class
file.

e The JVM executes on multiple operating environments.

Java™ Programming Language Module 1, slide 10 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Garbage Collection

= Allocated memory that is no longer needed should be
deallocated.

e |n other languages, deallocation Is the programmer’s
responsibility.

e The Java programming language provides a
system-level thread to track memory allocation.

e Garbage collection has the following characteristics:
e Checks for and frees memory no longer needed
e |s done automatically
e Can vary dramatically across JVM implementations

Java™ Programming Language Module 1, slide 11 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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The Java Runtime Environment

The Java application environment performs as follows:

source

Compile Runtime
— : Class
=
TestGreeting.java d ¢
. Load from Bvtecode
javac l hard disk, y/erifier
/ network,
_i or other

Interpreter

TestGreeting.class

( Hardware )

Java™ Programming Language Module 1, slide 12 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Operation of the JRE With a Just-In-Time
(JIT) Compller

Compile Runtime
A : Class
jay loader
' ' /
TestGreeting.java

Load from
javacl v hard disk, B%/,Eger%(i)g‘e
network,

or other
source

M

Interpreter |/ 3T T

code !

\generator
C

Hardware )

TestGreeting.class

Java™ Programming Language

Module 1, slide 13 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

JVM™ Tasks

The JVM performs three main tasks:

e | oads code
e Verifies code
e Executes code

Java™ Programming Language Module 1, slide 14 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

The Class Loader

« [ oads all classes necessary for the execution of a
program

< Maintains classes of the local file system in separate
namespaces

e Prevents spoofing

Java™ Programming Language Module 1, slide 15 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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The Bytecode Verifier

Ensures that:

e The code adheres to the JVM specification.
e The code does not violate system integrity.

e The code causes no operand stack overflows or
underflows.

e The parameter types for all operational code are
correct.

< No illegal data conversions (the conversion of integers
to pointers) have occurred.

Java™ Programming Language Module 1, slide 16 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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A Simple Java Application

The TestGreeting.java Application

//
// Sample "Hello World" application

//
public class TestGreeting{
public static void main (String[] args) {
Greeting hello = new Greeting() ;
hello.greet () ;

}
)

The Greeting.java Class

O 00 J O Ul & W DN K

1 public class Greeting {

2 public void greet () {

3 System.out.println (*hi”) ;
4 }

5 )

Java™ Programming Language Module 1, slide 17 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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The TestGreeting Application

e Comment lines
e C(Class declaration
e The main method
e Method body

Java™ Programming Language Module 1, slide 18 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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The Greeting Class

e (lass declaration
e The greet method

Java™ Programming Language Module 1, slide 19 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Compiling and Running the TestGreeting
Program

e Compile TestGreeting. java:

javac TestGreeting.java

e The Greeting.java Is compiled automatically.
< Run the application by using the following command:

java TestGreeting

e |ocate common compile and runtime errors.

Java™ Programming Language Module 1, slide 20 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Compile-Time Errors

e javac: Command not found

¢ Greeting.java:4: cannot resolve symbol
symbol : method printl (java.lang.String)
location: class java.io.PrintStream
System.out.printl ("hi") ;

A

e TestGreet.java:4: Public class TestGreeting
must be defined 1n a file called
"TestGreeting.java'.

Java™ Programming Language Module 1, slide 21 of 23
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Runtime Errors

e Can’t find class TestGreeting

e Exception 1in thread "main"
java.lang.NoSuchMethodError: main

Java™ Programming Language Module 1, slide 22 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Java Technology Runtime Environment

Compile

Runtime

Java™ Programming Language

:

TestGreeting.java Greeting.java

| TestGreeting.class Greeting.class
B .\\\\fiffi§7////
java - — — —

Vd N

Can/rtﬁl on n?ultiple\ platforms

e | AN

UNIX® DOS Javaos™

JVM JVM

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Module 2

Object-Oriented Programming

Java™ Programming Language
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Objectives

e Define modeling concepts: abstraction, encapsulation,
and packages

« Discuss why you can reuse Javatechnology application
code

e Define class, member, attribute, method, constructor, and
package

e Use the access modifiers private and public as
appropriate for the guidelines of encapsulation

« Invoke a method on a particular object

« Use the Java technology application programming
interface (API) online documentation

Java™ Programming Language Module 2, slide 2 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Relevance

e \What is your understanding of software analysis and
design?

e What is your understanding of design and code reuse?

e What features does the Java programming language
possess that make it an object-oriented language?

e Define the term object-oriented.

Java™ Programming Language Module 2, slide 3 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Software Engineering

Toolkits / Frameworks / Object APIs (1990s—Up)

Java 2 SDK AWT /J.F.C./Swing Jini™ JavaBeans™ JDBC™

Object-Oriented Languages (1980s—Up)

SELF

Smalltalk Common Lisp Object System Eiffel C++ Java

Libraries / Functional APIs (1960s—Early 1980s)

NASTRAN TCP/IP ISAM X-Windows OpenLook

High-Level Languages (1950s—Up) Operating Systems (1960s—Up)

Fortran

LISP C COBOL 0S/360 UNIX MacOS Microsoft Windows

Machine Code (Late 1940s—Up)

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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@ Sun Educational Services

The Analysis and Design Phase

< Analysis describes what the system needs to do:

Modeling the real-world, including actors and
activities, objects, and behaviors

e Design describes how the system does it:

< Modeling the relationships and interactions
between objects and actors in the system

« Finding useful abstractions to help simplify the
problem or solution

Java™ Programming Language Module 2, slide 5 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Abstraction

e Functions—Write an algorithm once to be used in many
situations

e Objects — Group a related set of attributes and
behaviors into a class

e Frameworks and APIs — Large groups of objects that
support a complex activity; Frameworks can be used
as Is or be modified to extend the basic behavior

Java™ Programming Language Module 2, slide 6 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Classes as Blueprints for Objects

< |In manufacturing, a blueprint describes a device from
which many physical devices are constructed.

e |In software, a class is a description of an object:
« A class describes the data that each object includes.

e A class describes the behaviors that each object
exhibits.

« |nJava technology, classes support three key features
of object-oriented programming (OOP):

« Encapsulation
e |Inheritance
e Polymorphism

Java™ Programming Language Module 2, slide 7 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Declaring Java Technology Classes

e Basic syntax of a Java class:

<modifier>* class <class name> {
<attribute declaration>*
<constructor declaration>*
<method declaration>*

}
e Example:

1 public class Vehicle {

2 private double maxlLoad;

3 public void setMaxLoad (double value) {
4 maxLoad = value;
5

6

}
)

Java™ Programming Language Module 2, slide 8 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Declaring Attributes

e Basic syntax of an attribute:

<modifier>* <type> <name> [ = <initial value>];

e Examples:

1 public class Foo

2 private int x;

3 private float y = 10000.0F;

4 private String name = "Bates Motel";
5

}

Java™ Programming Language Module 2, slide 9 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Declaring Methods

e Basic syntax of a method:

<modifier>* <return type> <name> ( <argument>* ) {
<statement>*

e Examples:

1 public class Dog

2 private int weight;

3 public int getWeight () {
4 return weight;

5 )

6 public void setWeight (int newWeight) {
7 if ( newWeight > 0 ) {
8 weight = newWeight;
9 )

10 }

11}

Java™ Programming Language Module 2, slide 10 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Accessing Object Members

e The dot notation is: <object>.<member>

« This is used to access object members, including
attributes and methods.

e Examples of dot notation are:

d.setWeight (42) ;
d.weight = 42; // only permissible if weight is public

Java™ Programming Language Module 2, slide 11 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Information Hiding

The problem:

MyDate Client code has direct access to
+day : int Internal data (d refers to a MyDate
+month : int . .
+year : int ObJeCt)

d.day = 32;

// invalid day

d.month = 2; d.day = 30;
// plausible but wrong

d.day = d.day + 1;
// no check for wrap around

Java™ Programming Language Module 2, slide 12 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Information Hiding

The solution:

MyDate

-day : int
-month : int

-year : int

+getDay () : int

+getMonth () : int
+getYear () : int
+setDay (int) : boolean
+setMonth (int)
+setYé§;(int)

\

\
N

: boolean
: boolean

\

\

1 Verify days in montﬁ

Java™ Programming Language

Client code must use setters and
getters to access internal data:

MyDate d = new MyDate() ;

d.setDay (32) ;
// invalid day, returns false

d.setMonth(2) ;
d.setDay (30) ;
// plausible but wrong,
// setDay returns false

d.setDay (d.getDay () + 1);

// this will return false if wrap around
// needs to occur

Module 2, slide 13 of 26
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e Hides the implementation details of a class

Encapsulation

e [orces the user to use an interface to access data

Java™ Programming Language

Makes the code more maintainable

MyDate

-date : long

+getDay () : int
+getMonth () : int
+getYear () : int

+setDay (int) : boolean
+setMonth (int) : boolean
+setYear (int) : boolean
-isDayValid (int) : boolean

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 2, slide 14 of 26
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Declaring Constructors

e Basic syntax of a constructor:

[<modifier>] <class name> ( <argument>* ) {
<statement>*

e Example:
1 public class Dog

2
3 private int weight;
4
5 public Dog()
6 weight = 42;
7 }
8 |}
Java™ Programming Language Module 2, slide 15 of 26
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The Default Constructor

e There iIs always at least one constructor in every class.

e If the writer does not supply any constructors, the
default constructor is present automatically:

e The default constructor takes no arguments
e The default constructor body is empty

e The default enables you to create object instances with
new Xxx ()without having to write a constructor.

Java™ Programming Language Module 2, slide 16 of 26
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Source File Layout

e Basic syntax of a Java source file Is:

[<package declaration>]
<import declaration>*
<class declaration>+

e For example, the VvehicleCapacityReport .java file

IS.

1 package shipping.reports;

2

3 import shipping.domain.*;

4 import java.util.List;

5 import java.io.¥*;

6

7 public class VehicleCapacityReport
8 private List vehicles;

9 public void generateReport (Writer output) {...}
10 }

Java™ Programming Language Module 2, slide 17 of 26
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Software Packages

e Packages help manage large software systems.
« Packages can contain classes and sub-packages.

shipping
: " domain
~N
gul ~
h Owns 0..*
A Company = Vehicle
reports -7 Truck RiverBarge

Java™ Programming Language
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The package Statement

Basic syntax of the package statement is:

package <top pkg name>[.<sub pkg name>] *;

Examples of the statement are:

package shipping.gui.reportscreens;

Specify the package declaration at the beginning of the
source file.

Only one package declaration per source file.

If no package is declared, then the class Is placed into
the default package.

Package names must be hierarchical and separated by
dots.

Java™ Programming Language Module 2, slide 19 of 26
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The import Statement

e Basic syntax of the import statement is:

import <pkg name>[.<sub pkg name>] *.<class name>;
OR
import <pkg name>[.<sub pkg name>] *.*;

e Examples of the statement are:

import java.util.List;
import java.io.*;
import shipping.gui.reportscreens.*;

< The import statement does the following:
« Precedes all class declarations
e Tells the compiler where to find classes

Java™ Programming Language Module 2, slide 20 of 26
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Directory Layout and Packages

« Packages are stored in the directory tree containing the
package name.

< An example is the shipping application packages.
shipping/

domain/

Company.class
Vehicle.class

RiverBarge.class
Truck.class

gui/
reports/

L—————-VehicleCapacityReport.class

Java™ Programming Language Module 2, slide 21 of 26
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Development

JavaProjects/

ShippingPrj/
src/

L—————-shipping/
domain/
qui/
reports/

docs/
classes/

L—————-shipping/
domain/
gui/
reports/

Java™ Programming Language Module 2, slide 22 of 26
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Compiling Using the -d Option

cd JavaProjects/ShippingPrj/src
javac -d ../classes shipping/domain/*.java

Java™ Programming Language Module 2, slide 23 of 26
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Terminology Recap

Class — The source-code blueprint for a run-time object

Object — An instance of a class;
also known as instance

Attribute — A data element of an object;

also known as data member, instance variable, and data
field

Method — A behavioral element of an object;
also known as algorithm, function, and procedure

Constructor — A method-like construct used to Initialize
a new object

Package — A grouping of classes and sub-packages

Java™ Programming Language Module 2, slide 24 of 26
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Using the Java Technology API
Documentation

« A set of Hypertext Markup Language (HTML) files
provides information about the API.

e Aframe describes a package and contains hyperlinks to
Information describing each class in that package.

e A class document includes the class hierarchy, a
description of the class, a list of member variables, a list
of constructors, and so on.

Java™ Programming Language Module 2, slide 25 of 26
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Java Technology API
Documentation

~| Object (Java 2 Platform 5E 5.0) — Web Browser |- i_Ji

. Eile Edit ¥iew Go Bookmarks Toaols Window Help

OOO O O | % filestiropt/javardocs/apisindes html |

A' FIBookmarks %5 Java Store %5 Apple Training B3 Admin E35ES F3Java % Tomcat EjJava Web Tech E3Personal 3

r
I3

Java™ 2 Platform |=|| Overview Package [HEteyUse Tree Deprecated Index Help Java' v 2 Piafiorm

Standard Ed. 5.0 PREV CLA 55 MEAT CLASS FRAMES MO FRAMES Sfandard Fd 8.0
SUnARY: MESTED | FIELD | COMNETRE |METHOD DETAIL: FIELD | COMETR |METHOD

2l Classes

Fackages —

::::awtlet favafang

jEva.awt color Class Ob]ect

java.ant datatransfer

jpva.awt.dnd java.lang.0bject

jva.awt.event

jmvaawt font

java anrt eom
Al [»

TR I LT Tetr

Murneric Shaper

public class Object

O] £

Class Object is the root of the class hisrarchy. Every class has Object as a superclass. All

MList ohjects, including arrays, implement the methods of this class.
OAEPParameter Spec

DB) ADAPTER Sinca:

dbject JDK1.0

Cofgizet See Also:

OBJECT WOT EXIST dless

ObjectalreacySctive
Object &l eady Setive Helpe

Lfcfihangel sfenar
D fPaciun

Constructor Summary

OhijectHelper .
DObiect Holcer Object()
Object|dHelper
ObijectldHelper
Db:ectlmgl
el Method Summary
L2z fin pud
Dbjectinput Stream protected )| sl ome ()

Dkigctingut Stream. GetFie i Creates and retums a copy of this object.
o s : :

OhjectInstance boelesn ) pquals(ihiect obj) o .
Obijzct Mame Indicates whether some other object is "equal to” this one.
ObjectMotdctive - -
Dhbject Mot ActiveHelper protecked | finalize ()
(CbecfTufpy Called by the garhage collector on an ohject when garbage collection
Ohbject Output Stream determines that there are no more references to the object.

Ohiject Output Stream . PutF -
DbictAsfrancafzoig S PEEE D

Obiect ReferenceFactoryH ohiects Returns the runtime class of an ohject.
Obiject ReferenceFactory He i

DbgctHeferenceFactor Hi int | hashCode ()

L iRafaranca Tampl| i
e e e | Returns a hash code value far the ohject.
Object FeferenceTernplateH vodid notify()
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Module 3

ldentifiers, Keywords, and Types
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Objectives

e Use comments in a source program

e Distinguish between valid and invalid identifiers

e Recognize Java technology keywords

e List the eight primitive types

e Define literal values for numeric and textual types

e Define the terms primitive variable and reference variable

Java™ Programming Language Module 3, slide 2 of 37
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Objectives

e Declare variables of class type
e Construct an object using new
e Describe default initialization
« Describe the significance of a reference variable

e State the consequences of assigning variables of class
type

Java™ Programming Language Module 3, slide 3 of 37
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Relevance

e Do you know the primitive Java types?

e Can you describe the difference between variables
holding primitive values as compared with object
references?

Java™ Programming Language Module 3, slide 4 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Comments

The three permissible styles of comment in a Java technology
program are:

// comment on one line

/* comment on one
* or more lines

*/

/** documentation comment
* can also span one or more lines

*/

Java™ Programming Language Module 3, slide 5 of 37
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Semicolons, Blocks, and White Space

e A statement is one or more lines of code terminated by
a semicolon (;):

totals = a + b + ¢
+d+ e + £;

« A block is a collection of statements bound by opening
and closing braces:

{

X
Y

}

i
o]
+

o

Java™ Programming Language
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Semicolons, Blocks, and White Space

« A class definition uses a special block:

public class MyDate
private int day;
private int month;
private int year;

}
e You can nest block statements.

while ( i < large ) {
a=a+ 1i;
// nested block

if (a == max ) {
b =Db + a;
a = 0;
}
i=14+1;
}

Java™ Programming Language Module 3, slide 7 of 37
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Semicolons, Blocks, and White Space

< Any amount of white space is permitted in a Java
program.
For example:
{int x;x=23%54;}
IS equivalent to:
{

int x;

X = 23 * 54;

}

Java™ Programming Language
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|dentifiers

Identifiers have the following characteristics:

< Are names given to a variable, class, or method

= Can start with a Unicode letter, underscore (_), or
dollar sign ()

e Are case-sensitive and have no maximum length
e Examples:

identifier
userName
user name
_sys varl
$Schange

Java™ Programming Language Module 3, slide 9 of 37
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Java Programming Language Keywords

abstract continue for new switch
assert default goto package synchronized
boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient
catch extends int short try

char final interface static void

class finally long strictfp volatile
const float native super while

Reserved literal words: null, true, and false

Java™ Programming Language Module 3, slide 10 of 37
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Primitive Types

The Java programming language defines eight primitive
types:

e Logical — boolean

e Textual — char

e Integral — byte, short, int, and long
e Floating — double and float

Java™ Programming Language Module 3, slide 11 of 37
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Logical — boolean

The boolean primitive has the following characteristics:

e The boolean data type has two literals, true and
false.

e [For example, the statement:

boolean truth = true;

declares the variable truth as boolean type and assigns
it a value of true.

Java™ Programming Language Module 3, slide 12 of 37
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Textual — char

The textual char primitive has the following characteristics:

e Represents a 16-bit Unicode character
e Must have its literal enclosed in single quotes (* )
« Uses the following notations:

'a’ The letter a
"\t The tab character
"\u????" A specific Unicode character, 22727, is replaced with

exactly four hexadecimal digits .
For example, '\u0326’ is the Greek letter phi [®].

Java™ Programming Language Module 3, slide 13 of 37
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Textual — String

The textual string type has the following characteristics:

= Isnot a primitive data type; it is a class
e Has its literal enclosed in double quotes (" ")

"The quick brown fox jumps over the lazy dog."

e (Can be used as follows:

String greeting = "Good Morning !! \n"
String errorMessage = "Record Not Found !";

Java™ Programming Language Module 3, slide 14 of 37
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Integral — byte, short, int, and long

The integral primitives have the following characteristics:

e Integral primates use three forms: Decimal, octal, or

hexadecimal

2 The decimal form for the integer 2.

077 The leading 0 indicates an octal value.
0xBAAC The leading 0x indicates a hexadecimal value.

 Literals have a default type of int.

 Literals with the suffix L or 1 are of type long.

