


ALSO BY DAVID BERLINSKI

Nonfiction

The Secrets of the Vaulted Sky

Newton’s Gift

The Advent of the Algorithm

A Tour of the Calculus

Black Mischief

On Systems Analysis

Fiction

The Body Shop

Less Than Meets the Eye

A Clean Sweep







2008 Modern Library Paperback Edition

Copyright © 2005 by David Berlinski

All rights reserved.

Published in the United States by Modern Library, an imprint of The Random House Publishing Group, a
division of Random House, Inc., New York.

MODERN LIBRARY and the TORCHBEARER Design are registered trademarks of Random House, Inc.

Originally published in hardcover in the United States by Modern Library, an imprint of The Random
House Publishing Group, a division of Random House, Inc., in 2005.

LIBRARY OF CONGRESS CATALOGING-INPUBLICATION DATA

Berlinski, David.
Infinite ascent: a short history of mathematics/David Berlinski. p. cm. — (Modern Library chronicles).

eISBN: 978-0-307-77817-8
1. Mathematics—History—Popular works. 2. Mathematics—Philosophy—History—Popular works. 3.

Mathematicians—History—Popular works.
I. Title. II. Series.

QA21.B54 2005

510′.9—dc22    2005041519

www.modernlibrary.com

v3.1

http://www.modernlibrary.com


FOR SUSAN GINSBURG



The number of pages in this book is no more or less
than infinite. None is the first page, none is the last.

—JORGE LUIS BORGES,

The Book of Sand



CONTENTS

Cover
Other Books by This Author
Title Page
Copyright
Dedication

1    Number
2    Proof
3    Analytic Geometry
4    The Calculus
5    Complex Numbers
6    Groups
7    Non-Euclidean Geometry
8    Sets
9    Incompleteness
10  The Present

About the Author





THE HISTORY OF MATHEMATICS begins in 532 BC, the date marking the birth of the
Greek mathematician Pythagoras. Having ϩed the island of Samos in

order to escape the tyranny of Polycrates, Pythagoras traveled to Egypt,
where, like so many impressionable young Greek men, he “learned number
and measure from Egyptians [and] was astonished at the wisdom of the
priests.” Thereafter, he settled in southern Italy; he began teaching and
quickly attracted disciples. Very little is known directly of his life, except
that his contemporaries considered him admirable. Nothing from his own
hand remains: He has been preserved against the worm of time by the
amber of various literary artifacts. Admission to the Pythagorean sect was
evidently based on mathematical ability. Secrecy was enforced and dietary



restrictions against beans maintained. New members were required to keep
silent for a number of years, a policy that even today many teachers will
ϧnd admirable, and they were expected during this time to meditate and
reϩect. Some members of the Pythagorean sect regarded the external world
as a prison, a cave ϧlled with ϩickering shadows and dull brutish shapes.
Let me add to this confused but static scene the heat lightning of superb
mathematical intuition.

Until the mid-twentieth century, the thesis that in mathematics as in
almost everything else, the Greeks were there at ϧrst light, did not require
an elaborate defense. With their forearms draped in friendship over any
number of toga-clad shoulders, classicists who had spent years mastering
infernal Greek declensions naturally assumed that the “Greeks were fellows
of another college.” The history of the Ancient Near East has come into
sharper focus over the past century, great scholars poring over cuneiform
tablets and recreating the life of ancient empires that had until their work
been swallowed up as the impenetrable before. They have found remarkable
things, a history before classical history, evidence that men and women
have used and loved mathematics in the time before time began. Neolithic
ax-marks have even suggested that the origins of mathematics lie
impossibly far in the past, and that men living in caves, their hairy torsos
covered by vile-smelling furs, chipped the names of the numbers onto their
ax handles as bison grease spattered over an open ϧre. And why not? Like
language itself, mathematics is an inheritance of the race.

The burden of those impossibly distant centuries now disappears. It is
roughly six centuries before the birth of Christ. The Greeks are just about to
elbow their way into all the corridors of culture. They give every indication
of knowing everything and having known it all along. Yet the Babylonians
already possessed a remarkably sophisticated body of mathematical
knowledge. They were matchless observational astronomers, and they had
brought a number of celestial phenomena under the control of precise
mathematical techniques. They were immensely clever. “I found a stone,
but did not weigh it,” one scribe wrote. “I then weighed out six times its
weight, added two gin, and then added one third of one seventh, multiplied
by twenty-four. I weighed it. [The result came to] one ma-na.” “What,” the
scribe now asks his oil-haired students, “was the original weight of the
stone?” Mathematicians are apt to see an all-too-familiar face peeping
through the problems of a Babylonian scribe—their face, of course,
ubiquitous and always the same.



But those classicists sipping sherry in the common room of time had been
right all along. The Greeks were there at first light.

The natural numbers 1, 2, 3, … begin at one and they go on forever, the
mathematician’s dainty dots signifying an endless progression. As soon as
anyone attempts to cap the natural numbers, anyone can ϧnd a way to cap
the cap, say by adding one to the last natural number capped. If the
numbers are inϧnite, they are also wonderfully various. When the great
Indian prodigy Srinivasa Ramanujan lay dying in a London hospital, the
cold English winters eating his lungs away now ending his life, his friend,
the mathematician G. H. Hardy, paid him a visit. Paralyzed by his own
reticence, Hardy could think only to blurt out the number of the taxi that
had brought him to the hospital—1729, as it happens.

“I don’t suppose it is a very interesting number,” he added.
“Oh, no, Hardy,” Ramanujan replied at once, “it is the smallest number

expressible as the sum of two cubes in two different ways.”
And so it is: 1729 = 13 + 123 = 93 + 103. No smaller number has this

property. The story has become famous. No one quite knows what it means,
but every mathematician understands why it is told.

Like Ramanujan, the Pythagoreans were taken with the inexhaustible
variety of the natural numbers, their personalities. They were fascinated by
1, 3, 6, and 10, because these numbers could be expressed geometrically as
triangles composed of dots. They quite understood the importance of
numbers that are divisible only by themselves and 1—the prime numbers
such as 2, 3, 5, 7, and 11; and they may well have understood that the
prime numbers are fundamental, lying like dark rubies amid the pale
panoply of the ordinary numbers. They discovered that certain numbers
such as 6, 28, and 496 could be expressed as the sum of their divisors. They
lived in caves—I mean such is the legend—and squatting there, a pile of
smooth pebbles in their laps, they saw that there are square numbers as
well as triangular numbers, and amicable relationships between numbers,
as when each of two numbers is the sum of the other’s divisors, or when the
sum of two consecutive triangular numbers such as 3 and 6 is a square
number, and progressions from one series of numbers to another; and in all
this, as the tallow dripped from their candles, they treated the natural
numbers as if they were themselves men at play, serious but never solemn,
their endless curiosity amounting at times to a form of intellectual rapture
and so entirely alien to the beetle-browed scribes and accountants of the



Ancient Near East, men forever plodding along the severe utilitarian axis of
a commercial culture.

What did the Pythagoreans care for some pharaoh’s monstrous pyramid
or staring one-eyed sphinx? They were mathematicians.

Superstitious? Of course they were, but Pythagoras and the Pythagoreans
were devoted to a higher spookiness. It is their distinction. With his vein-
ruined hands describing circles in the smoky air, Pythagoras has come to
believe in numbers, their unearthly harmonies and strange symmetries.
“Number is the ϧrst principle,” he aϫrmed, “a thing which is undeϧned,
incomprehensible, [and] having in itself all numbers.” The number one, the
Pythagoreans termed the monad, and at times they seemed to suggest that
the natural numbers might be subordinated to a dull grunting process by
which all of the numbers could be generated from the monad, number
creation monstrous and pullulating. “And the ϧrst principle of numbers is in
substance the ϧrst monad, which is a male monad, begetting as a father all
other numbers.” The numbers two, three, and four enter into Pythagorean
thought scent-marked from the ϧrst, the number two, because it is squat
and feminine, and three, because it marks a return to the masculine, its
three-tipped triangle when inverted (base up, apex down) looking very
much as if a pair of wide-spread shoulders were descending toward a manly
groin. The number four merits celebration—but I really have no idea why it
does, except for the fact that one, two, three, and four sum to ten, at which
point the number series topples back to one, with eleven expressed as the
sum of one and ten. It is the number ten that served the Pythagoreans as
the object of a sacred oath, one oϱered at night in the owl-hooted
landscape and dedicated to “him that transmitted to our soul the tetraktys,
which has the spring and root of ever-flowing nature.”

Half-mad, I suppose, and ecstatic, Pythagorean thought oϱers us the
chance to peer downward into the deep unconscious place where
mathematics has its origins, the natural numbers seen as they must have
been seen for the very ϧrst time, and that is as some powerful erotic aspect
of creation itself. “Number,” the Pythagoreans wrote, “is the essence of all
things.” Time has long scattered the Pythagoreans and canceled their sense
of play, and yet the declaration that number is the essence of all things has
lost none of its thrilling intellectual power. Number? And the essence of all
things? Of all things? The Greeks heard those unearthly and mysterious
words and tried to give them sense, but sand needed to sift over the



monuments of antiquity before they would again enter into the
mathematician’s self-conϧdent self-consciousness. When Galileo initiated
the great scientiϧc revolution of the West, writing that the Book of Nature
is written in the language of mathematics, he was reconveying that
Pythagorean note, those Pythagorean words.

The Pythagoreans never succeeded in explaining what they meant by
claiming that number is the essence of all things. Early in the life of the
sect, they conjectured that numbers might be the essence of all things
because quite literally “the elements of numbers were the elements of all
things.” In this way, Aristotle remarks, “they constructed the whole heaven
out of numbers.” This view they could not sustain. Aristotle notes dryly that
“it is impossible that [physical] bodies should consist of numbers,” if only
because physical bodies are in motion and numbers are not. At some time,
the intellectual allegiances of the sect changed and the Pythagoreans began
to draw a most Platonic distinction between the world revealed by the
senses and the world revealed by the intellect. The literal aspect of the
Pythagorean doctrine gives way. Numbers are one thing, the world of
sensory objects another. But numbers still remain the essence of all things,
the Pythagoreans groping their way toward the remarkable doctrine that
the harmony between numbers oϱers a guide to the harmony between
things.

“To give an example of my meaning,” Aristotle remarked in describing
the Pythagoreans, “inasmuch as ten seemed to be the perfect number and to
embrace the whole nature of numbers, they asserted that the number of
bodies moving through the heavens were ten, and when only nine were
visible, for the reason just given they postulated the counter-earth as the
tenth.” This is neither muddied nor mystical: The inference on which the
Pythagoreans relied has been championed by physicists from the
seventeenth to the twenty-first centuries. It is the rock of their faith.

In the 1920s, for example, the English mathematician Paul Dirac set
himself the problem of extending the Klein-Gordon ϧeld equations so that
they encompassed relativistic solutions for the electron. The details of
Dirac’s project may safely be subordinated; what is at issue is a risky
navigational maneuver in which a man sets oϱ on a road he cannot see
trusting for guidance in a road he has already seen. Dirac quickly
encountered diϫculties. Equations needed to be factored, as when x2 + 11x
+ 10 is resolved into x + 10 and x + 1, and new mathematical objects
were needed to accomplish this. Groping now and guessing like mad, Dirac



succeeded in solving the Klein-Gordon equations, the relativistic electron
appearing as a physical correlate to a mathematical object. And then Dirac
noticed something odd. The solutions to the Klein-Gordon equations were
split like the devil’s tail. One solution corresponded to the expected
electron, the solution’s negative sign matching the electron’s negative
charge; but another and opposite solution seemed to correspond to the
electron in all of its properties except charge. Lesser mathematicians might
have discretely discarded this anomalous solution and carried on. Dirac
ignored their advice and affirmed the existence of the positron.

He had seen the fork on the devil’s tail. Some years later—not many,
mind you—experimental physicists confirmed the existence of the positron.

Let us by all means cast out what is unwholesome in Pythagorean lore—
the beans, the number mysticism, and the mumbo jumbo. There remains
this: The doctrine that number is the essence of all things, passing through
the prism of a thousand philosophical tracts, remains the central insight of
Western science, the indispensable key of coordination. And this, too: The
fact that this key opens so many locks has often been celebrated, but it has
never been explained.

Greek historians tell an odd little story. A ship is sailing across the Aegean
Sea, the sound of the waves slapping against its wooden hull, the rowers
chanting. On board are a number of mathematicians, Pythagoreans all,
although why a group of mathematicians should have decided on an ocean
voyage, I do not know.

Now Pythagoras is best known in the oϫcial history of mathematics for
the theorem that bears his name. I am going to need that theorem close at
hand, where it can do some good. Consider a right triangle whose tips are
labeled A, B, and C. Distances between distant points are what they seem—
distances, and so numbers. If distances cannot be correlated with numbers,
very little remains of the grand Pythagorean proposition that number is the
essence of all things. Although very simple, a right triangle—any old right
triangle—is an object quivering with unsuspected numerical relationships;
and in particular, Pythagoras discovered that when it comes to any old
right triangle, the distances between A and B, and again between B and C,
are coordinated with the distance between A and C. They are, in fact,
coordinated by the simple formula: (A – B)2 + (B – C)2 = (A – C)2. The
proof that Pythagoras oϱered is all grunt and shove. A number squared
suggests an area in prospect. The area of a square is, after all, the product



of its length and width, and since, by deϧnition, they are the same so far as
squares go, it is the product of its length or its width with itself. Pythagoras
thought to construct squares along each of the triangle’s sides, and then by
a series of geometrical adjustments—the grunt now follows—which
involved shoving those squares around, he showed that the square …

But now that I have given away the key, the readers may follow
Pythagoras through that open door. In mathematics, it is always the key
that counts.

The Pythagorean theorem dooms any naive version of the Pythagorean
program, the denouement taking place on board that sailing vessel just
recently seen leaving port. A mathematician named Hippasus of
Metapontum has just drawn a right triangle whose sides are one unit in
length on the dusty surface of a ship’s plank; throat cleared wetly to draw
attention, he observes that by the Pythagorean theorem, the length of its
diameter must correspond to the square root of two.

Now suppose, Hippasus continued, that the square root of two is a
number or that it may be represented as the ratio of two numbers. In that
case, . The steps that follow have a concision suggesting the taps of
a telegraphic key:

Tap. Suppose that m/n has been reduced to its lowest common form by
division.

It follows that either m and n are both odd, or that m is even and n odd,
or, finally, that m is odd and n even.

Nods all around. It is a fine thing to be on board a ship.
Tap. Squaring both sides of , it follows again that 2 = m2/n2.
Tap. Then 2n2 = m2, so that m2 is even.
If so, then m = 2x, where x is now some number. This is, after all, what

it means to say that m is even.
Tap. Squaring things lavishly, it follows that m2 = 4x2 = 2n2.…
My telegraphic taps now end just before the ϧnal tap; but like a

newspaper announcing a great victory in headlines with details to follow
on subsequent pages, this message is really complete. To get to those
subsequent pages, the reader need only see that n2 = 2x2 so that …

But if my taps have come to an end, Hippasus kept right on tapping,
pointing out with evident satisfaction that a contradiction had been
reached, and that—tap, tap, tap—it consequently made no sense to suppose
that the square root of two corresponds to the ratio of two numbers, and
that—tap, tap, tap—it follows that certain distances cannot be measured by



the natural numbers at all, and that—tap, tap, tap—
But here the story really ends. The Pythagoreans pitched Hippasus

overboard where, still tapping, he perished ignominiously.
It is said that at some point in his mathematical career, Pythagoras

proclaimed himself a god.
He was right to do so.



MATHEMATICS IS INSIGHT AND invention and the ϩash of something grasped at
once, but it is also something salt-cleaned and stout as a Gothic

cathedral. The Pythagoreans were men of insight, and they were daring
metaphysicians, too; but neither heavy lifting nor long-term construction
was in their line and they were content to allow their thoughts to sparkle in
the moonlight. Two centuries after the Pythagoreans trooped oϱ, the work
of salt-cleaning and cathedral-making was undertaken by the Greek
mathematician Euclid. During the Middle Ages, Euclid came to be known as
Euclid the Alexandrian or Euclid of Megara, but both attributions are
incorrect, and stripped of the burden of two false names, Euclid has come
down to us as the Euclid of the Elements, the book that established his



immortality. This is the long view, of course, and one that has displaced
many minor mathematicians between the sixth and the fourth centuries BC
to the scholar’s footnotes, but every cathedral has its mice.

Like Pythagoras, Euclid is largely a man of mystery, with even the dates
of his birth and the city of his origin unknown. It is the Greek philosopher
and mathematician Proclus who has provided the most extended
commentary on Euclid’s life. It amounts to only a single paragraph. “The
man lived,” Proclus writes, “in the time of the ϧrst Ptolemy.” Euclid was
thus younger, Proclus adds, than Plato’s students and older than
Eratosthenes and Archimedes. Ptolemy I, the ruler of Egypt and so a midget
among these mighties, makes a brief ignominious appearance in the
account that Proclus oϱers, asking “if in geometry there was any shorter
way than the Elements.”

“There is no royal road to geometry,” Euclid informed the pharaoh
brusquely.

Very conscious of the importance of his subject, Euclid maintained a
sideline in caustic commentaries. According to Stobaeus, another Greek
commentator, a student asked innocently enough what proϧt he might gain
from studying geometry. Euclid demanded that a slave give the student a
few coins, “since he must make gain out of what he learns.” The coins
tinkle, drop, and tumble in the dust. Stobaeus, Euclid’s uncomprehending
student, and that obliging slave are all alive at roughly the beginning of the
fourth century BC. And so, of course, is Euclid. He is admired, consulted,
respected, and talked about; he is known; he gets around, bustling
industriously. And then with a disarming indiϱerence to time and place, he
vanishes on a shrug of eternity.

For a very long time, the Elements was known to every educated man and
woman, so much so that when, seven centuries after Euclid’s death, a
philosopher addressing a gathering of Roman intellectuals asked slyly “how
to construct an equilateral triangle given a straight line,” the company at
once caught the reference to the very ϧrst proposition of the Elements, and
with the satisfaction of men congratulating one another for being well
read, broke into Greek in order to comment on the masterpiece that had
formed their character. Warm throaty chuckles all around. When, in the
seventeenth century, Isaac Newton completed his majestic Philosophiae
Naturalis Principia Mathematica, and so created the ϧrst and the greatest of
physical theories, he chose to express his thoughts in the language of



Euclidean geometry, covering up as many traces of his own mathematical
inventions as he could, so great was Euclid’s authority still.

The Pythagoreans had been intoxicated by the natural numbers; Euclid
was a geometer, a man proposing to impose order on the sensuous but
shifting shapes of experience. His Elements is a great work of art and like
all such works it serves many masters, all of them resident in Euclid’s own
spacious intelligence. In the most obvious sense, the Elements is a textbook.
It proceeds from the simple to the complex. It is beautifully organized. It is
very clear, succinct as a knife blade. And like every good textbook, it is
incomprehensible. Euclidean geometry calls for a collaborative eϱort
between the initiated and the unenlightened, the teacher droning, the
student drowsing, until mastery of the material builds slowly in the warm
space between droning and drowsing.

No matter the historical importance of high-school trots, textbooks have
scant purchase on immortality. There is a treatise behind Euclid’s textbook,
a greater, grander book, one addressed to mathematicians, and so to men of
the trade. And addressed, of course, to us. Now the materials of plane
geometry have an existence that owes nothing to mathematics itself. There
they are—the points, lines, angles, circles, triangles, squares, and squat
rectangles that we encounter in ordinary life. The tabletop marks out a
square; the pen leaves a dot; the ruler a line; and shadows in bright
sunshine lie at certain angles to the walls or church steeples that cast them.
In measuring the interior angles of various triangles, Egyptian land-
surveyors certainly knew the obvious: The sum of those interior angles
comes to more or less 180 degrees.

More or less, note.
Taken as a treatise, a theory, in fact, the Elements brings order to the

shifting and perpetually confused detritus of experience. Practical geometry
is an empirical undertaking, living and breathing and sweating in the real
world where measurements are always approximate and things are fudged
or smeared or jumbled up. Within Euclidean geometry points are
concentrated, lines straightened, angles narrowed; idealizations are made,
and some parts of experience discarded and other parts embraced. The
triangle made by touching thumbs and foreϧngers together (in order to
frame a scene, say) now disappears, replaced by the Euclidean triangle, at
once perfect and controlled, a fantastic extrapolation from experience, an
entry into the absolute. In the Euclidean triangle, all lines are straight, all
angles crisp, and interior angles sum to precisely 180 degrees.



Precisely, note.

We are now in a position, you and I, to appreciate the third incarnation
resident within the Elements. Just as there is a treatise behind Euclid’s
textbook, there is a tome behind his treatise, for the Elements is not only a
book about geometry; it is, as well, a book about how a book about
geometry should be written, and so comprises that darling of post-
modernist literary studies, a meta-text.

The third tome or treatise—a disquisition on method—answers to a large
and general question: How in mathematics do mathematicians achieve
certainty? One answer, of course, is that they do not and that they cannot,
but whether this answer is certain is far from certain, and if it is not, what
then is its use? It is around a number of very similar circles that much post-
modern thought accelerates without ever gaining speed. Another answer,
the one oϱered by Euclid, and by mathematicians in every era since, is that
certainty is achieved by a most peculiar method. The method that Euclid
championed is the method of proof; and with this method, Euclid created a
technique for doing mathematics and a way of being a mathematician as
stylized and as demanding as the Kabuki theater.

A proof in mathematics is an argument and so falls under the controlling
power of logic itself. By one of those troubling coincidences that lie littered
in the history of thought, Aristotle created the discipline of formal logic at
roughly the same historical moment that Euclid created his own system of
geometry. Although not men of the same generation, Euclid and Aristotle
stand arm in arm, linked in thought, linked in time, and linked in history.
But formal logic is wider than mathematics: Its subject is inference and
argument in general, and a mathematical proof is a ϧner, more specialized
instrument than an argument in theology or the law. Not until the
twentieth century would mathematics and logic, having for so long
exchanged their moist breath, fuse ecstatically into the single subject of
mathematical logic.

Within mathematics, a proof is an intellectual structure in which premises
are conveyed to their conclusions by speciϧc inferential steps. Assumptions
in mathematics are called axioms, and conclusions theorems. This deϧnition
may be sharpened a little bit. A proof is a ϧnite series of statements such
that every statement is either an axiom or follows directly from an axiom
by means of tight, narrowly deϧned rules. The mathematician’s business is
to derive theorems from his axioms; if his system has been carefully



constructed, a gross cascade of theorems will ϩow from a collection of
carefully chosen axioms. Such is the method of proof in outline, but no
outline does justice to the stringency of the method or the unusual demands
it places on mathematicians. A mathematical proof is like nothing else in
intellectual experience, all the more reason to regard with astonishment
Euclid’s achievement in creating the method and simultaneously putting it
to use in the Elements. It is rather as if he had managed to give birth to
himself.

If the method of proof oϱers the mathematician the prospect of certainty, it
is a form of certainty that is itself conditional. A proof, after all, conveys
assumptions to conclusions, or axioms to theorems. If the hammer of
certainty falls on the theorems, it cannot fall on the axioms with equal
force.

Euclid divided his assumptions into three categories: the deϧnitions, the
axioms, and the common notions. The deϧnitions, it must be said at once,
are disappointing. There are in all twenty-three and each suggests that
Euclid is attempting an intellectual task that he cannot complete. Thus a
point, Euclid writes, is that which has no part, a line that which has no
extent, and the extremities of a line are points. Such are the ϧrst, second,
and third of Euclid’s deϧnitions. The criticism that logicians make is that
these deϧnitions are either circular or that they commence an unhappy
regress. To know that a point is that which has no part is hardly helpful if
having no part is deϧned in terms of being point-like; and if not deϧned in
such terms, then in what further terms? Caught between the circle and the
regress, modern texts in geometry simply list their undeϧned terms, making
no attempt to endow them with meaning. Other terms are deϧned explicitly
by reference to the undeϧned terms. This way of doing things is wholesome
and correct, the chain of deϧnitions backing up to dead-end ϧnally at terms
whose meaning is either assumed or ignored.

Euclid’s common notions, on the other hand, are sensible enough. Falling
into the category of the invaluable intellectual bromide, they give no
offense. Let me list them all:

1. Things that are equal to the same thing are also equal to one another.
2. If equals be added to equals, the wholes are equal.
3. If equals be subtracted from equals, the remainders are equal.
4. Things that coincide with one another are equal to one another.



5. The whole is greater than the part.

Euclid termed 1–5 common notions because he felt that in some sense they
must be a part of any mathematical system dealing with geometry. Modern
logicians would assign these notions to logic itself, but no matter their
natural home, no one is apt to provoke intellectual indignation by insisting
that the whole is greater than its parts.

There remain the axioms, the germinating seed of Euclidean geometry.
The axioms must meet two constraints: They must be rich enough so that
everything important about the world of geometry may be derived from
them; and they must be suϫciently self-evident so that they may be
accepted without argument. Euclid’s axioms are not perfect. There is a
worm hidden in them. But judged by the standards of his predecessors, the
system they make possible is not only remarkable but unprecedented, Euclid
the greatest of ancient system builders because the first.

There are in all only ϧve axioms needed to make possible the creation of
the Euclidean world. The ϧrst three are constructive in their import: They
aϫrm that something can be made; they are enabling in their eϱect. Let
the following be postulated, Euclid writes, that it is always possible:

1. To draw a straight line from any point to any point;
2. To produce a finite straight line continuously in a straight line;
3. To describe a circle with any center and distance.

Axioms 1–3 have a simple, easily grasped nature. Thus Axiom 1: Where
there are two points, there is one line. And thus Axiom 2: Where there is a
straight line, there is a longer straight line, and so without end. And Axiom
3: Circles for the asking.

The fourth axiom is a declaration covering under the aspect of equality all
right triangles wherever they may be found in space:

4. All right angles are equal to one another.

There remains the ϧfth axiom of Euclid’s system, and with the ϧfth, that
worm. It is a worm that may now be seen wriggling in words due to the
eighteenth-century Scottish mathematician John Playfair:



5. Through a point outside a given line, one and only one line may be
drawn parallel to that line.

Whether in Euclid’s original formulation or in Playfair’s, these are words
that have haunted the mathematical community. The axiom that they
express is a vital part of Euclid’s system, a load-bearing structure. And
surely it seems plausible. One straight line; one exterior point; and only one
line through the point and parallel to the given line. Yet the picture
corresponding to the parallel postulate does not cancel a sense of
mathematical unease. In some very obscure way, the axiom contains an
assumption that it does not entirely succeed in conveying. Parallel lines and
a point in space—clear enough. And the picture that results—clear enough
as well. There is yet something odd and unresolved about the picture of
those jaunty parallel lines, its visual plausibility depending entirely on the
assumption that the space in which they are embedded is flat. If that
assumption is canceled or otherwise modiϧed, the picture at once loses its
initial plausibility, space itself acquiring the power to droop in strange
ways …

And with the mathematician’s dots now making an unwelcome
appearance, we realize that Euclid’s ϧfth postulate does not quite have the
same hold on the organs of the obvious that his other four assumptions do.
It is this that has suggested to mathematicians throughout the ages that the
ϧfth axiom is no axiom at all, but, instead, a theorem of the system. For
more than twenty-two centuries, mathematicians attempted to make good
this insight, demonstrating in a hundred cobwebby and confused papers,
whether in Latin, Greek, Italian, French, or German, that Euclid’s ϧfth
axiom could be derived from Euclid’s other axioms. In the end, every such
demonstration seemed to assume precisely the point at issue, either
obviously, as when hearty amateurs had a go at things, or in some
monstrously subtle way, with excellent mathematicians following a cunning
series of circular steps inevitably conveying them back to the parallel
postulate itself.

And this is something that Euclid knew, understood, and found deeply
troubling. Never once did he propose a proof of his parallel postulate, his
superb intuition having perhaps seen straight through the tangled trail
from one fallacious proof to another to gather itself at the incredible
conclusion that the parallel postulate was—no, not a theorem, in that way
lies madness—but in fact …



What a wonderful instrument trailing dots turns out to be, with ever so
many literary techniques abbreviated in their dainty drumbeat:
foreshortening, far shadowing, fast forwarding; they are an invitation,
those dots, a guide to romance, a tease, a sign of the imponderables to
come.

In writing the Elements, Euclid was not a man to triϩe with warm-ups. The
book opens with a bang of brusqueness. There are no preliminaries.
Something is to be demonstrated. Given a line, Proposition I aϫrms—the
very ϧrst sentence of the book, mind you—it is always possible to construct
an equilateral triangle on that line. To construct—meaning, to create. A
new geometrical object now arises from Euclid’s definitions and axioms. The
proof marches in short, severe Roman-troop steps. And then all at once it
stops. The thing to be demonstrated has been demonstrated. The concision
is almost unbearable.

And thence to those steps.

1. Let AB be the given finite straight line.
2. With center A and distance AB, let the circle BCD be described.

Axiom 3.

3. With center B …

Axiom 3 again.

4. From the point C at which the circles intersect, draw a straight line to
the points A and B.

Axiom 1.

5. But AC = AB.…

And with only ϧve inferences completed, the architecture of the proof is
evident. Taking a trip of three steps around that triangle, Euclid shows



methodically that its sides are all equal: AC and AB, and BC and BA, and CA
and CB, which is nothing more than AC and AB.

So the Elements begins, and so it continues, passing from very simple
propositions to propositions that are quite complex, and passing as well
from what is obvious to what is entirely unsuspected. Over the long
centuries in which Euclid’s Elements have been the cynosure of every
mathematician’s eye, its secrets have been uncovered and its dark places
ϩooded with light. By the nineteenth century, the system held few
surprises. And yet like the sturdy old system that it is, Euclidean geometry is
still capable of sending out a few resplendent springtime shoots. In the late
nineteenth century, for example, the Anglo-American geometer Frank
Morley discovered and demonstrated that the angle trisectors of any
Euclidean triangle form an interior equilateral triangle. This is an exquisite
result, one reached twenty-three centuries after Euclid’s death, striking
evidence that the method of proof is also an instrument of discovery.

At some time in the seventeenth century, the French mathematician Pierre
de Fermat asked whether the equation xn + yn = zn could be solved by
means of distinct integers. At n = 1, the question is trivial; and at n = 2,
obvious, the Pythagorean triplets three, four, ϧve very elegantly satisfying
the equation x2 + y2 = z2. Three squared plus four squared just is ϧve
squared. As exponents mount past two, polarities reverse. Search as he
might, Fermat could dis cover no Pythagorean triplets x, y, and z such that
x3 + y3 = z3. “It is impossible,” he wrote in the margins of the Diophantine
treatise Arithmetica, “for a cube to be written as the sum of two cubes.” He
then took the step that would immortalize his name. He generalized his
observation. What cannot be done for third powers cannot be done at all,
no matter the power, no matter the search. It is impossible “for any number
which is a power greater than the second to be written as a sum of two like
powers.”

