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To avoide the tediouse repetition of these woordes: is

equalle to: I will sette as I doe often in woorke use, a paire of

paralleles, or gemowe lines of one lengthe: =======, bicause

noe .2. thynges, can be moare equalle.

Robert Recorde, The Whetstone of Witte, 1557
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Why Equations?

Equations are the lifeblood of mathematics, science, and technology.

Without them, our world would not exist in its present form.

However, equations have a reputation for being scary: Stephen

Hawking’s publishers told him that every equation would halve the sales

of A Brief History of Time, but then they ignored their own advice and

allowed him to include E = mc2 when cutting it out would allegedly have

sold another 10 million copies. I’m on Hawking’s side. Equations are too

important to be hidden away. But his publishers had a point too: equations

are formal and austere, they look complicated, and even those of us who

love equations can be put off if we are bombarded with them.

In this book, I have an excuse. Since it’s about equations, I can no more

avoid including them than I could write a book about mountaineering

without using the word ‘mountain’. I want to convince you that equations

have played a vital part in creating today’s world, from mapmaking to

satnav, from music to television, from discovering America to exploring

the moons of Jupiter. Fortunately, you don’t need to be a rocket scientist to

appreciate the poetry and beauty of a good, significant equation.

There are two kinds of equations in mathematics, which on the surface

look very similar. One kind presents relations between various

mathematical quantities: the task is to prove the equation is true. The

other kind provides information about an unknown quantity, and the

mathematician’s task is to solve it – to make the unknown known. The

distinction is not clear-cut, because sometimes the same equation can be

used in both ways, but it’s a useful guideline. You will find both kinds here.

Equations in pure mathematics are generally of the first kind: they

reveal deep and beautiful patterns and regularities. They are valid because,

given our basic assumptions about the logical structure of mathematics,

there is no alternative. Pythagoras’s theorem, which is an equation

expressed in the language of geometry, is an example. If you accept

Euclid’s basic assumptions about geometry, then Pythagoras’s theorem is

true.

Equations in applied mathematics and mathematical physics are

usually of the second kind. They encode information about the real
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world; they express properties of the universe that could in principle have

been very different. Newton’s law of gravity is a good example. It tells us

how the attractive force between two bodies depends on their masses, and

how far apart they are. Solving the resulting equations tells us how the

planets orbit the Sun, or how to design a trajectory for a space probe. But

Newton’s law isn’t a mathematical theorem; it’s true for physical reasons, it

fits observations. The law of gravity might have been different. Indeed, it is

different: Einstein’s general theory of relativity improves on Newton by

fitting some observations better, while not messing up those where we

already know Newton’s law does a good job.

The course of human history has been redirected, time and time again,

by an equation. Equations have hidden powers. They reveal the innermost

secrets of nature. This is not the traditional way for historians to organise

the rise and fall of civilisations. Kings and queens and wars and natural

disasters abound in the history books, but equations are thin on the

ground. This is unfair. In Victorian times, Michael Faraday was

demonstrating connections between magnetism and electricity to

audiences at the Royal Institution in London. Allegedly, Prime Minister

William Gladstone asked whether anything of practical consequence

would come from it. It is said (on the basis of very little actual evidence, but

why ruin a nice story?) that Faraday replied: ‘Yes, sir. One day you will tax

it.’ If he did say that, he was right. James Clerk Maxwell transformed early

experimental observations and empirical laws about magnetism and

electricity into a system of equations for electromagnetism. Among the

many consequences were radio, radar, and television.

An equation derives its power from a simple source. It tells us that two

calculations, which appear different, have the same answer. The key

symbol is the equals sign, ¼. The origins of most mathematical symbols are

either lost in the mists of antiquity, or are so recent that there is no doubt

where they came from. The equals sign is unusual because it dates back

more than 450 years, yet we not only know who invented it, we even know

why. The inventor was Robert Recorde, in 1557, in The Whetstone of Witte.

He used two parallel lines (he used an obsolete word gemowe, meaning

‘twin’) to avoid tedious repetition of the words ‘is equal to’. He chose that

symbol because ‘no two things can be more equal’. Recorde chose well. His

symbol has remained in use for 450 years.

The power of equations lies in the philosophically difficult

correspondence between mathematics, a collective creation of human

minds, and an external physical reality. Equations model deep patterns in

the outside world. By learning to value equations, and to read the stories
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they tell, we can uncover vital features of the world around us. In principle,

there might be other ways to achieve the same result. Many people prefer

words to symbols; language, too, gives us power over our surroundings. But

the verdict of science and technology is that words are too imprecise, and

too limited, to provide an effective route to the deeper aspects of reality.

They are too coloured by human-level assumptions. Words alone can’t

provide the essential insights.

Equations can. They have been a prime mover in human civilisation

for thousands of years. Throughout history, equations have been pulling

the strings of society. Tucked away behind the scenes, to be sure – but the

influence was there, whether it was noticed or not. This is the story of the

ascent of humanity, told through 17 equations.
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1 The squaw on the hippopotamus
Pythagoras’s Theorem

What does it tell us?

How the three sides of a right-angled triangle are related.

Why is that important?

It provides a vital link between geometry and algebra, allowing

us to calculate distances in terms of coordinates. It also

inspired trigonometry.

What did it lead to?

Surveying, navigation, and more recently special and general

relativity – the best current theories of space, time, and gravity.

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
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A sk any school student to name a famous mathematician, and,

assuming they can think of one, more often than not they will opt

for Pythagoras. If not, Archimedes might spring to mind. Even the

illustrious Isaac Newton has to play third fiddle to these two superstars of

the ancient world. Archimedes was an intellectual giant, and Pythagoras

probably wasn’t, but he deserves more credit than he is often given. Not for

what he achieved, but for what he set in motion.

Pythagoras was born on the Greek island of Samos, in the eastern

Aegean, around 570 BC. He was a philosopher and a geometer. What little

we know about his life comes from much later writers and its historical

accuracy is questionable, but the key events are probably correct. Around

530 BC he moved to Croton, a Greek colony in what is now Italy. There he

founded a philosophico-religious cult, the Pythagoreans, who believed that

the universe is based on number. Their founder’s present-day fame rests on

the theorem that bears his name. It has been taught for more than 2000

years, and has entered popular culture. The 1958 movie Merry Andrew,

starring Danny Kaye, includes a song whose lyrics begin:

The square on the hypotenuse

of a right triangle

is equal to

the sum of the squares

on the two adjacent sides.

The song goes on with some double entendre about not letting your

participle dangle, and associates Einstein, Newton, and the Wright

brothers with the famous theorem. The first two exclaim ‘Eureka!’; no,

that was Archimedes. You will deduce that the lyrics are not hot on

historical accuracy, but that’s Hollywood for you. However, in Chapter 13

we will see that the lyricist (Johnny Mercer) was spot on with Einstein,

probably more so than he realised.

Pythagoras’s theorem appears in a well-known joke, with terrible puns

about the squaw on the hippopotamus. The joke can be found all over the
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internet, but it’s much harder to discover where it came from.1 There are

Pythagoras cartoons, T-shirts, and a Greek stamp, Figure 1.

Fig 1 Greek stamp showing Pythagoras’s theorem.

All this fuss notwithstanding, we have no idea whether Pythagoras

actually proved his theorem. In fact, we don’t know whether it was his

theorem at all. It could well have been discovered by one of Pythagoras’s

minions, or some Babylonian or Sumerian scribe. But Pythagoras got the

credit, and his name stuck. Whatever its origins, the theorem and its

consequences have had a gigantic impact on human history. They literally

opened up our world.

The Greeks did not express Pythagoras’s theorem as an equation in the

modern symbolic sense. That came later with the development of algebra.

In ancient times, the theorem was expressed verbally and geometrically. It

attained its most polished form, and its first recorded proof, in the writings

of Euclid of Alexandria. Around 250 BC Euclid became the first modern

mathematician when he wrote his famous Elements, the most influential

mathematical textbook ever. Euclid turned geometry into logic by making

his basic assumptions explicit and invoking them to give systematic proofs

for all of his theorems. He built a conceptual tower whose foundations

were points, lines, and circles, and whose pinnacle was the existence of

precisely five regular solids.

One of the jewels in Euclid’s crown was what we now call Pythagoras’s

theorem: Proposition 47 of Book I of the Elements. In the famous
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translation by Sir Thomas Heath this proposition reads: ‘In right-angled

triangles the square on the side subtending the right angle is equal to the

squares on the sides containing the right angle.’

No hippopotamus, then. No hypotenuse. Not even an explicit ‘sum’ or

‘add’. Just that funny word ‘subtend’, which basically means ‘be opposite

to’. However, Pythagoras’s theorem clearly expresses an equation, because

it contains that vital word: equal.

For the purposes of higher mathematics, the Greeks worked with lines

and areas instead of numbers. So Pythagoras and his Greek successors

would decode the theorem as an equality of areas: ‘The area of a square

constructed using the longest side of a right-angled triangle is the sum of

the areas of the squares formed from the other two sides.’ The longest side

is the famous hypotenuse, which means ‘to stretch under’, which it does if

you draw the diagram in the appropriate orientation, as in Figure 2 (left).

Within a mere 2000 years, Pythagoras’s theorem had been recast as the

algebraic equation

a2 þ b2 ¼ c2

where c is the length of the hypotenuse, a and b are the lengths of the other

two sides, and the small raised 2 means ‘square’. Algebraically, the square

of any number is that number multiplied by itself, and we all know that the

area of any square is the square of the length of its side. So Pythagoras’s

equation, as I shall rename it, says the same thing that Euclid said – except

for various psychological baggage to do with how the ancients thought

about basic mathematical concepts like numbers and areas, which I won’t

go into.

Pythagoras’s equation has many uses and implications. Most directly,

it lets you calculate the length of the hypotenuse, given the other two

sides. For instance, suppose that a=3 and b=4. Then c2 = a2 + b2 = 32 +42 = 9

+ 16=25. Therefore c=5. This is the famous 3–4–5 triangle, ubiquitous in

school mathematics, and the simplest example of a Pythagorean triple: a

list of three whole numbers that satisfies Pythagoras’s equation. The next

simplest, other than scaled versions such as 6–8–10, is the 5–12–13 triangle.

There are infinitely many such triples, and the Greeks knew how to

construct them all. They still retain some interest in number theory, and

even in the last decade new features have been discovered.

Instead of using a and b to work out c, you can proceed indirectly, and

solve the equation to obtain a provided that you know b and c. You can

also answer more subtle questions, as we will shortly see.
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Fig 2 Left: Construction lines for Euclid’s proof of Pythagoras. Middle and right: Alternative

proof of the theorem. The outer squares have equal areas, and the shaded triangles all have

equal areas. Therefore the tilted white square has the same area as the other two white

squares combined.

Why is the theorem true? Euclid’s proof is quite complicated, and it

involves drawing five extra lines on the diagram, Figure 2 (left), and

appealing to several previously proved theorems. Victorian schoolboys

(few girls did geometry in those days) referred to it irreverently as

Pythagoras’s pants. A straightforward and intuitive proof, though not the

most elegant, uses four copies of the triangle to relate two solutions of the

same mathematical jigsaw puzzle, Figure 2 (right). The picture is

compelling, but filling in the logical details requires some thought. For

instance: how do we know that the tilted white region in the middle

picture is a square?

There is tantalising evidence that Pythagoras’s theorem was known long

before Pythagoras. A Babylonian clay tablet2 in the British Museum

contains, in cuneiform script, a mathematical problem and answer that

can be paraphrased as:

4 is the length and 5 the diagonal. What is the breadth?

4 times 4 is 16.

5 times 5 is 25.

Take 16 from 25 to obtain 9.

What times what must I take to get 9?

3 times 3 is 9.

Therefore 3 is the breadth.
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So the Babylonians certainly knew about the 3–4–5 triangle, a thousand

years before Pythagoras.

Another tablet, YBC 7289 from the Babylonian collection of Yale

University, is shown in Figure 3 (left). It shows a diagram of a square of side

30, whose diagonal is marked with two lists of numbers: 1, 24, 51, 10 and

42, 25, 35. The Babylonians employed base-60 notation for numbers, so

the first list actually refers to 1 +24/60 +51/602 +10/603, which in decimals

is 1.4142129. The square root of 2 is 1.4142135. The second list is 30 times

this. So the Babylonians knew that the diagonal of a square is its side

multiplied by the square root of 2. Since 12 + 12 =2 = ð ffiffiffi
2

p Þ2, this too is an

instance of Pythagoras’s theorem.

Fig 3 Left: YBC 7289. Right: Plimpton 322.

Even more remarkable, though more enigmatic, is the tablet Plimpton

322 from George Arthur Plimpton’s collection at Columbia University,

Figure 3 (right). It is a table of numbers, with four columns and 15 rows.

The final column just lists the row number, from 1 to 15. In 1945 historians

of science Otto Neugebauer and Abraham Sachs3 noticed that in each row,

the square of the number (say c) in the third column, minus the square of

the number (say b) in the second column, is itself a square (say a). It follows

that a2 + b2 = c2, so the table appears to record Pythagorean triples. At least,

this is the case provided four apparent errors are corrected. However, it is

not absolutely certain that Plimpton 322 has anything to do with

Pythagorean triples, and even if it does, it might just have been a

convenient list of triangles whose areas were easy to calculate. These could

then be assembled to yield good approximations to other triangles and

other shapes, perhaps for land measurement.

Another iconic ancient civilisation is that of Egypt. There is some
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evidence that Pythagoras may have visited Egypt as a young man, and

some have conjectured that this is where he learned his theorem. The

surviving records of Egyptian mathematics offer scant support for this idea,

but they are few and specialised. It is often stated, typically in the context

of pyramids, that the Egyptians laid out right angles using a 3–4–5 triangle,

formed from a length of string with knots at 12 equal intervals, and that

archaeologists have found strings of that kind. However, neither claim

makes much sense. Such a technique would not be very reliable, because

strings can stretch and the knots would have to be very accurately spaced.

The precision with which the pyramids at Giza are built is superior to

anything that could be achieved with such a string. Far more practical

tools, similar to a carpenter’s set square, have been found. Egyptologists

specialising in ancient Egyptian mathematics know of no records of string

being employed to form a 3–4–5 triangle, and no examples of such strings

exist. So this story, charming though it may be, is almost certainly a myth.

If Pythagoras could be transplanted into today’s world he would notice

many differences. In his day, medical knowledge was rudimentary, lighting

came from candles and burning torches, and the fastest forms of

communication were a messenger on horseback or a lighted beacon on a

hilltop. The known world encompassed much of Europe, Asia, and Africa –

but not the Americas, Australia, the Arctic, or the Antarctic. Many cultures

considered the world to be flat: a circular disc or even a square aligned with

the four cardinal points. Despite the discoveries of classical Greece this

belief was still widespread in medieval times, in the form of orbis terrae

maps, Figure 4.

Who first realised the world is round? According to Diogenes Laertius, a

third-century Greek biographer, it was Pythagoras. In his book Lives and

Opinions of Eminent Philosophers, a collection of sayings and biographical

notes that is one of our main historical sources for the private lives of the

philosophers of ancient Greece, he wrote: ‘Pythagoras was the first who

called the Earth round, though Theophrastus attributes this to Parmenides

and Zeno to Hesiod.’ The ancient Greeks often claimed that major

discoveries had been made by their famous forebears, irrespective of

historical fact, so we can’t take the statement at face value, but it is not in

dispute that from the fifth century BC all reputable Greek philosophers and

mathematicians considered the Earth to be round. The idea does seem to

have originated around the time of Pythagoras, and it might have come

from one of his followers. Or it might have been common currency, based
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on evidence such as the round shadow of the Earth on the Moon during an

eclipse, or the analogy with an obviously round Moon.

Even for the Greeks, though, the Earth was the centre of the universe

and everything else revolved around it. Navigation was carried out by dead

reckoning: looking at the stars and following the coastline. Pythagoras’s

equation changed all that. It set humanity on the path to today’s

understanding of the geography of our planet and its place in the Solar

System. It was a vital first step towards the geometric techniques needed

for mapmaking, navigation, and surveying. It also provided the key to a

vitally important relation between geometry and algebra. This line of

development leads from ancient times right through to general relativity

and modern cosmology, see Chapter 13. Pythagoras’s equation opened up

entirely new directions for human exploration, both metaphorically and

literally. It revealed the shape of our world and its place in the universe.

Many of the triangles encountered in real life are not right-angled, so the

equation’s direct applications may seem limited. However, any triangle can

be cut into two right-angled ones as in Figure 6 (page 11), and any

polygonal shape can be cut into triangles. So right-angled triangles are the

key: they prove that there is a useful relation between the shape of a

triangle and the lengths of its sides. The subject that developed from this

insight is trigonometry: ‘triangle measurement’.
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The right-angled triangle is fundamental to trigonometry, and in

particular it determines the basic trigonometric functions: sine, cosine, and

tangent. The names are Arabic in origin, and the history of these functions

and their many predecessors shows the complicated route by which today’s

version of the topic arose. I’ll cut to the chase and explain the eventual

outcome. A right-angled triangle has, of course, a right angle, but its other

two angles are arbitrary, apart from adding to 908. Associated with any

angle are three functions, that is, rules for calculating an associated

number. For the angle marked A in Figure 5, using the traditional a, b, c for

the three sides, we define the sine (sin), cosine (cos), and tangent (tan) like

this:

sinA¼ a=c cosA¼ b=c tanA¼ a=b

These quantities depend only on the angle A, because all right-angled

triangles with a given angle A are identical except for scale.

a

b

A

c

Fig 5 Trigonometry is based on a right-angle triangle.

In consequence, it is possible to draw up a table of the values of sin, cos,

and tan, for a range of angles, and then use them to calculate features of

right-angled triangles. A typical application, which goes back to ancient

times, is to calculate the height of a tall column using only measurements

made on the ground. Suppose that, from a distance of 100 metres, the

angle to the top of the column is 228. Take A=228 in Figure 5, so that a is

the height of the column. Then the definition of the tangent function tells

us that

tan22� ¼ a=100

so that

a¼100 tan22�:

Since tan 228 is 0.404, to three decimal places, we deduce that a=40.4

metres.
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a c

b

C

Fig 6 Splitting a triangle into two with right angles.

Once in possession of trigonometric functions, it is straightforward to

extend Pythagoras’s equation to triangles that do not have a right angle.

Figure 6 shows a triangle with an angle C and sides a, b, c. Split the triangle

into two right-angled ones as shown. Then two applications of Pythagoras

and some algebra4 prove that

a2 þ b2 �2ab cosC¼ c2

which is similar to Pythagoras’s equation, except for the extra term �2ab

cos C. This ‘cosine rule’ does the same job as Pythagoras, relating c to a and

b, but now we have to include information about the angle C.

The cosine rule is one of the mainstays of trigonometry. If we know

two sides of a triangle and the angle between them, we can use it to

calculate the third side. Other equations then tell us the remaining angles.

All of these equations can ultimately be traced back to right-angled

triangles.

Armed with trigonometric equations and suitable measuring apparatus, we

can carry out surveys and make accurate maps. This is not a new idea. It

appears in the Rhind Papyrus, a collection of ancient Egyptian

mathematical techniques dating from 1650 BC. The Greek philosopher

Thales used the geometry of triangles to estimate the heights of the Giza

pyramids in about 600 BC. Hero of Alexandria described the same

technique in 50 AD. Around 240 BC Greek mathematician, Eratosthenes,

calculated the size of the Earth by observing the angle of the Sun at noon in

two different places: Alexandria and Syene (now Aswan) in Egypt. A

succession of Arabian scholars preserved and developed these methods,

applying them in particular to astronomical measurements such as the size

of the Earth.

Surveying began to take off in 1533 when the Dutch mapmaker

Gemma Frisius explained how to use trigonometry to produce accurate

maps, in Libellus de Locorum Describendorum Ratione (‘Booklet Concerning a
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Way of Describing Places’). Word of the method spread across Europe,

reaching the ears of the Danish nobleman and astronomer Tycho Brahe. In

1579 Tycho used it to make an accurate map of Hven, the island where his

observatory was located. By 1615 the Dutch mathematician Willebrord

Snellius (Snel van Royen) had developed the method into essentially its

modern form: triangulation. The area being surveyed is covered with a

network of triangles. By measuring one initial length very carefully, and

many angles, the locations of the corners of the triangle, and hence any

interesting features within them, can be calculated. Snellius worked out

the distance between two Dutch towns, Alkmaar and Bergen op Zoom,

using a network of 33 triangles. He chose these towns because they lay on

the same line of longitude and were exactly one degree of arc apart.

Knowing the distance between them, he could work out the size of the

Earth, which he published in his Eratosthenes Batavus (‘The Dutch

Eratosthenes’) in 1617. His result is accurate to within 4%. He also

modified the equations of trigonometry to reflect the spherical nature of

the Earth’s surface, an important step towards effective navigation.

Triangulation is an indirect method for calculating distances using

angles. When surveying a stretch of land, be it a building site or a country,

the main practical consideration is that it is much easier to measure angles

than it is to measure distances. Triangulation lets us measure a few

distances and lots of angles; then everything else follows from the

trigonometric equations. The method begins by setting out one line

between two points, called the baseline, and measuring its length directly

to very high accuracy. Then we choose a prominent point in the landscape

that is visible from both ends of the baseline, and measure the angle from

the baseline to that point, at both ends of the baseline. Now we have a

triangle, and we know one side of it and two angles, which fix its shape and

size. We can then use trigonometry to work out the other two sides.

In effect, we now have two more baselines: the newly calculated sides

of the triangle. From those, we can measure angles to other, more distant

points. Continue this process to create a network of triangles that covers

the area being surveyed. Within each triangle, observe the angles to all

noteworthy features – church towers, crossroads, and so on. The same

trigonometric trick pinpoints their precise locations. As a final twist, the

accuracy of the entire survey can be checked by measuring one of the final

sides directly.

By the late eighteenth century, triangulation was being employed

routinely in surveys. The Ordnance Survey of Great Britain began in 1783,

taking 70 years to complete the task. The Great Trigonometric Survey of
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India, which among other things mapped the Himalayas and determined

the height of Mount Everest, started in 1801. In the twenty-first century,

most large-scale surveying is done using satellite photographs and GPS (the

Global Positioning System). Explicit triangulation is no longer employed.

But it is still there, behind the scenes, in the methods used to deduce

locations from the satellite data.

Pythagoras’s theorem was also vital to the invention of coordinate

geometry. This is a way to represent geometric figures in terms of

numbers, using a system of lines, known as axes, labelled with numbers.

The most familiar version is known as Cartesian coordinates in the plane,

in honour of the French mathematician and philosopher René Descartes,

who was one of the great pioneers in this area – though not the first. Draw

two lines: a horizontal one labelled x and a vertical one labelled y. These

lines are known as axes (plural of axis), and they cross at a point called the

origin. Mark points along these two axes according to their distance from

the origin, like the markings on a ruler: positive numbers to the right and

up, negative to the left and down. Now we can determine any point in the

plane in terms of two numbers x and y, its coordinates, by connecting the

point to the two axes as in Figure 7. The pair of numbers (x, y) completely

specifies the location of the point.

negative
positive

(x,y)

positive

x

y

Fig 7 The two axes and the coordinates of a point.

The great mathematicians of seventeenth-century Europe realised that,

in this context, a line or curve in the plane corresponds to the set of

solutions (x, y) of some equation in x and y. For instance, y= x determines a
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diagonal line sloping from lower left to top right, because (x, y) lies on that

line if and only if y= x. In general, a linear equation – of the form ax + by= c

for constants a, b, c – corresponds to a straight line, and vice versa.

What equation corresponds to a circle? This is where Pythagoras’s

equation comes in. It implies that the distance r from the origin to the

point (x, y) satisfies

r2 ¼ x2 þ y2

and we can solve this for r to obtain

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q

Since the set of all points that lie at distance r from the origin is a circle of

radius r, whose centre is the origin, so the same equation defines a circle.

More generally, the circle of radius r with centre at (a, b) corresponds to the

equation

ðx� aÞ2 þðy� bÞ2 ¼ r2

and the same equation determines the distance r between the two points

(a, b) and (x, y). So Pythagoras’s theorem tells us two vital things: which

equations yield circles, and how to calculate distances from coordinates.

Pythagoras’s theorem, then, is important in its own right, but it exerts even

more influence through its generalisations. Here I will pursue just one

strand of these later developments to bring out the connection with

relativity, to which we return in Chapter 13.

The proof of Pythagoras’s theorem in Euclid’s Elements places the

theorem firmly within the realm of Euclidean geometry. There was a time

when that phrase could have been replaced by just ‘geometry’, because it

was generally assumed that Euclid’s geometry was the true geometry of

physical space. It was obvious. Like most things assumed to be obvious, it

turned out to be false.

Euclid derived all of his theorems from a small number of basic

assumptions, which he classified as definitions, axioms, and common

notions. His set-up was elegant, intuitive, and concise, with one glaring

exception, his fifth axiom: ‘If a straight line falling on two straight lines

makes the interior angles on the same side less than two right angles, the

two straight lines, if produced indefinitely, meet on that side on which are
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the angles less than the two right angles.’ It’s a bit of a mouthful: Figure 8

may help.

if these
angles add
to less than

180°

then
these lines
meet here 

Fig 8 Euclid’s parallel axiom.

For well over a thousand years, mathematicians tried to repair what

they saw as a flaw. They weren’t just looking for something simpler and

more intuitive that would achieve the same end, although several of them

found such things. They wanted to get rid of the awkward axiom

altogether, by proving it. After several centuries, mathematicians finally

realised that there were alternative ‘non-Euclidean’ geometries, implying

that no such proof existed. These new geometries were just as logically

consistent as Euclid’s, and they obeyed all of his axioms except the parallel

axiom. They could be interpreted as the geometry of geodesics – shortest

paths – on curved surfaces, Figure 9. This focused attention on the meaning

of curvature.

Fig 9 Curvature of a surface. Left: zero curvature. Middle: positive curvature. Right: negative

curvature.

The plane of Euclid is flat, curvature zero. A sphere has the same

curvature everywhere, and it is positive: near any point it looks like a
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dome. (As a technical fine point: great circles meet in two points, not one

as Euclid’s axioms require, so spherical geometry is modified by identifying

antipodal points on the sphere – considering them to be identical. The

surface becomes a so-called projective plane and the geometry is called

elliptic.) A surface of constant negative curvature also exists: near any

point, it looks like a saddle. This surface is called the hyperbolic plane, and

it can be represented in several entirely prosaic ways. Perhaps the simplest

is to consider it as the interior of a circular disc, and to define ‘line’ as an arc

of a circle meeting the edge of the disc at right angles (Figure 10).

P

L

Fig 10 Disc model of the hyperbolic plane. All three lines through P fail to meet line L.

It might seem that, while plane geometry might be non-Euclidean, this

must be impossible for the geometry of space. You can bend a surface by

pushing it into a third dimension, but you can’t bend space because there’s

no room for an extra dimension along which to push it. However, this is

a rather naive view. For example, we can model three-dimensional

hyperbolic space using the interior of a sphere. Lines are modelled as

arcs of circles that meet the boundary at right angles, and planes are

modelled as parts of spheres that meet the boundary at right angles. This

geometry is three-dimensional, satisfies all of Euclid’s axioms except the

Fifth, and in a sense that can be pinned down it defines a curved three-

dimensional space. But it’s not curved round anything, or in any new

direction.

It’s just curved.

With all these new geometries available, a new point of view began to

occupy centre stage – but as physics, not mathematics. Since space doesn’t

have to be Euclidean, what shape is it? Scientists realised that they didn’t

actually know. In 1813, Gauss, knowing that in a curved space the angles

of a triangle do not add to 1808, measured the angles of a triangle formed

by three mountains – the Brocken, the Hohehagen, and the Inselberg. He

obtained a sum 15 seconds of arc greater than 1808. If correct, this

indicated that space (in that region, at least) was positively curved. But
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you’d need a far larger triangle, and far more accurate measurements, to

eliminate observational errors. So Gauss’s observations were inconclusive.

Space might be Euclidean, and then again, it might not be.

My remark that three-dimensional hyperbolic space is ‘just curved’

depends on a new point of view about curvature, which also goes back

to Gauss. The sphere has constant positive curvature, and the hyperbolic

plane has constant negative curvature. But the curvature of a surface

doesn’t have to be constant. It might be sharply curved in some places, less

sharply curved in others. Indeed, it might be positive in some regions but

negative in others. The curvature could vary continuously from place to

place. If the surface looks like a dog’s bone, then the blobs at the ends are

positively curved but the part that joins them is negatively curved.

Gauss searched for a formula to characterise the curvature of a surface

at any point. When he eventually found it, and published it in his

Disquisitiones Generales Circa Superficies Curva (‘General Research on Curved

Surfaces’) of 1828, he named it the ‘remarkable theorem’. What was so

remarkable? Gauss had started from the naive view of curvature: embed the

surface in three-dimensional space and calculate how bent it is. But the

answer told him that this surrounding space didn’t matter. It didn’t enter

into the formula. He wrote: ‘The formula . . . leads itself to the remarkable

theorem: If a curved surface is developed upon any other surface whatever,

the measure of curvature in each point remains unchanged.’ By

‘developed’ he meant ‘wrapped round’.

Take a flat sheet of paper, zero curvature. Now wrap it round a bottle. If

the bottle is cylindrical the paper fits perfectly, without being folded,

stretched, or torn. It is bent as far as visual appearance goes, but it’s a trivial

kind of bending, because it hasn’t changed geometry on the paper in any

way. It’s just changed how the paper relates to the surrounding space.

Draw a right-angled triangle on the flat paper, measure its sides, check

Pythagoras. Now wrap the diagram round a bottle. The lengths of sides,

measured along the paper, don’t change. Pythagoras is still true.

The surface of a sphere, however, has nonzero curvature. So it is not

possible to wrap a sheet of paper so that it fits snugly against a sphere,

without folding it, stretching it, or tearing it. Geometry on a sphere is

intrinsically different from geometry on a plane. For example, the Earth’s

equator and the lines of longitude for 08 and 908 to its north determine a

triangle that has three right angles and three equal sides (assuming the

Earth to be a sphere). So Pythagoras’s equation is false.
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Today we call curvature in its intrinsic sense ‘Gaussian curvature’.

Gauss explained why it is important using a vivid analogy, still current.

Imagine an ant confined to the surface. How can it work out whether the

surface is curved? It can’t step outside the surface to see whether it looks

bent. But it can use Gauss’s formula by making suitable measurements

purely within the surface. We are in the same position as the ant when we

try to figure out the true geometry of our space. We can’t step outside it.

Before we can emulate the ant by taking measurements, however, we need

a formula for the curvature of a space of three dimensions. Gauss didn’t

have one. But one of his students, in a fit of recklessness, claimed that he

did.

The student was Georg Bernhard Riemann, and he was trying to achieve

what German universities call Habilitation, the next step after a PhD. In

Riemann’s day this meant that you could charge students a fee for your

lectures. Then and now, gaining Habilitation requires presenting your

research in a public lecture that is also an examination. The candidate

offers several topics, and the examiner, which in Riemann’s case was

Gauss, chooses one. Riemann, a brilliant mathematical talent, listed several

orthodox topics that he knew backwards, but in a rush of blood to the

brain he also suggested ‘On the hypotheses which lie at the foundation of

geometry’. Gauss had long been interested in just that, and he naturally

selected it for Riemann’s examination.

Riemann instantly regretted offering something so challenging. He had

a hearty dislike of public speaking, and he hadn’t thought the mathematics

through in detail. He just had some vague, though fascinating, ideas about

curved space. In any number of dimensions. What Gauss had done for two

dimensions, with his remarkable theorem, Riemann wanted to do in as

many dimensions as you like. Now he had to perform, and fast. The lecture

was looming. The pressure nearly gave him a nervous breakdown, and his

day job helping Gauss’s collaborator Wilhelm Weber with experiments in

electricity didn’t help. Well, maybe it did, because while Riemann was

thinking about the relation between electrical and magnetic forces in the

day job, he realised that force can be related to curvature. Working

backwards, he could use the mathematics of forces to define curvature, as

required for his examination.

In 1854 Riemann delivered his lecture, which was warmly received,

and no wonder. He began by defining what he called a ‘manifold’, in the

sense of many-foldedness. Formally, a ‘manifold’, is specified by a system
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of many coordinates, together with a formula for the distance between

nearby points, now called a Riemannian metric. Informally, a manifold is a

multidimensional space in all its glory. The climax of Riemann’s lecture

was a formula that generalised Gauss’s remarkable theorem: it defined the

curvature of the manifold solely in terms of its metric. And it is here that

the tale comes full circle like the snake Orobouros and swallows its own

tail, because the metric contains visible remnants of Pythagoras.

Suppose, for example, that the manifold has three dimensions. Let the

coordinates of a point be (x, y, z), and let (x+dx, y+dy, z+dz) be a nearby

point, where the d means ‘a little bit of’. If the space is Euclidean, with zero

curvature, the distance ds between these two points satisfies the equation

ds2 ¼dx2 þdy2 þdz2

and this is just Pythagoras, restricted to points that are close together. If the

space is curved, with variable curvature from point to point, the analogous

formula, the metric, looks like this:

ds2 ¼Xdx2 þY dy2 þZ dz2 þ2U dxdyþ2V dxdzþ2W dy dz

Here X, Y, Z, U, V, W can depend on x, y and z. It may seem a bit of a

mouthful, but like Pythagoras’s equation it involves sums of squares (and

closely related products of two quantities like dxdy) plus a few bells and

whistles. The 2s occur because the formula can be packaged as a 363 table,

or matrix:

X U V
U Y W
V W Z

2
4

3
5

where X, Y, Z appear once, but U, V, W appear twice. The table is

symmetric about its diagonal; in the language of differential geometry it

is a symmetric tensor. Riemann’s generalisation of Gauss’s remarkable

theorem is a formula for the curvature of the manifold, at any given point,

in terms of this tensor. In the special case when Pythagoras applies, the

curvature turns out to be zero. So the validity of Pythagoras’s equation is a

test for the absence of curvature.

Like Gauss’s formula, Riemann’s expression for curvature depends only

on the manifold’s metric. An ant confined to the manifold could observe

the metric by measuring tiny triangles and computing the curvature.

Curvature is an intrinsic property of a manifold, independent of any

surrounding space. Indeed, the metric already determines the geometry, so

no surrounding space is required. In particular, we human ants can ask
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what shape our vast and mysterious universe is, and hope to answer it by

making observations that do not require us to step outside the universe.

Which is just as well, because we can’t.

Riemann found his formula by using forces to define geometry. Fifty

years later, Einstein turned Riemann’s idea on its head, using geometry to

define the force of gravity in his general theory of relativity, and inspiring

new ideas about the shape of the universe: see Chapter 13. It’s an

astonishing progression of events. Pythagoras’s equation first came into

being around 3500 years ago to measure a farmer’s land. Its extension to

triangles without right angles, and triangles on a sphere, allowed us to map

our continents and measure our planet. And a remarkable generalisation

lets us measure the shape of the universe. Big ideas have small beginnings.
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2 Shortening the proceedings
Logarithms

What does it tell us?

How to multiply numbers by adding related numbers instead.

Why is that important?

Addition is much simpler than multiplication.

What did it lead to?

Efficient methods for calculating astronomical phenomena

such as eclipses and planetary orbits. Quick ways to perform

scientific calculations. The engineers’ faithful companion, the

slide rule. Radioactive decay and the psychophysics of human

perception.
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Numbers originated in practical problems: recording property, such as

animals or land, and financial transactions, such as taxation and

keeping accounts. The earliest known number notation, aside from simple

tallying marks like ||||, is found on the outside of clay envelopes. In 8000 BC

Mesopotamian accountants kept records using small clay tokens of various

shapes. The archaeologist Denise Schmandt-Besserat realised that each

shape represented a basic commodity – a sphere for grain, an egg for a jar of

oil, and so on. For security, the tokens were sealed in clay wrappings. But it

was a nuisance to break a clay envelope open to find out how many tokens

were inside, so the ancient accountants scratched symbols on the outside

to show what was inside. Eventually they realised that once you had these

symbols, you could scrap the tokens. The result was a series of written

symbols for numbers – the origin of all later number symbols, and perhaps

of writing too.

Along with numbers came arithmetic: methods for adding, subtracting,

multiplying, and dividing numbers. Devices like the abacus were used to

do the sums; then the results could be recorded in symbols. After a time,

ways were found to use the symbols to perform the calculations without

mechanical assistance, although the abacus is still widely used in many

parts of the world, while electronic calculators have supplanted pen and

paper calculations in most other countries.

Arithmetic proved essential in other ways, too, especially in astronomy

and surveying. As the basic outlines of the physical sciences began to

emerge, the fledgeling scientists needed to perform ever more elaborate

calculations, by hand. Often this took up much of their time, sometimes

months or years, getting in the way of more creative activities. Eventually

it became essential to speed up the process. Innumerable mechanical

devices were invented, but the most important breakthrough was a

conceptual one: think first, calculate later. Using clever mathematics,

you could make difficult calculations much easier.

The new mathematics quickly developed a life of its own, turning out

to have deep theoretical implications as well as practical ones. Today, those

early ideas have become an indispensable tool throughout science,
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reaching even into psychology and the humanities. They were widely used

until the 1980s, when computers rendered them obsolete for practical

purposes, but, despite that, their importance in mathematics and science

has continued to grow.

The central idea is a mathematical technique called a logarithm. Its

inventor was a Scottish laird, but it took a geometry professor with strong

interests in navigation and astronomy to replace the laird’s brilliant but

flawed idea by a much better one.

In March 1615 Henry Briggs wrote a letter to James Ussher, recording a

crucial event in the history of science:

Napper, lord of Markinston, hath set my head and hands a work with

his new and admirable logarithms. I hope to see him this summer, if it

please God, for I never saw a book which pleased me better or made me

more wonder.

Briggs was the first professor of geometry at Gresham College in London,

and ‘Napper, lord of Markinston’ was John Napier, eighth laird of

Merchiston, now part of the city of Edinburgh in Scotland. Napier seems

to have been a bit of a mystic; he had strong theological interests, but they

mostly centred on the book of Revelation. In his view, his most important

work was A Plaine Discovery of the Whole Revelation of St John, which led him

to predict that the world would end in either 1688 or 1700. He is thought

to have engaged in both alchemy and necromancy, and his interests in the

occult lent him a reputation as a magician. According to rumour, he

carried a black spider in a small box everywhere he went, and possessed a

‘familiar’, or magical companion: a black cockerel. According to one of his

descendants, Mark Napier, John employed his familiar to catch servants

who were stealing. He locked the suspect in a room with the cockerel and

instructed them to stroke it, telling them that his magical bird would

unerringly detect the guilty. But Napier’s mysticism had a rational core,

which in this particular instance involved coating the cockerel with a thin

layer of soot. An innocent servant would be confident enough to stroke the

bird as instructed, and would get soot on their hands. A guilty one, fearing

detection, would avoid stroking the bird. So, ironically, clean hands proved

you were guilty.

Napier devoted much of his time to mathematics, especially methods

for speeding up complicated arithmetical calculations. One invention,
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Napier’s bones, was a set of ten rods, marked with numbers, which

simplified the process of long multiplication. Even better was the

invention that made his reputation and created a scientific revolution:

not his book on Revelation, as he had hoped, but hisMirifici Logarithmorum

Canonis Descriptio (‘Description of the Wonderful Canon of Logarithms’) of

1614. The preface shows that Napier knew exactly what he had produced,

and what it was good for.1

Since nothing is more tedious, fellow mathematicians, in the practice

of the mathematical arts, than the great delays suffered in the tedium

of lengthy multiplications and divisions, the finding of ratios, and in

the extraction of square and cube roots – and ... the many slippery

errors that can arise: I had therefore been turning over in my mind, by

what sure and expeditious art, I might be able to improve upon these

said difficulties. In the end after much thought, finally I have found an

amazing way of shortening the proceedings ... it is a pleasant task to set

out the method for the public use of mathematicians.

The moment Briggs heard of logarithms, he was enchanted. Like many

mathematicians of his era, he spent a lot of his time performing

astronomical calculations. We know this because another letter from

Briggs to Ussher, dated 1610, mentions calculating eclipses, and because

Briggs had earlier published two books of numerical tables, one related to

the North Pole and the other to navigation. All of these works had required

vast quantities of complicated arithmetic and trigonometry. Napier’s

invention would save a great deal of tedious labour. But the more Briggs

studied the book, the more convinced he became that although Napier’s

strategy was wonderful, he’d got his tactics wrong. Briggs came up with a

simple but effective improvement, and made the long journey to Scotland.

When they met, ‘almost one quarter of an hour was spent, each beholding

the other with admiration, before one word was spoken’.2

What was it that excited so much admiration? The vital observation,

obvious to anyone learning arithmetic, was that adding numbers is

relatively easy, but multiplying them is not. Multiplication requires many

more arithmetical operations than addition. For example, adding two ten-

digit numbers involves about ten simple steps, but multiplication requires

200. With modern computers, this issue is still important, but now it is

tucked away behind the scenes in the algorithms used for multiplication.
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But in Napier’s day it all had to be done by hand. Wouldn’t it be great if

there were some mathematical trick that would convert those nasty

multiplications into nice, quick addition sums? It sounds too good to be

true, but Napier realised that it was possible. The trick was to work with

powers of a fixed number.

In algebra, powers of an unknown x are indicated by a small raised

number. That is, xx= x2, xxx = x3, xxxx = x4, and so on, where as usual in

algebra placing two letters next to each other means you should multiply

them together. So, for instance, 104 = 10 ´ 10 ´10 ´10=10,000. You don’t

need to play around with such expressions for long before you discover an

easy way to work out, say, 104 ´ 103. Just write down

10;00061;000 ¼ ð10610610610Þ6 ð10610610Þ
¼ 10610610610610610610

¼ 10;000;000

The number of 0s in the answer is 7, which equals 4 +3. The first step in the

calculation shows why it is 4 + 3: we stick four 10s and three 10s next to

each other. In short,

104 6103 ¼104þ3 ¼107

In the same way, whatever the value of x might be, if we multiply its ath

power by its bth power, where a and b are whole numbers, then we get the

(a+ b)th power:

xa xb ¼ xaþ b

This may seem an innocuous formula, but on the left it multiplies two

quantities together, while on the right the main step is to add a and b,

which is simpler.

Suppose you wanted to multiply, say, 2.67 by 3.51. By long

multiplication you get 9.3717, which to two decimal places is 9.37.

What if you try to use the previous formula? The trick lies in the choice of

x. If we take x to be 1.001, then a bit of arithmetic reveals that

ð1:001Þ983 ¼2:67

ð1:001Þ1256 ¼3:51

correct to two decimal places. The formula then tells us that 2.8763.41 is

ð1:001Þ983þ1256 ¼ð1:001Þ2239

which, to two decimal places, is 9.37.
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The core of the calculation is an easy addition: 983 +1256 =2239.

However, if you try to check my arithmetic you will quickly realise that if

anything I’ve made the problem harder, not easier. To work out (1.001)983

you have to multiply 1.001 by itself 983 times. And to discover that 983 is

the right power to use, you have to do even more work. So at first sight this

seems like a pretty useless idea.

Napier’s great insight was that this objection is wrong. But to overcome

it, some hardy soul has to calculate lots of powers of 1.001, starting with

(1.001)2 and going up to something like (1.001)10,000. Then they can

publish a table of all these powers. After that, most of the work has been

done. You just have to run your fingers down the successive powers until

you see 2.67 next to 983; you similarly locate 3.51 next to 1256. Then you

add those two numbers to get 2239. The corresponding row of the table

tells you that this power of 1.001 is 9.37. Job done.

Really accurate results require powers of something a lot closer to 1,

such as 1.000001. This makes the table far bigger, with a million or so

powers. Doing the calculations for that table is a huge enterprise. But it

has to be done only once. If some self-sacrificing benefactor makes the

effort up front, succeeding generations will be saved a gigantic amount of

arithmetic.

In the context of this example, we can say that the powers 983 and

1256 are the logarithms of the numbers 2.67 and 3.51 that we wish to

multiply. Similarly 2239 is the logarithm of their product 9.38. Writing log

as an abbreviation, what we have done amounts to the equation

log ab¼ log aþ log b

which is valid for any numbers a and b. The rather arbitrary choice of 1.001

is called the base. If we use a different base, the logarithms that we calculate

are also different, but for any fixed base everything works the same way.

This is what Napier should have done. But for reasons that we can only

guess at, he did something slightly different. Briggs, approaching the

technique from a fresh perspective, spotted two ways to improve on

Napier’s idea.

When Napier started thinking about powers of numbers, in the late

sixteenth century, the idea of reducing multiplication to addition was

already circulating among mathematicians. A rather complicated method

known as ‘prosthapheiresis’, based on a formula involving trigonometric

functions, was in use in Denmark.3 Napier, intrigued, was smart enough to
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realise that powers of a fixed number could do the same job more simply.

The necessary tables didn’t exist – but that was easily remedied. Some

public-spirited soul must carry out the work. Napier volunteered himself

for the task, but he made a strategic error. Instead of using a base that was

slightly bigger than 1, he used a base slightly smaller than 1. In

consequence, the sequence of powers started out with big numbers,

which got successively smaller. This made the calculations slightly more

clumsy.

Briggs spotted this problem, and saw how to deal with it: use a base

slightly larger than 1. He also spotted a subtler problem, and dealt with

that as well. If Napier’s method were modified to work with powers of

something like 1.0000000001, there would be no straightforward relation

between the logarithms of, say, 12.3456 and 1.23456. So it wasn’t entirely

clear when the table could stop. The source of the problem was the value of

log 10, because

log 10x¼ log 10þ log x

Unfortunately log 10 was messy: with the base 1.0000000001 the

logarithm of 10 was 23,025,850,929. Briggs thought it would be much

nicer if the base could be chosen so that log 10= 1. Then log 10x=1+ log x,

so that whatever log 1.23456 might be, you just had to add 1 to it to get log

12.3456. Now tables of logarithms need only run from 1 to 10. If bigger

numbers turned up, you just added the appropriate whole number.

To make log 10=1, you do what Napier did, using a base of

1.0000000001, but then you divide every logarithm by that curious

number 23,025,850,929. The resulting table consists of logarithms to base

10, which I’ll write as log10 x. They satisfy

log10 xy¼ log10 xþ log10 y

as before, but also

log10 10x¼ log10 xþ1

Within two years Napier was dead, so Briggs started work on a table of base-

10 logarithms. In 1617 he published Logarithmorum Chilias Prima

(‘Logarithms of the First Chiliad’), the logarithms of the integers from 1

to 1000 accurate to 14 decimal places. In 1624 he followed it up with

Arithmetic Logarithmica (‘Arithmetic of Logarithms’), a table of base-10

logarithms of numbers from 1 to 20,000 and from 90,000 to 100,000, to

the same accuracy. Others rapidly followed Briggs’s lead, filling in the large
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gap and developing auxiliary tables such as logarithms of trigonometric

functions like log sin x.

The same ideas that inspired logarithms allow us to define powers xa of a

positive variable x for values of a that are not positive whole numbers. All

we have to do is insist that our definitions must be consistent with the

equation xaxb= xa+b, and follow our noses. To avoid nasty complications, it

is best to assume x is positive, and to define xa so that this is also positive.

(For negative x, it’s best to introduce complex numbers, as in Chapter 5.)

For example, what is x0? Bearing in mind that x1 = x, the formula says

that x0 must satisfy x0x= x0+1 = x. Dividing by x we find that x0 = 1. Now

what about x�1? Well, the formula says that x�1x= x�1+1 = x0 = 1. Dividing

by x, we get x�1 = 1/x. Similarly x�2 = 1/x2, x�3 = 1/x3, and so on.

It starts to get more interesting, and potentially very useful, when we

think about x1/2. This has to satisfy x1/2 x1/2 = x1/2+1/2 = x1 = x. So x1/2,

multiplied by itself, is x. The only number with this property is the square

root of x. So x1/2 =
ffiffiffi
x

p
. Similarly, x1/3 =

ffiffiffi
x3

p
, the cube root. Continuing in this

manner we can define xp/q for any fraction p/q. Then, using fractions to

approximate real numbers, we can define xa for any real a. And the

equation xaxb= xa+b still holds.

It also follows that log
ffiffiffi
x

p ¼ 1
2 log x and log

ffiffiffi
x3

p
= 1

3 log x, so we can

calculate square roots and cube roots easily using a table of logarithms. For

example, to find the square root of a number we form its logarithm, divide

by 2, and then work out which number has the result as its logarithm. For

cube roots, do the same but divide by 3. Traditional methods for these

problems were tedious and complicated. You can see why Napier

showcased square and cube roots in the preface to his book.

As soon as complete tables of logarithms were available, they became an

indispensable tool for scientists, engineers, surveyors, and navigators. They

saved time, they saved effort, and they increased the likelihood that the

answer was correct. Early on, astronomy was a major beneficiary, because

astronomers routinely needed to perform long and difficult calculations.

The French mathematician and astronomer Pierre Simon de Laplace said

that the invention of logarithms ‘reduces to a few days the labour of many

months, doubles the life of the astronomer, and spares him the errors and

disgust’. As the use of machinery in manufacturing grew, engineers started

to make more and more use of mathematics – to design complex gears,
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analyse the stability of bridges and buildings, and construct cars, lorries,

ships, and aeroplanes. Logarithms were a firm part of the school

mathematics curriculum a few decades ago. And engineers carried what

was in effect an analogue calculator for logarithms in their pockets, a

physical representation of the basic equation for logarithms for on-the-spot

use. They called it a slide rule, and they used it routinely in applications

ranging from architecture to aircraft design.

The first slide rule was constructed by an English mathematician,

William Oughtred, in 1630, using circular scales. He modified the design in

1632, by making the two rulers straight. This was the first slide rule. The

idea is simple: when you place two rods end to end, their lengths add. If the

rods are marked using a logarithmic scale, in which numbers are spaced

according to their logarithms, then the corresponding numbers multiply.

For instance, set the 1 on one rod against the 2 on the other. Then against

any number x on the first rod, we find 2x on the second. So opposite 3 we

find 6, and so on, see Figure 11. If the numbers are more complicated, say

2.67 and 3.51, we place 1 opposite 2.67 and read off whatever is opposite

3.59, namely 9.37. It’s just as easy.

1 2 4 65 7 8 9 13

12 4 65 7 8 91 3

log(2)
log(6)

log(3)

Fig 11 Multiplying 2 by 3 on a slide rule.

Engineers quickly developed fancy slide rules with trigonometric

functions, square roots, log- log scales (logarithms of logarithms) to

calculate powers, and so on. Eventually logarithms took a back seat to

digital computers, but even now the logarithm still plays a huge role in

science and technology, alongside its inseparable companion, the

exponential function. For base-10 logarithms, this is the function 10x;

for natural logarithms, the function ex, where e = 2.71828, approximately.

In each pair, the two functions are inverse to each other. If you take a

number, form its logarithm, and then form the exponential of that, you get

back the number you started with.

Why do we need logarithms now that we have computers?

In 2011 a magnitude 9.0 earthquake just off the east coast of Japan
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caused a gigantic tsunami, which devastated a large populated area and

killed around 25,000 people. On the coast was a nuclear power plant,

Fukushima Dai-ichi (Fukushima number 1 power plant, to distinguish it

from a second nuclear power plant situated nearby). It comprised six

separate nuclear reactors: three were in operation when the tsunami struck;

the other three had temporarily ceased operating and their fuel had been

transferred to pools of water outside the reactors but inside the reactor

buildings.

The tsunami overwhelmed the plant’s defences, cutting the supply of

electrical power. The three operating reactors (numbers 1, 2, and 3) were

shut down as a safety measure, but their cooling systems were still needed

to stop the fuel from melting. However, the tsunami also wrecked the

emergency generators, which were intended to power the cooling system

and other safety-critical systems. The next level of backup, batteries,

quickly ran out of power. The cooling system stopped and the nuclear fuel

in several reactors began to overheat. Improvising, the operators used fire

engines to pump seawater into the three operating reactors, but this

reacted with the zirconium cladding on the fuel rods to produce hydrogen.

The build-up of hydrogen caused an explosion in the building housing

Reactor 1. Reactors 2 and 3 soon suffered the same fate. The water in the

pool of Reactor 4 drained out, leaving its fuel exposed. By the time the

operators regained some semblance of control, at least one reactor

containment vessel had cracked, and radiation was leaking out into the

local environment. The Japanese authorities evacuated 200,000 people

from the surrounding area because the radiation was well above normal

safety limits. Six months later, the company operating the reactors,

TEPCO, stated that the situation remained critical and much more work

would be needed before the reactors could be considered fully under

control, but claimed the leakage had been stopped.

I don’t want to analyse the merits or otherwise of nuclear power here,

but I do want to show how the logarithm answers a vital question: if you

know how much radioactive material has been released, and of what kind,

how long will it remain in the environment, where it could be hazardous?

Radioactive elements decay; that is, they turn into other elements

through nuclear processes, emitting nuclear particles as they do so. It is

these particles that constitute the radiation. The level of radioactivity falls

away over time just as the temperature of a hot body falls when it cools:
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exponentially. So, in appropriate units, which I won’t discuss here, the

level of radioactivity N(t) at time t follows the equation

NðtÞ¼N0e
�kt

where N0 is the initial level and k is a constant depending on the element

concerned. More precisely, it depends on which form, or isotope, of the

element we are considering.

A convenient measure of the time radioactivity persists is the half-life,

a concept first introduced in 1907. This is the time it takes for an initial

level N0 to drop to half that size. To calculate the half-life, we solve the

equation

1
2N0 ¼ N0e

�kt

by taking logarithms of both sides. The result is

t¼ log 2

k
¼ 0:6931

k

and we can work this out because k is known from experiments.

The half-life is a convenient way to assess how long the radiation will

persist. Suppose that the half-life is one week, for instance. Then the

original rate at which the material emits radiation halves after 1 week, is

down to one quarter after 2 weeks, one eighth after 3 weeks, and so on.

It takes 10 weeks to drop to one thousandth of its original level (actually

1/1024), and 20 weeks to drop to one millionth.

In accidents with conventional nuclear reactors, the most important

radioactive products are iodine-131 (a radioactive isotope of iodine) and

caesium-137 (a radioactive isotope of caesium). The first can cause thyroid

cancer, because the thyroid gland concentrates iodine. The half-life of

iodine-131 is only 8 days, so it causes little damage if the right medication

is available, and its dangers decrease fairly rapidly unless it continues to

leak. The standard treatment is to give people iodine tablets, which reduce

the amount of the radioactive form that is taken up by the body, but the

most effective remedy is to stop drinking contaminated milk.

Caesium-137 is very different: it has a half-life of 30 years. It takes

about 200 years for the level of radioactivity to drop to one hundredth of

its initial value, so it remains a hazard for a very long time. The main

practical issue in a reactor accident is contamination of soil and buildings.

Decontamination is to some extent feasible, but expensive. For example,

the soil can be removed, carted away, and stored somewhere safe. But this

creates huge amounts of low-level radioactive waste.
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Radioactive decay is just one area of many in which Napier’s and

Briggs’s logarithms continue to serve science and humanity. If you thumb

through later chapters you will find them popping up in thermodynamics

and information theory, for example. Even though fast computers have

now made logarithms redundant for their original purpose, rapid

calculations, they remain central to science for conceptual rather than

computational reasons.

Another application of logarithms comes from studies of human

perception: how we sense the world around us. The early pioneers of the

psychophysics of perception made extensive studies of vision, hearing, and

touch, and they turned up some intriguing mathematical regularities.

In the 1840s a German doctor, Ernst Weber, carried out experiments to

determine how sensitive human perception is. His subjects were given

weights to hold in their hands, and asked when they could tell that one

weight felt heavier than another. Weber could then work out what the

smallest detectable difference in weight was. Perhaps surprisingly, this

difference (for a given experimental subject) was not a fixed amount. It

depended on how heavy the weights being compared were. People didn’t

sense an absolute minimum difference – 50 grams, say. They sensed a

relative minimum difference – 1% of the weights under comparison, say.

That is, the smallest difference that the human senses can detect is

proportional to the stimulus, the actual physical quantity.

In the 1850s Gustav Fechner rediscovered the same law, and recast it

mathematically. This led him to an equation, which he called Weber’s law,

but nowadays it is usually called Fechner’s law (or the Weber–Fechner law

if you’re a purist). It states that the perceived sensation is proportional to

the logarithm of the stimulus. Experiments suggested that this law applies

not only to our sense of weight but to vision and hearing as well. If we look

at a light, the brightness that we perceive varies as the logarithm of the

actual energy output. If one source is ten times as bright as another, then

the difference we perceive is constant, however bright the two sources

really are. The same goes for the loudness of sounds: a bang with ten times

as much energy sounds a fixed amount louder.

The Weber–Fechner law is not totally accurate, but it’s a good

approximation. Evolution pretty much had to come up with something

like a logarithmic scale, because the external world presents our senses

with stimuli over a huge range of sizes. A noise may be little more than a

mouse scuttling in the hedgerow, or it may be a clap of thunder; we need to
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be able to hear both. But the range of sound levels is so vast that no

biological sensory device can respond in proportion to the energy

generated by the sound. If an ear that could hear the mouse did that,

then a thunderclap would destroy it. If it tuned the sound levels down so

that the thunderclap produced a comfortable signal, it wouldn’t be able to

hear the mouse. The solution is to compress the energy levels into a

comfortable range, and the logarithm does exactly that. Being sensitive to

proportions rather than absolutes makes excellent sense, and makes for

excellent senses.

Our standard unit for noise, the decibel, encapsulates the Weber–

Fechner law in a definition. It measures not absolute noise, but relative

noise. A mouse in the grass produces about 10 decibels. Normal

conversation between people a metre apart takes place at 40–60 decibels.

An electric mixer directs about 60 decibels at the person using it. The noise

in a car, caused by engine and tyres, is 60–80 decibels. A jet airliner a

hundred metres away produces 110–140 decibels, rising to 150 at thirty

metres. A vuvuzela (the annoying plastic trumpet-like instrument widely

heard during the football World Cup in 2010 and brought home as

souvenirs by misguided fans) generates 120 decibels at one metre; a

military stun grenade produces up to 180 decibels.

Scales like these are widely encountered because they have a safety

aspect. The level at which sound can potentially cause hearing damage is

about 120 decibels. Please throw away your vuvuzela.
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3 Ghosts of departed quantities
Calculus

What does it say?

To find the instantaneous rate of change of a quantity that

varies with (say) time, calculate how its value changes over a

short time interval and divide by the time concerned. Then let

that interval become arbitrarily small.

Why is that important?

It provides a rigorous basis for calculus, the main way scientists

model the natural world.

What did it lead to?

Calculation of tangents and areas. Formulas for volumes of

solids and lengths of curves. Newton’s laws of motion,

differential equations. The laws of conservation of energy and

momentum. Most of mathematical physics.
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In 1665 Charles II was king of England and his capital city, London, was

a sprawling metropolis of half a million people. The arts flourished, and

science was in the early stages of an ever-accelerating ascendancy. The

Royal Society, perhaps the oldest scientific society now in existence, had

been founded five years earlier, and Charles had granted it a royal charter.

The rich lived in impressive houses, and commerce was thriving, but the

poor were crammed into narrow streets overshadowed by ramshackle

buildings that jutted out ever further as they rose, storey by storey.

Sanitation was inadequate; rats and other vermin were everywhere. By the

end of 1666, one fifth of London’s population had been killed by bubonic

plague, spread first by rats and then by people. It was the worst disaster in

the capital’s history, and the same tragedy played out all over Europe and

North Africa. The king departed in haste for the more sanitary countryside

of Oxfordshire, returning early in 1666. No one knew what caused plague,

and the city authorities tried everything – burning fires continually to

cleanse the air, burning anything that gave off a strong smell, burying the

dead quickly in pits. They killed many dogs and cats, which ironically

removed two controls on the rat population.

During those two years, an obscure and unassuming undergraduate at

Trinity College, Cambridge, completed his studies. Hoping to avoid the

plague, he returned to the house of his birth, from which his mother

managed a farm. His father had died shortly before he was born, and he

had been brought up by his maternal grandmother. Perhaps inspired by

rural peace and quiet, or lacking anything better to do with his time, the

young man thought about science and mathematics. Later he wrote: ‘In

those days I was in the prime of my life for invention, and minded

mathematics and [natural] philosophy more than at any other time since.’

His researches led him to understand the importance of the inverse square

law of gravity, an idea that had been hanging around ineffectually for at

least 50 years. He worked out a practical method for solving problems in

calculus, another concept that was in the air but had not been formulated

in any generality. And he discovered that white sunlight is composed of

many different colours – all the colours of the rainbow.
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When the plague died down, he told no one about the discoveries he

had made. He returned to Cambridge, took a master’s degree, and became a

fellow at Trinity. Elected to the Lucasian Chair of Mathematics, he finally

began to publish his ideas and to develop new ones.

The young man was Isaac Newton. His discoveries created a revolution

in science, bringing about a world that Charles II would never have

believed could exist: buildings with more than a hundred floors, horseless

carriages doing 80 mph along the M6 motorway while the driver listens to

music using a magic disc made from a strange glasslike material, heavier-

than-air flying machines that cross the Atlantic in six hours, colour

pictures that move, and boxes you carry in your pocket that talk to the

other side of the world...

Previously, Galileo Galilei, Johannes Kepler, and others had turned up

the corner of nature’s rug and seen a few of the wonders concealed beneath

it. Now Newton cast the rug aside. Not only did he reveal that the universe

has secret patterns, laws of nature; he also provided mathematical tools to

express those laws precisely and to deduce their consequences. The system

of the world was mathematical; the heart of God’s creation was a soulless

clockwork universe.

The world view of humanity did not suddenly switch from religious to

secular. It still has not done so completely, and probably never will. But

after Newton published his Philosophiæ Naturalis Principia Mathematica

(‘Mathematical Principles of Natural Philosophy’) the ‘System of the

World’ – the book’s subtitle – was no longer solely the province of

organised religion. Even so, Newton was not the first modern scientist; he

had a mystical side too, devoting years of his life to alchemy and religious

speculation. In notes for a lecture1 the economist John Maynard Keynes,

also a Newtonian scholar, wrote:

Newton was not the first of the age of reason. He was the last of the

magicians, the last of the Babylonians and Sumerians, the last great

mind which looked out on the visible and intellectual world with the

same eyes as those who began to build our intellectual inheritance

rather less than 10,000 years ago. Isaac Newton, a posthumous child

born with no father on Christmas Day, 1642, was the last wonderchild

to whom the Magi could do sincere and appropriate homage.

Today we mostly ignore Newton’s mystic aspect, and remember him for his

scientific and mathematical achievements. Paramount among them are his

realisation that nature obeys mathematical laws and his invention of

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
03Seventeen_Chap3.3d Page 38 of 52

38 Ghosts of departed quantities



calculus, the main way we now express those laws and derive their

consequences. The German mathematician and philosopher Gottfried

Wilhelm Leibniz also developed calculus, more or less independently, at

much the same time, but he did little with it. Newton used calculus to

understand the universe, though he kept it under wraps in his published

work, recasting it in classical geometric language. He was a transitional

figure who moved humanity away from a mystical, medieval outlook and

ushered in the modern rational world view. After Newton, scientists

consciously recognised that the universe has deep mathematical patterns,

and were equipped with powerful techniques to exploit that insight.

The calculus did not arise ‘out of the blue’. It came from questions in both

pure and applied mathematics, and its antecedents can be traced back to

Archimedes. Newton himself famously remarked, ‘If I have seen a little

further it is by standing on the shoulders of giants. ’2 Paramount among

those giants were John Wallis, Pierre de Fermat, Galileo, and Kepler. Wallis

developed a precursor to calculus in his 1656 Arithmetica Infinitorum

(‘Arithmetic of the Infinite’). Fermat’s 1679 De Tangentibus Linearum

Curvarum (‘On Tangents to Curved Lines’) presented a method for finding

tangents to curves, a problem intimately related to calculus. Kepler

formulated three basic laws of planetary motion, which led Newton to

his law of gravity, the subject of the next chapter. Galileo made big

advances in astronomy, but he also investigated mathematical aspects of

nature down on the ground, publishing his discoveries in De Motu (‘On

Motion’) in 1590. He investigated how a falling body moves, finding an

elegant mathematical pattern. Newton developed this hint into three

general laws of motion.

To understand Galileo’s pattern we need two everyday concepts from

mechanics: velocity and acceleration. Velocity is how fast something is

moving, and in which direction. If we ignore the direction, we get the

body’s speed. Acceleration is a change in velocity, which usually involves a

change in speed (an exception arises when the speed remains the same but

the direction changes). In everyday life we use acceleration to mean

speeding up and deceleration for slowing down, but in mechanics both

changes are accelerations: the first positive, the second negative. When we

drive along a road the speed of the car is displayed on the speedometer – it

might, for instance, be 50mph. The direction is whichever way the car is

pointing. When we put our foot down, the car accelerates and the speed
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increases; when we stamp on the brakes, the car decelerates – negative

acceleration.

If the car is moving at a fixed speed, it’s easy to work out what that

speed is. The abbreviation mph gives it away: miles per hour. If the car

travels 50 miles in 1 hour, we divide the distance by the time, and that’s

the speed. We don’t need to drive for an hour: if the car goes 5 miles in

6 minutes, both distance and time are divided by 10, and their ratio is still

50 mph. In short,

speed¼distance travelled divided by time taken.

In the same way, a fixed rate of acceleration is given by

acceleration¼ change in speed divided by time taken.

This all seems straightforward, but conceptual difficulties arise when the

speed or acceleration is not fixed. And they can’t both be constant, because

constant (and nonzero) acceleration implies a changing speed. Suppose

you drive along a country lane, speeding up on the straights, slowing for

the corners. Your speed keeps changing, and so does your acceleration.

How can we work them out at any given instant of time? The pragmatic

answer is to take a short interval of time, say a second. Then your

instantaneous speed at (say) 11.30 am is the distance you travel between

that moment and one second later, divided by one second. The same goes

for instantaneous acceleration.

Except . . . that’s not quite your instantaneous speed. It’s really an

average speed, over a one-second interval of time. There are circumstances

in which one second is a huge length of time – a guitar string playing

middle C vibrates 440 times every second; average its motion over an entire

second and you’ll think it’s standing still. The answer is to consider a

shorter interval of time – one ten thousandth of a second, perhaps. But

this still doesn’t capture instantaneous speed. Visible light vibrates one

quadrillion (1015) times every second, so the appropriate time interval is

less than one quadrillionth of a second. And even then . . . well, to be

pedantic, that’s still not an instant. Pursuing this line of thought, it seems

to be necessary to use an interval of time that is shorter than any other

interval. But the only number like that is 0, and that’s useless, because now

the distance travelled is also 0, and 0/0 is meaningless.

Early pioneers ignored these issues and took a pragmatic view. Once

the probable error in your measurements exceeds the increased precision

you would theoretically get by using smaller intervals of time, there’s no

point in doing so. The clocks in Galileo’s day were very inaccurate, so he
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measured time by humming tunes to himself – a trained musician can

subdivide a note into very short intervals. Even then, timing a falling body

is tricky, so Galileo hit on the trick of slowing the motion down by rolling

balls down an inclined slope. Then he observed the position of the ball at

successive intervals of time. What he found (I’m simplifying the numbers

to make the pattern clear, but it’s the same pattern) is that for times 0, 1, 2,

3, 4, 5, 6, . . . these positions were

0 1 4 9 16 25 36

The distance was (proportional to) the square of the time. What about the

speeds? Averaged over successive intervals, these were the differences

1 3 5 7 9 11

between the successive squares. In each interval, other than the first, the

average speed increased by 2 units. It’s a striking pattern – all the more

so to Galileo when he dug something very similar out of dozens of

measurements with balls of many different masses on slopes with many

different inclinations.

From these experiments and the observed pattern, Galileo deduced

something wonderful. The path of a falling body, or one thrown into the

air, such as a cannonball, is a parabola. This is a U-shaped curve, known to

the ancient Greeks. (The U is upside down in this case. I’m ignoring air

resistance, which changes the shape: it didn’t have much effect on

Galileo’s rolling balls.) Kepler encountered a related curve, the ellipse, in

his analysis of planetary orbits: this must have seemed significant to

Newton too, but that story must wait until the next chapter.

With only this particular series of experiments to go on, it’s not clear

what general principles underlie Galileo’s pattern. Newton realised that the

source of the pattern is rates of change. Velocity is the rate at which

position changes with respect to time; acceleration is the rate at which

velocity changes with respect to time. In Galileo’s observations, position

varied according to the square of time, velocity varied linearly, and

acceleration didn’t vary at all. Newton realised that in order to gain a

deeper understanding of Galileo’s patterns, and what they meant for our

view of nature, he had to come to grips with instantaneous rates of change.

When he did, out popped calculus.

You might expect an idea as important as calculus to be announced with a

fanfare of trumpets and parades through the streets. However, it takes time
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for the significance of novel ideas to sink in and to be appreciated, and so it

was with calculus. Newton’s work on the topic dates from 1671 or earlier,

when he wrote The Method of Fluxions and Infinite Series. We are unsure of

the date because the book was not published until 1736, nearly a decade

after his death. Several other manuscripts by Newton also refer to ideas that

we now recognise as differential and integral calculus, the two main

branches of the subject. Leibniz’s notebooks show that he obtained his first

significant results in calculus in 1675, but he published nothing on the

topic until 1684.

After Newton had risen to scientific prominence, long after both men

had worked out the basics of calculus, some of Newton’s friends sparked a

largely pointless but heated controversy about priority, accusing Leibniz of

plagiarising Newton’s unpublished manuscripts. A few mathematicians

from continental Europe responded with counter-claims of plagiarism by

Newton. English and continental mathematicians were scarcely on

speaking terms for a century, which caused huge damage to English

mathematicians, but none whatsoever to the continental ones. They

developed calculus into a central tool of mathematical physics while their

English counterparts were seething about insults to Newton instead of

exploiting insights from Newton. The story is tangled and still subject to

scholarly disputation by historians of science, but broadly speaking it

seems that Newton and Leibniz discovered the basic ideas of calculus

independently – at least, as independently as their common mathematical

and scientific culture permitted.

Leibniz’s notation differs from Newton’s, but the underlying ideas are

more or less identical. The intuition behind them, however, is different.

Leibniz’s approach was a formal one, manipulating algebraic symbols.

Newton had a physical model at the back of his mind, in which the

function under consideration was a physical quantity that varies with time.

This is where his curious term ‘fluxion’ comes from – something that flows

as time passes.

Newton’s method can be illustrated using an example: a quantity y that

is the square x2 of another quantity x. (This is the pattern that Galileo

found for a rolling ball: its position is proportional to the square of the time

that has elapsed. So there y would be position and x time. The usual symbol

for time is t, but the standard coordinate system in the plane uses x and y.)

Start by introducing a new quantity o, denoting a small change in x. The

corresponding change in y is the difference

ðxþ oÞ2 � x2
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which simplifies to 2xo + o2. The rate of change (averaged over a small

interval of length o, as x increases to x+ o) is therefore

2xoþ o2

o
¼2xþ o

This depends on o, which is only to be expected since we are averaging the

rate of change over a nonzero interval. However, if o becomes smaller and

smaller, ‘flowing towards’ zero, the rate of change 2x+ o gets closer and

closer to 2x. This does not depend on o, and it gives the instantaneous rate

of change at x.

Leibniz performed essentially the same calculation, replacing o by dx

(‘small difference in x’), and defining dy to be the corresponding small

change in y. When a variable y depends on another variable x, the rate of

change of y with respect to x is called the derivative of y. Newton wrote the

derivative of y by placing a dot above it: ẏ. Leibniz wrote
dy

dx
. For higher

derivatives, Newton used more dots, while Leibniz wrote things like
d2y

dx2
.

Today we say that y is a function of x and write y= f(x), but this concept

existed only in rudimentary form at the time. We either use Leibniz’s

notation, or a variant of Newton’s in which the dot is replaced by a dash,

which is easier to print: y ¢, y ¢¢. We also write f ¢(x) and f ¢¢(x) to emphasise

that the derivatives are themselves functions. Calculating the derivative is

called differentiation.

