Java Programming Language,
Java SE 6

Electronic Presentation

SL-275-SE6 REV G.2

D61748GC11
Edition 1.1

ORACLE

Copyright © 2008, 2010, Oracle and/or its affiliates. All rights reserved.

Disclaimer
This document contains proprietary information, is provided under a license agreement containing restrictions on use and disclosure, and is protected by copyright
and other intellectual property laws. You may copy and print this document solely for your own use in an Oracle training course. The document may not be

modified or altered in any way. Except as expressly permitted in your license agreement or allowed by law, you may not use, share, download, upload, copy, print,
display, perform, reproduce, publish, license, post, transmit, or distribute this document in whole or in part without the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you find any problems in the document, please report them in writing to: Oracle
University, 500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not warranted to be error-free.

Sun Microsystems, Inc. Disclaimer

This training manual may include references to materials, offerings, or products that were previously offered by Sun Microsystems, Inc. Certain materials, offerings,
services, or products may no longer be offered or provided. Oracle and its affiliates cannot be held responsible for any such references should they appear in the
text provided.

Restricted Rights Notice

If this documentation is delivered to the U.S. Government or anyone using the documentation on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS

The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or disclose these training materials are restricted by the terms of the applicable
Oracle license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This page intentionally left blank

Course Contents

ADOUL THIS COUISE .uuiiiiii e e e e e aan Preface-xvi
COUISE GOAIS ...t e et e e b et e e s et e e e a e e be e nae e reeanre s Preface-xvii
(101U] £1=l @ AT 1LY RSP OPPP Preface-xix
LOL0 8L ¢ST=3 |V -1 o USRS Preface-xx
JLIe] 1T N (0] A @0 1Y /=T =T o PSPPSR Preface-xxi
HOW Prepared ATE YOU? ..ottt bbbt Preface-xxii
LY goTo [U]o1 4 o] o <SSO OS SRRSO Preface-xxiii
HOW 10 USE ThE ICONS ...ttt et eneenns Preface-xxiv
Typographical Conventions and SYMDOIS ... Preface-xxv

Getling Start@dooiiiii i e 1-1
L@ o =0t (LY USSP 1-2
e [V 7T (oSSR 1-3
What Is the Java™ TeChNOIOQY?c..ooioiiieieee ettt sre e 1-4
Primary Goals of the Java TeChNOIOQYccoiiiiiiieie e 1-5
The Java Virtual MAChINEooii ittt e e be e s e e re e saee e nbeesreeenreens 1-8
(€T T g oF: Vo (-] @Xo] | [-Tox d o] o HR SRRSO 1-11
The Java RUNTIME ENVIFONMENTouiiiicc ettt te e rae e nreesnnas 1-12
Operation of the JRE With a Just-In-Time (JIT) CompPiler ..o 1-13
JVIMITM TASKS ..ottt ettt sttt ettt b e b bt e bt e bt e s e s et et b e e b e e b e e bt e b e e Rt e st et et e ebeebe et e ebeareanes 1-14
B I (=IO P2 IS o T Vo (= PRSP 1-15
The BYTECOAE VEIITIEE ..ottt et e st e s te et e s ae e be e e e ereesreenaesneenaeas 1-16
A SIMpPle Java APPHICALIONooiiiiieie et e et e e a e e nreesree e 1-17
The TestGreeting APPIHICALION ... 1-18
THE GIeetadnG ClASS ...coviiiii ittt e st e e sbe e s a e e be e s bt e e ebeesbeeebeesreeebeesaees 1-19
Compiling and Running the TestGreeting Programcccciiiiiieiiie e sve e 1-20

Java™ Programming Language iv

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

COMPIIE-TIME EFTOIS ..ottt bbbttt b bbb et et benbe bt b nneas 1-21
RUNTIME EFTOIS .ottt bbbt s et e bbbt bbbt e Rt e s et et et e nbeabe b e e beene e 1-22
Java Technology RUNtIME ENVIFONMENT ..o 1-23
Object-Oriented Programmingooieeiiiiiiiiieeeeiiiis e e e e e et e e e eaan e e e e eenanns 2-1
L@ o =Tod (YT SR 2-2
REIBVANCE ...ttt b et h ekt e s e b e bt e Rb e e b e e be e st e e bt e b e e neesbe e beeneenneeae s 2-3
SOTEWAIE ENGINEETING ...o.viiiiiiiiiiitieee ettt et bbbt b et et e b ettt e et e beene e 2-4
The Analysis and DeSIgN PRESEcciiiiiiiieiic ittt e e sreesre e 2-5
Y 0151 1 =T £ o] USSP 2-6
Classes as Blueprints fOr ODJECLScooiiiiiiiiieeese bbb 2-7
Declaring Java TeChNOIOQY CIASSESccuiiiiiieiiiiie ittt re e te e sreesteaneesraenae s 2-8
DeClaring ATIFIDULESo.oiiiiie bbbttt e bbb bbb i 2-9
[TTod F= T 1 To TN AV, =] 1 T Yo PSS 2-10
ACCESSING ODJECT MEIMIDELS ...t e et e e s e e e nre e snee e 2-11
INFOrMATION HIAING ..o bbbttt e bbb 2-12
[Tor=T 0 1] U | - U Lo o 1SS 2-14
DECIAriNg CONSIIUCTOIS ...oviiiiiiiieccie e e et e e ab e be e et b e e be e sre e e beesreeebeesaneenes 2-15
The Default CONSIIUCTOTouiiiiiieie ettt e st e e steeseesseesteeneesreesteaneesseeneas 2-16
SOUICE FIlE LAYOUL ..ottt sttt et e et e s be e teesaeeseebeeneesreeteannesreennean 2-17
SOTEWAIE PACKAGES ..ottt e et e s a e e be e s re e e be e s te e e teesreeenbeennes 2-18
The package STAEMENTooiiiie ettt e st et e s e e te e s eesseenbeeneesreeteaneesseenens 2-19
The impPort STALEIMENTceiii e et e e b e s e e be e sae e e sbeesbeeebeesreeebeesneas 2-20
Directory LayOout and PACKAGEScccoiiiiiiiiiiiieiieie ettt sttt st et sbe e b sneenes 2-21
D3V 7] (o] o] 4 1< o | RSP P ST TP TP PSP 2-22
Compiling UsING the =A OPLIONc.ooiiiiciccecc ettt sre e sre e sreenee s 2-23
TErMINOIOGY RECAD ...eoueiiiiiieii ettt sttt b e b e b e e be e s b e s be e beeneesbeesbeaneesbeenbeas 2-24
Using the Java Technology API DOCUMENTALIONcceiiiiiiiiieieiie e 2-25
Java Technology APl DOCUMENTALIONcccoeiiiiiiiic ittt nas 2-26
Java™ Programming Language v

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Identifiers, Keywords, and TYPES ..o e e e 3-1
L@ o =Tod LY USSP 3-2
] (=AY 7= o USSR 3-4
(070] 1101 010 1=] o] £SO P PP R PP PR ORR PR 3-5
Semicolons, BIOCKS, aNd WHITE SPACEcoouviiiiiiic et 3-6
[0 1= 0) =SSP 3-9
Java Programming Language KEYWOIAScccciiiiiiiieiic ettt 3-10
PIIMITIVE TYPES ittt bbbt s bbb bbbt bt bt e et et ettt b et e b ens 3-11
[0 To oo LI oY to N K=Y NP 3-12
TEXTUAL — CHAT it b ettt b e bt ae e s bt et e e s b e e bt e be e st e s beebeenbenbeene s 3-13
I U E I ol s SRR TSTROR 3-14
Integral — byte, short, int, AN LONG ..ioiiiiiiieiiie et e e aeereenes 3-15
Floating Point — £10at @Nd AOUDLE ..iccuiiiiiiiiiciie ettt et s e e sbeesnaearee s 3-17
Variables, Declarations, and ASSIGNMENTScccciviiriieieiieiiee e se e see e sreeee e sseeneeeneesees 3-19
N A = W] (T =] Lot 1Y/ 0TSSR 3-20
Constructing and INitializing ODJECTSoooiiiiiiie e 3-21
Memory AHOCAtION @N LAYOULoouiiiiiiiieieee et 3-22
Explicit Attribute INItAlZAtIONccociiece et 3-23
EXECULING the CONSTIUCTONciiiiiiciie ettt st e e be e st e e e be e sreaenbeesareateeas 3-24
ASSIGNING @ VArTADIE ... s 3-25
ASSIGNING RETEIEINCES ...ttt e et e e e b e et e e raesreesbeaneesteeneeeneenrs 3-26
PASS-DY-VAIUE ...t et b bbbt b b e e be e e 3-27
The this REFEIENCE ...oceeeieeceee et e e st e teeseesse e teeneesreesteeneenreeneas 3-32
Java Programming Language Coding CONVENTIONSccccccveiiiieieeie et 3-36

Expressions and FIOW Control ... 4-1
L@ oot LY TR U PSR 4-2
] (=AY 7= o USSR 4-4
A o o o] STV o IS Tolo] o 1= S 4-5
Variable SCOPE EXAMPIE ...ttt ettt et nre e re e 4-6

Java™ Programming Language \

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Variable INITHANIZATIONooiiieiiece e e et e e steeseesreesteeneesreeneeenee e 4-7
Initialization Before Use PriNCIPIEc.ooiiiiiiie s 4-8
(@ o1c] =] gl o g=T=T0 (=] o ot USSR 4-9
[IoTo | (o2 I @] 0 1= 7 1 (0] £ TR S PSP PR RPR PSR 4-10
VY Rl oo [[or= I @ o =T = (] £SO SS 4-11
RIght-Shift OPerators >> N0 >>> ..o 4-12
Left-ShiTt OPEIATON << oottt b e bbbt b et e b et b bbbt ns 4-13
Shift OPerator EXAMPIEScovviiiiice ittt st et ste e e e s beesteennesreesreaneesreenteas 4-14
String ConCAteNatioON WITN + ...oo.oiiiiiiie bbb 4-15
L0 1] 1] Vo SRS 4-16
Promotion and Casting Of EXPIESSIONSc.ociiiiiiiiieiiie ettt saa e sbeesaeenree s 4-17
SIMPle 1if, €15 STAtEMENTSooiiiiiiiiiec et e st e st neesreesteeneesreenneas 4-18
Complex 1if, else STAtEIMENTS ...t e st e et e e e sreeteaneesreenneas 4-19
SWITCR STATEIMEBNTS ...ttt b e e bt e sbe et s neenbe et 4-21
LOOPING STALEMEINTSo.eiiiiiiiiiei et b ettt b e bbbt bbbt e s e b et st bt et ebe s e 4-24
Special LoOP FIOW CONTIOLooiiieiie ettt be e raesreenaesreenne s 4-27
The Dreak STAEMENT ..ot b et e e bt e st e s beesbe e st e sbeebeeneesbeenbeas 4-28
The continue STATEMENTcc.oiiiiiee et et esteeseeaseesbeeseesreesseaneesseenneas 4-29
Using break Statements With Labels ... 4-30
Using continue Statements With Labels ... s 4-31
= 1V T PP 5-1
(@]] 1101 1AV ST P TP TP PP PSPPI 5-2
REIBVANCE ...ttt bbbkt b e Rt e st e st e b e b e e b bt e b e e bt e R e e Rt et et e benbeebenbeebeereeneas 5-3
D LTol Fo T g1 o [N g -\ YA PP URRTRRURRS 5-4
CrEATING ATTAYS ...ttt et bt e b st e b b e e bt e bt e R b e b e b e b e e bt b e e b e e bt e Rt e e e b et e nbe et e et e e bt e reenes 5-5
Creating RETEIENCE ATTAYScoviiieieee ettt et e et e e e e s teeteaseeste e teeseesteeseeaneesteenseeneenres 5-7
INTEIAHIZING ATTAYS ...t b bbb bbbt b et e et e b e b et b et ne s 5-9
MUITIAIMENSIONAT ATTAY'S ...ttt bbbt bbbt e et bbb b s e 5-10
y AN g -\ Y28 =70 10 [[£ SRR 5-12
Java™ Programming Language Vil

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

UsiNg the ENNANCEA £OT LOOP ..uviiiiiiiiiiiiieieie ettt bbb 5-13
F AN -\ R L A | o SO R 5-14
(0])41 g Lo I AN =\ TSROSO 5-15
(O 1o ST D 1] o | o PSPPI 6-1
L@ o =Tod (YT SR 6-2
REIBVANCE ...ttt b et h ekt e s e b e bt e Rb e e b e e be e st e e bt e b e e neesbe e beeneenneeae s 6-3
18] o0l - LXS] T TSSO P PR P PP PR PRPIO 6-4
SINGIE INNEIITANCEc.oeieicecee et e e e s b e et e e e e s beeste e st e sre e beeneesreesreenee e 6-7
AACCESS CONTIOL ... ettt e st e st e be e st e s b e et e e Re e sbeeneeebeesbeeneeereenbeanee e 6-9
OVEITIAING METNOAS ...t bbbttt b ettt sbe e eneas 6-10
Overridden Methods Cannot Be Less ACCESSIDIEccviiiiiiiiiieie e 6-12
INVOKING OVErridden METNOASooiiiiiicee e 6-13
(0] 1Y/ 0 0 T0T 0] 1] 1 o 1SS 6-15
Virtual Method INVOCALIONocoiiiiiiiie ettt sttt sb e b e 6-17
HeterogeneouUS COIIECTIONSoiiiiiei bbb 6-18
(0] 1Y/ g ToT o] a1l AN o [U] g 11T o | <SSR 6-19
The instanceOf OPEIALOLccci it e et e e s b e e b e e s e e e beesraeenbeeaneas 6-20
(0= 41 [0 [@] o] [=Tox £ TP R PRSP P TP PPN PRSP 6-21
(@)7=T 8 [oF=To [T o To 1Y/ [=1 1 o To £SO 6-23
Methods Using Variable AFQUIMENTSccciiiiiiiiiiic sttt s ae e snee e 6-24
OVErloading CONSTIUCTOISc..oiiiiiieiteiti ittt b et b ettt e b et et st esbe e eneas 6-25
Constructors Are NOt INNEFITEAooiiiiiiicee e 6-27
INVOKING Parent Class CONSTIIUCTONScc.ooiiiiiiiiie ettt et 6-28
Constructing and Initializing Objects: A SHIGNt REPIISEccooiiieiiiiiieeee e 6-30
Constructor and Initialization EXAMPIEScc.oiiiiiiii it 6-31
L N @) oS E=T el o O F- TSRS ORTRRTR PR 6-34
The equals METNOAoooii e et e e e s re e aeeseesreesteeneesreennes 6-35
AN equals EXAMPIE ..ot rs 6-36
The toString METNOA ..o et re et re et 6-40
Java™ Programming Language viii

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

LTAT A =T o] o] O o T SR 6-41
AUtobOXING OF PriMITIVE TYPES ..ooiioiiiic ettt sttt et esraeaeeneenns 6-43
AdVanNCed ClasS FEAUIESccuiiii et e e e e e et eeea e eraeeees 7-1
(@]] 1101 1AV TP P PP PP 7-2
REIBVANCE ...ttt et e bt e e et e e et e e e be e et e e ebeesabe e beeeabeebeesabeebeeeateebeesateebeeaneas 7-3

The SEatic KBYWOIA ..ottt b ettt st et e e s be e be e st e sreenbeenee e 7-4

(08 Fo TSI AN 1 1 g1 01U (=T 7-5

(04 P TS 1Y/ =1 1 g T Yo [OOSR 7-7
STALIC INTTIATIZETS oottt b e e e et e e s bt e e s b e e sbeeesabeeesabeeesnbeeesabeeessbeeeaseeeans 7-10

THe £Iinal KEYWOITooiiiiiiieiit ettt bbbttt et et b et be e eneas 7-12
FINGL VACIADIESoooviiee ettt et et e et e e s b e e be e sbe e e beesbeeeabeesreeebeesabeenreean 7-13
BIaNK FINAI VATTADIESvoiiiiiicce ettt et ettt e e s be e e sabe e e snbeeesabeeeenteas 7-14
Old-Style Enumerated TYPE IAIOM ..c..ioiiiiiecccee et ae e sneenae s 7-15

The NeW ENUMETATEA TYPE ..ooiiiiii ittt ettt e et e e s e e e e e sre e e beenneas 7-19
Advanced ENUMErAtEd TYPES ..ottt bbbttt bbb 7-23

R3] = 1 [l [] o0 £ STRTSS 7-25
ADSTIFACT CHASSES ...uveiiiiie ettt e bt e e et e e et e e e s be e e s ate e e s baeesabeeesbeeesbeeesnbeeesabeeesabeeeaaraeans 7-27

I TSI T0] (V) 4o o TSROSO 7-31

L] =] 2= oL TSSOSO UPROPRO 7-34

THe FIYEr EXAMPIE ..ottt et e et e s e et e e s te e e be e saaeesbeeaneas 7-35
Multiple INterface EXAMPIE ... bbb 7-42
USES OF INTEITACES ..ot s e e b e sae e e be e s bt e e be e sabeebeesreeebeesaeeeans 7-44
EXCePtioNs @nd ASSEITIONS ... e e aea 8-1
L@ oot LY TR U PSR 8-2
] LAV 7= U (oL OO 8-3
EXCEPLIONS AN ASSEITIONSociiiiiciiecie ettt et s e st e et et e e s te e st e s beesbeensesraesteeneeaneenres 8-4
(o= 0] o] LSRR SSTRRTRR 8-5
EXCEPTION EXAMPIE ..ot bbbt b et e bbb b ettt ebe s 8-6
Java™ Programming Language iX

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

L T o e atel oIS] -1 =] 1] o | S 8-7
Call StaCK MECNANISITIoiiiiece ettt et esbeesaeereesteeteenaesreeneeas 8-10
THe £1Nn8117 CIAUSEoiiiiiiii ettt b e be et e s be e beeseesbeesbeeneesbeenbe s 8-11
(=] o1 (o] g WO 1 (=To o] = TR P PP TP 8-12
(O] g] g To] g =oeCot=T 0] 1 o] o -SSRSO 8-13
The Handle or DeCIare RUIE ..ottt st et sreenae s 8-14
Method Overriding and EXCEPLIONScoiiiiiiieiiieiie ettt bbb 8-15
Creating YOUr OWN EXCEPLIONScc.vciiiiiiiciieeie sttt ettt sttt ae st e staesaeesaesteereaneenreeneeas 8-17
Handling a User-Defined EXCEPTLIONcccoiiiiiiiiiieiie sttt 8-18
AN TST =T o 1 o] LSS 8-20
Recommended USES OF ASSEITIONSc.coiiiiiiiiieiie ettt e et e e s naearee s 8-21
INTEINAT INVAITANTS ...ttt et eere e s beeneeereenteeneeaneesaeeneeeneeneis 8-22
(0% a1 i fo] Il (01 VA L a1 - U g F- | SRS 8-23
Postconditions and Class INVAITANTSccviiiiiiiiiie e sra e sreeree s 8-24
Controlling Runtime Evaluation Of ASSEITIONScccooiiiiiiiiieesese e 8-25
Collections and GenericsS FrameWOrKcoiiiiiiiiiiiieeceiiiene e e et eeeaaaan 9-1
L@ o =01 (YT OSSPSR 9-2
THE COIECHIONS AP ...ttt ettt b e b e e st e e bt e nbe e st e s be e beeneesbeenbeenee e 9-3
A LISE EXAIMPIE e b bbbt a bbbt 9-7
THE MAP INTEITACE ...ocviiiie ettt et e e s be e s ebe e s be e e be e sbaesabeesbeeebeesbeeebeesaeeebeens 9-8
The Map INTEITACE AP ...ttt e b e be e e e s be e beeneesreenteenee e 9-9
A MED EXAMPIE ot bbbt 9-10
Legacy COlECTION CIASSESccvciviiieiieiie ettt et e se e s te e be e e e steeteaneesreeaeeneenras 9-12
Ordering COIECTIONS ..ot b bbbt e bt e bt e st e abeeneeneas 9-13
The Comparable INTEITACEccii i st e e sre e st e e be e sreeenbeesaees 9-14
Example of the Comparable INTEITACEcccoiiiiiiii e 9-16
The Comparator INTEITACE ..ottt esreesteeneenreenne s 9-20
Example of the Comparator INEITACEcccv i 9-21
(€ T=] T ot SR OP U PRSP 9-25
Java™ Programming Language X

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

GENENIC SEL EXAMPIE ...t b ettt bbbt eneas 9-27
1T o LT ol AV Fo oI =T 4 o =SSR 9-28
Generics: EXamining TYPE PAr@METEIScccoiiiiiiiiiieiie ettt st sbeenne s 9-29
Wild Card TYPE PAFAIMETETSooiiiiiiiiieiieieieie ettt bbbttt bbb b enes 9-31
The Type-Safety GUATANTEEcccvciiiieiece et e e e te e sreesreaneesreenteas 9-32
The INvariance ChallENge ..ottt sreeae s 9-33
The COoVarianCe RESPONSEcc.iiiiiiiiiiieiet ettt bbbt b st e b et et et e nbesbeereeneas 9-34
Generics: Refactoring EXisting NON-GeNeriC COUEcoveiiiieiieiiiie e 9-35
] 2 10 T TR TP PPRTRPPRTRPPIN 9-36
GENErIC ITErator INTEITACESoiiiieiieiece ettt bbb eneas 9-37
The ENNANCEA £O1 LOOP ..iiiiiiiii ittt ettt et b e bt et b et s nbe e b 9-38
FL@ 2 U T g Lo =T =T g = | 10-1
(@]] 1T 1AV TR PSSP P TPV PR PRURORN 10-2
CommaNd-LiNe AFQUIMENTSociiiieie ettt te et ste et e st e e stesse e taesteaseessaesseeneesteeseaneesseensens 10-3
YY1 (=] 0 AT o 0] o 1T o =TSPTSRO 10-5
The Properti@s CIASSooiiiiiiie ittt et este e esse e aeeneesreesseenaeaneeneas 10-6
170 Stream FUNAAMENTAIScooiiiiiiiiiiee bbbttt reeneenes 10-9
Fundamental STream CIaSSEScoiiiiiiiiiieiiee ettt sbe et eneenes 10-10
Data WIthIN STFEAMS ...c.vieiiiie ettt e st esre e te e s e s ae e teeneesreenaeeneesnaenens 10-11
The InputStream METNOUS ..o 10-12
The OutputStream METNOUS ..o e 10-13
The Reader METNOASc.ooiii e et s b s e e be e s rb e e sbeesareenbeesneeenes 10-14
The Writer METNOAS ..ottt nee e 10-15
[N Lo 1 = 1 ¢ 1SRRI 10-16
F AT 4] o1 S b U] o] L OSSR 10-17
BUTFFEIEA STIEAMS ...ttt b e bbbt b et e et nneenes 10-19
170 Sream CRAINING ..ot b bbbt e et e et e bbb beebeeneas 10-21
T Ty L [0 S 1 = U USSR 10-22
The InputStream Class HIBrarChY ... e 10-24
Java™ Programming Language Xi

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The outputStream Class HIErarchy ... 10-25

The ObjectInputStreamand The ObjectOutputStream ClasSescccccvvvvveevieiiecireesnenn, 10-26

The SerializeDate CIASS ...ttt et e e s be e e s be e e sabe e e eabeeeeabeeeeaeeas 10-30

The DeSerializeDate CIASS ...ttt e e st e e s e e e sabe e e sabe e s snreeeeares 10-32

The Reader Class HIEIArCRY ..o 10-34

The Writer Class HIBAICRY ... et re e e 10-35
Console /O and File 1O ..o 11-1
(@ o =01 (LY =TSRSS 11-2

(0] 0110] [N 174 © LTSRS 11-3
Writing tO StANAard OUTPULooiiiiiiiicieee ettt b bbb 11-4
Reading From Standard INPULcoooiiieic et re e 11-5
SIMpPle FOrMAatted OULPUL ..ottt nb e eneas 11-7
SIMPle FOrMAatted INPULooiiiei bbbttt b et neeneas 11-8
FIHIES AN FIE 1O .t b e bbbt s e s e e b et st sbenbeebeene e 11-9
Creating @ NeW File ODJECT ..ot 11-10

The File TeStS and UTHITIES ..ot 11-11

[LI (=T U o 174 LTRSS TSR 11-13

FIlE INPUE EXAIMPIE ... bbbttt bbbt 11-14

e T Lo - U 1 =SS 11-15

File OULPUL EXAMIPIE ...oiiiiiiiecie ettt e et et e et e e s b e e be e e ta e e beesraeebeeaneas 11-16
Building Java GUIs Using the SWIiNng APl ..o 12-1
(@]] [T 1A= TSR P RSP P TP PR PRSP 12-2
What Are the Java Foundation ClasSes (JFC)? ...ttt 12-3
LTAY A F= U I V1Y T TSSOSO 12-4
SWING ATCNITECTUIE ..ot bbbt ettt ettt e st e bt e eneas 12-5

Y VT [0 I o= Uod & Vo 1= SRRSO 12-6
Examining the Composition of a Java Technology GUI ... 12-7
SWING CONTAINETS ...ttt b et e bbbt bt bt bt e bt e s e et et et e st e s b e nbesbeebeeneas 12-9
Java™ Programming Language Xii

