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PREFACE ix

PREFACE

TO THE STUDENT

There are certain mathematical skills that are essential for any of your courses that use mathemat-
ics. Your lecturer will assume that you know them perfectly — not just a vague idea, but that you
have completely mastered these skills. Without these necessary skills, you will find present and later
subjects extremely difficult. You may also lose too many marks making ‘silly’ mistakes in exams.

So what skills do you need to have?

This book contains the mathematical skills we think are essential for you to not only know but remem-
ber. Ttis not a textbook and does not attempt to teach you, hence there are no long wordy explanations.
This book should act as a reminder to you of material you have already learned. If you are having
trouble with a section or chapter then we suggest you consult a more thorough textbook. We have left
a number of blank pages at the back of the book for you to add in skills that you or your lecturers
think are important to remember but we did not include.

This book covers the essential mathematics in the first one to two years of a science, engineering
or applied mathematics degree. If you are in a first year undergraduate course you may not have
covered some of the material included in this book.

As a guide, we expect our students at University College to have mastered (by the start of each
semester) the following:

e First Year — Semester One: Chapters 1-3.
ear — Semester Two: C

e First
e Second Year: Chapters 1-10.
e Third Year: Everything in the book!

There are practice tests in Chapter 13 based on these divisions.
Can you do the practice test at the end of these notes?

If you can’t then perhaps there are some skills you need to do some revision on. If you can then you
may need this book to help you revise those skills later on.
If you want more questions to practice on then see our extensive website:

http://www.ma.adfa.edu.au/~sib/EMS.html

It contains extra questions, fully worked solutions, practice tests and also code for the Maple algebraic
manipulation package giving solutions for every example and question.



What do you assume your students know? What material do you expect them to have a vague idea
about (say the proof of Taylor’s Theorem) and what material do you want students to know thoroughly
(say the derivative of sinz)? This book is an attempt to define what material students should have
completely mastered at each year in an applied mathematics, engineering or science degree. Naturaily
we would like our students to know more than the bare essentials detailed in this book. However,
most students do not get full marks in their previous courses and a few weeks after the exam wiil
only remember a small fraction of a course. They are also doing many other courses not involving
mathematics and are not constantly using their mathematical skills. This book can then act as guide to
what material should realistically be remembered from previous courses. Naturally both the material
and the year in which the students see this material will vary from university to university. This book
represents what we feel is appropriate to our students during their degrees.

X7t

We invite you to look at our extensive web site:

It contains more questions, solutions, practice tests and Maple code. There is a database of questions
in LaTeX and pdf, which you can use to format your own tests and assignments. We are not concerned
that students may access this database; if they can do the questions in the database then they have, in
effect, learned the necessary skills.

If you have any questions or queries please do not hesitate to email us.

Steven Barry and Stephen Davis
School of Mathematics and Statistics
University College, UNSW
Canberra, ACT, 2600

email: s.barry@adfa.edu.au



CHAPTER 1
ALGEBRA AND GEOMETRY

1.1 ELEMENTARY NOTATION

1. {}: A setof objects.

2. €: A member of a set. For example 3 € {1,2, 3}.

3. R: The set of real numbers. For example —1,3,3.2,4/2 € R.
. Z: The set of integers. For example —2,0,3 € Z.

. <, >: Less than, greater than. For example 5 < 6, 7 > 5.

4

5

6. <, >: Less than or equal to, greater than or equal to.

7. =>: Becomes. Forexamplez —2=3 — z=>5.

8. [a,b]: Bounds of a variable. For example z € [1,3] means 1 < z < 3.
9. (a,b): Bounds of a variable. For example z € (1,3) means 1 < z < 3.
10. —: Tends to. For example 1/z — 0 as £ — oo.

11. =: Approximately equal to. For example 3.02 ~ 3.

EXAMPLES

1. W={f(z)=a+bz:abe R} means W is the set of all functions f(z) = a + bz where a,b
are real numbers (constants). Hence 1+ 2z € Wand3 - 12z e W.

2. §={x:z > 5,z € R} means that § is the set of all numbers bigger than or equal to 5. This is
also written as z € [5, 00).




2 ALGEBRA AND GEOMETRY

1.2 FRACTIONS

.. a . . .
A fraction is of the form b where a is called the numerator and b is called the denomina-

for,

Rules for operating on fractions

a b _ a+bd
1. E+E_ . (C#O)
a c¢ _ad+bc
2. 3+3_ bd (b,d #0)
a_ b ab
3 Exa_a (C,d#O)
5. ¢_o. ¢_o
4, ETE—bXC—bc (b,e,d #0)
EXAMPLES
2 3_6_1
978 72 12
1.1 2 1 3 1
2376 676 6 2
3 £+2 -2 _ (2+2°-(2-20° _ (P+424+4)-(2"-4dz+4) _ 8
-2 z+2 @ (z-2(@=+2) (22 —4) Cz2-4
.1 1 .
4. Torearrange the equation = +§ =10 to find y write
1_1_1
y 10 =
1 z-10
— i_ 10 NOT y=10—=z
10z
— y=

z—10"



MODULUS

1.3 MODULUS

The absolute value or modulus of x, written |z|, is defined by

2| = z, ifz>0
| -z, ifz<0.

The absolute value is the magnitude of a number and ignores whether it is positive or
negative.

EXAMPLES
L |+5|=5
2. |-3]=3

3. |=zllyl = =l ly] = |yl

1.4 INEQUALITIES

1. Ifz > y thenz + a > y + a for any a.

2. If z > y then ax > ay if a is positive, but ez < ay if a is negative.

3. fr>yandu > v, thenz +u >y +v.

EXAMPLES

1. To find = such that —5z — 2 < 3 write

—drz—2<3
= —5r<H
= z> -1

2. To find values of  such that z + 1 > 2z — 5 we write

z+1>2x-5
= z<6.



4 ALGEBRA AND GEOMETRY

Inequalities with modulus
1. The inequality |z — b| < @ can be written as —a < ¢ — b < a.

2. The inequality | — b| > a can be written as z — b > a or (z — b) < —a.

EXAMPLES
1. To find  such that |2z — 1| < 3 write
[22-1|<3 = -3<2x-1<3

= -2<2z<4
= -1<z<2

2. To find & such that 3“’_1|22wme
3z—-1 59 — 3:::—1>2 or 3:1::—1<_2
= i = 4
= 3z>9 or 3z < -7
=34 x>3 or :cg—g.

1.5 EXPANSION AND FACTORISATION

(@+b(c+d) = alc+d)+blc+d)=ac+ad+be+bd
(a—b)(a+b) = a>-b°
(a£b)? = a®+2ab+ b

EXAMPLES

1. (22 -3)2=2*+2(-3)z®+9=2* -6z +9



EXPANSION AND FACTORISATION

[

(x-3)(z+5)2@+3)=(z-3)(z+3)(z+5)°
= (2 — 9)(z* + 10z + 25)
=z* + 10z° + 1622 — 90z — 225

-4 (s—-2)(s+2)
248 2+ s
=35—2

(a+1)® = (a+1)(a’ +2a +1)
=a®+3d"+3a+1

1.5.1 BINOMIAL EXPANSION

(a+b)"=a" +na"'b+ LHQT D o252 4 4 a4 b

(See also Section 1.13). To remember the coefficients of each term use Pascal’s triangle
where each number is the sum of the two numbers above it.

1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Each term in a row represents the coefficients of the corresponding term in the expansion.

EXAMPLES

1. (a+b)® = a®+ 3a?b + 3ab® + b*

2. 1+2)*=1+4z+62% +42% + z*

3. The coefficient of 2 in (2 + z)® is 10 x 22 = 40.
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1.5.2 FACTORISING POLYNOMIALS

Factorising a polynomial is the opposite of the expansion described above, that is, splitting
the polynomial into its factors:

p(z) = (¢ —a1)(@ — a2) -- - (z — an).

EXAMPLES

L22=1=(@-1)(z+1)

b2

L2 =3 +2=(z-2)(z—-1)
3.322 - Tz +2=(3z - 1)(z - 2)
4. g% — 42? + 4z = a(z — 2)?

5.a®+3a®>+3a+1=(a+1)?

1.6 PARTIAL FRACTIONS

It is sometimes convenient to write

ex +d _ A + B
(z+a)(z+b) z+a z+b

where 4 and B are constants found by equating the numerators of both sides once the
right hand side is written as one fraction:

cx+d=A(x+b)+ Bz + a).

Some similar partial fraction expansions are

1 _ 4, B _cC
(x+a)32x+b)  z+a (z+a)? z+b
1 Az + B C

(z2 + bz + c)(z+a) 2+br+ec z+a
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EXAMPLES

A
1. Writing in the form a1l + implies
z

1
(z+1(z—-1)
Alz—1)+B(z+1) =1

z—1

The constants A and B can be found two simple ways. First, setting

1
=1 — B=-—

P

1
r=-1 = A=—§

Alternatively the equation could be expanded as
Az+Bz—A+B=1
and the coefficients of z! and z° equated giving

A+B=0
—-A+B=1.

Solving these equations simultaneously gives A = —1/2 and B = 1/2. Thus

m=%<x%1_xi1)'

2. To expand % using partial fractions write
3z +1 A B
@+N@=3) z+7 z-3
giving
A(z—3)+B(z+7) =3z +1.
Setting x = 3 implies B = 1 and setting x = —7 implies A = 2. Alternatively, equating the

coefficients of

Ar+Bx—3A4+7B=3z+1

gives
A+B=3
—-3A4+7B=1
These simuitaneous equations are soived for A and B to give A = 2 and B = 1. Hence
3z+1 2 1

@+N(@—3) 247 z-3
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1
The partial fraction for —(m T2 is
1 _ A n B N C

(z+12(z+2) z+1 (z+1)2 z+2
giving

1=A@z+1)(z+2)+ Bz +2)+C(z + 1)
so that

r=-2 = 1=C

orderz? = 0=A+C = A=-1.
Thus

1 1 1
@+ 12@+2) @+l? o+l z42

3
. The partial fraction for is
P @ +z+1)(z+2)
3 Az + B C
/,,2|,,|1\/,,|n\:,,2|,,|1+,,|n
\ T2 T T LT T 4) TPTTT1 T+ 2
giving
3=(A4z+B)(z+2) +C(* +z+1).
Hence
r=-2 = Cc=1
t=0 = 3=2B+C = B=1
orderz? = 0=44+C = A=-1
Thus

3 1 z—1

R +z+0)(z+2) z+2 z2+z+1
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1.7 POLYNOMIAL DIVISION

Polynomial division is a type of long division for polynomials best illustrated by the
following examples,

EXAMPLES

1. When dividing £2 + 3z + 4 by x + 1 consider only the leading order terms to begin with. Thus z
goes into 22, x times. Thus z(z + 1) = 22 + z, which is subtracted from 22 + 3z + 4. The first
step is therefore

T

z+1)a®>+3z+4
224z

2z +4

The division is completed by considering that 2 (the leading order of # + 1) goes into 2z + 4 two
times. Subtracting 2(z + 1) from 2z + 4 gives

T+2
z+1)2® +3c+4
2?4z
2z + 4
2 +2

2

z? + 3z +4 2
Thus $—+1— ($+2)+x_+1

2. Dividing 32® + 222 + z + 1 by = — 1 gives

32 22+ +1 T
P T 3 br+ 6+ ——.

rz—1 rz—1

42® + 627 + 4z + 1 .
3. =2 2 1
97+ 1 o+ 2z +
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1.8 SURDS

A surd is of the form "+/a (= a'/™):

l.\/EX\/E=\/ch
va _ [a
2.%— 3

3. byfa £ ey/a= (b c)v/a

EXAMPLES
VB xv2=1+10
 V2T=4/9%x3=3V3

—

[

3. 3v/10 — 2v/10 = /10
Vid 14
4. W‘\E‘ﬁ

1.8.1 RATIONALISING SURD DENOMINATORS

For an expression of the form

e

b+ e
it may be preferable to have a rational denominator. A surd denominator is rationalised
b—+e

=1y

v ARl
a a b—
b++c b—+/c
a(b — V)

P —c

by multiplying the expression by

S

o
+
S
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EXAMPLES
1. 5 __ 5 1-V5
1+v6 1+v/56 1-+/5
_ 5-5V6
(12— (V)2
_5-55
(-9
_5/b6-5
4
2. 6z _ 6z xl—Qﬁ
1+2yz 1+2/z 1-2yz
6z — 1224/
T 14

1.9 QUADRATIC EQUATION

A quadratic equation is of the form
y=ax’+bx+c
where a, b, ¢ are constants. The roots of a quadratic equation (when y = 0) are

—b = Vb? — dac

&L1,T2 = 2a

A quadratic is factorised if it is written in the form

y=a(x —z1)(x — z2).

EXAMPLES

1. The solutions to 22 + 3z + 1 = 0 are

-3+v56 -3-6
SE:T or T

2. The quadratic y = #2 +  — 6 is factorised into y = (z + 3)(z — 2).
3. The quadratic y = 22 + 2z + 1 is factorised into y = (z + 1)2.
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4. The solutions to 3z + 5z +1 = 0 are

o= —5++/25— 12
- 6
so that
-5++/13 —5—+/13
R

1.10 SUMMATION

The summation sign Y, is defined as

Y I =fO+f@+ B+ + fn—1) + f(n).

i=1

4
EXAMPLE ) i?=1>+2"+3>+4=30

i=1

1.11 FACTORIAL NOTATION

The factorial notation is defined as follows:

nl=n.(n—1).(n—2)...3.21  where n is an integer.

EXAMPLES

1. 51=5%x4x3x2x1=120
2. 0! = 1 by definition.

3. nl=n(n-1)!

4.2468...2n=(222...2)(1.2.3...n) = 2"n!
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1.12 PERMUTATIONS

A permutation is a particular ordering of a set of unique objects. The number of per-
mutations of r unique objects, chosen from a group of n, is given by

n n!
L T

EXAMPLE
The number of ways a batting lineup of 3 can be chosen from a squad of & cricket players is given by

8! 8!
8 _ [ =
P3_(8—3)! 5 8 x 7 x 6 = 336.

1.13 COMBINATIONS

If order is not important when choosing r things from a group of n then the number of
possible combinations is given by

n!
L —
Cr = ri(n —r)l’

EXAMPLES

1. The number of possible groups of 4 delegates chosen from a group of 11 is given by

11! 11! _11x10x9x8

AAT—4) — a4l - dx3xzxi o0

=

2. The number ways of choosing a team of 5 people from 7 is Cg =21.
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1.14 GEOMETRY

The trigonometric ratios can be expressed in terms of the sides of a right-angled triangle:

C
a
0
b
Sins:E, COSQ:I—), taﬂ9=9=y’
c @ b cosf

The longest length, opposite the right angle, is called the hypotenuse.
Pythagoras’ Theorem states

a4+ b =2

The sine, cosine and tangent of the common angles can be related to the following
triangles:

Sl
(3]
bl —

w4

Sl
S|
SEIEAN
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EXAMPLE
sinz—i sini—ﬁ sin — = — cosz—ig
4 /2 3 2 6 6 2

The three commeon triangles are the
1. isosceles: any two sides are of equal length.

2. equilateral: all three sides of of equal length.

3. right angled: one of the angles is g

H

All triangles have three angles that sum to 7.

EXAMPLES
1. A right angled triangle has one other angle :}_r Hence the third angle is g

. . . . T
2. An equilateral triangle must have three identical angles of 3

1.14.1 CIRCLES

A circle of radius r has

1. area = 72

2. circumference = 27r

EXAMPLES

1. The area of a circle with diameter d = 6 is 732 = 9.

2. The circumference of the circle with diameter d = 7 is 7x.
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(AMPLE QUESTIONS

(Answers are given in Chapter 14)

1. Simplify the following.

.1 5 1
@ - — -+
2 6 10
(i) z 5
zr—3 x+2
-1 2
iy 2o - =
T+ 2 r—2
(i) 2c+1 xz-—1
v —
z—4 Tz +2
z22—-2 43
) +
z—1 T
3 2
R At 7
i)y ————
()x(xz—l)

2. Find the solution set for the following inequalities.

(i) 2d+2<4d—-3
(i) 3d—2>4d+6
£330 | 1inl - g
{ili} (& — 1y < o
(iv) |[2+3|>8
V) le+4>1
z 1
i |- —= 2
(vi) ‘ 2 3 ‘ <
3. Expand the following.
i (z—3)(x+3)
(i) (4 —3z)?
(i) (z+y)*(z—y)
iv) (34 z)(3z +2)(x — 3)
) (z—4)3
4. Use Pascal’s triangle (Binomial theorem) to find
(i) the expansion of (2 + z)*

(ii) the expansion of (1 + )3

(iii) the coefficient of 2% in (1 + z)7.

5. Write the following expressions as partial fractions
. 3
O @ —9
r—1
(i) ad
(z —1)(z +2)
(iii) L
224+ 5x+6
X 3z
V) ———~
) (z —2)(z +4)
1

v —
™ (z +3)2(z — 2)
6. Simplify the following.

() v27V3
w 2
V45
(iii) —\/ﬁ +i\/ﬁ
2V17
2
3+V3
7. Factorise the following quadratic equations.
i) y=a>+6z+5
(i) y=22 -6z +5
(i) y=22 +4z -5

(iv)

iv) y=22 -4z -5
W y=22%2+z-1
8. Find the zeros of ihe {ollowing quadratics.
() y=a2+4c+4
(i) y=22+7z+6
(i) y=22 + 2 — 12
iv) y=224+2 -2
) y=a?+3z—4
i) y=a24+2-3
Use polynomial division to calcu
@) (22 +3z+4)/(z+2)
(i) (22 +3z+2)/(x+2)
(i) (2% + 522 + 7z +2)/(z +2)
10. Find the following.
® 10!
7!
(i) P
(iii) C§

[

) Y (E+1)

i=1



CHAPTER 2
FUNCTIONS AND GRAPHS

2.1 THE BASIC FUNCTIONS AND CURVES

The standard functions and shapes are

1. Straight Lines: y = mz + ¢

]

. Quadratics (parabolas): y = az® + bz + ¢
3. Polynomials: ¥ = apx™ + - -+ a1 + ap
4. Hyperbola: y = %

. Exponential: y = e = expx

. Logarithm: y = Inx

. Sine: y = sinz

. Cosine: y = cosz

e R o = T ) |

. Tangent: y = tanz

10. Circles: y* +2® =r?

11. Ellipses: (g)g + (%)2 -1
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2.2 FUNCTION PROPERTIES

A function is a rule for mapping one number to another. For example: f(z) = «? is a
mapping from z to 22 so that f(3) =32 =9.

EXAMPLES
1. Tf f(z) = 3z + 1 then £(2) = 7 and f(a) = 3a + 1.

2. If f(z) = 2% — 1 then f(1) = 0.

The domain of a function is the set of all possible input values for that function.

EXAMPLES

1. y = 2% + 4 has domain of all real numbers.

2. y = 1/(z — 1) has domain # # 1. That is, all real numbers except = 1 can be used in this
function. If x = 1 then the function is undefined because of division by zero.

Sometimes the domain is defined as part of the function such as y = z? for 0 < z < 3 so that the
domain is restricted to be in the interval zero to three.

The range of a function is the set of all possible output values for that function.