Fermat believed that he had discovered a marvelous proof of his own
conjecture, and within the margins of his own paper noted sadly that the
margins were too small to contain it.

Very good mathematicians were intrigued and often obsessed. Amateurs
and cranks, all of them curiously aware of my e-mail address, busied
themselves with crackpot proofs, some of them ϧendishly ingenious. For
more than three centuries the conjecture remained unyielding. And then in
1993, the English mathematician Andrew Wiles announced a proof, one



retrospectively validating Fermat. The old boy had been right after all.
Wiles’ proof ran to more than two hundred pages and it made use of an
immense body of modern mathematics. A ϧrst version, announced in a very
dramatic setting at Oxford University, contained an error. The proof
required revision. But then everything came right.

Although his paper addresses an old problem, it is completely an exercise
in the most modern mathematics. It is, in fact, hyper-modern. And yet there
are features of this paper that are old rather than new. The proof is written
in the service of a Pythagorean obsession, all of the old half-mad Greek
Pythagorean voices gathering again to speak and sing. Fermat’s conjecture
plays over the simplest properties of the numbers and the question that it
raises, whether for any n greater than two there are numbers x, y, and z
such that xn + yn = zn, is so plainspoken and seems so close to the bone of
intuition that it almost invites a spontaneous declaration. Yet the proof of
Fermat’s last theorem lies quite beyond intuition, correcting the
Pythagoreans in their madness by showing that intuition in mathematics
must always be structurally supported.

Whereupon Euclid coughs discreetly in the night. Despite its magniϧcent
complexity, and despite its ferociously hyper-modern symbolism, Wiles’
paper that is organized in accordance with precisely the architectural plan
on display in the half dozen or so lines that Euclid required to prove the
ϧrst proposition of the Elements. Something in both cases is to be
demonstrated and so made captive to the method of proof. Some things in
both cases have been assumed. Some common notions are in both cases
taken for granted. Inferences control the ϩow of thought. The cathedral of
mathematics has increased in size but not in its inner nature. In no other
human subject, I suspect, has so much changed and so much stayed the
same.



TO THE GREEKS ALL credit. All credit, and then there is silence. The stolid
Romans, who had conquered the Greeks and then conquered the world,

were brilliant military men. They had a genius for politics and propaganda;
and they were gifted in the law, medicine, and sanitary engineering, three
disciplines that have done more for human happiness, I suspect, than any
other human undertaking. But the Romans possessed no mathematical gift
whatsoever, their incompetence as striking as it would have been had
classical Greek culture given out directly to modern-day Rwanda or the
Sudan. Mathematical curiosity died in the Roman Empire and it stayed dead
in the Christian West for more than one thousand years. There were great
theologians and philosophers, to be sure: the Church fathers, the Venerable



Bede, Anselm, Abélard, Albertus Magnus, Thomas Aquinas, Duns Scotus,
William of Occam; but no one on ϧre with the Pythagorean rapture, only
men prepared indiϱerently to sift its ashes. In the great Moslem Empire
that from the eighth century AD to the middle of the thirteenth century
stretched from Spain in the west to the borders of India in the east, things
were otherwise. Arabic was the language of literate men and women, the
suave and supple intermediary between Greek and Latin antiquity and
medieval Europe, and the perfumed city of Baghdad was their dimpled
pleasure pool, the center of the Arab archipelago. After defeating his
brother in battle and so securing power, the Caliph al-Ma’mun created the
House of Wisdom in the early part of the ninth century; refreshed by
conquest, he invited mathematicians, astronomers, astrologers, poets, and
translators to mingle in the cool marble of its corridors. Arab
mathematicians invented a ϩexible notational system for the natural
numbers—the decimal system still in use; they learned to solve quadratic
equations. They carried out a ϩirtation with the negative numbers and
incommensurable magnitudes, one of those dusky desert duets in which
owing to a remarkable amount of unnecessary clothing neither party quite
knows what the other is really like. They were daring. Writing during the
ninth century, the Moslem Renaissance covering all Baghdad in its aureate
and ochroid glow, al-Khwarizmi handled square roots and powers with an
easy familiarity; his disciple Abu Kamil had a way with higher powers;
using essentially modern methods (subtract from both sides, factor, hope for
the best), he was able to solve a number of quadratic equations. Wise far-
seeing Abu. And there is the Omar Khayyam of the Rubiyat, a Persian
among Arabs, and so a songbird among sparrows, a mathematician of note,
occupied with the solution of cubic equations, his lyrical intelligence ϧnding
in algebra the anodyne against time that time had long withheld.

And this, too, is noteworthy: An immense body of Arabic scientiϧc
literature remains unread and unstudied. It is possible that scholars
centuries from now will refer respectfully to the Arabic Newton, some
ferocious far-seeing intelligence whose vexed spirit remained sputtering
with indignation during all the long centuries in which his masterpiece lay
buried in dust-covered stacks or on the shelves of some antiquarian’s
bookstore.

Whatever the gems that scholars have not seen, the fact remains that
studying the history of mathematics today, the historian may skip from the
end of the Greek era to the beginning of the modern era without ever



troubling his scholarly conscience.
And needless to say, of course, if he is about to skip, why should we

linger?

It is 1600. Adieu scholastics, steeples, and scribes. The great age of
mathematics is about to commence. At the beginning of the seventeenth
century, the mathematician Marin Mersenne could envisage all of
mathematics contained within the corners of a single library shelf, the
collection commemorating a few antique starbursts such as Euclid,
Appolonius and Archimedes, and a number of late Renaissance shooting
stars—Cardano, Torricelli, and Bombelli. Mersenne was himself a polished
old number hand and that shelf contains a treatise or two about the natural
numbers. There is a discreet pause, and then Mersenne mentions the
number zero, the invention of an Indian mathematician, and the negative
numbers –1, –2, –3, –4, …, the mathematician’s dots abbreviating another
progression, this one going backward toward the black badlands of inϧnity.
The mathematicians of the Renaissance were easily spooked, Mersenne
conϧdes, both Nicolas Chuquet and Michael Stifel regarding the negative
numbers as if they were the devil’s playthings.

Mersenne has very little to say about the real numbers. He mumbles when
the matter comes up. The Greeks knew that the square root of two could
not be correlated with the natural numbers or with the ratio of such
numbers. A man had died to prove the point. More than ϧfteen hundred
years later, dust and grease still covered the subject, the ϧrst to obscure
vision and the second to prevent traction. There are the natural numbers;
there is zero, and the negative numbers; and there are the fractions.
Fractions give rise to repeating decimals, as when 1/7 is represented by
0.142857 … with never a change at the decimal’s tail. Then there is this
business about the square root of two. It cannot be represented as an
ordinary fraction. But the number, whatever it is, can be approximated by a
number dragging an endless decimal. This is something that the
Babylonians knew. The square root of two is, after all, more than 1 and less
than 2, and then more than 1.1 and less than 1.9, … the approximation
getting better and better as those dots and that process go on and on.
Modern calculators return 1.4142135 … when the square root of two is
requested. Computers do far better. But no matter how far out the
approximation runs, it never settles into a pattern. The decimal expansion
is irregular. It looks for all the world as if it were random. It is all very



confusing. Like other mathematicians of his era, Mersenne has nothing of
interest to say about these numbers.

And then popping up as curiosities, and so completing the impression
that the numbers are very odd, there are within Mersenne’s ken numbers
answering to equations such as x2 = –1. Rafael Bombelli had placed his
hand on what are now called complex numbers; he saw just how they
might be manipulated. He had discovered pure gold, but then in a burst of
sunny Italian carelessness, he somehow let things lapse.

Mañana.

René Descartes was born in 1596 and died ϧfty-four years later. The
greatest of early modern philosophers and the greatest of early modern
mathematicians, Descartes is unusual in the degree to which his thoughts
were guided by a program, a settled way of looking at things. It is a
program that had its origins in disappointment. “I had when younger,”
Descartes remarks, “studied logic … and geometrical analysis and algebra.”
To little avail, apparently. The syllogisms of logic, he observes sadly, “serve
to explain to another what one already knows.” Geometry and algebra are
hardly an improvement. Geometry is “so limited to the consideration of
ϧgures that it cannot exercise the understanding without greatly fatiguing
the imagination.” And by the same token, “algebra is so limited to certain
rules and certain numbers that it has become an obscure art which
perplexes the mind rather than a science which educates it.” Descartes was
plainly a man ill disposed to accept intellectual gifts.

The method that Descartes commended is often called the method of
doubt; it has the virtues of any program of self-improvement. Manage the
problem; be careful; accept nothing on faith, look for clear and distinct ideas,
trust in yourself. Descartes was by no means a skeptic, a man prepared to
empty his thoughts by placing their objects in jeopardy, but he recognized
that the familiar material world of trees and trellises, sunshine and shade,
lies at the end of a complicated and desperately fragile inferential trail,
with even the most obvious of physical facts—the rose is red—open to
epistemological corrosion. The rose? Red? Really? How do you know—yes,
you—that you are not dreaming, mistaken in perception, ϩawed in
judgment, or simply the victim of a cruel cosmic tangle, your senses
deranged by a demon? These questions have passed into the universal
curriculum of mankind, where every now and then, as philosophy teachers
well know, they are still able to convey sensitive students to the edge of



madness.
As the external world recedes, the mind returns to itself. I think, therefore I

am. Engaged by and with itself, the mind is proof against doubt, the
distinction between the way things seem and the way they are vanishing,
seeming and being blessedly annealed. And thereafter Descartes translates
these observations into a metaphysical system. The universe is divided in its
nature. There is the world of matter and the world of mind. It is the
individual, naked in his thoughts and alone, who must learn how to
represent the external world. One key to that representation, Descartes
sensed, may be found in mathematics, for elementary mathematics
represents an aspect of the mind’s conversation with itself, and so is
something that shares in the mind’s general proof against doubt.

Descartes received his early education from the Jesuits at the academy of La
Flêche, and he apparently persuaded his teachers that his was a sensitive
disposition. He was allowed to sleep late and thereafter became an
inveterate valetudinarian and a consummate whinger. Moving to Paris in
1612, he encountered his school friend Marin Mersenne, the two young men
talking late into the endless night, their wooden boot-heels clacking along
the Paris streets (not far from where I now live). Descartes then joined
Dutch military forces under William of Orange and later volunteered to
serve in the Count de Bucquoy’s Bavarian army at the beginning of the
Thirty Years’ War. Whether his commanders indulged his desire to sleep
late each morning and not be disturbed in general, Descartes does not say.
On the night of November 19, 1619, encamped in some muddy ϧeld by the
Danube, with military pennants ϩuttering in the cold wind and the tent
walls sullenly ϩapping, he was vouchsafed a dream in which the secrets of
both philosophy and mathematics were revealed.

The book that most completely advanced Descartes’ agenda and
expressed his dream is entitled Discours de la méthode pour bien conduire sa
raison et chercher la verité dans les sciences—The Discourse on Method;
analytic geometry appears in an appendix entitled La Géométrie. It is a
book that suggests more than it contains and it is written by a
mathematician unaware of the treasures he was in the process of
uncovering, for the curious fact is that the leading ideas of analytic
geometry are not expressed explicitly in the work that created analytic
geometry, so that in reading the book in the original, mathematicians very
often come to wonder how its author could have seen so much while saying



so little.

At some time during the thirteenth century, Gervasius of Tilbury, a well-
educated English nobleman, conceived the idea of creating a map of the
world. Gervasius was both a scholar and an historian. He got around,
traveling as far aϧeld as Bologna for his education, and then spending time
at the court of William II in Sicily. He may be spotted after that in
Burgundy, serving as an adviser to Otto IV just before Otto’s defeat at the
Battle of Bouvines. Thereafter, the trail grows tangled as Otto, his dreams
of world conquest at an end, settled into lower Saxony, the ever-helpful
Gervasius behind him. A book survives—the Otia Imperialia—which
Gervasius wrote apparently to amuse the king.

And in a well-preserved copy, the great map survives as well—the Ebstorf
Mappamundi.

Oriented toward the east (from the perspective of Hanover, where it was
originally located), the map depicts the world as it is enfolded tenderly by
Christ, whose (remarkably small) head is located in the Garden of Eden,
which the mapmakers have placed in India. The rest of the world follows
the contours of Christ’s body, his right hand draped carelessly over
northern Albania, and his left over southern Africa. At the very center of
the map and so the place where all roads converge is the city of Jerusalem.
The tombs of all the apostles are depicted on the map, together with the
chief Roman churches. No distances; no ruins or runes; no geographical
landmarks. A number of animals are resident on the map, and so, too, men
whose sperm-whale torsos end in narrow dog heads, a few ruddy giants
rising like stalks from the margins of various savage empires.

By the seventeenth century, road maps, military maps, and maps of
coastal seas had accumulated in all the chests and drawers of Europe. In
Prague, the inϧnitely exuberant Tycho Brahe, his metal nose plate
elegantly concealing a dueling scar, had begun to create a map of the
heavens; and in the low countries, Hieronymus Bosch had completed a
depiction of Hell, one so detailed that it, too, counts as a map of sorts, a
guide to all of Europe’s rotting monsters. It is this world of draftsmen and
cartographers that René Descartes now enters, and like everyone else, he
has a map in hand, a representation of the world.

The Cartesian map is written not on parchment or on paper, nor for that
matter is it etched in metal. It is and it remains a mental map, one inscribed
on the Euclidean plane. It can be seen, but only with the same eye capable



of seeing points without dimension, straight lines without width, and
triangles that do not bend, sag, or crumple. Its fundamental plan is simple.
The plane is ϧrst bisected by two straight lines. Their point of intersection
is labeled 0. This is the origin of the world map and so its new Jerusalem.
The numbers depart Jerusalem in four directions along four straight lines:
to the right, where they increase positively 1, 2, 3, …; and to the left,
where they decrease negatively –1, –2, –3,…; and then up and down in
precisely the same fashion. A plane organized in this way is known as a
Cartesian coordinate system (Figure 3.1), even though Descartes did not
himself talk of coordinate systems in La Géométrie. Or anywhere else, for
that matter.

It is diϫcult at ϧrst to see the profound resemblance between the Ebstorf
world map and a Cartesian coordinate system, but maps, wherever they are
found, share a common feature: They express far more than they contain,
and so share in (and exhibit) the paradox of representation itself. A
Confucian mandarin looking at the Ebstorf world map might see nothing
more than a strange, narrow-headed ϧgure, his arms ϩopping over colored
regions of space, animals in residence here and there, and dog-headed men
loitering about. Gervasius of Tilbury, on the other hand, saw a
representation of the world beyond the world, countries and continents
subordinated to the Christian drama of sin, suϱering, and redemption. In
regarding the crossed and martyred arms of Descartes’ coordinate system,
we, too, we innocents, at ϧrst see what is there without seeing what it
represents. Descartes saw beyond what can be seen, precisely the reason he
is regarded as a great mathematician.

FIG. 3.1

It is René Descartes who is now at your elbow; with the full force of his



powerful if somewhat sullen intelligence, he is oϱering you the keys to his
kingdom.

Points emerge first.
With numbers inscribed on the axes of a coordinate system, any point in

the Euclidean plane may be represented by two numbers. Call them x and
y. These are the coordinates of the point. Each marks a certain distance
along the x- and the y-axis. The point itself lies at the intersection of two
straight lines, one moving vertically from x, the other moving horizontally
from y.

Distance is next.
If A and B are any two points in the plane, with the coordinates (x1, y1)

and (x2, y2), the distance D between them is:

The formula should inspire the pleasure of friendship renewed, for it
follows from the Pythagorean theorem. Squaring is in force in the formula,
by the way, in order to get rid of negative numbers, and the subscripts on
both x and y are bookkeeping devices, a way of keeping things distinct.

With the introduction of numbers, points, and a formula for distance, the
ϧrst step in a great drama of identiϧcation begins. If points correspond to
pairs of numbers, there is no reason that geometrical ϧgures more
complicated than points—lines and curves—might not correspond to
mathematical objects more complicated than pairs of numbers, so that with
the mathematician ascending step by step, the geometrical world becomes
coordinated with the world of numbers.

Straight lines now follow.
A straight line within the Euclidean plane is simply a straight line, of no

address and in no way distinguished from any other straight line. There are
thousands of them just lying around. But given the struts of a Cartesian
coordinate system, those shiftless straight lines straighten themselves out
and acquire the dignity of a ϧxed identity. Two numbers are again required.
The ϧrst expresses the way in which the line addresses the axes of a
coordinate system, its angle of inclination or slope. This can be represented
as a ratio m = (y2 – y1)/(x2 – x1). The second—a buoyant b in most books—
marks the place that the straight line crosses the y-axis and so signiϧes its
point of intersection. Symbols are combined in a single equation in two
unknown variables, y = mx + b. As the mathematician runs through the



values of x, values for y pop obediently out of the equation’s other side, the
line—this line, our line—consisting of all those points x and y that satisfy y
= mx + b. The line is now bound, its identity inexpugnable. It is that line
and no other.

Equations in two variables—two indeterminates in the language of the
sixteenth century—correspond to the locus of points making up a curve.
This is the leading mathematical idea of analytic geometry and if Descartes
properly perceived its importance, he very successfully concealed his
enthusiasm. Curves in the plane? Their loci? “In every such case,” he
writes, “an equation can be obtained containing two unknown quantities.”
Frowning, he then occupied himself elsewhere, chieϩy with a diϫcult
problem posed originally by the Greek geometer Pappus. Yet the
coordination suggested between curves in the plane and various equations
is a subtle and intricate achievement, one that Descartes realized
imperfectly but one that he did realize.

By the sixteenth century, mathematicians had already drawn a distinction
between parameters and variables. Parameters are ϧxed, variables variable.
The letters m and b in the equation of the straight line thus denote speciϧc
numbers. They do not vary. They stand their ground. Which numbers they
might happen to denote is of little interest. The variables x and y, on the
other hand, take diϱerent numerical values in one and the same equation,
and so function rather as if they were pronouns in English.

Descartes realized, perhaps unconsciously, that the correspondence
between equations and curves in the Euclidean plane turned on an intricate
play between the form of an equation, its variables, and its parameters.
This is new ground. A number of very familiar Euclidean shapes now ϧnd
themselves controlled from beyond the plane by an algebraic alembic, the
key to the coordinate system (just as the gospels provide the key to the
Ebstorf Mappamundi). A general ϧrst-degree equation has the form Ax + By
+ C = 0. The equation has in x and y two variables; and it has in A, B, and
C three parameters, temporary workers, there for the duration. In addition
and multiplication, the equation speciϧes two mathematical operations.
After those operations have been conducted on the left side of the equation,
the result, the equation itself aϫrms, is equal to zero, striking evidence that
in mathematics, as in life, much often comes to nothing. This particular
equation is known among mathematicians as the general equation of the
line; it is known as well as a linear equation, the word linear in wide and



unhappy currency among political scientists, sociologists, and romantic
counselors much concerned to advise their clients to avoid linear thinking
in their relationships. Here is the real meaning of the word, one tied
precisely to a certain set of symbols. Straight lines are straight and the
equations that describe them are linear. Romance has nothing to do with it.

Whatever the straight lines, the distance formula can be used almost at
once to derive an equation governing a circle, inasmuch as a circle in the
plane consists of the set of points that are all at an equal distance R from
the circle’s center C. If the coordinates at C are a and b, then by a single
application of the distance formula, the circle’s radius R is simply the square
root of (x – a)2 + (y – b)2, and the circle is now conϧned in a cage of
symbols.

If a ϧrst-degree equation governs the straight line in the plane, a second-
degree equation—an exponent in the cockpit—handles a handful of more
sensuous curves. There is the equation of the parabola y = ax2 + bx + c;
and the ellipse, x2/a2 + y2/b2 = 1; and the hyperbola, x2/a2 – y2/b2 = 1.

These equations may be amalgamated into a single second-degree
equation: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. There are in this
equation two variables, x and y, and there are as well six parameters, A, B,
C, D, E, and F. The equation is quadratic in x and y.

A more considerable cartographic vista now opens. Within geometry, a
cone is just what it seems to be: a well-known shape in three dimensions.
By slicing the cone in various ways, the Greeks discovered to their
satisfaction, a variety of two-dimensional Euclidean points, lines, and
curves could be coaxed from the cone itself. Such are the conic sections,
long a staple of high-school geometry.

The general second-degree equation, Descartes determined, corresponds
to a conic section. What is more, Ax2 + Bxy + Cy2 + Dx + Ey + F = 0
describes

1. a parabola if B2 – 4AC = 0;
2. an ellipse if B2 – 4AC is less than 0; and
3. a hyperbola if B2 – 4AC is greater than 0.

The expression B2 – 4AC is the discriminant of these equations; it stays the
same no matter how the axes of a Cartesian coordinate system might be
rotated; and so it comprises the ϧrst great invariant of modern
mathematics.

The equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 rather resembles the



Everyman logo that used to appear aϫxed to certain books published years
ago in central Europe, all overcoat, indistinct features, and shuϮing tread.
It is perhaps not surprising to see in this mathematical Everyman a general
connection to plane curves. But to see in the jumble of variables and
parameters a connection to very speciϧc, brightly individuated plane curves
such as the parabola, hyperbola, and ellipse—that required a
mathematician’s eye. The discriminant of the equation, B2 – 4AC, which
controls the correspondence, is not present in the equation itself, so that
just as Picasso painting Gertrude Stein could see the massive woman she
would become from the rather uninteresting woman she was, the
mathematician can see contingencies and conditions in those otherwise
unrevealing symbols that only emerge later.

Descartes’ theorem is in this sense an achievement in intellectual
reϧnement; it invites the eye to linger, and it suggests for perhaps the ϧrst
time that what can be said about mathematical objects is more interesting
than the objects themselves. In the appreciation of a work of art, the
amateur appreciates the subject, but the connoisseur admires the painting.

Analytic geometry of the seventeenth century is destined to grow great,
some lines of development already immanent in La Géométrie, others in the
work of Girard Desargues, Pierre de Fermat, and Blaise Pascal. Two-
dimensional analytic geometry is easily promoted to three-dimensional
analytic geometry, with the third coordinate axis rising from the page like a
priapic stalk.

The coordination between certain equations and certain structures in
space proceeds directly up the dimensional chain. The fourth-order equation
V = x2y2 + y4/4, for example, describes an undulating surface in a three-
dimensional space.

Analytical geometry may be conducted in four dimensions, if need be,
and although the results cannot easily be seen—let us be honest: They
cannot be seen at all—the analysis is much the same.

When Andrew Wiles oϱered his proof of Fermat’s conjecture, he used an
immense array of tools, but at the very center of his proof a tingling trail
led backward to Descartes, for what he had succeeded in proving was the
Taniyama-Shimura conjecture, a thesis about elliptical equations and
modular forms, one that in the complexity of its formulation hid that old,
shrub-covered trail between the form of the discriminant and various curves
in the plane.



Growing great in one direction, analytic geometry also grew great in
another. Bavarian artillery oϫcers certainly knew what happens when one
of their cumbersome pieces lofted a cannonball into the air: The thing went
up and then it went down, its parabolic arc ending in some awful splotch.
Artillery tables in common use gave them rules of thumb for calculating
trajectories. A cannonball in motion is a moving point—no? And its
trajectory is a curve—no again? And in particular, it is a parabola—no a
third time? Yes it is. But a parabola has a speciϧc shape. It consists of all
points satisfying a speciϧc equation. By means of the equation, the
cannonball’s trajectory in space can be completely speciϧed, the equation
yielding one point after another, the accumulating points yielding the
curve, the curve yielding the trajectory. A shape in space has given way to
an analytic formula, a verbal contrivance. And with this insight, the ϧrst
step has been taken in a vast, far-reaching project that will in the end bring
all forms of continuous motion, the cannonball and the rotation of the
planets in the night sky, under the control of a numerical apparatus.

Was it Pythagoras who remarked that number is the essence of all
things?

Or was it obvious all along?

No one ever observed that Descartes was warmhearted; he was neither kind
to animals nor fond of children, points, many mathematicians will observe,
that are in his favor. A beloved but illegitimate daughter died in her young
adulthood. A very curious story suggests that Descartes fashioned an
automaton in her likeness and carried it around Europe with him, propping
the device up in various hotel rooms, and pouring out his heart to the
horrible thing. Almost the same story is told of Albertus Magnus, Thomas
Aquinas ϧnally destroying his automaton in a ϧt of deep indignation.
Although aϱected by grief, Descartes remained unmarried, indiϱerent
apparently to women, his manner distant and his nature cold.

In 1628, Descartes moved to Holland, a vibrant and tolerant center of
science and art. On learning that the Inquisition had for every good reason
placed Galileo under house arrest—the man was incapable of keeping his
mouth shut or his thoughts to himself—Descartes determined to keep
private views that might provoke clerical hostility or even philosophical
disagreement. Descartes published his Meditations on First Philosophy in
1641, and almost at once the book was assigned to students in philosophy.
It has the great virtue as a text of being easy to read and diϫcult to



understand, thus satisfying the needs of both students and teachers.
Descartes’ Principia philosophiae, published three years later, expresses most
completely his mature philosophy. A prophetic work, the Principia
philosophiae represents an ambitious attempt to explain the universe by
means purely of the forces that sweep through matter. Action, Descartes
believed, requires contact, as when one object hits another, and the
constraint of contact rules out action at a distance. If this is so, the universe
must be ϧlled either with material objects or with structures capable of
placing material objects in contact with one another. Such are the Cartesian
vortices. In Descartes’ view, it is the various vortices, whose eϱects
resemble on a grand scale the spiral sweep of bathwater swirling an errant
bar of soap drainward, that brings about the required contact. Isaac Newton
demolished Cartesian physics with all the immense power of his genius. He
did nothing to assuage the Cartesian scruple about action at a distance, and
having with a snort of derision dismissed the Cartesian vortices, he replaced
them with the force of universal gravitation, which acts at a distance and
throughout the whole of space.

In 1649, Descartes was ϧfty-three; he was at the height of his powers.
Hearing of his competence, Queen Christina of Sweden persuaded him to
attend to her intellect by accepting a position as a royal tutor. The queen
apparently turned Descartes’ head in the way in which most women turn
any man’s head, and that is by shameless ϩattery. Descartes moved to
Stockholm where he was dismayed to discover that the queen, a squat
young Amazon, expected instruction to be given early in the morning.
Descartes was forced to oblige and forsaking his warm bed, trudged out into
the Swedish dawn, day after day, until with his own principles of self-
interest held in abeyance by royal command, he caught cold and died.



THERE NOW OCCURS A reverberating sonic boom! in the history of thought.
Before the discovery of the calculus, mathematics had been a discipline

of great interest; afterward, it became a discipline of great power. Only the
advent of the algorithm in the twentieth century has represented a
mathematical idea of comparable inϩuence. The calculus and the algorithm
are the two leading ideas of Western science.

Within the strict conϧnes of the deϧnitions, theorems, and proofs of
mathematics, the calculus reaches its apogee in its fundamental theorem.
The theorem does what all great theorems do: It shows that two things
thought to be distinct are profoundly connected. But the calculus is also the
indispensable instrument required by the physical sciences, and the physical



sciences have without exception followed the intellectual model established
by the calculus. It is the heart and soul of their method. This suggests—does
it not?—that mathematics is hardly a matter of mathematics, and its
theorems are not simply statements about the mathematician’s mind. They
are the reflection of the living truth.

The calculus is a theory of continuous change—processes that move
smoothly and that do not stop, jerk, interrupt themselves, or hurtle over
gaps in space and time. The supreme example of a continuous process in
nature is represented by the motion of the planets in the night sky as
without pause they sweep around the sun in elliptical orbits; but human
consciousness is also continuous, the division of experience into separate
aspects always coordinated by some underlying form of unity, one that we
can barely identify and that we can describe only by calling it continuous.

Many mathematicians had a hand in the development of the calculus—
Gilles Personne de Roberval, Pierre de Fermat, Isaac Barrow, Bonaventura
Cavalieri, John Wallis—and every one has acquired a contemporary scholar
willing to insist that his boy had seen it all along; but it is Gottfried Leibniz
and Isaac Newton who are the most closely associated with the pause
between heartbeats when everything changed. It is the second half of the
seventeenth century. Shall we say roughly 1680 or so?

Time has long since promoted both Newton and Leibniz into the
pantheon of the great explorers. Like two immense polar bears, they
remain forever frozen on the tundra of time. “He stands before us,” Einstein
remarked in commemorating Newton, “strong, certain and alone.” These
are beautifully chosen words, and they succeed in capturing the Newton of
myth and the Newton of historical memory. It is rather more diϫcult to
imagine Leibniz standing alone, or ever standing silently, if only because he
was the most gregarious of men, bouncing urgently in his coach across all
the roads of seventeenth-century Europe and exchanging letters with more
than six hundred correspondents, some as far away as China. The man was
inherently gabby, his personality controlled by an urgent need to
communicate his thoughts, which endlessly overflowed their natural cistern.
He comprised a one-man multitude, but the men inside that multitude were
all of them outstanding, and the light of their cumulative luster quite
matched Newton’s single, monstrously pulsing sun.

An object—a ball, a bullet, or a ballerina—is in motion. It rises into the air,
reaches an apogee, and then descends. Abstraction and idealization are



now at work. That object in motion is ϧrst stripped naked, its weight, heft,
mass, color, and complaint that her partner is alvays vunting spotlight
discarded, so that that ballerina lumbering into space is replaced by her
essence, which is change in place.

By means of mathematical meiosis, change in place divides into change
in distance and change in time. This division places the ballerina’s moving
arc within reach of familiar mathematical concepts, for both distance and
time may be represented by numbers, and then depicted on the axes of a
Cartesian coordinate system. Time is running oϱ to the right, distance is
going up. The purely verbal description of the ballerina’s trajectory—squat,
lift, grunt, up, down—gives way now to a mathematical description in which
distance is represented as a function of time. This Galileo had already made
clear in his Two Sciences of 1638 when he observed that the distance
covered by a freely falling object is proportional to the square of the
elapsed time—16t2. The relationship between distance and time is very
naturally expressed as a curve inscribed on a coordinate system. There is
time going oϱ on one axis, and distance going up along another. Plotting
the second against the ϧrst results in a curve, the very one that now
displaces the real world’s ballerina in favor of one of her essences.