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

TOP-LEVEI CONTAINEIS ...ttt ettt sttt b e b 12-10
YTV T T I OT0T 1 0] o ToT g 1=1 o1 £ S PSTS 12-11
Swing Component HIBrarChyooo e 12-12
TEXE COMPONENTS ...ttt h bt b e e bt s e e e R e bt e s e e bt et e et e b e e b e e s e nneebe e e e 12-13
SWING COMPONENT PrOPEITIESccviiiiiiiciieie ettt st e st te e s e e te e e e sreenreenee e 12-14
Common COMPONENT PIOPEITIESoiuiiiiiiieieite ettt 12-15
Component-SPECITIC PIrOPEITIESooiiiiiiiiieiee ettt 12-16
(IEC Yo 1WAV, F= T g T To [T TSP 12-17
The BorderLayout IMABNAGETcciiiiiieieieiest ettt b bbb 12-18
BorderLayout EXAMPIE ...t rs 12-19
The FLowLayout IMaNAGETccoiiiiiieiie ettt e e e be e s e e st e e s raeenbeeanee e 12-21
FLoWLayouUt EXAMPIE ..o 12-22
The BoXLayout IMANAGETcccceiieiieieceeie e see st ste e e steesee s e e teeseesseesseasaesseesseeneesseesreenee e 12-24
The CardLayout MANAGELcccooiiiiieie ettt e et e b e e be e s b e e nbeesraeenbeeaneeenes 12-25
GridLayout EXAMPIE ...t 12-27
The GridBagLayout MANAQETcccciiieiiiie ettt e e te et e e e teeseesreenreenee e 12-29
(€10 1 I O] o 3 1 U011 o] o ST 12-30
Programmatic CONSIIUCTIONooiiiiiiieieie et 12-31
(=Y 1YL 1=31 T Yo LSS SSSRTSSN 12-34
Handling GUI-Generated EVENIS ... 13-1
(@ o =Tod (LY TSROSO 13-2
RTAY A F= U S T= T N = o | OSSR 13-3
D LT =T o T= L Lo TN \Y/ o o 1= PSS 13-4
A LISTENEN EXAMPIE ..ottt ettt e b e ste et ne et e e nbeeneenns 13-6
VLT o] A OF= 1 (=To (o] ¢ =T SRR P PP PP TP 13-8
Method Categories and INTEITACES ..o e 13-9
COMPIEX EXAMPIE ..ot b ettt b b 13-13
VO] AT o] Lo I 1] (] 1= USSR 13-17
AT | AN F=1 o] (=] PSPPSR 13-18
Java™ Programming Language Xiii

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Event Handling UsSING INNEK CIASSESccuoiieiiiieiieieeie et sie e sre e snaesse e sneeses 13-19
Event Handling Using ANONYMOUS CIASSEScccuiiiiiiiriiieieie et eseens 13-21
(W] B S F= 1Yo I o o] o= 14 T] o T 14-1
(@]] [T 1AV TR P RSP P TP PR PRSPPI 14-2
REIBVANCE ...ttt bbbkt h st e st e e b e b e bt bt e bt e Rt e Rt e s et et et e st e be b e reene e 14-3
HOW 10 Create @ IMEBINU ...ttt ettt b e b e et e e san e e be e s bn e e b e e nan e 14-4
CreatiNg @ JMEIUBAYeiviiuiiiieieeieieste sttt ittt eseestesestesbesbe s bt bt e be e st e se e b et e e bt e b e bt e b e e be e st en s et e st e e benbesbeebeaneas 14-5

(O T] Lo = 0 =S o SRS 14-6
CreatiNg 8 JMETIUTEEIM ..euiiiiitieiieastesteesteeeesteesteaseesseesseaseeaseessessseasessseassessessseessesseesseessessesssenssessesssenssens 14-8
Creating @ JCheCKBOXMETIUT L M ...o.viivitiiiieiiaiiesieee sttt sttt sttt be st sbe b sbe bt beese et e snesbenbesbesbesbeese e 14-10
(Ofe] a1 fo] LT o VAT U I L AN 0 1= SRR 14-12
TREEAAS ... e e e ettt a e e e eenara 15-1
(@]] 1T 1AV TR PSSP P TPV PR PRURORN 15-2
REIBVANCE ...ttt b bbbt bR e s e e b e btk b e e bt e Rt e R e e s et et et e nbe s bt e b e reene e 15-3

B I 1 == o PRSPPSO 15-4
Creating the TRIEA ..ottt b ettt sb e eneas 15-5
Starting the TRIFEAAc.oo et e e e e be e e s reesreaneesreenteas 15-7

Bl 1 =T o IS Tod aT=To (61 T To SRRSO 15-8
Thread Scheduling EXAMPIE ..ot 15-9
Terminating @ TRIEAAcoooi i re e re e re e e 15-10
= (o o] o d o] Io) I N] ¢=7- [0 < TR P 15-12

Bl (=T o 1Y/ =1 1 T Yo IO RO U S PSPPSR 15-13
Other Ways t0 Create TRIEAUSoovi it 15-14
Selecting a Way t0 Create TRIEAAScooiiiiiiiiiiiie et 15-15
Using the synchronized KEYWOId ... e e e 15-16

The ODJECT LOCK FIAQoiiiiie et e b e ae e be e anee e 15-17
Releasing the LOCK FIAQ ..o 15-20
Using synchronized — PUtting It TOQETNETccvoi i 15-21
Java™ Programming Language Xiv

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Thread State Diagram With Synchronization ... 15-23
D =: o | (o] ox -SSP 15-25
Thread Interaction — wait @N0 NOLLIEY toiiiiiiie e e e 15-26
LI == Lo B 11 =T = 1 T o SRR 15-27
Thread State Diagram With wait and notify .. 15-28
Monitor Model fOr SYNCArONIZATIONc.coiiiiiiiee e e 15-30
B (eI e o LD TeT=5 ol O =T S 15-31
THE CONSUMET CIASS ...eiiviiiiiiiiiie ettt ettt s b s ebe e sbe e s beesbeeeabeesbaesabeesbeeasbeesbeesabeesseesnreens 15-33
THE SYNCSTACK CHASS ..iiiiiieiiieie et sttt e st et e e b e e st e s be e besneesbeeneesreesaeannens 15-35
THE POP MELNOM ...ttt s e et e e s b e e be e saaeebeesbeesbeesreesbeesbeesnreens 15-36
The PUSH IMEENOM ... e e e st e e e be e srb e e beesreeennee s 15-37
THE SYNCTEST CHASS ittt ettt e b et esre e beeneesseesbeeneeaneesreeneesneesneeneens 15-38
THE SYNCTESE CIASS ..viiiiiiiiiii ittt st et e et e e s b e e e be e shaeebeesbeesbeesbsesbeeareesnneens 15-39
N[AL oT g1 Lo PRSP 16-1
(@ o =Tod (LY TSRS 16-2
] (=AY 7= o SR 16-3
N2 V1Yo Lo PSR 16-4
Networking With Java TeChNOIOQYcooiiiiii e s 16-6
Java Networking MOEIco.o bbb 16-7
MINIMAI TCPZIP SEIVEL ..ottt bbbttt b e bbb e bt e st et et e st st e nbesbeene e 16-8
MINIMAI TCPZIP CHENT ...ttt st et ae et e neesbeentesneesneene s 16-11
Java™ Programming Language XV

Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Preface

About This Course

Java™ Programming Language

@ Sun Educational Services

Course Goals

This course provides you with knowledge and skills to:

e CreateJava™ technology applications that leverage the
object-oriented features of the Java language, such as
encapsulation, inheritance, and polymorphism

e EXxecute a Java technology application from the
command-line

e Use Java technology data types and expressions
e Use Java technology flow control constructs
« Use arrays and other data collections

e Implement error-handling techniques using exception
handling

Java™ Programming Language Preface, slide xvii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Course Goals

« Create an event-driven graphical user interface (GUI)
by using Java technology GUI components: panels,
buttons, labels, text fields, and text areas

e Implement input/output (I/0) functionality to read
from and write to data and text files

« Create multithreaded programs

e Create a simple Transmission Control Protocol/
Internet Protocol (TCP/IP) client that communicates
through sockets

Java™ Programming Language Preface, slide xviii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Course Overview

This course describes the following areas:

e The syntax of the Java programming language

e Object-oriented concepts as they apply to the Java
programming language

e GUI programming
e Multithreading
e Networking

Java™ Programming Language Preface, slide xix of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@Sun Educational Services

Course Map

The Java Programming Language Basics

Object-Oriented Identifiers,
Getting Started P) Keywords, and
rogramming Types

Expressions

and Flow Control I

More Object-Oriented Programming

Advanced

Class Design Class Features

Exceptions, Collections, and 1/O

Exceptions Collections and 1/O
and Assertions (Generics Framework Fundamentals

Developing Graphical User Interfaces

Console /O and GUI Event GUI-Based
File 1/0 Handling Applications

Advanced Java Programming

Threads Networking

Java™ Programming Language About This Course, xx of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Topics Not Covered

e Object-oriented analysis and design — Covered In

O0-226: Object-Oriented Application Analysis and Design
Using UML

« General programming concepts — Covered in SL-110:
Fundamentals of the Java™ Programming Language

Java™ Programming Language Preface, slide xxi of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

How Prepared Are You?

Before attending this course, you should have completed
SL-110: Fundamentals of the Java™ Programming Language, or
have:

e Created and compiled programs with C or C++
e Created and edited text files using a text editor

e Used a World Wide Web (WWW) browser, such as
Netscape Navigator™

Java™ Programming Language Preface, slide xxii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Introductions

 Name

e Company affiliation

« Title, function, and job responsibility

e EXperience related to topics presented in this course
e Reasons for enrolling in this course

e Expectations for this course

Java™ Programming Language Preface, slide xxiii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

How to Use the Icons

Additional resources

R

Discussion

Note

Caution

P <0

Visual Aid

AT

Java™ Programming Language

Preface, slide xxiv of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

=

_ Sun Educational Services

Typographical Conventions and Symbols

Courier IS used for the names of commands, files,
directories, programming code, programming
constructs, and on-screen computer output.

Courier boldis used for characters and numbers that
you type, and for each line of programming code that is
referenced in a textual description.

Courier italicsisused for variables and command-
line place holders that are replaced with a real name or
value.

Courier italics boldis used to represent variables
whose values are to be entered by the student as part of
an activity.

Java™ Programming Language Preface, slide xxv of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Typographical Conventions and Symbols

= Palatino italics is used for book titles, new words or
terms, or words that are emphasized.

Java™ Programming Language Preface, slide xxvi of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Additional Conventions

Java programming language examples use the following
additional conventions:

e (Courier IS used for the class names, methods, and
keywords.

e Methods are not followed by parentheses unless a
formal or actual parameter list is shown.

e Line breaks occur where there are separations,
conjunctions, or white space in the code.

e |f acommand on the Solaris™ Operating System
(Solaris OS) is different from the Microsoft Windows
platform, both commands are shown.

Java™ Programming Language Preface, slide xxvii of xxvii
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 1

Getting Started

Java™ Programming Language

@ Sun Educational Services

Objectives

e Describe the key features of Java technology

< Write, compile, and run a simple Java technology
application

e Describe the function of the Java Virtual Machine
(JVM™)

« Define garbage collection

e Listthe three tasks performed by the Java platform that
handle code security

NOTE: The terms “Java Virtual Machine” and “JVM”
mean a Virtual Machine for the Java™ platform.

Java™ Programming Language Module 1, slide 2 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

e Isthe Java programming language a complete
language or is it useful only for writing programs for

the Web?
< Why do you need another programming language?

e How does the Java technology platform improve on
other language platforms?

Java™ Programming Language Module 1, slide 3 of 23

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

What Is the Java™ Technology?

e Java technology is:
e A programming language
« A development environment
« An application environment
« A deployment environment
e [tissimilar in syntax to C++.

« |tis used for developing both applets and applications.

Java™ Programming Language Module 1, slide 4 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Primary Goals of the Java Technology

e Provides an easy-to-use language by:

« Avoiding many pitfalls of other languages

e Being object-oriented

« Enabling users to create streamlined and clear code
< Provides an interpreted environment for:

e Improved speed of development

e Code portability

Java™ Programming Language Module 1, slide 5 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Primary Goals of the Java Technology

e Enables users to run more than one thread of activity

e Loads classes dynamically; that is, at the time they are
actually needed

e Supports changing programs dynamically during
runtime by loading classes from disparate sources

e Furnishes better security

Java™ Programming Language Module 1, slide 6 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Primary Goals of the Java Technology

The following features fulfill these goals:

e The Java Virtual Machine (JVM™)!

e Garbage collection

e The Java Runtime Environment (JRE)
e JVM tool interface

1. The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java platform

Java™ Programming Language Module 1, slide 7 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Java Virtual Machine

« Provides hardware platform specifications

e Reads compiled byte codes that are
platform-independent

e |s implemented as software or hardware

« |simplemented in a Java technology development tool
or a Web browser

Java™ Programming Language Module 1, slide 8 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Java Virtual Machine

JVM provides definitions for the:

e Instruction set (central processing unit [CPU])
e Register set

e Class file format

e Stack

e Garbage-collected heap

e Memory area

e Fatal error reporting

< High-precision timing support

Java™ Programming Language Module 1, slide 9 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Java Virtual Machine

< The majority of type checking is done when the code is
compiled.

e Implementation of the JVM approved by Sun
Microsystems must be able to run any compliant class
file.

e The JVM executes on multiple operating environments.

Java™ Programming Language Module 1, slide 10 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Garbage Collection

= Allocated memory that is no longer needed should be
deallocated.

e |n other languages, deallocation Is the programmer’s
responsibility.

e The Java programming language provides a
system-level thread to track memory allocation.

e Garbage collection has the following characteristics:
e Checks for and frees memory no longer needed
e |s done automatically
e Can vary dramatically across JVM implementations

Java™ Programming Language Module 1, slide 11 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Java Runtime Environment

The Java application environment performs as follows:

source

Compile Runtime
— : Class
=
TestGreeting.java d ¢
. Load from Bvtecode
javac l hard disk, y/erifier
/ network,
_i or other

Interpreter

TestGreeting.class

(Hardware)

Java™ Programming Language Module 1, slide 12 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Operation of the JRE With a Just-In-Time
(JIT) Compller

Compile Runtime
A : Class
jay loader
' ' /
TestGreeting.java

Load from
javacl v hard disk, B%/,Eger%(i)g‘e
network,

or other
source

M

Interpreter |/ 3T T

code !

\generator
C

Hardware)

TestGreeting.class

Java™ Programming Language

Module 1, slide 13 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

JVM™ Tasks

The JVM performs three main tasks:

e | oads code
e Verifies code
e Executes code

Java™ Programming Language Module 1, slide 14 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Class Loader

« [oads all classes necessary for the execution of a
program

< Maintains classes of the local file system in separate
namespaces

e Prevents spoofing

Java™ Programming Language Module 1, slide 15 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Bytecode Verifier

Ensures that:

e The code adheres to the JVM specification.
e The code does not violate system integrity.

e The code causes no operand stack overflows or
underflows.

e The parameter types for all operational code are
correct.

< No illegal data conversions (the conversion of integers
to pointers) have occurred.

Java™ Programming Language Module 1, slide 16 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

A Simple Java Application

The TestGreeting.java Application

//
// Sample "Hello World" application

//
public class TestGreeting{
public static void main (String[] args) {
Greeting hello = new Greeting() ;
hello.greet () ;

}
)

The Greeting.java Class

O 00 J O Ul & W DN K

1 public class Greeting {

2 public void greet () {

3 System.out.println (*hi”) ;
4 }

5)

Java™ Programming Language Module 1, slide 17 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The TestGreeting Application

e Comment lines
e C(Class declaration
e The main method
e Method body

Java™ Programming Language Module 1, slide 18 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Greeting Class

e (lass declaration
e The greet method

Java™ Programming Language Module 1, slide 19 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Compiling and Running the TestGreeting
Program

e Compile TestGreeting. java:

javac TestGreeting.java

e The Greeting.java Is compiled automatically.
< Run the application by using the following command:

java TestGreeting

e |ocate common compile and runtime errors.

Java™ Programming Language Module 1, slide 20 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Compile-Time Errors

e javac: Command not found

¢ Greeting.java:4: cannot resolve symbol
symbol : method printl (java.lang.String)
location: class java.io.PrintStream
System.out.printl ("hi") ;

A

e TestGreet.java:4: Public class TestGreeting
must be defined 1n a file called
"TestGreeting.java'.

Java™ Programming Language Module 1, slide 21 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Runtime Errors

e Can’t find class TestGreeting

e Exception 1in thread "main"
java.lang.NoSuchMethodError: main

Java™ Programming Language Module 1, slide 22 of 23
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Java Technology Runtime Environment

Compile

Runtime

Java™ Programming Language

:

TestGreeting.java Greeting.java

| TestGreeting.class Greeting.class
B .\\\\fiffi§7////
java - — — —

Vd N

Can/rtﬁl on n?ultiple\ platforms

e | AN

UNIX® DOS Javaos™

JVM JVM

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 1, slide 23 of 23

@ Sun Educational Services

Module 2

Object-Oriented Programming

Java™ Programming Language

@ Sun Educational Services

Objectives

e Define modeling concepts: abstraction, encapsulation,
and packages

« Discuss why you can reuse Javatechnology application
code

e Define class, member, attribute, method, constructor, and
package

e Use the access modifiers private and public as
appropriate for the guidelines of encapsulation

« Invoke a method on a particular object

« Use the Java technology application programming
interface (API) online documentation

Java™ Programming Language Module 2, slide 2 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

e \What is your understanding of software analysis and
design?

e What is your understanding of design and code reuse?

e What features does the Java programming language
possess that make it an object-oriented language?

e Define the term object-oriented.

Java™ Programming Language Module 2, slide 3 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Sun Educational Services

Software Engineering

Toolkits / Frameworks / Object APIs (1990s—Up)

Java 2 SDK AWT /J.F.C./Swing Jini™ JavaBeans™ JDBC™

Object-Oriented Languages (1980s—Up)

SELF

Smalltalk Common Lisp Object System Eiffel C++ Java

Libraries / Functional APIs (1960s—Early 1980s)

NASTRAN TCP/IP ISAM X-Windows OpenLook

High-Level Languages (1950s—Up) Operating Systems (1960s—Up)

Fortran

LISP C COBOL 0S/360 UNIX MacOS Microsoft Windows

Machine Code (Late 1940s—Up)

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 2, slide 4 of 26

@ Sun Educational Services

The Analysis and Design Phase

< Analysis describes what the system needs to do:

Modeling the real-world, including actors and
activities, objects, and behaviors

e Design describes how the system does it:

< Modeling the relationships and interactions
between objects and actors in the system

« Finding useful abstractions to help simplify the
problem or solution

Java™ Programming Language Module 2, slide 5 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Abstraction

e Functions—Write an algorithm once to be used in many
situations

e Objects — Group a related set of attributes and
behaviors into a class

e Frameworks and APIs — Large groups of objects that
support a complex activity; Frameworks can be used
as Is or be modified to extend the basic behavior

Java™ Programming Language Module 2, slide 6 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Classes as Blueprints for Objects

< |In manufacturing, a blueprint describes a device from
which many physical devices are constructed.

e |In software, a class is a description of an object:
« A class describes the data that each object includes.

e A class describes the behaviors that each object
exhibits.

« |nJava technology, classes support three key features
of object-oriented programming (OOP):

« Encapsulation
e |Inheritance
e Polymorphism

Java™ Programming Language Module 2, slide 7 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Declaring Java Technology Classes

e Basic syntax of a Java class:

<modifier>* class <class name> {
<attribute declaration>*
<constructor declaration>*
<method declaration>*

}
e Example:

1 public class Vehicle {

2 private double maxlLoad;

3 public void setMaxLoad (double value) {
4 maxLoad = value;
5

6

}
)

Java™ Programming Language Module 2, slide 8 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Declaring Attributes

e Basic syntax of an attribute:

<modifier>* <type> <name> [= <initial value>];

e Examples:

1 public class Foo

2 private int x;

3 private float y = 10000.0F;

4 private String name = "Bates Motel";
5

}

Java™ Programming Language Module 2, slide 9 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Declaring Methods

e Basic syntax of a method:

<modifier>* <return type> <name> (<argument>*) {
<statement>*

e Examples:

1 public class Dog

2 private int weight;

3 public int getWeight () {
4 return weight;

5)

6 public void setWeight (int newWeight) {
7 if (newWeight > 0) {
8 weight = newWeight;
9)

10 }

11}

Java™ Programming Language Module 2, slide 10 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Accessing Object Members

e The dot notation is: <object>.<member>

« This is used to access object members, including
attributes and methods.

e Examples of dot notation are:

d.setWeight (42) ;
d.weight = 42; // only permissible if weight is public

Java™ Programming Language Module 2, slide 11 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Information Hiding

The problem:

MyDate Client code has direct access to
+day : int Internal data (d refers to a MyDate
+month : int . .
+year : int ObJeCt)

d.day = 32;

// invalid day

d.month = 2; d.day = 30;
// plausible but wrong

d.day = d.day + 1;
// no check for wrap around

Java™ Programming Language Module 2, slide 12 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Information Hiding

The solution:

MyDate

-day : int
-month : int

-year : int

+getDay () : int

+getMonth () : int
+getYear () : int
+setDay (int) : boolean
+setMonth (int)
+setYé§;(int)

\

\
N

: boolean
: boolean

\

\

1 Verify days in montﬁ

Java™ Programming Language

Client code must use setters and
getters to access internal data:

MyDate d = new MyDate() ;

d.setDay (32) ;
// invalid day, returns false

d.setMonth(2) ;
d.setDay (30) ;
// plausible but wrong,
// setDay returns false

d.setDay (d.getDay () + 1);

// this will return false if wrap around
// needs to occur

Module 2, slide 13 of 26

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

e Hides the implementation details of a class

Encapsulation

e [orces the user to use an interface to access data

Java™ Programming Language

Makes the code more maintainable

MyDate

-date : long

+getDay () : int
+getMonth () : int
+getYear () : int

+setDay (int) : boolean
+setMonth (int) : boolean
+setYear (int) : boolean
-isDayValid (int) : boolean

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 2, slide 14 of 26

@ Sun Educational Services

Declaring Constructors

e Basic syntax of a constructor:

[<modifier>] <class name> (<argument>*) {
<statement>*

e Example:
1 public class Dog

2
3 private int weight;
4
5 public Dog()
6 weight = 42;
7 }
8 |}
Java™ Programming Language Module 2, slide 15 of 26

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Default Constructor

e There iIs always at least one constructor in every class.

e If the writer does not supply any constructors, the
default constructor is present automatically:

e The default constructor takes no arguments
e The default constructor body is empty

e The default enables you to create object instances with
new Xxx ()without having to write a constructor.

Java™ Programming Language Module 2, slide 16 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Source File Layout

e Basic syntax of a Java source file Is:

[<package declaration>]
<import declaration>*
<class declaration>+

e For example, the VvehicleCapacityReport .java file

IS.

1 package shipping.reports;

2

3 import shipping.domain.*;

4 import java.util.List;

5 import java.io.¥*;

6

7 public class VehicleCapacityReport
8 private List vehicles;

9 public void generateReport (Writer output) {...}
10 }

Java™ Programming Language Module 2, slide 17 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Software Packages

e Packages help manage large software systems.
« Packages can contain classes and sub-packages.

shipping
: " domain
~N
gul ~
h Owns 0..*
A Company = Vehicle
reports -7 Truck RiverBarge

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 2, slide 18 of 26

===

Sun Educational Services

The package Statement

Basic syntax of the package statement is:

package <top pkg name>[.<sub pkg name>] *;

Examples of the statement are:

package shipping.gui.reportscreens;

Specify the package declaration at the beginning of the
source file.

Only one package declaration per source file.

If no package is declared, then the class Is placed into
the default package.

Package names must be hierarchical and separated by
dots.

Java™ Programming Language Module 2, slide 19 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The import Statement

e Basic syntax of the import statement is:

import <pkg name>[.<sub pkg name>] *.<class name>;
OR
import <pkg name>[.<sub pkg name>] *.*;

e Examples of the statement are:

import java.util.List;
import java.io.*;
import shipping.gui.reportscreens.*;

< The import statement does the following:
« Precedes all class declarations
e Tells the compiler where to find classes

Java™ Programming Language Module 2, slide 20 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Directory Layout and Packages

« Packages are stored in the directory tree containing the
package name.

< An example is the shipping application packages.
shipping/

domain/

Company.class
Vehicle.class

RiverBarge.class
Truck.class

gui/
reports/

L—————-VehicleCapacityReport.class

Java™ Programming Language Module 2, slide 21 of 26

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Development

JavaProjects/

ShippingPrj/
src/

L—————-shipping/
domain/
qui/
reports/

docs/
classes/

L—————-shipping/
domain/
gui/
reports/

Java™ Programming Language Module 2, slide 22 of 26

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Compiling Using the -d Option

cd JavaProjects/ShippingPrj/src
javac -d ../classes shipping/domain/*.java

Java™ Programming Language Module 2, slide 23 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

|%%C

Sun Educational Services

Terminology Recap

Class — The source-code blueprint for a run-time object

Object — An instance of a class;
also known as instance

Attribute — A data element of an object;

also known as data member, instance variable, and data
field

Method — A behavioral element of an object;
also known as algorithm, function, and procedure

Constructor — A method-like construct used to Initialize
a new object

Package — A grouping of classes and sub-packages

Java™ Programming Language Module 2, slide 24 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Using the Java Technology API
Documentation

« A set of Hypertext Markup Language (HTML) files
provides information about the API.

e Aframe describes a package and contains hyperlinks to
Information describing each class in that package.

e A class document includes the class hierarchy, a
description of the class, a list of member variables, a list
of constructors, and so on.