Java™ Programming Language Module 3, slide 15 of 37
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Integral — byte, short, int, and long

= Integral data types have the following ranges:

Integer Length | Name or Type | Range

8 bits byte -27t0 2-1
16 bits short -215t0 215 -1
32 bits int -2 10 23 -1
64 bits long 2% 10 262 -1

Java™ Programming Language
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Floating Point — £1oat and double

The floating point primitives have the following

characteristics:

« Floating-point literal includes either a decimal point or
one of the following:

e Eor e (add exponential value)
e Forf(float)
e Dord(double)

3.14
6.02E23
2.718F

123 .4E+306D

A simple floating-point value (a double)
A large floating-point value

A simple float size value

A large double value with redundant D

Java™ Programming Language
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Floating Point — £1oat and double

e Literals have a default type of double.
« Floating-point data types have the following sizes:

Float Length  Name or Type

32 bits float
64 bits double

Java™ Programming Language Module 3, slide 18 of 37
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Variables, Declarations, and
Assignments

1 public class Assign

2 public static void main (String args []) {
3 // declare integer variables

4 int x, v;

5 // declare and assign floating point
6 float z = 3.414f;

7 // declare and assign double

8 double w = 3.1415;

9 // declare and assign boolean

10 boolean truth = true;

11 // declare character variable

12 char c;

13 // declare String variable

14 String str;

15 // declare and assign String variable
16 String strl = "bye";

17 // assign value to char variable

18 c = 'A';

19 // assign value to String variable
20 str = "Hi out there!";

21 // assign values to int variables

22 X = 6;

23 y = 1000;

24 }

25 }

Java™ Programming Language Module 3, slide 19 of 37
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Java Reference Types

« |nJava technology, beyond primitive types all others
are reference types.

« A reference variable contains a handle to an object.
e For example:

public class MyDate (
private int day = 1;
private int month = 1;
private int year = 2000;
public MyDate (int day, int month, int year) { ... }
public String toString() { ... }

}

public class TestMyDate {
public static void main(Stringl[] args) {
MyDate today = new MyDate (22, 7, 1964);

}

< 0 U1l b W DN R
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}
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Constructing and Initializing Objects

e Calling new Xyz () performs the following actions:
a. Memory is allocated for the object.
b. Explicit attribute initialization is performed.
c. A constructor is executed.

d. The object reference is returned by the new
operator.

e The reference to the object is assigned to a variable.

e Anexample is:
MyDate my birth = new MyDate (22, 7, 1964);
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Memory Allocation and Layout

« A declaration allocates storage only for a reference:

MyDate my birth = new MyDate (22, 7, 1964);

my birth 2?77

e Use the new operator to allocate space for MyDate:

MyDate my birth = new MyDate (22, 7, 1964);

my birth rry
day 0
month 0
year 0
Java™ Programming Language Module 3, slide 22 of 37
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Explicit Attribute Initialization

e [|nitialize the attributes as follows:

MyDate my birth = new MyDate (22, 7, 1964);

my_birth 2977
day 1
month 1
year 2000

e The default values are taken from the attribute
declaration in the class.

Java™ Programming Language Module 3, slide 23 of 37
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Executing the Constructor

« Execute the matching constructor as follows:
MyDate my birth = new MyDate (22, 7, 1964);

my birth

day

month

year

27?7

22

1964

e |n the case of an overloaded constructor, the first

constructor can call another.

Java™ Programming Language
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Assigning a Variable

« Assign the newly created object to the reference
variable as follows:

MyDate my birth = new MyDate (22, 7, 1964);

my_birth | gxolabcdef :|

day 22
month 7
year 1964

Java™ Programming Language
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e Two variables refer to a single object:

1

2
3
4

X

Assigning References

int x = 7;
int v = x;
MyDate s
MyDate t

~

7

0x01234567

new MyDate (22,

7,

1964) ;

22

1964

0x01234567

« Reassignment makes two variables point to two

objects:
5 t = new MyDate (22, 12, 1964);
x 7 22| 7| 1964
i : /
s | 0x01234567
w22/ 12| 1964
t | 0x12345678

Java™ Programming Language
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Pass-by-Value

e |In asingle virtual machine, the Java programming
language only passes arguments by value.

e \When an object instance is passed as an argument to a
method, the value of the argument is a reference to the

object.

« The contents of the object can be changed in the called
method, but the original object reference iIs never
changed.

Java™ Programming Language Module 3, slide 27 of 37
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Pass-by-Value

1 public class PassTest (

2

3 // Methods to change the current values

4 public static void changelInt (int value) {

5 value = 55;

6 )

7 public static void changeObjectRef (MyDate ref) ({
8 ref = new MyDate (1, 1, 2000);

9 }

10 public static void changeObjectAttr (MyDate ref) {
11 ref .setDay (4) ;

12 }

Java™ Programming Language Module 3, slide 28 of 37
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Pass-by-Value

13

14 public static void main(String args([]) {
15 MyDate date;

16 int val;

17

18 // Assign the int

19 val = 11;

20 // Try to change it

21 changelInt (val) ;

22 // What 1is the current value?

23 System.out.println("Int value is: " + val);

The result of this output is:

Int value is: 11

Java™ Programming Language Module 3, slide 29 of 37
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Pass-by-Value

24

25 // Assign the date

26 date = new MyDate (22, 7, 1964);

27 // Try to change it

28 changeObjectRef (date) ;

29 // What is the current value?

30 System.out.println ("MyDate: " + date) ;

The result of this output is:

MyDate: 22-7-1964

Java™ Programming Language Module 3, slide 30 of 37
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31
32
33
34
35
36
37
38

}

}

Pass-by-Value

// Now change the day attribute

// through the object reference
changeObjectAttr (date) ;

// What 1is the current value?
System.out.println ("MyDate: " + date) ;

The result of this output is:

MyDate: 4-7-1964

Java™ Programming Language
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The this Reference

Here are a few uses of the this keyword:

e To resolve ambiguity between instance variables and
parameters

e To pass the current object as a parameter to another
method or constructor

Java™ Programming Language

Module 3, slide 32 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

The this Reference

1 public class MyDate

2 private int day = 1;

3 private int month = 1;

4 private int year = 2000;

5

6 public MyDate (int day, int month, int year) {
7 this.day = day;

8 this.month = month;

9 this.year = year;

10 }

11 public MyDate (MyDate date) {
12 this.day = date.day;

13 this.month = date.month;
14 this.year = date.year;

15 }

Java™ Programming Language Module 3, slide 33 of 37
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The this Reference

16

17 public MyDate addDays (int moreDays)

18 MyDate newDate = new MyDate (this) ;

19 newDate.day = newDate.day + moreDays;

20 // Not Yet Implemented: wrap around code...
21 return newDate;

22 }

23 public String toString() {

24 return "" + day + "-" + month + "-" + vyear;
25 }

26}
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The this Reference

public class TestMyDate {
public static void main(Stringl[] args) {
MyDate my birth = new MyDate (22, 7, 1964);
MyDate the next week = my birth.addDays(7);

System.out.println(the next week);

}

coO J O Ul i WDN R

}
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Java Programming Language Coding
Conventions

e Packages:

com.example.domain;

e Classes, interfaces, and enum types:

SavingsAccount

e Methods:

getAccount ()
« Variables:

currentCustomer

e (Constants:

HEAD COUNT

Java™ Programming Language Module 3, slide 36 of 37
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Java Programming Language Coding
Conventions

e Control structures:

if ( condition ) {
statementl;

} else {
statement?2;

}
e Spacing:
e Use one statement per line.
e Use two or four spaces for indentation.
e Comments:
e Use // to comment inline code.
e Use /** documentation */ for class members.
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Module 4

Expressions and Flow Control
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Objectives

« Distinguish between instance and local variables
e Describe how to Initialize instance variables

e |dentify and correct a Possible reference before
assignment compiler error

e Recognize, describe, and use Java software operators

« Distinguish between legal and illegal assignments of
primitive types

Java™ Programming Language Module 4, slide 2 of 31
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Objectives

e ldentify boolean expressions and their requirements
In control constructs

e Recognize assignment compatibility and required casts
In fundamental types

e Use if, switch, for, while, and do constructions and
the labelled forms of break and continue as flow
control structures in a program

Java™ Programming Language Module 4, slide 3 of 31
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Relevance

e \What types of variables are useful to programmers?

< Can multiple classes have variables with the same
name and, if so, what is their scope?

e What types of control structures are used in other
languages? What methods do these languages use to
control flow?

Java™ Programming Language Module 4, slide 4 of 31
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Variables and Scope

Local variables are:

« Variables that are defined inside a method and are
called local, automatic, temporary, or stack variables

e Variables that are created when the method is executed
are destroyed when the method is exited

Variable initialization comprises the following:

e Local variables require explicit initialization.
e [Instance variables are initialized automatically.

Java™ Programming Language Module 4, slide 5 of 31
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Variable Scope Example

public class ScopeExample ({
private int 1i=1; Execution Stack

public void firstMethod() {
int i=4, j=5;

Heap Memory
this.i = 1 + j; — N —
secondMethod (7) ; J 8
} secondMethod i 7
public void secondMethod (int i) { chis |
int j=8; — — ScopeExample

this.i = i + j; ] 5

} firstMethod i 4

} this -
m— ——

main | scope

public class TestScoping
public static void main(String[] args) {
ScopeExample scope = new ScopeExample() ;

scope.firstMethod() ;

}
}
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Variable Initialization

Variable Value
byte 0

short 0

int 0

long OL
float 0.0F
double 0.0D
char "\u0000"
boolean false

All reference types  null

Java™ Programming Language Module 4, slide 7 of 31
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Initialization Before Use Principle

The compiler will verify that local variables have been
Initialized before used.

3 public void doComputation() {

4 int x = (int) (Math.random() * 100) ;

5 int vy;

6 int z;

7 if (x > 50) {

8 y = 9;

9 }

10 Z =y + X; [// Possible use before initialization
11 }

javac TestInitBeforeUse.java
TestInitBeforeUse.java:10: variable y might not have been initialized
Z =y + x; // Possible use before initialization

1l error

Java™ Programming Language Module 4, slide 8 of 31
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Operator Precedence

Operators Assoclative
++ -- +Unary -unary ~ ! (<data type>) RtoL
*x /% LtoR
+ - LtoR
<< >> >>> LtoR
< > <= >= instanceof LtoR
== = LtoR
& LtoR
~ LtoR
| LtoR
&& LtoR
| | LtoR
<boolean expr> ? <exprl> : <expr2> RtoL
= %= /= %= 4= -= <<= >>= >>>= &= = |= RtoL

Java™ Programming Language
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Logical Operators

e The boolean operators are:

| - NOT & — AND
| - OR “ - XOR

e The short-circuit boolean operators are:

& - AND || - OR

e You can use these operators as follows:

MyDate d = reservation.getDepartureDate () ;
if ( (d != null) && (d.day > 31) {
// do something with d

}

Java™ Programming Language
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Bitwise Logical Operators

e The integer bitwise operators are:

~ — Complement & - AND
” - XOR | - OR

e Byte-sized examples include:

~(0]2|0(0|2|1(1 |1 &/0|1(0{0|1(1|1 |1
1/0/1(1|/0|0(0]|O0 o/jojo0o|j0j1|1|0|1
0/0(1|0j1(1|0|1 0/0(1|0j1(1|0|1
~10|1]0|0(1|1 1|1 | 0(1/0/0(1|1 |11
0/j1/{1/0/0|01]O0 0(1/1/0(1|1|1|1
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Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Right-Shift Operators >> and >>>

« Arithmetic or signed right shift (>>) operator:
e Examples are:

128 >> 1 returns 128/2! = 6a
256 >> 4 returns 256/2% = 16
-256 >> 4 returns —256/24 = -16

e The sign bit is copied during the shift.

« Logical or unsigned right-shift (>>>) operator:
= This operator is used for bit patterns.
« The sign bit is not copied during the shift.

Java™ Programming Language Module 4, slide 12 of 31
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Left-Shift Operator <<

e [|eft-shift (<<) operator works as follows:

128 << 1 returns 128 * 2! = 256
16 << 2 returns 16 * 22 = 64
Java™ Programming Language Module 4, slide 13 of 31
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Shift Operator Examples

1357 = [o]o|o]o|o]ofo][ofofo[o]o[ofo]o]o]o[o][ofo]o[z1][o[2]o]2]o]o[2]1]0]1]

-1357 = |1|1|1|1|1|1|2|2|1|a|z|2|z|2|2|2|2|2|2|2]2|o|2|of2]of2|21|of0|2]1]

1357 >> 5 = [p|o|o0|o0|o|0|0]|o|o|o|o|o[o|0|o|ofo|o|o[oojojofojojo|1]|0|1|0]1]0]

-1357 >>

ul

=l1fafafafa|afafa|afafafa|a|afa|afa|a]a|a|a]a|a|2|2|2]o]2]o|2]0]1]

1357>>>5=00000000000000000000000000101|0|1|0|

-1357 >>> 5 = |0|o]ofolo|1|2|{2|2|1|1|1|2|{2|2|2|1|21|2|2|1|2|1|1|1|2|0[1]|0|1|0]|1

1357 << 5 = |0|0|0|o|o|o|o]|ojojofojojofo|ojof1|o|1][o]x]|o]o][z]|2]o|1|ol0f0]0]O

-1357 << 5 = |1|1|1|1|2|2|2|2|z|z|z|z|z|z|2|[2]of2|of1]of1|1]o]o]2][2]|0]0]0]0]0]
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String Concatenation With +

e The + operator works as follows:
e Performs String concatenation
e Produces a new String:

String salutation = "Dr.";
String name = "Pete" + " " + "Seymour";
String title = salutation + " " + name;

e One argument must be a String object.

< Non-strings are converted to String objects
automatically.

Java™ Programming Language Module 4, slide 15 of 31
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Casting

« |If information might be lost in an assignment, the
programmer must confirm the assignment with a cast.

e The assignment between long and int requires an
explicit cast.

long bigValue = 99L;
int squashed bigValue; // Wrong, needs a cast
int squashed (int) bigvValue; // OK

int squashed = 99L; // Wrong, needs a cast
int squashed = (int) 99L; // OK, but...
int squashed = 99; // default integer literal

Java™ Programming Language Module 4, slide 16 of 31
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Promotion and Casting of Expressions

e Variables are promoted automatically to a longer form
(such as int to long).

e EXpression is assignment-compatible if the variable type
IS at least as large (the same number of bits) as the
expression type.

long bigval = 6; // 6 is an int type, OK
int smallval = 99L; // 99L is a long, illegal

double =z
float zl

12.414F; // 12.414F is float, OK
12.414; // 12.414 is double, illegal

Java™ Programming Language Module 4, slide 17 of 31
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Simple if, else Statements

The if statement syntax:

if ( <boolean expression> )
<statement or block>

Example:

if (( x < 10 )

System.out.println ("Are you finished yet?");

or (recommended):
if ((x < 10 ) |

}

System.out.println ("Are you finished yet?");

Java™ Programming Language
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Complex if, else Statements

The if-else statement syntax:

if ( <boolean expression> )
<statement or block>
else

<statement or block>

Example:

if ((x < 10 ) |

System.out.println ("Are you finished yet?");
} else {

System.out.println ("Keep working...");

}
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Complex if, else Statements

The if-else-if statement syntax:

if ( <boolean expression> )
<statement or block>

else if ( <boolean expression> )
<statement or block>

Example:

int count = getCount(); // a method defined in the class
if (count < 0) {

System.out.println ("Error: count value is negative.");

} else if (count > getMaxCount()) {
System.out.println ("Error: count value is too big.");
} else {

System.out.println ("There will be " + count +
" people for lunch today.");
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Switch Statements

The switch statement syntax:

switch ( <expression> ) {

case <constantl>:
<statement or block>*
[break;]

case <constant2>:
<statement or block>*
[break; ]

default:
<statement or block>*
[break; ]

Java™ Programming Language Module 4, slide 21 of 31
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Switch Statements

A switch statement example:

switch ( carModel )

case DELUXE:
addAirConditioning() ;
addRadio () ;
addWheels () ;
addEngine ()
break;

case STANDARD:
addRadio () ;
addWheels () ;
addEngine ()
break;

default:
addWheels () ;
addEngine () ;

4

4

Java™ Programming Language Module 4, slide 22 of 31
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Switch Statements

This switch statement is equivalent to the previous example:

switch ( carModel )

case DELUXE:
addAirConditioning() ;

case STANDARD:
addRadio () ;

default:
addWheels () ;
addEngine () ;

}

Without the break statements, the execution falls through
each subsequent case clause.
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Looping Statements

The for loop:

for ( <init expr>; <test expr>; <alter expr> )
<statement or block>

Example:

for ( int 1 = 0; 1 < 10; i++ )
System.out.println(i + " squared is " + (i*i));

or (recommended):

for (int i = 0; 1 < 10; i++ ) {
System.out.println(i + " squared is " + (i*1));

}
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Looping Statements

The while loop:

while ( <test expr> )
<statement or block>

Example:

int 1 = 0;

while ( i < 10 ) {
System.out.println(i + " squared is " + (1i*1i));
1++;

}
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Looping Statements

The do/while loop:

do
<statement or block>
while ( <test expr> );

Example:

int 1 = 0;

do {
System.out.println(i + " squared is "
14+;

} while ( 1 < 10 );

Java™ Programming Language
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Special Loop Flow Control

e Thebreak [<label>]; command
e The continue [<label>]; command

e The <label> : <statement> command, where
<statement> should be a loop

Java™ Programming Language Module 4, slide 27 of 31
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The break Statement

1 do {

2 statement;,

3 if ( condition ) {

4 break;

5 }

6 statement;

7 } while ( test expr );

Java™ Programming Language Module 4, slide 28 of 31
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The continue Statement

1 do {

2 statement;,

3 if ( condition ) {

4 continue;

5 }

6 statement;

7 } while ( test expr );
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Using break Statements with Labels

1 outer:

2 do

3 statementl;

4 do {

5 statementZ2;

6 if ( condition )

7 break outer;

8 }

9 statement3;

10 } while ( test expr );
11 statement4;

12 } while ( test expr );
Java™ Programming Language Module 4, slide 30 of 31
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Using cont inue Statements with Labels

1 test:

2 do

3 statementl;

4 do {

5 statementZ2;

6 if ( condition )

7 continue test;

8 }

9 statement3;

10 } while ( test expr );
11 statement4;

12 } while ( test expr );
Java™ Programming Language Module 4, slide 31 of 31
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Module 5

Arrays
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Objectives

e Declare and create arrays of primitive, class, or array
types
e Explain why elements of an array are initialized

« Explain how to initialize the elements of an array
e Determine the number of elements in an array
e Create a multidimensional array

< \Write code to copy array values from one array to
another

Java™ Programming Language Module 5, slide 2 of 15
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Relevance

What is the purpose of an array?

Java™ Programming Language Module 5, slide 3 of 15
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Declaring Arrays

< Group data objects of the same type.
= Declare arrays of primitive or class types:

char s|[];
Point pl];

char[] s;
Point [] p;

= Create space for a reference.
e An array Is an object; it is created with new.

Java™ Programming Language Module 5, slide 4 of 15
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Creating Arrays

Use the new keyword to create an array object.

For example, a primitive (char) array:

1 public char[] createArray() ({
2 char[] s;

3

4 s = new char[26];

5 for ( int i=0; i<26; i++ ) {
6 s[i] = (char) (A’ + 1);
7 }

8

9 return s;

10 }

Java™ Programming Language Module 5, slide 5 of 15
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Creating an Array of Character Primitives

Execution Stack

Heap Memory

char []

A
B
C
D
createArray S // ;;:::::::j
Z

main

Java™ Programming Language Module 5, slide 6 of 15
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Creating Reference Arrays

Another example, an object array:

public Point[] createArray() {
Point [] p;

p = new Point[10];
for ( int i=0; i<10; i++ ) {
pli] = new Point (i, 1i+1);

}

return p;

R O 0 J 0 Ul b WK

Java™ Programming Language Module 5, slide 7 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Creating an Array of Character Primitives
With Point Objects

Execution Stack

Heap Memory

Point []

createArray P
this
main
Java™ Programming Language Module 5, slide 8 of 15

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Initializing Arrays

« Initialize an array element.
« Create an array with initial values.

