

CIRCUIT SIMULATION

CIRCUIT SIMULATION

Farid N. Najm

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United
States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Najm, Farid N.
Circuit simulation / Farid N. Najm.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-53871-5

1. Electronic circuits–Computer simulation. 2. Electronic circuits–Mathematical models.
3. Integrated circuits–Computer simulation. I. Title.

TK7867.N33 2010
621.381501013–dc22

2009022673

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To my wife, Diana,
and to our two daughters,

Lily Marie and Tanya Kristen.

CONTENTS

List of Figures xiii

List of Tables xix

Preface xxi

1 Introduction 1

1.1 Device Equations 2

1.2 Equation Formulation 3

1.3 Solution Techniques 6
1.3.1 Nonlinear Circuits 7
1.3.2 Dynamic Circuits 8

1.4 Circuit Simulation Flow 8
1.4.1 Analysis Modes 9

Notes 10

Problems 10

2 Network Equations 13

2.1 Elements and Networks 13
2.1.1 Passive Elements 13
2.1.2 Active Elements 15
2.1.3 Equivalent Circuit Model 17
2.1.4 Network Classification 18

2.2 Topological Constraints 19
2.2.1 Network Graphs 19

2.3 Cycle Space and Bond Space 23
2.3.1 Current Assignments 23
2.3.2 Voltage Assignments 24
2.3.3 Orthogonal Spaces 24
2.3.4 Topological Constraints 25

vii

viii CONTENTS

2.3.5 Fundamental Circulation 25
2.3.6 Fundamental Potential Difference 27

2.4 Formulation of Linear Algebraic Equations 27
2.4.1 Sparse Tableau Analysis 28
2.4.2 Nodal Analysis 29
2.4.3 Unique Solvability 30
2.4.4 Modified Nodal Analysis 32

2.5 Formulation of Linear Dynamic Equations 42
2.5.1 Dynamic Element Stamps 43
2.5.2 Unique Solvability 44

Notes 45

Problems 45

3 Solution of Linear Algebraic Circuit Equations 49

3.1 Direct Methods 50
3.1.1 Matrix Preliminaries 50
3.1.2 Gaussian Elimination (GE) 54
3.1.3 LU Factorization 60
3.1.4 Block Gaussian Elimination 71
3.1.5 Cholesky Decomposition 73

3.2 Accuracy and Stability of GE 74
3.2.1 Error 75
3.2.2 Floating Point Numbers 78
3.2.3 Norms 80
3.2.4 Stability of GE and LU Factorization 83
3.2.5 Pivoting for Accuracy 86
3.2.6 Conditioning of Ax D b 89
3.2.7 Iterative Refinement 96

3.3 Indirect/Iterative Methods 97
3.3.1 Gauss-Jacobi 98
3.3.2 Gauss-Seidel 99
3.3.3 Convergence 100

3.4 Partitioning Techniques 104
3.4.1 Node Tearing 104
3.4.2 Direct Methods 106
3.4.3 Indirect Methods 107

CONTENTS ix

3.5 Sparse Matrix Techniques 109
3.5.1 Sparse Matrix Storage 110
3.5.2 Sparse GE and LU Factorization 112
3.5.3 Reordering and Sparsity 113
3.5.4 Pivoting for Sparsity 115
3.5.5 Markowitz Pivoting 116
3.5.6 Diagonal Pivoting 119
3.5.7 The Symmetric (SPD) Case 120
3.5.8 Extension to the Non-SPD Case 122

Notes 125

Problems 125

4 Solution of Nonlinear Algebraic Circuit Equations 127

4.1 Nonlinear Network Equations 127
4.1.1 Nonlinear Elements 128
4.1.2 Nonlinear MNA Formulation 129
4.1.3 Preparing for a DC Analysis 133

4.2 Solution Techniques 133
4.2.1 Iterative Methods and Convergence 134
4.2.2 Introduction to Newton’s Method 136
4.2.3 The One-Dimensional Case 139
4.2.4 The Multidimensional Case 148
4.2.5 Quasi-Newton Methods 152

4.3 Application to Circuit Simulation 154
4.3.1 Linearization and Companion Models 154
4.3.2 Some Test Cases 156
4.3.3 Generalization 162
4.3.4 Considerations for Multiterminal Elements 166
4.3.5 Multivariable Differentiation 167
4.3.6 Linearization of Multiterminal Elements 171
4.3.7 Elements with Internal Nodes 176

4.4 Quasi-Newton Methods in Simulation 181
4.4.1 Damping Methods 182
4.4.2 Overview of More General Methods 186
4.4.3 Source Stepping 187
4.4.4 Gmin Stepping 189

x CONTENTS

4.4.5 Pseudo-Transient 189
4.4.6 Justification for Pseudo-Transient 193

Notes 196

Problems 197

5 Solution of Differential Circuit Equations 201

5.1 Differential Network Equations 201
5.1.1 Dynamic Elements 201
5.1.2 Dynamic MNA Equations 203
5.1.3 DAEs and ODEs 204

5.2 ODE Solution Techniques 206
5.2.1 ODE Systems and Basic Theorems 206
5.2.2 Overview of Solution Methods 209
5.2.3 Three Basic Methods: FE, BE, and TR 211
5.2.4 Quality Metrics 215
5.2.5 Linear Multistep Methods 220

5.3 Accuracy of LMS Methods 221
5.3.1 Order 221
5.3.2 Consistency 223
5.3.3 The Backward Differentiation Formulas 224
5.3.4 Local Truncation Error 225
5.3.5 Deriving the LMS Methods 228
5.3.6 Solving Implicit Methods 229
5.3.7 Interpolation Polynomial 231
5.3.8 Estimating the LTE 237

5.4 Stability of LMS Methods 241
5.4.1 Linear Stability Theory 242
5.4.2 The Test Equation 243
5.4.3 Absolute Stability 246
5.4.4 Stiff Systems 252
5.4.5 Stiff Stability 253
5.4.6 Remarks 256

5.5 Trapezoidal Ringing 257
5.5.1 Smoothing 258
5.5.2 Extrapolation 259

5.6 Variable Time-Step Methods 261

CONTENTS xi

5.6.1 Implementing a Change of Time-Step 262
5.6.2 Interpolation Methods 262
5.6.3 Variable-Coefficient Methods 264
5.6.4 Variable Step Variable Order (VSVO) Methods 265

5.7 Application to Circuit Simulation 265
5.7.1 From DAEs to Algebraic Equations 266
5.7.2 FE Discretization 269
5.7.3 BE Discretization 271
5.7.4 TR Discretization 277
5.7.5 Charge-Based and Flux-Based Models 282
5.7.6 Multiterminal Elements 291
5.7.7 Time-Step Control 296
5.7.8 Enhancements 298
5.7.9 Overall Flow 299

Notes 300

Problems 300

Glossary 305

Bibliography 307

Index 311

LIST OF FIGURES

1.1 A resistor. 2

1.2 A capacitor. 3

1.3 Nonlinear resistor. 3

1.4 A simple linear circuit. 4

1.5 A linear circuit, used to demonstrate the MNA formulation. 6

1.6 An i-v characteristic for a nonlinear resistor, showing linearization
around a candidate solution point. 7

1.7 A linear circuit that has the same current–voltage characteristic as
the tangent line in Fig. 1.6. 8

1.8 Overall circuit simulation flow. 9

2.1 The symbols for (a) a linear resistor and (b) a nonlinear resistor. 14

2.2 The symbol for a capacitor (a) and an illustrative plot of capacitance
as a function of voltage (b) for a nonlinear capacitor. 14

2.3 The symbol for an inductor (a) and an illustrative plot of inductance
as a function of current (b) for a nonlinear inductor. 15

2.4 Symbols for (a) a constant independent voltage source, (b) a time-
varying independent voltage source, and (c) an independent current
source. 15

2.5 Controlled voltage sources, showing a linear voltage-controlled
source (a) and a linear current-controlled source (b). 16

2.6 Controlled current sources, showing a linear voltage-controlled
source (a) and a linear current-controlled source (b). 16

2.7 Replacement of a nonlinear VCVS by an equivalent circuit contain-
ing only linear controlled sources. 16

2.8 The pn-junction diode, showing its structure, circuit symbol, and
current-voltage characteristic. 17

2.9 An equivalent circuit model for a diode. 18

2.10 The n-channel MOSFET, showing its structure, circuit symbol, and
a simple version of its equivalent circuit model. 18

2.11 A circuit element and the corresponding graph edge. 19

2.12 A circuit, its directed graph, and its undirected graph. 20

xiii

xiv LIST OF FIGURES

2.13 Edge labels, shown on a directed and an undirected graph. 20

2.14 Cycles in a graph, corresponding to edges that are not part of the
chosen spanning tree. 26

2.15 A resistor. 35

2.16 Element stamp for a resistor in group 1. 36

2.17 Element stamp for a resistor in group 2. 36

2.18 An independent current source. 37

2.19 Element stamp for an independent current source in group 1. 37

2.20 Element stamp for an independent current source in group 2. 37

2.21 An independent voltage source. 38

2.22 Element stamp for an independent voltage source. 38

2.23 A voltage-controlled voltage source. 39

2.24 Element stamp for a VCVS. 39

2.25 A current-controlled voltage source. 40

2.26 Element stamp for a CCVS. 40

2.27 A circuit to demonstrate the MNA equation formulation. 40

2.28 A capacitor. 43

2.29 Element stamp for a capacitor in group 1. 43

2.30 Element stamp for a capacitor in group 2. 44

2.31 An inductor. 44

2.32 Element stamp for an inductor. 44

2.33 Linear network for problem 2.1. 45

2.34 A test circuit. 46

2.35 Circuit description file for the circuit in Fig. 2.34. 47

3.1 The core of a Gaussian elimination algorithm. 56

3.2 An implementation of forward substitution that is appropriate when
a matrix is stored by rows. 62

3.3 An implementation of forward substitution that is appropriate when
a matrix is stored by columns. 62

3.4 An implementation of backward substitution that is appropriate when
a matrix is stored by rows. 63

3.5 An implementation of backward substitution that is appropriate when
a matrix is stored by columns. 63

3.6 Crout’s algorithm for LU factorization. 66

3.7 Doolittle’s algorithm for LU factorization. 67

3.8 Gauss’s algorithm for LU factorization. 70

3.9 Cholesky decomposition for LU factorization, where U D LT . 74

LIST OF FIGURES xv

3.10 Illustration of relations among the various error terms, including
forward and backward error. 77

3.11 The geometric interpretation of ill-conditioning, in the case of a
two-dimensional system [after Ruehli (1986)]. 91

3.12 Iterative refinement algorithm. 96

3.13 The Gauss-Jacobi algorithm. 99

3.14 The Gauss-Seidel algorithm. 100

3.15 An illustration of node tearing, where a circuit is partitioned into
four sub-circuits. 105

4.1 An equivalent circuit for a nonlinear VCVS, ve D f .vx /, using linear
controlled sources. 128

4.2 A nonlinear circuit used to illustrate equation formulation. 131

4.3 Newton’s method. 137

4.4 A graphical illustration of Newton’s method in one dimension. 141

4.5 Oscillation in Newton’s method. 143

4.6 Divergence in Newton’s method. 144

4.7 A graphical illustration of the secant method. 145

4.8 A graphical illustration of the Newton-chord method. 145

4.9 Existence of a fixed point [after Burden and Faires (2005)]. 146

4.10 The fixed point algorithm. 147

4.11 Illustration of progress of the fixed point method [after Chua and
Lin (1975)]. 147

4.12 A diode. 155

4.13 Companion model for a diode. 156

4.14 A simple diode circuit. 157

4.15 A linear circuit replacement that provides the solution for the k-th
Newton iteration. 158

4.16 Another diode circuit. 161

4.17 A linearization of the circuit in Fig. 4.16, using the diode companion
model. 162

4.18 A general multiterminal element. 166

4.19 An equivalent circuit for a general multiterminal element. 167

4.20 The Ebers-Moll model for an npn BJT. 172

4.21 A companion model for the npn BJT. 174

4.22 An n-channel MOSFET. 175

4.23 A simple companion model for the n-channel MOSFET. 176

4.24 More detailed companion models for the BJT and the MOSFET,
including series resistance and internal nodes. 177

xvi LIST OF FIGURES

4.25 A diode with series resistance and its companion model. 177

4.26 A transformed companion model for the diode, in which the internal
node has been eliminated. 178

4.27 A diode with series resistance, biased in the standard bias arrange-
ment for multiterminal elements. 180

4.28 Source transformations for pseudo-transient. 192

4.29 Voltage source transformation for pseudo-transient. 194

4.30 Current source transformation for pseudo-transient. 195

4.31 A nonlinear test circuit. 199

4.32 Solution of problem 4.8. 199

5.1 The region of absolute stability in the h½-plane maps to the interior
of the unit circle in the r -plane. 247

5.2 The region of absolute stability for FE. 249

5.3 The region of absolute stability for BE. 250

5.4 The region of absolute stability for TR. 252

5.5 The shaded region must be part of the region of absolute stability
for any stiffly stable system. 254

5.6 The region of absolute stability for BDF2. 254

5.7 The region of absolute stability for the 3rd order BDF. 254

5.8 The region of absolute stability for the 4th order BDF. 255

5.9 The region of absolute stability for the 5th order BDF. 255

5.10 The region of absolute stability for the 6th order BDF. 255

5.11 Typical trapezoidal ringing, from simulation. 258

5.12 Companion models for the case of FE. 270

5.13 Companion models for linear L and C , for the case of BE. 273

5.14 Companion models for nonlinear L and C , for the case of BE. 275

5.15 TR companion models for linear elements. 279

5.16 TR companion models for nonlinear elements. 280

5.17 A nonlinear RC circuit. 281

5.18 The circuit of Fig. 5.17, using companion models to find the solution
at time tnC1. 281

5.19 The circuit of Fig. 5.18, after replacement of the nonlinear controlled
source by its linearized companion model. 281

5.20 Overall solution flow. 282

5.21 A simple test circuit. 285

LIST OF FIGURES xvii

5.22 An RC circuit with a nonlinear capacitor. 287

5.23 A general template for multiterminal elements. 291

5.24 An equivalent circuit for a general multiterminal element. 292

5.25 Overall simulation flow. 299

5.26 A test circuit for time-domain simulation. 302

5.27 The solution for the circuit in Fig. 5.26. 303

LIST OF TABLES

2.1 Element stamp for a resistor in group 1. 36

2.2 Element stamp for a resistor in group 2. 36

2.3 Element stamp for an independent current source in group 1. 38

2.4 Element stamp for an independent current source in group 2. 38

2.5 Element stamp for an independent voltage source. 39

2.6 Element stamp for a VCVS. 39

2.7 Element stamp for a CCVS. 40

2.8 Element stamps for elements e1 and e2 in the circuit shown in
Fig. 2.27. 41

2.9 Element stamps for elements e3 and e4 in the circuit shown in
Fig. 2.27. 41

4.1 A comparison of linear and quadratic convergence rates. 136

5.1 Error constants for the BDFs. 256

5.2 Element stamp for a capacitor, based on FE discretization and
linearization. 271

5.3 Element stamp for an inductor, based on FE discretization
and linearization. 271

5.4 Element stamp for a linear capacitor, based on BE discretization
and linearization. 274

5.5 Element stamp for a linear inductor, based on BE discretization
and linearization. 275

5.6 Element stamp for a nonlinear capacitor, based on BE discretization
and linearization. 276

xix

PREFACE

This text describes in detail the numerical techniques and algorithms that are part
of modern circuit simulators, with a focus on the most commonly used simulation
modes: DC Analysis and Transient Analysis. After a general introduction in
chapter 1, network equation formulation is covered in chapter 2, with emphasis on
modified nodal analysis (MNA). The coverage also includes the network cycle
space and bond space, element stamps, and the question of unique solvability
of the system. Solving linear resistive circuits is the focus of chapter 3, which
gives a comprehensive treatment of the most relevant aspects of linear system
solution techniques. This includes the standard methods of Gaussian elimination
(GE) and LU factorization, as well as some in-depth treatment of numerical
error in floating point systems, pivoting for accuracy, sparse matrix methods,
and pivoting for sparsity. Indirect solution methods, such as Gauss-Jacobi (GJ)
and Gauss-Seidel (GS) are also covered. As well, some discussion of node tearing
and partitioning is given, in recognition of the recent trend of increased usage of
parallel software on multi-core computers.