Java™ Programming Language Module 2, slide 25 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@Sun Educational Services

Java Technology API
Documentation

~| Object (Java 2 Platform 5E 5.0) — Web Browser |- i_Ji

. Eile Edit ¥iew Go Bookmarks Toaols Window Help

OOO O O | % filestiropt/javardocs/apisindes html |

A' FIBookmarks %5 Java Store %5 Apple Training B3 Admin E35ES F3Java % Tomcat EjJava Web Tech E3Personal 3

r
I3

Java™ 2 Platform |=|| Overview Package [HEteyUse Tree Deprecated Index Help Java' v 2 Piafiorm

Standard Ed. 5.0 PREV CLA 55 MEAT CLASS FRAMES MO FRAMES Sfandard Fd 8.0
SUnARY: MESTED | FIELD | COMNETRE |METHOD DETAIL: FIELD | COMETR |METHOD

2l Classes

Fackages —

::::awtlet favafang

jEva.awt color Class Ob]ect

java.ant datatransfer

jpva.awt.dnd java.lang.0bject

jva.awt.event

jmvaawt font

java anrt eom
Al [»

TR I LT Tetr

Murneric Shaper

public class Object

O] £

Class Object is the root of the class hisrarchy. Every class has Object as a superclass. All

MList ohjects, including arrays, implement the methods of this class.
OAEPParameter Spec

DB) ADAPTER Sinca:

dbject JDK1.0

Cofgizet See Also:

OBJECT WOT EXIST dless

ObjectalreacySctive
Object &l eady Setive Helpe

Lfcfihangel sfenar
D fPaciun

Constructor Summary

OhijectHelper .
DObiect Holcer Object()
Object|dHelper
ObijectldHelper
Db:ectlmgl
el Method Summary
L2z fin pud
Dbjectinput Stream protected)| sl ome ()

Dkigctingut Stream. GetFie i Creates and retums a copy of this object.
o s : :

OhjectInstance boelesn) pquals(ihiect obj) o .
Obijzct Mame Indicates whether some other object is "equal to” this one.
ObjectMotdctive - -
Dhbject Mot ActiveHelper protecked | finalize ()
(CbecfTufpy Called by the garhage collector on an ohject when garbage collection
Ohbject Output Stream determines that there are no more references to the object.

Ohiject Output Stream . PutF -
DbictAsfrancafzoig S PEEE D

Obiect ReferenceFactoryH ohiects Returns the runtime class of an ohject.
Obiject ReferenceFactory He i

DbgctHeferenceFactor Hi int | hashCode ()

L iRafaranca Tampl| i
e e e | Returns a hash code value far the ohject.
Object FeferenceTernplateH vodid notify()

Object BeferenceTemplate i i iti i i E i
Db Fefa Tt ‘Wakes up a single thread that is waiting on this object’s monitor,
Tl 3 | vold | notifyall () -
[= & E) @3 | filesioptiavaidocsapijavalanaObject bitml == &

Java™ Programming Language Module 2, slide 26 of 26
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 3

ldentifiers, Keywords, and Types

Java™ Programming Language

@ Sun Educational Services

Objectives

e Use comments in a source program

e Distinguish between valid and invalid identifiers

e Recognize Java technology keywords

e List the eight primitive types

e Define literal values for numeric and textual types

e Define the terms primitive variable and reference variable

Java™ Programming Language Module 3, slide 2 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Objectives

e Declare variables of class type
e Construct an object using new
e Describe default initialization
« Describe the significance of a reference variable

e State the consequences of assigning variables of class
type

Java™ Programming Language Module 3, slide 3 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

e Do you know the primitive Java types?

e Can you describe the difference between variables
holding primitive values as compared with object
references?

Java™ Programming Language Module 3, slide 4 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Comments

The three permissible styles of comment in a Java technology
program are:

// comment on one line

/* comment on one
* or more lines

*/

/** documentation comment
* can also span one or more lines

*/

Java™ Programming Language Module 3, slide 5 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Semicolons, Blocks, and White Space

e A statement is one or more lines of code terminated by
a semicolon (;):

totals = a + b + ¢
+d+ e + £;

« A block is a collection of statements bound by opening
and closing braces:

{

X
Y

}

i
o]
+

o

Java™ Programming Language

Module 3, slide 6 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Semicolons, Blocks, and White Space

« A class definition uses a special block:

public class MyDate
private int day;
private int month;
private int year;

}
e You can nest block statements.

while (i < large) {
a=a+ 1i;
// nested block

if (a == max) {
b =Db + a;
a = 0;
}
i=14+1;
}

Java™ Programming Language Module 3, slide 7 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Semicolons, Blocks, and White Space

< Any amount of white space is permitted in a Java
program.
For example:
{int x;x=23%54;}
IS equivalent to:
{

int x;

X = 23 * 54;

}

Java™ Programming Language

Module 3, slide 8 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

|dentifiers

Identifiers have the following characteristics:

< Are names given to a variable, class, or method

= Can start with a Unicode letter, underscore (_), or
dollar sign ()

e Are case-sensitive and have no maximum length
e Examples:

identifier
userName
user name
_sys varl
$Schange

Java™ Programming Language Module 3, slide 9 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Java Programming Language Keywords

abstract continue for new switch
assert default goto package synchronized
boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient
catch extends int short try

char final interface static void

class finally long strictfp volatile
const float native super while

Reserved literal words: null, true, and false

Java™ Programming Language Module 3, slide 10 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Primitive Types

The Java programming language defines eight primitive
types:

e Logical — boolean

e Textual — char

e Integral — byte, short, int, and long
e Floating — double and float

Java™ Programming Language Module 3, slide 11 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Logical — boolean

The boolean primitive has the following characteristics:

e The boolean data type has two literals, true and
false.

e [For example, the statement:

boolean truth = true;

declares the variable truth as boolean type and assigns
it a value of true.

Java™ Programming Language Module 3, slide 12 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Textual — char

The textual char primitive has the following characteristics:

e Represents a 16-bit Unicode character
e Must have its literal enclosed in single quotes (*)
« Uses the following notations:

'a’ The letter a
"\t The tab character
"\u????" A specific Unicode character, 22727, is replaced with

exactly four hexadecimal digits .
For example, '\u0326’ is the Greek letter phi [®].

Java™ Programming Language Module 3, slide 13 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Textual — String

The textual string type has the following characteristics:

= Isnot a primitive data type; it is a class
e Has its literal enclosed in double quotes (" ")

"The quick brown fox jumps over the lazy dog."

e (Can be used as follows:

String greeting = "Good Morning !! \n"
String errorMessage = "Record Not Found !";

Java™ Programming Language Module 3, slide 14 of 37

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Integral — byte, short, int, and long

The integral primitives have the following characteristics:

e Integral primates use three forms: Decimal, octal, or

hexadecimal

2 The decimal form for the integer 2.

077 The leading 0 indicates an octal value.
0xBAAC The leading 0x indicates a hexadecimal value.

 Literals have a default type of int.

 Literals with the suffix L or 1 are of type long.

Java™ Programming Language Module 3, slide 15 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Integral — byte, short, int, and long

= Integral data types have the following ranges:

Integer Length | Name or Type | Range

8 bits byte -27t0 2-1
16 bits short -215t0 215 -1
32 bits int -2 10 23 -1
64 bits long 2% 10 262 -1

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 3, slide 16 of 37

@ Sun Educational Services

Floating Point — £1oat and double

The floating point primitives have the following

characteristics:

« Floating-point literal includes either a decimal point or
one of the following:

e Eor e (add exponential value)
e Forf(float)
e Dord(double)

3.14
6.02E23
2.718F

123 .4E+306D

A simple floating-point value (a double)
A large floating-point value

A simple float size value

A large double value with redundant D

Java™ Programming Language

Module 3, slide 17 of 37

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Floating Point — £1oat and double

e Literals have a default type of double.
« Floating-point data types have the following sizes:

Float Length Name or Type

32 bits float
64 bits double

Java™ Programming Language Module 3, slide 18 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@Sun Educational Services

Variables, Declarations, and
Assignments

1 public class Assign

2 public static void main (String args []) {
3 // declare integer variables

4 int x, v;

5 // declare and assign floating point
6 float z = 3.414f;

7 // declare and assign double

8 double w = 3.1415;

9 // declare and assign boolean

10 boolean truth = true;

11 // declare character variable

12 char c;

13 // declare String variable

14 String str;

15 // declare and assign String variable
16 String strl = "bye";

17 // assign value to char variable

18 c = 'A';

19 // assign value to String variable
20 str = "Hi out there!";

21 // assign values to int variables

22 X = 6;

23 y = 1000;

24 }

25 }

Java™ Programming Language Module 3, slide 19 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Java Reference Types

« |nJava technology, beyond primitive types all others
are reference types.

« A reference variable contains a handle to an object.
e For example:

public class MyDate (
private int day = 1;
private int month = 1;
private int year = 2000;
public MyDate (int day, int month, int year) { ... }
public String toString() { ... }

}

public class TestMyDate {
public static void main(Stringl[] args) {
MyDate today = new MyDate (22, 7, 1964);

}

< 0 U1l b W DN R

(O IENT- N VU I O T =

}

Java™ Programming Language Module 3, slide 20 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Constructing and Initializing Objects

e Calling new Xyz () performs the following actions:
a. Memory is allocated for the object.
b. Explicit attribute initialization is performed.
c. A constructor is executed.

d. The object reference is returned by the new
operator.

e The reference to the object is assigned to a variable.

e Anexample is:
MyDate my birth = new MyDate (22, 7, 1964);

Java™ Programming Language Module 3, slide 21 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Memory Allocation and Layout

« A declaration allocates storage only for a reference:

MyDate my birth = new MyDate (22, 7, 1964);

my birth 2?77

e Use the new operator to allocate space for MyDate:

MyDate my birth = new MyDate (22, 7, 1964);

my birth rry
day 0
month 0
year 0
Java™ Programming Language Module 3, slide 22 of 37

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Explicit Attribute Initialization

e [|nitialize the attributes as follows:

MyDate my birth = new MyDate (22, 7, 1964);

my_birth 2977
day 1
month 1
year 2000

e The default values are taken from the attribute
declaration in the class.

Java™ Programming Language Module 3, slide 23 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Executing the Constructor

« Execute the matching constructor as follows:
MyDate my birth = new MyDate (22, 7, 1964);

my birth

day

month

year

27?7

22

1964

e |n the case of an overloaded constructor, the first

constructor can call another.

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 3, slide 24 of 37

@ Sun Educational Services

Assigning a Variable

« Assign the newly created object to the reference
variable as follows:

MyDate my birth = new MyDate (22, 7, 1964);

my_birth | gxolabcdef :|

day 22
month 7
year 1964

Java™ Programming Language

Module 3, slide 25 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

e Two variables refer to a single object:

1

2
3
4

X

Assigning References

int x = 7;
int v = x;
MyDate s
MyDate t

~

7

0x01234567

new MyDate (22,

7,

1964) ;

22

1964

0x01234567

« Reassignment makes two variables point to two

objects:
5 t = new MyDate (22, 12, 1964);
x 7 22| 7| 1964
i : /
s | 0x01234567
w22/ 12| 1964
t | 0x12345678

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 3, slide 26 of 37

@ Sun Educational Services

Pass-by-Value

e |In asingle virtual machine, the Java programming
language only passes arguments by value.

e \When an object instance is passed as an argument to a
method, the value of the argument is a reference to the

object.

« The contents of the object can be changed in the called
method, but the original object reference iIs never
changed.

Java™ Programming Language Module 3, slide 27 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Pass-by-Value

1 public class PassTest (

2

3 // Methods to change the current values

4 public static void changelInt (int value) {

5 value = 55;

6)

7 public static void changeObjectRef (MyDate ref) ({
8 ref = new MyDate (1, 1, 2000);

9 }

10 public static void changeObjectAttr (MyDate ref) {
11 ref .setDay (4) ;

12 }

Java™ Programming Language Module 3, slide 28 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Pass-by-Value

13

14 public static void main(String args([]) {
15 MyDate date;

16 int val;

17

18 // Assign the int

19 val = 11;

20 // Try to change it

21 changelInt (val) ;

22 // What 1is the current value?

23 System.out.println("Int value is: " + val);

The result of this output is:

Int value is: 11

Java™ Programming Language Module 3, slide 29 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Pass-by-Value

24

25 // Assign the date

26 date = new MyDate (22, 7, 1964);

27 // Try to change it

28 changeObjectRef (date) ;

29 // What is the current value?

30 System.out.println ("MyDate: " + date) ;

The result of this output is:

MyDate: 22-7-1964

Java™ Programming Language Module 3, slide 30 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

|%%C

Sun Educational Services

31
32
33
34
35
36
37
38

}

}

Pass-by-Value

// Now change the day attribute

// through the object reference
changeObjectAttr (date) ;

// What 1is the current value?
System.out.println ("MyDate: " + date) ;

The result of this output is:

MyDate: 4-7-1964

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 3, slide 31 of 37

@ Sun Educational Services

The this Reference

Here are a few uses of the this keyword:

e To resolve ambiguity between instance variables and
parameters

e To pass the current object as a parameter to another
method or constructor

Java™ Programming Language

Module 3, slide 32 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The this Reference

1 public class MyDate

2 private int day = 1;

3 private int month = 1;

4 private int year = 2000;

5

6 public MyDate (int day, int month, int year) {
7 this.day = day;

8 this.month = month;

9 this.year = year;

10 }

11 public MyDate (MyDate date) {
12 this.day = date.day;

13 this.month = date.month;
14 this.year = date.year;

15 }

Java™ Programming Language Module 3, slide 33 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The this Reference

16

17 public MyDate addDays (int moreDays)

18 MyDate newDate = new MyDate (this) ;

19 newDate.day = newDate.day + moreDays;

20 // Not Yet Implemented: wrap around code...
21 return newDate;

22 }

23 public String toString() {

24 return "" + day + "-" + month + "-" + vyear;
25 }

26}

Java™ Programming Language Module 3, slide 34 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The this Reference

public class TestMyDate {
public static void main(Stringl[] args) {
MyDate my birth = new MyDate (22, 7, 1964);
MyDate the next week = my birth.addDays(7);

System.out.println(the next week);

}

coO J O Ul i WDN R

}

Java™ Programming Language Module 3, slide 35 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Java Programming Language Coding
Conventions

e Packages:

com.example.domain;

e Classes, interfaces, and enum types:

SavingsAccount

e Methods:

getAccount ()
« Variables:

currentCustomer

e (Constants:

HEAD COUNT

Java™ Programming Language Module 3, slide 36 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Java Programming Language Coding
Conventions

e Control structures:

if (condition) {
statementl;

} else {
statement?2;

}
e Spacing:
e Use one statement per line.
e Use two or four spaces for indentation.
e Comments:
e Use // to comment inline code.
e Use /** documentation */ for class members.

Java™ Programming Language Module 3, slide 37 of 37
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 4

Expressions and Flow Control

Java™ Programming Language

@ Sun Educational Services

Objectives

« Distinguish between instance and local variables
e Describe how to Initialize instance variables

e |dentify and correct a Possible reference before
assignment compiler error

e Recognize, describe, and use Java software operators

« Distinguish between legal and illegal assignments of
primitive types

Java™ Programming Language Module 4, slide 2 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Objectives

e ldentify boolean expressions and their requirements
In control constructs

e Recognize assignment compatibility and required casts
In fundamental types

e Use if, switch, for, while, and do constructions and
the labelled forms of break and continue as flow
control structures in a program

Java™ Programming Language Module 4, slide 3 of 31

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

e \What types of variables are useful to programmers?

< Can multiple classes have variables with the same
name and, if so, what is their scope?

e What types of control structures are used in other
languages? What methods do these languages use to
control flow?

Java™ Programming Language Module 4, slide 4 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Variables and Scope

Local variables are:

« Variables that are defined inside a method and are
called local, automatic, temporary, or stack variables

e Variables that are created when the method is executed
are destroyed when the method is exited

Variable initialization comprises the following:

e Local variables require explicit initialization.
e [Instance variables are initialized automatically.

Java™ Programming Language Module 4, slide 5 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Variable Scope Example

public class ScopeExample ({
private int 1i=1; Execution Stack

public void firstMethod() {
int i=4, j=5;

Heap Memory
this.i = 1 + j; — N —
secondMethod (7) ; J 8
} secondMethod i 7
public void secondMethod (int i) { chis |
int j=8; — — ScopeExample

this.i = i + j;] 5

} firstMethod i 4

} this -
m— ——

main | scope

public class TestScoping
public static void main(String[] args) {
ScopeExample scope = new ScopeExample() ;

scope.firstMethod() ;

}
}

Java™ Programming Language Module 4, slide 6 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Variable Initialization

Variable Value
byte 0

short 0

int 0

long OL
float 0.0F
double 0.0D
char "\u0000"
boolean false

All reference types null

Java™ Programming Language Module 4, slide 7 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Initialization Before Use Principle

The compiler will verify that local variables have been
Initialized before used.

3 public void doComputation() {

4 int x = (int) (Math.random() * 100) ;

5 int vy;

6 int z;

7 if (x > 50) {

8 y = 9;

9 }

10 Z =y + X; [// Possible use before initialization
11 }

javac TestInitBeforeUse.java
TestInitBeforeUse.java:10: variable y might not have been initialized
Z =y + x; // Possible use before initialization

1l error

Java™ Programming Language Module 4, slide 8 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Operator Precedence

Operators Assoclative
++ -- +Unary -unary ~ ! (<data type>) RtoL
*x /% LtoR
+ - LtoR
<< >> >>> LtoR
< > <= >= instanceof LtoR
== = LtoR
& LtoR
~ LtoR
| LtoR
&& LtoR
| | LtoR
<boolean expr> ? <exprl> : <expr2> RtoL
= %= /= %= 4= -= <<= >>= >>>= &= = |= RtoL

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 4, slide 9 of 31

@ Sun Educational Services

Logical Operators

e The boolean operators are:

| - NOT & — AND
| - OR “ - XOR

e The short-circuit boolean operators are:

& - AND || - OR

e You can use these operators as follows:

MyDate d = reservation.getDepartureDate () ;
if ((d != null) && (d.day > 31) {
// do something with d

}

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 4, slide 10 of 31

@ Sun Educational Services

Bitwise Logical Operators

e The integer bitwise operators are:

~ — Complement & - AND
” - XOR | - OR

e Byte-sized examples include:

~(0]2|0(0|2|1(1 |1 &/0|1(0{0|1(1|1 |1
1/0/1(1|/0|0(0]|O0 o/jojo0o|j0j1|1|0|1
0/0(1|0j1(1|0|1 0/0(1|0j1(1|0|1
~10|1]0|0(1|1 1|1 | 0(1/0/0(1|1 |11
0/j1/{1/0/0|01]O0 0(1/1/0(1|1|1|1

Java™ Programming Language Module 4, slide 11 of 31

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Right-Shift Operators >> and >>>

« Arithmetic or signed right shift (>>) operator:
e Examples are:

128 >> 1 returns 128/2! = 6a
256 >> 4 returns 256/2% = 16
-256 >> 4 returns —256/24 = -16

e The sign bit is copied during the shift.

« Logical or unsigned right-shift (>>>) operator:
= This operator is used for bit patterns.
« The sign bit is not copied during the shift.

Java™ Programming Language Module 4, slide 12 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Left-Shift Operator <<

e [|eft-shift (<<) operator works as follows:

128 << 1 returns 128 * 2! = 256
16 << 2 returns 16 * 22 = 64
Java™ Programming Language Module 4, slide 13 of 31

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Shift Operator Examples

1357 = [o]o|o]o|o]ofo][ofofo[o]o[ofo]o]o]o[o][ofo]o[z1][o[2]o]2]o]o[2]1]0]1]

-1357 = |1|1|1|1|1|1|2|2|1|a|z|2|z|2|2|2|2|2|2|2]2|o|2|of2]of2|21|of0|2]1]

1357 >> 5 = [p|o|o0|o0|o|0|0]|o|o|o|o|o[o|0|o|ofo|o|o[oojojofojojo|1]|0|1|0]1]0]

-1357 >>

ul

=l1fafafafa|afafa|afafafa|a|afa|afa|a]a|a|a]a|a|2|2|2]o]2]o|2]0]1]

1357>>>5=00000000000000000000000000101|0|1|0|

-1357 >>> 5 = |0|o]ofolo|1|2|{2|2|1|1|1|2|{2|2|2|1|21|2|2|1|2|1|1|1|2|0[1]|0|1|0]|1

1357 << 5 = |0|0|0|o|o|o|o]|ojojofojojofo|ojof1|o|1][o]x]|o]o][z]|2]o|1|ol0f0]0]O

-1357 << 5 = |1|1|1|1|2|2|2|2|z|z|z|z|z|z|2|[2]of2|of1]of1|1]o]o]2][2]|0]0]0]0]0]

Java™ Programming Language Module 4, slide 14 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

String Concatenation With +

e The + operator works as follows:
e Performs String concatenation
e Produces a new String:

String salutation = "Dr.";
String name = "Pete" + " " + "Seymour";
String title = salutation + " " + name;

e One argument must be a String object.

< Non-strings are converted to String objects
automatically.

Java™ Programming Language Module 4, slide 15 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Casting

« |If information might be lost in an assignment, the
programmer must confirm the assignment with a cast.

e The assignment between long and int requires an
explicit cast.

long bigValue = 99L;
int squashed bigValue; // Wrong, needs a cast
int squashed (int) bigvValue; // OK

int squashed = 99L; // Wrong, needs a cast
int squashed = (int) 99L; // OK, but...
int squashed = 99; // default integer literal

Java™ Programming Language Module 4, slide 16 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Promotion and Casting of Expressions

e Variables are promoted automatically to a longer form
(such as int to long).

e EXpression is assignment-compatible if the variable type
IS at least as large (the same number of bits) as the
expression type.

long bigval = 6; // 6 is an int type, OK
int smallval = 99L; // 99L is a long, illegal

double =z
float zl

12.414F; // 12.414F is float, OK
12.414; // 12.414 is double, illegal

Java™ Programming Language Module 4, slide 17 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Simple if, else Statements

The if statement syntax:

if (<boolean expression>)
<statement or block>

Example:

if ((x < 10)

System.out.println ("Are you finished yet?");

or (recommended):
if ((x < 10) |

}

System.out.println ("Are you finished yet?");

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 4, slide 18 of 31

@ Sun Educational Services

Complex if, else Statements

The if-else statement syntax:

if (<boolean expression>)
<statement or block>
else

<statement or block>

Example:

if ((x < 10) |

System.out.println ("Are you finished yet?");
} else {

System.out.println ("Keep working...");

}

Java™ Programming Language Module 4, slide 19 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Complex if, else Statements

The if-else-if statement syntax:

if (<boolean expression>)
<statement or block>

else if (<boolean expression>)
<statement or block>

Example:

int count = getCount(); // a method defined in the class
if (count < 0) {

System.out.println ("Error: count value is negative.");

} else if (count > getMaxCount()) {
System.out.println ("Error: count value is too big.");
} else {

System.out.println ("There will be " + count +
" people for lunch today.");

Java™ Programming Language Module 4, slide 20 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Switch Statements

The switch statement syntax:

switch (<expression>) {

case <constantl>:
<statement or block>*
[break;]

case <constant2>:
<statement or block>*
[break;]

default:
<statement or block>*
[break;]

Java™ Programming Language Module 4, slide 21 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Switch Statements

A switch statement example:

switch (carModel)

case DELUXE:
addAirConditioning() ;
addRadio () ;
addWheels () ;
addEngine ()
break;

case STANDARD:
addRadio () ;
addWheels () ;
addEngine ()
break;

default:
addWheels () ;
addEngine () ;

4

4

Java™ Programming Language Module 4, slide 22 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Switch Statements

This switch statement is equivalent to the previous example:

switch (carModel)

case DELUXE:
addAirConditioning() ;

case STANDARD:
addRadio () ;

default:
addWheels () ;
addEngine () ;

}

Without the break statements, the execution falls through
each subsequent case clause.

Java™ Programming Language Module 4, slide 23 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Looping Statements

The for loop:

for (<init expr>; <test expr>; <alter expr>)
<statement or block>

Example:

for (int 1 = 0; 1 < 10; i++)
System.out.println(i + " squared is " + (i*i));

or (recommended):

for (int i = 0; 1 < 10; i++) {
System.out.println(i + " squared is " + (i*1));

}

Java™ Programming Language Module 4, slide 24 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Looping Statements

The while loop:

while (<test expr>)
<statement or block>

Example:

int 1 = 0;

while (i < 10) {
System.out.println(i + " squared is " + (1i*1i));
1++;

}

Java™ Programming Language Module 4, slide 25 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Looping Statements

The do/while loop:

do
<statement or block>
while (<test expr>);

Example:

int 1 = 0;

do {
System.out.println(i + " squared is "
14+;

} while (1 < 10);

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 4, slide 26 of 31

@ Sun Educational Services

Special Loop Flow Control

e Thebreak [<label>]; command
e The continue [<label>]; command

e The <label> : <statement> command, where
<statement> should be a loop

Java™ Programming Language Module 4, slide 27 of 31
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The break Statement

1 do {

2 statement;,

3 if (condition) {

4 break;

5 }

6 statement;

7 } while (test expr);

Java™ Programming Language Module 4, slide 28 of 31

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The continue Statement

1 do {

2 statement;,

3 if (condition) {

4 continue;

5 }

6 statement;

7 } while (test expr);

Java™ Programming Language Module 4, slide 29 of 31

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Using break Statements with Labels

1 outer:

2 do

3 statementl;

4 do {

5 statementZ2;

6 if (condition)

7 break outer;

8 }

9 statement3;

10 } while (test expr);
11 statement4;

12 } while (test expr);
Java™ Programming Language Module 4, slide 30 of 31

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Using cont inue Statements with Labels

1 test:

2 do

3 statementl;

4 do {

5 statementZ2;

6 if (condition)

7 continue test;

8 }

9 statement3;

10 } while (test expr);
11 statement4;

12 } while (test expr);
Java™ Programming Language Module 4, slide 31 of 31

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 5

Arrays

Java™ Programming Language

@ Sun Educational Services

Objectives

e Declare and create arrays of primitive, class, or array
types
e Explain why elements of an array are initialized

« Explain how to initialize the elements of an array
e Determine the number of elements in an array
e Create a multidimensional array

< \Write code to copy array values from one array to
another

Java™ Programming Language Module 5, slide 2 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

What is the purpose of an array?