If distance and time are at hand, so, too, speed, so obviously speed, since
speed is the ratio of elapsed distance to elapsed time—how far something
has gone and how long it has taken to get there. Leaving her partner’s
hands, our ballerina shoots up; she then slows down on approaching the
top of her leap, and after turning in the air, speeds up again until with an
urgent exhalation she lands on her partner’s toes. Her speed is changing
over the course of her jump. But the deϧnition of speed as the ratio of
elapsed distance to elapsed time depicts her average speed. It does nothing
more.

The calculus begins when a request is made for that ballerina’s speed at a
particular moment, her instantaneous speed, her speed right now. The
request should, and often does, prompt an obscuring ϩurry, as when a dust-
covered table is given a good solid whack. At any given moment—that
moment precisely—the ballerina has not gone anywhere and she has not
used up any time in getting there. The ratio of distance to time should
therefore be 0/0. This expression is mathematically meaningless. This
suggests that she is not moving at all, a declaration that we mathematicians
must reject, if only from the sense that if she is not moving at any
particular moment, how could she be landing with that dreadful thump?



In a section of the Principia Mathematica titled The Nature of the First and
Last Ratios, Newton addressed this objection. His argument has all the force
of his implacable genius. If an object in motion has no discernable speed at
any given time, then “by the same argument,” Newton observed, “it may be
alleged that a body arriving at a certain place, and then stopping, has no
ultimate velocity; because the velocity, before the object comes to the place,
is not its ultimate velocity; when it has arrived, there is none.” This,
Newton remarks, is absurd.

And so it is.

In 1684, two years before Isaac Newton ϧnally sent his Principia to the
printers, Gottfried Leibniz published a paper titled “Nova Methodus pro
Maxima et Minimus” (“New Methods for Finding Maxima and Minima”) in
the third volume of the Acta Eruditorum. Leibniz was at the time forty-two,
and already a stately European intellectual. A prodigy in childhood, he had
become a polymath as an adult, handling philosophy and mathematics and
a dozen other disciplines with easy familiarity. Aspects of the calculus had
been in the European air for more than ϧfty years, but like a series of
scattered wisps, they had refused obstinately to cohere into a cloud. Leibniz
had noticed those wisps in the early 1670s, his unpublished papers
revealing a man of very great mathematical ability sensing in some
frustration a pattern that he could not quite identify. In 1674, Leibniz
recounts, a letter written by the mathematician Amos Dettonville (a
pseudonym used by Blaise Pascal) prompted the wisps to gather into a
thunderhead. He required time for reϩection; in the “New Methods” the
cloud at last burst.

The Leibniz of the “New Methods” was not concerned directly with
distance or with speed; it is curvature that has commanded his attention.
Time may for the moment be canceled. Let the ballerina remain panting in
the wings. Now curvature is a measure of how radically a line is bending;
and being bent is a property of curves that can very nicely be described by
something so simple as the slope of a straight line, one cutting the curve
twice and so forming a suspension bridge between points. Such are the
secant lines of plane geometry. Their slope measures change along one axis
of a coordinate system juxtaposed to change along the other axis (Figure
4.1).



FIG. 4.1

But the slope of a secant line may also be used to describe the average
speed of a particle moving along the very same curve; it is, in fact, the very
definition of average speed and so its reduction to number.

Speed—squat, lift, grunt, up, down—and curvature—being bent—are one
and the same.

Do you see the connection? Well, you should.

And you should see as well that the enigma of speed is again the enigma of
curvature. If the suspension bridge of a secant line makes for a rough-and-
ready assessment of curvature between two points, it says nothing—how
could it?—about curvature at a point, the way in which a sinuous shape
deforms itself right there. Still, secant lines, inasmuch as they are straight,
usefully suggest the importance of being straight in the scheme of things.
The question is, of course, which straight line can by being straight convey
something about being bent? The candidate with all the right connections is
a straight line meeting the curve at just the point in question—right there;
this is its tangent line.

Meeting a curve at a particular point, a tangent line shares its
coordinates with the curve, the curve and the tangent by touching one
another obliterating their separate selves. Leibniz had read Descartes; he
knew that straight lines are governed by the equation y = mx + b. He had
in possession two of the three variables (x and y) needed to ϧx the identity
of a tangent line completely in an analytical amber. What he did not have
was the third—the slope of the tangent line itself.

When he had gotten it, that boom! boomed, and the calculus came into
existence.

There is a place in mathematics where doubtful and deviant ideas are
collected. I might as well call it Queer Theory. There are inϧnitesimals, for



example. These are numbers smaller than any given number and yet not
zero. If an inϧnitesimal number is added to itself, no matter how many
times, it remains less than a given number. Writing more than two
thousand years before the advent of the calculus, the Greek mathematician
Archimedes had proscribed inϧnitesimals, his interdiction coming to be
known as the Archimedean axiom. Although it is not all that easy to say
why, a number smaller than any number and yet not zero oϱends common
sense without quite managing to outrage it. Nonetheless, it is to Queer
Theory and inϧnitesimals that Leibniz turned for an explication of being
bent.

Now the slope of a straight line—and secant lines are surely straight—
represents a ratio of ϧnite distances. The idea of a ratio, Leibniz
appropriated, but with this difference. The slope of a tangent line at a point,
he argued, should be represented as the ratio of infinitesimal distances along
the axes of a coordinate system. These ghostly distances he denoted by the
symbols dx, dv, dy, where d indicates the business of shrinking a variable
down to inϧnitesimal size, and x or v or y the variable being shrunk. The
ratio of one inϧnitesimal to another, and so the requisite slope of a tangent
line, is just dy/dx, a formula now famous in all of mathematics. “We have
only to keep in mind,” Leibniz wrote, “that to ϧnd a tangent means to draw
a line that connects two points of the curve at an infinitely small distance.”

Nous considerâmes, as Leibniz might have written to his snooty French
friends, the ample parabolic curve y = x2. Down one side of the coordinate
system it goes when x is negative, touching the origin at x = 0, and up the
other side it goes when x is positive. At the point x = 2, y = 4, the
parabola, having already changed elsewhere in the plane, is changing right
there.

Ah, but how? How precisely?
With his luxuriant brunette wig cascading to his shoulders, and his ϧne

face, the nose very large, alive with intelligence, Leibniz reminds us that he
means to determine the slope of a line tangent to the curve at the point x
= 2 and y = 4. His performance is half mad and half magic. And it is a
performance.

A ratio has two parts, a bottom and a top.
The bottom. Start at 2 and go an inϧnitesimal distance dx along the x-

axis. The infinitesimal change in x is (2 + dx) – 2.
The top. Square the bottom, part by part, getting (2 + dx)2 – 22.
Take note. (2 + dx) (2 + dx) = 4 + 4dx + dx2.



Allow a few dots … to accumulate.
Top to bottom. (4dx + dx2)/dx.
Divide. 4 + dx.
The magic. Drop dx from the last line because it is, after all, infinitesimal,

leaving the number 4.
The mathematics. The number 4 is the correct answer, as it happens, the

number corresponding to the slope of the tangent line, the curvature of the
curve right there, its shape and speed reduced to number.

Applaud.

Whatever their logical status as things too small to be seen yet not too
small to be counted, the invocation of inϧnitesimals allowed Leibniz to
press his nose against a curve and by pressing gain a sense of its secrets at
a speciϧc point. His success was local, one act covering one point. But the
“New Methods” is among other things the record of his attempt to convert a
particular calculation into a general calculus, an almost mechanical scheme
of reasoning. Absent such a scheme, Leibniz realized, calculations would
tend to multiply; in Descartes, they had already become tedious. For a man
who knew his calculus, Leibniz observed with satisfaction, “such
calculations are easy to investigate.”

If they were easy to investigate, those calculations, they were rather
more diϫcult to explain. Writing in 1684, Leibniz lacked a concept that he
would himself not bring into consciousness until 1695. It is the concept of a
mathematical function. Together with the numbers themselves, functions
are the most important of mathematical objects, and, as one might expect
from the fact that Leibniz found it diϫcult to see them clearly and see them
whole, they are intellectually elusive. The verbal gestures needed to explain
things are easy enough. A function is a relationship, a scheme of
coordination, a displacement of attention from one number to another, a
rule, a regularity, or a plan. There is, for example, the twofold operation of
taking a number and squaring it. The number one passes to itself, the
number two goes to the number four, the number three to the number nine,
and there is nothing at all preventing the energy that is responsible for
these mental acts from being continued indeϧnitely. The speciϧc
conveyance achieved by this function mathematicians write as = f(1), f(2)
= 4, f(3) = 9, with the Roman letter f bearing down on a numeral and
sending it to the numeral expressing its square. In addition to f(1) = 1, f(2)
= 4, f(3) = 9, there is, as well, f(x) = x2, a prescription for getting things



squared away in general, the very expression in symbols of the very activity
of squaring numbers.

The notation encompasses all of the elementary mathematical acts.
But neither my own verbal gestures, nor any table of examples, succeed

in providing what is really needed, and that is a moment of complete
intellectual clarity, circumstances that may be read backward into the late
seventeenth century, as Leibniz used one concept that he could not
precisely deϧne to explore other concepts that he could not precisely see.
Two centuries were to pass before Georg Cantor was to discover the words
that in 1684 Leibniz lacked; during all that time, mathematicians continued
to use functions of the most remarkable variety, indiϱerent to their own
inability to capture the concept completely. What follows is thus an exercise
in anachronism. I am explaining what Leibniz thought as he would have
wished to have thought it; in this way, the calculations that he imagined
were easy to explain turn out against every expectation to be easy to
explain.

And now the famous formulas follow, formulas because they are little
computational machines, and famous because they are still in use. The
function f(x) = x2, let us recall, ground to halt at x = 2, whereupon Leibniz
exercised his hocus-pocus to determine that being bent right there could be
described by the number four. This number described the slope of the line
tangent to the curve at that very point. Leibniz now settled the question of
curvature for every point on the parabolic curve, and not just one. Starting
with the function f(x) = x2 he determined that no matter the x, its
curvature (or speed) at every point could be described by another function,
and so he established a higher-order connection between functions
themselves and not just between numbers. That other function is g(x) = 2x,
and just as one might expect, at x = 2, g(x) is four. This is no mere
computational trick. More than ϧfty years before, Galileo had demonstrated
that the distance covered by a falling object is proportional to the square of
the time it has been falling. This I have already noted. It is now plain that
a function is at work, one that for every instant down to the last instant of
recorded time returns with a number measuring distance. That function is
f(t) = 16t2. The variable x has in this formula been retired, the variable t
taking its place in order to signify typographically the underlying
connection to the t of time. But having seen through to the identity between
curvature and speed, we can now appropriate Galileo’s formula ourselves
and recover speed from distance by means of the function g(t) = 32t. It is



this function that describes speed at every single moment. Like the original
function measuring distance, this function, measuring speed, may itself be
inscribed on the axis of a coordinate system, so that both distance and
speed now have a visual identity, a place in the world of curves and so a
place in the world of things.

Mathematical triϩe though it may be, the operations just recorded were
inaccessible to the entire human race until the latter half of the seventeenth
century. They required the eye of genius in order to be seen. This part of
the calculus—its famous formulas, computational tricks, and its staring
prophetic eye—is called the diϱerential calculus. The exchange between
functions and their derivatives reduces itself to a list, one found on the
inside cover of every calculus textbook, the place where Leibniz’ noble
genius is immured.

Diϱerentiation involves the two ancient mathematical operations of
subtraction and division, and a certain late-seventeenth-century sleight of
hand. But subtraction and division are only two of the four great primitive
operations of mathematics. There remain addition and multiplication. A
sense of symmetry, if nothing else, might suggest that as diϱerentiation
goes forward from a function to its derivative, some other process, when
conjoined with a fast shuϮe of its own, might go back from a derivative to
a given function. Many seventeenth-century mathematicians had seen or
sensed that diϱerentiation must have an inverse, an operation going
smoothly back. They were, those mathematicians, unable completely to
sharpen their insights into a theorem. Addressing the future, Descartes had
asked mathematicians yet unborn to solve what he called the inverse
tangent problem, and with a peevish sense of his own inadequacy, he had
suggested that no mathematician would solve the problem in all the tides of
time.

“Descartes,” Leibniz observed tartly, was in the habit of “speaking with a
little too much presumption about posterity.”

As, indeed, he was, for having gone so far forward, Leibniz found the
way back as well.

A Cartesian coordinate system is again in place. All dapper coordination,
a function f(t) is given, and after that the curve that it expresses. The
straight lines bounded by a and b form a canopy with the curve (Figure
4.2).



FIG. 4.2

It is helpful to imagine that f(t) depicts the speed of a moving object, but
like all crutches, this one hinders as much as it helps, if only because it
fastens the imagination on a particular example when what follows is
wonderfully general, encompassing almost all continuous processes in
nature. Keep that crutch if you must; discard it when you can; limp if need
be.

Writing in the Two Sciences, and much occupied with problems in
dynamics, Galileo argued that if f(t) measures speed, it is the area
underneath this curve that corresponds to the distance that an object has
traveled. Area, after all, represents something like the product of a ϧgure’s
base and height—something like it, no?—and the product of speed and time,
what is it if not distance? A confused grope-and-fumble follows as Galileo
struggled with a number of infernal inϧnitesimals of his own. He is going
the right way but he is not on the right track.

The area underneath a curve, Leibniz argued ϧfty years later, can be
approximated in antecedently familiar terms. He then proceeded to show
how. The area of a perfectly ordinary Euclidean rectangle is the product of
its base and height, and a rectangle, by being shoved underneath a curve,
as an elephant might be shoved into a stall, stands very commendably as a
ϧrst linear approximation to the true area underneath the curve. An
approximation, meaning it is close; and linear, meaning its sides and top are
straight (Figure 4.3).

Subdividing the rectangle into smaller rectangles makes the



approximation better, just because less of that embarrassing elephant is left
out. Once Leibniz had determined that cutting that elephant down to size
must be a matter merely of reducing the width of various approximating
rectangles, the way was clear for another invocation of his inϧnitely
adaptable inϧnitesimals, as with a tight conceptual grip he squeezed those
rectangles down, making them smaller and smaller until, at last, he had
made their width inϧnitesimal. He then proposed to consider the sum of
inϧnitely many rectangles whose height he was unable precisely to specify
and whose bases he was unable to compute. Unvexed, Leibniz argued in
favor of the existence of that sum and with a smile of contentment
pronounced it the area underneath the curve.

An area and so a sum, a sum and so a number.

FIG. 4.3

The sum is known as the deϧnite integral of a given function between the
points a and b. Leibniz chose an elongated S to represent those sums of his,
writing

to signify the fact that an ordinary, old-fashioned exercise in multiplying
the base dt by the height f(t) of a rectangle was now incarnated
infinitesimally.



If the derivative squeezes change to the tip of a point, the deϧnite
integral assesses change over the expanse of an area. A ϩicker has given
way to a pause.

But whether things are ϩickering or pausing, both the derivative at a
point and the deϧnite integral between two points return the
mathematician to very particular numbers. Pythagoreans take note.

This part of the calculus is known as the integral calculus. It is technically
more diϫcult than the diϱerential calculus. If the idea of area is simple,
and it is, the techniques needed actually to compute the area underneath a
curve can be surprisingly rebarbative. Generations of students have loathed
the deϧnite integral on sight. Their disposition is not often improved when
they encounter integration by substitution or integration by parts.

The area underneath a curve is a number and so something speciϧc. It
oϱers a frozen image of a ϩuid situation. Now the derivative is also
engaged initially in a number-to-number transaction, one assessing a
function’s rate of change at a particular point. Thereafter that number-to-
number transaction is displaced by one taking functions to functions.
Motivated by the same desire to get out from under the particular, Leibniz—
and Newton, too—is now vouchsafed one of those insights that changes the
face of thought forever, at once revealing Euclidean geometry as a static
discipline and breaking free of its hieratic time-bound constraints. If the
area underneath a curve is changing at every moment, then it, too, should
be represented by a function. That is just what functions do. They represent
change. Now is the time for one of them to do it.

The deϧnite integral, which until now has measured a ϧxed area, is thus
enlarged so that it accommodates an area that is itself changing. This the
mathematician indicates by writing the integral with a variable t where
before there was only a ϧxed number. The result is the indefinite integral
between a fixed point and a moving target:

A higher-level coordination of concepts is now about to take place, one
that directly associates integration and diϱerentiation and shows that they
are inverse operations. The derivative of a function is a matter of
subtraction and division; the integral, a matter of addition and
multiplication. As no one at all might expect, these operations are linked at



the deepest level. The second undoes what the ϧrst has done. This is a
result that demands the beauty and perfection of mathematical notation:

This elegant, inϧnitely powerful symbolic statement aϫrms that two things
are one. On the right, there is a function, one describing some continuous
process. This is one thing. On the left, there is the derivative of its
indeϧnite integral. This is the second thing. And when integration and
diϱerentiation have both been allowed to do their work, they turn out to be
the same thing.

These ideas at once apply to the moving ballerina discarded some pages
ago. There are three functions at work, the ϧrst expressing distance, the
second, speed, and the third, area. There are two operations at work. The
ϧrst is diϱerentiation, the second, the expanding version of integration just
noted. And now functions and operations are united so that the various
fragments of this fresco, which until now have resisted assimilation, assume
the aspect of a single ϧgure. The area underneath the ever-changing curve
measuring speed is given by the indeϧnite integral. But the indeϧnite
integral of speed is distance, the derivative of distance is again speed, and
the integral of speed is again distance. They are these things when they are
understood as relationships, and so forms of change.

This is the fundamental theorem of the calculus.

Isaac Newton used the calculus in order to construct the system of the world
in his Principia Mathematica, and within years of its discovery in the late
seventeenth century, it was in wide use throughout mathematical physics.
Newton introduced two laws of nature to the world. They are both laws of
force. The ϧrst establishes the identity between force, on the one hand, and
the product of mass and acceleration, on the other. The second establishes
the universal law of gravitation. Objects in space, no matter how widely
separated, attract one another with a force that is proportional to their
mass and inversely proportional to the square of the distance between
them. These equations lead at once to a system of diϱerential equations,
and diϱerential equations are the chosen instruments of the physical
sciences.

All drooping swan wings and tired feet, that ballerina may be allowed
her ϧnal farewell. For suppose that having been lofted aloft, she is about to



start down. At any moment of time how far will she have gone? It is a
question that may be entirely enfolded in a mathematical method. She has,
that ballerina, reached a certain height, one that we may symbolize by the
number ξ, whatever the number, and whatever the units of measurement.
The function g(t), recall, denotes the rate at which she is changing her
position in space at every moment, and so her instantaneous speed. What is
desired is an unknown function x in which change in place has been
directly correlated with change in time.

The wish is father to the symbol:

an equation in which what is unknown in x is a function, a continuous
coordination of events taking place in the real world.

The solution is immediate:

And so, too, the identity of x, which is simply the function g(t) = 16t2.
And this is in accord with common sense. The distance covered by a

falling ballerina is measured as the sum of her initial height, and the
distance she covers thereafter, whatever the elapsed time, the coordination
now perfectly general, infinitely flexible.

This is the instrument that has made possible Newtonian mechanics,
Clerk Maxwell’s theory of the electromagnetic ϧeld, Einstein’s theory of
general relativity, and quantum mechanics, the movement of the planets in
the night sky and the atomic explosion over Trinity both encompassed by
the same mathematical method.

Mathematicians and physicists contemplating the calculus and the theory of
diϱerential equations were uneasily aware that an instrument of great
usefulness was somehow compromised by the fact that its chief concept
made no sense; it was a point made with some force by the philosopher
Bishop Berkeley, who scoϱed at the calculus, calling inϧnitesimals the
“ghosts of departed quantities.” Like a true philosopher, Berkeley did not
concern himself with the question why those ghosts should have been quite
so lively. More than two hundred years were to pass before mathematicians
could honestly say that they had provided a logical analysis of the calculus



commensurate with the work that it was required to do.
That analysis having been initiated by Augustin Cauchy and then

completed by Karl Weierstrass in the nineteenth century, inϧnitesimals
disappeared in favor of limits. The requisite deϧnition is very complex and
it requires a good deal of reϩection and practice before it can be
assimilated, whereupon among mathematicians, at least, it is promptly
forgotten. I shall now oϱer readers the chance to do some forgetting on
their own.

The series of numbers S = 1/n is plainly getting smaller and smaller as n
is getting larger and larger. Destination zero. It is there that S reaches a
limit L. Analytic understanding comes in three steps. First, take any positive
number ε. Keep that number ϧxed for the moment. Then consider some
other positive number δ, one that depends on ε, so that the two numbers
form a team. The second step. Now consider the accordion formed between
zero and S = 1/n as n gets larger and larger. This is the third step. Beneϧts
to follow.

The definition: L is a limit of S if there is for any choice of ε some choice of
δ, such that for all values of n greater than δ, the accordion is less than ε.

Beneϧts proϱered: With the deϧnition of a limit, both the derivative and
the integral of a function may be conveyed in purely arithmetic terms.
Inϧnitesimals are gone. The derivative is instead depicted as the limit of a
series of real and ϧnite ratios, the ones formed by secant lines as they get
closer and closer to a tangent line. The integral in turn is deϧned as the
limit of a series of real and ϧnite sums, the ones formed by those
approximating rectangles. The delta-epsilon deϧnition of a limit has
become the foundation of a great many proofs, a subtle tool, but not one,
even among mathematicians, that inspires affection.

Beneϧts withheld: The deϧnition of a limit is diϫcult. And diϫcult in an
odd way. It requires that four numbers be kept resident in memory (ε, δ, n,
and L), and that the result of one mathematical operation be balanced
against an inequality, even as two quantiϧers are juggled in the
background. The idea of a number greater than zero, but less than anything
else and never mind what it means, is far more intuitive. Just why should
such a complicated deϧnition be required properly to explain what seems to
be a simple idea?

Why indeed?

Working independently, but with the uneasy sense that some other



grunting giant was lumbering oϱ in the woods, Leibniz and Newton both
outlined the major concepts of the calculus and stated and then proved its
fundamental theorem. Their hands, like enormous hairy paws, are still all
over mathematics. As the soul-shattering importance of their discoveries
emerged in the late seventeenth and early eighteenth centuries, both men
were naturally eager to appropriate full credit for their research and like
candidates for the Nobel Prize, wasted little time before enlisting their
sycophants in a campaign to darken the other’s reputation. Newton was
implacable, pestering his friends on the matter of priority, grumping loudly
in his chambers, and generally carrying on in a fury. Leibniz’ death in
1716, although it removed the source of his obsession, did nothing to dilute
the intensity of his indignation. Leibniz was altogether more good-natured
than Newton, and more comfortable in his skin. He was aware that in
Newton he was confronting a formidable intellect and, were it not for the
fact that he justiϧably considered himself Newton’s equal as well as his
rival, he might have let things slide.

But really the issue is dead, and it should never have been alive. Both
men were great.



D ID I HAPPEN TO mention that the Italian mathematician Girolamo Cardano
was a splendid plagiarist? He is there in history, bright, capable, and

industrious, but his eyes are ϧxed on another man’s work. Mathematicians
of the early sixteenth century knew how to solve ordinary algebraic
equations. They thought in terms of minor mysteries, problems in
identification in which a mathematical unknown leaves traces of itself in an
equation, the mathematician noting that this x, whatever it is, seems to be
none other than the number already in the drawing room, warming its
hands before the ϧre. They used a variety of tricks. Like real detectives,
they did a good deal of guessing. They knew as well how to solve quadratic
equations of the form ax2 + bx + c = d by means of a little algorithm. The



algorithm is now well known:  and the device that it
expresses works mechanically. Numbers go in on the right, solutions come
out on the left. They were intrigued, those mathematicians, by cubic
equations such as x3 + mx = n in which amid the two parameters m and n
an unknown x finds itself taken to a third power.

In the early part of the sixteenth century, Scipione del Ferro, a professor
of mathematics at the University of Bologna, let slip hints about a fabulous
formula that he had discovered, something that could solve cubic equations.
Matters were kept closely guarded. Ferro passed his secret to his pupil,
Antonio Maria Fior, who proceeded to demonstrate that the chief motive for
betraying a secret is the desire to boast of having been vouchsafed a
conϧdence. He boasted shamelessly. In 1535, another mathematician,
Niccolò Tartaglia, worked out Ferro’s formula for himself. He kept the result
close to his vest. A very competent mathematician in his own right,
Cardano was consumed with curiosity: he pestered Tartaglia endlessly and
on Tartaglia’s telling, at least, promised that if he could acquire the formula
without eϱort, he would guard it without compromise. “I swear to you by
God’s Holy Gospels,” Cardano solemnly aϫrmed, “and as a true man of
honor, not only never to publish your discoveries, if you teach me them, but
I also promise you, and I pledge my faith as a true Christian, to note them
down in code, so that after my death no one will be able to understand
them.”

A year later, Cardano published the formula under his own name in a
work he entitled the Ars Magna.

Mathematicians of the sixteenth century could make no obvious sense of the
square root of minus one. No number in their experience when squared was
less than zero. The methods of classical antiquity were unavailing. Yet the
equation x2 = –1 seemed stubbornly to suggest that beyond its ϧve simple
symbols, something was there. Other equations arising in the most natural
way also called for the square roots of negative numbers. They resembled a
series of startled house guests pointing to the same ghost by the very same
high window. In setting himself the problem of dividing ten into two parts
whose product is forty, Cardano began with the equations x + y = 10 and
xy = 40. From these he derived the equation x(10 – x) = 40. The roots of
this equation are  and . The quadratic formula suϫces.
Negative numbers again appear under a radical sign. “Put aside the mental
tortures involved,” Cardano advised himself, and manipulate these



expressions as if they made sense. In some way, he reached the correct
conclusion. “So progresses arithmetic subtlety the end of which, as is said, is
as refined as it is useless.”

The same unnerving combination of square roots and negative numbers
appeared when Cardano put his stolen formula to use, punishment for
theft, I suppose, and an unmistakable indication that by means of this
formula nature was endeavoring to call attention to itself. Although
complicated, Tartaglia’s fabulous formula speciϧes only very simple
mathematical operations. Fractions are at work, roots extracted, powers
raised. For any equation of the form x3 + mx = n,

The formula at once leads to the same dark wood. Consider the equation x3

– 15x = 4. A straightforward computation shows that

with negative numbers again appearing underneath radical signs. Cardano
knew they were there; he did not know what they signified.

His contemporary, Rafael Bombelli, discussed the same equation and
came achingly close to seeing clearly the problems of the eighteenth
century while living in the sixteenth. He knew by guessing that x = 4. And
with four in hand, he could work backward from 

—the solution speciϧed by the formula—to 
. When negative and positive signs interact in this

expression, square roots vanish by mutual annihilation. For a moment, the
mathematical landscape that to his contemporaries remained inky and
obsidian must have seemed suϱused with light as those complicated
symbols resolved themselves into an ordinary number. Bombelli had used
the solution of a cubic equation to obtain the solution of the same equation
by means of Tartaglia’s formula. He had seen the machinery of the formula
as if it had been shielded by a transparent pane; but without the solution,
he was unable to set it in motion.

Bombelli’s masterpiece, by the way, remained inaccessible for more than
four hundred years, appearing ϧnally in French in 1929 under the title
L’algébra.



During the seventeenth century, complex numbers, like the ghosts they
were, appeared and disappeared, European mathematicians seeing them by
dark stairs, or hearing them scratch behind the wainscoting, and then not
hearing or seeing them at all. A number of notable mathematicians—
Leibniz and John Bernoulli, for example—engaged in polemics with one
another, trying in vain to determine whether the complex numbers whose
existence they doubted had logarithms or whether the square root of minus
one had a square root of its own. They both reached incorrect conclusions
and championed them resolutely. They were unable to shake the odd
feeling that they were debating the finer points of nothing.

And yet within a period of ϧfty years, those complex ghosts gave up their
secret hiding places and with a presence unmistakably real, swept away all
metaphysical doubts. The ϧrst step in their rehabilitation took place when
European mathematicians learned just how complex numbers should be
represented, thus verifying the useful philosophical principle that
orthography recapitulates ontology. Complex numbers, mathematicians
came to understand, take the form a + bi. A later addition to mathematical
notation, the letter i denotes the square root of minus one so that i2= –1;
the letters a and b designate ordinary numbers. The number bi is the
product of the square root of minus one and b; and a + bi is the sum of that
product and a. If a is zero, a + bi is purely imaginary; if b is zero, then
completely real. The complex conjugate of a complex number a + bi is
simply a – bi.

The second step in that program of metaphysical rehabilitation now
followed. Addition, subtraction, multiplication, and division are the most
primitive and the most important operations in mathematics. Let us say
that they are algebraic. Any number derived from complex numbers by
algebraic operations, Jean Le Rond d’Alembert aϫrmed in a paper titled
“Réϩexions sur la cause général des vents,” is again a complex number.
Starting from complex numbers, one gets complex numbers. The circle is
never broken by the intrusion of anything weird.

Addition and subtraction are deϧned among the complex numbers in an
intuitive way:

Addition: (a + bi) + (c + di) = (a + c) + i(b + d);

Subtraction: (a + bi) – (c + di) = …,

the crutch of three dots covering the transmogriϧcation of a plus to a minus



sign and nothing more.
Multiplication follows:

Multiplication: (a + bi) (c + di) = (ac – bd) + i(ad + bc),

with division three dots behind, although, perhaps, these three dots are
more complicated than most.

Complex arithmetic—what else to call it?—may well seem as if a series of
utterly arbitrary rules were being imposed on an object of almost impudent
insubstantiality, an eϱort rather like drawing a pedigree for unicorns. This
impression is mistaken: The rules are not arbitrary. The addition of complex
numbers is ordinary addition, the rules governing (a + bi) + (c + di)
governing [3 + (7 × 8)] + [5 + (2 × 8)] as well. So, too, the other
arithmetic operations.

The complex numbers, as mathematicians say, are closed under the usual
algebraic operations. The date is 1747. Unlike poor Bombelli, d’Alembert
had the enormous success of seventeenth-century mathematics acting as
wind to his sails. Still neither d’Alembert nor anyone else advanced any
reasons whatsoever for supposing that behind the symbol a + bi lay more
life than might be found in the printer’s ink with which it was written.

The unicorn is still a unicorn, but it helps to see that its pedigree is
impeccable.