EXAMPLES

1. y = a® has range y > 0 since any squared number is positive.

[

. y = sinz has range —1 < y < 1 since the sine function is always between positive and negative
one.

ad

. y=x2, 0 <z < 3(so the domain is restricted to = € (0,3)) has range 0 < y < 9.
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The argument of a function could be the value of another function. For example if
f(z) = 2% and g(x) = = + 1 then

f(9(@) = (9(2))* = (& + 1),

EXAMPLES
1. If f(z) =3z —1then f(z+1) =3z +1) —1 =3z +2.
2. If f(z) = 2z + 1 and g(z) = cos(z) then f(g(z)) = 2cos(z) + 1 and g(f(z)) = cos(2z + 1).

The inverse of a function is denoted f~1(z) and has the property that

@) =f(f @) =2

EXAMPLES
1. f(z) = z? and g(z) = /7 are inverses since vVz2 = (/z)? = z.

2. If f(x) = 322 + 1 then the inverse is found by rearrangement:

flx) 3z +1

- i\/% = =z

= [TH=) = £/

The zeros of a function, f(z), are the values of z when f(z) = 0.

EXAMPLES
1. f(#) =22+ 3 haszeroxz = —g.

2. f(z) = #® + 3z + 2 has zeros ¢ = —1, 2.
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A graphy = f(x) shifted from being centred on (0, 0) to being centred on (a, b) is written
in the form
y—b=f(z—a).
EXAMPLES

1. A circle with centre (1,2) has form (z — 1)2 + (y — 2)® =12,

2. A parabola y = z? with turning point (0,0) if shifted to having turning point (3.4) has equation
(y—4)=(z-3)>

A function is even if f(—z) = f(x) and odd if f(—z) = — f(z).

EXAMPLES
1. y = f(z) = 2® is odd since f(—z) = (—z)® = —2® = —f(z).

2. y = f(z) = z* isevenssince f(—z) = (—z)* = z* = f(z).
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2.3 STRAIGHT LINES

A line has the general form
y=mzr+a

where a and m are real numbers and m is the slope of the line.

EXAMPLES

1. Part of the straight line y = 0.6 — z is drawn in the following diagram:

107
\3‘
6
4+
2
I T T T 1 T
-2 2 4 .f\s 1.0
-2
. . - 1
2. The line y = 2z + 1 cuts the z axis when y = 0 giving z = —3 as the zero.
. | R : z 1
3. The line 5y = x — 1 has slope m = 5 Since it can be rewritten as y = 35
4. The equation of a line that passes through the points (0, —1) and (3,0) isy = g — 1. The gradient

is found from

1
zo—121 3-0 3
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2.4 QUADRATICS

A quadratic (parabola) has the general form
y=az’+br+c
and can have either no real zeros, one real zero or two real zeros.
If the quadratic has two real zeros, ¢;, ¢a then it can also be written as

y=alz—a)lz—c).

EXAMPLE

Sections of the three quadratic functions
y=(-1%+1, y=(-3?° y=(z-5(-6)

are drawn in the following diagram:

2.0
1.54

1.04
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2.5 POLYNOMIALS

A polynomial has the general form
Y=apZ” + ap 12" '+ F T+
where a;,© = 0...n, are real numbers, and has the following properties.
1. The polynomial has degree n if its highest power is z™.
2. A polynomial of degree n has n zeros (some of which may be complex).
3. The constant term in the above polynomial is ag.

4. The leading order term in the above polynomial is a,z™ since this is the term that
dominates as £ — oo.

EXAMPLES

—

. y = 2a2% + 42% + 1 has degree 3, constant term 1 and leading order term 223,

[

y = xz? + 5z + 6 has two zeros z = —3 and = = —2.

3. The third degree polynomial y = (z — 1)(z — 2)(z — 3) = 2% — 622 + 11z — 6 is plotted below
forz € [0,4]:

Y
6_
3_
0 e~ T
I'"‘-.-.___/I 1
1 2 3 4

-3 4
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2.6 HYPERBOLA

A hyperbola centred on the origin is usually written in the form

$2 y2
2 !
or
2 2
Yy x
2 b
EXAMPLE

The hyperbolay = 09:—15 is drawn in the following diagram:

Y
1.5+
1.0
0.5
15 1.0  -05
| I I T | | T
05 10 15
4-0.5
{10
Js

The hyperbola above is not defined for z = 0.
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2.7 EXPONENTIAL AND LOGARITHM FUNCTIONS

The exponential function is
y=¢e" =expx
with its inverse the logarithm function
y=Inz.

The general properties of the exponential are listed in the next chapter on transcendental
functions.

EXAMPLE

The exponential function y = €® (upper curve) and logarithm function y = Ina (lower curve) are
drawn in the following diagram:

24/ Inx

The logarithm function is not defined for ¢ < 0.
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2.8 TRIGONOMETRIC FUNCTIONS

The main trigonometric functions are sin z and cosz, which are cyclic with period 27
thus sin(z + 2x) = sin z. Sine and Cosine can be defined in terms of angles as discussed
in sections 1.14 and 3.4.

EXAMPLES
1. The function y = sin 2z will have a period of «.

2. The functions sin z and cos z are plotted below for the first period = € [0,2x], while
tanz = sinz/ cos z is plotted for x € [—n /2,7 /2].

Y
1.0+ 1.0+
0.5 0.5-
0 , , 0 ‘ ,
2 n 3n2 z w2 T 3mi2 n z
0.5 -0.5-
1.0 1.0-
sin z cOS T
6 -
3 -
=2 -4
T T T 1 &
4 2
-3 .|
tanx




CIRCLES 27

2.9 CIRCLES

A circle centred on the origin has the general equation
24yt =r
where r is the radius. This is often written in parametric form

z(t) = rcost, y(t) =rsint, t € [0,2x].

EXAMPLES
1. The circles 2> + y*> = 1 and (z — 2)? + (y — 1.5)2 = 1 are drawn in the following diagram:

2. The curve 22 + 2z + y? + 4y = —4 can be written as (z + 1) + (y + 2)? = 1, which is a circle
centred on (—1, —2) with radius 1.

3. The curve represented by z(t) = 2cost + 1, y(t) = 2sint — 3, ¢ € [0, 2w) is the circle radius 2
centred on (1,—3).
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2.10 ELLIPSES

An ellipse centred on the origin has the general equation
12 + cory + ey’ = 1.
If the z and y axes are the axes of the ellipse then it is usually written in the form

2 2
T
_2+y_=1
a b?

where 2a is the length of the ellipse in the x direction and 2b the length of the ellipse in
the y direction. An ellipse is often written in parametric form

a(t) = asint, y(t) = beost, t € [0,2n].

EXAMPLES

2
1. The ellipse (%) + 22 = 1is drawn in the following diagram:

2. The curve (z —2)? + 16y® = 1 s an ellipse centred on (2,0) with major axis of length 2 in the =
direction and minor axis of length 3.
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2.11 EXAMPLE

QUESTIONS

(Answers are given in Chapter 14)

—

P - N R S O )

10.

11.
12.
13.

14.

15.
16.

. If f(z) = 2% + 1 whatis f(2)?

. If f(z) = 2% + 1 what s f(g)?

. If f(z) = 2% + 1 and g(z) = (x — 1) what is f(g(x))?
If f(z) = «® + 1 and g(z) = (z — 1) whatis f(g(b))?

. If f(z) = % and g(z) = sin z find f(g(a)) and g(f (z)).

. If f(z) = 22 + 1 find f(f(z)).

. If f(@) = (¢ —1)? and g(z) = 2 — 1 find f(g(z))
and g(f(2)).

1
I f(z) = _ T 1find the inverse ().

1
find the inverse f~1(z).
z+1 7@

1
If f(x) = o + 1 find the inverse f~1(z).

Lines
Draw the line y = —2x + 1 for ¢ € [0,1].
Where is the zero of the liney = ¢ — 1?

Where does the line 2y + £ — 1 = 0 cross the ¥ axis?

JRPE T It T £3

R ¥, PR 1 a0
YYI1dl 1S UIC S10pC O1 UIC 11IC !

Draw 3y — z + 3 = O forz € [0,4].

Quadratics
Draw the quadratic y = 2 — 2z + 1 for x € [0,2].
Where are the zeros of the curve

y=(x—3)(x—4)?

(For more questions on manipulation of quadratics see
Chapter 1.)

Sines and cosines

. Draw the curve y = 2sin3z fromz =0tox = .

T
. Draw the curve y = cos 5 fromz = 0 to

=4,

. Draw the curve ¥y = cos 2z + 1 fromz = 0 to ¢ = 27.
. What is the period of y = sin(z + 1)?

. What is the period of y = cos 3x?

. What is the period of y = sin(3z + 1)?

23.
24,
. Draw the ellipse 4y? + (z — 1)2 = 1.

26. Where does the ellipse (z — 1)2 + 2y = 1 cut the =

30.
31.
32.

33.

35.

36.

Circles and ellipses
Draw the circle y? + (z — 2)2 = 4.
Draw the ellipse y? + 222 = 1.

axis?

. What is the equation for an ellipse centred on (0,0) with

 axis twice as long as the y axis?

. What is the equation for a circle centred on (1,2) with

radius 27

. What is the equation for a circle centred on (a,2) with

radius 3?7

General

‘What type of curve has equation
P +(x—1)2-2=0?
‘What type of curve has equation
292+ (z—1)2 —2=0?
‘What type of curve has equation
2y +(z—1)2 —2=0?

‘What type of curve has equation
2y + (¢ — 1) =07

o

~_ _—

T
0 1 2 3

Fs

What is the equation of the shape below:
Y
{ )
|
T 1
0 4

0 T

T T

T
1 2 3
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CHAPTER 3
TRANSCENDENTAL FUNCTIONS

3.1 EXPONENTIAL FUNCTION

An exponential function is defined by
f(z) = d®, sothat = =log, f, a>0,

where a is the base and z is the index.

EXAMPLES

1. If8 = z3 thenz = 8'/3 = 2,

[

. If3 =log, y theny = 2% = 8.
3. If 2 = log o y then y = 10? = 100.
4, If y = log, 16 then since 16 = 2%,y = 4.

The most useful exponential function is f(z) = e® = expx where e = 2.71828 . ..
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3.2

INDEX LAWS

. @ = a.a...a,for i an integer.
i times

a™g® = g™t
} Equal Bases Rule

} Equal Indices Rule

(@™)® = g™ Power of a Power Rule

EXAMPLES

—

[

5]

. (243)%7 = ((243)'/%)* =32 =9
. 2TRY = 21(23)1; — 2z+3y

. To simplify y = 3%9% write 9 = 32 so that

y= 32(32)3 —_ 3236 —_ 38‘

4 3
4. If (?;) = 64 then

soy

46413 =y
y

=1




LOGARITHM RULES

L
5

3.3 LOGARITHM RULES

1. log,(zy) = log, z + log, y Log of a Product
2. log, (5) =log,x —log, y Log of a Quotient
3. log, z? = plog, = Log of a Power
4. log,(a®) ==

5. al%8a? =g

6. log,1=0 and log,a=1

EXAMPLES

—

. log, 16 = log, 4* = 2

2. glugsm - (32)[0533 = (3[033 z)2 - m?

3. Ifloga = 4,log b = 9 then log(a®b®) = 2loga + 3logh = 8 4 27 =
22?

4. log, (g) =z-y

5’ alogo &+2 1050 L a1°5¢ xGIOga Uz - my2

35.

(also denoted log x):

Inz=¢ means e°=uz.

Note that;

1. ne* =z
2. elfe =g
3. Ine=1

4, In1=0

The natural logarithm of z, the inverse of the exponential function ®, is log, z = Inz
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EXAMPLES

1. exp(3In2) = exp(In 2%) = exp(In 8) = 8

2. ea:+1r12 - ea:eln2 = 2¢%

elna! T
3, elnaz—?lny — ==

e2lny y
4, Iflnz = 2 and Iny = 5 then to find In(z3y?) we write

In(z®y?) = Inz® + Iny?
=3lnz+2lny

(9
\A

6.

AR T4-9
)T AWy

= QR

5. Iflny = 31n 2z + cthen to find y write

Iny =1n(22)* + ¢
— y=exp(ln(2z)® +¢)
= kexp(In (2z)3), wheree® =k

 1./9-.\3
= Kl{sx)".

6. If z = In3 and y = In 4 then to find exp(z + 2y) write

ez+2y —e® (ey)2

=3 x42
= 48.

7. If T = Ty + Tie %t then

8. If y = a® then

zlna

Iny=2zlna = y=¢
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3.4 TRIGONOMETRIC FUNCTIONS

The unit circle can be used as an aid for finding the sin and cos of common angles. For
example, cosw /6 = \/5/2. By symmetry all the other major angles can be found.

sin 8
1

cosf

—1

EXAMPLES
1. From the diagram we see that

cosz—ﬁ ccvsz—i (:crsz—1 cosm =—1

6 2’ 4 R 32 -
2 sin5—1rr = gin = = 1
. 6 6 2
3n T

3. tanT——t.anZ =-1

4. cos(nm) = (-1)", n=0,£1,+£2,...
5. sin(nw) = 0,n=0,£1,+2,...

2 1
BinM —

5 —(=1)",n=0,%£1,£2, ...
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sin(—g) = —sin(z), cos(—z) = cosz

Sine is an odd function while cosine is an even function.

The Reciprocal Trigonometric Functions are

1
T=—, cotx
an T

1
cosecr = —, sec
8 ST

1n.xr CO

3.5 TRIGONOMETRIC IDENTITIES

A fundamental trigonometric identity is

sin®z + cos®z = 1.

EXAMPLES

1. To prove the identity tanz + cotz
consider the left hand side:

secx cosec T

tanz + cotx

sin z

cosT

cosSzT
sinx

sin®z + cos® z
cosxrsinx
1

—————— = 8eC T COSeC T.
coszsina
2. Tt is easy to prove

1+tan’z =sec’z

cot>z + 1 = cosec’ ¢

by simply dividing sin® z + cos? z = 1 by either sin® z or cos? z.



TRIGONOMETRIC IDENTITIES

gin(z+y) = sinzcosy+ coszsiny
cos(z +y) = coszcosy—sinzsiny
sin2x = 2sinzcosz
cos2z = coslz—sinz
. 9 1—cos2x
gineg = ————
2
9 1+ cos2z
cs’s = o

EXAMPLES

1. sin(z —y) = sinzcosy — coszsiny

2. cos(z —y) = coszcosy + sinzsiny

3. 8in (:c-i- %) =sinz cos % + cosz sin% = CosZT
4. cos(x + w) = cosx cosw —sinz sinw = — cosT

5. To find sin f—2 consider

. T . w w
Slnﬁ—sln(g_i)
=si11£cos£—coszsinE
3 4 3 4
31 11 1
R e N
2 /2 242 22

6. Alternatively the following method can be used:

sin © = /1 —cosn/6
12 2

_1-v3)2

=\—
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3.6 HYPERBOLIC FUNCTIONS

sinhx = #, coshz = #
EXAMPLES
1. Ttis easy to show that
sinh0 =0
cosh0 =1
and that
cosh® £ —sinh®z = 1
since

@ -z 2 z_ -z 2
C05h2 r — Sinh2 T = i — i
2 2
1
=1 [ +2+e )= (e —2+e )] =1.

2. The plots of sinh z and cosh z are illustrated below on the interval z € [—2,2].

507

-2.5+
sinh z

-5.0-
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3.7 EXAMPLE QUESTIONS

(Answers are given in Chapter 14)

1. Simplify as much as possible

1
: 6:1:3 —2>< _w—s 4
@ Y o1 y
a2
n) o 3

(i) 2logyo 5 + logyo 8 — logyo 2
(iv) 37 1oss P

) Inz? + Iny—Inz— lny2
i) &2 Inz

2. Solve for ¢ using natural logarithms:

i) 3y =1 + 2
3. IflIns = 2 and In¢ = 3 calculate
@) In(st)
(i) In(st?)
(iii) In(v/st)

(iv) In il
t

(v) In ;3
4. Ifz =In3 and y = In 5 then find
(i) e*e¥
(ii) e*tv
(iii) e2®
(iv) e* + e¥
5. Evaluate
() tan(m)

o sn (%)
W=y
11w
(iii) cos (T)
. ir
(iv) sec (?)

6. Simplify
1
cos? 8
(i) (sin@ + cosz)? + (sinz — cosx)?
tan @

) V1 +tan? 6

ey _tan2p
i) tan” &

10.

11.

12.

13.

. Solve the following for values of 8 between 0 and 27

(i) cos?@ + 3sin29=2
(ii) 2cos?8 = 3siné

. Prove the following identities:

1 1 ain 8
. 1igind 9
————— = (secf +tand
@ | ing — (sec0+tanf)
(i) 3sin?9—2=1—3cos?9
(iii) sinhx —coshg = —e™®

(iv) sinhz + coshz = €

. Use the trigonometric addition of angle formulae to show

coslﬂ—2 = i(\/g-i- V2).

For the following angles find cos 8, sin 8, tan 8, and sec 9:

g
he="
(@ 1
g
ii) 6 =13~
(i) 6
2
i a= 2
(iii) 3
(iv) 6= o7
T3
o o T
V) 0= 1
Use the multiple angle formulae to find cos %

In an experiment you have to calculate the time to melt a
block of ice using the formula

t= l()\p—CTop)
hT,

where
1=01, A=3x10°
c=2x10%, Tp=—20,
T, =20, h=10,
p=1x10%

Find £.

Is f(x) = @ cos z an odd or even function?
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CHAPTER 4
DIFFERENTIATION

4.1 FIRST PRINCIPLES

The definition of a derivative of a function f(z) is:

f.l'(m)= %=}]Eﬂf(£+h})b_f(m)-

This is the slope of the tangent to the function f(z) at the point z. The following diagram
illustrates:

y = f(z)

tangent
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EXAMPLES
1. If f(z) = 2 then
. (z+h)?—-a?
1) —
Fla) = rlalgh h
z2 + 2ha + B2 — 22

=1lim2z+h
h—0
= 2z.

2. If f(x) = sinz then

sin(z + h) — sinz

'] — 1
e = fm S
. sinzcosh+ coszsinh —sing
= lim
h—0 h
. sinz(cosh —1) 4+ cosxsinh
= lim
h—0 h
= CoST
since
. cosh—1 . sinh
pm = =0 fm=m =1

(see the Asymptotics chapter for how to evaluate these limits).

4.2 LINEARITY

2t +otay = YO, WD
4@y = A2

where ¢ is a constant.




SIMPLE DERIVATIVES

EXAMPLES
d, . d .
1. £(3smm) = 35 sinz = 3cosx.

d d
2. If f(z) = sinz + €” then f'(z) = Esin:c+ Ee” =cosz +e”“.

4.3 SIMPLE DERIVATIVES

The following derivatives of elementary functions are standard:

fl@) = f(x)
¢c =+ 0 where ¢ is a constant.
2" = nz" !
sinx — coszx
cosx — —sinz
e® = e
1
Inz —- -
T
sinhz — coshz
coshz — sinhz

EXAMPLES
d 1

2. If f(z) = 532 + sinh x then f'(z) = 10z + cosh z.

4.4 PRODUCT RULE

2 1@ 9@ = L g + fla) 2
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EXAMPLES

1. Tf f(x) = 2® sin z then f'(x) = 2zsinz + 2% cos z.

1
2. If f(z) =Inz cosz then f'(z) = 5 082 —Inzsinz.

d, . .
3. a(smwez) =cosze® +sinze”

4.5 QUOTIENT RULE

d [f (f")] _ f'(2)9(a) - f(=)¢'(2)
dz | g(z) (9(z))?