Java™ Programming Language Module 5, slide 3 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Declaring Arrays

< Group data objects of the same type.
= Declare arrays of primitive or class types:

char s|[];
Point pl];

char[] s;
Point [] p;

= Create space for a reference.
e An array Is an object; it is created with new.

Java™ Programming Language Module 5, slide 4 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating Arrays

Use the new keyword to create an array object.

For example, a primitive (char) array:

1 public char[] createArray() ({
2 char[] s;

3

4 s = new char[26];

5 for (int i=0; i<26; i++) {
6 s[i] = (char) (A’ + 1);
7 }

8

9 return s;

10 }

Java™ Programming Language Module 5, slide 5 of 15

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating an Array of Character Primitives

Execution Stack

Heap Memory

char []

A
B
C
D
createArray S // ;;:::::::j
Z

main

Java™ Programming Language Module 5, slide 6 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating Reference Arrays

Another example, an object array:

public Point[] createArray() {
Point [] p;

p = new Point[10];
for (int i=0; i<10; i++) {
pli] = new Point (i, 1i+1);

}

return p;

R O 0 J 0 Ul b WK

Java™ Programming Language Module 5, slide 7 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating an Array of Character Primitives
With Point Objects

Execution Stack

Heap Memory

Point []

createArray P
this
main
Java™ Programming Language Module 5, slide 8 of 15

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Initializing Arrays

« Initialize an array element.
« Create an array with initial values.

String[] names; String[] names = ({

names = new String[3]; "Georgianna',

names [0] = "Georgianna'"; "Jen",

names [1] = "Jen"; "Simon"

names [2] = "Simon"; ¥

MyDate [] dates; MyDate[] dates = {

dates = new MyDate[3]; new MyDate (22, 7, 1964),
dates[0] = new MyDate (22, 7, 1964); new MyDate (1, 1, 2000),
dates[1l] = new MyDate(l, 1, 2000); new MyDate (22, 12, 1964)
dates[2] = new MyDate (22, 12, 1964); };

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 5, slide 9 of 15

@ Sun Educational Services

Multidimensional Arrays

Arrays of arrays:

int [] [] twoDim = new int [4] [];
twoDim[0] = new int [5];
twoDim[1] new int [5];

int[] [] twoDim = new int[] [4]; // illegal

Java™ Programming Language Module 5, slide 10 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Multidimensional Arrays

= Non-rectangular arrays of arrays:

twoDim[0] = new int[2];
twoDim[1l] = new int [4];
twoDim[2] = new int [6];
twoDim[3] = new int[8];

« Array of four arrays of five integers each:

int [] [] twoDim = new int [4] [5];

Java™ Programming Language Module 5, slide 11 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Array Bounds

All array subscripts begin at O:

public void printElements (int[] list) {
for (int i = 0; i < list.length; i++) {
System.out.println(list[i]) ;

}
}

Java™ Programming Language Module 5, slide 12 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Using the Enhanced for Loop

Java 2 Platform, Standard Edition (J2SE™) version 5.0
Introduced an enhanced for loop for iterating over arrays:

public void printElements (int[] list) {
for (int element : list) {
System.out .println (element) ;

J
}

The for loop can be read as for each element In 1ist do.

Java™ Programming Language Module 5, slide 13 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Array Resizing

e You cannot resize an array.

e You can use the same reference variable to refer to an
entirely new array, such as:

int [] myArray = new int[6];
myArray = new int [10];

Java™ Programming Language Module 5, slide 14 of 15

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Copying Arrays

The System.arraycopy () method to copy arrays Is:

//original array
int[] myArray = { 1, 2, 3, 4, 5, 6 };

// new larger array
int[] hold = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };

// copy all of the myArray array to the hold
// array, starting with the 0th index
System.arraycopy (myArray, 0, hold, 0, myArray.length) ;

O 00 J O Ul & W DN K

Java™ Programming Language Module 5, slide 15 of 15
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 6

Class Design

Java™ Programming Language

@ Sun Educational Services

Objectives

« Define inheritance, polymorphism, overloading, overriding,
and virtual method invocation

e Use the access modifiers protected and the default
(package-friendly)

e Describe the concepts of constructor and method
overloading

e Describe the complete object construction and
Initialization operation

Java™ Programming Language Module 6, slide 2 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

How does the Java programming language support object
Inheritance?

Java™ Programming Language Module 6, slide 3 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Subclassing

The Employee class is shown here.

Employee public class Employee
+name : String = "n public String name = "";
+salary : double public double salary;
+birthDate : Date public Date birthDate;
+getDetails () : String

public String getDetails() {...}

Java™ Programming Language Module 6, slide 4 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Subclassing

The Manager class is shown here.

Manager public class Manager (
+name : String = "n public String name = "";
+salary : double public double salary;
+birthDate : Date public Date birthDate;
+department : String public String department;
+getDetails () : String

public String getDetails() {...}

Java™ Programming Language Module 6, slide 5 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Class Diagrams for Employee and Manager
Using Inheritance

Employee
+name : String = ""
+salary : double

+birthDate : Date

+getDetails () : String

/\

Manager

+department : String

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

public class Employee
public String name = "";
public double salary;
public Date birthDate;

public String getDetails() {...}

}

public class Manager extends Employee
public String department;

}

Module 6, slide 6 of 43

@ Sun Educational Services

Single Inheritance

e \When a class inherits from only one class, it is called
single inheritance.

= Interfaces provide the benefits of multiple inheritance
without drawbacks.

« Syntax of a Java class is as follows:

<modifier> class <name> [extends <superclass>] ({
<declaration>*

}

Java™ Programming Language

Module 6, slide 7 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Engineer

Java™ Programming Language

Single Inheritance

Employee

+name String = ""
double

Date

+salary
+birthDate

+getDetails () String

N N\

\X

Manager

+department String = ""

/\

Director

+carAllowance double

+increaselAllowance ()

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Secretary

Module 6, slide 8 of 43

@ Sun Educational Services

Access Control

Access modifiers on class member declarations are listed here.

Modifier Same Class Same Package Subclass Universe
private Yes

default Yes Yes

protected Yes Yes Yes

public Yes Yes Yes Yes

Java™ Programming Language Module 6, slide 9 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Overriding Methods

e A subclass can modify behavior inherited from a
parent class.

e A subclass can create a method with different

functionality than the parent’s method but with the
same:

 Name
e Return type!
e Argument list

1. In J2SE version 5, the return type can be a subclass of the overridden return type.

Java™ Programming Language Module 6, slide 10 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Overriding Methods

1 public class Employee (

2 protected String name;

3 protected double salary;

4 protected Date birthDate;

5

6 public String getDetails () {

7 return “Name: “ + name + “\n” +

8 “Salary: “ + salary;

9 }

10}

1 public class Manager extends Employee {
2 protected String department;

3

4 public String getDetails () {

5 return “Name: “ + name + “\n” +

6 “Salary: “ + salary + "\n" +
7 “Manager of: “ + department;
8 }

5

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 6, slide 11 of 43

@ Sun Educational Services

Overridden Methods Cannot Be Less
Accessible

1 public class Parent (

2 public void doSomething() {}

3)

1 public class Child extends Parent ({
2 private void doSomething() {} // illegal
3)

1 public class UseBoth

2 public void doOtherThing() {

3 Parent pl = new Parent () ;

4 Parent p2 = new Child() ;

5 pl.doSomething() ;

6 p2.doSomething () ;

7 }

8)

Java™ Programming Language Module 6, slide 12 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Invoking Overridden Methods

A subclass method may invoke a superclass method using the
super keyword:

e The keyword super Is used in a class to refer to its
superclass.

e The keyword super Is used to refer to the members of
superclass, both data attributes and methods.

e Behavior invoked does not have to be in the superclass;
It can be further up in the hierarchy.

Java™ Programming Language

Module 6, slide 13 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Invoking Overridden Methods

1 public class Employee (

2 private String name;

3 private double salary;

4 private Date birthDate;

5

6 public String getDetails () {

7 return "Name: " + name + "\nSalary: " + salary;
8)

5)

1 public class Manager extends Employee

2 private String department;

3

4 public String getDetails() {

5 // call parent method

6 return super.getDetails()

7 + “\nDepartment: " + department;
8 }

5)

Java™ Programming Language Module 6, slide 14 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Polymorphism

e Polymorphism is the ability to have many different
forms; for example, the Manager class has access to

methods from Employee class.
< An object has only one form.

e A reference variable can refer to objects of different
forms.

Java™ Programming Language Module 6, slide 15 of 43

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Polymorphism

Employee e = new Manager(); // legal

// illegal attempt to assign Manager attribute
e.department = "Sales";

// the variable is declared as an Employee type,

// even though the Manager object has that attribute

Java™ Programming Language Module 6, slide 16 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Virtual Method Invocation

e Virtual method invocation is performed as follows:

Employee e = new Manager() ;
e.getDetails () ;

e Compile-time type and runtime type invocations have
the following characteristics:

e The method name must be a member of the declared

variable type; in this case Employee has a method
called getDetails.

< The method implementation used is based on the
runtime object’s type; in this case the Manager class
has an implementation of the getDetails method.

Java™ Programming Language Module 6, slide 17 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

Heterogeneous Collections

e Collections of objects with the same class type are

called homogeneous collections. For example:

MyDate[] dates = new MyDate[2];
dates [0] new MyDate (22, 12, 1964);
dates [1] new MyDate (22, 7, 1964);

Collections of objects with different class types are
called heterogeneous collections. For example:

Employee [] staff = new Employee[1024];
staff [0] = new Manager () ;
staff [1] = new Employee() ;
staff [2] = new Engineer() ;

Java™ Programming Language Module 6, slide 18 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Polymorphic Arguments

Because a Manager IS an Employee, the following is valid:

public class TaxService f{
public TaxRate findTaxRate (Employee e) {

// calculate the employee’s tax rate

}
}

// Meanwhile, elsewhere in the application class

TaxService taxSvc = new TaxService() ;

Manager m = new Manager () ;
TaxRate t = taxSvc.findTaxRate (m) ;

Module 6, slide 19 of 43

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The instanceof Operator

public class Employee extends Object
public class Manager extends Employee
public class Engineer extends Employee

public void doSomething (Employee e)
if (e instanceof Manager) {
// Process a Manager
} else if (e instanceof Engineer) ({
// Process an Engineer
} else {
// Process any other type of Employee

}
}

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 6, slide 20 of 43

@ Sun Educational Services

Casting Objects

public void doSomething (Employee e)
if (e instanceof Manager)
Manager m = (Manager) e;
System.out.println("This is the manager of ”
+ m.getDepartment ()) ;

}

// rest of operation

}

Java™ Programming Language Module 6, slide 21 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Casting Objects

e Use instanceof to test the type of an object.
« Restore full functionality of an object by casting.

e Check for proper casting using the following
guidelines:

e (Casts upward in the hierarchy are done implicitly.

e Downward casts must be to a subclass and checked
by the compiler.

e The object type is checked at runtime when runtime
errors can occur.

Java™ Programming Language Module 6, slide 22 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Overloading Methods

e Use overloading as follows:

public void println(int i)
public void println(float f)
public void println(String s)

e Argument lists must differ.
e Return types can be different.

Module 6, slide 23 of 43

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Methods Using Variable Arguments

e Methods using variable arguments permit multiple
number of arguments in methods.

For example:

public class Statistics {
public float average(int... nums)
int sum = 0;
for (int x : nums) {
sum += X;
)
return ((float) sum) / nums.length;
)
)

e The vararg parameter is treated as an array. For
example:

float gradePointAverage = stats.average(4, 3, 4);
float averageAge = stats.average (24, 32, 27, 18);

Java™ Programming Language Module 6, slide 24 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Overloading Constructors

e As with methods, constructors can be overloaded.
An example is:

public Employee (String name, double salary, Date DoB)
public Employee (String name, double salary)
public Employee (String name, Date DoB)

e Argument lists must differ.

e You can use the this reference at the first line of a
constructor to call another constructor.

Java™ Programming Language Module 6, slide 25 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Overloading Constructors

1 public class Employee (

2 private static final double BASE SATARY = 15000.00;
3 private String name;

4 private double salary;

5 private Date birthDate;

6

7 public Employee (String name, double salary, Date DoB)
8 this.name = name;

9 this.salary = salary;

10 this.birthDate = DoB;

11 }

12 public Employee (String name, double salary) ({

13 this (name, salary, null);

14 }

15 public Employee (String name, Date DoB)

16 this (name, BASE SALARY, DOB) ;

17 }

18 // more Employee code...

19 }

Java™ Programming Language Module 6, slide 26 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Constructors Are Not Inherited

e A subclass inherits all methods and variables from the
superclass (parent class).

e A subclass does not inherit the constructor from the
superclass.

< Two ways to include a constructor are:
e Use the default constructor.
« Write one or more explicit constructors.

Java™ Programming Language Module 6, slide 27 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Invoking Parent Class Constructors

e Toinvoke a parent constructor, you must place acall to
super INn the first line of the constructor.

e You can call a specific parent constructor by the
arguments that you use in the call to super.

e |fno this or super call is used in a constructor, then
the compiler adds an implicit call to super () that calls
the parent no argument constructor (which could be
the default constructor).

If the parent class defines constructors, but does not
provide a no-argument constructor, then a compiler
error message Is issued.

Java™ Programming Language Module 6, slide 28 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Invoking Parent Class Constructors

1 public class Manager extends Employee {

2 private String department;

3

4 public Manager (String name, double salary, String dept) {
5 super (name, salary) ;

6 department = dept;

7 }

8 public Manager (String name, String dept) {

9 super (name) ;

10 department = dept;

11 }

12 public Manager (String dept) { // This code fails: no super|()
13 department = dept;

14 }

15 //more Manager code...

16}

Java™ Programming Language Module 6, slide 29 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Constructing and Initializing Objects: A
Slight Reprise

Memory is allocated and default initialization occurs.
Instance variable initialization uses these steps recursively:

1. Bind constructor parameters.

2. If explicit this (), call recursively, and then skip to
Step 5.

3. Call recursively the implicit or explicit super call,
except for Object.

4. Execute the explicit instance variable initializers.
5. Execute the body of the current constructor.

Java™ Programming Language Module 6, slide 30 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@Sun Educational Services

Constructor and Initialization
Examples

1 public class Object {
public Object () {}

}

public class Employee extends Object {
private String name;
private double salary = 15000.00;
private Date birthDate;

w N

public Employee (String n, Date DoB)
// implicit super () ;
name = n;
birthDate = DoB;
)
public Employee (String n) {
this(n, null);

}
)

public class Manager extends Employee {
private String department;

O 00 J O Ul b WN K

H R R R
> W N R o

public Manager (String n, String d) {
super (n) ;
department = d;

}
J

O J O Ul b WDN R

Java™ Programming Language Module 6, slide 31 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

Constructor and Initialization Examples

0 Basic initialization
0.1 Allocate memory for the complete Manager object
0.2 Initialize all instance variables to their default values (0 or null)
1 Call constructor: Manager ("Joe Smith", "Sales")
Bind constructor parameters: n="Joe Smith", d="Sales"
No explicit this() call
Call super (n)

1.1
1.
1.

R P W

3.2

1.3.2

1.3.2.2

1.3.2.3
1.3.2.3.1
1.3.2.3.2
1.3.2.3.3
1.3.2.3.4
1.3.2.3.5

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

No
No
No
No
No

for Employee (String)

.3.1 Bind constructor parameters: n="Joe Smith"

Call this(n, null) for Employee (String, Date)

.1 Bind constructor parameters: n="Joe Smith", DoB=null
No explicit this() call

Call super () for Object ()

binding necessary

this() call

super () call (Object is the root)

explicit variable initialization for Object
method body to call

Module 6, slide 32 of 43

@ Sun Educational Services

Constructor and Initialization Examples

1.3.2.4 Initialize explicit Employee variables: salary=15000.00;
1.3.2.5 Execute body: name="Joe Smith"; date=null;
1.3.3 - 1.3.4 Steps skipped
1.3.5 Execute body: No body in Employee (String)
1.4 No explicit initializers for Manager
1.5 Execute body: department="Salesg"

Java™ Programming Language Module 6, slide 33 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Object Class

e The Object class is the root of all classes in Java.

e A class declaration with no extends clause implies
extends Object. For example:

public class Employee {

.

1s equivalent to:
public class Employee extends Object (

-
e Two important methods are:

® cquals
e toString

Java™ Programming Language Module 6, slide 34 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The equals Method

e The == operator determines If two references are
iIdentical to each other (that is, refer to the same object).

e The equals method determines if objects are equal but
not necessarily identical.

e The Object iImplementation of the equals method
uses the == operator.

e User classes can override the equals method to
Implement a domain-specific test for equality.

e Note: Youshould override the hashCode method if you
override the equals method.

Java™ Programming Language Module 6, slide 35 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

An equals Example

public class MyDate {
private int day;
private int month;
private int year;

public MyDate (int day, int month, int year) {
this.day = day;
this.month = month;
this.year = year;

W 00 J O Ul i WIN R

=
(@]
——

Java™ Programming Language Module 6, slide 36 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

An equals Example

11

12 public boolean equals(Object o) {

13 boolean result = false;

14 if ((o != null) && (o instanceof MyDate)) {
15 MyDate d = (MyDate) o;

16 if ((day == d.day) && (month == d.month)
17 && (year == d.year)) {

18 result = true;

19 }

20 }

21 return result;

22 }

23

24 public int hashCode () {

25 return (day © month * year);

26 }

27 }

Java™ Programming Language Module 6, slide 37 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

An equals Example

1 class TestEquals f{

2 public static void main(Stringl[] args) {

3 MyDate datel = new MyDate (14, 3, 1976);

4 MyDate date2 = new MyDate (14, 3, 1976);

5

6 if (datel == date2) {

7 System.out.println("datel is identical to date2");
8 } else {

9 System.out.println("datel is not identical to date2");
10 }

11

12 if (datel.equals(date2)) {

13 System.out.println("datel is equal to date2");

14 } else {

15 System.out.println("datel is not equal to date2");
16 }

Java™ Programming Language Module 6, slide 38 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

An equals Example

17

18 System.out.println("set date2 = datel;");

19 date2 = datel;

20

21 if (datel == date2) {

22 System.out.println("datel is identical to date2");
23 } else {

24 System.out.println("datel is not identical to date2");
25 }

26 }

27 '}

This example generates the following output:

datel is not identical to date2
datel is equal to date2

set date2 = datel;

datel is identical to date2

Java™ Programming Language Module 6, slide 39 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The toString Method

The toString method has the following characteristics:

e This method converts an object to a String.
e Use this method during string concatenation.

e Override this method to provide information about a
user-defined object in readable format.

e Use the wrapper class’s toString static method to
convert primitive types to a String.

Java™ Programming Language

Module 6, slide 40 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Wrapper Classes

Look at primitive data elements as objects.

Primitive Data Type Wrapper Class
boolean Boolean

byte Byte

char Character
short Short

int Integer

long Long

float Float

double Double

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 6, slide 41 of 43

@ Sun Educational Services

Wrapper Classes

An example of a wrapper class is:
int pInt = 420;

Integer wInt = new Integer(pInt); // this is called boxing
int p2 = wint.intValue(); // this is called unboxing

Other methods are:

int x = Integer.valueOf (str) .intValue() ;
int x = Integer.parselnt (str) ;
Java™ Programming Language Module 6, slide 42 of 43

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Autoboxing of Primitive Types

Autoboxing has the following description:

« Conversion of primitive types to the object equivalent
< Wrapper classes not always needed
e Example:

int pInt = 420;
Integer wint = pInt; // this is called autoboxing
int p2 = wint; // this is called autounboxing

e |anguage feature used most often when dealing with
collections

e Wrapped primitives also usable in arithmetic
expressions

« Performance loss when using autoboxing

Java™ Programming Language Module 6, slide 43 of 43
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 7

Advanced Class Features

Java™ Programming Language

@ Sun Educational Services

Objectives

e Create static variables, methods, and initializers
« Create final classes, methods, and variables

e Create and use enumerated types

= Use the static import statement

e Create abstract classes and methods

e Create and use an interface

Java™ Programming Language Module 7, slide 2 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

e How can you create a constant?
e How canyou declare datathat is shared by all instances
of a given class?

e How can you keep a class or method from being
subclassed or overridden?

Java™ Programming Language Module 7, slide 3 of 44

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The static Keyword

e The statickeyword isusedasamodifier on variables,
methods, and nested classes.

e The static keyword declares the attribute or method
IS associated with the class as a whole rather than any
particular instance of that class.

e Thus static members are often called class members,
such as class attributes or class methods.

Java™ Programming Language Module 7, slide 4 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Class Attributes

Class attributes are shared among all instances of a class:

Count
+counter : int = 0
-serialNumber : int
«instanceOf)» _ _ g > \«instanceOf»
- ~
cl : Count c2 : Count
serialNumber=1 serialNumber=2
28 public class Count ({
29 private int serialNumber;
30 public static int counter = 0;
31
32 public Count () {
33 counter++;
34 serialNumber = counter;
35 }
36 }
Java™ Programming Language Module 7, slide 5 of 44

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Class Attributes

If the static member Is public:

public class Countl {
private int serialNumber;
public static int counter = 0;
public Countl ()
counter++;
serialNumber = counter;

J
)

It can be accessed from outside the class without an instance:

0o J O Ul & WD K-

1 public class OtherClass f{

2 public void incrementNumber ()
3 Countl.counter++;

4)

5)

Java™ Programming Language Module 7, slide 6 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Class Methods

You can create static methods:

1 public class Count2 {

2 private int serialNumber;

3 private static int counter = 0;
4

5 public static int getTotalCount () {
6 return counter;

7)

8

9 public Count2()

10 counter++;

11 serialNumber = counter;

12 }

13}

Java™ Programming Language Module 7, slide 7 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Class Methods

You can invoke static methods without any instance of the
class to which it belongs:

public class TestCounter {
public static void main(Stringl[] args) {
System.out.println ("Number of counter is "
+ Count2.getTotalCount()) ;
Count2 counter = new Count2 () ;
System.out.println ("Number of counter is "
+ Count2.getTotalCount());

}
J

The output of the TestCounter program is:

W 00 J O Ul i W N R

Number of counter is 0
Number of counter is 1

Java™ Programming Language Module 7, slide 8 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Class Methods

Static methods cannot access instance variables:

public class Count3
private int serialNumber;
private static int counter = 0;

public static int getSerialNumber ()
return serialNumber; // COMPILER ERROR!

}

0o J O Ul & WD K-

Java™ Programming Language Module 7, slide 9 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Static Initializers

e A class can contain code In a static block that does not
exist within a method body.

e Static block code executes once only, when the class is
loaded.

e Usually, a static block is used to initialize static (class)
attributes.

Java™ Programming Language

Module 7, slide 10 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Static Initializers

1 public class Count4d

2 public static int counter;

3 static {

4 counter = Integer.getInteger ("myApp.Count4.counter") .intValue() ;
5 }

6)

1 public class TestStaticInit (

2 public static void main(Stringl[] args) {

3 System.out.println ("counter = "+ Count4.counter) ;
4)

5)

The output of the TestStaticInit program is:

java -DmyApp.Count4.counter=47 TestStaticInit
counter = 47

Java™ Programming Language Module 7, slide 11 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The £inal Keyword

e You cannot subclass a £inal class.
e You cannot override a £final method.
e A final variable is a constant.

e You can set a final variable once only, but that
assignment can occur independently of the declaration;
this is called a blank final variable.

« A blank final instance attribute must be set in every
constructor.

« A blank final method variable must be set in the
method body before being used.

Java™ Programming Language Module 7, slide 12 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Final Variables

Constants are static final variables.

public class Bank {
private static final double DEFAULT INTEREST RATE = 3.2;
... // more declarations

Java™ Programming Language Module 7, slide 13 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

W 00 J O Ul i WIN R

s e e el
W wWJo Ul WN RO
——

Blank Final VVariables

public class Customer

private final long customerID;

public Customer () {
customerID = createlID() ;

public long getID()
return customerlD;
}

private long createID() f{
return ... // generate new ID

// more declarations

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 7, slide 14 of 44

@ Sun Educational Services

Old-Style Enumerated Type Idiom

Enumerated types are a common idiom in programming.