The complex numbers may be added, subtracted, multiplied, and divided.
There remained the transcendental operations. What are we to say, for
example, when a mathematician takes it into his head to ask for the
meaning of ? A real number taken to a real number is simply the
real number multiplied by itself, so that 23 is just 2 × 2 × 2. It seems
hardly proϧtable to suggest that  is just  multiplied by
itself πi times. “In this way,” as Lipman Bers once gravely remarked in
class, “lies madness.” What, for that matter, is the logarithm of a complex
number, or its sine or cosine? These questions had been long answered for
the real numbers. No one expected, when they were posed anew for the
complex numbers, that they would lead to a dazzling uniϧcation of
experience. It was nonetheless so.

It is now roughly the middle of the eighteenth century, the era that
belongs to Leonhard Euler. The largest mathematical personality of his
time, Euler was born in 1707 and died in 1783. He spent the greater portion



of his active life at the St. Petersburg Academy, where he had initially been
invited in 1727 by Catherine I; but at her unexpected death, the Russian
government passed into the hands of men who regarded a scientiϧc
academy with suspicion, and Euler, fearful of the spies and gossips at court,
was forced to live in social isolation, work his joy and marriage his refuge.
In 1741, Euler accepted an invitation from Frederick the Great to join the
imperial court in Berlin; he retained a living memory of his dark Russian
days, remarking once to the dowager empress, when she questioned him on
his unforthcoming silence, that, “Madame, I come from a country where, if
you speak, you are hanged.” When Catherine the Great ascended the
Russian throne, she invited Euler to return to St. Petersburg, and when he
did so gratefully, she treated him as visiting royalty, which, of course, he
was. It is there that Euler passed his ϧnal years. He remains living in
thought in terms of the splendid example he provided of a mind capable of
movement without friction and so achievement without effort.

Euler played brilliantly with everything in mathematics, but he played
most brilliantly with complex numbers, showing that far from comprising
mathematical oddities, they were instruments that providence had provided
for the recovery of lost symmetries, unsuspected connections, a sense of the
unity of experience. This is most evident in the relationship he discerned
between the trigonometric and exponential functions.

In elementary textbooks, trigonometry is given over to a number of
formulas dealing with the properties of a right triangle. In this context,
they are largely incomprehensible, if only because they are largely
unmotivated. Those texts, and the memories that they convey, must be
canceled and abjured. The trigonometric functions serve manfully to ferry
real numbers to real numbers. They are in the business of relationships. It is
useful in this regard to get rid of degrees and think of angles in terms of
radians. A circle of 360 degrees has 2π radians; a half circle of 180 degrees,
π radians, and a right angle, π/2 radians. The radian, as a unit of
measurement, may also be ejected from this discussion, leaving behind only
the pure real numbers. Sine, cosine, and tangent now operate cleanly as
functions. The sine of π is zero, and the cosine of π is minus one, and so
similarly for all other real numbers. These functions are periodic, moving
between plus and minus one, and repeating their pattern endlessly (Figure
5.1).

The exponential functions are quite diϱerent. A real-valued function f(x)
is exponential if it has the form ax. The exponent x is up there in the



cockpit; the exponee a down there in the baggage compartment. Since the
parameter a may be varied, the exponential function is really a family of
functions, a whole clan. When it comes to exponentiation, multiplication
may always be expressed in terms of addition, so that (ax) (ay) = ax + y.
This is a clue as to what is coming and, like all the best clues, it is there in
plain sight. Plainly, the exponential functions are not periodic. They mount
up inexorably, one reason that they are often used to represent doubling
processes in biology, as when undergraduates divide uncontrollably within
a Petri dish (Figure 5.2).

Curiously enough, the various exponential functions may be
amalgamated into a single function—the exponential function. The
connecting tissue is formed from a single number. Like the number π, the
number e is just one of those things. It is a real number, and so ordinary,
but like the square root of two, it is irrational and its decimal expansion,
2.71828 …, goes on and on, as formless as the wind. It appears everywhere
in mathematics, where quite literally it forces itself on the imagination, and
like π, i, 0, and 1, it seems to play a role similar somehow to a fundamental
constant in theoretical physics.



FIG. 5.1

Through the magic of mathematical deϧnition, any function ax can be
expressed entirely in terms of the number e. Only two steps are involved.
The number a is ϧrst expressed as elog a, where log a is taken to the base e.
And then ax is expressed as ex log a. The various exponential functions have
just disappeared in favor of a single exponential function, exp(x) or ex—the
number e raised to the power x.



FIG. 5.2

Whatever the nature of the trigonometric and exponential functions, “the
person who approaches calculus from the point of view of real numbers,”
the contemporary mathematician Lars Ahlfors has observed, “will not
exp ect any relationship between the exponential function and the
trigonometric functions.” Indeed, he adds at once, “these functions seem to
be derived from completely diϱerent sources and with diϱerent purposes in
mind.”

That this impression is mistaken represents a remarkably thrilling
discovery in the history of thought.

By the fourth decade of the eighteenth century, Euler had at his ϧngertips
the wealth of European mathematics, its superb achievements, its
complicated (and often incoherent) deϧnitions, and the distinctions they
enforced. He knew how the complex numbers should be represented; and he
could manipulate them arithmetically. So could everyone else. He needed
somehow to extend the idea of a complex number so that it made sense to
speak of complex trigonometric and exponential functions—constructions
such as sine  or , and if I talk of what he needed, this is
purely an historical metaphor, for Euler faced what every great
mathematician faces, and that is a confused and muddy tableau. The
instrument that came naturally to his genius was the theory of inϧnite



series. These are the jewels of analysis. And Euler was a master of such
series, his brilliant text of 1748, Introductio in analysin inϧnitorum, a display
of insight, intuition, and sheer musical virtuosity, the record in symbols of
an exuberant spirit.

An inϧnite series is a series of numbers that goes on forever, as when Sn
= 1, 1/2, 1/3, …, 1/n, the mathematician’s by now familiar three dots
abbreviating a process that although without end is not without meaning. S
is the name of the series and the subscript n indicates that terms in the
series are formed by allowing n ϧrst to be one, then two, then three, and so
on to the inevitable and so on. The series Sn, although inϧnite, has an easily
recognized form. It is tending somewhere. As n gets larger and larger, the
terms of the series get smaller and smaller, the series tending at the end of
time toward the number zero.

These very plausible ideas may now be used to give life, and so meaning,
to the concept of an inϧnite sum, an object of the form Sn = a1 + a2 + ….
+ an +.…

Unlike the inϧnite series Sn = 1, 1/2, 1/3, …, 1/n, the inϧnite sum Sn =
1/2 + 1/4 + 1/8 + 1/2n … demands a reϧned and elaborate
interpretation, a way of coaxing a ϧnite number from an inϧnitely
continued process, and so it requires a deϧnition. It is a deϧnition that
proceeds in stages, but the mathematician’s art involves nothing more than
a recovery of an inϧnite series from an inϧnite sum, so that what has in the
end been accomplished is, like the emergence of a butterϩy from a
chrysalis, the unexpected consequence of something that has been there all
along. The definition, like that butterfly, emerges in stages:

The first:
From Sn = 1/2 + 1/4 + 1/8 … form an associated series of partial sums:

The second:
Consider Sn = a1, a2, a3, …, an as an infinite series.



The third:
Ask whether there is a limit toward which Sn = a1, a2, a3, …, an is

tending.

The last:
Assign this limit to Sn = 1/2 + 1/4 + 1/8 … as its sum.
These stages reveal almost by examination that the infinite sum of Sn is 1,

a wonderfully concrete, palpably concrete number, the butterϩy of the
infinite achieving after pupation iridescent but finite wings.

This conclusion is in accord both with the deϧnition just oϱered and with
intuition, which, in examining the sequence, tends to loiter about the
number one, even if the loitering is prompted by an impression that only
the definition itself can articulate and make conscious.

Mathematical ideas now reveal an urgent inner logic, forcing the
mathematician simultaneously to attend to a number of diϱerent voices, as
in polyphonal music. The idea of a function is crucial, and it is crucial
everywhere in mathematics. Sending numbers to numbers, a function
designates the most primitive (and thus the deepest) form of mathematical
life. An inϧnite sum has the power to express a function, and so bring about
a coordination between numbers. This is by no means obvious and the
development of the theory of inϧnite sums represents one of those decisive
episodes in which human self-consciousness enlarged itself dramatically.
Isaac Newton exploited the power of inϧnite summation in much of his
mathematical work; and it is one of the oddities of mathematical history
that while he understood that inϧnite sums deϧne functions, he could not
quite place his ϧnger on the very concept of a function itself. In the
eighteenth century, every mathematician’s ϧnger got to the right place,
Euler’s most notably.

The inϧnite sum Sn = 1 + x/1! + x2/2! + x3/3! + … contains in x an
unknown number, and in this respect makes contact with the great clan of
mathematical expressions in which something is missing and so something
must be determined. In all other respects it is like the inϧnite sums already
scouted and I am introducing the sum explicitly because it is destined to do
great things. The exclamation point after numbers in the denominator, by
the way, designates their factorial—the product of that number and all
smaller whole numbers. Thus 3! is 3 × 2 × 1. Everything else in Sn is



ordinary. And yet, this inϧnite sum plainly expresses a relationship, one
forged between x, whatever it happens to be, and the sum of the inϧnite
series itself, whatever it happens to be. As the value of x changes, the sum
changes as well. And is this not the essence of what is means to express a
function?

This particular inϧnite sum happens to express the exponential function,
so that

On letting x = 1, the mathematician expects to see e1 in return; but any
number raised by one is simply the number itself, as when 101 is just ten. At
e(1), the expectant mathematician looks for 2.71828 …, and this, it is
gratifying to observe, is just what in the end he gets.

If inϧnite sums may be used to express the exponential function, they
may also be used to express the sine and cosine functions. Diϱerent
constructions are at work but just the same principle:

These relationships may also be checked by checking sine and cosine
functions for particular numbers—1, say, or 0, or π.

In all this, the seventeenth century has had its due. The extension of the
exponential, sine, and cosine functions to the world of complex numbers is
properly the work of the eighteenth century. The very ϧrst step is the one
that is obvious. In the deϧnition of the exponential and trigonometric
functions by inϧnite sums, the variable x has always been a real number. It
is now replaced by a complex number z = a + bi. The substitution is purely
mechanical, one symbol standing in for another in the original deϧnition of
the exponential function by means of an inϧnite sum; it involves no
thought:

Nonetheless, a threshold in both history and thought has been reached.

Rafael Bombelli must be allowed to return from the sixteenth century for
one last time. Although he never quite grasped the glittering gold he had in



hand, Bombelli knew something about the square root of minus one; and in
particular he knew that i2 =–1, i3 = –i, i4 = 1, i5 = i, … and so on up the
ladder of increasing exponents. How he knew any of this, I have no idea.

To this fact must be added the clue already given and left lying in wait.
The expression ez is simply a convenient way of writing ex+yi. And ex+yi is
simply another way of writing (ex)(eyi). From these facts and that clue, it
follows that

A dazzling connection between the exponential and the trigonometric
functions now emerges into the colored light, for

Or what comes to the same thing

But the inϧnite sums within the ϧrst and second brackets represent
nothing less than the inϧnite sums designating the cosine and sine of a
function.

It follows that

so that

This is Euler’s formula.

What a wealth of insight Euler’s formula reveals and what delicacy and
precision of reasoning it exhibits. It provides a deϧnition of complex
exponentiation: It is a deϧnition of complex exponentiation, but the
deϧnition proceeds in the most natural way, like a trained singer’s breath.
It closes the complex circle once again by guaranteeing that in taking
complex numbers to complex powers the mathematician always returns
with complex numbers. It justiϧes the method of inϧnite series and sums.
And it exposes that profound and unsuspected connection between



exponential and trigonometric functions; with Euler’s formula the very
distinction between trigonometric and exponential functions acquires the
shimmer of a desert illusion.

On a still deeper level of insight and analysis, Euler’s formula leads to an
even more mysterious relationship. If x = 0 and y = π,

But the sine of π is zero and the cosine of π is minus one; it follows that

whence

This is the most famous formula in mathematics, linking in one simple
statement the ϧve most fundamental numbers and the basic concepts of
addition, exponentiation, multiplication, and identity. It cannot be
improved and words are inadequate to convey its beauty.

Nor are they necessary.

European mathematicians had learned to add, subtract, multiply, and
divide the complex numbers, but even the greatest of the great
mathematicians remained half-persuaded that in the square root of minus
one, nature was exhibiting herself in a subtle disguise. “The true
metaphysics of ,” Gauss wrote in 1825, and so almost one hundred years
after d’Alembert, “remains elusive.” Fearful of some form of intellectual
contagion, lesser mathematicians often encouraged their students to avoid
such numbers altogether. It is at the beginning of the nineteenth century in
a moment of wavering impulses that the logical development of complex
numbers is enriched by the realization that these ghostly things could
themselves be seen, a single diagram erasing entirely the impression among
mathematicians that no matter how they might manipulate these numbers,
they were not really there.

As so often happens in mathematics, the complex numbers were ϧrst seen
in two diϱerent countries and by two diϱerent men, striking evidence that
in mathematics the maturation of ideas is as much a social as an individual
process. Both the Norwegian, Caspar Wessel, and the Swiss, Jean Robert
Argand, were self-taught, intrepid amateurs, Wessel a land surveyor and



Argand a bookkeeper. With their contributions made, they disappeared
from the history of thought, leaving behind only their names in countless
texts.

Wessel and Argand had roughly the same idea: The complex numbers,
whatever they might be, could be precisely coordinated with points in the
plane. Argand published his thoughts in 1806 in a monograph entitled Essai
sur une manière de représenter les quantités imaginaires dans les constructions
géométriques. A Cartesian coordinate system is again required. The origin of
the system is zero, and real numbers crawl along both sides of the x-axis
and up and down the y-axis. Real numbers—nothing more. Nonetheless, a
number of the form a + bi may now be given an instantaneous pictorial
identity, a geometrical stamp, by virtue of the fact that the real number a is
interpreted along the x-axis, and the real number b, along the y-axis. The
complex number a + bi thus corresponds uniquely to the point (a, b). If b is
itself zero, so is bi, and in that case, the point (a, 0) collapses into the real
number a. Since the square root of minus one is entirely imaginary, it has
the form 0 + 1i. It corresponds to i itself. Starting from the origin, the
mathematician need only go up one unit to reach the point (0, 1). It is right
there in plain sight. No more than a dot, it has within its arithmetical
identity all the power of something long sought but never found.

What I have sketched is only a bare beginning, one that corresponds to the
initial moment in the development of a theory. The logical place in which
these bare beginnings come to an end is the fundamental theorem of
algebra. It is the fundamental theorem that asserts that any polynomial
function P(z) = a0 + a1z + … + anzn has at least one root—one real or
complex number, that is, making it true. The theorem’s import is plainer
than its symbolic expression. No matter how real and complex parameters
and variables are combined, the theorem aϫrms, there is never a need to
go beyond the complex numbers. No further numbers are needed. They
suϫce and so they bring to completion the very long eϱort at construction
that over thousands of years yielded ϧrst the natural numbers, then the
fractions, then zero and the negative numbers, and after that the real
numbers. The complex numbers complete the arch.

Beyond the theory of complex numbers, there is the much greater and
grander theory of the functions of a complex variable, as when the complex
plane is mapped to the complex plane, complex numbers linking themselves
to other complex numbers. It is here that complex diϱerentiation and



integration are deϧned. Every mathematician in his education studies this
theory and surrenders to it completely. The experience is like first love.

I once mentioned the beauty of complex analysis to my great friend, the
mathematician M. P. Schützenberger. We were riding in a decrepit taxi,
bouncing over the streets of Paris.

“Perhaps too beautiful,” he said at last.
When I mentioned Schützenberger’s remarks to René Thom, he shrugged

his peasant shoulders sympathetically.
This is one of the charms of the theory of complex numbers and their

functions. It has broken men’s hearts.



SOMETIME AFTER DAWN ON May 30, 1832, a young man named Évariste Galois, a
pistol in hand, crossed a muddy ϧeld to the south of Paris and, after

seconds had solemnized the arrangements, exchanged shots at twenty-ϧve
paces with the man who had asked him for satisfaction, Pescheux
d’Herbinville. Galois had no very great abilities as a marksman. Plump and
oily, d’Herbinville was a crack shot. His bullet pierced Galois’ intestines.
Galois fell to the ground, where he lay unattended: No one had thought to
bring a surgeon to the duel. Spectators and seconds drifted oϱ and,
immensely satisϧed with himself, so did d’Herbinville. Some three hours
later, a passing peasant found Galois and took him by cart to l’hôpital cochin
in the south of Paris. Dingy now, it was dingy then. Completely conscious,



Galois waited his inevitable end from peritonitis. When his younger brother
arrived and dissolved in tears, he said, “Don’t cry. I need all my courage to
die at twenty.” And the next morning, he was dead.

Évariste Galois was a supremely original mathematician, and the story of
his death has passed completely into myth, with only his death in some
absurd duel proof against scholarly skepticism. Teachers had early observed
in him signs of “mathematical madness,” an uncontrollable passion akin to
the divine madness of the Pythagoreans. He had twice been refused
admission to the École Polytechnique, one of the inϩuential schools
established by Napoléon, because his examiners, although aware of his
remarkable power, were unable to follow his thoughts. Galois did nothing
to help his own cause. He was an indiϱerent speaker. He stood there
sullenly in the examination hall and, when asked questions, fumed with
barely suppressed fury, ϧnally hurling a blackboard eraser at the
unoϱending head of one of his examiners. Bad luck had, in fact, been his
companion, following him from early adolescence like a dismal black
spaniel. Although a gifted classical scholar, every manner of authority that
he encountered in his adolescence—professional, clerical, political—vexed
and oppressed him. As a child, he had heard the drumbeat of Napoléon’s
cavalry thundering across European history, and through his father he had
retained a vivid impression of the French Revolution. His generous
imagination had been inϩamed by Republican sentiments. During the
France of his young manhood two men of uncommon mediocrity, Louis XVII
and Charles X, had been returned to the French throne. They presided over
a grim, colorless, pinched, mean autocracy. Galois found the narrowness
and oppression of French life unendurable, and he saw in politics the same
structures of pointless authority that he had found in academic life. He
associated with cynical men and shadowy revolutionaries.

Although often described as “dangerous” by the police, he seems to have
been innocent as the rain.

At the age of twenty, Galois lost his virginity along with his heart to a
woman of reputed beauty but uncertain reputation, Stéphanie Félice
Poterine du Motel. She was at the center of a number of obscure political
factions. It was for the sake of her honor that d’Herbinville challenged
Galois to a duel. The challenge was in eϱect a death sentence. This is
something Galois knew. On the night of May 29, 1832, he sat at his desk
and proposed to commit to posterity the teeming and obsessive
mathematical ideas that he had until then kept locked within his skull.



He scribbled for hours, covering sheet after sheet with his slanting
handwriting. “I have not enough time,” he wrote in the margins; in the
center of one page he wrote the words “une femme.”

Most men and women, if they remember high-school algebra at all,
remember only a series of frustrating word problems, typically involving
postmen or potholes, and a number of rules that seem often to lose
themselves in a wilderness of symbols. A minus times a minus is a plus. Yes,
of course. But why? It is almost as if some form of bizarre
electromathematical repulsion were at work, the negative signs meeting in
mutual annihilation. There is something in the world of algebraic
manipulation that suggests obscurely fundamental exchanges of the sort
that quantum physicists believe lie at the very heart of nature, one reason
that algebra has acquired a supremely important role in mathematical
physics. Although algebra is almost always taught to students too young by
far to gain an enlightened sense of its nature, algebra is a profound
mathematical discipline and by a trail as visible as a series of bright runway
lights it leads directly to the world beyond mathematics. It is at least a part
of modern algebra that Galois created in the ϧnal night of his life. Had he
never lived or worked or loved, mathematicians would have discovered
what he discovered, but they would have lost an idol, a young man as
interesting as the young Byron, and as talented, and as doomed.

The problem that occupied Galois was not new. Mathematicians of the
great ninth-century Moslem Renaissance knew how to solve a great many
algebraic equations. They understood that all of mathematics may be
reϩected from within a single imperative, and that is to ϧnd an unknown
(an injunction known to play a role in literature as well as life). It is for
this reason that mathematicians place equations at the very center of their
concerns, for an equation manages in a handful of symbols to express the
whole of the mathematical drama itself. There is something. It answers to
certain conditions. But what is it? Even the simplest of equations, such as
5x = 25, expresses this inherent tension between what one has (ϧve
symbols) and what one seeks (that unknown something); and when such
equations are solved, the exercise displays the same pattern of tension and
release that is characteristic of all biological activity.

Dealing with a much wider budget of equations than the clever Arabs,
sixteenth-century Italian mathematicians still thought in terms of minor
mysteries, problems in identiϧcation in which a mathematical unknown



leaves traces of itself in an equation. They used a variety of tricks. They did
a good deal of guessing. And they knew how to solve equations of the form
ax2 + bx + c = d by means of the quadratic formula.

They were perhaps unaware of the fact that for all its simplicity, the
quadratic formula is a remarkable cage of symbols, indicating as it does
that the solutions to a quadratic equation may be computed by
manipulating its coeϫcients and only its coeϫcients. The familiar
operations of addition, subtraction, multiplication, division, and root
extraction are at work. With the coeϫcients in plain sight, these simple
operations ϧx the equation’s solutions; they determine its roots; they
control its nature.

Solvability by radicals—that is how the technique came to be known, and
the description has an eerie aptness, suggesting, as it does, a vigorous, a
radical, eϱort to cut through those loitering coeϫcients and get to the heart
of things directly.

There are, of course, equations galore within mathematics, and by the early
years of the nineteenth century, mathematicians had gained the self-
conϧdence to go beyond the ordinary. Quadratic, cubic, and even quartic
equations, in which a variable x mounts itself four times? Over and done
with. Mathematicians had formulas in hand. Cardano, the splendid
plagiarist? A member of the Academy, his farsighted eyes not with
standing. In the Disquisitiones arithmeticae, the great Gauss had studied with
striking success equations of the form xp – 1 = 0, where p is a prime
number. Such are the cyclotomic equations, special cases of the more
general Abelian equation xn – 1 = 0, named in honor of the Norwegian
mathematician N. H. Abel. The little streams and rivulets run through the
sand, double back on themselves, freshen, and dry out.

There now occurs a curious division in the history of thought, something
that mathematics can illuminate but never completely explain. Equations in
which an unknown is taken to the fifth power, such as x5 – x2 + 24 = 0,
baϮed and confused Renaissance mathematicians. And they continued to
baϮe and confuse mathematicians in the two hundred years thereafter. In
some mysterious way, mathematicians understood instinctively, nature
draws a distinction between equations in which an unknown is raised to the
fourth power and equations in which it is raised to the ϧfth. There is no
question but that the roots of such equations exist. This Gauss had
demonstrated by proving the fundamental theorem of algebra in four



diϱerent ways, and so virtually pounding the poor thing to death. But could
every such equation be solved by the method of radicals? This is entirely
another question.

That night, Galois demonstrated that, no, quintic equations could not
necessarily be solved by manipulating their coeϫcients arithmetically and
ϧshing endlessly for their roots. In this he was duplicating work already
undertaken by Abel and Ruϫni. But what Galois demonstrated and how he
demonstrated it are two entirely diϱerent things, for in order to dispose of
an old problem, Galois was moved to the creation of a new idea. It is one of
the profound ideas in modern mathematics, playing a role in all
mathematical thought comparable to the role played in chemistry by the
discovery of the molecular structure of matter.

It is the idea of a group.

The idea is as accessible and straightforward as the human nose. A group is
a collection of objects, one that is alive in the sense that some underlying
principle of productivity is at work engendering new members from old.
The family is the primordial group beyond mathematics, and the divine
domestic undertaking in which men and women reproduce themselves is
the deepest, most primitive, and most mysterious operation in all of nature.

The sunshine-in-Venice atmosphere of these metaphors must now give
way to the sleet-in-Scranton aspect of a complicated mathematical
deϧnition. The integers comprise the positive and negative whole numbers
and zero, and no matter the integers, their sum is always an integer in turn.
It is the integers and the operation of addition that taken together comprise
a group and so form a single object of contemplation. A diϫcult mental
operation is required to get that contemplation going. Practice is required,
as in learning two-part harmonies on the piano.

Patience, too.
And a certain willingness initially to be defeated by intellectual

experiences.
The formal, the mathematical, deϧnition of the group comprising the

integers under addition is grounded in one large fact and three subsidiary
details:

The large fact:
Any two numbers may be added to each other, yielding another number in

turn.



The first detail:
Addition is associative so that the order in which it is performed is

unimportant: (2 + 3) + 5 = 2 + (3 + 5).

The second detail:
Every number has an identity in zero so that adding zero to any number

conϧrms the identity of every number. Thus 6 + 0 = 6 and so, too, any
number plus zero is just that number.

And the third:
Every number has a negative inverse so that adding a negative number to

the same positive number results in mutual annihilation, with –5 + 5
leaving only an opalescent residue in zero.

That large fact and those three details describe a particular mathematical
structure, the group G of integers under addition, the letter calling to mind
the group, and the group calling to mind the concept. Now G has made an
appearance against the screen of abstract thought hopelessly bound to a
very particular, and so a very partial, mathematical object—the integers.
There is no reason that the concept of a group cannot be peeled away from
this example, and with the peeling away done, what emerges is the
perfectly general and perfectly abstract idea of a group itself.

That general idea is only a few definitional steps away.
In place of those particular integers, there is an anonymous collective G

= {a, b, c, …}. Members of the collective are a, b, c, …, whatever they may
be. Those inoffensive brackets serve to collect the members.

There is next an anonymous but associative operation on G, so that
whatever the a and whatever the b, that operation leads inexorably to some
object c, one that is already within the group and so a member of the team.
Symbols convey the action of the operation very elegantly: a o b = c, and if
they are now a luxury, those symbols are shortly to become a necessity.

There is in addition an element e in the group serving as an identity, so
that for every a in G, the identity returns every element to itself: a o e = a.

And ϧnally for every element a in G, there is an inverse a-1 taking a to
the identity e, so that a o a-1 = e.

For reasons that I cannot explain, I have always found it helpful to
imagine these rather formal statements being uttered by a stout and
somewhat disheveled Mexican army oϫcer in one of those movies of the



late 1940s in which the Alamo was forever about to be overrun.
Huy señor, there is thees collective. They have thees guns bah only one

operation.…
Algebra has this effect.

Like many other highly structured objects, groups have parts, and in
particular they may well have subgroups as parts, one group nested within
a large group, kangarette to kangaroo. The even integers are, for example,
a group in their own right; and they are as well a subgroup of the group
comprising all the integers. Yet like clients in a divorce lawyer’s oϫce, not
all subgroups of a given group are alike. Some are simply weird. It is the
concept of a normal or an invariant subgroup that I am after, and although
the discussion that follows is labeled a definition, this conveys an entirely
misleading suggestion of something conventional. A deϧnition in
mathematics is an exercise in uncovering the essence of things, one reason
that good deϧnitions are so hard to pull oϱ, since a deϧnition brings the
essence to light, and the light brings the definition to life.

The group is once again the very speciϧc G—the integers under addition.
I am now going to construct a speciϧc subgroup H of G. Do what it takes is
the mathematician’s watchword (along with take what is done, of course).
Admission to H is a matter of multiplication by seven. Thus while

with H both a part of G, an aspect of the whole, and an object in its own
right, and so a chip off the old block.

H is an ordinary subgroup in the sense that its identity is stable, and the
problem before us is to identify the source of its stability. An example points
the way to a definition, which in turn points the way to the idea.

Consider an integer within H, 14, say, and any integer within G, such as
17. The sum of 17 + 14 – 17 is again 14, and 14 is the point from which
we started. The concourse between the subgroup and its enveloping group
leaves the subgroup unchanged. And this is, of course, just what is meant by
a stable identity, whether in mathematics or in daily life.

At once, a deϧnition, the last in what has been a diϫcult series. A
subgroup H of a given group G is normal just in case for every h in H, and
any a in G, the operation a o h o a-1 always returns to H, the deϧnition



saying no more than 17 + 14 – 17 = 14, but saying it generally, and
saying it at once.

This definition is concise, and it is abstract, and for that reason strange.
But I know what you mean. By all means relax. Have a cigarette.

Mathematicians such as Ruϫni, Lagrange, Legendre, Abel, Monge, and
Cauchy had all been intrigued by quintic equations; they had a sense, those
immensely clever men, that some simple scheme divided the equations that
could be solved by the method of radicals from all the rest. Abel did in fact
demonstrate that there were quintic equations that could not be solved by
this method, but the deep connection between equations, the number ϧve,
and abstract structures in algebra eluded him. With the last hours, minutes,
and seconds of his life seeping away, Galois divided his attention between
equations and groups, showing ultimately that equations, like the numbers
themselves, had a hidden algebraic identity, a certain structure, an inner
life. They corresponded to, they embodied—no, they were—a group.

The fourth-degree equation x4 + px2 + q = 0 sings out that when
something—who knows what?—is multiplied by itself four times, and then
multiplied by some number p after being squared, and that product then
added to its fourth power, and the result then added to some number q, the
result is zero. The prolix prose that I have just draped over the equation’s
ten tight symbols serves, if nothing else, to demonstrate just why
mathematicians use symbols in the ϧrst place. The letters p and q are the
equation’s coeϫcients: They stand for numbers; they are ϧxed for the life of
the equation. They can be added to other numbers, divided, multiplied,
subtracted, and their roots may be extracted; they take a good deal of rough
treatment.

But whatever p and q, their identity is of no interest. It is x that the
mathematician is after. Now as it happens, the equation x4 + px2 + q = 0
has four roots, or solutions, x1, x2, x3, and x4, and these roots may be
expressed explicitly in terms of the equation’s coefficients.



Fourth-degree equations are solvable by the method of radicals. A formula
suϫces. That formula was available to the mathematicians of the
eighteenth century. Each of these roots makes the equation x4 + px2 + q =
0 true, never a bad thing in mathematics, and once the coeϫcients p and q
are speciϧed, determining those four roots becomes a simple mechanical
exercise.

The equation x4 + px2 + q = 0 has four roots, and thus four solutions.
Four solutions, and thus four numbers.…

That Pythagorean note. Again and again and again.

Three soldiers are on parade. Dressed in red, they face the reader from
somewhere east of Eden, the line of their beaver hats descending from the
tallest to the shortest. Each change undertaken by these soldiers represents
a permutation of their original position, one that can easily be tracked from
the mud outpost walls by mathematicians keeping tabs on those bobbing
beavers and assigned to the fort as imperial observers. Where originally
they represented a 1, 2, 3 order of height, now, after the ϧrst command,
they fall into a 132 position, Beaver 3 of old sandwiched between the
bigger and lesser Beavers and falling in their shadow. Permutations are a
part of a family of mental exercises that arise from the pleased recognition
that things in nature are distinct and so can be put in different order.