String[] names; String[] names = ({

names = new String[3]; "Georgianna',

names [0] = "Georgianna'"; "Jen",

names [1] = "Jen"; "Simon"

names [2] = "Simon"; ¥

MyDate [] dates; MyDate[] dates = {

dates = new MyDate[3]; new MyDate (22, 7, 1964),
dates[0] = new MyDate (22, 7, 1964); new MyDate (1, 1, 2000),
dates[1l] = new MyDate(l, 1, 2000); new MyDate (22, 12, 1964)
dates[2] = new MyDate (22, 12, 1964); };

Java™ Programming Language
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Multidimensional Arrays

Arrays of arrays:

int [] [] twoDim = new int [4] [];
twoDim[0] = new int [5];
twoDim[1] new int [5];

int[] [] twoDim = new int[] [4]; // illegal

Java™ Programming Language Module 5, slide 10 of 15
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Multidimensional Arrays

= Non-rectangular arrays of arrays:

twoDim[0] = new int[2];
twoDim[1l] = new int [4];
twoDim[2] = new int [6];
twoDim[3] = new int[8];

« Array of four arrays of five integers each:

int [] [] twoDim = new int [4] [5];
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Array Bounds

All array subscripts begin at O:

public void printElements (int[] list) {
for (int i = 0; i < list.length; i++) {
System.out.println(list[i]) ;

}
}

Java™ Programming Language Module 5, slide 12 of 15
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Using the Enhanced for Loop

Java 2 Platform, Standard Edition (J2SE™) version 5.0
Introduced an enhanced for loop for iterating over arrays:

public void printElements (int[] list) {
for ( int element : list ) {
System.out .println (element) ;

J
}

The for loop can be read as for each element In 1ist do.
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Array Resizing

e You cannot resize an array.

e You can use the same reference variable to refer to an
entirely new array, such as:

int [] myArray = new int[6];
myArray = new int [10];

Java™ Programming Language Module 5, slide 14 of 15
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Copying Arrays

The System.arraycopy () method to copy arrays Is:

//original array
int[] myArray = { 1, 2, 3, 4, 5, 6 };

// new larger array
int[] hold = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };

// copy all of the myArray array to the hold
// array, starting with the 0th index
System.arraycopy (myArray, 0, hold, 0, myArray.length) ;

O 00 J O Ul & W DN K
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Java™ Programming Language



@ Sun Educational Services

Objectives

« Define inheritance, polymorphism, overloading, overriding,
and virtual method invocation

e Use the access modifiers protected and the default
(package-friendly)

e Describe the concepts of constructor and method
overloading

e Describe the complete object construction and
Initialization operation

Java™ Programming Language Module 6, slide 2 of 43
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Relevance

How does the Java programming language support object
Inheritance?

Java™ Programming Language Module 6, slide 3 of 43
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Subclassing

The Employee class is shown here.

Employee public class Employee
+name : String = "n public String name = "";
+salary : double public double salary;
+birthDate : Date public Date birthDate;
+getDetails () : String

public String getDetails() {...}

Java™ Programming Language Module 6, slide 4 of 43
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Subclassing

The Manager class is shown here.

Manager public class Manager (
+name : String = "n public String name = "";
+salary : double public double salary;
+birthDate : Date public Date birthDate;
+department : String public String department;
+getDetails () : String

public String getDetails() {...}

Java™ Programming Language Module 6, slide 5 of 43
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Class Diagrams for Employee and Manager
Using Inheritance

Employee
+name : String = ""
+salary : double

+birthDate : Date

+getDetails () : String

/\

Manager

+department : String

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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public String name = "";
public double salary;
public Date birthDate;

public String getDetails() {...}

}

public class Manager extends Employee
public String department;

}
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Single Inheritance

e \When a class inherits from only one class, it is called
single inheritance.

= Interfaces provide the benefits of multiple inheritance
without drawbacks.

« Syntax of a Java class is as follows:

<modifier> class <name> [extends <superclass>] ({
<declaration>*

}

Java™ Programming Language
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Engineer

Java™ Programming Language

Single Inheritance

Employee

+name String = ""
double

Date

+salary
+birthDate

+getDetails () String

N N\

\X

Manager

+department String = ""

/\

Director

+carAllowance double

+increaselAllowance ()

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Access Control

Access modifiers on class member declarations are listed here.

Modifier Same Class Same Package Subclass Universe
private Yes

default Yes Yes

protected Yes Yes Yes

public Yes Yes Yes Yes
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Overriding Methods

e A subclass can modify behavior inherited from a
parent class.

e A subclass can create a method with different

functionality than the parent’s method but with the
same:

 Name
e Return type!
e Argument list

1. In J2SE version 5, the return type can be a subclass of the overridden return type.
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Overriding Methods

1 public class Employee (

2 protected String name;

3 protected double salary;

4 protected Date birthDate;

5

6 public String getDetails () {

7 return “Name: “ + name + “\n” +

8 “Salary: “ + salary;

9 }

10}

1 public class Manager extends Employee {
2 protected String department;

3

4 public String getDetails () {

5 return “Name: “ + name + “\n” +

6 “Salary: “ + salary + "\n" +
7 “Manager of: “ + department;
8 }

5

Java™ Programming Language
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Overridden Methods Cannot Be Less
Accessible

1 public class Parent (

2 public void doSomething() {}

3 )

1 public class Child extends Parent ({
2 private void doSomething() {} // illegal
3 )

1 public class UseBoth

2 public void doOtherThing() {

3 Parent pl = new Parent () ;

4 Parent p2 = new Child() ;

5 pl.doSomething() ;

6 p2.doSomething () ;

7 }

8 )
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Invoking Overridden Methods

A subclass method may invoke a superclass method using the
super keyword:

e The keyword super Is used in a class to refer to its
superclass.

e The keyword super Is used to refer to the members of
superclass, both data attributes and methods.

e Behavior invoked does not have to be in the superclass;
It can be further up in the hierarchy.

Java™ Programming Language
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Invoking Overridden Methods

1 public class Employee (

2 private String name;

3 private double salary;

4 private Date birthDate;

5

6 public String getDetails () {

7 return "Name: " + name + "\nSalary: " + salary;
8 )

5 )

1 public class Manager extends Employee

2 private String department;

3

4 public String getDetails() {

5 // call parent method

6 return super.getDetails()

7 + “\nDepartment: " + department;
8 }

5 )
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Polymorphism

e Polymorphism is the ability to have many different
forms; for example, the Manager class has access to

methods from Employee class.
< An object has only one form.

e A reference variable can refer to objects of different
forms.
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Polymorphism

Employee e = new Manager(); // legal

// illegal attempt to assign Manager attribute
e.department = "Sales";

// the variable is declared as an Employee type,

// even though the Manager object has that attribute
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Virtual Method Invocation

e Virtual method invocation is performed as follows:

Employee e = new Manager() ;
e.getDetails () ;

e Compile-time type and runtime type invocations have
the following characteristics:

e The method name must be a member of the declared

variable type; in this case Employee has a method
called getDetails.

< The method implementation used is based on the
runtime object’s type; in this case the Manager class
has an implementation of the getDetails method.
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Heterogeneous Collections

e Collections of objects with the same class type are

called homogeneous collections. For example:

MyDate[] dates = new MyDate[2];
dates [0] new MyDate (22, 12, 1964);
dates [1] new MyDate (22, 7, 1964);

Collections of objects with different class types are
called heterogeneous collections. For example:

Employee [] staff = new Employee[1024];
staff [0] = new Manager () ;
staff [1] = new Employee() ;
staff [2] = new Engineer() ;
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Polymorphic Arguments

Because a Manager IS an Employee, the following is valid:

public class TaxService f{
public TaxRate findTaxRate (Employee e) {

// calculate the employee’s tax rate

}
}

// Meanwhile, elsewhere in the application class

TaxService taxSvc = new TaxService() ;

Manager m = new Manager () ;
TaxRate t = taxSvc.findTaxRate (m) ;

Module 6, slide 19 of 43
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The instanceof Operator

public class Employee extends Object
public class Manager extends Employee
public class Engineer extends Employee

public void doSomething (Employee e)
if ( e instanceof Manager ) {
// Process a Manager
} else if ( e instanceof Engineer ) ({
// Process an Engineer
} else {
// Process any other type of Employee

}
}

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 6, slide 20 of 43



@ Sun Educational Services

Casting Objects

public void doSomething (Employee e)
if ( e instanceof Manager )
Manager m = (Manager) e;
System.out.println("This is the manager of ”
+ m.getDepartment () ) ;

}

// rest of operation

}
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Casting Objects

e Use instanceof to test the type of an object.
« Restore full functionality of an object by casting.

e Check for proper casting using the following
guidelines:

e (Casts upward in the hierarchy are done implicitly.

e Downward casts must be to a subclass and checked
by the compiler.

e The object type is checked at runtime when runtime
errors can occur.
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Overloading Methods

e Use overloading as follows:

public void println(int i)
public void println(float f)
public void println(String s)

e Argument lists must differ.
e Return types can be different.

Module 6, slide 23 of 43
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Methods Using Variable Arguments

e Methods using variable arguments permit multiple
number of arguments in methods.

For example:

public class Statistics {
public float average(int... nums)
int sum = 0;
for ( int x : nums ) {
sum += X;
)
return ((float) sum) / nums.length;
)
)

e The vararg parameter is treated as an array. For
example:

float gradePointAverage = stats.average(4, 3, 4);
float averageAge = stats.average (24, 32, 27, 18);
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Overloading Constructors

e As with methods, constructors can be overloaded.
An example is:

public Employee (String name, double salary, Date DoB)
public Employee (String name, double salary)
public Employee (String name, Date DoB)

e Argument lists must differ.

e You can use the this reference at the first line of a
constructor to call another constructor.
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Overloading Constructors

1 public class Employee (

2 private static final double BASE SATARY = 15000.00;
3 private String name;

4 private double salary;

5 private Date  birthDate;

6

7 public Employee (String name, double salary, Date DoB)
8 this.name = name;

9 this.salary = salary;

10 this.birthDate = DoB;

11 }

12 public Employee (String name, double salary) ({

13 this (name, salary, null);

14 }

15 public Employee (String name, Date DoB)

16 this (name, BASE SALARY, DOB) ;

17 }

18 // more Employee code...

19 }
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Constructors Are Not Inherited

e A subclass inherits all methods and variables from the
superclass (parent class).

e A subclass does not inherit the constructor from the
superclass.

< Two ways to include a constructor are:
e Use the default constructor.
« Write one or more explicit constructors.
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Invoking Parent Class Constructors

e Toinvoke a parent constructor, you must place acall to
super INn the first line of the constructor.

e You can call a specific parent constructor by the
arguments that you use in the call to super.

e |fno this or super call is used in a constructor, then
the compiler adds an implicit call to super () that calls
the parent no argument constructor (which could be
the default constructor).

If the parent class defines constructors, but does not
provide a no-argument constructor, then a compiler
error message Is issued.
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Invoking Parent Class Constructors

1 public class Manager extends Employee {

2 private String department;

3

4 public Manager (String name, double salary, String dept) {
5 super (name, salary) ;

6 department = dept;

7 }

8 public Manager (String name, String dept) {

9 super (name) ;

10 department = dept;

11 }

12 public Manager (String dept) { // This code fails: no super|()
13 department = dept;

14 }

15 //more Manager code...

16}
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Constructing and Initializing Objects: A
Slight Reprise

Memory is allocated and default initialization occurs.
Instance variable initialization uses these steps recursively:

1. Bind constructor parameters.

2. If explicit this (), call recursively, and then skip to
Step 5.

3. Call recursively the implicit or explicit super call,
except for Object.

4. Execute the explicit instance variable initializers.
5. Execute the body of the current constructor.
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Constructor and Initialization
Examples

1 public class Object {
public Object () {}

}

public class Employee extends Object {
private String name;
private double salary = 15000.00;
private Date birthDate;

w N

public Employee (String n, Date DoB)
// implicit super () ;
name = n;
birthDate = DoB;
)
public Employee (String n) {
this(n, null);

}
)

public class Manager extends Employee {
private String department;

O 00 J O Ul b WN K
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public Manager (String n, String d) {
super (n) ;
department = d;

}
J
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Constructor and Initialization Examples

0 Basic initialization
0.1 Allocate memory for the complete Manager object
0.2 Initialize all instance variables to their default values (0 or null)
1 Call constructor: Manager ("Joe Smith", "Sales")
Bind constructor parameters: n="Joe Smith", d="Sales"
No explicit this() call
Call super (n)

1.1
1.
1.

R P W

3.2

1.3.2

1.3.2.2

1.3.2.3
1.3.2.3.1
1.3.2.3.2
1.3.2.3.3
1.3.2.3.4
1.3.2.3.5

Java™ Programming Language
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for Employee (String)

.3.1 Bind constructor parameters: n="Joe Smith"

Call this(n, null) for Employee (String, Date)

.1 Bind constructor parameters: n="Joe Smith", DoB=null
No explicit this() call

Call super () for Object ()

binding necessary

this() call

super () call (Object is the root)

explicit variable initialization for Object
method body to call
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Constructor and Initialization Examples

1.3.2.4 Initialize explicit Employee variables: salary=15000.00;
1.3.2.5 Execute body: name="Joe Smith"; date=null;
1.3.3 - 1.3.4 Steps skipped
1.3.5 Execute body: No body in Employee (String)
1.4 No explicit initializers for Manager
1.5 Execute body: department="Salesg"
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The Object Class

e The Object class is the root of all classes in Java.

e A class declaration with no extends clause implies
extends Object. For example:

public class Employee {

.

1s equivalent to:
public class Employee extends Object (

-
e Two important methods are:

® cquals
e toString
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The equals Method

e The == operator determines If two references are
iIdentical to each other (that is, refer to the same object).

e The equals method determines if objects are equal but
not necessarily identical.

e The Object iImplementation of the equals method
uses the == operator.

e User classes can override the equals method to
Implement a domain-specific test for equality.

e Note: Youshould override the hashCode method if you
override the equals method.
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An equals Example

public class MyDate {
private int day;
private int month;
private int year;

public MyDate (int day, int month, int year) {
this.day = day;
this.month = month;
this.year = year;
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An equals Example

11

12 public boolean equals(Object o) {

13 boolean result = false;

14 if ( (o != null) && (o instanceof MyDate) ) {
15 MyDate d = (MyDate) o;

16 if ( (day == d.day) && (month == d.month)
17 && (year == d.year) ) {

18 result = true;

19 }

20 }

21 return result;

22 }

23

24 public int hashCode () {

25 return (day © month * year);

26 }

27 }
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An equals Example

1 class TestEquals f{

2 public static void main(Stringl[] args) {

3 MyDate datel = new MyDate (14, 3, 1976);

4 MyDate date2 = new MyDate (14, 3, 1976);

5

6 if ( datel == date2 ) {

7 System.out.println("datel is identical to date2");
8 } else {

9 System.out.println("datel is not identical to date2");
10 }

11

12 if ( datel.equals(date2) ) {

13 System.out.println("datel is equal to date2");

14 } else {

15 System.out.println("datel is not equal to date2");
16 }
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An equals Example

17

18 System.out.println("set date2 = datel;");

19 date2 = datel;

20

21 if ( datel == date2 ) {

22 System.out.println("datel is identical to date2");
23 } else {

24 System.out.println("datel is not identical to date2");
25 }

26 }

27 '}

This example generates the following output:

datel is not identical to date2
datel is equal to date2

set date2 = datel;

datel is identical to date2
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The toString Method

The toString method has the following characteristics:

e This method converts an object to a String.
e Use this method during string concatenation.

e Override this method to provide information about a
user-defined object in readable format.

e Use the wrapper class’s toString static method to
convert primitive types to a String.

Java™ Programming Language
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Wrapper Classes

Look at primitive data elements as objects.

Primitive Data Type Wrapper Class
boolean Boolean

byte Byte

char Character
short Short

int Integer

long Long

float Float

double Double

Java™ Programming Language
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Wrapper Classes

An example of a wrapper class is:
int pInt = 420;

Integer wInt = new Integer(pInt); // this is called boxing
int p2 = wint.intValue(); // this is called unboxing

Other methods are:

int x = Integer.valueOf (str) .intValue() ;
int x = Integer.parselnt (str) ;
Java™ Programming Language Module 6, slide 42 of 43
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Autoboxing of Primitive Types

Autoboxing has the following description:

« Conversion of primitive types to the object equivalent
< Wrapper classes not always needed
e Example:

int pInt = 420;
Integer wint = pInt; // this is called autoboxing
int p2 = wint; // this is called autounboxing

e |anguage feature used most often when dealing with
collections

e Wrapped primitives also usable in arithmetic
expressions

« Performance loss when using autoboxing
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Module 7

Advanced Class Features
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Objectives

e Create static variables, methods, and initializers
« Create final classes, methods, and variables

e Create and use enumerated types

= Use the static import statement

e Create abstract classes and methods

e Create and use an interface
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Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Relevance

e How can you create a constant?
e How canyou declare datathat is shared by all instances
of a given class?

e How can you keep a class or method from being
subclassed or overridden?

Java™ Programming Language Module 7, slide 3 of 44
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The static Keyword

e The statickeyword isusedasamodifier on variables,
methods, and nested classes.

e The static keyword declares the attribute or method
IS associated with the class as a whole rather than any
particular instance of that class.

e Thus static members are often called class members,
such as class attributes or class methods.
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Class Attributes

Class attributes are shared among all instances of a class:

Count
+counter : int = 0
-serialNumber : int
«instanceOf)» _ _ g > \«instanceOf»
- ~
cl : Count c2 : Count
serialNumber=1 serialNumber=2
28 public class Count ({
29 private int serialNumber;
30 public static int counter = 0;
31
32 public Count () {
33 counter++;
34 serialNumber = counter;
35 }
36 }
Java™ Programming Language Module 7, slide 5 of 44
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Class Attributes

If the static member Is public:

public class Countl {
private int serialNumber;
public static int counter = 0;
public Countl ()
counter++;
serialNumber = counter;

J
)

It can be accessed from outside the class without an instance:

0o J O Ul & WD K-

1 public class OtherClass f{

2 public void incrementNumber ()
3 Countl.counter++;

4 )

5 )

Java™ Programming Language Module 7, slide 6 of 44
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Class Methods

You can create static methods:

1 public class Count2 {

2 private int serialNumber;

3 private static int counter = 0;
4

5 public static int getTotalCount () {
6 return counter;

7 )

8

9 public Count2()

10 counter++;

11 serialNumber = counter;

12 }

13}
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Class Methods

You can invoke static methods without any instance of the
class to which it belongs:

public class TestCounter {
public static void main(Stringl[] args) {
System.out.println ("Number of counter is "
+ Count2.getTotalCount()) ;
Count2 counter = new Count2 () ;
System.out.println ("Number of counter is "
+ Count2.getTotalCount());

}
J

The output of the TestCounter program is:

W 00 J O Ul i W N R

Number of counter is 0
Number of counter is 1
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Class Methods

Static methods cannot access instance variables:

public class Count3
private int serialNumber;
private static int counter = 0;

public static int getSerialNumber ()
return serialNumber; // COMPILER ERROR!