Integral calculus – finding areas – turns out to be the inverse of

differential calculus – finding slopes. To see why, imagine adding a thin

slice on the end of the shaded area of Figure 12. This slice is very close to a

long thin rectangle, of width o and height y. Its area is therefore very close

to oy. The rate at which the area changes, with respect to x, is the ratio oy/o,

which equals y. So the derivative of the area is the original function. Both

Newton and Leibniz understood that the way to calculate the area, a

process called integration, is the reverse of differentiation in this sense.

Leibniz first wrote the integral using the symbol omn., short for omnia, or

‘sum’, in Latin. Later he changed this to ò, an old-fashioned long s, also

standing for ‘sum’. Newton had no systematic notation for the integral.
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approximately
hf(x)

x x+h

y

Fig 12 Adding a thin slice to the area beneath the curve y = f(x).

Newton did make one crucial advance, however. Wallis had calculated

the derivative of any power xa: it is axa�1. So the derivatives of x3, x4, x5 are

3x2, 4x3, 5x4, for example. He had extended this result to any polynomial –

a finite combination of powers, such as 3x7�25x4 + x2�3. The trick is to

consider each power separately, find the corresponding derivatives, and

combine them in the same manner. Newton noticed that the same method

worked for infinite series, expressions involving infinitely many powers of

the variable. This let him perform the operations of calculus on many other

expressions, more complicated than polynomials.

Given the close correspondence between the two versions of calculus,

differing mainly in unimportant features of the notation, it is easy to see

how a priority dispute might have arisen. However, the basic idea is a fairly

direct formulation of the underlying question, so it is also easy to see how

Newton and Leibniz could have arrived at their versions independently,

despite the similarities. In any case, Fermat and Wallis had beaten them

both to many of their results. The dispute was pointless.

A more fruitful controversy concerned the logical structure of calculus, or

more precisely, the illogical structure of calculus. A leading critic was the

Anglo-Irish philosopher George Berkeley, Bishop of Cloyne. Berkeley had a

religious agenda; he felt that the materialist view of the world that was

developing from Newton’s work represented God as a detached creator

who stood back from his creation as soon as it got going and thereafter left

it to its own devices, quite unlike the personal, immanent God of Christian

belief. So he attacked logical inconsistencies in the foundations of calculus,

presumably hoping to discredit the resulting science. His attack had no

discernible effect on the progress of mathematical physics, for a

straightforward reason: the results obtained using calculus shed so much

insight into nature, and agreed so well with experiment, that the logical
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foundations seemed unimportant. Even today, physicists still take this

view: if it works, who cares about logical hair-splitting?

Berkeley argued that it makes no logical sense to maintain that a small

quantity (Newton’s o, Leibniz’s dx) is nonzero for most of a calculation,

and then to set it to zero, if you have previously divided both the

numerator and the denominator of a fraction by that very quantity.

Division by zero is not an acceptable operation in arithmetic, because it has

no unambiguous meaning. For example, 0 ´ 1=0 ´2, since both are 0, but if

we divide both sides of this equation by 0 we get 1 =2, which is false.3

Berkeley published his criticisms in 1734 in a pamphlet The Analyst, a

Discourse Addressed to an Infidel Mathematician.

Newton had, in fact, attempted to sort out the logic, by appealing to a

physical analogy. He saw o not as a fixed quantity, but as something that

flowed – varied with time – getting closer and closer to zero without ever

actually getting there. The derivative was also defined by a quantity that

flowed: the ratio of the change in y to that of x. This ratio also flowed

towards something, but never got there; that something was the

instantaneous rate of change – the derivative of y with respect to x.

Berkeley dismissed this idea as the ‘ghost of a departed quantity’.

Leibniz too had a persistent critic, the geometer Bernard Nieuwentijt,

who put his criticisms into print in 1694 and 1695. Leibniz had not helped

his case by trying to justify his method in terms of ‘infinitesimals’, a term

open to misinterpretation. However, he did explain that what he meant by

this term was not a fixed nonzero quantity that can be arbitrarily small

(which makes no logical sense) but a variable nonzero quantity that can

become arbitrarily small. Newton’s and Leibniz’s defences were essentially

identical. To their opponents, both must have sounded like verbal trickery.

Fortunately, the physicists and mathematicians of the day did not wait

for the logical foundations of calculus to be sorted out before they applied

it to the frontiers of science. They had an alternative way to make sure they

were doing something sensible: comparison with observations and

experiments. Newton himself invented calculus for precisely this

purpose. He derived laws for how bodies move when a force is applied to

them, and combined these with a law for the force exerted by gravity to

explain many riddles about the planets and other bodies of the Solar

System. His law of gravity is such a pivotal equation in physics and

astronomy that it deserves, and gets, a chapter of its own (the next one).

His law of motion – strictly, a system of three laws, one of which contained

most of the mathematical content – led fairly directly to calculus.

Ironically, when Newton published these laws and their scientific
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applications in his Principia, he eliminated all traces of calculus and

replaced it by classical geometric arguments. He probably thought that

geometry would be more acceptable to his intended audience, and if he

did, he was almost certainly right. However, many of his geometric proofs

are either motivated by calculus, or depend on the use of calculus

techniques to determine the correct answers, upon which the strategy of

the geometric proof relies. This is especially clear, to modern eyes, in his

treatment of what he called ‘generated quantities’ in Book II of Principia.

These are quantities that increase or decrease by ‘continual motion or flux’,

the fluxions of his unpublished book. Today we would call them

continuous (indeed differentiable) functions. In place of explicit

operations of the calculus, Newton substituted a geometric method of

‘prime and ultimate ratios’. His opening lemma (the name given to an

auxiliary mathematical result that is used repeatedly but has no intrinsic

interest in its own right) gives the game away, because it defines equality of

these flowing quantities like this:

Quantities, and the ratios of quantities, which in any finite time

converge continually to equality, and before the end of that time

approach nearer to each other than by any given difference, become

ultimately equal.

In Never at Rest, Newton’s biographer Richard Westfall explains how radical

and novel this lemma was: ‘Whatever the language, the concept ... was

thoroughly modern; classical geometry had contained nothing like it.’4

Newton’s contemporaries must have struggled to figure out what Newton

was getting at. Berkeley presumably never did, because – as we will shortly

see – it contains the basic idea needed to dispose of his objection.

Calculus, then, was playing an influential role behind the scenes of the

Principia, but it made no appearance on stage. As soon as calculus peeped

out from behind the curtains, however, Newton’s intellectual successors

quickly reverse-engineered his thought processes. They rephrased his main

ideas in the language of calculus, because this provided a more natural and

more powerful framework, and set out to conquer the scientific world.

The clue was already visible in Newton’s laws of motion. The question

that led Newton to these laws was a philosophical one: what causes a body

to move, or to change its state of motion? The classical answer was

Aristotle’s: a body moves because a force is applied to it, and this affects its
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velocity. Aristotle also stated that in order to keep a body moving, the force

must continue to be applied. You can test Aristotle’s statements by placing

a book or similar object on a table. If you push the book, it starts to move,

and if you keep pushing with much the same force it continues to slide

over the table at a roughly constant velocity. If you stop pushing, the book

stops moving. So Aristotle’s views seem to agree with experiment.

However, the agreement is superficial, because the push is not the only

force that acts on the book. There is also friction with the surface of the

table. Moreover, the faster the book moves, the greater the friction

becomes – at least, while the book’s velocity remains reasonably small.

When the book is moving steadily across the table, propelled by a steady

force, the frictional resistance cancels out the applied force, and the total

force acting on the body is actually zero.

Newton, following earlier ideas of Galileo and Descartes, realised this.

The resulting theory of motion is very different from Aristotle’s. Newton’s

three laws are:

First law. Every body continues in its state of rest, or of uniform motion

in a right [straight] line, unless it is compelled to change that state by

forces impressed upon it.

Second law. The change of motion is proportional to the motive power

impressed, and is made in the direction of the right line in which that

force is impressed. (The constant of proportionality is the reciprocal of

the body’s mass; that is, 1 divided by that mass.)

Third law. To every action there is always opposed an equal reaction.

The first law explicitly contradicts Aristotle. The third law says that if you

push something, it pushes back. The second law is where calculus comes

in. By ‘change of motion’ Newton meant the rate at which the body’s

velocity changes: its acceleration. This is the derivative of velocity with

respect to time, and the second derivative of position. So Newton’s second

law of motion specifies the relation between a body’s position, and the

forces that act on it, in the form of a differential equation:

second derivative of position= force/mass

To find the position itself, we have to solve this equation, deducing the

position from its second derivative.

This line of thought leads to a simple explanation of Galileo’s

observations of a rolling ball. The crucial point is that the acceleration of

the ball is constant. I stated this previously, using a rough-and-ready
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calculation applied at discrete intervals of time; now we can do it properly,

allowing time to vary continuously. The constant is related to the force of

gravity and the angle of the slope, but here we don’t need that much detail.

Suppose that the constant acceleration is a. Integrating the corresponding

function, the velocity down the slope at time t is at+ b, where b is the

velocity at time zero. Integrating again, the position down the slope is
1
2at

2 + bt+ c, where c is the position at time zero. In the special case a=2,

b=0, c=0 the successive positions fit my simplified example: the position

at time t is t2. A similar analysis recovers Galileo’s major result: the path of

a projectile is a parabola.

Newton’s laws of motion did not just provide a way to calculate how

bodies move. They led to deep and general physical principles. Paramount

among these are ‘conservation laws’, telling us that when a system of

bodies, no matter how complicated, moves, certain features of that system

do not change. Amid the tumult of the motion, a few things remain serenely

unaffected. Three of these conserved quantities are energy, momentum,

and angular momentum.

Energy can be defined as the capacity to do work. When a body is raised

to a certain height, against the (constant) force of gravity, the work done to

put it there is proportional to the body’s mass, the force of gravity, and the

height to which it is raised. Conversely, if we then let the body go, it can

perform the same amount of work when it falls back to its original height.

This type of energy is called potential energy.

On its own, potential energy would not be terribly interesting, but

there is a beautiful mathematical consequence of Newton’s second law of

motion leading to a second kind of energy: kinetic energy. As a body moves,

both its potential energy and its kinetic energy change. But the change in

one exactly compensates for the change in the other. As the body descends

under gravity, it speeds up. Newton’s law allows us to calculate how its

velocity changes with height. It turns out that the decrease in potential

energy is exactly equal to half the mass times the square of the velocity. If

we give that quantity a name – kinetic energy – then the total energy,

potential plus kinetic, is conserved. This mathematical consequence of

Newton’s laws proves that perpetual motion machines are impossible: no

mechanical device can keep going indefinitely and do work without some

external input of energy.

Physically, potential and kinetic energy seem to be two different

things; mathematically, we can trade one for the other. It is as if motion
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somehow converts potential energy into kinetic. ‘Energy’, as a term

applicable to both, is a convenient abstraction, carefully defined so that it

is conserved. As an analogy, travellers can convert pounds into dollars.

Currency exchanges have tables of exchange rates, asserting that, say, 1

pound is of equal value to 1.4693 dollars. They also deduct a sum of money

for themselves. Subject to technicalities of bank charges and so on, the

total monetary value involved in the transaction is supposed to balance

out: the traveller gets exactly the amount in dollars that corresponds to

their original sum in pounds, minus various deductions. However, there

isn’t a physical thing built into banknotes that somehow gets swapped out

of a pound note into a dollar note and some coins. What gets swapped is

the human convention that these particular items have monetary value.

Energy is a new kind of ‘physical’ quantity. From a Newtonian

viewpoint, quantities such as position, time, velocity, acceleration, and

mass have direct physical interpretations. You can measure position with a

ruler, time with a clock, velocity and acceleration using both pieces of

apparatus, and mass with a balance. But you don’t measure energy using an

energy meter. Agreed, you can measure certain specific types of energy.

Potential energy is proportional to height, so a ruler will suffice if you know

the force of gravity. Kinetic energy is half the mass times the square of the

velocity: use a balance and a speedometer. But energy, as a concept, is not so

much a physical thing as a convenient fiction that helps to balance the

mechanical books.

Momentum, the second conserved quantity, is a simple concept: mass

times velocity. It comes into play when there are several bodies. An

important example is a rocket; here one body is the rocket and the other is

its fuel. As fuel is expelled by the engine, conservation of momentum

implies that the rocket must move in the opposite direction. This is how a

rocket works in a vacuum.

Angular momentum is similar, but it relates to spin rather than

velocity. It is also central to rocketry, indeed the whole of mechanics,

terrestrial or celestial. One of the biggest puzzles about the Moon is its large

angular momentum. The current theory is that the Moon was splashed off

when a Mars-sized planet hit the Earth about 4.5 billion years ago. This

explains the angular momentum, and until recently was generally

accepted, but it now seems that the Moon has too much water in its

rocks. Such an impact should have boiled a lot of the water away.5

Whatever the eventual outcome, angular momentum is of central

importance here.
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Calculus works. It solves problems in physics and geometry, getting the

right answers. It even leads to new and fundamental physical concepts like

energy and momentum. But that doesn’t answer Bishop Berkeley’s

objection. Calculus has to work as mathematics, not just agree with

physics. Both Newton and Leibniz understood that o or dx cannot be both

zero and nonzero. Newton tired to escape from the logical trap by

employing the physical image of a fluxion. Leibniz talked of infinitesimals.

Both referred to quantities that approach zero without ever getting there –

but what are these things? Ironically, Berkeley’s gibe about ‘ghosts of

departed quantities’ comes close to resolving the issue, but what he failed

to take account of – and what both Newton and Leibniz emphasised – was

how the quantities departed. Make them depart in the right way and you

can leave a perfectly well-formed ghost. If either Newton or Leibniz had

framed their intuition in rigorous mathematical language, Berkeley might

have understood what they were getting at.

The central question is one that Newton failed to answer explicitly

because it seemed obvious. Recall that in the example where y= x2, Newton

obtained the derivative as 2x+ o, and then asserted that as o flows towards

zero, 2x+ o flows towards 2x. This may seem obvious, but we can’t set o=0

to prove it. It is true that we get the right result by doing that, but this is a red

herring.6 In Principia Newton slid round this issue altogether, replacing 2x

+ o by his ‘prime ratio’ and 2x by his ‘ultimate ratio’. But the real key to

progress is to tackle the issue head on. How do we know that the closer o

approaches zero, the closer 2x+ o approaches 2x? It may seem a rather

pedantic point, but if I’d used more complicated examples the correct

answer might not seem so plausible.

When mathematicians returned to the logic of calculus, they realised

that this apparently simple question was the heart of the matter. When we

say that o approaches zero, we mean that given any nonzero positive

number, o can be chosen to be smaller than that number. (This is obvious:

let o be half that number, for instance.) Similarly, when we say that 2x+ o

approaches 2x, we mean that the difference approaches zero, in the

previous sense. Since the difference happens to be o itself in this case, that’s

even more obvious: whatever ‘approaches zero’ means, clearly o

approaches zero when o approaches zero. A more complicated function

than the square would require a more complicated analysis.

The answer to this key question is to state the process in formal

mathematical terms, avoiding ideas of ‘flow’ altogether. This breakthrough

came about through the work of the Bohemian mathematician and

theologian Bernard Bolzano and the German mathematician Karl
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Weierstrass. Bolzano’s work dates from 1816, but it was not appreciated

until about 1870 when Weierstrass extended the formulation to complex

functions. Their answer to Berkeley was the concept of a limit. I’ll state the

definition in words and leave the symbolic version to the Notes.7 Say that a

function f(h) of a variable h tends to a limit L as h tends to zero if, given any

positive nonzero number, the difference between f(h) and L can be made

smaller than that number by choosing sufficiently small nonzero values of

h. In symbols,

lim
h!0

f ðhÞ¼L

The idea at the heart of calculus is to approximate the rate of change of a

function over a small interval h, and then take the limit as h tends to zero.

For a general function y= f(x) this procedure leads to the equation that

decorates the opening of this chapter, but using a general variable x instead

of time:

f 0ðxÞ¼ lim
h!0

f ðxþhÞ� f ðxÞ
h

In the numerator we see the change in f; the denominator is the change in

x. This equation defines the derivative f ¢(x) uniquely, provided the limit

exists. That has to be proved for any function under consideration: the

limit does exist for most of the standard functions – squares, cubes, higher

powers, logarithms, exponentials, trigonometric functions.

Nowhere in the calculation do we ever divide by zero, because we never

set h=0. Moreover, nothing here actually flows. What matters is the range

of values that h can assume, not how it moves through that range. So

Berkeley’s sarcastic characterisation is actually spot on. The limit L is the

ghost of the departed quantity – my h, Newton’s o. But the manner of the

quantity’s departure – approaching zero, not reaching it – leads to a perfectly

sensible and logically well-defined ghost.

Calculus now had a sound logical basis. It deserved, and acquired, a

new name to reflect its new status: analysis.

It is no more possible to list all the ways that calculus can be applied than

it is to list everything in the world that depends on using a screwdriver.

On a simple computational level, applications of calculus include finding

lengths of curves, areas of surfaces and complicated shapes, volumes of

solids, maximum and minimum values, and centres of mass. In

conjunction with the laws of mechanics, calculus tells us how to work

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
03Seventeen_Chap3.3d Page 51 of 52

51Calculus



out the trajectory of a space rocket, the stresses in rock at a subduction

zone that might produce an earthquake, the way a building will vibrate if

an earthquake hits, the way a car bounces up and down on its suspension,

the time it takes a bacterial infection to spread, the way a surgical wound

heals, and the forces that act on a suspension bridge in a high wind.

Many of these applications stem from the deep structure of Newton’s

laws: they are models of nature stated as differential equations. These are

equations involving derivatives of an unknown function, and techniques

from calculus are needed to solve them. I will say no more here, because

every chapter from Chapter 8 onwards involves calculus explicitly, mainly

in the guise of differential equations. The sole exception is Chapter 15 on

information theory, and even there other developments that I don’t

mention also involve calculus. Like the screwdriver, calculus is simply an

indispensable tool in the engineer’s and scientist’s toolkits. More than any

other mathematical technique, it has created the modern world.
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4 The system of the world
Newton’s Law of Gravity

What does it say?

It determines the force of gravitational attraction between two

bodies in terms of their masses and the distance between

them.

Why is that important?

It can be applied to any system of bodies interacting through

the force of gravity, such as the Solar System. It tells us that

their motion is determined by a simple mathematical law.

What did it lead to?

Accurate prediction of eclipses, planetary orbits, the return of

comets, the rotation of galaxies. Artificial satellites, surveys of

the Earth, the Hubble telescope, observations of solar flares.

Interplanetary probes, Mars rovers, satellite communications

and television, the Global Positioning System.
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N ewton’s laws of motion capture the relationship between the forces

that act on a body and how it moves in response to those forces.

Calculus provides mathematical techniques for solving the resulting

equations. One further ingredient is needed to apply the laws: specifying

the forces. The most ambitious aspect of Newton’s Principia was to do

precisely that for the bodies of the Solar System – the Sun, planets, moons,

asteroids, and comets. Newton’s law of gravitation synthesised, in one

simple mathematical formula, millennia of astronomical observations and

theories. It explained many puzzling features of planetary motion, and

made it possible to predict the future movements of the Solar System with

great accuracy. Einstein’s theory of general relativity eventually superseded

the Newtonian theory of gravity, as far as fundamental physics is

concerned, but for almost all practical purposes the simpler Newtonian

approach still reigns supreme. Today the world’s space agencies, such as

NASA and ESA, still use Newton’s laws of motion and gravitation to work

out the most effective trajectories for spacecraft.

It was Newton’s law of gravitation, above all else, that justified his

subtitle: The System of the World. This law demonstrated the enormous

power of mathematics to find hidden patterns in nature and to reveal

hidden simplicities behind the world’s complexities. And in time, as

mathematicians and astronomers asked harder questions, to reveal the

hidden complexities implicit in Newton’s simple law. To appreciate what

Newton achieved, we must first go back in time, to see how previous

cultures viewed the stars and planets.

Humans have been watching the night sky since the dawn of history. Their

initial impression would have been a random scattering of bright points of

light, but they would soon have noticed that across this background the

glowing orb of the Moon traced a regular path, changing shape as it did so.

They would also have seen that most of those tiny bright specks of light

remain in the same relative patterns, which we now call constellations.

Stars move across the night sky, but they move as a single rigid unit, as if
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the constellations are painted on the inside of a gigantic, rotating bowl.1

However, a small number of stars behave quite differently: they seem to

wander around the sky. Their paths are quite complicated, and some

appear to loop back on themselves from time to time. These are the

planets, a word that comes from the Greek for ‘wanderer’. The ancients

recognised five of them, now called Mercury, Venus, Mars, Jupiter, and

Saturn. They move relative to the fixed stars at different speeds, with

Saturn being the slowest.

Other celestial phenomena were even more puzzling. From time to

time a comet would appear, as if from nowhere, trailing a long, curved tail.

‘Shooting stars’ would seem to fall from the heavens, as if they had become

detached from their supporting bowl. It is no wonder that early humans

attributed the irregularities of the heavens to the caprices of supernatural

beings.

The regularities could be summed up in terms so obvious that few

would ever dream of disputing them. The Sun, stars, and planets revolve

around a stationary Earth. That’s what it looks like, that’s what it feels like,

so that’s how it must be. To the ancients, the cosmos was geocentric –

Earth-centred. One lone voice disputed the obvious: Aristarchus of Samos.

Using geometrical principles and observations, Aristarchus calculated the

sizes of the Earth, the Sun, and the Moon. Around 270 BC he put forward

the first heliocentric theory: the Earth and planets revolve round the Sun.

His theory quickly fell out of favour and was not revived for nearly 2000

years.

By the time of Ptolemy, a Roman who lived in Egypt around 120 AD,

the planets had been tamed. Their movements were not capricious, but

predictable. Ptolemy’s Almagest (‘Great Treatise’) proposed that we live

in a geocentric universe in which everything literally revolves around

humanity in complex combinations of circles called epicycles, supported

by giant crystal spheres. His theory was wrong, but the motions that it

predicted were sufficiently accurate for the errors to remain undetected for

centuries. Ptolemy’s system had an additional philosophical attraction: it

represented the cosmos in terms of perfect geometric figures – spheres and

circles. It continued the Pythagorean tradition. In Europe, the Ptolemaic

theory remained unchallenged for 1400 years.

While Europe dawdled, new scientific advances were being made

elsewhere, especially in Arabia, China, and India. In 499 the Indian

astronomer Aryabhata put forward a mathematical model of the Solar

System in which the Earth spun on its axis and the periods of planetary

orbits were stated relative to the position of the Sun. In the Islamic world,
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Alhazen wrote a stinging criticism of the Ptolemaic theory, though this was

probably not focused on its geocentric nature. Around 1000 Abu Rayhan

Biruni gave serious consideration to the possibility of a heliocentric Solar

System, with the Earth spinning on its axis, but eventually plumped for

the orthodoxy of the time, a stationary Earth. Around 1300, Najm al-Din

al-Qazwini al-Katibi proposed a heliocentric theory, but soon changed his

mind.

The big breakthrough came with the work of Nicolaus Copernicus,

published in 1543 as De Revolutionibus Orbium Coelestium (‘On the

Revolutions of the Celestial Spheres’). There is evidence, notably the

occurrence of almost identical diagrams labelled with the same letters, to

suggest that Copernicus was, to say the least, influenced by al-Katibi, but

he went much further. He set out an explicitly heliocentric system, argued

that it fitted the observations better and more economically than Ptolemy’s

geocentric theory did, and laid out some of the philosophical implications.

Paramount among them was the novel thought that humans were not at

the centre of things. The Christian Church viewed this suggestion as

contrary to doctrine and did its best to discourage it. Explicit heliocentrism

was heresy.

It prevailed nevertheless, because the evidence was so strong. New and

better heliocentric theories appeared. Then the spheres were thrown away

altogether, in favour of a different shape from classical geometry: the

ellipse. Ellipses are oval shapes, and indirect evidence suggests they were

first studied in Greek geometry by Menaechmus around 350 BC, along with

hyperbolas and parabolas, as sections of a cone, Figure 13. Euclid is said to

have written four books on conic sections, though nothing has survived

if he did, and Archimedes investigated some of their properties. Greek

research on the topic reached its climax in about 240 BC with the eight-

volume Conic Sections by Apollonius of Perga, who found a way to define
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these curves purely within a plane, avoiding the third dimension.

However, the Pythagorean view that circles and spheres attained a higher

degree of perfection than ellipses and other more complex curves persisted.

Ellipses cemented their role in astronomy around 1600, with the work

of Kepler. His astronomical interests began in childhood; at the age of six

he witnessed the great comet of 1577,2 and three years later he saw an

eclipse of the Moon. At the University of Tübingen, Kepler showed great

talent for mathematics and put it to profitable use casting horoscopes. In

those days mathematics, astronomy, and astrology often went together.

He combined a heady level of mysticism with a level-headed attention

to mathematical detail. A typical example is his Mysterium Cosmographicum

(‘The Cosmographic Mystery’), a spirited defence of the heliocentric

system published in 1596. It combines a clear grasp of Copernicus’s theory

with what to modern eyes is a very strange speculation relating the

distances of the known planets from the Sun to the regular solids. For a

long time Kepler regarded this discovery as one of his greatest, revealing

the Creator’s plan for the universe. He saw his later researches, which we

now consider to be far more significant, as mere elaborations of this basic

plan. At the time, one advantage of the theory was that it explained why

there were precisely six planets (Mercury through Saturn). Between these

six orbits lie five gaps, one for each regular solid. With the discovery of

Uranus and later Neptune and Pluto (until its recent demotion from

planetary status) this feature quickly became a fatal flaw.

Kepler’s lasting contribution has its roots in his employment by Tycho

Brahe. The two first met in 1600. After a two-month stay and a heated

argument Kepler negotiated an acceptable salary. Following a spate of

problems in his home city of Graz he moved to Prague, assisting Tycho in

the analysis of his planetary observations, especially of Mars. When Tycho

unexpectedly died in 1601 Kepler took over his employer’s position as

imperial mathematician to Rudolph II. His primary role was casting

imperial horoscopes, but he also had time to continue his analysis of the

orbit of Mars. Following traditional epicyclic principles he refined his

model to the point at which its errors, compared with observation, were

usually a mere two minutes of arc, the typical error in the observations

themselves. However, he didn’t stop there because sometimes the errors

were bigger, up to eight minutes of arc.

His search eventually led him to two laws of planetary motion,

published in Astronomia Nova (‘A New Astronomy’). For many years he had

tried to fit the orbit of Mars to an ovoid – an egg-shaped curve, sharper at

one end than the other – without success. Perhaps he expected the orbit to
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be more curved closer to the Sun. In 1605 it occurred to Kepler to try an

ellipse, equally rounded at both ends, and to his surprise this did a much

better job. He concluded that all planetary orbits are ellipses, his first law.

His second law described how the planet moves along its orbit, stating that

planets sweep out equal areas in equal times. The book appeared in 1609.

Kepler then devoted much of his effort to preparing various astronomical

tables, but he returned to the regularities of planetary orbits in 1619 in his

Harmonices Mundi (‘The Harmony of the World’). This book had some ideas

we now find strange, for example that the planets emit musical sounds as

they roll round the Sun. But it also includes his third law: the squares of the

orbital periods are proportional to the cubes of the distances from the Sun.

Kepler’s three laws were all but buried amid a mass of mysticism,

religious symbolism, and philosophical speculation. But they represented a

giant leap forward, leading Newton to one of the greatest scientific

discoveries of all time.

Newton derived his law of gravity from Kepler’s three laws of planetary

motion. It states that every particle in the universe attracts every other

particle with a force that is proportional to the product of their masses and

inversely proportional to the square of the distance between them. In

symbols,

F¼G
m1m2

d2

Here F is the attractive force, d is the distance, the ms are the two masses,

and G is a specific number, the gravitational constant.3

Who discovered Newton’s law of gravity? It sounds like one of those

self-answering questions, like ‘whose statue stands on top of Nelson’s

column?’. But a reasonable answer is the curator of experiments at the

Royal Society, Robert Hooke. When Newton published the law in 1687, in

his Principia, Hooke accused him of plagiarism. However, Newton provided

the first mathematical derivation of elliptical orbits from the law, which

was vital in establishing its correctness, and Hooke acknowledged this.

Moreover, Newton had cited Hooke, along with several others, in the book.

Presumably Hooke felt he deserved more credit; he had suffered similar

problems several times before and it was a sore point.

The idea that bodies attract each other had been floating around for a

while, and so had its likely mathematical expression. In 1645 the French

astronomer Ismaël Boulliau (Bullialdus) wrote his Astronomia Philolaica
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(‘Philolaic Astronomy’ – Philolaus was a Greek philosopher who thought

that a central fire, not the Earth, was the centre of the universe). In it he

wrote:

As for the power by which the Sun seizes or holds the planets, and

which, being corporeal, functions in the manner of hands, it is emitted

in straight lines throughout the whole extent of the world, and like the

species of the Sun, it turns with the body of the Sun; now, seeing that it

is corporeal, it becomes weaker and attenuated at a greater distance or

interval, and the ratio of its decrease in strength is the same as in the

case of light, namely, the duplicate proportion, but inversely, of the

distances.

This is the famous ‘inverse square’ dependency of the force on distance.

There are simple, though naive, reasons to expect such a formula, because

the surface area of a sphere varies as the square of its radius. If the same

amount of gravitational ‘stuff ’ spreads out over ever-increasing spheres as

it departs from the Sun, then the amount of it received at any point must

vary in the inverse proportion to the surface area. Exactly this happens

with light, and Boulliau assumed, without much evidence, that gravity

must be analogous. He also thought that the planets move along their

orbits under their own power, so to speak: ‘No kind of motion presses upon

the remaining planets, [which] are driven round by individual forms with

which they were provided.’

Hooke’s contribution dates to 1666, when he presented a paper to the

Royal Society with the title ‘On gravity’. Here he sorted out what Boulliau

had got wrong, arguing that an attractive force from the Sun could

interfere with a planet’s natural tendency to move in a straight line (as

specified by Newton’s third law of motion) and cause it to follow a curve.

He also stated that ‘these attractive powers are so much the more powerful

in operating, by how much the nearer the body wrought upon is to their

own Centers’, showing that he thought the force fell off with distance. But

he didn’t tell anyone else the mathematical form for this decrease until

1679, when he wrote to Newton: ‘The Attraction always is in a duplicate

proportion to the Distance from the Center Reciprocall.’ In the same letter

he said that this implies that the velocity of a planet varies as the reciprocal

of its distance from the Sun. Which is wrong.

When Hooke complained that Newton had stolen his law, Newton was

having none of it, pointing out that he had discussed the idea with

Christopher Wren before Hooke had sent his letter. To demonstrate prior
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art, he cited Boulliau, and also Giovanni Borelli, an Italian physiologist and

mathematical physicist. Borelli had suggested that three forces combine to

create planetary motion: an inward force caused by the planet’s desire to

approach the Sun, a sideways force caused by sunlight, and an outward

force caused by the Sun’s rotation. Score one out of three, and that’s

generous.

Newton’s main point, generally considered decisive, is that whatever

else Hooke had done, he had not deduced the exact form of orbits from

inverse square law attraction. Newton had. In fact, he had deduced all

three of Kepler’s laws of planetary motion: elliptical orbits, sweeping out

equal areas in equal intervals of time, with the square of the period being

proportional to the cube of the distance. ‘Without my Demonstrations,’

Newton insisted, the inverse square law ‘cannot be believed by a judicious

philosopher to be anywhere accurate.’ But he did also accept that ‘Mr Hook

is yet a stranger’ to this proof. A key feature of Newton’s argument is that it

applies not just to a point particle, but to a sphere. This extension, which is

crucial to planetary motion, had caused Newton considerable effort. His

geometric proof is a disguised application of integral calculus, and he was

justifiably proud of it. There is also documentary evidence that Newton

had been thinking about such questions for quite a while.

At any rate, we name the law after Newton, and this does justice to the

importance of his contribution.

The most important aspect of Newton’s law of gravitation is not the inverse

square law as such. It is the assertion that gravitation acts universally. Any

two bodies, anywhere in the universe, attract each other. Of course you

need an accurate force law (inverse square) to get accurate results, but

without universality, you don’t know how to write down the equations for

any system with more than two bodies. Almost all of the interesting

systems, such as the Solar System itself, or the fine structure of the motion

of the Moon under the influence of (at least) the Sun and the Earth, involve

more than two bodies, so Newton’s law would have been almost useless if it

had applied only to the context in which he first deduced it.

What motivated this vision of universality? In his 1752 Memoirs of Sir

Isaac Newton’s Life, William Stukeley reported a tale Newton had told him

in 1726:

The notion of gravitation ... was occasioned by the fall of an apple, as

he sat in contemplative mood. Why should that apple always descend

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
04Seventeen_Chap4.3d Page 61 of 72

61Newton’s Law of Gravity



perpendicularly to the ground, thought he to himself. Why should it

not go sideways or upwards, but constantly to the Earth’s centre?

Assuredly the reason is, that the Earth draws it. There must be a

drawing power in matter. And the sum of the drawing power in the

matter of the Earth must be in the Earth’s centre, not in any side of the

Earth. Therefore does this apple fall perpendicularly or towards the

centre? If matter thus draws matter; it must be in proportion of its

quantity. Therefore the apple draws the Earth, as well as the Earth

draws the apple.

Whether the story is the literal truth, or a convenient fiction that Newton

invented to help him explain his ideas later on, is not entirely clear, but it

seems reasonable to take the tale at face value because the idea does not

end with apples. The apple was important to Newton because it made him

realise that the same law of forces can explain both the motion of the apple

and that of the Moon. The only difference is that the Moon also moves

sideways; this is why it stays up. Actually, it is always falling towards the

Earth, but the sideways motion causes the Earth’s surface to fall away as

well. Newton, being Newton, didn’t stop with this qualitative argument.

He did the sums, compared them with observations, and was satisfied that

his idea must be correct.

If gravity acts on the apple, the Moon, and the Earth, as an inherent

feature of matter, then presumably it acts on everything.

It is not possible to verify the universality of gravitational forces

directly; you would have to study all pairs of bodies in the entire universe,

and find a way to remove the influence of all the other bodies. But that’s

not how science works. Instead, it employs a mixture of inference and

observations. Universality is a hypothesis, capable of being falsified every

time it is applied. Every time it survives falsification – a fancy way to say it

gives good results – the justification for using it becomes a little stronger.

If (as in this case) it survives thousands of such tests, the justification

becomes very strong indeed. However, the hypothesis can never be proved

true: for all we know, the next experiment might produce incompatible

results. Perhaps somewhere in a galaxy far, far away there is one speck of

matter, one atom, that is not attracted to everything else. If so, we will

never find it; equally, it won’t upset our calculations. The inverse square

law itself is exceedingly difficult to verify directly, that is, by actually

measuring the attractive force. Instead, we apply the law to systems that we

can measure by using it to predict orbits, and then check whether the

predictions agree with observations.
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Even granting universality, it is not enough to write down an accurate

law of attraction. That just produces an equation describing the motion. In

order to find the motion itself, you have to solve the equation. Even for

two bodies, this is not straightforward, and even bearing in mind that he

knew in advance what answer to expect, Newton’s deduction of elliptical

orbits is a tour de force. It explains why Kepler’s three laws provide a very

accurate description of each planet’s orbit. It also explains why that

description is not exact: other bodies in the solar system, other than the

Sun and the planet itself, affect the motion. In order to account for these

disturbances, you have to solve the equations of motion for three or more

bodies. In particular, if you want to predict the motion of the Moon with

high precision, you have to include the Sun and the Earth in your

equations. The effects of the other planets, especially Jupiter, are not

entirely negligible either, but they show up only in the long term. So, fresh

from Newton’s success with the motion of two bodies under gravity,

mathematicians and physicists moved on to the next case: three bodies.

Their initial optimism dissipated rapidly: the three-body case turned out to

be very different from the two-body case. In fact, it defied solution.

It was often possible to calculate good approximations to the motion

(which often solved the problem for practical purposes), but there no

longer seemed to be an exact formula. This problem bedevilled even

simplified versions, such as the restricted three-body problem. Suppose

that a planet orbits a star in a perfect circle: how will a speck of dust, of

negligible mass, move?

Calculating approximate orbits for three or more bodies, by hand,

using pencil and paper, was just about feasible, but very laborious.

Mathematicians devised innumerable tricks and short cuts, leading to a

reasonable understanding of several astronomical phenomena. Only in the

late nineteenth century did the true complexity of the three-body problem

become apparent, when Henri Poincaré realised that the geometry

involved was necessarily extraordinarily intricate. And only in the late

twentieth century did the advent of powerful computers reduce the labour

of hand calculations, permitting accurate long-term predictions of the

motion of the Solar System.

Poincaré’s breakthrough – if it can be called that, since at the time it

seemed to be telling everyone that the problem was hopeless and it was

pointless to seek a solution – came about because he competed for a

mathematical prize. Oscar II, king of Sweden and Norway, announced a
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competition to celebrate his 60th birthday in 1889. Taking advice from the

mathematician Gösta Mittag-Leffler, the king chose the general problem of

arbitrarily many bodies moving under Newtonian gravitation. Since it was

well understood that an explicit formula akin to the two-body ellipse was

an unrealistic aim, the requirement was relaxed: the prize would be

awarded for an approximation method of a very specific kind. Namely, the

motion must be determined as an infinite series, giving results as accurate

as we please if enough terms are included.

Poincaré did not answer this question. Instead, his memoir on the

topic, published in 1890, provided evidence that it might not possess that

kind of answer, even for just three bodies – star, planet, and dust particle.

By thinking about the geometry of hypothetical solutions, Poincaré

discovered that in some cases the orbit of the dust particle must be

exceedingly complex and tangled. He then, in effect, threw up his hands in

horror and made the pessimistic statement that ‘When one tries to depict

the figure formed by these two curves and their infinity of intersections,

each of which corresponds to a doubly asymptotic solution, these

intersections form a kind of net, web or infinitely tight mesh... One is

struck by the complexity of this figure that I am not even attempting to

draw.’

We now see Poincaré’s work as a breakthrough, and discount his

pessimism, because the complicated geometry that led him to despair of

ever solving the problem actually provides powerful insights if it is

properly developed and understood. The complex geometry of the

associated dynamics turned out to be one of the earliest examples of

chaos: the occurrence, in non-random equations, of solutions so

complicated that in some respects they appear to be random, see

Chapter 16.

There are several ironies in the story. Mathematical historian June

Barrow-Green discovered that the published version of Poincaré’s

prizewinning memoir was not the one that won the prize.4 This earlier

version contained a major error, overlooking the chaotic solutions. The

work was at proof stage when an embarrassed Poincaré realised his blunder,

and he paid for a new printing of a corrected version. Almost all copies of

the original were destroyed, but one remained tucked away in the archives

of the Mittag-Leffler Institute in Sweden, where Barrow-Green found it.

It also turned out that the presence of chaos does not, in fact, rule out

series solutions, but these are valid almost always rather than always. Karl

Frithiof Sundman, a Finnish mathematician, discovered this in 1912 for

the three-body problem, using series formed from powers of the cube root
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of time. (Powers of time won’t hack it.) The series converge – have a

sensible sum – unless the initial state has zero angular momentum, but

such states are infinitely rare, in the sense that a random choice of angular

momentum is almost always nonzero. In 1991 the Chinese mathematician

Qiudong Wang extended these results to any number of bodies, but did

not classify the rare exceptions when the series fail to converge. Such a

classification is likely to be very complicated: it must include solutions

where bodies escape to infinity in finite time, or oscillate ever faster, both

of which can happen for five or more bodies.

Newton’s law of gravity is routinely applied to design orbits for space

missions. Here even two-body dynamics is useful in its own right. In its

early days, the exploration of the Solar System mainly used two-body

orbits, segments of ellipses. By burning its rockets the spacecraft could be

switched from one ellipse to a different one. But as the aims of space

programmes got more ambitious, more efficient methods were needed.

They came from many-body dynamics, usually three bodies but

occasionally as great as five. The new methods of chaos and topological

dynamics became the basis of practical solutions to engineering problems.

Earth Moon

Fig 14 Hohmann transfer ellipse from low-Earth orbit to lunar orbit.

It all started with a simple question: What is the most efficient route

from the Earth to the Moon or the planets? The classic answer, known as a

Hohmann transfer ellipse (Figure 14), starts from a circular orbit round the

Earth, and then follows part of a long, thin ellipse to join up with a second

circular orbit round the destination. This method was employed for the

Apollo missions of the 1960s and 1970s, but for many types of mission it

has one disadvantage. The spacecraft must be boosted out of Earth orbit

and slowed again to enter lunar orbit; this wastes fuel. There are
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alternatives involving many loops round the Earth, a transition through

the point between Earth and Moon where their gravitational fields cancel,

and many loops round the Moon. But trajectories like that take longer than

Hohmann ellipses, so they were not used for the manned Apollo missions

where food and oxygen, hence time, were of the essence. For unmanned

missions, however, time is relatively cheap, whereas anything that adds to

the overall weight of the spacecraft, including fuel, costs money.

By taking a fresh look at Newton’s law of gravity and his second law of

motion, mathematicians and space engineers have recently discovered a

new, and remarkable, approach to fuel-efficient interplanetary travel.

Go by tube.

It’s an idea straight out of science fiction. In his 2004 Pandora’s Star,

Peter Hamilton portrays a future where people travel to planets encircling

distant stars by train, running the railway lines through a wormhole, a

short cut through space-time. In his Lensman series from 1934 to 1948,

Edward Elmer ‘Doc’ Smith came up with the hyperspatial tube, which

malevolent aliens used to invade human worlds from the fourth

dimension.

Although we don’t yet have wormholes or aliens from the fourth

dimension, it has been discovered that the planets and moons of the Solar

System are tied together by a network of tubes, whose mathematical

definition requires many more dimensions than four. The tubes provide

energy-efficient routes from one world to another. They can be seen only

through mathematical eyes, because they are not made of matter: their

walls are energy levels. If we could visualise the ever-changing landscape of

gravitational fields that controls how the planets move, we would be able

to see the tubes, swirling along with the planets as they orbit the Sun.

Tubes explain some puzzling orbital dynamics. Consider, for example,

the comet called Oterma. A century ago, Oterma’s orbit was well outside

that of Jupiter. But after a close encounter with the giant planet, the

comet’s orbit shifted inside that of Jupiter. After another close encounter, it

switched back outside again. We can confidently predict that Oterma will

continue to switch orbits in this way every few decades: not because it

breaks Newton’s law, but because it obeys it.

This is a far cry from tidy ellipses. The orbits predicted by Newtonian

gravity are elliptical only when no other bodies exert a significant

gravitational pull. But the Solar System is full of other bodies, and they

can make a huge – and surprising – difference. It is here that the tubes enter

the story. Oterma’s orbit lies inside two tubes, which meet near Jupiter.

One tube lies inside Jupiter’s orbit, the other outside. They enclose special
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orbits in 3 : 2 and 2 : 3 resonance with Jupiter, meaning that a body in such

an orbit will go round the Sun three times for every two revolutions of

Jupiter, or two times for every three. At the tube junction near Jupiter, the

comet can switch tubes, or not, depending on rather subtle effects of

Jovian and solar gravity. But once inside a tube, Oterma is stuck there until

the tube returns to the junction. Like a train that has to stay on the rails,

but can change its route to another set of rails if someone switches the

points, Oterma has some freedom to change its itinerary, but not a lot

(Figure 15).
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Fig 15 Left: Two periodic orbits, in 2 : 3 and 3 : 2 resonance with Jupiter, connected via

Lagrange points. Right: Actual orbit of comet Oterma, 1910–1980.

The tubes and their junctions may seem bizarre, but they are natural

and important features of the gravitational geography of the Solar System.

Victorian railway-builders understood the need to exploit natural features

of the landscape, running railways through valleys and along contour

lines, and digging tunnels through hills rather than taking the train over

the top. One reason was that trains tend to slip on steep gradients, but the

main one was energy. Climbing a hill, against the force of gravity, costs

energy, which shows up as increased fuel consumption, which costs

money.

It’s much the same with interplanetary travel. Imagine a spacecraft

moving through space. Where it goes next does not depend solely on where

it is now: it also depends on how fast it is moving and in which direction. It

takes three numbers to specify the spacecraft’s position – for example its

direction from the Earth, which requires two numbers (astronomers use

right ascension and declination, which are analogous to longitude and
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latitude on the celestial sphere, the apparent sphere formed by the night

sky), and its distance from the Earth. It takes a further three numbers to

specify its velocity in those three directions. So the spacecraft travels

through a mathematical landscape that has six dimensions rather than

two.

A natural landscape is not flat: it has hills and valleys. It takes energy to

climb a hill, but a train can gain energy by rolling down into a valley. In

fact, two types of energy come into play. The height above sea-level

determines the train’s potential energy, which represents work done

against the force of gravity. The higher you go, the more potential energy

you must create. The second kind is kinetic energy, which corresponds to

speed. The faster you go, the greater your kinetic energy becomes. When

the train rolls downhill and accelerates, it trades potential energy for

kinetic. When it climbs a hill and slows down, the trade is in the reverse

direction. The total energy is constant, so the train’s trajectory is analogous

to a contour line in the energy landscape. However, trains have a third

source of energy: coal, diesel, or electricity. By expending fuel, a train can

climb a gradient or speed up, freeing itself from its natural free-running

trajectory. The total energy still cannot change, but all else is negotiable.

It is much the same with spacecraft. The combined gravitational fields

of the Sun, planets, and other bodies of the Solar System provide potential

energy. The speed of the spacecraft corresponds to kinetic energy. And its

motive power – be it rocket fuel, ions, or light-pressure – adds a further

energy source, which can be switched on or off as required. The path

followed by the spacecraft is a kind of contour line in the corresponding

energy landscape, and along that path the total energy remains constant.

And some types of contour line are surrounded by tubes, corresponding to

nearby energy levels.

Those Victorian railway engineers were also aware that the terrestrial

landscape has special features – peaks, valleys, mountain passes – which

have a big effect on efficient routes for railway lines, because they

constitute a kind of skeleton for the overall geometry of the contours. For

instance, near a peak or a valley bottom the contours form closed curves.

At peaks, potential energy is locally at a maximum; in a valley, it is at a

local minimum. Passes combine features of both, being at a maximum in

one direction, but a minimum in another. Similarly, the energy landscape

of the Solar System has special features. The most obvious are the planets

and moons themselves, which sit at the bottom of gravity wells, like

valleys. Equally important, but less visible, are the peaks and passes of the
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energy landscape. All these features organise the overall geometry, and

with it, the tubes.

The energy landscape has other attractive features for the tourist,

notably Lagrange points. Imagine a system consisting only of the Earth and

the Moon. In 1772 Joseph-Louis Lagrange discovered that at any instant

there are precisely five places where the gravitational fields of the two

bodies, together with centrifugal force, cancel out exactly. Three are in line

with both Earth and Moon – L1 lies between them, L2 is on the far side of

the Moon, and L3 is on the far side of the Earth. The Swiss mathematician

Leonhard Euler had already discovered these around 1750. But there are

also L4 and L5, known as Trojan points, which lie in the same orbit as the

Moon but 60 degrees ahead of it or behind it. As the Moon rotates round

the Earth, the Lagrange points rotate with it. Other pairs of bodies also

have Lagrange points – Earth/Sun, Jupiter/Sun, Titan/Saturn.

The old-fashioned Hohmann transfer orbit is built from pieces of

circles and ellipses, which are the natural trajectories for two-body systems.

The new tube-based paths are built from pieces of the natural trajectories of

three-body systems, such as Sun/Earth/spacecraft. Lagrange points play a

special role, just as peaks and passes did for railways: they are the junctions

where tubes meet. L1 is a great place to make small course changes, because

the natural dynamics of a spacecraft near L1 is chaotic, Figure 16. Chaos

has a useful feature (see Chapter 16): very small changes in position or

speed can create large changes to the trajectory. So it is easy to redirect the

spacecraft in a fuel-efficient, though possibly slow, manner.

The first person to take this idea seriously was the German-born

mathematician Edward Belbruno, an orbital analyst at the Jet Propulsion

Laboratory from 1985 to 1990. He realised that chaotic dynamics in many-

body systems provided an opportunity for novel low-energy transfer orbits,

naming the technique fuzzy boundary theory. In 1991 he put his ideas into

practice. Hiten, a Japanese probe, had been surveying the Moon, and had

completed its intended mission, returning to orbit the Earth. Belbruno

designed a new orbit that would take it back to the Moon despite having

pretty much run out of fuel. After approaching the Moon as intended,

Hiten visited its L4 and L5 points to search for cosmic dust that might have

been trapped there.

A similar trick was used in 1985 to redirect the almost-dead

International Sun–Earth Explorer ISEE-3 to rendezvous with comet

Giacobini–Zinner, and it was used again for NASA’s Genesis mission to

bring back samples of the solar wind. Mathematicians and engineers
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wanted to repeat the trick, and to find others of the same kind, which

meant finding out what really made it work. It turned out to be tubes.

The underlying idea is simple but clever. Those special places in the

energy landscape that resemble mountain passes create bottlenecks that

would-be travellers cannot easily avoid. Ancient humans discovered, the

hard way, that even though it takes energy to climb a pass, it takes more

energy to follow any other route – unless you can go round the mountain

in a totally different direction. The pass makes the best of a bad choice.

In the energy landscape, the analogues of passes include Lagrange

points. Associated with them are very specific inbound paths, which are

like the most efficient way to climb up the pass. There are also equally

specific outbound paths, analogous to the natural routes down from the

pass. To follow these inbound and outbound paths exactly, you have to

travel at just the right speed, but if your speed is slightly different you can

still stay near those paths. In the late 1960s American mathematicians

Charles Conley and Richard McGehee followed up Belbruno’s pioneering

work, pointing out that each such path is surrounded by a nested set of

tubes, one inside the other. Each tube corresponds to a particular choice of

speed; the further away it is from the optimal speed, the wider the tube is.
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On the surface of any given tube, the total energy is constant, but the

constants differ from one tube to another. Much as a contour line is at a

constant height, but that height is different for each contour.

The way to plan an efficient mission profile, then, is to work out which

tubes are relevant to your choice of destination. Then you route your

spacecraft along the inside of the first inbound tube, and when it gets to

the associated Lagrange point you fire a quick burst on the motors to

redirect it along the most suitable outbound tube, Figure 17. That tube

naturally flows into the corresponding inbound tube of the next switching

point... and so it goes.

X
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Fig 17 Left: Tubes meeting near Jupiter. Right: Close-up of region where the tubes join.

Plans for future tubular missions are already being drawn up. In 2000

Wang Sang Koon, Martin Lo, Jerrold Marsden, and Shane Ross used the

tube technique to find a ‘Petit Grand Tour’ of the moons of Jupiter, ending

with a capture orbit round Europa, which was very tricky with previous

methods. The path involves a gravitational boost near Ganymede followed

by a tube trip to Europa. A more complex route, requiring even less energy,

includes Callisto as well. It makes use of another feature of the energy

landscape – resonances. These occur when, say, two moons repeatedly

return to the same relative positions, but one revolves twice round Jupiter

while the other revolves three times. Any small numbers can replace 2 and

3 here. This route uses five-body dynamics: Jupiter, the three moons, and

the spacecraft.

In 2005, Michael Dellnitz, Oliver Junge, Marcus Post, and Bianca Thiere

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
04Seventeen_Chap4.3d Page 71 of 72

71Newton’s Law of Gravity



used tubes to plan an energy-efficient mission from the Earth to Venus. The

main tube here links the Sun/Earth L1 point to the Sun/Venus L2 point. As

a comparison, this route uses only one third of the fuel required by the

European Space Agency’s Venus Express mission, because it can use low-

thrust engines; the price paid is a lengthening of the transit time from 150

days to about 650 days.

The influence of tubes may go further. In unpublished work, Dellnitz

has discovered evidence of a natural system of tubes connecting Jupiter to

each of the inner planets. This remarkable structure, now called the

Interplanetary Superhighway, hints that Jupiter, long known to be the

dominant planet of the Solar System, also plays the role of a celestial Grand

Central Station. Its tubes may well have organised the formation of the

entire Solar System, determining the spacings of the inner planets.

Why were the tubes not spotted sooner? Until very recently, two vital

things were missing. One was powerful computers, capable of carrying out

the necessary many-body calculations. They are far too cumbersome by

hand. But the other, even more important, was a deep mathematical

understanding of the geography of the energy landscape. Without this

imaginative triumph of modern mathematical methods, there would be

nothing for the computers to calculate. And without Newton’s law of

gravity, the mathematical methods would never have been devised.
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5 Portent of the ideal world
The Square Root of Minus One

What does it say?

Even though it ought to be impossible, the square of the

number i is minus one.

Why is that important?

It led to the creation of complex numbers, which in turn led to

complex analysis, one of the most powerful areas of

mathematics.

What did it lead to?

Improved methods to calculate trigonometric tables.

Generalisations of almost all mathematics to the complex

realm. More powerful methods to understand waves, heat,

electricity, and magnetism. The mathematical basis of

quantum mechanics.
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R enaissance Italy was a hotbed of politics and violence. The north of

the country was controlled by a dozen warring city-states, among

them Milan, Florence, Pisa, Genoa, and Venice. In the south, Guelphs and

Gibellines were in conflict as Popes and Holy Roman Emperors battled for

supremacy. Bands of mercenaries roamed the land, villages were laid waste,

coastal cities waged naval warfare against each other. In 1454 Milan,

Naples, and Florence signed the Treaty of Lodi, and peace reigned for the

next four decades, but the papacy remained embroiled in corrupt politics.

This was the time of the Borgias, notorious for poisoning anyone who got

in the way of their quest for political and religious power, but it was also

the time of Leonardo da Vinci, Brunelleschi, Piero della Francesca, Titian,

and Tintoretto. Against a backdrop of intrigue and murder, long-held

assumptions were coming into question. Great art and great science

flourished in symbiosis, each feeding off the other.

Great mathematics flourished as well. In 1545 the gambling scholar

Girolamo Cardano was writing an algebra text, and he encountered a new

kind of number, one so baffling that he declared it ‘as subtle as it is useless’

and dismissed the notion. Rafael Bombelli had a solid grasp of Cardano’s

algebra book, but he found the exposition confusing, and decided he could

do better. By 1572 he had noticed something intriguing: although these

baffling new numbers made no sense, they could be used in algebraic

calculations and led to results that were demonstrably correct.

For centuries mathematicians engaged in a love–hate relationship with

these ‘imaginary numbers’, as they are still called today. The name betrays

an ambivalent attitude: they’re not real numbers, the usual numbers

encountered in arithmetic, but in most respects they behave like them. The

main difference is that when you square an imaginary number, the result is

negative. But that ought not to be possible, because squares are always

positive.

Only in the eighteenth century did mathematicians figure out what

imaginary numbers were. Only in the nineteenth did they start to feel

comfortable with them. But by the time the logical status of imaginary

numbers was seen to be entirely comparable to that of the more traditional
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real numbers, imaginaries had become indispensable throughout

mathematics and science, and the question of their meaning hardly

seemed interesting any more. In the late nineteenth and early twentieth

centuries, revived interest in the foundations of mathematics led to a

rethink of the concept of number, and traditional ‘real’ numbers were seen

to be no more real than imaginary ones. Logically, the two kinds of

number were as alike as Tweedledum and Tweedledee. Both were

constructs of the human mind, both represented – but were not

synonymous with – aspects of nature. But they represented reality in

different ways and in different contexts.

By the second half of the twentieth century, imaginary numbers were

simply part and parcel of every mathematician’s and every scientist’s

mental toolkit. They were built into quantum mechanics in such a

fundamental way that you could no more do physics without them than

you could scale the north face of the Eiger without ropes. Even so,

imaginary numbers are seldom taught in schools. The sums are easy

enough, but the mental sophistication needed to appreciate why

imaginaries are worth studying is still too great for the vast majority of

students. Very few adults, even educated ones, are aware of how deeply

their society depends on numbers that do not represent quantities,

lengths, areas, or amounts of money. Yet most modern technology, from

electric lighting to digital cameras, could not have been invented without

them.

Let me backtrack to a crucial question. Why are squares always positive?

In Renaissance times, where equations were generally rearranged to

make every number in them positive, they wouldn’t have phrased the

question quite this way. They would have said that if you add a number to

a square then you have to get a bigger number – you can’t get zero. But

even if you allow negative numbers, as we now do, squares still have to be

positive. Here’s why.

Real numbers can be positive or negative. However, the square of any

real number, whatever its sign, is always positive, because the product of

two negative numbers is positive. So both 363 and �36�3 yield the

same result: 9. Therefore 9 has two square roots, 3 and�3.

What about�9? What are its square roots?

It doesn’t have any.

It all seems terribly unfair: the positive numbers hog two square roots

each, while the negative numbers go without. It is tempting to change the
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rule for multiplying two negative numbers, so that, say,�36�3=�9.

Then positive and negative numbers each get one square root; moreover,

this has the same sign as its square, which seems neat and tidy. But this

seductive line of reasoning has an unintended downside: it wrecks the

usual rules of arithmetic. The problem is that�9 already occurs as 3 ´�3

itself a consequence of the usual rules of arithmetic, and a fact that almost

everyone is happy to accept. If we insist that�3 ´�3 is also�9, then

�3 ´�3=3 ´�3. There are several ways to see that this causes problems; the

simplest is to divide both sides by�3, to get 3 =�3.

Of course you can change the rules of arithmetic. But now it all gets

complicated and messy. A more creative solution is to retain the rules of

arithmetic, and to extend the system of real numbers by permitting

imaginaries. Remarkably – and no one could have anticipated this, you just

have to follow the logic through – this bold step leads to a beautiful,

consistent system of numbers, with a myriad uses. Now all numbers except

0 have two square roots, one being minus the other. This is true even for

the new kinds of number; one enlargement of the system suffices. It took a

while for this to become clear, but in retrospect it has an air of inevitability.

Imaginary numbers, impossible though they were, refused to go away.

They seemed to make no sense, but they kept cropping up in calculations.

Sometimes the use of imaginary numbers made the calculations simpler,

and the result was more comprehensive and more satisfactory. Whenever

an answer that had been obtained using imaginary numbers, but did not

explicitly involve them, could be verified independently, it turned out to

be right. But when the answer did involve explicit imaginary numbers it

seemed to be meaningless, and often logically contradictory. The enigma

simmered for two hundred years, and when it finally boiled over, the

results were explosive.

Cardano is known as the gambling scholar because both activities played a

prominent role in his life. He was both genius and rogue. His life consists of

a bewildering series of very high highs and very low lows. His mother tried

to abort him, his son was beheaded for killing his (the son’s) wife, and he

(Cardano) gambled away the family fortune. He was accused of heresy for

casting the horoscope of Jesus. Yet in between he also became Rector of the

University of Padua, was elected to the College of Physicians in Milan,

gained 2000 gold crowns for curing the Archbishop of St Andrews’

asthma, and received a pension from Pope Gregory XIII. He invented the

combination lock and gimbals to hold a gyroscope, and he wrote a number
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of books, including an extraordinary autobiography De Vita Propria (‘The

Book of My Life’). The book that is relevant to our tale is the Ars Magna of

1545. The title means ‘great art’, and refers to algebra. In it, Cardano

assembled the most advanced algebraic ideas of his day, including new and

dramatic methods for solving equations, some invented by a student of his,

some obtained from others in controversial circumstances.

Algebra, in its familiar sense from school mathematics, is a system for

representing numbers symbolically. Its roots go back to the Greek

Diophantus around 250 AD, whose Arithmetica employed symbols to

describe ways to solve equations. Most of the work was verbal – ‘find two

numbers whose sum is 10 and whose product is 24’. But Diophantus

summarised the methods he used to find the solutions (here 4 and 6)

symbolically. The symbols (see Table 1) were very different from those we

use today, and most were abbreviations, but it was a start. Cardano mainly

used words, with a few symbols for roots, and again the symbols scarcely

resemble those in current use. Later authors homed in, rather haphazardly,

on today’s notation, most of which was standardised by Euler in his

numerous textbooks. However, Gauss still used xx instead of x2 as late as

1800.

date author notation

c.250 Diophantus DYaBbM
�
g

c.825 Al-Khowârizmı̂ power plus twice side plus three [in Arabic]

1545 Cardano square plus twice side plus three [in Italian]

1572 Bombelli 3p �2^1 p �1^2
1585 Stevin 3 +2D+1E

1591 Viète x quadr. + x 2+3

1637 Descartes, Gauss xx +2x+3

1670 Bachet de Méziriac Q+2N+3

1765 Euler, modern x2 + 2x+3

Table 1 The development of algebraic notation.

The most important topics in the Ars Magna were new methods for

solving cubic and quartic equations. These are like quadratic equations,

which most of us meet in school algebra, but more complicated. A

quadratic equation states a relationship involving an unknown quantity,

normally symbolised by the letter x, and its square x2. ‘Quadratic’ comes

from the Latin for ‘square’. A typical example is

x2 �5xþ6¼0
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Verbally, this says: ‘Square the unknown, subtract 5 times the unknown,

and add 6: the result is zero.’ Given an equation involving an unknown,

our task is to solve the equation – to find the value or values of the

unknown that make the equation correct.

For a randomly chosen value of x, this equation will usually be false.

For example, if we try x=1, then x2�5x+6=1�5+6=2, which isn’t zero.

But for rare choices of x, the equation is true. For example, when x=2 we

have x2 – 5x+6=4�10+6=0. But this is not the only solution! When x=3

we have x2�5x+6=9�15+6=0 as well. There are two solutions, x=2 and

x=3, and it can be shown that there are no others. A quadratic equation

can have two solutions, one, or none (in real numbers). For example,

x2�2x+1=0 has only the solution x=1, and x2 + 1 =0 has no solutions in

real numbers.

Cardano’s masterwork provides methods for solving cubic equations,

which along with x and x2 also involve the cube x3 of the unknown, and

quartic equations, where x4 turns up as well. The algebra gets very

complicated; even with modern symbolism it takes a page or two to derive

the answers. Cardano did not go on to quintic equations, involving x5,

because he did not know how to solve them. Much later it was proved that

no solutions (of the type Cardano would have wanted) exist: although

highly accurate numerical solutions can be calculated in any particular

case, there is no general formula for them, unless you invent new symbols

specifically for the task.

I’m going to write down a few algebraic formulas, because I think the

topic makes more sense if we don’t try to avoid them. You don’t need to

follow the details, but I’d like to show you what everything looks like.

Using modern symbols, we can write out Cardano’s solution of the cubic

equation in a special case, when x3 + ax+ b=0 for specific numbers a and b.

(If x2 is present, a cunning trick gets rid of it, so this case actually deals with

everything.) The answer is:

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
þ a3

27

r
3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
þ a3

27

r
3

s

This may appear a bit of a mouthful, but it’s a lot simpler than many

algebraic formulas. It tells us how to calculate the unknown x by working

out the square of b and the cube of a, adding a few fractions, and taking a

couple of square roots (the ffiffiffip symbol) and a couple of cube roots (the ffiffiffi
3
p

symbol). The cube root of a number is whatever you have to cube to get

that number.
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The discovery of the solution for cubic equations involves at least three

other mathematicians, one of whom complained bitterly that Cardano had

promised not to reveal his secret. The story, though fascinating, is too

complicated to relate here.1 The quartic was solved by Cardano’s student

Lodovico Ferrari. I’ll spare you the even more complicated formula for

quartic equations.

The results reported in the Ars Magna were a mathematical triumph,

the culmination of a story that spanned millennia. The Babylonians knew

how to solve quadratic equations around 1500 BC, perhaps earlier. The

ancient Greeks and Omar Khayyam knew geometric methods for solving

cubics, but algebraic solutions of cubic equations, let alone quartics, were

unprecedented. At a stroke, mathematics outstripped its classical origins.

There was one tiny snag, however. Cardano noticed it, and several

people tried to explain it; they all failed. Sometimes the method works

brilliantly; at other times, the formula is as enigmatic as the Delphic oracle.

Suppose we apply Cardano’s formula to the equation x3�15x�4=0. The

result is

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�121

p3

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffiffiffiffiffiffiffiffiffi
�121

p3

q

However, �121 is negative, so it has no square root. To compound the

mystery, there is a perfectly good solution, x=4. The formula doesn’t give

it.

Light of a kind was shed in 1572 when Bombelli published L’Algebra.

His main aim was to clarify Cardano’s book, but when he came to this

particular thorny issue he spotted something Cardano had missed. If you

ignore what the symbols mean, and just perform routine calculations, the

standard rules of algebra show that

ð2þ
ffiffiffiffiffiffiffi
�1

p
Þ3 ¼2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�121

p

Therefore you are entitled to write

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�121

p3

q
¼2þ

ffiffiffiffiffiffiffi
�1

p

Similarly,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffiffiffiffiffiffiffiffiffiffi
�121

p3

q
¼2�

ffiffiffiffiffiffiffi
�1

p

Now the formula that baffled Cardano can be rewritten as

ð2þ
ffiffiffiffiffiffiffi
�1

p
Þþ ð2�

ffiffiffiffiffiffiffi
�1

p
Þ
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which is equal to 4 because the troublesome square roots cancel out. So

Bombelli’s nonsensical formal calculations got the right answer. And that

was a perfectly normal real number.

Somehow, pretending that square roots of negative numbers made

sense, even though they obviously did not, could lead to sensible answers.

Why?

To answer this question, mathematicians had to develop good ways to

think about square roots of negative quantities, and do calculations with

them. Early writers, among them Descartes and Newton, interpreted these

‘imaginary’ numbers as a sign that a problem has no solutions. If you

wanted to find a number whose square was minus one, the formal solution

‘square root of minus one’ was imaginary, so no solution existed. But

Bombelli’s calculation implied that there was more to imaginaries than

that. They could be used to find solutions; they could arise as part of the

calculation of solutions that did exist.

Leibniz had no doubt about the importance of imaginary numbers. In

1702 he wrote: ‘The Divine Spirit found a sublime outlet in that wonder of

analysis, that portent of the ideal world, that amphibian between being

and non-being, which we call the imaginary root of negative unity.’ But

the eloquence of his statement fails to obscure a fundamental problem: he

didn’t have a clue what imaginary numbers actually were.

One of the first people to come up with a sensible representation of

complex numbers was Wallis. The image of real numbers lying along a line,

like marked points on a ruler, was already commonplace. In 1673 Wallis

suggested that a complex number x+ iy should be thought of as a point in a

plane. Draw a line in the plane, and identify points on this line with real

numbers in the usual way. Then think of x+ iy as a point lying to one side

of the line, distance y away from the point x.

Wallis’s idea was largely ignored, or worse, criticised. François Daviet

de Foncenex, writing about imaginaries in 1758, said that thinking of

imaginaries as forming a line at right angles to the real line was pointless.

But eventually the idea was revived in a slightly more explicit form. In fact,

three people came up with exactly the same method for representing

complex numbers, at intervals of a few years, Figure 18. One was a

Norwegian surveyor, one a French mathematician, and one a German

mathematician. Respectively, they were Caspar Wessel, who published in

1797, Jean-Robert Argand in 1806, and Gauss in 1811. They basically said

the same as Wallis, but they added a second line to the picture, an
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imaginary axis at right angles to the real one. Along this second axis lived

the imaginary numbers i, 2i, 3i, and so on. A general complex number,

such as 3 +2i, lived out in the plane, three units along the real axis and two

along the imaginary one.

−3 −2 −1 0 1 2

2

3+2i 3+2i

3 1 2 3 x

y

3i

2i

i

−i
−1−2−3

−2i

−3i

Fig 18 The complex plane. Left: according to Wallis. Right: according to Wessel, Argand, and

Gauss.

This geometric representation was all very well, but it didn’t explain

why complex numbers form a logically consistent system. It didn’t tell us

in what sense they are numbers. It just provided a way to visualise them.

This no more defined what a complex number is than a drawing of a

straight line defines a real number. It did provide some sort of

psychological prop, a slightly artificial link between those crazy

imaginaries and the real world, but nothing more.

What convinced mathematicians that they should take imaginary

numbers seriously wasn’t a logical description of what they were. It was

overwhelming evidence that whatever they were, mathematics could make

good use of them. You don’t ask difficult questions about the philosophical

basis of an idea when you are using it every day to solve problems and you

can see that it gives the right answers. Foundational questions still have

some interest, of course, but they take a back seat to the pragmatic issues of

using the new idea to solve old and new problems.

Imaginary numbers, and the system of complex numbers that they

spawned, cemented their place in mathematics when a few pioneers

turned their attention to complex analysis: calculus (Chapter 3) but with

complex numbers instead of real ones. The first step was to extend all

the usual functions – powers, logarithms, exponentials, trigonometric
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functions – to the complex realm. What is sin z when z= x+ iy is complex?

What is ez or log z?

Logically, these things can be whatever we wish. We are operating in a

new domain where the old ideas don’t apply. It doesn’t make much sense,

for instance, to think of a right-angled triangle whose sides have complex

lengths, so the geometric definition of the sine function is irrelevant. We

could take a deep breath, insist that sin z has its usual value when z is real,

but equals 42 whenever z isn’t real: job done. But that would be a pretty

silly definition: not because it’s imprecise, but because it bears no sensible

relationship to the original one for real numbers. One requirement for an

extended definition must be that it agrees with the old one when applied

to real numbers, but that’s not enough. It’s true for my silly extension of

the sine. Another requirement is that the new concept should retain as

many features of the old one as we can manage; it should somehow be

‘natural’.

What properties of sine and cosine do we want to preserve? Presumably

we’d like all the pretty formulas of trigonometry to remain valid, such as

sin 2z=2 sin z cos z. This imposes a constraint but doesn’t help. A more

interesting property, derived using analysis (the rigorous formulation of

calculus), is the existence of an infinite series:

sin z¼ z� z3

1:2:3
þ z5

1:2:3:4:5
� z7

1:2:3:4:5:6:7
þ . . .

(The sum of such a series is defined to be the limit of the sum of finitely

many terms as the number of terms increases indefinitely.) There is a

similar series for the cosine:

cos z¼1� z2

1:2
þ z4

1:2:3:4
� z6

1:2:3:4:5:6
þ . . .

and the two are obviously related in some way to the series for the

exponential:

ez ¼1þ zþ z2

1:2
þ z3

1:2:3
þ z4

1:2:3:4
þ . . .

These series may seem complicated, but they have an attractive feature: we

know how to make sense of them for complex numbers. All they involve is

integer powers (which we obtain by repeated multiplication) and a

technical issue of convergence (making sense of the infinite sum). Both

of these extend naturally into the complex realm and have all of the
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expected properties. So we can define sines and cosines of complex

numbers using the same series that work in the real case.

Since all of the usual formulas in trigonometry are consequences of

these series, those formulas automatically carry over as well. So do the basic

facts of calculus, such as ‘the derivative of sine is cosine’. So does

ez+w= ezew. This is all so pleasant that mathematicians were happy to settle

on the series definitions. And once they’d done that, a great deal else

necessarily had to fit in with it. If you followed your nose, you could

discover where it led.

For example, those three series look very similar. Indeed, if you replace

z by iz in the series for the exponential, you can split the resulting series

into two parts, and what you get are precisely the series for sine and cosine.

So the series definitions imply that

eiz ¼ cos zþ i sin z:

You can also express both sine and cosine using exponentials:

cos z¼ eiz þ e�iz

2
sin z¼ eiz � e�iz

2i

This hidden relationship is extraordinarily beautiful. But you’d never

suspect anything like it could exist if you remained stuck in the realm of

the reals. Curious similarities between trigonometric formulas and

exponential ones (for example, their infinite series) would remain just

that. Viewed through complex spectacles, everything suddenly slots into

place.

One of the most beautiful, yet enigmatic, equations in the whole of

mathematics emerges almost by accident. In the trigonometric series, the

number z (when real) has to be measured in radians, for which a full circle

of 3608 becomes 2π radians. In particular, the angle 1808 is π radians.