Solving nonlinear resistive circuits is covered in chapter 4, with a focus on
Newton’s method. A detailed study is given of Newton’s method, including its
links to the fixed point method and the conditions that govern its convergence.
A rigorous treatment is then provided of how this method applies to circuit sim-
ulation, leading up to the notion of companion models for nonlinear resistive
elements, with coverage of multiterminal elements. As well, a coverage of quasi-
Newton methods in simulation is provided, which includes the three commonly
used homotopy methods for DC Analysis: source stepping, Gmin stepping, and
pseudo-transient. Simulation of dynamic circuits, both linear and nonlinear, is
covered in chapter 5. This chapter gives a detailed treatment of methods for
solving ordinary differential equations (ODEs), with a focus on those methods
that have been found useful for circuit simulation. Issues of accuracy and sta-
bility of linear multistep methods are covered in some depth. These methods
are then applied to circuit simulation, illustrating how the companion models of
dynamic elements are derived. Here too, multiterminal elements are addressed,
as well as other advanced topics of time-step control, variable time-step, charge
conservation, and the use of charge-based models in simulation.

My aim throughout has been to produce a text that has two key features: 1)
sufficient depth and breadth so that it can be used in a graduate course on the
topic, and 2) enough detail so as to allow the reader to write his/her own basic
circuit simulator. I hope that I have succeeded. Indeed, the book has already

xxi

xxii PREFACE

been tested for this dual purpose, as I have used it to teach a graduate course on
circuit simulation at the University of Toronto. As part of this course, students
write a rudimentary circuit simulator, in a sequence of five computer projects,
all of which are included in the problem sets in this text. The first project is
simply to develop a parser; the second is to develop code that builds the MNA
system of equations for any linear resistive circuit, using element stamps; the third
requires the implementation of an LU factorization capability to solve the MNA
system. The fourth project implements a Newton loop around the MNA solver,
allowing the simulation of basic nonlinear resistive circuits. The fifth and final
project builds a time-domain simulation loop around the Newton loop, using
the trapezoidal rule. The result is a basic simulator that can simulate circuits
containing MOSFETs, BJTs, and diodes (using the simplest first-order models
for these devices), along with the standard linear elements. With problem sets
and computer projects at the end of every chapter, this text is suitable as the
main textbook for a course on the topic. As well, the text has sufficient depth
that I hope it would serve as a reference for practicing design engineers and
computer-aided design practitioners.

Throughout the text, detailed coverage is given of the mathematical and
numerical techniques that are the basis for the various simulation topics. Such
a theoretical background is important, I feel, for a full understanding of the
practical simulation techniques. However, this theoretical background is given
piecemeal, as the need arises, and is never presented as an end in itself; it is
scattered throughout the text and paired up with the various simulation topics.
Furthermore, and in order to maintain the focus on the end-goal of practical sim-
ulation methods, I have found it necessary to state all theorems without proof .
Ample references are provided, however, which the interested reader can consult
for a deeper study.

Finally, the reader is encouraged to consult the following web site, where I
hope to maintain various resources that are relevant to this book, including an
up-to-date list of any known errors:

http://www.eecg.utoronto.ca/¾najm/simbook

ACKNOWLEDGMENTS

I owe much gratitude to Professors Ibrahim N. Hajj and Vasant B. Rao, then
at the University of Illinois, who taught me much of what I know about circuit
simulation. Ibrahim was also kind enough to provide his extensive set of notes on
the topic, which were very helpful as, many years later, I contemplated teaching
a course on this topic. It has taken a lot more reading and discussions with many
other colleagues to help bring this book project to fruition. I would especially
like to thank my friends from the Texas Instruments circuit simulation group,
Lawrence A. Arledge and David C. Yeh, for extensive discussions over the last
two years. Thanks as well to my friend John F. Croix for answering my many

PREFACE xxiii

questions on time-step control and transient simulation. Thanks to my graduate
students, Khaled R. Heloue, Nahi H. Abdul Ghani, and Sari Onaissi, for their help
in proof-reading parts of the manuscript and in helping to develop the computer
projects. Last but not least, I owe a big thank you to my wife, Diana Tawil Najm,
for her patience over the last two years, during which I was virtually “absent”
as I repeatedly revised the manuscript. Without her support, this would not have
been possible.

Farid N. Najm
January 2010

Toronto, Canada

CHAPTER 1

Introduction

Circuit simulation is a technique for checking and verifying the design of electri-
cal and electronic circuits and systems prior to manufacturing and deployment. It
is used across a wide spectrum of applications, ranging from integrated circuits
and microelectronics to electrical power distribution networks and power elec-
tronics. Circuit simulation is a mature and established art and also remains an
important area of research. This text covers the theoretical background for circuit
simulation, as well as the numerical techniques that are at the core of modern
circuit simulators. Circuit simulation combines a) mathematical modeling of the
circuit elements , or devices , b) formulation of the circuit/network equations, and
c) techniques for solution of these equations. We will focus mainly on the formu-
lation and solution of the network equations and will not cover device modeling
in any detail.

Compared to simulators that operate on a design description at higher levels
of abstraction, such as logic or functional simulators, circuit simulators use a
detailed (so-called circuit level or transistor level) description of the circuit and
perform a relatively accurate simulation. Typically, such a simulation uses phys-
ical models of the circuit elements, solves the resulting differential and algebraic
equations, and generates time-waveforms of node voltages and element currents.
In general, a circuit simulator allows the use of any simulation primitive, pro-
vided it can be described with an appropriate device model . In practice, while
some devices (e.g., resistors, capacitors) are two-terminal elements, others (e.g.,
transistors) have more than two terminals. However, a multiterminal element is
usually modeled as a subcircuit consisting of only two-terminal elements. Thus,
a common starting point for studying circuit simulation is to restrict the formu-
lation to two-terminal elements. For integrated circuits, circuit simulators often
work with an extracted circuit description, which gives better accuracy. Thus
circuit capacitance, resistance, and inductance can be included in the analysis, be
they prespecified discrete components or parasitic.

Early techniques for circuit simulation using computers were introduced in
the 1950s and 1960s, and several limited-scope simulators were developed. The
first general-purpose circuit simulator to experience widespread usage was SPICE,
developed by L. W. Nagel at the University of California, Berkeley, in the early

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

1

2 INTRODUCTION

1970s, under the supervision of Professor D. O. Pederson. According to Nagel
(1975), SPICE evolved from an earlier simulator called CANCER that, in turn,
“emerged from a series of courses that were instructed by Professor R. A. Rohrer”
at Berkeley. The original CANCER program, described in Nagel and Rohrer (l971),
was followed up by SPICE, described in Nagel and Pederson (l973), and then
SPICE2, which is described in Nagel’s 1975 thesis. The rest, as they say, is
history, as SPICE has become the de facto standard circuit simulator. At the time
of this writing, SPICE3f is the latest version of the program. Further information
on SPICE and its history is available in Kundert (1995), in Vladimirescu (1994),
and in Pederson (1984).

SPICE was developed specifically with integrated circuits in mind. Indeed, the
acronym stands for Simulation Program with Integrated Circuit Emphasis . This,
coinciding with the birth and growth of the integrated circuits industry in the
1970s, led to widespread adoption of the program. Furthermore, the availability of
the SPICE code and documentation from Berkeley, for a nominal fee, spurred the
development of similar circuit simulators elsewhere. Today, there are thousands
of copies of circuit simulators in use across the industry, and there are many
SPICE-like simulators in the market. Some semiconductor companies average
over 1 million circuit simulation runs per week!

Circuit simulation issues to be covered in this book include a) device equations,
b) equation formulation, and c) solution techniques. In this chapter, we will briefly
introduce each of these issues and then present the overall structure of a circuit
simulator.

1.1 DEVICE EQUATIONS

In this context, a device is any simulation primitive, or element , described by
means of a current-voltage relationship. Thus, a resistor is described by the
(Ohm’s law) equation v D Ri . By convention, the positive (reference) direction
for current is determined from the positive (reference) direction for voltage, as
shown in Fig. 1.1, so that current flows in the device from the positive reference
node to the negative node.

When the element equation contains no terms with powers of 2 or higher, the
element is said to be a linear element . A network of linear elements is said to be
a linear circuit . The resistor element equation is algebraic. On the other hand, a
capacitor is described by i D Cdv=dt , which is a first-order ordinary differential

+ −v

i
R

Figure 1.1: A resistor.

EQUATION FORMULATION 3

+

−

v

i

C

Figure 1.2: A capacitor.

v+ −

i
f(.)

Figure 1.3: Nonlinear resistor.

equation . It is first order because it contains only first-order derivatives and it
is ordinary because it contains no partial derivatives. Since there are no powers
of 2 or more, this too is a linear equation. Here too, the reference direction for
current is based on the reference direction for voltage, as in Fig. 1.2.

Wiring is typically modeled using lumped R, L , or C elements, so that metal
interconnect is described by a system of linear first-order differential equations .
Resistors and capacitors are examples of two-terminal linear devices. In general,
a two-terminal device may be described by an i-v equation i D f .v/, where f
can be any function f : R ! R. When f is a nonlinear function, the device
is said to be nonlinear and is given the (nonlinear resistor) symbol shown in
Fig. 1.3.

A pn-junction diode is an example of a commonly used two-terminal nonlinear
device. Transistors, such as BJTs and MOSFETs are three-terminal nonlinear
devices (four-terminal, if a detailed model is used that includes the body voltage).

1.2 EQUATION FORMULATION

The behavior of a circuit is captured by a set of equations that are formulated by
combining the element equations and Kirchoff’s Current and Voltage Laws (KCL
and KVL). In general, this results in a set of simultaneous nonlinear first-order
differential equations . For a purely resistive, linear , circuit, the equations are
simply a system of simultaneous linear algebraic equations.

As an example, consider the linear circuit shown in Fig. 1.4. From KCL, we
can write:

i D i1 D i2 (1.1)

4 INTRODUCTION

V

R1

R2

i1

i2i

21

+

−

Figure 1.4: A simple linear circuit.

The element equations provide:

v1 D V; i1 D v1 � v2

R1
; i2 D v2

R2
(1.2)

which, substituted into KCL (i1 D i2), gives:

1

R1
.v1 � v2/ D 1

R2
v2 (1.3)

KVL around the loop then provides:

V D R1i1 C R2i2 D .R1 C R2/i D .R1 C R2/
v2

R2
(1.4)

where, in the last step, we have benefited from KCL (i D i2) and the element
equation i2 D v2=R2, and this then leads to:

v2 D R2

R1 C R2
V (1.5)

With v2 in hand then, using (1.3), we get the value of v1, and the element equation
i2 D v2=R2 can then be used to solve for i D i1 D i2.

The above ad hoc approach of solving equations by substitution and similar
operations does not scale well to large circuits. Instead, we need a systematic
and automatic approach for formulating and solving the circuit equations. For
now, we maintain our focus on the simple case of linear resistive circuits. There
are two popular approaches for systematic equation formulation, sparse tableau
analysis (STA) and modified nodal analysis (MNA). Sparse tableau analysis,
described in Hachtel et al. (1971), involves the following steps:

1. Write KCL as Ai D 0, where A is a reduced incidence matrix that we will
introduce later on, and i is a vector of all branch currents.

2. Write KVL as u D AT v, where u is a vector of all branch voltages and v
a vector of all nodal voltages to ground.

3. Write the element equations as Zi C Y u D s, where Z and Y are matrices
and s is a vector.

EQUATION FORMULATION 5

The combination of these three sets of linear algebraic equations leads to the
sparse tableau system:

2
4A 0 0

0 I �AT

Z Y 0

3
5
2
4 i

u
v

3
5 D

2
40

0
s

3
5 (1.6)

This formulation has some key features in that it can be applied to any circuit
in a systematic fashion, the equations can be assembled directly from the input
(circuit specification), as we will see later on, and the coefficients matrix is very
sparse (has mostly zero elements), although it is larger in dimension than the
MNA matrix. Modified nodal analysis, described in Ho et al. (1975), involves
the following steps:

1. Write KCL as Ai D 0.
2. Use the element equations to eliminate as many current variables as possible

from KCL, leading to equations in terms of mostly branch voltages.
3. Use KVL to replace all the branch voltages by nodal voltages to ground.
4. Append element equations of those elements whose current variables could

not be eliminated as additional equations of the MNA system.

We will see the details of this process later on, and it leads to the MNA system:

�
Y B
C Z

½ �
v

i

½
D
�

sv
si

½
(1.7)

As with STA, this formulation can be applied to any circuit in a systematic fashion
and the equations can be assembled directly from the input (circuit specification).
As well, the coefficient matrix is sparse, but often not as sparse as the STA matrix,
although it is smaller in dimension. The MNA matrix can become singular during
the numerical solution process and, therefore, requires careful pivoting.