EXAMPLES
2

T
1. If f(.‘,!?) = E then

_ 2zsing —a® cosz

!
f(=) = sin’ z
2, If f(z) = —— then
1oy _ Coszcosy —sing(—sing) 1
fi(z) = cos?z T cos?z’
Thus
%tan:c = sec’z.
3.
d (sinz) _ cos(z)e® —2zsinz
de \ =2 | xt
4,
d (.q,-? - :c) _ e’ —a](@® +2) - (2 — ) Fe* +2]
do \ 2?2 +2 (2 +2)?
_ 2z - 1)(z%2+2) — (2 — )2z
= (2 +2)2
_ x2 4+ 4z -2

(z2 + 2)?
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4.6 CHAIN RULE

6] =5 & = Fle@)d'@

Differentiate the outer function first then multiply by the derivative of the inner function.

EXAMPLES

. d
1. Since — sinz = cosz then

dx
oo oy 49
& loin(a?)] = cos(e?) 5 [#*)
= cos(z?)2z.
2. Since %lnx=%then
ah:[ln1(:::+:tr)]—:H_m2 dx[x+:c]
_1+2:c
T o+a?’

d d
3. Since —z° = 3z% and o sinx = cos x then

%[sin3 z] = 3sin® z cosz.

. Since % cosz = —sinz and %ma = 5z* then

'

%[cos((:cz +32)%)] = — sin((? + 32)°) %[(3:2 + 32)"]
— —sin((a® + 32)°)5(c + 3.@)4%[(9:2 +30)]
= —sin((z* + 32)®)5(z* + 32)* (22 + 3)

= —5(2z + 3)(2? + 3z)"sin((z? + 32)°).
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4.7 IMPLICIT DIFFERENTIATION
To find ¢'(z) where y(z) is given implicitly, differentiate normally but treat each y as an
unknown function of z. For example, if given
fy) =g(@)
then differentiating gives
dy dy _ g'(2)
rWE=d@ = L=
W =91 =~ F)
where the chain rule has been used to obtain the left hand side.
EXAMPLES

1. Differentiating

siny = z2

with respect to z where y = y(z) gives

or

cosy::—f; =2z

dy _ 2z _ 2z
dz  cosy ++/1—g°

since cosy = £4/1 —sin” y = £v/1 — z%,

[

. Differentiating

zcosy+y =g

with respect to  where y = y(x) gives

(cosy - msin(y)%) + j—z = 3z?

which can be rearranged to give

dy _ 3z® —cosy
de  1—zsiny’
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4.8 PARAMETRIC DIFFERENTIATION

Giveny = f(t) and z = g(t). dy/dz may be calculated as

dy _ dy/dt _ f'(t)

dv  do/dt  g'(t)’

EXAMPLES
1. If y(t) = ¢? and z(t) = sin¢ then

dy _ dy/dt _ 2t

dz  dz/dt  cost’

2. Ify(t) = sint and z(t) = cost then

dy _ dy/dt _ cost

de = dejdi ~ —sint O

4.9 SECOND DERIVATIVE

The second (or double) derivative is the derivative of the derivative:

ro-£- 4 (5)

Higher derivatives are found by repeated differentiation.

EXAMPLES
1. If f(z) = z* then f'(z) = 42° and f"'(z) = 122>

2. If s(t) = € is the position of a particle with time ¢, then s'(t) = 2e2 is the velocity and
s"(t) = 4e?" is the acceleration.
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4.10 STATIONARY POINTS

A stationary point is a point (z,y) where f'(z) = 0. At this point the tangent to the
graph is flat.

EXAMPLES
1. The function y = z® + 2z + 2 has a stationary point when

%=2m+2=0 == z=-1

2. The function y = 2z® — 922 + 12 has stationary points when

@=6m2—18:c+12=0 = =12
dz

3. The function ¥y = xe™® has a maximum when

%:e'”(m—l):ﬁ = z=1

A Jocal maximum is when the function at the stationary point is higher than the sur-
rounding points. A local minimum is lower than the surrounding points. An inflection
point is where the graph is flat but neither a maximum nor minimum.

y maximum

2 -
\_/ inflection
1 -

minimum
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1. if f”(a) > 0 then © = a is a local minimum.
2. if f"(a) < 0then z = a is a local maximum.
3. if f”(a) = 0 then z = @ is an inflection point.

Note that z = a is a stationary point so f'(a) = 0.

At a stationary point £ = & the second derivative indicates the type of stationary point:

EXAMPLES

1. The function y = &% + 2z + 2 has a stationary point at z = —1. The double derivative is

dy
a2

so z = —11is a minimum,

[

15

d*y

which is positive at £ = 2 (a minimum) and negative at = 1 (a maximum).

Y
10

6 local maximum

local minimum

3. The function y = (z — 1)® + 3 has derivatives

d; &
Y =3 —1)%, 53;=

e 6(z—1)

which are both zero at z = 1, which is therefore an inflection point.

The function y = 22 — 922 + 12z has stationary points at ¢ = 1 and 2 = 2. The double derivative
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4.11

(Answers are given in Chapter 14)

EXAMPLE QUESTIONS

1. Use linearity to find dy/dx:

(i) y=3sinx —5cosz
(i) y = 3€e® —a?

(iii) y=3Inz

(iv) y = 2sinhz — 3coshz
2. Use the chain rule to find dy /da:

() y =sin(2x)

(i) y=sin(z + %)

(i) y= (= +4)°

(iv) y = (x + sinz)®

(v) y = sin(lng?)

vi) = e3
vi) e

~
2

3. Use the product rule or the quotient rule to find dy/dz:

i) y = ze”

i) y= 57
(ili) y = e®sinx
(iv) y= l;lf

(v) y=sinzcosz

. _ Inz
i) y= -y
(vil) y = z%sinz
(viii) y = coshzsinhz
1/
. e
(ix) y=

4. Find dy/dz for these more difficult problems:
(i) y = exp(x cosz?)
(i) y = e®cos((2z +1)?)

. _ sinz
W y= (x+1)2
(v) y=sin(z? +exp(z® + z))
exp x2

5. Use implicit differentiation to find dy/dz:

(i) y*> =sin(z — 1)

(i) cos(2y) = (1 — x?)1/2

(iii) In(y) = ze®

(iv) e¥ =% 15

W y+yd =2

(vi) y? +siny =sinz

i) ye+1) -y ==

6. Use parametric differentiation to find dy/dzx:

(i) y(t) = cost, z(t) = sin(t?)
(i) y(t) =et, a(t) =1¢2
e o faN 42 P A S Y
(i) yig) =1v7, Tir)=sint

7. Find the derivative dT/dt:

T =texp (\2%)

where @ is a constant.

8. For the following functions find the stationary points and

classify them.

() y=(r—92)2
) (z —2)

g
(i) y=2%—622+ 9z +1
(i) y = 3z* — 82% + 622
(iv) y=ze™ "
) y=2"In(x)
(vi) y=sinz + (1 — z)cosz,forx €
(vii) y = (z —1)2e”

Q. The functiony = f(z)
. i\%)

10¢ Tuncucn y

the function f/(x).
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5.1 ANTIDIFFERENTIATION

The indefinite integral (antiderivative) of f with respect to z is
[ 1@z =P@)+c

where F'(z) = f(z) and ¢ is known as the constant of integration.

EXAMPLES

1. If £m2=2:c then f2:cda:=o:2+c.
dz
1 1
2. If%lna:=; then /Ed:c=ln|:c|+c.

3. IfF % sinz = cosx then /cosa:dx =ginz +c.

d
4. If o gsinhz = coshz then fcosh;rd:t =ginhz + c.
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5.2 SIMPLE INTEGRALS

The following integrals of elementary functions are standard:

1
n - nt1 —
/:cd:r = oxi° +ec where n # —1
fcos:cd:c = ginz+c
fsin:cd:c = —cosz+te
/e”ds: = e“+c¢

1

—dz = In|z|+e

T
fsinh:cd:r = coshz +¢

/cosh:cdo: = ginhz+e¢

Integration is linear so that
[¢@ + @) da
/ cf (z) dx

[1@do+ [ @) aa,

@ / f(z)dz, where ¢ is a constant.

EXAMPLES
1. /(sin:::+e"‘)da:=—cosa:+e:‘+c
2. /5cos:cd$=551n:c+c

3. Simple application of the Chain Rule in differentiation gives

fcosk:rd:r = %sink:c+ c.
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4.f&uh=3/émh=3ﬁ+c
1 1 )
5. 43+de=2 2z dx + de=2m +Inz+e¢
. 3
6. [ 3sin(2z)dz = ~3 cos(2z) + ¢
4,13 2 5, 1 4 3
7. | (bz +32 +12z°+TNdz ==z +§:c +4z°+ Tz +c

8. f(g_ezﬁ) dr =51n|z| — 3¢/ +¢

5.3 THE DEFINITE INTEGRAL

The definite integral with respect to = over the interval [a, b] is written as:
b
[ f@)
@

where F'(z) = f(z). This is the Fundamental Theorem of Calculus.

[F)
F(b) — F(a)

EXAMPLES

2 1,12 28 1 7
l.fxgdw=[—x3] == —--==

: 3], 3 3 3

! 1 ! 1 2
2. / sinrzdz = [——cos:rr:r] = —=(cosm —cos0) = —

0 ™ 0 ™ ™

3 413
3 T 81 1
. dr=|—| =——-==2
3/1:8 [4]1 P

1
4. [ sinh # dz = cosh(1) — cosh(—1) = 0 since cosh(z) is even.

-1
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fﬂ@m=—f¥@m

ffm)dx+/f(:cdx /f:c)dx

(assuming f(x) can be integrated over the required intervals).

EXAMPLES

I.

a 0 2
f |x|d:c=f |a:|da:+/ || d=
-1 -1 0

0 2
=/ —xdx+/ zdx
-1 0
_[2? 0 z21?
—{ﬂAﬁﬂo

=—F—H+p—m=—

lHﬂ@:{;’::?lMH
1 iy

lﬁwa=£?ma+fﬂma
=/11d:t+/31:d:b‘
[93]0 [ ]
142 1oy

2 2

3. If f(z) is odd then

‘/;:f(z)dzz[ocf(z)h+£af(x)dx=0.
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5.4 AREAS

If f is an integrable function then

b
/ f(z) dz = (area above the z-axis) - (area below the z-axis)
@

in the regiona < @ < b.

EXAMPLES

1. Consider the curve given by f(z) = ® — 922 + 26z — 24 = (z — 2)(z — 3)(z — 4). The area
between the curve and the z-axis between z = 2 and x = 4 is given by:

y
1.0
0.5
4] T
1
-0.5
-1.0-
4 3 4
fg (@) do = [z f(z)ds - f3 f(z)do
=0254+0.25
=0.5.

2. If f(z) is an even function (so f(—=z) = f(x)) then
[ @a=2 | f@a

since the area for z € [—¢, 0] is the same as for z € [0, c].
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5.5 INTEGRATION BY SUBSTITUTION

Integrals that can be written in the form

[f@@»f@ﬁh

are solved by the substitution u = g(z), upon which the integral becomes

/ﬂmm=Fm+c=ﬂwm+a

where F'(z) = f(z). For definite integrals the limits of the integration are also trans-

formed.
EXAMPLES
1. To evaluate / 2zsin(z® + 1) dz let u = z° + 1 then j—: = 2z so that

fz:rsin(:z:2+1)da:=/sinudu

= —cosu+c
= —cos(z® +1) +ec.

1 du
2. To evaluate dz letu = z + 1 then — = 1 so that
.[\/:c+1 dz
f 1 dz=/u"5du
T+1
=2ul +¢
=2vVz+1l+e

w2
3. To find / sin z cosz dz letu = sinz so that the integral becomes
0

sin(w/2) 511 4
Lo we[i]-4
8in(0) 5Jg &

1
4. To ﬁnd/—dxlelm= sinwu since v/1 — 22 = cosu and dz = cosu du so that
V1 -—z?

f ! dx—/ﬁdu—u—arcsina:+c
Vi—-z2  J cosu ’
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5.6 INTEGRATION BY PARTS

Integration of a product of two functions can sometimes be solved by integration by parts:

dv du
/uﬁdm—uv—jvadm

fudv=uv—fvdu.

or in short hand,

EXAMPLES

d d
1. Toevaluatefwcosmdxletuz x and £ = cosz then £ = 1 and v = sin z, so that

fxcos:cdz=xsinw—/sinxdz

=zsinz — (—cosz + ¢y )

=zsinx + cosz + ¢3.

1

2. The integral f ze?® dz is performed by setting u = z, dv = €% so that du =landv = 162*.
0 dz dz 2
Then we have
1 1 1
1 1
/ ze*® dr = [:::—32"] - / ~e* dx
0 2 Jo Jo 2
1, 1,50 1.,
_58—2[ x]o—i(e +1)

3. Integrating by parts twice we can evaluate
fezz sinzdz = —e*® cosz + 2/62"‘ coszdzr
= —e*cosz + 2 (ezz sing — 2 fezz sin:cda:)

2z
so by rearranging /62” sinz dr = %(2 sinz — cosz) + c.
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N

5.7 EXAMPLE QUESTIONS

(Answers are given in Chapter 14)

1. Find 4. Evaluate the following integrals using a substitution.
. 7
@ / —dz @) /a;e_"’2 dx
[ (12 5‘ z+2
(ii) / ( ) dx (ii) / x2+4x+5 dx
oo 7m —14z eoe
(iii) / (e +e ) dx (iii) / yiny dy
(iv) /(wg + 20 + 2t 22y de (iv) /2w3\/ 7zt — ldz
) /sinh(?m) dx ) /zcos(—zZ) dz

(vi) ‘/r 4cosh(z) — e* dx

A Wialiaoia T
< byaluale (vii) / .’L'Sin(a:Q) dx
5 _ 0
@A) e “dz 4 o—V7
0 (viii) / —d
3n/2 90 2Vy
inzd:
(i /7r /2 sl az 5. Evaluate the following integrals using integration by parts.
1/2 1
(iii) / 16 4o 7
1/4 T (i) xcos ¢ dx
0
(iv) jf " sin(3z) dz 2 i
ii ——dz
0 (i) ,/0 z2 — 2z —3
rom/4 VAR A P
) ‘/W/4 —sin (—g) dz (iii) / €2® sin ¢ de (integrate twice).
3
(vi) / 7e % dx @iv) / (z +1)sinzde
0
3. Find ) / z%e® dz
2
(i) f f(2) dx where . f. L . - L )
hnd -/0 SN (1) j Inz dx byusing u =Inx and dv = 1.
fle) — (1, =<1, 6. Find the following integrals using any method.
Jer= 1 z, x2>1
smz
1 <>/
cos z
(ii) / f(z) dx where
-1 (ii) f z’sinz dz
2
] -z, z<0,
@)= { 23, x>0 (iii) /3xew/3 dz
" J
(iii) / f(x) dx where (@iv) / Vau(u + 1) du
0
1 .
f@) = { z—1, ﬁi}, ) /7W dz (let x = sinh u).

1
(iv) / . f(z) d where f(z) = |z3|.
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6.1 ADDITION

If A and B are m x n matrices such that

a;; G2 o+ Qg by b2 bin
as1 Gy -+ Gp b1 b22 b2n
A= . . . and B= . . .
Aml Gm2 "' Omp bmi  bme bmn
a1 +biy a2+ bi2 ain + bin
as +ba1 @ + bao azn + bon
then A+ B = . . .
m1 +bm1 Gma + bm? Upmp + bmﬂ
Addition of matrices of different sizes is not defined.
EXAMPLES
1. 12 3 4 —6 2 -3 6 5 1
-2 1 0|+ 0o -1 7 \|=| -2 0o 7
379 3 -14 1 6 =7 10
2. 1 2
[ 9 1 ] + [ 2 ] cannot be done.
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6.2 MULTIPLICATION

AB is defined if A is size m x r and B size r x n. If

a1 Gz 0 Gim bii bia o+ by

a1 Gy - G by by oo bo
A= . . . and B= . . .

Ar1 Qpa ' Gppy b‘nl bﬂQ aon bm‘

then AB = Cis an m x n matrix, where Cj; = a;1b1; + a;ebaj + - - - + a;rby;. That is,
Cj; is the dot product of row ¢ of A and column j of B.

In general AB # BA, that is, matrices are noncommutative.

EXAMPLES

L2 173 3
3 4|[1 75

s “1[1 2] _[-2 -2
1 2|[34][7] 7 10

9 -2 2 -4
1 and B= 0 0 1| then
2

3 -4 -1
[ 4 29 -2 2 -4
AB=| -3 -1 1 0 0 1
2 1 2 3 -4 -1

= 6+0+3 -6+0-4 12-1-1
—-4+0+6 4+0-8 —-8+1-2

" 19 —28 —23]

[ —84+0+27 8+0-—36 —16+2—9]

= 9 -10 10
2 -4 -9
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while

3 —4 -1 2 1 2
[ - 8—-6—-8 —4-2-—4 —18+2—8]

[ -2 2 —4 4 29
BA = 0o 0 1 -3 -1 1

= 0+0+2 0+0+1 0+0+2
12+12-2 64+4-1 27-4-2

[ 22 -10 -24
= 2 1 2
2 9 21

# AB.

6.3 IDENTITY

The identity matrix, defined only for square matrices (n x n), is

0 1 0
I=1 . .
00 - 1

and is defined such that, for all n x n matrices A,

IA=AI=A.

EXAMPLE

The 2 x 2 and 3 x 3 identity matrices are

1 00
1] o1 o).
0 01
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6.4 TRANSPOSE

The transpose of a matrix is formed by writing its columns as rows. The transpose of an
m x n matrix A is an n x m matrix denoted by A?, that is, if

ail a2 G1n ai; a1 am1
az1 @22 a2qp a1z d22 Am2
A= . . then Al =
@ml Gm2 Amn Q1p d2p Amn
EXAMPLES
[0 1
I.IFTA=|2 4 then A‘:[O 2 1].
1 4 -1
[ 1 -1
[ 4 2 9 4 -3 2
2.IfFA=| -3 -1 1 then Af=|2 -1 1.
| 2 1 2 9 1 2

1. (A=A
2. (A+B)l=At+ B!
3. (cA)! = cA?

4. (AB)! = BIA!