Moreover, sin π=0 and cos π=�1. Therefore

eip ¼ cos pþ i sin p¼�1

The imaginary number i unites the two most remarkable numbers in

mathematics, e and π, in a single elegant equation. If you’ve never seen this

before, and have any mathematical sensitivity, the hairs on your neck raise

and prickles run down your spine. This equation, attributed to Euler,

regularly comes top of the list in polls for the most beautiful equation in

mathematics. That doesn’t mean that it is the most beautiful equation, but

it does show how much mathematicians appreciate it.
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Armed with complex functions and knowing their properties, the

mathematicians of the nineteenth century discovered something

remarkable: they could use these things to solve differential equations in

mathematical physics. They could apply the method to static electricity,

magnetism, and fluid flow. Not only that: it was easy.

In Chapter 3 we talked of functions – mathematical rules that assign, to

any given number, a corresponding number, such as its square or sine.

Complex functions are defined in the same way, but now we allow the

numbers involved to be complex. The method for solving differential

equations was delightfully simple. All you had to do was take some

complex function, call it f(z), and split it into its real and imaginary parts:

f ðzÞ¼ uðzÞþ ivðzÞ

Now you have two real-valued functions u and v, defined for any z in the

complex plane. Moreover, whatever function you start with, these two

component functions satisfy differential equations found in physics. In a

fluid-flow interpretation, for example, u and v determine the flow-lines. In

an electrostatic interpretation, the two components determine the electric

field and how a small charged particle would move; in a magnetic

interpretation, they determine the magnetic field and the lines of force.

I’ll give just one example: a bar magnet. Most of us remember seeing a

famous experiment in which a magnet is placed beneath a sheet of paper,

and iron filings are scattered over the paper. They automatically line up to

show the lines of magnetic force associated with the magnet – the paths

that a tiny test magnet would follow if placed in the magnetic field. The

curves look like Figure 19 (left).

Fig 19 Left: Magnetic field of bar magnet. Right: Field derived using complex analysis.

To obtain this picture using complex functions, we just let f(z) = 1/z.

The lines of force turn out to be circles, tangent to the real axis, as in Figure
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19 (right). This is what the magnetic fields lines of a very tiny bar magnet

would look like. A more complicated choice of function corresponds to a

magnet of finite size: I chose this function to keep everything as simple as

possible.

This was wonderful. There were endless functions to work with. You

decided which function to look at, found its real and imaginary parts,

worked out their geometry ... and, lo and behold, you had solved a

problem in magnetism, or electricity, or fluid flow. Experience soon told

you which function to use for which problem. The logarithm was a point

source, minus the logarithm was a sink through which fluid disappeared

like the plughole in a kitchen sink, i times the logarithm was a point vortex

where the fluid spun round and round... It was magic! Here was a method

that could churn out solution after solution to problems that would

otherwise be opaque. Yet it came with a guarantee of success, and if you

were worried about all that complex analysis stuff, you could check directly

that the results you obtained really did represent solutions.

This was just the beginning. As well as special solutions, you could prove

general principles, hidden patterns in the physical laws. You could analyse

waves and solve differential equations. You could transform shapes into

other shapes, using complex equations, and the same equations

transformed the flow-lines round them. The method was limited to

systems in the plane, because that was where a complex number naturally

lived, but the method was a godsend when previously even problems in the

plane were out of reach. Today, every engineer is taught how to use

complex analysis to solve practical problems, early in their university

course. The Joukowski transformation z+1/z turns a circle into an aerofoil

shape, the cross-section of a rudimentary aeroplane wing, see Figure 20. It

therefore turns the flow past a circle, easy to find if you knew the tricks of

the trade, into the flow past an aerofoil. This calculation, and more realistic

improvements, were important in the early days of aerodynamics and

aircraft design.

This wealth of practical experience made the foundational issues moot.

Why look a gift horse in the mouth? There had to be a sensible meaning for

complex numbers – they wouldn’t work otherwise. Most scientists and

mathematicians were much more interested in digging out the gold than

they were in establishing exactly where it had come from and what

distinguished it from fools’ gold. But a few persisted. Eventually, the Irish

mathematician William Rowan Hamilton knocked the whole thing on the
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head. He took the geometric representation proposed by Wessel, Argand,

and Gauss, and expressed it in coordinates. A complex number was a pair

of real numbers (x, y). The real numbers were those of the form (x, 0). The

imaginary i was (0, 1). There were simple formulas for adding and

multiplying these pairs. If you were worried about some law of algebra,

such as the commutative law ab= ba, you could routinely work out both

sides as pairs, and make sure they were the same. (They were.) If you

identified (x, 0) with plain x, you embedded the real numbers into the

complex ones. Better still, x+ iy then worked out as the pair (x, y).

This wasn’t just a representation, but a definition. A complex number,

said Hamilton, is nothing more nor less than a pair of ordinary real

numbers. What made them so useful was an inspired choice of the rules for

adding and multiplying them. What they actually were was trite; it was

how you used them that produced the magic. With this simple stroke of

genius, Hamilton cut through centuries of heated argument and

philosophical debate. But by then, mathematicians had become so used

to working with complex numbers and functions that no one cared any

more. All you needed to remember was that i2 =�1.
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6 Much ado about knotting
Euler’s Formula for Polyhedra

What does it say?

The numbers of faces, edges, and vertices of a solid are not

independent, but are related in a simple manner.

Why is that important?

It distinguishes between solids with different topologies using

the earliest example of a topological invariant. This paved

the way to more general and more powerful techniques,

creating a new branch of mathematics.

What did it lead to?

One of the most important and powerful areas of pure

mathematics: topology, which studies geometric properties

that are unchanged by continuous deformations. Examples

include surfaces, knots, and links. Most applications are

indirect, but its influence behind the scenes is vital. It helps us

understand how enzymes act on DNA in a cell, and why the

motion of celestial bodies can be chaotic.
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A s the nineteenth century approached its end, mathematicians began

to develop a new kind of geometry, one in which familiar concepts

such as lengths and angles played no role whatsoever and no distinction

was made between triangles, squares, and circles. Initially it was called

analysis situs, the analysis of position, but mathematicians quickly settled

on another name: topology.

Topology has its roots in a curious numerical pattern that Descartes

noticed in 1639 when thinking about Euclid’s five regular solids. Descartes

was a French-born polymath who spent most of his life in the Dutch

Republic, present-day Netherlands. His fame mainly rests on his

philosophy, which proved so influential that for a long time Western

philosophy consisted largely of responses to Descartes. Not always in

agreement, you appreciate, but motivated by his arguments nonetheless.

His sound bite cogito ergo sum – ‘I think, therefore I am’ – has become

common cultural currency. But Descartes’s interests extended beyond

philosophy into science and mathematics.

In 1639 Descartes turned his attention to the regular solids, and this

was when he noticed his curious numerical pattern. A cube has 6 faces,

12 edges, and 8 vertices; the sum 6–12+8 equals 2. A dodecahedron has 12

faces, 30 edges, and 20 vertices; the sum 12 – 30+20=2. An icosahedron

has 20 faces, 30 edges, and 12 vertices; the sum 20 –30+12=2. The same

relationship holds for the tetrahedron and octahedron. In fact, it applies to

a solid of any shape, regular or not. If the solid has F faces, E edges, and

V vertices, then F – E+V=2. Descartes viewed this formula as a minor

curiosity and did not publish it. Only much later did mathematicians see

this simple little equation as one of the first tentative steps towards the

great success story in twentieth-century mathematics, the inexorable rise

of topology. In the nineteenth century, the three pillars of pure

mathematics were algebra, analysis, and geometry. By the end of the

twentieth, they were algebra, analysis, and topology.
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Topology is often characterised as ‘rubber-sheet geometry’ because it is the

kind of geometry that would be appropriate for figures drawn on a sheet of

elastic, so that lines can bend, shrink, or stretch, and circles can be

squashed so that they turn into triangles or squares. All that matters is

continuity: you are not allowed to rip the sheet apart. It may seem

remarkable that anything so weird could have any importance, but

continuity is a basic aspect of the natural world and a fundamental

feature of mathematics. Today we mostly use topology indirectly, as one

mathematical technique among many. You don’t find anything obviously

topological in your kitchen. However, a Japanese company did market a

chaotic dishwasher, which according to their marketing people cleaned

dishes more efficiently, and our understanding of chaos rests on topology.

So do some important aspects of quantum field theory and that iconic

molecule DNA. But, when Descartes counted the most obvious features of

the regular solids and noticed that they were not independent, all this was

far in the future.

It was left to the indefatigable Euler, the most prolific mathematician

in history, to prove and publish this relationship, which he did in 1750 and

1751. I’ll sketch a modern version. The expression F – E+V may seem fairly

arbitrary, but it has a very interesting structure. Faces (F) are polygons, of

dimension 2, edges (E) are lines, so have dimension 1, and vertices (V) are

points, of dimension 0. The signs in the expression alternate, + – + , with

+ being assigned to features of even dimension and – to those of odd

dimension. This implies that you can simplify a solid by merging its faces

or removing edges and vertices, and these changes will not alter the

number F –E+V provided that every time you get rid of a face you also

remove an edge, or every time you get rid of a vertex you also remove an

edge. The alternating signs mean that changes of this kind cancel out.

Now I’ll explain how this clever structure makes the proof work. Figure

21 shows the key stages. Take your solid. Deform it into a nice round

sphere, with its edges being curves on that sphere. If two faces meet along a

common edge, then you can remove that edge and merge the faces into

one. Since this merger reduces both F and E by 1, it doesn’t change F – E+V.

Keep doing this until you get down to a single face, which covers almost

all of the sphere. Aside from this face, you are left with only edges and

vertices. These must form a tree, a network with no closed loops, because

any closed loop on a sphere separates at least two faces: one inside it, the

other outside it. The branches of this tree are the remaining edges of the

solid, and they join together at the remaining vertices. At this stage only

one face remains: the entire sphere, minus the tree. Some branches of this
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tree connect to other branches at both ends, but some, at the extremes,

terminate in a vertex, to which no other branches attach. If you remove

one of these terminating branches together with that vertex, then the tree

gets smaller, but since both E and V decrease by 1, F – E+V again remains

unchanged.

This process continues until you are left with a single vertex sitting on

an otherwise featureless sphere. Now V=1, E=0, and F=1. So F – E+V=1 –

0 +1=2. But since each step leaves F – E+V unchanged, its value at the

beginning must also have been 2, which is what we want to prove.

Fig 21 Key stages in simplifying a solid. Left to right: (1) Start. (2) Merging adjacent faces. (3)

Tree that remains when all faces have been merged. (4) Removing an edge and a vertex from

the tree. (5) End.

It’s a cunning idea, and it contains the germ of a far-reaching principle.

The proof has two ingredients. One is a simplification process: remove

either a face and an adjacent edge or a vertex and an edge that meets it. The

other is an invariant, a mathematical expression that remains unchanged

whenever you carry out a step in the simplification process. Whenever

these two ingredients coexist, you can compute the value of the invariant

for any initial object by simplifying it as far as you can, and then

computing the value of the invariant for this simplified version. Because it

is an invariant, the two values must be equal. Because the end result is

simple, the invariant is easy to calculate.

Now I have to admit that I’ve been keeping one technical issue up my

sleeve. Descartes’s formula does not, in fact, apply to any solid. The most

familiar solid for which it fails is a picture frame. Think of a picture frame

made from four lengths of wood, each rectangular in cross-section, joined

at the four corners by 458 mitres as in Figure 22 (left). Each length of wood

contributes 4 faces, so F=16. Each length also contributes 4 edges, but the

mitre joint creates 4 more at each corner, so E=32. Each corner comprises

4 vertices, so V=16. Therefore F – E+V=0.

What went wrong?
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There’s no problem with F –E+V being invariant. Neither is there

much of a problem with the simplification process. But if you work

through it for the frame, always cancelling one face against one edge, or

one vertex against one edge, then the final simplified configuration is not a

single vertex sitting in a single face. Performing the cancellation in the

most obvious way, what you get is Figure 22 (right), with F =1, V=1, E=2.

I’ve smoothed the faces and edges for reasons that will quickly become

apparent. At this stage removing an edge just merges the sole remaining

face with itself, so the changes to the numbers no longer cancel. This is

why we stop, but we’re home and dry anyway: for this configuration, F – E

+V=0. So the method performs perfectly. It just yields a different result for

the picture frame. There must be some fundamental difference between a

picture frame and a cube, and the invariant F – E+V is picking it up.

The difference turns out to be a topological one. Early in my version of

Euler’s proof, I told you to take the solid and ‘deform it into a nice round

sphere’. But this is not possible for the picture frame. It’s not shaped like a

sphere, even after being simplified. It is a torus, which looks like an

inflatable rubber ring with a hole through the middle. The hole is also

clearly visible in the original shape: it’s where the picture would go. A

sphere, in contrast, has no holes. The hole in the frame is why the

simplification process leads to a different result. However, we can wrest

victory from the jaws of defeat, because F – E+V is still an invariant. So the

proof tells us that any solid that is deformable into a torus will satisfy the

slightly different equation F – E+V=0. In consequence, we have the basis of

a rigorous proof that a torus cannot be deformed into a sphere: that is, the

two surfaces are topologically different.

Of course this is intuitively obvious, but now we can support intuition

with logic. Just as Euclid started from obvious properties of points and

lines, and formalised them into a rigorous theory of geometry, the
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mathematicians of the nineteenth and twentieth centuries could now

develop a rigorous formal theory of topology.

Fig 23 Left: 2-holed torus. Right: 3-holed torus.

Where to start was a no-brainer. There exist solids like a torus but with

two or more holes, as in Figure 23, and the same invariant should tell us

something useful about those. It turns out that any solid deformable into a

2-holed torus satisfies F – E+V= –2, any solid deformable into a 3-holed

torus satisfies F – E+V= –4, and in general any solid deformable into a g-

holed torus satisfies F – E+V=2 – 2g. The symbol g is short for ‘genus’, the

technical name for ‘number of holes’. Pursuing the line of thought that

Descartes and Euler began leads to a connection between a quantitative

property of solids, the number of faces, vertices, and edges, and a

qualitative property, possessing holes. We call F – E+V the Euler

characteristic of the solid, and observe that it depends only on which

solid we are considering and not on how we cut it into faces, edges, and

vertices. This makes it an intrinsic feature of the solid itself.

Agreed, we count the number of holes, a quantitative operation, but

‘hole’ itself is qualitative in the sense that it’s not obviously a feature of the

solid at all. Intuitively, it’s a region in space where the solid isn’t. But not

any such region. After all, that description applies to all of the space

surrounding the solid, and no one would consider it all to be a hole. And it

also applies to all of the space surrounding a sphere ... which doesn’t have a

hole. In fact, the more you start to think about what a hole is, the more you

realise that it’s quite tricky to define one. My favourite example to show

just how confusing it all gets is the shape in Figure 24, known as a hole-

through-a-hole-in-a-hole. Apparently you can thread a hole through

another hole, which is actually a hole in a third hole.

This way lies madness.

It wouldn’t much matter if solids with holes in them never turned up

anywhere important. But by the end of the nineteenth century they were

turning up all over mathematics – in complex analysis, algebraic geometry,

and Riemann’s differential geometry. Worse, higher-dimensional

analogues of solids were taking centre stage, in all areas of pure and
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applied mathematics; as already noted, the dynamics of the Solar System

requires 6 dimensions per body. And they had higher-dimensional

analogues of holes. Somehow it was necessary to bring a modicum of

order into the area. And the answer turned out to be ... invariants.

The idea of a topological invariant goes back to Gauss’s work on

magnetism. He was interested in how magnetic and electrical field lines

could link with each other, and he defined the linking number, which

counts how many times one field line winds round another. This is a

topological invariant: it remains the same if the curves are continuously

deformed. He found a formula for this number using integral calculus, and

every so often he expressed a wish for a better understanding of the ‘basic

geometric properties’ of diagrams. It is no coincidence that the first serious

inroads into such an understanding came through the work of one of

Gauss’s students, Johann Listing, and Gauss’s assistant August Möbius.

Listing’s Vorstudien zur Topologie (‘Studies in Topology’) of 1847 introduced

the word ‘topology’, and Möbius made the role of continuous

transformations explicit.

Listing had a bright idea: seek generalisations of Euler’s formula. The

expression F – E+V is a combinatorial invariant: a feature of a specific way

of describing a solid, based on cutting it into faces, edges, and vertices. The

number g of holes is a topological invariant: something that does not

change however the solid is deformed, as long as the deformation is

continuous. A topological invariant captures a qualitative conceptual

feature of a shape; a combinatorial one provides a method for calculating

it. The two together are very powerful, because we can use the conceptual
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invariant to think about shapes, and the combinatorial version to pin

down what we are talking about.

In fact, the formula lets us sidestep the tricky issue of defining ‘hole’

altogether. Instead, we define ‘number of holes’ as a package, without

either defining a hole or counting how many there are. How? Easy. Just

rewrite the generalised version of Euler’s formula F – E+V=2 –2g in the

form

g¼1� F=2þE=2�V=2

Now we can calculate g by drawing faces and so forth on our solid,

counting F, E, and V, and substituting those values into the formula. Since

the expression is an invariant, it doesn’t matter how we cut the solid up: we

always get the same answer. But nothing that we do depends on having a

definition of a hole. Instead, ‘number of holes’ becomes an interpretation,

in intuitive terms, derived by looking at simple examples where we feel we

know what the phrase should mean.

It may seem like a cheat, but it makes significant inroads into a central

question in topology: when can one shape be continuously deformed into

another? That is, as far as topologists are concerned, are the two shapes the

same or not? If they are the same, their invariants must also be the same;

conversely, if the invariants are different, so are the shapes. (However,

sometimes two shapes might have the same invariant, but be different; it

depends on the invariant.) Since a sphere has Euler characteristic 2, but a

torus has Euler characteristic 0, there is no way to deform a sphere

continuously into a torus. This may seem obvious, because of the hole...

but we’ve seen the turbulent waters into which that way of thinking can

lead. You don’t have to interpret the Euler characteristic in order to use it

to distinguish shapes, and here it is decisive.

Less obviously, the Euler characteristic shows that the puzzling hole-

through-a-hole-in-a-hole (Figure 24) is actually just a 3-holed torus in

disguise. Most of the apparent complexity stems not from the intrinsic

topology of the surface, but from the way I have chosen to embed it in

space.

The first really significant theorem in topology grew out of the formula for

the Euler characteristic. It was a complete classification of surfaces, curved

two-dimensional shapes like the surface of a sphere or that of a torus. A

couple of technical conditions were also imposed: the surface should have

no boundary, and it should be of finite extent (the jargon is ‘compact’).
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For this purpose a surface is described intrinsically; that is, it is not

conceived as existing in some surrounding space. One way to do this is to

view the surface as a number of polygonal regions (which topologically are

equivalent to circular discs) that are glued together along their edges

according to specified rules, like the ‘glue tab A to tab B’ instructions you

get when assembling a cardboard cut-out. A sphere, for instance, can be

described using two discs, glued together along their boundaries. One disc

becomes the northern hemisphere, the other the southern hemisphere. A

torus has an especially elegant description as a square with opposite edges

glued to each other. This construction can be visualised in a surrounding

space (Figure 25), which explains why it creates a torus, but the

mathematics can be carried out using just the square together with the

gluing rules, and this offers advantages precisely because it is intrinsic.

Fig 25 Gluing the edges of a square to make a torus.

The possibility of gluing bits of boundary together leads to a rather

strange phenomenon: surfaces with only one side. The most famous

example is the Möbius band, introduced by Möbius and Listing in 1858,

which is a rectangular strip whose ends are glued together with a 1808 turn

(usually called a half-twist, on the convention that 3608 constitutes a full

twist). The Möbius band, see Figure 26 (left), has an edge, comprising the

edges of the rectangle that don’t get glued to anything. This is the only

edge, because the two separate edges of the rectangle are connected

together into a closed loop by the half-twist, which glues them end to end.

It is possible to make a model of a Möbius band from paper, because it

embeds naturally in three-dimensional space. The band has only one side,

in the sense that if you start painting one of its surfaces, and keep going,

you will eventually cover the entire surface, front and back. This happens

because the half-twist connects the front to the back. That’s not an

intrinsic description, because it relies on embedding the band in space, but
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there is an equivalent, more technical property known as orientability,

which is intrinsic.

Fig 26 Left: Möbius band. Right: Klein bottle. The apparent self-intersection occurs because

the drawing embeds it in three-dimensional space.

There is a related surface with only one side, having no edges at all,

Figure 26 (right). It arises if we glue two sides of a rectangle together like a

Möbius band, and glue the other two sides together without any twisting.

Any model in three-dimensional space has to pass through itself, even

though from an intrinsic point of view the gluing rules do not introduce

any self-intersections. If this surface is pictured with such a crossing, it

looks like a bottle whose neck has been poked through the side wall and

joined to the bottom. It was invented by Felix Klein, and is known as a

Klein bottle – almost certainly a joke based on a German pun, changing

Kleinsche Fläche (Klein’s surface) to Kleinsche Flasche (Klein’s bottle).

The Klein bottle has no boundary and is compact, so any classification

of surfaces must include it. It is the best known of an entire family of one-

sided surfaces, and surprisingly it is not the simplest. This honour goes to

the projective plane, which arises if you glue both pairs of opposite sides of

a square together, with a half-twist for each. (This is difficult to do with

paper because paper is too rigid; like the Klein bottle it requires the surface

to intersect itself. It is best done ‘conceptually’, that is, by drawing pictures

on the square but remembering the gluing rules when lines go off the edge

and ‘wrap round’.) The classification theorem for surfaces, proved by

Johann Listing around 1860, leads to two families of surfaces. Those with

two sides are the sphere, torus, 2-holed torus, 3-holed torus, and so on.

Those with only one side form a similar infinite family, starting with the

projective plane and the Klein bottle. They can be obtained by cutting a
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small disc out of the corresponding two-sided surface and gluing in a

Möbius band instead.

Surfaces turn up naturally in many areas of mathematics. They are

important in complex analysis, where surfaces are associated with

singularities, points at which functions behave strangely – for instance,

the derivative fails to exist. Singularities are the key to many problems in

complex analysis; in a sense they capture the essence of the function. Since

singularities are associated with surfaces, the topology of surfaces provides

an important technique for complex analysis. Historically, this motivated

the classification.

Most modern topology is highly abstract, and a lot of it happens in four or

more dimensions. We can get a feel for the subject in a more familiar

setting: knots. In the real world, a knot is a tangle tied in a length of string.

Topologists need a way to stop the knot escaping off the ends once it has

been tied, so they join the ends of the string together to form a closed loop.

Now a knot is just a circle embedded in space. Intrinsically, a knot is

topologically identical to a circle, but on this occasion what counts is how

the circle sits inside its surrounding space. This might seem contrary to the

spirit of topology, but the essence of a knot lies in the relation between the

loop of string and the space that surrounds it. By considering not just the

loop, but how it relates to space, topology can tackle important questions

about knots. Among these are:

. How do we know a knot is really knotted?

. How can we distinguish topologically different knots?

. Can we classify all possible knots?

Experience tells us that there are many different types of knot. Figure 27

shows a few of them: the overhand or trefoil knot, reef knot, granny knot,

figure-8, stevedore’s knot, and so on. There is also the unknot, an ordinary

circular loop; as the name reflects, this loop is not knotted. Many different

kinds of knot have been used by generations of mariners, mountaineers,

and boy scouts. Any topological theory should of course reflect this wealth

of experience, but everything has to be proved, rigorously, within the

formal setting of topology, just as Euclid had to prove Pythagoras’s

theorem instead of just drawing a few triangles and measuring them.

Remarkably, the first topological proof that knots exist, in the sense that

there is an embedding of the circle that cannot be deformed into the
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unknot, first appeared in 1926 in the German mathematician Kurt

Reidemeister’s Knoten und Gruppen (‘Knots and Groups’). The word

‘group’ is a technical term in abstract algebra, which quickly became the

most effective source of topological invariants. In 1927 Reidemeister, and

independently the American James Waddell Alexander, in collaboration

with his student G. B. Briggs, found a simpler proof of the existence of

knots using the ‘knot diagram’. This is a cartoon image of the knot, drawn

with tiny breaks in the loop to show how the separate strands overlap, as in

Figure 27. The breaks are not present in the knotted loop itself, but they

represent its three-dimensional structure in a two-dimensional diagram.

Now we can use the breaks to split the knot diagram into a number of

distinct pieces, its components, and then we can manipulate the diagram

and see what happens to the components.

If you look back at how I used the invariance of the Euler characteristic,

you’ll see that I simplified the solid using a series of special moves: merge

two faces by removing an edge, merge two edges by removing a point. The

same trick applies to knot diagrams, but now you need three types of move

to simplify them, called Reidemeister moves, Figure 28. Each move can be

carried out in either direction: add or remove a twist, overlap two strands

or pull them apart, move one strand through the place where two others

cross.

Fig 28 Reidemeister moves.
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With some preliminary fiddling to tidy up the knot diagram, such as

modifying places where three curves overlap if that ever happens, it can be

proved that any deformation of a knot can be represented as a finite series

of Reidemeister moves applied to its diagram. Now we can play the Euler

game; all we have to do is find an invariant. Among them is the knot

group, but there is a far simpler invariant that proves the trefoil really is a

knot. I can explain it in terms of colouring the separate components in a

knot diagram. I’m starting with a slightly more complicated diagram than I

have to, with an extra loop, in order to illustrate some features of the idea,

Figure 29.

red

blue

yellow

Fig 29 Colouring a trefoil knot with an extra twist.

The extra twist creates four separate components. Suppose I colour the

components using three colours for each, say red, yellow, and blue (shown

in the figure as black, light grey, and dark grey). Then this colouring obeys

two simple rules:

. At least two distinct colours are used. (Actually all three are, but that’s

extra information that I don’t need.)

. At each crossing, either the three strands near the crossing all have

different colours or they are all the same colour. Near the crossing

caused by my extra loop, all three components are yellow. Two of these

components (in yellow) join up elsewhere, but near the crossing they

are separate.

The wonderful observation is that if a knot diagram can be coloured using

three colours, obeying these two rules, then the same is true after any

Reidemeister move. You can prove this very easily by working out how the

Reidemeister moves affect the colours. For example, if I untwist the extra

loop in my picture then I can leave the colours unchanged and everything

still works. Why is this wonderful? Because it proves that the trefoil really is

knotted. Suppose for the sake of argument that it can be unknotted; then

some series of Reidemeister moves turns it into an unknotted loop. Since

the trefoil can be coloured to obey the two rules, the same must apply to
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the unknotted loop. But an unknotted loop consists of a single strand with

no overlaps, so the only way to colour it is to use the same colour

everywhere. But this violates the first rule. By contradiction, no such series

of Reidemeister moves can exist; that is, the trefoil can’t be unknotted.

This proves that the trefoil is knotted, but doesn’t distinguish it from other

knots such as the reef knot or the stevedore’s knot. One of the earliest

effective ways to do this was invented by Alexander. It was derived from

Reidemeister’s abstract algebra methods, but it leads to an invariant that is

algebraic in the more familiar sense of school algebra. It’s called the

Alexander polynomial, and it associates to any knot a formula formed from

powers of a variable x. Strictly speaking, the term ‘polynomial’ applies only

when the powers are positive integers, but here we also allow negative

powers. Table 2 lists a few Alexander polynomials. If two knots in the list

have different Alexander polynomials, and here all but the reef and granny

do, then the knots must be topologically different. The converse is not

true: the reef and granny have the same Alexander polynomials, but in

1952 Ralph Fox proved that they are topologically different. The proof

required surprisingly sophisticated topology. It was far more difficult than

anyone expected.

knot Alexander polynomial

Unknot 1

Trefoil x�1þ x�1

Figure-8 � xþ3� x�1

Reef x2 �2xþ3�2x�1 þ x�2

Granny x2 �2xþ3�2x�1 þ x�2

Stevedore’s knot �2xþ5�2x�1

Table 2 Alexander polynomials of knots.

After about 1960 knot theory entered the topological doldrums,

becalmed in a vast ocean of unsolved questions, awaiting a breath of

creative insight. It came in 1984, when the New Zealand mathematician

Vaughan Jones had an idea so simple that it could have occurred to anyone

from Reidemeister onwards. Jones wasn’t a knot theorist; he wasn’t even a

topologist. He was an analyst, working on operator algebras, an area with

strong links to mathematical physics. It wasn’t a total surprise that the

ideas applied to knots, because mathematicians and physicists already

knew of interesting connections between operator algebras and braids,
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which are a special kind of multi-stranded knot. The new knot invariant he

invented, called the Jones polynomial, is also defined using the knot

diagram and three types of move. However, the moves do not preserve the

topological type of the knot; they do not preserve the new ‘Jones

polynomial’. Amazingly, however, the idea can still be made to work,

and the Jones polynomial is a knot invariant.

L+ L–L0

Fig 30 Jones moves.

For this invariant we have to choose a specific direction along the knot,

shown by an arrow. The Jones polynomial V(x) is defined to be one for the

unknot. Given any knot L0, move two separate strands close together

without changing any crossings in its diagram. Be careful to align the

directions as shown: that’s why the arrow is needed, and the process

doesn’t work without it. Replace that region of L0 by two strands that cross

in the two possible ways (Figure 30). Let the resulting knot diagrams be L+

and L–. Now define

ðx1=2 � x�1=2ÞVðL0Þ¼ x�1VðLþÞ� xVðL�Þ

By starting with the unknot and applying such moves in the right way, you

can work out the Jones polynomial for any knot. Mysteriously, it turns out

to be a topological invariant. And it outperforms the traditional Alexander

polynomial; for instance, it can distinguish reef from granny, because they

have different Jones polynomials.

Jones’s discovery won him the Fields medal, the most prestigious prize

in mathematics. It also triggered an outburst of new knot invariants. In

1985 four different groups of mathematicians, eight people in total,

simultaneously discovered the same generalisation of the Jones

polynomial and submitted their papers independently to the same

journal. All four proofs were different, and the editor persuaded the eight

authors to join forces and publish one combined article. Their invariant is

often called the HOMFLY polynomial, based on their initials. But even the
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Jones and HOMFLY polynomials have not fully answered the three

problems of knot theory. It is not known whether a knot with Jones

polynomial 1 must be unknotted, though many topologists think this is

probably true. There exist topologically distinct knots with the same Jones

polynomial; the simplest examples known have ten crossings in their knot

diagrams. A systematic classification of all possible knots remains a

mathematician’s pipedream.

It’s pretty, but is it useful? Topology has many uses, but they are usually

indirect. Topological principles provide insight into other, more directly

applicable, areas. For instance, our understanding of chaos is founded on

topological properties of dynamical systems, such as the bizarre behaviour

that Poincaré noted when he rewrote his prizewinning memoir

(Chapter 4). The Interplanetary Superhighway is a topological feature of

the dynamics of the Solar System.

More esoteric applications of topology arise at the frontiers of

fundamental physics. Here the main consumers of topology are quantum

field theorists, because the theory of superstrings, the hoped-for unification

of quantummechanics and relativity, is based on topology. Here analogues

of the Jones polynomial in knot theory arise in the context of Feynman

diagrams, which show how quantum particles such as electrons and

photons move through space-time, colliding, merging, and breaking apart.

A Feynman diagram is a bit like a knot diagram, and Jones’s ideas can be

extended to this context.

To me one of the most fascinating applications of topology is its

growing use in biology, helping us to understand the workings of the

molecule of life, DNA. Topology turns up because DNA is a double helix,

like two spiral staircases winding around each other. The two strands are

intricately intertwined, and important biological processes, in particular

the way a cell copies its DNA when it divides, have to take account of this

complex topology. When Francis Crick and James Watson published their

work on the molecular structure of DNA in 1953 they ended with a brief

allusion to a possible copying mechanism, presumably involved in cell

division, in which the two strands were pulled apart and each was used as

the template for a new copy. They were reluctant to claim too much,

because they were aware that there are topological obstacles to pulling

apart intertwined strands. Being too specific about their proposal might

have muddied the waters at such an early stage.

As things turned out, Crick and Watson were right. The topological
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obstacles are real, but evolution has provided methods for overcoming

them, such as special enzymes that cut-and-paste strands of DNA. It is no

coincidence that one of these is called topoisomerase. In the 1990s

mathematicians and molecular biologists used topology to analyse the

twists and turns of DNA, and to study how it works in the cell, where the

usual method of X-ray diffraction can’t be used because it requires the DNA

to be in crystalline form.

Fig 31 Loop of DNA forming a trefoil knot.

Some enzymes, called recombinases, cut the two DNA strands and

rejoin them in a different way. To determine how such an enzyme acts

when it is in a cell, biologists apply the enzyme to a closed loop of DNA.

Then they observe the shape of the modified loop using an electron

microscope. If the enzyme joins distinct strands together, the image is a

knot, Figure 31. If the enzyme keeps the strands separate, the image shows

two linked loops. Methods from knot theory, such as the Jones polynomial

and another theory known as ‘tangles’, make it possible to work out which

knots and links occur, and this provides detailed information about what

the enzyme does. They also make new predictions that have been verified

experimentally, giving some confidence that the mechanism indicated by

the topological calculations is correct.1

One the whole, you won’t run into topology in everyday life, aside

from that dishwasher I mentioned at the start of this chapter. But behind

the scenes, topology informs the whole of mainstream mathematics,

enabling the development of other techniques with more obvious practical

uses. This is why mathematicians consider topology to be of vast

importance, while the rest of the world has hardly heard of it.
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7 Patterns of chance
Normal Distribution

What does it say?

The probability of observing a particular data value is greatest

near the mean value – the average – and dies away rapidly as

the difference from the mean increases. How rapidly depends

on a quantity called the standard deviation.

Why is that important?

It defines a special family of bell-shaped probability

distributions, which are often good models of common real-

world observations.

What did it lead to?

The concept of the ‘average man’, tests of the significance of

experimental results, such as medical trials, and an

unfortunate tendency to default to the bell curve as if nothing

else existed.
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M athematics is about patterns. The random workings of chance

seem to be about as far from patterns as you can get. In fact, one of

the current definitions of ‘random’ boils down to ‘lacking any discernible

pattern’. Mathematicians had been investigating patterns in geometry,

algebra, and analysis for centuries before they realised that even

randomness has its own patterns. But the patterns of chance do not

conflict with the idea that random events have no pattern, because the

regularities of random events are statistical. They are features of a whole

series of events, such as the average behaviour over a long run of trials.

They tell us nothing about which event occurs at which instant. For

example, if you throw a dice1 repeatedly, then about one sixth of the time

you will roll 1, and the same holds for 2, 3, 4, 5, and 6 – a clear statistical

pattern. But this tells you nothing about which number will turn up on the

next throw.

Only in the nineteenth century did mathematicians and scientists

realise the importance of statistical patterns in chance events. Even human

actions, such as suicide and divorce, are subject to quantitative laws, on

average and in the long run. It took time to get used to what seemed at first

to contradict free will. But today these statistical regularities form the basis

of medical trials, social policy, insurance premiums, risk assessments, and

professional sports.

And gambling, which is where it all began.

Appropriately, it was all started by the gambling scholar, Girolamo

Cardano. Being something of a wastrel, Cardano brought in much-

needed cash by taking wagers on games of chess and games of chance.

He applied his powerful intellect to both. Chess does not depend on

chance: winning depends on a good memory for standard positions and

moves, and an intuitive sense of the overall flow of the game. In a game of

chance, however, the player is subject to the whims of Lady Luck. Cardano

realised that he could apply his mathematical talents to good effect even in

this tempestuous relationship. He could improve his performance at games
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of chance by having a better grasp of the odds – the likelihood of winning

or losing – than his opponents did. He put together a book on the topic,

Liber de Ludo Aleae (‘Book on Games of Chance’). It remained unpublished

until 1633. Its scholarly content is the first systematic treatment of the

mathematics of probability. Its less reputable content is a chapter on how

to cheat and get away with it.

One of Cardano’s fundamental principles was that in a fair bet, the

stakes should be proportional to the number of ways in which each player

can win. For example, suppose the players roll a dice, and the first player

wins if he throws a 6, while the second player wins if he throws anything

else. The game would be highly unfair if each bet the same amount to play

the game, because the first player has only one way to win, whereas the

second has five. If the first player bets £1 and the second bets £5, however,

the odds become equitable. Cardano was aware that this method of

calculating fair odds depends on the various ways of winning being equally

likely, but in games of dice, cards, or coin-tossing it was clear how to ensure

that this condition applied. Tossing a coin has two outcomes, heads or

tails, and these are equally likely if the coin is fair. If the coin tends to

throw more heads than tails, it is clearly biased – unfair. Similarly the six

outcomes for a fair dice are equally likely, as are the 52 outcomes for a card

drawn from a pack.

The logic behind the concept of fairness here is slightly circular,

because we infer bias from a failure to match the obvious numerical

conditions. But those conditions are supported by more than mere

counting. They are based on a feeling of symmetry. If the coin is a flat

disc of metal, of uniform density, then the two outcomes are related by a

symmetry of the coin (flip it over). For dice, the six outcomes are related by

symmetries of the cube. And for cards, the relevant symmetry is that no

card differs significantly from any other, except for the value written on its

face. The frequencies 1/2, 1/6, and 1/52 for any given outcome rest on

these basic symmetries. A biased coin or biased dice can be created by the

covert insertion of weights; a biased card can be created using subtle marks

on the back, which reveal its value to those in the know.

There are other ways to cheat, involving sleight of hand – say, to swap a

biased dice into and out of the game before anyone notices that it always

throws a 6. But the safest way to ‘cheat’ – to win by subterfuge – is to be

perfectly honest, but to know the odds better than your opponent. In one

sense you are taking the moral high ground, but you can improve your

chances of finding a suitably naive opponent by rigging not the odds but

your opponent’s expectation of the odds. There are many examples where
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the actual odds in a game of chance are significantly different from what

many people would naturally assume.

An example is the game of crown and anchor, widely played by British

seamen in the eighteenth century. It uses three dice, each bearing not the

numbers 1–6 but six symbols: a crown, an anchor, and the four card suits of

diamond, spade, club, and heart. These symbols are also marked on a mat.

Players bet by placing money on the mat and throwing the three dice. If

any of the symbols that they have bet on shows up, the banker pays them

their stake, multiplied by the number of dice showing that symbol. For

example, if they bet £1 on the crown, and two crowns turn up, they win £2

in addition to their stake; if three crowns turn up, they win £3 in addition

to their stake. It all sounds very reasonable, but probability theory tells us

that in the long run a player can expect to lose 8% of his stake.

Probability theory began to take off when it attracted the attention of

Blaise Pascal. Pascal was the son of a Rouen tax collector and a child

prodigy. In 1646 he was converted to Jansenism, a sect of Roman

Catholicism that Pope Innocent X deemed heretical in 1655. The year

before, Pascal had experienced what he called his ‘second conversion’,

probably triggered by a near-fatal accident when his horses fell off the edge

of Neuilly bridge and his carriage nearly did the same. Most of his output

from then on was religious philosophy. But just before the accident, he and

Fermat were writing to each other about a mathematical problem to do

with gambling. The Chevalier de Meré, a French writer who called himself

a knight even though he wasn’t, was a friend of Pascal’s, and he asked how

the stakes in a series of games of chance should be divided if the contest

had to be abandoned part way through. This question was not new: it goes

back to the Middle Ages. What was new was its solution. In an exchange of

letters, Pascal and Fermat found the correct answer. Along the way they

created a new branch of mathematics: probability theory.

A central concept in their solution was what we now call ‘expectation’.

In a game of chance, this is a player’s average return in the long run. It

would, for example, be 92 pence for crown and anchor with a £1 stake.

After his second conversion, Pascal put his gambling past behind him, but

he enlisted its aid in a famous philosophical argument, Pascal’s wager.2

Pascal assumed, playing Devil’s advocate, that someone might consider the

existence of God to be highly unlikely. In his Pensées (‘Thoughts’) of 1669,

Pascal analysed the consequences from the point of view of probabilities:
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Let us weigh the gain and the loss in wagering that God is [exists]. Let

us estimate these two chances. If you gain, you gain all; if you lose, you

lose nothing. Wager, then, without hesitation that He is... There is here

an infinity of an infinitely happy life to gain, a chance of gain against a

finite number of chances of loss, and what you stake is finite. And so

our proposition is of infinite force, when there is the finite to stake in a

game where there are equal risks of gain and of loss, and the infinite to

gain.

Probability theory arrived as a fully fledged area of mathematics in 1713

when Jacob Bernoulli published his Ars Conjectandi (‘Art of Conjecturing’).

He started with the usual working definition of the probability of an event:

the proportion of occasions on which it will happen, in the long run,

nearly all the time. I say ‘working definition’ because this approach to

probabilities runs into trouble if you try to make it fundamental. For

example, suppose that I have a fair coin and keep tossing it. Most of the

time I get a random-looking sequence of heads and tails, and if I keep

tossing for long enough I will get heads roughly half the time. However, I

seldom get heads exactly half the time: this is impossible on odd-numbered

tosses, for example. If I try to modify the definition by taking inspiration

from calculus, so that the probability of throwing heads is the limit of the

proportion of heads as the number of tosses tends to infinity, I have to

prove that this limit exists. But sometimes it doesn’t. For example, suppose

that the sequence of heads and tails goes

THHTTTHHHHHHTTTTTTTTTTTT:::

with one tail, two heads, three tails, six heads, twelve tails, and so on – the

numbers doubling at each stage after the three tails. After three tosses the

proportion of heads is 2/3, after six tosses it is 1/3, after twelve tosses it is

back to 2/3, after twenty-four it is 1/3,... so the proportion oscillates to and

fro, between 2/3 and 1/3, and therefore has no well-defined limit.

Agreed, such a sequence of tosses is very unlikely, but to define

‘unlikely’ we need to define probability, which is what the limit is

supposed to achieve. So the logic is circular. Moreover, even if the limit

exists, it might not be the ‘correct’ value of 1/2. An extreme case occurs

when the coin always lands heads. Now the limit is 1. Again, this is wildly

improbable, but...

Bernoulli decided to approach the whole issue from the opposite

direction. Start by simply defining the probability of heads and tails to be

some number p between 0 and 1. Say that the coin is fair if p= 1
2, and biased
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if not. Now Bernoulli proves a basic theorem, the law of large numbers.

Introduce a reasonable rule for assigning probabilities to a series of

repeated events. The law of large numbers states that in the long run, with

the exception of a fraction of trials that becomes arbitrarily small, the

proportion of heads does have a limit, and that limit is p. Philosophically,

this theorem shows that by assigning probabilities – that is, numbers – in a

natural way, the interpretation ‘proportion of occurrences in the long run,

ignoring rare exceptions’ is valid. So Bernoulli takes the point of view that

the numbers assigned as probabilities provide a consistent mathematical

model of the process of tossing a coin over and over again.

His proof depends on a numerical pattern that was very familiar to

Pascal. It is usually called Pascal’s triangle, even though he wasn’t the first

person to notice it. Historians have traced its origins back to the Chandas

Shastra, a Sanskit text attributed to Pingala, written some time between 500

BC and 200 BC. The original has not survived, but the work is known

through tenth-century Hindu commentaries. Pascal’s triangle looks like

this:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

where all rows start and end in 1, and each number is the sum of the two

immediately above it. We now call these numbers binomial coefficients,

because they arise in the algebra of the binomial (two-variable) expression

(p + q)n. Namely,

ðpþ qÞ0 ¼1

ðpþ qÞ1 ¼ pþ q

ðpþ qÞ2 ¼ p2 þ2pqþ q2

ðpþ qÞ3 ¼ p3 þ3p2qþ3pq2 þ q3

ðpþ qÞ4 ¼ p4 þ4p3qþ6p2q2 þ4pq3 þ q4

and Pascal’s triangle is visible as the coefficients of the separate terms.

Bernoulli’s key insight is that if we toss a coin n times, with a

probability p of getting heads, then the probability of a specific number of

tosses yielding heads is the corresponding term of (p+ q)n, where q=1� p.

For example, suppose that I toss the coin three times. Then the eight

possible results are:
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HHH

HHT HTH THH

HTT THT TTH

TTT

where I’ve grouped the sequences according to the number of heads. So out

of the eight possible sequences, there are

1 sequence with 3 heads

3 sequences with 2 heads

3 sequences with 1 heads

1 sequence with 0 heads

The link with binomial coefficients is no coincidence. If you expand the

algebraic formula (H+T)3 but don’t collect the terms together, you get

HHHþHHTþHTHþTHHþHTTþTHTþTTHþTTT

Collecting terms according to the number of Hs then gives

H3 þ3H2Tþ3HT2 þT3

After that, it’s a matter of replacing each of H and T by its probability, p or q

respectively.

Even in this case, each extreme HHH and TTT occurs only once in eight

trials, and more equitable numbers occur in the other six. A more

sophisticated calculation using standard properties of binomial coefficients

proves Bernoulli’s law of large numbers.

Advances in mathematics often come about because of ignorance. When

mathematicians don’t know how to calculate something important, they

find a way to sneak up on it indirectly. In this case, the problem is to

calculate those binomial coefficients. There’s an explicit formula, but if, for

instance, you want to know the probability of getting exactly 42 heads

when tossing a coin 100 times, you have to do 200 multiplications and

then simplify a very complicated fraction. (There are short cuts; it’s still a

big mess.) My computer tells me in a split second that the answer is

28;258;808;871;162;574;166;368;460;400 p42q58

but Bernoulli didn’t have that luxury. No one did until the 1960s, and

computer algebra systems didn’t really become widely available until the

late 1980s.
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Since this kind of direct calculation wasn’t feasible, Bernoulli’s

immediate successors tried to find good approximations. Around 1730

Abraham De Moivre derived an approximate formula for the probabilities

involved in repeated tosses of a biased coin. This led to the error function

or normal distribution, often referred to as the ‘bell curve’ because of its

shape. What he proved was this. Define the normal distribution F(x) with

mean m and variance s2 by the formula

FðxÞ¼ 1ffiffiffiffiffiffiffiffiffi
2ps

p e
� ðx�mÞ2

2s2

Then for large n the probability of getting m heads in n tosses of a biased

coin is very close to F(x) when

x¼m=n� p m¼np s¼npq

Here ‘mean’ refers to the average, and ‘variance’ is a measure of how far

the data spread out – the width of the bell curve. The square root of the

variance, s itself, is called the standard deviation. Figure 32 (left) shows

how the value of F(x) depends on x. The curve looks a bit like a bell, hence

the informal name. The bell curve is an example of a probability

distribution; this means that the probability of obtaining data between

two given values is equal to the area under the curve and between the

vertical lines corresponding to those values. The total area under the curve

is 1, thanks to that unexpected factor
ffiffiffiffiffiffi
2p

p
.

The idea is most easily grasped using an example. Figure 32 (right)

shows a graph of the probabilities of getting various numbers of heads

when tossing a fair coin 15 times (rectangular bars) together with the

approximating bell curve.
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coin.
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The bell curve began to acquire iconic status when it started showing

up in empirical data in the social sciences, not just theoretical

mathematics. In 1835 Adolphe Quetelet, a Belgian who among other

things pioneered quantitative methods in sociology, collected and

analysed large quantities of data on crime, the divorce rate, suicide,

births, deaths, human height, weight, and so on – variables that no one

expected to conform to any mathematical law, because their underlying

causes were too complex and involved human choices. Consider, for

example, the emotional torment that drives someone to commit suicide. It

seemed ridiculous to think that this could be reduced to a simple formula.

These objections make good sense if you want to predict exactly who

will kill themselves, and when. But when Quetelet concentrated on

statistical questions, such as the proportion of suicides in various groups of

people, various locations, and different years, he started to see patterns.

These proved controversial: if you predict that there will be six suicides in

Paris next year, how can this make sense when each person involved has

free will? They could all change their minds. But the population formed by

those who do kill themselves is not specified beforehand; it comes together

as a consequence of choices made not just by those who commit suicide,

but by those who thought about it and didn’t. People exercise free will in

the context of many other things, which influence what they freely decide:

here the constraints include financial problems, relationship problems,

mental state, religious background... In any case, the bell curve does not

make exact predictions; it just states which figure is most likely. Five or

seven suicides might occur, leaving plenty of room for anyone to exercise

free will and change their mind.

The data eventually won the day: for whatever reason, people en masse

behaved more predictably than individuals. Perhaps the simplest example

was height. When Quetelet plotted the proportions of people with a given

height, he obtained a beautiful bell curve, Figure 33. He got the same shape

of curve for many other social variables.

Quetelet was so struck by his results that he wrote a book, Sur l’homme et

le développement de ses facultés (‘Treatise onMan and the Development of His

Faculties’) published in 1835. In it, he introduced the notion of the ‘average

man’, a fictitious individual who was in every respect average. It has long

been noted that this doesn’t entirely work: the average ‘man’ – that is,

person, so the calculation includes males and females – has (slightly less

than) one breast, one testicle, 2.3 children, and so on. Nevertheless Quetelet

viewed his average man as the goal of social justice, not just a suggestive

mathematical fiction. It’s not quite as absurd as it sounds. For example, if

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
07Seventeen_Chap7.3d Page 116 of 130

116 Patterns of chance



human wealth is spread equally to all, then everyone will have average

wealth. It’s not a practical goal, barring enormous social changes, but

someone with strong egalitarian views might defend it as a desirable target.

The bell curve rapidly became an icon in probability theory, especially its

applied arm, statistics. There were two main reasons: the bell curve was

relatively simple to calculate, and there was a theoretical reason for it to

occur in practice. One of the main sources for this way of thinking was

eighteenth-century astronomy. Observational data are subject to errors,

caused by slight variations in apparatus, human mistakes, or merely the

movement of air currents in the atmosphere. Astronomers of the period

wanted to observe planets, comets, and asteroids, and calculate their orbits,

and this required finding whichever orbit fitted the data best. The fit would

never be perfect.

The practical solution to this problem appeared first. It boiled down to

this: run a straight line through the data, and choose this line so that the

total error is as small as possible. Errors here have to be considered positive,

and the easy way to achieve this while keeping the algebra nice is to square

them. So the total error is the sum of the squares of the deviations of

observations from the straight line model, and the desired line minimises

this. In 1805 the French mathematician Adrien-Marie Legendre discovered

a simple formula for this line, making it easy to calculate. The result is

called the method of least squares. Figure 34 illustrates the method on

artificial data relating stress (measured by a questionnaire) and blood
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pressure. The line in the figure, found using Legendre’s formula, fits the

data most closely according to the squared-error measure. Within ten years

the method of least squares was standard among astronomers in France,

Prussia, and Italy. Within another twenty years it was standard in England.
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Fig 34 Using the method of least squares to relate blood pressure and stress. Dots: data. Solid

line: best-fitting straight line.

Gauss made the method of least squares a cornerstone of his work in

celestial mechanics. He got into the area in 1801 by successfully predicting

the return of the asteroid Ceres after it was hidden in the glare of the Sun,

when most astronomers thought the available data were too limited. This

triumph sealed his mathematical reputation among the public and set him

up for life as professor of astronomy at the University of Göttingen. Gauss

didn’t use least squares for this particular prediction: his calculations

boiled down to solving an algebraic equation of the eighth degree, which

he did by a specially invented numerical method. But in his later work,

culminating in his 1809 Theoria Motus Corporum Coelestium in Sectionibus

Conicis Solem Ambientum (‘Theory of Motion of the Celestial Bodies Moving

in Conic Sections around the Sun’) he placed great emphasis on the

method of least squares. He also stated that he had developed the idea, and

used it, ten years before Legendre, which caused a bit of a fuss. It was very

likely true, however, and Gauss’s justification of the method was quite

different. Legendre had viewed it as an exercise in curve-fitting, whereas

Gauss saw it as a way to fit a probability distribution. His justification of the

formula assumed that the underlying data, to which the straight line was

being fitted, followed a bell curve.

It remained to justify the justification. Why should observational errors

be normally distributed? In 1810 Laplace supplied an astonishing answer,
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also motivated by astronomy. In many branches of science it is standard to

make the same observation several times, independently, and then take

the average. So it is natural to model this procedure mathematically.

Laplace used the Fourier transform, see Chapter 9, to prove that the average

of many observations is described by a bell curve, even if the individual

observations are not. His result, the central limit theorem, was a major

turning point in probability and statistics, because it provided a theoretical

justification for using the mathematicians’ favourite distribution, the bell

curve, in the analysis of observational errors.3

The central limit theorem singled out the bell curve as the probability

distribution uniquely suited to the mean of many repeated observations. It

therefore acquired the name ‘normal distribution’, and was seen as the

default choice for a probability distribution. Not only did the normal

distribution have pleasant mathematical properties, but there was also a

solid reason for assuming it modelled real data. This combination of

attributes proved very attractive to scientists wishing to gain insights into

the social phenomena that had interested Quetelet, because it offered a

way to analyse data from official records. In 1865 Francis Galton studied

how a child’s height relates to its parents’ heights. This was part of a wider

goal: understanding heredity – how human characteristics pass from

parent to child. Ironically, Laplace’s central limit theorem initially led

Galton to doubt that this kind of inheritance existed. And, even if it did,

proving that would be difficult, because the central limit theorem was a

double-edged sword. Quetelet had found a beautiful bell curve for heights,

but that seemed to imply very little about the different factors that affected

height, because the central limit theorem predicted a normal distribution

anyway, whatever the distributions of those factors might be. Even if

characteristics of the parents were among those factors, they might be

overwhelmed by all the others – such as nutrition, health, social status, and

so on.

By 1889, however, Galton had found a way out of this dilemma. The

proof of Laplace’s wonderful theorem relied on averaging out the effects of

many distinct factors, but these had to satisfy some stringent conditions.

In 1875 Galton described these conditions as ‘highly artificial’, and noted

that the influences being averaged

must be (1) all independent in their effects, (2) all equal [having the

same probability distribution], (3) all admitting of being treated as
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simple alternatives ‘above average’ or ‘below average’; and (4) ...

calculated on the supposition that the variable influences are infinitely

numerous.

None of these conditions applied to human heredity. Condition (4)

corresponds to Laplace’s assumption that the number of factors being

added tends to infinity, so ‘infinitely numerous’ is a bit of an exaggeration;

however, what the mathematics established was that to get a good

approximation to a normal distribution, you had to combine a large

number of factors. Each of these contributed a small amount to the

average: with, say, a hundred factors, each contributed one hundredth of

its value. Galton referred to such factors as ‘petty’. Each on its own had no

significant effect.

There was a potential way out, and Galton seized on it. The central

limit theorem provided a sufficient condition for a distribution to be

normal, not a necessary one. Even when its assumptions failed, the

distribution concerned might still be normal for other reasons. Galton’s task

was to find out what those reasons might be. To have any hope of linking

to heredity, they had to apply to a combination of a few large and disparate

influences, not to a huge number of insignificant influences. He slowly

groped his way towards a solution, and found it through two experiments,

both dating to 1877. One was a device he called a quincunx, in which ball

bearings fell down a slope, bouncing off an array of pins, with an equal

chance of going left or right. In theory the balls should pile up at the

bottom according to a binomial distribution, a discrete approximation to

the normal distribution, so they should – and did – form a roughly bell-

shaped heap, like Figure 32 (right). His key insight was to imagine

temporarily halting the balls when they were part way down. They

would still form a bell curve, but it would be narrower than the final one.

Imagine releasing just one compartment of balls. It would fall to the

bottom, spreading out into a tiny bell curve. The same went for any other

compartment. And that meant that the final, large bell curve could be

viewed as a sum of lots of tiny ones. The bell curve reproduces itself when

several factors, each following its own separate bell curve, are combined.

The clincher arrived when Galton bred sweet peas. In 1875 he

distributed seeds to seven friends. Each received 70 seeds, but one

received very light seeds, one slightly heavier ones, and so on. In 1877

he measured the weights of the seeds of the resulting progeny. Each group

was normally distributed, but the mean weight differed in each case, being

comparable to the weight of each seed in the original group. When he
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combined the data for all of the groups, the results were again normally

distributed, but the variance was bigger – the bell curve was wider. Again,

this suggested that combining several bell curves led to another bell curve.

Galton tracked down the mathematical reason for this. Suppose that two

random variables are normally distributed, not necessarily with the same

means or the same variances. Then their sum is also normally distributed;

its mean is the sum of the two means, and its variance is the sum of the two

variances. Obviously the same goes for sums of three, four, or more

normally distributed random variables.

This theorem works when a small number of factors are combined, and

each factor can be multiplied by a constant, so it actually works for any

linear combination. The normal distribution is valid even when the effect

of each factor is large. Now Galton could see how this result applied to

heredity. Suppose that the random variable given by the height of a child is

some combination of the corresponding random variables for the heights

of its parents, and these are normally distributed. Assuming that the

hereditary factors work by addition, the child’s height will also be normally

distributed.

Galton wrote his ideas up in 1889 under the title Natural Inheritance. In

particular, he discussed an idea he called regression. When one tall parent

and one short one have children, the mean height of the children should

be intermediate – in fact, it should be the average of the parents’ heights.

The variance likewise should be the average of the variances, but the

variances for the parents seemed to be roughly equal, so the variance didn’t

change much. As successive generations passed, the mean height would

‘regress’ to a fixed middle-of-the-road value, while the variance would stay

pretty much unchanged. So Quetelet’s neat bell curve could survive from

one generation to the next. Its peak would quickly settle to a fixed value,

the overall mean, while its width would stay the same. So each generation

would have the same diversity of heights, despite regression to the mean.

Diversity would be maintained by rare individuals who failed to regress and

was self-sustaining in a sufficiently large population.

With the central role of the bell curve firmly cemented to what at the time

were considered solid foundations, statisticians could build on Galton’s

insights and workers in other fields could apply the results. Social science

was an early beneficiary, but biology soon followed, and the physical

sciences were already ahead of the game thanks to Legendre, Laplace, and

Gauss. Soon an entire statistical toolbox was available for anyone who
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wanted to extract patterns from data. I’ll focus on just one technique,

because it is routinely used to determine the efficacy of drugs and medical

procedures, along with many other applications. It is called hypothesis

testing, and its goal is to assess the significance of apparent patterns in

data. It was founded by four people: the Englishmen Ronald Aylmer Fisher,

Karl Pearson, and his son Egon, together with a Russian-born Pole who

spent most of his life in America, Jerzy Neyman. I’ll concentrate on Fisher,

who developed the basic ideas when working as an agricultural statistician

at Rothamstead Experimental Station, analysing new breeds of plants.

Suppose you are breeding a new variety of potato. Your data suggest

that this breed is more resistant to some pest. But all such data are subject

to many sources of error, so you can’t be fully confident that the numbers

support that conclusion – certainly not as confident as a physicist who can

make very precise measurements and eliminate most errors. Fisher realised

that the key issue is to distinguish a genuine difference from one arising

purely by chance, and that the way to do this is to ask how probable that

difference would be if only chance were involved.

Assume, for instance, that the new breed of potato appears to confer

twice as much resistance, in the sense that the proportion of the new breed

that survives the pest is double the proportion for the old breed. It is

conceivable that this effect is due to chance, and you can calculate its

probability. In fact, what you calculate is the probability of a result at least

as extreme as the one observed in the data. What is the probability that the

proportion of the new breed that survives the pest is at least twice what it

was for the old breed? Even larger proportions are permitted here because

the probability of getting exactly twice the proportion is bound to be very

small. The wider the range of results you include, the more probable the

effects of chance become, so you can have greater confidence in your

conclusion if your calculation suggests it is not the result of chance. If this

probability derived by this calculation is low, say 0.05, then the result is

unlikely to be the result of chance; it is said to be significant at the 95%

level. If the probability is lower, say 0.01, then the result is extremely

unlikely to be the result of chance, and it is said to be significant at the 99%

level. The percentages indicate that by chance alone, the result would not

be as extreme as the one observed in 95% of trials, or in 99% of them.

Fisher described his method as a comparison between two distinct

hypotheses: the hypothesis that the data are significant at the stated level,

and the so-called null hypothesis that the results are due to chance. He

insisted that his method must not be interpreted as confirming the

hypothesis that the data are significant; it should be interpreted as a
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rejection of the null hypothesis. That is, it provides evidence against the

data not being significant.

This may seem a very fine distinction, since evidence against the data

not being significant surely counts as evidence in favour of it being

significant. However, that’s not entirely true, and the reason is that the

null hypothesis has an extra built-in assumption. In order to calculate the

probability that a result at least as extreme is due to chance, you need a

theoretical model. The simplest way to get one is to assume a specific

probability distribution. This assumption applies only in connection with

the null hypothesis, because that’s what you use to do the sums. You don’t

assume the data are normally distributed. But the default distribution for

the null hypothesis is normal: the bell curve.

This built-in model has an important consequence, which ‘reject the

null hypothesis’ tends to conceal. The null hypothesis is ‘the data are due

to chance’. So it is all too easy to read that statement as ‘reject the data

being due to chance’, which in turn means you accept that they’re not due

to chance. Actually, though, the null hypothesis is ‘the data are due to

chance and the effects of chance are normally distributed’, so there might

be two reasons to reject the null hypothesis: the data are not due to chance,

or they are not normally distributed. The first supports the significance of

the data, but the second does not. It says you might be using the wrong

statistical model.

In Fisher’s agricultural work, there was generally plenty of evidence for

normal distributions in the data. So the distinction I’m making didn’t

really matter. In other applications of hypothesis testing, though, it might.

Saying that the calculations reject the null hypothesis has the virtue of

being true, but because the assumption of a normal distribution is not

explicitly mentioned, it is all too easy to forget that you need to check

normality of the distribution of the data before you conclude that your

results are statistically significant. As the method gets used by more and

more people, who have been trained in how to do the sums but not in the

assumptions behind them, there is a growing danger of wrongly assuming

that the test shows your data to be significant. Especially when the normal

distribution has become the automatic default assumption.

In the public consciousness, the term ‘bell curve’ is indelibly associated

with the controversial 1994 book The Bell Curve by two Americans, the

psychologist Richard J. Herrnstein and the political scientist Charles

Murray. The main theme of the book is a claimed link between
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intelligence, measured by intelligence quotient (IQ), and social variables

such as income, employment, pregnancy rates, and crime. The authors

argue that IQ levels are better at predicting such variables than the social

and economic status of the parents or their level of education. The reasons

for the controversy, and the arguments involved, are complex. A quick

sketch cannot really do justice to the debate, but the issues go right back to

Quetelet and deserve mention.

Controversy was inevitable, no matter what the academic merits or

demerits of the book might have been, because it touched a sensitive nerve:

the relation between race and intelligence. Media reports tended to stress

the proposal that differences in IQ have a predominantly genetic origin,

but the book was more cautious about this link, leaving the interaction

between genes, environment, and intelligence open. Another controversial

issue was an analysis suggesting that social stratification in the United

States (and indeed elsewhere) increased significantly throughout the

twentieth century, and that the main cause was differences in

intelligence. Yet another was a series of policy recommendations for

dealing with this alleged problem. One was to reduce immigration, which

the book claimed was lowering average IQ. Perhaps the most contentious

was the suggestion that social welfare policies allegedly encouraging poor

women to have children should be stopped.

Ironically, this idea goes back to Galton himself. His 1869 book

Hereditary Genius built on earlier writings to develop the idea that ‘a man’s

natural abilities are derived by inheritance, under exactly the same

limitations as are the form and physical features of the whole organic

world. Consequently ... it would be quite practicable to produce a highly-

gifted race of men by judicious marriages during several consecutive

generations.’ He asserted that fertility was higher among the less

intelligent, but avoided any suggestion of deliberate selection in favour

of intelligence. Instead, he expressed the hope that society might change

so that the more intelligent people understood the need to have plenty of

children.

To many, Herrnstein and Murray’s proposal to re-engineer the welfare

system was uncomfortably close to the eugenics movement of the early

twentieth century, in which 60,000 Americans were sterilised, allegedly

because of mental illness. Eugenics became widely discredited when it

became associated with Nazi Germany and the holocaust, and many of its

practices are now considered to be violations of human rights legislation,

in some cases amounting to crimes against humanity. Proposals to breed

humans selectively are widely viewed as inherently racist. A number of
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social scientists endorsed the book’s scientific conclusions but disputed the

charge of racism; some of them were less sure about the policy proposals.

The Bell Curve initiated a lengthy debate about the methods used to

compile data, the mathematical methods used to analyse them, the

interpretation of the results, and the policy suggestions based on those

interpretations. A task force set up by the American Psychological

Association concluded that some points made in the book are valid: IQ

scores are good for predicting academic achievement, this correlates with

employment status, and there is no significant difference in the

performance of males and females. On the other hand, the task force’s

report reaffirmed that both genes and environment influence IQ and it

found no significant evidence that racial differences in IQ scores are

genetically determined.

Other critics have argued that there are flaws in the scientific

methodology, such as inconvenient data being ignored, and that the

study and some responses to it may to some extent have been politically

motivated. For example, it is true that social stratification has increased

dramatically in the United States, but it could be argued that the main

cause is the refusal of the rich to pay taxes, rather than differences in

intelligence. There also seems to be an inconsistency between the alleged

problem and the proposed solution. If poverty causes people to have more

children, and you believe that this is a bad thing, why on earth would you

want to make them even poorer?

An important part of the background, often ignored, is the definition

of IQ. Rather than being something directly measurable, such as height or

weight, IQ is inferred statistically from tests. Subjects are set questions, and

their scores are analysed using an offshoot of the method of least squares

called analysis of variance. Like the method of least squares, this technique

assumes that the data are normally distributed, and it seeks to isolate those

factors that determine the largest amount of variability in the data, and

are therefore the most important for modelling the data. In 1904 the

psychologist Charles Spearman applied this technique to several different

intelligence tests. He observed that the scores that subjects obtained on

different tests were highly correlated; that is, if someone did well on one

test, they tended to do well on them all. Intuitively, they seemed to be

measuring the same thing. Spearman’s analysis showed that a single

common factor – one mathematical variable, which he called g, standing

for ‘general intelligence’ – explained almost all of the correlation. IQ is a

standardised version of Spearman’s g.

A key question is whether g is a real quantity or a mathematical fiction.
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The answer is complicated by the methods used to choose IQ tests. These

assume that the ‘correct’ distribution of intelligence in the population is

normal – the eponymous bell curve – and calibrate the tests by

manipulating scores mathematically to standardise the mean and

standard deviation. A potential danger here is that you get what you

expect because you take steps to filter out anything that would contradict

it. Stephen Jay Gould made an extensive critique of such dangers in 1981

in The Mismeasure of Man, pointing out among other things that raw scores

on IQ tests are often not normally distributed at all.

The main reason for thinking that g represents a genuine feature of

human intelligence is that it is one factor: mathematically, it defines a

single dimension. If many different tests all seem to be measuring the same

thing, it is tempting to conclude that the thing concerned must be real. If

not, why would the results all be so similar? Part of the answer could be

that the results of IQ tests are reduced to a single numerical score. This

squashes a multidimensional set of questions and potential attitudes down

to a one-dimensional answer. Moreover, the test has been selected so that

the score correlates strongly with the designer’s view of intelligent answers

– if not, no one would consider using it.

By analogy, imagine collecting data on several different aspects of ‘size’

in the animal kingdom. One might measure mass, another height, others

length, width, diameter of left hind leg, tooth size, and so on. Each such

measure would be a single number. They would in general be closely

correlated: tall animals tend to weight more, have bigger teeth, thicker

legs... If you ran the data through an analysis of variance you would very

probably find that a single combination of those data accounted for the

vast majority of the variability, just like Spearman’s g does for different

measurements of things thought to relate to intelligence. Would this

necessarily imply that all of these features of animals have the same

underlying cause? That one thing controls them all? Possibly: a growth

hormone level, perhaps? But probably not. The richness of animal form

does not comfortably compress into a single number. Many other features

do not correlate with size at all: ability to fly, being striped or spotted,

eating flesh or vegetation. The single special combination of measurements

that accounts for most of the variability could be a mathematical

consequence of the methods used to find it – especially if those variables

were chosen, as here, to have a lot in common to begin with.

Going back to Spearman, we see that his much-vaunted g may be one-

dimensional because IQ tests are one-dimensional. IQ is a statistical

method for quantifying specific kinds of problem-solving ability,
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mathematically convenient but not necessarily corresponding to a real

attribute of the human brain, and not necessarily representing whatever it

is that we mean by ‘intelligence’.

By focusing on one issue, IQ, and using that to set policy, The Bell Curve

ignores the wider context. Even if it were sensible to genetically engineer a

nation’s population, why confine the process to the poor? Even if on

average the poor have lower IQs than the rich, a bright poor child will

outperform a dumb rich one any day, despite the obvious social and

educational advantages that children of the rich enjoy. Why resort to

welfare cuts when you could aim more accurately at what you claim to be

the real problem: intelligence itself? Why not improve education? Indeed,

why aim your policy at increasing intelligence at all? There are many other

desirable human traits. Why not reduce gullibility, aggressiveness, or

greed?

It is a mistake to think about a mathematical model as if it were the

reality. In the physical sciences, where the model often fits reality very

well, this may be a convenient way of thinking that causes little harm. But

in the social sciences, models are often little better than caricatures. The

choice of title for The Bell Curve hints at this tendency to conflate model

with reality. The idea that IQ is some sort of precise measure of human

ability, merely because it has a mathematical pedigree, makes the same

error. It is not sensible to base sweeping and highly contentious social

policy on simplistic, flawed mathematical models. The real point about

The Bell Curve, one that it makes extensively but inadvertently, is that

cleverness, intelligence, and wisdom are not the same.

Probability theory is widely used in medical trials of new drugs and

treatments to test the statistical significance of data. The tests are often, but

not always, based on the assumption that the underlying distribution is

normal. A typical example is the detection of cancer clusters. A cluster, for

some disease, is a group within which the disease occurs more frequently

than expected in the overall population. The cluster may be geographical,

or it may refer more metaphorically to people with a particular lifestyle, or

a specific period of time. For example, retired professional wrestlers, or

boys born between 1960 and 1970.

Apparent clusters may be due entirely to chance. Random numbers are

seldom spread out in a roughly uniform way; instead, they often cluster

together. In random simulations of the UK National Lottery, where six

numbers between 1 and 49 are randomly drawn, more than half appear to
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show some kind of regular pattern such as two numbers being consecutive

or three numbers separated by the same amount, for example 5, 9, 13.

Contrary to common intuition, random is clumped. When an apparent

cluster is found, the medical authorities try to assess whether it is due to

chance or whether there might be some possible causal connection. At one

time, most children of Israeli fighter pilots were boys. It would be easy to

think of possible explanations – pilots are very virile and virile men sire

more boys (not true, by the way), pilots are exposed to more radiation than

normal, they experience higher g-forces – but this phenomenon was short-

lived, just a random cluster. In later data it disappeared. In any population

of people, it is always likely that there will be more children of one sex or

the other; exact equality is very improbable. To assess the significance of

the cluster, you should keep observing and see whether it persists.

However, this procrastination can’t be continued indefinitely,

especially if the cluster involves a serious disease. AIDS was first detected

as a cluster of pneumonia cases in American homosexual men in the 1980s,

for instance. Asbestos fibres as a cause of a form of lung cancer,

mesothelioma, first showed up as a cluster among former asbestos

workers. So statistical methods are used to assess how probable such a

cluster would be if it arose for random reasons. Fisher’s methods of

significance testing, and related methods, are widely used for that purpose.

Probability theory is also fundamental to our understanding of risk.

This word has a specific, technical meaning. It refers to the potential for

some action to lead to an undesirable outcome. For example, flying in an

aircraft could result in being involved in a crash, smoking cigarettes could

lead to lung cancer, building a nuclear power station could lead to the

release of radiation in an accident or a terrorist attack, building a dam for

hydroelectric power could cause deaths if the dam collapses. ‘Action’ here

can refer to not doing something: failing to vaccinate a child might lead to

its death from a disease, for example. In this case there is also a risk

associated with vaccinating the child, such as an allergic reaction. Over the

whole population this risk is smaller, but for specific groups it can be larger.