1 package cards.domain;

2

3 public class PlayingCard {

4

5 // pseudo enumerated type

6 public static final int SUIT SPADES = 0;
7 public static final int SUIT HEARTS = 1;
8 public static final int SUIT CLUBS = 2;
9 public static final int SUIT DIAMONDS = 3;
10

11 private int suit;

12 private int rank;

13

14 public PlayingCard(int suit, int rank) {
15 this.suit = suit;

16 this.rank = rank;

17 }

Java™ Programming Language Module 7, slide 15 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Old-Style Enumerated Type Idiom

22 public String getSuitName ()

23 String name = ““;

24 switch (suit)

25 case SUIT SPADES:

26 name = “Spades”;
27 break;

28 case SUIT HEARTS:

29 name = “Hearts”;
30 break;

31 case SUIT CLUBS:

32 name = “Clubs”;

33 break;

34 case SUIT DIAMONDS:
35 name = “Diamonds”;
36 break;

37 default:

38 System.err.println(“Invalid suit.”);
39 }

40 return name;

41 }

Java™ Programming Language Module 7, slide 16 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Old-Style Enumerated Type Idiom

Old-style idiom Is not type-safe:

1 package cards.tests;

2

3 import cards.domain.PlayingCard;

4

5 public class TestPlayingCard ({

6 public static void main(Stringl[] args) {

7

8 PlayingCard cardl

9 = new PlayingCard (PlayingCard.SUIT SPADES, 2);

10 System.out.println(“*cardl is the “ + cardl.getRank ()
11 + “ of “ + cardl.getSuitName()) ;
12

13 // You can create a playing card with a bogus suit.
14 PlayingCard card2 = new PlayingCard (47, 2);

15 System.out.println(“*card2 is the “ + card2.getRank ()
16 + “ of “ + card2.getSuitName()) ;
17 }

18 |}

Java™ Programming Language Module 7, slide 17 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Old-Style Enumerated Type Idiom

This enumerated type idiom has several problems:

< Not type-safe

< NO hamespace

e Brittle character

« Uninformative printed values

Java™ Programming Language Module 7, slide 18 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The New Enumerated Type

Now you can create type-safe enumerated types:

package cards.domain;

1

2

3 public enum Suit {
4 SPADES,

5 HEARTS,

6 CLUBS,

7 DIAMONDS

8

S

Java™ Programming Language Module 7, slide 19 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The New Enumerated Type

Using enumerated types Is easy:

1 package cards.domain;

2

3 public class PlayingCard {
4

5 private Suit suit;

6 private int rank;

7

8 public PlayingCard(Suit suit, int rank) {
9 this.suit = suit;

10 this.rank = rank;

11 }

12

13 public Suit getSuit() {
14 return suit;

15 }

Java™ Programming Language Module 7, slide 20 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The New Enumerated Type

16 public String getSuitName () {

17 String name = ““;

18 switch (suit)

19 case SPADES:

20 name = “Spades”;
21 break;

22 case HEARTS:

23 name = “Heartg”;
24 break;

25 case CLUBS:

26 name = “Clubs”;

27 break;

28 case DIAMONDS:

29 name = “Diamonds”;
30 break;

31 default:

32 // No need for error checking as the Suit
33 // enum 1is finite.
34 }

35 return name;

36 }

Java™ Programming Language Module 7, slide 21 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The New Enumerated Type

Enumerated types are type-safe:

1 package cards.tests;

2

3 import cards.domain.PlayingCard;

4 import cards.domain.Suit;

5

6 public class TestPlayingCard

7 public static void main(Stringl[] args) {

8

9 PlayingCard cardl

10 = new PlayingCard (Suit.SPADES, 2);

11 System.out.println(“cardl is the “ + cardl.getRank ()
12 + “ of “ + cardl.getSuitName()) ;
13

14 // PlayingCard card2 = new PlayingCard (47, 2);

15 // This will not compile.

16 }

17 }

Java™ Programming Language Module 7, slide 22 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

=

S

Sun Educational Services

Advanced Enumerated Types

Enumerated types can have attributes and methods:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

package cards.domain;

public enum Suit {

}

SPADES (“Spades”) ,
HEARTS (“Hearts”),
CLUBS (“Clubs”) ,
DIAMONDS (“Diamonds”) ;

private final String name;

private Suit (String name) {
this.name = name;

}

public String getName () {
return name;

}

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 7, slide 23 of 44

@ Sun Educational Services

Advanced Enumerated Types

Public methods on enumerated types are accessible:

1 package cards.tests;

2

3 import cards.domain.PlayingCard;

4 import cards.domain.Suit;

5

6 public class TestPlayingCard

7 public static void main(Stringl[] args) {

8

9 PlayingCard cardl

10 = new PlayingCard (Suit.SPADES, 2);

11 System.out.println(“cardl is the “ + cardl.getRank ()
12 + “ of “ + cardl.getSuit () .getName()) ;
13

14 // NewPlayingCard card2 = new NewPlayingCard (47, 2);
15 // This will not compile.

16 }

17 }

Java™ Programming Language Module 7, slide 24 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

|%%C

Sun Educational Services

Static Imports

A static import imports the static members from a class:

import static <pkg list>.<class name>.<member name>;
OR

import static <pkg list>.<class name>.*;

A static import imports members individually or
collectively:

import static cards.domain.Suit.SPADES;
OR

import static cards.domain.Suit.*;

There is no need to qualify the static constants:

PlayingCard cardl = new PlayingCard (SPADES, 2);
Use this feature sparingly.

Java™ Programming Language Module 7, slide 25 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Static Imports

An example of a static import is:

1 package cards.tests;

2

3 import cards.domain.PlayingCard;

4 import static cards.domain.Suit.*;

5

6 public class TestPlayingCard

7 public static void main(Stringl[] args) {

8

9 PlayingCard cardl = new PlayingCard (SPADES, 2);

10 System.out.println(“*cardl is the “ + cardl.getRank ()
11 + “ of “ + cardl.getSuit () .getName()) ;
12

13 // NewPlayingCard card2 = new NewPlayingCard (47, 2);
14 // This will not compile.

15 }

16 }

Java™ Programming Language Module 7, slide 26 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Abstract Classes

The design of the Shipping system looks like this:

shipping

ShippingMain| «Uses»

domain

Company

O*

reports j

7
e
e

FuelNeedsReport [«Uses»

fleet

Vehicle

N

Truck

RiverBarge

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 7, slide 27 of 44

@ Sun Educational Services

Abstract Classes

Fleet initialization code 1s shown here:;

1 public class ShippingMain

2 public static void main(Stringl[] args) {

3 Company ¢ = new Company () ;

4

5 // populate the company with a fleet of vehicles
6 c.addVehicle (new Truck (10000.0));

7 c.addVehicle(new Truck (15000.0));

8 c.addVehicle(new RiverBarge (500000.0));

9 c.addvVehicle (new Truck(9500.0));

10 c.addVehicle(new RiverBarge (750000.0)) ;

11

12 FuelNeedsReport report = new FuelNeedsReport (c) ;
13 report .generateText (System.out) ;

14 }

15}

Java™ Programming Language Module 7, slide 28 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Abstract Classes

1 public class FuelNeedsReport

2 private Company company;

3

4 public FuelNeedsReport (Company company) {

5 this.company = company;

6)

7

8 public void generateText (PrintStream output)
9 Vehiclel v;

10 double fuel;

11 double total fuel = 0.0;

12

13 for (int i = 0; i < company.getFleetSize(); i++) {
14 v = company.getVehicle (i) ;

15

Java™ Programming Language Module 7, slide 29 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Abstract Classes

16 // Calculate the fuel needed for this trip

17 fuel = v.calcTripDistance() / v.calcFuelEfficency() ;

18

19 output.println("Vehicle " + v.getName() + " needs "

20 + fuel + " liters of fuel.");

21 total fuel += fuel;

22 }

23 output.println("Total fuel needs is " + total fuel + " liters.");
24 }

25 }

Java™ Programming Language Module 7, slide 30 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

The Solution

An abstract class models a class of objects in which the full
Implementation is not known but is supplied by the concrete

Vehicle
{abstract}
+calcFuelEfficiency() : double
+calcTripDistance() : double
Truck RiverBarge

«constructors» «constructors»
+Truck (maxLoad : double) +RiverBarge (maxLoad : double)
«methods» «methods»
+calcFuelEfficiency() : double +calcFuelEfficiency() : double
+calcTripDistance () : double +calcTripDistance () : double

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 7, slide 31 of 44

@ Sun Educational Services

The Solution

The declaration of the vehicle class is:

1 public abstract class Vehicle {

2 public abstract double calcFuelEfficiency() ;
3 public abstract double calcTripDistance() ;
4}

The Truck class must create an implementation:

public class Truck extends Vehicle (
public Truck (double maxLoad) {...}
public double calcFuelEfficiency () {
/* calculate the fuel consumption of a truck at a given load */
)

public double calcTripDistance() {
/* calculate the distance of this trip on highway */
)

)

W 0 J 0 Ul = W DN K-

Java™ Programming Language Module 7, slide 32 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Solution

Likewise, the RiverBarge class must create an
Implementation:

public class RiverBarge extends Vehicle (
public RiverBarge (double maxLoad) ...}
public double calcFuelEfficiency () {
/* calculate the fuel efficiency of a river barge */
}

public double calcTripDistance() {
/* calculate the distance of this trip along the river-ways */

}

W 00 J O Ul i WIN R

}

Java™ Programming Language Module 7, slide 33 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Interfaces

« A public interface is a contract between client code and
the class that implements that interface.

e A Javainterface is a formal declaration of such a contract
In which all methods contain no implementation.

< Many unrelated classes can implement the same
Interface.

e A class can implement many unrelated interfaces.
e Syntax of a Java class is as follows:

<modifier> class <name> [extends <superclass>]
[implements <interface> [,<interface>]*] {
<member declaration>*

}

Java™ Programming Language Module 7, slide 34 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Flyer Example

«interface»

Flyer

+takeOff ()
+land()
+f1y()

7

Airplane

+takeOff ()
+land ()
+f1y ()

public interface Flyer ({
public void takeOff () ;
public void land() ;
public void fly();

}

Java™ Programming Language Module 7, slide 35 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Flyer Example

public class Airplane implements Flyer (
public void takeOff () {
// accelerate until lift-off
// raise landing gear
}
public void land() {
// lower landing gear
// decelerate and lower flaps until touch-down
// apply brakes
}
public void fly() {
// keep those engines running

}
)

Java™ Programming Language Module 7, slide 36 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Sun Educational Services

«interface»

Flyer

+takeOff ()
+land()
+f1y()

Airplane

The Flyer Example

Bird

Superman

+takeOff ()
+land ()
+E1ly ()

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

+takeOff ()
+land()
+£1y ()
+buildNest ()
+layEggs ()

+takeOff ()
+land ()
+£1y ()

+leapBuilding ()

+stopBullet ()

Module 7, slide 37 of 44

@ Sun Educational Services

The Flyer Example

Animal
«interface» +eat ()
Flyer Zl
+takeOFff () ‘
Vehicle +land()
A +f1y ()
! Kryptonian
Airplane Bird Superman
+takeOff () +takeOff () +takeOff ()
+land () +land () +land ()
+£1y () +E1y () +£1y ()
+buildNest () +leapBuilding()
+layEggs () +stopBullet ()
+eat () +eat ()

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 7, slide 38 of 44

@ Sun Educational Services

The Flyer Example

public class Bird extends Animal implements Flyer (

public void takeOff ()
public void land()
public void fly ()
public void buildNest
public void layEggs ()
public void eat ()

Java™ Programming Language

{

{
{
(0 |
{
{

/*
/*
/*
/*
/*
/*

take-off implementation */
landing implementation * /
fly implementation * /
nest building behavior */
egg laying behavior */
override eating behavior */

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

"~ N =

Module 7, slide 39 of 44

@ Sun Educational Services

The Flyer Example

Animal
«interface» +eat ()
Flyer Zl
+takeOff ()

Vehicle +land()

Zk +f1ly()

! Kryptonian

Airplane Bird Superman
+takeOff () +takeOff () +takeOff ()
+land () +land () +land ()
+£1y () +fly () +£1ly ()

T

+buildNest ()
+layEggs ()
+eat ()

+leapBuilding()
+stopBullet ()
+eat ()

SeaPlane Helicopter

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 7, slide 40 of 44

@ Sun Educational Services

The Flyer Example

public class Airport (
public static void main(Stringl[] args) {
Airport metropolisAirport = new Airport () ;
Helicopter copter = new Helicopter() ;
SeaPlane sPlane = new SeaPlane() ;

metropolisAirport.givePermissionToLand (copter) ;
metropolisAirport.givePermissionToLand (sPlane) ;

}

private void givePermissionToLand (Flyer f) {
f.land() ;

}
}

Java™ Programming Language Module 7, slide 41 of 44

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Multiple Interface Example
“Flyer
Vehicle +takeOff ()
A iy

/5

------ RiverBarge Airplane
— +dock () | +takeOff ()
«interface» | +Crulse
Sailer <} +land ()
+E£1y ()
+dock ()
+cruise()

SeaPlane Helicopter

+dock ()

+cruise ()

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 7, slide 42 of 44

@ Sun Educational Services

Multiple Interface Example

public class Harbor {
public static void main(Stringl[] args) {
Harbor bostonHarbor = new Harbor () ;
RiverBarge barge = new RiverBarge() ;
SeaPlane sPlane = new SeaPlane() ;

bostonHarbor.givePermissionToDock (barge) ;
bostonHarbor.givePermissionToDock (sPlane) ;

}

private void givePermissionToDock (Sailer s) {
s.dock () ;
}

}

Java™ Programming Language Module 7, slide 43 of 44
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Uses of Interfaces

Interface uses include the following:

« Declaring methods that one or more classes are
expected to implement

e Determining an object’s programming interface
without revealing the actual body of the class

e Capturing similarities between unrelated classes
without forcing a class relationship

« Simulating multiple inheritance by declaring a class
that implements several interfaces

Java™ Programming Language Module 7, slide 44 of 44

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 8

Exceptions and Assertions

Java™ Programming Language

@ Sun Educational Services

Objectives

e Define exceptions

e Use try, catch, and finally statements

e Describe exception categories

e |dentify common exceptions

e Develop programs to handle your own exceptions
« Use assertions

e Distinguish appropriate and inappropriate uses of
assertions

e Enable assertions at runtime

Java™ Programming Language Module 8, slide 2 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

=

_ Sun Educational Services

Relevance

« |In most programming languages, how do you resolve
runtime errors?

« |f you make assumptions about the way your code

works, and those assumptions are wrong, what might
happen?

« |s it always necessary or desirable to expend CPU
power testing assertions in production programs?

Java™ Programming Language

Module 8, slide 3 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Exceptions and Assertions

e EXxceptions handle unexpected situations - Illegal
argument, network failure, or file not found

e Assertions document and test programming
assumptions — This can never be negative here

e Assertion tests can be removed entirely from code at
runtime, so the code is not slowed down at all.

Java™ Programming Language Module 8, slide 4 of 25

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Exceptions

« Conditions that can readily occur in a correct program
are checked exceptions.

These are represented by the Exception class.

e Severe problems that normally are treated as fatal or
situations that probably reflect program bugs are
unchecked exceptions.

Fatal situations are represented by the Error class.

Probable bugs are represented by the
RuntimeException class.

e The APl documentation shows checked exceptions that
can be thrown from a method.

Java™ Programming Language Module 8, slide 5 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Exception Example

public class AddArguments {
public static void main(String args([]) {
int sum = 0;
for (String arg : args) {
sum += Integer.parselnt (arg) ;
}

System.out.println("Sum = " + sum);

W 00 J O Ul i WIN R

java AddArguments 1 2 3 4
Sum = 10

java AddArguments 1 two 3.0 4

Exception in thread "main" java.lang.NumberFormatException: For input string: "two"
at java.lang.NumberFormatException.forInputString (NumberFormatException.java:48)
at java.lang.Integer.parselnt (Integer.java:447)
at java.lang.Integer.parselnt (Integer.java:497)
at AddArguments.main (AddArguments.java:5)

Java™ Programming Language Module 8, slide 6 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The try-catch Statement

1 public class AddArguments2 {

2 public static void main(String args([]) {

3 try {

4 int sum = 0;

5 for (String arg : args) {

6 sum += Integer.parselnt (arg) ;

7 }

8 System.out.println("Sum = " + sum);

9 } catch (NumberFormatException nfe) {

10 System.err.println("One of the command-line "
11 + "arguments is not an integer.");
12 }

13 }

14}

java AddArguments2 1 two 3.0 4
One of the command-line arguments is not an integer.

Java™ Programming Language Module 8, slide 7 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The try-catch Statement

1 public class AddArguments3 {

2 public static void main(String args([]) {

3 int sum = 0;

4 for (String arg : args) {

5 try {

6 sum += Integer.parselnt (arg) ;

7 } catch (NumberFormatException nfe) {

8 System.err.println("[" + arg + "] is not an integer"
9 + " and will not be included in the sum.");
10 }

11 }

12 System.out.println("Sum = " + sum);

13 }

14}

java AddArguments3 1 two 3.0 4

[two] is not an integer and will not be included in the sum.
[3.0] is not an integer and will not be included in the sum.
Sum = 5

Java™ Programming Language Module 8, slide 8 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The try-catch Statement

A try-catch statement can use multiple catch clauses:

try {
// code that might throw one or more exceptions

} catch (MyException el) {
// code to execute if a MyException exception is thrown

} catch (MyOtherException e2)
// code to execute if a MyOtherException exception is thrown

} catch (Exception e3) {
// code to execute if any other exception is thrown

Java™ Programming Language Module 8, slide 9 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Call Stack Mechanism

« [fanexception is not handled in the current try-catch
block, it is thrown to the caller of that method.

« |fthe exception gets back to the main method and is not
handled there, the program is terminated abnormally.

Java™ Programming Language Module 8, slide 10 of 25

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The finally Clause

The finally clause defines a block of code that always
executes.

try {
startFaucet () ;

waterLawn () ;

} catch (BrokenPipeException e) {
logProblem(e) ;

} finally {
stopFaucet () ;

O J O Ul b WDN R

Java™ Programming Language Module 8, slide 11 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Exception Categories

—— StackOverflowError

___ VirtualMachineError __ | .__.

—— OutOfMemoryError
— Error__ | ___.
| AssertionError
Throwable—
—— ArithmeticException
—— RuntimeException——-----
—— NullPointerException
L— IllegalArgumentException
— Exception —----- I v P
—— SQLException
—— EOFException
L IOException —-----
— FileNotFoundException
Java™ Programming Language Module 8, slide 12 of 25

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Common Exceptions

¢ NullPointerException
e FileNotFoundException
e NumberFormatException
e ArithmeticException

e SecurityException

Java™ Programming Language Module 8, slide 13 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Handle or Declare Rule

Use the handle or declare rule as follows:

< Handle the exception by using the
try-catch-finally block.

= Declare that the code causes an exception by using the
throws clause.

void trouble() throws IOException { ... }
void trouble() throws IOException, MyException { ... }

Other Principles

« You do not need to declare runtime exceptions or
errors.

e You can choose to handle runtime exceptions.

Java™ Programming Language Module 8, slide 14 of 25

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Method Overriding and Exceptions

The overriding method can throw:

< No exceptions

e One or more of the exceptions thrown by the
overridden method

< One or more subclasses of the exceptions thrown by the
overridden method

The overriding method cannot throw:

« Additional exceptions not thrown by the overridden
method

e Superclasses of the exceptions thrown by the
overridden method

Java™ Programming Language Module 8, slide 15 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Method Overriding and Exceptions

1 public class TestA {

2 public void methodA () throws IOException (
3 // do some file manipulation

4)

5)

1 public class TestBl extends TestA

2 public void methodA () throws EOFException {
3 // do some file manipulation

4)

5)

1 public class TestB2 extends TestA

2 public void methodA () throws Exception { // WRONG
3 // do some file manipulation

4)

5)

Java™ Programming Language Module 8, slide 16 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating Your Own Exceptions

1 public class ServerTimedOutException extends Exception ({
2 private int port;

3

4 public ServerTimedOutException (String message, int port)
5 super (message) ;

6 this.port = port;

7 }

8

9 public int getPort () {

10 return port;

11 }

12}

Use the getMessage method, inherited from the Exception
class, to get the reason for which the exception was made.

Java™ Programming Language Module 8, slide 17 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Handling a User-Defined Exception

A method can throw a user-defined, checked exception:

1 public void connectMe (String serverName)

2 throws ServerTimedOutException ({

3 boolean successful;

4 int portToConnect = 80;

5

6 successful = open (serverName, portToConnect) ;

-

8 if (! successful) {

9 throw new ServerTimedOutException("Could not connect",
10 portToConnect) ;
11 }

12}

Java™ Programming Language Module 8, slide 18 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Handling a User-Defined Exception

Another method can use a try-catch block to capture
user-defined exceptions:

1 public void findServer()

2 try {

3 connectMe (defaultServer) ;

4 } catch (ServerTimedOutException e)

5 System.out.println ("Server timed out, trying alternative");
6 try {

7 connectMe (alternativeServer) ;

8 } catch (ServerTimedOutException el)

9 System.out.println ("Error: " + el.getMessage() +

10 " connecting to port " + el.getPort()) ;
11 }

12 }

13 }

Java™ Programming Language Module 8, slide 19 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Assertions

e Syntax of an assertion is:

assert <boolean expression> ;
assert <boolean expression> : <detail expression> ;

e If <boolean expression>evaluates false, then an
AssertionError IS thrown.

e The second argument is converted to a string and used
as descriptive text in the AssertionError message.

Java™ Programming Language Module 8, slide 20 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Recommended Uses of Assertions

Use assertions to document and verify the assumptions and
Internal logic of a single method:

e |nternal invariants
e Control flow invariants
e Postconditions and class invariants

Inappropriate Uses of Assertions

e Do not use assertions to check the parameters of a
public method.

e Do not use methods in the assertion check that can
cause side-effects.

Java™ Programming Language Module 8, slide 21 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Internal Invariants

The problem is:

1 if (x > 0) {
2 // do this
3} else {

4 // do that
5

The solution is;

1 if (x > 0) {

2 // do this

3} else {

4 assert (x == 0);

5 // do that, unless x is negative

6 }

Java™ Programming Language Module 8, slide 22 of 25

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Control Flow Invariants

For example:

1 switch (suit) {

2 case Suit.CLUBS: //

3 break;

4 case Suit.DIAMONDS: //

5 break;

6 case Suit.HEARTS: // ...

7 break;

8 case Suit.SPADES: // ...

9 break;

10 default: assert false : "Unknown playing card suit";
11 break;

12}

Java™ Programming Language Module 8, slide 23 of 25

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Postconditions and Class Invariants

For example:

1 public Object pop()

2 int size = this.getElementCount () ;

3 if (size == 0) {

4 throw new RuntimeException ("Attempt to pop from empty stack") ;
5 }

6

7 Object result = /* code to retrieve the popped element */ ;
8

9 // test the postcondition

10 assert (this.getElementCount() == size - 1);

11

12 return result;

13}

Java™ Programming Language Module 8, slide 24 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Controlling Runtime Evaluation of
Assertions

e |fassertion checking is disabled, the code runs as fast as
If the check was never there.

e Assertion checks are disabled by default. Enable
assertions with the following commandes:

java -enableassertions MyProgram
or:
java -ea MyProgram

e Assertion checking can be controlled on class, package,

and package hierarchy bases, see:
docs/guide/language/assert . html

Java™ Programming Language Module 8, slide 25 of 25
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 9

Collections and Generics Framework

Java™ Programming Language

Sun Educational Services

Objectives

Describe the Collections

Describe the general purpose implementations of the
core interfaces in the Collections framework

Examine the Map interface
Examine the legacy collection classes

Create natural and custom ordering by implementing
the Comparable and Comparator interfaces

Use generic collections

Use type parameters in generic classes
Refactor existing non-generic code

Write a program to iterate over a collection
Examine the enhanced for loop

Java™ Programming Language Module 9, slide 2 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Collections API

e A collection is a single object managing a group of
objects known as its elements.

e The Collections API contains interfaces that group
objects as one of the following:

e Collection-— A group of objects called elements;
Implementations determine whether there is specific
ordering and whether duplicates are permitted.

e Set — An unordered collection; no duplicates are
permitted.

e List — Anordered collection; duplicates are
permitted.

Java™ Programming Language Module 9, slide 3 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

The Collections API

<<interface>>
Collection
+add
+remove
+size
+1sEmpty
+contains
+iterator
, <<interface>>
<<interface>> .
Set List
_ +add
_ +remove
o _ +get
<<interface >> +set
HashSet SortedSet +indexOf
A +listIterator
| <7 R
| / N\
/ \
/ \
TreeSet Y \
ArrayList LinkedList

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 9, slide 4 of 40

===

Sun Educational Services

Collection Implementations

There are several general purpose implementations of the
core interfaces (Set, List, Deque and Map)

Hash Resizable Balanced Linked List H_ash Tab_le +
Table Array Tree Linked List
Set HashSet TreeSet LinkedHashSet
List ArrayList LinkedList
Deque ArrayDeque LinkedList
Map HashMap TreeMap LinkedHashMap

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 9, slide 5 of 40

@ Sun Educational Services

A Set Example

1 import java.util.¥*;

2 public class SetExample

3 public static void main(Stringl[] args) {

4 Set set = new HashSet () ;

5 set.add ("one") ;

6 set.add ("second") ;

7 set.add ("3rd") ;

8 set.add (new Integer(4)) ;

9 set.add (new Float (5.0F)) ;

10 set.add ("second") ; // duplicate, not added
11 set.add (new Integer(4)); // duplicate, not added
12 System.out .println(set) ;

13 }

14}

The output generated from this program is:

[one, second, 5.0, 3rd, 4]

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 9, slide 6 of 40

@ Sun Educational Services

1

2

3 public
4 List
5 list.
6 list.
7 list.
8 list.
9 list.
10 list.
11 list.
12

13 }

14}

A List Example

import java.util.*
public class ListExample {

static void main(String[] args)
list = new ArrayList();

add ("one") ;

add ("second") ;

add ("3xrd") ;

add (new Integer(4));

add (new Float (5.0F)) ;

(

add ("second") ; // duplicate,
add (new Integer(4)); // duplicate,
System.out.println(list) ;

is added
is added

The output generated from this program is:

[one, second,

3rd, 4, 5.0, second, 4]

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 9, slide 7 of 40

@ Sun Educational Services

The Map Interface

e Maps are sometimes called associative arrays
« A Map object describes mappings from keys to values:
e Duplicate keys are not allowed

e One-to-many mappings from keys to values is not
permitted

e The contents of the Map interface can be viewed and
manipulated as collections

e entrySet — Returns a Set of all the key-value pairs.
e keySet — Returns a Set of all the keys in the map.

e values — Returns a Collection of all values in the
map.