}

0o J O Ul & WD K-
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Static Initializers

e A class can contain code In a static block that does not
exist within a method body.

e Static block code executes once only, when the class is
loaded.

e Usually, a static block is used to initialize static (class)
attributes.

Java™ Programming Language
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Static Initializers

1 public class Count4d

2 public static int counter;

3 static {

4 counter = Integer.getInteger ("myApp.Count4.counter") .intValue() ;
5 }

6 )

1 public class TestStaticInit (

2 public static void main(Stringl[] args) {

3 System.out.println ("counter = "+ Count4.counter) ;
4 )

5 )

The output of the TestStaticInit program is:

java -DmyApp.Count4.counter=47 TestStaticInit
counter = 47
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The £inal Keyword

e You cannot subclass a £inal class.
e You cannot override a £final method.
e A final variable is a constant.

e You can set a final variable once only, but that
assignment can occur independently of the declaration;
this is called a blank final variable.

« A blank final instance attribute must be set in every
constructor.

« A blank final method variable must be set in the
method body before being used.
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Final Variables

Constants are static final variables.

public class Bank {
private static final double DEFAULT INTEREST RATE = 3.2;
... // more declarations
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Blank Final VVariables

public class Customer

private final long customerID;

public Customer () {
customerID = createlID() ;

public long getID()
return customerlD;
}

private long createID() f{
return ... // generate new ID

// more declarations

Java™ Programming Language
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Old-Style Enumerated Type Idiom

Enumerated types are a common idiom in programming.

1 package cards.domain;

2

3 public class PlayingCard {

4

5 // pseudo enumerated type

6 public static final int SUIT SPADES = 0;
7 public static final int SUIT HEARTS = 1;
8 public static final int SUIT CLUBS = 2;
9 public static final int SUIT DIAMONDS = 3;
10

11 private int suit;

12 private int rank;

13

14 public PlayingCard(int suit, int rank) {
15 this.suit = suit;

16 this.rank = rank;

17 }
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Old-Style Enumerated Type Idiom

22 public String getSuitName ()

23 String name = ““;

24 switch ( suit )

25 case SUIT SPADES:

26 name = “Spades”;
27 break;

28 case SUIT HEARTS:

29 name = “Hearts”;
30 break;

31 case SUIT CLUBS:

32 name = “Clubs”;

33 break;

34 case SUIT DIAMONDS:
35 name = “Diamonds”;
36 break;

37 default:

38 System.err.println(“Invalid suit.”);
39 }

40 return name;

41 }
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Old-Style Enumerated Type Idiom

Old-style idiom Is not type-safe:

1 package cards.tests;

2

3 import cards.domain.PlayingCard;

4

5 public class TestPlayingCard ({

6 public static void main(Stringl[] args) {

7

8 PlayingCard cardl

9 = new PlayingCard (PlayingCard.SUIT SPADES, 2);

10 System.out.println(“*cardl is the “ + cardl.getRank ()
11 + “ of “ + cardl.getSuitName()) ;
12

13 // You can create a playing card with a bogus suit.
14 PlayingCard card2 = new PlayingCard (47, 2);

15 System.out.println(“*card2 is the “ + card2.getRank ()
16 + “ of “ + card2.getSuitName()) ;
17 }

18 |}
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Old-Style Enumerated Type Idiom

This enumerated type idiom has several problems:

< Not type-safe

< NO hamespace

e Brittle character

« Uninformative printed values
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The New Enumerated Type

Now you can create type-safe enumerated types:

package cards.domain;

1

2

3 public enum Suit {
4 SPADES,

5 HEARTS,

6 CLUBS,

7 DIAMONDS

8

S
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The New Enumerated Type

Using enumerated types Is easy:

1 package cards.domain;

2

3 public class PlayingCard {
4

5 private Suit suit;

6 private int rank;

7

8 public PlayingCard(Suit suit, int rank) {
9 this.suit = suit;

10 this.rank = rank;

11 }

12

13 public Suit getSuit() {
14 return suit;

15 }
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The New Enumerated Type

16 public String getSuitName () {

17 String name = ““;

18 switch ( suit )

19 case SPADES:

20 name = “Spades”;
21 break;

22 case HEARTS:

23 name = “Heartg”;
24 break;

25 case CLUBS:

26 name = “Clubs”;

27 break;

28 case DIAMONDS:

29 name = “Diamonds”;
30 break;

31 default:

32 // No need for error checking as the Suit
33 // enum 1is finite.
34 }

35 return name;

36 }
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The New Enumerated Type

Enumerated types are type-safe:

1 package cards.tests;

2

3 import cards.domain.PlayingCard;

4 import cards.domain.Suit;

5

6 public class TestPlayingCard

7 public static void main(Stringl[] args) {

8

9 PlayingCard cardl

10 = new PlayingCard (Suit.SPADES, 2);

11 System.out.println(“cardl is the “ + cardl.getRank ()
12 + “ of “ + cardl.getSuitName()) ;
13

14 // PlayingCard card2 = new PlayingCard (47, 2);

15 // This will not compile.

16 }

17 }
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Advanced Enumerated Types

Enumerated types can have attributes and methods:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

package cards.domain;

public enum Suit {

}

SPADES (“Spades”) ,
HEARTS (“Hearts”),
CLUBS (“Clubs”) ,
DIAMONDS (“Diamonds”) ;

private final String name;

private Suit (String name) {
this.name = name;

}

public String getName () {
return name;

}

Java™ Programming Language
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Advanced Enumerated Types

Public methods on enumerated types are accessible:

1 package cards.tests;

2

3 import cards.domain.PlayingCard;

4 import cards.domain.Suit;

5

6 public class TestPlayingCard

7 public static void main(Stringl[] args) {

8

9 PlayingCard cardl

10 = new PlayingCard (Suit.SPADES, 2);

11 System.out.println(“cardl is the “ + cardl.getRank ()
12 + “ of “ + cardl.getSuit () .getName()) ;
13

14 // NewPlayingCard card2 = new NewPlayingCard (47, 2);
15 // This will not compile.

16 }

17 }
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Static Imports

A static import imports the static members from a class:

import static <pkg list>.<class name>.<member name>;
OR

import static <pkg list>.<class name>.*;

A static import imports members individually or
collectively:

import static cards.domain.Suit.SPADES;
OR

import static cards.domain.Suit.*;

There is no need to qualify the static constants:

PlayingCard cardl = new PlayingCard (SPADES, 2);
Use this feature sparingly.
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Static Imports

An example of a static import is:

1 package cards.tests;

2

3 import cards.domain.PlayingCard;

4 import static cards.domain.Suit.*;

5

6 public class TestPlayingCard

7 public static void main(Stringl[] args) {

8

9 PlayingCard cardl = new PlayingCard (SPADES, 2);

10 System.out.println(“*cardl is the “ + cardl.getRank ()
11 + “ of “ + cardl.getSuit () .getName()) ;
12

13 // NewPlayingCard card2 = new NewPlayingCard (47, 2);
14 // This will not compile.

15 }

16 }
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Abstract Classes

The design of the Shipping system looks like this:

shipping

ShippingMain| «Uses»

domain

Company

O*

reports j

7
e
e

FuelNeedsReport [ «Uses»

fleet

Vehicle

N

Truck

RiverBarge

Java™ Programming Language
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Abstract Classes

Fleet initialization code 1s shown here:;

1 public class ShippingMain

2 public static void main(Stringl[] args) {

3 Company ¢ = new Company () ;

4

5 // populate the company with a fleet of vehicles
6 c.addVehicle ( new Truck (10000.0) );

7 c.addVehicle( new Truck (15000.0) );

8 c.addVehicle( new RiverBarge (500000.0) );

9 c.addvVehicle ( new Truck(9500.0) );

10 c.addVehicle( new RiverBarge (750000.0) ) ;

11

12 FuelNeedsReport report = new FuelNeedsReport (c) ;
13 report .generateText (System.out) ;

14 }

15}
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Abstract Classes

1 public class FuelNeedsReport

2 private Company company;

3

4 public FuelNeedsReport (Company company) {

5 this.company = company;

6 )

7

8 public void generateText (PrintStream output)
9 Vehiclel v;

10 double fuel;

11 double total fuel = 0.0;

12

13 for ( int i = 0; i < company.getFleetSize(); i++ ) {
14 v = company.getVehicle (i) ;

15
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Abstract Classes

16 // Calculate the fuel needed for this trip

17 fuel = v.calcTripDistance() / v.calcFuelEfficency() ;

18

19 output.println("Vehicle " + v.getName() + " needs "

20 + fuel + " liters of fuel.");

21 total fuel += fuel;

22 }

23 output.println("Total fuel needs is " + total fuel + " liters.");
24 }

25 }
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The Solution

An abstract class models a class of objects in which the full
Implementation is not known but is supplied by the concrete

Vehicle
{abstract}
+calcFuelEfficiency() : double
+calcTripDistance() : double
Truck RiverBarge

«constructors» «constructors»
+Truck (maxLoad : double) +RiverBarge (maxLoad : double)
«methods» «methods»
+calcFuelEfficiency() : double +calcFuelEfficiency() : double
+calcTripDistance () : double +calcTripDistance () : double

Java™ Programming Language
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The Solution

The declaration of the vehicle class is:

1 public abstract class Vehicle {

2 public abstract double calcFuelEfficiency() ;
3 public abstract double calcTripDistance() ;
4}

The Truck class must create an implementation:

public class Truck extends Vehicle (
public Truck (double maxLoad) {...}
public double calcFuelEfficiency () {
/* calculate the fuel consumption of a truck at a given load */
)

public double calcTripDistance() {
/* calculate the distance of this trip on highway */
)

)

W 0 J 0 Ul = W DN K-

Java™ Programming Language Module 7, slide 32 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

The Solution

Likewise, the RiverBarge class must create an
Implementation:

public class RiverBarge extends Vehicle (
public RiverBarge (double maxLoad) ...}
public double calcFuelEfficiency () {
/* calculate the fuel efficiency of a river barge */
}

public double calcTripDistance() {
/* calculate the distance of this trip along the river-ways */

}

W 00 J O Ul i WIN R
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Interfaces

« A public interface is a contract between client code and
the class that implements that interface.

e A Javainterface is a formal declaration of such a contract
In which all methods contain no implementation.

< Many unrelated classes can implement the same
Interface.

e A class can implement many unrelated interfaces.
e Syntax of a Java class is as follows:

<modifier> class <name> [extends <superclass>]
[implements <interface> [,<interface>]* ] {
<member declaration>*

}
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The Flyer Example

«interface»

Flyer

+takeOff ()
+land()
+f1y()

7

Airplane

+takeOff ()
+land ()
+f1y ()

public interface Flyer ({
public void takeOff () ;
public void land() ;
public void fly();

}
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The Flyer Example

public class Airplane implements Flyer (
public void takeOff () {
// accelerate until lift-off
// raise landing gear
}
public void land() {
// lower landing gear
// decelerate and lower flaps until touch-down
// apply brakes
}
public void fly() {
// keep those engines running

}
)
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«interface»

Flyer

+takeOff ()
+land()
+f1y()

Airplane

The Flyer Example

Bird

Superman

+takeOff ()
+land ()
+E1ly ()

Java™ Programming Language
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+takeOff ()
+land()
+£1y ()
+buildNest ()
+layEggs ()

+takeOff ()
+land ()
+£1y ()

+leapBuilding ()

+stopBullet ()
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The Flyer Example

Animal
«interface» +eat ()
Flyer Zl
+takeOFff () ‘
Vehicle +land()
A +f1y ()
! Kryptonian
Airplane Bird Superman
+takeOff () +takeOff () +takeOff ()
+land () +land () +land ()
+£1y () +E1y () +£1y ()
+buildNest () +leapBuilding()
+layEggs () +stopBullet ()
+eat () +eat ()

Java™ Programming Language
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The Flyer Example

public class Bird extends Animal implements Flyer (

public void takeOff ()
public void land()
public void fly ()
public void buildNest
public void layEggs ()
public void eat ()

Java™ Programming Language

{

{
{
(0 |
{
{

/*
/*
/*
/*
/*
/*

take-off implementation */
landing implementation * /
fly implementation * /
nest building behavior  */
egg laying behavior */
override eating behavior */
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The Flyer Example

Animal
«interface» +eat ()
Flyer Zl
+takeOff ()

Vehicle +land()

Zk +f1ly()

! Kryptonian

Airplane Bird Superman
+takeOff () +takeOff () +takeOff ()
+land () +land () +land ()
+£1y () +fly () +£1ly ()

T

+buildNest ()
+layEggs ()
+eat ()

+leapBuilding()
+stopBullet ()
+eat ()

SeaPlane Helicopter

Java™ Programming Language
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The Flyer Example

public class Airport (
public static void main(Stringl[] args) {
Airport metropolisAirport = new Airport () ;
Helicopter copter = new Helicopter() ;
SeaPlane sPlane = new SeaPlane() ;

metropolisAirport.givePermissionToLand (copter) ;
metropolisAirport.givePermissionToLand (sPlane) ;

}

private void givePermissionToLand (Flyer f) {
f.land() ;

}
}
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Multiple Interface Example
“Flyer
Vehicle +takeOff ()
A iy

/5

------ RiverBarge Airplane
— +dock () | +takeOff ()
«interface» | +Crulse
Sailer <} +land ()
+E£1y ()
+dock ()
+cruise()

________________________

SeaPlane Helicopter

+dock ()

+cruise ()

Java™ Programming Language
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Multiple Interface Example

public class Harbor {
public static void main(Stringl[] args) {
Harbor bostonHarbor = new Harbor () ;
RiverBarge barge = new RiverBarge() ;
SeaPlane sPlane = new SeaPlane() ;

bostonHarbor.givePermissionToDock (barge) ;
bostonHarbor.givePermissionToDock (sPlane) ;

}

private void givePermissionToDock (Sailer s) {
s.dock () ;
}

}
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Uses of Interfaces

Interface uses include the following:

« Declaring methods that one or more classes are
expected to implement

e Determining an object’s programming interface
without revealing the actual body of the class

e Capturing similarities between unrelated classes
without forcing a class relationship

« Simulating multiple inheritance by declaring a class
that implements several interfaces
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Module 8

Exceptions and Assertions
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Objectives

e Define exceptions

e Use try, catch, and finally statements

e Describe exception categories

e |dentify common exceptions

e Develop programs to handle your own exceptions
« Use assertions

e Distinguish appropriate and inappropriate uses of
assertions

e Enable assertions at runtime

Java™ Programming Language Module 8, slide 2 of 25
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Relevance

« |In most programming languages, how do you resolve
runtime errors?

« |f you make assumptions about the way your code

works, and those assumptions are wrong, what might
happen?

« |s it always necessary or desirable to expend CPU
power testing assertions in production programs?

Java™ Programming Language

Module 8, slide 3 of 25
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Exceptions and Assertions

e EXxceptions handle unexpected situations - Illegal
argument, network failure, or file not found

e Assertions document and test programming
assumptions — This can never be negative here

e Assertion tests can be removed entirely from code at
runtime, so the code is not slowed down at all.

Java™ Programming Language Module 8, slide 4 of 25

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Exceptions

« Conditions that can readily occur in a correct program
are checked exceptions.

These are represented by the Exception class.

e Severe problems that normally are treated as fatal or
situations that probably reflect program bugs are
unchecked exceptions.

Fatal situations are represented by the Error class.

Probable bugs are represented by the
RuntimeException class.

e The APl documentation shows checked exceptions that
can be thrown from a method.
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Exception Example

public class AddArguments {
public static void main(String args([]) {
int sum = 0;
for ( String arg : args ) {
sum += Integer.parselnt (arg) ;
}

System.out.println("Sum = " + sum);

W 00 J O Ul i WIN R

java AddArguments 1 2 3 4
Sum = 10

java AddArguments 1 two 3.0 4

Exception in thread "main" java.lang.NumberFormatException: For input string: "two"
at java.lang.NumberFormatException.forInputString (NumberFormatException.java:48)
at java.lang.Integer.parselnt (Integer.java:447)
at java.lang.Integer.parselnt (Integer.java:497)
at AddArguments.main (AddArguments.java:5)
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The try-catch Statement

1 public class AddArguments2 {

2 public static void main(String args([]) {

3 try {

4 int sum = 0;

5 for ( String arg : args ) {

6 sum += Integer.parselnt (arg) ;

7 }

8 System.out.println("Sum = " + sum);

9 } catch (NumberFormatException nfe) {

10 System.err.println("One of the command-line "
11 + "arguments is not an integer.");
12 }

13 }

14}

java AddArguments2 1 two 3.0 4
One of the command-line arguments is not an integer.

Java™ Programming Language Module 8, slide 7 of 25
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The try-catch Statement

1 public class AddArguments3 {

2 public static void main(String args([]) {

3 int sum = 0;

4 for ( String arg : args ) {

5 try {

6 sum += Integer.parselnt (arg) ;

7 } catch (NumberFormatException nfe) {

8 System.err.println("[" + arg + "] is not an integer"
9 + " and will not be included in the sum.");
10 }

11 }

12 System.out.println("Sum = " + sum);

13 }

14}

java AddArguments3 1 two 3.0 4

[two] is not an integer and will not be included in the sum.
[3.0] is not an integer and will not be included in the sum.
Sum = 5
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The try-catch Statement

A try-catch statement can use multiple catch clauses:

try {
// code that might throw one or more exceptions

} catch (MyException el) {
// code to execute if a MyException exception is thrown

} catch (MyOtherException e2)
// code to execute if a MyOtherException exception is thrown

} catch (Exception e3) {
// code to execute if any other exception is thrown

Java™ Programming Language Module 8, slide 9 of 25
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Call Stack Mechanism

« [fanexception is not handled in the current try-catch
block, it is thrown to the caller of that method.

« |fthe exception gets back to the main method and is not
handled there, the program is terminated abnormally.

Java™ Programming Language Module 8, slide 10 of 25
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The finally Clause

The finally clause defines a block of code that always
executes.

try {
startFaucet () ;

waterLawn () ;

} catch (BrokenPipeException e) {
logProblem(e) ;

} finally {
stopFaucet () ;
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Exception Categories

—— StackOverflowError

___ VirtualMachineError __ | .__.

—— OutOfMemoryError
— Error__ | ___.
| AssertionError
Throwable—
—— ArithmeticException
—— RuntimeException——-----
—— NullPointerException
L— IllegalArgumentException
— Exception —----- I v P
—— SQLException
—— EOFException
L IOException —-----
— FileNotFoundException
Java™ Programming Language Module 8, slide 12 of 25
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Common Exceptions

¢ NullPointerException
e FileNotFoundException
e NumberFormatException
e ArithmeticException

e SecurityException

Java™ Programming Language Module 8, slide 13 of 25
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The Handle or Declare Rule

Use the handle or declare rule as follows:

< Handle the exception by using the
try-catch-finally block.

= Declare that the code causes an exception by using the
throws clause.

void trouble() throws IOException { ... }
void trouble() throws IOException, MyException { ... }

Other Principles

« You do not need to declare runtime exceptions or
errors.

e You can choose to handle runtime exceptions.