With the larger matrix size, STA can take longer to formulate the equations
than MNA, but it solves them faster; it is well suited for repeated use as in
statistical analysis. Most modern circuit simulators use the MNA approach.

As an example of the MNA formulation, consider the linear resistive circuit
in Fig. 1.5. We write KCL at every node and then eliminate the current variables
using the element equations, as follows:

KCL at node 2:
V � v2

R1
D v2 � v3

R2
)

�
1

R1
C 1

R2

�
v2 � 1

R2
v3 D V

R1

KCL at node 3:
v2 � v3

R2
D v3

R3
) � 1

R2
v2 C

�
1

R2
C 1

R3

�
v3 D 0

6 INTRODUCTION

V

1 2 3R1
R2i1 i2

i

R3

i3+

−

Figure 1.5: A linear circuit, used to demonstrate the MNA formulation.

This leads to the MNA matrix equation:2
664
�

1

R1
C 1

R2

� �1

R2�1

R2

�
1

R2
C 1

R3

�
3
775
�
v2

v3

½
D
2
4 V

R1
0

3
5 (1.8)

Notice that the system matrix can be written as the sum of three matrices:2
664
�

1

R1
C 1

R2

� �1

R2�1

R2

�
1

R2
C 1

R3

�
3
775 D

2
4 1

R1
0

0 0

3
5 C

2
664

1

R2

�1

R2

�1

R2

1

R2

3
775 C

2
40 0

0
1

R3

3
5

(1.9)
each of which relates to a specific element. These contributions of the various
elements are called element stamps , as we will see later on. In general, a resistor
like R2, which is not connected to ground, has the following element stamp:

vC v�
:::

:::

nC Ð Ð Ð CG2 Ð Ð Ð �G2 Ð Ð Ð
:::

:::

n� Ð Ð Ð �G2 Ð Ð Ð CG2 Ð Ð Ð
:::

:::

where G2 D 1=R2. This and similar element stamps are used to directly build the
required MNA matrix as the simulator is reading (parsing) the circuit description
file.

1.3 SOLUTION TECHNIQUES

As seen in the above examples, such as in (1.8), solving linear resistive circuits
reduces to solving the linear system:

Ax D b (1.10)

SOLUTION TECHNIQUES 7

This is a classical problem that is basic to many engineering disciplines and
has a variety of solution techniques. Direct methods of solution include matrix
inversion, Gaussian elimination, and LU factorization. Indirect methods (relax-
ation methods) of solution include Gauss-Jacobi and Gauss-Seidel, successive
over-relaxation, etc. The most common method is LU factorization, which pro-
ceeds as follows:

1. Factor A as A D LU , where L is lower-diagonal and U is upper-diagonal.
2. Solve Lz D b for z, by forward substitution.
3. Solve U x D z for x , by backward substitution.

We will see the details of this process later on and we will recognize that a most
desirable property throughout all this is matrix sparsity .

1.3.1 Nonlinear Circuits

Solving nonlinear circuits is typically done using Newton’s method . We will see
that this means that we repeatedly, until convergence, perform the following two
steps:

1. Linearize the circuit equations around a candidate solution point.
2. Solve the resulting linear circuit using LU factorization to discover a better

solution point.

In this way, the MNA formulation for linear resistive circuits turns out to be suf-
ficient , because the solution of a nonlinear circuit is reduced to repeated solutions
of linearized versions of that circuit.

As an example of the process of linearization around a candidate solution point,
consider a nonlinear resistor with the element equation i D f .v/, as depicted in
Fig. 1.6. The equation of the tangent line at the point .v0; i0/ is:

i D f 0.v0/ [v � v0] C i0 D f 0.v0/v C Ieq (1.11)

v

i

v0

i0

Ieq

Tangent

Figure 1.6: An i-v characteristic for a nonlinear resistor, showing linearization around a
candidate solution point.

8 INTRODUCTION

Ieqv

i

f '(v0)
1

+

−

Figure 1.7: A linear circuit that has the same current–voltage characteristic as the tangent
line in Fig. 1.6.

where Ieq D i0 � f 0.v0/v0. This equation is also the i-v characteristic of the
sub-circuit shown in Fig. 1.7. This sub-circuit is called a companion model , of
the nonlinear resistor. The element stamp of the companion model is then used
to build the matrix of the linearized circuit, and the resulting linear system is
solved. This process is repeated until the successive candidate solution points
have converged to their final value.

1.3.2 Dynamic Circuits

All the preceding has been for resistive circuits and we have focused on the
solution at a single point in time, a so-called DC Analysis. In general, circuits
include dynamic (L , C) elements, and we are interested in the response over
time, a so-called Transient Analysis. This is done by using a finite difference
approximation of the derivative, such as:

i D C
dv

dt
³ C

.v.t C1t/� v.t//

1t
(1.12)

By replacing all derivatives by their finite difference approximations, the circuit
equations effectively become algebraic, rather than differential, and possibly
nonlinear. Given the solution at time t , i.e., v.t/ and i.t/, these equations are then
solved for v.t C1t/ and i.t C1t/. Thus, by this operation of time discretization,
the problem is reduced to solving a possibly nonlinear resistive network at every
time-point, based on the use of another kind of companion model for the dynamic
elements.

1.4 CIRCUIT SIMULATION FLOW

The flow-chart shown in Fig. 1.8 is useful to visualize the overall simulation flow
inside a circuit simulator. The simulator repeatedly applies time discretization,
element linearization, and matrix equation solution. In the following chapters, we
will describe the many details, and pitfalls, of these various activities.

CIRCUIT SIMULATION FLOW 9

Nonlinear Differential Equations
F(x,x′) = 0

Nonlinear Algebraic Equations
F(x) = 0

Circuit Description
File

Linear Algebraic Equations
Ax = b

Converged?

End Time?

End.

Discretize

Linearize

Yes

No

Yes

No

Solve

Figure 1.8: Overall circuit simulation flow.

1.4.1 Analysis Modes

Circuit simulators offer different analysis modes . Berkeley’s The Spice Page, at
the web site:

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE

lists the following analysis modes for SPICE3:

• DC Analysis: Determines the DC operating point of the circuit with induc-
tors shorted and capacitors opened. It is automatically performed prior to
a Transient Analysis, to determine the initial conditions, and prior to an

10 INTRODUCTION

AC Small-Signal Analysis, to determine the linearized, small-signal mod-
els for nonlinear devices. It can also be used to get the DC transfer curves
by means of a DC sweep.

• Transient Analysis: Computes the output variables, voltages and currents,
as functions of time over a user-specified time interval.

• AC Small-Signal Analysis: Finds the AC output variables as functions of
frequency (transfer function), over a user-specified range of frequencies.

• Pole-Zero Analysis: Computes the poles and/or zeros in the small-signal
AC transfer function. It is time-consuming for large circuits.

• Small-Signal Distortion Analysis: Computes steady-state harmonic and
intermodulation products for small input signal magnitudes.

• Sensitivity Analysis: Finds the sensitivity of an output variable with
respect to all circuit variables, including model parameters.

• Noise Analysis: Studies device-generated noise for the given circuit, pro-
viding the noise contributions of each device to the output voltage.

In addition, analysis at different temperatures is allowed; further details are avail-
able in Vladimirescu (1994). Other simulators offer additional capabilities, such
as statistical analysis, switched capacitor circuit analysis, etc. However, per-
haps the most common usage of circuit simulation involves running, first, a
DC Analysis, followed by a Transient Analysis. Thus, our study will focus on
only these two analysis modes.

Notes Additional background on circuit simulation is available in various texts,
such as in Chua and Lin (1975), sections 2.1–2.5 and 3.1–3.5, in Vladimirescu
(1994), in Vlach and Singhal (1994), sections 1.1–1.5, and in Pillage et al. (1995),
chapter 1.

Problems

1.1. (Computer Project) Write a parser, in C or C++, that can read a circuit
specification in terms of a simple “language” that we now describe. The
language is quite limited and restrictive, and represents the bare minimum
that will be needed for subsequent projects in this book. The parser should
not be case-sensitive, and should interpret any contiguous sequence of
spaces or tabs as equivalent to a single space. Every line of the input file
should describe a single circuit element, and the description of every circuit
element should be given wholly within a single input line. The order of
lines in the input file is immaterial and any characters following a % in
an input line should be considered as comments and ignored. Circuit node
names should be non-negative integers, from the set f0; 1; 2; : : :g, and the
node name 0 should be reserved and used for the ground or reference
node.

PROBLEMS 11

The accepted circuit elements and their specifications are given below.
In this, the symbol <node.*>, where * can be any single alphanumeric
character, denotes a node name. Specifically, <node.+> denotes the node
that is the positive voltage reference point for the element and <node.->
denotes the negative reference node. The positive direction of current in
any element is assumed to be from <node.+> to <node.->. The symbol
<int> denotes a non-negative integer, and <value> denotes a non-negative
real number. The <value> given for a circuit parameter, like resistance or
capacitance, should be in the standard units: Volt, Ampere, Ohm, Farad, or
Henry, but it should not include the corresponding unit. Finally, anything
inside brackets, such as [G2] or [<value>] is an optional field.

• Voltage source: Only independent DC voltage sources are allowed, spec-
ified as:

V<int> <node.+> <node.-> <value>

• Current source: Only independent DC current sources are allowed, spec-
ified as:

I<int> <node.+> <node.-> <value> [G2]

• Resistor: Only linear resistors are allowed, specified as:

R<int> <node.+> <node.-> <value> [G2]

• Capacitor: Only linear capacitors are allowed, specified as:

C<int> <node.+> <node.-> <value> [G2]

• Inductor: Only linear inductors are allowed, and they should be specified
as:

L<int> <node.+> <node.-> <value>

• Diode: The diode model, and its parameter values, will not be part of the
input description. Instead, the model will be built into any subsequent
simulation code that you will write and only the terminals should be
specified here. Optionally, a scale factor can also be included so as to
allow the specification of diodes that are larger than minimum size. The
specification is:

D<int> <node.+> <node.-> [<value>]

12 INTRODUCTION

• BJT: Similar to the diode model, only the terminals and an optional scale
factor are given. Let QN denote an npn device and QP denote pnp; the
specification is:

QN<int> <node.C> <node.B> <node.E> [<value>]

QP<int> <node.C> <node.B> <node.E> [<value>]

where the nodes represent the collector, base, and emitter terminals,
respectively.

• MOSFET: Similar to the above, we give only the terminals and an
optional scale factor, and the body terminal is to be ignored:

MN<int> <node.D> <node.G> <node.S> [<value>]

MP<int> <node.D> <node.G> <node.S> [<value>]

where MN denotes an n-channel device and MP is p-channel, and the nodes
represent the drain, gate, and source terminals, respectively.

The parser should create a data structure, as a linked list of records, where
each record describes a separate circuit element, including its terminals and
parameter values. Test your parser on circuits of your choice. An example
is given in Fig. 2.35.

CHAPTER 2

Network Equations

2.1 ELEMENTS AND NETWORKS

For our purposes, an element is a two-terminal electrical device. An electrical
network , or circuit is a system consisting of a set of elements and a set of
nodes , where every element terminal is identified with a unique node, and every
node is identified with at least one element terminal. A network is completely
connected, i.e., there is always at least one path from one node to another. Thus,
an electrical network can be represented by a graph whose vertices correspond to
circuit nodes and edges correspond to circuit elements. We distinguish between
two types of elements, passive and active.

2.1.1 Passive Elements

A passive element is an element with the property that the voltage across it, v.t/,
and the current through it, i.t/, may be related through a functional relationship
of the form:

v D f .i; i 0/ or i D f .v; v0/ (2.1)

where f : R ! R, and where i 0.t/ and v0.t/ are the first-order derivatives of
i.t/ and v.t/, respectively. The functional relationship (2.1) is called the element
equation . When the element equation does not depend on the derivative, so that
i D f .v/ or v D f .i/, then the element is said to be resistive, otherwise it is
dynamic. An element is said to be linear if f .Ð/ is a linear function, otherwise
it is nonlinear .

A resistive passive element is called a resistor ; it can be linear or nonlinear,
and has the symbols shown in Fig. 2.1. A linear resistor is characterized by
the element equation v D Ri , where R is its resistance, or i D Gv, where G is
its conductance. A nonlinear resistor is said to be voltage-controlled when its
element equation is in the form i D f .v/, and current-controlled when in the
form v D f .i/.

A capacitor is a passive element whose electrical charge, q.t/, is a function
of the applied voltage across it, v.t/, so that q D f .v/, where f : R ! R. With
current being equal to the rate of change of charge, i.t/ D dq=dt , and with

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

13

14 NETWORK EQUATIONS

+ −v

i
R

v+ −

i

f(.)

(a) (b)

Figure 2.1: The symbols for (a) a linear resistor and (b) a nonlinear resistor.

C.v/ � dq=dv (the symbol � denotes a definition) as the capacitance, we have
that:

i.t/ D dq

dv

dv

dt
D C.v/

dv

dt
(2.2)

When the capacitance is fixed, independent of voltage, then the capacitor is said
to be linear , in which case:

q.t/ D Cv.t/ and i.t/ D C
dv

dt
(2.3)

In general, the capacitance can be a function of voltage, such as illustrated in
Fig. 2.2, in which case the capacitor is said to be nonlinear .

An inductor is a passive element whose magnetic flux, �.t/, is a function of the
current applied through it, i.t/, so that � D f .i/, where f : R ! R. By Faraday’s
law, the induced voltage across the inductor is equal to the rate of change of flux,
v.t/ D d�=dt , so that, with L.i/ � d�=di defined as the inductance, we have
that:

v.t/ D d�

di

di

dt
D L.i/

di

dt
(2.4)

When the inductance is fixed, independent of current, then the inductor is said
to be linear , in which case:

�.t/ D Li.t/ and v.t/ D L
di

dt
(2.5)

+

−

v

i

C

v

C

(a) (b)

Figure 2.2: The symbol for a capacitor (a) and an illustrative plot of capacitance as a
function of voltage (b) for an on linear capacitor.

ELEMENTS AND NETWORKS 15

i

v

(a) (b)
i

L

+ −

Figure 2.3: The symbol for an inductor (a) and an illustrative plot of inductance as a
function of current (b) for a nonlinear inductor.

In general, the inductance can be a function of current, such as illustrated in
Fig. 2.3, in which case the inductor is said to be nonlinear .