Java™ Programming Language Module 9, slide 8 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Sun Educational Services

The Map Interface API

<<interface>>

Map
Operations

+get()

+put()

+values()

+entrySet()

+keySetQ

ki > -

{;‘ ;n:leer{;ah?‘ea? Hashtable HashMap
I
TreeMap Properties LinkedHashMap

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 9, slide 9 of 40

@ Sun Educational Services

A Map Example

1 import java.util.¥*;

2 public class MapExample

3 public static void main(String args([]) {

4 Map map = new HashMap () ;

5 map.put ("one", "1lst") ;

6 map.put ("second", new Integer(2));

7 map.put ("third", "3rd") ;

8 // Overwrites the previous assignment

9 map.put ("third","III") ;

10 // Returns set view of keys

11 Set setl = map.keySet() ;

12 // Returns Collection view of values

13 Collection collection = map.values() ;

14 // Returns set view of key value mappings
15 Set set2 = map.entrySet () ;

16 System.out.println(setl + "\n" + collection + "\n" + set2);
17 }

18 }

Java™ Programming Language Module 9, slide 10 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

A Map Example

Output generated from the MapExample program:

[second, one, third]
[2, 1st, III]
[second=2, one=1st, third=IIT]

Java™ Programming Language Module 9, slide 11 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

|%%C

Sun Educational Services

Legacy Collection Classes

Collections in the JDK include:

The vector class, which implements the List
Interface.

The stack class, which is a subclass of the Vector class
and supports the push, pop, and peek methods.

The Hashtable class, which implements the Map
Interface.

The Properties class Is an extension of Hashtable
that only uses Strings for keys and values.

Each of these collections has an elements method that
returns an Enumeration object. The Enumeration
Interface is incompatible with, the Iterator interface.

Java™ Programming Language Module 9, slide 12 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Ordering Collections

The Comparable and Comparator interfaces are useful for
ordering collections:

e The Comparable interface imparts natural ordering to
classes that implement it.

e The Comparator interface specifies order relation. It
can also be used to override natural ordering.

« Both interfaces are useful for sorting collections.

Java™ Programming Language Module 9, slide 13 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Comparable Interface

Imparts natural ordering to classes that implement it:

e Used for sorting

e The compareTo method should be implemented to
make any class comparable:

e int compareTo (Object o) method

e The String, Date, and Integer classes implement the
Comparable interface

« You can sort the List elements containing objects that
Implement the Comparable interface

Java™ Programming Language Module 9, slide 14 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Comparable Interface

< While sorting, the List elements follow the natural
ordering of the element types

e Stringelements — Alphabetical order
e Date elements — Chronological order
e Integer elements — Numerical order

Java™ Programming Language

Module 9, slide 15 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

W 00 J O Ul i WIN R

e e el el el
0 g0 Ul WN RO

Example of the Comparable Interface

import java.util.*;
class Student implements Comparable {

String firstName, lastName;
int studentID=0;
double GPA=0.0;
public Student (String firstName, String lastName, int studentID,
double GPA)
if (firstName == null || lastName == null || studentID == 0
|| GPA == 0.0) {throw new IllegalArgumentException/() ;}
this.firstName = firstName;
this.lastName = lastName;
this.studentID = studentID;
this.GPA = GPA;
}

public String firstName() { return firstName; }
public String lastName() { return lastName; }
public int studentID() { return studentID; }
public double GPA() { return GPA; }

Java™ Programming Language Module 9, slide 16 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

19
20
21
22
23
24
25
26
27
28

29 }

Example of the Comparable Interface

// Implement compareTo method.
public int compareTo (Object o)
double f = GPA- ((Student)o) .GPA;
if (£ == 0.0)
return O; // 0 signifies equals
else if (£<0.0)

return -1; // negative value signifies less than or before
else
return 1; // positive value signifies more than or after

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 9, slide 17 of 40

@ Sun Educational Services

Example of the Comparable Interface

1 import java.util.¥*;

2 public class ComparableTest {

3 public static void main(Stringl[] args) {

4 TreeSet studentSet = new TreeSet () ;

5 studentSet.add (new Student ("Mike", "Hauffmann",101,4.0));
6 studentSet.add (new Student ("John", "Lynn",102,2.8));

7 studentSet .add (new Student ("Jim", "Max",103, 3.6));

8 studentSet.add (new Student ("Kelly", "Grant",104,2.3));

9 Object [] studentArray = studentSet.toArray() ;

10 Student s;

11 for (Object obj : studentArray) {

12 s = (Student) obj;

13 System.out.printf ("Name = %s %s ID = %d GPA = %.1f\n",
14 s.firstName (), s.lastName (), s.studentID(), s.GPA());
15 }

16 }

17}

Java™ Programming Language Module 9, slide 18 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Example of the Comparable Interface

Generated Output:

Name = Kelly Grant ID = 104 GPA = 2.3
Name = John Lynn ID = 102 GPA = 2.8
Name = Jim Max ID = 103 GPA = 3.6

Name = Mike Hauffmann ID = 101 GPA = 4.0

Java™ Programming Language Module 9, slide 19 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Comparator Interface

e Represents an order relation
e Used for sorting

e Enables sorting in an order different from the natural
order

e Used for objects thatdo notimplement the Comparable
Interface

e (Can be passed to a sort method

You need the compare method to implement the Comparator
Interface:

e int compare (Object ol, Object o2) method

Java™ Programming Language Module 9, slide 20 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Example of the Comparator Interface

1 class Student {

2 String firstName, lastName;

3 int studentID=0;

4 double GPA=0.0;

5 public Student (String firstName, String lastName,
6 int studentID, double GPA) {

7 if (firstName == null || lastName == null || studentID == 0 ||
8 GPA == 0.0) throw new NullPointerException() ;
9 this.firstName = firstName;

10 this.lastName = lastName;

11 this.studentID = studentID;

12 this.GPA = GPA;

13 }

14 public String firstName() { return firstName; }
15 public String lastName() { return lastName; }
16 public int studentID() { return studentID; }

17 public double GPA() { return GPA; }

18 }

Java™ Programming Language Module 9, slide 21 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Example of the Comparator Interface

1 import java.util.¥*;

2 public class NameComp implements Comparator

3 public int compare (Object ol, Object o2) {

4 return

5 (((Student)ol) .firstName.compareTo (((Student)o2) .firstName)) ;
6)

7}

1 import java.util.¥*;

2 public class GradeComp implements Comparator {

3 public int compare (Object ol, Object o2) {

4 if (((Student)ol) .GPA == ((Student)o2) .GPA)

5 return 0;

6 else if (((Student)ol) .GPA < ((Student)o2) .GPA)
7 return -1;

8 else

9 return 1;

10 }

11}

Java™ Programming Language Module 9, slide 22 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Example of the Comparator Interface

1 import java.util.¥*;

2 public class ComparatorTest {

3 public static void main(Stringl[] args) {

4 Comparator c¢ = new NameComp () ;

5 TreeSet studentSet = new TreeSet (c) ;

6 studentSet .add (new Student ("Mike", "Hauffmann",101,4.0));
7 studentSet.add (new Student ("John", "Lynn",102,2.8));

8 studentSet .add (new Student ("Jim", "Max",103, 3.6));

9 studentSet.add (new Student ("Kelly", "Grant",104,2.3));

10 Object [] studentArray = studentSet.toArray() ;

11 Student s;

12 for (Object obj : studentArray)

13 s = (Student) obj;

14 System.out.println("Name = %s %s ID = %d GPA = %.1f\n",
15 s.firstName (), s.lastName(), s.studentID(), s.GPA());
16 }

17 }

18 }

Java™ Programming Language Module 9, slide 23 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Example of the Comparator Interface

Name = Jim Max ID = 0 GPA = 3.6
Name = John Lynn ID = 0 GPA = 2.8
Name = Kelly Grant ID = 0 GPA = 2.3

Name

Mike Hauffmann ID = 0 GPA = 4.0

Java™ Programming Language

Module 9, slide 24 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Generics

Generics are described as follows:

e Provide compile-time type safety
e Eliminate the need for casts

< Provide the ability to create compiler-checked
homogeneous collections

Java™ Programming Language Module 9, slide 25 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Generics

Using non-generic collections:

ArraylList list = new ArrayList () ;
list.add (0, new Integer (42)) ;
int total = ((Integer)list.get(0)) .intValue() ;

Using generic collections:

ArrayList<Integer> list = new ArraylList<Integers() ;
list.add (0, new Integer(42)) ;
int total = list.get (0).intValue() ;

Java™ Programming Language Module 9, slide 26 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Generic Set Example

1 import java.util.¥*;

2 public class GenSetExample

3 public static void main(Stringl[] args) {
4 Set<String> set = new HashSet<Strings>() ;
5 set.add ("one") ;

6 set.add ("second") ;

7 set.add("3rd") ;

8 // This line generates compile error

9 set.add (new Integer(4)) ;

10 set.add ("second") ;

11 // Duplicate, not added

12 System.out .println(set) ;

13 }

14}

Java™ Programming Language Module 9, slide 27 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Generic Map Example

1 import java.util.¥*;

2

3 public class MapPlayerRepository

4 HashMap<String, String> players;

5

6 public MapPlayerRepository () {

7 players = new HashMap<String, String> () ;
8)

S

10 public String get (String position)

11 String player = players.get (position) ;

12 return player;

13 }

14

15 public void put (String position, String name) {
16 players.put (position, name) ;

17 }

Java™ Programming Language Module 9, slide 28 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Generics: Examining Type Parameters

Shows how to use type parameters

Category Non Generic Class Generic Class
Class public class ArrayList extends public class ArraylList<E> extends
declaration AbstractList implements List AbstractList<E> implements List <E>
Constructor public ArrayList public ArrayList<E>
declaration (int capacity) ; (int capacity) ;
Method public void add((Object o) public void add(E o)
declaration
public Object get (int index) public E get (int index)
Variable ArrayList listil; ArrayList <String> listl;
declaration
examples ArrayList list2; ArrayList <Date> list2;
Instance listl = new ArrayList (10); listl= new ArrayList<String> (10);
declaration
examples list2 = new ArrayList (10); list2= new ArrayList<Date> (10);
Java™ Programming Language Module 9, slide 29 of 40

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

Generic Collections API

<<interface>>
Collection<E>

+size():int
+isEmpty():boolean

+iterator():Iterator<E>

+add(element:E):boolean
+remove(0:0bject):boolean

+contains(o:Object):boolean

/.

<<interface==

\

<<interface>>

Set<E> List<E>
+add(index:int, element:E)
+remove(index:int):E
+get(index:int):E

<<intarfacess +set(index:int, element:E):E
HashSet<E> SortedSet<E> | |+indexOf(o:Object):int
) +listlterator():Listlterator<E>
: a s
TreeSet<E> ArrayList<E> LinkedList<E>

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 9, slide 30 of 40

@ Sun Educational Services

Wild Card Type Parameters

Account

SavingsAccount

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

CheckingAccount

Module 9, slide 31 of 40

@ Sun Educational Services

The Type-Safety Guarantee

1 public class TestTypeSafety

2

3 public static void main(Stringl[] args) {

4 List<CheckingAccount> lc = new ArrayList<CheckingAccounts() ;
5

6 lc.add (new CheckingAccount ("Fred")); // OK

7 lc.add (new SavingsAccount ("Fred")); // Compile error!

8

9 // therefore...

10 CheckingAccount ca = lc.get(0); // Safe, no cast required
11 }

12}

Java™ Programming Language Module 9, slide 32 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

7
8

9

10
11
12
13
14
15
16
17
18
19
20

The Invariance Challenge

List<Accounts> 1la;
List<CheckingAccount> lc = new ArrayList<CheckingAccounts> () ;
List<SavingsAccount> ls = new ArraylList<SavingsAccounts () ;

//if the following were possible...
la = 1c;
la.add (new CheckingAccount ("Fred")) ;

//then the following must also be possible...
la = 1s;
la.add (new CheckingAccount ("Fred")) ;

//so. ..
SavingsAccount sa = 1ls.get(0); //aarrgghh!!

In fact, 1a=1c; is illegal, so even though a CheckingAccount
IS an Account, an ArrayList<CheckingAccount> IS Not an
ArrayList<Accounts.

Java™ Programming Language Module 9, slide 33 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Covariance Response

6 public static void printNames (List <? extends Account> lea)
7 for (int i=0; i < lea.size(); i++) {

8 System.out.println(lea.get (i) .getName()) ;

S

)

10 }

11

12 public static void main(Stringl[] args) {

13 List<CheckingAccount> lc = new ArrayList<CheckingAccounts> () ;
14 List<SavingsAccount> 1ls = new ArrayList<SavingsAccounts () ;
15

16 printNames (1c) ;

17 printNames (1s) ;

18

19 //but. ..

20 List<? extends Object> leo = lc; //OK

21 leo.add (new CheckingAccount ("Fred")) ;//Compile error!

22 }

23}

Java™ Programming Language Module 9, slide 34 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Generics: Refactoring Existing Non-
Generic Code

import java.util.¥*;
public class GenericsWarning
public static void main(Stringl[] args) {
List list = new Arraylist();
list.add (0, new Integer (42)) ;
int total = ((Integer)list.get (0).intValue() ;

0o J O Ul & WD K-

}

javac GenericsWarning.java
Note: GenericsWarning.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

javac -Xlint:unchecked GenericsWarning.java
GenericsWarning.java:7: warning: [unchecked] unchecked call to add(int,E)
as a member of the raw type java.util.ArrayList

list.add (0, new Integer(42));

A

1 warning

Java™ Programming Language Module 9, slide 35 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

lterators

e lteration is the process of retrieving every element in a
collection.

e The basic Iterator interface allows you to scan
forward through any collection.

e A List object supports the ListIterator, which
allows you to scan the list backwards and insert or

modify elements.

List<Student> list = new ArraylList<Students>() ;
// add some elements
Iterator<Student> elements = list.iterator () ;

while (elements.hasNext ())
System.out.println(elements.next ()) ;

}

O Ul b W N

Java™ Programming Language Module 9, slide 36 of 40

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Generic lterator Interfaces

«interface»

Tterator<E>

+hasNext () : boolean
+next () : E
+remove ()

«interface»
ListIterator<E>
+hasPrevious () : boolean
+previous () : E
+add (element : E)
+set (element : E)

Java™ Programming Language Module 9, slide 37 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Enhanced for Loop

The enhanced for loop has the following characteristics:

« Simplified iteration over collections
e Much shorter, clearer, and safer

e Effective for arrays

e Simpler when using nested loops

e |terator disadvantages removed

Iterators are error prone:

« |terator variables occur three times per loop.
e This provides the opportunity for code to go wrong.

Java™ Programming Language Module 9, slide 38 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Enhanced for Loop

An enhanced for loop can look like the following:

e Using the iterator with a traditional for loop:

public void deleteAll (Collection<NameList> c¢) {
for (Iterator<NameList> i = c.iterator() ; i.hasNext() ;){
NameList nl = i.next();
nl.deleteltem() ;

}
}

e [terating using an enhanced for loop in collections:

public void deleteAll (Collection<NameList> c¢) {
for (NameList nl : c){
nl.deleteItem() ;

}
}

Java™ Programming Language Module 9, slide 39 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Enhanced for Loop

e Nested enhanced for loops:

List<Subject> subjects=...;
List<Teacher> teachers=...;
List<Course> courselList = ArrayList<Course) () ;
for (Subject subj: subjects)
for (Teacher tchr: teachers) ({
courselList.add (new Course (subj, tchr));

}

00O J O Ul & WD K-

}

Java™ Programming Language Module 9, slide 40 of 40
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 10

/O Fundamentals

Java™ Programming Language

@ Sun Educational Services

Objectives

< Write a program that uses command-line arguments
and system properties

e Examine the Properties class

« Construct node and processing streams, and use them
appropriately

e Serialize and deserialize objects

e Distinguish readers and writers from streams, and
select appropriately between them

Java™ Programming Language Module 10, slide 2 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Command-Line Arguments

e Any Java technology application can use
command-line arguments.

« These string arguments are placed on the command
line to launch the Java interpreter after the class name:

java TestArgs argl arg2 "another arg"

e Each command-line argument is placed in the args
array that is passed to the static main method:

public static void main(Stringl[] args)

Java™ Programming Language Module 10, slide 3 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Command-Line Arguments

public class TestArgs (
public static void main(Stringl[] args) {
for (int i = 0; i < args.length; i++) {
System.out.println("args([" + 1 + "] is '" + args[i] + "'");
}
}

< 0 U1 b W DN R

}
Example execution:

java TestArgs arg0 argl "another arg"
args[0] is ’'arg0l’

args[l] is ’'argl’

args[2] is ’another arg’

Java™ Programming Language Module 10, slide 4 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

System Properties

e System properties are a feature that replaces the
concept of environment variables (which are
platform-specific).

e The System.getProperties method returns a
Properties object.

e The getProperty method returns a String
representing the value of the named property.

e Use the -D option on the command line to include a
new property.

Java™ Programming Language Module 10, slide 5 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Properties Class

e The Propertiesclass implementsa mapping of names
to values (a String-to-String map).

e The propertyNames method returns an Enumeration
of all property names.

e The getProperty method returns a String
representing the value of the named property.

« You can also read and write a properties collection into
a file using 1load and store.

Java™ Programming Language Module 10, slide 6 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Properties Class

import java.util.Properties;
import java.util.Enumeration;

public class TestProperties ({
public static void main(Stringl[] args) {
Properties props = System.getProperties() ;
props.list (System.out) ;

}
J

W 00 J O Ul i WIN R

Java™ Programming Language Module 10, slide 7 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Properties Class

The following is an example test run of this program:

java -DmyProp=theValue TestProperties

The following is the (partial) output:

java.runtime.name=Java (TM) SE Runtime Environment
sun.boot .library.path=C:\jse\jdkl.6.0\jre\bin
java.vm.version=1.6.0-b105

java.vm.vendor=Sun Microsystems Inc.
java.vm.name=Java HotSpot (TM) Client VM
file.encoding.pkg=sun.io

user.country=0US

myProp=theValue

Java™ Programming Language Module 10, slide 8 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

/0O Stream Fundamentals

e A stream is a flow of data from a source or to a sink.

e A source stream initiates the flow of data, also called an
Input stream.

e A sink stream terminates the flow of data, also called an
output stream.

e Sources and sinks are both node streams.

« Types of node streams are files, memory, and pipes
between threads or processes.

Java™ Programming Language Module 10, slide 9 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Fundamental Stream Classes

Stream Byte Streams Character Streams
Source streams InputStream Reader
Sink streams OutputStream Writer

Java™ Programming Language Module 10, slide 10 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Data Within Streams

e Java technology supports two types of streams:
character and byte.

« |nput and output of character data is handled by
readers and writers.

e Input and output of byte data is handled by input
streams and output streams:

< Normally, the term stream refers to a byte stream.

e The terms reader and writer refer to character
streams.

Java™ Programming Language Module 10, slide 11 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The InputStream Methods

e The three basic read methods are:

int read()
int read(byte[] buffer)
int read(byte[] buffer, int offset, int length)

e QOther methods include:

void close ()

int available ()

long skip(long n)
boolean markSupported ()
void mark (int readlimit)
void reset ()

Java™ Programming Language Module 10, slide 12 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The OutputStream Methods

e The three basic write methods are:

void write (int c)
void write (byte[] buffer)
void write(byte[] buffer, int offset, int length)

e QOther methods include:

void close ()
void flush/()

Java™ Programming Language Module 10, slide 13 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Reader Methods

e The three basic read methods are:

int read()
int read(char[] cbuf)
int read(char[] cbuf, int offset, int length)

e QOther methods include:

void close()

boolean ready ()

long skip(long n)

boolean markSupported ()

void mark (int readAheadLimit)
void reset ()

Java™ Programming Language Module 10, slide 14 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Writer Methods

e The basic write methods are:

void write(int c)

void write(char[] cbuf)

void write(char[] cbuf, int offset, int length)
void write(String string)

void write(String string, int offset, int length)

e (Other methods include:;

void close()
void flush()

Java™ Programming Language Module 10, slide 15 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Node Streams

Type Character Streams Byte Streams

Eile FileReader FileInputStream
FileWriter FileOutputStream

Memory: CharArrayReader ByteArrayInputStream

array CharArrayWriter ByteArrayOutputStream

Memory: StringReader N/A

string StringWriter

Pipe PipedReader PipedInputStream

P PipedWriter PipedOutputStream

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 10, slide 16 of 35

@ Sun Educational Services

A Simple Example

This program performs a copy file operation using a manual
buffer:

java TestNodeStreams filel file2

1 import java.io.*;

2 public class TestNodeStreams {

3 public static void main(Stringl[] args) {

4 try {

5 FileReader input = new FileReader (args[0]) ;
6 try {

7 FileWriter output = new FileWriter (args[l]) ;
8 try {

9 char[] buffer = new char([128];

10 int charsRead;

11

12 // read the first buffer

13 charsRead = input.read(buffer) ;

14 while (charsRead != -1) {

15 // write buffer to the output file

Java™ Programming Language Module 10, slide 17 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

|%%C

Sun Educational Services

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

A Simple Example

output.write(buffer, 0, charsRead) ;

// read the next buffer
charsRead = input.read(buffer) ;

}

} finally {
output.close() ; }
} finally {
input.close() ; }

} catch (IOException e) {

e.printStackTrace () ;

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 10, slide 18 of 35

@ Sun Educational Services

Buffered Streams

This program performs a copy file operation using a built-in
buffer:

java TestBufferedStreams filel file2

1 import java.io.*;

2 public class TestBufferedStreams

3 public static void main(String[] args) {

4 try {

5 FileReader input = new FileReader (args[0]) ;

6 BufferedReader buflInput = new BufferedReader (input) ;
7 try {

8 FileWriter output = new FileWriter (args|[l]) ;

9 BufferedWriter bufOutput= new BufferedWriter (output) ;
10 try {

11 String line;

12 // read the first line

13 line = bufInput.readLine() ;

14 while (line != null) {

15 // write the line out to the output file

Java™ Programming Language Module 10, slide 19 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Buffered Streams

16 bufOutput.write(line, 0, line.length()) ;
17 bufOutput .newLine () ;

18 // read the next line

19 line = bufInput.readLine() ;
20 }

21 } finally {

22 bufOutput.close() ;

23 }

24 } finally {

25 bufInput.close() ;

26 }

27 } catch (IOException e)

28 e.printStackTrace() ;

29 }

30 }

31}

32

33

Java™ Programming Language Module 10, slide 20 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

/O Stream Chalining

Input Stream Chain

Data Source | — — —@

FileInputStream

BufferedInputStream
DataInputStream

Output Stream Chain

—> — — - Data Sink

FileOutputStream

BufferedOutputStream
DataOutputStream

Java™ Programming Language Module 10, slide 21 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Processing Streams

Type Character Streams Byte Streams

Buffering BufferedReader BufferedInputStream
BufferedWriter BufferedOutputStream

Filtering FilterReader FilterInputStream
FilterWriter FilterOutputStream

Converting InputStreamReader

between bytes OutputStreamWriter

and character

Performing ObjectInputStream

object ObjectOutputStream

serialization

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 10, slide 22 of 35

@ Sun Educational Services

Processing Streams

Type Character Streams Byte Streams
Performing data DataInputStream
conversion DataOutputStream
Counting LineNumberReader LineNumberInputStream
Peeking ahead PushbackReader PushbackInputStream
Printing PrintWriter PrintStream

Java™ Programming Language Module 10, slide 23 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The InputStream Class Hierarchy

FileInputStream
ObjectInputStream
PipedInputStream

DataInputStream

InputStream SequencelInputStream

PushbackInputStream
FilterInputStream

BufferedInputStream
StringBufferInputStream

LineNumberInputStream
ByteArrayInputStream

Java™ Programming Language Module 10, slide 24 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The OutputStream Class Hierarchy

FileOutputStream

ObjectOutputStream
DataOutputStream

OutputStream FilterOutputStream<<j BufferedOutputStream

PrintStream

PipedOutputStream

ByteArrayOutputStream

Java™ Programming Language Module 10, slide 25 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The ObjectInputStreamand The
ObjectOutputStream Classes

e TheJava API provides a standard mechanism (called object
serialization) that completely automates the process of
writing and reading objects from streams.

< \When writing an object, the object input stream writes the
class name, followed by a description of the data members
of the class, in the order they appear in the stream, followed
by the values for all the fields on that object.

< \When reading an object, the object output stream reads the
name of the class and the description of the class to match
against the class in memory, and it reads the values from the
stream to populate a newly allocation instance of that class.

= Persistent storage of objects can be accomplished if files (or
other persistent storage) are used as streams.

Java™ Programming Language Module 10, slide 26 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Input Chaining Combinations: A Review

System.in ‘ byte , ' byte ,

(InputStream) ObjectinputStream |f—p

readObject():0bject

FilelnputStream
: ©E)

—_— DatalnputStream

socket.getinputStream

readInt():int
ByteArrayInputStream
\:yte

readDouble():double
PipedInputStream InputStreamReader

readUTF():5tring
read() :byte
read(byte[])

FileReader

- BufferedReader >

PipedinputStream
readLine():String

read({):char
read(char[])

Java™ Programming Language Module 10, slide 27 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

=

_ Sun Educational Services

Output Chaining Combinations: A Review

PrintStream
System.out FileOutputStream
println(5tring)
byte) | byte socket.getOutputStream
—»| ObjectOutputStream
writeObject(Object) ByteArrayOutputStream
oyte) ((bvte
—»| DataOutputStream PipedOutputStream
—
= writeInt{int))
m writeDouble(double? wr}te{byte)
writeUTF(String) write(byte[])
byte
OutputStreamWriter
FileWriter
——— BufferedWriter -
. ” char char
write(String) CharArrayWriter

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 10, slide 28 of 35

@ Sun Educational Services

Serialization

« Serialization is a mechanism for saving the objects as a
sequence of bytes and rebuilding them later when
needed.

< When an objectis serialized, only the fields of the object
are preserved

< When a field references an object, the fields of the
referenced object are also serialized

e Some object classes are not serializable because their
fields represent transient operating system-specific
Information.