If A and B are matrices and ¢ i8 a scalar, then

EXAMPLE

(A'4)! = (AY(4)") = A'A
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6.5 DETERMINANTS

The determinant of a 2 x 2 matrix A = [ (:: 3 ] is

det(A) = |A| = ad — be.

ayy @12 @13
The determinant of a 3 x 3 matrix A= | ao; a9z asz | i8
Gaz1 (@32 Qg3

Al = Q2 @23 | a1 @23 a1 @22
Al = an a3z ds33 a1z a1 dass D a31 Q32
(expanding by the first row),
EXAMPLES
1 1 2 1 2
|3 4_4—6——2, |2 _1‘_—1—4——5.
2.
-3 21
5 6 4 6 4 5
I R R P
=-3(56+18) —2(4 —-12)+ (-12-10)
=-T5
3.
1 75
026 =1‘S g|+0+0
00 3
=1x2x3=6
4.
|; ; g| is not possible.
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6.5.1 COFACTOR EXPANSION

The determinant of an n x n matrix may be found by choosing a row (or column) and
summing the products of the entries of the chosen row (or column) and their cofactors:

det(A) = a;;C1; + a2iCaj + - -+ + @ Chj,
(cofactor expansion along the j** column)
det(A) = a1 Ciy + apCiz + -+ + @inCin,
(cofactor expansion along the i row)

where Cy; is the determinant of A with row ¢ and column j deleted, multiplied by
(—1)"+7. The matrix of elements Cj; is called the cofactors matrix.

EXAMPLES
1. 1 3 0 2
4 -3 1 9
-4 4 0 3
5 =5 -2 -7

(Expansion is along the 3rd column since it has two zeros.)

= (0)C13 + (1)C23 + (0)Ca3 + (—2)Cias

1 3 2 1 3 2
=(M(-1°| -4 4 3 |+(-2(-1)7| 4 -3 9
5 =5 -7 -4 43

= —[1(—28 + 15) — 3(28 — 15) + 2(20 — 20)]
+2[1(—9 — 36) — 3(12 + 36) + 2(16 — 12)]
= —[13 — 39] + 2[—45 — 144 + 8]

— _310.
2.
123
00 2 =—2H f‘:-za-z):z
110

by expanding along the second row.

3. The full cofactors matrix for the previous question is found by crossing out each row and column



INVERSE

65

in turn remembering to multiply by (—1)*+7:

0 2
Ci=+1 10 =-2
—(—n 0 2|_
00
Ciz=+1 111 0
and so one, giving
-2 20
C= 3 =3 1
4 -2 0

6.6 INVERSE

A square matrix A is said to be invertible if there exists B such that
AB=BA=1
B is denoted A~! and is unique.

If det(A) = 0 then a matrix is not invertible.

EXAMPLE

The matrix B = [ :1; g ] is the inverse of A = [

and
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6.6.1 TWO BY TWO MATRICES

For 2 x 2 matrices, if A = [ 2 3 ] then

Al= adl — [ _‘: _z ] providing ad — be # 0.

If det(A) = ad — be = 0 then A~ does not exist.

EXAMPLES
1 2 a1 [ 4 -2
Lia=[22] we =L 4]
12 2 _1[3 -2
2uta=[1 2] v A=B[3 2]

6.6.2 PARTITIONED MATRIX

Inverses can also be found by considering the partitioned matrix

[AEI]

then performing row operations until the final partitioned matrix is of the form

[1 : A—l]-

EXAMPLE

The inverse of

1 21
010
110

can be calculated using row reductions where B3 — R3 — R1 means that Row 3 becomes the old
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Row 3 minus Row 1.

(1 2 1|1 0 0
01 0|0 1 0
[ 11 0(0 0 1
l R3— R3—R1
1 2 1] 1 0 0
0 1 0 010
[0 -1 -1|-1 0 1
R3— R3+ R2
1 2 1| 1.0 0
01 0 010
[ 000 -1|-1 11
R1 — R1-2R2
R3 — —R3
10 1|1 =2 0
010/0 1 0
00 1(1 -1 -1
l R1— R1-R3
1000 -1 1
010/0 1 0
00 1(1 -1 -1
hence
1 211" 0 -1 1
010 = |0 1 0
110 1 -1 -1

6.6.3 COFACTORS MATRIX

The inverse of an X n matrix A can be found by considering the transpose of the cofactors
matrix divided by the determinant:

1
Al=__t
|A]

where C; is the determinant of A with row ¢ and column j deleted, multiplied by
(—1)"+7. The matrix C is called the cofactors matrix.
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EXAMPLES
1. If
1 2 1
A=|1010
1 10
then
10
Cu1 —‘ 10 |=0
21
Co =(-1) 1 0|—1
and so on. Since |A| = —1 we get
[ o 0o -17" [o -1 1
A‘1=—11—11=010.
-1 0 -1 1 -1 -1
2. The matrix

has cofactors matrix

[ —2 2 0
C= 3 -3 1
| 4 -2 0
hence the inverse
1 -2 3 4
A‘1=§ 2 -3 -2 .
0 1 0

6.7 MATRIX MANIPULATION

Matrices do not behave as real numbers. When manipulating matrix expressions a
distinction is made between multiplying from the left (pre-multiplication) and multiplying
from the right (post-multiplication).
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EXAMPLES

1. Given that ABC =1 find B?

ABC =1
(A"TA)BC = A1 pre-muliiply both sides by A~!
IB(CC™1) = A-'IC™! post-multiply both sides by C~!
B = A'C'  simpiifying
_ (CA) -1

2. If A = PDP1 then A%is

A3

(PDP-!) (PDP-!) (PDP!)

PD (P-'P)DP-'PDP!

PD?P-'PDP! since PP~ =1
PD3P! again since PP~1 =1

3. If Av = A\v then

See Section 6.9 on eigenvaiues since this exampie shows that if A has eigenvaiue A, with eigen-
vector v, then A~! has eigenvalue 1/ for the same eigenvector.
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6.8 SYSTEMS OF EQUATIONS

Systems of m linear equations involving n unknowns may be written as a matrix equation.

For example,
z+y+2z=1
20+4y—32=5
3r+6y—56z=2
i§ written as
11 2 a:] [1]
2 4 -3 y|l=15
3 6 -5 z 2
or
Ax =b.

Systems of equations are typically solved by Gaussian elimination.

If A is invertible then x = A~1b.

Gaussian Elimination allows
& amultiple of one row to be added to another row.
e arow to be multiplied by a (non-zero) number.

Hence B3 — R3 — 2R1 means each element in Row 3 becomes the old Row 3 element
minus two times the corresponding Row 2 element.

EXAMPLES

1. The augmented matrix is an easy way of writing systems of equations. For the following system

z+y+2z2 =1
2¢+4y—32z = 5
3z+6y—52 = 2
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the augmented matrix is
[1 1 2|1
2 4 -3|5
| 3 6 -5 |2
Ry — Ry — 2R,
3 R3; - Rs — 3R,
[1 1 2| 1
6 2 -7 ‘ 3 -|
| 0 3 11| -1 J
l Ry — R»/2
[1 1 2 ‘ 1 '|
01 -7/2|3/2
03 -1 -1
j 113 —7 113 — 9112
11 2 1
01 -7/2 3/2
0 0 -1/2|-11/2
J' R3 - —2R3
[1 1 21 1]
0 1 -7/2|3/2
L% 0 1) 11

This gives the straightforward solution by back substitution of x = —61, y = 40, z = 11.

2. Consider the system

|
|
o

2z — by
—z+3y = 4

written as Ax = b such that
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After performing Gaussian reduction by row operations the three cases (no solution, infi-
nite solutions, one solution) are typically represented by the following:

1. If you perform row operations to obtain

a b clhk
0 d e kz
0 0 f|ks

(where a, .., f are non-zero real numbers) then you get one unique solution.

2. If you perform row operations to obtain

a b cl|lk 1
0 d e kz
0 0 Of#&s

then if k3 # 0 you get no solution.

3. If you perform row operations to obtain

a b cl|k
0 d ek

0 0 0| O

then you get an infinite number of solutions that represent a line where you let
z = t, { is some parameter, and then express , ¢ in terms of £.

EXAMPLE

To solve the system:

1 -2 -1 T -1
2 1 3 y | =] 13
1 8 9 z 29

perform row reductions to obtain

1 -2 -1|-1
0 1 1| 3
(0 0 0| 0

and setting z =t givesy =3 —tandz —2(3 —¢) — ¢t = —1s0
(xsyaz) = (5—t,3— tat) = (5a390)+ t(_la_lal)

or a line in three dimensional space.
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6.9 EIGENVALUES AND EIGENVECTORS

If A is an n x n matrix then a scalar ) is called an eigenvalue of A, if associated with it
there is a non-zero vector v, called an eigenvector, such that

To find the eigenvalues solve the characteristic equation
|A — AL =0.
To find the eigenvectors solve

(A — \Dw = 0.

EXAMPLE
To find the eigenvalues and eigenvectors for

0 1

A=_1 0

set up the characteristic equation

[0 1] 10 -A 1
d“(_l 0_‘*[0 1])‘| 1 —A|_O’

which gives A2 —1 =0so A; = 1 and Xy = —1 are the eigenvalues. To find the eigenvectors solve

-2 1
1 2|2

T -1 1 Al 0
vy = then = .
we o] e [ SR8
Both equations give £1 — y1 = 0 so y; is a free variable. Hence the eigenvector corresponding to
A1 = 1is #(1,1), where ¢ is any number, ¢ € Re.

For Ao = —1 let
_ Ia 1 1 Io _ O
we[n] w3 ] [0 ]=[0]

0.

For Ay = 1let



74 MATRICES

Both equations give 2 + y2 = 0 so ¥ is a free variable. Hence the eigenvector corresponding to
A = —1is p(1, —1). The length of the eigenvector is unimportant hence it is convenient to write

v1=(L1), wz=(1,-1).

6.10 TRACE

The trace of a matrix is the sum of its diagonal elements.
(Note that the trace is also equal to the sum of the eigenvalues.)

1 2 3
EXAMPLE The trace of [ 4 5 6 ] =14+54+9=15.
7 8 9

6.11 SYMMETRIC MATRICES

The matrix A is symmetric if A = A®,

EXAMPLE The matrix

[CR R
[=~IE = B ]
o oW

] is symmetric.

6.12 DIAGONAL MATRICES

A diagonal matrix is one with only terms along the main diagonal.

EXAMPLE A 3 x 3 diagonal matrix has the form [

ocoR
[== =]

o oo
L ———
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6.13 EXAMPLE QUESTIONS

(Answers are given in Chapter 14)

1. Find A + B, AB, BA and the trace(A): 5. Find the determinants of the following matrices.
® 1 0 1 0 l
- . 3 2 -7 1
A 4 0 1 -l ® a 1 _a 1
— 12 3 _7 6 1 6 1
1 o 0 J |2 2 2 3 J
- M4 1 a a9 1
o1 R
B=| -2 -2 -2 (ii)
3 1 7 0 0 9 0
- L0 0 0 -1
(i) (3 0 4
(1 9 @ [ 1L 0 O
A= 6 4 ] LO 0 6
[ 6 -8 ] 6. Solve the system of equations
B=|_7 1
c+2y—2z = 2
(iii) 8z +3y—7z = 4
f2 0 0 4y — 12z = 8.
A=|0 3 0 . . L . . .
0 0 4 7. First showing that a non-trivial solution does indeed exist,
L solve
9 0 0
B=|0 8 0 de—y = 0
L0 0 -3 -z = 0
—dx+ 17y —4z = 0.
2. Find AB: +1iy i
ro 9 8. For what values of @ and ¢ do you get
. ] 6 1 ]
HA=[1 3 [B= [ a1 (i) one solution,
4 2 J L 9 L J
[‘ ] (ii) no solution,
(i) A=|1 -1 1 -1 TR .
F 9 6 1 7 (iii) infinite solutions,
B— 2 9 1 0 for the system
~ 13 8 1 8
1 2 1 16 z+5y+2z = 0
N 61 z+6y—2z = 2
(iii) A = _2JB:[1 —1] %+ay+z = c?
3. Find A, A*A, AA®:
9. Find the eigenvalues and eigenvectors of A:
Q) A= 2 -1 3
| 4 3 -5 @)
6 0 [2 0 1]
(i) A= 0 —4 A=|0 3 4
7 5 L0 0 1 |
4. Find the inverse, if it exists, of the matrices (ii)
o2 3] "2 1 0]
L1 4] A=|1 2 o
[t 2 0] L0 0 1]
(ii) 0 1 0
0 3 2
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CHAPTER 7
VECTORS

7.1 VECTOR NOTATION

A vector in R? is represented by an ordered pair v = (a,b), or geometrically, by a
directed line segment in the plane.

Y

P~

The vector has both length ||£|| and direction.

EXAMPLES
1. The vector (1, 0) points in the z direction and has length 1.

2. The vector (1, 1) points in a direction with angle /4 to the z axis.
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A vector in R™ is represented by an ordered n-tuple

E = (Ulav%"':vn)'

EXAMPLES

1.

e

= (1,3,4) is a three dimensional vector so v € R®.

9

L

e

=(3,5,7,1,2) is a five dimensional vectorso v € R,

7.2 ADDITION AND SCALAR MULTIPLICATION

Ifv = (vy,v,...,0,), W = (w1, ws,...,wy,) and c is a scalar constant then
viw = (v1 + wy,va +wa,. .., 0, +wy)
CE = (CUl,Cﬂz,...,C'Un)-
EXAMPLES

1. Ifv = (1,-1,4) and w = (1, —3, 3) then,
2 + 1'3 = (21 _4a 7)»

and
4v = (4,—4,16).

2. If ¢ =(1,0) and 7 = (0,1) then v = (2,3) = 2¢ + 3.
3. Ifv=(1,z,2,z)andu=(2,1,z,0) thenv+u = (3,1 +z,2 + z,x).

4. (1,2) + (4,5,6) is not defined.
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7.3 LENGTH

The length of a vector in R™ is given by

v||=y/v}+vi+- +o2.
1 n

EXAMPLES
L2, )|=v12+22+12 =6
2. 1(1,1,2,1,3)| =vVIFIF4F 140 =16 =4

The triangle inequality states that
-+ vl < [laefl + [l

That is the length of the sum of vectors must be less than the length of the two individual
vectors added.

EXAMPLE

(0,3) + (4,0) = (4,3) and [|(0,3)]| = 3. |(4,0)]| = 4[|(4.3)]| = V3> + 4 =5 < 3+ 4
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7.4 CARTESIAN UNIT VECTORS

The Cartesian unit vectors for R3 are

i =(1,0,0), j=1(0,1,0), k=(0,0,1).

Vectors in R® are often written as the sum of the components in the direction of the
Cartesian unit vectors:

v = (v1,v2,v3) = 1% +v2 +vsk.

EXAMPLES

1. (1,2,3) =4 +2j + 3k

2. (0,2,0) = 2j

7.5 DOT PRODUCT

If w and v are vectors in R"™ then the dot product is defined by
E'2=01U1+02v2 T+ s+ Upty .

This is also called an inner product on R™. The result of a dot product is a scalar.

EXAMPLES
1. (1,2,3)-(1,1,1)=1+2+3=6

2. (1,2,3)-(1,2,3) =12 +22 4+ 32 =14

I

T

NulP=u-u
) ~ o~
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The angle 6 between two vectors is given by
u-v

[TEL

cosf =

EXAMPLES

1. The angle 8 between (1,2, 3) and (1,1, 1) is such that

6 6
VE+2 32212 +12 42

cosf =

2. (1,2,3) and (1,1, —1) are at right angles since (1,2,3) - (1,1,—1) = 0 hence cos8 = 0.

Two vectors, « and v are orthogonal if they are perpendicular to each other and

uw-v=0.

EXAMPLES

1. w=(1,2,1) and v = (2,1, —4) are perpendicular sinceu-v=2+2—-4=0.

2. To find a vector, (a, b), perpendicular to (1, 2) write
(a,b)-(1,2)=a+2b=0

hence the simplest choice is (a,b) = (—2, 1) although any multiple of this will be perpendicular
to (1,2). For example (2, —1) and (—4, 2) are still perpendicular to (1, 2).
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7.6 CROSS PRODUCT

If u and v are two vectors in R®, then the cross product  x v is defined in determinant
notation by

i j k
~ ~ ~
x =
uxuv w1 U2 ug
n vz U3
_ Uas U3 J U1 Uz Uy U2
~| U2 U3 ~| U1 U3 ~| UL U2

= (ugugz — u3v2, UgV — W1U3, U1V — UV ) .

EXAMPLES
1. (1,0,0) x (0,1,0) = (0,0,1). Thatis i x j = k.

2. Ifu=(2,-3,1) and v = (12,4, —6), then

t 3 k
w=uxv=| 5 _3 1
12 4 —6

-3 1| .| 2 1 2 -3

= 4 —6|_N 12 —6‘+ﬁ 12 4|

= (18 — 4) — j(—12 — 12) + k(8 + 36)
= 143 + 245 + 44k = (14,24, 44).

3. The cross product (1,2,3) x (1,0,1) is:

t j k
(1,2,3)x(1,0,1)=| 1 32 3[=(2,2-2).
1 0 1
4. The cross product (1,1,2) x (1,—1,0) is:
3k
(1,1,2) x(1,-1,0)=| 1 7 2 |=(22,-2).
1 =1 0
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Note that the result of taking the cross product of two vectors is another vector where the
direction of u X v is perpendicular to both u and v.

EXAMPLES
1. In a previous example (2, —3,1) x (12,4, —6) = (14,24, 44) and
(2,3,-1)(14,24,44) =28 — 72+ 44 = (.
Similarly (12,4, —6) - (14,24,44) = 0,

2. In a previous example (1,1,2) x (1,-1,0) = (2, 2, —2). Note that (2,2,-2) - (1,1,2) = 0 and
(2: 2:_2) : (1,—1,0) =0.

7.7 LINEAR INDEPENDENCE

A vector v is a linear combination of the vectors @y, us, .. ., Uy, if it can be written as
=) ~

e

V =cC U1 oz + - T Cplin
o~ -~ ~ A~

where ¢y, . . ., ¢, are constants.

EXAMPLES
1. (2,7,3)is a linear combination of (1,1, 0), (0,2,1), (0,1, 0) since

(2,7,3) = 2(1,1,0) + 3(0,2,1) - (0,1,0).

2. (1,2,1) is not a linear combination of (1,1,0), (2,1,0), (1,0,0) since we can never combine the
three vectors to get the third component of (1,2, 1).

3. Any vector (a, b, ¢) in B? can be found from a linear combination of {(1,0,0), (0,1,0), (0,0,1)}.
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A set of vectors w1, tg, . . . , Uy, are linearly independent if the only constants ¢, ..., ¢y
that satisfy
cruy + Coig + -+ + Crtin = 0
arecyp=ca=---=¢p=0.
EXAMPLES

1. (1,1,0),(0,2,1),(0,1,0) are independent since
(,'1(1, 130) + 02(05 25 1) + C3(0, 15 0) = (Os 0! 0)

implies
¢ = 0
ct+ecat+e=0
Cay = 0

which givese; = ¢ =3 =0.

[

. (1,1,0),(2,1,0),(1,0,0) are dependent (not linearly independent) since

c+2co+c3=0

cir+eca=0
0=0
has an infinite number of solutions, one being¢; =1, cg = —1, c3 = 1.

3. The vectors (1, 2), (2,1), (1, 0) are dependent since
(&1 (la 2) + 62(2, 1) + 03(19 0) = (Ua 0)
implies

cp+2co+c3=0
2¢1 +2¢0 = 0.

Since we have two equations in three unknowns we can always find a non-zero ¢y, 2, ¢ to satisfy
these equations, for example ¢; = 1, ¢a = —1, ¢z = 1. More than two vectors in R? can never
be independent.