2.1.2 Active Elements

An active element is an element with the property that either the voltage across it,
v.t/, or the current through it, i.t/, can be expressed in any one of the following
forms:

1. Voltage is either a constant or a function of time, v D f .t/, in which case
the element is called an independent voltage source and has the symbols
shown in Fig. 2.4a and Fig. 2.4b.

2. Current is either a constant or a function of time, i D f .t/, in which case
the element is called an independent current source and has the symbol
shown in Fig. 2.4c.

3. Voltage is a function of the current ix in some other network element,
v D f .ix /, or a function of the voltage vx across some other network
element, v D f .vx /, in which case the element is called a controlled voltage
source (CVS) and has the symbols shown in Fig. 2.5. More generally, vx

may be the voltage difference across any pair of nodes in the network.
4. Current is a function of the current ix in some other network element, i D

f .ix /, or a function of the voltage vx across some other network element,
i D f .vx /, in which case the element is called a controlled current source

vi v(t)i(t) v(t)i(t)

(a) (b) (c)

+

−

+
−

+

−

+

−

Figure 2.4: Symbols for (a) a constant independent voltage source, (b) a time-varying
independent voltage source, and (c) an independent current source.

16 NETWORK EQUATIONS

ie

ve = kvxvx

ix ie

ve = kix

(a) (b)

− +−
−

+

−

+
+

−

+

Figure 2.5: Controlled voltage sources, showing a linear voltage-controlled source (a)
and a linear current-controlled source (b).

ie

ie = kvxvx

ix ie

ie = kix

(a) (b)
−

+

−

+

−

+

Figure 2.6: Controlled current sources, showing a linear voltage-controlled source (a)
and a linear current-controlled source (b).

(CCS) and has the symbols shown in Fig. 2.6. More generally, vx may be
the voltage difference across any pair of nodes in the network.

A controlled source is said to be linear if the associated function f .Ð/ is linear,
otherwise it is nonlinear . The two varieties of controlled voltage sources are
the voltage-controlled voltage source (VCVS) and the current-controlled voltage
source (CCVS). Likewise, the two varieties of controlled current sources are
the voltage-controlled current source (VCCS) and the current-controlled current
source (CCCS). Often, a simple nonlinear controlled source can be replaced
by a sub-circuit consisting of a nonlinear resistor and only linear controlled
sources. For example, a VCVS implementing ve D f .vx / can be replaced by the
equivalent sub-circuit shown in Fig. 2.7. Therefore, in such cases, it is possible
to formulate the circuit equations in a way that the only nonlinear elements are
nonlinear passive elements. However, more complex controlled sources cannot
be so simplified. On the other hand, it is always possible to represent a nonlinear

iy

vy = vxvx

ie

ve = kiy = f(vx)iy = f(vy)/k

(a) (b)

+− +−
−

+

−

+

−

+

Figure 2.7: Replacement of a nonlinear VCVS by an equivalent circuit containing only
linear controlled sources.

ELEMENTS AND NETWORKS 17

resistor by a nonlinear controlled source, and this is often done in practical
simulators in order to simplify the implementation.

The above element types are referred to as lumped elements, so as to distin-
guish them from distributed devices, such as transmission lines. In this text, we
will be only concerned with lumped networks , i.e., with networks composed of
only lumped elements.

2.1.3 Equivalent Circuit Model

In most practical cases, a circuit component that does not fit the above types can
be replaced by an equivalent circuit in terms of the above types. This is often
an approximation, but can be a very good one. The resulting equivalent circuit
is a circuit model of that original component. The component and its model are
(approximately) indistinguishable when examined from their external terminals.
Thus, any circuit can be represented in terms of a network composed of only the
above element types, which are therefore referred to as the minimal basic set .

The usefulness of a circuit simulator is greatly enhanced by the availability of
accurate (i.e., realistic) circuit models for a wide variety of possible components.
We will very briefly take a look at simple diode and transistor models.

Diode Model The pn-diode, as in Fig. 2.8, has the following element equation:

i D Is
�
ev=�VT � 1

Ð
(2.6)

where � ³ 1 and VT � .kT=q/ ³ 26 mV at T D 298 K, and has the equivalent
circuit model shown in Fig. 2.9, where Rs and Rc are linear resistors that are often
neglected, with Rs ³ 0 and Rc ³ 1, and where Rd , Cd , and C j are nonlinear
elements.

Transistor Model The n-channel MOSFET is shown in Fig. 2.10, along with
a simple equivalent circuit model. This is the simplest (SPICE level-1) MOSFET
model, inspired by the 1968 model for the FET by Shichman and Hodges of
AT&T Bell Labs. The capacitors Cgd and Cgs have a linear part (due to overlap
capacitance) and a nonlinear part (due to channel charge). The other capaci-
tors are nonlinear. The nonlinear resistors represent the reverse biased drain and
source pn-junctions. The controlled source is a VCCS, controlled by the transistor
terminal voltages via a nonlinear expression.

p n

v
i

v

i

v

i

+ −
+ −

Figure 2.8: The pn-junction diode, showing its structure, circuit symbol, and current-
voltage characteristic.

18 NETWORK EQUATIONS

vd

id

RdRc

RS

Cd Cj

v

+

−

+

−

Figure 2.9: An equivalent circuit model for a diode.

DS D

G

S

D

G

S

B

Cgd

Cgs Cgb

n+ n+

p

G

B

B

Figure 2.10: The n-channel MOSFET, showing its structure, circuit symbol, and a simple
version of its equivalent circuit model.

2.1.4 Network Classification

As we saw above, capacitors and inductors are referred to as dynamic elements .
A network is referred to as a dynamic network if it contains dynamic elements,
otherwise it is called a resistive network . A network with only linear elements
is referred to as a linear network , otherwise it is a nonlinear network . It is also
useful to classify networks according to whether or not they have controlled
sources. Thus, networks can be linear or nonlinear, resistive or dynamic, with or
without controlled sources.

The basic minimal set of lumped elements, seen above, are time-invariant in
the sense that their i-v functional characteristics are invariant under a time-shift.
A network composed of only time-invariant elements is said to be time-invariant.
We will only be interested in time-invariant networks. Furthermore, we will only
be concerned with time-domain analysis, not frequency-domain analysis.

TOPOLOGICAL CONSTRAINTS 19

2.2 TOPOLOGICAL CONSTRAINTS

When concerned with the topology of a network, an element is referred to as a
branch . A network may be characterized by a set of network constraints , which
capture the network behavior in a system of equations. There are two types of
network constraints:

1. Branch constraints, also called branch equations or element equations.
2. Topological constraints, arising from Kirchoff’s Current Law (KCL) and

Voltage Law (KVL). These are linear algebraic constraints arising from the
structure of the network itself, not due to the properties of any elements.

The study of network topology and topological constraints is best done by appeal-
ing to graph theory .

2.2.1 Network Graphs

A natural and simple way to study a network N is to define a directed graph Gd

associated with it:

1. Create a graph vertex corresponding to every network node. Graph vertices
will also be occasionally referred to as nodes.

2. Create a graph edge corresponding to every network element. Graph edges
will also be occasionally referred to as elements or branches.

The edge direction is in the same direction as the positive reference current direc-
tion of that element. By convention, we also let the edge direction indicate the
positive reference direction for voltage across that element, so that the C voltage
terminal is always at the tail of the arrow that defines the edge direction, as in
Fig. 2.11. Thus, a network N induces a directed graph Gd which completely
captures the topology of the network. When we are not concerned with the ref-
erence directions of current and voltage, we remove the edge directions, leading
to an undirected graph Gn . A network, along with its corresponding two graphs
Gd and Gn , is shown in Fig. 2.12. For brevity, we will refer to either Gd or Gn

as the network graph corresponding to the network N .

+

−
v

i

Figure 2.11: A circuit element and the corresponding graph edge.

20 NETWORK EQUATIONS

1

2
3

4

1

2 3

4

1

2 3

4
N Gd Gn

Figure 2.12: A circuit, its directed graph, and its undirected graph.

Notation For a network graph with n vertices (or nodes) and m edges (or
elements), one node will be identified as the reference node and will be denoted
by the integer 0, and all other nodes will be numbered 1; 2; : : : ; n � 1. These
form the set of graph nodes V D f0; 1; 2; : : : ; n � 1g. The reference node is also
called the datum or, in most cases, simply ground . All edges will be denoted
e1; e2; e3; : : : ; em . These form the set of graph edges E D fe1; e2; e3; : : : ; emg.
This labeling scheme is illustrated with the graphs in Fig. 2.13. Finally, all
network graphs Gn and Gd under study will be assumed to have some basic
properties:

1. They are connected .
2. They have no self-loops (they are, so-called, loopless graphs).
3. The undirected graph Gn has cycles, so that m ½ n (i.e., it is not a tree).

Incidence Matrix For a node j , let Eout
j be the set of (directed) edges whose

tail is connected to j , and let E in
j be the set of (directed) edges whose head is

connected to j . We define the n ð m incidence matrix M , according to:

Mik D

8><
>:

C1; if ek 2 Eout
i�1I

�1; if ek 2 E in
i�1I

0; otherwise:

(2.7)

where i D 1; 2; : : : ; n and k D 1; 2; : : : ;m. As an example, the directed graph in
Fig. 2.13 has the following incidence matrix:

1

2 3

0

1

2 3

0
Gd

e1

e2e3

e4
e5

e6

e1

e2e3

e4
e5

e6

Gn

Figure 2.13: Edge labels, shown on a directed and an undirected graph.

TOPOLOGICAL CONSTRAINTS 21

M D

2
664

C1 0 0 C1 �1 �1
�1 C1 C1 0 0 0

0 0 �1 �1 0 0
0 �1 0 0 C1 C1

3
775 (2.8)

Notice some general properties of any incidence matrix M :

1. Every column k has a single C1 entry and a single �1 entry, corresponding
to the terminals of edge ek , and all other entries are 0.

2. In every row i D j C 1, the number of C1 entries is equal to the out-degree
of the vertex j , i.e., the number of out-going edges.

3. In every row i D j C 1, the number of �1 entries is equal to the in-degree
of the vertex j , i.e., the number of in-coming edges.

As a result, the element-wise sum of all the rows of M is the 0 row vector. Thus,
if a row of M is missing, we can easily find it, by taking the element-wise sum
of all the other rows and multiplying by �1. This means that the rows of M ,
viewed as vectors, are not linearly independent !

Voltage Assignments Considering the directed graph Gd D .V; E/, let p0,
p1; : : : ; pn�1 be the electric potentials at every node 0; 1; : : : ; n � 1. Let
u1; u2; : : : ; um be the voltages across every edge e1; e2; : : : ; em , and define the
vectors p D [p0 p1 Ð Ð Ð pn�1]T and u D [u0 u1 Ð Ð Ð um]T . For every
directed edge e j , let t .e j / be the node at the tail of e j and h.e j / be the node at
the head of e j . The voltage assignment u would satisfy Kirchoff’s Voltage Law
(KVL) if and only if there exists a potential vector p such that:

u j D pt .e j / � ph.e j /; 8e j 2 E (2.9)

which can be compactly expressed as:

u D MT p (2.10)

Define v j D p j � p0, for every node j D 0; 1; 2; : : : ; .n � 1/, as the voltage of
every node relative to the reference node. Therefore, v0 D 0 and p j D p0 C v j ,
so that:

u D MT

2
666664

p0

p0

p0
:::

p0

3
777775C MT

2
666664

0
v1

v2
:::

vn�1

3
777775 D MT

2
666664

p0

p0

p0
:::

p0

3
777775C AT v (2.11)

where v D [v1 v2 Ð Ð Ð vn�1]T , and A is the .n � 1/ð m matrix obtained from
M by removing its first row, called the reduced incidence matrix . By convention,

22 NETWORK EQUATIONS

let p0 D 0 at the reference node, so that:

KVL () u D AT v (2.12)

Current Assignment If i1; i2; : : : ; im are the currents in e1; e2; : : : ; em , then
by Kirchoff’s Current Law (KCL), at every node j 2 V , we have:X

ek2Eout
j

ik �
X

el2E in
j

il D 0 (2.13)

Thus, if i D [i1 i2 Ð Ð Ð im]T is the vector of all branch currents, we can com-
pactly capture KCL for the whole network as:

Mi D 0 (2.14)

Because one row of M can always be written in terms of all the rest, then one
equation of Mi D 0 is redundant . Thus, it is sufficient to express KCL using the
reduced incidence matrix:

KCL () Ai D 0 (2.15)

It can be shown that, for a connected, loopless, directed graph Gd , the set of
rows of the reduced incidence matrix A are linearly independent . Notice that
every row of the equation Ai D 0 simply expresses KCL at every node, other
than the reference node, as: X

ek2Eout
j

ik �
X

el2E in
j

il D 0 (2.16)

This observation will be useful later on.

Example For the network in Fig. 2.12, and using the edge labels adopted in
Fig. 2.13, the reduced incidence matrix A is as shown:

A D
2
4�1 C1 C1 0 0 0

0 0 �1 �1 0 0
0 �1 0 0 C1 C1

3
5 (2.17)

which leads to KVL in matrix form, as shown:2
666664

u1

u2

u3

u4

u5

u6

3
777775 D

2
666664

�1 0 0
C1 0 �1
C1 �1 0

0 �1 0
0 0 C1
0 0 C1

3
777775
2
4v1

v2

v3

3
5 (2.18)

CYCLE SPACE AND BOND SPACE 23

and a KCL in matrix form, as shown:

2
4�1 C1 C1 0 0 0

0 0 �1 �1 0 0
0 �1 0 0 C1 C1

3
5
2
666664

i1

i2

i3

i4

i5

i6

3
777775 D

2
40

0
0

3
5 (2.19)

Combined Form Combining KCL (2.15) and KVL (2.12), then the topological
constraints , due to the network topology only, and independent of any element
characteristics, become:

�
A 0 0
0 I �AT

½24 i
u
v

3
5 D

�
0
0

½
(2.20)

This gives .m C n � 1/ independent equations in .2m C n � 1/ unknowns. The
element equations provide another m independent equations in the same
unknowns. With a total of .2m C n � 1/ independent equations in .2m C n � 1/
unknowns, we can solve the network.

The above representation (2.20) is highly sparse, which turns out to be a
major advantage for solving large circuits. Technically, an n ð n matrix is sparse
if it has O.n/ non-zero entries. The matrix A has no more than 2m � 1 non-zero
entries. Thus, the above form of the constraints is provably sparse. We will see
later on that the above form of the topological constraints leads directly to the
sparse tableau analysis (STA) and the modified nodal analysis (MNA) equations.