Java™ Programming Language Module 10, slide 29 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The SerializeDate Class

1 import java.io.¥*;

2 import java.util.Date;

3

4 public class SerializeDate {

5

6 SerializeDate () {

7 Date d = new Date () ;

8

9 try {

10 FileOutputStream f =

11 new FileOutputStream ("date.ser");
12 ObjectOutputStream s =

13 new ObjectOutputStream (f);
14 s.writeObject (d);

15 s.close ();

16 } catch (IOException e)

17 e.printStackTrace () ;

18 }

19 }

Java™ Programming Language Module 10, slide 30 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The SerializeDate Class

20

21 public static void main (String args[]) {

22 new SerializeDate() ;

23 }

24 }

Java™ Programming Language Module 10, slide 31 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The DeSerializeDate Class

1 import java.io.¥*;

2 import java.util.Date;

3

4 public class DeSerializeDate

5

6 DeSerializeDate () f{

7 Date d = null;

8

9 try {

10 FileInputStream f =

11 new FileInputStream ("date.ser");
12 ObjectInputStream s =

13 new ObjectInputStream (f);
14 d = (Date) s.readObject ();

15 s.close ();

16 } catch (Exception e)

17 e.printStackTrace () ;

18 }

Java™ Programming Language Module 10, slide 32 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The DeSerializeDate Class

19

20 System.out.println(

21 "Deserialized Date object from date.ser");
22 System.out.println ("Date: "+d) ;

23 }

24

25 public static void main (String args([]) {

26 new DeSerializeDate () ;

27 }

28 }

Java™ Programming Language Module 10, slide 33 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Reader Class Hierarchy

BufferedReader LineNumberReader
CharArrayReader
StringReader

Reader —
InputStreamReader <j———————FileReader
PipedReader
FilterReader <j———————PushbackReader

Java™ Programming Language Module 10, slide 34 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The writer Class Hierarchy

BufferedWriter

CharArrayWriter

StringWriter

Writer OutputStreamWriter <j———————Fi1eWriter

PrintWriter

PipedWriter

FilterWriter

Java™ Programming Language Module 10, slide 35 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 11

Console I/O and File I/0

Java™ Programming Language

@ Sun Educational Services

Objectives

e Read data from the console
e \Write data to the console
e Describe files and file 1/0

Java™ Programming Language Module 11, slide 2 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Console I/0

e The variable system.out enables you to write to
standard output.

System.out IS an object of type PrintStream.

e The variable System. in enables you to read from
standard input.

System.in IS an object of type InputStream.

e The variable System.err enables you to write to
standard error.

System.err IS an object of type PrintStream

Java™ Programming Language Module 11, slide 3 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Writing to Standard Output

e The println methods print the argument and a
newline character (\n).

e The print methods print the argument without a
newline character.

e The print and println methods are overloaded for
most primitive types (boolean, char, int, long,
float, and double) and for char[], Object, and
String.

e The print (Object) and println (Object) methods
call the toString method on the argument.

Java™ Programming Language Module 11, slide 4 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Reading From Standard Input

1 import java.io.¥*;

2

3 public class KeyboardInput (

4 public static void main (String args(]) {

5 String s;

6 // Create a buffered reader to read

7 // each line from the keyboard.

8 InputStreamReader ir

9 = new InputStreamReader (System.in) ;

10 BufferedReader in = new BufferedReader (ir) ;

11

12 System.out.println ("Unix: Type ctrl-d to exit." +
13 "\nWindows: Type ctrl-z to exit");

Java™ Programming Language Module 11, slide 5 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Reading From Standard Input

14 try {

15 // Read each input line and echo it to the screen.
16 s = in.readLine() ;

17 while (s != null) {

18 System.out.println("Read: " + g);

19 s = in.readLine() ;

20 }

21

22 // Close the buffered reader.

23 in.close() ;

24 } catch (IOException e) { // Catch any IO exceptions.
25 e.printStackTrace() ;

26 }

27 }

28 |}

Java™ Programming Language Module 11, slide 6 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Simple Formatted Output

e You can use the formatting functionality as follows:
out.printf (“name count\n”) ;
String s = String.format (“%s %5d%n”, user, total);
e Common formatting codes are listed in this table.
Code Description
$s Formats the argument as a string, usually by calling the
toString method on the object.
$d %o %x|Formats an integer, as a decimal, octal, or hexadecimal value.
$f %g Formats a floating point number. The g code uses scientific
notation.
$n Inserts a newline character to the string or stream.
%% Inserts the % character to the string or stream.

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 11, slide 7 of 17

@ Sun Educational Services

Simple Formatted Input

e The Scanner class provides a formatted input function.

e A Scanner class can be used with console input
streams as well as file or network streams.

e You can read console input as follows:

import java.io.*;

import java.util.Scanner;

public class ScanTest {

public static void main(String [] args) {

Scanner s = new Scanner (System.in) ;
String param = s.next () ;
System.out.println("the param 1" + param) ;
int value = s.nextInt () ;
System.out.println ("second param" + wvalue) ;
s.close() ;

coO J 0o Ul b WDN R

H R P W
N BB O
——

——

Java™ Programming Language Module 11, slide 8 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Files and File I/O

The java. io package enables you to do the following:

e Create File objects
e Manipulate File objects
< Read and write to file streams

Java™ Programming Language Module 11, slide 9 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating a New File Object

The File class provides several utilities:

e File myFile;

e myFile = new File("myfile.txt");

e myFile = new File("MyDocs", "myfile.txt");
Directories are treated like files in the Java programming

language. You can create a File object that represents a
directory and then use it to identify other files, for example:

File myDir = new File ("MyDocs") ;
myFile = new File (myDir, "myfile.txt");

Java™ Programming Language Module 11, slide 10 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

The File Tests and Utllities

e File information:

String getName ()

String getPath ()

String getAbsolutePath ()
String getParent ()

long lastModified()

long length()

File modification:

boolean renameTo (File newName)
boolean delete()

Directory utilities:

boolean mkdir ()
String[] list()

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 11, slide 11 of 17

@ Sun Educational Services

The File Tests and Utllities

e File tests:

boolean
boolean
boolean
boolean
boolean
boolean
boolean

Java™ Programming Language

exists ()
canWrite ()
canRead ()
isFile ()
isDirectory ()
isAbsolute () ;
is Hidden() ;

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 11, slide 12 of 17

@ Sun Educational Services

File Stream |I/O

e For file input:
e Use the FileReader class to read characters.

e Use the BufferedReader class to use the readLine
method.

e For file output:
e Use the FileWriter class to write characters.

e Use the PrintWriter class to use the print and
println methods.

Java™ Programming Language Module 11, slide 13 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

File Input Example

A file input example is:

1 import java.io.*;

2 public class ReadFile {

3 public static void main (String[] args) {
4 // Create file

5 File file = new File(args|[0]) ;

6

7 try {

8 // Create a buffered reader

9 // to read each line from a file.

10 BufferedReader in

11 = new BufferedReader (new FileReader (file)) ;
12 String s;

13

Java™ Programming Language Module 11, slide 14 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Printing a File

14 // Read each line from the file and echo it to the screen.
15 s = in.readLine() ;

16 while (s != null) {

17 System.out.println("Read: " + g);

18 S = in.readLine() ;

19 }

20 // Close the buffered reader

21 in.close() ;

22

23 } catch (FileNotFoundException el)

24 // If this file does not exist

25 System.err.println("File not found: " + file);
26

27 } catch (IOException e2) {

28 // Catch any other IO exceptions.

29 e2.printStackTrace () ;

30 }

31 }

32}

Java™ Programming Language Module 11, slide 15 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

File Output Example

1 import java.io.¥*;

2

3 public class WriteFile {

4 public static void main (Stringl[] args) {

5 // Create file

6 File file = new File(args[0]) ;

-

8 try {

9 // Create a buffered reader to read each line from standard in.
10 InputStreamReader isr

11 = new InputStreamReader (System.in) ;

12 BufferedReader in

13 = new BufferedReader (isr) ;

14 // Create a print writer on this file.

15 PrintWriter out

16 = new PrintWriter (new FileWriter (file)) ;
17 String s;

Java™ Programming Language Module 11, slide 16 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

File Output Example

18

19 System.out.print ("Enter file text. ");

20 System.out.println (" [Type ctrl-d to stop.]");

21

22 // Read each input line and echo it to the screen.
23 while ((s = in.readLine()) != null) {

24 out.println(s) ;

25 }

26

27 // Close the buffered reader and the file print writer.
28 in.close() ;

29 out.close() ;

30

31 } catch (IOException e) {

32 // Catch any IO exceptions.

33 e.printStackTrace () ;

34 }

35 }

36 }

Java™ Programming Language Module 11, slide 17 of 17
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 12

Building Java GUIs Using the Swing APl

Java™ Programming Language

@ Sun Educational Services

Objectives

e Describe the JFC Swing technology
e Define Swing
« |dentify the Swing packages

e Describe the GUI building blocks: containers,
components, and layout managers

e Examine top-level, general-purpose, and special-
purpose properties of container

e Examine components

e Examine layout managers

e Describe the Swing single-threaded model
e Build a GUI using Swing components

Java™ Programming Language Module 12, slide 2 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

What Are the Java Foundation Classes
(JFC)?

Java Foundation Classes are a set of Graphical User Interface
(GUI) support packages, including:

e Abstract Window Toolkit (AWT)

e The Swing component set

e 2D graphics

e Pluggable look-and-feel

e Accessibility

e Drag-and-drop

e Internationalization

Java™ Programming Language Module 12, slide 3 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

What Is Swing?

e An enhanced GUI component set

= Provides replacement components for those in the
original AWT

e Has special features, such as a pluggable look-and feel

Java™ Programming Language Module 12, slide 4 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Swing Architecture

e Has its roots in the
Model-View-Controller @ ’@
(MVC) architecture

/

e The Swing components
follow Separable Model
Architecture Component

Ul
_ _ _ | Manager

Java™ Programming Language Module 12, slide 5 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

=

S

Sun Educational Services

Swing Packages

Package Name

javax.
javax.
javax.

javax.

javax.
javax.
javax.
javax.

javax.

swing

swing.
swing.

swing.

swing.
swing.
swing.
swing.

swing.

border
event

undo

plaf

plaf .basic
plaf.metal
plaf.multi
plaf.synth

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Package Name

javax.
javax.
javax.

javax.

javax.
javax.
javax.
javax.

javax.

swing.
swing.
swing.

swing.

swing.
swing.
swing.
swing.

swing.

colorchooser
filechooser
table

tree

text

text.html
text.html .parser
text.rtf

undo

Module 12, slide 6 of 35

@ Sun Educational Services

Examining the Composition of a Java
Technology GUI

A Swing API-based GUI is composed of the following
elements:

e Containers — Are on top of the GUI containment
hierarchy.

e Components—Contain all the GUI components that are
derived from the JComponent class.

e Layout Managers — Are responsible for laying out
components in a container.

Java™ Programming Language Module 12, slide 7 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Examining the Composition of a Java

Java™ Programming Language

Technology GUI

Components Container

s Design Preview [NewJFrame]

Information

Sex) Male () Female
Dake OF Birth 01w 1w 1930
MDD

Layout Managers

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 12, slide 8 of 35

@ Sun Educational Services

Swing Containers

Swing containers can be classified into three main categories:

e Top-level containers:
e JFrame, JWindow, and JDialog
= General-purpose containers:

e JPanel, JScrollPane,JToolBar,JSplitPane, and
JTabbedPane

e Special-purpose containers:

e JInternalFrame and JLayeredPane

Java™ Programming Language Module 12, slide 9 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Top-Level Containers

Component
i
Container
N
Panel Window
A
Bpplet Frame Dialog
I i }
JhApplet JFT ame JDialog THindow
Java™ Programming Language Module 12, slide 10 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Swing Components

Swing components can be broadly classified as:

e Buttons

e Text components

« Uneditable information display components
e Menus

e Formatted display components

e Other basic controls

Java™ Programming Language Module 12, slide 11 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Swing Component Hierarchy

java.awt.Container

Jjavax. swing . JComponent

JTexthrea
JTextField ——JFasswordFisld

JEd1torFans

JText Componsnt

2betractBPuttcn

JPanel JToggleButton J -C'he-.T_'kE.q:u-:
JComboBox JButkton _J'Ran:ll-::lE-ut ton
JTLakel JMeniltem

JLayeredPans —

JList JRadiocBut tonMenuItem
JTooclBar JCheckBoxMenuItem
JHenuBar JMenu

JEPopupMenu .

JPane1

JScrollBar

JScroll Pane

J5lider

JTakl=

JSeparator

JTres

JProqressBar

JRootPans

JSplitPane

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 12, slide 12 of 35

@ Sun Educational Services

Text Components

Swing text components can be broadly divided into three
categories.

e Textcontrols—JTextField, JPasswordField (for user
Input)

e Plaintextareas— JTextArea (displays text in plain text,
also for multi-line user input

e Styled text areas — JEditorPane, JTextPane (displays
formatted text)

Java™ Programming Language Module 12, slide 13 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Swing Component Properties

Common component properties:

< All the Swing components share some common
properties because they all extend JComponent.

Component-specific properties:

e Each component defines more specific properties.

Java™ Programming Language Module 12, slide 14 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Common Component Properties

Property Methods
Border Border getBorder ()
void setBorder (Border b)
Background void setBackground (Color bg)
and foreground void setForeground (Color bg)
color
Font void setFont (Font f)
Opaque void setOpaque (boolean isOpaque)

Maximum and void setMaximumSize (Dimension d)
minimum size void setMinimumSize (Dimension d)

Alignment void setAlignmentX (float ax)
void setAlignmentY (float ay)

Preferred size void setPreferredSize (Dimension ps)

Java™ Programming Language Module 12, slide 15 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Component-Specific Properties

The following shows properties specific to JComboRox.

Properties Methods

Maximum row count void setMaximumRowCount (int count)
Model void setModal (ComboBoxModel clbm)
Selected index int getSelectedIndex ()

Selected Item Object getSelectedItem()

Item count int getItemCount ()

Renderer void setRenderer (ListCellRenderer ar)
Editable void setEditable (boolean flag)

Java™ Programming Language Module 12, slide 16 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Layout Managers

e Handle problems caused by:

e GUI resizing by user

« Operating system differences in fonts

e | ocale-specific text layout requirements
e Layout manager classes:

e BorderLayout

e FlowLayout

¢ BoxLayout

e CardLayout

e GridLayout

e GridBagLayout

Java™ Programming Language Module 12, slide 17 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The BorderLayout Manager

The BorderLayout manager places components in top,
bottom, left, right and center locations.

2 Borde rLayoutDemo

Button 1
Button 3 Button 2 Button 5
Button 4
Java™ Programming Language Module 12, slide 18 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

BorderLayout Example

1 import java.awt.*;

2 import javax.swing.*;

3

4 public class BorderExample (

5 private JFrame f;

6 private JButton bn, bs, bw, be, bc;
7

8 public BorderExample () {

9 f = new JFrame ("Border Layout") ;
10 bn = new JButton("Button 1") ;

11 bc = new JButton("Button 2") ;

12 bw = new JButton ("Button 3") ;

13 bs = new JButton("Button 4") ;

14 be = new JButton("Button 5") ;

15 }

16

Java™ Programming Language Module 12, slide 19 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

BorderLayout Example

17 public void launchFrame () {

18 f.add (bn, BorderLayout .NORTH) ;

19 f.add (bs, BorderLayout.SOUTH) ;

20 f.add (bw, BorderLayout.WEST) ;

21 f.add (be, BorderLayout.EAST) ;

22 f.add (bc, BorderLayout.CENTER) ;

23 f.setSize (400,200) ;

24 f.setVisible (true) ;

25 }

26

27 public static void main(String args([]) {
28 BorderExample guiWindow2 = new BorderExample () ;
29 guiWindow?2 . launchFrame () ;

30 }

31}

32

Java™ Programming Language Module 12, slide 20 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The FlowLayout Manager

The FlowLayout manager places components in a row, and if
the row fills, components are placed in the next row.

o F lowl_ayoutDemo

Button 1

Button 2

Button 3

Button 4

Button 5

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 12, slide 21 of 35

@ Sun Educational Services

FlowLayout Example

1 import javax.swing.*;

2 import java.awt.¥*;

3

4 public class LayoutExample

5 private JFrame f;

6 private JButton bl;

7 private JButton b2;

8 private JButton b3;

9 private JButton b4;

10 private JButton b5;

11

12 public LayoutExample () {

13 f = new JFrame ("GUI example") ;
14 bl = new JButton("Button 1");
15 b2 = new JButton("Button 2") ;
16 b3 = new JButton("Button 3") ;
17 b4 = new JButton("Button 4") ;
18 b5 = new JButton("Button 5") ;
19 }

Java™ Programming Language Module 12, slide 22 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

===

Sun Educational Services

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

FlowLayout Example

public void launchFrame () {

f.
.add (bl) ;
.add (b2)
.add (b3)
.add (b4) ;
.add (b5)
.pack () ;
.setVisible (true) ;

FHh Fh Fh Fh Fh Fh Fh

}

setLayout (new FlowLayout ()) ;

.
I
.

l4

4

public static void main(String args(]) {

LayoutExample guiWindow = new LayoutExample () ;

guiWindow. launchFrame () ;

}

} // end of LayoutExample class

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 12, slide 23 of 35

@ Sun Educational Services

The BoxLayout Manager

The BoxLayout manager adds components from left to right,
and from top to bottom in a single row of column.

= Boxl ayoutDemo E|@|E|

Java™ Programming Language Module 12, slide 24 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The CardLayout Manager

The CardLayout manager places the components in different
cards. Cards are usually controlled by a combo box.

Z Car dLayoutDemo

Button 1,2 3

Button 1

Button 2

Button 3

Button 4 5

Button 4

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 12, slide 25 of 35

@ Sun Educational Services

The GridLayout Manager

The GridLayout manager places components in rows and
columns in the form of a grid.

o GridLayoutDemo Z E| [$__<|

Java™ Programming Language Module 12, slide 26 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

GridLayout Example

1 import java.awt.*;

2 import javax.swing.*;

3

4 public class GridExample {

5 private JFrame f;

6 private JButton bl, b2, b3, b4, b5;
7

8 public GridExample ()

9 f = new JFrame ("Grid Example") ;
10 bl = new JButton("Button 1") ;
11 b2 = new JButton("Button 2") ;
12 b3 = new JButton ("Button 3");
13 b4 = new JButton("Button 4") ;
14 b5 = new JButton("Button 5") ;
15 }

16

Java™ Programming Language Module 12, slide 27 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

GridLayout Example

17 public void launchFrame ()

18 f.setLayout (new GridLayout (3,2)) ;

19

20 f.add (b1) ;

21 f.add (b2) ;

22 f.add (b3) ;

23 f.add (b4) ;

24 f.add (b5) ;

25

26 f.pack() ;

27 f.setVisible (true) ;

28 }

29

30 public static void main(String args([]) {
31 GridExample grid = new GridExample () ;
32 grid.launchFrame () ;

33 }

34}

Java™ Programming Language Module 12, slide 28 of 35

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The GridBagLayout Manager

The GridBagLayout manager arranges components in rows
and columns, similar to a grid layout, but provides a wide
variety of options for resizing and positioning the
components.

- GridBagl ayoutDemo [Z| [E”g

Button 1 Bution 2

Buttion 3 Bution 4

‘ Button 5

Java™ Programming Language Module 12, slide 29 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

GUI Construction

e Programmatic
e GUI builder tool

Java™ Programming Language Module 12, slide 30 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Programmatic Construction

import javax.swing.*;
public class HelloWorldSwing
private static void createAndShowGUI () {
JFrame frame = new JFrame ("HelloWorldSwing") ;
//Set up the window.
frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
JLabel label = new JLabel ("Hello World") ;
// Add Label
frame.add (label) ;
frame.setSize (300,200) ;
// Display Window
frame.setVisible (true) ; }

W 00 J O Ul i WIN R

H R R R
W N R o

Java™ Programming Language Module 12, slide 31 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Programmatic Construction

14 public static void main(String[] args) f{

15 javax.swing.SwingUtilities.invokeLater (new Runnable() {
16 //Schedule for the event-dispatching thread:

17 //creating, showing this app's GUI.

18 public void run() {createAndShowGUI () ;}

19 1) ;

20 }

21}

Java™ Programming Language Module 12, slide 32 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Programmatic Construction

The output generated from the program

JFrame

Frame Title

£ HelloWorldSwing

JLabel

ello World

BorderLayout

Java™ Programming Language Module 12, slide 33 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Key Methods

Methods for setting up the JFrame and adding JLabel.:

e setDefaultCloseOperationJFrame.EXIT ON CLOSE)
—Creates the program to exit when the close button is
clicked.

e cetVigible (true)-— Makes the JFrame Visible.

e add(label)- JLabel Is added to the content pane not
to the JFrame directly.

Java™ Programming Language Module 12, slide 34 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Key Methods

e Tasks:

« Executing GUI application code, such as rendering
e Handling GUI events

e Handling time consuming (background) processes
e The SswingUtilities class:

e SwingUtilites.invokelater (new Runnable())

Java™ Programming Language

Module 12, slide 35 of 35
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 13

Handling GUI-Generated Events

Java™ Programming Language

@ Sun Educational Services

Objectives

« Define events and event handling

e Examine the Java SE event model

e Describe GUI behavior

e Determine the user action that originated an event
e Develop event listeners

e Describe concurrency in Swing-based GUIs and
describe the features of the SwingWorker class

Java™ Programming Language Module 13, slide 2 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

What Is an Event?

e Events — Objects that describe what happened
e Event sources — The generator of an event

e Event handlers — A method that receives an event
object, deciphers it, and processes the user’s interaction

I:l JFrame |:| I

JPanel The user clicks on the button

ActionEvent

Some Event Handler
actionPerformed (ActionEvent e) {

)

Java™ Programming Language Module 13, slide 3 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Delegation Model

e An event can be sent to many event handlers.

I:l JFrame I:I I

JPanel The user clicks on the button

One Event Handler
actionPerformed (ActionEvent e)
o

ActionEvent }

[~ Another Event Handler

actionPerformed (ActionEvent e)

)

« Event handlers register with components when they
are interested in events generated by that component.

Java™ Programming Language Module 13, slide 4 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Delegation Model

e Client objects (handlers) register with a GUI
component that they want to observe.

e GUI components trigger only the handlers for the type
of event that has occurred.

e Most components can trigger more than one type of
event.

e The delegation model distributes the work among
multiple classes.

Java™ Programming Language Module 13, slide 5 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

A Listener Example

1 import java.awt.*;

2 import javax.swing.*;

3 public class TestButton

4 private JFrame £f;

5 private JButton b;

6

7 public TestButton() {

8 f = new JFrame ("Test") ;

9 b = new JButton("Press Me!") ;

10 b.setActionCommand ("ButtonPressed") ;
11 }

12

13 public void launchFrame () {

14 b.addActionListener (new ButtonHandler());
15 f.add (b, BorderLayout .CENTER) ;

16 f.pack() ;

17 f.setVisible (true) ;

18 }

Java™ Programming Language Module 13, slide 6 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

A Listener Example

19

20 public static void main(String args([]) {
21 TestButton guiApp = new TestButton() ;
22 guilpp.launchFrame () ;

23 }

24 }

Code for the event listener looks like the following:

import java.awt.event.¥*;

public class ButtonHandler implements ActionListener (
public void actionPerformed (ActionEvent e) {
System.out.println ("Action occurred") ;
System.out.println ("Button’s command is: "
+ e.getActionCommand()) ;

W 00 J O Ul i W N R

Java™ Programming Language Module 13, slide 7 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Sun Educational Services

Event Categories

java.awt .event

ActionEvent

AdjustmentEvent

FocusEvent

ComponentEvent

InputEvent

KeyEvent

TtemEvent

ContainerEvent

TextEvent

java.util.EventObject
Java.awt .AWTEvent

WindowEvent

MouseEvent

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 13, slide 8 of 24

@ Sun Educational Services

Method Categories and Interfaces

Category Interface Name Methods

Action ActionlListener actionPerformed (ActionEvent)

Item ITtemListener itemStateChanged (ItemEvent)

Mouse Mouselistener mousePressed (MouseEvent)
mouseReleased (MouseEvent)
mouseEntered (MouseEvent)
mouseExited (MouseEvent)
mouseClicked (MouseEvent)

Mouse MouseMotionListener mouseDragged (MouseEvent)

motion mouseMoved (MouseEvent)

Key KeyListener keyPressed (KeyEvent)

keyReleased (KeyEvent)
keyTyped (KeyEvent)

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 13, slide 9 of 24

@ Sun Educational Services

Method Categories and Interfaces

Category Interface Name Methods

Focus FocusListener focusGained (FocusEvent)
focusLost (FocusEvent)

Adjustment AdjustmentListener adjustmentValueChanged
(AdjustmentEvent)

Component ComponentListener componentMoved (ComponentEvent)
componentHidden (ComponentEvent)
componentResized (ComponentEvent)
componentShown (ComponentEvent)

Java™ Programming Language Module 13, slide 10 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Method Categories and Interfaces

Category Interface Name Methods

Window WindowListener windowClosing (WindowEvent)
windowOpened (WindowEvent)
windowIconified (WindowEvent)
windowDeiconified (WindowEvent)
windowClosed (WindowEvent)
windowActivated (WindowEvent)
windowDeactivated (WindowEvent)

Container ContainerListener componentAdded (ContainerEvent)
componentRemoved
(ContainerEvent)

Window WindowStateListener windowStateChanged (WindowEvent e)
State

Window WindowFocusListener windowGainedFocus (WindowEvent e)
focus windowLostFocus (WindowEvent e)

Java™ Programming Language Module 13, slide 11 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Method Categories and Interfaces

Category Interface Name Methods

Mouse MouseWheellistener mouseWheelMoved

wheel (MouseWheelEvent e)

Input InputMethodListener caretPositionChanged

methods (InputMethodEvent e)
inputMethodTextChnaged
(InputMethodEvent e)

Hierarchy HierarchyListener hierarchyChanged
(HierarchyEvent e)

Hierarchy HierarchyBoundsList ancestorMoved (HierarchyEvent e)

bounds ener ancestorResized (HierarchyEvent e)

AWT AWTEventListener eventDispatched (AWTEvent e)

Text TextListener textValueChanged (TextEvent)

Java™ Programming Language

Module 13, slide 12 of 24

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Complex Example

1 import java.awt.*;

2 import java.awt.event.¥*;

3 import javax.swing.*;

4 public class TwoListener

5 implements MouseMotionListener, MouseListener {
6 private JFrame f;

7 private JTextField tf;

8

9 public TwoListener ()

10 f = new JFrame ("Two listeners example") ;
11 tf = new JTextField (30) ;

12 }

Java™ Programming Language Module 13, slide 13 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Complex Example

13

14 public void launchFrame () {

15 JLabel label = new JLabel ("Click and drag the mouse") ;
16 // Add components to the frame

17 f.add(label, BorderLayout.NORTH) ;

18 f.add(tf, BorderLayout.SOUTH) ;

19 // Add this object as a listener

20 f .addMouseMotionListener (this) ;

21 f .addMousel.istener (this) ;

22 // Size the frame and make it visible
23 f.setSize (300, 200);

24 f.setVisible (true) ;

25 }

Java™ Programming Language Module 13, slide 14 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Complex Example

26

27 // These are MouseMotionListener events

28 public void mouseDragged (MouseEvent e)

29 String s = "Mouse dragging: X = " + e.getX()
30 + "Y =" + e.get¥();

31 tf.setText (s) ;

32 }

33

34 public void mouseEntered (MouseEvent e)

35 String s = "The mouse entered";

36 tf.setText (s8) ;

37 }

38

39 public void mouseExited (MouseEvent e)

40 String s = "The mouse has left the building";
41 tf.setText (s) ;

42 }

Java™ Programming Language Module 13, slide 15 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Complex Example

43

44 // Unused MouseMotionlListener method.