Many different concepts of risk are employed in different contexts. The

usual mathematical definition is that the risk associated with some action

or inaction is the probability of an adverse result, multiplied by the loss

that would then be incurred. By this definition a one in ten chance of

killing ten people has the same level of risk as a one in a million chance of

killing a million people. The mathematical definition is rational in the

sense that there is a specific rationale behind it, but that doesn’t mean that

it is necessarily sensible. We’ve already seen that ‘probability’ refers to the

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
07Seventeen_Chap7.3d Page 128 of 130

128 Patterns of chance



long run, but for rare events the long run is very long indeed. Humans, and

their societies, can adapt to repeated small numbers of deaths, but a

country that suddenly lost a million people at once would be in serious

trouble, because all public services and industry would simultaneously

come under a severe strain. It would be little comfort to be told that over

the next 10 million years, the total deaths in the two cases would be

comparable. So new methods are being developed to quantify risk in such

cases.

Statistical methods, derived from questions about gambling, have a

huge variety of uses. They provide tools for analysing social, medical, and

scientific data. Like all tools, what happens depends on how they are used.

Anyone using statistical methods needs to be aware of the assumptions

behind those methods, and their implications. Blindly feeding numbers

into a computer and taking the results as gospel, without understanding

the limitations of the method being used, is a recipe for disaster. The

legitimate use of statistics, however, has improved our world out of all

recognition. And it all began with Quetelet’s bell curve.

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
07Seventeen_Chap7.3d Page 129 of 130

129Normal Distribution



Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
07Seventeen_Chap7.3d Page 130 of 130



8 Good vibrations
Wave Equation

What does it say?

The acceleration of a small segment of a violin string is

proportional to the average displacement of neighbouring

segments.

Why is that important?

It predicts that the string will move in waves, and it generalises

naturally to other physical systems in which waves occur.

What did it lead to?

Big advances in our understanding of water waves, sound

waves, light waves, elastic vibrations... Seismologists use

modified versions of it to deduce the structure of the interior

of the Earth from how it vibrates. Oil companies use similar

methods to find oil. In Chapter 11 we will see how it predicted

the existence of electromagnetic waves, leading to radio,

television, radar, and modern communications.
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W e live in a world of waves. Our ears detect waves of compression in

the air: we call this ‘hearing’. Our eyes detect waves of

electromagnetic radiation: we call this ‘seeing’. When an earthquake hits

a town or a city, the destruction is caused by waves in the solid body of the

Earth. When a ship bobs up and down on the ocean, it is reacting to waves

in the water. Surfers use ocean waves for recreation; radio, television, and

large parts of the mobile telephone network use waves of electromagnetic

radiation, similar to those that we see by, but of differing wavelengths.

Microwave ovens ... well, the name gives it away, doesn’t it?

With so many practical instances of waves impinging on daily life,

even centuries ago, the mathematicians who decided to follow up

Newton’s epic discovery that nature has laws could hardly fail to start

thinking about waves. What got them started, though, came from the arts:

specifically, music. How does a violin string create sound? What does it do?

There was a reason for starting with violins, the kind of reason that

appeals to mathematicians, though not to governments or businessmen

considering investing in mathematicians and expecting a quick payback. A

violin string can sensibly be modelled as an infinitely thin line, and its

motion – which is clearly the cause of the sound that the instrument makes

– can be assumed to take place in a plane. This makes the problem ‘low-

dimensional’, which means you have a chance of solving it. Once you have

understood this simple example of waves, there’s a good chance that the

understanding can be transferred, often in small stages, to more realistic

and more practical instances of waves.

The alternative, to plough headlong into highly complex problems,

may appear attractive to politicians and captains of industry, but it usually

gets bogged down in complexities. Mathematics thrives on simplicities,

and if necessary mathematicians will invent them artificially to provide an

entry route into more complex problems. They deprecatingly refer to such

models as ‘toys’, but these are toys with a serious purpose. Toy models of

waves led to today’s world of electronics and high-speed global

communications, wide-bodied passenger jets and artificial satellites,

radio, television, tsunami warning systems... but we’d never have
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achieved any of those if a few mathematicians hadn’t started to puzzle out

how a violin works, using a model that wasn’t realistic, even for a violin.

The Pythagoreans believed that the world was based on numbers, by which

they meant whole numbers or ratios between whole numbers. Some of

their beliefs tended towards the mystical, investing specific numbers with

human attributes: 2 was male, 3 female, 5 symbolised marriage, and so on.

The number 10 was very important to the Pythagoreans because it was

1 +2+ 3+4 and they believed there were four elements: earth, air, fire,

water. This kind of speculation strikes the modern mind as slightly crazy –

well, my mind, at least – but it was reasonable in an age when humans were

only just starting to investigate the world around them, seeking crucial

patterns. It just took a while to work out which patterns were significant

and which were dross.

One of the great triumphs of the Pythagorean world view came from

music. Various stories circulate: according to one, Pythagoras was passing a

blacksmith’s shop and he noticed that hammers of different sizes made

noises of different pitch, and that hammers related by simple numbers –

one twice the size of the other, for instance – made noises that harmonised.

Charming though this tale is, anyone who actually tries it out with real

hammers will discover that a blacksmith’s operations are not especially

musical, and hammers are too complicated a shape to vibrate in harmony.

But there’s a grain of truth: on the whole, small objects make higher-

pitched noises than large ones.

The stories are on stronger ground when they refer to a series of

experiments that the Pythagoreans performed using a stretched string, a

rudimentary musical instrument known as a canon. We know about these

experiments because Ptolemy reported them in his Harmonics around

150 AD. By moving a support to various positions along the string, the

Pythagoreans found that when two strings of equal tension had lengths in

a simple ratio, such as 2 : 1 or 3 : 2, they produced unusually harmonious

notes. More complex ratios were discordant and unpleasant to the ear.

Later scientists pushed these ideas much further, probably a bit too far:

what seems pleasant to us depends on the physics of the ear, which is more

complicated than that of a single string, and it also has a cultural

dimension because the ears of growing children are trained by being

exposed to the sounds that are common in their society. I predict that

today’s children will be unusually sensitive to differences in mobile phone

ringtones. However, there is a solid scientific story behind these
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complexities, and a lot of it confirms and explains the early Pythagorean

discoveries with their single-stringed experimental instrument.

Musicians describe pairs of notes in terms of the interval between

them, a measure of how many steps separate them in some musical scale.

The most fundamental interval is the octave, eight white notes on a piano.

Notes an octave apart sound remarkably similar, except that one note is

higher than the other, and they are extremely harmonious. So much so, in

fact, that harmonies based on the octave can seem a bit bland. On a violin,

the way to play the note one octave above an open string is to press the

middle of that string against the fingerboard. A string half as long plays a

note one octave higher. So the octave is associated with a simple numerical

ratio of 2 : 1.

Other harmonious intervals are also associated with simple numerical

ratios. The most important for Western music are the fourth, a ratio of 4 : 3,

and the fifth, a ratio of 3 : 2. The names make sense if you consider a

musical scale of whole notes C D E F G A B C. With C as base, the note

corresponding to a fourth is F, the fifth is G, and the octave C. If we

number the notes consecutively with the base as 1, these are respectively

the 4th, 5th, and 8th notes along the scale. The geometry is especially clear

on an instrument like a guitar, which has segments of wire, ‘frets’, inserted

at the relevant positions. The fret for the fourth is one-quarter of the way

along the string, that for a fifth is one-third of the way along, and the

octave is halfway along. You can check this with a tape measure.

These ratios provide a theoretical basis for a musical scale and led to the

scale(s) now used in most Western music. The story is complex, so I’ll give

a simplified version. For later convenience I’ll rewrite a ratio like 3 : 2 as a

fraction 3/2 from now on. Start at a base note and ascend in fifths, to get

strings of lengths

1
3

2

3

2

� �2 3

2

� �3 3

2

� �4 3

2

� �5

Multiplied out, these fractions become

1
3

2

9

4

27

8

81

16

243

32

All of these notes, except the first two, are too high-pitched to remain

within an octave, but we can lower them by one or more octaves,
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repeatedly dividing the fractions by 2 until the result lies between 1 and 2.

This yields the fractions

1
3

2

9

8

27

16

81

64

243

128

Finally, arrange these in ascending numerical order, obtaining

1
9

8

81

64

3

2

27

16

243

128

These correspond fairly closely to the notes C D E G A B on a piano. Notice

that F is missing. In fact, to the ear, the gap between 81/64 and 3/2 sounds

wider than the others. To fill that gap, we insert 4/3, the ratio for the

fourth, which is very close to F on the piano. It is also useful to complete

the scale with a second C, one octave up, a ratio of 2. Now we obtain a

musical scale based entirely on fourths, fifths, and octaves, with pitches in

the ratios

1
9

8

81

64

4

3

3

2

27

16

243

128
2

C D E F G A B C

The length is inversely proportional to the pitch, so we would have to

invert the fractions to get the corresponding lengths.

We have now accounted for all the white notes on the piano, but there

are also black notes. These appear because successive numbers in the scale

bear two different ratios to each other: 9/8 (called a tone) and 256/243

(semitone). For example the ratio of 81/64 to 9/8 is 9/8, but that of 4/3 to

81/64 is 256/243. The names ‘tone’ and ‘semitone’ indicate an

approximate comparison of the intervals. Numerically they are 1.125 and

1.05. The first is larger, so a tone corresponds to a bigger change in pitch

than a semitone. Two semitones give a ratio 1.052, which is about 1.11; not

far from 1.25. So two semitones are close to a tone. Not very close, I admit.

Continuing in this vein we can divide each tone into two intervals,

each close to a semitone, to get a 12-note scale. This can be done in several

different ways, yielding slightly different results. However it is done, there

can be subtle but audible problems when changing the key of a piece of

music: the intervals change slightly if, say, we move every note up a

semitone. This effect could have been avoided if we had chosen a specific

ratio for a semitone and arranged for its twelfth power to equal 2. Then two

tones would make an exact semitone, 12 semitones would make an octave,
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and you could change scale by shifting all notes up or down by a fixed

amount.

There is such a number, namely the twelfth root of 2, which is about

1.059, and it leads to the so-called ‘equitempered scale’. It’s a compromise;

for example on the equitempered scale the 4/3 ratio for a fourth is

1.0595 =1.335, instead of 4/3 = 1.333. A highly trained musician can detect

the difference, but it’s easy to get used to it and most of us never notice.

The Pythagorean theory of harmony in nature, then, is actually built into

the basis of Western music. To explain why simple ratios go hand in hand

with musical harmony, we have to look at the physics of a vibrating string.

The psychology of human perception also comes into the tale, but not yet.

The key is Newton’s second law of motion, relating acceleration to

force. You also need to know how the force exerted by a string under

tension changes as the string moves, stretching or contracting slightly. For

this, we use something that Newton’s unwilling sparring partner Hooke

discovered in 1660, called Hooke’s law: the change in length of a spring is

proportional to the force exerted on it. (This is not a misprint for string – a

violin string is effectively a kind of spring, so the same law applies.) One

obstacle remains. We can apply Newton’s laws to a system composed of a

finite number of masses: we get one equation per mass, and then do our

best to solve the resulting system. But a violin string is a continuum, a line

composed of infinitely many points. So the mathematicians of the period

thought of the string as a large number of closely spaced point masses,

linked together by Hooke’s-law springs. They wrote down the equations,

slightly simplified to make them soluble; solved them; finally they let the

number of masses become arbitrarily large, and worked out what happened

to the solution.

John Bernoulli carried out this programme in 1727, and the outcome

was extraordinarily pretty, considering what difficulties were being swept

under the carpet. To avoid confusion in the descriptions that follow,

imagine that the violin is lying on its back with the string horizontal. If

you pluck the string it vibrates up and down at right angles to the violin.

This is the image to bear in mind. Using the bow causes the string to

vibrate sideways, and the presence of the bow is confusing. In the

mathematical model, all we have is one string, fixed at its ends, and no

violin; the string vibrates up and down in a plane. In this set-up Bernoulli

found that the shape of the vibrating string, at any instant of time, was a

sine curve. The amplitude of the vibration – the maximum height of this
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curve – also followed a sine curve, in time rather than space. In symbols,

his solution looked like sin ct sin x, where c is a constant, Figure 35. The

spatial part sin x tells us the shape, but this is scaled by a factor sin ct at time

t. The formula says that the string vibrates up and down, repeating the

same motion over and over again. The period of oscillation, the time

between successive repeats, is 2π/c.

shape

shape

amplitude
time

Fig 35 Successive snapshots of a vibrating string. The shape is a sine curve at each instant.

The amplitude also varies sinusoidally with time.

This was the simplest solution that Bernoulli obtained, but there were

others; all of them sine curves, different ‘modes’ of vibration, with 1, 2, 3,

or more waves along the length of the string, Figure 36. Again, the sine

curve was a snapshot of the shape at any instant, and its amplitude was

multiplied by a time-dependent factor, which also varied sinusoidally. The

formulas were sin 2ct sin 2x, sin 3ct sin 3x, and so on. The vibrational

periods were 2π/2c, 2π/3c, and so on; so the more waves there were, the

faster the string vibrated.

Fig 36 Snapshots of modes 1, 2, 3 of a vibrating string. In each case, the string vibrates up

and down, and its amplitude varies sinusoidally with time. The more waves there are, the

faster the vibration.

The string is always at rest at its ends, by the construction of the

instrument and the assumptions of the mathematical model. In all modes

except the first, there are additional points where the string is not
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vibrating; these occur where the curve crosses the horizontal axis. These

‘nodes’ are the mathematical reason for the occurrence of simple

numerical ratios in the Pythagorean experiments. For example, since

vibrational modes 2 and 3 occur in the same string, the gap between

successive nodes in the mode-2 curve is 3/2 times the corresponding gap in

the mode-3 curve. This explains why ratios like 3 : 2 arise naturally from the

dynamics of the vibrating spring, but not why these ratios are harmonious

while others are not. Before tackling this question, we introduce the main

topic of this chapter: the wave equation.

The wave equation emerges from Newton’s second law of motion if we

apply Bernoulli’s approach at the level of equations rather than solutions.

In 1746 Jean Le Rond d’Alembert followed standard procedure, treating a

vibrating violin string as a collection of point masses, but instead of solving

the equations and looking for a pattern when the number of masses tended

to infinity, he worked out what happened to the equations themselves. He

derived an equation that described how the shape of the string changes

over time. But before I show you what it looks like, we need a new idea,

called a ‘partial derivative’.

Imagine yourself in the middle of the ocean, watching waves of various

shapes and sizes pass by. As they do so, you bob up and down. Physically,

you can describe how your surroundings are changing in several different

ways. In particular, you can focus on changes in time or changes in space.

As time passes at your location, the rate at which your height changes, with

respect to time, is the derivative (in the sense of calculus, Chapter 3) of

your height, also with respect to time. But this doesn’t describe the shape

of the ocean near you, just how high the waves are as they pass you. To

describe the shape, you can freeze time (conceptually) and work out how

high the waves are: not just at your location, but at nearby ones. Then you

can use calculus to work out how steeply the wave slopes at your location.

Are you at a peak or trough? If so, the slope is zero. Are you halfway down

the side of a wave? If so, the slope is quite large. In terms of calculus, you

can put a number to that slope by working out the derivative of the wave’s

height with respect to space.

If a function u depends on just one variable, call it x, we write the

derivative as du/dx: ‘small change in u divided by small change in x’. But in

the context of ocean waves the function u, the wave height, depends not

just on space x but also on time t. At any fixed instant of time, we can still

work out du/dx; it tells us the local slope of the wave. But instead of fixing
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time and letting space vary, we can also fix space and let time vary; this

tells us the rate at which we are bobbing up and down. We could use the

notation du/dt for this ‘time derivative’ and interpret it as ‘small change in

u divided by small change in t’. But this notation hides an ambiguity: the

small change in height, du, may be, and usually is, different in the two

cases. If you forget that, you are likely to get your sums wrong. When we

are differentiating with respect to space, we let the space variable change a

little bit and see how the height changes; when we are differentiating with

respect to time, we let the time variable change a little bit and see how the

height changes. There is no reason why changes over time should equal

changes over space.

So mathematicians decided to remind themselves of this ambiguity by

changing the symbol d to something that did not (directly) make them

think ‘small change’. They settled on a very cute curly d, written ¶. Then
they wrote the two derivatives as ¶u/¶x and ¶u/¶t. You could argue that this

isn’t a big advance, because it’s just as easy to confuse two different

meanings of ¶u. There are two answers to this criticism. One is that in this

context you are not supposed to think of ¶u as a specific small change in u.

The other is that using a fancy new symbol reminds you not to get

confused. The second answer definitely works: as soon as you see ¶, it tells
you that you will be looking at rates of change with respect to several

different variables. These rates of change are called partial derivatives,

because conceptually you change only part of the set of variables, keeping

the rest fixed.

When d’Alembert worked out his equation for the vibrating string, he

faced just this situation. The shape of the string depends on space – how far

along the string you look – and on time. Newton’s second law of motion

told him that the acceleration of a small segment of string is proportional

to the force that acts on it. Acceleration is a (second) time derivative. But

the force is caused by neighbouring segments of the string pulling on the

one we’re interested in, and ‘neighbouring’ means small changes in space.

When he calculated those forces, he was led to the equation

q2u
qt2

¼ c2
q2u
qx2

where u(x,t) is the vertical position at location x on the string at time t, and

c is a constant related to the tension in the string and how springy it is. The
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calculations were actually easier than Bernoulli’s, because they avoided

introducing special features of particular solutions.1

D’Alembert’s elegant formula is the wave equation. Like Newton’s

second law, it is a differential equation – it involves (second) derivatives of

u. Since these are partial derivatives, it is a partial differential equation. The

second space derivative represents the net force acting on the string, and

the second time derivative is the acceleration. The wave equation set a

precedent: most of the key equations of classical mathematical physics,

and a lot of the modern ones for that matter, are partial differential

equations.

Once d’Alembert had written down his wave equation, he was in a

position to solve it. This task was made much easier because it turned out

to be a linear equation. Partial differential equations have many solutions,

typically infinitely many, because each initial state leads to a distinct

solution. For example, the violin string can in principle be bent into any

shape you like before it is released and the wave equation takes over.

‘Linear’ means that if u(x, t) and v(x, t) are solutions, then so is any linear

combination au(x, t) + bv(x, t), where a and b are constants. Another term is

‘superposition’. The linearity of the wave equation stems from the

approximation that Bernoulli and d’Alembert had to make to get

something they could solve: all disturbances are assumed to be small.

Now the force exerted by the string can be closely approximated by a linear

combination of the displacements of the individual masses. A better

approximation would lead to a nonlinear partial differential equation, and

life would be far more complicated. In the long run, these complications

have to be tackled head-on, but the pioneers had enough to contend with

already, so they worked with an approximate but very elegant equation

and confined their attention to small-amplitude waves. It worked very

well. In fact, it often worked pretty well for waves of larger amplitude too, a

lucky bonus.

D’Alembert knew he was on the right track because he found solutions

in which a fixed shape travelled along the string, just like a wave.2 The

speed of the wave turned out to be the constant c in the equation. The

wave could travel either to the left or to the right, and here the

superposition principle came into play. D’Alembert proved that every

solution is a superposition of two waves, one travelling leftwards and the

other rightwards. Moreover, each separate wave could have any shape

whatsoever.3 The standing waves found in the violin string, with fixed

ends, turn out to be a combination of two waves of the same shape, one

being upside down compared to the other, with one travelling to the left
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and the other (upside down) travelling to the right. At the ends, the two

waves exactly cancel each other out: peaks of one coincide with troughs of

the other. So they comply with the physical boundary conditions.

Mathematicians now had an embarrassment of riches. There were two

ways to solve the wave equation: Bernoulli’s, which led to sines and

cosines, and d’Alembert’s, which led to waves with any shape whatsoever.

At first it looked as though d’Alembert’s solution must be more general:

sines and cosines are functions, but most functions are not sines and

cosines. However, the wave equation is linear, so you could combine

Bernoulli’s solutions by adding constant multiples of them together. To

keep it simple consider just a snapshot at a fixed time, getting rid of the

time-dependence. Figure 37 shows 5 sin x+4 sin 2x�2 cos 6x, for example.

It has a fairly irregular shape, and it wiggles a lot, but it’s still smooth and

wavy.

5

5 10

−5

−5

−10

−10

Fig 37 Typical combination of sines and cosines with various amplitudes and frequencies.

What bothered the more thoughtful mathematicians was that some

functions are very rough and jagged, and you can’t get those as a linear

combination of sines and cosines. Well, not if you use finitely many terms

– and that suggested a way out. A convergent infinite series of sines and

cosines (one whose sum to infinity makes sense) also satisfies the wave

equation. Does it allow jagged functions as well as smooth ones? The

leading mathematicians argued about this question, which finally came to

a head when the same issue turned up in the theory of heat. Problems

about heat flow naturally involved discontinuous functions, with sudden
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jumps, which was even worse than jagged ones. I’ll tell that story in

Chapter 9, but the upshot is that most ‘reasonable’ wave shapes can be

represented by an infinite series of sines and cosines, so they can be

approximated as closely as you wish by finite combinations of sines and

cosines.

Sines and cosines explain the harmonious ratios that so impressed the

Pythagoreans. These special shapes of waves are important in the theory of

sound because they represent ‘pure’ tones – single notes on an ideal

instrument, so to speak. Any real instrument produces mixtures of pure

notes. If you pluck a violin string, the main note you hear is the sin x wave,

but superposed on that is a bit of sin 2x, maybe some sin 3x, and so on. The

main note is called the fundamental and the others are its harmonics. The

number in front of x is called the wave number. Bernoulli’s calculations tell

us that the wave number is proportional to the frequency: how many times

the string vibrates, for that particular sine wave, during a single oscillation

of the fundamental.

In particular, sin 2x has twice the frequency of sin x. What does it

sound like? It is the note one octave higher. This is the note that sounds most

harmonious when played alongside the fundamental. If you look at the

shape of the string for the second mode (sin 2x) in Figure 36, you’ll notice

that it crosses the axis at its midpoint as well as the two ends. At that point,

a so-called node, it remains fixed. If you placed your finger at that point,

the two halves of the string would still be able to vibrate in the sin 2x

pattern, but not in the sin x one. This explains the Pythagorean discovery

that a string half as long produced a note one octave higher. A similar

explanation deals with the other simple ratios that they discovered: they

are all associated with sine curves whose frequencies have that ratio, and

such curves fit together neatly on a string of fixed length whose ends are

not allowed to move.

Why do these ratios sound harmonious? Part of the explanation is that

sine waves with frequencies that are not in simple ratios produce an effect

called ‘beats’ when they are superposed. For instance, a ratio like 11 : 23

corresponds to sin 11x+ sin 23x, which looks like Figure 38, with lots of

sudden changes in shape. Another part is that the ear responds to

incoming sounds in roughly the same way as the violin string. The ear, too,

vibrates. When two notes beat, the corresponding sound is like a buzzing

noise that repeatedly gets louder and softer. So it doesn’t sound

harmonious. However, there is a third part of the explanation: the ears

of babies become attuned to the sounds that they hear most often. There

are more nerve connections from the brain to the ear than there are in the
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other direction. So the brain adjusts the ear’s response to incoming sounds.

In other words, what we consider to be harmonious has a cultural

dimension. But the simplest ratios are naturally harmonious, so most

cultures use them.

−5

−1

1

2

5

−2

Fig 38 Beats.

Mathematicians first derived the wave equation in the simplest setting

they could think of: a vibrating line, a one-dimensional system. Realistic

applications required a more general theory, modelling waves in two and

three dimensions. Even staying within music, a drum requires two

dimensions to model the patterns in which the drumskin vibrates. The

same goes for water waves on the surface of the ocean. When an

earthquake strikes, the whole Earth rings like a bell, and our planet is

three-dimensional. Many other areas of physics involve models with two

or three dimensions. Extending the wave equation to higher dimensions

turned out to be straightforward; all you had to do was repeat the same

kinds of calculation that had worked for the violin string. Having learned

to play the game in this simple setting, it wasn’t hard to play it for real.

In three dimensions, for example, we use three space coordinates

(x, y, z) and time t. The wave is described by a function u that depends on

these four coordinates. For instance, this might describe the pressure in a

body of air as sound waves pass through it. Making the same assumptions
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as d’Alembert, in particular that the amplitude of the disturbance is small,

the same approach leads to an equally pretty equation:

q2u
qt2

¼ c2
q2u
qx2

þ q2u
qy2

þ q2u
qz2

 !

The formula inside the brackets is called the Laplacian, and it corresponds

to the average difference between the value of u at the point in question,

and its value nearby. This expression arises so often in mathematical

physics that it has its own special symbol: H2u. To get the Laplacian in two

dimensions, we just omit the term involving z, leading to the wave

equation in that setting.

The main novelty in higher dimensions is that the shape within which

the waves arise, called the domain of the equation, can be complicated. In

one dimension the only connected shape is an interval, a segment of the

line. In two dimensions, however, it can be any shape you can draw in the

plane, and in three dimensions, any shape in space. You can model a

square drum, a rectangular drum, a circular drum,4 or a drum shaped like

the silhouette of a cat. For earthquakes, you might employ a spherical

domain, or for greater accuracy, an ellipsoid squashed slightly at the poles.

If you are designing a car and want to eliminate unwanted vibrations, your

domain should be car-shaped – or whatever part of the car the engineers

want to focus on.

1.0
0.5
0.0

–0.5
–1.0

0
2

4
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6

Fig 39 Left: Snapshot of one mode of a vibrating rectangular drum, with wave numbers 2

and 3. Right: Snapshot of one mode of a vibrating circular drum.

For any chosen shape of domain, there are functions analogous to

Bernoulli’s sines and cosines: the simplest patterns of vibration. These
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patterns are called modes, or normal modes if you want to make it

absolutely clear what you’re talking about. All other waves can be obtained

by superposing normal modes, again using an infinite series if necessary.

The frequencies of the normal modes represent the natural vibrational

frequencies of the domain. If the domain is a rectangle, these are

trigonometric functions of the form sin mx cos ny, for integers m and n,

producing waves shaped like Figure 39 (left). If it is a circle, they are

determined by new functions, called Bessel functions, with more

interesting shapes, Figure 39 (right). The resulting mathematics applies

not only to drums, but to water waves, sound waves, electromagnetic

waves such as light (Chapter 11), even quantum waves (Chapter 14). It is

fundamental to all of these areas. The Laplacian also turns up in equations

for other physical phenomena; in particular, electric, magnetic, and

gravitational fields. The mathematician’s favourite trick of starting with a

toy problem, one so simple that it cannot possibly be realistic, pays off big

time for waves.

This is one reason why it is unwise to judge a mathematical idea by the

context in which it first arises. Modelling a violin string may seem

pointless when what you want to understand is earthquakes. But if you

jump in at the deep end, and try to cope with all of the complexities of real

earthquakes, you’ll drown. You should start out paddling in the shallow

end and gain confidence to swim a few lengths of the pool. Then you’ll be

ready for the high diving board.

The wave equation was a spectacular success, and in some areas of physics

it describes reality very closely. However, its derivation requires several

simplifying assumptions. When those assumptions are unrealistic, the

same physical ideas can be modified to suit the context, leading to different

versions of the wave equation.

Earthquakes are a typical example. Here the main problem is not

d’Alembert’s assumption that the amplitude of the wave is small, but

changes in the physical properties of the domain. These properties can

have a strong effect on seismic waves, vibrations that travel through the

Earth. By understanding those effects, we can look deep inside our planet

and find out what it is made of.

There are two main kinds of seismic wave: pressure waves and shear

waves, usually abbreviated to P-waves and S-waves. (There are many others:

this is a simplified account, covering some of the basics.) Both can occur in

a solid medium, but S-waves don’t occur in fluids. P-waves are waves of
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pressure, analogous to sound waves in air, and the changes in pressure

point in the direction along which the wave propagates. Such waves are

said to be longitudinal. S-waves are transverse waves, changing at right

angles to the direction of travel, like the waves on a violin string. They

cause solids to shear, that is, deform like a pack of cards pushed sideways,

so that the cards slide along one another. Fluids don’t behave like packs of

cards.

When an earthquake happens, it sends out both kinds of wave. The P-

waves travel faster, so a seismologist somewhere else on the Earth’s surface

observes those first. Then the slower S-waves arrive. In 1906 the English

geologist Richard Oldham exploited this difference to make a major

discovery about our planet’s interior. Roughly speaking, the Earth has an

iron core, surrounded by a rocky mantle, and the continents float on top of

the mantle. Oldham suggested that the outer layers of the core must be

liquid. If so, S-waves can’t pass through those regions, but P-waves can. So

there is a kind of S-wave shadow, and you can work out where it is by

observing signals from earthquakes. The English mathematician Harold

Jeffreys sorted out the details in 1926 and confirmed that Oldham was

right.

If the earthquake is big enough, it can cause the entire planet to vibrate

in one of its normal modes – the analogues for the Earth of sines and

cosines for a violin. The whole planet rings like a bell, in a sense that would

be literal if only we could hear the very low frequencies involved.

Instruments sensitive enough to record these modes appeared in the

1960s, and they were used to observe the two most powerful earthquakes

yet recorded scientifically. These were the Chilean earthquake of 1960

(magnitude 9.5) and the Alaskan earthquake of 1964 (magnitude 9.2). The

first killed around 5000 people; the second killed about 130 thanks to its

remote location. Both caused tsunamis and did a huge amount of damage.

Both offered an unprecedented view of the Earth’s deep interior, by

exciting the Earth’s basic vibrational modes.

Sophisticated versions of the wave equation have given seismologists

the ability to see what’s happening hundreds of kilometres beneath our

feet. They can map the Earth’s tectonic plates as one slides beneath

another, known as subduction. Subduction causes earthquakes, especially

so-called megathrust earthquakes like the two just mentioned. It also gives

rise to mountain chains along the edges of continents, such as the Andes,

and volcanoes, where the plate gets so deep that it starts to melt and

magma rises to the surface. A recent discovery is that the plates need not
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subduct as a whole, but can break up into gigantic slabs, sinking back into

the mantle at different depths.

The biggest prize in this area would be a reliable way to predict

earthquakes and volcanic eruptions. This is proving elusive, because the

conditions that trigger such events are complex combinations of many

factors in many locations. However, some progress is being made, and the

seismologists’ version of the wave equation underpins many of the

methods being investigated.

The same equations have more commercial applications. Oil

companies prospect for liquid gold, a few kilometres underground, by

setting off explosions at the surface and using returning echoes from the

seismic waves they generate to map out the underlying geology. The main

mathematical problem here is to reconstruct the geology from the signals

received, which is a bit like using the wave equation backwards. Instead of

solving the equation in a known domain to work out what the waves do,

mathematicians use the observed wave patterns to reconstruct the

geological features of the domain. As is often the case, working

backwards like this – solving the inverse problem, in the jargon – is

harder than going the other way. But practical methods exist. One of the

major oil companies performs such calculations a quarter of a million

times every day.

Drilling for oil has its own problems, as the blowout at the Deepwater

Horizon oil rig in 2010 made clear. But at the moment, human society is

heavily dependent on oil, and it would take decades to reduce this

significantly, even if everyone wanted to. Next time you fill up your tank,

give a thought to the mathematical pioneers who wanted to know how a

violin produces its sounds. It wasn’t a practical problem then, and it still

isn’t today. But without their discoveries, your car would take you

nowhere.
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9 Ripples and blips
Fourier Transform

What does it say?

Any pattern in space and time can be thought of as a

superposition of sinusoidal patterns with different frequencies.

Why is that important?

The component frequencies can be used to analyse the

patterns, create them to order, extract important features, and

remove random noise.

What did it lead to?

Fourier’s technique is very widely used, for example in image

processing and quantum mechanics. It is used to find the

structure of large biological molecules like DNA, to compress

image data in digital photography, to clean up old or damaged

audio recordings, and to analyse earthquakes. Modern variants

are used to store fingerprint data efficiently and to improve

medical scanners.
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N ewton’s Principia opened the door to the mathematical study of

nature, but his fellow countrymen were too obsessed with the

priority dispute over calculus to find out what lay beyond. While England’s

finest were seething over what they perceived to be disgraceful allegations

about the country’s greatest living mathematician – much of it probably

his own fault for listening to well-intentioned but foolish friends – their

continental colleagues were extending Newton’s ideas about laws of nature

to most of the physical sciences. The wave equation was quickly followed

by remarkably similar equations for gravitation, electrostatics, elasticity,

and heat flow. Many bore the names of their inventors: Laplace’s equation,

Poisson’s equation. The equation for heat does not; it bears the

unimaginative and not entirely accurate name ‘heat equation’. It was

introduced by Joseph Fourier, and his ideas led to the creation of a new

area of mathematics whose ramifications were to spread far beyond its

original source. Those ideas could have been triggered by the wave

equation, where similar methods were floating around in the collective

mathematical consciousness, but history plumped for heat.

The new method had a promising beginning: in 1807 Fourier

submitted an article on heat flow to the French Academy of Sciences,

based on a new partial differential equation. Although that prestigious

body declined to publish the work, it encouraged Fourier to develop his

ideas further and try again. At that time the Academy offered an annual

prize for research on whatever topic they felt was sufficiently interesting,

and they made heat the topic of the 1812 prize. Fourier duly submitted his

revised and extended article, and won. His heat equation looks like this:

qu
qt

¼ a
q2u
qx2

Here u(x, t) is the temperature of a metal rod at position x and time t,

considering the rod to be infinitely thin, and a is a constant, the thermal
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diffusivity. So it really ought to be called the temperature equation. He also

developed a higher-dimensional version,

qu
qt

¼ aH2u

valid on any specified region of the plane or space.

The heat equation bears an uncanny resemblance to the wave

equation, with one crucial difference. The wave equation uses the second

time derivative ¶2u/¶t2, but in the heat equation this is replaced by the first

derivative ¶u/¶t. This change may seem small, but its physical meaning is

huge. Heat does not persist indefinitely, in the way that a vibrating violin

string continues to vibrate forever (according to the wave equation, which

assumes no friction or other damping). Instead, heat dissipates, dies away,

as time passes, unless there is some heat source that can top it up. So a

typical problem might be: heat one end of a rod to keep its temperature

steady, cool the other end to do the same, and find out how the

temperature varies along the rod when it settles to a steady state. The

answer is that it falls off exponentially. Another typical problem is to

specify the initial temperature profile along the rod, and then ask how it

changes as time passes. Perhaps the left half starts at a high temperature

and the right half at a cooler one; the equation then tells us how the heat

from the hot part diffuses into the cooler part.

The most intriguing aspect of Fourier’s prizewinning memoir was not

the equation, but how he solved it. When the initial profile is a

trigonometric function, such as sin x, it is easy (to those with experience

in such matters) to solve the equation, and the answer is e�at sin x. This

resembles the fundamental mode of the wave equation, but there the

formula was sin ct sin x. The eternal oscillation of a violin string,

corresponding to the sin ct factor, has been replaced by an exponential,

and the minus sign in the exponent �at tells us that the entire temperature

profile dies away at the same rate, all along the rod. (The physical

difference here is that waves conserve energy, but heat flow does not.)

Similarly, for a profile sin 5x, say, the solution is e�25at sin 5x, which also

dies out, but at a much faster rate. The 25 is 52, and this is an example of a

general pattern, applicable to initial profiles of the form sin nx or cos nx.1

To solve the heat equation, just multiply by e�n2at .

Now the story follows the same general outline as the wave equation.

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
09Seventeen_Chap9.3d Page 152 of 164

152 Ripples and blips



The heat equation is linear, so we can superpose solutions. If the initial

profile is

uðx;0Þ¼ sin xþ sin 5x

then the solution is

uðx; tÞ¼ e�at sin xþ e�25at sin 5x

and each mode dies way at a different rate. But initial profiles like this are a

bit artificial. To solve the problem I mentioned earlier, we want an initial

profile where u(x, 0) = 1 for half the rod but �1 for the other half. This

profile is discontinuous, a square wave in engineering terminology. But

sine and cosine curves are continuous. So no superposition of sine and

cosine curves can represent a square wave.

No finite superposition, certainly. But, again, what if we allowed

infinitely many terms? Then we can try to express the initial profile as an

infinite series, of the form

uðx;0Þ¼ a0 þ a1 cos xþ a2 cos 2xþ a3 cos 3xþ . . .

þ b1 sin xþ b2 sin 2xþ b3 sin 3xþ . . .

for suitable constants a0, a1, a2, a3, . . . , b1, b2, b3, . . . . (There is no b0

because sin 0x=0.) Now it does seem possible to get a square wave (see

Figure 40). In fact, most coefficients can be set to zero. Only the bn for n

odd are needed, and then bn=8/nπ.

Fig 40 How to get a square wave from sines and cosines. Left: The component sinusoidal

waves. Right: Their sum and a square wave. Here we show the first few terms of the Fourier

series. Additional terms make the approximation to a square wave ever better.

Fourier even had general formulas for the coefficients an and bn for a

general profile f(x), in terms of integrals:

an ¼ 1

p

Z 2p

0

f ðxÞ cosðnxÞdx; bn ¼ 1

p

Z 2p

0

f ðxÞ sinðnxÞdx

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
09Seventeen_Chap9.3d Page 153 of 164

153Fourier Transform



After a lengthy trek through power series expansions of trigonometric

functions, he realised that there was a much simpler way to derive these

formulas. If you take two different trigonometric functions, say cos 2x and

sin 5x, multiply them together, and integrate from 0 to 2π, you get zero.

This is even the case when they look like cos 5x and sin 5x. But if they are

the same – say both equal to sin 5x – the integral of their product is not

zero. In fact, it is π. If you start by assuming that f(x) is the sum of a

trigonometric series, multiply everything by sin 5x, and integrate, all of the

terms disappear except for the one corresponding to sin 5x, namely b5 sin

5x. Here the integral is π. Divide by that, and you have Fourier’s formula for

b5. The same goes for all the other coefficients.

Although it won the academy’s prize, Fourier’s memoir was roundly

criticised for being insufficiently rigorous, and the academy declined to

publish it. This was highly unusual and it greatly irritated Fourier, but the

academy held its ground. Fourier was incensed. Physical intuition told him

he was right, and if you plugged his series into this equation it was clearly a

solution. It worked. The real problem was that unwittingly he had reopened

an old wound. As we saw in Chapter 8, Euler and Bernoulli had been

arguing for ages about a similar issue for the wave equation, where Fourier’s

exponential dissipation over time was replaced by an unending sinusoidal

oscillation in the wave amplitude. The underlying mathematical issues

were identical. In fact, Euler had already published the integral formulas

for the coefficients in the context of the wave equation.

However, Euler had never claimed that the formula worked for

discontinuous functions f(x), the most controversial feature of Fourier’s

work. The violin-string model didn’t involve discontinuous initial

conditions anyway – those would model a broken string, which would

not vibrate at all. But for heat, it was natural to consider holding one

region of a rod at one temperature and an adjacent region at a different

one. In practice the transition would be smooth and very steep, but a

discontinuous model was reasonable and more convenient for

calculations. In fact, the solution to the heat equation explained why the

transition would rapidly become smooth and very steep, as the heat

diffused sideways. So an issue that Euler hadn’t needed to worry about was

becoming unavoidable, and Fourier suffered from the fallout.

Mathematicians were starting to realise that infinite series were

dangerous beasts. They didn’t always behave like nice finite sums.

Eventually, these tangled complexities got sorted out, but it took a new
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view of mathematics and a hundred years of hard work to do that. In

Fourier’s day, everyone thought they already knew what integrals,

functions, and infinite series were, but in reality it was all rather vague –

‘I know one when I see one.’ So when Fourier submitted his epoch-making

paper, there were good reasons for the academy officials to be wary. They

refused to budge, so in 1822 Fourier got round their objections by

publishing his work as a book, Théorie analytique de la chaleur (‘Analytic

Theory of Heat’). In 1824 he got himself appointed secretary of the

academy, thumbed his nose at all the critics, and published his original

1811 memoir, unchanged, in the academy’s prestigious journal.

We now know that although Fourier was right in spirit, his critics had good

reasons for worrying about rigour. The problems are subtle and the answers

are not terribly intuitive. Fourier analysis, as we now call it, works very

well, but it has hidden depths of which Fourier was unaware.

The question seemed to be: when does the Fourier series converge to

the function it allegedly represents? That is, if you take more and more

terms, does the approximation to the function get ever better? Even Fourier

knew that the answer was not ‘always’. It seemed to be ‘usually, but with

possible problems at discontinuities’. For instance at its midpoint, where

the temperature jumps, the square wave’s Fourier series converges – but to

the wrong number. The sum is 0, but the square wave takes value 1.

For most physical purposes, it doesn’t greatly matter if you change the

value of a function at one isolated point. The square wave, thus modified,

still looks square. It just does something slightly different at the

discontinuity. To Fourier, this kind of issue didn’t really matter. He was

modelling the flow of heat, and he didn’t mind if the model was a bit

artificial, or needed technical changes that had no important effect on the

end result. But the convergence issue could not be dismissed so lightly,

because functions can have far more complicated discontinuities than a

square wave.

However, Fourier was claiming that his method worked for any

function, so it ought to apply even to functions such as: f(x) = 0 when x

is rational, 1 when x is irrational. This function is discontinuous

everywhere. For such functions, at that time, it wasn’t even clear what

the integral meant. And that turned out to be the real cause of the

controversy. No one had defined what an integral was, not for strange

functions like this one. Worse, no one had defined what a function was.

And even if you could tidy up those omissions, it wasn’t just a matter of
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whether the Fourier series converged. The real difficulty was to sort out in

what sense it converged.

Resolving these issues was tricky. It required a new theory of

integration, supplied by Henri Lebesgue, a reformulation of the

foundations of mathematics in terms of set theory, started by Georg

Cantor and opening up several entirely new cans of worms, major insights

from such towering figures as Riemann, and a dose of twentieth–century

abstraction to sort out the convergence issues. The final verdict was that,

with the right interpretations, Fourier’s idea could be made rigorous. It

worked for a very broad, though not universal, class of functions. Whether

the series converged to f(x) for every value of x wasn’t quite the right

question; everything was fine provided the exceptional values of x where it

didn’t converge were sufficiently rare, in a precise but technical sense. If

the function was continuous, the series converged for any x. At a jump

discontinuity, like the change from 1 to �1 in the square wave, the series

converged very democratically to the average of the values immediately to

either side of the jump. But the series always converged to the function

with the right interpretation of ‘converge’. It converged as a whole, rather

than point by point. Stating this rigorously depended on finding the right

way to measure the distance between two functions. With all this in place,

Fourier series did indeed solve the heat equation. But their real significance

was much broader, and the main beneficiary outside pure mathematics was

not the physics of heat but engineering. Especially electronic engineering.

In its most general form Fourier’s method represents a signal, determined

by a function f, as a combination of waves of all possible frequencies. This

is called the Fourier transform of the wave. It replaces the original signal by

its spectrum: a list of amplitudes and frequencies for the component sines

and cosines, encoding the same information in a different way – engineers

talk of transforming from the time domain to the frequency domain.

When data are represented in different ways, operations that are difficult or

impossible in one representation may become easy in the other. For

example, you can start with a telephone conversation, form its Fourier

transform, and strip out all parts of the signal whose Fourier components

have frequencies too high or too low for the human ear to hear. This makes

it possible to send more conversations over the same communication

channels, and it’s one reason why today’s phone bills are, relatively

speaking, so small. You can’t play this game on the original,
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untransformed signal, because that doesn’t have ‘frequency’ as an obvious

characteristic. You don’t know what to strip out.

One application of this technique is to design buildings that will

survive earthquakes. The Fourier transform of the vibrations produced by a

typical earthquake reveals, among other things, the frequencies at which

the energy imparted by the shaking ground is greatest. A building has its

own natural modes of vibration, where it will resonate with the

earthquake, that is, respond unusually strongly. So the first sensible step

towards earthquake-proofing a building is to make sure that the building’s

preferred frequencies are different from the earthquake’s. The earthquake’s

frequencies can be obtained from observations; those of the building can

be calculated using a computer model.

This is just one of many ways in which, tucked away behind the scenes,

the Fourier transform affects our lives. People who live or work in buildings

in earthquake zones don’t need to know how to calculate a Fourier

transform, but their chance of surviving an earthquake is considerably

improved because some people do. The Fourier transform has become a

routine tool in science and engineering; its applications include removing

noise from old sound recordings, such as clicks caused by scratches on

vinyl records, finding the structure of large biochemical molecules such as

DNA using X-ray diffraction, improving radio reception, tidying up

photographs taken from the air, sonar systems such as those used by

submarines, and preventing unwanted vibrations in cars at the design

stage. I’ll focus here on just one of the thousands of everyday uses of

Fourier’s magnificent insight, one that most of us unwittingly take

advantage of every time we go on holiday: digital photography.

On a recent trip to Cambodia I took about 1400 photographs, using a

digital camera, and they all went on a 2GB memory card with room for

about 400 more. Now, I don’t take particularly high-resolution

photographs, so each photo file is about 1.1MB. But the pictures are full

colour, and they don’t show any noticeable pixellation on a 27-inch

computer screen, so the loss in quality isn’t obvious. Somehow, my camera

manages to cram into a single 2GB card about ten times as much data as

the card can possibly hold. It’s like pouring a litre of milk into an eggcup.

Yet it all fits in. The question is: how?

The answer is data compression. The information that specifies the

image is processed to reduce its quantity. Some of this processing is

‘lossless’, meaning that the original raw information can if necessary be
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retrieved from the compressed version. This is possible because most real-

world images contain redundant information. Big blocks of sky, for

instance, are often the same shade of blue (well, they are where we tend to

go). Instead of repeating the colour and brightness information for a blue

pixel over and over again, you could store the coordinates of two opposite

corners of a rectangle and a short code that means ‘colour this entire region

blue’. That’s not quite how it’s done, of course, but it shows why lossless

compression is sometimes possible. When it’s not, ‘lossy’ compression is

often acceptable. The human eye is not especially sensitive to certain

features of images, and these features can be recorded on a coarser scale

without most of us noticing, especially if we don’t have the original image

to compare with. Compressing information this way is like scrambling an

egg: it’s easy in one direction, and does the required job, but it’s not

possible to reverse it. Non-redundant information is lost. It was just

information that didn’t do a lot to begin with, given how human vision

works.

My camera, like most point-and-click ones, saves its images in files with

labels like P1020339.JPG. The suffix refers to JPEG, the Joint Photographic

Experts Group, and it indicates that a particular system of data

compression has been used. Software for manipulating and printing

photos, such as Photoshop or iPhoto, is written so that it can decode the

JPEG format and turn the data back into a picture. Millions of us use JPEG

files regularly, fewer are aware that they’re compressed, and fewer still

wonder how it’s done. This is not a criticism: you don’t have to know how

it works to use it, that’s the point. The camera and software handle it all for

you. But it’s often sensible to have a rough idea of what software does, and

how, if only to discover how cunning some of it is. You can skip the details

here if you wish: I’d like you to appreciate just howmuchmathematics goes

into each image on your camera’s memory card, but exactly what

mathematics is less important.

The JPEG format2 combines five different compression steps. The first

converts the colour and brightness information, which starts out as three

intensities for red, green, and blue, into three different mathematically

equivalent ones that are more suited to the way the human brain perceives

images. One (luminance) represents the overall brightness – what you

would see with a black-and-white or ‘greyscale’ version of the same image.

The other two (chrominance) are the differences between this and the

amounts of blue and red light, respectively.

Next, the chrominance data are coarsened: reduced to a smaller range

of numerical values. This step alone halves the amount of data. It does no
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perceptible harm because the human visual system is much less sensitive to

colour differences than the camera is.

The third step uses a variant of the Fourier transform. This works not

with a signal that changes over time, but with a pattern in two dimensions

of space. The mathematics is virtually identical. The space concerned is an

868 sub-block of pixels from the image. For simplicity think just of the

luminance component: the same idea applies to the colour information as

well. We start with a block of 64 pixels, and for each of them we need to

store one number, the luminance value for that pixel. The discrete cosine

transform, a special case of the Fourier transform, decomposes the image

into a superposition of standard ‘striped’ images instead. In half of them

the stripes run horizontally; in the other half they are vertical. They are

spaced at different intervals, like the various harmonics in the usual Fourier

transform, and their greyscale values are a close approximation to a

cosine curve. In coordinates on the block they are discrete versions of

cos mx cos ny for various integers m and n, see Figure 41.

Fig 41 The 64 basic patterns from which any block of 868 pixels can be obtained.

This step paves the way to step four, a second exploitation of the

deficiencies of human vision. We are more sensitive to variations in

brightness (or colour) over large regions than we are to closely spaced

variations. So the patterns in the figure can be recorded less accurately as

the spacing of the stripes becomes finer. This compresses the data further.

The fifth and final step uses a ‘Huffman code’ to express the list of strengths

of the 64 basic patterns in a more efficient manner.

Every time you take a digital image using JPEG, the electronics in your

camera does all of these things, except perhaps step one. (Professionals are
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now moving over to RAW files, which record the actual data without

compression, together with the usual ‘metadata’ such as date, time,

exposure, and so on. Files in this format take up more memory, but

memory gets bigger and cheaper by the month, so that no longer matters.)

A trained eye can spot the loss of image quality created by JPEG

compression when the quantity of data is reduced to about 10% of the

original, and an untrained eye can see it clearly by the time the file size is

down to 2–3%. So your camera can record about ten times as many images

on a memory card, compared with the raw image data, before anyone other

than an expert would notice.

Because of applications like these, Fourier analysis has become a reflex

among engineers and scientists, but for some purposes the technique has

one major fault: sines and cosines go on forever. Fourier’s method runs

into problems when it tries to represent a compact signal. It takes huge

numbers of sines and cosines to mimic a localised blip. The problem is not

getting the basic shape of the blip right, but making everything outside the

blip equal to zero. You have to kill off the infinitely long rippling tails of all

those sines and cosines, which you do by adding on even more high-

frequency sines and cosines in a desperate effort to cancel out the

unwanted junk. So the Fourier transform is hopeless for blip-like signals:

the transformed version is more complicated, and needs more data to

describe it, than the original.

What saves the day is the generality of Fourier’s method. Sines and

cosines work because they satisfy one simple condition: they are

mathematically independent. Formally, this means that they are

orthogonal: in an abstract but meaningful sense, they are at right angles

to each other. This is where Euler’s trick, eventually rediscovered by

Fourier, comes in. Multiplying two of the basic sinusoidal waveforms

together and integrating over one period is a way to measure how closely

related they are. If this number is large, they are very similar; if it is zero

(the condition for orthogonality), they are independent. Fourier analysis

works because its basic waveforms are both orthogonal and complete: they

are independent and there are enough of them to represent any signal if

they are suitably superposed. In effect, they provide a coordinate system on

the space of all signals, just like the usual three axes of ordinary space. The

main new feature is that we now have infinitely many axes: one for each

basic waveform. But this doesn’t cause many difficulties mathematically,
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once you get used to it. It just means you have to work with infinite series

instead of finite sums, and worry a little about when the series converge.

Even in finite-dimensional spaces, there are many different coordinate

systems; the axes can be rotated to point in new directions, for example.

It’s not surprising to find that in an infinite-dimensional space of signals,

there are alternative coordinate systems that differ wildly from Fourier’s.

One of the most important discoveries in the whole area, in recent years, is

a new coordinate system in which the basic waveforms are confined to a

limited region of space. They are called wavelets, and they can represent

blips very efficiently because they are blips.

Only recently did anyone realise that blip-like Fourier analysis was

possible. Getting started is straightforward: choose a particular shape of

blip, the mother wavelet (Figure 42). Then generate daughter wavelets (and

granddaughters, great-granddaughters, whatever) by sliding the mother

wavelet sideways into various positions, and expanding her or compressing

her by a change of scale. In the same way, Fourier’s basic sine and cosine

curves are ‘mother sinelets’, and the higher-frequency sines and cosines are

daughters. Being periodic, these curves cannot be blip-like.

Fig 42 Daubechies wavelet.

Wavelets are designed to describe bliplike data efficiently. Moreover,

because the daughter and granddaughter wavelets are just rescaled versions

of mother, it is possible to focus on particular levels of detail. If you don’t

want to see small-scale structure, you just remove all the great-

granddaughter wavelets from the wavelet transform. To represent a

leopard by wavelets, you need a few big ones to get the body right,

smaller ones for the eyes, nose, and of course the spots, and very tiny ones

for individual hairs. To compress the data representing the leopard, you

might decide that the individual hairs don’t matter, so you just remove

those particular component wavelets. The great thing is, the image still
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looks like a leopard, and it still has spots. If you try to do this with the

Fourier transform of a leopard then the list of components is huge, it’s not

clear which items you should remove, and you probably won’t recognise

the result as a leopard.

All very well and good, but what shape should the mother wavelet be?

For a long time nobody could work that out, or even show that a good

shape exists. But in the early 1980s geophysicist Jean Morlet and

mathematical physicist Alexander Grossmann found the first suitable

mother wavelet. In 1985 Yves Meyer found a better mother wavelet, and in

1987 Ingrid Daubechies, a mathematician at Bell Laboratories, blew the

whole field wide open. Although the previous mother wavelets looked

suitably bliplike, they all had a very tiny mathematical tail that wiggled off

to infinity. Daubechies found a mother wavelet with no tail at all: outside

some interval, mother was always exactly zero – a genuine blip, confined

entirely to a finite region of space.

The bliplike features of wavelets make them especially good for

compressing images. One of their first large-scale practical uses was to

store fingerprints, and the customer was the Federal Bureau of

Investigation. The FBI’s fingerprint database contains 300 million

records, each of eight fingerprints and two thumbprints, which were

originally stored as inked impressions on paper cards. This is not a

convenient storage medium, so the records have been modernised by

digitising the images and storing the results on a computer. Obvious

advantages include being able to mount a rapid automated search for

prints that match those found at the scene of a crime.

The computer file for each fingerprint card is 10 megabytes long: 80

million binary digits. So the entire archive occupies 3000 terabytes of

memory: 24 quadrillion binary digits. To make matters worse, the number

of new sets of fingerprints grows by 30,000 every day, so the storage

requirement would grow by 2.4 trillion binary digits every day. The FBI

sensibly decided that they needed some method for data compression.

JPEG wasn’t suitable, for various reasons, so in 2002 the FBI decided to

develop a new system of compression using wavelets, the wavelet/scalar

quantization (WSQ) method. WSQ reduces the data to 5% of its size by

removing fine detail throughout the image. This is irrelevant to the eye’s

ability, as well as a computer’s, to recognise the fingerprint.

There are also many recent applications of wavelets to medical

imaging. Hospitals now employ several different kinds of scanner, which
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assemble two-dimensional cross-sections of the human body or important

organs such as the brain. The techniques include CT (computerised

tomography), PET (positron emission tomography), and MRI (magnetic

resonance imaging). In tomography, the machine observes the total tissue

density, or a similar quantity, in a single direction through the body, rather

like what you would see from a fixed position if all the tissue were to

become slightly transparent. A two-dimensional picture can be

reconstructed by applying some clever mathematics to a whole series of

such ‘projections’, taken at many different angles. In CT, each projection

requires an X-ray exposure, so there are good reasons to limit the amount

of data acquired. In all such scanning methods, less data takes less time to

acquire, so more patients can use the same amount of equipment. On the

other hand, good images need more data so that the reconstruction

method can work more effectively. Wavelets provide a compromise, in

which reducing the amount of data leads to equally acceptable images. By

taking a wavelet transform, removing unwanted components, and

‘detransforming’ back to an image again, a poor image can be smoothed

and cleaned up. Wavelets also improve the strategies by which the

scanners acquire their data in the first place.

In fact, wavelets are turning up almost everywhere. Researchers in areas

as wide apart as geophysics and electrical engineering are taking them on

board and putting them to work in their own fields. Ronald Coifman and

Victor Wickerhauser have used them to remove unwanted noise from

recordings: a recent triumph was a performance of Brahms playing one of

his own Hungarian Dances. It was originally recorded on a wax cylinder in

1889, which partially melted; it was re-recorded on to a 78 rpm disc.

Coifman started from a radio broadcast of the disc, by which time the

music was virtually inaudible amid the surrounding noise. After wavelet

cleansing, you could hear what Brahms was playing – not perfectly, but at

least it was audible. It’s an impressive track record for an idea that first

arose in the physics of heat flow 200 years ago, and was rejected for

publication.
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10 The ascent of humanity
Navier–Stokes Equation

What does it say?

It’s Newton’s second law of motion in disguise. The left-hand

side is the acceleration of a small region of fluid. The right-

hand side is the forces that act on it: pressure, stress, and

internal body forces.

Why is that important?

It provides a really accurate way to calculate how fluids move.

This is a key feature of innumerable scientific and

technological problems.

What did it lead to?

Modern passenger jets, fast and quiet submarines, Formula 1

racing cars that stay on the track at high speeds, and medical

advances on blood flow in veins and arteries. Computer

methods for solving the equations, known as computational

fluid dynamics (CFD), are widely used by engineers to improve

technology in such areas.
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S een from space, the Earth is a beautiful glowing blue-and-white sphere

with patches of green and brown, quite unlike any other planet in the

Solar System – or any of the 500-plus planets now known to be circling

other stars, for that matter. The very word ‘Earth’ instantly brings this

image to mind. Yet a little over fifty years ago, the almost universal image

for the same word would have been a handful of dirt, earth in the

gardening sense. Before the twentieth century, people looked at the sky

and wondered about the stars and planets, but they did so from ground

level. Human flight was nothing more than a dream, the subject of myths

and legends. Hardly anyone thought about travelling to another world.

A few intrepid pioneers began the slow climb into the sky. The Chinese

were the first. Around 500 BC Lu Ban invented a wooden bird, which might

have been a primitive glider. In 559 AD the upstart Gao Yang strapped Yuan

Huangtou, the emperor’s son, to a kite – against his will – to spy on the

enemy from above. Yuan survived the experience but was later executed.

With the seventeeth-century discovery of hydrogen the urge to fly spread

to Europe, inspiring a few brave individuals to ascend into the lower

reaches of Earth’s atmosphere in balloons. Hydrogen is explosive, and in

1783 the French brothers Joseph-Michel and Jacques-Étienne Montgolfier

gave a public demonstration of their new and much safer idea, the hot-air

balloon – first with an unmanned test flight, then with Étienne as pilot.

The pace of progress, and the heights to which humans could ascend,

began to increase rapidly. In 1903 Orville and Wilbur Wright made the

first powered flight in an aeroplane. The first airline, DELAG (Deutsche

Luftschiffahrts-Aktiengesellschaft), began operations in 1910, flying

passengers from Frankfurt to Baden-Baden and Düsseldorf using airships

made by the Zeppelin Corporation. By 1914 the St Petersburg–Tampa

Airboat Line was flying passengers commercially between the two Florida

cities, a journey that took 23 minutes in Tony Jannus’s flying boat.

Commercial air travel quickly became commonplace, and jet aircraft

arrived: the De Havilland Comet began regular flights in 1952, but metal

fatigue caused several crashes, and the Boeing 707 became the market

leader from its launch in 1958.
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Ordinary individuals could now routinely be found at an altitude of

8 kilometres, their limit to this day, at least until Virgin Galactic starts low-

orbital flights. Military flights and experimental aircraft rose to greater

heights. Space flight, hitherto the dream of a few visionaries, started to

become a plausible proposition. In 1961 the Soviet cosmonaut Yuri

Gagarin made the first manned orbit of the Earth in Vostok 1. In 1969

NASA’s Apollo 11 mission landed two American astronauts, Neil Armstrong

and Buzz Aldrin, on the Moon. The space shuttle began operational flights

in 1982, and while budget constraints prevented it achieving the original

aims – a reusable vehicle with a rapid turnaround – it became one of the

workhorses of low-orbit spaceflight, along with Russia’s Soyuz spacecraft.

Atlantis has now made the final flight of the space shuttle programme, but

new vehicles are being planned, mainly by private companies. Europe,

India, China, and Japan have their own space programmes and agencies.

This literal ascent of humanity has changed our view of who we are and

where we live – the main reason why ‘Earth’ now means a blue–white

globe. Those colours hold a clue to our newfound ability to fly. The blue is

water, and the white is water vapour in the form of clouds. Earth is a water

world, with oceans, seas, rivers, lakes. What water does best is to flow, often

to places where it’s not wanted. The flow might be rain dripping from a

roof or the mighty torrent of a waterfall. It can be gentle and smooth, or

rough and turbulent – the steady flow of the Nile across what would

otherwise be desert, or the frothy white water of its six cataracts.

It was the patterns formed by water, or more generally any moving

fluid, that attracted the attention of mathematicians in the nineteenth

century, when they derived the first equations for fluid flow. The vital fluid

for flight is less visible than water, but just as ubiquitous: air. The flow of air

is more complex mathematically, because air can be compressed. By

modifying their equations so that they applied to a compressible fluid,

mathematicians initiated the science that would eventually get the Age of

Flight off the ground: aerodynamics. Early pioneers might fly by rule of

thumb, but commercial airliners and the space shuttle fly because

engineers have done the calculations that make them safe and reliable

(barring occasional accidents). Aircraft design requires a deep

understanding of the mathematics of fluid flow. And the pioneer of fluid

dynamics was the renowned mathematician Leonhard Euler, who died in

the year the Montgolfiers made their first balloon flight.
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There are few areas of mathematics towards which the prolific Euler did not

turn his attention. It has been suggested that one reason for his prodigious

and versatile output was politics, or more precisely, its avoidance. He

worked in Russia for many years, at the court of Catherine the Great, and

an effective way to avoid being caught up in political intrigue, with

potentially disastrous consequences, was to be so busy with his

mathematics that no one would believe he had any time to spare for

politics. If this is what he was doing, we have Catherine’s court to thank for

many wonderful discoveries. But I’m inclined to think that Euler was

prolific because he had that sort of mind. He created huge quantities of

mathematics because he could do no other.

There were predecessors. Archimedes studied the stability of floating

bodies over 2200 years ago. In 1738 the Dutch mathematician Daniel

Bernoulli published Hydrodynamica (‘Hydrodynamics’), containing the

principle that fluids flow faster in regions where the pressure is lower.

Bernoulli’s principle is often invoked today to explain why aircraft can fly:

the wing is shaped so that the air flows faster across the top surface,

lowering the pressure and creating lift. This explanation is a bit too

simplistic, and many other factors are involved in flight, but it does

illustrate the close relationship between basic mathematical principles and

practical aircraft design. Bernoulli embodied his principle in an algebraic

equation relating velocity and pressure in an incompressible fluid.

In 1757 Euler turned his fertile mind to fluid flow, publishing an article

‘Principes généraux du mouvement des fluides’ (General principles of the

movement of fluids) in the Memoirs of the Berlin Academy. It was the first

serious attempt to model fluid flow using a partial differential equation. To

keep the problem within reasonable bounds, Euler made some simplifying

assumptions: in particular, he assumed the fluid was incompressible, like

water rather than air, and had zero viscosity – no stickiness. These

assumptions allowed him to find some solutions, but they also made his

equations rather unrealistic. Euler’s equation is still in use today for some

types of problem, but on the whole it is too simple to be of much practical

use.

Two scientists came up with a more realistic equation. Claude-Louis

Navier was a French engineer and physicist; George Gabriel Stokes was an

Irish mathematician and physicist. Navier derived a system of partial

differential equations for the flow of a viscous fluid in 1822; Stokes started

publishing on the topic twenty years later. The resulting model of fluid

flow is now called the Navier–Stokes equation (often the plural is used

because the equation is stated in terms of a vector, so it has several
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components). This equation is so accurate that nowadays engineers often

use computer solutions instead of performing physical tests in wind

tunnels. This technique, known as computational fluid dynamics (CFD), is

now standard in any problem involving fluid flow: the aerodynamics of the

space shuttle, the design of Formula 1 racing cars and everyday road cars,

and blood circulating through the human body or an artificial heart.

There are two ways to look at the geometry of a fluid. One is to follow the

movements of individual tiny particles of fluid and see where they go. The

other is to focus on the velocities of such particles: how fast, and in which

direction, they are moving at any instant. The two are intimately related,

but the relationship is difficult to disentangle except in numerical

approximations. One of the great insights of Euler, Navier, and Stokes

was the realisation that everything looks a lot simpler in terms of the

velocities. The flow of a fluid is best understood in terms of a velocity field:

a mathematical description of how the velocity varies from point to point

in space and from instant to instant in time. So Euler, Navier, and Stokes

wrote down equations describing the velocity field. The actual flow

patterns of the fluid can then be calculated, at least to a good

approximation.

The Navier–Stokes equation looks like this:

r
qv
qt

þv �Hv
� �

¼�HpþH �Tþ f

where r is the density of the fluid, v is its velocity field, p is pressure, T

determines the stresses, and f represents body forces – forces that act

throughout the entire region, not just at its surface. The dot is an operation

on vectors, and H is an expression in partial derivatives, namely

H¼ q
qx

;
q
qy

;
q
qz

� �

The equation is derived from basic physics. As with the wave equation, a

crucial first step is to apply Newton’s second law of motion to relate the

movement of a fluid particle to the forces that act on it. The main force is

elastic stress, and this has two main constituents: frictional forces caused

by the viscosity of the fluid, and the effects of pressure, either positive

(compression) or negative (rarefaction). There are also body forces, which

stem from the acceleration of the fluid particle itself. Combining all this

information leads to the Navier–Stokes equation, which can be seen as a
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statement of the law of conservation of momentum in this particular

context. The underlying physics is impeccable, and the model is realistic

enough to include most of the significant factors; this is why it fits reality

so well. Like all of the traditional equations of classical mathematical

physics it is a continuum model: it assumes that the fluid is infinitely

divisible.

This is perhaps the main place where the Navier–Stokes equation

potentially loses touch with reality, but the discrepancy shows up only

when the motion involves rapid changes on the scale of individual

molecules. Such small-scale motions are important in one vital context:

turbulence. If you turn on a tap and let the water flow out slowly, it arrives

in a smooth trickle. Turn the tap on full, however, and you often get a

surging, frothy, foaming gush of water. Similar frothy flows occur in rapids

on a river. This effect is known as turbulence, and those of us who fly

regularly are well aware of its effects when it occurs in air. It feels as though

the aircraft is driving along a very bumpy road.

Solving the Navier–Stokes equation is hard. Until really fast computers

were invented, it was so hard that mathematicians were reduced to short

cuts and approximations. But when you think about what a real fluid can

do, it ought to be hard. You only have to look at water flowing in a stream,

or waves breaking on a beach, to see that fluids can flow in extremely

complex ways. There are ripples and eddies, wave patterns and whirlpools,

and fascinating structures like the Severn bore, a wall of water that races up

the estuary of the River Severn in south-west England when the tide comes

in. The patterns of fluid flow have been the source of innumerable

mathematical investigations, yet one of the biggest and most basic

questions in the area remains unanswered: is there a mathematical

guarantee that solutions of the Navier–Stokes equation actually exist,

valid for all future time? There is a million-dollar prize for anyone who can

solve it, one of the seven Clay Institute Millennium Prize problems, chosen

to represent the most important unsolved mathematical problems of our

age. The answer is ‘yes’ in two-dimensional flow, but no one knows for

three-dimensional flow.

Despite this, the Navier–Stokes equation provides a useful model of

turbulent flow because molecules are extremely small. Turbulent vortices a

few millimetres across already capture many of the main features of

turbulence, whereas a molecule is far smaller, so a continuum model

remains appropriate. The main problem that turbulence causes is practical:

it makes it virtually impossible to solve the Navier–Stokes equation

numerically, because a computer can’t handle infinitely complex
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calculations. Numerical solutions of partial differential equations use a

grid, dividing space into discrete regions and time into discrete intervals.

To capture the vast range of scales on which turbulence operates – its big

vortices, middle-sized ones, right down to the millimetre-scale ones – you

need an impossibly fine computational grid. For this reason, engineers

often use statistical models of turbulence instead.

The Navier–Stokes equation has revolutionised modern transport. Perhaps

its greatest influence is on the design of passenger aircraft, because not only

do these have to fly efficiently, but they have to fly, stably and reliably.

Ship design also benefits from the equation, because water is a fluid. But

even ordinary household cars are now designed on aerodynamic

principles, not just because it makes them look sleek and cool, but

because efficient fuel consumption relies on minimising drag caused by the

flow of air past the vehicle. One way to reduce your carbon footprint is to

drive an aerodynamically efficient car. Of course there are other ways,

ranging from smaller, slower cars to electric motors, or just driving less.

Some of the big improvements in fuel consumption figures have come

from improved engine technology, some from better aerodynamics.

In the earliest days of aircraft design, pioneers put their aeroplanes

together using back-of-the-envelope calculations, physical intuition, and

trial and error. When your aim was to fly more than a hundred metres no

more than three metres off the ground, that was good enough. The first

time that Wright Flyer I got properly off the ground, instead of stalling and

crashing after three seconds in the air, it travelled 120 feet at a speed just

below 7 mph. Orville, the pilot on that occasion, managed to keep it aloft

for a staggering 12 seconds. But the size of passenger aircraft quickly grew,

for economic reasons: the more people you can carry in one flight, the

more profitable it will be. Soon aircraft design had to be based on a more

rational and reliable method. The science of aerodynamics was born, and

its basic mathematical tools were equations for fluid flow. Since air is both

viscous and compressible, the Navier–Stokes equation, or some

simplification that makes sense for a given problem, took centre stage as

far as theory went.

However, solving those equations, in the absence of modern

computers, was virtually impossible. So the engineers resorted to an

analogue computer: placing models of the aircraft in a wind tunnel. Using

a few general properties of the equations to work out how variables change

as the scale of the model changes, this method provided basic information
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quickly and reliably. Most Formula 1 teams today use wind tunnels to test

their designs and evaluate potential improvements, but computer power is

now so great that most also use CFD. For example, Figure 43 shows a CFD

calculation of air flow past a BMW Sauber car. As I write, one team, Virgin

Racing, uses only CFD, but they will be using a wind tunnel as well next

year.

Fig 43 Computed air flow past a Formula 1 car.

Wind tunnels are not terribly convenient; they are expensive to build

and run, and they need lots of scale models. Perhaps the biggest difficulty is

to make accurate measurements of the flow of air without affecting it. If

you put an instrument in the wind tunnel to measure, say, air pressure,

then the instrument itself disturbs the flow. Perhaps the biggest practical

advantage of CFD is that you can calculate the flow without affecting it.

Anything you might wish to measure is easily available. Moreover, you can

modify the design of the car, or a component, in software, which is a lot

quicker and cheaper than making lots of different models. Modern

manufacturing processes often involve computer models at the design

stage anyway.

Supersonic flight, where the aircraft goes faster than sound, is

especially tricky to study using models in a wind tunnel, because the

wind speeds are so great. At such speeds, the air cannot move away from

the aircraft as quickly as the aircraft pushes itself through the air, and this
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causes shockwaves – sudden discontinuities in air pressure, heard on the

ground as a sonic boom. This environmental problem was one reason why

the joint Anglo-French airliner Concorde, the only supersonic commercial

aircraft ever to go into service, had limited success: it was not allowed to fly

at supersonic speeds except over oceans. CFD is widely used to predict the

flow of air past a supersonic aircraft.

There are about 600 million cars on the planet and tens of thousands of

civil aircraft, so even though these applications of CFD may seem high-

tech, they are significant in everyday life. Other ways to use CFD have a

more human dimension. It is widely used by medical researchers to

understand blood flow in the human body, for example. Heart

malfunction is one of the leading causes of death in the developed

world, and it can be triggered either by problems with the heart itself or by

clogged arteries, which disrupt the blood flow and can cause clots. The

mathematics of blood flow in the human body is especially intractable

analytically because the walls of the arteries are elastic. It’s difficult enough

to calculate the movement of fluid through a rigid tube; it’s much harder if

the tube can change its shape depending on the pressure that the fluid

exerts, because now the domain for the calculation doesn’t stay the same as

time passes. The shape of the domain affects the flow pattern of the fluid,

and simultaneously the flow pattern of the fluid affects the shape of the

domain. Pen-and-paper mathematics can’t handle that sort of feedback

loop.