2.3 CYCLE SPACE AND BOND SPACE

The above form of the constraints (2.20) is not unique; it is possible to capture
KCL and KVL more compactly, with fewer equations and variables. We will
now digress briefly to see these other ways of capturing network topology by
appealing to the notions of cycle space and bond space. This will lead to a way to
write the constraints more compactly , as m equations in 2m unknowns. However,
this will not be as sparse as the above form, therefore not as useful in practice
for large circuits. Nevertheless, the study of the cycle space and bond space will
give us useful insight into network topology.

2.3.1 Current Assignments

In general, a current assignment i D [i1 i2 Ð Ð Ð im]T is a mapping from the
set of edges, E , to R. A current assignment i that satisfies KCL, Ai D 0, is
said to be a valid current assignment , also called a circulation . Circulations have
some key properties:

24 NETWORK EQUATIONS

1. If i .1/ and i .2/ are circulations, then i .1/ C i .2/ is also a circulation.
2. If i is a circulation, then Þi is also a circulation, 8Þ 2 R.

Therefore, the set of all circulations is a sub-space of R
m , denoted by C:

C D ý
i : i 2 R

m and i is a circulation
�

(2.21)

The sub-space C is referred to as the cycle space of the network.

2.3.2 Voltage Assignments

In general, a voltage assignment u D [u1 u2 Ð Ð Ð um]T is a mapping from the
set of edges, E , to R. A voltage assignment u that satisfies KVL, u D AT v, is
said to be a valid voltage assignment . Valid voltage assignments have some key
properties:

1. If u.1/ and u.2/ are valid voltage assignments, then u.1/ C u.2/ is also a
valid voltage assignment.

2. If u is a valid voltage assignment, then Þu is also a valid voltage assign-
ment, 8Þ 2 R.

Therefore, the set of all valid voltage assignments is a sub-space of Rm , denoted
by B:

B D ý
u : u 2 R

m and u is a valid voltage assignment
�

(2.22)

The sub-space B is referred to as the bond space of the network.

2.3.3 Orthogonal Spaces

The following is an important result related to the cycle and bond spaces.

Theorem 2.1. Given a directed graph Gd, with incidence matrix M, then:

1. B is spanned by the rows of M, i.e.:

8u 2 B; 9Þ 2 R
n : u D MTÞ and 8Þ 2 R

n; u D MTÞ 2 B (2.23)

2. B is orthogonal to C, denoted B ? C, i.e., every u 2 B is orthogonal to
every i 2 C, so that uT i D 0. This is, in fact, a special case of Tellegen’s
theorem.

3. B ý C D R
m, so that dim.B/C dim.C/ D m, i.e., together, B and C span

the whole of R
m.

CYCLE SPACE AND BOND SPACE 25

A proof of this result, and further details regarding these spaces, may be found
in advanced texts on graph theory, as well as, in a circuits context, in Chua
et al. (1987). In the following, we let dim.B/ D r , so that dim.C/ D m � r .
When G is connected, it can be shown that r D n � 1, so that, for our work:

dim.B/ D n � 1 (2.24)

and
dim.C/ D m � n C 1 (2.25)

Let b1; b2; : : : ; br be m ð 1 basis vectors of B. Let c1; c2; : : : ; cm�r be m ð 1
basis vectors of C. We use these basis vectors to define two basis matrices, as
follows. Let B be the r ð m matrix whose rows are bT

1 ; bT
2 ; : : : ; bT

r , i.e., it is
a basis matrix for the bond space B. Let C be the .m � r/ð m matrix whose
rows are cT

1 ; cT
2 ; : : : ; cT

m�r , i.e., it is a basis matrix for the cycle space C.

2.3.4 Topological Constraints

The above leads to two key results (topological constraints), as follows:

1. If i 2 C is a valid current assignment (obeys KCL), then i ? B and:

Bi D 0 (2.26)

which is a compact form of KCL, with r independent equations in m
unknowns.

2. If u 2 B is a valid voltage assignment (obeys KVL), then u ? C and:

Cu D 0 (2.27)

which is a compact form of KVL, with m � r independent equations in m
unknowns.

This gives m independent equations in 2m unknowns. The element equations
provide another m independent equations in the same 2m unknowns. With a total
of 2m independent equations in 2m unknowns, we can solve the network. It
remains to explain how to construct the basis matrices B and C , which we do in
the next two sections.

2.3.5 Fundamental Circulation

Let C be any undirected cycle in Gd , with a given fixed orientation around the
cycle. Let CC be the set of edges in C whose directions in Gd agree with the
orientation of C. Let C� be the set of edges in C whose directions in Gd do
not agree with the orientation of C. Consider the following current assignment,

26 NETWORK EQUATIONS

which can be shown to be a valid current assignment , i.e., it is a circulation (it
obeys KCL):

i j D

8><
>:

C1; if e j 2 CCI
�1; if e j 2 C�I

0; if e j 62 C:

(2.28)

This particular circulation is called the fundamental circulation corresponding to
the cycle C. It can be shown that the following procedure gives a basis matrix C
of the cycle space. Start by choosing a spanning tree of Gd , which would have
.n � 1/ edges, then:

1. For each non-tree edge, consider the unique cycle that results (in Gd) from
adding that edge to the tree.

2. Use the fundamental circulation (in Gd) corresponding to that cycle as a
row of the basis matrix C .

There are m � .n � 1/ non-tree edges, leading to the required m � n C 1 rows
of the basis matrix C .

Example Using our running example of Fig. 2.12 and Fig. 2.13, we choose
a spanning tree composed of e2, e3, and e5 and we identify the three cycles
shown in Fig. 2.14. For each cycle, we write the fundamental circulation using
a clockwise orientation:

i .1/ D ð
0 0 0 0 �1 C1

ŁT

i .2/ D ð
0 C1 �1 C1 C1 0

ŁT

i .3/ D ðC1 C1 0 0 C1 0
ŁT

1

2
3

0

e1

e2e3

e4

e5

e6

cycle-1

cycle-2

cycle-3

Figure 2.14: Cycles in a graph, corresponding to edges that are not part of the chosen
spanning tree.

FORMULATION OF LINEAR ALGEBRAIC EQUATIONS 27

so that the basis matrix C is as shown:

C D

2
64

0 0 0 0 �1 C1

0 C1 �1 C1 C1 0

C1 C1 0 0 C1 0

3
75 (2.29)

2.3.6 Fundamental Potential Difference

The basis matrix B can be constructed based on the same spanning tree, in
a similar fashion. The method operates by identifying a so-called fundamental
potential difference corresponding to each tree edge. There are n � 1 tree edges,
leading to the n � 1 rows of B. However, we will not study this process because
there is an easier way of finding B, as follows.

Recall that, using the reduced incidence matrix A, we can capture KCL with
the compact form Ai D 0. Indeed, when G is connected, it can be shown that A
is a basis matrix for B, so that one can simply choose:

B D A (2.30)

In summary, then, the topological constraints , due to the network topology
only, and independent of any element characteristics, become:�

A 0
0 C

½ �
i
u

½
D
�

0
0

½
(2.31)

which are m independent equations in 2m unknowns. As mentioned earlier, how-
ever, although (2.31) is more compact than (2.20), it is not preferred in practice
for handling large circuits, because it is not as sparse.

2.4 FORMULATION OF LINEAR ALGEBRAIC EQUATIONS

We have seen how the network topological constraints can be expressed as (2.20),
repeated here for convenience:

�
A 0 0
0 I �AT

½24 i
u
v

3
5 D

�
0
0

½
(2.32)

We need to augment these equations with the element equations (also called
branch equations) in order to get a solvable system. In this section, we restrict
our attention to linear networks with no dynamic elements , i.e., linear resistive
networks, so that we only allow linear resistors, independent sources, and linear
controlled sources. This is actually sufficient; we will see later on that a gen-
eral nonlinear dynamic network can be reduced, for the purpose of time-domain

28 NETWORK EQUATIONS

simulation, to a linear resistive one. For such networks, the element equations
are linear algebraic equations , the same as the above topological constraints.
Combining the two sets of equations will yield a system of simultaneous lin-
ear equations whose solution gives the network voltages and currents. We will
consider two approaches: the sparse tableau analysis (STA) formulation and the
modified nodal analysis (MNA) formulation.

2.4.1 Sparse Tableau Analysis

The element equations can be easily written in linear algebraic form, as follows.
If edge ek is a resistor, then uk � Rik D 0. If edge ek is an independent source,
then uk D V or ik D I . If edge ek is a controlled source, then, for a VCVS,
uk D Þux , for a CCVS, uk D Þix , for a VCCS, ik D Þux , and for a CCCS,
ik D Þix . Therefore, the element/branch equations can be compactly expressed as:

Zi C Y u D s (2.33)

or: ð
Z Y

Ł �i
u

½
D s (2.34)

where Z and Y are m ð m matrices, and they are sparse, with no more than m
non-zero elements each, and s is a known m ð 1 vector. Combining this with
the topological constraints (2.32), leads to the complete system:2

4A 0 0
0 I �AT

Z Y 0

3
5
2
4 i

u
v

3
5 D

2
40

0
s

3
5 (2.35)

which has .2m C n � 1/ independent equations in .2m C n � 1/ unknowns. The
system matrix is sparse, with no more than 2.2m � 1/C m C 2m D .7m � 2/
non-zero entries. This is referred to as the sparse tableau analysis (STA) formu-
lation and was described originally in Hachtel et al. (1971).

Reduced Tableau STA has some key advantages. For one thing, it is very
general, allowing one to handle the full set of basic elements under consideration.
Furthermore, the tableau matrix is very sparse, which is a key advantage in
simulation of large circuits. However, the formulation has some redundancy,
because it retains all three sets of variables: i , u, and v. These variables are not
independent, and one can easily reduce the number of variables and equations.
Indeed, it is trivial to obtain the branch voltages from the node voltages. In most
cases, it is also equally trivial to obtain the branch currents from the branch
voltages, using the element equations. But, any alternative approach must also
be general enough and sparse.

Modified nodal analysis (MNA) is one such approach. It is more compact
than STA and is also sparse, although not quite as sparse as STA. Both STA

FORMULATION OF LINEAR ALGEBRAIC EQUATIONS 29

and MNA survive today as viable techniques for large-scale circuit simulation,
but the use of MNA is more prevalent. We will focus exclusively on MNA in
this text.

As a first step towards nodal analysis , which will then lead us to MNA, we
will start with a simple reduction of the STA formulation. Substitute the second
equation of STA (u D AT v, KVL) into the third equation (Zi C Y u D s, the
branch equations), and rearrange, to get what one may call the reduced tableau
form: �

Y AT Z
0 A

½ �
v

i

½
D
�

s
0

½
(2.36)

Thus, we have eliminated all the branch voltage variables, but more can be done,
as part of what is called nodal analysis , which we study next.

2.4.2 Nodal Analysis

Nodal analysis (NA) is based on the following simplifying assumption. As a
result, it is not usable for general circuit simulation, but it is useful to study
because it shows the way forward towards MNA.

Assumption 2.1. (Simplifying Assumption) The network contains no voltage
sources (neither independent nor controlled).

This is a curious assumption because, obviously, practical circuits typically
contain voltage sources! In practice, of course, any physical voltage source would
be non-ideal and can be converted to a non-ideal current source using Thévenin’s
theorem. However, this is not good enough as justification for this assumption,
because one would expect a general-purpose circuit simulator to be able to han-
dle ideal voltage sources. Nevertheless, it is useful to see what this assumption
leads to.

A key consequence of this assumption is that the branch equations can be
written in the following form:

i D Y u C s (2.37)

It is easy to see how an element equation can be cast into this form, if it is
a resistor, an independent current source, or a VCCS. However, the case of a
CCCS is a bit harder to see. To see how a CCCS can be included in the analysis,
notice that a CCCS can always be modified so that its controlling element ex

is not another current source. This is assuming, of course, the network has no
circular dependencies, such as ie D kx ix , ix D kyiy , and iy D keie. In our case, this
would mean that ex would have to be a resistor, because the network contains
no voltage sources. However, when ex is a resistor, the CCCS can be easily
converted to a VCCS, whose branch equation can be cast into the above form.
These conversions impede the efficiency of an automated approach, and we will
see that MNA overcomes these difficulties as well.

30 NETWORK EQUATIONS

Substitute the branch equation (2.37) into KCL (Ai D 0), then use KVL (u D
AT v), leading to:

AY AT v D �As (2.38)

This is the nodal analysis formulation. It is very compact, with an .n � 1/ð
.n � 1/ matrix, and features only the node voltages. Sparsity is not yet evident,
but we will see later on that it is quite sparse. However, it is an incomplete
solution, because it does not allow ideal voltage sources. Notice that the above
NA equation effectively expresses KCL at every node, other than the reference
node, followed by elimination of the current variables. The matrix:

G � AY AT (2.39)

is called the nodal admittance matrix , also called the conductance matrix , and
its properties are key to an efficient solution.

Regarding the form of the element equations, when an element equation is
of the form i D Y u C s, it is said to be in admittance form . If it is in the form
u D Zi C s, it is said to be in impedance form . Nodal analysis requires elements
to have equations in admittance form, but we will see that MNA allows element
equations in either form.

Notice that the form of the equation i D Y u C s provides an easy way to
eliminate all the current variables. However, insisting on this form makes it
impossible to include voltage sources in the formulation. The equation for an
ideal voltage source cannot depend on its current! The desire to eliminate all
the current variables has led us to this situation. MNA solves this impasse by
aiming to eliminate most, but not necessarily all, current variables, as we will
see shortly, after a brief digression.

2.4.3 Unique Solvability

Does a network always have a unique solution? In general, allowing for nonlinear
elements, dynamic elements, as well as controlled sources, the answer is no! A
network may not have a solution, or may have multiple solutions. In some cases,
a unique solution may exist but only for specific values of element parameters.
Such cases are only of academic interest and of little value in practice, because
practical elements have non-zero tolerances. Loosely speaking, we will refer to
a network as being uniquely solvable if it has a unique solution under parameter
values that are not “too restricted.”

Some further definitions are useful at this point. A cutset in a connected
graph is a set of edges which, if removed, would cause the graph to become
disconnected. A current source cutset is a cutset whose every edge corresponds to
a current source in the network, be it independent or controlled. A voltage source
loop is a cycle in the graph whose every edge corresponds to a voltage source,
whether independent or controlled. It can be shown that a network that is uniquely
solvable, must satisfy the following two so-called consistency requirements:

FORMULATION OF LINEAR ALGEBRAIC EQUATIONS 31

1. The network graph must not contain any current source cutsets .
2. The network graph must not contain any voltage source loops .