4. The vectors £, 7, k are independent since for any vector v = (a, b, ¢) it is possible to write
(a,b,c) =c11 +caj +csk=ai +bj+ck

henceif v = 0 thene¢; = ¢p = ¢3 = 0.
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A set of vectors is linearly independent if the determinant of the matrix with vectors as
columns is not zero.

EXAMPLES
1. For (1,1,0),(0,2,1),(0,1,0) the determinant

100
1 21
010

=—1#£0

hence the vectors are independent.

[

For (1,1,0),(2,1,0),(1,0,0) the determinant

1 21
110
000

=0

hence the vectors are dependent. We can show that
(2,1,0) =(1,1,0) + (1,0,0)

so they are not independent of each other.
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(Answers are given in Chapter 14)

1. Evaluate the sum u + v, 3u and ||u||:

(i) U= (—2,—1), v = (1, 1)
6 ar — (2 AN ae — (A 2)
(i) & = 19,%), ¥ =\ 9/
(iii) = (-2,1), v =(-1,-1)
(iv) u=(3,4,2), v =(1,1,1)
™ u=(3,1,1,0),v=(1,0,1,1)
(Vi) u=2¢i+3j+kv=1%t—3—Fk

(i) u=4¢+j,v=1t—3j
2. For the above vectors verify the triangle inequality that
llu+ vl <l + |||l

3. In the diagram below write down the two vectors 2 and
v in algebraic form then find and draw the vector u + v.

Y
6_ \
u
5 | -
4 \\
3_
2_
1 /

4. Evaluate the sum  + v and ||u + v||:
(] U= (3,2,-1), v= (-1,-2,1)
(i) v=1(1,0,9), v =(-2,-2,-2)

(i) v =(4,-4,-3),v=(8,7,1)

5.

6.

10.

11.

12.

Fmdg, v, uxXv and cos @ where 8 is the angle between
thegandz

(i) (21)17—(131)

(ii) 1‘,:( -1),v = (6,1,1)

(i) u=(2,3,0), v = (4,1,-2)

(iv) g:(O 0,0), v_(l 4,3)

™ u=(3,3,3),v=(-1,-1,-1)

(Vi) =(1,2,4), v= (2,4, -2)

For the previous question verify thatw = u X v is
orthogonal (at right angles) to both % and v.

. Determine whether the following vectors are linearly

independent

0 {(4,1),(1,2)}

@iy {(2,1),(4,2)}

@iy {(1,1),(1,2),(3, 1)}

(v) {(1,1,1),(0,2,0),(1,3,2)}

™ {(1,1,1),(0,2,0),(1,3,1)}

o {(1,2,0,1),(1,1,0,1),(2,1,3,1),(0,2,-3,1)}

. Find a number ¢ so that (1, 2, ¢) is orthogonal to (2, 1, 2).
. Find the vector which goes from the poins (1,3, 1) to the

point (2,5,3). What is the length of this vector?

Show that the line through the points (1,1, 1) and (2, 3,4)
is perpendicular to the line through the points (1,0,0)
and (3, —1,0).

Show that a - (b X ¢) can be written as

a1 a2 a3
b b2 b3
| c1 c2 c3 |

a:-(bxc)=
= a1bz2cs — a1bsce — azbicg
+ azbszc1 + azbice — agbzci.

Verify the above equation using the vectors
a=(1,1,2),b=(1,0,1),c=(0,1,1).



CHAPTER 8
ASYMPTOTICS AND APPROXIMATIONS

8.1 LIMITS

As z — 0 then

1. 2" <2™ ifl<m<n, 0<z<1

&

. lim f(2) + g(e) = lim f(2) + lim g(z)

78]

- lim f(2)g(2) = lim f(z) lim ¢(z)

assuming li_r&' f(z) and li_IﬂJ g(=) exist.
k4 &

EXAMPLES

1. (0.1)% < (0.1)2

[

2 <xlasz = 0.

3. lim sinzcosz = limsinz limcosz=0x1=0
z—0 x—0 x—0

zz—-1) 1
2—0 z(z — 2) T2
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8.2 L'HOPITAL'S RULE

If @ has limit 9 or x as r — . then
g(z) 0 o
. f(xJ o 1 p !
Jim 9@ - Jim f(z)/ lim g'(z).
EXAMPLES
1. 2 _
fim =) — m 2% =g

)
=,
=]
5]
[«]
=]
(]
]

|

8.3 TAYLOR SERIES

f()

2
FO)+=zf(0) + :;—'f"(:c) + .-+ Maclaurin series

(z —a)®
2!

flz+a)

f(@)+ (z —a)f'(a) + f"(a)+ --- Taylor series

EXAMPLES

1. . . .t z? " @ i
gsinz = sin 0 + z sin 0+5sm O+Fsm 04---
22 z°
=sin0+:cc030—?sm0—€0030+-~

=z x3+
N 6

o)

2 3

& T
T 1 i R
€F=l+rt g+
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8.4 ASYMPTOTICS
As £ — +o00 then
™ < ", if m<n
™ < e, if a>0
z™ > e, if a<0.
EXAMPLES
1.
(100)? < (100)®
2.
(100)°2 < (100)°-5
3. 9 z/10
r<e as T —+ 00.
4, 1
—- > e ® as z— oo
T
> b SNSRI
22 +x+3 222 2 ’
6. z2 41 22 1 as .
223 +2x4+3 223 2z T
7. mea: xea: e
W ~ eTx ~ Te as x —» oo,
8. 2z 2z
€ ~2e ~2e* as z — oo.
coshz e
> ze? ze’ f as T oo
c+VZ+2+1 z+V? 2 '
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(Answers are given in Chapter 14)

1. Find the limits as z — 0 of the following functions.

@ (z—-2)(z-3)
(i) ¢ +cosz
(iii) € + ze~®
., sin(z — )

V) (w _ 7r)

¥+ 22 +1
243z +2

(iii) lim
T
R . TCosST —sinx
(iv) lim —M—
z—0 :1:3

3. Find the first two non-zero terms in the Taylor Series for
the following functions as ¢ — 0.

(i) cosx

(ii)
(iii)
(iv) ze®

V) ———
(vi) sinhz

(vii)

(viii) T2

(ix) In(1+z)

4. Find the leading order behaviour for the following
functions as £ — oo.

2
O
(i) Vad +2z+1

(i)
) ————

v —

sinh(3x)
1+et

x

(vi)

ze~

Vi sinh

T +e*

1+ ze~?*
eil)

(viii)

(ix)

sinh z

5. Find the first three non-zero terms of the Taylor series as
 — 0 for the functions f(z) = €® and g(z) = sinx
and hence find the Maclaurin series for

(i) e*sinz
(i) e?*
(iii) sin 2
(iv) e
6. Find the first two non-zero terms for the Taylor series
about ¢ = 7 /2 for

ain
S

8

{3
i

\
7
(ii) cosz

7. Find the first three terms in the Maclaurin series for e_””2

and hence find an approximation for

€
.2
/ewda:
0

where € is a small number. (Expand the exponential and
then integrate.)



CHAPTER 9
COMPLEX NUMBERS

9.1 DEFINITION

If @ and b are real numbers and i is defined by i2 = —1, then
z=a+bi

is called a complex number.

imaginary

a+ bi

| real
a

The real and imaginary components of z are defined:
Real part: Re(2) = a. Tmaginary part: Tm(z) = b.

(Note: Engineers often use the notation j instead of i.)
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9.2 ADDITION AND MULTIPLICATION

If z; = a + bi and z3 = ¢+ di then
1. z1tz=(axec)+ (bxd)i
2. ela+bi) = ca+chi, where cis any real number

3. 2129 = (a + bi)(c + di) = (ac — bd) + (ad + be)i.

EXAMPLES

1. Given z; =5 — 4i and 25 = —6 + 2i then
21+20=(5—-6)+(—4+2)i=—-1-2i.

2. If z; = 5+ 8i then 3z; = 15 + 24i.

3. If 21 = 5+ 8i and 20 = —2 + 3i then

2125 = (—10 — 24) + (15 — 16)i = —34 —i.

9.3 COMPLEX CONJUGATE

The complex conjugate of z = a + bi is

Z =a— bi.

EXAMPLES
1. fz=1+42ithenz=1— 2.

2. To simplify % multiply by the complex conjugate of the denominator:

2431 _ (24 3i)(5+ 2)
5—2  (5—2i)(5+2i)
_ (10 — 6) + (4 + 15)i _4 1.

25+ 4 20 " 29"
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9.4 EULER’S EQUATION

In Polar form a complex number is written as:

z=r(cosf +ising) = re?? (=rcish),

b
where r=|z| =va®+ b and 6 = tan~! (—) .
Using this notation,
5(91+92)'

2129 = r1re

Note that 8 € [0, 27) can be replaced by § + 2kn,k=0,1,2...

EXAMPLES
1 (1+i) =v2e'™/* = ﬁcis%

[

—1—i =21 = \/2cis %"

inf2 _ T o i T\ g
3. 3e 3(c052+3sm2) 3i
4, eiir/4ea'31r/4=ei1r=_1
5. 2cis%=2cos%+2isin%=\/§+é
6. If 2 = 2 + 2i, then

r=|z| =22 +22 =v8=2V2

™

9=tan_1 =‘ta,n_1]_=z

IS

so that
=2+ =2\/§exp(t'g) :

. . 3m
7. 1f 2, = 2(:155 and zy = 3cis e

2125 =6expi (g + %}r)

=Gexp (1554—71-)

=-3vV2(1+14).
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9.5 DE MOIVRE’S THEOREM

De Moivre’s theorem states that

2" =r"e™ (= ¢ cisnd).

EXAMPLES

1. (20)® = (2€i7/2)% = 2%¢%7/2 = _8i.

[

CIfz =14 1i=1/2e/% then 22 = 2ei™/2 = 2i.
3. To find all the cubic roots of —1 first write

p=_1= eir ei(ir+2kn']

where k = 0,+1,+2,... Thus

13 — T, 2k
z exp(13+a 3
ks

= exp (ig) ,exp (—ig) , exp (i)

for k = 0,1, —1. All other values of &k will repeat these three solutions. Thus, the 3 cubic roots
are
7= e—t'ﬂ',(fi, 29 = ein’/S’ 23 = ei?r

1-+/3i 1++/3i
~ T 2

-1.

4. To find z such that 22 = i we write
22 =i= ™/ —0,1,2,...
I

— em)‘i, eEﬂr/xl

1 . 1 .
= S+, (-1-0.
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9.6 EXAMPLE QUESTIONS

(Answers are given in Chapter 14)

1. Write the following in the form a 4 bs.
W (2-3)+(7—9) — (3+13%)

(i) (1+14)+(5—1%) + (6 +619)
(iii) 5(8 - 9i) + i(12 — 42i)
(iv) 3(2 - i_) + 2i(1 - i_)
™) (7+6i)?
oiy (1—d)®

(vi) (8 — 2i)(3 + 54)

(viil) (1 +4)(L —1)
(ix) (2+ 38)(2 — 31)
® (1-4i)(2+9)

(xi) 6—23
2—-T¢
.. 3—31
(xii) 313 T3
vl 2—14
(xiii) 313
(xiv) 3t

2 —4)(5 + 2i)

() 2z +3yi = (T—4)(1 +14)
(i) (z% + 6) + i = 3(2 + 35)(1 — 1)

3. Write the following in polar form.

i z=-1
(i) z=—1
(iii) 2z =3¢

(iv) z=-1+1
V) z=1+1
(i) z=1—1

(vil) 2=-2-23

(vii)) z = g(x/ﬁ —i)

(ix) z2=1+V3i
x) —V3+3i
(xi) z2=5+52
i) z2=v3+4

(xii)) z = —v6 —iv2

4. Write the following in the form z = z 4 y.

10.

(i) 2¢'"/?
(ii) 3ei7/4
. T
(iii) cis E

. . 11w
(iv) cis T

) ei7r/3

. Find z1 22 and zf if

() 21 =€"/?, 23 =ei/4

TR _ _im/6 _ im/3
(i) z1 =€ 7, 29 =€*7/°
(i) z1 = 2€i™/% z5 = 3ei37/4

=57

. . T .
(iv) z1 = 0158 zo = 3cis

. Use De Moivre’s theorem to find all z where

() 22=1
(i) z4=1
(i) 23 = 4v/2(—1 +14)
(iv) 22 =—4
6 — _1

!
z i

. Use Euler’s theorem to show

(i) coshiz =cosz
(ii) sinhiz = isinz
(iii) cos(z +y) =coszcosy —sinzsiny

(iv) sin(z + y) =sinzcosy + coszsiny

. Use De Moivre's theorem to show

(i) 2™ +2z~™ =2cosnd

(ii) cos2z = cos?z — sin?

(iii) sin 2z = 2sinzcosx

. Show that the solution to

az? +bz+c=0,
where a, b, ¢ are all real, must be of the form

z2=o — 1.

z2=mx+ .
= & J

Y,

Show that
i(2 + 2i)® = 2°.
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CHAPTER 10
DIFFERENTIAL EQUATIONS

10.1 FIRST ORDER DIFFERENTIAL EQUATIONS

10.1.1 INTEGRABLE

If

dy _
dr 9(x)
then
y= /g(:c) dz +c.
EXAMPLES
1. To solve % —sinz + z* = 0 for y(z) write
dy — 2
gy —SinT—a
= y(z) =f(sina:—:c2)d:c

1 3
=—cos:c—§:c +c.
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10.1.2 SEPARABLE

If

&y _ ola)
dz  h(y)

f h(y) dy = / g(z) dz.

Remember the integrating constant, +-¢, when integrating.

then

EXAMPLES
dy _ y .
1. To solve iz 1+a write
1 1
/ v Y= / i
= Infy|=h|l+z|+e¢
= y=(1+az)e
=k(1+z), wherek = €°isaconstant.
dy -z . .. .
2. Tosolve i = o with the condition that y(1) = 1, write

fydy =— f:cd:c
Lo 1,
= Q¥ =32 +ec
yielding the family of solutions,
y? + 2% =2
Applying y(1) = 1 implies ¢ = 1, giving the solution

v 42t =2
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10.1.3 INTEGRATING FACTOR

To solve

W + Play = f(z)

calculate the integrating factor

R(z) = exp (/ P(x) d:c)

2 (R@y) = R@S@)

— v = 75 ([R@I@ )

where ¢ is the integrating constant.

then

EXAMPLES
1. To solve x% + 4y = z® — ¢, for z > 0, the equation is divided through by z to give
dy 4 2
—y=z" -1
dz + 2=

The integrating factor is then

-] )

- 64 Inz
=z
The differential equation then becomes
d 4 44,2
—(z"y) =2 (=" -1
2z @Y =% )

— ;1:4y=/(3:3—:1:4)da:

TTF T
S0
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10.2 SECOND ORDER DIFFERENTIAL EQUATIONS
10.2.1 HOMOGENEOUS

A second order homogeneous equation with constant coefficients,
" !
ay’ +by' +ey=10

is solved with the substitution y = e™*. The differential equation becomes

am?e™ + bme™ + ce™ = 0
= e™(am’+bm+c) = 0
= am’+bm+c = 0.

This is the characteristic equation and has solutions m = m;,ms. The form of the
general solution depends on m; and my — the roots of the characteristic equation. There
are three cases:

1. The two roots are real and my # mg, then
y(z) = c1e™*® + cpe™°,

2. The two roots are real and m; = ms, then
y(z) = e1e™* + cpze™®.

3. The roots are complex, m; = a+1i8 and my = a — if, then
y(z) = e** (e1 cos(Bx) + casin(fz)) ,

where ¢;, ¢o are arbitrary constants in all cases.

EXAMPLES
1. Solve y" — y' — 12y = 0 for y(=).

The characteristic equation for the differential equation is
m>-m—-12=0

which factorises easily to
(m—4)(m+3)=0

giving two real roots,

mi =4 and mp=-3.
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The general solution is therefore

y(z) = c1e®® + cre 2.

Py L dy
2. SO]Ve 4@ ol 12@ + gy = 0.
The characteristic equation is
4m®> —12m+9=0

which factorises to

(2m -3 =0
. . 3 N
implying a repeated root my = 7 The general solution is then of the form

y(z) = c1€3%/% 4 coze®/2.

There are two common differential equations that, together with their solutions, are worth

considering:
y"+Xy=0 =  y= Asin(Az) + Bcos(\z)
y"—Xy=0 =  y= Asinh(\z)+ Bcosh(\z)
or y= c1e™® + coe™ M,
EXAMPLES

1. Solve y" + 8y = 0.

The characteristic equation is

m2+8=0
immediately giving the complex roots

my =2v2 and  my = —2V2i
and the general solution is

y(z) = e1 cos(2V/2z) + 9 sin(2V/2z).
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2.

The equation y" (x) = 4y(z), with y(0) = 1,y(co) = 0 is solved by writing the general solution

y(z) = c16™ + cpe™>®

where c1, ¢ are arbitrary constants easily found by application of the boundary conditions so that

y(z) = e ",

Note that the exponential form of the general solution is used since the boundary conditions extend
to infinity.

. The equation y" (z) = 4y(z), with y(0) = 0,y(1) = 1 is solved by writing the general solution

y(2) = e1 sinh 2x + ¢ cosh 2z

where ¢, ¢ are arbitrary constants easily found by application of the boundary conditions so that

() = S22
Y= "gane

Note that the hyperbolic form of the general solution is used since the boundary conditions are
finite.

10.2.2 INHOMOGENEOUS

The differential equation

ay’ +by' +cy = F(x)
has the solution

y(z) = yn(2) + yp(2)

where yp () is the general solution to the homogeneous equation and y,(z) is a particular
solution to the complete equation.

EXAMPLE

d’y

The differential equation ——5 — y = & has solution

dz

y(@)=cre” + e * — 1z

where —z is the particular solution.
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The method of undetermined coefficients is used where F'(z) is of the form

T
+

e coskz, sinkz, az®+bz+ec.

The form of yp(x) is “guessed” and then the constants determined by substituting the
guess into the differential equation and equating the coefficients:

a,z" +---+ag

RHS Forcing Term Try
ei"a’ Aef'lt
coskz Acoskz + Bsinkz
sinkz Acoskz + Bsinkz

Apz™ 4+ -4 Ay

EXAMPLES
d’y _dy
1. Solve gl + 65 + 8y = 10z.

The homogeneous solution is

Y(x) = 1672 + cpe™*®

and we guess the form of y,(x) to be Az + B since F'(z) is a polynomial of degree 1. Substituting
gives,

6A+ 84z +8B =10z

so that equating coefficients yields two equations to be solved for two unknowns:

8A=10
6A+ 8B =0,
. . 5 15 .
giving the solution A = 1 and B = 16 %° that the complete solution is
5 15
— —2z —4z Y ¥
y(@) =cre™"" + e + " 16

2. Solve y" + y = sin 2z.
The solution to the homogeneous equation is

yn(z) = €1 cos T + casinm.
Trying the form of a particular solution as

yp(z) = Asin(2z) + B cos(2z)
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leads to the set of equations
—-4A4+A=1
—-4B+B=0,
which gives A = ——= and B = 0. The complete solution is thus

3. Solve y" +y = sinz.

As with the previous problem
Yn(z) = cicosz + cosinx

however a guess of Asinz + B cosz will not work because sin z and cos z are already solutions
to the homogeneous equation. In this case try

yp(z) = Azsinz + Bz cosz + Csinz + D cosz

which eventually gives the solution
) 1, 1
y(z) = c1cosz + casinz + S sinz — Sz cosz.
“ r4

The extra term x cos z grows in amplitude and is the resonance term.