CFD is ideal for this kind of problem because computers can perform

billions of calculations every second. The equation has to be modified to

include the effects of elastic walls, but that’s mostly a matter of extracting

the necessary principles from elasticity theory, another well-developed part

of classical continuum mechanics. For example, a CFD calculation of how

blood flows through the aorta, the main artery entering the heart, has been

carried out at the École Polytechnique Féderale de Lausanne in

Switzerland. The results provide information that can help doctors get a

better understanding of cardiovascular problems.

They also help engineers to develop improved medical devices such as

stents – small metal-mesh tubes that keep the artery open. Suncica Canic

has used CFD and models of elastic properties to design better stents,

deriving a mathematical theorem that caused one design to be abandoned

and suggested better designs. Models of this type have become so accurate

that the US Food and Drugs Administration is considering requiring any
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group designing stents to carry out mathematical modelling before

performing clinical trials. Mathematicians and doctors are joining forces

to use the Navier–Stokes equation to obtain better predictions of, and

better treatments for, the main causes of heart attacks.

Another, related, application is to heart bypass operations, in which a

vein is removed from elsewhere in the body and grafted into the coronary

artery. The geometry of the graft has a strong effect on the blood flow. This

in turn affects clotting, which is more likely if the flow has vortices because

blood can become trapped in a vortex and fail to circulate properly. So here

we see a direct link between the geometry of the flow and potential medical

problems.

The Navier–Stokes equation has another application: climate change,

otherwise known as global warming. Climate and weather are related, but

different. Weather is what happens at a given place, at a given time. It may

be raining in London, snowing in New York, or baking in the Sahara.

Weather is notoriously unpredictable, and there are good mathematical

reasons for this: see Chapter 16 on chaos. However, much of the

unpredictability concerns small-scale changes, both in space and time:

the fine details. If the TV weatherman predicts showers in your town

tomorrow afternoon and they happen six hours later and 20 kilometres

away, he thinks he did a good job and you are wildly unimpressed. Climate

is the long-term ‘texture’ of weather – how rainfall and temperature behave

when averaged over long periods, perhaps decades. Because climate

averages out these discrepancies, it is paradoxically easier to predict. The

difficulties are still considerable, and much of the scientific literature

investigates possible sources of error, trying to improve the models.

Climate change is a politically contentious issue, despite a very strong

scientific consensus that human activity over the past century or so has

caused the average temperature of the Earth to rise. The increase to date

sounds small, about 0.75 degrees Celsius during the twentieth century, but

the climate is very sensitive to temperature changes on a global scale. They

tend to make the weather more extreme, with droughts and floods

becoming more common.

‘Global warming’ does not imply that the temperature everywhere is

changing by the same tiny amount. On the contrary, there are large

fluctuations from place to place and from time to time. In 2010 Britain

experienced its coldest winter for 31 years, prompting the Daily Express to

print the headline ‘and still they claim it’s global warming’. As it happens,
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2010 tied with 2005 as the hottest year on record, across the globe.1 So

‘they’ were right. In fact, the cold snap was caused by the jet stream

changing position, pushing cold air south from the Arctic, and this

happened because the Arctic was unusually warm. Two weeks of frost in

central London does not disprove global warming. Oddly, the same

newspaper reported that Easter Sunday 2011 was the hottest on record, but

made no connection to global warming. On that occasion they correctly

distinguished weather from climate. I’m fascinated by the selective

approach.

Similarly, ‘climate change’ does not simply mean that the climate is

changing. It has done that without human assistance repeatedly, mainly

on long timescales, thanks to volcanic ash and gases, long-term variations

in the Earth’s orbit around the Sun, even India colliding with Asia to create

the Himalayas. In the context currently under debate, ‘climate change’ is

short for ‘anthropogenic climate change’ – changes in global climate

caused by human activity. The main causes are the production of two

gases: carbon dioxide and methane. There are greenhouse gases: they trap

incoming radiation (heat) from the Sun. Basic physics implies that the

more of these gases the atmosphere contains, the more heat it traps;

although the planet does radiate some heat away, on balance it will get

warmer. Global warming was predicted, on this basis, in the 1950s, and the

predicted temperature increase is in line with what has been observed.

The evidence that carbon dioxide levels have increased dramatically

comes from many sources. The most direct is ice cores. When snow falls in

the polar regions, it packs together to form ice, with the most recent snow

at the top and the oldest at the bottom. Air is trapped in the ice, and the

conditions that prevail there leave it virtually unchanged for very long

periods of time, keeping the original air in and more recent air out. With

care, it is possible to measure the composition of the trapped air and to

determine the date when it was trapped, very accurately. Measurements

made in the Antarctic show that the concentration of carbon dioxide in

the atmosphere was pretty much constant over the past 100,000 years –

except for the last 200, when it shot up by 30%. The source of the excess

carbon dioxide can be inferred from the proportions of carbon-13, one of

the isotopes (different atomic forms) of carbon. Human activity is by far

the most likely explanation.

The main reason why the skeptics have even faint glimmerings of a

case is the complexity of climate forecasting. This has to be done using

mathematical models, because it’s about the future. No model can include

every single feature of the real world, and, if it did, you could never work
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out what it predicted, because no computer could ever simulate it. Every

discrepancy between model and reality, however insignificant, is music to

the skeptics’ ears. There is certainly room for differences of opinion about

the likely effects of climate change, or what we should do to mitigate it. But

burying our heads in the sand isn’t a sensible option.

Two vital aspects of climate are the atmosphere and the oceans. Both

are fluids, and both can be studied using the Navier–Stokes equation. In

2010 the UK’s main science funding body, the Engineering and Physical

Sciences Research Council, published a document on climate change,

singling out mathematics as a unifying force: ‘Researchers in meteorology,

physics, geography and a host of other fields all contribute their expertise,

but mathematics is the unifying language that enables this diverse group of

people to implement their ideas in climate models.’ The document also

explained that ‘The secrets of the climate system are locked away in the

Navier–Stokes equation, but it is too complex to be solved directly.’

Instead, climate modellers use numerical methods to calculate the fluid

flow at the points of a three-dimensional grid, covering the globe from the

ocean depths to the upper reaches of the atmosphere. The horizontal

spacing of the grid is 100 kilometres – anything smaller would make the

computations impractical. Faster computers won’t help much, so the best

way forward is to think harder. Mathematicians are working on more

efficient ways to solve the Navier–Stokes equation numerically.

The Navier–Stokes equation is only part of the climate puzzle. Other

factors include heat flow within and between the oceans and the

atmosphere, the effect of clouds, non-human contributions such as

volcanoes, even aircraft emissions in the stratosphere. Skeptics like to

emphasise such factors to suggest the models are wrong, but most of them

are known to be irrelevant. For example, every year volcanoes contribute a

mere 0.6% of the carbon dioxide produced by human activity. All of the

main models suggest that there is a serious problem, and humans have

caused it. The main question is just how much the planet will warm up,

and what level of disaster will result. Since perfect forecasting is impossible,

it is in everybody’s interests to make sure that our climate models are the

best we can devise, so that we can take appropriate action. As the glaciers

melt, the Northwest Passage opens up as Arctic ice shrinks, and Antarctic

ice shelves are breaking off and sliding into the ocean, we can no longer

take the risk of believing that we don’t need to do anything and it will all

sort itself out.
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11Waves in the ether
Maxwell’s Equations

What do they say?

Electricity and magnetism can’t just leak away. A spinning

region of electric field creates a magnetic field at right angles to

the spin. A spinning region of magnetic field creates an electric

field at right angles to the spin, but in the opposite direction.

Why is that important?

It was the first major unification of physical forces, showing

that electricity and magnetism are intimately interrelated.

What did it lead to?

The prediction that electromagnetic waves exist, travelling at

the speed of light, so light itself is such a wave. This motivated

the invention of radio, radar, television, wireless connections

for computer equipment, and most modern communications.
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A t the start of the nineteenth century most people lit their houses

using candles and lanterns. Gas lighting, which dates from 1790, was

occasionally used in homes and business premises, mainly by inventors

and entrepreneurs. Gas street lighting came into use in Paris in 1820. At

that time, the standard way to send messages was to write a letter and send

it by horse-drawn carriage; for urgent messages, keep the horse but omit

the carriage. The main alternative, mostly restricted to military and official

communications, was the optical telegraph. This used semaphore:

mechanical devices placed on towers, which could represent letters or

words in code by arranging rigid arms at various angles. These

configurations could be seen through a telescope and relayed to the next

tower in line. The first extensive system of this kind dates from 1792, when

the French engineer Claude Chappe built 556 towers to create a 4800

kilometre network across most of France. It remained in use for sixty years.

Within a hundred years, homes and streets had electric lighting,

electric telegraphy had come and gone, and people could talk to each other

by telephone. Physicists had demonstrated radio communications in their

laboratories, and one entrepreneur had already set up a factory selling

‘wirelesses’ – radio sets – to the public. Two scientists made the main

discoveries that triggered this social and technological revolution. One was

the Englishman Michael Faraday, who established the basic physics of

electromagnetism – a tightly-knit combination of the previously separate

phenomena of electricity and magnetism. The other was a Scotsman, James

Clerk Maxwell, who turned Faraday’s mechanical theories into

mathematical equations and used them to predict the existence of radio

waves travelling at the speed of light.

The Royal Institution in London is an imposing building, fronted by

classical columns, tucked away on a side street near Piccadilly Circus.

Today its main activity is to host popular science events for the public, but

when it was founded in 1799 its brief also included ‘diffusing the

knowledge, and facilitating the general introduction, of useful
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mechanical inventions’. When John ‘Mad Jack’ Fuller established a Chair

in Chemistry at the Royal Institution, its first incumbent was not an

academic. He was the son of a would-be blacksmith, and he had trained as

a bookseller’s apprentice. The position allowed him to read voraciously,

despite his family’s lack of cash, and Jane Marcet’s Conversations on

Chemistry and Isaac Watts’s The Improvement of the Mind inspired a deep

interest in science in general and electricity in particular.

The young man was Michael Faraday. He had attended lectures at the

Royal Institution given by the eminent chemist Humphry Davy, and he

sent the lecturer 300 pages of notes. Shortly afterwards Davy had an

accident that damaged his eyesight, and asked Faraday to become his

secretary. Then an assistant at the Royal Institution got the sack, and Davy

suggested Faraday as a replacement, setting him to work on the chemistry

of chlorine.

The Royal Institution allowed Faraday to pursue his own scientific

interests as well, and he carried out innumerable experiments on the newly

discovered topic of electricity. In 1821 he learned of the work of the Danish

scientist Hans Christian Ørsted, linking electricity to the much older

phenomenon of magnetism. Faraday exploited this link to invent an

electric motor, but Davy got upset when he didn’t get any credit, and told

Faraday to work on other things. Davy died in 1831, and two years later

Faraday began a series of experiments on electricity and magnetism that

sealed his reputation as one of the greatest scientists ever to have lived. His

extensive investigations were partly motivated by the need to come up

with large numbers of novel experiments to edify the man in the street and

entertain the great and the good, as part of the Royal Institution’s brief to

encourage the public understanding of science.

Among Faraday’s inventions were methods for turning electricity into

magnetism and both into motion (a motor) and for turning motion into

electricity (a generator). These exploited his greatest discovery,

electromagnetic induction. If material that can conduct electricity moves

through a magnetic field, an electrical current will flow through it. Faraday

discovered this in 1831. Francesco Zantedeschi had already noticed the

effect in 1829, and Joseph Henry also spotted it a little later. But Henry

delayed publishing his discovery, and Faraday took the idea much further

than Zantedeschi had done. Faraday’s work went far beyond the Royal

Institution’s brief to facilitate useful mechanical inventions, by creating

innovative machines that exploited frontier physics. This led, fairly

directly, to electric power, lighting, and a thousand other gadgets. When

others took up the baton, the whole panoply of modern electrical and
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electronic equipment burst upon the scene, starting with radio, moving on

to television, radar, and long-distance communications. It was Faraday,

more than any other single individual, who created the modern

technological world, with the help of vital new ideas from hundreds of

gifted engineers, scientists, and businessmen.

Being working class and lacking the normal education of a gentleman,

Faraday taught himself science but not mathematics. He developed his

own theories to explain and guide his experiments, but they rested on

mechanical analogies and conceptual machines, not on formulas and

equations. His work took its deserved place in basic physics through the

intervention of one of Scotland’s greatest scientific intellects, James Clerk

Maxwell.

Maxwell was born the same year that Faraday announced the discovery of

electromagnetic induction. One application, the electromagnetic

telegraph, quickly followed, thanks to Gauss and his assistant Wilhelm

Weber. Gauss wanted to use wires to carry electrical signals between

Göttingen Observatory, where he hung out, to the Institute of Physics a

kilometre away, where Weber worked. Presciently, Gauss simplified the

previous technique for distinguishing letters of the alphabet – one wire per

letter – by introducing a binary code using positive and negative current,

see Chapter 15. By 1839 the Great Western Railway company was sending

messages by telegraph from Paddington to West Drayton, a distance of 21

kilometres. In the same year Samuel Morse independently invented his

own electric telegraph in the USA, employing Morse code (invented by his

assistant Alfred Vail) and sending its first message in 1838.

In 1876, three years before Maxwell died, Alexander Graham Bell took

out the first patent on a new gadget, the acoustic telegraph. It was a device

that turned sound, especially speech, into electrical impulses, and

transmitted them along a wire to a receiver, which turned them back

into sound. We now know it as the telephone. He wasn’t the first person to

conceive of such a thing, or even to build one, but he held the master

patent. Thomas Edison improved the design with his carbon microphone

of 1878. A year later, Edison developed the carbon filament electric light

bulb, and cemented himself in the popular mind as the inventor of electric

lighting. In point of fact, he was preceded by at least 23 inventors, the best

known being Joseph Swan, who had patented his version in 1878. In 1880,

one year after Maxwell’s death, the city of Wabash, Illinois became the first

to use electric lighting for its streets.
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These revolutions in communication and lighting owed a lot to

Faraday; electrical power generation also owed a lot to Maxwell. But

Maxwell’s most far-reaching legacy was to make the telephone seem like a

child’s toy. And it stemmed, directly and inevitably, from his equations for

electromagnetism.

Maxwell was born into a talented but eccentric Edinburgh family, which

included lawyers, judges, musicians, politicians, poets, mining speculators,

and businessmen. As a teenager he began to succumb to the charms of

mathematics, winning a school competition with an essay on how to

construct oval curves using pins and thread. At 16 he went to Edinburgh

University, where he studied mathematics and experimented in chemistry,

magnetism, and optics. He published papers in pure and applied

mathematics in the Royal Society of Edinburgh’s journal. In 1850 his

mathematical career took a more serious turn and he moved to Cambridge

University, where he was privately coached for the mathematical tripos

examination by William Hopkins. The tripos in those days consisted of

solving complicated problems, often involving clever tricks and extensive

calculations, against the clock. Later Godfrey Harold Hardy, one of

England’s best mathematicians and a Cambridge professor, would have

strong views about how to do creative mathematics, and cramming for a

tricky examination wasn’t it. In 1926 he remarked that his aim was ‘not...

to reform the tripos, but to destroy it’. But Maxwell crammed, and thrived,

in the competitive atmosphere, probably because he had that sort of mind.

He also continued his weird experiments, among other things trying to

work out how a cat always lands on its feet, even when it is held upside

down only a few centimetres above a bed. The difficulty is that this appears

to violate Newtonian mechanics; the cat has to rotate through 180 degrees,

but has nothing to push against. The precise mechanism eluded him, and

was not worked out until the French doctor Jules Marey made a series of

photographs of a falling cat in 1894. The secret is that the cat is not rigid: it

twists its front and back in opposite directions and back again, while

extending and retracting its paws to stop these motions cancelling out.1

Maxwell got his mathematics degree, and continued as a postgraduate

at Trinity College. There he read Faraday’s Experimental Researches and

worked on electricity and magnetism. He took up a chair of Natural

Philosophy in Aberdeen, investigating Saturn’s rings and the dynamics of

the molecules in gases. In 1860 he moved to King’s College London, and

here he could sometimes meet with Faraday. Now Maxwell embarked on
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his most influential quest: to formulate a mathematical basis for Faraday’s

experiments and theories.

At the time, most physicists working on electricity and magnetism were

looking for analogies with gravity. It seemed sensible: opposite electrical

charges attract each other with a force which, like gravity, is proportional

to the inverse square of the distance separating them. Like charges repel

each other with a similarly varying force, and the same goes for

magnetism, where charges are replaced by magnetic poles. The standard

way of thinking was that gravity was a force whereby one body

mysteriously acted on another distant body, without anything passing

between the two; electricity and magnetism were assumed to act in the

same manner. Faraday had a different idea: they are both ‘fields’,

phenomena that pervade space and can be detected by the forces they

produce.

What is a field? Maxwell could make little progress until he could

describe the concept mathematically. But Faraday, lacking mathematical

training, had posed his theories in terms of geometric structures, such as

‘lines of force’ along which the fields pulled and pushed. Maxwell’s first

great breakthrough was to reformulate these ideas by analogy with the

mathematics of fluid flow, where the field in effect is the fluid. Lines of

force were then analogous to the paths followed by the molecules of the

fluid; the strength of the electric or magnetic field was analogous to the

velocity of the fluid. Informally, a field was an invisible fluid;

mathematically, it behaved exactly like that, whatever it really was.

Maxwell borrowed ideas from the mathematics of fluids and modified

them to describe magnetism. His model accounted for the main properties

observed in electricity.

Not content with this initial attempt, he went on to include not just

magnetism, but its relation to electricity. As the electrical fluid flowed, it

affected the magnetic one, and vice versa. For magnetic fields Maxwell

used the mental image of tiny vortices spinning in space. Electric fields

were similarly composed of tiny charged spheres. Following this analogy

and the resulting mathematics, Maxwell began to understand how a

change in the electric force could create a magnetic field. As the spheres of

electricity move, they cause the magnetic vortices to spin, like a football

fan passing through a turnstile. The fan moves without spinning; the

turnstile spins without moving.

Maxwell was slightly dissatisfied with this analogy, saying ‘I do not
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bring it forward... as a mode of connection existing in nature... It is,

however... mechanically conceivable and easily investigated, and it serves

to bring out the actual mechanical connections between the known

electromagnetic phenomena.’ To show what he meant, he used the model

to explain why parallel wires carrying opposite electrical currents repel

each other, and he also explained Faraday’s crucial discovery of

electromagnetic induction.

The next step was to retain the mathematics while getting rid of the

mechanical gadgetry that propelled the analogy. This amounted to writing

down equations for the basic interactions between the electrical and

magnetic fields, derived from the mechanical model, but divorced from

this origin. Maxwell achieved this goal in 1864 in his famous paper ‘A

dynamical theory of the electromagnetic field’.

We now interpret his equations using vectors, which are quantities

that possess not just a size, but a direction. The most familiar is velocity:

the size is the speed, how fast the object is moving; the direction is the one

along which it moves. The direction really does matter: a body moving

vertically upwards at 10 kps behaves very differently from one moving

vertically downwards at 10 kps. Mathematically, a vector is represented by

its three components: its effect along three axes at right angles to each

other, such as north/south, east/west, and up/down. The bare bones are

thus that a vector is a triple (x,y,z) composed of three numbers, Figure 44.

The velocity of a fluid at a given point, for instance, is a vector. In contrast,

the pressure at a given point is a single number: the fancy term used to

distinguish this from a vector is ‘scalar’.

z

x

y

(x,y,z)

Fig 44 A three-dimensional vector.

In these terms, what is the electric field? From Faraday’s perspective it

is determined by lines of electrical force. In Maxwell’s analogy, these are

flow-lines of the electrical fluid. A flow-line tells us in which direction the

fluid is flowing, and as a molecule moves along the flow-line, we can also
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observe its speed. For each point in space, the flow-line passing through

that point therefore determines a vector, which describes the speed and

direction of the electric fluid, that is, the strength and direction of the

electric field at that point. Conversely, if we know these speeds and

directions, for every point in space, we can deduce what the flow-lines look

like, so in principle we know the electric field.

In short: the electric field is a system of vectors, one for each point in

space. Each vector prescribes the strength and direction of the electrical

force (exerted on a tiny charged test particle) at that point. Mathematicians

call such a quantity a vector field: it is a function that assigns to each point

in space the corresponding vector. Similarly, the magnetic field is

determined by the magnetic lines of force; it is the vector field

corresponding to the forces that would be exerted on a tiny magnetic

test particle.

Having sorted out what electric and magnetic fields were, Maxwell

could write down equations describing what they did. We now express

these equations using two vector operators, known as divergence and curl.

Maxwell used specific formulas involving the three components of the

electric and magnetic fields. In the special case in which there are no

conducting wires or metal plates, no magnets, and everything happens in a

vacuum, the equations take a slightly simpler form, and I will restrict the

discussion to this case.

Two of the equations tell us that the electric and magnetic fluids are

incompressible – that is, electricity and magnetism cannot just leak away,

they have to go somewhere. This translates as ‘the divergence is zero’,

leading to the equations

H �E¼0 H �H¼0

where the upside-down triangle and the dot are the notation for the

divergence. Two more equations tell us that when a region of electric field

spins in a small circle, it creates a magnetic field at right angles to the plane

of that circle, and similarly a spinning region of magnetic field creates an

electric field at right angles to the plane of that circle. There is a curious

twist: the electric and magnetic fields point in opposite directions for a

given direction of spin. The equations are

H6E¼� 1

c

qH
qt

H6H¼ 1

c

qE
qt

where now the upside-down triangle and the cross are the notation for the

curl. The symbol t stands for time, and ¶/¶t is the rate of change with
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respect to time. Notice that the first equation has a minus sign, but the

second does not: this represents the opposite orientations that I

mentioned.

What is c? It is a constant, the ratio of electromagnetic to electrostatic

units. Experimentally this ratio is just under 300,000, in units of kilometres

divided by seconds. Maxwell immediately recognised this number: it is the

speed of light in a vacuum. Why did that quantity appear? He decided to

find out. One clue, dating back to Newton, and developed by others, was

the discovery that light was some kind of wave. But no one knew what the

wave consisted of.

A simple calculation provided the answer. Once you know the equations

for electromagnetism, you can solve them to predict how the electric and

magnetic fields behave in different circumstances. You can also derive

general mathematical consequences. For instance, the second pair of

equations relates E to H; any mathematician will immediately try to derive

equations that contain only E and only H, because that lets us concentrate

on each field separately. Considering its epic consequences, this task turns

out to be absurdly simple – if you have some familiarity with vector

calculus. I’ve put the detailed working in the Notes,2 but here’s a quick

summary. Following our noses, we start with the third equation, which

relates the curl of E to the time-derivative of H. We don’t have any other

equations involving the time-derivative of H, but we do have one that

involves the curl of H, namely, the fourth equation. This suggests that we

should take the third equation and form the curl of both sides. Then we

apply the fourth equation, simplify, and emerge with

q2E
qt2

¼ c2H2E

which is the wave equation!

The same trick applied to the curl of H produces the same equation

with H in place of E. (The minus sign is applied twice, so it disappears.) So

both the electric and magnetic fields, in a vacuum, obey the wave

equation. Since the same constant c occurs in each wave equation, they

both travel at the same speed, namely c. So this little calculation predicts

that both the electric field and the magnetic field can simultaneously

support a wave – making it an electromagnetic wave, in which both fields

vary in concert with each other. And the speed of that wave is ... the speed

of light.
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It’s another of those trick questions. What travels at the speed of light?

This time the answer is what you’d expect: light. But there is a momentous

implication: light is an electromagnetic wave.

This was stupendous news. There was no reason, prior to Maxwell’s

derivation of his equations, to imagine such a fundamental link between

light, electricity, and magnetism. But there was more. Light comes in many

different colours, and once you know that light is a wave, you can work out

that these correspond to waves with different wavelengths – distance

betweens successive peaks. The wave equation imposes no conditions on

the wavelength, so it can be anything. The wavelengths of visible light are

restricted to a small range, because of the chemistry of the eye’s light-

detecting pigments. Physicists already knew of ‘invisible light’, ultraviolet

and infrared. Those, of course, had wavelengths just outside the visible

range. Now Maxwell’s equations led to a dramatic prediction:

electromagnetic waves with other wavelengths should also exist.

Conceivably, any wavelength – long or short – could occur, Figure 45.
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Fig 45 The electromagnetic spectrum.

No one had expected this, but as soon as theory said it ought to

happen, experimentalists could go and look for it. One of them was a

German, Heinrich Hertz. In 1886 he constructed a device that could

generate radio waves and another that could receive them. The transmitter

was little more than a machine that could produce a high-voltage spark;

theory indicated that such a spark would emit radio waves. The receiver

was a circular loop of copper wire, whose size was chosen to resonate with

the incoming waves. A small gap in the loop, a few hundredths of a

millimetre across, would reveal those waves by producing tiny sparks. In
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1887 Hertz did the experiment, and it was a success. He went on to

investigate many different features of radio waves. He also measured their

speed, getting an answer close to the speed of light, which confirmed

Maxwell’s prediction and confirmed that his apparatus really was detecting

electromagnetic waves.

Hertz knew that his work was important as physics, and he published it

in Electric Waves: being researches on the propagation of electric action with

finite velocity through space. But it never occurred to him that the idea might

have practical uses. When asked, he replied ‘It’s of no use whatsoever . . .

just an experiment that proves Maestro Maxwell was right – we just have

these mysterious electromagnetic waves that we cannot see with the naked

eye. But they are there.’ Pressed for his view of the implications, he said

‘Nothing, I guess.’

Was it a failure of imagination, or just a lack of interest? It’s hard to tell.

But Hertz’s ‘useless’ experiment, confirming Maxwell’s prediction of

electromagnetic radiation, would quickly lead to an invention that made

the telephone look like a children’s toy.

Radio.

Radio makes use of an especially intriguing range of the spectrum: waves

with wavelengths much longer than light. Such waves would be likely to

retain their structure over long distances. The key idea, the one that Hertz

missed, is simple: if you could somehow impress a signal on a wave of that

kind, you could talk to the world.

Other physicists, engineers, and entrepreneurs were more imaginative,

and quickly spotted radio’s potential. To realise that potential, however,

they had to solve a number of technical problems. They needed a

transmitter that could produce a sufficiently powerful signal, and

something to receive it. Hertz’s apparatus was restricted to a distance of a

few feet; you can understand why he didn’t suggest communication as a

possible application. Another problem was how to impose a signal. A third

was how far the signal could be sent, which might well be limited by the

curvature of the Earth. If a straight line between transmitter and receiver

hits the ground, this would presumably block the signal. Later it turned out

that nature has been kind to us, and the Earth’s ionosphere reflects radio

waves in a wide range of wavelengths, but before this was discovered there

were obvious ways round the potential problem anyway. You could build

tall towers and put the transmitters and receivers on those. By relaying
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signals from one tower to another, you could send messages round the

globe, very fast.

There are two relatively obvious ways to impress a signal on a radio

wave. You can make the amplitude vary or you can make the frequency

vary. These methods are called amplitude-modulation and frequency-

modulation: AM and FM. Both were used and both still exist. That was one

problem solved. By 1893 the Serbian engineer Nikola Tesla had invented

and built all of the main devices needed for radio transmission, and he had

demonstrated his methods to the public. In 1894 Oliver Lodge and

Alexander Muirhead sent a radio signal from the Clarendon laboratory in

Oxford to a nearby lecture theatre. A year later the Italian inventor

Guglielmo Marconi transmitted signals over a distance of 1.5 kilometres

using new apparatus he had invented. The Italian government declined to

finance further work, so Marconi moved to England. With the support of

the British Post Office he soon improved the range to 16 kilometres.

Further experiments led to Marconi’s law: the distance over which signals

can be sent is roughly proportional to the square of the height of the

transmitting antenna. Make the tower twice as tall and the signal goes four

times as far. This, too, was good news: it suggested that long-range

transmission should be practical. Marconi set up a transmitting station on

the Isle of Wight in the UK in 1897, and opened a factory the next year,

making what he called ‘wirelesses’. We still called them that in 1952, when

I listened to the Goon Show and Dan Dare on the wireless in my bedroom,

but even then we also referred to the device as ‘the radio’. The word

‘wireless’ has of course come back into vogue, but now it is the links

between your computer and its keyboard, mouse, modem, and Internet

router that are wireless, rather than the link from your receiver to a distant

transmitter. It’s still done by radio.

Initially Marconi owned the main patents to radio, but he lost them to

Tesla in 1943 in a court battle. Technological advances quickly made those

patents obsolete. From 1906 to the 1950s, the vital electronic component

of a radio was the vacuum tube, like a smallish light bulb, so radios had to

be big and bulky. The transistor, a much smaller and more robust device,

was invented in 1947 at Bell Laboratories by an engineering team that

included William Shockley, Walter Brattain, and John Bardeen (see

Chapter 14). By 1954 transistor radios were on the market, but radio was

already losing its primacy as an entertainment medium.

By 1953, I’d already seen the future. It was the coronation of Queen

Elizabeth II, and my aunt in Tonbridge had . . . a television set! So we piled

into my father’s rickety car and drove 40 miles to watch the event. I was
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more impressed by Bill and Ben the Flowerpot Men than by the

coronation, to be honest, but from that moment radio was no longer the

epitome of modern household entertainment. Soon we, too, possessed a

television set. Anyone who has grown up with 48-inch flatscreen colour

TVs with high definition and a thousand channels will be appalled to hear

that in those days the picture was black-and-white, about 12 inches across,

and (in the UK) there was exactly one channel, the BBC. When we watched

‘the television’ it really meant the television.

Entertainment was just one application of radio waves. They were also vital

to the military, for communications and other purposes. The invention of

radar (radio detection and ranging) may well have won World War II for

the Allies. This top-secret device made it possible to detect aircraft,

especially enemy aircraft, by bouncing radio signals off them and

observing the reflected waves. The urban myth that carrots are good for

your eyesight originated in wartime disinformation, intended to stop the

Nazis wondering why the British were getting so good at spotting raiding

bombers. Radar has peacetime uses as well. It is how air traffic controllers

keep tabs on where all the planes are, to prevent collisions; it guides

passenger jets to the runway in fog; it warns pilots of imminent turbulence.

Archaeologists use ground-penetrating radar to locate likely sites for the

remains of tombs and ancient structures.

X-rays, first studied systematically by Wilhelm Röntgen in 1875, have

much shorter wavelengths than light. This makes them more energetic, so

they can pass through opaque objects, notably the human body. Doctors

could use X-rays to detect broken bones and other physiological problems,

and still do, although modern methods are more sophisticated and subject

the patient to far less damaging radiation. X-ray scanners can now create

three-dimensional images of a human body, or some part of it, in a

computer. Other kinds of scanner can do the same thing using different

physics.

Microwaves are efficient ways to send telephone signals, and they also

turn up in the kitchen in microwave ovens, quick ways to heat food. One

of the latest applications to emerge is in airport security. Terahertz

radiation, otherwise known as T-waves, can penetrate clothing and even

body cavities. Customs officials can use them to spot drug smugglers and

terrorists. Their use is a little controversial, since they amount to an

electronic strip-search, but most of us seem to think that’s a small price to

pay if it stops a plane being blown up or cocaine hitting the streets. T-waves
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are also useful to art historians, because they can reveal murals covered in

layers of plaster. Manufacturers and commercial carriers can use T-waves to

inspect products without taking them out of their boxes.

The electromagnetic spectrum is so versatile, and so effective, that its

influence is now felt in virtually all spheres of human activity. It makes

things possible that to any previous generation would appear miraculous.

It took a vast number of people, from every profession, to turn the

possibilities inherent in the mathematical equations into real gadgets and

commercial systems. But none of this was possible until someone realised

that electricity and magnetism can join forces to create a wave. The whole

panoply of modern communications, from radio and television to radar

and microwave links for mobile phones, was then inevitable. And it all

stemmed from four equations and a couple of lines of basic vector calculus.

Maxwell’s equations didn’t just change the world. They opened up a

new one.
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12 Law and disorder
Second Law of Thermodynamics

What does it say?

The amount of disorder in a thermodynamic system always

increases.

Why is that important?

It places limits on how much useful work can be extracted

from heat.

What did it lead to?

Better steam engines, estimates of the efficiency of renewable

energy, the ‘heat death of the universe’ scenario, proof that

matter is made of atoms, and paradoxical connections with

the arrow of time.
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In May 1959 the physicist and novelist C.P. Snow delivered a lecture

with the title The Two Cultures, which provoked widespread

controversy. The response of the prominent literary critic F.R. Leavis was

typical of the other side of the argument; he said bluntly that there was

only one culture: his. Snow suggested that the sciences and the humanities

had lost touch with each other, and argued that this was making it very

difficult to solve the world’s problems. We see the same today with climate

change denial and attacks on evolution. The motivation may be different,

but cultural barriers help such nonsense to thrive – though it is politics that

drives it.

Snow was particularly unhappy about what he saw as declining

standards of education, saying:

A good many times I have been present at gatherings of people who, by

the standards of the traditional culture, are thought highly educated

and who have with considerable gusto been expressing their

incredulity at the illiteracy of scientists. Once or twice I have been

provoked and have asked the company how many of them could

describe the Second Law of Thermodynamics, the law of entropy. The

response was cold: it was also negative. Yet I was asking something

which is about the scientific equivalent of: ‘Have you read a work of

Shakespeare’s?’

Perhaps he sensed he was asking too much – many qualified scientists can’t

state the second law of thermodynamics. So he later added:

I now believe that if I had asked an even simpler question – such as,

What do you mean by mass, or acceleration, which is the scientific

equivalent of saying, ‘Can you read?’ – not more than one in ten of the

highly educated would have felt that I was speaking the same language.

So the great edifice of modern physics goes up, and the majority of the

cleverest people in the western world have about as much insight into

it as their Neolithic ancestors would have had.
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Taking Snow literally, my aim in this chapter is to take us out of the

Neolithic age. The word ‘thermodynamics’ contains a clue: it appears to

mean the dynamics of heat. Can heat be dynamic? Yes: heat can flow. It

can move from one location to another, from one object to another. Go

outside on a winter’s day and you soon feel cold. Fourier had written down

the first serious model of heat flow, Chapter 9 and done some beautiful

mathematics. But the main reason scientists were becoming interested in

heat flow was a newfangled and highly profitable item of technology: the

steam engine.

There is an oft-repeated story of James Watt as a boy, sitting in his mother’s

kitchen watching boiling steam lift the lid off a kettle, and his sudden flash

of inspiration: steam can perform work. So, when he grew up, he invented

the steam engine. It’s inspirational stuff, but like many such tales this one

is just hot air. Watt didn’t invent the steam engine, and he didn’t learn

about the power of steam until he was an adult. The story’s conclusion

about the power of steam is true, but even in Watt’s day it was old hat.

Around 50 BC the Roman architect and engineer Vitruvius described a

machine called an aeolipile in his De Architectura (‘On Architecture’), and

the Greek mathematician and engineer Hero of Alexandria built one a

century later. It was a hollow sphere with some water inside, and two tubes

poked out, bent at an angle as in Figure 46. Heat the sphere and the water

turns to steam, escapes through the ends of the tubes, and the reaction

makes the sphere spin. It was the first steam engine, and it proved that

steam could do work, but Hero did nothing with it beyond entertaining
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people. He did make a similar machine using hot air in an enclosed

chamber to pull a rope that opened the doors of a temple. This machine

had a practical application, producing a religious miracle, but it wasn’t a

steam engine.

Watt learned that steam could be a source of power in 1762 when he

was 26 years old. He didn’t discover it watching a kettle: his friend John

Robison, a professor of natural philosophy at the University of Edinburgh,

told him about it. But practical steam power was much older. Its discovery

is often credited to the Italian engineer and architect Giovanni Branca,

whose Le Machine (‘Machine’) of 1629 contained 63 woodcuts of

mechanical gadgets. One shows a paddlewheel that would spin on its

axle when steam from a pipe collided with its vanes. Branca speculated that

this machine might be useful for grinding flour, lifting water, and cutting

up wood, but it was probably never built. It was more of a thought

experiment, a mechanical pipedream like Leonardo da Vinci’s flying

machine.

In any case, Branca was anticipated by Taqi al-Din Muhammad ibn

Ma’ruf al-Shami al-Asadi, who lived around 1550 in the Ottoman Empire

and was widely held to be the greatest scientist of his age. His achievements

are impressive. He worked in everything from astrology to zoology,

including clock-making, medicine, philosophy, and theology, and he

wrote over 90 books. In his 1551 Al-turuq al-samiyya fi al-alat al-ruhaniyya

(‘The Sublime Methods of Spiritual Machines’), al-Din described a primitive

steam turbine, saying that it could be used to turn roasting meat on a spit.

The first truly practical steam engine was a water pump invented by

Thomas Savery in 1698. The first to make commercial profits, built by

Thomas Newcomen in 1712, triggered the Industrial Revolution. But

Newcomen’s engine was very inefficient. Watt’s contribution was to

introduce a separate condenser for the steam, reducing heat loss.

Developed using money provided by the entrepreneur Matthew Bolton,

this new type of engine used only a quarter as much coal, leading to huge

savings. Boulton and Watt’s machine went into production in 1775, more

than 220 years after al-Din’s book. By 1776, three were up and running:

one in a coal mine at Tipton, one in a Shropshire ironworks, and one in

London.

Steam engines performed a variety of industrial tasks, but by far the

commonest was pumping water from mines. It cost a lot of money to

develop a mine, but as the upper layers became worked out and operators

were forced to dig deeper into the ground, they hit the water table. It was

worth spending quite a lot of money to pump the water out, since the
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alternative was to close the mine and start again somewhere else – and that

might not even be feasible. But no one wanted to pay more than they had

to, so a manufacturer who could design and build a more efficient steam

engine would corner the market. So the basic question of how efficient a

steam engine could be cried out for attention. Its answer did more than just

describe the limits to steam engines: it created a new branch of physics,

whose applications were almost boundless. The new physics shed light on

everything from gases to the structure of the entire universe; it applied not

just to the dead matter of physics and chemistry, but perhaps also to the

complex processes of life itself. It was called thermodynamics: the motion

of heat. And, just as the law of conservation of energy in mechanics ruled

out mechanical perpetual motion machines, the laws of thermodynamics

ruled out similar machines using heat.

One of those laws, the first law of thermodynamics, revealed a new

form of energy associated with heat, and extended the law of conservation

of energy (Chapter 3) into the new realm of heat engines. Another, without

any previous precedent, showed that some potential ways to exchange

heat, which did not conflict with conservation of energy, were nevertheless

impossible because they would have to create order from disorder. This was

the second law of thermodynamics.

Thermodynamics is the mathematical physics of gases. It explains how

large-scale features like temperature and pressure arise from the way the gas

molecules interact. The subject began with a series of laws of nature

relating temperature, pressure, and volume. This version is called classical

thermodynamics, and did not involve molecules – at that time few

scientists believed in them. Later, the gas laws were underpinned by a

further layer of explanation, based on a simple mathematical model

explicitly involving molecules. The gas molecules were thought of as tiny

spheres that bounced off each other like perfectly elastic billiard balls, with

no energy being lost in the collision. Although molecules are not spherical,

this model proved to be remarkably effective. It is called the kinetic theory

of gases, and it led to experimental proof that molecules exist.

The early gas laws emerged in fits and starts over a period of nearly fifty

years, and are mainly attributed to the Irish physicist and chemist Robert

Boyle, the French mathematician and balloon pioneer Jacques Alexandre

César Charles, and the French physicist and chemist Joseph Louis Gay-

Lussac. However, many of the discoveries were made by others. In 1834,
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the French engineer and physicist Émile Clapeyron combined all of these

laws into one, the ideal gas law, which we now write as

pV ¼RT

Here p is pressure, V is volume, T is the temperature, and R is a constant.

The equation states that pressure times volume is proportional to

temperature. It took a lot of work with many different gases to confirm

each separate law, and Clapeyron’s overall synthesis, experimentally. The

word ‘ideal’ appears because real gases do not obey the law in all

circumstances, especially at high pressures where interatomic forces

come into play. But the ideal version was good enough for designing

steam engines.

Thermodynamics is encapsulated in a number of more general laws,

not reliant on the precise form of the gas law. However, it does require

there to be some such law, because temperature, pressure, and volume are

not independent. There has to be some relation between them, but it

doesn’t greatly matter what.

The first law of thermodynamics stems from the mechanical law of

conservation of energy. In Chapter 3 we saw that there are two distinct

kinds of energy in classical mechanics: kinetic energy, determined by mass

and speed, and potential energy, determined by the effect of forces such as

gravity. Neither of these types of energy is conserved on its own. If you

drop a ball, it speeds up, thereby gaining kinetic energy. It also falls, losing

potential energy. Newton’s second law of motion implies that these two

changes cancel each other out exactly, so the total energy does not change

during the motion.

However, this is not the full story. If you put a book on a table and give

it a push, its potential energy doesn’t change provided the table is

horizontal. But its speed does change: after an initial increase produced by

the force with which you pushed it, the book quickly slows down and

comes to rest. So its kinetic energy starts at a nonzero initial value just after

the push, and then drops to zero. The total energy therefore also decreases,

so energy is not conserved. Where has it gone? Why did the book stop?

According to Newton’s first law, the book should continue to move, unless

some force opposes it. That force is friction between the book and the

table. But what is friction?

Friction occurs when rough surfaces rub together. The rough surface of

the book has bits that stick out slightly. These come into contact with parts

of the table that also stick out slightly. The book pushes against the table,

and the table, obeying Newton’s third law, resists. This creates a force that
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opposes the motion of the book, so it slows down and loses energy. So

where does the energy go? Perhaps conservation simply does not apply.

Alternatively, the energy is still lurking somewhere, unnoticed. And that’s

what the first law of thermodynamics tells us: the missing energy appears

as heat. Both book and table heat up slightly. Humans have known that

friction creates heat even since some bright spark discovered how to rub

two sticks together and start a fire. If you slide down a rope too fast, your

hands get rope burns from the friction. There were plenty of clues. The first

law of thermodynamics states that heat is a form of energy, and energy –

thus extended – is conserved in thermodynamic processes.

The first law of thermodynamics places limits on what you can do with a

heat engine. The amount of kinetic energy that you can get out, in the

form of motion, cannot be more than the amount of energy you put in as

heat. But it turned out that there is a further restriction on how efficiently a

heat engine can convert heat energy into kinetic energy; not just the

practical point that some of the energy always gets lost, but a theoretical

limit that prevents all of the heat energy being converted to motion. Only

some of it, the ‘free’ energy, can be so converted. The second law of

thermodynamics turned this idea into a general principle, but it will take a

while before we get to that. The limitation was discovered by Nicolas

Léonard Sadi Carnot in 1824, in a simple model of how a steam engine

works: the Carnot cycle.

To understand the Carnot cycle it is important to distinguish between

heat and temperature. In everyday life, we say that something is hot if its

temperature is high, and so confuse the two concepts. In classical

thermodynamics, neither concept is straightforward. Temperature is a

property of a fluid, but heat makes sense only as a measure of the transfer

of energy between fluids, and is not an intrinsic property of the state (that

is, the temperature, pressure, and volume) of the fluid. In the kinetic

theory, the temperature of a fluid is the average kinetic energy of its

molecules, and the amount of heat transferred between fluids is the change

in the total kinetic energy of their molecules. In a sense heat is a bit like

potential energy, which is defined relative to an arbitrary reference height;

this introduces an arbitrary constant, so ‘the’ potential energy of a body is

not uniquely defined. But when the body changes height, the difference in

potential energies is the same whatever reference height is used, because

the constant cancels out. In short, heat measures changes, but temperature

measures states. The two are linked: heat transfer is possible only when the
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fluids concerned have different temperatures, and then it is transferred

from the hotter one to the cooler one. This is often called the Zeroth law of

thermodynamics because logically it precedes the first law, but historically

it was recognised later.

Temperature can be measured using a thermometer, which exploits the

expansion of a fluid, such as mercury, caused by increased temperature.

Heat can be measured by using its relation to temperature. In a standard

test fluid, such as water, every 1-degree rise in temperature of 1 gram of

fluid corresponds to a fixed increase in the heat content. This amount is

called the specific heat of the fluid, which in water is 1 calorie per gram per

degree Celsius. Note that heat increase is a change, not a state, as required

by the definition of heat.

We can visualise the Carnot cycle by thinking of a chamber containing

gas, with a movable piston at one end. The cycle has four steps:

1 Heat the gas so rapidly that its temperature doesn’t change. It

expands, performing work on the piston.

2 Allow the gas to expand further, reducing the pressure. The gas

cools.

3 Compress the gas so rapidly that its temperature doesn’t change.

The piston now performs work on the gas.

4 Allow the gas to expand further, increasing the pressure. The gas

returns to its original temperature.

In a Carnot cycle, the heat introduced in the first step transfers kinetic

energy to the piston, allowing the piston to do work. The quantity of

energy transferred can be calculated in terms of the amount of heat

introduced and the temperature difference between the gas and its

surroundings. Carnot’s theorem proves that in principle a Carnot cycle is

the most efficient way to convert heat into work. This places a stringent

limit on the efficiency of any heat engine, and in particular on a steam

engine.

In a diagram showing the pressure and volume of the gas, a Carnot

cycle looks like Figure 47 (left). The German physicist and mathematician

Rudolf Clausius discovered a simpler way to visualise the cycle, Figure 47

(right). Now the two axes are temperature and a new and fundamental

quantity called entropy. In these coordinates, the cycle becomes a rectangle,

and the amount of work performed is just the area of the rectangle.
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volume entropy

pressure temperature

Fig 47 Carnot cycle. Left: In terms of pressure and volume. Right: In terms of temperature and

entropy.

Entropy is like heat: it is defined in terms of a change of state, not a

state as such. Suppose that a fluid in some initial state changes to a new

state. Then the difference in entropy between the two states is the total

change in the quantity ‘heat divided by temperature’. In symbols, for a

small step along the path between the two states, entropy S is related to

heat q and temperature T by the differential equation dS=dq/T. The

change in entropy is the change in heat per unit temperature. A large

change of state can be represented as a series of small ones, so we add up all

these small changes in entropy to get the overall change of entropy.

Calculus tells us that the way to do this is to use an integral.1

Having defined entropy, the second law of thermodynamics is very

simple. It states that in any physically feasible thermodynamic process, the

entropy of an isolated systemmust always increase.2 In symbols, dS50. For

example, suppose we divide a room with a movable partition, put oxygen

on one side of the partition and nitrogen on the other. Each gas has a

particular entropy, relative to some initial reference state. Now remove the

partition, allowing the gases to mix. The combined system also has a

particular entropy, relative to the same initial reference states. And the

entropy of the combined system is always greater than the sum of the

entropies of the two separate gases.

Classical thermodynamics is phenomenological: it describes what you can

measure, but it’s not based on any coherent theory of the processes

involved. That step came next with the kinetic theory of gases, pioneered

by Daniel Bernoulli in 1738. This theory provides a physical explanation of

pressure, temperature, the gas laws, and that mysterious quantity entropy.

The basic idea – highly controversial at the time – is that a gas consists of a
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large number of identical molecules, which bounce around in space and

occasionally collide with each other. Being a gas means that the molecules

are not too tightly packed, so any given molecule spends a lot of its time

travelling through the vacuum of space at a constant speed in a straight

line. (I say ‘vacuum’ even though we’re discussing a gas, because that’s

what the space between molecules consists of.) Since molecules, though

tiny, have nonzero size, occasionally two of them will collide. Kinetic

theory makes the simplifying assumption that they bounce like two

colliding billiard balls, and that these balls are perfectly elastic, so no

energy is lost in the collision. Among other things, this implies that the

molecules keep bouncing forever.

When Bernoulli first suggested the model, the law of conservation of

energy was not established and perfect elasticity seemed unlikely. The

theory gradually won support from a small number of scientists, who

developed their own versions and added various new ideas, but their work

was almost universally ignored. The German chemist and physicist August

Krönig wrote a book on the topic in 1856, simplifying the physics by not

allowing the molecules to rotate. Clausius removed this simplification a

year later. He claimed he had arrived at his results independently, and is

now ranked as one of the first significant founders of kinetic theory. He

proposed one of the key concepts of the theory, the mean free path of a

molecule: how far it travels, on average, between successive collisions.

Both König and Clausius deduced the ideal gas law from kinetic theory.

The three key variables are volume, pressure, and temperature. Volume is

determined by the vessel that contains the gas, it sets ‘boundary

conditions’ that affect how the gas behaves, but is not a feature of the

gas as such. Pressure is the average force (per square unit of area) exerted by

the molecules of the gas when they collide with the walls of the vessel. This

depends on how many molecules are inside the vessel, and how fast they

are moving. (They don’t all move at the same speed.) Most interesting is

temperature. This also depends on how fast the gas molecules are moving,

and it is proportional to the average kinetic energy of the molecules.

Deducing Boyle’s law, the special case of the ideal gas law for constant

temperature, is especially straightforward. At a fixed temperature, the

distribution of velocities doesn’t change, so pressure is determined by how

many molecules hit the wall. If you reduce the volume, the number of

molecules per cubic unit of space goes up, and the chance of any molecule

hitting the wall goes up as well. Smaller volume means denser gas means

more molecules hitting the wall, and this argument can be made

quantitative. Similar but more complicated arguments produce the ideal
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gas law in all its glory as long as the molecules aren’t squashed too tightly

together. So now there was a deeper theoretical basis for Boyle’s law, based

on the theory of molecules.

Maxwell was inspired by Clausius’s work, and in 1859 he placed kinetic

theory on mathematical foundations by writing down a formula for the

probability that a molecule will travel with a given speed. It is based on the

normal distribution or bell curve (Chapter 7). Maxwell’s formula seems to

have been the first instance of a physical law based on probabilities. He was

followed by the Austrian physicist Ludwig Boltzmann, who developed the

same formula, now called the Maxwell–Boltzmann distribution.

Boltzmann reinterpreted thermodynamics in terms of the kinetic theory

of gases, founding what is now called statistical mechanics. In particular,

he came up with a new interpretation of entropy, relating the

thermodynamic concept to a statistical feature of the molecules in the gas.

The traditional thermodynamic quantities, such as temperature,

pressure, heat, and entropy, all refer to large-scale average properties of

the gas. However, the fine structure consists of lots of molecules whizzing

around and bumping into each other. The same large-scale state can arise

from innumerable different small-scale states, because minor differences

on the small scale average out. Boltzmann therefore distinguished

macrostates and microstates of the system: large-scale averages and the

actual states of the molecules. Using this, he showed that entropy, a

macrostate, can be interpreted as a statistical feature of microstates. He

expressed this in the equation

S¼ k logW

Here S is the entropy of the system, W is the number of distinct microstates

that can give rise to the overall macrostate, and k is a constant. It is now

called Boltzmann’s constant, and its value is 1.38610�23 joules per degree

kelvin.

It is this formula that motivates the interpretation of entropy as

disorder. The idea is that fewer microstates correspond to an ordered

macrostate than to a disordered one, and we can understand why by

thinking about a pack of cards. For simplicity, suppose that we have just six

cards, marked 2, 3, 4, J, Q, K. Put them in two separate piles, with the low-

value cards in one pile and the court cards in the other. This is an ordered

arrangement. In fact, it retains traces of order if you shuffle each pile, but

keep the piles separate, because however you do this, the low-value cards

are all in one pile and the court cards are in the other. However, if you

shuffle both piles together, the two types of card can become mixed, with
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arrangements like 4QK2J3. Intuitively, these mixed-up arrangements are

more disordered.

Let’s see how this relates to Boltzmann’s formula. There are 36 ways to

arrange the cards in their two piles: six for each pile. But there are 720 ways

(6! = 1 ´ 2 ´3 ´4 ´ 5 ´6) to arrange all six cards in order. The type of ordering

of the cards that we allow – two piles or one – is analogous to the

macrostate of a thermodynamic system. The exact order is the microstate.

The more ordered macrostate has 36 microstates, the less ordered one has

720. So the more microstates there are, the less ordered the corresponding

macrostate becomes. Since logarithms get bigger when the numbers do,

the greater the logarithm of the number of microstates, the more

disordered the macrostate becomes. Here

log 36¼3:58 log 720¼6:58

These are effectively the entropies of the two macrostates. Boltzmann’s

constant just scales the values to fit the thermodynamic formalism when

we’re dealing with gases.

The two piles of cards are like two non-interacting thermodynamic

states, such as a box with a partition separating two gases. Their individual

entropies are each log 6, so the total entropy is 2 log 6, which equals log 36.

So the logarithm makes entropy additive for non-interacting systems: to get

the entropy of the combined (but not yet interacting) system, add the

separate entropies. If we now let the systems interact (remove the

partition) the entropy increases to log 720.

The more cards there are, the more pronounced this effect becomes.

Split a standard pack of 52 playing cards into two piles, with all the red

cards in one pile and all the black cards in the other. This arrangement can

occur in (26!)2 ways, which is about 1.62 ´1053. Shuffling both piles

together we get 52! microstates, roughly 8.07 ´1067. The logarithms are

122.52 and 156.36 respectively, and again the second is larger.

Boltzmann’s ideas were not received with great acclaim. At a technical

level, thermodynamics was beset with difficult conceptual issues. One was

the precise meaning of ‘microstate’. The position and velocity of a

molecule are continuous variables, able to take on infinitely many

values, but Boltzmann needed a finite number of microstates in order to

count how many there were and then take the logarithm. So these

variables had to be ‘coarse-grained’ in some manner, by splitting the

continuum of possible values into finitely many very small intervals.
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Another issue, more philosophical in nature, was the arrow of time – an

apparent conflict between the time-reversible dynamics of microstates and

the one-way time of macrostates, determined by entropy increase. The two

issues are related, as we will shortly see.

The biggest obstacle to the theory’s acceptance, however, was the idea

that matter is made from extremely tiny particles, atoms. This concept, and

the word atom, which means ‘indivisible’, goes back to ancient Greece, but

even around 1900 the majority of physicists did not believe that matter is

made from atoms. So they didn’t believe in molecules, either, and a theory

of gases based on them was obviously nonsense. Maxwell, Boltzmann, and

other pioneers of kinetic theory were convinced that molecules and atoms

were real, but to the skeptics, atomic theory was just a convenient way to

picture matter. No atoms had ever been observed, so there was no scientific

evidence that they existed. Molecules, specific combinations of atoms,

were similarly controversial. Yes, atomic theory fitted all sorts of

experimental data in chemistry, but that was not proof that atoms existed.

One of the things that finally convinced most objectors was the use of

kinetic theory to make predictions about Brownian motion. This effect was

discovered by a Scottish botanist, Robert Brown.3 He pioneered the use of

the microscope, discovering, among other things, the existence of the

nucleus of a cell, now known to be the repository of its genetic

information. In 1827 Brown was looking through his microscope at

pollen grains in a fluid, and he spotted even tinier particles that had been

ejected by the pollen. These tiny particles jiggled around in a random

manner, and at first Brown wondered if they were some diminutive form of

life. However, his experiments showed the same effect in particles derived

from non-living matter, so whatever caused the jiggling, it didn’t have to

be alive. At the time, no one knew what caused this effect. We now know

that the particles ejected by the pollen were organelles, tiny subsystems of

the cell with specific functions; in this case, to manufacture starch and fats.

And we interpret their random jiggles as evidence for the theory that

matter is made from atoms.

The link to atoms comes from mathematical models of Brownian

motion, which first turned up in statistical work of the Danish astronomer

and actuary Thorvald Thiele in 1880. The big advance was made by

Einstein in 1905 and the Polish scientist Marian Smoluchowski in 1906.

They independently proposed a physical explanation of Brownian motion:

atoms of the fluid in which the particles were floating were randomly

bumping into the particles and giving them tiny kicks. On this basis,

Einstein used a mathematical model to make quantitative predictions
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about the statistics of the motion, which were confirmed by Jean Baptiste

Perrin in 1908–9.

Boltzmann committed suicide in 1906 – just when the scientific world

was starting to appreciate that the basis of his theory was real.

In Boltzmann’s formulation of thermodynamics, molecules in a gas are

analogous to cards in a pack, and the natural dynamics of the molecules is

analogous to shuffling. Suppose that at some moment all the oxygen

molecules in a room are concentrated at one end, and all the nitrogen

molecules are at the other. This is an ordered thermodynamic state, like

two separate piles of cards. After a very short period, however, random

collisions will mix all the molecules together, more or less uniformly

throughout the room, like shuffling the cards. We’ve just seen that this

process typically causes entropy to increase. This is the orthodox picture of

the relentless increase of entropy, and it is the standard interpretation of

the second law: ‘the amount of disorder in the universe steadily increases’.

I’m pretty sure that this characterisation of the second law would have

satisfied Snow if anyone had offered it. In this form, one dramatic

consequence of the second law is the scenario of the ‘heat death of the

universe’, in which the entire universe will eventually become a lukewarm

gas with no interesting structure whatsoever.

Entropy, and the mathematical formalism that goes with it, provides

an excellent model for many things. It explains why heat engines can only

reach a particular level of efficiency, which prevents engineers wasting

valuable time and money looking for a mare’s nest. That’s not just true of

Victorian steam engines, it applies to modern car engines as well. Engine

design is one of the practical areas that has benefited from knowing the

laws of thermodynamics. Refrigerators are another. They use chemical

reactions to transfer heat out of the food in the fridge. It has to go

somewhere: you can often feel the heat rising from the outside of the

fridge’s motor housing. The same goes for air-conditioning. Power

generation is another application. In a coal, gas, or nuclear power

station, what it initially generated is heat. The heat creates steam, which

drives a turbine. The turbine, following principles that go back to Faraday,

turns motion into electricity.

The second law of thermodynamics also governs the amount of energy

we can hope to extract from renewable resources, such as wind and waves.

Climate change has added new urgency to this question, because

renewable energy sources produce less carbon dioxide than conventional
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ones. Even nuclear power has a big carbon footprint, because the fuel has

to be made, transported, and stored when it is no longer useful but still

radioactive. As I write there is a simmering debate about the maximum

amount of energy that we can extract from the ocean and the atmosphere

without causing the kinds of change that we are hoping to avoid. It is based

on thermodynamic estimates of the amount of free energy in those natural

systems. This is an important issue: if renewables in principle cannot supply

the energy we need, then we have to look elsewhere. Solar panels, which

extract energy directly from sunlight, are not directly affected by the

thermodynamic limits, but even those involve manufacturing processes

and so on. At the moment, the case that such limits are a serious obstacle

relies on some sweeping simplifications, and even if they are correct, the

calculations do not rule out renewables as a source for most of the world’s

power. But it’s worth remembering that similarly broad calculations

about carbon dioxide production, performed in the 1950s, have proved

surprisingly accurate as a predictor of global warming.

The second law works brilliantly in its original context, the behaviour

of gases, but it seems to conflict with the rich complexities of our planet, in

particular, life. It seems to rule out the complexity and organisation

exhibited by living systems. So the second law is sometimes invoked to

attack Darwinian evolution. However, the physics of steam engines is not

particularly appropriate to the study of life. In the kinetic theory of gases,

the forces that act between the molecules are short-range (active only

when the molecules collide) and repulsive (they bounce). But most of the

forces of nature aren’t like that. For example, gravity acts at enormous

distances, and it is attractive. The expansion of the universe away from the

Big Bang has not smeared matter out into a uniform gas. Instead, the

matter has formed into clumps – planets, stars, galaxies, supergalactic

clusters... The forces that hold molecules together are also attractive –

except at very short distances where they become repulsive, which stops

the molecule collapsing – but their effective range is fairly short. For

systems such as these, the thermodynamic model of independent

subsystems whose interactions switch on but not off is simply irrelevant.

The features of thermodynamics either don’t apply, or are so long-term

that they don’t model anything interesting.

The laws of thermodynamics, then, underlie many things that we take for

granted. And the interpretation of entropy as ‘disorder’ helps us to

understand those laws and gain an intuitive feeling for their physical basis.
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However, there are occasions when interpreting entropy as disorder seems

to lead to paradoxes. This is a more philosophical realm of discourse – and

it’s fascinating.

One of the deep mysteries of physics is time’s arrow. Time seems to

flow in one particular direction. However, it seems logically and

mathematically possible for time to flow backwards instead – a

possibility exploited by books such as Martin Amis’s Time’s Arrow, the

much earlier novel Counter-Clock World by Philip K. Dick, and the BBC

television series Red Dwarf, whose protagonists memorably drank beer and

engaged in a bar brawl in reverse time. So why can’t time flow the other

way? At first sight, thermodynamics offers a simple explanation for the

arrow of time: it is the direction of entropy increase. Thermodynamic

processes are irreversible: oxygen and nitrogen will spontaneously mix, but

not spontaneously unmix.

There is a puzzle here, however, because any classical mechanical

system, such as the molecules in a room, is time-reversible. If you keep

shuffling a pack of cards at random, then eventually it will get back to its

original order. In the mathematical equations, if at some instant the

velocities of all particles are simultaneously reversed, then the system will

retrace its steps, back-to-front in time. The entire universe can bounce,

obeying the same equations in both directions. So why do we never see an

egg unscrambling?

The usual thermodynamic answer is: a scrambled egg is more

disordered than an unscrambled one, entropy increases, and that’s the

way time flows. But there’s a subtler reason why eggs don’t unscramble: the

universe is very, very unlikely to bounce in the required manner. The

probability of that happening is ridiculously small. So the discrepancy

between entropy increase and time–reversibility comes from the initial

conditions, not the equations. The equations for moving molecules are

time-reversible, but the initial conditions are not. When we reverse time,

we must use ‘initial’ conditions given by the final state of the forward-time

motion.

The most important distinction here is between symmetry of equations

and symmetry of their solutions. The equations for bouncing molecules

have time-reversal symmetry, but individual solutions can have a definite

arrow of time. The most you can deduce about a solution, from time-

reversibility of the equation, is that there must also exist another solution

that is the time-reversal of the first. If Alice throws a ball to Bob, the time-

reversed solution has Bob throwing a ball to Alice. Similarly, since the

equations of mechanics allow a vase to fall to the ground and smash into a
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thousand pieces, they must also allow a solution in which a thousand

shards of glass mysteriously move together, assemble themselves into an

intact vase, and leap into the air.

There’s clearly something funny going on here, and it repays

investigation. We don’t have a problem with Bob and Alice tossing a ball

either way. We see such things every day. But we don’t see a smashed vase

putting itself back together. We don’t see an egg unscrambling.

Suppose we smash a vase and film the result. We start with a simple,

ordered state – an intact vase. It falls to the floor, where the impact breaks it

into pieces and propels those pieces all over the floor. They slow down and

come to a halt. It all looks entirely normal. Now play the movie backwards.

Bits of glass, which just happen to be the right shape to fit together, are

lying on the floor. Spontaneously, they start to move. They move at just

the right speed, and in just the right direction, to meet. They assemble into

a vase, which heads skywards. That doesn’t seem right.

In fact, as described, it’s not right. Several laws of mechanics appear to

be violated, among them conservation of momentum and conservation of

energy. Stationary masses can’t suddenly move. A vase can’t gain energy

from nowhere and leap into the air.

Ah, yes... but that’s because we’re not looking carefully enough. The

vase didn’t leap into the air of its own accord. The floor started to vibrate,

and the vibrations came together to give the vase a sharp kick into the air.

The bits of glass were similarly impelled to move by incoming waves of

vibration of the floor. If we trace those vibrations back, they spread out,

and seem to die down. Eventually friction dissipates all movement... Oh,

yes, friction. What happens to kinetic energy when there’s friction? It turns

into heat. So we’ve missed some details of the time-reversed scenario.

Momentum and energy do balance, but the missing amounts come from

the floor losing heat.

In principle, we could set up a forward-time system to mimic the time-

reversed vase. We just have to arrange for molecules in the floor to collide

in just the right way to release some of their heat as motion of the floor,

kick the pieces of glass in just the right way, then hurl the vase into the air.

The point is not that this is impossible in principle: if it were, time-

reversibility would fail. But it’s impossible in practice, because there is no

way to control that many molecules that precisely.

This, too, is an issue about boundary conditions – in this case, initial

conditions. The initial conditions for the vase-smashing experiment are

easy to implement, and the apparatus is easy to acquire. It’s all very robust,

too: use another vase, drop it from a different height... much the same
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will happen. The vase-assembling experiment, in contrast, requires

extraordinarily precise control of gazillions of individual molecules and

exquisitely carefully made pieces of glass. Without all that control

equipment disturbing a single molecule. That’s why we can’t actually do it.

However, notice how we’re thinking here: we’re focusing on initial

conditions. That sets up an arrow of time: the rest of the action comes later

than the start. If we looked at the vase-smashing experiment’s final

conditions, right down to the molecular level, they would be so complex

that no one in their right mind would even consider trying to replicate

them.

The mathematics of entropy fudges out these very small scale

considerations. It allows vibrations to die away but not to increase. It

allows friction to turn into heat but not heat to turn into friction. The

discrepancy between the second law of thermodynamics and microscopic

reversibility arises from coarse-graining, the modelling assumptions made

when passing from a detailed molecular description to a statistical one.

These assumptions implicitly specify an arrow of time: large-scale

disturbances are allowed to die down below the perceptible level as time

passes, but small-scale disturbances are not allowed to follow the time-

reversed scenario. Once the dynamics passes through this temporal

trapdoor, it’s not allowed to come back.

If entropy always increases, how did the chicken ever create the ordered

egg to begin with? A common explanation, advanced by the Austrian

physicist Erwin Schrödinger in 1944 in a brief and charming book What is

Life?, is that living systems somehow borrow order from their

environment, and pay it back by making the environment even more

disordered than it would otherwise have been. This extra order corresponds

to ‘negative entropy’, which the chicken can use to make an egg without

violating the second law. In Chapter 15 we will see that negative entropy

can, in appropriate circumstances, be thought of as information, and it is

often claimed that the chicken accesses information – provided by its DNA,

for example – to obtain the necessary negative entropy. However, the

identification of information with negative entropy makes sense only in

very specific contexts, and the activities of living creatures are not one of

them. Organisms create order through the processes that they carry out,

but those processes are not thermodynamic. Chickens don’t access some

storehouse of order to make the thermodynamic books balance: they use
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processes for which a thermodynamic model is inappropriate, and throw

the books away because they don’t apply.

The scenario in which an egg is created by borrowing entropy would be

appropriate if the process that the chicken used were the time-reversal of

an egg breaking up into its constituent molecules. At first sight this is

vaguely plausible, because the molecules that eventually form the egg are

scattered throughout the environment; they come together in the chicken,

where biochemical processes put them together in an ordered manner to

form the egg. However, there is a difference in the initial conditions. If you

went round beforehand labelling molecules in the chicken’s environment,

to say ‘this one will end up in the egg at such and such a location’, you

would in effect be creating initial conditions as complex and unlikely as

those for unscrambling an egg. But that’s not how the chicken operates.

Some molecules happen to end up in the egg and are conceptually labelled

as part of it after the process is complete. Other molecules could have done

the same job – one molecule of calcium carbonate is just as good for

making a shell as any other. So the chicken is not creating order from

disorder. The order is assigned to the end result of the egg-making process –

like shuffling a pack of cards into a random order and then numbering

them 1, 2, 3, and so on with a felt-tipped pen. Amazing – they’re in

numerical order!

To be sure, the egg looks more ordered than its ingredients, even if we

take account of this difference in initial conditions. But that’s because the

process that makes an egg is not thermodynamic. Many physical processes

do, in effect, unscramble eggs. An example is the way minerals dissolved in

water can create stalactites and stalagmites in caves. If we specified the

exact form of stalactite we wanted, ahead of time, we’d be in the same

position as someone trying to unsmash a vase. But if we’re willing to settle

for any old stalactite, we get one: order from disorder. Those two terms are

often used in a sloppy way. What matters are what kind of order and what

kind of disorder. That said, I still don’t expect to see an egg unscrambling.

There is no feasible way to set up the necessary initial conditions. The best

we can do is turn the scrambled egg into chickenfeed and wait for the bird

to lay a new one.

In fact, there is a reason why we wouldn’t see an egg unscrambling,

even if the world did run backwards. Because we and our memories are part

of the system that is being reversed, we wouldn’t be sure which way time

was ‘really’ running. Our sense of the flow of time is produced by

memories, physico-chemical patterns in the brain. In conventional

language, the brain stores records of the past but not of the future.
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Imagine making a series of snapshots of the brain watching an egg being

scrambled, along with its memories of the process. At one stage the brain

remembers a cold, unscrambled egg, and some of its history when taken

from the fridge and put into the saucepan. At another stage it remembers

having whisked the egg with a fork, and having moved it from the fridge to

the saucepan.

If we now run the entire universe in reverse, we reverse the order in

which those memories occur, in ‘real’ time. But we don’t reverse the

ordering of a given memory in the brain. At the start (in reversed time) of

the process that unscrambles the egg, the brain does not remember the

‘past’ of that egg – how it emerged from a mouth on to a spoon, was

unwhisked, gradually building up a complete egg ... Instead, the record in

the brain at that moment is one in which it remembers having cracked

open an egg, along with the process of moving it from the fridge to the

saucepan and scrambling it. But this memory is exactly the same as one of

the records in the forward-time scenario. The same goes for all the other

memory snapshots. Our perception of the world depends on what we

observe now, and what memories our brain holds, now. In a time-reversed

universe, we would in effect remember the future, not the past.

The paradoxes of time-reversibility and entropy are not problems about

the real world. They are problems about the assumptions we make when

we try to model it.
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13One thing is absolute
Relativity

What does it say?

Matter contains energy equal to its mass multiplied by the

square of the speed of light.

Why is that important?

The speed of light is huge and its square is absolutely

humongous. One kilogram of matter would release about 40%

of the energy in the largest nuclear weapon ever exploded. It’s

part of a package of equations that changed our view of space,

time, matter, and gravity.

What did it lead to?

Radical new physics, definitely. Nuclear weapons... well, just

maybe – though not as directly or conclusively as the urban

myths claim. Black holes, the Big Bang, GPS and satnav.
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Just as Albert Einstein, with his startled mop hairdo, is the archetypal

scientist in popular culture, so his equation E=mc2 is the archetypal

equation. It is widely believed that the equation led to the invention of

nuclear weapons, that it comes from Einstein’s theory of relativity, and

that this theory (obviously) has something to do with various things being

relative. In fact, many social relativists happily chant ‘everything is

relative’, and think it has something to do with Einstein.

It doesn’t. Einstein named his theory ‘relativity’ because it was a

modification of the rules for relative motion that had traditionally been

used in Newtonian mechanics, where motion is relative, depending in a

very simple and intuitive way on the frame of reference in which it is

observed. Einstein had to tweak Newtonian relativity to make sense of a

baffling experimental discovery: that one particular physical phenomenon

is not relative at all, but absolute. From this he derived a new kind of

physics in which objects shrink when they move very fast, time slows to a

crawl, and mass increases without limit. An extension incorporating

gravity has given us the best understanding we yet have of the origins of

the universe and the structure of the cosmos. It is based on the idea that

space and time can be curved.

Relativity is real. The Global Positioning System (GPS, used among

other things for car satnav) works only when corrections are made for

relativistic effects. The same goes for particle accelerators such as the Large

Hadron Collider, currently searching for the Higgs boson, thought to be

the origin of mass. Modern communications have become so fast that

market traders are beginning to run up against a relativistic limitation: the

speed of light. This is the fastest that any message, such as an Internet

instruction to buy or sell stock, can travel. Some see this as an opportunity

to cut a deal nanoseconds earlier than the competition, but so far,

relativistic effects haven’t had a serious effect on international finance.

However, people have already worked out the best locations for new stock

markets or dealerships. It’s only a matter of time.