These are necessary, but not sufficient , conditions for unique solvability.
Although they may appear non-physical and pathological , situations that are

excluded by these consistency requirements do in fact arise in circuits. This can
happen due to overly simplified device models, due to the use of a hypothetical,
incomplete, circuit description, or due to the types of companion models used
for the nonlinear elements, as we will see later on. In practice, it is possible
to remedy such situations, if they arise, by adding some insignificant parasitics,
such as large resistors in parallel with some current sources, or small resistors in
series with some voltage sources. In any case, in the following, we will assume
throughout that the above consistency requirements are always met .

If a network is linear, resistive, and has no controlled sources, then it can be
shown that the consistency requirements become sufficient for unique solvability.
Furthermore, if the network is linear and resistive, such as we have assumed
for NA, then we can make some useful statements about the G matrix, and
solvability. We will now study these issues, by introducing some results from
matrix theory and considering how they apply to the conductance matrix G.

Irreducible Matrix Matrix irreducibility can be expressed in terms of the
matrix graph . A square n ð n matrix A D [ai j] induces a directed graph G A,
whose vertices are f1; 2; : : : ; ng, and whose directed edges are .i; j/ if ai j 6D 0.
If there is a directed path in the graph from every vertex to every other vertex,
then the graph is said to be strongly connected . If G A is strongly connected, then
the matrix A is said to be irreducible.

Diagonal Dominance Another set of useful definitions are the following.

Definition 2.1. (Diagonal Dominance) Let G D [gi j] be an n ð n matrix, then
G is said to be diagonally dominant if:

jgii j ½
X
8 j 6Di

þþgi j

þþ ; 8i (2.40)

Definition 2.2. (Strict Diagonal Dominance) Let G D [gi j] be an n ð n matrix,
then G is said to be strictly diagonally dominant if:

jgii j>
X
8 j 6Di

þþgi j

þþ ; 8i (2.41)

Definition 2.3. (Irreducible Diagonal Dominance) Let G D [gi j] be an n ð n
matrix, then G is said to be irreducibly diagonally dominant if it is irreducible,
it is diagonally dominant , and there is an i 2 f1; 2; : : : ; ng for which:

gii >
X
8 j 6Di

þþgi j

þþ (2.42)

32 NETWORK EQUATIONS

If a matrix is either strictly diagonally dominant or irreducibly diagonally
dominant, then it is nonsingular. For a linear resistive circuit with no controlled
sources, it can be shown that the conductance matrix G D AY AT is diagonally
dominant . Such a circuit can be easily transformed, by adding large resistances
from every node to ground, so that G becomes strictly diagonally dominant. If
this is done, then G�1 exists and the network is uniquely solvable.

For a connected, linear, resistive circuit, with no controlled sources, that meets
the consistency requirements, it can be shown that G is irreducibly diagonally
dominant, so that, G�1 exists and the network is uniquely solvable.

Positive Definite

Definition 2.4. (Positive Definite) If an n ð n matrix A is symmetric and
xT Ax > 0 for all non-zero x 2 R

n , then A is said to be positive definite or
symmetric positive definite (SPD).

If A is SPD, then aii > 0, 8i , A is nonsingular, and A�1 is also SPD. If A is
symmetric, then all its eigenvalues ½i are real, and:

A is SPD () ½i > 0; 8i (2.43)

For a connected, linear, resistive circuit, with no controlled sources, that meets
the consistency requirements, it can be shown that G is SPD. In this case, G�1

exists, and the network is uniquely solvable.

M-matrix

Definition 2.5. (M-matrix) A square matrix G is said to be an M-matrix if:

gi j � 0; 8i 6D j and <.½i /> 0; 8i (2.44)

where <.½i / is the real part of the (possibly complex) eigenvalue ½i .

If G is an M-matrix, then it is nonsingular and G�1 ½ 0. If a matrix G is
either strictly diagonally dominant or irreducibly diagonally dominant, and if:

gii > 0; 8i and gi j � 0; 8i 6D j (2.45)

then G is an M-matrix. For a connected, linear, resistive circuit, with no con-
trolled sources, that meets the consistency requirements, it can be shown that G is
an M-matrix. In this case, G�1 ½ 0 exists and the network is uniquely solvable.

2.4.4 Modified Nodal Analysis

We are now ready to present modified nodal analysis, originally described in
Ho et al. (1975). To handle voltage sources, the key idea is to not insist on
eliminating their currents, but to retain those currents as additional variables .
For of these new variables, we add a new equation, namely the branch equation
for that (voltage source) element. The size of the matrix equation will grow, by as

FORMULATION OF LINEAR ALGEBRAIC EQUATIONS 33

many equations as we have voltage sources, compared to nodal analysis. In fact,
we can retain more currents than just the voltage source currents, and standard
MNA retains the following:

1. All voltage source currents, be they independent or controlled.
2. Any current that is a control variable for a CCVS or a CCCS.
3. Any current that is a user-specified simulation output.

In addition, when formulating MNA for dynamic circuits, as we will see later
on, all inductor currents must be maintained as additional variables. Thus, MNA
is a “happy medium” between the reduced form of STA, where no currents were
eliminated, and nodal analysis, where all were eliminated. Notice that retaining
currents that act as control variables allows us to overcome the need to “convert”
a CCCS, as we had to do in nodal analysis.

Definition 2.6. (Element Groups) All elements whose currents are to be elimi-
nated will be referred to as being in group 1 , while all other elements will be
referred to as group 2 .

We partition the current vector i according to group membership, so that
currents of group 1 elements are put into i1, and the rest are grouped into i2:

i D
�

i1

i2

½
(2.46)

Likewise, we partition the branch voltage vector u, so that all group 1 element
voltages are grouped into u1, and the rest are grouped into u2:

u D
�

u1

u2

½
(2.47)

With this, the general branch equation (2.33), which, as is typical in the MNA
literature, we now re-write as Zi � Y u D s, can be partitioned as:�

I Z12

0 Z22

½ �
i1

i2

½
�
�

Y11 Y12

Y21 Y22

½ �
u1

u2

½
D
�

s1

s2

½
(2.48)

where I , crucially, is the identity matrix.
Recall, the elements in group 1 must be either resistors, independent current

sources, VCCS, or CCCS. The above matrix equation means that these elements
must have branch equations in the following matrix form:

i1 C Z12i2 D Y11u1 C Y12u2 C s1 (2.49)

It is easy to see how group 1 element equations can be cast into this form,
keeping in mind that the controlling element for the CCCS is in group 2. As for

34 NETWORK EQUATIONS

elements in group 2, their equations are in the general matrix form:

Z22i2 D Y21u1 C Y22u2 C s2 (2.50)

Furthermore, KCL (Ai D 0) is partitioned as well:

A1i1 C A2i2 D 0 (2.51)

and KVL (u D AT v) breaks up into two equations:

u1 D AT
1 v and u2 D AT

2 v (2.52)

Starting with KCL (2.51), plug in i1 from the first branch equation (2.49), then
plug in u1 and u2 from KVL (2.52) into the result, to get:�

A1Y11 AT
1 C A1Y12 AT

2

Ð
v C .A2 � A1 Z12/ i2 D �A1s1 (2.53)

Note, this equation is the result of writing KCL (Ai D 0) at all nodes other than
the reference node, followed by substitutions of i1, u1, and u2. Indeed, row k of
this equation is the result of writing KCL at node k, followed by substitutions of
i1, u1, and u2.

Then, plug in u1 and u2 from KVL (2.52) into the second branch equation
(2.50), which leads to:

� �
Y21 AT

1 C Y22 AT
2

Ð
v C Z22i2 D s2 (2.54)

Here, instead of KCL, the recipe is to start with the element equation of each
element in group 2, and then substitute into that u1 and u2.

Combining the above two results, (2.53) and (2.54), leads to the full and
compact form of the modified nodal analysis (MNA) formulation:"�

A1Y11 AT
1 C A1Y12 AT

2

Ð
.A2 � A1 Z12/

� �
Y21 AT

1 C Y22 AT
2

Ð
Z22

#"
v

i2

#
D
"�A1s1

s2

#
(2.55)

If the network contains no controlled sources, then Y11 is diagonal and Z12,
Y12, and Y21 are all zero, leading to:"

A1Y11 AT
1 A2

�Y22 AT
2 Z22

#"
v

i2

#
D
"�A1s1

s2

#
(2.56)

Furthermore, if group 2 contains no current sources, then Y22 D I , and the MNA
system reduces to: "

A1Y11 AT
1 A2

�AT
2 Z22

#"
v

i2

#
D
"�A1s1

s2

#
(2.57)

FORMULATION OF LINEAR ALGEBRAIC EQUATIONS 35

which is the common form of the MNA system that one typically sees in the
literature. Finally, if the network is connected and the group 2 elements do not
form a cutset, and given the consistency requirements, then it is possible to show
that G � A1Y11 AT

1 is diagonally dominant, SPD, and an M-matrix.

Assembling the MNA System In practice, in a simulator, we do not use the
above matrix equations to construct the MNA system of equations. Instead, it
can be built by inspection, on the fly, in linear time, as the circuit description file
is being read in. To see this, recall the two “recipes” for arriving at the MNA
equation:

1. Top part (2.53): For every node other than the reference node, write KCL,
then:
(a) Eliminate all currents of group 1 elements using branch equations.
(b) Replace all branch voltages in terms of node voltages using KVL.

2. Bottom part (2.54): For every group 2 element, write its branch equation,
then replace all branch voltages in terms of node voltages using KVL.

A study of the net effect of this process shows that every element has a compact
and easy to find contribution to the matrix equation. Indeed, it is clear that:

1. The current of every element will appear exactly twice as a KCL current
in the top equations, corresponding to KCL at its two terminal nodes, but
elements connected to the reference node will appear only once.

2. For a group 2 element, its current and its terminal voltages will also appear
as part of its element equation in the bottom equations.

The contribution of every element to the matrix equation is described by means
of a template, which is called an element stamp. The process starts by initializing
the matrix and right-hand side (RHS) vector to zero. Then, the element stamps
are added to the matrix and RHS vector as the elements are read in. When all
the elements have been read in, the matrix equation is complete and ready to be
solved.

Element Stamps Consider a resistor whose terminal nodes are denoted nC
and n�, with voltages vC and v�, respectively, and whose current iR has a
reference direction from nC to n�, as shown in Fig. 2.15. Then, iR D vC.1=R/C
v�.�1=R/, and the element stamps are, for a group 1 resistor in Fig. 2.16 and, for
a group 2 resistor in Fig. 2.17. A more compact way to represent these element

iR

n+ n−

Figure 2.15: A resistor.

36 NETWORK EQUATIONS

−1/R

+1/R

+1/R

−1/Rv+ v+

v−v−
=

v+ v−

Figure 2.16: Element stamp for a resistor in group 1.

v+ v+

v−v−

iR iR

=

v+ v− iR

+1 −1

−1

+1

−R

Figure 2.17: Element stamp for a resistor in group 2.

stamps is as shown in Table 2.1 and Table 2.2, where the row and column labels
in the tables refer to the corresponding rows and columns of the MNA system.

For an independent current source, with the element equation iS D I , with a
reference direction for current from terminal node nC to terminal node n�, whose
voltages are vC and v� respectively, as shown in Fig. 2.18, the element stamps

Table 2.1: Element stamp for a resistor in group 1.

vC v� RHS

vC 1=R �1=R
v� �1=R 1=R

Table 2.2: Element stamp for a resistor in group 2.

vC v� i RHS

vC C1
v� �1
i C1 �1 �R

FORMULATION OF LINEAR ALGEBRAIC EQUATIONS 37

iS = I

n+ n−

Figure 2.18: An independent current source.

are as follows. When in group 1, the element stamp is as shown in Fig. 2.19.
When in group 2, the element stamp is as shown in Fig. 2.20 or, equivalently,
in Table 2.3 and Table 2.4.

For an independent voltage source, with the element equation vC � v� D V ,
and a reference direction for current from nC to n�, as shown in Fig. 2.21, the
element stamp is as shown in Fig. 2.22 and Table 2.5. For a VCVS, with element
equation vC � v� D k.vC

x � v�
x /, and a reference direction for current from vC

to v�, as shown in Fig. 2.23, the element stamp is as shown in Fig. 2.24 and
Table 2.6. For a CCVS, with element equation vC � v� D kix , and a reference
direction for current from vC to v�, as shown in Fig. 2.25, the element stamp is
as shown in Fig. 2.26 and Table 2.7. The cases of a VCCS and a CCCS can be
found just as easily, and are left as an exercise for the reader. Both the VCCS

v+ v+

v−v−
=

I

−I

Figure 2.19: Element stamp for an independent current source in group 1.

v+ v+

v−v−
=

iS
iS

iS

+1

+1

−1

I

Figure 2.20: Element stamp for an independent current source in group 2.

38 NETWORK EQUATIONS

Table 2.3: Element stamp for an independent current
source in group 1.

vC v� RHS

vC �I
v� CI

Table 2.4: Element stamp for an independent current
source in group 2.

vC v� i RHS

vC C1
v� �1
i C1 I

νS = V

n+ n−

iS

+ −

Figure 2.21: An independent voltage source.

v+ v+

v−v−
=

v+ v−

+1

+1 −1

−1

iS
iS V

iS

Figure 2.22: Element stamp for an independent voltage source.

and CCCS can be either in group 1 or group 2, and the control element of a
VCCS can be in group 1 or group 2. In this way, with a library of element
stamps, one can build the MNA equations for any network, “on the fly,” while
reading its description file.

Example For the circuit shown in Fig. 2.27, we will use element stamps to con-
struct the full MNA matrix equation. We start by identifying group membership,
and we place elements e1 and e2 in group 1, and elements e3 and e4 in group 2.

FORMULATION OF LINEAR ALGEBRAIC EQUATIONS 39

Table 2.5: Element stamp for an independent voltage
source.

vC v� i RHS

vC C1
v� �1
i C1 �1 V

iS

νe = kux

νx+

νx−

ν+

ν−
−+ux

−

+

Figure 2.23: A voltage-controlled voltage source.

v+ v+

v−v−
=

v−

+1

−1 +k

−1

iS
iS

vx+

−k

v+

+1

vx− iS

Figure 2.24: Element stamp for a VCVS.