Java™ Programming Language Module 8, slide 14 of 25
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Method Overriding and Exceptions

The overriding method can throw:

< No exceptions

e One or more of the exceptions thrown by the
overridden method

< One or more subclasses of the exceptions thrown by the
overridden method

The overriding method cannot throw:

« Additional exceptions not thrown by the overridden
method

e Superclasses of the exceptions thrown by the
overridden method
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Method Overriding and Exceptions

1 public class TestA {

2 public void methodA () throws IOException (
3 // do some file manipulation

4 )

5 )

1 public class TestBl extends TestA

2 public void methodA () throws EOFException {
3 // do some file manipulation

4 )

5 )

1 public class TestB2 extends TestA

2 public void methodA () throws Exception { // WRONG
3 // do some file manipulation

4 )

5 )
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Creating Your Own Exceptions

1 public class ServerTimedOutException extends Exception ({
2 private int port;

3

4 public ServerTimedOutException (String message, int port)
5 super (message) ;

6 this.port = port;

7 }

8

9 public int getPort () {

10 return port;

11 }

12}

Use the getMessage method, inherited from the Exception
class, to get the reason for which the exception was made.

Java™ Programming Language Module 8, slide 17 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Handling a User-Defined Exception

A method can throw a user-defined, checked exception:

1 public void connectMe (String serverName)

2 throws ServerTimedOutException ({

3 boolean successful;

4 int portToConnect = 80;

5

6 successful = open (serverName, portToConnect) ;

-

8 if (! successful ) {

9 throw new ServerTimedOutException("Could not connect",
10 portToConnect) ;
11 }

12}
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Handling a User-Defined Exception

Another method can use a try-catch block to capture
user-defined exceptions:

1 public void findServer()

2 try {

3 connectMe (defaultServer) ;

4 } catch (ServerTimedOutException e)

5 System.out.println ("Server timed out, trying alternative");
6 try {

7 connectMe (alternativeServer) ;

8 } catch (ServerTimedOutException el)

9 System.out.println ("Error: " + el.getMessage() +

10 " connecting to port " + el.getPort()) ;
11 }

12 }

13 }
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Assertions

e Syntax of an assertion is:

assert <boolean expression> ;
assert <boolean expression> : <detail expression> ;

e If <boolean expression>evaluates false, then an
AssertionError IS thrown.

e The second argument is converted to a string and used
as descriptive text in the AssertionError message.
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Recommended Uses of Assertions

Use assertions to document and verify the assumptions and
Internal logic of a single method:

e |nternal invariants
e Control flow invariants
e Postconditions and class invariants

Inappropriate Uses of Assertions

e Do not use assertions to check the parameters of a
public method.

e Do not use methods in the assertion check that can
cause side-effects.
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Internal Invariants

The problem is:

1 if (x > 0) {
2 // do this
3} else {

4 // do that
5

The solution is;

1 if (x > 0) {

2 // do this

3} else {

4 assert ( x == 0 );

5 // do that, unless x is negative

6 }
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Control Flow Invariants

For example:

1  switch (suit) {

2 case Suit.CLUBS: //

3 break;

4 case Suit.DIAMONDS: //

5 break;

6 case Suit.HEARTS: // ...

7 break;

8 case Suit.SPADES: // ...

9 break;

10 default: assert false : "Unknown playing card suit";
11 break;

12}
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Postconditions and Class Invariants

For example:

1 public Object pop()

2 int size = this.getElementCount () ;

3 if (size == 0) {

4 throw new RuntimeException ("Attempt to pop from empty stack") ;
5 }

6

7 Object result = /* code to retrieve the popped element */ ;
8

9 // test the postcondition

10 assert (this.getElementCount() == size - 1);

11

12 return result;

13}
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Controlling Runtime Evaluation of
Assertions

e |fassertion checking is disabled, the code runs as fast as
If the check was never there.

e Assertion checks are disabled by default. Enable
assertions with the following commandes:

java -enableassertions MyProgram
or:
java -ea MyProgram

e Assertion checking can be controlled on class, package,

and package hierarchy bases, see:
docs/guide/language/assert . html
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Module 9

Collections and Generics Framework
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Objectives

Describe the Collections

Describe the general purpose implementations of the
core interfaces in the Collections framework

Examine the Map interface
Examine the legacy collection classes

Create natural and custom ordering by implementing
the Comparable and Comparator interfaces

Use generic collections

Use type parameters in generic classes
Refactor existing non-generic code

Write a program to iterate over a collection
Examine the enhanced for loop

Java™ Programming Language Module 9, slide 2 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

The Collections API

e A collection is a single object managing a group of
objects known as its elements.

e The Collections API contains interfaces that group
objects as one of the following:

e Collection-— A group of objects called elements;
Implementations determine whether there is specific
ordering and whether duplicates are permitted.

e Set — An unordered collection; no duplicates are
permitted.

e List — Anordered collection; duplicates are
permitted.
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The Collections API

<<interface>>
Collection
+add
+remove
+size
+1sEmpty
+contains
+iterator
, <<interface>>
<<interface>> .
Set List
_ +add
_ +remove
o _ +get
<<interface >> +set
HashSet SortedSet +indexOf
A +listIterator
| <7 R
| / N\
/ \
/ \
TreeSet Y \
ArrayList LinkedList

Java™ Programming Language
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Collection Implementations

There are several general purpose implementations of the
core interfaces (Set, List, Deque and Map)

Hash Resizable Balanced Linked List H_ash Tab_le +
Table Array Tree Linked List
Set HashSet TreeSet LinkedHashSet
List ArrayList LinkedList
Deque ArrayDeque LinkedList
Map HashMap TreeMap LinkedHashMap

Java™ Programming Language
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A Set Example

1 import java.util.¥*;

2 public class SetExample

3 public static void main(Stringl[] args) {

4 Set set = new HashSet () ;

5 set.add ("one") ;

6 set.add ("second") ;

7 set.add ("3rd") ;

8 set.add (new Integer(4)) ;

9 set.add (new Float (5.0F)) ;

10 set.add ("second") ; // duplicate, not added
11 set.add (new Integer(4)); // duplicate, not added
12 System.out .println(set) ;

13 }

14}

The output generated from this program is:

[one, second, 5.0, 3rd, 4]

Java™ Programming Language
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1

2

3 public
4 List
5 list.
6 list.
7 list.
8 list.
9 list.
10 list.
11 list.
12

13 }

14}

A List Example

import java.util.*
public class ListExample {

static void main(String[] args)
list = new ArrayList();

add ("one") ;

add ("second") ;

add ("3xrd") ;

add (new Integer(4));

add (new Float (5.0F)) ;

(

add ("second") ; // duplicate,
add (new Integer(4)); // duplicate,
System.out.println(list) ;

is added
is added

The output generated from this program is:

[one, second,

3rd, 4, 5.0, second, 4]

Java™ Programming Language
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The Map Interface

e Maps are sometimes called associative arrays
« A Map object describes mappings from keys to values:
e Duplicate keys are not allowed

e One-to-many mappings from keys to values is not
permitted

e The contents of the Map interface can be viewed and
manipulated as collections

e entrySet — Returns a Set of all the key-value pairs.
e keySet — Returns a Set of all the keys in the map.

e values — Returns a Collection of all values in the
map.

Java™ Programming Language Module 9, slide 8 of 40
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The Map Interface API

<<interface>>

Map
Operations

+get()

+put()

+values()

+entrySet()

+keySetQ

ki > -

{;‘ ;n:leer{;ah?‘ea? Hashtable HashMap
I
TreeMap Properties LinkedHashMap

Java™ Programming Language
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A Map Example

1 import java.util.¥*;

2 public class MapExample

3 public static void main(String args([]) {

4 Map map = new HashMap () ;

5 map.put ("one", "1lst") ;

6 map.put ("second", new Integer(2));

7 map.put ("third", "3rd") ;

8 // Overwrites the previous assignment

9 map.put ("third","III") ;

10 // Returns set view of keys

11 Set setl = map.keySet() ;

12 // Returns Collection view of values

13 Collection collection = map.values() ;

14 // Returns set view of key value mappings
15 Set set2 = map.entrySet () ;

16 System.out.println(setl + "\n" + collection + "\n" + set2);
17 }

18 }

Java™ Programming Language Module 9, slide 10 of 40
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A Map Example

Output generated from the MapExample program:

[second, one, third]
[2, 1st, III]
[second=2, one=1st, third=IIT]

Java™ Programming Language Module 9, slide 11 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



|%%C

Sun Educational Services

Legacy Collection Classes

Collections in the JDK include:

The vector class, which implements the List
Interface.

The stack class, which is a subclass of the Vector class
and supports the push, pop, and peek methods.

The Hashtable class, which implements the Map
Interface.

The Properties class Is an extension of Hashtable
that only uses Strings for keys and values.

Each of these collections has an elements method that
returns an Enumeration object. The Enumeration
Interface is incompatible with, the Iterator interface.

Java™ Programming Language Module 9, slide 12 of 40
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Ordering Collections

The Comparable and Comparator interfaces are useful for
ordering collections:

e The Comparable interface imparts natural ordering to
classes that implement it.

e The Comparator interface specifies order relation. It
can also be used to override natural ordering.

« Both interfaces are useful for sorting collections.
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The Comparable Interface

Imparts natural ordering to classes that implement it:

e Used for sorting

e The compareTo method should be implemented to
make any class comparable:

e int compareTo (Object o) method

e The String, Date, and Integer classes implement the
Comparable interface

« You can sort the List elements containing objects that
Implement the Comparable interface

Java™ Programming Language Module 9, slide 14 of 40
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The Comparable Interface

< While sorting, the List elements follow the natural
ordering of the element types

e Stringelements — Alphabetical order
e Date elements — Chronological order
e Integer elements — Numerical order

Java™ Programming Language
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Example of the Comparable Interface

import java.util.*;
class Student implements Comparable {

String firstName, lastName;
int studentID=0;
double GPA=0.0;
public Student (String firstName, String lastName, int studentID,
double GPA)
if (firstName == null || lastName == null || studentID == 0
|| GPA == 0.0) {throw new IllegalArgumentException/() ;}
this.firstName = firstName;
this.lastName = lastName;
this.studentID = studentID;
this.GPA = GPA;
}

public String firstName() { return firstName; }
public String lastName() { return lastName; }
public int studentID() { return studentID; }
public double GPA() { return GPA; }

Java™ Programming Language Module 9, slide 16 of 40
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19
20
21
22
23
24
25
26
27
28

29 }

Example of the Comparable Interface

// Implement compareTo method.
public int compareTo (Object o)
double f = GPA- ((Student)o) .GPA;
if (£ == 0.0)
return O; // 0 signifies equals
else if (£<0.0)

return -1; // negative value signifies less than or before
else
return 1; // positive value signifies more than or after

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2
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Example of the Comparable Interface

1 import java.util.¥*;

2 public class ComparableTest {

3 public static void main(Stringl[] args) {

4 TreeSet studentSet = new TreeSet () ;

5 studentSet.add (new Student ("Mike", "Hauffmann",101,4.0));
6 studentSet.add (new Student ("John", "Lynn",102,2.8 ));

7 studentSet .add (new Student ("Jim", "Max",103, 3.6));

8 studentSet.add (new Student ("Kelly", "Grant",104,2.3));

9 Object [] studentArray = studentSet.toArray() ;

10 Student s;

11 for (Object obj : studentArray) {

12 s = (Student) obj;

13 System.out.printf ("Name = %s %s ID = %d GPA = %.1f\n",
14 s.firstName (), s.lastName (), s.studentID(), s.GPA());
15 }

16 }

17}

Java™ Programming Language Module 9, slide 18 of 40
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Example of the Comparable Interface

Generated Output:

Name = Kelly Grant ID = 104 GPA = 2.3
Name = John Lynn ID = 102 GPA = 2.8
Name = Jim Max ID = 103 GPA = 3.6

Name = Mike Hauffmann ID = 101 GPA = 4.0
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The Comparator Interface

e Represents an order relation
e Used for sorting

e Enables sorting in an order different from the natural
order

e Used for objects thatdo notimplement the Comparable
Interface

e (Can be passed to a sort method

You need the compare method to implement the Comparator
Interface:

e int compare (Object ol, Object o2) method

Java™ Programming Language Module 9, slide 20 of 40
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Example of the Comparator Interface

1 class Student {

2 String firstName, lastName;

3 int studentID=0;

4 double GPA=0.0;

5 public Student (String firstName, String lastName,
6 int studentID, double GPA) {

7 if (firstName == null || lastName == null || studentID == 0 ||
8 GPA == 0.0) throw new NullPointerException() ;
9 this.firstName = firstName;

10 this.lastName = lastName;

11 this.studentID = studentID;

12 this.GPA = GPA;

13 }

14 public String firstName() { return firstName; }
15 public String lastName() { return lastName; }
16 public int studentID() { return studentID; }

17 public double GPA() { return GPA; }

18 }
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Example of the Comparator Interface

1 import java.util.¥*;

2 public class NameComp implements Comparator

3 public int compare (Object ol, Object o2) {

4 return

5 (((Student)ol) .firstName.compareTo ( ( (Student)o2) .firstName)) ;
6 )

7}

1 import java.util.¥*;

2 public class GradeComp implements Comparator {

3 public int compare (Object ol, Object o2) {

4 if (((Student)ol) .GPA == ((Student)o2) .GPA)

5 return 0;

6 else if (((Student)ol) .GPA < ((Student)o2) .GPA)
7 return -1;

8 else

9 return 1;

10 }

11}
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Example of the Comparator Interface

1 import java.util.¥*;

2 public class ComparatorTest {

3 public static void main(Stringl[] args) {

4 Comparator c¢ = new NameComp () ;

5 TreeSet studentSet = new TreeSet (c) ;

6 studentSet .add (new Student ("Mike", "Hauffmann",101,4.0));
7 studentSet.add (new Student ("John", "Lynn",102,2.8 ));

8 studentSet .add (new Student ("Jim", "Max",103, 3.6));

9 studentSet.add (new Student ("Kelly", "Grant",104,2.3));

10 Object [] studentArray = studentSet.toArray() ;

11 Student s;

12 for (Object obj : studentArray)

13 s = (Student) obj;

14 System.out.println("Name = %s %s ID = %d GPA = %.1f\n",
15 s.firstName (), s.lastName(), s.studentID(), s.GPA());
16 }

17 }

18 }
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Example of the Comparator Interface

Name = Jim Max ID = 0 GPA = 3.6
Name = John Lynn ID = 0 GPA = 2.8
Name = Kelly Grant ID = 0 GPA = 2.3

Name

Mike Hauffmann ID = 0 GPA = 4.0

Java™ Programming Language
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Generics

Generics are described as follows:

e Provide compile-time type safety
e Eliminate the need for casts

< Provide the ability to create compiler-checked
homogeneous collections

Java™ Programming Language Module 9, slide 25 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Generics

Using non-generic collections:

ArraylList list = new ArrayList () ;
list.add (0, new Integer (42)) ;
int total = ((Integer)list.get(0)) .intValue() ;

Using generic collections:

ArrayList<Integer> list = new ArraylList<Integers() ;
list.add (0, new Integer(42)) ;
int total = list.get (0).intValue() ;
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Generic Set Example

1 import java.util.¥*;

2 public class GenSetExample

3 public static void main(Stringl[] args) {
4 Set<String> set = new HashSet<Strings>() ;
5 set.add ("one") ;

6 set.add ("second") ;

7 set.add("3rd") ;

8 // This line generates compile error

9 set.add (new Integer(4)) ;

10 set.add ("second") ;

11 // Duplicate, not added

12 System.out .println(set) ;

13 }

14}
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Generic Map Example

1 import java.util.¥*;

2

3 public class MapPlayerRepository

4 HashMap<String, String> players;

5

6 public MapPlayerRepository () {

7 players = new HashMap<String, String> () ;
8 )

S

10 public String get (String position)

11 String player = players.get (position) ;

12 return player;

13 }

14

15 public void put (String position, String name) {
16 players.put (position, name) ;

17 }
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Generics: Examining Type Parameters

Shows how to use type parameters

Category Non Generic Class Generic Class
Class public class ArrayList extends public class ArraylList<E> extends
declaration AbstractList implements List AbstractList<E> implements List <E>
Constructor public ArrayList public ArrayList<E>
declaration (int capacity) ; (int capacity) ;
Method public void add((Object o) public void add(E o)
declaration
public Object get (int index) public E get (int index)
Variable ArrayList listil; ArrayList <String> listl;
declaration
examples ArrayList list2; ArrayList <Date> list2;
Instance listl = new ArrayList (10); listl= new ArrayList<String> (10);
declaration
examples list2 = new ArrayList (10); list2= new ArrayList<Date> (10);
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Generic Collections API

<<interface>>
Collection<E>

+size():int
+isEmpty():boolean

+iterator():Iterator<E>

+add(element:E):boolean
+remove(0:0bject):boolean

+contains(o:Object):boolean

/.

<<interface==

\

<<interface>>

Set<E> List<E>
+add(index:int, element:E)
+remove(index:int):E
+get(index:int):E

<<intarfacess +set(index:int, element:E):E
HashSet<E> SortedSet<E> | |+indexOf(o:Object):int
) +listlterator():Listlterator<E>
: a s
TreeSet<E> ArrayList<E> LinkedList<E>

Java™ Programming Language
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Wild Card Type Parameters

Account

SavingsAccount

Java™ Programming Language
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The Type-Safety Guarantee

1 public class TestTypeSafety

2

3 public static void main(Stringl[] args) {

4 List<CheckingAccount> lc = new ArrayList<CheckingAccounts() ;
5

6 lc.add (new CheckingAccount ("Fred")); // OK

7 lc.add (new SavingsAccount ("Fred")); // Compile error!

8

9 // therefore...

10 CheckingAccount ca = lc.get(0); // Safe, no cast required
11 }

12}
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7
8

9

10
11
12
13
14
15
16
17
18
19
20

The Invariance Challenge

List<Accounts> 1la;
List<CheckingAccount> lc = new ArrayList<CheckingAccounts> () ;
List<SavingsAccount> ls = new ArraylList<SavingsAccounts () ;

//if the following were possible...
la = 1c;
la.add (new CheckingAccount ("Fred")) ;

//then the following must also be possible...
la = 1s;
la.add (new CheckingAccount ("Fred")) ;

//so. ..
SavingsAccount sa = 1ls.get(0); //aarrgghh!!

In fact, 1a=1c; is illegal, so even though a CheckingAccount
IS an Account, an ArrayList<CheckingAccount> IS Not an
ArrayList<Accounts.
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The Covariance Response

6 public static void printNames (List <? extends Account> lea)
7 for (int i=0; i < lea.size(); i++) {

8 System.out.println(lea.get (i) .getName() ) ;

S

)

10 }

11

12 public static void main(Stringl[] args) {

13 List<CheckingAccount> lc = new ArrayList<CheckingAccounts> () ;
14 List<SavingsAccount> 1ls = new ArrayList<SavingsAccounts () ;
15

16 printNames (1c) ;

17 printNames (1s) ;

18

19 //but. ..

20 List<? extends Object> leo = lc; //OK

21 leo.add (new CheckingAccount ("Fred")) ;//Compile error!