4. Solve y" — 2y’ +y = 4€>*.
The solution to the homogeneous equation is
yn(x) = c1€® + coze®

with the extra x factor in ze® coming from the repeated root in the characteristic equation. The
form of a particular solution is

Yp(a) = Ae®

leading to A = 1. Hence the solution is
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(Answers are given in Chapter 14)

1. Solve for y = y(z) by direct integration:

d;

0 L =(@+1)
dz

Lo dy 1

S dz ~ 2

dy
(i) (z+1)-= ==z
dz

(iv) 3—; =5z
(v) d_y = —3zsinz
dz

2. Solve for y(z) using separation methods:

d
Wy =1

Lody R
S dz ~ 2
iy W - yt!
dx T
i) W = oty
dz
2, %Y 2
W (y—yz*)~=(y+1)
dz
dz 1427
Vi) —=——7"
dy ysinz
.. dy xsinge VY
(vi) — = ————
dz y
iy 9 — (2”3)2
dy \4dz+5

3. Solve for y(z) using an integrating factor:
dy
@ 222 +10y =1
T
Y o
) z—+2y=3
T
d;
i) ¥ yomy =2
dx
(iv) ¥ +3z%y = &?
d;
) cosa:—y +ysinz =1
dz

i) (1 - w3)@ =3z%y
dz

4. Solve using any workable method:

1) %t = k(Q — 70), for & = a constant.
. dy

1 z L —
i) (L+e )th +e’y=0

A
(iii) pr + rsecd = cosé

dP
vy — =P(1-P
(iv) g ( )

1 2

w2 L 2

dz y y
o g B
(Vi) L/E + [t = o, with L, fi, £/ constants.

5. Solve fory = y(z):
G v’ —16y =0
(i) y" +4y' —y=0
(i) 124" — 5y —2y =0
(iv) ¥ +9y=0
) %%—8% +16y =0
(vi) 8y +2y —y=0
(vii) 2y +5y' =0
(viii) 3y +2y' +y=0

. d%y dy
— — 10— +25y =0
(ix) 4z? ™ + 25y
6. Solve for y = y(z):
. d%y dy
=9 3% _1oy=-3
@ dz? dz Y
dZy dy 2
.. 0% _
@ dz? + do ty=a
a2y
(iii) ;z; + y = cos(3z)
L. d?
) 5 ty=e*
d®y | dy .
(V) W + 2d_.’,!,' -+ y= 65111(2.’3)
PN dzy x . 2
(vi) i y=€e"+z
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CHAPTER 11
MULTIVARIABLE CALCULUS

11.1 PARTIAL DIFFERENTIATION

Given f = f(z,y) then % is calculated by treating y as a constant while differentiating

f with respect to z and %5 is obtained by treating  as a constant and differentiating with
respect to y. All higher derivatives are treated similarly.

EXAMPLES
1. If f(z,y) = 2% + zy + y? then

af _
oz =2z +y,

&f _,
dzdy

of
= =z+2,
B Y

2. If f(=,y) = sinz + = cos 2y then

of _ Of _ _opsi O _ g
B cos T + cos 2y, oy 2z sin 2y, Bady 2sin 2y.
3. If f = x3y5 then
f a5 Of_o 5 Of _ 5.4
ax_gxya 3372_6!’! ay_sxys
2 2
85); = 20z%y°, —;l gy = 15z°y*.
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If z = f(z,y) is the height as a function of z, y then %£ is the slope in the x direction
and %g is the slope in the y direction.

af/dx <0 at (z,y) af /0y > 0 at (z,y)
z z

(xy.f(x.y)} (xy.f(x.y))

11.2 GRAD, DIV AND CURL

The gradient vector, call grad, del, or nabla, denoted by V, is a vector operator:

g 8 0
V—(a—a—ya—)

If v = (v1,v2,93) and f = f(z,y,2) then

_ (9f 9f of
Yf - (3:::’8y’3z
Ovy | Ova | Ous ‘ .
Y v oz + B + B2 the divergence, or div, of v
i 3 k
ng = a% a% % the curl of v
V1 U Vg
&2f  &f df .
2
Yf = Ygfzw"‘w'ﬁ'@ theLaplacmn.
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= dzyi + 227 + 32k

= (4zy,222,322).
2. If f = x + zyz then

v/

=yz+3
and
’ i j k
Vxvp= KA 8 8
~ ~ 8z By 8z

0 3} )
+ (gl - polov)
=0% — (cosz — zy)j — z2k

= (0,zy — cosz, —zz).

4. If f = 2% + y? + y22 then

Pf f  f
Vif=5+55+ 53
~ oz Oy 0z

=24242y.

5.1 f=x+y+22then VF = (1,1,22) and V2§ = 2.

6. Ifv = (z,z,z+z)then V-v =2and V x v = (0, -1, 1).
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The slope of z = f(z,y) in the direction given by the unit vector u is

fu=u-Vf

EXAMPLES

1. If 2 = f(z,y) = 10 — 22 — y? then V f = (—2z, —2y). At the point (1,2), Vf = (-2, —4). To
find the slope in the direction of (1, 1) find

(L1 _ -6
7 -(-2,-4)_‘/5.

2. If z = 1 — & + y? then at the point (3,1) the slope in the direction (3,4) is

(3,4) (3,4)
5 (=1,2y)| 54y = 5 (-1,2)

_—3+8 _
=—=

1.

of of
0z’ dy

(i) V f points in the direction of maximum slope.

If z = f(x,y) then the gradient vector V f = ( ) has the properties

(ii) V f is perpendicular to the contours (lines of constant z).

(iii) ||V f|| is the magnitude of the maximum gradient.

EXAMPLES
1. If z = y* — z is the height of a hill then V f = (—1,2y). If we are at the point (1, 3) then
() Vf = (-1,86) is the direction to move uphill fastest.

(i) The slope in that direction is ||(—=1, 6)|| = V1% + 6% = v/37.
(iii) The contours are in the direction (6, 1) since (6,1) - (—1,6) = 0.
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2. If T =1 — x +y? is the temperature on a flat plate then VT = (—1,2y). At the point (3, 1) the

direction that increases temperature fastest is (—1,2). The direction in which temperature stays
the same is £(2, 1).

If 2 = f(z,y) but z(¢) and y(¢) are functions of ¢ the chain rule for differentiation of f
with respect to ¢ i3

df _0fdz Ofdy . o (% D
ﬂ_axﬁ+awn_gf3’wmw”_(ﬁuﬁ)

~

EXAMPLE

Ifp=22 +y?and z = t2, y = t* then to find dp/dt without substitution we get:

dp _ dpdz | dpdy

_ 2 _ 443 5
dt_d::dt+dydt = 222t + 2y3t° = 44° + 6t°.

11.3 DOUBLE INTEGRALS

If Ris definedbya < & < b, g1 (2) < y < g2() with g; and g» continuous on [a, b] then

fenaa= [ [" tey) dyas.
i [ L.

Y

92(z)
o (z)

- T

a b

The double integral represents the volume under the surface z = f(z,y) over the region
R.




112 MULTIVARIABLE CALCULUS

EXAMPLES
1. If Ris the region givenby 0 < 2 <3, 0 <y < 1land f(z,y) = zy then

1 p3
ff:cydA=f / zy dedy
R o Jo
1 3
= —z d
J, [z,
1
y dy

1
f]
0

[ Re=]

I
S~

| @ —
. | ©

2. If Ris the region givenby 0 < 2 < 1and 0 < y < «? then for f(z,y) = = + 3y? we have

1 z°
[7x+%ﬁ:]~f z + 3y dy dz
R o Jo

1 a
=[0 [a:y+y3]0 dz

1
= f 2® 4+ 2% dz
0
S, 1)
- [4x + 12 ] U
_1.1_n
47 28
The region R is drawn below.
Y
1.0
0.8
0.6
0.4
0.2
0.0 : . : . L

0.0 0.2 0.4 0.6 0.8 1.0
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3. Consider the region R given by

0<zr <1, 0<y<z:

1.0 -y
0.8 -
0.6 1
0.4 -
0.2 1

0.0 4 i i i i i
0.0 0.2 0.4 0.6 0.8 1.0

If f(z,y) = 2y + a2 then

1 z
/[2y+:c3dA=f / 2y + 23 dydz
R =0 J y=0

= [ [y*+ya®], do

We can also reverse the order of integration, doing the z integral first:

1 1
[[2y+x3dA=f f 2y + z° dzdy
R y=0Je=y

1 11t
= f [2a:y + —:54] dy
y=0 4 ¥

=/1 2+ —2y° — Tytdy
g 4 4

=0

12 141" 8
- 2 L =8 _ 1.5 _
_[ Ty 20:"]0 15
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11.4 EXAMPLE QUESTIONS

(Answers are given in Chapter 14)

af @
3—;, % and 920y
0 flz,y)=y* +2zy+1
(i) f(z,y) = sin(zy)
(iii) f(z,y) = + cos(z +y)
i) flz,y) =e""¥
v fz,y) =yz®
2. Evaluate

(i} Vf where f =z% —y° + 222

af

1. Find if

(i) gqb where ¢p = tan(zyz)

(iii) 'V - v where v = (=2, /¥, 9z2)

(iv) 'V X u where u = (zyz,zyz,zYyz)
v V- (z,2y,32)

ovi) V- (2?,2¢%,32%)

(vii) V2(a? +y? +27)

(vii)) V?(zyz)?
(ix) Y X (yzyxz)zz)
) V x (2%,2%,9%)
3. For the functions z = f(z,y) = zy> — y find the
following at the point (1, 2).
(i} The direction of maximum gradient.
(ii) The magnitude of the maximum slope.

{iii) The direction of the contours.

(iv) The slope in the direction (1, 1).

4. Repeat the previous question for z = 1 —  — e¥ at the

point (1, 0).

5. Iff::r:’—ybula::tgandy:taﬁnd%usinglhe

chain rule.

6. Evaluate:

9 37

@ f f 2 dydz
0 Jz2/9
16 pz

(ii) f f y dydz
] x/4

6 4
(iii) f f (a2 + y?) dyda
0 1]

7. Find f f 2% +y® dA where R is the region between the
R

line y = % and y = 1 shown in the diagram below.

Y
1.0-

08
06-
04-
0.2

00T : T : T T
00 02 04 06 08 1.0

8. Repeat the above question by reversing the order of inte-
gration,

9. Find f f  + y dA where R is the region is between the

line y = /z and y = @ shown in the diagram below.

Y
1.0

08
0.6
0.4
0.2

0.0 4 r T r - T
00 02 04 06 038 1.0

10. Repeat the above question by reversing the order of inte-

gration.

11. Show that for any vector v

V‘(YXﬂ):E.

~

12. Show that

1
c(z,t) = ‘756"52”4*3

satisfies the diffusion equation
8%c _ B¢
az? ~ ot



CHAPTER 12
NUMERICAL SKILLS

12.1 INTEGRATION

b
An integral f(z) dz can be calculated by estimating the area under the curve as a

@
series of rectangles.

e
,/
f(z) ///
/
Py
L

dils

1]
[ 1@dxn (@ 4 f(@) + f(z2) + - f@nma) + %)

Hence

where @; = 2o, ..., &, are the discrete values of & € [a, b] and h is the spacing between
points: h = @; — x;—1.
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EXAMPLES

1. If f(z) = 2 then for = € [0, 1] and five equally spaced points zo = 0, z; = 0.25, 22 = 0.5,
z3 =0.75, 24 = 1.080 h = 0.25 and

! 2
f z?dr ~ 0.25 (g + (0.25)% + (0.5)% + (0.75)* + %)
0
=~ 0.34.

Note that the exact answer is 1/3.

2. If f(z) = = then

2
1 2
f zde~0.1 (§+1.1+ 124---+19+ 5)
1
= 1.5.

Note that the exact answer is also 1.5.

12.2 DIFFERENTIATION

A derivative can be approximated using the derivative definition

ey TN = 1)

or for more accuracy

oy n JEEH = fa=h)

These are called forward and central difference respectively. The smaller the value of h
the more accuracy the result.

EXAMPLES
1. If f(z) = 2® then at z = 1if we choose h = 0.1 then using forward differences
) Q1 =1 021
FO =i =01 -2

while central differences gives

~ (1.1)2 — (0.9)2

f 0.2

The exact answer is f'(1) = 2,

0.21
=01 = 2,
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2. If f(z) = e” then using central differences at z = 0 with h = 0.2 gives
0.2 _ .—02
, e’ —e
— =& 1.
F(0) = ooz © 0067

which compares well with the exact answer f'(0) = 1.

12.3 NEWTON’'S METHOD

To find a zero of a function f(z) guess a starting answer and then iterate using the formula:

f(zn)

mﬂ"'l = xﬂ - f’(wn)

where xg, 21, ..., Ty, ... are Successive approximations to the zero.

EXAMPLES

1. To find z such that f(z) = > — 2 = 0 first find f'(z) = 2« then guess an answer g = 1. The
next approximation is

_ f(zo)
= Ees f!(xo)
12—2

T ox1
L 15

=1+=
2
The second approximation is

(1.5)2 -2

2 =15- = 1.416.

This can be continued to whatever accuracy is required. The exact answer is v/2 ~ 1.4142.

r

To find a zero of f(z) = 2 —x — 1 find f'(x) = 32% — 1 then use zo = 1 as a starting guess.
Hence

-1
I = 1- ? =1.5
15%-15-1
To =158— W ~ 1.348
3 _ —
T3 = 1.348 — 13487 ~1.348 -1 = 1.325.

3(1.348)3 — 1

The exact answer is approximately 1.324718.
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12.4 DIFFERENTIAL EQUATIONS

To solve the differential equation

% = f(za y): f(zo) =%

use the forward derivative differencing formula so

Yn+1 = Yn + hf(@n, yn)

where &, are the discrete values of z, ¥y, the solutions y(z,,) and h = 2,41 — 2.

EXAMPLES

1. To solve dy/dz = = + y with y(0) = 1 consider a series of # values 0,0.1,0.2,0.3... with
h=01.Thuszo =0,y0=1

y1=1+0.1f(0,1)=1+01(0+1)=1.1
y2=11+0.1£(0.1,1.1) =122

ys =1.2240.1£(0.2,1.22) = 1.362

ya = 1.362 4+ 0.1£(0.3,1.362) = 1.5282.

Thus we have an approximate solution set of point (0,1), (0.1,1.1), (0.2,1.22), (0.3,1.362),

(0.4, 1.5282) representing the solution y = y(z). The exact answer is y(z) = —z — 1 + 2e® so
that y(0.1) ~ 1.11, y(0.2) = 1.24 and so on.

2. To find y(0.4) using j—i =22 + 1 with y(0) = Quse h = 0.4 so that

y(0.4) = y(0) +0.4(0% +1) = 0.4.
To find a better approximation use h = 0.2 so that

»(0.2) =04 0.2(0°> +1) = 0.2
¥(0.4) = 0.2+ 0.2(0.2% + 1) = 0.408.

3

The exact answer is y(z) = % + x giving y(0.4) = 0.42.
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12.5 FOURIER SERIES

A function f(z), £ € [—p,p] can be expressed as a series of sine and cosine terms:

(=]
IS T b sin ™
fiz)= 2 + (ancos pa:+b,,sm p:c)

n=1

where the coefficients a,, b, are given by

1 '
w = [ fai
p —-p
lfp i
an = - [ flz)cos—zdz
n oL, ( ’
1 P nmw
by = f(z)sin —z dz.
n vl (=) v
EXAMPLE
0, -1<z<0 _ _
1, 0<z<1 has Fourier coefficients

1

The function f(z) = {
ag

f(m)dx=/011da;=1

/.
w=

.
= 1cosnnzdr = wmnm =0
0 nmw
1
1—cosn 1-(=1)"
f lsinnwzdz = T = =1
0 nm nm

s0 f(z) =

Mll—i

n=1

1 n
z ( ) sin nar. The first eight terms of the solution are plotted below.
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12.5.1 EVEN FOURIER SERIES

An even function f(z), z € [—p, p| can be expressed as a series of cosine terms only:

f(z) = % + i (a,, cos %}T:c)

n=1

where the coefficients a,, are given by

2 f”

- | fla)de
P Jo (

2/” nmw
an = - z) cos —x dz.
2 ez

]

EXAMPLE

The function f(z) = |z|, z € [-1,1] is even and will have Fourier coefficients

1
%:2[ zdr=1

0
(-n" -1

1
=2 zeosnrrdr = 2
an /,.) n2n?

50

oo
e |
lz] = = + Z 2(1-;1—772 COS NTL.
n=0

Plotting the first four terms in the expansion gives the plot below.

Y
1.0+

0.8+
0.6
0.4+

.2

-1.0 -0.5 0.0 0.5 1.0
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12.5.2 ODD FOURIER SERIES

#z) = i (bﬂ sin ’%‘m)

n=1

with coefficients

2 [P nw
bn=—/ x)sin —az dz.
A f(z) »

An odd function f(z), z € [—p, p| can be expressed as a series of sine terms only:

EXAMPLE

The function f(z) = z, z € [—1,1]is odd and will have Fourier coefficients

1
b, = 2[ z sin nwz dz
0

_ e

nmw

Hence

= o] ( _ 1) I
= -2 si .
x nézo o N NTE

Plotting the first eight terms gives the plot below.

Y
1.0+
0.5+
T T 1 &z
-110 -0.5 0.5 1.0
-0.5-
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(Answers are given in Chapter 14)

1.

o

10.

Find an approximation to the integral

1
/ z2 do
0

using an interval size of A = 0.2.

. Approximate the integral

2
/ e* dz
0

using an interval size of A = 0.5.

. Afunction f(z) is defined by the set of points

(0’ 0)’ (1’ 2)’ (2’ 4)’ (3’ 7)’ (4’ 8)’ (5’ 9)'

Hence find an approximation for the integral

rd
/0 f(z) dz.

. For the function f(x) = sinhz find an approximate

value for f/(1) using a discretisation b = 0.1 and the
central differencing rule.

. A function f(x) is given by the set of points

(0’ 0)’ (1’ ]')’ (2’ 3)’ (3’ 5)’ (4’ 6)’ (5’ 7)'

Find an approximation for f(z) at all the points
€=0,1,2,3,4,5.

. Use Newton’s method to find a zero of y = &2 — 3 start-

ing with ¢g = 1.

. Use Newton’s method to find an approximate value for

51/3, (Hint: solve y = o — 5 = 0 with a starting guess
of Ty = 2)

. Tind the zero to two decimal places of y = sin x using

Newton’s method starting with zo = 3.

with y(0) = 1 to find an approximation to y(0.3) using
a step size of b = 0.1.

Numerically solve the differential equation
dy
dz

with y(0) = 0 to find an approximation to y(0.6) using
astep size of h = 0.2.

=y’ +1

11.

12.

13.

14.

15.

16.

17.