Table 2.6: Element stamp for a VCVS.

vC v� vx C vx � i RHS

vC C1
v� �1
i C1 �1 �k Ck

Note that e3 must be in group 2 because its current is the control variable
for the CCCS e2. The element stamps for the group 1 elements are shown in
Table 2.8, and those of the group 2 elements are in Table 2.9. The resulting
matrix equation is: 2

664
0 0 1 1
0 1 �3 0

�1 1 1 0
1 0 0 0

3
775
2
664
v1

v2

i3

i4

3
775 D

2
664

0
0
0
3

3
775 (2.58)

40 NETWORK EQUATIONS

ix iS

ve = kix

v+

v−

vx+

vx−
ex −+

Figure 2.25: A current-controlled voltage source.

v+ v+

v−v−
=

v−

+1

−1 −k

−1

iS iS

v+

+1

ixix

iS ix

Figure 2.26: Element stamp for a CCVS.

Table 2.7: Element stamp for a CCVS.

vC v� is ix RHS

vC C1
v� �1
is C1 �1 �k
ix

3V 2i31Ω

1Ω
1

2

i3

e1 e2

e3

e4

i4 i1
i2

+
−

Figure 2.27: A circuit to demonstrate the MNA equation formulation.

Sparsity Considerations in MNA Recall, an n ð n matrix is said to be
technically1 sparse if it has O.n/ non-zero entries. While the sparsity of STA

1We will see later on that the definition of sparsity can be less strict than this. Effectively, practitioners
call a matrix sparse if, for the computational task at hand, there is some benefit to taking its pattern
of zeros/non-zeros into account. This is not very useful as an a priori characterization of sparsity,
but it reflects the practical experience that it is hard to “pin down” matrix sparsity with a strict
mathematical definition.

FORMULATION OF LINEAR ALGEBRAIC EQUATIONS 41

Table 2.8: Element stamps for elements e1 and e2 in the circuit shown in Fig. 2.27.

(for e1)

v2 RHS

v2 1

(for e2)

i3 RHS

v2 �2

Table 2.9: Element stamps for elements e3 and e4 in the circuit shown in Fig. 2.27.

(for e3)

v1 v2 i3 RHS

v1 C1
v2 �1
i3 �1 C1 C1

(for e4)

v1 i4 RHS

v1 C1
i4 C1 C3

was provable, as we saw earlier, sparsity of MNA is not so easily established.
Instead, we can offer two arguments in favor of the suggestion that the MNA
matrix should in practice be sparse, as follows:

1. Suppose the network has a single voltage source, with one terminal con-
nected to ground, and no controlled sources or dynamic elements. In this
case, for a network with n nodes (including ground), the system has n
equations in n unknowns, the bottom row has exactly 1 non-zero element,
and every other row k has 1 C d.k/ non-zero elements, where d.k/ is the
number of neighbors of node k (its degree in the undirected graph Gn).
Therefore, the total number of non-zero elements is:

1 C
n�1X
kD1

.1 C d.k// D n C 2m (2.59)

This is true because, in a graph, the sum of all vertex degrees is equal to
twice the number of edges. Therefore, if m is O.n/, which it usually is,
then the matrix is sparse.

2. More generally, the MNA matrix has at least .n � 1/ rows and, because
typical element stamps contribute no more than 6 non-zero entries per
stamp, then the total number of non-zero entries is no more than 6m.
Therefore, if m is O.n/, which it usually is, then the MNA matrix is
sparse.

Both arguments depend on the condition that m is O.n/, which can be justified
as follows. For a connected, loopless, undirected graph with no multiple edges,
if the graph is planar , then it is known that m � 3n � 6. Since most circuits are

42 NETWORK EQUATIONS

nearly planar, and because the number of parallel elements is certainly bounded,
then m should be O.n/ in practice. Indeed, practical experience shows that the
MNA matrix is quite sparse, and MNA is the formulation of choice for circuit
simulation.

2.5 FORMULATION OF LINEAR DYNAMIC EQUATIONS

We now present the equations in the case when the network is linear but dynamic,
i.e., it contains (linear) capacitors and inductors. The equations can be arrived at
by a simple extension of the MNA formulation, starting from the branch equation
(2.48), and based on the fact that capacitors can be in either group 1 or group 2,
but inductors must be in group 2.

In this case, a general branch equation of the form Zi C Li 0 � Y u � Cu0 D s
can be written in partitioned matrix form as:

�
I Z12

0 Z22

½ �
i1

i2

½

C
�

0 0

0 L22

½ �
i 0
1

i 0
2

½
�
�

Y11 Y12

Y21 Y22

½ �
u1

u2

½
�
�

C11 0

0 C22

½ �
u0

1

u0
2

½
D
�

s1

s2

½
(2.60)

where C11, C22, and L22 are all diagonal matrices. Notice that, if there are no
capacitors in group 2, then C22 D 0. Using similar algebraic substitutions, as was
done previously, we arrive at the final form for MNA in the dynamic case:

"�
A1Y11 AT

1 C A1Y12 AT
2

Ð
.A2 � A1 Z12/

� �
Y21 AT

1 C Y22 AT
2

Ð
Z22

#�
v

i2

½

C
"

A1C11 AT
1 0

�C22 AT
2 L22

#�
v0

i 0
2

½
D
��A1s1

s2

½
(2.61)

If the network contains no controlled sources, then this MNA system is simp-
lified to:"

A1Y11 AT
1 A2

�Y22 AT
2 Z22

#�
v

i2

½
C
"

A1C11 AT
1 0

�C22 AT
2 L22

#�
v0

i 0
2

½
D
��A1s1

s2

½
(2.62)

Furthermore, if capacitors are present only in group 1, then some further simpli-
fication is possible due to C22 D 0, leading to:

"
A1Y11 AT

1 A2

�Y22 AT
2 Z22

#�
v

i2

½
C
"

A1C11 AT
1 0

0 L22

#�
v0

i 0
2

½
D
��A1s1

s2

½
(2.63)

FORMULATION OF LINEAR DYNAMIC EQUATIONS 43

Finally, if in addition we require that group 2 contains only voltage sources and
inductors, then Z22 D 0 and Y22 D I , leading to:"

A1Y11 AT
1 A2

�AT
2 0

#�
v

i2

½
C
"

A1C11 AT
1 0

0 L22

#�
v0

i 0
2

½
D
��A1s1

s2

½
(2.64)

which is the common form of the MNA system that one typically sees in the
literature.

The dynamic MNA equations can also be built using element stamps, as
follows, although, in practice simulators never assemble time-domain dynamic
equations in this way. Our examination of this issue is simply an interesting
exercise that shows how the dynamic equations can be efficiently set up, if so
desired.

2.5.1 Dynamic Element Stamps

For a capacitor, with element equation iC D CdvC=dt � Cdv�=dt , and a ref-
erence direction for current from nC to n�, as shown in Fig. 2.28, it is easy
to see that the element stamps are as follows. When in group 1, the capacitor
element stamp is as shown in Fig. 2.29. When in group 2, the capacitor ele-
ment stamp is as shown in Fig. 2.30. For an inductor, with element equation
vC � v� D LdiL=dt , and a reference direction for current from nC to n�, as
shown in Fig. 2.31, the element stamp is as shown in Fig. 2.32. Element stamps
for other (resistive) element types are constructed as we saw previously.

Frequency Domain The above techniques for equation formulation can be
applied in the frequency domain, for circuits with linear capacitors and inductors.

iC

n−n+

Figure 2.28: A capacitor.

−C

+C

+C

−C v+′

v−′
=

v+ v−

v+ v+

v−v−

v+ v−

+

Figure 2.29: Element stamp for a capacitor in group 1.

44 NETWORK EQUATIONS

−C +C

v+′

v−′
=

v+ v−

v+ v+

v−v−

v+ v−

+

iC′iC iC

iC iC'

+1

Figure 2.30: Element stamp for a capacitor in group 2.

iL

n+ n−

Figure 2.31: An inductor.

+1 −1

v+′

v−′
=

v+ v−

v+ v+

v−v−

v+ v−

+

iL′iL iL L

iL iL′

Figure 2.32: Element stamp for an inductor.

A capacitor C has an admittance of j!C , and can be either in group 1 or
group 2, with a corresponding element stamp. An inductor L has an impedance
of j!L , and must be in group 2, with a corresponding element stamp. The
corresponding element stamps are very similar to that of a resistor. We will not
cover frequency domain analysis in this text.

2.5.2 Unique Solvability

In general, a linear, resistive network with no controlled sources, and given the
consistency requirements, is uniquely solvable. We saw the justification for this
earlier, in connection with the conductance matrix of nodal analysis, but it also
applies when voltage sources are present (i.e., for the MNA system) because
one can use superposition to solve a network with voltage sources using multiple
applications of nodal analysis (although that would be expensive). Unfortunately,
no such result is available for the dynamic case.

PROBLEMS 45

For dynamic circuits, the challenge is to make sure that the “order of com-
plexity” or “index” of the differential equations, is no greater than 2. We will
briefly touch on this topic later on, but we skip the details for now. Additional
constraints are often required in order to achieve this, which relate to CV -loops
and L I -cutsets. A CV -loop is a loop consisting of only capacitors and voltage
sources. An L I -cutset is a cutset made of only inductors and current sources. Cir-
cuits with controlled sources, whether linear or nonlinear, have more problems,
and require more constraints, typically of a topological nature.

Notes Additional reading is available in Chua and Lin (1975), sections 2.1–
2.5, 3.1–3.5, and 4.1–4.2, in Chua et al. (1987), chapters 5, 8, and 12, as well
as in Vlach and Singhal (1994), sections 1.1–1.5, 3.1–3.8, and 4.1–4.4.

The question of unique solvability continues to be an open problem and an
active research topic in circuit theory. Classical results are summarized in Chua
and Lin (1975). For nonlinear resistive circuits, one can further consult the early
work in Nishi and Chua (1984). For linear dynamic networks, some recent results
are described in Reißig (1999), while nonlinear dynamic networks are addressed
in Estévez Schwarz and Tischendorf (2000) and in Tischendorf (1996). In prac-
tice, with an accurate circuit model, sufficient parasitics will typically exist in
the circuit description file, which helps avoid pathological behavior, so that most
practical circuits are found to be uniquely solvable.

Problems

2.1. Consider the linear network in Fig. 2.33, in which the reference directions
for positive current are as indicated.

(a) Draw the directed and undirected graphs corresponding to this network
and give its incidence matrix, M .

i1

3v2

v2

2V

1A

6i1

2Ω

2Ω1Ω
1

2

3

0

e2e1

e3

e6
e5e4

e7

+

+
−+

−

−

Figure 2.33: Linear network for problem 2.1.

46 NETWORK EQUATIONS

(b) Find the matrix C , which is the basis matrix for the cycle space of
this network.

(c) Give the resulting topological constraints for the network, as a system
of m equations in 2m unknowns, where m is the number of elements.

2.2. If matrix A D [ai j] is symmetric positive definite, prove that aii > 0, 8i .

2.3. For a linear, resistive circuit with no controlled sources and no voltage
sources, show that the nodal admittance matrix G is symmetric and diag-
onally dominant.

2.4. If, in addition to the conditions of problem 2.3, we further require that a
resistor is connected from every node to ground, show that G is strictly
diagonally dominant.

2.5. If, in addition to the conditions of problem 2.3, we further require that the
network is connected and meets the consistency requirements, show that
G is irreducibly diagonally dominant.

2.6. Suppose a linear resistive network contains a number of voltage sources,
each having a grounded terminal. Explain how you would use nodal anal-
ysis to formulate the equations for such a network.

2.7. Consider a linear resistive network, that may contain voltage sources. Show
how it can be solved by repeated application of nodal analysis, by appealing
to the principle of superposition.

2.8. Give the MNA element stamps for a VCCS and a CCCS, considering the
case when each element is in group 1 or in group 2.

2.9. Give a full derivation for the MNA equations for a linear circuit with
dynamic elements.

2.10. (Computer Project) Using the parser developed previously in problem 1.1
as a front-end, write a C or C++ program that accepts a description of

2V
1mA

1Ω
1 2 3 4

5
6 7

8

0

0.1Ω

1kΩ

10Ω

0.2V

0.1Ω

1.5Ω1.5Ω 50
Ω

2V 1mA

+−

+−

+

−

Figure 2.34: A test circuit.

PROBLEMS 47

V1 5 0 2

V2 3 2 0.2

V3 7 6 2

I1 4 8 1e-3

I2 0 6 1e-3

R1 1 5 1.5

R2 1 2 1

R3 5 2 50 G2 % this is a group 2 element

R4 5 6 0.1

R5 2 6 1.5

R6 3 4 0.1

R7 8 0 1e3

R8 4 0 10 G2 % this is a group 2 element

Figure 2.35: Circuit description file for the circuit in Fig. 2.34.

any resistive linear circuit, with no controlled sources, and constructs the
corresponding MNA system using element stamps. In other words, your
program should accept any network of linear resistors, independent current
sources, and independent voltage sources. Your program should make use
of the linked-list data structure created by the parser. It should interpret the
optional field [G2] introduced earlier, in the specification of the parser, as
indicating that an element belongs to group 2. The [G2] flag is not required
for membership in group 2. Test your program on the circuit shown in
Fig. 2.34, where the 10� and 50� resistors are required to be in group 2.
With the circuit description file given in Fig. 2.35, the correct solution is
given in (2.65).2

6666666666666664

10 0 �10 0 0 0 0 0 1 0 0 0 0
0 0:001 0 0 0 0 0 0 0 0 0 0 0

�10 0 10 0 0 0 0 0 0 0 0 1 0
0 0 0 5=3 �2=3 0 �1 0 0 �1 0 �1 0
0 0 0 �2=3 32=3 �10 0 0 0 0 �1 0 0
0 0 0 0 �10 32=3 �2=3 0 0 1 0 0 1
0 0 0 �1 0 �2=3 5=3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 �10 0 0 0 0
0 0 0 �1 0 1 0 0 0 �50 0 0 0
0 0 0 0 �1 0 0 1 0 0 0 0 0
0 0 1 �1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0

3
7777777777777775

2
6666666666666664

V .4/
V .8/
V .3/
V .2/
V .6/
V .5/
V .1/
V .7/
I .R8/
I .R3/
I .V 3/
I .V 2/
I .V 1/

3
7777777777777775

D

2
6666666666666664

�0:001
0:001
0
0
0:001
0
0
0
0
0
2
0:2
2

3
7777777777777775

(2.65)

CHAPTER 3

Solution of Linear Algebraic Circuit
Equations

In this chapter, we study the solution methods for linear resistive networks. Once
the network equations have been assembled, the solution of a linear resistive
network reduces to a solution of the linear algebraic system:

Ax D b (3.1)

where A is a square n ð n matrix, b is an n-vector, and x is an n-vector of
the unknown circuit voltages and currents. This is a classical problem, whose
solution has been the subject of decades of research in mathematics and numerical
analysis. In the West, early solutions to this problem date back to the work of
Gauss in 1809. Our version of this problem has the two key features that the
problem size is very big (n can be in the millions) and, luckily, the matrix A is
very sparse, typically having no more than about 20 non-zero entries per row, on
average. Had circuit matrices been “full,” rather than sparse, we would not be
able to simulate the circuits that we simulate today. A full matrix is undesirable
for reasons of both memory (storage) and execution time. The cardinal rule in
circuit simulation is that one must never allow the matrix to become full; sparsity
must be maintained.