22 }

23}
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Generics: Refactoring Existing Non-
Generic Code

import java.util.¥*;
public class GenericsWarning
public static void main(Stringl[] args) {
List list = new Arraylist();
list.add (0, new Integer (42)) ;
int total = ((Integer)list.get (0).intValue() ;

0o J O Ul & WD K-

}

javac GenericsWarning.java
Note: GenericsWarning.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

javac -Xlint:unchecked GenericsWarning.java
GenericsWarning.java:7: warning: [unchecked] unchecked call to add(int,E)
as a member of the raw type java.util.ArrayList

list.add (0, new Integer(42));

A

1 warning
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lterators

e lteration is the process of retrieving every element in a
collection.

e The basic Iterator interface allows you to scan
forward through any collection.

e A List object supports the ListIterator, which
allows you to scan the list backwards and insert or

modify elements.

List<Student> list = new ArraylList<Students>() ;
// add some elements
Iterator<Student> elements = list.iterator () ;

while (elements.hasNext ())
System.out.println(elements.next ()) ;

}

O Ul b W N
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Generic lterator Interfaces

«interface»

Tterator<E>

+hasNext () : boolean
+next () : E
+remove ()

«interface»
ListIterator<E>
+hasPrevious () : boolean
+previous () : E
+add (element : E)
+set (element : E)
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The Enhanced for Loop

The enhanced for loop has the following characteristics:

« Simplified iteration over collections
e Much shorter, clearer, and safer

e Effective for arrays

e Simpler when using nested loops

e |terator disadvantages removed

Iterators are error prone:

« |terator variables occur three times per loop.
e This provides the opportunity for code to go wrong.
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The Enhanced for Loop

An enhanced for loop can look like the following:

e Using the iterator with a traditional for loop:

public void deleteAll (Collection<NameList> c¢) {
for ( Iterator<NameList> i = c.iterator() ; i.hasNext() ; ){
NameList nl = i.next();
nl.deleteltem() ;

}
}

e [terating using an enhanced for loop in collections:

public void deleteAll (Collection<NameList> c¢) {
for ( NameList nl : c ){
nl.deleteItem() ;

}
}
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The Enhanced for Loop

e Nested enhanced for loops:

List<Subject> subjects=...;
List<Teacher> teachers=...;
List<Course> courselList = ArrayList<Course) () ;
for (Subject subj: subjects)
for (Teacher tchr: teachers) ({
courselList.add (new Course (subj, tchr));

}

00O J O Ul & WD K-

}
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Objectives

< Write a program that uses command-line arguments
and system properties

e Examine the Properties class

« Construct node and processing streams, and use them
appropriately

e Serialize and deserialize objects

e Distinguish readers and writers from streams, and
select appropriately between them
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Command-Line Arguments

e Any Java technology application can use
command-line arguments.

« These string arguments are placed on the command
line to launch the Java interpreter after the class name:

java TestArgs argl arg2 "another arg"

e Each command-line argument is placed in the args
array that is passed to the static main method:

public static void main(Stringl[] args)
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Command-Line Arguments

public class TestArgs (
public static void main(Stringl[] args) {
for ( int i = 0; i < args.length; i++ ) {
System.out.println("args([" + 1 + "] is '" + args[i] + "'");
}
}

< 0 U1 b W DN R

}
Example execution:

java TestArgs arg0 argl "another arg"
args[0] is ’'arg0l’

args[l] is ’'argl’

args[2] is ’another arg’
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System Properties

e System properties are a feature that replaces the
concept of environment variables (which are
platform-specific).

e The System.getProperties method returns a
Properties object.

e The getProperty method returns a String
representing the value of the named property.

e Use the -D option on the command line to include a
new property.
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The Properties Class

e The Propertiesclass implementsa mapping of names
to values (a String-to-String map).

e The propertyNames method returns an Enumeration
of all property names.

e The getProperty method returns a String
representing the value of the named property.

« You can also read and write a properties collection into
a file using 1load and store.
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The Properties Class

import java.util.Properties;
import java.util.Enumeration;

public class TestProperties ({
public static void main(Stringl[] args) {
Properties props = System.getProperties() ;
props.list (System.out) ;

}
J
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The Properties Class

The following is an example test run of this program:

java -DmyProp=theValue TestProperties

The following is the (partial) output:

java.runtime.name=Java (TM) SE Runtime Environment
sun.boot .library.path=C:\jse\jdkl.6.0\jre\bin
java.vm.version=1.6.0-b105

java.vm.vendor=Sun Microsystems Inc.
java.vm.name=Java HotSpot (TM) Client VM
file.encoding.pkg=sun.io

user.country=0US

myProp=theValue
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/0O Stream Fundamentals

e A stream is a flow of data from a source or to a sink.

e A source stream initiates the flow of data, also called an
Input stream.

e A sink stream terminates the flow of data, also called an
output stream.

e Sources and sinks are both node streams.

« Types of node streams are files, memory, and pipes
between threads or processes.
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Fundamental Stream Classes

Stream Byte Streams Character Streams
Source streams InputStream Reader
Sink streams OutputStream Writer
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Data Within Streams

e Java technology supports two types of streams:
character and byte.

« |nput and output of character data is handled by
readers and writers.

e Input and output of byte data is handled by input
streams and output streams:

< Normally, the term stream refers to a byte stream.

e The terms reader and writer refer to character
streams.
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The InputStream Methods

e The three basic read methods are:

int read()
int read(byte[] buffer)
int read(byte[] buffer, int offset, int length)

e QOther methods include:

void close ()

int available ()

long skip(long n)
boolean markSupported ()
void mark (int readlimit)
void reset ()
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The OutputStream Methods

e The three basic write methods are:

void write (int c)
void write (byte[] buffer)
void write(byte[] buffer, int offset, int length)

e QOther methods include:

void close ()
void flush/()
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The Reader Methods

e The three basic read methods are:

int read()
int read(char[] cbuf)
int read(char[] cbuf, int offset, int length)

e QOther methods include:

void close()

boolean ready ()

long skip(long n)

boolean markSupported ()

void mark (int readAheadLimit)
void reset ()
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The Writer Methods

e The basic write methods are:

void write(int c)

void write(char[] cbuf)

void write(char[] cbuf, int offset, int length)
void write(String string)

void write(String string, int offset, int length)

e (Other methods include:;

void close()
void flush()
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Node Streams

Type Character Streams Byte Streams

Eile FileReader FileInputStream
FileWriter FileOutputStream

Memory: CharArrayReader ByteArrayInputStream

array CharArrayWriter ByteArrayOutputStream

Memory: StringReader N/A

string StringWriter

Pipe PipedReader PipedInputStream

P PipedWriter PipedOutputStream

Java™ Programming Language
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A Simple Example

This program performs a copy file operation using a manual
buffer:

java TestNodeStreams filel file2

1 import java.io.*;

2 public class TestNodeStreams {

3 public static void main(Stringl[] args) {

4 try {

5 FileReader input = new FileReader (args[0]) ;
6 try {

7 FileWriter output = new FileWriter (args[l]) ;
8 try {

9 char[] buffer = new char([128];

10 int charsRead;

11

12 // read the first buffer

13 charsRead = input.read(buffer) ;

14 while ( charsRead != -1 ) {

15 // write buffer to the output file
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A Simple Example

output.write(buffer, 0, charsRead) ;

// read the next buffer
charsRead = input.read(buffer) ;

}

} finally {
output.close() ; }
} finally {
input.close() ; }

} catch (IOException e) {

e.printStackTrace () ;

Java™ Programming Language
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Buffered Streams

This program performs a copy file operation using a built-in
buffer:

java TestBufferedStreams filel file2

1 import java.io.*;

2 public class TestBufferedStreams

3 public static void main(String[] args) {

4 try {

5 FileReader input = new FileReader (args[0]) ;

6 BufferedReader buflInput = new BufferedReader (input) ;
7 try {

8 FileWriter output = new FileWriter (args|[l]) ;

9 BufferedWriter bufOutput= new BufferedWriter (output) ;
10 try {

11 String line;

12 // read the first line

13 line = bufInput.readLine() ;

14 while ( line != null ) {

15 // write the line out to the output file
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Buffered Streams

16 bufOutput.write(line, 0, line.length()) ;
17 bufOutput .newLine () ;

18 // read the next line

19 line = bufInput.readLine() ;
20 }

21 } finally {

22 bufOutput.close() ;

23 }

24 } finally {

25 bufInput.close() ;

26 }

27 } catch (IOException e)

28 e.printStackTrace() ;

29 }

30 }

31}

32

33
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/O Stream Chalining

Input Stream Chain

Data Source | — — —@

FileInputStream

BufferedInputStream
DataInputStream

Output Stream Chain

—> — — - Data Sink

FileOutputStream

BufferedOutputStream
DataOutputStream
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Processing Streams

Type Character Streams Byte Streams

Buffering BufferedReader BufferedInputStream
BufferedWriter BufferedOutputStream

Filtering FilterReader FilterInputStream
FilterWriter FilterOutputStream

Converting InputStreamReader

between bytes  OutputStreamWriter

and character

Performing ObjectInputStream

object ObjectOutputStream

serialization

Java™ Programming Language
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Processing Streams

Type Character Streams Byte Streams
Performing data DataInputStream
conversion DataOutputStream
Counting LineNumberReader LineNumberInputStream
Peeking ahead  PushbackReader PushbackInputStream
Printing PrintWriter PrintStream

Java™ Programming Language Module 10, slide 23 of 35
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The InputStream Class Hierarchy

FileInputStream
ObjectInputStream
PipedInputStream

DataInputStream

InputStream SequencelInputStream

PushbackInputStream
FilterInputStream

BufferedInputStream
StringBufferInputStream

LineNumberInputStream
ByteArrayInputStream
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The OutputStream Class Hierarchy

FileOutputStream

ObjectOutputStream
DataOutputStream

OutputStream FilterOutputStream<<j BufferedOutputStream

PrintStream

PipedOutputStream

ByteArrayOutputStream
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The ObjectInputStreamand The
ObjectOutputStream Classes

e TheJava API provides a standard mechanism (called object
serialization) that completely automates the process of
writing and reading objects from streams.

< \When writing an object, the object input stream writes the
class name, followed by a description of the data members
of the class, in the order they appear in the stream, followed
by the values for all the fields on that object.

< \When reading an object, the object output stream reads the
name of the class and the description of the class to match
against the class in memory, and it reads the values from the
stream to populate a newly allocation instance of that class.

= Persistent storage of objects can be accomplished if files (or
other persistent storage) are used as streams.
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Input Chaining Combinations: A Review

System.in ‘ byte , ' byte ,

(InputStream) ObjectinputStream |f—p

readObject():0bject

FilelnputStream
: ©E)

—_— DatalnputStream

socket.getinputStream

readInt():int
ByteArrayInputStream
\:yte

readDouble():double
PipedInputStream InputStreamReader

readUTF():5tring
read() :byte
read(byte[])

FileReader

- BufferedReader >

PipedinputStream
readLine():String

read({):char
read(char[])
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Output Chaining Combinations: A Review

PrintStream
System.out FileOutputStream
println(5tring)
byte ) | byte socket.getOutputStream
—»| ObjectOutputStream
writeObject(Object) ByteArrayOutputStream
oyte ) ((bvte
—»| DataOutputStream PipedOutputStream
—
= writeInt{int) )
m writeDouble(double? wr}te{byte)
writeUTF(String) write(byte[])
byte
OutputStreamWriter
FileWriter
——— BufferedWriter -
. ” char char
write(String) CharArrayWriter

Java™ Programming Language
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Serialization

« Serialization is a mechanism for saving the objects as a
sequence of bytes and rebuilding them later when
needed.

< When an objectis serialized, only the fields of the object
are preserved

< When a field references an object, the fields of the
referenced object are also serialized

e Some object classes are not serializable because their
fields represent transient operating system-specific
Information.
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The SerializeDate Class

1 import java.io.¥*;

2 import java.util.Date;

3

4  public class SerializeDate {

5

6 SerializeDate () {

7 Date d = new Date () ;

8

9 try {

10 FileOutputStream f =

11 new FileOutputStream ("date.ser");
12 ObjectOutputStream s =

13 new ObjectOutputStream (f);
14 s.writeObject (d);

15 s.close ();

16 } catch (IOException e)

17 e.printStackTrace () ;

18 }

19 }

Java™ Programming Language Module 10, slide 30 of 35
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The SerializeDate Class

20

21 public static void main (String args[]) {

22 new SerializeDate() ;

23 }

24 }

Java™ Programming Language Module 10, slide 31 of 35
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The DeSerializeDate Class

1 import java.io.¥*;

2 import java.util.Date;

3

4  public class DeSerializeDate

5

6 DeSerializeDate () f{

7 Date d = null;

8

9 try {

10 FileInputStream f =

11 new FileInputStream ("date.ser");
12 ObjectInputStream s =

13 new ObjectInputStream (f);
14 d = (Date) s.readObject ();

15 s.close ();

16 } catch (Exception e)

17 e.printStackTrace () ;

18 }

Java™ Programming Language Module 10, slide 32 of 35
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The DeSerializeDate Class

19

20 System.out.println(

21 "Deserialized Date object from date.ser");
22 System.out.println ("Date: "+d) ;

23 }

24

25 public static void main (String args([]) {

26 new DeSerializeDate () ;

27 }

28 }

Java™ Programming Language Module 10, slide 33 of 35
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The Reader Class Hierarchy

BufferedReader LineNumberReader
CharArrayReader
StringReader

Reader —
InputStreamReader <j———————FileReader
PipedReader
FilterReader <j———————PushbackReader
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The writer Class Hierarchy

BufferedWriter

CharArrayWriter

StringWriter

Writer OutputStreamWriter <j———————Fi1eWriter

PrintWriter

PipedWriter

FilterWriter
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Module 11

Console I/O and File I/0
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Objectives

e Read data from the console
e \Write data to the console
e Describe files and file 1/0

Java™ Programming Language Module 11, slide 2 of 17
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Console I/0

e The variable system.out enables you to write to
standard output.

System.out IS an object of type PrintStream.

e The variable System. in enables you to read from
standard input.

System.in IS an object of type InputStream.

e The variable System.err enables you to write to
standard error.

System.err IS an object of type PrintStream

Java™ Programming Language Module 11, slide 3 of 17
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Writing to Standard Output

e The println methods print the argument and a
newline character (\n).

e The print methods print the argument without a
newline character.

e The print and println methods are overloaded for
most primitive types (boolean, char, int, long,
float, and double) and for char[], Object, and
String.

e The print (Object) and println (Object) methods
call the toString method on the argument.

Java™ Programming Language Module 11, slide 4 of 17
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Reading From Standard Input

1 import java.io.¥*;

2

3 public class KeyboardInput (

4 public static void main (String args(]) {

5 String s;

6 // Create a buffered reader to read

7 // each line from the keyboard.

8 InputStreamReader ir

9 = new InputStreamReader (System.in) ;

10 BufferedReader in = new BufferedReader (ir) ;

11

12 System.out.println ("Unix: Type ctrl-d to exit." +
13 "\nWindows: Type ctrl-z to exit");

Java™ Programming Language Module 11, slide 5 of 17
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Reading From Standard Input

14 try {

15 // Read each input line and echo it to the screen.
16 s = in.readLine() ;

17 while ( s != null ) {

18 System.out.println("Read: " + g);

19 s = in.readLine() ;

20 }

21

22 // Close the buffered reader.

23 in.close() ;

24 } catch (IOException e) { // Catch any IO exceptions.
25 e.printStackTrace() ;

26 }

27 }

28 |}

Java™ Programming Language Module 11, slide 6 of 17
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Simple Formatted Output

e You can use the formatting functionality as follows:
out.printf (“name count\n”) ;
String s = String.format (“%s %5d%n”, user, total);
e Common formatting codes are listed in this table.
Code Description
$s Formats the argument as a string, usually by calling the
toString method on the object.
$d %o %x|Formats an integer, as a decimal, octal, or hexadecimal value.
$f %g Formats a floating point number. The g code uses scientific
notation.
$n Inserts a newline character to the string or stream.
%% Inserts the % character to the string or stream.

Java™ Programming Language
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Simple Formatted Input

e The Scanner class provides a formatted input function.

e A Scanner class can be used with console input
streams as well as file or network streams.

e You can read console input as follows:

import java.io.*;

import java.util.Scanner;

public class ScanTest {

public static void main(String [] args) {

Scanner s = new Scanner (System.in) ;
String param = s.next () ;
System.out.println("the param 1" + param) ;
int value = s.nextInt () ;
System.out.println ("second param" + wvalue) ;
s.close() ;

coO J 0o Ul b WDN R

H R P W
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——
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Files and File I/O

The java. io package enables you to do the following:

e Create File objects
e Manipulate File objects
< Read and write to file streams

Java™ Programming Language Module 11, slide 9 of 17
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Creating a New File Object

The File class provides several utilities:

e File myFile;

e myFile = new File("myfile.txt");

e myFile = new File("MyDocs", "myfile.txt");
Directories are treated like files in the Java programming

language. You can create a File object that represents a
directory and then use it to identify other files, for example:

File myDir = new File ("MyDocs") ;
myFile = new File (myDir, "myfile.txt");

Java™ Programming Language Module 11, slide 10 of 17
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The File Tests and Utllities

e File information:

String getName ()

String getPath ()

String getAbsolutePath ()
String getParent ()

long lastModified()

long length()

File modification:

boolean renameTo (File newName)
boolean delete()

Directory utilities:

boolean mkdir ()
String[] list()

Java™ Programming Language
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The File Tests and Utllities

e File tests:

boolean
boolean
boolean
boolean
boolean
boolean
boolean

Java™ Programming Language

exists ()
canWrite ()
canRead ()
isFile ()
isDirectory ()
isAbsolute () ;
is Hidden() ;
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File Stream |I/O

e For file input:
e Use the FileReader class to read characters.

e Use the BufferedReader class to use the readLine
method.

e For file output:
e Use the FileWriter class to write characters.

e Use the PrintWriter class to use the print and
println methods.
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File Input Example

A file input example is:

1 import java.io.*;

2 public class ReadFile {

3 public static void main (String[] args) {
4 // Create file

5 File file = new File(args|[0]) ;

6

7 try {

8 // Create a buffered reader

9 // to read each line from a file.

10 BufferedReader in

11 = new BufferedReader (new FileReader (file)) ;
12 String s;

13

Java™ Programming Language Module 11, slide 14 of 17
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Printing a File

14 // Read each line from the file and echo it to the screen.
15 s = in.readLine() ;

16 while ( s != null ) {

17 System.out.println("Read: " + g);

18 S = in.readLine() ;

19 }

20 // Close the buffered reader

21 in.close() ;

22

23 } catch (FileNotFoundException el)

24 // If this file does not exist

25 System.err.println("File not found: " + file);
26

27 } catch (IOException e2) {

28 // Catch any other IO exceptions.

29 e2.printStackTrace () ;

30 }

31 }

32}
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File Output Example

1 import java.io.¥*;

2

3 public class WriteFile {

4 public static void main (Stringl[] args) {

5 // Create file

6 File file = new File(args[0]) ;

-

8 try {

9 // Create a buffered reader to read each line from standard in.
10 InputStreamReader isr

11 = new InputStreamReader (System.in) ;

12 BufferedReader in

13 = new BufferedReader (isr) ;

14 // Create a print writer on this file.

15 PrintWriter out

16 = new PrintWriter (new FileWriter (file)) ;
17 String s;
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File Output Example

18

19 System.out.print ("Enter file text. ");

20 System.out.println (" [Type ctrl-d to stop.]");

21

22 // Read each input line and echo it to the screen.
23 while ((s = in.readLine()) != null) {

24 out.println(s) ;

25 }

26

27 // Close the buffered reader and the file print writer.
28 in.close() ;

29 out.close() ;

30

31 } catch (IOException e) {

32 // Catch any IO exceptions.