Numerically solve the the equation

dy 2
dm—w-l—?/

with y(0) = 0 to find an approximation to y(0.4) using
h=0.2

Find the Fourier series of y = x + 1 over the interval
T € [—m,7].

Find the Fourier sine series of

_J -1, -2<z<0
f(””)—{ 1 o0<Lz<2
Find the Fourier cosine series for
0, —2<z<1
f@y=4 1, -1<z<1
10, I<z<2
Find the Fourier series for
-1, -2<z<-1
flz) = 0, -1<zK<1

1, l<z<2

A double derivative can be approximated by

f”(.’E) — fl($+h‘){: fl(z_ h)

w replace f'(z — h) and f'(z + h) by their
£

examnle

T 1ve dafini £y
TESpCCiive uvuuluuuo, 101 SXamipie

f(z + 2h) — f(z)
2h ’

;

fl@+h) =
derive the approximation

f(z +2h) - 2f(z) + f(z — 2h)
(2h)?

@)=

or by rewriting H = 2h as
flz+ H) —2f(z) + flz — H)

; EAS ’

H?

f(e) =
For the function f(z) defined by the set of points

(0,0),(1,2),(2,4),(3,7),(4,8),(5,9).
find estimates of f/(1) and f”(3).



Each test should be easily completed in one hour although good students will be able to do them in
half an hour. A passing grade would be approximately 15 correct answers out of 20. Solutions are
given in Chapter 14. The tests are only a guide and some of the more difficult areas of work may be
covered at different stages in a mathematics course.

There are six tests, two for each major component of an undergraduate degree.

(i) First Year Semester One: Students should have a basic knowledge of algebra, functions, tran-
scendental functions, simple differentiation and simple integration. This material is covered in
Chapters 1 to 5 and it is assumed many students will know at the beginning of the semester
and all students should know by the end of the semester.

(i) First Year Semester Two: Students should have a more detailed knowledge of algebra, func-
tions and transcendental functions plus differentiation (including parametric and implicit dif-
ferentiation) and integration (including definite integrals, substitution and areas). A basic
knowledge of vectors, matrices and asymptotics is also expected. This material is covered
in Chapters 1 to 8.

(iii) Second Year: In addition to the previous test material the student should have a knowledge
of complex numbers, integration by parts, eigenvectors, basic differential equations and multi-
variable calculus. Some of this material will be taught during the second year of a mathematics
course depending on the university.
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1.
2.

3.

I~

10.

11.

12.

13.
14.

16.

17.

18.

19.
20.

3.1 TEST 1: FIRST YEAR — SEMESTER ONE

Find the roots of the quadratic 22 + 1 = 5z.

For what values of m is |m + 7| > 72

1 2
Expand (— + ab\ .
\& /

Raarranga tha fallawing annation to fAind < 1 1 o = 1
l\vmlwls\/ i l\lllUVVllls V\iuull\lll AV SSSLVA J T o — .
z )
. o ATY
. Simplify Y= — \/z.
2\/y

1
. Find dy ify = a3
x

d 2

I (@) =1— L find f(2).

-2
Z

d
. Find —i’ if y = sin 322,

d

1
. Evaluate / —+1 dz.
T

d,
Find il ify =zcosz.
dz
Simplify exp (In#* — 2Int).

/7 .z \

o e
Simplify In (e_?/)'
The equation (z — 1)2 + y — 3 = 0 is what type of curve?

What does f(z) = e~ approach as £ — —o0?

15. If f(2) =22 + 1 and g(z) = % whatis f(g(a))?

Evaluate Z(z +2).
i=1

6!
Evaluate IR

Find A and B such that
1 A B

(z—1)z-2) z-1 =z-2

Expand (1 + z)* using the binomial theorem (Pascal’s triangle).

Divide z3 + 322 +z +1byz + 1.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

3.2

. Rearrange

. . dy .. 4
. Find == ify = —.
dz

. Find f'(z) if f(z) = 23

. Solve formif m(m —4) +4 = 0.
. Factorise 2% + 222 + z.
. For what values of z is |z + 2| > 1?

. Expand (a+ b+ ¢)(a — b —c).

= 3tofind z.

8=
R | -

. Solve for r if 6r2 — 6r — 1 = 0.

2

. Find f'(z) if f(z) = %cos&z:.

z
-3
Find f'(z) if f(z) = ze®.

Evaluate J/ 525 dx.

r1
Evaluate / — dx.
2z

Iflne = 2 and In b = 3 what is In ab??

The equation 222 + y2 — 3 = 0 is what type of curve?

4

Evaluate the sum Z(Zz‘ +1).
i=1

If f(2) = 22 and g(x) = = + 2 what is g(f(a))?

5!
Evaluate 3

Find the partial fraction form for

Find the inverse function f~1(z) if f(z) = vz — 2.

TEST 2: FIRST YEAR — SEMESTER ONE

TEST 2: FIRST YEAR — SEMESTER ONE

(:c—lsu(:c—S)'

Use polynomial division to divide 3 4+ 1 by & + 1.
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ok

1.
2.
3.

4.

oo

10.

11.

12.
13.
14.

15.

16.
17.
18.

19. What does

o
(e}

3.3 TEST 3: FIRST YEAR — SEMESTER TWO

Find z if z(3z — 5) = —1.
For what values of z is |z — 3| < 157

Expand (322 — 4x)2.

1 1
Rearrange — — /y = — — to find «.
VY =g

1 1 1
. Rearrange —+—=§toﬁnda:.

Yy Z

. Find f'(z) if f(x) = 3 cos(x?).

d,
. Find _y ify = z2%e®.
dr

Tian A dy fn bmaian VI R . . 2
i — 1 o i 1
X

Y+ y =sinz”.

d
. Find % in terms of ¢ if y(t) = 2 and z(¢) = sint.

dz

1
Evaluate / dx.
xr—2

2
Evaluate / e** dz.
Jo

If f(2) = 2z and g(2) = 1/2% what is g(f(2))?
Simplify exp(lnz — 21ny).

Find the determinant

05 4
30 2/
|1 i —1|

r1 21
IfA:ll 3thatisA_1?

Find ||u|| if w = (-3,v/2,1).
Find (1,2,3) - (1,1,1).
Write 2sinh 4+ 2 cosh z in terms of exponentials and simplify.

T+ 2 .
——F————— approach as x — o0.
z+vVz2+3 PP

. How many ways are there of choosing a team of 4 people from a group of 8 people (with no

order)?
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—

(9N

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

. Solve for m if m(m — 2)

. Make as one fraction the expression VT -

3.4 TEST 4: FIRST YEAR — SEMESTER TWO

_1
=3

. For what values of ¢ is |t — 5| < 10?

3
Expand (x—'—l\ .
"z

S 1
o

i

7

. Rearrange the following equation to find m: IL =2 +3.
m

. . 1
. Find fI(CI}) if f(:v) = m
. Find 2'(t) if 2(t) = e~*sinh 2¢.

d
. Find 2 if zy? +y = coshz.

dz

. 1 9
. F1nd/E+4w dz.

The equation z2 + = — 2 + 3y = 0 is what type of curve?

Find/ sinz dz.
Jo
|6 -1 2|
Find the determinant | 4 0 -3 |.
1 0 -2

What is the angle between the vectors (1,2,1) and (2, —1,0)?
Find |ju|| if u = (2, -2,1).

Find the partial fraction form of w-12@-2)

ze®

What does f(z) = ———F——
1@ sinh(z)vz? + 2z

approach as ¢ — oo?
Find / zsin(z? — 1) dz by writing u = 22 — 1.
r3
Find / |z| dz.
-2
Is f(z) = z coshz an odd or even function?

|

What is ATA if A = {

W N

i
1
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12.

13.

14.

15.

16.
17.

18.

19.

20.

. Findzifz? + 5z +6 =0.

TfInem — Eoand lnn — 0 fin
AL LT = O =

1
UL 1L 78

d
. Find _z if y = sin 322.

d

d
. Find il if y = 22 sinh 2z.
x

d

1
1nd/2m_3d:c

. Find / te~t dt.

2
. Find/ 2zv/ 22 — 1dz.
1

10.
11.

Find (5,2) - (=7,1).
Find (2,3,-1) x (2,0,3).

ey
(@2}

]

]

[\~

Find the eigenvalues of |-
L

d;
Solve the differential equation for y(z) if &__Y

dz z3
i
Find y(z) if d—x?;’ = —9y.
Find the imaginary component of 3

Write z = 2 + 2i in polar form z = re®®.

Find the inverse of the matrix

Find the first two non-zero terms of the Taylor series for y = sin z about 2 = 0.

COSZT
What does ——5—— approach as z — 07
z

If f(z,y) = 22 — 3y* whatis V f?
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13.6 TEST 6: SECOND YEAR

1.

10.

11.

12.

13.

. Find the imaginary component of z = 3e

. Simplify

Factorise 222 — 3z — 2.

2
.Iflnz=TandIny = 2 find In (%)

o P

. Find (;—‘; if f(z,t) = e tsinrwz.

i /2

as T — o0.

2z
vz -2z +1

. For what values of pis |5p — 4| > 1?

. Simplify cos(nm) wheren = 0,1,2, ...
. . . dy

. Solve the differential equation T = zy.
x

. Solve the differential equation y" + 6y’ + 5y = 0 for y(z).

Find / z cos Tz dx.

r/2
By letting 4 = sin z find —— dz.
x/4 Sin‘z

Find ||lul| if w = (+/10,1,—1).
Findu x v ifu = (1,0,1) and v = (0,1,/2).
Find the ei

Find the first three terms of the Taylor series for exp(z?) about z = 0.

If f(z,y) = 1 — 2% — 3y find the slope in the direction (1,1) when at the point (0, 1).

If f(z,y) = 1 — 22 — 3y find the direction of maximum slope at the point (0, 1).

Ifv = (2 + z,zy, 22) whatis V - v?

I f = 22 4 y® whatis V2 f2
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z8 + 827 + 28x% + 56z° + 70zt + 5623 +

ANSWERS
Chapter 1
Algebra and Geometry
. 7
1. @) ~20
o z? -3¢ +15
(z + 2)(z — 3)
vl T2+ TT—2
(iii) ﬁ
() z2 +10z —2
(z — ) (z+2)
) z2 +22-3
z(z — 1)
oh z+1
2.
(i) d>5/2
(i) d < -8
(iii) 5<z <15
(iv) 2>borz<—11
(v) a > —-3o0ra < -5
i) —3<z<5
3.
i z2-9
(ii) 932 — 24+ 16
(i) @3 + o2y — zy? — 93
(iv) 3z%+ 2% — 27z — 18
) o3 — 1252 + 48z — 64
4.
(i) z* + 823 + 2422 + 32z +
(i)
2822 + 8z +1
(i) 21

0]

(i)

(i)

(iv)

)

@
(i)
(iii)
(iv)

_a:+3 T+ 2
2 1
a:+4+ T —2
1 1 1 1

1 1

"5(z+3)2 25z+3

[ I A

T =-2,-2
z=-—6,—1
¢ =-4,3
¢ =-2,1
r=-4,1

—-1++/13 -1 -+13

B

2 2

255 —2
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9. 15.
Y
1.0
@ (z+1)+ —+ 5 o8
. 0.6
(i) (z+1) o
(i) 22+ 3z +1 0.2
0.0
10. 0.0 05 1.0 1.5 2.0
i) 720 16. z=3,z=4
(i) 30 17.
(iii) 15 27
(iv) 27 1 /\
SAVAR
A4 2
Chapter 2 2
Functions and Graphs 18.
1. 9 1.0?
it o\ /
0.0 T 1
—1)3 T
3. (z—-1)°%+1 o5 4
4. b-1%+1 a0l
5. flgla)) = sinz(a), g(f(z)) = sin z2 1.
6. f(f(z) =(® +1)> +1 zoa
7. fg(z)) = (22 = 2)%, g(f(@)) = (c - 1)* - 1 15 /\
ye VAV
9, f_l(:l:) -~ _ 0.0 7|— 47|-
1 20. 27
10. (z) = o
21, =
11. 3
n
3
23.
08 10 Y
o
12 =1 "
13. y= l m=— l
- Y= 27 - 0 ] é : A,z
14.
,, A\ J
OA% -
vo{ : VS L7 2 \/
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24,
¥
0.5
PP JU | o F
.U -U.o 0. 1.0
25.
K}
1.0
0.5+ //\
0.0 . ; . \ T
05 1.0 1.5
-0.5
-1.0-
26. 2andO0.

27. x? + 4y? = a? for some constant a.

28. (x—1)2+(y—2)%2 =4
)

20 (z—a2 +(y—2Y2 —0q
ANad =7 T Ag -~

/
30. Circle, centre (1, 0) radius V2.
31. Ellipse, centre (1,0).

32. Parabola, vertex (1,0).

33. Line, gradient of —1/2.

34. Hyperbola, centre (1,1).

35 y=1+(z —2)?

5 1 5
36. (y—1)° + Z(z—2)‘ =1

Chapter 3
Transcendental Functions
1.

. 1y?

® Z$_2

o 1

(i) 1

(iii) 2

i)

o~
<
~

(vi)

M

(i)

(iid)

(iv)

)

(vi)

(ii)
(iii)
(iv)

(43

~

@
(i)
(iii)
(@iv)

0]

(ii)

(iii)

(iv)

0]
(i)
(iii)
0]

(i)

=)
N
@8
N——’

N

In7

In5
In2

In(1.02)
In(5/7)
In(3/2)
11n(Q/Qo)
n In(a)

exp(_g';y)
/3y — 1\

lelnk 5 )

In(st) =2+3=5
In(st?) =2+6=28

In(v/st) = (2 +3)/2 =5/2
In(s/t) =2-3=-1
In(s/t3) =2 -9=-T7
e*ey =3x5=15
eV —e®e¥ =15
ez — (e“’)2 —32—-9
e®+e¥=3+5=28
0

1

V2

V3

2

-2

1

2

sin @

T 3n bm Tmw
4’474’ 4

T 5

6’6

8. Results given.

9. Results given.
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—
=]

(i) 0=m/4:cos8=1/v2,
sinf = 1/\f2, tan@ = 1, sec = /2.

(ii) 8 =137/6: cos§ =/3/2,
sinf =1/2,tan @ = 1/\/5, secd = 2/\/§

(iii) 8 = 27/3: cosf = —1/2,
sinfd = \/§/2, tanf = —v/3,secd = —2.

(iv) @ = —57/3: cos8 =1/2,
sin @ =/3/2,tan 0 = /3, sec = 2.

(v) 8 =5m/4: cosd = —1//2,
$inf = —1/v2,tand = 1,secd = —v/2.

11. c<)s17r—2 =1/ +V3/2)/2

12. ¢ = 170000
13. odd

Chapter 4

Differentiation
1. (i) 3cosz + 5sinx
(i) 3e® — 2z
(iii) 3
T

(iv) 2coshz — 3sinh

(i) 2cos(2z)

(i) (1 + 3x2)cos(z + 2)
(i) 3(z +4)2
(iv) 5(z +sinz)*(1 + cosx)

($4

~

2
cos(lnz?) =
z
(vi) —exp(cos? z)2sinzcosc
(vii) 4zsinh(2z2?)
3. (i) e® + ze®
(ii) = 23

(iii) (cosz + sinz)e®

—sing CoS T
> it

. 1
(iv) 5 (1 —4Inz)
(v) cos?z —sin?z

(vi) (1 - 111:1:) e ®
T

(vii) 2zsinz + z2cosz

(viii) sinh? z + cosh? z

1 1
(ix) —e'/® (w—a - F)

4. (i) exp(zcosz?)(cosz? — 222
(i) e®(cos(2z + 1)% — 4(2z + 1) sin(2z + 1)?)
(iii)

cos T sinz
(z+1)? (z+1)

(v) cos(z? + exp(z® + z))
x(2z + (322 + 1) exp(z® + z))

wiy 202 (L= L)

(iv)

\z ¥/
5.
) dy cos(x—1)  cos(z—1)
dz 2y ~ 2,/sin(z — 1)
L gy g 1 2\—1/2
i) — = =(1-=z
@ dz  2sin(2y)v1 - z? 2( )
(iii) :%y =e®(z + 1)y = e®(z + 1) exp(ze®)
T
. dy  3e%e 3¢l
iv) — = = ——
) dz ey 5+ e3«
wm B2
der 1+ 3y?
(vi) dy _ cosz
dz ~ 2y +cosy
1-—
i) Mo 1oV
dr x+1-2y
6.
G) dy __sint
dz = 2tcos(#?)
Lody €
W 4 = 2
.. dy 2t
i) — = ——
o dz  cost
a a
oo () ()
wt 2wt
8.
(i) £ = 2 minimum.
(ii) £ = 3 minimum, £ = 1 maximum.
(iii) « = 0 minimum, z = 1 inflection.
(iv) & = 1 maximum.
) z=e"1/2 minimum.
(vi) & = 0 maximum, £ = 1 minimum.
(vil) & = —1 maximum, £ = 1 minimum.
9.
10?
s |
6
4
2
NS
~ 2 4 5
2]
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Chapter
Integrati

(vi)

i)
(i)
(iii)
(@iv)
)
(vi)

Q]
(i)
(iii)

(iv)

@
(i)
(iii)
(iv)
)
(vi)
{vii)

(viii)

s
on

10 11 12
1
5cosh2a:+c

4sinhz —e® + ¢

i 2
—

—56 +c

1 2

5111|z +4z+5|+c
In|lny|+¢

1
5(7:1:4 —1)32 4+ ¢

5.
@ -2
1
iil) ——=1n(3
(ii) 2 n(3)
R P Y
(iii) ¢ (2sinz —cosz) + ¢
(iv) —(z+1)cosz+sinz+c¢
) e*(@? -2z +2)+c
(vi) glnz —xz+¢
6.
(i) —In|cosz|+c¢
(i) (2—z%)cosz +2zsinz +c
(i) 9e*/3(z —3) +¢
A7 \ 2
2 2
(iv) Zu¥? 4+ Zud? ¢
5 3
(v) arcsinhzx + ¢
Chapter 6
Matrices
1.
5 -1 0]
@ A+B=]0 1 -9
4 1 7
" 7 -3 3
AB = —-25 —15 =57
| 1 -1 -1
[ 1 -3 8
BA = —-14 -6 12
L 21 3 —4
trace(A) =7
r 7 1 1
(ii) A+B:[ 1 s J
AB— | —57 1]
| 8 -4 |
[ —42 22
BA=| —59}
trace(A) =5
11 0 0]
(iii) A+B = 0 11 0
0 0 1
L E
18 0 0
AB = 0 24 0
[ 0 0 -12 |
[ 18 0 0]
BA = 0 24 0
0 0 -12 |
trace(A) =9
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2 Chapter 7
39 11 Vectors
) [ 15 4] L
30 6
@ [2 3 0 -1] O u+y=(-10)
3u = (—6,-3)
a | 5 7] lall = 5
N (i) (7,7),(9,12),5
. (iii) (—3,0) (—6,3), V5
i At=| -1 3 ] (v) (4,5,3),(9,12,6), V29
3 -5 " (4,1,2,1),(9,3,3,0), V11
aa=| © 1 1 ] i) (3,2,0),(6,9,3), V14
| -4 -18 34 vii) (2,-2), (3,3), V2
AAf—| 14 -10] 2.
| 10 50 |
. ., [ 6 0o 7] (i)1<,\/5+ﬁ
@ A=|o _4 5| (i) 7V2<5+5
AtA— [ 85 35] (i) 3<Vv6+v2
[ 35 41 (i) 5v2 < V3 + 29
AAt = 33 12 _;g :| W) V22 <3 +v11
| 42 -20 74 (vi) V13 <v3++V14