At any rate, not only is relativity not relative: even the iconic equation

is not what it seems. When Einstein first derived the physical idea that it
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represents, he didn’t write it in the familiar way. It is not a mathematical

consequence of relativity, though it becomes one if various physical

assumptions and definitions are accepted. It is perhaps typical of human

culture that our most iconic equation is not, and was not, what it seems to

be, and neither is the theory that gave birth to it. Even the connection with

nuclear weapons is not clear-cut, and its historical influence on the first

atomic bomb was small compared with Einstein’s political clout as the

iconic scientist.

‘Relativity’ covers two distinct but related theories: special relativity and

general relativity. I’ll use Einstein’s celebrated equation as an excuse to talk

about both. Special relativity is about space, time, and matter in the

absence of gravity; general relativity takes gravity into account as well. The

two theories are part of one big picture, but it took Einstein ten years of

intensive effort to discover how to modify special relativity to incorporate

gravity. Both theories were inspired by difficulties in reconciling

Newtonian physics with observations, but the iconic formula arose in

special relativity.

Physics seemed fairly straightforward and intuitive in Newton’s day.

Space was space, time was time, and never the twain should meet. The

geometry of space was that of Euclid. Time was independent of space, the

same for all observers – provided they had synchronised their clocks. The

mass and size of a body did not change when it moved, and time always

passed at the same rate everywhere. But when Einstein had finished

reformulating physics, all of these statements – so intuitive that it is very

difficult to imagine how any of them could fail to represent reality – turned

out to be wrong.

They were not totally wrong, of course. If they had been nonsense,

then Newton’s work would never have got off the ground. The Newtonian

picture of the physical universe is an approximation, not an exact

description. The approximation is extremely accurate provided

everything involved is moving slowly enough, and in most everyday

circumstances that is the case. Even a jet fighter, travelling at twice the

speed of sound, is moving slowly for this purpose. But one thing that does

play a role in everyday life moves very fast indeed, and sets the yardstick for

all other speeds: light. Newton and his successors had demonstrated that

light was a wave, and Maxwell’s equations confirmed this. But the wave

nature of light raised a new issue. Ocean waves are waves in water, sound
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waves are waves in air, earthquakes are waves in the Earth. So light waves

are waves in... what?

Mathematically they are waves in the electromagnetic field, which is

assumed to pervade the whole of space. When the electromagnetic field is

excited – persuaded to support electricity and magnetism – we observe a

wave. But what happens when it’s not excited? Without waves, an ocean

would still be an ocean, air would still be air, and the Earth would still be

the Earth. Analogously, the electromagnetic field would still be... the

electromagnetic field. But you can’t observe the electromagnetic field if

there’s no electricity or magnetism going on. If you can’t observe it, what is

it? Does it exist at all?

All waves known to physics, except the electromagnetic field, are waves

in something tangible. All three types of wave – water, air, earthquake – are

waves of movement. The medium moves up and down or from side to side,

but usually it doesn’t travel with the wave. (Tie a long rope to a wall and

shake one end: a wave travels along the rope. But the rope doesn’t travel

along the rope.) There are exceptions: when air travels along with the wave

we call it ‘wind’, and ocean waves move water up a beach when they hit

one. But even though we describe a tsunami as a moving wall of water, it

doesn’t roll across the top of the ocean like a football rolling along the

pitch. Mostly, the water in any given location goes up and down. It is the

location of the ‘up’ that moves. Until the water gets close to shore; then

you get something much more like a moving wall.

Light, and electromagnetic waves in general, didn’t seem to be waves

in anything tangible. In Maxwell’s day, and for fifty years or more

afterwards, that was disturbing. Newton’s law of gravity had long been

criticised because it implies that gravity somehow ‘acts at a distance’, as

miraculous in philosophical principle as kicking a ball into the goal when

you’re sitting in the stands. Saying that it is transmitted by ‘the

gravitational field’ doesn’t really explain what’s happening. The same

goes for electromagnetism. So physicists came round to the idea that there

was some medium – no one knew what, they called it the ‘luminiferous

aether’ or just plain ‘ether’ – that supported electromagnetic waves.

Vibrations travel faster the more rigid the medium, and light was very fast

indeed, so the ether had to be extremely rigid. Yet planets could move

through it without resistance. To have avoided easy detection, the ether

must have no mass, no viscosity, be incompressible, and be totally

transparent to all forms of radiation.

It was a daunting combination of attributes, but almost all physicists

assumed the ether existed, because light clearly did what light did.
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Something had to carry the wave. Moreover, the ether’s existence could in

principle be detected, because another feature of light suggested a way to

observe it. In a vacuum, light moves with a fixed speed c. Newtonian

mechanics had taught every physicist to ask: speed relative to what? If you

measure a velocity in two different frames of reference, one moving with

respect to the other, you get different answers. The constancy of the speed

of light suggested an obvious reply: relative to the ether. But this was a little

facile, because two frames of reference that are moving with respect to each

other can’t both be at rest relative to the ether.

As the Earth ploughs its way through the ether, miraculously

unresisted, it goes round and round the Sun. At opposite points on its

orbit it is moving in opposite directions. So by Newtonian mechanics, the

speed of light should vary between two extremes: c plus a contribution

from the Earth’s motion relative to the ether, and c minus the same

contribution. Measure the speed, measure it six months later, find the

difference: if there is one, you have proof that the ether exists. In the late

1800s many experiments along these lines were carried out, but the results

were inconclusive. Either there was no difference, or there was one but the

experimental method wasn’t accurate enough. Worse, the Earth might be

dragging the ether along with it. This would simultaneously explain why

the Earth can move through such a rigid medium without resistance, and

imply that you ought not to see any difference in the speed of light

anyway. The Earth’s motion relative to the ether would always be zero.

In 1887 Albert Michelson and Edward Morley carried out one of the

most famous physics experiments of all time. Their apparatus was designed

to detect extremely small variations in the speed of light in two directions,

at right angles to each other. However the Earth was moving relative to the

ether, it couldn’t be moving with the same relative speed in two different

directions... unless it happened by coincidence to be moving along the line

bisecting those directions, in which case you just rotated the apparatus a

little and tried again.

The apparatus, Figure 48, was small enough to fit on a laboratory desk.

It used a half-silvered mirror to split a beam of light into two parts, one

passing through the mirror and the other being reflected at right angles.

Each separate beam was reflected back along its path, and the two beams

combined again, to hit a detector. The apparatus was adjusted to make the

paths the same length. The original beam was set up to be coherent,

meaning that its waves were in synchrony with each other – all having the

same phase, peaks coinciding with peaks. Any difference between the

speed of light in the directions followed by the two beams would cause
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their phases to shift relative to each other, so their peaks would be in

different places. This would cause interference between the two waves,

resulting in a striped pattern of ‘diffraction fringes’. Motion of the Earth

relative to the ether would cause the fringes to move. The effect would be

tiny: given what was known about the Earth’s motion relative to the Sun,

the diffraction fringes would shift by about 4% of the width of one fringe.

By using multiple reflections, this could be increased to 40%, big enough to

be detected. To avoid the possible coincidence of the Earth moving exactly

along the bisector of the two beams, Michelson and Morley floated the

apparatus on a bath of mercury, so that it could be spun round easily and

rapidly. It should then be possible to watch the fringes shifting with equal

rapidity.

It was a careful, accurate experiment. Its result was entirely negative.

The fringes did not move by 40% of their width. As far as anyone could tell

with certainty, they didn’t move at all. Later experiments, capable of

detecting a shift 0.07% as wide as a fringe, also gave a negative result. The

ether did not exist.

This result didn’t just dispose of the ether: it threatened to dispose of

Maxwell’s theory of electromagnetism, too. It implied that light does not

behave in a Newtonian manner, relative to moving frames of reference.

This problem can be traced right back to the mathematical properties of

Maxwell’s equations and how they transform relative to a moving frame.

The Irish physicist and chemist George FitzGerald and the Dutch physicist

Hendrik Lorenz independently suggested (in 1892 and 1895 respectively)

an audacious way to get round the problem. If a moving body contracts

slightly in its direction of motion, by just the right amount, then the
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change in phase that the Michelson–Morley experiment was hoping to

detect would be exactly cancelled out by the change in the length of the

path that the light was following. Lorenz showed that this ‘Lorenz–

FitzGerald contraction’ sorted out the mathematical difficulties with the

Maxwell equations as well. The joint discovery showed that the results of

experiments on electromagnetism, including light, do not depend on the

relative motion of the reference frame. Poincaré, who had also been

working along similar lines, added his persuasive intellectual weight to the

idea.

The stage was now set for Einstein. In 1905 he developed and extended

previous speculations about a new theory of relative motion in a paper ‘On

the electrodynamics of moving bodies’. His work went beyond that of his

predecessors in two ways. He showed that the necessary change to the

mathematical formulation of relative motion was more than just a trick to

sort out electromagnetism. It was required for all physical laws. It followed

that the new mathematics must be a genuine description of reality, with

the same philosophical status that had been accorded to the prevailing

Newtonian description, but providing a better agreement with

experiments. It was real physics.

The view of relative motion employed by Newton went back even

further, to Galileo. In his 1632 Dialogo sopra i due massimi sistemi del mondo

(‘Dialogue Concerning the Two Chief World Systems’) Galileo discussed a

ship travelling at constant velocity on a perfectly smooth sea, arguing that

no experiment in mechanics carried out below decks could reveal that the

ship was moving. This is Galileo’s principle of relativity: in mechanics,

there is no difference between observations made in two frames that are

moving with uniform velocity relative to each other. In particular, there is

no special frame of reference that is ‘at rest’. Einstein’s starting-point was

the same principle, but with an extra twist: it must apply not just to

mechanics, but to all physical laws. Among them, of course, being

Maxwell’s equations and the constancy of the speed of light.

To Einstein, the Michelson–Morley experiment was a small piece of

extra evidence, but it wasn’t proof of the pudding. The proof that his new

theory was correct lay in his extended principle of relativity, and what it

implied for the mathematical structure of the laws of physics. If you

accepted the principle, all else followed. This is why the theory became

known as ‘relativity’. Not because ‘everything is relative’, but because you
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have to take into account the manner in which everything is relative. And

it’s not what you expect.

This version of Einstein’s theory is known as special relativity because it

applies only to frames of reference that are moving uniformly with respect

to each other. Among its consequences are the Lorenz–FitzGerald

contraction, now interpreted as a necessary feature of space-time. In fact,

there were three related effects. If one frame of reference is moving

uniformly relative to another one, then lengths measured in that frame

contract along the direction of motion, masses increase, and time runs

more slowly. These three effects are tied together by the basic conservation

laws of energy and momentum; once you accept one of them, the others

are logical consequences.

The technical formulation of these effects is a formula that describes

how measurements in one frame relate to those in the other. The executive

summary is: if a body could move close to the speed of light, then its length

would become very small, time would slow to a crawl, and its mass would

become very large. I’ll just give a flavour of the mathematics: the physical

description should not be taken too literally and it would take too long to

set it up in the correct language. It all comes from... Pythagoras’s theorem.

One of the oldest equations in science leads to one of the newest.

Suppose that a spaceship is passing overhead with velocity v, and the

crew performs an experiment. They send a pulse of light from the floor of

the cabin to the roof, and measure the time taken to be T. Meanwhile an

observer on the ground watches the experiment through a telescope

(assume the spaceship is transparent), measuring the time to be t.

Fig 49 Left: The experiment in the crew’s frame of reference. Right: The same experiment in

the ground observer’s frame of reference. Grey shows the ship’s position as seen from the

ground when the light beam starts its journey; black shows the ship’s position when the light

completes its journey.

Figure 49 (left) shows the geometry of the experiment from the crew’s

point of view. To them, the light has gone straight up. Since light travels at
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speed c, the distance travelled is cT, shown by the dotted arrow. Figure 49

(right) shows the geometry of the experiment from the ground observer’s

point of view. The spaceship has moved a distance vt, so the light has

travelled diagonally. Since light also travels at speed c for the ground

observer, the diagonal has length ct. But the dotted line has the same

length as the dotted arrow in the first picture, namely cT. By Pythagoras’s

theorem,

ðctÞ2 ¼ðCTÞ2 þðvtÞ2

We solve for T, getting

T ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r

which is smaller than t.

To derive the Lorenz–FitzGerald contraction, we now imagine that the

spaceship travels to a planet distance x from Earth at speed v. Then the

elapsed time is t= x/v. But the previous formula shows that to the crew, the

time taken is T, not t. For them, the distance X must satisfy T=X/v.

Therefore

X¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r

which is smaller than x.

The derivation of the mass change is slightly more involved, and it

depends on a particular interpretation of mass, ‘rest mass’, so I won’t give

details. The formula is

M ¼m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r,

which is larger than m.

These equations tell us that there is something very special about the

speed of light (and indeed about light). An important consequence of this

formalism is that the speed of light is an impenetrable barrier. If a body

starts out slower than light, it cannot be accelerated to a speed greater than

that of light. In September 2011 physicists working in Italy announced that

subatomic particles called neutrinos appeared to be travelling faster than

light.1 Their observation is controversial, but if it is confirmed, it will lead

to important new physics.

Pythagoras turns up in relativity in other ways. One is the formulation
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of special relativity in terms of the geometry of space-time, originally

introduced by Hermann Minkowski. Ordinary Newtonian space can be

captured mathematically by making its points correspond to three

coordinates (x, y, z), and defining the distance d between such a point

and another one (X, Y, Z) using Pythagoras’s theorem:

d2 ¼ðx�XÞ2 þðy�YÞ2 þðz� ZÞ2

Now take the square root to get d. Minkowski space-time is similar, but

now there are four coordinates (x, y, z, t), three of space plus one of time,

and a point is called an event – a location in space, observed at a specified

time. The distance formula is very similar:

d2 ¼ðx�XÞ2 þðy�YÞ2 þðz� ZÞ2 � c2ðt�TÞ2

The factor c2 is just a consequence of the units used to measure time, but

the minus sign in front of it is crucial. The ‘distance’ d is called the interval,

and the square root is real only when the right-hand side of the equation is

positive. That boils down to the spatial distance between the two events

being larger than the temporal difference (in correct units: light-years and

years, for instance). That in turn means that in principle a body could

travel from the first point in space at the first time, and arrive at the second

point in space at the second time, without going faster than light.

In other words, the interval is real if and only if it is physically possible,

in principle, to travel between the two events. The interval is zero if and

only if light could travel between them. This physically accessible region is

called the light cone of an event, and it comes in two pieces: the past and

the future. Figure 50 shows the geometry when space is reduced to one

dimension.

I’ve now shown you three relativistic equations, and sketched how they

arose, but none of them is Einstein’s iconic equation. However, we’re now

ready to understand how he derived it, once we appreciate one more

innovation of early twentieth-century physics. As we’ve seen, physicists

had previously performed experiments to demonstrate conclusively that

light is a wave, and Maxwell had shown that it is a wave of

electromagnetism. However, by 1905 it was becoming clear that despite

the weight of evidence for the wave nature of light, there are circumstances

in which it behaves like a particle. In that year Einstein used this idea to

explain some features of the photoelectric effect, in which light that hits a
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suitable metal generates electricity. He argued that the experiments made

sense only if light comes in discrete packages: in effect, particles. They are

now called photons.

This puzzling discovery was one of the key steps towards quantum

mechanics, and I’ll say more about it in Chapter 14. Curiously, this

quintessentially quantum-mechanical idea was vital to Einstein’s

formulation of relativity. To derive his equation relating mass to energy,

Einstein thought about what happens to a body that emits a pair of

photons. To simplify the calculations he restricted attention to one

dimension of space, so that the body moved along a straight line. This

simplification does not affect the answer. The basic idea is to consider the

system in two different frames of reference.2 One moves with the body, so

that the body appears to be stationary within that frame. The other frame

moves with a small, nonzero velocity relative to the body. Let me call these

the stationary and moving frames. They are like the spaceship (in its own

frame of reference it is stationary) and my ground observer (to whom it

appears to be moving).

Einstein assumed that the two photons are equally energetic, but

emitted in opposite directions. Their velocities are equal and opposite, so

the velocity of the body (in either frame) does not change when the

photons are emitted. Then he calculated the energy of the system before

the body emits the pair of photons, and afterwards. By assuming that

energy must be conserved, he obtained an expression that relates the

change in the body’s energy, caused by emitting the photons, to the

change in its (relativistic) mass. The upshot was:

ðchange in energyÞ¼ ðchange in massÞ6 c2
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Making the reasonable assumption that a body of zero mass has zero

energy, it then followed that

energy¼mass6 c2

This, of course, is the famous formula, in which E symbolises energy and m

mass.

As well as doing the calculations, Einstein had to interpret their

meaning. In particular, he argued that in a frame for which the body is at

rest, the energy given by the formula should be considered to be its

‘internal’ energy, which it possesses because it is made from subatomic

particles, each of which has its own energy. In a moving frame, there is

also a contribution from kinetic energy. There are other mathematical

subtleties too, such as the use of a small velocity and approximations to the

exact formulas.

Einstein is often credited, if that’s the word, with the realisation that an

atomic bomb would release stupendous quantities of energy. Certainly

Time magazine gave that impression in July 1946 when it put his face on

the cover with an atomic mushroom cloud in the background bearing his

iconic equation. The connection between the equation and a huge

explosion seems clear: the equation tells us that the energy inherent in

any object is its mass multiplied by the square of the speed of light. Since

the speed of light is huge, its square is even bigger, which equates to a lot of

energy in a small amount of matter. The energy in one gram of matter

turns out to be 90 terajoules, equivalent to about one day’s output of

electricity from a nuclear power station.

However, it didn’t happen like that. The energy released in an atomic

bomb is only a tiny fraction of the relativistic rest mass, and physicists were

already aware, on experimental grounds, that certain nuclear reactions

could release a lot of energy. The main technical problem was to hold a

lump of suitable radioactive material together long enough to get a chain

reaction, in which the decay of one radioactive atom causes it to emit

radiation that triggers the same effect in other atoms, growing

exponentially. Nevertheless, Einstein’s equation quickly became

established in the public mind as the progenitor of the atomic bomb.

The Smyth report, an American government document released to the

public to explain the atomic bomb, placed the equation on its second page.

I suspect that what happened is what Jack Cohen and I have called ‘lies to
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children’ – simplified stories told for legitimate purposes, which pave the

way to more accurate enlightenment.3 This is how education works: the

full story is always too complicated for anyone except the experts, and they

know so much that they don’t believe most of it.

However, Einstein’s equation can’t just be dismissed out of hand. It did

play a role in the development of nuclear weapons. The notion of nuclear

fission, which powers the atom bomb, arose from discussions between the

physicists Lise Meitner and Otto Frisch in Nazi Germany in 1938. They

were trying to understand the forces that held the atom together, which

were a bit like the surface tension of a drop of liquid. They were out

walking, discussing physics, and they applied Einstein’s equation to work

out whether fission was possible on energy grounds. Frisch later wrote:4

We both sat down on a tree trunk and started to calculate on scraps of

paper... When the two drops separated they would be driven apart by

electrical repulsion, about 200 MeV in all. Fortunately Lise Meitner

remembered how to compute the masses of nuclei... and worked out

that the two nuclei formed... would be lighter by about one-fifth the

mass of a proton... according to Einstein’s formula E=mc2... the mass

was just equivalent to 200 MeV. It all fitted!

Although E=mc2 was not directly responsible for the atom bomb, it was

one of the big discoveries in physics that led to an effective theoretical

understanding of nuclear reactions. Einstein’s most important role

regarding the atomic bomb was political. Urged by Leo Szilard, Einstein

wrote to President Roosevelt, warning that the Nazis might be developing

atomic weapons and explaining their awesome power. His reputation and

influence were enormous, and the president heeded the warning. The

Manhattan Project, Hiroshima and Nagasaki, and the ensuing Cold War

were just some of the consequences.

Einstein wasn’t satisfied with special relativity. It provided a unified theory

of space, time, matter, and electromagnetism, but it missed out one vital

ingredient.

Gravity.

Einstein believed that ‘all the laws of physics’ must satisfy his extended

version of Galileo’s principle of relativity. The law of gravitation surely

ought to be among them. But that wasn’t the case for the current version of

relativity. Newton’s inverse square law did not transform correctly between
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frames of reference. So Einstein decided he had to change Newton’s law.

He’d already changed virtually everything else in the Newtonian universe,

so why not?

It took him ten years. His starting-point was to work out the

implications of the principle of relativity for an observer moving freely

under the influence of gravity – in a lift that is dropping freely, for

example. Eventually he homed in on a suitable formulation. In this he

was aided by a close friend, the mathematician Marcel Grossmann, who

pointed him towards a rapidly growing field of mathematics: differential

geometry. This had developed from Riemann’s concept of a manifold and

his characterisation of curvature, discussed in Chapter 1. There I

mentioned that Riemann’s metric can be written as a 3 ´3 matrix, and

that technically this is a symmetric tensor. A school of Italian

mathematicians, notably Tullio Levi-Civita and Gregorio Ricci-Curbastro,

took up Riemann’s ideas and developed them into tensor calculus.

From 1912, Einstein was convinced that the key to a relativistic theory

of gravity required him to reformulate his ideas using tensor calculus, but

in a 4-dimensional space-time rather than 3-dimensional space. The

mathematicians were happily following Riemann and allowing any

number of dimensions, so they had already set things up in more than

enough generality. To cut a long story short, he eventually derived what we

now call the Einstein field equations, which he wrote as:

Rmv � 1
2Rgmv ¼ kTmv

Here R, g, and T are tensors – quantities that define physical properties and

transform according to the rules of differential geometry – and k is a

constant. The subscripts m and n run over the four coordinates of space-

time, so each tensor is a 464 table of 16 numbers. Both are symmetric,

meaning that they don’t change when m and n are swapped, which reduces

them to a list of 10 distinct numbers. So really the formula packages

together 10 equations, which is why we often refer to them using the plural

– compare Maxwell’s equations. R is Riemann’s metric: it defines the shape

of space-time. g is the Ricci curvature tensor, which is a modification of

Riemann’s notion of curvature. And T is the energy–momentum tensor,

which describes how these two fundamental quantities depend on the

space-time event concerned. Einstein presented his equations to the

Prussian Academy of Science in 1915. He called his new work the general

theory of relativity.

We can interpret Einstein’s equations geometrically, and when we do,
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they provide a new approach to gravity. The basic innovation is that

gravity is not represented as a force, but as the curvature of space-time. In

the absence of gravity, space-time reduces to Minkowski space. The

formula for the interval determines the corresponding curvature tensor. Its

interpretation is ‘not curved’, just as Pythagoras’s theorem applies to a flat

plane but not to a positively or negatively curved non-Euclidean space.

Minkowski space-time is flat. But when gravity occurs, space-time bends.

The usual way to picture this is to forget time, drop the dimensions of

space down to two, and get something like Figure 51 (left). The flat plane of

Minkowski space(-time) is distorted, shown here by an actual bend,

creating a depression. Far from the star, matter or light travels in a straight

line (dotted). But the curvature causes the path to bend. In fact, it looks

superficially as though some force coming from the star attracts the matter

towards it. But there is no force, just warped space-time. However, this

image of curvature deforms space along an extra dimension, which is not

required mathematically. An alternative image is to draw a grid of

geodesics, shortest paths, equally spaced according to the curved metric.

They bunch together where the curvature is greater, Figure 51 (right).

Fig 51 Left: Warped space near a star, and how it bends the paths of passing matter or light.

Right: alternative image using a grid of geodesics, which bunch together in regions of higher

curvature.

If the curvature of space-time is small, that is, if what (in the old

picture) we think of as gravitational forces are not too large, then this

formulation leads to Newton’s law of gravity. Comparing the two theories,

Einstein’s constant k turns out to be 8πG/c4, where G is Newton’s

gravitational constant. This links the new theory to the old one, and

proves that in most cases the new one will agree with the old. The

interesting new physics occurs when this is no longer true: when gravity is

large. When Einstein came up with his theory, any test of relativity had to
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take place outside the laboratory, on a grand scale. Which meant

astronomy.

Einstein therefore went looking for unexplained peculiarities in the

motion of the planets, effects that didn’t square with Newton. He found

one that might be suitable: an obscure feature of the orbit of Mercury, the

planet closest to the Sun, subjected to the greatest gravitational forces –

and so, if Einstein was right, inside a region of high curvature.

Like all planets, Mercury follows a path that is very close to an ellipse,

so some points in its orbit are closer to the Sun than others. The closest of

all is called its perihelion (‘near Sun’ in Greek). The exact location of this

perihelion had been observed for many years, and there was something

funny about it. The perihelion slowly rotated about the Sun, an effect

called precession; in effect, the long axis of the orbital ellipse was slowly

changing direction. That was all right; Newton’s laws predicted it, because

Mercury is not the only planet in the Solar System and other planets were

slowly changing its orbit. The problem was that Newtonian calculations

gave the wrong rate of precession. The axis was rotating too quickly.

That had been known since 1840 when François Arago, director of the

Paris Observatory, asked Urbain Le Verrier to calculate the orbit of Mercury

using Newton’s laws of motion and gravitation. But when the results were

tested by observing the exact timing of a transit of Mercury – a passage

across the face of the Sun, as viewed from Earth – they were wrong.

Le Verrier decided to try again, eliminating potential sources of error, and

in 1859 he published his new results. On the Newtonian model, the rate

of precession was accurate to about 0.7%. The difference compared with

observations was tiny: 38 seconds of arc every century (later revised to 43

arc-seconds). That’s not much, less than one ten thousandth of a degree

per year, but it was enough to interest Le Verrier. In 1846 he had made his

reputation by analysing irregularities in the orbit of Uranus and predicting

the existence, and location, of a then undiscovered planet: Neptune. Now

he was hoping to repeat the feat. He interpreted the unexpected perihelion

movement as evidence that some unknown world was perturbing

Mercury’s orbit. He did the sums and predicted the existence of a small

planet with an orbit closer to the Sun than that of Mercury. He even had a

name for it: Vulcan, the Roman god of fire.

Observing Vulcan, if it existed, would be difficult. The glare of the Sun

was an obstacle, so the best bet was to catch Vulcan in transit, where it

would be a tiny dark dot against the bright disc of the Sun. Shortly after
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Le Verrier’s prediction, an amateur astronomer named Edmond

Lescarbault informed the distinguished astronomer that he had seen just

that. He had initially assumed that the dot must be a sunspot, but it moved

at the wrong speed. In 1860 Le Verrier announced the discovery of Vulcan

to the Paris Academy of Science, and the government awarded Lescarbault

the prestigious Légion d’Honneur.

Amid the clamour, some astronomers remained unimpressed. One was

Emmanuel Liais, who had been studying the Sun with much better

equipment than Lescarbault. His reputation was on the line: he had been

observing the Sun for the Brazilian government, and it would have been

disgraceful to have missed something of such importance. He flatly denied

that a transit had taken place. For a time, everything got very confused.

Amateurs repeatedly claimed they had seen Vulcan, sometimes years

before Le Verrier announced his prediction. In 1878 James Watson, a

professional, and Lewis Swift, an amateur, said they had seen a planet like

Vulcan during a solar eclipse. Le Verrier had died a year earlier, still

convinced he had discovered a new planet near the Sun, but without his

enthusiastic new calculations of orbits and predictions of transits – none of

which happened – interest in Vulcan quickly died away. Astronomers

became skeptical.

In 1915, Einstein administered the coup de grâce. He reanalysed the

motion using general relativity, without assuming any new planet, and a

simple and transparent calculation led him to a value of 43 seconds of arc

for the precession – the exact figure obtained by updating Le Verrier’s

original calculations. A modern Newtonian calculation predicts a

precession of 5560 arc seconds per century, but observations give 5600.

The difference is 40 seconds of arc, so about 3 arc-seconds per century

remains unaccounted for. Einstein’s announcement did two things: it was

seen as a vindication of relativity, and as far as most astronomers were

concerned, it relegated Vulcan to the scrapheap.5

Another famous astronomical verification of general relativity is

Einstein’s prediction that the Sun bends light. Newtonian gravitation

also predicts this, but general relativity predicts an amount of bending that

is twice as large. The total solar eclipse of 1919 provided an opportunity to

distinguish the two, and Sir Arthur Eddington mounted an expedition,

eventually announcing that Einstein prevailed. This was accepted with

enthusiasm at the time, but later it became clear that the data were poor,

and the result was questioned. Further independent observations from

1922 seemed to agree with the relativistic prediction, as did a later

reanalysis of Eddington’s data. By the 1960s it became possible to make the
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observations for radio-frequency radiation, and only then was it certain

that the data did indeed show a deviation twice that predicted by Newton

and equal to that predicted by Einstein.

The most dramatic predictions from general relativity arise on a much

grander scale: black holes, which are born when a massive star collapses

under its own gravitation, and the expanding universe, currently explained

by the Big Bang.

Solutions to Einstein’s equations are space-time geometries. These

might represent the universe as a whole, or some part of it, assumed to be

gravitationally isolated so that the rest of the universe has no important

effect. This is analogous to early Newtonian assumptions that only two

bodies are interacting, for example. Since Einstein’s field equations involve

ten variables, explicit solutions in terms of mathematical formulas are rare.

Today we can solve the equations numerically, but that was a pipedream

before the 1960s because computers either didn’t exist or were too limited

to be useful. The standard way to simplify equations is to invoke symmetry.

Suppose that the initial conditions for a space-time are spherically

symmetric, that is, all physical quantities depend only on the distance

from the centre. Then the number of variables in any model is greatly

reduced. In 1916 the German astrophysicist Karl Schwarzschild made this

assumption for Einstein’s equations, and managed to solve the resulting

equations with an exact formula, known as the Schwarzschild metric. His

formula had a curious feature: a singularity. The solution became infinite

at a particular distance from the centre, called the Schwarzschild radius. At

first it was assumed that this singularity was some kind of mathematical

artefact, and its physical meaning was the subject of considerable dispute.

We now interpret it as the event horizon of a black hole.

Imagine a star so massive that its radiation cannot counter its

gravitational field. The star will begin to contract, sucked together by its

own mass. The denser it gets, the stronger this effect becomes, so the

contraction happens ever faster. The star’s escape velocity, the speed with

which an object must move to escape the gravitational field, also increases.

The Schwarzschild metric tells us that at some stage, the escape velocity

becomes equal to that of light. Now nothing can escape, because nothing

can travel faster than light. The star has become a black hole, and the

Schwarzschild radius tells us the region from which nothing can escape,

bounded by the black hole’s event horizon.

Black hole physics is complex, and there isn’t space to do it justice here.
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Suffice it to say that most cosmologists are now satisfied that the prediction

is valid, that the universe contains innumerable black holes, and indeed

that at least one lurks at the heart of our Galaxy. Indeed, of most galaxies.

In 1917 Einstein applied his equations to the entire universe, assuming

another kind of symmetry: homogeneity. The universe should look the

same (on large enough scale) at all points in space and time. By then he

had modified the equations to include a ‘cosmological constant’ L, and
sorted out the meaning of the constant k. The equations were now written

like this:

Gmv þLgmv ¼ 8pG
c4Tmv

The solutions had a surprising implication: the universe should shrink as

time passes. This forced Einstein to add the term involving the

cosmological constant: he was seeking an unchanging, stable universe,

and by adjusting the constant to the right value he could stop his model

universe contracting to a point. In 1922 Alexander Friedmann found

another equation, which predicted the universe should expand and did

not require the cosmological constant. It also predicted the rate of

expansion. Einstein still wasn’t happy: he wanted the universe to be

stable and unchanging.

For once Einstein’s imagination failed him. In 1929 American

astronomers Edwin Hubble and Milton Humason found evidence that

the universe is expanding. Distant galaxies are moving away from us, as

shown by shifts in the frequency of the light they emit – the famous

Doppler effect, in which the sound of a speeding ambulance drops as it

passes by, because the sound waves are affected by the relative speed of

emitter and receiver. Now the waves are electromagnetic and the physics is

relativistic, but there is still a Doppler effect. Not only do distant galaxies

move away from us: the more distant they are, the faster they recede.

Running the expansion backwards in time, it turns out that at some

point in the past, the entire universe was essentially just a point. Before

that, it didn’t exist at all. At that primeval point, space and time both came

into existence in the famous Big Bang, a theory proposed by French

mathematician Georges Lemaı̂tre in 1927, and almost universally ignored.

When radio telescopes observed the cosmological microwave background

radiation in 1964, at a temperature that fitted the Big Bang model,

cosmologists decided Lemaı̂tre had been right after all. Again, the topic

deserves a book of is own, and many have been written. Suffice it to say
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that our current most widely accepted theory of cosmology is an

elaboration of the Big Bang scenario.

Scientific knowledge, however, is always provisional. New discoveries can

change it. The Big Bang has been the accepted cosmological paradigm for

the last 30 years, but it is beginning to show some cracks. Several

discoveries either cast serious doubt on the theory, or require new physical

particles and forces that have been inferred but not observed. There are

three main sources of difficulty. I’ll summarise them first, and then discuss

each in more detail. The first is galactic rotation curves, which suggest that

most of the matter in the universe is missing. The current proposal is that

this is a sign of a new kind of matter, dark matter, which constitutes about

90% of the matter in the universe, and is different from any matter yet

observed directly on Earth. The second is an acceleration in the expansion

of the universe, which requires a new force, dark energy, of unknown

origin but modelled using Einstein’s cosmological constant. The third is a

collection of theoretical issues related to the popular theory of inflation,

which explains why the observable universe is so uniform. The theory fits

observations, but its internal logic is looking shaky.

Dark matter first. In 1938 the Doppler effect was used to measure the

speeds of galaxies in clusters, and the results were inconsistent with

Newtonian gravitation. Because galaxies are separated by large distances,

space-time is almost flat and Newtonian gravity is a good model. Fritz

Zwicky suggested that there must be some unobserved matter to account

for the discrepancy, and it was named dark matter because it could not be

seen in photographs. In 1959, using the Doppler effect to measure the

speed of rotation of stars in the galaxy M33, Louise Volders discovered that

the observed rotation curve – a plot of speed against distance from the

centre – was also inconsistent with Newtonian gravitation, which again is a

good model. Instead of the speed falling off at greater distances, it

remained almost constant, Figure 52. The same problem arises for many

other galaxies.

If it exists, dark matter must be different from ordinary ‘baryonic’

matter, the particles observed in experiments on Earth. Its existence is

accepted by most cosmologists, who argue that dark matter explains

several different anomalies in observations, not just rotation curves.

Candidate particles have been suggested, such as WIMPs (weakly

interacting massive particles), but so far these particles have not been

detected in experiments. The distribution of dark matter around galaxies
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has been plotted by assuming dark matter exists and working out where it

has to be to make the rotation curves flat. It generally seems to form two

globes of galactic proportions, one above the plane of the galaxy and the

other below it, like a giant dumb-bell. This is a bit like predicting the

existence of Neptune from discrepancies in the orbit of Uranus, but such

predictions require confirmation: Neptune had to be found.

Dark energy is similarly proposed to explain the results of the 1998

High-z Supernova Search Team, which expected to find evidence that the

expansion of the universe is slowing down as the initial impulse from the

Big Bang dies away. Instead, the observations indicated that the expansion

of the universe is speeding up, a finding confirmed by the Supernova

Cosmology Project in 1999. It is as though some antigravity force pervades

space, pushing galaxies apart at an ever-increasing rate. This force is not

any of the four basic forces of physics: gravity, electromagnetism, strong

nuclear force, weak nuclear force. It was named dark energy. Again, its

existence seemed to solve some other cosmological problems.

Inflation was proposed by the American physicist Alan Guth in 1980 to

explain why the universe is extremely uniform in its physical properties on

very large scales. Theory showed that the Big Bang ought to have produced

a universe that was far more curved. Guth suggested that an ‘inflaton field’

(that’s right, no second i: it’s thought to be a scalar quantum field

corresponding to a hypothetical particle, the inflaton) caused the early

universe to expand with extreme rapidity. Between 10�36 and 10�32

seconds after the Big Bang, the volume of the universe grew by a

mindboggling factor of 1078. The inflaton field has not been observed

(this would require unfeasibly high energies) but inflation explains so

many features of the universe, and fits observations so closely, that most

cosmologists are convinced it happened.
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It’s not surprising that dark matter, dark energy, and inflation were popular

among cosmologists, because they let them continue to use their favourite

physical models, and the results agreed with observations. But things are

starting to fall apart.

The distributions of dark matter don’t provide a satisfactory

explanation of rotation curves. Enormous amounts of dark matter are

needed to keep the rotation curve flat out to the large distances observed.

The dark matter has to have unrealistically large angular momentum,

which is inconsistent with the usual theories of galaxy formation. The

same rather special initial distribution of dark matter is required in every

galaxy, which seems unlikely. The dumb-bell shape is unstable because it

places the additional mass on the outside of the galaxy.

Dark energy fares better, and it is thought to be some kind of quantum-

mechanical vacuum energy, arising from fluctuations in the vacuum.

However, current calculations of the size of the vacuum energy are too

big by a factor of 10122, which is bad news even by the standards of

cosmology.6

The main problems affecting inflation are not observations – it fits

those amazingly well – but its logical foundations. Most inflationary

scenarios would lead to a universe that differs considerably from ours; what

counts is the initial conditions at the time of the Big Bang. In order to

match observations, inflation requires the early state of the universe to be

very special. However, there are also very special initial conditions that

produce a universe just like ours without invoking inflation. Although

both sets of conditions are extremely rare, calculations performed by Roger

Penrose7 show that the initial conditions that do not require inflation

outnumber those that produce inflation by a factor of one googolplex – ten

to the power ten to the power 100. So explaining the current state of the

universe without inflation would be much more convincing than

explaining it with inflation.

Penrose’s calculation relies on thermodynamics, which might not be

an appropriate model, but an alternative approach, carried out by Gary

Gibbons and Neil Turok, leads to the same conclusion. This is to ‘unwind’

the universe back to its initial state. It turns out that almost all of the

potential initial states do not involve a period of inflation, and those that

do require it are an exceedingly small proportion. But the biggest problem

of all is that when inflation is wedded to quantum mechanics, it predicts

that quantum fluctuations will occasionally trigger inflation in a small

region of an apparently settled universe. Although such fluctuations are

rare, inflation is so rapid and so gigantic that the net result is tiny islands of
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normal space-time surrounded by ever-growing regions of runaway

inflation. In those regions, the fundamental constants of physics can be

different from their values in our universe. In effect, anything is possible.

Can a theory that predicts anything be testable scientifically?

There are alternatives, and it is starting to look as though they need to be

taken seriously. Dark matter might not be another Neptune, but another

Vulcan – an attempt to explain a gravitational anomaly by invoking new

matter, when what really needs changing is the law of gravitation.

The main well-developed proposal is MOND, modified Newtonian

dynamics, proposed by Israeli physicist Mordehai Milgrom in 1983. This

modifies not the law of gravity, in fact, but Newton’s second law of

motion. It assumes that acceleration is not proportional to force when the

acceleration is very small. There is a tendency among cosmologists to

assume that the only viable alternative theories are dark matter or MOND –

so if MOND disagrees with observations, that leaves only dark matter.

However, there are many potential ways to modify the law of gravity, and

we are unlikely to find the right one straight away. The demise of MOND

has been proclaimed several times, but on further investigation no decisive

flaw has yet been found. The main problem with MOND, to my mind, is

that it puts into its equations what it hopes to get out; it’s like Einstein

modifying Newton’s law to change the formula near a large mass. Instead,

he found a radically new way to think of gravity, the curvature of space-

time.

Even if we retain general relativity and its Newtonian approximation,

there may be no need for dark energy. In 2009, using the mathematics of

shock waves, American mathematicians Joel Smoller and Blake Temple

showed that there are solutions of Einstein’s field equations in which the

metric expands at an accelerating rate.8 These solutions show that small

changes to the Standard Model could account for the observed acceleration

of galaxies without invoking dark energy.

General relativity models of the universe assume that it forms a

manifold; that is, on very large scales the structure smoothes out. However,

the observed distribution of matter in the universe is clumpy on very big

scales, such as the Sloan Great Wall, a filament composed of galaxies 1.37

billion light years long, Figure 53. Cosmologists believe that on even larger

scales the smoothness will become apparent – but to date, every time the

range of observations has been extended, the clumpiness has persisted.
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Fig 53 The clumpiness of the universe.

Robert MacKay and Colin Rourke, two British mathematicians, have

argued that a clumpy universe in which there are many local sources of

large curvature could explain all of the cosmological puzzles.9 Such a

structure is closer to what is observed than some large-scale smoothing,

and is consistent with the general principle that the universe ought to be

much the same everywhere. In such a universe there need be no Big Bang;

in fact, the whole thing could be in a steady state, and be far, far older than

the current figure of 13.8 billion years. Individual galaxies would go

through a life cycle, surviving relatively unchanged for around 1016 years.

They would have a very massive central black hole. Galactic rotation curves

would be flat because of inertial drag, a consequence of general relativity in

which a rotating massive body drags space-time round with it in its

vicinity. The red shift observed in quasars would be caused by a large

gravitational field, not by the Doppler effect, and would not be indicative

of an expanding universe – this theory has long been advanced by

American astronomer Halton Arp, and never satisfactorily disproved. The

alternative model even indicates a temperature of 58K for the cosmological

microwave background, the main evidence (aside from red shift

interpreted as expansion) for the Big Bang.

MacKay and Rourke say that their proposal ‘overturns virtually every

tenet of current cosmology. It does not, however, contradict any

observational evidence.’ It may well be wrong, but the fascinating point

is that you can retain Einstein’s field equations unchanged, dispense with

dark matter, dark energy, and inflation, and still get behaviour reasonably

like all of those puzzling observations. So whatever the theory’s fate, it

suggests that cosmologists should consider more imaginative

mathematical models before resorting to new and otherwise unsupported
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physics. Dark matter, dark energy, inflation, each requiring radically new

physics that no one has observed... In science, even one deus ex machina

raises eyebrows. Three would be considered intolerable in anything other

than cosmology. To be fair, it’s difficult to experiment on the entire

universe, so speculatively fitting theories to observations is about all that

can be done. But imagine what would happen if a biologist explained life

by some unobservable ‘life field’, let alone suggesting that a new kind of

‘vital matter’ and a new kind of ‘vital energy’ were also necessary – while

providing no evidence that any of them existed.

Leaving aside the perplexing realm of cosmology, there are now more

homely ways to verify relativity, both special and general, on a human

scale. Special relativity can be tested in the laboratory, and modern

measuring techniques provide exquisite accuracy. Particle accelerators

such as the Large Hadron Collider simply would not work unless the

designers took special relativity into account, because the particles that

whirl round these machines do so at speeds very close indeed to that of

light. Most tests of general relativity are still astronomical, ranging from

gravitational lensing to pulsar dynamics, and the level of accuracy is high.

A recent NASA experiment in low-Earth orbit, using high-precision

gyroscopes, confirmed the occurrence of inertial frame-dragging, but

failed to reach the intended precision because of unexpected electrostatic

effects. By the time the data were corrected for this problem, other

experiments had already achieved the same results.

However, one instance of relativistic dynamics, both special and

general, is closer to home: car satellite navigation. The satnav systems used

by motorists calculate the car’s position using signals from a network of 24

orbiting satellites, the Global Positioning System. GPS is astonishingly

accurate, and it works because modern electronics can reliably handle and

measure very tiny instants of time. It is based on very precise timing

signals, pulses emitted by the satellites and picked up on the ground.

Comparing the signals from several satellites triangulates the location of

the receiver to within a few metres. This level of accuracy requires knowing

the timing to within about 25 nanoseconds (billionths of a second).

Newtonian dynamics doesn’t give correct locations, because two effects

that are not accounted for in Newton’s equations alter the flow of time: the

satellite’s motion and Earth’s gravitational field.

Special relativity deals with the motion, and it predicts that the atomic

clocks on the satellites should lose 7 microseconds (millionths of a second)

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
13Seventeen_Chap13.3d Page 242 of 244

242 One thing is absolute



per day compared with clocks on the ground, thanks to relativistic time

dilation. General relativity predicts a gain of 45 microseconds per day

caused by the Earth’s gravity. The net result is that the clocks on the

satellites gain 38 microseconds per day for relativistic reasons. Small as this

may seem, its effect on GPS signals is by no means negligible. An error of 38

microseconds is 38,000 nanoseconds, about 1500 times the error that GPS

can tolerate. If the software calculated your car’s location using Newtonian

dynamics, your satnav would quickly become useless, because the error

would grow at a rate of 10 kilometres per day. Ten minutes from now

Newtonian GPS would place you on the wrong street; by tomorrow it

would place you in the wrong town. Within a week you’d be in the wrong

county; within a month, the wrong country. Within a year, you’d be on

the wrong planet. If you disbelieve relativity, but use satnav to plan your

journeys, you have some explaining to do.
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14Quantum weirdness
Schrödinger’s Equation

What does it say?

The equation models matter not as a particle, but as a wave,

and describes how such a wave propagates.

Why is that important?

Schrödinger’s equation is fundamental to quantum

mechanics, which together with general relativity constitute

today’s most effective theories of the physical universe.

What did it lead to?

A radical revision of the physics of the world at very small

scales, in which every object has a ‘wave function’ that

describes a probability cloud of possible states. At this level the

world is inherently uncertain. Attempts to relate the

microscopic quantum world to our macroscopic classical

world led to philosophical issues that still reverberate. But

experimentally, quantum theory works beautifully, and

today’s computer chips and lasers wouldn’t work without it.
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In 1900 the great physicist Lord Kelvin declared that the then current

theory of heat and light, considered to be an almost complete

description of nature, was ‘obscured by two clouds. The first involves the

question: How could the Earth move through an elastic solid, such as is

essentially the luminiferous ether? The second is the Maxwell–Boltzmann

doctrine regarding the partition of energy.’ Kelvin’s nose for an important

problem was spot on. In Chapter 13 we saw how the first question led to,

and was resolved by, relativity. Now we will see how the second led to the

other great pillar of present-day physics, quantum theory.

The quantum world is notoriously weird. Many physicists feel that if

you don’t appreciate just how weird it is, you don’t appreciate it at all.

There is a lot to be said for that opinion, because the quantum world is so

different from our comfortable human-scale one that even the simplest

concepts change out of all recognition. It is, for example, a world in which

light is both a particle and a wave. It is a world where a cat in a box can be

both alive and dead at the same time . . . until you open the box, that is,

when suddenly the unfortunate animal’s wave function ‘collapses’ to one

state or the other. In the quantum multiverse, there exists one copy of our

universe in which Hitler lost World War II, and another in which he won

it. We just happen to live in – that is, exist as quantum wave functions in –

the first one. Other versions of us, just as real but inaccessible to our senses,

live in the other one.

Quantum mechanics is definitely weird. Whether it is quite that weird,

though, is another matter altogether.

It all began with light bulbs. This was appropriate, because those were one

of the most spectacular applications to emerge from the burgeoning

subjects of electricity and magnetism, which Maxwell so brilliantly unified.

In 1894 a German physicist named Max Planck was hired by an electrical

company to design the most efficient light bulb possible, one giving the

most light while consuming the least electrical energy. He saw that the key

to this question was a fundamental issue in physics, raised in 1859 by
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another German physicist, Gustav Kirchhoff. It concerned a theoretical

construct known as a black body, which absorbs all electromagnetic

radiation that falls on it. The big question was: how does such a body emit

radiation? It can’t store it all; some has to come back out again. In

particular, how does the intensity of the emitted radiation depend on its

frequency and the body’s temperature?

There was already an answer from thermodynamics, in which a black

body can be modelled as a box whose walls are perfect mirrors.

Electromagnetic radiation bounces to and fro, reflected by the mirrors.

How is the energy in the box distributed among the various frequencies

when the system has settled to an equilibrium state? In 1876 Boltzmann

proved the ‘equipartition theorem’: the energy is apportioned equally to

each independent component of the motion. These components are just

like the basic waves in a violin string: normal modes.

There was only one problem with this answer: it couldn’t possibly be

correct. It implied that the total power radiated over all frequencies must

be infinite. This paradoxical conclusion became known as the ultraviolet

catastrophe: ultraviolet because that was the beginning of the high-

frequency range, and catastrophe because it was. No real body can emit an

infinite amount of power.

Although Planck was aware of this problem, it didn’t bother him,

because he didn’t believe the equipartition theorem anyway. Ironically, his

work resolved the paradox and did away with the ultraviolet catastrophe,

but he noticed this only later. He used experimental observations of how

energy depended on frequency, and fitted a mathematical formula to the

data. His formula, derived early in 1900, did not initially have any physical

basis. It was just a formula that worked. But later the same year he tried to

reconcile his formula with the classical thermodynamic one, and decided

that the energy levels of the black body’s vibrational modes could not form

a continuum, as thermodynamics assumed. Instead, these levels had to be

discrete – separated by tiny gaps. In fact, for any given frequency, the

energy had to be an integer multiple of that frequency, multiplied by a very

tiny constant. We now call this number Planck’s constant and denote it by

h. Its value, in units of joule seconds, is 6.62606957(29)610�34, where the

figures in brackets may be inaccurate. This value is deduced from

theoretical relationships between Planck’s constant and other quantities

that are easier to measure. The first such measurement was made by Robert

Millikan using the photoelectric effect, described below. The tiny packets

of energy are now called quanta (plural of quantum), from the Latin

quantus, ‘how much.’
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Planck’s constant may be tiny, but if the set of energy levels for a given

frequency is discrete, the total energy turns out to be finite. So the

ultraviolet catastrophe was a sign that a continuum model failed to reflect

nature. And that implied that nature, on very small scales, must be

discrete. Initially this didn’t occur to Planck: he thought of his discrete

energy levels as a mathematical trick to get a sensible formula. In fact,

Boltzmann had entertained a similar idea in 1877, but didn’t get anywhere

with it. Everything changed when Einstein brought his fertile imagination

to bear, and physics entered a new realm. In 1905, the same year as his

work on special relativity, he investigated the photoelectric effect, in

which light hitting a suitable metal causes it to emit electrons. Three years

earlier Philipp Lenard had noticed that when the light has a higher

frequency, the electrons have higher energies. But the wave theory of light,

amply confirmed by Maxwell, implies that the energy of the electrons

should depend on the intensity of the light, not on its frequency. Einstein

realised that Planck’s quanta would explain the discrepancy. He suggested

that light, rather than being a wave, was composed of tiny particles, now

called photons. The energy in a single photon, of a given frequency, should

be the frequency times Planck’s constant – just like one of Planck’s quanta.

A photon was a quantum of light.

There’s an obvious problem with Einstein’s theory of the photoelectric

effect: it assumes light is a particle. But there was abundant evidence that

light was a wave. On the other hand, the photoelectric effect was

incompatible with light being a wave. So was light a wave, or a particle?

Yes.

It was – or had aspects that manifested themselves as – either. In some

experiments, light seemed to behave like a wave. In others, it behaved like

a particle. As physicists came to grips with very small scales of the universe,

they decided that light wasn’t the only thing to have this strange dual

nature, sometimes particle, sometimes wave. All matter did. They called it

wave–particle duality. The first person to grasp this dual nature of matter

was Louis-Victor de Broglie, in 1924. He rephrased Planck’s law in terms

not of energy, but of momentum, and suggested that the momentum of

the particle aspect and the frequency of the wave aspect should be related:

multiply them together and you get Planck’s constant. Three years later he

was proved right, at least for electrons. One the one hand, electrons are

particles, and can be observed behaving that way. On the other hand, they
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diffract like waves. In 1988 atoms of sodium were also spotted behaving

like a wave.

Matter was neither particle nor wave, but a bit of both – a wavicle.

Several more or less intuitive images of this dual nature of matter were

devised. In one, a particle is a localised clump of waves, known as a wave

packet, Figure 54. The packet as a whole can behave like a particle, but

some experiments can probe its internal wavelike structure. Attention

shifted from providing images for wavicles to sorting out how they

behaved. The quest quickly attained its goal, and the central equation of

quantum theory emerged.

Fig 54 Wave packet.

The equation bears the name of Erwin Schrödinger. In 1927, building on

the work of several other physicists, notably Werner Heisenberg, he wrote

down a differential equation for any quantum wave function. It looked like

this:

ih
q
qt

C¼HC

Here Y (Greek capital psi) is the form of the wave, t is time (so ¶/¶t applied
to Y gives its rate of change with respect to time), H is an expression called

the Hamiltonian operator, and h– is h/2p, where h is Planck’s constant. And

i? That was the weirdest feature of all. It’s the square root of minus one

(Chapter 5). Schrödinger’s equation applies to waves defined over the

complex numbers, not just the real numbers as in the familiar wave

equation.

Waves in what? The classical wave equation (Chapter 8) defines waves

in space, and its solution is a numerical function of space and time. The

same goes for Schrödinger’s equation, but now the wave function Y takes

complex values, not just real ones. It’s a bit like an ocean wave whose
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height is 2þ3i. The appearance of i is in many ways the most mysterious

and profound feature of quantummechanics. Previously i had turned up in

solutions of equations, and in methods for finding those solutions, but

here it was part of the equation, an explicit feature of the physical law.

One way to interpret this is that quantum waves are linked pairs of real

waves, as if my complex ocean wave were really two waves, one of height 2

and the other of height 3, with the two directions of height at right angles

to each other. But it’s not quite that straightforward, because the two

waves don’t have a fixed shape. As time passes, they cycle through a whole

series of shapes, and each is mysteriously linked to the other. It’s a bit like

the electric and magnetic components of a light wave, but now electricity

can and does ‘rotate’ into magnetism, and conversely. The two waves are

two facets of a single shape, which spins steadily around the unit circle in

the complex plane. Both the real and the imaginary parts of this rotating

shape change in a very specific way: they are combined in sinusoidally

varying amounts. Mathematically this leads to the idea that a quantum

wave function has a special kind of phase. The physical interpretation of

that phase is similar to, but different from, the role of phase in the classical

wave equation.

Remember how Fourier’s trick solves both the heat equation and the

wave equation? Some special solutions, Fourier’s sines and cosines, have

especially pleasant mathematical properties. All other solutions, however

complicated, are superpositions of these normal modes. We can solve

Schrödinger’s equation using a similar idea, but now the basic patterns are

more complicated than sines and cosines. They are called eigenfunctions,

and they can be distinguished from all other solutions. Instead of being

some general function of both space and time, an eigenfunction is a

function defined only on space, multiplied by one depending only on

time. The space and time variables, in the jargon, are separable. The

eigenfunctions depend on the Hamiltonian operator, which is a

mathematical description of the physical system concerned. Different

systems – an electron in a potential well, a pair of colliding photons,

whatever – have different Hamiltonian operators, hence different

eigenfunctions.

For simplicity, consider a standing wave for the classical wave equation

– a vibrating violin string, whose ends are pinned down. At all instants of

time, the shape of the string is almost the same, but the amplitude is

modulated: multiplied by a factor that varies sinusoidally with time, as in

Figure 35 (page 138). The complex phase of a quantum wave function is

similar, but harder to visualise. For any individual eigenfunction, the effect
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of the quantum phase is just a shift of the time coordinate. For a

superposition of several eigenfunctions, you split the wave function into

these components, factor each into a purely spatial part times a purely

temporal one, spin the temporal part round the unit circle in the complex

plane at the appropriate speed, and add the pieces back together. Each

separate eigenfunction has a complex amplitude, and this modulates at its

own particular frequency.

It may sound complicated, but it would be completely baffling if you

didn’t split the wave function into eigenfunctions. At least then you’ve got

a chance.

Despite these complexities, quantum mechanics would be just a fancy

version of the classical wave equation, resulting in two waves rather than

one, were it not for a puzzling twist. You can observe classical waves, and

see what shape they are, even if they are superpositions of several Fourier

modes. But in quantum mechanics, you can never observe the entire wave

function. All you can observe on any given occasion is a single component

eigenfunction. Roughly speaking, if you attempt to measure two of these

components at the same time, the measurement process on one of them

disturbs the other one.

This immediately raises a difficult philosophical issue. If you can’t

observe the entire wave function, does it actually exist? Is it a genuine

physical object, or just a convenient mathematical fiction? Is an

unobservable quantity scientifically meaningful? It is here that

Schrödinger’s celebrated feline enters the story. It arises because of a

standard way to interpret what a quantum measurement is, called the

Copenhagen interpretation.1

Imagine a quantum system in some superposed state: say, an electron

whose state is a mixture of spin-up and spin-down, which are pure states

defined by eigenfunctions. (It doesn’t matter what spin-up and spin-down

mean.) When you observe the state, however, you either get spin-up, or

you get spin-down. You can’t observe a superposition. Moreover, once

you’ve observed one of these – say spin-up – that becomes the actual state of

the electron. Somehow your measurement seems to have forced the

superposition to change into a specific component eigenfunction. This

Copenhagen interpretation takes this statement literally: your

measurement process has collapsed the original wave function into a

single pure eigenfunction.

If you observe a lot of electrons, sometimes you get spin-up, sometimes

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
14Seventeen_Chap14.3d Page 252 of 264

252 Quantum weirdness



spin-down. You can infer the probability that the electron is in one of

those states. So the wave function itself can be interpreted as a kind of

probability cloud. It doesn’t show the actual state of the electron: it shows

how probable it is that when you measure it, you get a particular result. But

that makes it a statistical pattern, not a real thing. It no more proves the

wave function is real than Quetelet’s measurements of human height

prove that a developing embryo possesses some sort of bell curve.

The Copenhagen interpretation is straightforward, reflects what

happens in experiments, and makes no detailed assumptions about what

happens when you observe a quantum system. For these reasons, most

working physicists are very happy to use it. But some were not, in the early

days when they theory was still being thrashed out, and some still are not.

And one of the dissenters was Schrödinger himself.

In 1935, Schrödinger was worrying about the Copenhagen interpretation.

He could see that it worked, on a pragmatic level, for quantum systems like

electrons and photons. But the world around him, even though deep down

inside it was just a seething mass of quantum particles, seemed different.

Seeking a way to make the difference as glaring as he could, Schrödinger

came up with a thought experiment in which a quantum particle had a

dramatic and obvious effect on a cat.

Imagine a box, which when shut is impervious to all quantum

interactions. Inside it, place an atom of radioactive matter, a radiation

detector, a flask of poison, and a live cat. Now shut the box, and wait. At

some point the radioactive atom will decay, and emit a particle of

radiation. The detector will spot it, and is rigged so that when it does so, it

causes the flask to break and release the poison inside. This kills the cat.

In quantum mechanics, the decay of a radioactive atom is a random

event. From outside, no observer can tell whether the atom has decayed or

not. If it has, the cat is dead; if not, it’s alive. According to the Copenhagen

interpretation, until someone observes the atom, it is in a superposition of

two quantum states: decayed and not decayed. The same goes for the states

of the detector, the flask, and the cat. So the cat is in a superposition of two

states: dead and alive.

Since the box is impervious to all quantum interactions, the only way

to find out whether the atom has decayed and killed the cat is to open the

box. The Copenhagen interpretation tells us that the instant we do this,

the wave functions collapse and the cat suddenly switches to a pure state:

either dead, or alive. However, the inside of the box is no different from the
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external world, where we never observe a cat that is in a superposed alive/

dead state. So before we open the box and observe its contents, there must

either be a dead cat inside, or a live one.

Schrödinger intended this thought experiment as a criticism of the

Copenhagen interpretation. Microscopic quantum systems obey the

superposition principle and can exist in mixed states; macroscopic ones

can’t. By linking a microscopic system, the atom, to a macroscopic one, the

cat, Schrödinger was pointing out what he believed to be a flaw in the

Copenhagen interpretation: it gave nonsense when applied to a cat. He

must have been startled when the majority of physicists responded, in

effect: ‘Yes, Erwin, you’re absolutely right: until someone opens the box,

the cat really is simultaneously dead and alive.’ Especially when it dawned

on him that he couldn’t find out who was right, even if he opened the box.

He would observe either a live cat or a dead one. He might infer that the cat

had been in that state before he opened the box, but he couldn’t be sure.

The observable result was consistent with the Copenhagen interpretation.

Very well: add a film camera to the contents of the box, and film what

actually happens. That will decide the matter. ‘Ah, no,’ the physicists

replied. ‘You can only see what the camera has filmed after you open the

box. Before that, the film is in a superposed state: containing a movie of a

live cat, and containing a movie of a dead one.’

The Copenhagen interpretation freed up physicists to do their

calculations and sort out what quantum mechanics predicted, without

facing up to the difficult, if not impossible, issue of how the classical world

emerged from a quantum substrate – how a macroscopic device,

unimaginably complex on a quantum scale, somehow made a

measurement of a quantum state. Since the Copenhagen interpretation

did the job, they weren’t really interested in philosophical questions. So

generations of physicists were taught that Schrödinger had invented his cat

to show that quantum superposition extended into the macroscopic world

too: the exact opposite of what Schrödinger had been trying to tell them.

It’s not really a great surprise that matter behaves strangely on the level of

electrons and atoms. We may initially rebel at the thought, out of

unfamiliarity, but if an electron is really a tiny clump of waves rather than

a tiny clump of stuff, we can learn to live with it. If that means that the

state of the electron is itself a bit weird, spinning not just about an up axis

or a down axis but a bit of both, we can live with that too. And if the

limitations of our measuring devices imply that we can never catch the
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electron doing that kind of thing – that any measurement we make

necessarily settles for some pure state, up or down – then that’s how it is. If

the same applies to a radioactive atom, and the states are ‘decayed’ or ‘not

decayed’, because its component particles have states as elusive as those of

the electron, we can even accept that the atom itself, in its entirety, may be

in a superposition of those states until we make a measurement. But a cat is

a cat, and it seems to be a very big stretch of the imagination to imagine

that the animal can be both alive and dead at the same time, only to

miraculously collapse into one or the other when we open the box that

contains it. If quantum reality requires a superposed alive/dead cat, why is

it so shy that it won’t let us observe such a state?

There are sound reasons in the formalism of quantum theory that

(until very recently) require any measurement, any ‘observable’, to be an

eigenfunction. There are even sounder reasons why the state of a quantum

system should be a wave, obeying Schrödinger’s equation. How can you get

from one to the other? The Copenhagen interpretation declares that

somehow (don’t ask how) the measurement process collapses the complex,

superposed wave function down to a single component eigenfunction.

Having been provided with this form of words, your task as a physicist is to

get on with making measurements and calculating eigenfunctions and so

on, and stop asking awkward questions. It works amazingly well, if you

measure success by getting answers that agree with experiment. And

everything would have been fine if Schrödinger’s equation permitted the

wave function to behave in this manner, but it doesn’t. In The Hidden

Reality Brian Greene puts it this way: ‘Even polite prodding reveals an

uncomfortable feature . . . The instantaneous collapse of a wave . . . can’t

possible emerge from Schrödinger’s math.’ Instead, the Copenhagen

interpretation was a pragmatic bolt-on to the theory, a way to handle

measurements without understanding or facing up to what they really

were.

This is all very well, but it’s not what Schrödinger was trying to point

out. He introduced a cat, rather than an electron or an atom, because it put

what he considered to be the main issue in sharp relief. A cat belongs to the

macroscopic world in which we live, in which matter does not behave

the way quantum mechanics demands. We do not see superposed cats.2

Schrödinger was asking why our familiar ‘classical’ universe fails to

resemble the underlying quantum reality. If everything from which the

world is built can exist in superposed states, why does the universe look

classical? Many physicists have performed wonderful experiments showing

that electrons and atoms really do behave the way quantum and
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Copenhagen say they should. But this misses the point: you have to do it

with a cat. Theorists wondered whether the cat could observe its own state,

or whether someone else could secretly open the box and write down what

was inside. They concluded, following the same logic as Schrödinger, that

if the cat observed its state then the box contained a superposition of a

dead cat that had committed suicide by observing itself, and a live cat that

had observed itself to be alive, until the legitimate observer (a physicist)

opened the box. Then the whole shebang collapsed to one or the other.

Similarly the friend became a superposition of two friends: one of whom

had seen a dead cat while the other had seen a live one, until a physicist

opened the box, causing the friend’s state to collapse. You could proceed in

this way until the state of the entire universe was a superposition of a

universe with a dead cat and a universe with a live one, and then the state

of the universe collapsed when a physicist opened the box.

It was all a bit embarrassing. Physicists could get on with their work

without sorting it out, they could even deny there was anything to be

sorted out, but something was missing. For example, what happens to us if

an alien physicist on the planet Apellobetnees III opens a box? Do we

suddenly discover we actually blew ourselves up in a nuclear war when the

Cuban missile crisis of 1962 escalated, and have been living on borrowed

time ever since?

The measurement process is not the neat, tidy mathematical operation

that the Copenhagen interpretation assumes. When asked to describe how

the apparatus comes to its decision, the Copenhagen interpretation replies

‘it just does’. The image of the wave function collapsing to a single

eigenfunction describes the input and the output of the measurement

process, but not how to get from one to the other. But when you make a

real measurement you don’t just wave a magic wand and cause the wave

function to disobey Schrödinger’s equation and collapse. Instead, you do

something so enormously complicated, from a quantum viewpoint, that it

is obviously hopeless to model it realistically. To measure an electron’s

spin, for example, you make it interact with a suitable piece of apparatus,

which has a pointer that either moves to the ‘up’ position or the ‘down’

one. Or a numerical display, or a signal sent to a computer . . . This device

yields one state, and one state only. You don’t see the pointer in a

superposition of up and down.

We are used to this, because that’s how the classical world works. But

underneath it’s supposed to be a quantum world. Replace the cat with the
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spin apparatus, and it should indeed exist in a superposed state. The

apparatus, viewed as a quantum system, is extraordinarily complicated.

It contains gazillions of particles – between 1025 and 1030, at a rough

estimate. The measurement emerges somehow from the interaction of that

single electron with these gazillion particles. Admiration for the expertise

of the company that manufactures the instrument must be boundless; to

extract anything sensible from something so messy is almost beyond belief.

It’s like trying to work out someone’s shoe size by making them pass

through a city. But if you’re clever (arrange for them to encounter a shoe

shop) you can get a sensible result, and a clever instrument designer can

produce meaningful measurements of electron spin. But there’s no realistic

prospect of modelling in detail how such a device works as a bona fide

quantum system. There’s too much detail, the biggest computer in the

world would flounder. That makes it difficult to analyse a real

measurement process using Schrödinger’s equation.

Even so, we do have some understanding of how our classical world

emerges from an underlying quantum one. Let’s start with a simple

version, a ray of light hitting a mirror. The classical answer, Snell’s law,

states that the reflected ray bounces off at the same angle as the one that

hit. In his book QED on quantum electrodynamics, the physicist Richard

Feynman explained that this is not what happens in the quantum world.

The ray is really a stream of photons, and each photon can bounce all over

the place. However, if you superpose all the possible things the photon

could do, then you get Snell’s law. The overwhelming proportion of

photons bounce back at angles very close to the one at which they hit.

Feynman even managed to show why without using any complicated

mathematics, but behind this calculation is a general mathematical idea:

the principle of stationary phase. If you superpose all quantum states for an

optical system, you get the classical outcome in which light rays follow the

shortest path, measured by time taken. You can even add bells and whistles

to decorate the ray paths with classical wave-optical diffraction fringes.

This example shows, very explicitly, that the superposition of all

possible worlds – in this optical framework – yields the classical world. The

most important feature is not so much the detailed geometry of the light

ray, but the fact that it yields only one world at the classical level. Down in

the quantum details of individual photons, you can observe all the

paraphernalia of superposition, eigenfunctions, and so on. But up at the

human scale, all that cancels out – well, adds together – to produce a clean,

classical world.

The other part of the explanation is called decoherence. We’ve seen
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that quantum waves have a phase as well as an amplitude. It’s a very funny

phase, a complex number, but it’s a phase nonetheless. The phase is

absolutely crucial to any superposition. If you take two superposed states,

change the phase of one, and add them back together, what you get is

nothing like the original. If you do the same with a lot of components, the

reassembled wave can be almost anything. Loss of phase information

wrecks any Schrödinger’s cat-like superposition. You don’t just lose track of

whether it’s alive or dead: you can’t tell it was a cat. When quantum waves

cease to have nice phase relations, they decohere – they start to behave

more like classical physics, and superpositions lose any meaning. What

causes them to decohere is interactions with surrounding particles. This is

presumably how apparatus can measure electron spin and get a specific,

unique result.

Both of these approaches lead to the same conclusion: classical physics

is what you observe if you take a human-scale view of a very complicated

quantum system with gazillions of particles. Special experimental

methods, special devices, might preserve some of the quantum effects,

making them poke up into our comfortable classical existence, but generic

quantum systems quickly cease to appear quantum as we move to larger

scales of behaviour.

That’s one way to resolve the fate of the poor cat. Only if the box is totally

impervious to quantum decoherence can the experiment produce the

superposed cat, and no such box exists. What would you make it from?

But there’s another way, one that goes to the opposite extreme. Earlier I

said that ‘You could proceed in this way until the state of the entire universe

was a superposition.’ In 1957 Hugh Everett Jr. pointed out that in a sense,

you have to. The only way to provide an accurate quantum model of a

system is to consider its wave function. Everyone was happy to do so when

the system was an electron, or an atom, or (more controversially) a cat.

Everett took the system to be the entire universe.

He argued that you had no choice if that’s what you wanted to model.

Nothing less than the universe can be truly isolated. Everything interacts

with everything else. And he discovered that if you took that step, then the

problem of the cat, and the paradoxical relation between quantum and

classical reality, is easily resolved. The quantum wave function of the

universe is not a pure eigenmode, but a superposition of all possible

eigenmodes. Although we can’t calculate such things (we can’t for a cat,

and a universe is a tad more complicated) we can reason about them. In
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effect, we are representing the universe, quantum-mechanically, as a

combination of all the possible things that a universe can do.

The upshot was that the wave function of the cat does not have to

collapse to give a single classical observation. It can remain completely

unchanged, with no violation of Schrödinger’s equation. Instead, there are

two coexisting universes. In one, the cat died; in the other, it didn’t. When

you open the box, there are correspondingly two yous and two boxes. One

of them is part of the wave function of a universe with a dead cat; the other

is part of a different wave function with a live cat. In place of a unique

classical world that somehow emerges from the superposition of quantum

possibilities, we have a vast range of classical worlds, each corresponding to

one quantum possibility.

Everett’s original version, which he called the relative state

formulation, came to popular attention in the 1970s through Bryce

DeWitt, who gave it a more catchy name: the many-worlds interpretation

of quantum mechanics. It is often dramatised in historical terms: for

example, that there is a universe in which Adolf Hitler won World War II,

and another one in which he didn’t. The one in which I am writing this

book is the latter, but somewhere alongside it in the quantum realm

another Ian Stewart is writing a book very similar to this one, but in

German, reminding his readers that they are in the universe where Hitler

won. Mathematically, Everett’s interpretation can be viewed as a logical

equivalent of conventional quantum mechanics, and it leads – in more

limited interpretations – to efficient ways to solve physics problems. His

formalism will therefore survive any experimental test that conventional

quantum mechanics survives. So does that imply that these parallel

universes, ‘alternate worlds’ in transatlantic parlance, really exist? Is

another me typing away happily on a computer keyboard in a world

where Hitler won? Or is the set-up a convenient mathematical fiction?

There is an obvious problem: how can we be sure that in a world

dominated by Hitler’s dream, the Thousand Year Reich, computers like the

one I’m using would exist? Clearly there must be many more universes

than two, and events in them must follow sensible classical patterns. So

maybe Stewart-2 doesn’t exist but Hitler-2 does. A common description of

the formation and evolution of parallel universes involves them ‘splitting

off’ whenever there is a choice of quantum state. Greene points out that

this image is wrong: nothing splits. The universe’s wave function has been,

and always will be, split. Its component eigenfunctions are there: we

imagine a split when we select one of them, but the whole point of
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Everett’s explanation is that nothing in the wave function actually

changes.

With that as a caveat, a surprising number of quantum physicists

accept the many-worlds interpretation. Schrödinger’s cat really is alive and

dead. Hitler really did win and lose. One version of us lives in one of those

universes, others do not. That’s what the mathematics says. It’s not an

interpretation, a convenient way to arrange the calculations. It’s as real as

you and I. It is you and I.

I’m not convinced. It’s not the superposition that bothers me, though.