What holds for soldiers holds, of course, for numbers, with 1, 2, and 3
admitting precisely six rearrangements or transformations:

The numbers in this transformation are now going to be demoted in favor
of the transformations themselves, the mathematician clambering up a
ladder he proposes to kick away at his earliest possible convenience. With
the ladder, and those soldiers gone, the six transformations—the
transformations themselves—reveal themselves to be a group. The language



in which this idea is expressed may well be abstract, but the idea simply
captures the activities taking place on the parade ground just noted. When
the obviously gay but monstrously conϩicted lieutenant complains
petulantly about the sloppy way in which the men have lined up, he is
embedding in language the reality of such things in the world as lining ups,
falling ins, and falling outs; the permutations are nothing more than the
abstraction behind various parade grounds.

It remains for us to complete the deϧnitional tableau by verifying that
these permutations comprise a group. There are four steps.

The group’s elements are the six transformations e, a, b, c, p, q.
The group’s operations comprise one transformation followed by
another, as when a o b takes 123 first to 132, and then to 231.
The group’s identity is the permutation that does nothing—e.
The group’s inversion is the permutation that for each permutation
goes back to the identity.

Three numbers have given way to six transformations, and six
transformations have given way in turn to one group. What holds for three
numbers holds for four numbers, of course, and for more than four numbers
as well. The result in each case is called the symmetric group on n-letters.

Like any living object, the symmetric groups display a remarkable variety,
and they often have a good deal of internal structure. In the case of the
symmetric group on three letters, at least two smaller groups lie hidden in
the group itself, from which they may be extracted by means of
mathematical dissection. Peeling away and discarding the transformations
a, b, and c, the mathematician is left with e, p, and q. This, too, is a group,
as a deϧnitional check quickly conϧrms. But then so is the identity element
e. A group to the core, it satisfies the definition of a group all by itself.

What is suggestive in this sequence of groups within groups is the
appearance and reappearance of numbers. The three numbers 1, 2, and 3
have gone over to a group of six transformations {e, a, b, c, p, q}. The
group that results has just now been dissected into two subgroups, {e, p, q}
and {e}, both of them normal and so stable. Let us now count the number of
elements in each group. The group itself has six members; thereafter the
subgroups have, respectively, three members and one member.

Such is their order.



Let us then divide the order of a given group by the order of the next
largest group. The numbers that result are two and three.

Such is their index.
Order and index, the words suggesting both a librarian’s command and an

antiquarian’s bookstore, serve the additional purpose of prompting that
fond, familiar Pythagorean nerve eagerly to twitch, for at the end of this
little exercise in ordering and indexing, prime numbers have popped up.

Groups that admit this sort of dissection, with normal groups nested in
groups of prime index, as mathematicians say, are solvable, the
terminology itself suggesting the far-reaching and dramatic coordination
that Galois achieved between equations and their solutions, and groups and
their subgroups.

A return to the world of equations is now obligatory. If there are four roots
to the equation x4 + px2 + q = 0, these four roots may be permuted in
twenty-four ways. Four distinct objects may be permuted in n! or 4 × 3 × 2
× 1 ways. These permutations comprise the symmetric group on four
letters. It is this group that corresponds to the equation itself in the very
largest sense.

Now it is obvious that just as minus ϧve and plus ϧve when added come
to zero, so, too, x1 + x2 = 0, and x3 + x4 = 0. Although this triϩe has
been expressed as a fact about the roots of an equation, it is equally a fact
about its coeϫcients p and q. To say that x1 + x2 = 0 is just to say, after
all, that

No very complicated calculations are necessary, although some readers—not
you, of course—may wish to take my word for it.

But only some permutations of the original group of twenty-four respect
this constraint. While x1 + x2 = 0, not so x3 + x2. With twenty-four
soldiers lined up in a row, only some rearrangements preserve the order of
their height. Others do not. It is this idea of a permutation subject to a
constraint that Galois appropriated.

There are, in fact, only eight permutations of the original twenty-four
meeting the constraint that x1 + x2 = 0, and x3 + x4 = 0. And they, too,
form a group, a subgroup of the whole, in fact. The order of Symmetric



Group and Subgroup is 24 and 8, and the index is thus 3.
Galois now repeated the procedure and by the same mental motion. A

new constraint comes to govern the permutations. And with it a new
subgroup appears, since only four of the eight permutations satisfying the
first constraint satisfy the second.

The procedure is repeated until only the identity is left. The order and
index of groups and their subgroups is as follows:

This is a solvable sequence of groups. Subgroups are normal and there are
prime numbers where they are supposed to be. That horseshoe, by the way,
signiϧes inclusion. Once Galois realized that, at their heart, equations
constitute a group, he could do what mathematicians always wish to do,
and that is to use the simplicity of one idea to cut away the complexity of
another. The cutting away involves a withdrawal of attention from an
equation, with its uninformative symbols, and its redirection to a group.

When all this was seen clearly—he had no time—the sands parted to
reveal a clear dividing line between solvable and insolvable equations, the
line there all along but never seen before.

Everything is still hanging in the air, it is still the evening before his
death, and everything is going to proceed as it has been fated to proceed;
but everything has changed as well.

We may follow Galois as the ϧrst light of dawn is breaking, and after that
adieu. A series of nested subgroups is solvable if and only if it is comprised
of normal subgroups whose index is prime. This is a fact about groups and
their parts. The example just given of a fourth-order equation suggested to
Galois the dramatic far-reaching hypothesis by which he evaded death and
achieved immortality. An equation is solvable by radicals if and only if its
associated group contains a solvable series of subgroups.

The ϧnal step in what is in fact a magniϧcent intellectual drama now
begins. It involves the demonstration that, as suspected, nature draws a
careful distinction between the numbers four and ϧve. An equation in
which an unknown is taken to the ϧfth power has five roots, and so may be
represented by a symmetric group whose order or size is 5! or 5 × 4 × 3 ×
2 × 1. In this there is no mystery. As it happens, the next largest subgroup



in the symmetric group has order n!/2. The only remaining subgroup is the
identity. For the symmetric group of order 5, subgrouping leads to the series

with that last index number—60—standing out as defiantly non-prime.
Galois, by appealing to groups and their subgroups, had discovered why

certain equations were solvable by radicals and others not. But if solvability
by radicals depends on solvability by groups, solvability by groups depends
in turn on the properties of certain numbers, thus once again sounding that
ancient Pythagorean note that number is the measure of all things.

With the coming of dawn, Galois’ life in thought was at an end. He
prepared himself to die and died. His last night’s work—the testament—he
entrusted to his friend, Auguste Chevalier; the manuscript, ink-blotted and
suϱused with passion, still survives pressed under glass, an object of
veneration among mathematicians. If the odious Pescheux d’Herbinville had
second thoughts about his role in mathematics, he kept them to himself.
Stephanie Félice Poterine du Motel withdrew from history and disappeared.
In 1846, the French mathematician Joseph Liouville published an edited
version of Galois’ last work in the Journal de mathématiques, homage
deferred and so homage denied. It was only in 1870—almost forty years
after Galois’ duel!—that Camille Jourdan published a reasonably accurate
and complete account of Galois’ theories in his treatise on algebra, Traité
des substitutions et des équations algébriques. Galois’ work entered fully into
scientiϧc consciousness at what is virtually the beginning of the modern
era, just ten years before the birth of Albert Einstein. When in 1907
Hermann Minkowski recast Einstein’s theory of special relativity so that it
made mathematical sense, he expressed the fusion of space and time that
Einstein had foreseen in the language of groups.

The publication of Galois’ ideas allowed mathematicians to see that a
system of architecture lay exposed beneath the shifting surface of the
numbers themselves—not only groups, but semi-groups, simple groups,
semisimple groups, Abelian groups, Lie groups, and beyond the groups,
rings, ϧelds, lattices, and ideals. Undergoing development at roughly the
same magical moment in the development of human thought, the ideas of
inorganic chemistry allowed the chemist to see a remarkable new world



beneath the world in which various foul-smelling chemicals sputtered in
any number of Central European test tubes and ϩasks. It was, that world,
highly organized, with inorganic matter arranging itself into families, and
exchanges between and among families regulated by very deϧnite rules of
combination and association, chemical equations balanced by an appeal to
chemical structures, and chemical structures determined by a few elegant
and simple principles. If inorganic chemistry revealed a stable world
beneath a world, algebra did as much and it did it in precisely the same
way. The standard history of nineteenth-century science places
mathematical physics and mathematical analysis at the forefront; in the
counter-history of the nineteenth century, it is inorganic chemistry and
algebra that are paramount.

Following Galois, mathematicians realized that groups could be studied in
themselves and for themselves. Groups have fascinating internal properties.
The ϧnite simple groups contain no normal subgroups; they have an
especially rich character, and over the past twenty-ϧve years, in an eϱort
spanning a dozen countries and written up in thousands of pages,
mathematicians have succeeded in classifying them completely into various
families.

But like every profound mathematical idea, the concept of a group
reveals something about the nature of the world that lies beyond the
mathematician’s symbols. In the early years of the twentieth century,
Sophus Lie discovered that there are continuous as well as discrete groups,
and so unearthed a stunning connection between an algebraic idea and the
world in which people, planets, and protons move without interruption—
our world.

There is thus a royal road between group theory and the most
fundamental processes in nature. Some groups represent—they are
reϩections of—continuous rotations, things that whiz around and around
smoothly. On current theories, the neutron and the proton of old—the
neutron neutral in charge and the proton cheerfully positive—lose much of
their identity and come to be regarded as the components of a single item,
the nucleon, which, like an Indian deity, can come to earth in many shapes.
When it is spinning up, a proton emerges, when spinning down, a neutron.
The group named SU(2) represents just what stays the same and what
changes in spins of this sort. No new ideas are involved. Symmetry remains
symmetry, something captured by a group.

In the early 1960s, particle physicists were confronted with a virtual zoo



of new particles, unstable objects that left glowing traces of themselves in
various experiments but refused to cohere into any stable pattern. A scheme
of organization was needed. Murray Gell-Mann and Yuval Ne’eman both
realized that SU(2) was a subgroup of a still larger group—the fabled SU(3)
—and that when particles were organized by SU(3), an eightfold symmetry
emerged, with families of particles neatly organized into very intuitive
subgroups. When one of the physical octets speciϧed by the group appeared
to be missing a member, Gell-Mann and Ne’eman both predicted that the
missing particle was there and would be found—as it was.

A great many mathematical physicists, trained originally in classical
methods, were astonished by this dramatic invocation of group theory, a
subject they regarded as impossibly esoteric. Mathematicians took it all in
stride and wondered at the fuss, and some mathematicians even hinted
broadly that had only they bothered, they would have at once seen the
usefulness of SU(3). Each party proved correct in his own way. The
classically trained physicists were right to be nonplussed; the
mathematicians right to think they might have made the same discovery.
And Gell-Mann and Ne’eman were rightest of all to regard their work as
revolutionary. Curiously enough, neither the physicists nor the
mathematicians found it at all surprising that a group of exotic and short-
lived particles should think to organize themselves into very convenient
groups.

Isolated and alone and immured in his own immature fury, it was
Évariste Galois who brought this magnificent structure into being.



FEW MATHEMATICAL SUBJECTS SEEM quite so irresistibly lurid, the very words non-
Euclidean suggesting an exotic universe in which embarrassing extra

dimensions pop up in space and things by curving manage simultaneously
to turn themselves inside out and upside down. When in 1915 Albert
Einstein advanced a theory of gravity in which old-fashioned Newtonian
forces vanished in favor of curved space and time, the impression was
widespread that things were far weirder than anyone might have imagined.
These impressions are not so much mistaken as misconceived. There is
weirdness in non-Euclidean geometry, but not because of anything that
geometers might say about the ordinary fond familiar world in which space
is ϩat, angles sharp, and only curves are curved. Non-Euclidean geometry is



an instrument in the enlargement of the mathematician’s self-consciousness,
and so comprises an episode in a long, diϫcult, and extended exercise in
which the human mind attempts to catch sight of itself catching sight of
itself, and so without end.

Mathematicians mark time by births and deaths, the greater the
mathematician, the more auspicious the dates. Carl Friedrich Gauss was
born in 1777 and died in 1855, his entry into and departure from the
mathematical scene comprising an era all its own. Gauss is very often
referred to as a prince among mathematicians, if not the prince, a nice turn
of phrase that suggests his combination of aristocratic reticence and assured
intellectual power. Respectful stories recount that when his elementary-
school teacher, an odious disciplinarian as it happens, asked his charges to
sum the natural numbers from one to one hundred, Gauss was able to turn
down his tablet at once, the correct answer inscribed on slate, even as the
dutiful donkeys in the room, chubby farm children of no intellectual
distinction, scratched away industriously, adding one to two, and then to
three, all the way up.

Gauss reasoned as follows: 100 + 1 = 101. That takes care of two
numbers. But 99 + 2 = 101, as well. A pattern is at work such that when
ϧrst and last numbers are added, the result is always 101. Now how many
times must this pattern be repeated to sum all of the numbers between one
and one hundred? And thereafter trailing dots will serve to mark the
distinction between clever Gauss and those dutiful donkeys in the sun-ϧlled
classroom scratching away.…

In adolescence Gauss found himself unable to commit the full range of his
thoughts to paper, so quickly and so abundantly did ideas occur to him. As
a young man, he was freed from ϧnancial worry by support provided by
Ferdinand, Duke of Brunswick; when the duke was mortally wounded
leading Prussian troops in combat against French forces under Napoléon,
Gauss was already well enough known that he was able to secure a position
as a professor of astronomy at the University of Göttingen. He retained
some of his inventiveness, although not all of his ardor, into his elegant old
age; but there is throughout his life a sober contrast between the animal
vitality of his thoughts and the careful, extremely remote, and inaccessible
manner in which he presented them in public. Like a Parisian jeweler
setting out the rarest of stones, he published only those of his papers that
he believed had reached a state of formal perfection and lucidity.

It is a policy that I myself follow.



For more than two thousand years, Euclidean geometry had seemed to
mathematicians and philosophers alike to be the very model of intellectual
perfection. There it was and there it stood—the deϧnitions, axioms, and
theorems lined up in a row, the powerful, compressed, incontrovertible
proofs lined up behind them; and for more than two thousand years there
was, in addition, the irritating fact that whereas the ϧrst four of Euclid’s
postulates radiated a supreme and manly self-conϧdence, Euclid’s parallel
postulate seemed somehow to make its claims diϫdently, something that
every real mathematician could see and even amateurs sense. Not false,
surely not that, for, after all, just look: The point, the line, the pancakelike
plane all conϧrm the thought that through a given point outside a given
line, there is one and only one line parallel to a given line. But if not false,
then not obviously true either, or at least not obviously true in the sense in
which the other axioms of Euclidean geometry are obviously true. If not
false, and yet not obviously true, then what? It seemed possible that
Euclid’s parallel postulate might be a disguised theorem of the system, with
the full weight of certainty displaced backward on Euclid’s ϧrst four axioms.
Many of the theorems in Euclid’s system are like the parallel postulate in
the complexity of their formulation, and theorems are in the nature of
things supposed to be less evident than the axioms from which they are
derived.

Over the centuries, mathematicians thus attempted to prove Euclid’s
parallel postulate, the cohort, when viewed historically, unique in the
extent to which their eϱorts did nothing to further their agenda. Girolamo
Saccheri, at the beginning of the eighteenth century, and Johann Lambert,
some years later, both constructed ingenious arguments in which they
endeavored to show that by denying the parallel postulate they could reach
a contradiction. When their work was reviewed by more patient
mathematicians, it was seen that their laborious proofs in some way or
another assumed the very point at issue—the parallel postulate itself. Gauss
was masterful in his discernment of self-deception among mathematicians,
noting with satisfaction in his diaries or letters just where and just how
various proofs of the parallel postulate doubled back on themselves.

By the beginning of the nineteenth century, a number of mathematicians
had come to suspect that Euclid’s parallel postulate could not be
demonstrated. It stood alone. Its authority was otherwise. In the Critique of
Pure Reason, a work that Gauss read with great diligence and no little
skepticism, Immanuel Kant had argued that both space and time are pure



forms of intuition, things given by the human mind and ϧxed by its
structure. The axioms of Euclidean geometry dominate our thoughts because
they cannot be dislodged from our minds. In this way, Kant lent the
authority of his art to a structure about to fracture under stress. Gauss
remained unpersuaded, conϧding his prophetic doubts to his desk drawer,
and remarking, when other mathematicians ϧnally expressed their doubts
about Euclidean geometry, that he had known it all along.

So far I have simply oϱered the outlines of a familiar mathematical fable,
one suggesting nothing more than a premonitory rumble followed by its
moist conceptual explosion. This is not the whole story. The discovery of
non-Euclidean geometries represents a moment in delayed self-
consciousness, with the most obvious of rumblings very often hiding the
real revolutions to come.

Cackling dryly and then burying his ideas in his unpublished notes, Gauss
came to suspect that Euclid’s parallel postulate was independent of the other
axioms of Euclidean geometry. The cackle is geometric, to be sure; but it is
logical as well.

The ϧrst four of Euclid’s axioms cover the basics; they are known as the
axioms of absolute geometry:

1. To draw a straight line from any point to any point;
2. To produce a finite straight line continuously in a straight line;
3. To describe a circle with any center and distance.
4. All right angles are equal to one another.

Playfair’s axiom constitutes the ϧfth axiom, the place where doubt arises.
That axiom again:

5. Through a point outside a given line L, one and only one line parallel to
that line may be drawn.

And its two-headed denial:
5*. Through a point outside a given line L, there are no lines parallel to L
or

5**. Through a point outside a given line L, there are at least two lines
parallel to L.



There now occurs a twitch in the great nervous system that connects all
mathematicians, the living and the dead. One twitch runs from Gauss to his
university friend, the mathematician Wolfgang Bolyai; earnest and
plodding, Bolyai regarded the parallel postulate as an intellectual canker.
“It is unbelievable,” Bolyai had written, “that this stubborn darkness, this
eternal eclipse, this ϩaw in geometry, this eternal cloud on virgin truth can
be endured.” Bolyai attempted one proof after the other, sending his results
to Gauss by post, only to have them returned almost at once, the fateful
error clearly explained.

By means of an unexplained access of intuition, Bolyai’s son, Johann,
gave up all eϱorts to prove the parallel postulate and thought instead to
deny that it could be demonstrated at all. Clever boy. Placing his allegiance
and then his bets on 5**, with its beckoning double star, he proposed to
allow the logical consequences to ϩow where they might. He was
enraptured. “I have created,” he wrote modestly, “a new world out of
nothing.” His father was aghast. “You must not attempt this approach to
parallels. I know this way to its very end. I have traversed this bottomless
night, which extinguished all light and joy in my life. I entreat you, leave
the science of parallels alone.” There is, in this exchange, an appeal to a
form of mathematical dread that is no longer as convincing as it might once
have been.

And there at once is another twitch, this one extending some nine
hundred miles to the east and touching Nicolay Ivanovich Lobachevsky, a
professor of mathematics and later a successful administrator at the
University of Kazan in Russia. Somewhat less melodramatic than the
hysterical Bolyais, père et ϧls, Lobachevsky was a solid mathematician, and
a man of Svengali-like good looks, his dark hair, straight nose, and
contemptuously curved lips suggesting, of all things, a man prepared to
carry on a secondary line in serial seduction in time not devoted to
geometry. He took the denial of Euclid’s parallel postulate in stride and
without immense metaphysical anxiety.

Iss nofink.
And thereupon he got on with it, another star-crossed mathematician

creating a form of non-Euclidean geometry out of something so simple as
the replacement of Axiom 5 by Axiom 5**.

The result is now called hyperbolic geometry; single-starring, by way of
contrast, leads to elliptic, or even to double-elliptic, geometry. In either
case, the addition of Axiom 5* or 5** to Axioms 1–4 has a reverberating



eϱect on the theorems of Euclidean geometry. Lobachevsky’s reasoning in
the paper that he published in The Kazan Messenger is simple enough to
suggest his method. The initial step follows Euclid. There is a line AB and a
point C lying beyond the line. And at once a radical departure from Euclid,
tradition, and common sense. All lines through C, Lobachevsky aϫrms, may
be divided into two classes. There are those that sooner or later meet AB,
and those that do not. The lines destined never to meet AB are separated
from the rest by a pair of boundary lines, p and q. These boundary lines,
Lobachevsky aϫrms, are both parallel to AB. Euclid’s parallel postulate has
been insouciantly canceled (Figure 7.1).

Consider now, Lobachevsky argued, the angle π(a) that is formed by the
lines Dcq on the one side of the straight line DC, and by the lines Dcp on
the other side of the same straight line. All lines forming an angle less than
π(a) will ultimately intersect the straight line AB; but all lines forming an
angle greater than π(a) will not.

If it happens that π(a) =π/2, or 90 degrees, then this version of
geometry and Euclid coincide. Nothing is lost, but quite obviously nothing is
gained either.

FIG. 7.1



There now follows a series comprised of what if’s and what of’s and what
iss’s.

What if a decreases and approaches zero? In that case, π(a) increases and
approaches π/2.

What if a increases toward infinity? In that case, π(a) approaches zero.
What of the sum of the interior angles of a triangle? Always less than π,

but it decreases as the area of the triangle is enlarged, and approaches π as
the area of the triangle shrinks.

What of the Pythagorean theorem? It is now given by the complicated
formula 2(ec/k + e-c/k) = (ea/k + e-a/k) (eb/k + e-b/k), where e is the e of
chapter 5 and k is a constant needed to make things come out right.

What iss circumference of circle? Iss πk(er/k + e-r/k).
The conceptual adjustments to Euclidean geometry that Lobachevsky

brought about did not, of course, tell mathematicians whether they were
merited and, if merited, needed. Lobachevsky and Bolyai had replaced
Playfair’s axiom with its denial; but they had not demonstrated that the
replacement made any sense.

And they had not demonstrated that the replacement had made any sense
in what we nonmathematicians consider the most fundamental sense of all.
They had provided no pictures.

Did you imagine that something fancier was at issue?
Well, you were wrong.

Never mind for the moment whether Axiom 5** is true. The question is
whether it is consistent with the other axioms of Euclidean geometry. And
this is a logical and not a mathematical question. Now the propositions that
all whales are large and that all whales are mammals are consistent in the
obvious sense that no one is apt to go wrong in asserting them jointly. Not
so the propositions that all whales are mammals and that all whales are ϧsh.
Since no ϧsh are mammals, these propositions lead at once to a
contradiction. In the case of whales, consistency can be easily established
by a quick look at a large whale. A similar principle holds in the case of
non-Euclidean geometries—a quick look suϫces. To establish the
consistency of non-Euclidean geometry, it is enough to provide an abstract
picture, and so an imagined universe, one stripped of the sensuous
essentials of the real universe and exhibiting only those features necessary
to give sense to the axioms. An abstract picture of this sort is known as a
model.



Now no one has ever doubted that ordinary Euclidean geometry has a
model. The world in which we ϧnd ourselves is an example. But
Lobachevsky’s axioms have models as well, their discovery constituting the
shock to the nervous system that is popularly attributed to non-Euclidean
geometry as a whole. In 1866, the Italian geometer Eugenio Beltrami
demonstrated that hyperbolic geometries could be modeled by the surface of
a pseudosphere—the surface, note, and only the surface, so that the
mathematician’s imagination must serve to wrap Lobachevsky’s plane
around Beltrami’s surface (Figure 7.2).

It can be done, the wrapping, but not completely, and when done, lines
parallel to a given line start to multiply in space. But not parallel lines of
old and certainly not Euclidean parallel lines of old. On surfaces of constant
negative curvature, Euclidean straight lines undergo a semantic
transmogriϧcation; no longer straight and hardly even lines, they are
identiϧed with geodesics, which are arcs measuring the shortest distance
between two points.

FIG. 7.2



Once this adjustment to Euclid’s system is countenanced, Euclid’s parallel
postulate unobtrusively recedes.

Lines through a point parallel to a given line?
There are lots of them.

Writing some thirty years after Lobachevsky, Henri Poincaré provided a far
more intuitive model of hyperbolic geometry, one known now as the
Poincaré disk. Up to a certain point, the disk is what it seems—a ϩat,
circular, bounded, Euclidean expanse, something like a dish with no depth.
Points within the disk are Euclidean points. But lines in the Poincaré disk
consist of circular arcs intersecting the boundaries at right angles (Figure
7.3).

It is the deϧnition of distance that changes the Poincaré disk into a model
of hyperbolic geometry. Consider an arc swinging between two points on
the circumference of the disk, Pa and Pb. Much impressed by Poincaré
(instead of common sense), a snail crawling along the arc is now destined
to encounter an odd phenomenon: No matter the distance covered between
two points P2 and P1, the distance remaining between P1 and Pa remains
inϧnite, a mathematical illustration of the principle that the closer it seems,
the farther it gets. This odd feature of space is captured by a suitably
modiϧed deϧnition of distance, one that replaces the Euclidean deϧnition,
which simply disappears. The Poincaré distance between P1 and P2 with
complex coordinates z and w is deϧned as 2 arctanh {(z – w)/(1 – wz*)},
where z* is the complex conjugate of z, and arctanh is one of those lesser
trigonometric functions that are always just hanging around. This definition
has the eϱect of forcing the boundary of the Poincaré disk forever to be an
infinite distance from any point on a chord.



FIG. 7.3

The Poincaré disk gains purchase on the mathematician’s imagination by
means of two rather considerable semantic adjustments. Lines in the
Euclidean plane are reconϧgured so that they become arcs; and distances in
the Euclidean plane undergo a dramatic deformation so that ϧnite
Euclidean distances become inϧnite. With these changes in place, the ϧrst
four axioms of Euclidean geometry are satisfied. But Playfair’s axiom fails in
the Poincaré disk. There are indeϧnitely many lines parallel to a given line,
none of them ever intersecting the given line and all of them ingloriously
pursuing an infinitely receding boundary.

What in all this of the fabled shock promised by the advent of non-
Euclidean geometry? A tingle remains, to be sure, but one considerably
diluted by the suspicion that there is less here than meets the eye. It is a
suspicion that owes much to the very instrument by which non-Euclidean
geometry has acquired its logical legitimacy. Euclid’s parallel postulate fails
in the Poincaré disk. Nothing beyond a model is needed to establish the
point, at least to the logician’s satisfaction. And yet, as a dissatisϧed
common sense might observe, a great deal has been accomplished simply
by changing the established meaning of the Euclidean line and distance
formula. Euclid’s parallel lines have become swinging arcs. No wonder
there are so many of them intersecting a given point. Finite distances have



become inϧnite. No wonder that ϧnite arcs can be called straight lines. But
if the meaning of established terms can be dissolved, they can be
reconstituted as well. In that case, the theorems of hyperbolic geometry
become theorems of Euclidean geometry, ones that become apparent when
the Euclidean line and distance formula are restored to their original state,
with even Axiom 5**, turning out to be a perfectly ordinary Euclidean
theorem about the property of certain arcs in the plane. If the denial of
Playfair’s axiom were not consistent with the absolute axioms of Euclidean
geometry, the way would open to a proof of the original parallel postulate
by contradiction; if any of the theorems of Euclidean geometry under their
habitual interpretation were false in the Poincaré disk, then they would be
false altogether, since disks, chords, arcs, angles, and lines are all a part of
the ordinary world that reϩects and so models Euclidean geometry. It is
perfectly possible to scuttle backward from hyperbolic to Euclidean
geometry at the least sign of trouble.

From the logical point of view, this is precisely what is wanted,
establishing as it does that hyperbolic geometry is consistent if Euclidean
geometry is consistent. But from our point of view, something is amiss, since
the predominance of Euclidean geometry, which non-Euclidean geometry
was supposed to eliminate, has simply reasserted itself like a phantom limb,
one registering its presence in thought by an incessant intellectual itch and
a great deal of nervous chatter.

The umbilical cord connecting non-Euclidean to Euclidean geometry was in
the end severed by the work of Gauss and Bernhard Riemann. With their
work, there is weirdness triumphant, a genuine upheaval in expectations
and experience. If Gauss saw the way, it was Riemann who followed it.
Born in 1826 in a village near Hannover, Riemann is one of the great sad
ϧgures in the history of mathematics. He was, of course, an excellent
mathematician, his gifts notable from an early age; but he had in addition
what can only be called a taste for the ocean ϩoor. He got to the bottom of
things. His life was a series of unrelieved misfortunes. Often indisposed, and
almost always poor, he was devoted to his family, but family members died
proϩigately and at all the wrong times; suϱering from tuberculosis,
Riemann died at the age of forty, his talent still in full blossom. A man of
great gentleness and culture, Riemann occupies a position in mathematics
similar to the one that Schubert occupies in music. They were both
supremely gifted, and they were both horribly unlucky.



Riemann seems not to have known the work of Bolyai or Lobachevsky at
ϧrst hand, but he had his own model of non-Euclidean geometry in the
surface of an ordinary sphere. The same semantic tricks are in force.
Euclid’s parallel lines become great circles on the sphere, arcs whose center
is the center of the sphere itself. With this readjustment of meaning, it is
plain that Euclid’s parallel postulate fails because there are no lines through
a given point parallel to a given line. Sooner or later, great arcs all
intersect. But the sphere is yet a Euclidean object and so illustrates the same
now-you-see-it and now-you-don’t quality as Beltrami’s pseudosphere.
Acquiring its non-Euclidean credentials by means of semantic adjustments,
it surrenders those credentials the moment those adjustments are suspended
(Figure 7.4).



FIG. 7.4

It is for this reason that both Gauss and Riemann recognized from the
ϧrst the need to create an intrinsic geometrical system, one that makes no
assumptions about the larger world enveloping any particular non-
Euclidean model. Such a system would be perfectly adapted to the snail last
seen plodding along a straight line in the Poincaré disk. There is the snail,
there are his local aϱairs, and there is what can be built from that and
nothing else. By deϧning the surface of a sphere as a space in its own right,
Gauss had already taken steps to accommodate that snail. With Gauss in
charge, the snail loses all sense of a third spatial dimension. No up, for one
thing, and no down, for another. Trudging upward by our lights, the snail
has no way to accommodate height, and if he is disposed to give the matter
any thought at all, he will register his fruitless ascent in terms of an
inexplicable force resisting his every effort.