4 (vii) 2v2 < V10 + V2

1 4 _3 3. v=(3,1),u =(-3,2.5), u + v = (0, 3.5)
o L 3] z u vty
5] -1 2| 4.
i L [ 2 40 1 @ u+v=(20,0)
11 -
2[0 -3 1J llw + vl =2
5 (i) w+v=(-1,-2,7)
0 —38 llu + v = 3v6
By —
(i) —36 (iif) g"i‘z =(12,3,-2)
(i) 0 [lu + »|| = V157
111 ~ ~
6. z=1lLy=12=1 5
7. o =ty=4t,z=16t, tERe 0 u-v=6
8. (i) a#£21/2 uxv=(-1,-2,5)
. _ 6
(i) a=21/2,c#1 cosf — o
=21/2,¢c=1
(i) a=21/2 ¢ (i) w-v=—17
9. /\1:25 ‘171:(15050) ’:\:V“i/n o aEN
~ N ’ U XU =\9,—9,—19)
d2=3, v2=(0,1,0) .
/‘\3:1: '773:(1,25_1) cosd = —
% V144/38
10. Ay =3, w1 =(1,1,0) (i) w-v=11
A2=1, wa=(0,0,1) EXE:(_ﬁ"l‘w)
A3 =1, w03 =(1,-1,0) cosf =



ANSWERS 137
Gv) -2 =10 2 o --._,__,‘v1_w_2
MRS~ 3 (i) cosz ~ 1 >
u X v = 0, undefined. .
~omer .. sinz T
™) u-v=-9 i ——=rl-—-
uxv=0 21
~Tm T i) T2 ng—g?
cosf =—1 1+1/z
i) uwev=2 (iv) ze® ~z+ z2
~ o~ cosT — 1 T 1 4
u x v = (—20,10,0) W) ——— Nt
1 1
0= ——+ vi) sinhz ~ ¢ + ~x°
cos Vool (vi) + 8
. . . ... coshz—1 1 1,
6. Orthogonality easily verified. (vii) — ~ > + 2_4_73
7. 1
(viii) —— =~ 14z
(i) independent (det=7) l1-= )
. i
(ii) dependent (ix) In(1+z)~z— 5:1:2
(133} danendant A A m 3~
L) ulpuiiueiit - D W 7 V.
(iv) independent (det=2) (i) 2?4+ 1
(v) dependent 3z2+2z+1 3
. .. \/3— o 3/2
(vi) dependent i) vzt t2c+1me
3 42
8 c—_2 (iii) _#Ft+2s =
- € 3z2 +vzt+1 4
9. (1,2,2),3 W) z?2+1 ~ 22
10. (1,2,3)-(2,-1,0) =0 1+1/z
) sinh(z)
. _ cosh(z)
Chapter 3 sinh(3z) e~ ®
Asymptotics and Approximations (vi) Trele B g
-
L i) 28w 2ge=?®
sinh z
@ 6 —e
y ity 2T €
(i) 1 1+ ge—°
(iii) 1 (ix) e® ~
PPN sinh &
{wv) v
w 1 5.
2 ) e”’sinzmz+z2+%m3
v 0 (i) €2 ~ 1+ 2¢ + 222
2. (iii) sinz? ~ x2 — %me + %zlo
1 vy e w14 g3 4 1.6
(l)_g vy € L& T3
(i) 0 6.
. 2
(i) 1 (i) sinz ~ —%(z—%)
3 (ii) coszﬁ—(.z—%)-i—%(x—
X 1
(iv) — g l 5
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Chapter 9 4.
Complex Numbers G 2i
1. (i) %(1 +14)
i) 6 —25i )
(i) 12 +6¢ (iif) 5 (V3+14)
(i) 82— 33; o1
i) =(V3-1)
(iv) 8—1i 2
. 1
(v) 13 +84i W) 5(1-1—\/3.{)
(vi) —2—2i S
(vii) 34(1 + 1) '
i —o3w/4 _ 1 ¢ -
(viii) 2 (i) z122 —.e = ﬁ( 14 1),
(ix) 13 zf:e”":—l
X
: ii) 2120 = €87/2 =4,
x) 6—Ti (i) z%iei”'ﬂ:%(1+‘v/§i)
2
() 3+ g (il)) 2122 = 6ei™ = 6,
(xii) . Z% — 4eim/2 — 45
X1u) —2
(xiii) (1 — 1) (iv) 2122 :.3e—2i“/3 = 3(-1-3i),
Y 9 22 =ei™/3 = 1(1+v3i)
OV 145~ 145" 6.
2. ) ei7r/4 — %(1 +Z)
i) z=4,y=2 ei5"/4:—%(l+i)
(i) #=3 (i) 1, %5
3. (iii) 29'3'77/4’ 2ei11-7r/’12, 2e—i57/12
@i cisw (iv) %(1 —i),ﬁ(—1+i)
(i) cis3w/2 (v) cis(i(n/6 + kn/3)),k=0,...,50r

z =i, 3 (V3£ 1), 5(—V3 1)

m
i) Beis T
(iii) is 2

. . 3w
(W) V2eis Chapter 10
. Differential Equations
) V2cis 1 q
- 1.
(vi) v2cis — 1
i M @+ +e
(vii) 2v/2cis — 1
4 (i) —= +e¢
117 T

(viii) 5CIST (ii) y=z—In|z+1|+¢

WA

(ix) 2cis (iv) y:%lnm+c
(x) 2v/3cis2x/3 (v) y=3zcosz —3sinz +¢
Ky
(xi) 5v2cis 1 5 () o= %y‘i te
(xii) 2cis % P B S
z 2y
(xii)) 2v/2cis %rr (i) y=cz—1

(iv) —3e~% =2e3% 4 ¢
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@ Wly+i+ = 1ln|$+1|—I—c 6. ® ‘y’(x)=C1€5m+62e_2””-1-i
V) my Tyl 2z | 10
. — R _ 2 -z -z
(vi) —cosz=In|y|+y%+c (i) y(z) =6 -4z +a° +cre 1+ c2xe
(vii) —zcosz+sinz =ye¥ —e¥ +c¢ (iii) y(z) = c1cosz + czsinz — 3 cos 3z
. 3_1 3 ) 1 ,, .
(viii) e (4z + 5)° — 5 2y +3)°=c (iv) y(z) = 3¢ +c1cosx + cesing
) y() = -Z cos2z— — sin(2z) 4+ c1e™* +
1 s 25 25
() y=— +ce caze
3 c (vi) y(z) = cre®+coe "+ —ze® — ~e® —x? -2
(i) y=_+ 5 24
2 z?
1 —22
(i) y =3 +ce Chapter 11
L . Multivariable Calculus
. _ - -z
(iv) y= 3 + ce L
(v) y=sinz+ccosz 0 % =2y
vi) y:L %£:2y+2w
3 —1 112
8f _ o
820y
(ii) % = ycosTyY
i) @=CeFt +70 % =z cos Ty,
. c 8%f _ .
(i) y= 1 ooy = CoSTY — TYsinzy
9 —cosf+c (iii) ng; =2z —sin(z + y)
i = sec§ + tan @ % = —sin(z +y)
8%y _
@) P(t)= - sty =~ cos(z +)
1 1 pn—t .
1T ce (iv) % — TV
) y==xvVec+z+x2 %[ — _et¥
Yy
E 8%f _ -
i) 1= =+ ce~Bt/L m% =—e""¥
v 9L =3ya?
af 3
3y2
soN Az -4z 82F _ 5
) y(z) =c1€™ + cz2e m% — 322
(i) y(z) = e 2(cre Ve + cze‘/g“’) 2.
(iii) y(z) = c1%/3 + cpe~?/* O (2z + 2z, —2y,2z)
(iv) y(z) = c1co83z + c25in 3z (ii) sec?(zyz)(yz, vz, Ty)
1
v) y(x) = cre™*® + coze™ " (iii) ﬁ + 11z
Yy
. _ —z/2 4
(vi) y(a:) =cC1€ e/ + cze“’/ (iv) (z(z _ y),y(a: _ z)’z(y _ .'E))
(vii) y(z) =c1 + c;,;e_s"';/2 v) 1+424+3=6
. —w/3 (vi) 2z + 4y + 62
(viil) y(z) = e "/ “cr1co8s —x (vii) 24+2+2=6
+e~%/3¢ysin ?m (witi) 2(y2)? +2(72)? + 2(zy)?
. 5 52 (ix) (0,0,2z — 2y)
(ix) y(z) = c1e’® + caze ®) (29,22 23)
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(78}

0 (4,3)

@) 5

(i) £(3,—4)
7

(iv) 75

@ (-1,-1)
(i) v2
(i) =%(1,—-1)
i) —v2

5. 413 —3¢2

(i) 54
., 84
(i) 3

(iii) 416

1 1 44
7 / / 2 +yldyde = —
w0 Jy=s? 105

Loy 44
5 / / 2? +y? dady = —=
y=0Jz=0 105
1 e
9. / / z 4+ ydydr = 3
-I:c=0 -/y=:c 20
1 y
10 [ [ T+ ydyds = —
-Iy=0 x:yz 20

11. Proof by expansion.

2
8% dc P (—Z—t) (z? —2t)

12, -~ = "=
8z ot 415/2

Chapter 12
Numerical Skills

1
1. / z® ~0.26
0

2
2. / e® dr ~ 6.52.
0

W

. /5 f(z)dz ~ 25.5

N
-~
~
—
=
-
)

1,21 = 2,20 5, 3
=2,z = 1L.75,z2 = 1.711, 3 = 1.70997
3, z1 = 3.1425, 3 = 3.14159

9. y(0.3) ~ 1.03
10. y(0.6) ~ 0.6
11. y(0.4) 1.5
12. ap = 2,an = 0,by, =
1—(=1)"
13, by =22 7D
nmw
i 2
14. ap = 1, ap, = 25207/2)

nw
1

15. bp = — (cos o (-1)®
nw 2

16. Easily proved.

17. /(1) =2, £(3) = -2

Chapter 13
Practice Tests

Test 1: Section 13.1

o= 51421
T2
2. m>0o0rm< —-14

1
3. a2 +20+ —
a

z3
8. 6z cos 3x?

1
9.9:—E

10. cosz — zsinz
11. 1
12. z—y
13. Parabola.
14. oo
15. g +1
a
16. 18
17. 15
18. A=-1,B=1
19. z* + 423 + 622 + 4z + 1
2
z+1

20, 2219
0. z° 4

r — 1 L
2T LT

_2(_]_)n

),ﬂnzo
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10.

11,

12.

13.
14.
15.
16.

20
Ay

—
-3

19.
20.

[N

10.

N

. 9z

Test 2: Section 13.2

m=2

. oz + 1)?

z< —-3o0rz > -1

a? — b2 — 2bc— 2

Ellipse
24
a2 +2

2z-1
22—z +1
i@y =2+2°

1 1 3 1
2z-3

Test 3: Section 13.3

ﬁ

[N

(5 £ V13)
<

o
A
=

w

T 8

£

— 2423 + 1622

_VY
y—1
8ly

— 81

@

2

T Siil &

[=2]

. 2we® + z2e®

2x cos ¢*
142y
2t

cost
In(z — 2)

—
—

12.

18.
19.
20.

Test 4: Section 13.4
V6

L lE—
2
. =5t 1S
3 3 1
ST+t -+
T T

Tz—2
2Vz
t2+3
4412

6
(1-3z)3

. e~ %(2cosh 2¢ — sinh 2¢)

sinh ¢ — y?

1+ 2yz

1 2
. ——Cos -1
5 cos(@® — 1)

13
2
odd

(3 5]
E 12
13 |
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10.

-
—

13.

14.
15.
16.

17.

18.

19.

20.

10.

11.

o s wow

S kW

—aen (%)
. y=cirexp \?

.y=cie ® +coe”

6z cos 3z>

. 2zsinh 2z + 222 cosh 2z

1
‘5 In(2z — 3)
—e it +1)
2v3
-33

y = c¢18in3x + c2 cos 3z

)

2\/§cisE
4
1 -1 1
0 -1
0 1 -1
. z3
sinc v T —
6
1
2
(2"3’_121‘/3)

Test 6: Section 13.6

.2z +1)(z—2)

12

—e tsinmz
3

2

3
p>lorp<g

~

-1\
;

7/
S5z

i .
— (cos 7z + mzsinwz)
T

Vv2-1

—
~

14.
15.

16.
17.
18.
19.
20.
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Use these pages to write any other essential mathematics skills your lecturers think are appropriate.
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OTHER ESSENTIAL SKILLS




Index

absolute value, 3
algebra, 1
angle, 35
antiderivative, 51
approximations, 87
area
integration, 55
numerical, 115
asymptotics, 87
augmented matrix, 70

binomial expansion, 5

calculus

differentiation, 41
fundamental theorem, 53
integration, 51

Cartesian unit vectors, 80

central difference, 116

chain rule, 45

characteristic equation
differential equations, 100
eigenvalues, 73

circle. 27

Ciivie, 47

cofactors matrix, 64, 68

comhinatione 13
compoinanens, 12

complex number, 91
conjugate, 92
De Moivre’s theorem, 94
Euler’s equation, 93
imaginary, 92

nalar farm Q2
Poat 1011, 75

real, 92
~Anniigata Q)
LrUllJUé(LL\/, T
cosh, 38

Aarivativa

uvlivatiyve,

integral, 52
cosine, 14, 26

42
a0

derivative, 43

integral, 52
cross product, 82
curl, 108

De Moivre’s theorem, 94
definite integral, 53
denominator, 2

surd, 10
derivative, 41
determinant, 63
diagonal matrix, 74
differential equations, 97

characteristic equation, 100

first order, 97
homogeneous, 100
inhomogeneous, 102
integrable, 97
integrating factor, 99
numerical, 118
particular solution, 102
resonance, 104

second order, 100
arahle QR

can
svpaiavic, 76

undetermined coefficients, 103

differentiation, 41
chain rule, 45
double, 47
first principles, 41
implicit, 46
linearity, 42

maxima AR
llaalliid, 70

numerical, 116

naramatrie A7
paldilicuic, &7

partial, 107

nradiiet vila A2
piouuiLiuie, 5

quotient rule, 44
second, 47
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divergence, 108 polynomial, 23
domain, 18 properties, 18
dot product, 80 quadratic, 22
double derivative, 47 range, 18
double integrals, 111 shifting, 20
sine, 26
eigenvalues, 73 tangent, 26
eigenvectors, 73 trigonometric, 35
ellipse, 28 zeros, 19
equilateral triangle, 15 fundamental theorem of calculus, 53
Euler’s equation, 93
even Gaussian elimination, 70
Fourier series, 120 gradient, 108
function, 20 graphs, 17
expansion, 4 . . :
binomial, 5 homogeneous differential equations, 100

hyperbola, 24
hyperbolic functions, 38
hypotenuse, 14

expnnpnﬁs\] 21

QLUCHIGE, 21

derivative, 43
function, 25

general, 31 identity matrix, 61
integral, 52 imaginary
factorial. 12 complex number, 92
actorial,

implicit differentiation, 46
index laws, 32

nolvnomial & . . -

LA At i mequalities, 3
first order differential equations, 97 inflection points, 48
firet nrincinlec 41 . PO - . PN
SRS EEAEAES, TE mhomogeneous difterential equations, 102
integrable differential equations, 97
integrating factor, 99

factorising, 4

forward difference, 116
Fourier series, 119

even, 120 integration, 51

odd, 121 area, 55
fractions, 2 by parts, 57

nartial A P ? —

partial, 6 deninite, 33
function, 17 double, 111

circ}e, 27 iinearity, 52

cosine, 26 numerical, 115

domam, 18 substitution, 56

ellipse, 28 inverse

even, 20 . cofactors matrix, 68

exponential, 25, 31 function, 19

hyvnarhnala 24 L. :—

nyperodia, L4 matrix, 6>

hyperbolic, 38 isosceles triangle, 15

inverse, 19

line, 21 L’Hopital’s Rule, 88

logarithm, 25, 31 length

10gariuiin, 25, 51 1Cligiul

odd, 20 vector, 79

parabola, 22 limit, 87
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line, 21

linearity
differentiation, 42
integration, 52

logarithm, 33
derivative, 43
function, 25

JRVSSLOLELE ) VAN

general, 31
inteoral. 58

LLLCglal, 28

natural, 33

Maclaurin series, 88
matrix, 59
addition, 59

auomented, 70

SHICIICL,

characteristic equation, 73

Cnf'm\tnrc ﬁA 68

determinant, 63
diagonal, 74
eigenvalues, 73
eigenvectors, 73
identity, 61
inverse, 65, 68
manipulation, 68

multinlication. 60
muuphicancn, ov

partitioned, 66

row operations, 66
gperations, 60

symmetric, 74
systems of equations, 70
trace, 74
transpose, 62
maxima, 48

minima AR
Iiiiida, 70

natural logarithm, 33
Newton’s method, 117
notation, 1

numerator, 2

nimarical mathade 1185
numericar mewmodas, 113

area, 115

cantrol diffaranca 114
Ceiiran Giricrencee, 116

differential equations, 118
diffarantiotion 114
ulliviviiuduuvll, 11V

finding zeros, 117
integration, 115

odd
Fourier series, 121
function, 20

parabola, 22
parameterised curves, 47
parametric

circle, 27

ellipse, 28
parametric differentiation, 47
partial differentiation, 107
partial fractions, 6
particular solution, 102
partitioned matrix, 66
Pascal’s triangle, 5
permutations, 13
polar form, 93
polynomial

division, 9

factorising, 6

function, 23
product rule, 43
Pythagoras’ theorem, 14

quadratic, 11, 22
quadratic equation, 11
quotient rule, 44

range, 18
rationalised surd, 10
real
compiex number, 92
numbers, 1
reciprocal trigonometric functions, 36
resonance, 104
right angled triangles, 14
roots
quadratic, 11
row operations, 66

second derivative, 47

100
A%

qanand ardar diffarcantial amiatinng
OLLUILILL VIULL UllIviTliudl CYudlivlly, 1V

separable differential equation, 98

qimnnlifantian

A
SlLLIpPL ]JJ\./ auwuvll,

sine, 14, 26
derivative, 43
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1
sinh, 38
derivative, 43
integral, 52
slope, 41
stationary points, 48
substitution
integration, 56
summation, 12
surd, 10
symmetric matrix, 74
systems of equations, 70

tegral 52
gral,

tangent, 14, 26, 41
Taylor series, 88
trace, 74
transcendental functions, 31
transpose, 62
triangle
equilateral, 15
isosceles, 15
right angled, 14, 15
trigonometric
functions, 35
identities, 36
reciprocal, 36

undetermined coefficients, 103
unit circle, 35
unit vector, 80

vector, 77
addition, 78
angle, 81
Cartesian, 80
cross product, 82
curl, 108
divergence, 108
dot product, 80
gradient, 108
length, 79
muitipiication, 78

Farng

quadratic, 11