33 e.printStackTrace () ;

34 }

35 }

36 }
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Module 12

Building Java GUIs Using the Swing APl
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Objectives

e Describe the JFC Swing technology
e Define Swing
« |dentify the Swing packages

e Describe the GUI building blocks: containers,
components, and layout managers

e Examine top-level, general-purpose, and special-
purpose properties of container

e Examine components

e Examine layout managers

e Describe the Swing single-threaded model
e Build a GUI using Swing components

Java™ Programming Language Module 12, slide 2 of 35
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What Are the Java Foundation Classes
(JFC)?

Java Foundation Classes are a set of Graphical User Interface
(GUI) support packages, including:

e Abstract Window Toolkit (AWT)

e The Swing component set

e 2D graphics

e Pluggable look-and-feel

e Accessibility

e Drag-and-drop

e Internationalization

Java™ Programming Language Module 12, slide 3 of 35
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What Is Swing?

e An enhanced GUI component set

= Provides replacement components for those in the
original AWT

e Has special features, such as a pluggable look-and feel

Java™ Programming Language Module 12, slide 4 of 35
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Swing Architecture

e Has its roots in the
Model-View-Controller @ ’@
(MVC) architecture

/

e The Swing components
follow Separable Model
Architecture Component

Ul
_ _ _ | Manager

Java™ Programming Language Module 12, slide 5 of 35
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Swing Packages

Package Name

javax.
javax.
javax.

javax.

javax.
javax.
javax.
javax.

javax.

swing

swing.
swing.

swing.

swing.
swing.
swing.
swing.

swing.

border
event

undo

plaf

plaf .basic
plaf.metal
plaf.multi
plaf.synth

Java™ Programming Language
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Package Name

javax.
javax.
javax.

javax.

javax.
javax.
javax.
javax.

javax.

swing.
swing.
swing.

swing.

swing.
swing.
swing.
swing.

swing.

colorchooser
filechooser
table

tree

text

text.html
text.html .parser
text.rtf

undo
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Examining the Composition of a Java
Technology GUI

A Swing API-based GUI is composed of the following
elements:

e Containers — Are on top of the GUI containment
hierarchy.

e Components—Contain all the GUI components that are
derived from the JComponent class.

e Layout Managers — Are responsible for laying out
components in a container.

Java™ Programming Language Module 12, slide 7 of 35
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Examining the Composition of a Java

Java™ Programming Language

Technology GUI

Components Container

s Design Preview [NewJFrame]

Information

Sex ) Male () Female
Dake OF Birth 01w 1w 1930
MDD

Layout Managers
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Swing Containers

Swing containers can be classified into three main categories:

e Top-level containers:
e JFrame, JWindow, and JDialog
= General-purpose containers:

e JPanel, JScrollPane,JToolBar,JSplitPane, and
JTabbedPane

e Special-purpose containers:

e JInternalFrame and JLayeredPane

Java™ Programming Language Module 12, slide 9 of 35
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Top-Level Containers

Component
i
Container
N
Panel Window
A
Bpplet Frame Dialog
I i }
JhApplet JFT ame JDialog THindow
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Swing Components

Swing components can be broadly classified as:

e Buttons

e Text components

« Uneditable information display components
e Menus

e Formatted display components

e Other basic controls

Java™ Programming Language Module 12, slide 11 of 35
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Swing Component Hierarchy

java.awt.Container

Jjavax. swing . JComponent

JTexthrea
JTextField ——JFasswordFisld

JEd1torFans

JText Componsnt

2betractBPuttcn

JPanel JToggleButton J -C'he-.T_'kE.q:u-:
JComboBox JButkton _J'Ran:ll-::lE-ut ton
JTLakel JMeniltem

JLayeredPans —

JList JRadiocBut tonMenuItem
JTooclBar JCheckBoxMenuItem
JHenuBar JMenu

JEPopupMenu .

JPane1

JScrollBar

JScroll Pane

J5lider

JTakl=

JSeparator

JTres

JProqressBar

JRootPans

JSplitPane

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 12, slide 12 of 35



@ Sun Educational Services

Text Components

Swing text components can be broadly divided into three
categories.

e Textcontrols—JTextField, JPasswordField (for user
Input)

e Plaintextareas— JTextArea (displays text in plain text,
also for multi-line user input

e Styled text areas — JEditorPane, JTextPane (displays
formatted text)
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Swing Component Properties

Common component properties:

< All the Swing components share some common
properties because they all extend JComponent.

Component-specific properties:

e Each component defines more specific properties.

Java™ Programming Language Module 12, slide 14 of 35
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Common Component Properties

Property Methods
Border Border getBorder ()
void setBorder (Border b)
Background void setBackground (Color bg)
and foreground void setForeground (Color bg)
color
Font void setFont (Font f)
Opaque void setOpaque (boolean isOpaque)

Maximum and void setMaximumSize (Dimension d)
minimum size void setMinimumSize (Dimension d)

Alignment void setAlignmentX (float ax)
void setAlignmentY (float ay)

Preferred size  void setPreferredSize (Dimension ps)
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Component-Specific Properties

The following shows properties specific to JComboRox.

Properties Methods

Maximum row count void setMaximumRowCount (int count)
Model void setModal (ComboBoxModel clbm)
Selected index int getSelectedIndex ()

Selected Item Object getSelectedItem()

Item count int getItemCount ()

Renderer void setRenderer (ListCellRenderer ar)
Editable void setEditable (boolean flag)
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Layout Managers

e Handle problems caused by:

e GUI resizing by user

« Operating system differences in fonts

e | ocale-specific text layout requirements
e Layout manager classes:

e BorderLayout

e FlowLayout

¢ BoxLayout

e CardLayout

e GridLayout

e GridBagLayout

Java™ Programming Language Module 12, slide 17 of 35
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The BorderLayout Manager

The BorderLayout manager places components in top,
bottom, left, right and center locations.

2 Borde rLayoutDemo

Button 1
Button 3 Button 2 Button 5
Button 4
Java™ Programming Language Module 12, slide 18 of 35
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BorderLayout Example

1 import java.awt.*;

2 import javax.swing.*;

3

4  public class BorderExample (

5 private JFrame f;

6 private JButton bn, bs, bw, be, bc;
7

8 public BorderExample () {

9 f = new JFrame ("Border Layout") ;
10 bn = new JButton("Button 1") ;

11 bc = new JButton("Button 2") ;

12 bw = new JButton ("Button 3") ;

13 bs = new JButton("Button 4") ;

14 be = new JButton("Button 5") ;

15 }

16

Java™ Programming Language Module 12, slide 19 of 35
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BorderLayout Example

17 public void launchFrame () {

18 f.add (bn, BorderLayout .NORTH) ;

19 f.add (bs, BorderLayout.SOUTH) ;

20 f.add (bw, BorderLayout.WEST) ;

21 f.add (be, BorderLayout.EAST) ;

22 f.add (bc, BorderLayout.CENTER) ;

23 f.setSize (400,200) ;

24 f.setVisible (true) ;

25 }

26

27 public static void main(String args([]) {
28 BorderExample guiWindow2 = new BorderExample () ;
29 guiWindow?2 . launchFrame () ;

30 }

31}

32
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The FlowLayout Manager

The FlowLayout manager places components in a row, and if
the row fills, components are placed in the next row.

o F lowl_ayoutDemo

Button 1

Button 2

Button 3

Button 4

Button 5

Java™ Programming Language
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FlowLayout Example

1 import javax.swing.*;

2 import java.awt.¥*;

3

4  public class LayoutExample

5 private JFrame f;

6 private JButton bl;

7 private JButton b2;

8 private JButton b3;

9 private JButton b4;

10 private JButton b5;

11

12 public LayoutExample () {

13 f = new JFrame ("GUI example") ;
14 bl = new JButton("Button 1");
15 b2 = new JButton("Button 2") ;
16 b3 = new JButton("Button 3") ;
17 b4 = new JButton("Button 4") ;
18 b5 = new JButton("Button 5") ;
19 }
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

FlowLayout Example

public void launchFrame () {

f.
.add (bl) ;
.add (b2)
.add (b3)
.add (b4) ;
.add (b5)
.pack () ;
.setVisible (true) ;

FHh Fh Fh Fh Fh Fh Fh

}

setLayout (new FlowLayout ()) ;

.
I
.

l4

4

public static void main(String args(]) {

LayoutExample guiWindow = new LayoutExample () ;

guiWindow. launchFrame () ;

}

} // end of LayoutExample class

Java™ Programming Language
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The BoxLayout Manager

The BoxLayout manager adds components from left to right,
and from top to bottom in a single row of column.

= Boxl ayoutDemo E|@|E|
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The CardLayout Manager

The CardLayout manager places the components in different
cards. Cards are usually controlled by a combo box.

Z Car dLayoutDemo

Button 1,2 3

Button 1

Button 2

Button 3

Button 4 5

Button 4

Java™ Programming Language
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The GridLayout Manager

The GridLayout manager places components in rows and
columns in the form of a grid.

o GridLayoutDemo Z E| [$__<|
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GridLayout Example

1 import java.awt.*;

2 import javax.swing.*;

3

4  public class GridExample {

5 private JFrame f;

6 private JButton bl, b2, b3, b4, b5;
7

8 public GridExample ()

9 f = new JFrame ("Grid Example") ;
10 bl = new JButton("Button 1") ;
11 b2 = new JButton("Button 2") ;
12 b3 = new JButton ("Button 3");
13 b4 = new JButton("Button 4") ;
14 b5 = new JButton("Button 5") ;
15 }

16
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GridLayout Example

17 public void launchFrame ()

18 f.setLayout (new GridLayout (3,2)) ;

19

20 f.add (b1) ;

21 f.add (b2) ;

22 f.add (b3) ;

23 f.add (b4) ;

24 f.add (b5) ;

25

26 f.pack() ;

27 f.setVisible (true) ;

28 }

29

30 public static void main(String args([]) {
31 GridExample grid = new GridExample () ;
32 grid.launchFrame () ;

33 }

34}
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The GridBagLayout Manager

The GridBagLayout manager arranges components in rows
and columns, similar to a grid layout, but provides a wide
variety of options for resizing and positioning the
components.

- GridBagl ayoutDemo [Z| [E”g

Button 1 Bution 2

Buttion 3 Bution 4

‘ Button 5
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GUI Construction

e Programmatic
e GUI builder tool
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Programmatic Construction

import javax.swing.*;
public class HelloWorldSwing
private static void createAndShowGUI () {
JFrame frame = new JFrame ("HelloWorldSwing") ;
//Set up the window.
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
JLabel label = new JLabel ("Hello World") ;
// Add Label
frame.add (label) ;
frame.setSize (300,200) ;
// Display Window
frame.setVisible (true) ; }
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Programmatic Construction

14 public static void main(String[] args) f{

15 javax.swing.SwingUtilities.invokeLater (new Runnable() {
16 //Schedule for the event-dispatching thread:

17 //creating, showing this app's GUI.

18 public void run() {createAndShowGUI () ;}

19 1) ;

20 }

21}
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Programmatic Construction

The output generated from the program

JFrame

Frame Title

£ HelloWorldSwing

JLabel

ello World

BorderLayout
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Key Methods

Methods for setting up the JFrame and adding JLabel.:

e setDefaultCloseOperationJFrame.EXIT ON CLOSE)
—Creates the program to exit when the close button is
clicked.

e cetVigible (true)-— Makes the JFrame Visible.

e add(label)- JLabel Is added to the content pane not
to the JFrame directly.
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Key Methods

e Tasks:

« Executing GUI application code, such as rendering
e Handling GUI events

e Handling time consuming (background) processes
e The SswingUtilities class:

e SwingUtilites.invokelater (new Runnable())

Java™ Programming Language
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Module 13

Handling GUI-Generated Events
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Objectives

« Define events and event handling

e Examine the Java SE event model

e Describe GUI behavior

e Determine the user action that originated an event
e Develop event listeners

e Describe concurrency in Swing-based GUIs and
describe the features of the SwingWorker class

Java™ Programming Language Module 13, slide 2 of 24
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What Is an Event?

e Events — Objects that describe what happened
e Event sources — The generator of an event

e Event handlers — A method that receives an event
object, deciphers it, and processes the user’s interaction

I:l JFrame |:| I

JPanel The user clicks on the button

ActionEvent

Some Event Handler
actionPerformed (ActionEvent e) {

)
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Delegation Model

e An event can be sent to many event handlers.

I:l JFrame I:I I

JPanel The user clicks on the button

One Event Handler
actionPerformed (ActionEvent e)
o

ActionEvent }

[~ Another Event Handler

actionPerformed (ActionEvent e)

)

« Event handlers register with components when they
are interested in events generated by that component.
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Delegation Model

e Client objects (handlers) register with a GUI
component that they want to observe.

e GUI components trigger only the handlers for the type
of event that has occurred.

e Most components can trigger more than one type of
event.

e The delegation model distributes the work among
multiple classes.
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A Listener Example

1 import java.awt.*;

2 import javax.swing.*;

3 public class TestButton

4 private JFrame £f;

5 private JButton b;

6

7 public TestButton() {

8 f = new JFrame ("Test") ;

9 b = new JButton("Press Me!") ;

10 b.setActionCommand ("ButtonPressed") ;
11 }

12

13 public void launchFrame () {

14 b.addActionListener (new ButtonHandler());
15 f.add (b, BorderLayout .CENTER) ;

16 f.pack() ;

17 f.setVisible (true) ;

18 }
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A Listener Example

19

20 public static void main(String args([]) {
21 TestButton guiApp = new TestButton() ;
22 guilpp.launchFrame () ;

23 }

24 }

Code for the event listener looks like the following:

import java.awt.event.¥*;

public class ButtonHandler implements ActionListener (
public void actionPerformed (ActionEvent e) {
System.out.println ("Action occurred") ;
System.out.println ("Button’s command is: "
+ e.getActionCommand()) ;

W 00 J O Ul i W N R
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Event Categories

java.awt .event

ActionEvent

AdjustmentEvent

FocusEvent

ComponentEvent

InputEvent

KeyEvent

TtemEvent

ContainerEvent

TextEvent

java.util.EventObject
Java.awt .AWTEvent

WindowEvent

MouseEvent

Java™ Programming Language
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Method Categories and Interfaces

Category Interface Name Methods

Action ActionlListener actionPerformed (ActionEvent)

Item ITtemListener itemStateChanged (ItemEvent)

Mouse Mouselistener mousePressed (MouseEvent)
mouseReleased (MouseEvent)
mouseEntered (MouseEvent)
mouseExited (MouseEvent)
mouseClicked (MouseEvent)

Mouse MouseMotionListener mouseDragged (MouseEvent)

motion mouseMoved (MouseEvent)

Key KeyListener keyPressed (KeyEvent)

keyReleased (KeyEvent)
keyTyped (KeyEvent)

Java™ Programming Language
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Method Categories and Interfaces

Category Interface Name Methods

Focus FocusListener focusGained (FocusEvent)
focusLost (FocusEvent)

Adjustment AdjustmentListener  adjustmentValueChanged
(AdjustmentEvent)

Component ComponentListener componentMoved (ComponentEvent)
componentHidden (ComponentEvent)
componentResized (ComponentEvent)
componentShown (ComponentEvent)
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Method Categories and Interfaces

Category Interface Name Methods

Window WindowListener windowClosing (WindowEvent)
windowOpened (WindowEvent)
windowIconified (WindowEvent)
windowDeiconified (WindowEvent)
windowClosed (WindowEvent)
windowActivated (WindowEvent)
windowDeactivated (WindowEvent)

Container ContainerListener componentAdded (ContainerEvent)
componentRemoved
(ContainerEvent)

Window WindowStateListener windowStateChanged (WindowEvent e)
State

Window WindowFocusListener windowGainedFocus (WindowEvent e)
focus windowLostFocus (WindowEvent e)
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Method Categories and Interfaces

Category Interface Name Methods

Mouse MouseWheellistener mouseWheelMoved

wheel (MouseWheelEvent e)

Input InputMethodListener caretPositionChanged

methods (InputMethodEvent e)
inputMethodTextChnaged
(InputMethodEvent e)

Hierarchy HierarchyListener hierarchyChanged
(HierarchyEvent e)

Hierarchy HierarchyBoundsList ancestorMoved (HierarchyEvent e)

bounds ener ancestorResized (HierarchyEvent e)

AWT AWTEventListener eventDispatched (AWTEvent e)

Text TextListener textValueChanged (TextEvent)

Java™ Programming Language
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Complex Example

1 import java.awt.*;

2 import java.awt.event.¥*;

3 import javax.swing.*;

4 public class TwoListener

5 implements MouseMotionListener, MouseListener {
6 private JFrame f;

7 private JTextField tf;

8

9 public TwoListener ()

10 f = new JFrame ("Two listeners example") ;
11 tf = new JTextField (30) ;

12 }
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Complex Example

13

14 public void launchFrame () {

15 JLabel label = new JLabel ("Click and drag the mouse") ;
16 // Add components to the frame

17 f.add(label, BorderLayout.NORTH) ;

18 f.add(tf, BorderLayout.SOUTH) ;

19 // Add this object as a listener

20 f .addMouseMotionListener (this) ;

21 f .addMousel.istener (this) ;

22 // Size the frame and make it visible
23 f.setSize (300, 200);

24 f.setVisible (true) ;

25 }

Java™ Programming Language Module 13, slide 14 of 24
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Complex Example

26

27 // These are MouseMotionListener events

28 public void mouseDragged (MouseEvent e)

29 String s = "Mouse dragging: X = " + e.getX()
30 + "Y =" + e.get¥();

31 tf.setText (s) ;

32 }

33

34 public void mouseEntered (MouseEvent e)

35 String s = "The mouse entered";

36 tf.setText (s8) ;

37 }

38

39 public void mouseExited (MouseEvent e)

40 String s = "The mouse has left the building";
41 tf.setText (s) ;

42 }
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Complex Example

43

44 // Unused MouseMotionlListener method.

45 // All methods of a listener must be present in the
46 // class even if they are not used.

47 public void mouseMoved (MouseEvent e) { }

48

49 // Unused MouselListener methods.

50 public void mousePressed (MouseEvent e) { }
51 public void mouseClicked (MouseEvent e) { }
52 public void mouseReleased (MouseEvent e) { }
53

54 public static void main(String args([]) {

55 TwoListener two = new TwoListener() ;

56 two.launchFrame () ;

57 }

58}
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Multiple Listeners

e Multiple listeners cause unrelated parts of a program to
react to the same event.

< The handlers of all registered listeners are called when
the event occurs.
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Event Adapters

e The listener classes that you define can extend adapter
classes and override only the methods that you need.

e Anexample is:

1 import java.awt.*;

2 import java.awt.event.*;

3 import javax.swing.*;

4

5 public class MouseClickHandler extends MouseAdapter
6

7 // We just need the mouseClick handler, so we use
8 // an adapter to avoid having to write all the

9 // event handler methods

10

11 public void mouseClicked (MouseEvent e) {

12 // Do stuff with the mouse click...