I don’t find the existence of a parallel Nazi world unthinkable, or

impossible.3 But I do object, strenuously, to the idea that you can

separate a quantum wave function according to human-scale historical

narratives. The mathematical separation occurs at the level of quantum

states of constituent particles. Most combinations of particle states make

no sense whatsoever as a human narrative. A simple alternative to a dead

cat is not a live cat. It is a dead cat with one electron in a different state.

Complex alternatives are far more numerous than a live cat. They include a

cat that suddenly explodes for no apparent reason, one that turns into a

flower vase, one that gets elected president of the United States, and one

that survived even though the radioactive atom released the poison. Those

alternative cats are rhetorically useful but unrepresentative. Most

alternatives are not cats at all; in fact, they are indescribable in classical

terms. If so, most of the alternative Stewarts aren’t recognisable as people –

indeed as anything – and almost all of those that exist do so within a world

that makes absolutely no sense in human terms. So the chance that

another version of little old me happens to live in another world that

makes narrative sense to a human being is negligible.

The universe may well be an incredibly complex superposition of

alternative states. If you think quantum mechanics is basically right, it has

to be. In 1983 the physicist Stephen Hawking said that the many-worlds

interpretation was ‘self-evidently correct’ in this sense. But it doesn’t

follow that there exists a superposition of universes in which a cat is alive

or dead, and Hitler did or did not win. There is no reason to suppose that

the mathematical components can be separated into sets that fit together

to create human narratives. Hawking dismissed narrative interpretations of

the many-worlds formalism, saying ‘All that one does, really, is to calculate

conditional probabilities – in other words, the probability of A happening,

given B. I think that that’s all the many-worlds interpretation is. Some

people overlay it with a lot of mysticism about the wave function splitting
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into different parts. But all that you’re calculating is conditional

probabilities.’

It’s worth comparing the Hitler tale with Feynman’s story of the light

ray. In the style of alternative Hitlers, Feynman would be telling us that

there is one classical world where the light ray bounces off the mirror at the

same angle at which it hit, another classical world in which it bounces at

an angle that’s one degree wrong, another where it’s two degrees wrong,

and so on. But he didn’t. He told us that there is one classical world,

emerging from the superposition of the quantum alternatives. There may

be innumerable parallel worlds at the quantum level, but these do not

correspond in any meaningful way to parallel worlds that are describable at

the classical level. Snell’s law is valid in any classical world. If it weren’t, the

world couldn’t be classical. As Feynman explained for light rays, the

classical world emerges when you superpose all of the quantum

alternatives. There is only one such superposition, so there is only one

classical universe. Ours.

Quantum mechanics isn’t confined to the laboratory. The whole of

modern electronics depends on it. Semiconductor technology, the basis of

all integrated circuits – silicon chips – is quantum-mechanical. Without the

physics of the quantum, no one would have dreamed that such devices

could work. Computers, mobile phones, CD players, games consoles, cars,

refrigerators, ovens, virtually all modern household gadgets, contain

memory chips, to contain the instructions that make these devices do

what we want. Many contain more complex circuitry, such as

microprocessors, an entire computer on a chip. Most memory chips are

variations on the first true semiconductor device: the transistor.

In the 1930s, American physicists Eugene Wigner and Frederick Seitz

analysed how electrons move though a crystal, a problem that requires

quantum mechanics. They discovered some of the basic features of

semiconductors. Some materials are conductors of electricity: electrons

can flow through them with ease. Metals are good conductors, and in

everyday use copper wire is commonplace for this purpose. Insulators do

not permit electrons to flow, so they stop the flow of electricity: the plastics

that sheathe electrical wires, to prevent us electrocuting ourselves on the

TV power lead, are insulators. Semiconductors are a bit of both, depending

on circumstances. Silicon is the best known, and currently the most widely

used, but several other elements such as antimony, arsenic, boron, carbon,

germanium, and selenium are also semiconductors. Because
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semiconductors can be switched from one state to the other, they can be

used to manipulate electrical currents, and this is the basis of all electronic

circuits.

Wigner and Seitz discovered that the properties of semiconductors

depend on the energy levels of the electrons within them, and these levels

can be controlled by ‘doping’ the basic semiconductor material by adding

small quantities of specific impurities. Two important types are p-type

semiconductors, which carry current as a flow of electrons, and n-type

semiconductors, in which current flows in the opposite direction to the

electrons, carried by ‘holes’ – places where there are fewer electrons than

normal. In 1947 John Bardeen and Walter Brattain at Bell Laboratories

discovered that a crystal of germanium could act as an amplifier. If an

electrical current was fed into it, the output current was higher. William

Shockley, leader of the Solid State Physics Group, realised how important

this could be, and initiated a project to investigate semiconductors. Out of

this came the transistor – short for ‘transfer resistor’. There were some

earlier patents but no working devices or published papers. Technically the

Bell Labs’ device was a JFET (junction gate field-effect transistor, Figure 55).

Since this initial breakthrough, many other kinds of transistor have been

invented. Texas Instruments manufactured the first silicon transistor in

1954. The same year saw a transistor-based computer, TRIDAC, built by the

US military. It was three cubic feet in size and its power requirement was

the same as one light bulb. This was an early step in a huge American

military programme to develop alternatives to vacuum tube electronics,

which was too cumbersome, fragile, and unreliable for military use.
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Fig 55 Structure of a JFET. The source and drain are at the ends, in a p-type layer, while the

gate is an n-type layer that controls the flow. If you think of the flow of electrons from source

to drain as a hose, the gate in effect squeezes the hose, increasing the pressure (voltage) at

the drain.
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Because semiconductor technology is based on doping silicon or

similar substances with impurities, it lent itself to miniaturisation. Circuits

can be built up in layers on a silicon substrate, by bombarding the surface

with the desired impurity, and etching away unwanted regions with acid.

The areas affected are determined by photographically produced masks,

and these can be shrunk to very small size using optical lenses. Out of all

this emerged today’s electronics, including memory chips that can hold

billions of bytes of information and very fast microprocessors that

orchestrate the activity of computers.

Another ubiquitous application of quantum mechanics is the laser. This is

a device that emits a strong beam of coherent light: one in which the light

waves are all in phase with each other. It consists of an optical cavity with

mirrors at each end, filled with something that reacts to light of a specific

wavelength by producing more light of the same wavelength – a light

amplifier. Pump in energy to start the process rolling, let the light bounce

to and fro along the cavity, amplifying all the time, and when it reaches a

sufficiently high intensity, let it out. The gain medium can be a fluid, a gas,

a crystal, or a semiconductor. Different materials work at different

wavelengths. The amplification process depends on the quantum

mechanics of atoms. The electrons in the atoms can exist in different

energy states, and they can be switched between them by absorbing or

emitting photons.

LASER means light amplification by stimulated emission of radiation.

When the first laser was invented, it was widely derided as an answer

looking for a problem. This was unimaginative: a whole host of suitable

problems quickly appeared, once there was a solution. Producing a

coherent beam of light is basic technology, and it was always bound to

have uses, just as an improved hammer would automatically find many

uses. When inventing generic technology, you don’t have to have a

specific application in mind. Today we use lasers for so many purposes that

it’s impossible to list them all. There are prosaic uses like laser pointers for

lectures and laser beams for DIY. CD players, DVD players, and Blu-ray all

use lasers to read information from tiny pits or marks on discs. Surveyors

use lasers to measure distances and angles. Astronomers use lasers to

measure the distance from the Earth to the Moon. Surgeons use lasers for

fine cutting of delicate tissues. Laser treatment of eyes is routine, for

repairing detached retinas and remoulding the surface of the cornea to

correct vision instead of using glasses or contact lenses. The ‘Star Wars’

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
14Seventeen_Chap14.3d Page 263 of 264

263Schrödinger’s Equation



antimissile system was intended to use powerful lasers to shoot down

enemy missiles, and although it was never built, some of the lasers were.

Military uses of lasers, akin to the pulp science-fiction ray-gun, are being

investigated right now. And it may even be possible to launch space

vehicles from Earth by making them ride a powerful laser beam.

New uses of quantum mechanics arrive almost by the week. One of the

latest is quantum dots, tiny pieces of semiconductor whose electronic

properties, including the light that they emit, vary according to their size

and shape. They can therefore be tailored to have many desirable features.

They already have a variety of applications, including biological imaging,

where they can replace traditional (and often toxic) dyes. They also

perform much better, emitting brighter light.

Further down the line, some engineers and physicists are working on

the basic components of a quantum computer. In such a device, the binary

states of 0 and 1 can be superposed in any combination, in effect allowing

computations to assume both values at the same time. This would allow

many different calculations to be performed in parallel, speeding them up

enormously. Theoretical algorithms have been devised, carrying out such

tasks as splitting a number into its prime factors. Conventional computers

run into trouble when the numbers have more than a hundred digits or so,

but a quantum computer should be able to factorise much bigger numbers

with ease. The main obstacle to quantum computing is decoherence,

which destroys superposed states. Schrödinger’s cat is exacting revenge for

its inhumane treatment.
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15 Codes, communications, and
computers
Information Theory

What does it say?

It defines how much information a message contains, in terms

of the probabilities with which the symbols that make it up are

likely to occur.

Why is that important?

It is the equation that ushered in the information age. It

established limits on the efficiency of communications,

allowing engineers to stop looking for codes that were too

effective to exist. It is basic to today’s digital communications

– phones, CDs, DVDs, the internet.

What did it lead to?

Efficient error-detecting and error-correcting codes, used in

everything from CDs to space probes. Applications include

statistics, artificial intelligence, cryptography, and extracting

meaning from DNA sequences.
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In 1977 NASA launched two space probes, Voyager 1 and 2. The planets

of the Solar System had arranged themselves in unusually

favourable positions, making it possible to find reasonably efficient orbits

that would let the probes visit several planets. The initial aim was to

examine Jupiter and Saturn, but if the probes held out, their trajectories

would take them on past Uranus and Neptune. Voyager 1 could have gone

to Pluto (at that time considered a planet, and equally interesting – indeed

totally unchanged – now that it’s not) but an alternative, Saturn’s

intriguing moon Titan, took precedence. Both probes were spectacularly

successful, and Voyager 1 is now the most distant human-made object from

Earth, more than 10 billion miles away and still sending back data.

Signal strength falls off with the square of the distance, so the signal

received on Earth is 10–20 times the strength that it would be if received

from a distance of one mile. That is, one hundred quintillion times weaker.

Voyager 1 must have a really powerful transmitter . . . No, it’s a tiny space

probe. It is powered by a radioactive isotope, plutonium-238, but even so

the total power available is now about one eighth that of a typical electric

kettle. There are two reasons why we can still obtain useful information

from the probe: powerful receivers on Earth, and special codes used to

protect the data from errors caused by extraneous factors such as

interference.

Voyager 1 can send data using two different systems. One, the low-rate

channel, can send 40 binary digits, 0s or 1s, every second, but it does not

allow coding to deal with potential errors. The other, the high-rate

channel, can transmit up to 120,000 binary digits every second, and these

are encoded so that errors can be spotted and put right provided they’re

not too frequent. The price paid for this ability is that the messages are

twice as long as they would otherwise be, so they carry only half as much

data as they could. Since errors could ruin the data, this is a price worth

paying.

Codes of this kind are widely used in all modern communications:

space missions, landline phones, mobile phones, the Internet, CDs and

DVDs, Blu-ray, and so on. Without them, all communications would be
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liable to errors; this would not be acceptable if, for instance, you were using

the Internet to pay a bill. If your instruction to pay £20 was received as

£200, you wouldn’t be pleased. A CD player uses a tiny lens, which focuses

a laser beam on to very thin tracks impressed in the material of the disc.

The lens hovers a very tiny distance above the spinning disc. Yet you can

listen to a CD while driving along a bumpy road, because the signal is

encoded in a way that allows errors to be found and put right by the

electronics while the disc is being played. There are other tricks, too, but

this one is fundamental.

Our information age relies on digital signals – long strings of 0s and 1s,

pulses and non-pulses of electricity or radio. The equipment that sends,

receives, and stores the signals relies on very small, very precise electronic

circuits on tiny slivers of silicon – ‘chips’. But for all the cleverness of the

circuit design and manufacture, none of it would work without error-

detecting and error-correcting codes. And it was in this context that the

term ‘information’ ceased to be an informal word for ‘know-how’, and

became a measurable numerical quantity. And that provided fundamental

limitations on the efficiency with which codes can modify messages to

protect them against errors. Knowing these limitations saved engineers lots

of wasted time, trying to invent codes that would be so efficient they’d be

impossible. It provided the basis for today’s information culture.

I’m old enough to remember when the only way to telephone someone

in another country (shock horror) was to make a booking ahead of time with

the phone company – in the UK there was only one, Post Office Telephones

– for a specific time and length. Say ten minutes at 3.45 p.m. on 11 January.

And it cost a fortune. A few weeks ago a friend and I did an hour-long

interview for a science fiction convention in Australia, from the United

Kingdom, using SkypeTM. It was free, and it sent video as well as sound. A

lot has changed in fifty years. Nowadays, we exchange information online

with friends, both real ones and the phonies that large numbers of people

collect like butterflies using social networking sites. We no longer buy

music CDs or movie DVDs: we buy the information that they contain,

downloaded over the Internet. Books are heading the same way. Market

research companies amass huge quantities of information about our

purchasing habits and try to use it to influence what we buy. Even in

medicine, there is a growing emphasis on the information that is

contained in our DNA. Often the attitude seems to be that if you have

the information required to do something, then that alone suffices; you

don’t need actually to do it, or even know how to do it.

There is little doubt that the information revolution has transformed
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our lives, and a good case can be made that in broad terms the benefits

outweigh the disadvantages – even though the latter include loss of

privacy, potential fraudulent access to our bank accounts from anywhere

in the word at the click of a mouse, and computer viruses that can disable a

bank or a nuclear power station.

What is information? Why does it have such power? And is it really

what it is claimed to be?

The concept of information as a measurable quantity emerged from the

research laboratories of the Bell Telephone Company, the main provider of

telephone services in the United States from 1877 to its break-up in 1984

on anti-trust (monopoly) grounds. Among its engineers was Claude

Shannon, a distant cousin of the famous inventor Edison. Shannon’s

best subject at school was mathematics, and he had an aptitude for

building mechanical devices. By the time he was working for Bell Labs he

was a mathematician and cryptographer, as well as an electronic engineer.

He was one of the first to apply mathematical logic – so-called Boolean

algebra – to computer circuits. He used this technique to simplify the

design of switching circuits used by the telephone system, and then

extended it to other problems in circuit design.

During World War II he worked on secret codes and communications,

and developed some fundamental ideas that were reported in a classified

memorandum for Bell in 1945 under the title ‘A mathematical theory of

cryptography’. In 1948 he published some of his work in the open

literature, and the 1945 article, declassified, was published soon after. With

additional material by Warren Weaver, it appeared in 1949 as The

Mathematical Theory of Communication.

Shannon wanted to know how to transmit messages effectively when

the transmission channel was subject to random errors, ‘noise’ in the

engineering jargon. All practical communications suffer from noise, be it

from faulty equipment, cosmic rays, or unavoidable variability in circuit

components. One solution is to reduce the noise by building better

equipment, if possible. An alternative is to encode the signals using

mathematical procedures that can detect errors, and even put them right.

The simplest error-detecting code is to send the same message twice. If

you receive

the same massage twice

the same message twice
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then there is clearly an error in the third word, but without

understanding English it is not obvious which version is correct. A third

repetition would decide the matter by majority vote and become an error-

correcting code. How effective or accurate such codes are depends on the

likelihood, and nature, of the errors. If the communication channel is very

noisy, for instance, then all three versions of the message might be so badly

garbled that it would be impossible to reconstruct it.

In practice mere repetition is too simple-minded: there are more

efficient ways to encode messages to reveal or correct errors. Shannon’s

starting point was to pinpoint the meaning of efficiency. All such codes

replace the original message by a longer one. The two codes above double

or treble the length. Longer messages take more time to send, cost more,

occupy more memory, and clog the communication channel. So the

efficiency, for a given rate of error detection or correction, can be

quantified as the ratio of the length of the coded message to that of the

original.

The main issue, for Shannon, was to determine the inherent

limitations of such codes. Suppose an engineer had devised a new code.

Was there some way to decide whether it was about as good as they get, or

might some improvement be possible? Shannon began by quantifying how

much information a message contains. By so doing, he turned

‘information’ from a vague metaphor into a scientific concept.

There are two distinct ways to represent a number. It can be defined by a

sequence of symbols, for example its decimal digits, or it can correspond to

some physical quantity, such as the length of a stick or the voltage in a

wire. Representations of the first kind are digital, the second are analogue.

In the 1930s, scientific and engineering calculations were often performed

using analogue computers, because at the time these were easier to design

and build. Simple electronic circuits can add or multiply two voltages, for

example. However, machines of this type lacked precision, and digital

computers began to appear. It very quickly became clear that the most

convenient representation of numbers was not decimal, base 10, but

binary, base 2. In decimal notation there are ten symbols for digits, 0–9,

and every digit multiplies ten times in value for every step it moves to the

left. So 157 represents

16102 þ56101 þ76100
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Binary notation employs the same basic principle, but now there are only

two digits, 0 and 1. A binary number such as 10011101 encodes, in

symbolic form, the number

1627 þ0626 þ0625 þ1624 þ1623 þ1622

þ0621 þ1620

so that each digit doubles in value for every step it moves to the left. In

decimal, this number equals 157 – so we have written the same number in

two different forms, using two different types of notation.

Binary notation is ideal for electronic systems because it is much easier

to distinguish between two possible values of a current, or a voltage, or a

magnetic field, than it is to distinguish between more than two. In crude

terms, 0 can mean ‘no electric current’ and 1 can mean ‘some electric

current’, 0 can mean ‘no magnetic field’ and 1 can mean ‘some magnetic

field’, and so on. In practice engineers set a threshold value, and then 0

means ‘below threshold’ and 1 means ‘above threshold’. By keeping the

actual values used for 0 and 1 far enough apart, and setting the threshold in

between, there is very little danger of confusing 0 with 1. So devices based

on binary notation are robust. That’s what makes them digital.

With early computers, the engineers had to struggle to keep the circuit

variables within reasonable bounds, and binary made their lives much

easier. Modern circuits on silicon chips are precise enough to permit other

choices, such as base 3, but the design of digital computers has been based

on binary notation for so long now that it generally makes sense to stick to

binary, even if alternatives would work. Modern circuits are also very small

and very quick. Without some such technological breakthrough in circuit

manufacture, the world would have a few thousand computers, rather than

billions. Thomas J. Watson, who founded IBM, once said that he didn’t

think there would be a market for more than about five computers

worldwide. At the time he seemed to be talking sense, because in those

days the most powerful computers were about the size of a house,

consumed as much electricity as a small village, and cost tens of millions of

dollars. Only big government organisations, such as the United States

Army, could afford one, or make enough use of it. Today a basic, out-of-

date mobile phone contains more computing power than anything that

was available when Watson made his remark.

The choice of binary representation for digital computers, hence also

for digital messages transmitted between computers – and later between

almost any two electronic gadgets on the planet – led to the basic unit of
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information: the bit. The name is short for ‘binary digit’, and one bit of

information is one 0 or one 1. It is reasonable to define the information

‘contained in’ a sequence of binary digits to be the total number of digits in

the sequence. So the 8-digit sequence 10011101 contains 8 bits of

information.

Shannon realised that simple-minded bit-counting makes sense as a

measure of information only if 0s and 1s are like heads and tails with a

fair coin, that is, are equally likely to occur. Suppose we know that in some

specific circumstances 0 occurs nine times out of ten, and 1 only once. As

we read along the string of digits, we expect most digits to be 0. If that

expectation is confirmed, we haven’t received much information, because

this is what we expected anyway. However, if we see 1, that conveys a lot

more information, because we didn’t expect that at all.

We can take advantage of this by encoding the same information more

efficiently. If 0 occurs with probability 9/10 and 1 with probability 1/10, we

can define a new code like this:

000 ! 00 (use whenever possible)

00 ! 01 (if no 000 remains)

0 ! 10 (if no 00 remains)

1 ! 11 (always)

What I mean here is that a message such as

00000000100010000010000001000000000

is first broken up from left to right into blocks that read 000, 00, 0, or 1.

With strings of consecutive 0s, we use 000 whenever we can. If not, what’s

left is either 00 or 0, followed by a 1. So here the message breaks up as

000-000-00-1-000-1-000-00-1-000-000-1-000-000-000

and the coded version becomes

00-00-01-11-00-11-00-01-11-00-00-11-11-00-00-00

The original message has 35 digits, but the encoded version has only 32.

The amount of information seems to have decreased.

Sometimes the coded version might be longer: for instance, 111 turns

into 111111. But that’s rare because 1 occurs only one time in ten on

average. There will be quite a lot of 000s, which drop to 00. Any spare 00

changes to 01, the same length; a spare 0 increases the length by changing
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to 00. The upshot is that in the long run, for randomly chosen messages

with the given probabilities of 0 and 1, the coded version is shorter.

My code here is very simple-minded, and a cleverer choice can shorten

the message even more. One of the main questions that Shannon wanted

to answer was: how efficient can codes of this general type be? If you know

the list of symbols that is being used to create a message, and you also

know how likely each symbol is, how much can you shorten the message

by using a suitable code? His solution was an equation, defining the

amount of information in terms of these probabilities.

Suppose for simplicity that the messages use only two symbols 0 and 1, but

now these are like flips of a biased coin, so that 0 has probability p of

occurring, and 1 has probability q=1 – p. Shannon’s analysis led him to a

formula for the information content: it should be defined as

H¼� p log p� q log q

where log is the logarithm to base 2.

At first sight this doesn’t seem terribly intuitive. I’ll explain how

Shannon derived it in a moment, but the main thing to appreciate at this

stage is how H behaves as p varies from 0 to 1, which is shown in Figure 56.

The value of H increases smoothly from 0 to 1 as p rises from 0 to 1
2, and

then drops back symmetrically to 0 as p goes from 1
2 to 1.

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

Fig 56 How Shannon information H depends on p. H runs vertically and p runs horizontally.

Shannon pointed out several ‘interesting properties’ of H, so defined:

. If p=0, in which case only the symbol 1 will occur, the information H is
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zero. That is, if we are certain which symbol is going to be transmitted

to us, receiving it conveys no information whatsoever.

. The same holds when p=1. Only the symbol 0 will occur, and again we

receive no information.

. The amount of information is largest when p= q= 1
2, corresponding to

the toss of a fair coin. In this case,

H¼� 1
2 log

1
2� 1

2 log
1
2¼� log 1

2¼1

bearing in mind that the logarithms are to base 2. That is, one toss of a

fair coin conveys one bit of information, as we were originally assuming

before we started worrying about coding messages to compress them,

and biased coins.

. In all other cases, receiving one symbol conveys less information than

one bit.

. The more biased the coin becomes, the less information the result of

one toss conveys.

. The formula treats the two symbols in exactly the same way. If we

exchange p and q, then H stays the same.

All of these properties correspond to our intuitive sense of how much

information we receive when we are told the result of a coin toss. That

makes the formula a reasonable working definition. Shannon then

provided a solid foundation for his definition by listing several basic

principles that any measure of information content ought to obey and

deriving a unique formula that satisfied them. His set-up was very general:

the message could choose from a number of different symbols, occurring

with probabilities p1, p2, . . . , pn where n is the number of symbols. The

information H conveyed by a choice of one of these symbols should satisfy:

. H is a continuous function of p1, p2, ..., pn. That is, small changes in the

probabilities should lead to small changes in the amount of

information.

. If all of the probabilities are equal, which implies they are all 1/n, then

H should increase if n gets larger. That is, if you are choosing between 3

symbols, all equally likely, then the information you receive should be

more than if the choice were between just 2 equally likely symbols; a

choice between 4 symbols should convey more information than a

choice between 3 symbols, and so on.

. If there is a natural way to break a choice down into two successive
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choices, then the original H should be a simple combination of the new

Hs.

This final condition is most easily understood using an example, and I’ve

put one in the Notes.1 Shannon proved that the only function H that obeys

his three principles is

Hðp1; p2; . . . ; pnÞ¼� p1 log p1 � p2 log p2 � . . .� pn log pn

or a constant multiple of this expression, which basically just changes the

unit of information, like changing from feet to metres.

There is a good reason to take the constant to be 1, and I’ll illustrate it

in one simple case. Think of the four binary strings 00, 01, 10, 11 as

symbols in their own right. If 0 and 1 are equally likely, each string has the

same probability, namely 1
4. The amount of information conveyed by one

choice a such a string is therefore

H 1
4;

1
4;

1
4;

1
4

� �¼� 1
4 log

1
4� 1

4 log
1
4� 1

4 log
1
4� 1

4 log
1
4¼� log 1

4¼2

That is, 2 bits. Which is a sensible number for the information in a length-2

binary string when the choices 0 and 1 are equally likely. In the same way,

if the symbols are all length-n binary strings, and we set the constant to 1,

then the information content is n bits. Notice that when n=2 we obtain

the formula pictured in Figure 56. The proof of Shannon’s theorem is too

complicated to give here, but it shows that if you accept Shannon’s three

conditions then there is a single natural way to quantify information.2 The

equation itself is merely a definition: what counts is how it performs in

practice.

Shannon used his equation to prove that there is a fundamental limit

on howmuch information a communication channel can convey. Suppose

that you are transmitting a digital signal along a phone line, whose

capacity to carry a message is at most C bits per second. This capacity is

determined by the number of binary digits that the phone line can

transmit, and it is not related to the probabilities of various signals.

Suppose that the message is being generated from symbols with

information content H, also measured in bits per second. Shannon’s

theorem answers the question: if the channel is noisy, can the signal be

encoded so that the proportion of errors is as small as we wish? The answer

is that this is always possible, no matter what the noise level is, if H is less

than or equal to C. It is not possible if H is greater than C. In fact, the

proportion of errors cannot be reduced below the difference H�C, no

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
15Seventeen_Chap15.3d Page 275 of 282

275Information Theory



matter which code is employed, but there exist codes that get as close as

you wish to that error rate.

Shannon’s proof of his theorem demonstrates that codes of the required

kind exist, in each of his two cases, but the proof doesn’t tell us what those

codes are. An entire branch of information science, a mixture of

mathematics, computing, and electronic engineering, is devoted to

finding efficient codes for specific purposes. It is called coding theory.

The methods for coming up with these codes are very diverse, drawing on

many areas of mathematics. It is these methods that are incorporated into

our electronic gadgetry, be it a smartphone or Voyager 1’s transmitter.

People carry significant quantities of sophisticated abstract algebra around

in their pockets, in the form of software that implements error-correcting

codes for mobile phones.

I’ll try to convey the flavour of coding theory without getting too

tangled in the complexities. One of the most influential concepts in the

theory relates codes to multidimensional geometry. It was published by

Richard Hamming in 1950 in a famous paper, ‘Error detecting and error

correcting codes’. In its simplest form, it provides a comparison between

strings of binary digits. Consider two such strings, say 10011101 and

10110101. Compare corresponding bits, and count how many times they

are different, like this:

10011101

10110101

where I’ve marked the differences in bold type. Here there are two

locations at which the bit-strings differ. We call this number the Hamming

distance between the two strings. It can be thought of as the smallest

number of one-bit errors that can convert one string into the other. So it is

closely related to the likely effect of errors, if these occur at a known

average rate. That suggests it might provide some insight into how to

detect such errors, and maybe even how to put them right.

Multidimensional geometry comes into play because the strings of a

fixed length can be associated with the vertices of a multidimensional

‘hypercube’. Riemann taught us how to think of such spaces by thinking of

lists of numbers. For example, a space of four dimensions consists of all

possible lists of four numbers: (x1, x2, x3, x4). Each such list is considered to

represent a point in the space, and all possible lists can in principle occur.
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The separate xs are the coordinates of the point. If the space has 157

dimensions, you have to use lists of 157 numbers: (x1, x2, . . . , x157). It is

often useful to specify how far apart two such lists are. In ‘flat’ Euclidean

geometry this is done using a simple generalisation of Pythagoras’s

theorem. Suppose we have a second point (y1, y2, . . . , y157) in our 157-

dimensional space. Then the distance between the two points is the square

root of the sum of the squares of the differences between corresponding

coordinates. That is,

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ2 þðx2 � y2Þ2 þ . . .þðx157 � y157Þ2

q

If the space is curved, Riemann’s idea of a metric can be used instead.

Hamming’s idea is to do something very similar, but the values of the

coordinates are restricted to just 0 and 1. Then (x1 – y1)
2 is 0 if x1 and y1 are

the same, but 1 if not, and the same goes for (x2 – y2)
2 and so on. He also

omitted the square root, which changes the answer, but in compensation

the result is always a whole number, equal to the Hamming distance. This

notion has all the properties that make ‘distance’ useful, such as being zero

only when the two strings are identical, and ensuring that the length of

any side of a ‘triangle’ (a set of three strings) is less than or equal to the sum

of the lengths of the other two sides.

We can draw pictures of all bit strings of lengths 2, 3, and 4 (and with

more effort and less clarity, 5, 6, and possibly even 10, though no one

would find that useful). The resulting diagrams are shown in Figure 57.

01

00 10 000

010

011 111

101001

110

100 0000

0100 1100

0110

0010

1000
0001

1010

1110
0111 1111

1011

1001

0011

11000101

11

Fig 57 Spaces of all bit-strings of lengths 2, 3, and 4.

The first two are recognisable as a square and a cube (projected on to a

plane because it has to be printed on a sheet of paper). The third is a

hypercube, the 4-dimensional analogue, and again this has to be projected

on to a plane. The straight lines joining the dots have Hamming length 1 –

the two strings at either end differ in precisely one location, one
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coordinate. The Hamming distance between any two strings is the number

of such lines in the shortest path that connects them.

Suppose we are thinking of 3-bit strings, living on the corners of a cube.

Pick one of the strings, say 101. Suppose the rate of errors is at most one bit

in every three. Then this string may either be transmitted unchanged, or it

could end up as any of 001, 111, or 100. Each of these differs from the

original string in just one location, so its Hamming distance from the

original string is 1. In a loose geometrical image, the erroneous strings lie

on a ‘sphere’ centred at the correct string, of radius 1. The sphere consists

of just three points, and if we were working in 157-dimensional space with

a radius of 5, say, it wouldn’t even look terribly spherical. But it plays a

similar role to an ordinary sphere: it has a fairly compact shape, and it

contains exactly the points whose distance from the centre is less than or

equal to the radius.

Suppose we use the spheres to construct a code, so that each sphere

corresponds to a new symbol, and that symbol is encoded with the

coordinates of the centre of the sphere. Suppose moreover that these

spheres don’t overlap. For instance, I might introduce a symbol a for the

sphere centred at 101. This sphere contains four strings: 101, 001, 111, and

100. If I receive any of these four strings, I know that the symbol was

originally a. At least, that’s true provided my other symbols correspond in a

similar way to spheres that do not have any points in common with this

one.

Now the geometry starts to make itself useful. In the cube, there are

eight points (strings) and each sphere contains four of them. If I try to fit

spheres into the cube, without them overlapping, the best I can manage is

two of them, because 8/4 = 2. I can actually find another one, namely the

sphere centred on 010. This contains 010, 110, 000, 011, none of which are

in the first sphere. So I can introduce a second symbol b associated with

this sphere. My error-correcting code for messages written with a and b

symbols now replaces every a by 101, and every b by 010. If I receive, say,

101-010-100-101-000

then I can decode the original message as

a-b-a-a-b

despite the errors in the third and fifth string. I just see which of my two

spheres the erroneous string belongs to.

All very well, but this multiplies the length of the message by 3, and we

already know an easier way to achieve the same result: repeat the message
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three times. But the same idea takes on a new significance if we work in

higher-dimensional spaces. With strings of length 4, the hypercube, there

are 16 strings, and each sphere contains 5 points. So it might be possible to

fit three spheres in without them overlapping. If you try that, it’s not

actually possible – two fit in but the remaining gap is the wrong shape. But

the numbers increasingly work in our favour. The space of strings of length

5 contains 32 strings, and each sphere uses just 6 of them – possibly room

for 5, and if not, a better chance of fitting in 4. Length 6 gives us 64 points,

and spheres that use 7, so up to 9 spheres might fit in.

From this point on a lot of fiddly detail is needed to work out just what

is possible, and it helps to develop more sophisticated methods. But what

we are looking at is the analogue, in the space of strings, of the most

efficient ways to pack spheres together. And this is a long-standing area of

mathematics, about which quite a lot is known. Some of that technique

can be transferred from Euclidean geometry to Hamming distances, and

when that doesn’t work we can invent new methods more suited to the

geometry of strings. As an example, Hamming invented a new code, more

efficient than any known at the time, which encodes 4-bit strings by

converting them into 7-bit strings. It can detect and correct any single-bit

error. Modified to an 8-bit code, it can detect, but not correct, any 2-bit

error.

This code is called the Hamming code. I won’t describe it, but let’s do

the sums to see if it might be possible. There are 16 strings of length 4, and

128 of length 7. Spheres of radius 1 in the 7-dimensional hypercube

contain 8 points. And 128/8 =16. So with enough cunning, it might just

be possible to squeeze the required 16 spheres into the 7-dimensional

hypercube. They would have to fit exactly, because there’s no spare room

left over. As it happens, such an arrangement exists, and Hamming found

it. Without the multidimensional geometry to help, it would be difficult to

guess that it existed, let alone find it. Possible, but hard. Even with the

geometry, it’s not obvious.

Shannon’s concept of information provides limits on how efficient codes

can be. Coding theory does the other half of the job: finding codes that are

as efficient as possible. The most important tools here come from abstract

algebra. This is the study of mathematical structures that share the basic

arithmetical features of integers or real numbers, but differ from them in

significant ways. In arithmetic, we can add numbers, subtract them, and

multiply them, to get numbers of the same kind. For the real numbers we
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can also divide by anything other than zero to get a real number. This is

not possible for the integers, because, for example, 1
2 is not an integer.

However, it is possible if we pass to the larger system of rational numbers,

fractions. In the familiar number systems, various algebraic laws hold, for

example the commutative law of addition, which states that 2 + 3= 3+2

and the same goes for any two numbers.

The familiar systems share these algebraic properties with less familiar

ones. The simplest example uses just two numbers, 0 and 1. Sums and

products are defined just as for integers, with one exception: we insist that

1 +1= 0, not 2. Despite this modification, all of the usual laws of algebra

survive. This system has only two ‘elements’, two number-like objects.

There is exactly one such system whenever the number of elements is a

power of any prime number: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, and so on. Such

systems are called Galois fields after the French mathematician Évariste

Galois, who classified them around 1830. Because they have finitely many

elements, they are suited to digital communications, and powers of 2 are

especially convenient because of binary notation.

Galois fields lead to coding systems called Reed–Solomon codes, after

Irving Reed and Gustave Solomon who invented them in 1960. They are

used in consumer electronics, especially CDs and DVDs. They are error-

correcting codes based on algebraic properties of polynomials, whose

coefficients are taken from a Galois field. The signal being encoded – audio

or video – is used to construct a polynomial. If the polynomial has degree

n, that is, the highest power occurring is xn, then the polynomial can be

reconstructed from its values at any n points. If we specify the values at

more than n points, we can lose or modify some of the values without

losing track of which polynomial it is. If the number of errors is not too

large, it is still possible to work out which polynomial it is, and decode to

get the original data.

In practice the signal is represented as a series of blocks of binary digits.

A popular choice uses 255 bytes (8-bit strings) per block. Of these, 223 bytes

encode the signal, while the remaining 32 bytes are ‘parity symbols’,

telling us whether various combinations of digits in the uncorrupted data

are odd or even. This particular Reed–Solomon code can correct up to 16

errors per block, an error rate just less than 1%.

Whenever you drive along a bumpy road with a CD on the car stereo,

you are using abstract algebra, in the form of a Reed–Solomon code, to

ensure that the music comes over crisp and clear, instead of being jerky and

crackly, perhaps with some parts missing altogether.
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Information theory is widely used in cryptography and cryptanalysis –

secret codes and methods for breaking them. Shannon himself used it to

estimate the amount of coded messages that must be intercepted to stand a

chance of breaking the code. Keeping information secret turns out to be

more difficult than might be expected, and information theory sheds light

on this problem, both from the point of view of the people who want it

kept secret and those who want to find out what it is. This issue is

important not just to the military, but to everyone who uses the Internet to

buy goods or engages in telephone banking.

Information theory now plays a significant role in biology, particularly

in the analysis of DNA sequence data. The DNA molecule is a double-helix,

formed by two strands that wind round each other. Each strand is a

sequence of bases, special molecules that come in four types – adenine,

guanine, thymine, and cytosine. So DNA is like a code message written

using four possible symbols: A, G, T, and C. The human genome, for

example, is 3 billion bases long. Biologists can now find the DNA sequences

of innumerable organisms at a rapidly growing rate, leading to a new area

of computer science: bioinformatics. This centres on methods for handling

biological data efficiently and effectively, and one of its basic tools is

information theory.

A more difficult issue is the quality of information, rather than the

quantity. The messages ‘two plus two make four’ and ‘two plus two make

five’ contain exactly the same amount of information, but one is true and

the other is false. Paeans of praise for the information age ignore the

uncomfortable truth that much of the information rattling around the

Internet is misinformation. There are websites run by criminals who want

to steal your money, or denialists who want to replace solid science by

whichever bee happens to be buzzing around inside their own bonnet.

The vital concept here is not information as such, but meaning. Three

billion DNA bases of human DNA information are, literally, meaningless

unless we can find out how they affect our bodies and behaviour. On the

tenth anniversary of the completion of the Human Genome Project,

several leading scientific journals surveyed medical progress resulting so far

from listing human DNA bases. The overall tone was muted: a few new

cures for diseases have been found so far, but not in the quantity originally

predicted. Extracting meaning from DNA information is proving harder

than most biologists had hoped. The Human Genome Project was a

necessary first step, but it has revealed just how difficult such problems are,

rather than solving them.

The notion of information has escaped from electronic engineering
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and invaded many other areas of science, both as a metaphor and as a

technical concept. The formula for information looks very like that for

entropy in Boltzmann’s approach to thermodynamics; the main

differences are logarithms to base 2 instead of natural logarithms, and a

change in sign. This similarity can be formalised, and entropy can be

interpreted as ‘missing information’. So the entropy of a gas increases

because we lose track of exactly where its molecules are, and how fast

they’re moving. The relation between entropy and information has to be

set up rather carefully: although the formulas are very similar, the context

in which they apply is different. Thermodynamic entropy is a large-scale

property of the state of a gas, but information is a property of a signal-

producing source, not of a signal as such. In 1957 the American physicist

Edwin Jaynes, an expert in statistical mechanics, summed up the

relationship: thermodynamic entropy can be viewed as an application of

Shannon information, but entropy itself should not be identified with

missing information without specifying the right context. If this

distinction is borne in mind, there are valid contexts in which entropy

can be viewed as a loss of information. Just as entropy increase places

constraints on the efficiency of steam engines, the entropic interpretation

of information places constraints on the efficiency of computations. For

example, it must take at least 5.8610�23 joules of energy to flip a bit from 0

to 1 or vice versa at the temperature of liquid helium, whatever method

you use.

Problems arise when the words ‘information’ and ‘entropy’ are used in

a more metaphorical sense. Biologists often say that DNA determines ‘the

information’ required to make an organism. There is a sense in which this

is almost correct: delete ‘the’. However, the metaphorical interpretation of

information suggests that once you know the DNA, then you know

everything there is to know about the organism. After all, you’ve got the

information, right? And for a time many biologists thought that this

statement was close to the truth. However, we now know that it is

overoptimistic. Even if the information in DNA really did specify the

organism uniquely, you would still need to work out how it grows and

what the DNA actually does. However, it takes a lot more than a list of DNA

codes to create an organism: so-called epigenetic factors must also be taken

into account. These include chemical ‘switches’ that make a segment of

DNA code active or inactive, but also entirely different factors that are

transmitted from parent to offspring. For human beings, those factors

include the culture in which we grow up. So it pays not to be too casual

when you use technical terms like ‘information’.
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16 The imbalance of nature
Chaos Theory

What does it say?

It models how a population of living creatures changes from

one generation to the next, when there are limits to the

available resources.

Why is that important?

It is one of the simplest equations that can generate

deterministic chaos – apparently random behaviour with no

random cause.

What did it lead to?

The realisation that simple nonlinear equations can create

very complex dynamics, and that apparent randomness may

conceal hidden order. Popularly known as chaos theory, this

discovery has innumerable applications throughout the

sciences including the motion of the planets in the Solar

System, weather forecasting, population dynamics in ecology,

variable stars, earthquake modelling, and efficient trajectories

for space probes.
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The metaphor of the balance of nature trips readily off the tongue as a

description of what the world would do if nasty humans didn’t keep

interfering. Nature, left to its own devices, would settle down to a state of

perfect harmony. Coral reefs would always harbour the same species of

colourful fish in similar numbers, rabbits and foxes would learn to share

the fields and woodlands so that the foxes would be well fed, most rabbits

would survive, and neither population would explode or crash. The world

would settle down to a fixed state and stay there. Until the next big

meteorite, or a supervolcano, upset the balance.

It’s a common metaphor, perilously close to being a cliché. It’s also

highly misleading. Nature’s balance is distinctly wobbly.

We’ve been here before. When Poincaré was working on King Oscar’s

prize, the conventional wisdom held that a stable Solar System is one in

which the planets follow much the same orbits forever, give or take a

harmless bit of jiggling. Technically this is not a steady state, but one in

which each planet repeats similar motions over and over again, subject to

minor disturbances caused by all the others, but not deviating hugely from

what it would have done without them. The dynamics is ‘quasiperiodic’ –

combining several separate periodic motions whose periods are not all

multiples of the same time interval. In the realm of planets, that’s as close

to ‘steady’ as anyone can hope for.

But the dynamics wasn’t like that, as Poincaré belatedly, and to his

cost, found out. It could, in the right circumstances, be chaotic. The

equations had no explicit random terms, so that in principle the present

state completely determined the future state, yet paradoxically the actual

motion could appear to be random. In fact, if you asked coarse-grained

questions like ‘which side of the Sun will it be on?’, the answer could be a

genuinely random series of observations. Only if you could look infinitely

closely would you be able to see that the motion really was completely

determined.

This was the first intimation of what we now call ‘chaos’, which is short

for ‘deterministic chaos’, and quite different from ‘random’ – even though

that’s what it can look like. Chaotic dynamics has hidden patterns, but
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they’re subtle; they differ from what we might naturally think of

measuring. Only by understanding the causes of chaos can we extract

those patterns from an irregular mishmash of data.

As always in science, there were a few isolated precursors, generally

viewed as minor curiosities unworthy of serious attention. Only in the

1960s did mathematicians, physicists, and engineers begin to realise just

how natural chaos is in dynamics, and how radically it differs from

anything envisaged in classical science. We are still learning to appreciate

what that tells us, and what to do about it. But already chaotic dynamics,

‘chaos theory’ in popular parlance, pervades most areas of science. It may

even have things to tell us about economics and the social sciences. It’s not

the answer to everything: only critics ever claimed it was, and that was to

make it easier to shoot it down. Chaos has survived all such attacks, and for

a good reason: it is absolutely fundamental to all behaviour governed by

differential equations, and those are the basic stuff of physical law.

There is chaos in biology, too. One of the first to appreciate that this might

be the case was the Australian ecologist Robert May, now Lord May of

Oxford and a former president of the Royal Society. He sought to

understand how the populations of various species change over time in

natural systems such as coral reefs and woodlands. In 1975 May wrote a

short article for the journal Nature, pointing out that the equations

typically used to model changes to animal and plant populations could

produce chaos. May didn’t claim that the models he was discussing were

accurate representations of what real populations did. His point was more

general: chaos was natural in models of that kind, and this had to be borne

in mind.

The most important consequence of chaos is that irregular behaviour

need not have irregular causes. Previously, if ecologists noticed that some

population of animals was fluctuating wildly, they would look for some

external cause – also presumed to be fluctuating wildly, and generally

labelled ‘random’. The weather, perhaps, or a sudden influx of predators

from elsewhere. May’s examples showed that the internal workings of the

animal populations could generate irregularity without outside help.

His main example was the equation that decorates the opening of this

chapter. It is called the logistic equation, and it is a simple model of a

population of animals in which the size of each generation is determined

by the previous one. ‘Discrete’ means that the flow of time is counted in

generations, and is thus an integer. So the model is similar to a differential
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equation, in which time is a continuous variable, but conceptually and

computationally simpler. The population is measured as a fraction of some

overall large value, and can therefore be represented by a real number that

lies between 0 (extinction) and 1 (the theoretical maximum that the

system can sustain). Letting time t tick in integer steps, corresponding to

generations, this number is xt in generation t. The logistic equation states

that

xt þ1 ¼ kxtð1� xtÞ

where k is a constant. We can interpret k as the growth rate of the

population when diminishing resources do not slow it down.1

We start the model at time 0 with an initial population x0. Then we use

the equation with t=0 to calculate x1, then we set t=1 and compute x2, and

so on. Without even doing the sums we can see straight away that, for any

fixed growth rate k, the population size of generation zero completely

determines the sizes of all succeeding generations. So the model is

deterministic: knowledge of the present determines the future uniquely

and exactly.

So what is the future? The ‘balance of nature’ metaphor suggests that

the population should settle to a steady state. We can even calculate what

that steady state should be: just set the population at time t+1 to be the

same as that at time t. This leads to two steady states: populations 0 and

1-1/k. A population of size 0 is extinct, so the other value should apply to

an existing population. Unfortunately, although this is a steady state, it

can be unstable. If it is, then in practice you’ll never see it: it’s like trying to

balance a pencil vertically on its sharpened point. The slightest disturbance

will cause it to topple. The calculations show that the steady state is

unstable when k is bigger than 3.

What, then, do we see in practice? Figure 58 shows a typical ‘time

series’ for the population when k=4. It’s not steady: it’s all over the place.

However, if you look closely there are hints that the dynamics is not

completely random. Whenever the population gets really big, it

immediately crashes to a very low value, and then grows in a regular

manner (roughly exponentially) for the next two or three generations: see

the short arrows in Figure 58. And something interesting happens

whenever the population gets close to 0.75 or thereabouts: it oscillates

alternately above and below that value, and the oscillations grow giving a

characteristic zigzag shape, getting wider towards the right: see the longer

arrows in the figure.

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
16Seventeen_Chap16.3d Page 287 of 294

287Chaos Theory



1

0

xt

0 50

t

100

Fig 58 Chaotic oscillations in a model animal population. Short arrows show crashes

followed by short-term exponential growth. Longer arrows show unstable oscillations.

Despite these patterns, there is a sense in which the behaviour is truly

random – but only when you throw away some of the detail. Suppose we

assign the symbol H (heads) whenever the population is bigger than 0.5,

and T (tails) when it’s less than 0.5. This particular set of data begins with

the sequence THTHTHHTHHTTHH and continues unpredictably, just like

a random sequence of coin tosses. This way of coarsening the data, by

looking at specific ranges of values and noting only which range the

population belongs to, is called symbolic dynamics. In this case, it is

possible to prove that, for almost all initial population values x0, the

sequence of heads and tails is in all respects like a typical sequence of

random tosses of a fair coin. Only when we look at the exact values do we

start to see some patterns.

It’s a remarkable discovery. A dynamical system can be completely

deterministic, with visible patterns in detailed data, yet a coarse-grained

view of the same data can be random – in a provable, rigorous sense.

Determinism and randomness are not opposites. In some circumstances,

they can be entirely compatible.

May didn’t invent the logistic equation, and he didn’t discover its

astonishing properties. He didn’t claim to have done either of those

things. His aim was to alert workers in the life sciences, especially

ecologists, to the remarkable discoveries emerging in the physical sciences

and mathematics: discoveries that fundamentally change the way

scientists should think about observational data. We humans may have
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trouble solving equations based on simple rules, but nature doesn’t have to

solve the equations the way we do. It just obeys the rules. So it can do

things that strike us as being complicated, for simple reasons.

Chaos emerged from a topological approach to dynamics, orchestrated

in particular by the American mathematician Stephen Smale and the

Russian mathematician Vladimir Arnold in the 1960s. Both were trying to

find out what types of behaviour were typical in differential equations.

Smale was motivated by Poincaré’s strange results on the three-body

problem (Chapter 4), and Arnold was inspired by related discoveries of his

former research supervisor Andrei Kolmogorov. Both quickly realised why

chaos is common: it is a natural consequence of the geometry of

differential equations, as we’ll see in a moment.

As interest in chaos spread, examples were spotted lurking unnoticed

in earlier scientific papers. Previously considered to be just isolated weird

effects, these examples now slotted into a broader theory. In the 1940s the

English mathematicians John Littlewood and Mary Cartwright had seen

traces of chaos in electronic oscillators. In 1958 Tsuneji Rikitake of Tokyo’s

Association for the Development of Earthquake Prediction had found

chaotic behaviour in a dynamo model of the Earth’s magnetic field. And in

1963 the American meteorologist Edward Lorenz had pinned down the

nature of chaotic dynamics in considerable detail, in a simple model of

atmospheric convection motivated by weather-forecasting. These and

other pioneers had pointed the way; now all of their disparate discoveries

were starting to fit together.

In particular, the circumstances that led to chaos, rather than

something simpler, turned out to be geometric rather than algebraic. In

the logistic model with k=4, both extremes of the population, 0 and 1,

move to 0 in the next generation, while the midpoint, 1
2, moves to 1. So at

each time-step the interval from 0 to 1 is stretched to twice its length,

folded in half, and slapped down in its original location. This is what a

cook does to dough when making bread, and by thinking about dough

being kneaded, we gain a handle on chaos. Imagine a tiny speck in the

logistic dough – a raisin, say. Suppose that it happens to lie on a periodic

cycle, so that after a certain number of stretch-and-fold operations it

returns to where it started. Now we can see why this point is unstable.

Imagine another raisin, initially very close to the first one. Each stretch

moves it further away. For a time, though, it doesn’t move far enough away

to stop tracking the first raisin. When the dough is folded, both raisins end

up in the same layer. So next time, the second raisin has moved even

further away from the first. This is why the periodic state is unstable:
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stretching moves all nearby points away from it, not towards it. Eventually

the expansion becomes so great that the two raisins end up in different

layers when the dough is folded. After that, their fates are pretty much

independent of each other. Why does a cook knead dough? To mix up the

ingredients (including trapped air). If you mix stuff up, the individual

particles have to move in a very irregular way. Particles that start close

together end up far apart; points far apart may be folded back to be close

together. In short, chaos is the natural result of mixing.

I said at the start of this chapter that you don’t have anything chaotic

in your kitchen, except perhaps that dishwasher. I lied. You probably have

several chaotic gadgets: a food processor, an egg-beater. The blade of the

food processor follows a very simple rule: go round and round, fast. The

food interacts with the blade: it ought to do something simple too. But it

doesn’t go round and round: it gets mixed up. As the blade cuts through

the food, some bits go one side of it, some go the other side: locally, the

food gets pulled apart. But it doesn’t escape from the mixing bowl, so it all

gets folded back in on itself.

Smale and Arnold realised that all chaotic dynamics is like this. They

didn’t phrase their results in quite that language, mind you: ‘pulled apart’

was ‘positive Liapunov exponent’ and ‘folded back’ was ‘the system has a

compact domain’. But in fancy language, they were saying that chaos is

like mixing dough.

This also explains something else, noticed especially by Lorenz in 1963.

Chaotic dynamics is sensitive to initial conditions. However close the two

raisins are to begin with, they eventually get pulled so far apart that their

subsequent movements are independent. This phenomenon is often called

the butterfly effect: a butterfly flaps its wings, and a month later the

weather is completely different from what it would otherwise have been.

The phrase is generally credited to Lorenz. He didn’t introduce it, but

something similar featured in the title of one of his lectures. However,

someone else invented the title for him, and the lecture wasn’t about the

famous 1963 article, but a lesser-known one from the same year.

Whatever the phenomenon is called, it has an important practical

consequence. Although chaotic dynamics is in principle deterministic, in

practice it becomes unpredictable very quickly, because any uncertainty in

the exact initial state grows exponentially fast. There is a prediction

horizon beyond which the future cannot be foreseen. For weather, a

familiar system whose standard computer models are known to be chaotic,

this horizon is a few days ahead. For the Solar System, it is tens of millions

of years ahead. For simple laboratory toys, such as a double pendulum (a
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pendulum hung from the bottom of another one) it is a few seconds ahead.

The long-held assumption that ‘deterministic’ and ‘predictable’ are the

same is wrong. It would be valid if the present state of a system could be

measured with perfect accuracy, but that’s not possible.

The short-term predictability of chaos can be used to distinguish it

from pure randomness. Many different techniques have been devised to

make this distinction, and to work out the underlying dynamics if the

system is behaving deterministically but chaotically.

Chaos now has applications in every branch of science, from astronomy to

zoology. In Chapter 4 we saw how it is leading to new, more efficient

trajectories for space missions. In broader terms, astronomers Jack Wisdom

and Jacques Laskar have shown that the dynamics of the Solar System is

chaotic. If you want to know whereabouts in its orbit Pluto will be in

10,000,000 AD – forget it. They have also shown that the Moon’s tides

stabilise the Earth against influences that would otherwise lead to chaotic

motion, causing rapid shifts of climate from warm periods to ice ages and

back again. So chaos theory demonstrates that, without the Moon, the

Earth would be a pretty unpleasant place to live. This feature of our

planetary neighbourhood is often used to argue that the evolution of life

on a planet requires a stabilising Moon, but this is an overstatement. Life in

the oceans would scarcely notice if the planet’s axis changed over a period

of millions of years. Life on land would have plenty of time to migrate

elsewhere, unless it got trapped somewhere that lacked a land route to a

place where conditions were more suitable. Climate change is happening

much faster right now than anything that a change in axial tilt could

cause.

May’s suggestion that irregular population dynamics in an ecosystem

might sometimes be caused by internal chaos, rather than extraneous

randomness, has been verified in laboratory versions of several real-world

ecosystems. In 1995 a team headed by American ecologist James Cushing

found chaotic dynamics in populations of the flour beetle (or bran bug)

Tribolium castaneum, which can infest stores of flour.2 In 1999, Dutch

biologists Jef Huisman and Franz Weissing applied chaos to the ‘paradox of

the plankton’, the unexpected diversity of plankton species.3 A standard

principle in ecology, the principle of competitive exclusion, states that an

ecosystem cannot contain more species than the number of environmental

niches, ways to make a living. Plankton appear to violate this principle: the

number of niches is small, but the number of species is in the thousands.
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They traced this to a loophole in the derivation of the principle of

competitive exclusion: the assumption that populations are steady. If the

populations can change over time, then the mathematical derivation from

the usual model fails, and intuitively different species can occupy the same

niche by taking turns – not by conscious cooperation, but by one species

temporarily taking over from another and undergoing a population boom,

while the displaced species drops to a small population, Figure 59.
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Fig 59 Six species sharing three resources. The bands are closely spaced chaotic oscillations.

Courtesy of Jef Huisman and Franz Weissing.

In 2008, Huisman’s team published the results of a laboratory

experiment with a miniature ecology based on one found in the Baltic

Sea, involving bacteria and several kinds of plankton. A six-year study

revealed chaotic dynamics in which populations fluctuated wildly, often

becoming 100 times as large for a time and then crashing. The usual

methods for detecting chaos confirmed its presence. There was even a

butterfly effect: the system’s prediction horizon was a few weeks.4

There are applications of chaos that impinge on everyday life, but they

mostly occur in manufacturing processes and public services, rather than

being incorporated into gadgets. The discovery of the butterfly effect has

changed the way weather forecasts are carried out. Instead of putting all of

the computational effort into refining a single prediction, meteorologists

now run many forecasts, making different tiny random changes to the

observations provided by weather balloons and satellites before starting

each run. If all of these forecasts agree, then the prediction is likely to be

accurate; if they differ significantly, the weather is in a less predictable
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state. The forecasts themselves have been improved by several other

advances, notably in calculating the influence of the oceans on the state of

the atmosphere, but the main role of chaos has been to warn forecasters

not to expect too much and to quantify how likely a forecast is to be

correct.

Industrial applications include a better understanding of mixing

processes, which are widely used to make medicinal pills or mix food

ingredients. The active medicine in a pill usually occurs in very small

quantities, and it has to be mixed with some inert substance. It’s important

to get enough of the active ingredient in each pill, but not too much. A

mixing machine is like a giant food processor, and like the food processor,

its dynamics is deterministic but chaotic. The mathematics of chaos has

provided a new understanding of mixing processes and led to some

improved designs. The methods used to detect chaos in data have inspired

new test equipment for the wire used to make springs, improving efficiency

in spring- and wire-making. The humble spring has many vital uses: it can

be found in mattresses, cars, DVD players, even ballpoint pens. Chaotic

control, a technique that uses the butterfly effect to keep dynamic

behaviour stable, is showing promise in the design of more efficient and

less intrusive heart pacemakers.

Overall, though, the main impact of chaos has been on scientific

thinking. In the forty years or so since its existence started to be widely

appreciated, chaos has changed from a minor mathematical curiosity into

a basic feature of science. We can now study many of nature’s irregularities

without resorting to statistics, by teasing out the hidden patterns that

characterise deterministic chaos. This is just one of the ways in which

modern dynamical systems theory, with its emphasis on nonlinear

behaviour, is causing a quiet revolution in the way scientists think about

the world.
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17 The Midas formula
Black–Scholes Equation

What does it say?

It describes how the price of a financial derivative changes over

time, based on the principle that when the price is correct, the

derivative carries no risk and no one can make a profit by

selling it at a different price.

Why is that important?

It makes it possible to trade a derivative before it matures by

assigning an agreed ‘rational’ value to it, so that it can become

a virtual commodity in its own right.

What did it lead to?

Massive growth of the financial sector, ever more complex

financial instruments, surges in economic prosperity

punctuated by crashes, the turbulent stock markets of the

1990s, the 2008–9 financial crisis, and the ongoing economic

slump.
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S ince the turn of the century the greatest source of growth in the

financial sector has been in financial instruments known as

derivatives. Derivatives are not money, nor are they investments in

stocks and shares. They are investments in investments, promises about

promises. Derivatives traders use virtual money, numbers in a computer.

They borrow it from investors who have probably borrowed it from

somewhere else. Often they haven’t borrowed it at all, not even virtually:

they have clicked a mouse to agree that they will borrow the money if it

ever becomes necessary. But they have no intention of letting it become

necessary; they will sell the derivative before that happens. The lender –

hypothetical lender, since the loan will never occur, for the same reason –

probably doesn’t actually have the money either. This is finance in cloud

cuckoo land, yet it has become the standard practice of the world’s banking

system.

Unfortunately, the consequences of derivatives trading do, ultimately,

turn into real money, and real people suffer. The trick works, most of the

time, because the disconnect with reality has no notable effect, other than

making a few bankers and traders extremely rich as they siphon off real

money from the virtual pool. Until things go wrong. Then the pigeons

come home to roost, bearing with them virtual debts that have to be paid

with real money. By everyone else, naturally.

This is what triggered the banking crisis of 2008–9, from which the

world’s economies are still reeling. Low interest rates and enormous

personal bonus payments encouraged bankers and their banks to bet ever

larger sums of virtual money on ever more complex derivatives, ultimately

secured – so they believed – in the property market, houses and businesses.

As the supply of suitable property and people to buy it began to dry up, the

financial world’s leaders needed to find new ways to convince shareholders

that they were creating profit, in order to justify and finance their bonuses.

So they started trading packages of debt, also allegedly secured, somewhere

down the line, on real property. Keeping the scheme going demanded the

continued purchase of property, to increase the pool of collateral. So the

banks started selling mortgages to people whose ability to repay them was
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increasingly doubtful. This was the subprime mortgage market, ‘subprime’

being a euphemism for ‘likely to default’. Which soon became ‘certain to

default’.

The banks behaved like one of those cartoon characters who wanders

off the edge of a cliff, hovers in space until he looks down, and only then

plunges to the ground. It all seemed to be going nicely until the bankers

asked themselves whether multiple accounting with non-existent money

and overvalued assets was sustainable, wondered what the real value of

their holdings in derivatives was, and realised that they didn’t have a clue.

Except that it was definitely a lot less than they’d told shareholders and

government regulators.

As the dreadful truth dawned, confidence plummeted. This depressed

the housing market, so the assets against which the debts were secured

started to lose their value. At this point the whole system became trapped

in a positive feedback loop, in which each downward revision of value

caused it to be revised even further downward. The end result was the loss

of about 17 trillion dollars. Faced with the prospect of the total collapse of

the world financial system, trashing depositors’ savings and making the

Great Depression of 1929 look like a garden party, governments were

forced to bail out the banks, which were on the verge of bankruptcy. One,

Lehman Brothers, was allowed to go under, but the loss of confidence was

so great that it seemed unwise to repeat the lesson. So taxpayers stumped

up the money, and a lot of it was real money. The banks grabbed the cash

with both hands, and then tried to pretend that the catastrophe hadn’t

been their fault. They blamed government regulators, despite having

campaigned against regulation: an interesting case of ‘It’s your fault: you

let us do it.’

How did the biggest financial train wreck in human history come

about?

Arguably, one contributor was a mathematical equation.

The simplest derivatives have been around for a long time. They are known

as futures and options, and they go back to the eighteenth century at the

Dojima rice exchange in Osaka, Japan. The exchange was founded in 1697,

a time of great economic prosperity in Japan, when the upper classes, the

samurai, were paid in rice, not money. Naturally there emerged a class of

ricebrokers who traded rice as though it were money. As the Osaka

merchants strengthened their grip on rice, the country’s staple food, their

activities had a knock-on effect on the commodity’s price. At the same
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time, the financial system was beginning to shift to hard cash, and the

combination proved deadly. In 1730 the price of rice dropped through the

floor.

Ironically, the trigger was poor harvests. The samurai, still wedded to

payment in rice, but watchful of the growth of money, started to panic.

Their favoured ‘currency’ was rapidly losing its value. Merchants

exacerbated the problem by artificially keeping rice out of the market,

squirrelling away huge quantities in warehouses. Although it might seem

that this would increase the monetary price of rice, it had the opposite

effect, because the samurai were treating rice as a currency. They could not

eat anything remotely approaching the amount of rice they owned. So

while ordinary people starved, the merchants stockpiled rice. Rice became

so scarce that paper money took over, and it quickly becamemore desirable

than rice because it was possible actually to lay hands on it. Soon the

Dojima merchants were running what amounted to a gigantic banking

system, holding accounts for the wealthy and determining the exchange

rate between rice and paper money.

Eventually the government realised that this arrangement handed far

too much power to the rice merchants, and reorganised the Rice Exchange

along with most other parts of the country’s economy. In 1939 the Rice

Exchange was replaced by the Government Rice Agency. But while the Rice

Exchange existed, the merchants invented a new kind of contract to even

out the large swings in the price of rice. The signatories guaranteed to buy

(or sell) a specified quantity of rice at a specified future date for a specified

price. Today these instruments are known as futures or options. Suppose a

merchant agrees to buy rice in six months’ time at an agreed price. If the

market price has risen above the agreed one by the time the option falls

due, he gets the rice cheap and immediately sells it at a profit. On the other

hand, if the price is lower, he is committed to buying rice at a higher price

than its market value and makes a loss.

Farmers find such instruments useful because they actually want to sell

a real commodity: rice. People using rice for food, or manufacturing

foodstuffs that use it, want to buy the commodity. In this sort of

transaction, the contract reduces the risk to both parties – though at a

price. It amounts to a form of insurance: a guaranteed market at a

guaranteed price, independent of shifts in the market value. It’s worth

paying a small premium to avoid uncertainty. But most investors took out

contracts in rice futures with the sole aim of making money, and the last

thing the investor wanted was tons and tons of rice. They always sold it

before they had to take delivery. So the main role of futures was to fuel
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financial speculation, and this was made worse by the use of rice as

currency. Just as today’s gold standard creates artificially high prices for a

substance (gold) that has little intrinsic value, and thereby fuels demand

for it, so the price of rice became governed by the trading of futures rather

than the trading of rice itself. The contracts were a form of gambling, and

soon the contracts themselves acquired a value, and could be traded as

though they were real commodities. Moreover, although the amount of

rice was limited by what the farmers could grow, there was no limit to the

number of contracts for rice that could be issued.

The world’s major stock markets were quick to spot an opportunity to

convert smoke and mirrors into hard cash, and they have traded futures

ever since. At first, this practice did not of itself cause enormous economic

problems, although it sometimes led to instability rather than the stability

that is often asserted to justify the system. But around the year 2000, the

world’s financial sector began to invent ever more elaborate variants on

the futures theme, complex ‘derivatives’ whose value was based on

hypothetical future movements of some asset. Unlike futures, for which

the asset, at least, was real, derivatives might be based on an asset that was

itself a derivative. No longer were banks buying and selling bets on the

future price of a commodity like rice; they were buying and selling bets on

the future price of a bet.

It quickly became big business. In 1998 the international financial

system traded roughly $100 trillion in derivatives. By 2007 this had grown

to one quadrillion US dollars. Trillions, quadrillions... we know these are

large numbers, but how large? To put this figure in context, the total value

of all the products made by the world’s manufacturing industries, for the

last thousand years, is about 100 trillion US dollars, adjusted for inflation.

That’s one tenth of one year’s derivatives trading. Admittedly the bulk of

industrial production has occurred in the past fifty years, but even so, this

is a staggering amount. It means, in particular, that the derivatives trades

consist almost entirely of money that does not actually exist – virtual

money, numbers in a computer, with no link to anything in the real world.

In fact, these trades have to be virtual: the total amount of money in

circulation, worldwide, is completely inadequate to pay the amounts that

are being traded at the click of a mouse. By people who have no interest in

the commodity concerned, and wouldn’t know what to do with it if they

took delivery, using money that they don’t actually possess.

You don’t need to be a rocket scientist to suspect that this is a recipe for
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disaster. Yet for a decade, the world economy grew relentlessly on the back

of derivatives trading. Not only could you get a mortgage to buy a house:

you could get more than the house was worth. The bank didn’t even

bother to check what your true income was, or what other debts you had.

You could get a 125% self-certified mortgage – meaning you told the bank

what you could afford and it didn’t ask awkward questions – and spend the

surplus on a holiday, a car, plastic surgery, or crates of beer. Banks went out

of their way to persuade customers to take out loans, even when they

didn’t need them.

What they thought would save them if a borrower defaulted on their

repayments was straightforward. Those loans were secured on your house.

House prices were soaring, so that missing 25% of equity would soon

become real; if you defaulted, the bank could seize your house, sell it, and

get its loan back. It seemed foolproof. Of course it wasn’t. The bankers

didn’t ask themselves what would happen to the price of housing if

hundreds of banks were all trying to sell millions of houses at the same

time. Nor did they ask whether prices could continue to rise significantly

faster than inflation. They genuinely seemed to think that house prices

could rise 10–15% in real terms every year, indefinitely. They were still

urging regulators to relax the rules and allow them to lend even more

money when the bottom dropped out of the property market.

Many of today’s most sophisticated mathematical models of financial

systems can be traced back to Brownian motion, mentioned in Chapter 12.

When viewed through a microscope, small particles suspended in a fluid

jiggle around erratically, and Einstein and Smoluchowski developed

mathematical models of this process and used them to establish the

existence of atoms. The usual model assumes that the particle receives

random kicks through distances whose probability distribution is normal, a

bell curve. The direction of each kick is uniformly distributed – any

direction has the same chance of happening. This process is called a

random walk. The model of Brownian motion is a continuum version of

such random walks, in which the sizes of the kicks and the time between

successive kicks become arbitrarily small. Intuitively, we consider infinitely

many infinitesimal kicks.

The statistical properties of Brownian motion, over large numbers of

trials, are determined by a probability distribution, which gives the

likelihood that the particle ends up at a particular location after a given

time. This distribution is radially symmetric: the probability depends only
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on how far the point is from the origin. Initially the particle is very likely to

be close to the origin, but as time passes, the range of likely positions

spreads out as the particle gets more chance to explore distant regions of

space. Remarkably, the time evolution of this probability distribution

obeys the heat equation, which in this context is often called the diffusion

equation. So the probability spreads just like heat.

After Einstein and Smoluchowski published their work, it turned out

that much of the mathematical content had been derived earlier, in 1900,

by the French mathematician Louis Bachelier in his PhD thesis. But

Bachelier had a different application in mind: the stock and option

markets. The title of his thesis was Théorie de la speculation (‘Theory of

Speculation’). The work was not received with wild praise, probably

because its subject-matter was far outside the normal range of mathematics

at that period. Bachelier’s supervisor was the renowned and formidable

mathematician Henri Poincaré, who declared the work to be ‘very original’.

He also gave the game way somewhat, by adding, with reference to the part

of the thesis that derived the normal distribution for errors: ‘It is regrettable

that M. Bachelier did not develop this part of his thesis further.’ Which

any mathematician would interpret as ‘that was the place where the

mathematics started to get really interesting, and if only he’d done more

work on that, rather than on fuzzy ideas about the stock market, it would

have been easy to give him a much better grade.’ The thesis was graded

‘honorable’, a pass; it was even published. But it did not get the top grade

of ‘très honorable’.

Bachelier in effect pinned down the principle that fluctuations of the

stock market follow a random walk. The sizes of successive fluctuations

conform to a bell curve, and the mean and standard deviation can be

estimated from market data. One implication is that large fluctuations are

very improbable. The reason is that the tails of the normal distribution die

down very fast indeed: faster than exponential. The bell curve decreases

towards zero at a rate that is exponential in the square of x. Statisticians

(and physicists and market analysts) talk of two-sigma fluctuations, three-

sigma ones, and so on. Here sigma (s) is the standard deviation, a measure

of how wide the bell curve is. A three-sigma fluctuation, say, is one that

deviates from the mean by at least three times the standard deviation. The

mathematics of the bell curve lets us assign probabilities to these ‘extreme

events’, see Table 3.
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minimum size probability

of fluctuation

s 0.3174

2s 0.0456

3s 0.0027

4s 0.000063

5s 0.0000006

Table 3 Probabilities of many-sigma events.

The upshot of Bachelier’s Brownian motion model is that large stock

market fluctuations are so rare that in practice they should never happen.

Table 3 shows that a five-sigma event, for example, is expected to occur

about six times in every 10 million trials. However, stock market data show

that they are far more common than that. Stock in Cisco Systems, a world

leader in communications, has undergone ten 5-sigma events in the last

twenty years, whereas Brownian motion predicts 0.003 of them. I picked

this company at random and it’s in no way unusual. On Black Monday (19

October 1987) the world’s stock markets lost more than 20% of their value

within a few hours; an event this extreme should have been virtually

impossible.

The data suggest unequivocally that extreme events are nowhere near

as rare as Brownian motion predicts. The probability distribution does not

die way exponentially (or faster); it dies away like a power-law curve x–a for

some positive constant a. In the financial jargon, such a distribution is said

to have a fat tail. Fat tails indicate increased levels of risk. If your

investment has a five-sigma expected return, then assuming Brownian

motion, the chance that it will fail is less than one in a million. But if tails

are fat, it might be much larger, maybe one in a hundred. That makes it a

much poorer bet.

A related term, made popular by Nassim Nicholas Taleb, an expert in

mathematical finance, is ‘black swan event’. His 2007 book The Black Swan

became a major bestseller. In ancient times, all known swans were white.

The poet Juvenal refers to something as ‘a rare bird in the lands, and very

like a black swan’, and he meant that it was impossible. The phrase was

widely used in the sixteenth century, much as we might refer to a flying

pig. But in 1697, when the Dutch explorer Willem de Vlamingh went to

the aptly named Swan River in Western Australia, he found masses of black

swans. The phrase changed its meaning, and now refers to an assumption
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that appears to be grounded in fact, but might at any moment turn out to

be wildly mistaken. Yet another term current is X-event, ‘extreme event’.