Riemann presented his thoughts to the mathematical community in a
lecture entitled “Uber die Hypothesen, welche der Geometrie zu Grunde
liegen—On the Hypotheses Which Form the Foundation of Geometry.” It is
one of the great documents in the history of mathematics, and especially
happy because it contains many deep ideas and very few calculations.
Gauss had himself suggested the topic for Riemann’s lecture, and he was in
the audience as Riemann spoke; he was afterward sincere in his praise, the
young, stuttering Riemann one of the very few mathematicians who elicited
the stern old man’s enthusiasm.

Like every great achievement in mathematics, Riemann’s lecture
addressed the future while carrying on a conversation with the dead, most
notably Descartes. Now Descartes had introduced mathematicians to the
coordinate method, assigning a pair of numbers to every point in the plane.
The coordination he achieved depends on some prior understanding of the
plane, if only as the place where those points are found. This dependency
Riemann severed. The plane vanishes. And so does every other intuitive
conception of space. Instead, there are only the coordinates themselves,
and these, Riemann argued, are simply numbers in a particular order, what
he called a manifold. In place of the plane, there are sets of ordered pairs
(x1, x2); in place of three-dimensional space, sets of triplets (x1, x2, x3), and
so to n-dimensional spaces, which are characterized by sets of n-tuples (x1,
x2, …., xn). Numbers and only numbers, that old Pythagorean note. This is
very liberating insofar as it empties the very notion of a higher-dimensional



space of its mysteries. A five-dimensional space is not a strange deformation
of ordinary space, one that only mathematicians can see, but a place where
numbers are collected in ordered sets. When string theorists talk of the
eleven dimensions required by their latest theory, they are not encouraging
one another to search for eight otherwise familiar spatial dimensions that
have somehow become lost. They are saying only that for their purposes,
eleven numbers are needed to specify points. Where they are is no one’s
business.

With the intuitive concept of space demoted in favor of his manifolds,
Riemann committed himself to the equally daring thesis that the analysis of
those manifolds must be local, proceeding entirely from the properties of a
manifold at a point. This is not at all the Euclidean point of view, where
the Euclidean plane is given from the ϧrst. On Riemann’s scheme, nothing is
there from the ϧrst, and if nothing is there from the ϧrst, there is nothing
there. The familiar image of the Euclidean mathematician observing
Poincaré’s snail from the outside—that also disappears. The snail is on his
own.

Riemann’s determination to make his analysis local made it at once
possible to import the calculus into his various constructions. The derivative
of a real-valued function is, after all, the supreme expression in
mathematics of analysis conducted at a point—that very one. Riemann thus
began his analysis of space by deϧning the distance between two points on
an arbitrary manifold. There is no reason to follow Riemann all the way up
to n-dimensions; two will do just ϧne. Descartes had deϧned the distance
between points by means of a formula,

one based on the Pythagorean theorem and in use since time immemorial.
Riemann built his deϧnition of distance on what are now called quadratic
forms. Two points, and so two numbers, are given from the start. They are
u1 and u2. The inϧnitesimal distance between those points is denoted by ds,
and expressed by the formula

The expression g12 on the right side of the equation is known as a tensor.
It may be thought of as a general prescription, one that, like a high-school
guidance counselor, indicates what kind of relationships these points may



enjoy and under what circumstances. There is in this equation an
astonishing amount of mathematical information, so much so that, having
ϧrst announced it, Riemann provided work beyond measure for generations
of mathematics. But the equation also has a limpid vernacular meaning,
one made easily accessible. It speciϧes the distance between points, and in
that sense it is simply a more general version of the Pythagorean distance
formula. A geometry in which distance is deϧned by means of the square
root of a quadratic form is known as a Riemannian geometry.

The familiar physical space in which we conduct our aϱairs and live our
lives must now be allowed to disappear, replaced through Riemann’s art by
a far more abstract and inaccessible object. The connection between the
ordinary concepts of geometry and concepts deϧned on a manifold is
attenuated, but it is not severed. Thus Riemann was able to deϧne the
concept of a curve in a space of n-dimensions by means of a set of n-
functions. In a two-dimensional space, two functions are required, u1(t) and
u2(t), each function pegged to the parameter t, which speciϧes the points
on the curve, point by point. With the deϧnition of a curve in hand,
Riemann was then able to deϧne the shortest curve between two points—its
geodesic; and then the angle θ between curves, angles, geodesics, and
curves all arising within the manifold itself.

This part of Riemann’s analysis is local, and so faithful to his original
idea; but Riemann was also able to deϧne the global properties of his
manifolds, and in particular their overall curvature. The deϧnition stretches
the very margins of the imagination. The overall curvature of a sphere, say,
its everlasting roundness, is not easily seen unless one simultaneously sees
the enveloping space in which that sphere is round. Riemann provided an
assessment of global curvature that makes no assumptions about the space
beyond the space being studied, and so makes use of mathematical
quantities entirely deϧned within the manifold itself. The requisite
deϧnitions Riemann took from the calculus and involve the generalization
of a tangent line to a tangent plane. The sphere continues to curve as it has
always curved, but it now no longer requires anything beyond itself in
order to keep on curving.

The global properties of space led Riemann to understand that by
adjusting various parameters in his formulas, Euclidean, elliptic, and
hyperbolic spaces all arise as special cases of the more general concept of
space itself, which now functions in mathematics as the remote, impalpable



black background from which particular spaces emerge. Euclidean space
comes about when suitable tensors are all 1 and curvature, as a result, is the
same at every point. But there are radically bizarre spaces as well, places in
which curvature changes at every point on the manifold. What, for that
matter, is one to make of a three-dimensional spherical space, a place that
is ϧnite in extent but boundless, geodesics heading oϱ for points unknown
and then ineluctably returning to the place from which they started? All
powers of visualization lapse.

With these ideas, Riemann the shy mathematician became Riemann the
prophet. If there is one abstract space, and that one capable of incarnating
itself in various ways, then the question of whether the space in which we
live is Euclidean, elliptical, or hyperbolic, or even some unsuspected
monstrosity in between, is no longer mathematical. We must seek, Riemann
wrote, “the grounds of various metrical relationships outside the manifold
itself, in the various binding forces which act upon it.…” Not yet born, it
was Albert Einstein who heard this remark in the spirit world in which he
was waiting as Riemann spoke.

The debate between those who take non-Euclidean geometry in stride and
those who ϧnd it the source of inexpugnable weirdness may now safely be
subordinated, at least in so far as mathematics is concerned.

Weirdness? That remains. It remains somewhere. But not in space. And
not in mathematics.

It is the physicists who have inherited the weird.



IT IS 1855 AND dried out at last, the great Gauss is about to die. And then he
is gone. A long transitional era in mathematics goes with him. Cauchy,

Monge, Lagrange, Legendre, Hermite, Dirichlet, Bolyai, Lobachevsky, and
Bernhard Riemann have all fallen or are about to fall from the dog carts of
time. Karl Weierstrass, Leopold Kronecker, Ernst Kummer, and Richard
Dedekind are poised to take their place. Sober men, the German
mathematicians are smoking torpedo-like Havana cigars. The era of the
stolid professor has commenced, almost every important mathematician in
the years between 1850 and 1900 draping his well-upholstered bottom into
a university chair and from those chairs controlling access to the learned
journals and the ebb and ϩow of graduate students and disciples.



Dissertations perish in their committees. If mathematics had since the death
of Euler in 1785 lost something of its untamed rhapsodic aspect, what it
gained was something even more considerable—intellectual mass,
soberness, organization, discipline, self-conϧdence. All eyes on Berlin, of
course.

Let me interrupt myself to ask: Is a crack-up coming?
And to answer: Of course it is.

Georg Cantor was born in St. Petersburg in 1845 and spent the ϧrst eleven
years of his life in the rich, warm, syrupy Russian milieu made accessible by
his father’s success as a shrewd merchant. When, in 1856, his father moved
his family to Wiesbaden in Germany, Cantor acquired a second language
and so a second culture, but he retained throughout his life the notably
dreamy disposition of a man inhabiting a larger imaginative space than his
tidy German surroundings might have suggested. Like so many other
mathematicians, Cantor was enraptured as a child by mathematics, even
his report cards mentioning an uncommon overall gift and a curious
dexterity in trigonometry, one suggesting the reappearance of a long-
hidden recessive trait. His father had thought that his son might become an
engineer, a profession that like medicine occupied the middle ground
between the practicalities of Geschäft and the rapture of mathematics. The
idea ϧlled Cantor with dismay. He won his father’s permission to study
mathematics, the exchange between the two men, far from being a tense
domestic drama, apparently marked instead by the mutual tenderness of
two romantic temperaments, both concerned to please the other.

These details might suggest a young man embarking on a modest
mathematical career. Nothing of the sort. Georg Cantor initiated a great
upheaval in nineteenth-century thought, carrying out one of those
revolutions that like certain earthquakes survive in the form of aftershocks
long after the ϧrst tremor has subsided. The eϱort dominated his life and it
drove him to madness, so that in his last years, when not resident in
various lunatic asylums, he occupied himself in proving to his satisfaction
that Shakespeare had not written his own plays.

Set theory was Cantor’s creation and his revolution, one that he carried
out with the pained sense that he was doing a great but poorly appreciated
thing. He was hardly a man suited by temperament for combat. He wished
for glory, but he had no great willingness to give oϱense, and so he
discharged the greater part of his natural aggression in resentment. His



antagonist, the dapper Leopold Kronecker, regarded his work as dangerous
folly and devoted himself to persecuting Cantor with an immense
zestfulness. Kronecker was a professor at the University of Berlin. Elegant,
able, and short, he was prepared to carry his intellectual grudges to the
edge of doom. Cantor had his defenders as well as his critics, Richard
Dedekind, most notably, and after Cantor had managed to alienate
Dedekind, Gösta Mittag-LeϮer; but despite this, he remained in a defensive
crouch for most of his life, uniting in his personality the two great
nineteenth-century romantic clichés of neglected genius and corrosive self-
pity.

Did all of this represent anything more than a spasm of spitefulness
among professors?

A great deal more, as it happened. A mathematical universe that had
until then seemed perfectly adapted to a nineteenth-century drawing room
was suddenly about to blow up until in the end it dwarfed even the physical
universe, the one that was already oppressing astronomers with its
monstrous size.

There was plenty to ϧght about and in a very real sense the ϧghts have
never ended, both Cantor and Kronecker thudding away at each other in
that celestial ring in which combat continues long after the combatants
have disappeared or turned to dust.

Set theory is unusual in that it deals with remarkably simple but apparently
ineϱable objects. A set is a collection, a class, an ensemble, a batch, a
bunch, a lot, a troop, a tribe. To anyone incapable of grasping the concept
of a set, these verbal digressions are apt to be of little help. Like points in
Euclidean geometry, the sets are primitive. There are at least ϧve kiwis
among the other things in the world (the ϧrst, the second, and so on to the
ϧfth), and directly thereafter, by means of a mental maneuver in which
attention, identiϧcation, and classiϧcation are all engaged, there is that set
of ϧve hairy fruits. The kiwis are, of course, conceptually incidental. A set,
as Cantor observed—as Cantor insisted—can be “any collection of deϧnite,
distinguishable objects of our intuition or of our intellect.”

A set may contain ϧnitely many or inϧnitely many members. For that
matter, a set such as {} may contain no members whatsoever, its
parentheses vibrating around a mathematical black hole. To the empty set
is reserved the symbol Ø, the ϧgure now in use in daily life to signify access
denied or don’t go, symbolic spillovers, I suppose, from its original



suggestion of a canceled eye.
If sets are fundamental, so, too, membership. The number two is a

member of the set of even numbers. It is at home among them. That is
where it belongs—2 ɛ {2, 4, 6, …}, the mathematician’s Greek epsilon
serving to remind the reader of what he or she can in this case see, namely
that two is right there among the even numbers. Membership is primitive.
No deϧnitions are availing. But not so inclusion, a diϱerent and less earthy
concept entirely. If membership is a relationship between an individual and
a set, then inclusion is a relationship between sets and still other sets, as
when the set comprising the numbers two, four, six, and eight is included in
the broad and noble set of even numbers. The welcome deϧnition is
obvious. {2, 4, 6} is included in {2, 4, 6, 8, 10, …} if membership in {2, 4,
6} guarantees membership in {2, 4, 6, 8, 10, …}. As it does.

Like those wonderfully ϩuid galaxies that astronomers assure us meet and
then merge in the night sky, sets can collide with one another, forming new
sets from old. The sets A = {1, 3, 5, 9} and B = {2, 4, 5, 9, 11} share some
members. A new set C = {5, 9} is formed from their intersection and it is
comprised entirely of elements in both A and B. The union of these sets is a
more promiscuous aϱair and consists of elements in either A or B, all of
them indiscriminately amalgamated, so that D = {1, 2, 3, 4, 5, 9, 11}. The
intersection of two sets is, to continue stellar analogies, a grazing motion;
their union, an undifferentiated merging.

From the ϧrst, working mathematicians turned gratefully to set theory
because of its immense, its obvious, usefulness. It comprises a series of ideas,
and a language, and a technique, its serviceability in this regard an
especially ironic circumstance just because sets are not themselves obviously
mathematical objects, sets serving perfectly well to collect kiwis and
kangaroos, as well as numbers and points. Set theory thus seemed to
nineteenth-century mathematicians to play the same role in the
organization of their mental life as those stretchable, lucent plastic sacs
now play in bagging fruit. The sac itself is not a fruit, but how else to
collect apples, pears, and peaches without that satisfying rip, the tense
tingle between thumb and foreϧnger, and thereafter the safely bagged
pineapple swinging from the scrotum of its sac? Mathematicians who used
set theory paid little attention to the fact that somewhere in Halle, a
greengrocer of genius was arguing for the primacy of sacs over fruit.

In analytic geometry, points in the plane are identiϧed with pairs of



numbers. Pairs—meaning that the ϧrst number is ϧrst and the second,
second. The underlying idea is that of things in order, but without using the
very notion of things in order, the idea is by no means easy to define. Given
the modest set theory already at hand, the deϧnition emerges naturally. An
ordered pair (a, b) is simply the set {{a},{a, b}} comprising the two sets {a}
and {a, b}. This little jewel of analytical ingenuity is a way of aϫrming
that when it comes to a and b, it is a that is ϧrst and b second rather than
the reverse, but nothing in the deϧnition appeals to the idea of order itself.
Like a smile, it just appears.

Concepts that had for a very long time been half a matter of intuition
and half a matter of inanition now acquire a very precise analytical voice.
For more than three hundred years, mathematicians had more or less
accepted the idea that a function was a rule or regularity, a mapping, a
conveyance, a relationship between variables, with even simple functions
such as f(x) = x2 exhibiting an undigniϧed amount of energy in taking a
number—any number—and sending it to its square. What sending a number
to another number really amounted to, mathematicians could not say,
beyond from time to time suggesting that a function embodied something
like a primordial act. Within set theory, functions at once lose some of their
metaphysical baggage. Let us get rid of the acts and the actors. A function
is a set of ordered pairs, so that f(x) = x is identiϧed with the set {(1,1),
(2,4), (3,9), …}, the mathematician’s dots now abbreviating those
innumerable pairs of numbers in which the second is the square of the first.

And there is, ϧnally, the way in which sets can be used to deϧne the
natural numbers, thus showing that numbers are not as primitive as
Pythagoras might have thought. The deϧnition again trades on the obvious.
The number zero is identiϧed with the empty set Ø—what else? The
number one is then identiϧed with the set that contains the empty set {Ø}
and so contains just one thing. The number two is identiϧed with the set
that contains just the empty set and the number one, and so on up the
chain of command. In this way sets, sets come entirely to replace numbers.
The success of this deϧnition at once suggests the possibility that in some
unspeakable way, nothing exists beyond the sets themselves.

Although Georg Cantor spent a few dutiful months at the Zurich
Polytechnique, the death of his father in 1863 and the acquisition of his
inheritance allowed him to move to Berlin. There he devoted himself
completely to mathematics. For a time he taught high school. I have no



idea why. Dressed formally in a gray cutaway and a shirt with a batwing
collar, the short black tie crossed at the throat and held in place by a
lustrous garnet, he must have entered the classroom as a stately professorial
panda. A great crown of dark brown curls is piled on his ϧne, noble face,
the forehead high and arched. Seated at their desks, twenty young
mädchens, their starched shirt fronts covering their gently heaving bosoms,
are twittering. This is of all things a school for girls, the daughters of Berlin
businessmen, proud papas eager for their plump peach-skinned oϱspring to
have at least some modest acquaintance with Higher Thoughts before
disappearing into maternity and middle age. The young women rise in a
wave and sing out, Guten Morgen Herr Professor, the rhythm of their respect
broken by the thin piping of a few giggles.

The Panda withdraws; the young women recede.
At the University of Berlin, Cantor studied under the stern Teutonic

sunlight shed by Ernst Kummer, Leopold Kronecker, and Karl Weierstrass.
The great age of analysis had commenced. And for good reason. Dragging
its winding-sheet from the time of the Greeks, a long series of half-hidden
doubts and scruples had reappeared in various middle-European seminar
and lecture rooms, and with a foul exhalation of stale denture breath began
rapping a bony knuckle on all the Berlin blackboards.

From the ϧrst, Denture Breath reminded the Berlin mathematicians that
the Greeks could make no sense of irrational numbers such as the square
root of two. Mathematicians had since the Renaissance embraced them with
the guilty sense that sooner or later they would have to explain to one
another just what they were doing. Now it was later. The square root of two
is needed, after all, to measure the diameter of a triangle whose legs are
one unit in length. It thus corresponds to some distance, some tangible
property of things. To say simply that there is some distance measured by
no number was intolerable in itself, and intolerable physically, for those
splendid electromagnetic ϧelds that Clerk Maxwell had in 1859 introduced
were continuous by deϧnition. Containing holes where there should be
numbers, no such ϧeld could be continuous, the entire fabric of physical
thought, if examined too closely, likely to release a battery of nauseatingly
plump moths from its redolent plush.

Sitting before the masters, Cantor absorbed not only their lectures, but
their attitude—a curious combination of intellectual optimism and tense
wariness. No mathematician wished to see another Bishop Berkeley arrive
on the scene and with a few clever remarks demolish their pretensions to



rigor. Thank God these pests were for the moment trying to make sense of
Hegel’s dialectic or occupying themselves with Kant’s Transcendental
Categories. When Richard Dedekind attempted to provide a clear,
persuasive account of those damnably diϫcult irrational numbers, he faced
an audience of mathematicians. His deϧnition Dedekind expressed in terms
of the idea of a “cut.” “Every rational number,” he observed, “eϱects a
separation of the system into two classes … such that every number of the
ϧrst class is less than every number of the second class.” There are the
numbers less than two, and the numbers greater than two, the number two
cutting the number system as cleanly as a knife blade. But plainly there are
cuts corresponding to no rational number whatsoever, the separation made
without a knife, like a loaf of bread that divides by means of the baker’s
glance. There are the numbers whose square is greater than two, and those
whose square is less than two. The numbers fall apart, but nothing in the
numbers themselves is doing the cutting. With masterful insouciance,
Dedekind brought the missing irrational number into existence by an act of
will. “Wherever, then,” he wrote, “we have to do with a cut produced by no
rational number, we create a new, an irrational number.”

There is a long pause in various seminar rooms, a cough or two, as
Denture Breath shakes his cerements.

We create a new number?
We?
Kronecker, appearing in his usual incarnation as the Accountant of

Record, if not Rectitude, thought it was all nonsense. He proposed to
champion standards of mathematical probity that for the moment he alone
could meet, if only because he alone wished to meet them. In an important
manifesto published in 1886, he outlined his objections to various attempts
to conceive [of] and establish the “irrationals” in general. The natural
numbers Kronecker accepted as a God-given miracle, and he accepted them
as they were given, with no embarrassing questions asked about how the
Almighty conceived of them. A sense of skepticism that placed the natural
numbers in doubt would in the end place everything in doubt, and, like all
skeptics, Kronecker was most concerned not to allow an acid of his own
devising to drip on him. The standard of skeptical assessment that he
championed was thus carefully contrived and very cagey. Mathematicians
were free to do as they wished or invent what they wanted. Who was he to
scruple so long as whatever they did or invented returned to the properties
of the natural numbers in a finite series of steps. It was, of course, a



standard that no one could meet. Kronecker was terrier-bright and
persistent, and the fact that he had made himself independently wealthy
and lived in a splendid Berlin mansion, while it excited the envy of his
enemies, did not entirely endear him to his friends.

Cantor kept quiet and lay low, devoting himself to Gauss’ splendid
arithmetical monograph, the Disquisitiones arithmeticae, and answering in
his Ph.D. dissertation a question that the great Gauss has set aside. It is
1867 and he is only twenty-two.

The ontological question, W. V. O. Quine once observed, is simply this:
What is there? The safe answer is everything, but intuitions divide on cases.
In a universe consisting of ϧve kiwis and only ϧve kiwis, is that all there is?
Or is there, in addition, the set of ϧve kiwis, or even the Form of the Kiwi,
bringing the ontological total in either case to six? Platonists in philosophy
have always been eager to take that extra step beyond the kiwis;
nominalists have always demurred, perhaps from a sense that in matters of
being as in matters of sin, nothing exceeds like excess.

Georg Cantor was a mathematical Platonist, and more, a mathematical
Plotinist, his unacknowledged master the Greek philosopher Plotinus, and
the universe that he constructed from the philosophical axiom that sets, no
matter their size, are as real as their members, resembles closely the
overwhelming universe that in his dreams Plotinus saw.

Despite notable diϱerences between sets containing ϧve kiwis, ϧve
ϧngers, ϧve toes, and ϧve coughs in the humid night, all such pentavalent
sets are overwhelmingly alike in one respect: They are the same size. This
observation seems simultaneously to radiate and absorb light. That these
sets contain ϧve members means they are the same size. The light goes on.
That these sets are the same size means they have ϧve members. The light
goes out. This net reduction to darkness prompted Cantor to an inspired
deϧnition. Sets are similar in size, he argued, if their members can be put
into one-to-one correspondence with one another. The concept of a
correspondence is one of the few mathematical ideas as comprehensible as
a pane of glass. To see it is to see through it. Two sets may be placed into
one-to-one correspondence when their members line up, one to one, as in
those painful elementary-school dances, held in the school gymnasium, in
which each girl gets one of the boys, each boy gets one of the girls, and
with the engagement concluded, the pairs now plodding dutifully around
the gymnasium floor, everyone has been paired off and no one left out.



It is the same thing in mathematics. It is exactly the same thing.
There remains a ϧnal step. To the set of sets similar in size, Cantor

assigned a new number—its cardinal number. The set of all sets similar in
size to five-membered sets has the cardinal number five.

In all this, the impression is strong that although words have been spun,
no work has been done. This is a mistake. The most surprising surprises
accumulate when inϧnite sets are considered, and they are up for
consideration just because their claim to reality is every bit as sturdy and
deserving as the claims advanced on behalf of the ϧnite sets. If cardinal
numbers could be assigned to similar ϧnite sets, Cantor asked, could they as
well be applied to similar infinite sets? Why not? It is thus that the ϧrst
inϧnite cardinal number makes an appearance. It is the cardinal number of
the set of natural numbers itself, and to symbolize this number Cantor chose
the Hebrew alef, ℵ0. It is ℵ0 that designates the set of all sets that can be
put into one-to-one correspondence with the natural numbers.

And thereafter to the surprises, the ϧrst a puzzle noted by Galileo. The
natural numbers 1, 2, 3,… seem intuitively more numerous than the even
numbers 2, 4, 6, 8…. An indiϱerent common sense might even argue that
there were twice as many natural numbers as even numbers. And yet, when
counted by means of Cantor’s cardinal numbers, the natural numbers and
the even numbers turn out to be similar. They can, after all, be put into
one-to-one correspondence:

This would seem to suggest that in respect to inϧnite sets, the whole is not
necessarily greater than its parts. Galileo found this conclusion repugnant.
It is not the stuϱ of common stuϱ. It does suggest a clash of intuitions.
Cantor took it all in stride. The natural numbers and the even numbers are
similar; they can be put into one-to-one correspondence; and they thus do
share the same cardinal number. It follows that they are the same size.

So much for common sense. Whereupon common sense does what
common sense always does, and retires flustered from the controversy.

When in 1869 Cantor found employment at the University of Halle, a
provincial Saxonian town some ϧfty miles or so from Leipzig, he seemed



prepared to embark on a career as a man of talent, but not genius, someone
who could be expected to make a contribution without causing a
commotion. Between 1874 and 1884, Cantor published an extraordinary
series of papers, outlining his theory of sets and from no more than the
very modest, if somewhat abstract, ideas I have already outlined, drawing
the most dramatic conclusions about mathematics and the world beyond.

The appearance of Cantor’s ϧrst paper on set theory coincided roughly
with his marriage and the acquisition of a substantial house in Halle. In his
outward life—the one that could be seen from a distance—he oϱered an
inspired impersonation of a middle-class German academician. He taught
classes, attended lectures and conferences, and participated in departmental
hiring decisions, each time losing to an implacable and curiously successful
Other Side. He dabbled in art with some considerable skill, a pencil sketch
of his depicting a mangy dog investigating attentively its crotch, a minor
masterpiece. He listened to music during chamber music evenings and
played the violin, a number of plangent melodies suggesting by the cliché
of their Slavic soulfulness the contrast between Cantor’s life and his
aspirations. In his inner life, which he conveyed to his letters, papers, and
journals, he raged and brooded as he clambered over an intellectual
landscape that included philosophy, mathematics, and theology, dissatisϧed
that where he had expected to hear praise booming up from the valley
ϩoor, an enthusiastic yodel ricocheting from one mathematician to another,
there was Kronecker forever saying no in Berlin, with even sympathetic
mathematicians unwilling to give him their wholehearted assent, and
throughout it all, the ascent marked by those missing yodels, he never for a
moment lost confidence in the essential glory of his vision.

For a very long time, mathematicians had followed Aristotle in fashioning
an uneasy compromise with the concept of the inϧnite. Mathematics is, of
course, up to its nose in things that, like the natural numbers, go on
forever. Limits require convergence through inϧnitely many steps. Fractions
descend without end and points appear between points on the line or in
space. These various processes, and things, and the drama of continuation
that they embody, mathematicians argued to one another, were an example
merely of the potentially inϧnite. The natural numbers do go on forever.
This is quite true. But at any particular point, there are only ϧnitely many
numbers; and to say that the rest of them are inϧnite is only to say that the
chain of numbers, although forever ϧnite, gets larger and longer. What



seemed patently unacceptable was the idea of a completed inϧnity,
something inϧnitely large in virtue of its nature. As he so often did, Gauss
oϱered an oracular pronouncement, one expressing his “horror of the
actual inϧnite.” “I protest,” he protested, “against the use of inϧnite
magnitude as something completed, which is never permissible in
mathematics. Inϧnity is merely a way of speaking, the true meaning being
a limit which certain ratios approach indeϧnitely close, while others are
permitted to increase without restriction.” This point of view, which is
attributed often to Aristotle, is one in which purely verbal constructions
—“approach indeϧnitely close” and “increases without restriction”—
presuppose precisely the forbidden concept of inϧnity that they are meant
to evade. The sequence of ratios 1/n, after all, “approach[es] indeϧnitely
close” to zero as n “increases without restriction,” but for any given value of
n, there are still infinitely many fractions between 1/n and zero and
infinitely many numbers beyond n. Verbal shuϮes do what verbal shuϮes
always do, but in this case, it is hard to see that they do anything at all
beyond shuffling.

It is the forbidden concept of inϧnity that Cantor endeavored to
rehabilitate, an eϱort that was to prove almost too successful as, with a few
theorems and their proofs, Cantor managed to bring into existence a world
of inϧnities beyond inϧnities, things suddenly multiplying without cease
and expanding without limit.

Set theoretical parturition is a remarkably simple matter. Consider a
simple set P consisting of the numbers one, two, and three. How many
subsets does P contain? The question is no more devious in mathematics
than it would be in political science were a political scientist to wonder how
many committees can be formed from members of his remarkably small
three-membered department. Here is an answer by enumeration: Ø, {1},
{2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, the null set, I imagine,
corresponding to the departmental chair, and the rest making up various
combinations of professors.

And here is the answer by means of a formula: 2N, where N is the
cardinality or size of the original set.

And here is the point: 2N is greater than N—always. What Cantor called
the power set of a set is larger than the set itself.

Access to the inϧnite beyond the inϧnite has now been acquired, for by
means of reasoning already established—the reader snuϮing mildly two
paragraphs before, missing the careful clue—ℵ0 is less—it must be less—



than the set of its subsets, which has the cardinality 2ℵ0. There is thus a
cardinal number lying beyond ℵ0, and, of course, by means of the same
reasoning, if there is one, there is another. An access to the transcendental
hierarchy is now open, the cardinal numbers now lined up somewhere in
space beyond the natural numbers like an endless series of freight cars:

these admittedly strange numbers all denoting inϧnite magnitudes, the
progression easily matched by a corresponding series of English adjectives:
big, bigger, bigger still, still bigger, bigger than bigger, humongous, and beyond.
…

Completed inϧnities? But of course they are completed. Their names are
right there on the printed page and their existence has come about by
means of the single assumption that sets are as real as the members they
contain.

The hope that in potential inϧnities a way would be found both to have
access to the inϧnite and to retain the comfort of purely ϧnite magnitudes
may now be seen for what it all along was, that is, an illusion. Either there
are infinite magnitudes or not.

As far as mathematics goes, there had better be.

The cardinal numbers capture one property of the numbers themselves, and
that is their size. But the numbers not only measure size but indicate order,
so that the number ten, which the Pythagoreans worshiped, has a certain
internal structure. It comes after nine, which in turn comes after eight, and
so on down. In order to capture this property of the numbers, Cantor
suggested that the number ten is comprised of its immediate predecessor,
and all the numbers before it, so that 10 = 9 ∪{0,1,2, 3,4,5,6,7,8,9}.

Or more generally, x+ = x ∪{x}, where x+ is the successor to the set x.
The natural numbers as a whole form a set, one completed, Cantor
believed, before the mind’s eye. It is the smallest set that contains zero and
that contains x+ whenever it contains x. It is designated by the symbol ω.
And therein begins a drama of mathematical gestation almost biblical in its
fecundity. “What happens,” the mathematician Paul Halmos asked
rhetorically, “if we start with ω, form its successor ω+, then form the
success of that, and proceed so on ad inϧnitum?” The question is sly, and it
contains a double sense. What happens, one might ask, if we simply apply



rules of set construction to sets already constructed? One question. But what
happens, one might also ask, as those rules of construction are endlessly
applied. Another question. The ϧrst is a matter of legitimacy. Can those
rules be recycled, the second a matter of ontology? Cantor believed, of
course, in recycling like mad, and the very simple rule of set succession,
involving nothing more than a backward look toward a set’s predecessors,
opens up to an enlargement of possible sets so vast as to make the natural
numbers themselves seem tiny. And the natural numbers, it must not be
forgotten, are infinite.