45 // All methods of a listener must be present in the
46 // class even if they are not used.

47 public void mouseMoved (MouseEvent e) { }

48

49 // Unused MouselListener methods.

50 public void mousePressed (MouseEvent e) { }
51 public void mouseClicked (MouseEvent e) { }
52 public void mouseReleased (MouseEvent e) { }
53

54 public static void main(String args([]) {

55 TwoListener two = new TwoListener() ;

56 two.launchFrame () ;

57 }

58}

Java™ Programming Language Module 13, slide 16 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Multiple Listeners

e Multiple listeners cause unrelated parts of a program to
react to the same event.

< The handlers of all registered listeners are called when
the event occurs.

Java™ Programming Language Module 13, slide 17 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Event Adapters

e The listener classes that you define can extend adapter
classes and override only the methods that you need.

e Anexample is:

1 import java.awt.*;

2 import java.awt.event.*;

3 import javax.swing.*;

4

5 public class MouseClickHandler extends MouseAdapter
6

7 // We just need the mouseClick handler, so we use
8 // an adapter to avoid having to write all the

9 // event handler methods

10

11 public void mouseClicked (MouseEvent e) {

12 // Do stuff with the mouse click...

13 }

14}

Java™ Programming Language Module 13, slide 18 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Event Handling Using Inner Classes

1 import java.awt.*;

2 import java.awt.event.¥*;

3 import javax.swing.*;

4 public class TestInner ({

5 private JFrame f;

6 private JTextField tf; // used by inner class

7

8 public TestInner()

9 f = new JFrame ("Inner classes example") ;

10 tf = new JTextField (30) ;

11 }

12

13 class MyMouseMotionListener extends MouseMotionAdapter
14 public void mouseDragged (MouseEvent e)

15 String s = "Mouse dragging: X = "+ e.getX()
16 + "Y =" + e.get¥();

17 tf.setText(s) ;

18 }

19 }

Java™ Programming Language Module 13, slide 19 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Event Handling Using Inner Classes

20

21 public void launchFrame () {

22 JLabel label = new JLabel ("Click and drag the mouse") ;
23 // Add components to the frame

24 f.add(label, BorderLayout.NORTH) ;

25 f.add(tf, BorderLayout.SOUTH) ;

26 // Add a listener that uses an Inner class

27 f .addMouseMotionlListener (new MyMouseMotionListener()) ;
28 f .addMousel.iistener (new MouseClickHandler()) ;

29 // Size the frame and make it visible

30 f.setSize (300, 200);

31 f.setVisible (true) ;

32 }

33

34 public static void main(String args([]) {

35 TestInner obj = new TestInner() ;

36 obj.launchFrame () ;

37 }

38}

Java™ Programming Language Module 13, slide 20 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Event Handling Using Anonymous Classes

1 import java.awt.*;

2 import java.awt.event.¥*;

3 import javax.swing.*;

4

5 public class TestAnonymous {

6 private JFrame f;

7 private JTextField tf;

8

9 public TestAnonymous ()

10 f = new JFrame ("Anonymous classes example") ;
11 tf = new JTextField (30) ;

12 }

13

14 public static void main(String args([]) {
15 TestAnonymous obj = new TestAnonymous () ;
16 obj.launchFrame () ;

17 }

18

Java™ Programming Language Module 13, slide 21 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Event Handling Using Anonymous Classes

19 public void launchFrame () {

20 JLabel label = new JLabel ("Click and drag the mouse") ;
21 // Add components to the frame

22 f.add(label, BorderLayout .NORTH) ;

23 f.add(tf, BorderLayout.SOUTH) ;

24 // Add a listener that uses an anonymous class

25 f .addMouseMotionListener (new MouseMotionAdapter () (

26 public void mouseDragged (MouseEvent e) {

27 String s = "Mouse dragging: X = "+ e.getX()

28 + "Y =" + e.get¥();

29 tf.setText (s) ;

30 }

31 }); // <- note the closing parenthesis

32 f .addMouselistener (new MouseClickHandler()); // Not shown
33 // Size the frame and make it visible

34 f.setSize (300, 200);

35 f.setVisible (true) ;

36 }

37 }

Java™ Programming Language Module 13, slide 22 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Concurrency In Swing

To handle a GUI efficiently, the Swing program needs
different threads to:

= Execute the application code (current threads)

e Handle the events that arise from the GUI (event
dispatch threads)

< Handle background tasks that might be time
consuming (worker threads)

Each task in a worker thread Is represented by an instance of
javax.swing.SwingWorker.

Java™ Programming Language Module 13, slide 23 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The swingWorker Class

The SswingWorker class has methods to service the following
requirements:

e To provide communication and coordination between
worker thread tasks and the tasks on other threads:

e Properties: state and progress
e To execute simple background tasks:
e doInBackground method
e To execute tasks that have intermediate results:
e publish method
e To cancel the background threads:
e cancel method

Java™ Programming Language Module 13, slide 24 of 24
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 14

GUI-Based Applications

Java™ Programming Language

@ Sun Educational Services

Objectives

e Describe how to construct a menu bar, menu, and
menu items in a Java GUI

e Understand how to change the color and font of a
component

Java™ Programming Language Module 14, slide 2 of 12

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

< You now know how to set up a Java GUI for both
graphic output and interactive user input. However,
only a few of the components from which GUIs can be
built have been described. What other components
would be useful in a GUI?

e How can you create a menu for your GUI frame?

Java™ Programming Language

Module 14, slide 3 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

How to Create a Menu

1. Create a JMenuBar object, and set it into a menu
container, such as a JFrame.

2. Create one or more JMenu oObjects, and add them to
the menu bar object.

3. Create one or more JMenuItem objects, and add them
to the menu object.

Java™ Programming Language Module 14, slide 4 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating a JMenuBar

1 f = new JFrame ("MenuBar") ;
2 mb = new JMenuBar () ;
3 f .setJMenuBar (mb) ;

MenuBar :”E”g|

Java™ Programming Language Module 14, slide 5 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

|%%C

Sun Educational Services

13
14
15
16
17
18
19
20
21

Creating a JMenu

f = new JFrame ("Menu") ;
mb = new JMenuBar () ;

ml = new JMenu("File") ;
m2 = new JMenu ("Edit") ;
m3 = new JMenu ("Help") ;
mb.add (ml) ;

mb.add (m2) ;

mb.add (m3) ;

f .setdMenuBar (mb) ;

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 14, slide 6 of 12

@ Sun Educational Services

Creating a JMenu

File Edit Help

Java™ Programming Language Module 14, slide 7 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating a JMenuItem

28 mil = new JMenultem("New")
29 mi2 = new JMenultem("Save"
(

30 mi3 = new JMenultem("Load") ;

4

)
)
31 mi4 = new JMenultem("Quit") ;
32 mil.addActionlListener (this) ;
)
)
)

4

33 mi2.addActionlListener (this
34 mi3.addActionlListener (this
(

4

4

35 mi4.addActionListener (this
36 ml.add(mil);

37 ml.add(mi2) ;

38 ml.add(mi3) ;

39 ml.addSeparator() ;

40 ml.add(mi4) ;

Java™ Programming Language Module 14, slide 8 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating a JMenuItem
B Menult... - [B]X]

File | Edit Help

Java™ Programming Language Module 14, slide 9 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating a JCheckBoxMenuItem

19 f = new JFrame ("CheckboxMenuItem") ;
20 mb = new JMenuBar () ;

21 ml = new JMenu ("File") ;

22 m2 = new JMenu ("Edit") ;

23 m3 = new JMenu ("Help") ;

24 mb.add (ml) ;

25 mb.add(m2) ;

26 mb.add(m3) ;

27 f.setdMenuBar (mb) ;

43 mi5 = new JCheckBoxMenultem("Persistent") ;
44 mi5.addItemListener (this) ;

45 ml.add(mi5) ;

Java™ Programming Language Module 14, slide 10 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating a JCheckBoxMenuItem
B Checkb...[- [O]X]

File | Edit Help

Mew
Save
Load

Quit
[Persistent

Java™ Programming Language Module 14, slide 11 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Controlling Visual Aspects

Commands to control visual aspects of the GUI include:

e Colors:
setForeground ()
setBackground ()

e Example:

Color purple = new Color (255, 0, 255);
JButton b = new JButton (“Purple”) ;
b.setBackground (purple) ;

Java™ Programming Language Module 14, slide 12 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 15

Threads

Java™ Programming Language

@ Sun Educational Services

Objectives

e Define a thread

= Create separate threads in a Java technology program,
controlling the code and data that are used by that
thread

= Control the execution of a thread and write platform-
Independent code with threads

= Describe the difficulties that might arise when multiple
threads share data

e Usewait and notifytocommunicate between threads
e Use synchronized to protect data from corruption

Java™ Programming Language Module 15, slide 2 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

How do you get programs to perform multiple tasks
concurrently?

Java™ Programming Language Module 15, slide 3 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Threads

e What are threads?
Threads are a virtual CPU.
e The three parts of at thread are:

 CPU
e Code
e Data
A thread or
CPU execution context

Code | Data

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 15, slide 4 of 39

@ Sun Educational Services

Creating the Thread

1 public class ThreadTester

2 public static void main(String args([]) {
3 HelloRunner r = new HelloRunner () ;

4 Thread t = new Thread(r) ;

5 t.start() ;

6)

7}

8 class HelloRunner implements Runnable {

9 int 1i;

10 public void run()

11 i = 0;

12 while (true)

13 System.out.println("Hello " + i++);
14 if (i ==50) {

15 break;

16 }

17 }

18 }

19 }

Java™ Programming Language Module 15, slide 5 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Creating the Thread

< Multithreaded programming has these characteristics:
e Multiple threads are from one Runnable instance.
« Threads share the same data and code.

e For example:

Thread tl1l = new Thread(r) ;
Thread t2 = new Thread(r) ;

New Thread
A Thread t
-
CPU
"
HelloRunner Code | Data Instance “r”
Class of HelloRunner

Java™ Programming Language Module 15, slide 6 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Starting the Thread

e Use the start method.
e Place the thread in a runnable state.

Java™ Programming Language Module 15, slide 7 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Thread Scheduling

Blocked \

New Unblocked Event Blocked

e |
séart()

Completes
Scheduler run ()
\’[Runnable]< Running —

Java™ Programming Language Module 15, slide 8 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Thread Scheduling Example

1 public class Runner implements Runnable {
2 public void run()

3 while (true)

4 // do lots of interesting stuff

5 /] ...

6 // Give other threads a chance

7 try {

8 Thread.sleep(10);

9 } catch (InterruptedException e) {
10 // This thread’s sleep was interrupted
11 // by another thread

12 }

13 }

14 }

15}

Java™ Programming Language Module 15, slide 9 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Terminating a Thread

1 public class Runner implements Runnable {
2 private boolean timeToQuit=false;
3

4 public void run() {

5 while (! timeToQuit) {

6 // continue doing work

7 }

8 // clean up before run() ends

9 }

10

11 public void stopRunning() {

12 timeToQuit=true;

13 }

14}

Java™ Programming Language Module 15, slide 10 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Terminating a Thread

1 public class ThreadController (

2 private Runner r = new Runner() ;
3 private Thread t = new Thread(r) ;
4

5 public void startThread() ({

6 t.start () ;

7)

8

9 public void stopThread() ({

10 // use specific instance of Runner
11 r.stopRunning () ;

12 }

13}

Java™ Programming Language Module 15, slide 11 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Basic Control of Threads

e Test threads:

isAlive ()

« Access thread priority:

getPriority ()
setPriority ()

e Put threads on hold:

Thread.sleep() // static method
join()
Thread.yield() // static method

Java™ Programming Language Module 15, slide 12 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The join Method

1 public static void main(String[] args) f{

2 Thread t = new Thread (new Runner()) ;

3 t.start () ;

4

5 // Do stuff in parallel with the other thread for a while
6

7 // Wait here for the other thread to finish
8 try {

9 t.join() ;

10 } catch (InterruptedException e)

11 // the other thread came back early

12 }

13

14 // Now continue in this thread

15

16}

Java™ Programming Language Module 15, slide 13 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Other Ways to Create Threads

1 public class MyThread extends Thread (

2 public void run()

3 while (true) {

4 // do lots of interesting stuff

5 try {

6 Thread.sleep (100) ;

7 } catch (InterruptedException e)
8 // sleep interrupted

9 }

10 }

11 }

12

13 public static void main(String args([]) {
14 Thread t = new MyThread() ;

15 t.start () ;

16 }

17}

Java™ Programming Language Module 15, slide 14 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Selecting a Way to Create Threads

e Implement Runnable:
e Better object-oriented design
= Single inheritance
e Consistency
e Extend Thread:
Simpler code

Java™ Programming Language Module 15, slide 15 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Using the synchronized Keyword

1 public class MyStack

2

3 int idx = 0;

4 char [] data = new char|[6];
5

6 public void push(char c) {
7 data[idx] = c;

8 1dx++;

9 }

10

11 public char pop () {

12 idx--;

13 return data[idx] ;

14 }

15}

Java™ Programming Language Module 15, slide 16 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Object Lock Flag

e Every object has a flag that is a type of lock flag.
e The synchronized enables interaction with the lock

flag.

Object this Thread before synchronized (this)
O ™ public void push(char c) {
A\ *~ synchronized (this) {

4 A data[idx] = c;
Code or .
Behavior 1dX++;
N y }
4 N)
Data or
State
\ /

Java™ Programming Language Module 15, slide 17 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Object Lock Flag

Object this Thread after synchronized (this)

Ve ~ O public void push(char c) {
A synchronized (this) {

- N ~ g : o

Code or ata[idx] = c;

Behavior 1dx++;
N y }
- N }

Data or

State
\ %

Java™ Programming Language Module 15, slide 18 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Object Lock Flag

Object this Another thread, trying to
lock flag missing execute synchronized (this)
4 "\ Waiting for public char pop () ({
| . .
e -, object lock | syrllchronlzed (this) {
Code or 1dx--;
Behavior return data[idx] ;
. | }
- N
Data or }
State
\ %
Java™ Programming Language Module 15, slide 19 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Releasing the Lock Flag

The lock flag is released in the following events:

< Released when the thread passes the end of the
synchronized code block

e Released automatically when a break, return, or
exception is thrown by the synchronized code block

Java™ Programming Language Module 15, slide 20 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Using synchronized— Putting It Together

« All access to delicate data should be synchronized.

e Delicate data protected by synchronized should be
private.

Java™ Programming Language Module 15, slide 21 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Using synchronized— Putting It Together

The following two code segments are equivalent:

public void push(char c) {
synchronized (this) {
// The push method code

)
J

public synchronized void push(char c) {
// The push method code

}

Java™ Programming Language Module 15, slide 22 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Thread State Diagram With

Java™ Programming Language Module 15, slide 23 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Synchronization
o
Dead
New Unblocked Event Blocked

®
\

star Scheduler | y () Completes
Runnable |-« Running

Lock Acquired Synchronized

\ Blocked in
Object’s

Lock Pool

Java™ Programming Language Module 15, slide 24 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Deadlock

A deadlock has the following characteristics:

e Itistwo threads, each waiting for a lock from the other.
e |t is not detected or avoided.
e Deadlock can be avoided by:

« Deciding on the order to obtain locks

« Adhering to this order throughout

= Releasing locks in reverse order

Java™ Programming Language Module 15, slide 25 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Thread Interaction —wait and notify

e Scenario:
Consider yourself and a cab driver as two threads.
e The problem:

How do you determine when you are at your
destination?

e The solution:

< You notify the cab driver of your destination and
relax.

e The driver drives and notifies you upon arrival at
your destination.

Java™ Programming Language Module 15, slide 26 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Thread Interaction

Thread interactions include:

e The wait and notify methods
e The pools:

« Wait pool

e Lock pool

Java™ Programming Language

Module 15, slide 27 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Thread State Diagram With

Java™ Programming Language Module 15, slide 28 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

wait and notify

Blocked \

New Unblocked Event Blocked

Siart () V/ \\
Scheduler
\’(Runnable]<

run () Completes

B

Running

[Must have lock]/
Lock Acquired Synchronized Releases lock
\ Blocked in (Blocked in
Object’s notify() or Object’s
Lock Pool interrupt () LWait Pool

Java™ Programming Language Module 15, slide 29 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Monitor Model for Synchronization

e |eave shared data in a consistent state.
e Ensure programs cannot deadlock.

e Do not put threads expecting different notifications in
the same wait pool.

Java™ Programming Language Module 15, slide 30 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Producer Class

1 package modl3;

2

3 public class Producer implements Runnable {
4 private SyncStack theStack;

5 private int num;

6 private static int counter = 1;
7

8 public Producer (SyncStack s)
9 theStack = s;

10 num = counter++;

11 }

12

Java™ Programming Language Module 15, slide 31 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Producer Class

13 public void run() f{

14 char c;

15

16 for (int 1 = 0; i < 200; i++) {

17 ¢ = (char) (Math.random() * 26 +'A’);

18 theStack.push(c) ;

19 System.out.println (“Producer” + num + “: “ + C);
20 try {

21 Thread.sleep((int) (Math.random() * 300)) ;
22 } catch (InterruptedException e)

23 // ignore it

24 }

25 }

26 } // END run method

27

28 } // END Producer class

Java™ Programming Language Module 15, slide 32 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Consumer Class

1 package modl3;

2

3 public class Consumer implements Runnable {
4 private SyncStack theStack;

5 private int num;

6 private static int counter = 1;
7

8 public Consumer (SyncStack s)
9 theStack = s;

10 num = counter++;

11 }

12

Java™ Programming Language Module 15, slide 33 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The Consumer Class

13 public void run() f{

14 char c;

15 for (int 1 = 0; i < 200; i++) {

16 c = theStack.pop() ;

17 System.out.println (“Consumer” + num + “: “ + C);
18

19 try {

20 Thread.sleep ((int) (Math.random() * 300)) ;

21 } catch (InterruptedException e) {

22 // ignore it

23 }

24 }

25 } // END run method

26

Java™ Programming Language Module 15, slide 34 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The SyncStack Class

This is a sketch of the SsyncStack class:

public class SyncStack {
private List<Character> buffer = new ArraylList<Character>(400) ;

public synchronized char pop() {
// pop code here

}

public synchronized void push(char c) {
// push code here

J
)

Java™ Programming Language Module 15, slide 35 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The pop Method

9 public synchronized char pop() {

10 char c;

11 while (buffer.size() == 0) {

12 try {

13 this.wait () ;

14 } catch (InterruptedException e)
15 // ignore it...

16 }

17 }

18 c = buffer.remove (buffer.size()-1) ;
19 return c;

20 }

21

Java™ Programming Language Module 15, slide 36 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The push Method

22 public synchronized void push(char c)

23 this.notify () ;

24 buffer.add(c) ;

25 }

Java™ Programming Language Module 15, slide 37 of 39

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

The SyncTest Class

1 package modl3;

2 public class SyncTest ({

3 public static void main(Stringl[] args) {
4 SyncStack stack = new SyncStack() ;

5 Producer pl = new Producer (stack) ;

6 Thread prodTl = new Thread (pl);

7 prodTl.start () ;

8 Producer p2 = new Producer (stack) ;

9 Thread prodT2 = new Thread (p2);

10 prodT2.start () ;

11

12 Consumer cl = new Consumer (stack) ;
13 Thread consTl = new Thread (cl);
14 consTl.start () ;

15 Consumer c2 = new Consumer (stack) ;
16 Thread consT2 = new Thread (c2);
17 consT2.start () ;

18 }

19 }

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Module 15, slide 38 of 39

@ Sun Educational Services

The SyncTest Class

Producer?2:
Consumerl:
Producer?2:
Consumer?2:
Producer?2:
Producerl:
Producerl:
Consumer?2:
Consumerl:
Producer?2:
Producer?2:
Consumer?2:
Consumer?2:
Producerl:
Consumerl:
Producer?2:
Consumer?2:
Consumer?2:

HEIMNMHONSdd<S 29 z2Hdx"=""dHd™

Java™ Programming Language Module 15, slide 39 of 39
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Module 16

Networking

Java™ Programming Language

@ Sun Educational Services

Objectives

e Develop code to set up the network connection
e Understand the TCP/IP Protocol

e Use ServerSocket and Socket classes for
Implementation of TCP/IP clients and servers

Java™ Programming Language Module 16, slide 2 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Relevance

How can a communication link between a client machine and
a server on the network be established?

Java™ Programming Language Module 16, slide 3 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Networking

This section describes networking concepts.
Sockets

= Sockets hold two streams: an input stream and an
output stream.

e Each end of the socket has a pair of streams.

Setting Up the Connection

Set up of a network connection is similar to a telephone
system: One end must dial the other end, which must be
listening.

Java™ Programming Language Module 16, slide 4 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Networking

client.bar.com

18000

client.baz.com

18002

Java™ Programming Language
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

server.foo.com

3000

Module 16, slide 5 of 12

@ Sun Educational Services

Networking With Java Technology

« To address the connection, include the following:
e The address or name of remote machine

« A port number to identify the purpose at the server
e Port numbers range from 0-65535.

Java™ Programming Language

Module 16, slide 6 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

Sun Educational Services

Java Networking Model

Server

ServerSocket (port #)

Register with

Client

Socket (host, port#)
(Attempt to connect)

this service
ServerSocket .accept ()
Wait for a
* connection
Socket ()
OutputStream

InputStream <

Socket .close ()

Java™ Programming Language

Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

OutputStream

P> InputStream

Socket .close ()

Module 16, slide 7 of 12

@ Sun Educational Services

Minimal TCP/IP Server

1 import java.net.¥*;

2 import java.io.¥*;

3

4 public class SimpleServer (

5 public static void main(String args([]) {
6 ServerSocket s = null;

7

8 // Register your service on port 5432
9 try {

10 s = new ServerSocket (5432);

11 } catch (IOException e) {

12 e.printStackTrace() ;

13 }

Java™ Programming Language Module 16, slide 8 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services
Minimal TCP/IP Server

14

15 // Run the listen/accept loop forever

16 while (true)

17 try {

18 // Wait here and listen for a connection

19 Socket sl = s.accept():;

20

21 // Get output stream associated with the socket
22 OutputStream slout = sl.getOutputStream() ;
23 BufferedWriter bw = new BufferedWriter (

24 new OutputStreamWriter (slout)) ;

25

26 // Send your string!

27 bw.write (“Hello Net World!\n”) ;

Java™ Programming Language Module 16, slide 9 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services

Minimal TCP/IP Server

28

29 // Close the connection, but not the server socket
30 bw.close() ;

31 sl.close();

32

33 } catch (IOException e) {
34 e.printStackTrace () ;

35 } // END of try-catch

36

37 } // END of while (true)

38

39 } // END of main method

40

41 } // END of SimpleServer program

Java™ Programming Language Module 16, slide 10 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services
Minimal TCP/IP Client

1 import java.net.¥*;

2 import java.io.¥*;

3

4 public class SimpleClient

5

6 public static void main(String args([]) {

.

8 try {

9 // Open your connection to a server, at port 5432
10 // localhost used here

11 Socket sl = new Socket("127.0.0.1", 5432);
12

13 // Get an input stream from the socket

14 InputStream is = sl.getInputStream() ;

15 // Decorate it with a "data" input stream

16 DataInputStream dis = new DatalInputStream(is) ;

Java™ Programming Language Module 16, slide 11 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

@ Sun Educational Services
Minimal TCP/IP Client

17

18 // Read the input and print it to the screen
19 System.out.println(dis.readUTF()) ;

20

21 // When done, just close the steam and connection
22 dis.close() ;

23 sl.close() ;

24

25 } catch (ConnectException connExc) {

26 System.err.println ("Could not connect.") ;

27

28 } catch (IOException e) {

29 // ignore

30 } // END of try-catch

31

32 } // END of main method

33

34 } // END of SimpleClient program

Java™ Programming Language Module 16, slide 12 of 12
Copyright Copyright 2008 Sun Microsystems, Inc. All Rights Reserved. Sun Services, Revision G.2