13 }

14}
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Event Handling Using Inner Classes

1 import java.awt.*;

2 import java.awt.event.¥*;

3 import javax.swing.*;

4 public class TestInner ({

5 private JFrame f;

6 private JTextField tf; // used by inner class

7

8 public TestInner()

9 f = new JFrame ("Inner classes example") ;

10 tf = new JTextField (30) ;

11 }

12

13 class MyMouseMotionListener extends MouseMotionAdapter
14 public void mouseDragged (MouseEvent e)

15 String s = "Mouse dragging: X = "+ e.getX()
16 + "Y =" + e.get¥();

17 tf.setText(s) ;

18 }

19 }
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Event Handling Using Inner Classes

20

21 public void launchFrame () {

22 JLabel label = new JLabel ("Click and drag the mouse") ;
23 // Add components to the frame

24 f.add(label, BorderLayout.NORTH) ;

25 f.add(tf, BorderLayout.SOUTH) ;

26 // Add a listener that uses an Inner class

27 f .addMouseMotionlListener (new MyMouseMotionListener()) ;
28 f .addMousel.iistener (new MouseClickHandler()) ;

29 // Size the frame and make it visible

30 f.setSize (300, 200);

31 f.setVisible (true) ;

32 }

33

34 public static void main(String args([]) {

35 TestInner obj = new TestInner() ;

36 obj.launchFrame () ;

37 }

38}
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Event Handling Using Anonymous Classes

1 import java.awt.*;

2 import java.awt.event.¥*;

3 import javax.swing.*;

4

5 public class TestAnonymous {

6 private JFrame f;

7 private JTextField tf;

8

9 public TestAnonymous ()

10 f = new JFrame ("Anonymous classes example") ;
11 tf = new JTextField (30) ;

12 }

13

14 public static void main(String args([]) {
15 TestAnonymous obj = new TestAnonymous () ;
16 obj.launchFrame () ;

17 }

18
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Event Handling Using Anonymous Classes

19 public void launchFrame () {

20 JLabel label = new JLabel ("Click and drag the mouse") ;
21 // Add components to the frame

22 f.add(label, BorderLayout .NORTH) ;

23 f.add(tf, BorderLayout.SOUTH) ;

24 // Add a listener that uses an anonymous class

25 f .addMouseMotionListener (new MouseMotionAdapter () (

26 public void mouseDragged (MouseEvent e) {

27 String s = "Mouse dragging: X = "+ e.getX()

28 + "Y =" + e.get¥();

29 tf.setText (s) ;

30 }

31 }); // <- note the closing parenthesis

32 f .addMouselistener (new MouseClickHandler()); // Not shown
33 // Size the frame and make it visible

34 f.setSize (300, 200);

35 f.setVisible (true) ;

36 }

37 }
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Concurrency In Swing

To handle a GUI efficiently, the Swing program needs
different threads to:

= Execute the application code (current threads)

e Handle the events that arise from the GUI (event
dispatch threads)

< Handle background tasks that might be time
consuming (worker threads)

Each task in a worker thread Is represented by an instance of
javax.swing.SwingWorker.
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The swingWorker Class

The SswingWorker class has methods to service the following
requirements:

e To provide communication and coordination between
worker thread tasks and the tasks on other threads:

e Properties: state and progress
e To execute simple background tasks:
e doInBackground method
e To execute tasks that have intermediate results:
e publish method
e To cancel the background threads:
e cancel method
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Module 14

GUI-Based Applications

Java™ Programming Language



@ Sun Educational Services

Objectives

e Describe how to construct a menu bar, menu, and
menu items in a Java GUI

e Understand how to change the color and font of a
component

Java™ Programming Language Module 14, slide 2 of 12
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Relevance

< You now know how to set up a Java GUI for both
graphic output and interactive user input. However,
only a few of the components from which GUIs can be
built have been described. What other components
would be useful in a GUI?

e How can you create a menu for your GUI frame?

Java™ Programming Language
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How to Create a Menu

1. Create a JMenuBar object, and set it into a menu
container, such as a JFrame.

2. Create one or more JMenu oObjects, and add them to
the menu bar object.

3. Create one or more JMenuItem objects, and add them
to the menu object.
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Creating a JMenuBar

1 f = new JFrame ("MenuBar") ;
2 mb = new JMenuBar () ;
3 f .setJMenuBar (mb) ;

MenuBar :”E”g|
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13
14
15
16
17
18
19
20
21

Creating a JMenu

f = new JFrame ("Menu") ;
mb = new JMenuBar () ;

ml = new JMenu("File") ;
m2 = new JMenu ("Edit") ;
m3 = new JMenu ("Help") ;
mb.add (ml) ;

mb.add (m2) ;

mb.add (m3) ;

f .setdMenuBar (mb) ;

Java™ Programming Language
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Creating a JMenu

File Edit Help
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Creating a JMenuItem

28 mil = new JMenultem("New")
29 mi2 = new JMenultem("Save"
(

30 mi3 = new JMenultem("Load") ;

4

)
)
31 mi4 = new JMenultem("Quit") ;
32 mil.addActionlListener (this) ;
)
)
)

4

33 mi2.addActionlListener (this
34 mi3.addActionlListener (this
(

4

4

35 mi4.addActionListener (this
36 ml.add(mil);

37 ml.add(mi2) ;

38 ml.add(mi3) ;

39 ml.addSeparator() ;

40 ml.add(mi4) ;
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Creating a JMenuItem
B Menult... - [B]X]

File | Edit Help
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Creating a JCheckBoxMenuItem

19 f = new JFrame ("CheckboxMenuItem") ;
20 mb = new JMenuBar () ;

21 ml = new JMenu ("File") ;

22 m2 = new JMenu ("Edit") ;

23 m3 = new JMenu ("Help") ;

24 mb.add (ml) ;

25 mb.add(m2) ;

26 mb.add(m3) ;

27 f.setdMenuBar (mb) ;

43 mi5 = new JCheckBoxMenultem("Persistent") ;
44 mi5.addItemListener (this) ;

45 ml.add(mi5) ;
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Creating a JCheckBoxMenuItem
B Checkb...[- [O]X]

File | Edit Help

Mew
Save
Load

Quit
[ Persistent

Java™ Programming Language Module 14, slide 11 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Controlling Visual Aspects

Commands to control visual aspects of the GUI include:

e Colors:
setForeground ()
setBackground ()

e Example:

Color purple = new Color (255, 0, 255);
JButton b = new JButton (“Purple”) ;
b.setBackground (purple) ;

Java™ Programming Language Module 14, slide 12 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

Module 15

Threads
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Objectives

e Define a thread

= Create separate threads in a Java technology program,
controlling the code and data that are used by that
thread

= Control the execution of a thread and write platform-
Independent code with threads

= Describe the difficulties that might arise when multiple
threads share data

e Usewait and notifytocommunicate between threads
e Use synchronized to protect data from corruption
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Relevance

How do you get programs to perform multiple tasks
concurrently?
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Threads

e What are threads?
Threads are a virtual CPU.
e The three parts of at thread are:

 CPU
e Code
e Data
A thread or
CPU execution context

Code | Data

Java™ Programming Language
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Creating the Thread

1 public class ThreadTester

2 public static void main(String args([]) {
3 HelloRunner r = new HelloRunner () ;

4 Thread t = new Thread(r) ;

5 t.start() ;

6 )

7}

8 class HelloRunner implements Runnable {

9 int 1i;

10 public void run()

11 i = 0;

12 while (true)

13 System.out.println("Hello " + i++);
14 if (i ==50) {

15 break;

16 }

17 }

18 }

19 }
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Creating the Thread

< Multithreaded programming has these characteristics:
e Multiple threads are from one Runnable instance.
« Threads share the same data and code.

e For example:

Thread tl1l = new Thread(r) ;
Thread t2 = new Thread(r) ;

New Thread
A Thread t
-
CPU
"
HelloRunner Code | Data Instance “r”
Class of HelloRunner
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Starting the Thread

e Use the start method.
e Place the thread in a runnable state.
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Thread Scheduling

Blocked \

New Unblocked Event Blocked

e |
séart()

Completes
Scheduler run ()
\’[Runnable]< Running —
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Thread Scheduling Example

1 public class Runner implements Runnable {
2 public void run()

3 while (true)

4 // do lots of interesting stuff

5 /] ...

6 // Give other threads a chance

7 try {

8 Thread.sleep(10);

9 } catch (InterruptedException e) {
10 // This thread’s sleep was interrupted
11 // by another thread

12 }

13 }

14 }

15}
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Terminating a Thread

1 public class Runner implements Runnable {
2 private boolean timeToQuit=false;
3

4 public void run() {

5 while ( ! timeToQuit ) {

6 // continue doing work

7 }

8 // clean up before run() ends

9 }

10

11 public void stopRunning() {

12 timeToQuit=true;

13 }

14}
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Terminating a Thread

1 public class ThreadController (

2 private Runner r = new Runner() ;
3 private Thread t = new Thread(r) ;
4

5 public void startThread() ({

6 t.start () ;

7 )

8

9 public void stopThread() ({

10 // use specific instance of Runner
11 r.stopRunning () ;

12 }

13}
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Basic Control of Threads

e Test threads:

isAlive ()

« Access thread priority:

getPriority ()
setPriority ()

e Put threads on hold:

Thread.sleep() // static method
join()
Thread.yield() // static method
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The join Method

1 public static void main(String[] args) f{

2 Thread t = new Thread (new Runner()) ;

3 t.start () ;

4

5 // Do stuff in parallel with the other thread for a while
6

7 // Wait here for the other thread to finish
8 try {

9 t.join() ;

10 } catch (InterruptedException e)

11 // the other thread came back early

12 }

13

14 // Now continue in this thread

15

16}
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Other Ways to Create Threads

1 public class MyThread extends Thread (

2 public void run()

3 while ( true ) {

4 // do lots of interesting stuff

5 try {

6 Thread.sleep (100) ;

7 } catch (InterruptedException e)
8 // sleep interrupted

9 }

10 }

11 }

12

13 public static void main(String args([]) {
14 Thread t = new MyThread() ;

15 t.start () ;

16 }

17}
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Selecting a Way to Create Threads

e Implement Runnable:
e Better object-oriented design
= Single inheritance
e Consistency
e Extend Thread:
Simpler code
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Using the synchronized Keyword

1 public class MyStack

2

3 int idx = 0;

4 char [] data = new char|[6];
5

6 public void push(char c) {
7 data[idx] = c;

8 1dx++;

9 }

10

11 public char pop () {

12 idx--;

13 return data[idx] ;

14 }

15}

Java™ Programming Language Module 15, slide 16 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2



@ Sun Educational Services

The Object Lock Flag

e Every object has a flag that is a type of lock flag.
e The synchronized enables interaction with the lock

flag.

Object this Thread before synchronized (this)
O ™ public void push(char c) {
A\ *~ synchronized (this) {

4 A data[idx] = c;
Code or .
Behavior 1dX++;
N y }
4 N )
Data or
State
\ /
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The Object Lock Flag

Object this Thread after synchronized (this)

Ve ~ O public void push(char c) {
A synchronized (this) {

- N ~ g : o

Code or ata[idx] = c;

Behavior 1dx++;
N y }
- N }

Data or

State
\ %
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The Object Lock Flag

Object this Another thread, trying to
lock flag missing execute synchronized (this)
4 "\ Waiting for public char pop () ({
| . .
e -, object lock | syrllchronlzed (this) {
Code or 1dx--;
Behavior return data[idx] ;
. | }
- N
Data or }
State
\ %
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Releasing the Lock Flag

The lock flag is released in the following events:

< Released when the thread passes the end of the
synchronized code block

e Released automatically when a break, return, or
exception is thrown by the synchronized code block
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Using synchronized— Putting It Together

« All access to delicate data should be synchronized.

e Delicate data protected by synchronized should be
private.
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Using synchronized— Putting It Together

The following two code segments are equivalent:

public void push(char c) {
synchronized (this) {
// The push method code

)
J

public synchronized void push(char c) {
// The push method code

}
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Thread State Diagram With
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Synchronization
o
Dead
New Unblocked Event Blocked

®
\

star Scheduler | y () Completes
Runnable |-« Running

Lock Acquired Synchronized

\ Blocked in
Object’s

Lock Pool
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Deadlock

A deadlock has the following characteristics:

e Itistwo threads, each waiting for a lock from the other.
e |t is not detected or avoided.
e Deadlock can be avoided by:

« Deciding on the order to obtain locks

« Adhering to this order throughout

= Releasing locks in reverse order
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Thread Interaction —wait and notify

e Scenario:
Consider yourself and a cab driver as two threads.
e The problem:

How do you determine when you are at your
destination?

e The solution:

< You notify the cab driver of your destination and
relax.

e The driver drives and notifies you upon arrival at
your destination.
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Thread Interaction

Thread interactions include:

e The wait and notify methods
e The pools:

« Wait pool

e Lock pool

Java™ Programming Language
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Thread State Diagram With
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wait and notify

Blocked \

New Unblocked Event Blocked

Siart () V/ \\
Scheduler
\’(Runnable]<

run () Completes

B

Running

[Must have lock]/
Lock Acquired Synchronized Releases lock
\ Blocked in ( Blocked in
Object’s notify() or Object’s
Lock Pool interrupt () LWait Pool
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Monitor Model for Synchronization

e |eave shared data in a consistent state.
e Ensure programs cannot deadlock.

e Do not put threads expecting different notifications in
the same wait pool.
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The Producer Class

1 package modl3;

2

3 public class Producer implements Runnable {
4 private SyncStack theStack;

5 private int num;

6 private static int counter = 1;
7

8 public Producer (SyncStack s)
9 theStack = s;

10 num = counter++;

11 }

12
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The Producer Class

13 public void run() f{

14 char c;

15

16 for (int 1 = 0; i < 200; i++) {

17 ¢ = (char) (Math.random() * 26 +'A’);

18 theStack.push(c) ;

19 System.out.println (“Producer” + num + “: “ + C);
20 try {

21 Thread.sleep( (int) (Math.random() * 300)) ;
22 } catch (InterruptedException e)

23 // ignore it

24 }

25 }

26 } // END run method

27

28 } // END Producer class
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The Consumer Class

1 package modl3;

2

3 public class Consumer implements Runnable {
4 private SyncStack theStack;

5 private int num;

6 private static int counter = 1;
7

8 public Consumer (SyncStack s)
9 theStack = s;

10 num = counter++;

11 }

12
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The Consumer Class

13 public void run() f{

14 char c;

15 for (int 1 = 0; i < 200; i++) {

16 c = theStack.pop() ;

17 System.out.println (“Consumer” + num + “: “ + C);
18

19 try {

20 Thread.sleep ((int) (Math.random() * 300)) ;

21 } catch (InterruptedException e) {

22 // ignore it

23 }

24 }

25 } // END run method

26
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The SyncStack Class

This is a sketch of the SsyncStack class:

public class SyncStack {
private List<Character> buffer = new ArraylList<Character>(400) ;

public synchronized char pop() {
// pop code here

}

public synchronized void push(char c) {
// push code here

J
)
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The pop Method

9 public synchronized char pop() {

10 char c;

11 while (buffer.size() == 0) {

12 try {

13 this.wait () ;

14 } catch (InterruptedException e)
15 // ignore it...

16 }

17 }

18 c = buffer.remove (buffer.size()-1) ;
19 return c;

20 }

21
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The push Method

22 public synchronized void push(char c)

23 this.notify () ;

24 buffer.add(c) ;

25 }
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The SyncTest Class

1 package modl3;

2 public class SyncTest ({

3 public static void main(Stringl[] args) {
4 SyncStack stack = new SyncStack() ;

5 Producer pl = new Producer (stack) ;

6 Thread prodTl = new Thread (pl);

7 prodTl.start () ;

8 Producer p2 = new Producer (stack) ;

9 Thread prodT2 = new Thread (p2);

10 prodT2.start () ;

11

12 Consumer cl = new Consumer (stack) ;
13 Thread consTl = new Thread (cl);
14 consTl.start () ;

15 Consumer c2 = new Consumer (stack) ;
16 Thread consT2 = new Thread (c2);
17 consT2.start () ;

18 }

19 }

Java™ Programming Language
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The SyncTest Class

Producer?2:
Consumerl:
Producer?2:
Consumer?2:
Producer?2:
Producerl:
Producerl:
Consumer?2:
Consumerl:
Producer?2:
Producer?2:
Consumer?2:
Consumer?2:
Producerl:
Consumerl:
Producer?2:
Consumer?2:
Consumer?2:
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Module 16

Networking

Java™ Programming Language
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Objectives

e Develop code to set up the network connection
e Understand the TCP/IP Protocol

e Use ServerSocket and Socket classes for
Implementation of TCP/IP clients and servers
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Relevance

How can a communication link between a client machine and
a server on the network be established?
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Networking

This section describes networking concepts.
Sockets

= Sockets hold two streams: an input stream and an
output stream.

e Each end of the socket has a pair of streams.

Setting Up the Connection

Set up of a network connection is similar to a telephone
system: One end must dial the other end, which must be
listening.
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Networking

client.bar.com

18000

client.baz.com

18002

Java™ Programming Language
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Networking With Java Technology

« To address the connection, include the following:
e The address or name of remote machine

« A port number to identify the purpose at the server
e Port numbers range from 0-65535.

Java™ Programming Language
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Java Networking Model

Server

ServerSocket (port #)

Register with

Client

Socket (host, port#)
(Attempt to connect)

this service
ServerSocket .accept ()
Wait for a
* connection
Socket ()
OutputStream

InputStream <

Socket .close ()
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Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

OutputStream

P> InputStream

Socket .close ()

Module 16, slide 7 of 12



@ Sun Educational Services

Minimal TCP/IP Server

1 import java.net.¥*;

2 import java.io.¥*;

3

4 public class SimpleServer (

5 public static void main(String args([]) {
6 ServerSocket s = null;

7

8 // Register your service on port 5432
9 try {

10 s = new ServerSocket (5432);

11 } catch (IOException e) {

12 e.printStackTrace() ;

13 }
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Minimal TCP/IP Server

14

15 // Run the listen/accept loop forever

16 while (true)

17 try {

18 // Wait here and listen for a connection

19 Socket sl = s.accept():;

20

21 // Get output stream associated with the socket
22 OutputStream slout = sl.getOutputStream() ;
23 BufferedWriter bw = new BufferedWriter (

24 new OutputStreamWriter (slout)) ;

25

26 // Send your string!

27 bw.write (“Hello Net World!\n”) ;
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Minimal TCP/IP Server

28

29 // Close the connection, but not the server socket
30 bw.close() ;

31 sl.close();

32

33 } catch (IOException e) {
34 e.printStackTrace () ;

35 } // END of try-catch

36

37 } // END of while (true)

38

39 } // END of main method

40

41 } // END of SimpleServer program
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Minimal TCP/IP Client

1 import java.net.¥*;

2 import java.io.¥*;

3

4 public class SimpleClient

5

6 public static void main(String args([]) {

.

8 try {

9 // Open your connection to a server, at port 5432
10 // localhost used here

11 Socket sl = new Socket("127.0.0.1", 5432);
12

13 // Get an input stream from the socket

14 InputStream is = sl.getInputStream() ;

15 // Decorate it with a "data" input stream

16 DataInputStream dis = new DatalInputStream(is) ;
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Minimal TCP/IP Client

17

18 // Read the input and print it to the screen
19 System.out.println(dis.readUTF()) ;

20

21 // When done, just close the steam and connection
22 dis.close() ;

23 sl.close() ;

24

25 } catch (ConnectException connExc) {

26 System.err.println ("Could not connect.") ;

27

28 } catch (IOException e) {

29 // ignore

30 } // END of try-catch

31

32 } // END of main method

33

34 } // END of SimpleClient program
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