These early analyses of markets in mathematical terms encouraged the

seductive idea that the market could be modelled mathematically, creating

a rational and safe way to make unlimited sums of money. In 1973 it

seemed that the dream might become real, when Fischer Black and Myron

Scholes introduced a method for pricing options: the Black–Scholes

equation. Robert Merton provided a mathematical analysis of their

model in the same year, and extended it. The equation is:

1
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� rV ¼0

It involves five distinct quantities – time t, the price S of the commodity,

the price V of the derivative, which depends on S and t, the risk-free

interest rate r (the theoretical interest that can be earned by an investment

with zero risk, such as government bonds), and the volatility s2 of the

stock. It is also mathematically sophisticated: a second-order partial

differential equation like the wave and heat equations. It expresses the

rate of change of the price of the derivative, with respect to time, as a linear

combination of three terms: the price of the derivative itself, how fast that

changes relative to the stock price, and how that change accelerates. The

other variables appear in the coefficients of those terms. If the terms

representing the price of the derivative and its rate of change were omitted,

the equation would be exactly the heat equation, describing how the price

of the option diffuses through stock-price-space. This traces back to

Bachelier’s assumption of Brownian motion. The other terms take

additional factors into account.

The Black–Scholes equation was derived as a consequence of a number

of simplifying financial assumptions – for instance, that there are no

transaction costs and no limits on short-selling, and that it is possible to

lend and borrow money at a known, fixed, risk-free interest rate. The

approach is called arbitrage pricing theory, and its mathematical core goes

back to Bachelier. It assumes that market prices behave statistically like

Brownian motion, in which both the rate of drift and the market volatility

are constant. Drift is the movement of the mean, and volatility is financial

jargon for standard deviation, a measure of average divergence from the

mean. This assumption is so common in the financial literature that it has

become an industry standard.
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There are two main kinds of option. In a put option, the buyer of the

option purchases the right to sell a commodity or financial instrument at a

specified time for an agreed price, if they so wish. A call option is similar,

but it confers the right to buy instead of sell. The Black–Scholes equation

has explicit solutions: one formula for put options, another for call

options.1 If such formulas had not existed, the equation could still have

been solved numerically and implemented as software. However, the

formulas make it straightforward to calculate the recommended price, as

well as yielding important theoretical insights.

The Black–Scholes equation was devised to bring a degree of rationality

to the futures market, which it does very effectively under normal market

conditions. It provides a systematic way to calculate the value of an option

before it matures. Then it can be sold. Suppose, for instance, that a merchant

contracts to buy 1000 tons of rice in 12 months’ time at a price of 500 per

ton – a call option. After five months she decides to sell the option to

anyone willing to buy it. Everyone knows how the market price for rice has

been changing, so how much is that contract worth right now? If you start

trading such options without knowing the answer, you’re in trouble. If the

trade loses money, you’re open to the accusation that you got the price

wrong and your job could be at risk. So what should the price be? Trading

by the seat of your pants ceases to be an option when the sums involved are

in the billions. There has to be an agreed way to price an option at any time

before maturity. The equation does just that. It provides a formula, which

anyone can use, and if your boss uses the same formula, he will get the

same result that you did, provided you didn’t make errors of arithmetic. In

practice, both of you would use a standard computer package.

The equation was so effective that it won Merton and Scholes the 1997

Nobel Prize in Economics.2 Black had died by then, and the rules of the

prize prohibit posthumous awards, but his contribution was explicitly cited

by the Swedish Academy. The effectiveness of the equation depended on

the market behaving itself. If the assumptions behind the model ceased to

hold, it was no longer wise to use it. But as time passed and confidence

grew, many bankers and traders forgot that; they used the equation as a

kind of talisman, a bit of mathematical magic that protected them against

criticism. Black–Scholes not only provides a price that is reasonable under

normal conditions; it also covers your back if the trade goes belly-up. Don’t

blame me, boss, I used the industry standard formula.
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The financial sector was quick to see the advantages of the Black–Scholes

equation and its solutions, and equally quick to develop a host of related

equations with different assumptions aimed at different financial

instruments. The then-sedate world of conventional banking could use

the equations to justify loans and trades, always keeping an eye open for

potential trouble. But less conventional businesses would soon follow, and

they had the faith of a true convert. To them, the possibility of the model

going wrong was inconceivable. It became known as the Midas formula – a

recipe for making everything turn to gold. But the financial sector forgot

how the story of King Midas ended.

The darling of the financial sector, for several years, was a company

called Long Term Capital Management (LTCM). It was a hedge fund, a

private fund that spreads its investments in a way that is intended to

protect investors when the market goes down, and make big profits when it

goes up. It specialised in trading strategies based on mathematical models,

including the Black–Scholes equation and its extensions, together with

techniques such as arbitrage, which exploits discrepancies between the

prices of bonds and the value that can actually be realised. Initially LTCM

was a spectacular success, yielding returns in the region of 40% per year

until 1998. At that point it lost $4.6 billion in under four months, and the

Federal Reserve Bank persuaded its major creditors to bail it out to the tune

of $3.6 billion. Eventually the banks involved got their money back, but

LTCM was wound up in 2000.

What went wrong? There are as many theories as there are financial

commentators, but the consensus is that the proximate cause of LTCM’s

failure was the Russian financial crisis of 1998. Western markets had

invested heavily in Russia, whose economy was heavily dependent on oil

exports. The Asian financial crisis of 1997 caused the price of oil to slump,

and the main casualty was the Russian economy. TheWorld Bank provided

a loan of $22.6 billion to prop the Russians up.

The ultimate cause of LTCM’s demise was already in place on the day it

started trading. As soon as reality ceased to obey the assumptions of the

model, LTCM was in deep trouble. The Russian financial crisis threw a

spanner in the works that demolished almost all of those assumptions.

Some factors had a bigger effect than others. Increased volatility was one of

them. Another was the assumption that extreme fluctuations hardly ever

occur: no fat tails. But the crisis sent the markets into turmoil, and in the

panic, prices dropped by huge amounts – many sigmas – in seconds.

Because all of the factors concerned were interrelated, these events

triggered other rapid changes, so rapid that traders could not possibly
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know the state of the market at any instant. Even if they wanted to behave

rationally, which people don’t do in a general panic, they had no basis

upon which to do so.

If the Brownian model is right, events as extreme as the Russian

financial crisis should occur no more often than once a century. I can

remember seven from personal experience in the past 40 years: over-

investment in property, the former Soviet Union, Brazil, property (again),

property (yet again), dotcom companies, and . . . oh, yes, property.

With hindsight, the collapse of LTCM was a warning. The dangers of

trading by formula in a world that did not obey the cosy assumptions

behind the formula were duly noted – and quickly ignored. Hindsight is all

very well, but anyone can see the danger after a crisis has struck. What

about foresight? The orthodox claim about the recent global financial crisis

is that, like the first swan with black feathers, no one saw it coming.

That’s not entirely true.

The International Congress of Mathematicians is the largest mathematical

conference in the world, taking place every four years. In August 2002 it

took place in Beijing, and Mary Poovey, professor of humanities and

director of the Institute for the Production of Knowledge at New York

University, gave a lecture with the title ‘Can numbers ensure honesty?’3

The subtitle was ‘unrealistic expectations and the US accounting scandal’,

and it described the recent emergence of a ‘new axis of power’ in world

affairs:

This axis runs through large multinational corporations, many of

which avoid national taxes by incorporating in tax havens like Hong

Kong. It runs through investment banks, through nongovernmental

organizations like the International Monetary Fund, through state and

corporate pension funds, and through the wallets of ordinary investors.

This axis of financial power contributes to economic catastrophes like

the 1998 meltdown in Japan and Argentina’s default in 2001, and it

leaves its traces in the daily gyrations of stock indexes like the Dow

Jones Industrials and London’s Financial Times Stock Exchange 100

Index (the FTSE).

She went on to say that this new axis of power is intrinsically neither good

nor bad: what matters is how it wields its power. It helped to raise China’s

standard of living, which many of us would consider to be beneficial. It
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also encouraged a worldwide abandonment of welfare societies, replacing

them by a shareholder culture, which many of us would consider to be

harmful. A less controversial example of a bad outcome is the Enron

scandal, which broke in 2001. Enron was an energy company based in

Texas, and its collapse led to what was then the biggest bankruptcy in

American history, and a loss to shareholders of $11 billion. Enron was

another warning, this time about deregulated accounting laws. Again, few

heeded the warning.

Poovey did. She pointed to the contrast between the traditional

financial system based on the production of real goods, and the emerging

new one based on investment, currency trading, and ‘complex wagers that

future prices would rise or fall’. By 1995 this economy of virtual money had

overtaken the real economy of manufacturing. The new axis of power was

deliberately confusing real and virtual money: arbitrary figures in company

accounts and actual cash or commodities. This trend, she argued, was

leading to a culture in which the values of both goods and financial

instruments were becoming wildly unstable, liable to explode or collapse at

the click of a mouse.

The article illustrated these points using five common financial

techniques and instruments, such as ‘mark to market accounting’, in

which a company sets up a partnership with a subsidiary. The subsidiary

buys a stake in the parent company’s future profits; the money involved is

then recorded as instant earnings by the parent company while the risk is

relegated to the subsidiary’s balance sheet. Enron used this technique

when it changed its marketing strategy from selling energy to selling

energy futures. The big problem with bringing forward potential future

profits in this manner is that they cannot then be listed as profits next year.

The answer is to repeat the manoeuvre. It’s like trying to drive a car

without brakes by pressing ever harder on the accelerator. The inevitable

result is a crash.

Poovey’s fifth example was derivatives, and it was the most important

of them all because the sums of money involved were so gigantic. Her

analysis largely reinforces what I’ve already said. Her main conclusion was:

‘Futures and derivatives trading depends upon the belief that the stock

market behaves in a statistically predictable way, in other words, that

mathematical equations accurately describe the market.’ But she noted

that the evidence points in a totally different direction: somewhere

between 75% and 90% of all futures traders lose money in any year.

Two types of derivative were particularly implicated in creating the

toxic financial markets of the early twenty-first century: credit default
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swaps and collateralised debt obligations. A credit default swap is a form of

insurance: pay your premium and you collect from an insurance company

if someone defaults on a debt. But anyone could take out such insurance

on anything. They didn’t have to be the company that owed, or was owed,

the debt. So a hedge fund could, in effect, bet that a bank’s customers were

going to default on their mortgage payments – and if they did, the hedge

fund would make a bundle, even though it was not a party to the mortgage

agreements. This provided an incentive for speculators to influence market

conditions to make defaults more likely. A collateralised debt obligation is

based on a collection (portfolio) of assets. These might be tangible, such as

mortgages secured against real property, or they might be derivatives, or

they might be a mixture of both. The owner of the assets sells investors the

right to a share of the profits from those assets. The investor can play it

safe, and get first call on the profits, but this costs them more. Or they can

take a risk, pay less, and be lower down the pecking order for payment.

Both types of derivative were traded by banks, hedge funds, and other

speculators. They were priced using descendants of the Black–Scholes

equation, so they were considered to be assets in their own right. Banks

borrowed money from other banks, so that they could lend it to people

who wanted mortgages; they secured these loans with real property and

fancy derivatives. Soon everyone was lending huge sums of money to

everyone else, much of it secured on financial derivatives. Hedge funds and

other speculators were trying to make money by spotting potential

disasters and betting that they would happen. The value of the

derivatives concerned, and of real assets such as property, was often

calculated on a mark to market basis, which is open to abuse because it uses

artificial accounting procedures and risky subsidiary companies to

represent estimated future profit as actual present-day profit. Nearly

everyone in the business assessed how risky the derivatives were using

the same method, known as ‘value at risk’. This calculates the probability

that the investment might make a loss that exceeds some specified

threshold. For example, investors might be willing to accept a loss of a

million dollars if its probability were less than 5%, but not if it were more

likely. Like Black–Scholes, value at risk assumes that there are no fat tails.

Perhaps the worst feature was that the entire financial sector was

estimating its risks using exactly the same method. If the method were

at fault, this would create a shared delusion that the risk was low when in

reality it was much higher.

It was a train crash waiting to happen, a cartoon character who had

walked a mile off the edge of the cliff and remained suspended in mid-air
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only because he flatly refused to take a look at what was under his feet. As

Poovey and others like her had repeatedly warned, the models used to

value the financial products and estimate their risks incorporated

simplifying assumptions that did not accurately represent real markets

and the dangers inherent in them. Players in the financial markets ignored

these warnings. Six years later, we all found out why this was a mistake.

Perhaps there is a better way.

The Black–Scholes equation changed the world by creating a booming

quadrillion-dollar industry; its generalisations, used unintelligently by a

small coterie of bankers, changed the world again by contributing to a

multitrillion-dollar financial crash whose ever more malign effects, now

extending to entire national economics, are still being felt worldwide. The

equation belongs to the realm of classical continuum mathematics, having

its roots in the partial differential equations of mathematical physics. This

is a realm in which quantities are infinitely divisible, time flows

continuously, and variables change smoothly. The technique works for

mathematical physics, but it seems less appropriate to the world of finance,

in which money comes in discrete packets, trades occur one at a time

(albeit very fast), and many variables can jump erratically.

The Black–Scholes equation is also based on the traditional

assumptions of classical mathematical economics: perfect information,

perfect rationality, market equilibrium, the law of supply and demand. The

subject has been taught for decades as if these things are axiomatic, and

many trained economists have never questioned them. Yet they lack

convincing empirical support. On the few occasions when anyone does

experiments to observe how people make financial decisions, the classical

scenarios usually fail. It’s as though astronomers had spent the last

hundred years calculating how planets move, based on what they thought

was reasonable, without actually taking a look to see what they really did.

It’s not that classical economics is completely wrong. But it’s wrong

more often that its proponents claim, and when it does go wrong, it goes

very wrong indeed. So physicists, mathematicians, and economists are

looking for better models. At the forefront of these efforts are models based

on complexity science, a new branch of mathematics that replaces classical

continuum thinking by an explicit collection of individual agents,

interacting according to specified rules.

A classical model of the movement of the price of some commodity, for

example, assumes that at any instant there is a single ‘fair’ price, which in
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principle is known to everyone, and that prospective purchasers compare

this price with a utility function (how useful the commodity is to them)

and buy it if its utility outweighs its cost. A complex system model is very

different. It might involve, say, ten thousand agents, each with its own

view of what the commodity is worth and how desirable it is. Some agents

would know more than others, some would have more accurate

information than others; many would belong to small networks that

traded information (accurate or not) as well as money and goods.

A number of interesting features have emerged from such models. One

is the role of the herd instinct. Market traders tend to copy other market

traders. If they don’t, and it turns out that the others are on to a good

thing, their bosses will be unhappy. On the other hand, if they follow the

herd and everyone’s got it wrong, they have a good excuse: it’s what

everyone else was doing. Black–Scholes was perfect for the herd instinct. In

fact, virtually every financial crisis in the last century has been pushed over

the edge by the herd instinct. Instead of some banks investing in property

and others in manufacturing, say, they all rush into property. This

overloads the market, with too much money seeking too little property,

and the whole thing comes to bits. So now they all rush into loans to

Brazil, or to Russia, or back into a newly revived property market, or lose

their collective marbles over dotcom companies – three kids in a room with

a computer and a modem being valued at ten times the worth of a major

manufacturer with a real product, real customers, and real factories and

offices. When that goes belly-up, they all rush into the subprime mortgage

market . . .

That’s not hypothetical. Even as the repercussions of the global

banking crisis reverberate through ordinary people’s lives, and national

economies flounder, there are signs that no lessons have been learned. A

rerun of the dotcom fad is in progress, now aimed at social networking

websites: Facebook has been valued at $100 billion, and Twitter (the

website where celebrities send 140-character ‘tweets’ to their devoted

followers) has been valued at $8 billion despite never having made a profit.

The International Monetary Fund has also issued a strong warning about

exchange traded funds (ETFs), a very successful way to invest in

commodities like oil, gold, or wheat without actually buying any. All of

these have gone up in price very rapidly, providing big profits for pension

funds and other large investors, but the IMF has warned that these

investment vehicles have ‘all the hallmarks of a bubble waiting to burst . . .

reminiscent of what happened in the securitisation market before the

crisis’. ETFs are very like the derivatives that triggered the credit crunch,
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but secured in commodities rather than property. The stampede into ETFs

has driven commodity prices through the roof, inflating them out of all

proportion to the real demand. Many people in the third world are now

unable to afford staple foodstuffs because speculators in developed

countries are taking big gambles on wheat. The ousting of Hosni

Mubarak in Egypt was to some extent triggered by huge increases in the

price of bread.

The main danger is that ETFs are starting to be repackaged into further

derivatives, like the collateralised debt obligations and credit default swaps

that burst the subprime mortgage bubble. If the commodities bubble

bursts, we could see a rerun of the collapse: just delete ‘property’ and insert

‘commodities’. Commodity prices are very volatile, so ETFs are high-risk

investments – not a great choice for a pension fund. So once again

investors are being encouraged to take ever more complex, and ever more

risky, bets, using money they don’t have to buy stakes in things they don’t

want and can’t use, in pursuit of speculative profits – while the people who

do want those things can no longer afford them.

Remember the Dojima rice exchange?

Economics is not the only area to discover that its prized traditional

theories no longer work in an increasingly complex world, where the old

rules no longer apply. Another is ecology, the study of natural systems such

as forests or coral reefs. In fact, economics and ecology are uncannily

similar in many respects. Some of the resemblance is illusory: historically

each has often used the other to justify its models, instead of comparing

the models with the real world. But some is real: the interactions between

large numbers of organisms are very like those between large numbers of

stock market traders.

This resemblance can be used as an analogy, in which case it is

dangerous because analogies often break down. Or it can be used as a

source of inspiration, borrowing modelling techniques from ecology and

applying them in suitably modified form to economics. In January 2011, in

the journal Nature, Andrew Haldane and Robert May outlined some

possibilities.4 Their arguments reinforce several of the messages earlier in

this chapter, and suggest ways of improving the stability of financial

systems.

Haldane and May looked at an aspect of the financial crisis that I’ve not

yet mentioned: how derivatives affect the stability of the financial system.

They compare the prevailing view of orthodox economists, which
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maintain that the market automatically seeks a stable equilibrium, with a

similar view in 1960s ecology, that the ‘balance of nature’ tends to keep

ecosystems stable. Indeed, at that time many ecologists thought that any

sufficiently complex ecosystem would be stable in this way, and that

unstable behaviour, such as sustained oscillations, implied that the system

was insufficiently complex. We saw in Chapter 16 that this is wrong. In

fact, current understanding indicates exactly the opposite. Suppose that a

large number of species interact in an ecosystem. As the network of

ecological interactions becomes more complex through the addition of

new links between species, or the interactions become stronger, there is a

sharp threshold beyond which the ecosystem ceases to be stable. (Here

chaos counts as stability; fluctuations can occur provided they remain

within specific limits.) This discovery led ecologists to look for special types

of interaction network, unusually conducive to stability.

Might it be possible to transfer these ecological discoveries to global

finance? There are close analogies, with food or energy in an ecology

corresponding to money in a financial system. Haldane and May were

aware that this analogy should not be used directly, remarking: ‘In

financial ecosystems, evolutionary forces have often been survival of the

fattest rather than the fittest.’ They decided to construct financial models

not by mimicking ecological models, but by exploiting the general

modelling principles that had led to a better understanding of ecosystems.

They developed several economic models, showing in each case that

under suitable circumstances, the economic system would become

unstable. Ecologists deal with an unstable ecosystem by managing it in a

way that creates stability. Epidemiologists do the same with a disease

epidemic; this is why, for example, the British government developed a

policy of controlling the 2001 foot-and-mouth epidemic by rapidly

slaughtering cattle on farms near any that proved positive for the

disease, and stopping all movement of cattle around the country. So

government regulators’ answer to an unstable financial system should be

to take action to stabilise it. To some extent they are now doing this, after

an initial panic in which they threw huge amounts of taxpayers’ money at

the banks but omitted to impose any conditions beyond vague promises,

which have not been kept.

However, the new regulations largely fail to address the real problem,

which is the poor design of the financial system itself. The facility to

transfer billions at the click of a mouse may allow ever-quicker profits, but

it also lets shocks propagate faster, and encourages increasing complexity.

Both of these are destabilising. The failure to tax financial transactions

Profile Books - Seventeen Equations Data Standards Ltd, Frome, Somerset – 5/12/2011
17Seventeen_Chap17.3d Page 313 of 316

313Black–Scholes Equation



allows traders to exploit this increased speed by making bigger bets on the

market, at a faster rate. This also tends to create instability. Engineers know

that the way to get a rapid response is to use an unstable system: stability

by definition indicates an innate resistance to change, whereas a quick

response requires the opposite. So the quest for ever greater profits has

caused an ever more unstable financial system to evolve.

Building yet again on analogies with ecosystems, Haldane and May

offer some examples of how stability might be enhanced. Some correspond

to the regulators’ own instincts, such as requiring banks to hold more

capital, which buffers them against shocks. Others do not; an example is

the suggestion that regulators should focus not on the risks associated with

individual banks, but on those associated with the entire financial system.

The complexity of the derivatives market could be reduced by requiring all

transactions to pass through a centralised clearing agency. This would have

to be extremely robust, supported by all major nations, but if it were, then

propagating shocks would be damped down as they passed through it.

Another suggestion is increased diversity of trading methods and risk

assessment. An ecological monoculture is unstable because any shock that

occurs is likely to affect everything simultaneously, in the same way. When

all banks are using the same methods to assess risk, the same problem

arises: when they get it wrong, they all get it wrong at the same time. The

financial crisis arose in part because all of the main banks were funding

their potential liabilities in the same way, assessing the value of their assets

in the same way, and assessing their likely risk in the same way.

The final suggestion is modularity. It is thought that ecosystems

stabilise themselves by organising (through evolution) into more or less

self-contained modules, connected to each other in a fairly simple manner.

Modularity helps to prevent shocks propagating. This is why regulators

worldwide are giving serious consideration to breaking up big banks and

replacing them by a number of smaller ones. As Alan Greenspan, a

distinguished American economist and former chairman of the Federal

Reserve of the USA said of banks: ‘If they’re too big to fail, they’re too big.’

Was an equation to blame for the financial crash, then?

An equation is a tool, and like any tool, it has to be wielded by

someone how knows how to use it, and for the right purpose. The Black–

Scholes equation may have contributed to the crash, but only because it

was abused. It was no more responsible for the disaster than a trader’s

computer would have been if its use led to a catastrophic loss. The blame
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for the failure of tools should rest with those who are responsible for their

use. There is a danger that the financial sector may turn its back on

mathematical analysis, when what it actually needs is a better range of

models, and – crucially – a solid understanding of their limitations. The

financial system is too complex to be run on human hunches and vague

reasoning. It desperately needs more mathematics, not less. But it also

needs to learn how to use mathematics intelligently, rather than as some

kind of magical talisman.
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Where Next?

When someone writes down an equation, there isn’t a sudden clap

of thunder after which everything is different. Most equations

have little or no effect (I write them down all the time, and believe me, I

know). But even the greatest and most influential equations need help to

change the world – efficient ways to solve them, people with the

imagination and drive to exploit what they tell us, machinery, resources,

materials, money. Bearing this in mind, equations have repeatedly opened

up new directions for humanity, and acted as our guides as we explore

them.

It took a lot more than seventeen equations to get us where we are

today. My list is a selection of some of the most influential, and each of

them required a host of others before it became seriously useful. But each

of the seventeen fully deserves inclusion, because it played a pivotal role in

history. Pythagoras led to practical methods for surveying our lands and

navigating our way to new ones. Newton tells us how planets move and

how to send space probes to explore them. Maxwell provided a vital clue

that led to radio, TV, and modern communications. Shannon derived

unavoidable limits to how efficient those communications can be.

Often, what an equation led to was quite different from what interested

its inventor/discoverers. Who would have predicted in the fifteenth

century that a baffling, apparently impossible number, stumbled upon

while solving algebra problems, would be indelibly linked to the even more

baffling and apparently impossible world of quantum physics – let alone

that this would pave the road to miraculous devices that can solve a

million algebra problems every second, and let us instantly be seen and

heard by friends on the other side of the planet? How would Fourier have

reacted if he had been told that his new method for studying heat flow

would be built into machines the size of a pack of cards, able to paint

extraordinarily accurate and detailed pictures of anything they are pointed

at – in colour, even moving, with thousands of them contained in

something the size of a coin?

Equations trigger events, and events, to paraphrase former British

Prime Minister Harold Macmillan, are what keep us awake at night. When
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a revolutionary equation is unleashed, it develops a life of its own. The

consequences can be good or bad, even when the original intention was

benevolent, as it was for every one of my seventeen. Einstein’s new physics

gave us a new understanding of the world, but one of the things we used it

for was nuclear weapons. Not as directly as popular myth claims, but it

played its part nonetheless. The Black–Scholes equation created a vibrant

financial sector and then threatened to destroy it. Equations are what we

make of them, and the world can be changed for the worse as well as for

the better.

Equations come in many kinds. Some are mathematical truths,

tautologies: think of Napier’s logarithms. But tautologies can still be

powerful aids to human thought and deed. Some are statements about the

physical world, which for all we know could have been different. Equations

of this kind tell us nature’s laws, and solving them tells us the

consequences of those laws. Some have both elements: Pythagoras’s

equation is a theorem in Euclid’s geometry, but it also governs

measurements made by surveyors and navigators. Some are little better

than definitions – but i and information tell us a great deal, once we have

defined them.

Some equations are universally valid. Some describe the world very

accurately, but not perfectly. Some are less accurate, confined to more

limited realms, yet offer vital insights. Some are basically plain wrong, yet

they can act as stepping-stones to something better. They may still have a

huge effect.

Some even open up difficult questions, philosophical in nature, about

the world we live in and our own place within it. The problem of quantum

measurement, dramatised by Schrödinger’s hapless cat, is one such. The

second law of thermodynamics raises deep issues about disorder and the

arrow of time. In both cases, some of the apparent paradoxes can be

resolved, in part, by thinking less about the content of the equation and

more about the context in which it applies. Not the symbols, but the

boundary conditions. The arrow of time is not a problem about entropy:

it’s a problem about the context in which we think about entropy.

Existing equations can acquire new importance. The search for fusion

power, as a clean alternative to nuclear power and fossil fuels, requires an

understanding of how extremely hot gas, forming a plasma, moves in a

magnetic field. The atoms of the gas lose electrons and become electrically

charged. So the problem is one in magnetohydrodynamics, requiring a

combination of the existing equations for fluid flow and for

electromagnetism. The combination leads to new phenomena,
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suggesting how to keep the plasma stable at the temperatures needed to

produce fusion. The equations are old favourites.

There is (or may be) one equation, above all, that physicists and

cosmologists would give their eye teeth to lay hands on: a Theory of

Everything, which in Einstein’s day was called a Unified Field Theory. This

is the long-sought equation that unifies quantummechanics and relativity,

and Einstein spent his later years in a fruitless quest to find it. These two

theories are both successful, but their successes occur in different domains:

the very small and the very large. When they overlap, they are

incompatible. For example, quantum mechanics is linear, relativity isn’t.

Wanted: an equation that explains why both are so successful, but does the

job of both with no logical inconsistencies. There are many candidates for

a Theory of Everything, the best known being the theory of superstrings.

This, among other things, introduces extra dimensions of space: six of

them, seven in some versions. Superstrings are mathematically elegant, but

there is no convincing evidence for them as a description of nature. In any

case, it is desperately hard to carry out the calculations needed to extract

quantitative predictions from superstring theory.

For all we know, there may not be a Theory of Everything. All of our

equations for the physical world may just be oversimplified models,

describing limited realms of nature in a way that we can understand, but

not capturing the deep structure of reality. Even if nature truly obeys rigid

laws, they might not be expressible as equations.

Even if equations are relevant, they need not be simple. They might be

so complicated that we can’t even write them down. The 3 billion DNA

bases of the human genome are, in a sense, part of the equation for a

human being. They are parameters that might be inserted into a more

general equation for biological development. It is (barely) possible to print

the genome on paper; it would need about two thousand books the size of

this one. It fits into a computer memory fairly easily. But it’s only one tiny

part of any hypothetical human equation.

When equations become that complex, we need help. Computers are

already extracting equations from big sets of data, in circumstances where

the usual human methods fail or are too opaque to be useful. A new

approach called evolutionary computing extracts significant patterns:

specifically, formulas for conserved quantities – things that don’t change.

One such system called Eureqa, formulated by Michael Schmidt and Hod

Lipson, has scored some successes. Software like this might help. Or it

might not lead anywhere that really matters.

Some scientists, especially those with backgrounds in computing,
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think that it’s time we abandoned traditional equations altogether,

especially continuum ones like ordinary and partial differential

equations. The future is discrete, it comes in whole numbers, and the

equations should give way to algorithms – recipes for calculating things.

Instead of solving the equations, we should simulate the world digitally by

running the algorithms. Indeed, the world itself may be digital. Stephen

Wolfram made a case for this view in his controversial book A New Kind of

Science, which advocates a type of complex system called a cellular

automaton. This is an array of cells, typically small squares, each existing

in a variety of distinct states. The cells interact with their neighbours

according to fixed rules. They look a bit like an eighties computer game,

with coloured blocks chasing each other over the screen.

Wolfram puts forward several reasons why cellular automata should be

superior to traditional mathematical equations. In particular, some of

them can carry out any calculation that could be performed by a computer,

the simplest being the famous Rule 110 automaton. This can find

successive digits of π, solve the three-body equations numerically,

implement the Black–Scholes formula for a call option – whatever.

Traditional methods for solving equations are more limited. I don’t find

this argument terribly convincing, because it is also true that any cellular

automaton can be simulated by a traditional dynamical system. What

counts is not whether one mathematical system can simulate another, but

which is most effective for solving problems or providing insights. It’s

quicker to sum a traditional series for π by hand than it is to calculate the

same number of digits using the Rule 110 automaton.

However, it is still entirely credible that we might soon find new laws of

nature based on discrete, digital structures and systems. The future may

consist of algorithms, not equations. But until that day dawns, if ever, our

greatest insights into nature’s laws take the form of equations, and we

should learn to understand them and appreciate them. Equations have a

track record. They really have changed the world – and they will change it

again.
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Notes

Chapter 1
1 The Penguin Book of Curious and Interesting Mathematics by David Wells quotes a

brief form of the joke: An Indian chief had three wives who were preparing to

give birth, one on a buffalo hide, one on a bear hide, and the third on a

hippopotamus hide. In due course, the first gave him a son, the second a

daughter, and the third, twins, a boy and a girl, thereby illustrating the well-

known theorem that the squaw on the hippopotamus is equal to the sum of the

squaws on the other two hides. The joke goes back at least to the mid-1950s,

when it was broadcast in the BBC radio series ‘My Word’, hosted by comedy

scriptwriters Frank Muir and Denis Norden.

2 Quoted without reference on:

http://www-history.mcs.st-and.ac.uk/HistTopics/Babylonian_Pythagoras.html

3 A. Sachs, A. Goetze, and O. Neugebauer. Mathematical Cuneiform Texts,

American Oriental Society, New Haven 1945.

4 The figure is repeated for convenience in Figure 60.

b

a cos C b-a cos C
C

h
ca

Fig 60 Splitting a triangle into two with right angles.

The perpendicular cuts the side b into two pieces. By trigonometry, one

piece has length a cos C, so the other has length b-a cos C. Let h be the

height of the perpendicular. By Pythagoras:

a2 ¼ h2 þða cosCÞ2

c2 ¼ h2 þðb� a cosCÞ2
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That is,

a2 � h2 ¼ a2 cos2 C

c2 �h2 ¼ðb� a cosCÞ2 ¼ b2 �2ab cosCþ a2 cos2 C

Subtract the first equation from the second; now the unwanted h2 cancels

out. So do the terms a2 cos2 C, and we are left with

c2 � a2 ¼ b2 �2ab cosC

which leads to the stated formula.

Chapter 2
1 http://www.17centurymaths.com/contents/napiercontents.html

2 Quoted from a letter John Marr wrote to William Lilly.

3 Prosthapheiresis was based on a trigonometric formula discovered by François

Viète, namely

sin
xþ y

2
cos

x� y

2
¼ sin xþ sin y

2

If you owned a table of sines, the formula allowed you to calculate any

product using only sums, differences, and division by 2.

Chapter 3
1 Keynes never delivered the lecture. The Royal Society planned to commemorate

Isaac Newton’s tercentenary in 1942, but World War II intervened, so the

celebrations were postponed to 1946. The lecturers were the physicists Edward

da Costa Andrade and Niels Bohr, and the mathematicians Herbert Turnbull

and Jacques Hadamard. The society had also invited Keynes, whose interests

included Newton’s manuscripts as well as economics. He had written a lecture

with the title ‘Newton, the man’, but he died just before the event took place.

His brother Geoffrey read the lecture on his behalf.

2 This phrase comes from a letter that Newton wrote to Hooke in 1676. It wasn’t

new: in 1159 John of Salisbury wrote that ‘Bernard of Chartres used to say that

we are like dwarfs on the shoulders of giants, so that we can see more than

they.’ By the seventeenth century it had become a cliché.

3 Division by zero leads to fallacious proofs. For example, we can ‘prove’ that all

numbers are zero. Assume that a= b. Therefore a2 = ab, so a2 – b2 = ab – b2.

Factorise to get (a+ b)(a – b) = b(a – b). Divide by (a – b) to deduce that a+ b= b.

Therefore a=0. The error is the division by (a – b), which is 0 because we

assumed a= b.

4 Richard Westfall. Never at Rest, Cambridge University Press, Cambridge 1980,

p. 425.

5 Erik H. Hauri, Thomas Weinreich, Alberto E. Saal, Malcolm C. Rutherford, and

James A. Van Orman. High pre-eruptive water contents preserved in lunar melt
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inclusions, Science Online (26 May 2011) 1204626. [DOI:10.1126/

science.1204626]. Their results proved controversial.

6 However, it’s not coincidence. It works for any differentiable function: one

with a continuous derivative. These include all polynomials and all convergent

power series, such as the logarithm, the exponential, and the various

trigonometric functions.

7 The modern definition is: a function f(h) tends to a limit L as h tends to zero if

for any e> 0 there exists d> 0 such that |h|< d implies that

|f(h) –L|< e. Using any e> 0 avoids referring to anything flowing or becoming

smaller: it deals with all possible values in one go.

Chapter 4
1 The book of Genesis refers to the ‘firmament’. Most scholars think this derives

from the ancient Hebrew belief that the stars were tiny lights fixed to a solid

vault of Heaven, shaped like a hemisphere. This is what the night sky looks like:

the way our visual senses respond to distant objects makes the stars appear to be

at much the same distance from us. Many cultures, especially in the Middle and

Far East, thought of the heavens as a slowly spinning bowl.

2 The Great Comet of 1577 is not Halley’s comet, but another of historical

importance, now called C/1577 V1. It was visible to the naked eye in 1577 AD.

Brahe observed the comet and deduced that comets were located outside the

Earth’s atmosphere. The comet is currently about 24 billion kilometres from the

Sun.

3 The figure was not known until 1798, when Henry Cavendish obtained

a reasonably accurate value in a laboratory experiment. It is about 6.676 10–11

newton metre squared per kilogram squared.

4 June Barrow-Green. Poincaré and the Three Body Problem, American

Mathematical Society, Providence 1997.

Chapter 5
1 In 1535 the mathematicians Antonio Fior and Niccolò Fontana (nicknamed

Tartaglia, ‘the stammerer’) engaged in a public contest. They set each other

cubic equations to solve, and Tartaglia beat Fior comprehensively. At that time,

cubic equations were classified into three distinct types, because negative

numbers were not recognised. Fior knew how to solve just one type; initially

Tartaglia knew how to solve one different type, but shortly before the contest

he figured out how to solve all the other types. He then set Fior only the types

that he knew Fior could not solve. Cardano, working on his algebra text, heard

about the contest, and realised that Fior and Tartaglia knew how to solve

cubics. This discovery would greatly enhance the book, so he asked Tartaglia to

reveal his methods.

Eventually Tartaglia divulged the secret, later stating that Cardano had

promised never to make it public. But the method appeared in the Ars

Magna, so Tartaglia accused Cardano of plagiarism. However, Cardano had

an excuse, and he also had a good reason to find a way round his promise.
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His student Lodovico Ferrari had found how to solve quartic equations, an

equally novel and dramatic discovery, and Cardano wanted that in his

book, too. However, Ferrari’s method required the solution of an associated

cubic equation, so Cardano could not publish Ferrari’s work without also

publishing Tartaglia’s.

Then he learned that Fior was a student of Scipio del Ferro, who was

rumoured to have solved all three types of cubic, passing just one type on

to Fior. Del Ferro’s unpublished papers were in the possession of Annibale

del Nave. So Cardano and Ferrari went to Bologna in 1543 to consult del

Nave, and in the papers they found solutions to all three types of cubic. So

Cardano could honestly say that he was publishing del Ferro’s method, not

Tartaglia’s. Tartaglia still felt cheated, and published a long, bitter diatribe

against Cardano. Ferrari challenged him to a public debate and won hands

down. Tartaglia never really recovered his reputation after that.

Chapter 6
1 Summarised in Chapter 12 of: Ian Stewart. Mathematics of Life, Profile, London

2011.

Chapter 7
1 Yes, I know this is the plural of ‘die’, but nowadays everyone uses it for the

singular as well, and I’ve given up fighting this tendency. It could be worse:

someone just sent me an e-mail carefully using ‘dice’ for the singular and ‘die’

for the plural.

2 There are many fallacies in Pascal’s argument. The main one is that it would

apply to any hypothetical supernatural being.

3 The theorem states that under certain (fairly common) conditions, the sum of a

large number of random variables will have an approximately normal

distribution. More precisely, if (x1, . . . , xn) is a sequence of independent

identically distributed random variables, each having mean μ and variance s2,
then the central limit theorem states that

ffiffiffi
n

p 1

n

Xn

i¼1

xi � m

 !

converges to a normal distribution with mean 0 and standard deviation s
as n becomes arbitrarily large.

Chapter 8
1 Look at three consecutive masses, numbered n –1, n, n+1. Suppose that at time

t they are displaced distances un�1(t), un(t), and un+1(t) from their initial

positions on the horizontal axis. By Newton’s second law the acceleration of

each mass is proportional to the forces that act on it. Make the simplifying

assumption that each mass moves through a very small distance in the vertical

direction only. To a very good approximation, the force that mass n –1 exerts

on mass n is then proportional to the difference un–1(t) –un(t), and similarly the
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force that mass n+1 exerts on mass n is proportional to the difference un+1(t) –

un(t). Adding these together, the total force exerted on mass n is proportional to

un�1(t) – 2un(t)+ un+1(t). This is the difference between un�1(t) – un(t) and un(t) –

un+1(t), and each of these expressions is also the difference between the

positions of consecutive masses. So the force exerted on mass n is a difference

between differences.

Now suppose the masses are very close together. In calculus, a

difference – divided by a suitable small constant – is an approximation to

a derivative. A difference between differences is an approximation to a

derivative of a derivative, that is, a second derivative. In the limit of

infinitely many point masses, infinitesimally close together, the force

exerted at a given point of the spring is therefore proportional to ¶2u/¶x2,
where x is the space coordinate measured along the length of the string. By

Newton’s second law this is proportional to the acceleration at right angles

to that line, which is the second time derivative ¶2u/¶t2. Writing the

constant of proportionality as c2 we get

q2u
qt2

¼ c2
q2u
qx2

where u(x,t) is the vertical position of location x on the string at time t.

2 For an animation see http://en.wikipedia.org/wiki/Wave_equation

3 In symbols, the solutions are precisely the expressions

uðx; tÞ¼ f ðx� ctÞþ gðxþ ctÞ
for any functions f and g.

4 Animations of the first few normal modes of a circular drum can be found at

http://en.wikipedia.org/wiki/Vibrations_of_a_circular_drum

Circular and rectangular drum animations are at

http://www.mobiusilearn.com/viewcasestudies.aspx?id=2432

Chapter 9
1 Suppose that uðx; tÞ¼ e�n2at sinnx. Then

qu
qt

¼�n2ae�n2at sinnx¼ q2u
qx2

Therefore u(x,t) satisfies the heat equation.

2 This is JFIF encoding, used for the web. EXIF coding, for cameras, also includes

‘metadata’ describing the camera settings, such as date, time, and exposure.

Chapter 10
1 http://www.nasa.gov/topics/earth/features/2010-warmest-year.html
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Chapter 11
1 Donald McDonald. How does a cat fall on its feet?, New Scientist 7 no. 189

(1960) 1647–9. See also http://en.wikipedia.org/wiki/Cat_righting_reflex

2 The curl of both sides of the third equation gives

H6H6E¼� 1

c

qðH6HÞ
qt

Vector calculus tells us that the left-hand side of this equation simplifies to

H6H6E¼HðH �EÞ�H2E¼�H2E

where we also use the first equation. Here Ñ2 is the Laplace operator. Using

the fourth equation, the right-hand side becomes

� 1

c

qðH6HÞ
qt

¼� 1

c

q
qt

1

c

qE
qt

� �
¼� 1

c2
q2E
qt2

Cancelling out two minus signs and multiplying by c2 yields the wave

equation for E:

q2E
qt2

¼ c2H2E

A similar calculation yields the wave equation for H.

Chapter 12
1 Specifically,

SA � SB ¼
Z B

A

dq

T

where SA and SB are the entropies in states A and B.

2 The second law of thermodynamics is technically an inequality, not an

equation. I’ve included the second law in this book because its central

position in science demanded its inclusion. It is undeniably a mathematical

formula, a loose interpretation of ‘equation’ that is widespread outside the

technical scientific literature. The formula alluded to in Note 1 of this chapter,

using an integral, is a genuine equation. It defines the change in entropy, but

the second law tells us what its most important feature is.

3 Brown was anticipated by the Dutch physiologist Jan Ingenhousz, who saw the

same phenomenon in coal dust floating on the surface of alcohol, but he didn’t

propose any theory to explain what he had seen.

Chapter 13
1 In the Gran Sasso National Laboratory, in Italy, is a 1300-tonne particle

detector called OPERA (oscillation project with emulsion-tracking apparatus).

Over two years it tracked 16,000 neutrinos produced at CERN, the European

particle physics laboratory in Geneva. Neutrinos are electrically neutral
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subatomic particles with a very small mass, and they can pass through ordinary

matter with ease. The results were baffling: on average the neutrinos completed

the 730-kilometre trip 60 nanoseconds (billionths of a second) sooner than

they would have done if they had been travelling at the speed of light. The

measurements are accurate to within 10 nanoseconds, but there remains the

possibility of some systematic error in the way the times are calculated and

interpreted, which is highly complex.

The results have been posted online: ‘Measurement of the neutrino

velocity with the OPERA detector in the CNGS beam’ by the OPERA

Collaboration, http://arxiv.org/abs/1109.4897

This article does not claim to have disproved relativity: it merely

presents its observations as something that the team cannot explain with

conventional physics. A non-technical report can be found at

http://www.nature.com/news/2011/110922/full/news.2011.554.html

A possible source of systematic error, related to differences in the force

of gravity at the two laboratories, is proposed at

http://www.nature.com/news/2011/111005/full/news.2011.575.html but the

OPERA team disputes this suggestion.

Most physicists think that, despite the great care exercised by the

researchers, some systematic error is involved. In particular, previous

observations of neutrinos from a supernova seem to conflict with the new

ones. The resolution of the controversy will require independent

experiments, and these will take several years. Theoretical physicists are

already analysing potential explanations ranging from minor, well-known

extensions of the standard model of particle physics to exotic new physics

in which the universe has more dimensions than the usual four. By the

time you read this, the story will already have moved on.

2 A thorough explanation is given by Terence Tao on his website:

http://terrytao.wordpress.com/2007/12/28/einsteins-derivation-of-emc2/

The derivation of the equation involves five steps:

(a) Describe how space and time coordinates transform when the frame of

reference is changed.

(b) Use this description to work out how the frequency of a photon

transforms when the frame of reference is changed.

(c) Use Planck’s law to work out how the energy and momentum of a

photon transform.

(d) Apply conservation of energy and momentum to work out how the

energy and momentum of a moving body transform.

(e) Fix the value of an otherwise arbitrary constant in the calculation by

comparing the results with Newtonian physics when the velocity of

the body is small.

3 Ian Stewart and Jack Cohen. Figments of Reality, Cambridge University Press,

Cambridge 1997, page 37.

4 http://en.wikipedia.org/wiki/Mass%E2%80%93energy_equivalence

5 A few didn’t see it that way. Henry Courten, reanalysing photographs of the

1970 solar eclipse, reported the existence of at least seven very tiny bodies in
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close orbits round the Sun – perhaps evidence of a thinly populated inner

asteroid belt. No conclusive evidence of their existence has been found, and

they would have to be less than 60 kilometres across. The objects seen in the

photographs may just have been passing small comets or asteroids in eccentric

orbits. Whatever they were, they weren’t Vulcan.

6 The vacuum energy in a cubic centimetre of free space is estimated to be 10–15

joules. According to quantum electrodynamics it should in theory be 10107

joules – wrong by a factor of 10122.

http://en.wikipedia.org/wiki/Vacuum_energy

7 Penrose’s work is reported in: Paul Davies. The Mind of God, Simon & Schuster,

New York 1992.

8 Joel Smoller and Blake Temple. A one parameter family of expanding wave

solutions of the Einstein equations that induces an anomalous acceleration

into the standard model of cosmology. http://arxiv.org/abs/0901.1639

9 R.S. MacKay and C.P. Rourke. A new paradigm for the universe, preprint,

University of Warwick 2011. For more details see the papers listed on

http://msp.warwick.ac.uk/~cpr/paradigm/

Chapter 14
1 The Copenhagen interpretation is usually said to have emerged from

discussions between Niels Bohr, Werner Heisenberg, Max Born, and others, in

the mid-1920s. It acquired the name because Bohr was Danish, but none of the

physicists involved used the term at the time. Don Howard has suggested that

the name, and the viewpoint that it encapsulates, first appeared in the 1950s,

probably through Heisenberg. See: D. Howard. ‘Who Invented the

‘‘Copenhagen Interpretation’’? A Study in Mythology’, Philosophy of Science

71 (2004) 669–682.

2 Our cat Harlequin can often be observed in a superposition of the states ‘asleep’

and ‘snoring’, but that probably doesn’t count.

3 Two science fiction novels about this are Philip K. Dick’s The Man in the High

Castle and Norman Spinrad’s The Iron Dream. Thriller writer Len Deighton’s SS-

GB is also set in a counterfactual Nazi-ruled England.

Chapter 15
1 Suppose I roll a dice [see Note 1 of Chapter 7] and assign symbols a, b, c like this:

a The dice rolls 1, 2, or 3

b The dice rolls 4 or 5

c The dice rolls 6

Symbol a occurs with probability 1
2, symbol b has probability 1

3, and symbol

c has probability 1
6. Then my formula, whatever it is, will assign an

information content H(12,
1
3,

1
6).

However, I could think of this experiment in a different way. First I

decide whether the dice rolls something less than or equal to 3, or greater.

Call these possibilities q and r, so that
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q The dice rolls 1, 2, or 3

r The dice rolls 4, 5, or 6

Now q has probability 1
2 and r has probability 1

2. Each conveys information H

(12,
1
2). Case q is my original a, and case r is my original b and c. I can split case

r into b and c, and their probabilities are 2
3 and

1
3 given that r has happened. If

we now consider only this case, the information conveyed by whichever of

b and c turns up is H(23,
1
3). Shannon now insists that the original

information should be related to the information in these subcases like

this:

H 1
2;

1
3;

1
6

� �¼H 1
2;

1
2

� �þ 1
2H

1
2;

1
3

� �

See Figure 61.

q

a

r

b

c

1

2
1

3
2

3
1

2
1

a

b

c

2
1

3
1

6
1

Fig 61 Combining choices in different ways. The information should be the same in

either case.

The factor 1
2 in front of the final H is present because this second choice

occurs only half the time, namely when r is chosen in the first stage. There

is no such factor in front of the H just after the equals sign, because this

refers to a choice that is always made – between q and r.

2 See Chapter 2 of: C.E. Shannon and W. Weaver. The Mathematical Theory of

Communication, University of Illinois Press, Urbana 1964.

Chapter 16
1 If the population xt is relatively small, so that is close to zero, then 1 – xt is close

to 1. The next generation will therefore have a size close to kxt, which is k times

as large as the current one. As the size of the population increases, the extra

factor 1 – xt makes the actual growth rate smaller, and it drops to zero as the

population approaches its theoretical maximum.

2 R.F. Costantino, R.A. Desharnais, J.M. Cushing, and B. Dennis. Chaotic

dynamics in an insect population, Science 275 (1997) 389–391.

3 J. Huisman and F.J. Weissing. Biodiversity of plankton by species oscillations

and chaos, Nature 402 (1999) 407–410.

4 E. Benincà, J. Huisman, R. Heerkloss, K.D. Jöhnk, P. Branco, E.H. Van Nes, M.

Scheffer, and S.P. Ellner. Chaos in a long-term experiment with a plankton

community, Nature 451 (2008) 822–825.
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Chapter 17
1 The value of a call option is

Cðs; tÞ¼Nðd1ÞS�Nðd2ÞKe� rðT � tÞ

where

d1 ¼ logðS=KÞþ ðrþ s2=2ðT � tÞÞ
s
ffiffiffiffi
T

p � t

d2 ¼ logðS=KÞþ ðr� s2=2ðT � tÞÞ
s
ffiffiffiffi
T

p � t

The price of a corresponding put option is

Pðs; tÞ¼ ½Nðd1Þ�1�Sþ ½1�Nðd2Þ�Ke� rðT � tÞ

Here N(dj) is the cumulative distribution function of the standard normal

distribution for j=1, 2, and T – t is the time to maturity.

2 Strictly, a Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred

Nobel.

3 M. Poovey. Can numbers ensure honesty? Unrealistic expectations and the U.S.

accounting scandal, Notices of the American Mathematical Society 50 (2003) 27–

35.

4 A.G. Haldane and R.M. May. Systemic risk in banking ecosystems, Nature 469

(2011) 351–355.
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Schrödinger’s wave equation 250

see also partial differential equations

differential geometry 95, 231

differentiation, introduced 43

diffraction 223, 250, 257

X-rays 106, 157

digital photography 157–60

dimensions

heat equation 152

multidimensional geometry 276,

278–9

Navier-Stokes equation 171

Solar System description 66, 96

superstring theory 105, 319

topology 100

vectors 186

wave equations 144–5

Diophantus 78

discontinuous functions 143, 154, 155

discrete cosine transform 159

disease clusters 128

divergence (Maxwell’s equations) 187

division by zero 45, 51, 322n

DNA

encoded information 281–2, 319

Fourier transforms 157

topology and 105–6

dodecahedra 91

Doppler effect 236–7, 241

dotcom companies 307, 311

drug testing 122, 127

drums 144–6
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E
E=mc2 219, 227–9, 327n–328n

e (constant) 30, 84

Earth

interior of 147

Moon effects on 291

shape of 8–9

size of 11, 12, 56

views of 167–8

earthquakes 30, 144–7, 157, 221

economics, classical 310

ecosystems

and chaos 286–7, 291–2

modelling, finance analogy 312–14

edges, in topology 58, 98, 99

Edison, Thomas 183

efficiency, in error detection 270, 279

eggs

assembling 214

unboiling 211–12

Egyptian mathematics 8, 11

eigenfunctions 251–2, 255–9

Einstein, Albert 219–20

and atomic weapons 229–30

Brownian motion 208

E=mc2 219, 227–9, 327n–328n

field equations 231, 235, 240–1

photoelectric effect 249

special relativity 224–5

electromagnetic field 185–6, 221

electromagnetic induction 186

electromagnetic spectrum 189, 192–3

electromagnetism

impact on everyday life 181

magnetohydrodynamics and 318

electrostatics 85, 151, 242

Elements (Euclid) 4, 14–15

ellipses 41, 57–8, 59, 61, 63

Hohmann transfer ellipses 65, 69

energy

conservation of 48, 68, 200–2, 205,

225

dark energy 237

defined 48–9

kinetic energy 48–9, 68, 202, 203,

205, 229

potential energy 48–9, 68

renewable resources 209–10

energy landscapes 68–72

engineers’ use of logarithms 29, 30

Enron Corporation 308

entropy 203–4, 206, 209, 211, 213–14

as ‘missing information’ 281

enzymes 106

equals sign vii

equations

alternatives to 319–20

describing lines on planes 13–14

E=mc2 as archetype 219, 227–9,

327n–328n

‘most beautiful’ 84

Pythagoras’s Theorem 5

quadratic 78–9

symmetry of 211

types of vi–vii, 318

wider influence of 317–18

see also differential equations

Eratosthenes Batavus 12

Eratosthenes (of Cyrene) 11

error-detection and -correction codes

267–8, 270, 276, 278, 280

errors

channel capacity and 275

normal distribution 115, 116, 119

‘ether’ 221–3, 247

Euclid of Alexandria

on conic sections 57

fifth axiom 14–15

proof of Pythagoras’s Theorem 4

on regular solids 4, 91

eugenics movement 124

Euler, Leonhard 69, 78, 84, 160

fluid dynamics 168–9, 170

formula for polyhedra 89, 92–4, 97

Euler characteristic 95, 97, 101

Everett, Hugh, Jr. 258–60

evolution of sensory perception 33–4

evolutionary computing 319

exchange traded funds (ETFs) 311–12

‘expectation’ and probability 111

exponential functions 30

complex numbers 83–4

heat equation 152, 154

extreme events 302–4, 306–7

F
faces, regular solids 58

Faraday, Michael vii, 181–6
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fat tails 302–3, 306, 309

Fechner, Gustav 33

Fermat, Pierre de 39, 44, 111

Feynman, Richard 257, 261

Feynman diagrams 105

fields, in electromagnetism 85–6, 96,

182, 185–7

‘financial ecosystems’ 313–14

financial instruments 297, 299, 306,

308

see also derivatives; futures and

options

financial transactions tax 313

fingerprints 162

Fisher, Ronald Aylmer 122, 128

five-body dynamics 71

fluid dynamics

before Euler 169

magnetohydrodynamics 318

fluids

application of Newton’s laws of

motion 170

mathematics of magnetism and 185

fluxions 42, 46, 50

Food and Drugs Administration (US)

174

forces

in laws of motion 47, 55

lines of force 85, 185, 187

related to curvature 18, 20

see also gravity

Fourier, Joseph 151

Fourier analysis 155

Fourier transform 149

blips 160

data compression 159

error distributions and 119

Schrödinger’s equation 251

uses 149, 156

free will 116

friction 47, 170, 201–2, 212–13

Fukushima Dai-ichi power plant 31

functions

complex functions 85–6

exponential functions 30, 83–4, 152,

154

futures and options 299, 305, 308,

330n

fuzzy boundary theory 69

G
galactic rotation curves 237–8, 241

Galileo Galilei 39–42, 47–8, 224, 230

Galois fields (Évariste Galois) 280

Galton, Francis 119–21

games of chance 109–11

gas laws 200–1, 205–6

Gauss, Carl Friedrich

electromagnetism 183

imaginary numbers 81–2

least squares method 118

magnetism 96

and non-Euclidean space 16–17,

18–19

notation 78

‘Gaussian curvature’ 18

general relativity 220, 231, 240

tests of 233–5, 242, 243

geocentric universe 8, 56

geometry

coordinate geometry 13

curved surface geometry 12, 15–19,

231–2

multidimensional 276, 278–9

non-Euclidean 15–16

relation to algebra 9

topology 91–100, 105

global warming 175–7

GPS (Global Positioning System) 13,

219, 242–3

gravitational constant 59, 323n

gravity

Galileo’s investigations 39–41

general relativity and 220, 231–2

inverse square law 37, 61–2

Newton’s law of 53, 55, 60–1, 65,

230

three-body problem 63

Greene, Brian 255, 259

greenhouse gases 176

Greenspan, Alan 314

groups (algebra) 101

H
Haldane, Andrew 312–14

half-lives, radioisotopes 31–2

Hamilton, William Rowan 86–7

Hamiltonian operators 250, 251
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Hamming, Richard 276, 277, 279

Hardy, Godfrey Harold 184

harmonics 143

harmonies 134–5, 137, 139, 143–4

hearing, human 33–4

heat

and temperature 203–4

time-reversal scenario 212

heat equation (Fourier) 151, 156

financial analogue 302, 304

heat flow 198

hedge funds 306, 309

heights

of children 121

of structures 10–11

Heisenberg, Werner 250

heliocentric theories 56–8

Henry, Joseph 182

herd instinct 311

heredity 120–1

Hero of Alexandria 11, 198

Hertz, Heinrich 190

Hitler, Adolph 259–61

Hohmann transfer ellipses 65, 69

hole-through-a-hole-in-a-hole 95–6,

97

holes in tori 94–7, 99

HOMFLY polynomial 104

Hooke, Robert 59–61, 137, 322n

Hubble, Edwin 236

Huffman code 159

Huisman, Jef 291–2

human genome 281, 319

hyperbolic space 16–17

hypercubes 276–7

hypotenuse, defined 5

hypothesis testing 122–3

I
i (imaginary unit). see square root of

minus one

icosahedra 91

images. see data compression;

photography

imaginary numbers 75–6, 82

see also complex numbers

India

astronomy 56

Great Trigonometric Survey 12–13

infinite series 83–4, 142–3, 145, 153–4,

161

infinitesimals 45, 50

inflation 237, 238, 239–40, 242

information

as a measurable quantity 268,

269–70

as negative entropy 213

redundant 158

information content, H 265, 273–4,

329n

instantaneous rates of change 41, 43

integral calculus

entropy and 204

introduced 43

magnetism and 96

integration theory 156

intelligence and IQ testing 124–7

International Monetary Fund 307, 311

Interplanetary Superhighway 72, 105

intervals 134–6

invariants, combinatorial 96

invariants, topological 89, 93–4, 96–7,

101, 103–4

inverse square laws

expected for electromagnetism 185

gravity 37, 61–2, 230

IQ testing 124–7

irrational numbers 155

ISEE (International Sun-Earth

Explorer)-3 69

J
Japanese earthquake, 2011 30–1

Jones polynomial (Vaughan Jones)

103–4, 105, 106

Joukowski transformation 86

JPEG (Joint Photographic Experts

Group) 158

Jupiter

orbital resonances 67, 71

tubes near 70, 71, 72

K
Kelvin, William Thomson, Lord 247

Kepler, Johannes 39, 41, 58–9, 63

Keynes, John Maynard 38, 322n
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kinetic energy 48–9, 68, 202–3, 205,

229

kinetic theory of gases 200, 202, 204–6

Klein bottle (Felix Klein) 98

knot diagrams 101–2, 104–5

knots 100–5

Koon Wang-Sang 67, 70, 71

Krönig, August 205

L
Lagrange, Joseph-Louis 69

Lagrange points 67, 69–71

Laplace, Pierre Simon de 29, 119–20

Laplacians 145–6, 326n

Large Hadron Collider 219, 242

lasers 263–4, 268

law of gravity (Newton) 53, 60–1, 65,

230

law of large numbers 113, 114

laws of conservation. see conservation

laws

laws of motion (Newton) 45, 46–7, 60

application to fluids 170

MOND and 240

laws of planetary motion (Kepler) 39,

58–9, 61

laws of thermodynamics 200, 210–11

first law 200, 201–2

second law 197, 204, 209–10, 213,

326n–327n

zeroth law 203

Le Verrier, Urbain 233–4

least squares method 117–18, 125

Lebesgue, Henri 156

Legendre, Adrien-Marie 117–18

Leibniz, Gottfried Wilhelm 39, 42–5,

50, 81

Lemaı̂tre, Georges 236

life, and the second law of

thermodynamics 210

light

as an electromagnetic wave 189, 220

particulate behaviour 227–8, 249

wave-particle duality 249–50

see also speed of light

light bulbs 247

light cones 227

limits, concept of 51, 323n

linear equations 141

linking numbers (electromagnetism)

96

Listing, Johann 96, 98–9

logarithmic multiplication equation

21, 29

logarithms 24–9

of complex functions 86

human perception and 33–4

natural 30

in nature 33–4

slide rules and 30

of trigonometric functions 29, 31

logistic equation 283, 286–8

Long Term Capital Management

(LTCM) 306–7

Lorenz, Edward 289, 290

Lorenz, Hendrik 223–4

Lorenz-FitzGerald contraction 223–6

M
MacKay, Robert 241

magnetism 85–6, 96

magnetohydrodynamics 318

manifolds 18–19, 231, 240

manned flight 167

many-worlds interpretation 258–61

maps

disc-shaped Earth 9

trigonometry and 11, 12–13

Marconi, Guglielmo 191

‘mark to market accounting’ 308, 309

mathematical models

Brownian motion 208, 301

climate forecasting 176

cosmological 56, 241

financial 301, 306

gas laws 200

statistical models 113, 172

vibrating strings 137–8

warnings about 127, 310

matrices 19, 231

Maxwell, James Clerk 181, 183, 206,

208

Einstein and 224

Maxwell-Boltzmann distribution 206,

247

May, Robert (Lord May of Oxford) 286,

288, 291, 312–14

mean, defined 115
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mean free paths 205

measurement, quantum mechanics

252, 256

medical imaging 162–3

medical research 174

medical use of lasers 263

Meitner, Lise 230

memory 213–14

Mercury 233

Merton, Robert 304, 305

Michelson, Albert 222–3, 224

microwaves 192–3, 236

‘Midas formula’ 305

Milgrom, Mordehai 240

Millikan, Robert 248

mines 199–200

Minkowski, Hermann 227–8, 232

mixing and chaos 290, 293

Möbius, August 96, 98

modes, vibrational 139, 145, 147, 248

molecules, in thermodynamics 200,

205–6

momentum 49, 171, 249

conservation of 171, 225

MOND (modified Newtonian

dynamics) 240

Moon

effects on Earth 291

origins 49, 323n

Morley, Edward 222–3, 224

Morse, Samuel 183

mortgages

betting on defaults 309

self-certified 301

subprime 298, 311–12

motion, Newton’s laws of 45, 46–7, 60,

170, 240

multidimensional geometry 276,

278–9

multiplication

equation for logarithmic 21

relative complexity of 25–6, 27–8

music 133–6

N
Napier, John 24–9

natural logarithms 30

nature

as essentially mathematical 38

instances of chaos in 285

logarithms in 33–4

Navier, Claude-Louis 169, 170

Navier–Stokes Equation 165, 169, 171,

175, 177

negative entropy 213

Neugebauer, Otto 7

neutrinos 226, 327n

Newcomen, Thomas 199

Newton, Isaac

calculus and 37–8, 41–6, 50

Hooke and 59–61, 322n

influence 38–9, 63, 65–6

Kepler and 59, 61

laws of motion 45, 46–8

Leibniz and 39, 42–4, 50

physics of 220

night sky, interpretation 55–6

Nobel Prize in Economics 305, 330n

nodes 143

noise measurement 34

noise removal 157, 163, 269

non-Euclidean geometries 15–16

normal distribution (bell curve)

definition 115

effect of combining 120

errors 115, 116, 119

financial models and 301–2

formula for 107

kinetic theory of gases 206

null hypotheses and 123

social sciences 116, 119

normal modes 145, 147, 248, 251,

325n

notation

algebraic 78

Leibniz and Newton 42, 43

origin of number symbols 23

origin of the equals sign vii

nuclear accidents 31, 32–3

null hypotheses 122–3

number symbols, origin 23

O
observational limitations, quantum

mechanics 252, 256

octahedra 91

octaves 135–6, 143

odds, statistical 110–11
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oil price 306

oil prospecting 148

operator algebras 103

options, futures and 299, 305, 308,

330n

orbital resonances, Jupiter 67, 71

Ordnance Survey of Great Britain 12

Ørsted, Hans Christian 182

orthogonality 160

P
parabolas 41, 48, 57

parallel universes 258–61

partial derivatives 139–40, 170

partial differential equations 141, 151,

169, 172, 320

Black–Scholes as 304, 310

Pascal, Blaise 111, 113, 324n

Penrose, Roger 239, 328n

philosophical questions

action at a distance 221

heliocentrism 57

mathematics and reality vii–viii, 82,

127

quantum mechanics 252, 254, 318

status of relativity 224

time’s arrow 208, 211

photoelectric effect, Einstein and 249

photography 157–60

photons 228, 249, 257

pianos 136

picture frame topology 93–4

π (constant) 84, 320
Planck, Max (and Planck’s constant)

247–9, 250

planetary motion laws 39, 58–9, 61

plankton paradox 291–2, 330n

playing cards illustrations 147, 206–7,

211, 214

Plimpton, George Arthur 7

Poincaré, Henri 224, 302

chaos theory and 63–4, 105, 285,

289

polyhedra

Euler’s formula 89, 92–4, 97

see also regular solids

polynomials

Alexander polynomial 103, 104

calculus application to 44, 323n

HOMFLY polynomial 104

Jones polynomial 103–4, 105, 106

Reed-Solomon encoding 280

Poovey, Mary 307–8, 310, 330n

population dynamics and chaos

286–7, 291–2, 330n

positive feedback 298

potential energy 48–9, 68

power, ‘new axis of’ 307

pressure, in ideal gases 205

Principia (Newton)

absence of calculus 46, 50

astronomical significance 55, 59

influence of 38, 55, 151

priority disputes 42, 44, 60–1, 118

probability and wave functions 253

probability theory

crown and anchor game 111

drug testing and 127

financial models and 301

message encoding and 272–4

origins 111

risk and 128–9

see also normal distribution

projective plane 98

property, as security 297–8, 301, 311

prosthapheiresis 27, 322n

Ptolemy (Claudius Ptolemaeus) 42,

56–7, 134

pumps, steam 199–200

Pythagoras 3, 8

Pythagoras’s Theorem

coding theory and 276

consequences 9

curved surfaces and 17, 19

distance calculations from 14

origins and antecedents 4, 6

proofs 4, 6

special relativity and 225–7

Pythagorean triples 5

Pythagorean world view 3, 56, 58,

134–7, 143

Q
quadratic equations 78–80

quantum computers 264

quantum dots 264

quantum field theory and topology 92

quantum mechanics
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and the classical world 255–9, 260–1

imaginary numbers in 76, 250–1

many-worlds interpretation 258–61

observational limitations 252, 256

practical utility 261–4

Schrödinger’s wave equation 250

vacuum energy discrepancy 328n

quartic equations 79–80

Quetelet, Adolphe 116–17, 119, 121,

124

quincunxes 120
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race and IQ 124

radar 192

radio 190

radioactive decay 31–3, 267

random walks 301–2

randomness

chaos distinguished from 285

distinguished from determinism 288

patterns in 109

Recorde, Robert vii

Reed-Solomon codes 280

regression to the mean 121

regular solids

Descartes and 91, 95

Euclid and 4, 91

Euler’s formula 89, 92–4, 97

Kepler and 58
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Reidemeister) 101–3

relativity

general relativity 220, 231, 233–5,

240, 242–3

misleadingly named 219–20

special relativity 220, 224–9, 242–3

renewable energy 209–10

rice trading, Dojima exchange 298–9,

312

Riemann, Georg Bernhard 18–20, 95,

156, 231, 276

Riemannian metric 19, 231, 277

risk

derivatives and 309–10, 312

financial, assessment 309, 314

probability theory and 128–9

Rourke, Colin 241

Royal Institution, London 181–2

Rule 110 automaton 320

Russian financial crisis, 1998 306–7

S
Sachs, Abraham 7

satnavs and relativity 219, 242

Scholes, Myron 304, 305

Schrödinger, Erwin 213, 250–1, 253–4

Schrödinger’s cat 253–6, 258–60, 318

Schwarzschild, Karl 235

science fiction 66, 329n

seismic waves 144–7, 157, 221

semiconductors 191–2, 261–2

sensory perception

data compression and 159–60

logarithms and 33–4

Shannon, Claude 269–70, 272–4, 279,

329n

ship design 172

Shockley, William 192, 262

short-selling 304

simplification, in topology 93, 101

sine curves 137–8

sines 10, 83–4, 142–3, 152–4

singularities 100, 235

slide rules 30

Smale, Stephen 289–90

Smoluchowski, Marian 208

Snellius, Willebrord 12

Snell’s law 257, 261

Snow C(harles) P(ercy) 197–8, 209

social sciences

mathematical models 127

normal distributions 116, 121

Solar System prediction horizons

290–1

sound levels 34

sound recordings 157, 162

sound waves 133–6, 146

space missions

Apollo programme 65–6, 168

Hiten probe 69

interplanetary travel 67–8, 71–2

Newton’s law of gravity 65

view of Earth and 167–8

Voyager 1 and 2 267, 276

space-time

curvature 231–2

geometries 227–8, 235, 237
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inflation and 240–1

Lorenz-FitzGerald contraction 225

topology and 105

Spearman, Charles 125–7

special relativity 220, 224–9, 242–3

speculation, financial 300, 302, 309,

312

speed of light

the ether and 222

Gran Sasso neutrinos 327n

Maxwell’s equations 188–9

special relativity and 224–6

spheres

from deformation of solids 92–4, 97

hypercubes and 278–9

spherical geometry 12, 16, 17

square root of minus one 73, 77, 250–1

see also complex numbers;

imaginary numbers

square roots

in Babylonian mathematics 7

duality of 76–7

solving cubic equations 79–80

using logarithms 29

square waves 153, 155

squaw on the hippopotamus joke 3–4,

321n

standard deviation

defined 115

and extreme events 302–3

statistical mechanics 206

statistics

law of large numbers 113, 114

of randomness 109

statistical significance 122

steady state (populations) 287

steady state (universe) 241

steam engines 198–200

stents 174

stock market fluctuations 302

Stokes, George Gabriel 169, 170

subduction 147

subprime mortgage market 298,

311–12

Sundman, Karl Fritiof 64–5

superposition principle

applied to cats 253–5, 258, 328n

applied to the universe 258

linear equations 141, 153

Schrödinger’s equation 251–2, 257

supersonic flight 173–4

superstring theory 105, 319

surfaces, in topology 98–100

surveying 11–12

symbolic dynamics 288

symmetric tensors 19, 231
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T-waves 193

Taleb, Nassim Nicholas 303

tangents 10
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Shami al-Asadi 199

telephony

Fourier transforms 156–7

progress in 268

temperature

definition and measurement 202–3

in ideal gases 205–6

tensors 19, 231–2

Tesla, Nikola 191

tetrahedra 91

Theory of Everything 319

thermodynamics

classical 200, 204

defined 198, 200

see also laws of thermodynamics

three-body problem 63–5, 69, 320

time, arrow of 208, 211, 213, 318

time-reversal symmetry 211, 214–15

topological dynamics 65, 289

topology 91–100, 105

tori 94–5, 97–9

transistors 191–2, 261–2

trefoil knots 102–3, 106

triangles

non-right-angled 9, 11, 321n

right-angled 5, 8–10

triangulation 12–13

trigonometric functions

complex numbers 83, 84

heat equation 152–4

logarithms of 29, 31

vibrational frequencies 146

see also cosines; sines

trigonometry 9–12
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Trojan points 69

tsunamis 31, 147, 221
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ultraviolet catastrophe 248–9
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see also probability theory

Unified Field Theory 319

universal law of gravity 61–2
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age of 241

expansion of 236, 241

‘heat death’ 209

matter distribution 210, 240–1

parallel universes 258

unknot, the 100–5
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vector calculus 188, 193, 326n
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defined 39
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velocity fields 170
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hypercubes 276
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vibrating strings 134–5, 137–8, 140,
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and time intervals 40
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water, and fluid dynamics 168

Watt, James 198

wave equation 131, 139, 141–2, 144
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heat equation compared 152–3

Maxwell and 188–9

multi-dimensional 144

Schrödinger’s 250–1, 257

wave functions 250–1, 252–3, 255–6,

258–60

wave number 143

wave-particle duality/wavicles 249–50

wave phenomena 133
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method 162
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weather forecasting 289, 292–3
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Weierstrass, Karl 51
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wind tunnels 172–3

Wolfram, Stephen 320

X
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Z
zero, approaching 50, 51
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