Thereafter Halmos is especially ϧne in recounting the progression of
ordinal numbers in a cadence appropriate to Genesis. “After 0,1,2, …,”he
writes, “comes ω, and after ω, ω + 1, ω + 2,… comes ω2. After ω2 + 1
(that is, the successor of ω2), comes ω2 + 2, and then ω2 + 3; next after
all the terms of the sequence so begun comes ω3. Next comes ω3 + 1, ω3
+ 2, …, and after them ω4. In this way we get successively ω, ω2, ω3, ω4,
….” But something follows from this sequence in the way that ω follows
from 1,2,3,…. “That something is ω2. After that the whole thing starts over
again: ω2 + 1, ω2 + 2, …, ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, …, ω2 +
ω2, ω2 + ω2 + 1, ω2 + ω3, …, ω2 + ω4, …, ω22, …, ω23, .…, ω3, …,
ω4, …, ωω, …..”

But the tower keeps climbing, for after the last of the omegas, there is ɛ0,
and then ɛ0 + 1, and ɛ0 + 2, and then, of course, ɛ0 + ω, and ɛ0 + ω2,
and so further to ɛ0 squared, and beyond that to still another set, the tower
of successor sets multiplying itself endlessly, pullulating, fecund, vast,
unfathomable, what Cantor called the unermesslichen Grösse.

And this from no more than a handful of symbols.

Although Cantor had published a number of important papers before, he
published the ϧrst of his revolutionary papers in 1878, and he published it in
Crelle’s Journal, over the objections of its editor, Leopold Kronecker. It was
in the Mathematische Annalen, however, that Cantor published the six
papers that most completely expressed his vision of the universe of sets. He
was by then an established university professor at Halle, and so a man of
some prestige, but like every mathematician who had not been called to
Berlin, he found his exclusion a great aϱront to his happiness, and schemed
incessantly to obtain a position. It was apparently Leopold Kronecker who
stood in his way. Cantor fell ill, his mood darkening as the result of
overwork and nervous tension; he was forced to ϧnd refuge in various spas



and mental hospitals, his nurses in their starched uniforms perhaps
unconsciously reminding him of those students of his who had greeted him
as a young man.

Set theory is a very large tableau and like only the greatest works of art, it
divides everything into before and after. Open any contemporary
mathematical text at random, and the theorems, proofs, and deϧnitions are
all expressed in terms of the ideas that Georg Cantor created. The tools and
the techniques of set theory have so completely been adopted by the
mathematical community as to become almost identiϧed with the tools and
the techniques of mathematics itself. For more than a century, the language
that Cantor invented has been the standard language of mathematics
throughout the world. Set theory also permeates ordinary English as well as
ordinary mathematics, the words “a very large proper subset” seeming
inoϱensively to designate what before 1880 would have been expressed by
the words “most but not all.” But to speak of the triumph of set theory would
be to assign to its creation the attributes of a myth. Cantor’s set theory is
inconsistent, mathematicians understanding at once that its fecundity and
its inconsistency were deeply linked. There is Russell’s paradox, the best
known among a collection of paradoxes and the easiest to state. If sets are
subject only to some principle of free construction, then what, Russell
asked, of the set of all sets that are not members of themselves? There are
those various sets that are not members of themselves: the set of dogs,
which is not a dog, the set of mathematicians, which is not a
mathematician, or the set of blondes, which is not a blonde. Then there is
the set of all these sets. If this set is not a member of itself, then it is, by
virtue of how it is deϧned, and if it is, then it is not, by virtue of what it
includes. This is a most troubling conclusion to have reached, the more so
since it involves no fancy mathematics, no complicated deϧnitions, nothing
out of the ordinary; Russell’s paradox trades simply on the very most basic
ideas of a set and membership in a set. The Italian mathematician Burali-
Forti had already asked pointed questions about the set of all sets of ordinal
numbers, and whether it, too, was an ordinal number. Cantor had
discovered paradoxes himself; but he proposed no general intellectual
defense of his theory adequate to its existence. The most striking
mathematical theory of the nineteenth century thus entered the twentieth
century corrupted at its source.

In his later years, Cantor’s mind turned toward theology and



metaphysics. Catholic theologians had seen in his theory some suggestion
of the forbidden doctrine that the universe might be everlasting, a position
incompatible either with its creation by God or with his continuing
usefulness. Cantor endeavored to show that this interpretation was
mistaken. He was persuaded that mathematics was not only useful to the
sciences—this no one had ever doubted—but the source of insights that
even mathematical physicists could not on their own discover. This view is
very common among mathematicians who have not done work outside of
mathematics. “One of the most important problems of set theory,” he
wrote, “consists of the challenge to discover the various valences or powers
of sets present in all Nature.” That challenge having been met, or so Cantor
was persuaded, it followed that the number of elementary particles in
nature must be inϧnite, each corresponding to a point without extension.
This aspect of Cantor’s work, it must be admitted, has rarely won favor
among mathematical physicists.

Or among anyone else, a form of prejudice, when the matter is soberly
considered, as bitterly unfair as the initial condemnation of Cantor’s purely
mathematical ideas by mathematicians too timid to take large chances.

By the turn of the century, Georg Cantor had nonetheless achieved at
least a part of his heart’s desire: He was at last admired. No one doubted
that he had changed the face of mathematics. David Hilbert, the largest
mathematical personality of his time, would later refer to set theory as an
intellectual paradise, an oddly apt choice of words suggesting both a valley
of fruit trees in bloom and the prospect of an unforgiving exile.

For much of his later life, Cantor was consumed by the idea that Francis
Bacon had composed Shakespeare’s plays and talked endlessly about the
conspiracy to obscure this fact. He again fell psychologically ill in 1916, as
the ϧres of the First World War contracted steadily around the
circumference of the German Empire, and, conϧned once again to a mental
hospital, he was for the ϧrst time in his life forced to undergo real
deprivation. He grew thin and then gaunt.

His great wish was to be given permission to return to his home on the
Händelstrasse in Halle, where he had lived for so many years, but for
reasons that are not clear, this wish was denied, and frail and by now
worn, he died on January 16, 1918, twenty-nine years after Leopold
Kronecker had died in Berlin.



NOT A CRISIS—NO, that would be too much. More like a persistent cough, with
any number of distinguished mathematicians sniϮing into their

handkerchiefs or hawking energetically against their raised ϧsts. It is
sometime after 1889 and before 1932, an artiϧcial era bounded on the one
hand by Kronecker’s death and on the other by the publication of Kurt
Gödel’s monograph, “On Formally Undecidable Propositions of Principia
Mathematica and Related Systems,” in the German mathematical journal
Monatshefte für Mathematik und Physik. Throughout years of war, revolution,
and civil unrest, mathematicians in Germany, France, England, Russia, and
then the Soviet Union were doing what mathematicians have always done:
casting for concepts, proving theorems, streamlining proofs, and at



international meetings chattering amiably in time reserved from fomenting
feuds.

And yet there is that cough. Having died of a bronchial infection all his
own, Kronecker kept his spirit hacking for years afterward and so became a
one-man epidemic. And for good reason. A number of shocks had frazzled
the collective nervous system of the mathematical community. No sooner
had mathematicians grown used to hyperbolic or double-elliptic surfaces in
non-Euclidean geometry than something twice as strange would pop up—a
Klein bottle, say, with drooping Dali-like handles or one of Poincaré’s non-
Euclidean Petri dishes in which under some monstrous metric ϧnite
distances had become inϧnite. The great nineteenth-century analysts such
as Weierstrass and Dedekind had by means of inϧnitely wearisome
deϧnitions clariϧed the foundations of the calculus, but their deϧnitions,
like light shone on cobwebs, had revealed cobwebs behind cobwebs, strange
functions, for example, that were continuous everywhere but not
diϱerentiable at all, pathological deformities, counterintuitive
counterexamples. The very well known contemporary text, Counter-
Examples in Analysis, which is today read by every graduate student,
comprises a series of misleading proofs supporting theorems that are not
theorems. Much of the material is drawn from the late nineteenth century.
In Italy, mathematicians were busy constructing still other horrible things,
curves capable of ϧlling the whole of space in any number of mutant
dimensions. And in libraries and committee rooms, mathematicians were
uncovering paradoxes in set theory itself, Russell’s paradox chief among
them, the others turning on various bizarre forms of self-reference in which,
like a smile opening into a toothless mouth, an inescapable gap in thought
revealed itself.

By the early years of the twentieth century, Kronecker’s spirit could, with
some justiϧcation, claim credit as a prophet as much as a scold. How that
short dapper little man seems to have seen all the low secret places in the
mathematician’s art.

In 1900 David Hilbert delivered an address entitled “Mathematical
Problems” before the International Congress of Mathematicians in Paris.
Although still a young man, Hilbert addressed his audience as the
mathematical king that he was. Prussian-born and German-bred, he had
already made striking contributions to many branches of mathematics, and
there was to his published work a kind of luminousness, so much so that it



was often said that when Hilbert had ϧnished with an area of mathematics,
the subject acquired the perfection and the irrelevance of a museum
exhibition. In a discipline dominated by men who were often hysterical and
almost always vain, Hilbert was notable for his self-control, his measured
appreciation of other mathematicians, and his generous instinct for the
scientiϧc sublime. The room, participants reported, was stuϱy and the
weather warm. Hilbert spoke for more than an hour, his thin tenor voice
reedy. A part of his talk was devoted to the general sense that as the
nineteenth century recused itself in favor of the twentieth, mathematicians
faced for the ϧrst time since Euclid substantial questions about the
intellectual authority of their discipline and the foundation on which it
rested. The endless accumulating paradoxes were like certain forms of
gossip both wickedly alluring and profoundly threatening because they
represented a contracting fringe of mathematical unwholesomeness, one
drawing ever closer to the center of mathematical life.

It is in this atmosphere of anxiety that Hilbert proposed the second of the
problems that in 1900 he was prepared to address to the future: He asked
mathematicians to provide a proof that the axioms of arithmetic were
consistent. Georg Cantor had twenty years before defended consistency as
the single probative standard for all of mathematics, the free creations of
the human mind, like homeopathic medicine, justiϧed because they did no
harm. Hilbert now demanded that this lyrical idea itself be brought under
the control of a mathematical proof. It was a proof that in 1900 Hilbert was
not prepared to supply. What he did oϱer was a hint. Talking of the
development of new ideas in mathematics, Hilbert remarked quite suddenly
that “to new concepts correspond necessarily new signs.” By “signs” Hilbert
meant something like the numerals used in ordinary arithmetic, or the
pictures used in geometry. “No mathematician,” Hilbert remarked mildly,
“could spare these graphic formulas.”

Then facing his audience with cool assurance, Hilbert added words that
seem as part of the past as strawberries served on various English lawns in
the summer of 1914: “We hear before us the perpetual call. There is the
problem. Seek its solution. You can find it by pure reason.…”

In 1910, Bertrand Russell and Alfred North Whitehead published the ϧrst
volume of Principia Mathematica. Their ambition was to demonstrate that
the principles of arithmetic could be derived from the principles of pure
logic. Years later, Russell wrote in moving terms of his quite desperate



desire to allow his turbulent thoughts to ϧnd repose in a mathematical
structure of perfect certainty. The Principia Mathematica is the expression of
this need, Russell quite clearly believing that if the principles of logic were
not certain, then nothing could be certain at all. In that case, the human
mind would be utterly adrift, a prospect that Russell regarded with
loathing. The Principia Mathematica commanded the attention of the entire
mathematical community, and if Russell and Whitehead required more than
three hundred pages to demonstrate that 1 + 1 = 2, then at least
mathematicians who had read that far could say that by God one and one
were two. Curiously enough, few among them thought to ask whether it
was a point that they had ever doubted.

Hilbert was deeply impressed by the Principia; he had always been a
mathematician with a very strong sense of the architectural. However
mathematical ideas arise, he believed, it is the responsibility of the
mathematical sciences “to investigate the principles underlying these ideas
and so to establish them upon a simple and complete system of axioms.”
Russell and Whitehead had provided an axiomatic structure for arithmetic
in the Principia Mathematica. They had carried out their work with an
unheard-of degree of precision and meticulous detail. Why not say that they
had done what in so many respects needed to be done in order to end the
corrosive sense of intellectual insecurity that by 1910 had seeped from all
the seminar rooms to become a part of the general mathematical air? For
just a moment, Hilbert was persuaded. He then realized what should in any
case have been obvious. Russell and Whitehead had provided a magniϧcent
defense of a position not directly under attack. No matter their imposing
and often rebarbative deϧnitions, proofs, and theorems, the Principia served
only to ratify what few mathematicians were prepared to doubt, and it did
nothing to indemnify what many mathematicians were prepared to
question—the consistency of their system as a whole. What did it proϧt the
mathematical community to establish as a theorem that 2 + 2 = 4 if no
assurances could be given that somewhere down some awful tunnel of
thought there might be another theorem, as impeccable as the first, this one
demonstrating that 2 + 2 = 5?

As Hilbert came to understand, Russell and Whitehead had not
demonstrated the consistency of their system because they had not
recognized the importance of the question before 1910, and they were in no
position to answer it afterward.



In 1919, Hilbert turned his thoughts again to the foundations of
mathematics. He was now a mathematician living in the fullness of time,
world-famous, but not world-weary, and consumed completely by the desire
to establish once and for all the moral grandeur of mathematics as a source
of certainty. Together with his collaborator, the logician Paul Bernays, he
occupied himself for the next eleven years in the elaboration of what at
once was called the Hilbert program.

From the ϧrst, Hilbert’s thoughts turned on a distinction that experience
indicates is diϫcult to observe and painful to enforce. It is the distinction
between signs or symbols and what they signify. The word dog comprises
three English letters; the pooch is something else. This may well seem
obvious, but when the distinction is allowed to lapse, the result is often
chaos, both in philosophy and mathematics.

Within mathematics, signs are typically marks on paper; Hilbert now
made such signs the subject of his concerns. The concepts of mathematics,
he acknowledged, may well be “inadequate and uncertain,” but the signs by
which they are expressed belong to a realm of “extra-logical and discrete
objects,” and these “exist intuitively as immediate experience before all
thought.” In this they are like any other discrete physical object, the mind
grasping the numerals as readily as it might grasp a series of sudden noises
in the night, or colored marbles on a tabletop, or even, I suppose, the sharp
and distinct smells of strong German cheeses. “If logical inference is to be
certain,” Hilbert argued, “then these objects must be capable of being
completely surveyed in all their parts, and their presentation, their
diϱerence, their succession … must exist for us immediately, intuitively, as
something which cannot be reduced to something else.”

In the case of the Principia Mathematica, or any other axiomatic system for
that matter, Hilbert was now calling for an eϱort at transcendence, one
that severed the symbols of the system from their intended meaning. With
the severance complete, there remained only the symbols—a handful of
primitive shapes in the case of the Principia. If the primitive symbols of an
axiomatic system could themselves be made the object of thought, so, too,
their combination into still more complicated symbols, as when the symbols
“1,” “2,” “+,” and “=” are combined to form the formula “1 + 1 = 2.” But
then, Hilbert asked, what is a proof if not a sequence of such symbols, as
when the symbols representing the axioms of the Principia lead step-by-step
to symbols representing the conclusion that 1 + 1 = 2?

The study of symbols taken as symbols comprised a new mathematical



discipline, one that Hilbert called metamathematics, since its subject was
just the apparatus of symbols used in ordinary mathematics. Cantor had
discovered in the various sets and sets of sets a new universe of
mathematical objects. He had enlarged the margins of what the
mathematician noticed. Hilbert now discovered a universe that had for
thousands of years been hidden in one that was old, the symbols and
symbol sequences that had always been the mathematician’s crutch—their
conveyance to the world of mathematical objects—now becoming
mathematical objects in their own right.

Metamathematics involves a diϫcult mental maneuver, one akin to
doublethink in Orwell’s 1984. It demands that the mathematician withdraw
meaning from the symbols that he is observing while at the same time
remembering what on ordinary occasions those symbols mean. During the
1920s, Hilbert, it is true, very often wrote as if mathematics were a kind of
game, one played with formulas, just as chess is played with wooden
soldiers; it was quite natural that mathematicians such as Hermann Weyl
often took him to mean that mathematics was only a game. But if Hilbert on
occasion wrote carelessly, he was far too great a mathematician to imagine
that mathematics was nothing more than an energetic attempt to shuϮe
around symbols on various boards of play. The symbols did double duty.
They expressed the great, the all-important truths of mathematics, and in
this sense they functioned as symbols always function, going beyond
themselves to touch the real world. But they also embodied a solid, discrete,
and physical system, and in this sense, they were simply objects in play, the
mathematicians’ particular genius a part of the general human capacity to
impress the human mind on matter.

If the symbols of a mathematical system are bound to double duty,
Hilbert believed, it was in their incarnation as physical shapes that they
oϱered the mathematician his best opportunity to bring the axiomatic
system of which they were a part under ϧrm and enduring intellectual
control. Questions that had before been asked about an axiomatic system
could now be asked about its formal skeleton instead, and since the skeleton
consisted of physical objects existing in a world of other physical objects,
they might well be the subject of attention more penetrating than the
“inadequate and uncertain” concepts that they expressed.

To the metamathematician thus fell certain housekeeping chores:
providing a complete inventory of the system’s elementary symbols, and a
precise account of the way in which they could be combined. There was



next the matter of specifying the way in which one formula could be
derived from another, an inventory of rules of inference that
mathematicians had until then accepted as a part of the background
chatter. With these rules speciϧed, proofs would then be speciϧed as well,
since from a metamathematical point of view, a proof is nothing more than
a sequence of symbols, each derived from the one before, the whole
resembling a procession of elephants moving trunk to tail. In this way,
Hilbert argued, “mathematics becomes an inventory of provable formulas.”

Hilbert now found the means to express questions that had until then
been as much a matter of inarticulate anxiety as anything else. Are the
axioms of the Principia Mathematica consistent in the sense “that a deϧnite
number of logical steps based on them can never lead to contradictions”? A
proof is required, and required on the metamathematical level. And to this
question, Hilbert added another, one equally important. Are the axioms of
the Principia Mathematica complete in the sense that for any formula that
could be expressed by means of its symbols, there was a proof either of the
formula or its negation? Mindful of the suspicion that such
metamathematical proofs, whatever they might be, would themselves be as
open to skepticism as the systems they were intended to justify, Hilbert
demanded as well that they be expressed in what he called “ϧnitary terms,”
the proofs themselves making use only of the combinatorial character of
the symbols they were addressing. No appeals to meaning; no appeals to
inϧnite sets; nothing but a short, direct, intuitively obvious sequence of
finite steps.

For a moment Kronecker’s face appears on the screen of thought, and
then as rapidly vanishes.

Kurt Gödel was born in the Moravian village of Brünn in 1906, his
upbringing and early education uneventful enough so that biographers
have been forced to attach a certain morbid signiϧcance to a childhood
episode of rheumatic fever. The younger of two brothers, he may be seen
peeping from a family portrait taken in 1910, a child with puϱed cheeks
seated restlessly between his placid dark-eyed mama and his high-browed,
mustachioed father, a man eager, judging by the distracted look in his eyes,
to get rid of the photographer and return to his newspaper. That older
brother is destined to become a prominent Viennese radiologist; he is oϱ to
the side of the photograph and pointing hopefully to the beautiful
illustrated book on which the younger Gödel is carelessly resting his



forearms. Gödel was educated in German in a central European gymnasium:
foreign languages, Latin, the German classics, mathematics. His early
homework papers, having been carefully preserved, betray an inevitable
mistake in elementary arithmetic, a mistake common in kind to the one
that Einstein was said to have made, even mathematicians taking
satisfaction in observing that as children great mathematicians get things
wrong. His record as a Latin student reveals a far more appropriate
concordance between the child and the man. It would seem he never made
a mistake.

There followed a course of study at the University of Vienna. Interested
originally in theoretical physics, Gödel transferred his allegiance to
mathematics after two years, and then to mathematical logic, the only
subject commensurate with his obsessive need for precision. He was by all
accounts intellectually graceful, generous, helpful, and clear-minded, the
gathering force of his genius hidden from others by a day-to-day demeanor
that friends and teachers recall as unobtrusive. He had the gift of lucidity.
There was an association with a younger woman, Hao Wang remarks in his
memoir, someone with “intellectual aspirations.” Gödel later chose his wife
from the lineup of a Viennese cabaret, Adele Porkert, the future Gnädige
Frau Gödel having no intellectual aspirations whatsoever, and the marriage
proving a great success.

In 1929, Gödel submitted his dissertation to his teachers, Hermann Hahn
and Philip Furtwängler; it contained a proof of the completeness of
elementary mathematical logic. The proof represented an achievement that
had eluded a good many capable mathematicians.

Gödel then adopted a curious transatlantic way of life, lecturing during
the 1930s at the new Institute for Advanced Study at Princeton, and even
giving a course in elementary logic at Notre Dame, although what
undergraduates prepared to admire Knute Rockne might have made of the
owlish Gödel is diϫcult to say. There are reports that in addressing his
broad-shouldered, Midwestern charges, Gödel’s nose never left the
blackboard. Gödel left Europe very late in the 1930s, his ϧnal decision to
vacate Austria prompted, so one story goes, by alarming indications that he
had been found fit for military service by the Austrian army and would soon
be inducted into its ranks.

Legends began to accumulate and when, in 1940, he settled permanently
in Princeton, both the conϧdent child and the intellectually graceful,
generous, helpful, and clear-minded young man submerged themselves in a



personality that was reclusive, fearful, morbid, and daring.

On the seventeenth of November, 1930, the Monatshefte für Mathematik und
Physik received the text of Gödel’s monograph, “On Formally Undecidable
Propositions of Principia Mathematica and Related Systems.” The paper was
published the following spring. It fell like a hammer blow on the
mathematical community. Within the compass of its forty pages, it
demonstrated that the Hilbert program was an impossibility. The system of
the Principia was incomplete. From within its symbols, one could always
construct a proposition such that if the Principia were consistent, no proof
could be found for either the proposition or its negation. Such a proposition
is undecidable. What is more, the proposition is true. Gödel’s
incompleteness theorem thus placed in doubt the very method of proof that
had since ancient times been the mathematician’s indispensable intellectual
instrument, the sign of his glory. But the incompleteness theorem is itself a
theorem, Gödel proving what could not be done, and so sustaining and
sabotaging the method of proof at one and the same time.

The dismay engendered by Gödel’s ϧrst theorem at once engendered a
shock wave all its own in the form of his second theorem. The consistency
of the Principia, Gödel demonstrated, is hopelessly compromised. Any proof
that whole-number arithmetic is consistent requires techniques of reasoning
more powerful than those found in the Principia. The intellectual probity of
arithmetic is compromised at its source, its consistency remaining both
beyond doubt and beyond proof.

It is said that when Hilbert learned of Gödel’s results, he was ϧrst angry
and then vexed. A great many logicians were dumbfounded and some
mathematicians confused. More than seventy years later, Gödel’s theorems
evoke another reaction entirely, and that is exhilaration.

Gödel’s proof is singular in that it requires virtually no background in
mathematics itself. But it is nonetheless unique in the intricacy of its
reasoning, and although Gödel was not himself Jewish, the only tradition
in which his great paper can be placed is the ancient system of Talmudic
commentary.

“The formulae of a formal system,” Gödel remarks, “are  … looked at from
the outside, ϧnite series of basic signs.” We may as well follow Gödel in
listing the basic signs, if only to gain an appreciation for the level of



precision that his proof demands. There are, ϧrst of all, the logical
constants: “~” (not), “∨” (or), “∀” (all), “0” (zero), “f” (the successor of),
“(,” “)” (left and right parentheses). There are next individual variables,
“x,” “y,” “z,” and the like. These range over the natural numbers (as in the
formula “x is a prime number”). There are, next, variables that stand for
classes or sets of numbers; and there are, ϧnally, variables that range over
sets of sets of numbers, wholesale collections. A formula in the system is
some grammatical combination of its basic signs.

Although this system is sparse, it gains purchase on what it does not
contain by deϧnition and repetition. There are no names for the natural
numbers in the system, and so no way to express the fact that four is not
zero using the ordinary Arabic numeral “4.” But any natural number is
deϧnable within the system by means of repeated succession, so that ffff(0)
stands in for the missing four, with the formula “~ (ffff(0) = 0)” saying in
the system what from a vantage point beyond the system we would indicate
by writing “4 ≠ 0.”

At the heart of Gödel’s paper is a connection between various symbols,
considered strictly as physical shapes, and the natural numbers. The
connection is known as Gödel numbering and it serves to bring to this
branch of mathematics the power and ϩexibility of Descartes’ method of
analytic geometry. To every symbol, and then to every formula, and then to
every series of formulas, and then to every series of such series, Gödel
assigned a unique number. Elementary symbols are mapped to speciϧc
prime numbers: “0” ↔ 1, “f” ↔ 3, “~” ↔ 5, “∨” ↔ 7, “∀” ↔ 9, “(” ↔ 11,
and “)” ↔ 13; more complicated formulas and series of formulas are then
mapped to more complicated prime numbers.

The reader, promoted now to a logician and so a companion in arms,
must now commence an intellectual process in which certain facts are
grasped even as they are suppressed. Professionals in public relations will
have no diϫculties. In a series of forty-six deϧnitions, Gödel showed how,
by means of his numbering scheme, formulas in the formal system could be
used to comment on themselves, acquiring meaning and then losing it all at
the same time.

The forty-sixth deϧnition is the last, and it shows how a series of physical
shapes—a formula of the system—acquires, when suitably read, the power
to comment on itself. The “B” stands for the “B” in the German Beweiss, or
proof. The requisite definition is



This series of fourteen physical shapes must now be bathed in the wash of a
number of facts, which must themselves be simultaneously held in memory,
like diϱerent and slightly out-of-focus stereo-optical images that in the end
fuse into a coherent whole.

These shapes function in the ϧrst place as a formal deϧnition, the
symbols “Bew(x)” deϧned in terms of the symbols “(Ey)yBx.” The deϧnition
has nothing to do with meaning—it is a way simply of allowing one set of
shapes to be replaced by another, almost as if the logician were given
license physically to maneuver scenes on some mental movie. With his hair
tied in a ponytail and his yellow angora sweater draped carelessly over his
shoulders, the logician, promoted now to maître en scène, spots “Bew(x)” on
the slowly unwinding reel of this mathematical movie, whereupon he
scowls and mutters cut, replacing the now discarded “Bew(x)” with
“(Ey)yBx.”

These activities of cut and replace go down the definitional chain from the
forty-sixth deϧnition to the very ϧrst. Thus the symbols “(Ey)yBx” may
themselves be cut and discarded on the cutting-room ϩoor, replaced in turn
by the symbols now visible in the forty-ϧfth deϧnition, whose symbols are
in turn deϧned in terms of the forty-fourth deϧnition, and so back to the
system’s original apparatus—the scenes and so the shapes that are present
at the start—whereupon the movie mathematician slaps his plump thigh in
satisfaction.

But these symbols—the very ones—function as well as a real deϧnition of
the familiar kind in which words or symbols are endowed with meaning.
The same movie is spinning over the sprockets of the very same hideously
expensive cutting-room contraption, but the scene revealed is diϱerent
somehow, and where before there was only black, white, and gray, there
are now all sorts of subtle colors, the director, Pedro or Fedro, murmuring
with satisfaction as those drab symbols of his ϧrst cut come to vibrate, and
just look at that remarkable fuchsia!

Thus Bew(x) says—it says!—that a number x is Bew, where, as Pedro or
Fedro now reminds us, the symbols Bew refer to some property of the
natural numbers, explaining to his gaping assistant, a recent graduate of
ϧlm studies at Bryn Mawr, that honey, saying that x is Bew is just like
saying that x is prime, and certainly we shoot it the same way.

The ϧnal cut—the director’s cut—now follows by means of the
ventriloquism induced by Gödel numbering. This same formula just seen
making an arithmetical statement in that subtle shade of fuchsia now



acquires a palette of quite hysterical reds and sobbing violets, these serving
to highlight the metamathematical scene presently unfolding, for while
Bew(x) says something about the numbers, it also says that

x is a provable formula,

meaning that honey the number x is the number associated under the code
with a provable formula, whereupon the director, lost in admiration for his
own art, can mutter only that deep down it’s a movie about a movie.

This is to trace the province and the pedigree of the forty-sixth deϧnition.
There are no other symbols to define.

Numbers and code, master and mastered, movie and movie maker.

With formulas of a formal system tagged by their Gödel numbers and so
endowed with a double voice, Gödel’s essential argument can now be
paraphrased, something that Gödel undertook in the introduction to his
monograph. The paraphrase departs from the much longer proof that
follows, but it does convey with all of Gödel’s matchless concision the
movement of his ideas. The argument requires the same multiple post-
modern perspectives already evident in that cutting room.

Suppose, Gödel argued, that the formulas of the Principia are being
examined from outside the system, almost as if they were an endless series
of studio stills.

The Bryn Mawr honey last seen crossing her long legs is now busy
arranging these formulas in a list. There is the ϧrst, the second, and so to
the nth formula, which she designates as R(n). She is for the moment acting
as the metamathematician’s amanuensis, since R(n) is not a formula in the
system, but the name of a formula in the system, one that is itself expressed
outside the system.

Knowing all the greasy ropes as she does, honey knows as well that there
is a way to get into the system of the Principia from the cutting-room ϩoor.
It involves taking R(n) as a guide to some speciϧc formula in the system,
and then inserting within that formula the numeral n for the variable x
wherever x appears.

The techniques embodied in this way may themselves be expressed by a
form of directorial shorthand, the sort of thing that Pedro or Fedro might
bark when he wants honey to get back into the system, where, he may often
be heard muttering, she really belongs. That shorthand is expressed by the



metamathematician’s formula [α; n], a general prescription for getting into
things such that whatever the formula α,[α; n] is the speciϧc formula in the
system that results when the sign or shape naming n replaces x in whatever
formula it is that α happens to name.

As honey remarks, the formula [a; n] is expressed outside the system, but
the formula that it designates moans and mates and resonates within the
system.

Impressed despite myself that a graduate in visual communication should
have such an uncanny feel for formal logic, I am minded to add a whisper
to honey’s seashell ears:

—If n happens to be four, that numeral is ffff(0); if a happens
to be the formula that x is prime, [α; n] denotes the formula in
the system that says that four is prime. When the symbols “is
prime” are themselves replaced by symbols in the system, “ffff(0)
is prime” becomes a formula of the system.

With the ϧlm now ϩapping over its sprockets, a diϫcult scene is now to
come, and if honey is struggling to pay attention, you must, you careless
Redbook readers, struggle as well.

The metamathematical director is speaking, and he is speaking from
beyond the reach of any formal system, but he is, of course, speaking about
a formal system. He means to define a set K of numbers.

A number n belongs to K just in case [R(n); n] is not provable, and since
these various directors of mine tend to lapse at the most crucial moments, I
will now take over the commentary myself. R(n) is one of the formulas on
the master list of formulas, an expression in the metamathematician’s
vernacular, and, if truth be told, an outsider like Pedro or Fedro himself, but
R(n) is also the name of a formula on the inside, one that becomes a very
particular formula on the inside—I am almost tempted to lapse suddenly
into the vocabulary of prison movies, with the Principia representing the Big
House—when the numeral naming the number n replaces the variable x in
the nth formula on the master list.

That set K? It has been deϧned—we have deϧned it—in terms of the
metamathematical concept of provability. But with the ϧlm rewound,
provability is just what the forty-sixth definition has already defined. By the
miracle of Gödel numbering, it is a concept that can be expressed entirely
from within the system of the Principia itself, and if you are, as I always am,
now inclined to feel a shiver running up and down your collective spines,



this is after all the only appropriate homage anyone can pay to the
grandeur of great art.

From the fact that provability is deϧned within the system, it follows that
there is a formula S within the Principia, such that [S; n] says that n belongs
to K. This is an observation from outside the system, but as Gödel observes,
indeed, as he proves, there is “not the slightest diϫculty in actually writing
out the formula S”—writing it out within the system of the Principia.

But then

for some formula R(q) on the list of formulas, since the list includes all
formulas.

“We now show,” Gödel aϫrmed laconically, “that the proposition [R(q),
q] is not decidable.”

The entirely extraordinary moment has now arrived, stage and set, actors
and directors, cutting-room ϩoor and the cuts themselves for an eternal
moment motionless. The argument then proceeds:

—  The formula R(q) is a formula from the metamathematician’s beyond. It
has in q a specific number, one marking its place on the list.

—  But the formula [R(q) , q] names a formula of the Principia, one that
defines the property of being unprovable within the system.

—  When the numeral for q replaces the variable x in the formula, the
formula says of the number that that numeral denotes—q, in fact—that
it corresponds to the number of an unprovable formula on the master
list.

—  That unprovable formula is [R(q) , q] itself, which has just been
overheard saying of itself that it is not provable.

And what it says must, of course, be true. If the formula designated by
[R(q) , q] were provable, then q would belong to K. This would mean that
[R(q), q] is not provable, given the definition of K.

On the other hand, the negation of [R(q) , q] is not provable either. For
suppose that it were. Then q would not belong to K. But in that case, there
would be a proof of [R(q), q] after all.

It follows that neither the formula designated by [R(q) , q] nor its
negation is provable.

We ourselves may allow Pedro or Fedro to suϱer a cut all his own,



restoring to prominence in Kurt Gödel the twenty-three-year-old director of
record.
The unpurged images of this spectacular argument recede; so, too, the
details of Gödel’s ϧrst theorem. Directly, the second theorem appears, this
one dealing directly with the issue of consistency. It is a theorem that John
von Neumann noticed after Gödel had communicated his ϧrst theorem to
various mathematicians; but when he wrote eagerly to Gödel to convey his
discovery, he learned that Gödel had already discovered the same thing.
The import of Gödel’s second theorem can be conveyed by means of only a
few strokes. The ϧrst incompleteness theorem aϫrms that if the system of
the Principia is consistent, then there exists an undecidable proposition, one
that may be expressed from within the cage of its symbols. Now by means
of the magic of Gödel numbering, and the ancillary miracle of doublethink,
the consistency of the system may also be expressed by a formula within
the system. Without going into details, let us suppose that that formula is
named by the letters CON. Gödel’s ϧrst theorem may thus be expressed
entirely within the system of the Principia by means of the play between
two formulas: If CON then [R(q), q].

Looking at just this line of code more than seventy years ago, von
Neumann and Gödel both observed, with precisely the same sensation of
wonder and dismay, that if there were a proof within the system of CON,
then by the two-step of elementary logic, there would be a proof as well of
[R(q), q]. But this is just what the first theorem affirms is impossible.

The consistency of elementary arithmetic thus lies beyond the powers of
the system for which it most counts, the demolition established by Gödel’s
theorem now complete.

With the publication of Gödel’s monograph, the Hilbert program came to
an end. With it ended, as well, all eϱorts to establish the moral grandeur of
mathematics. The era that began with the publication of Gödel’s
monograph continues to the present day. An unexpected tentativeness is
now a part of mathematical culture, that and a curious sense of liberation.
If Gödel’s theorem undercut the very pretensions of the axiomatic method,
it also forced the mathematical community to appreciate with
unaccustomed modesty the fact that the sources of mathematical knowledge
are and remain mysterious.

During the 1930s, Gödel lectured at the new Institute for Advanced Study,
his lectures themselves constituting both a presentation and an explanation



of his work. A small cadre of professional logicians—Alonzo Church,
Stephen Kleene, Barkley Rosser, W. V. O. Quine, Alan Turing—understood
at once the implications of Gödel’s theorem, and they entertained the
conviction, rare even among mathematicians, that in understanding Gödel’s
theorem they were understanding a work of great art made possible by an
intellect of great genius.

For almost thirty years, Gödel’s theorem retained an esoteric aspect, one
that many working mathematicians found baϮing. Gödel’s monograph was
not published in English until 1961, and even during the 1960s, when I was
studying logic at Princeton—Gödel’s home, after all—the great theorem
could only really be learned from mimeographed notes that Alonzo Church
had carefully prepared and from a very useful popular account of the
theorem written by Ernest Nagel and James Newmann.

This has now changed, perhaps as the result of Douglas Hofstadter’s
entertaining book, Gödel, Escher, Bach. And yet Gödel’s theorem has
retained its esoteric aspect, with many mathematicians regarding it as
marginal to their own working concerns.

On the other hand, philosophers as well as physicists have attempted to
appropriate Gödel’s theorem for their own ends. The physicist Stephen
Hawking has recently declared that he for one has lost faith in the
prospects of a single uniϧed theory of everything; it has apparently been
Gödel’s theorem, which he has been late in appreciating, that has
persuaded him that any such system could not be complete if it were
consistent.

This is useful work, to be sure, but frustrating as well, since no
application of the theorem has the force, or the clarity, or carries the
conviction of the proof itself, so for every intended application, a
counterapplication may be found.

That Gödel’s theorem is great, no one doubts, but what it means, no one
yet knows. This is in its own way a remarkable tribute to its power.

When in 1942 Kurt Gödel presented himself for a citizenship examination in
Trenton, New Jersey, he came prepared to argue the ϧner points of
American constitutional principles with the presiding judge. On a doggish
New Jersey day, the courtroom sweltering, Gödel may be found standing
amid a crowd of refugees. Acting as his sponsor and his friend, Albert
Einstein is at his side. Gödel is apparently eager to engage the judge, a
shrewd, well-fed character, in some endless dispute over whether the



stacked clauses of the Constitution make it possible for the American
democracy to be overtaken by a dictatorship. As Einstein well knew, Gödel
had the capacity to follow a logical argument to the very edge of doom; on
this occasion he was prepared to do so.

The judge said something banal, and so something expected.
“On the contrary,” Gödel interjected, a logical chain ten miles long just

forming on his lips.
Only Einstein’s alarmed interference in the proceedings, his meaty hand

draped over Gödel’s frail shoulder, succeeded in diverting Gödel from his
ambitious plan to sabotage his own application through sheer
contentiousness.

The judge must have taken it all in stride. Some years before, he had
sworn Einstein to citizenship. Oddballs came as no surprise.

Unlike his great friend Einstein, who had acquired with American
citizenship a protective layer of naturalized podge, Gödel remained lean
and austere, his years at Princeton spent in disciplined isolation. In 1939,
he succeeded in demonstrating that the axiom of choice and the continuum
hypothesis were consistent with the Zermelo-Fraenkel axioms of set theory,
and so drew a far-reaching connection between logical questions in non-
Euclidean geometry and logical questions in the foundations of
mathematics. Twenty years later, the American mathematician Paul Cohen
demonstrated that the negation of the axiom of choice and the continuum
hypothesis was also consistent with the axioms of set theory, thus
establishing the existence of absolutely undecidable propositions in the very
heart of mathematics. Gödel continued to work in mathematical logic after
1940 but, by his own admission, his interests turned from mathematics to
philosophy. It was as a great natural philosopher that in 1948 he addressed
the general theory of relativity, a ϧeld remote from his interests or area of
competence. He succeeded in discovering a new and perfectly bizarre
solution to Einstein’s ϧeld equations, one that made time travel possible.
His solutions required the galaxies to be in perpetual rotation, a matter that
Gödel took with the utmost seriousness, ϧlling endless drawers with close
observational calculations of the night sky.

Kurt Gödel died in 1978 in Princeton, New Jersey, having quite literally
starved himself into what medical examiners reported was a state of
inanition. He had not been physically well; he had always found his own
health a subject of absorbing interest, but, like all valetudinarians, he
distrusted the doctors he assiduously sought and ignored their advice. He



had long suffered psychological afflictions.
For all that, Kurt Gödel brought a conclusion to his life in precisely the

same way that he brought a conclusion to his work: by means that were
daring, precise, original, and irrefutable.



AND NOW IT IS now. Like the numbers, the history of mathematics has a
beginning but it has no end.

What to make of the Bourbaki? Named after a French general of widely
admired stupidity, the Bourbaki was founded in the 1930s by a group of
French mathematicians said to be dissatisϧed by the inadequacy of
textbooks such as Goursat’s Traité d’analyse mathématique. They determined
to do better. A committee was formed and pedagogical improvements
discussed. This is the myth. In all of French history, no mathematician of
standing has ever concerned himself with the welfare of his students. The
Bourbaki was founded to amuse the members of the Bourbaki.

Over the next twenty or thirty years, a number of very talented



mathematicians became involved with the group: André Weil and Henri
Cartan, Jean Delsartre, Jean Dieudonné, Claude Chevalley; and to a man,
ça va sans dire, these mathematicians believed that their ϧrst order of
business was to correct and if possible eliminate the work of other
mathematicians. If contemptuous of others, they were abusive toward one
another. “Tu es foutu,” the group’s secretary wrote to Henri Cartan on
reading the first draft of a chapter he had written.

Members of the Bourbaki were especially keen to demonstrate group
solidarity by reaching satisfying global judgments about mathematics.
These very often fell into a simple pattern in which Subject X (homological
algebra) was declared good but Subject Y (ϧnite groups) declared bad. That
history has nicely reversed many of these judgments adds only to their
piquancy. The Bourbaki was persuaded that mathematics was a single,
immense set-theoretic structure. Speaking French, that immense structure
had, like the Sphinx, only one eye and, despite its size, was thought capable
of ϩight. The Bourbaki published more than forty volumes, the last (on
spectral analysis) in 1983. These books did just what the Bourbaki had
always hoped they would do. They got things organized. Students found the
books useless, a remarkable example of their capacity for pedagogical
ingratitude.

Curators and connoisseurs can spot in each decade certain very fashionable
mathematical preoccupations, the place where mathematicians who wished
to be known went to be noticed. In the 1940s, homological algebra,
category theory, and the Artin reciprocity conjectures. In the 1950s, Morse
theory and diϱerential topology, Hassler Whitney, René Thom, and Steven
Smale ϧxtures in all the better lecture rooms. It was on the beaches of Rio
de Janeiro, Steven Smale has frequently had occasion to remark, that he
settled the inϧnite dimensional Poincaré conjecture. Ten years later,
algebraic geometry seemed to mathematicians simply to scintillate,
Alexander Grothendieck dominating the ϧeld with what René Thom once
described as crushing technical superiority. Grothendieck has since given up
mathematics and is said to be resident in a cave somewhere in the south of
France, where he is occupied by various ecological issues. The classiϧcation
of the ϧnite simple groups, I suppose, is next, and after that the Taniyama-
Shimura conjecture and the proof of Fermat’s famous theorem, the work
collectively of Andrew Wiles, Ken Ribet, Barry Mazur, and Gerhard Frey.

But this list, resembling as it does various trite accounts of what is in and



what is out, or what is hot and what is not, could easily be rewritten in a
dozen diϱerent ways, evidence that mathematics no longer has what for so
long it had, and that is a stable center.

If lacking a center, the modern era in mathematics nonetheless displays
certain identiϧable but inconsistent tendencies, almost as if a river were
suddenly to separate itself into a number of hissing streams.

Mainstream mathematics has become progressively more abstract, and
the very best mainstream mathematicians have adopted an imperial air of
command, giving directions over entire ϩood-plains of mathematical
research. In the 1960s, the American mathematician Robert Langlands
imagined that he saw a wide-ranging uniϧcation in prospect between
various branches of mathematics, a hot wiring among hot topics. He made
his vision manifest in the form of a number of conjectures that he ϧrst
advanced in an audacious letter to André Weil. Copies of that handwritten
letter now circulate on the Internet, like photographs of the Shroud of
Turin. The Taniyama-Shimura conjecture is an example: It suggests the
others. Two mathematical worlds are under inspection. There is, in the ϧrst
place, the modular forms. These are highly symmetrical structures found in
certain hyperbolic spaces. And there is in the second place the elliptical
equations. These are equations of the form y2 = x3 + ax2 + bx + c.
Symmetrical structures, hyperbolic spaces, and elliptical equations suggest
all the Sons of Art: Lobachevsky, wagging his ϧnger in the Russian fashion,
the doomed Galois, Descartes, and even Pythagoras, still consumed by
numbers after all these years.

At some time in the 1950s, two young Japanese mathematicians, Yutaka
Taniyama and Goro Shimura, conjectured that to every modular form there
corresponded an elliptical equation and vice versa. There was at the time
no reason whatsoever to think the conjecture true; and apart from a
handful of examples, no particular reason to think it plausible. Yet in his
proof of Fermat’s theorem, Andrew Wiles established a restricted case of the
Taniyama-Shimura conjecture, thus uncovering a profound unity between
branches of mathematics that had until then seemed only distantly related,
like cousins who turn out to be twins.

In his letter to Weil, Langlands had proposed a much more far-reaching
program of uniϧcation, one that would embrace algebra in the form of
Galois theory, analysis via the automorphic forms, and number theory by
means of the representation of certain ϧnite groups, a uniϧcation in the



end reaching the ancient metaphysical ideas of identity, structure, and
number. Wiles’ success in establishing the Taniyama-Shimura conjecture
transformed Langlands’ program from a romantic quest into a pursuit, one
very similar to the search for a grand uniϧed theory in mathematical
physics. If carried to completion, the program would reveal that there is
only one law in all of mathematics, and that a simple statement that things
thought distinct are identical. Mathematicians assign Langlands himself
some of the virtues that political scientists in retrospect assign to General
George C. Marshall, observing that like Marshall, Langlands has been far-
reaching, visionary, bold.

And, I should add, lucky.

If there are powerful unifying forces in modern mathematics, the reverse is
true as well. The American Mathematical Society lists ϧfty main
mathematical specialties, ranging from Algebraic Topology to Zermelo-
Fraenkel set theory. These ϧfty specialties divide into more than three
thousand subspecialties. Communication across mathematical boundaries is
at times alarmingly diϫcult. When I was a lowly teaching assistant, I once
asked the senior graduate student assigned me as a mentor how to handle a
textbook problem in diϱerentiation. I had no idea. It was all Greek to me.
And to my führer as well.

“I don’t do continuous,” he said amicably.
Some mathematicians have the uneasy feeling that the ecological niche

they have for so long occupied is about to be overrun, another coarser,
cruder form of life already nibbling at its fringes and so encroaching on its
territory. “The computer,” the mathematician John Casti has remarked,
“changes everything.” Casti’s remarks were prompted by the publication of
Stephen Wolfram’s A New Kind of Science, a work devoted to the
proposition that the computer does, indeed, change everything, but
curiously enough, if it is true that the computer changes everything, it is
also true that it has not so far changed anything. Most mathematicians do
mathematics by means of the time-tested triplet of pencil, paper, and
patience. And yet, as all those dinosaurs must have dimly sensed, change is
coming.

The origins of the computer, considering the issue in terms of various
paternity tests, lie in thought experiments conducted in the 1930s and early
1940s by a small, isolated group of mathematical logicians: Kurt Gödel,



Alonzo Church, Stephen Kleene, Barkley Rosser, Alan Turing, Emil Post.
Moving from the shadows to the spotlight, and standing there in some
consternation, the ancient idea of an algorithm or an eϱective procedure
seemed suddenly in need of a precise deϧnition. The informal idea is
perfectly obvious. An algorithm is a linked series of rules, a guide, an
instruction manual, an adjuration, a way of getting things done, a tool to
address life’s chattering chaos in symbols. The pilot’s checklist (wing ϩaps
—check; rudder stabilizer—check; breath mints—check) embodies an
algorithm; so, too, the steps required to bring charges of sexual harassment
at the University of Connecticut (ϧnd a man—check; charge him—check),
and even the undertaker’s Thoughtfulness List (Remembrance Pillow
—check; Eternity Slippers—check). Elementary arithmetic embodies a series
of elementary algorithms. It can be taught in no other way. In adding
twenty-seven to thirty-ϧve, the higher functions disengage themselves. A
mechanical routine takes over. Add seven and ϧve by calling the sum from
memory. Carry the one. Add two and three by calling the sum from memory.
Don’t forget to carry the one. Relax, yes, of course, have another cigarette, why
not? To logicians struggling to bring the concept of an algorithm to self-
consciousness, it must have seemed as if they were for the ϧrst time
recognizing some feature of life so obvious as for centuries to go unnoticed.
But examples suggest only what an algorithm is, not how it may be defined.

In 1931, Kurt Gödel introduced logicians to the primitive recursive
functions. These are numerical functions taking inputs to outputs and then
treating outputs as inputs, as when the successor function sends a number n
to its successor S(n), and then sends S(n) to its successor S(S(n)), so that the
primitive recursive functions resemble a snake swallowing its own tail and
improbably growing larger as a result. Nonetheless, succession suϫces to
deϧne the addition of two numbers a and b. If b = 1, then a + b equals the
successor of a. And so it does. If b ≠ 1, then a + b is the successor of a + c,
where b is the successor of c. And so again it is again.

Some years after Gödel presented his results, the American logician
Alonzo Church deϧned what he called the lambda-computable functions.
And to roughly the same point since the recursive and the lambda-
computable functions, although quite diϱerent, did the same thing and
carried on in the same way.

In 1936, Alan Turing published the ϧrst of his papers on computability,
“On Computable Numbers with an Application to the Entscheidungsproblem,”
and so gave the idea of an algorithm a vivid and unforgettable metaphor.



An eϱective calculation is any calculation that could be undertaken, Turing
argued, by an exceptionally simple imaginary machine, or even a human
computer, someone who has, like a clerk in the department of motor
vehicles or a college dean, been stripped of all cognitive powers and can as
a result execute only a few primitive acts.

A Turing machine consists of a tape divided into squares and a reading
head. Although ϧnite, the tape may be extended in both directions. The
reading head, as its name might suggest, is designed to recognize and
manipulate a ϧnite set of symbols—0 and 1, for most purposes. Beginning
at an initial square, the reading head is capable of moving to the left or to
the right on the tape, one square at a time, and it is capable of writing
symbols on the tape or erasing the symbols that it is scanning. At any given
moment, the reading head may occupy one of a number of internal states.
These, too, are ϧnite and correspond in an unspeciϧed way to various
internal conϧgurations of the reading head, so that what the Turing
machine does is a function not only of what at any moment it sees, but
what at any moment it is.

There is not much else. A Turing machine is a deterministic device, and
like an ordinary machine, it does what it must do. Turing machines can
nonetheless do rather an astonishing variety of intellectual tasks. Addition
is an example, as with a few notational elaborations the logician may be
observed constructing a calculating device out of thin air.

Those elaborations: The machine’s single symbol is 1. Any natural number
n the machine represents as a string of n + 1 consecutive 1’s, so that 0 is 1,
and 1, 11, and n + m = (n + m) + 1. The following ten lines of code
suffice to get this machine to add any two natural numbers.

Any two (Figure 10.1).
A mathematical function is computable, logicians say, if there is a Turing

machine by which it can be computed. In the late 1930s, Alonzo Church
and Stephen Kleene demonstrated that the recursive functions, the lambda-
computable functions, and the Turing computable functions were one and
the same, and so provided a single precise explication of the informal
notion of an algorithm. The deϧnition of the algorithm, as Gödel observed,
has one unexpected property: It is completely stable in the sense that it
does not depend on any underlying system of formalization. No matter
where logicians begin in deϧning the algorithm, they always end up in the
same place. Gödel regarded this circumstance as a miracle.



FIG. 10.1

And so it is.
In virtue of its elegance and obviousness, the deϧnition of an algorithm

in terms of Turing machines has become the standard. The usual operations
of arithmetic are all Turing-computable. So, too, most algorithms. So, too,
Church argued, any algorithm, the concept of a Turing machine exhausting
completely the idea of an eϱective calculation. This last claim is known as
Church’s thesis, and in the seventy years since it was advanced, it has
passed progressively from a conjecture, to a persuasive deϧnition, to a law
of nature, to an unbudgeable fixture in contemporary thought.

The algorithm is the second of two great ideas in Western science; the ϧrst
is the calculus. I have said this before, but I am so pleased with the thought
that I am eager to say it again. In speaking of great ideas, I mean greatness
in terms of the sense, retrospectively acquired, that without the idea the
world would not at all be the world we know. The advent of the algorithm
as a precisely deϧned logical concept may not have made the digital
computer inevitable, but it did make it possible, a fascinating example in
the history of thought of an idea engineering its own instantiation in
matter.

Still, wherein the great changes in mathematics, or even the single
change that might change everything? A few mathematicians have used the
computer to prove certain conjectures. The most famous example is the
four-color problem. Posed originally by Francis Guthrie in 1852, and then



posed again by Arthur Caley in 1878, the four-color question asks whether
four colors are suϫcient to color any map so that contiguous regions all
receive separate colors. The four-color answer—yes—was not received until
1976, when Kenneth Appel and Wolfgang Haken published their proof.
Their demonstration required the veriϧcation of thousands of separate
geometric cases, and these, Appel and Haken aϫrmed, had been
successfully carried out on the computer.

Mathematicians and philosophers reacted to Appel and Haken’s work
with some distaste. Although an obvious accomplishment, it was hardly an
exercise in intellectual elegance. Proofs involving thousands of special
computer cases are ugly, no matter the cases, no matter the computer. But
relying on the computer to the extent that they did seemed somehow akin to
entrusting the delivery of something precious to a well-meaning but dull-
witted messenger, someone apt to stall helplessly in traϫc on noticing that
one address is marked Sixth Avenue and the other, the Avenue of the
Americas. If that messenger could get stuck, why not the computer? And
stuck in just the same way, some triϩing error causing it to loop pointlessly
or skip over certain cases, or just round things oϱ in the wrong way.
Nonetheless, no mathematician has suggested that Appel and Haken’s proof
is less certain than it would be had all the calculations been done by hand.
Those calculations represent dog work, and mathematicians are notably
inferior to the computer when it comes to going to the dogs. (Many
mathematicians cannot, in fact, add a simple column of ϧgures with the
accuracy expected of a German greengrocer.) An uneasy feeling nonetheless
persists that the method of proof has somehow been compromised.

No one has quite said why.

Benoit Mandelbrot—a distant cousin of mine, a remote family connection—
is a mathematician who has immensely enriched the ordinary happiness of
mankind by showing how beautiful pictures can be made simply on the
computer. His images are now everywhere and are everywhere known as
Mandelbrot sets. Their construction depends on recursive iteration and a
computer program that can assign colors to regions of the complex plane.
The procedure is of remarkable simplicity. A particular complex number c is
initially chosen, the complex function f(z) = z2 + c introduced. It is a
function that instructs the mathematician, and ultimately the computer, to
take any complex number z, square it, and then tack on c. If z = 0, f(0) =
c—obviously. Thereafter, with z still 0, f is applied to itself, yielding c2 + c;



and so ultimately the sequence c, c2 + c, (c2 + c)2 + c, .…
Pictures are generated from this scheme by means of a coloring

algorithm, which in turn is contingent on a fact.
The fact ϧrst. For certain choices of c, the sequences that result are

bounded. They never leave a certain region of the complex plane—a circle,
say, whose origin is zero. If z stays ϧxed at zero, two choices yielding
bounded sequences are c = –1, and c = the imaginary i of chapter 7. Other
choices of c make for unbounded sequences, the innocent-seeming c = 1
leading to a sequence that escapes any bound and takes oϱ for parts
unknown.

The coloring algorithm next. Examining various choices of c, and the
sequences to which they give rise, the algorithm assigns one color to
choices of c that yield bounded sequences, and another color to choices that
do not. The result is the Mandelbrot set (Figure 10.2).

FIG. 10.2

There is not one—there are thousands of such sets, and each reveals a
landscape that is at once familiar, disturbing, and beautiful. With these new
landscapes, there are new questions as well. What, for example, is the basis
of the curious fact that these landscapes are self-similar? When blown up,
the Mandelbrot set, instead of revealing an array of elementary entities,
reproduces on a smaller scale all of the essential features of the landscape
as a whole, so that in looking at a Mandelbrot set (Figure 10.3), the



distinction between whole and part undergoes a radical dissolution, the
whole in every part, and every part in the whole, and so downward for as
far downward as the computer can go. Mandelbrot sets, it would seem, are
immensely complicated.

And yet Mandelbrot sets are at the same time very simple to construct.
This raises an interesting question of judgment. Just who is to be in charge
of the business of assessing complexity—those algorithms or our lying eyes?

More curious is the fact that although they are algorithmically generated,
Mandelbrot sets are not quite under algorithmic control. They are not, as
logicians long suspected, recursive. A set is recursively enumerable if there
is an algorithm that enumerates its members, one after the other. The set of
even numbers is an example. And recursive if it is recursively enumerable
and its complement is recursively enumerable. The even numbers again.
Recursively enumerable again, and now recursive as well because an
algorithm can also enumerate the odd numbers. Those numbers c in the
Mandelbrot set leading to bounded sequences are recursively enumerable.
Not so the numbers leading to the unbounded sequences. No guarantees are
at hand, the computer just possibly dawdling over its deliberations and
coming to no conclusion for the rest of time.

FIG. 10.3

Those lovely pictures, the downward descent without end, complexity
from simplicity, and sets that are not recursive—surely this is something



new in our collective experience.
Is it not?

Elsewhere, the real life of mathematics goes on, the hard, ϧercely
demanding disciplines—analysis, algebraic geometry, ergodic theory,
probability, the theory of ϧnite simple groups, partial diϱerential
equations, algebraic topology, combinatorics—spreading inexorably beyond
the reach of any program of uniϧcation. The cathedral of thought is now
very high, but it is thoroughly incoherent, with a number of spectacular
steeples poking through the clouds, mathematicians like Robert Langlands
oϱering instructions to various architects, while in the basement,
perpetually under revision or under water, a group of workmen in scruϱy
clothes, their tattoos purple in the murky light, is putting together new
revetments or hoisting ten-pound sacks over their collective shoulders.
Whether on the ramparts or in the cellar, no one is quite certain what they
are doing, and some men are uncertain whether they are doing anything at
all.

And yet much of modern mathematics is what mathematics has always
been, and that is a form of art that although forever old is forever new. The
calculus is by now more than three hundred years old, and yet
mathematicians such as E. Cartan looked at it with innocent eyes and in
creating the theory of exterior diϱerential forms, saw things there that no
one had seen before. New disciplines arise and parts of human life that had
seemed completely beyond the mathematician’s art become a part of his
repertoire after all. When in 1948 Claude Shannon created the modern
theory of information, he was doing what mathematicians have always
done and that is noticing the mathematical bones behind the everyday face
of a familiar concept. The manifold of mathematics is itself unstable. Odd
little subjects that had for years been the province of obscure professors
suddenly seem of startling importance. While studying algebra many years
ago, I once had occasion to look at my professor’s monograph on
diϱerential algebra. It was his life’s work. No one had heard of it, and no
one, judging from the inside cover, had ever checked it from the library
before. A few years later diϱerential algebra became the rage, and a few
years after that, that rage was superseded by another rage. At other times,
even very distinguished mathematicians carry out this exercise in reverse.
When Samuel Eilenberg decided to commit his thoughts on automata theory
to a monograph, he brought to bear the most exquisite of algebraic tools,



but by the time the book appeared, it was too late, the expensive delicate
ship that he had meant to board sailing on without him.

Professors trudge out on rainy mornings and meet their classes. There is
the sound of chalk squeaking. Books are opened and notes taken. Problems
are posed and sometimes settled. Things are sometimes clear, and
sometimes confused. The life behind the life of mathematics goes on.

What we scribes and scribblers on the margin of this great art can say is
only that everything old was once new, and that everything new will one
day be old.

As for the tingling that everyone senses but that no one can specify, we
must wait and see what happens.

Even so, even we.



DAVID BERLINSKI received his Ph.D. from Princeton University and has taught
mathematics, philosophy, and English at Stanford, Rutgers, the University
of Puget Sound, and the Université de Paris at Jussieu. He has been a
research fellow at both the International Institute for Applied Systems
Analysis in Austria and the Institut des Hautes Études Scientiϧques in
France. His many books have been translated into more than a dozen
European and Asian languages. His essays in Commentary have become
famous. A senior fellow at the Discovery Institute in Seattle, he lives and
works in Paris.



THE MODERN LIBRARY EDITORIAL BOARD

Maya Angelou
•

A. S. Byatt
•

Caleb Carr
•

Christopher Cerf
•

Harold Evans
•

Charles Frazier
•

Vartan Gregorian
•

Jessica Hagedorn
•

Richard Howard
•

Charles Johnson
•

Jon Krakauer
•

Edmund Morris
•

Azar Nafisi
•

Joyce Carol Oates
•

Elaine Pagels
•

John Richardson
•

Salman Rushdie
•

Oliver Sacks



•
Carolyn See

•
Gore Vidal




	Other Books by This Author
	Title Page
	Copyright
	Dedication
	Contents
	1: Number
	2: Proof
	3: Analytic Geometry
	4: The Calculus
	5: Complex Numbers
	6: Groups
	7: Non-Euclidean Geometry
	8: Sets
	9: Incompleteness
	10: The Present
	About the Author