Of course, the obvious solution to the problem Ax D b is x D A�1b, so that
one way to find x is to first explicitly compute A�1 and then multiply that by
b. One way of finding A�1 is the classical method of matrix cofactors , but that
method is very inefficient for large matrices. Another option is to use Cramer’s
rule, which is based on the notion of the determinant of a (square) matrix, denoted
det.Ð/. If we let Ak be the matrix resulting from A once its kth column is replaced
by b, then Cramer’s rule provides:

xk D det.Ak/

det.A/
(3.2)

However, Cramer’s rule is also extremely inefficient, requiring 2.n C 1/! mul-
tiplications to find the solution, x . When n D 10, this evaluates to 79,833,600

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

49

50 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

multiplications! In any case, for circuit simulation, we never explicitly find the
matrix inverse because, even if A is sparse, A�1 is typically full. In large numeri-
cal analysis problems, in general, one almost never explicitly computes the matrix
inverse.

Instead, one of the most efficient and robust solution methods, and the most
commonly used, is Gaussian elimination (GE). Gaussian elimination is also easy
to implement and can be easily extended to exploit matrix sparsity, which is a
key requirement for circuit simulation. Taking a broader view, two classes of
efficient techniques are available:

1. Direct methods: solve the system in a fixed and pre-determined number of
steps. This class includes Gaussian elimination, and its many variants, such
as LU factorization and Cholesky decomposition.

2. Indirect methods: are iterative techniques that approach the solution with
(hopefully) gradually improving accuracy. These methods converge only
if the matrix A has certain properties. Examples are Gauss-Seidel, Gauss-
Jacobi, Conjugate Gradient, etc.

Most modern circuit simulators are based on the use of LU factorization.
However, we will look at a whole range of solution techniques, including both
direct and indirect methods.

3.1 DIRECT METHODS

We will describe basic Gaussian elimination, provide the theoretical justification
for it, then describe LU factorization as a variant of it. But, first, we will briefly
review some matrix basics. The material in this section is based on a number
of sources, including Horn and Johnson (1985), Chua and Lin (1975), Ruehli
(1986), Vlach and Singhal (1994), and Pillage et al. (1995).

3.1.1 Matrix Preliminaries

As customary, let R
mðn denote the set of all m ð n real matrices and let R

n

denote the set of all n-dimensional real vectors. If A 2 R
mðn , then its entry in

the i th row and j th column will be denoted ai j .

Determinant Let A 2 R
nðn be a square matrix and let i 2 f1; 2; : : : ; ng, then

the familiar determinant of A is the real number given by:

det.A/ �
(Pn

jD1.�1/iC j ai j ci j ; if n> 1I
a11; if n D 1:

(3.3)

where ci j is the determinant of the .n � 1/ð .n � 1/ matrix that results from A
by removing its i th row and j th column.

DIRECT METHODS 51

Determinants have a number of interesting properties. If A is a square matrix,
then A is nonsingular if and only if det.A/ is non-zero, in which case:

det.A�1/ D 1

det.A/
(3.4)

A matrix and its transpose have the same determinant:

det.AT / D det.A/ (3.5)

If A; B 2 R
nðn , then:

det.AB/ D det.A/ det.B/ (3.6)

A useful corollary, when k is a (positive) integer, is that:

det.Ak/ D det.A/k (3.7)

If Þ 2 R is any real scalar and A 2 Rnðn , then:

det.ÞA/ D Þn det.A/ (3.8)

If ½1; ½2; : : : ; ½n are all the (possibly complex) eigenvalues of A 2 R
nðn , then:

det.A/ D
nY

iD1

½i (3.9)

so that a matrix is singular if and only if it has a zero eigenvalue. If A; B 2 R
nðn

are similar , i.e., if there exists a nonsingular X 2 Rnðn such that A D X�1 B X ,
then:

det.A/ D det.B/ (3.10)

so that the determinant is similarity-invariant . As a result, the determinant of a
linear transformation T : V ! V , where V is a finite-dimensional vector space,
is independent of the basis of V .

We will later on be interested in certain elementary row operations on matrices,
whose effect on the matrix determinant will be based on the following. If B is
obtained from A by exchanging two rows or two columns, then:

det.B/ D � det.A/ (3.11)

Therefore, reordering (i.e., permuting) the matrix rows or columns changes only
the sign of the determinant. Thus, j det.A/j is invariant to row or column reorder-
ing (permutation). If B is obtained from A by multiplying one row or column
by Þ 2 R, then:

det.B/ D Þ det.A/ (3.12)

52 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Finally, if B is obtained from A by adding to one row (or column) the product
of any Þ 2 R and any other row (or column), then, somewhat surprisingly:

det.B/ D det.A/ (3.13)

Diagonal Matrix A square matrix D is called a diagonal matrix if di j D 0
whenever i 6D j , i.e., if all its off-diagonal entries are zero, and is denoted D D
diag.d11; d22; : : : ; dnn/. A diagonal matrix is called a scalar matrix if dii D d j j

for all i and j . The determinant of a diagonal matrix is simply the product of its
diagonal entries:

det.D/ D
nY

iD1

dii (3.14)

Thus, a diagonal matrix is nonsingular if and only if all its diagonal entries are
non-zero. Let D D diag.d11; d22; : : : ; dnn/, then ½ is an eigenvalue of D if and
only if ½ 2 fd11; d22; : : : ; dnng. Thus, a diagonal matrix carries all its eigenvalues
on its diagonal.

If A; D 2 R
nðn and D is diagonal, then D A has the effect of multiplying the

rows of A by the diagonal entries of D, so that the i th row of A is multiplied
by dii . If A; D 2 Rnðn and D is diagonal, then AD has the effect of multiplying
the columns of A by the diagonal entries of D, so that the i th column of A is
multiplied by dii .

Finally, if D; E 2 R
nðn are both diagonal, then:

DE D E D D diag.d11e11; d22e22; : : : ; dnnenn/ (3.15)

Triangular Matrix A square matrix T is said to be upper triangular if
all its entries below the diagonal are 0. Furthermore, if tii D 0 for all i ,
then T is called strictly upper triangular . For example, the matrix on the
left in (3.16) is upper triangular and the one on the right is strictly upper
triangular.

2
666664

t11 t12 t13 : : : t1n

0 t22 t23 : : : t2n

0 0 t33 : : : t3n
:::

:::
:::

: : :
:::

0 0 : : : 0 tnn

3
777775

2
666664

0 t12 t13 : : : t1n

0 0 t23 : : : t2n

0 0 0 : : : t3n
:::

:::
:::

: : :
:::

0 0 : : : 0 0

3
777775 (3.16)

If T is upper triangular and tii D 1 for all i , then T is called unit upper triangular ;
we will also refer to it as being of unit-type, for brevity.

A square matrix T is said to be lower triangular if all its entries above the
diagonal are 0. Furthermore, if tii D 0 for all i , then T is called strictly lower
triangular . For example, the matrix on the left in (3.17) is lower triangular and

DIRECT METHODS 53

the one on the right is strictly lower triangular.

2
666664

t11 0 0 : : : 0
t21 t22 0 : : : 0
t31 t32 t33 : : : 0
:::

:::
:::

: : :
:::

tn1 tn2 : : : tn;n�1 tnn

3
777775

2
666664

0 0 0 : : : 0
t21 0 0 : : : 0
t31 t32 0 : : : 0
:::

:::
:::

: : :
:::

tn1 tn2 : : : tn;n�1 0

3
777775 (3.17)

If T is lower triangular and tii D 1 for all i , then T is called unit lower triangular ;
we will also refer to it as being of unit-type, for brevity.

A matrix is said to be triangular if it is either upper triangular or lower
triangular. The determinant of a triangular matrix is simply the product of its
diagonal entries:

det.T / D
nY

iD1

tii (3.18)

Thus, a triangular matrix is nonsingular if and only if all its diagonal entries are
non-zero.

If T 2 R
nðn is a triangular matrix, then ½ is an eigenvalue of T if and only if

½ 2 ft11; t22; : : : ; tnng. Thus, a triangular matrix carries all its eigenvalues on its
diagonal.

Finally, the following algebraic properties of triangular matrices can be useful.
Triangular matrices do not necessarily commute under multiplication. The inverse
of an upper (lower) triangular matrix is upper (lower) triangular. The inverse
of a unit upper (lower) triangular matrix is unit upper (lower) triangular. The
product of two upper (lower) triangular matrices is upper (lower) triangular.
The product of two unit upper (lower) triangular matrices is unit upper (lower)
triangular.

Permutation Matrices The following class of matrices are useful in the study
of Gaussian elimination.

Definition 3.1. (Permutation Matrix) A permutation matrix is a square matrix
that has a single 1 entry in every row and every column, while all other entries
are 0.

If P 2 R
nðn is a permutation matrix, then P can be obtained from I by a

permutation of its rows or its columns. Recall, a permutation is a mapping from
f1; 2; : : : ; ng onto itself, which is one-to-one and onto; informally, a permutation
is a “reshuffle.” It can be shown that det.P/ D š1, so that P is nonsingular, and
P�1 D PT . Furthermore, if A 2 R

nðn , then P A can be obtained from A by a
permutation of its rows , and AP can be obtained from A by a permutation of its
columns .

54 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Combinatorics For assessing computational complexity of algorithms, some
basic results from combinatorics are useful, as follows. When the order does not
matter, the number of combinations without repetition, of r out of k items, (“k
choose r”) is the binomial coefficient :�

k

r

�
D k!

r !.k � r/!
(3.19)

One can show that, for a fixed r � n:

nX
kDr

�
k

r

�
D
�

n C 1

r C 1

�
(3.20)

and this leads to:
nX

kD1

k D n.n C 1/

2
(3.21)

and
nX

kD1

k2 D n.n C 1/.2n C 1/

6
(3.22)

3.1.2 Gaussian Elimination (GE)

Consider the simple case of a system of two linear equations in two unknowns:

x1 C x2 D 5

x1 � x2 D 1
(3.23)

An elementary method of simplifying this system is to use the first equation
to write x1 D 5 � x2 and substitute that in place of x1 in the second equation,
thereby eliminating x1 from the second equation. This simple method of variable
elimination was extended by Gauss into the systematic procedure that we call
Gaussian elimination (GE). The basic method consists of two phases, called
forward elimination (FE) and backward substitution (BS).

Forward elimination proceeds in n � 1 steps, where each step eliminates one
equation and one unknown, until all that remains is one equation in one unknown.
It operates on both A and b, producing successively simplified versions of the
original system. Effectively, this performs a triangularization of the matrix, lead-
ing to an upper triangular matrix equation:2

666664

a11 a12 a13 : : : a1n

0 a22 a23 : : : a2n

0 0 a33 : : : a3n
:::

:::
:::

: : :
:::

0 0 : : : 0 ann

3
777775 x D b (3.24)

DIRECT METHODS 55

Once in this form, the solution of the system becomes simple because, with:

a11x1 C a12x2 C a13x3 C Ð Ð Ð C a1nxn D b1

a22x2 C a23x3 C Ð Ð Ð C a2nxn D b2

a33x3 C Ð Ð Ð C a3nxn D b3

:::
:::

:::

an�1;n�1xn�1 C an�1;nxn D bn�1

ann xn D bn

we can simply write xn D bn=ann , xn�1 D �
bn�1 � an�1;n xn

Ð
=an�1;n�1, etc. In

general, and using the convention that
Pn

nC1.Ð/ D 0, we would perform, for
k D n; .n � 1/; : : : ; 1:

xk D bk �Pn
jDkC1 ak j x j

akk
(3.25)

and this is precisely what the process of backward substitution is. It can be
shown that forward elimination requires ³ n3=3 operations,1 while backward
substitution requires ³ n2=2. Thus, Gaussian elimination is, overall, an O.n3/

algorithm. If the matrix is sparse, then GE can be done much more efficiently
than this, as we will see later on.

We have described backward substitution and it remains to explain forward
elimination. To this end, consider the initial state of the system:

a11x1 C a12x2 C Ð Ð Ð C a1n xn D b1

a21x1 C a22x2 C Ð Ð Ð C a2n xn D b2

a31x1 C a32x2 C Ð Ð Ð C a3n xn D b3

:::
:::

an1x1 C an2x2 C Ð Ð Ð C ann xn D bn

If we multiply the first equation by .a21=a11/ and subtract it from the second
equation, we get:

a11x1C a12x2 C Ð Ð Ð C a1n xn D b1

0 Ð x1C
�

a22 � a12

�
a21

a11

�½
x2 C Ð Ð Ð C

�
a2n � a1n

�
a21

a11

�½
xn D b2 � b1

�
a21

a11

�
a31x1C a32x2 C Ð Ð Ð C a3n xn D b3

:::
:::

:::
:::

:::

an1x1C an2x2 C Ð Ð Ð C ann xn D bn

1As is common practice, operations will refer to only floating point multiplications and divisions,
which are significantly more expensive than additions or subtractions.

56 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Thus, we have eliminated x1 from the 2nd equation. Repeating this for equation
i D 2; 3; : : : ; n, using .ai1=a11/ in every case, we would eliminate x1 from all
the other equations, leading to:

a11x1C a12x2 C Ð Ð Ð C a1n xn D b1

0 Ð x1C
�

a22 � a12

�
a21

a11

�½
x2 C Ð Ð Ð C

�
a2n � a1n

�
a21

a11

�½
xn D b2 � b1

�
a21

a11

�

0 Ð x1C
�

a32 � a12

�
a31

a11

�½
x2 C Ð Ð Ð C

�
a3n � a1n

�
a31

a11

�½
xn D b3 � b1

�
a31

a11

�
:::

:::
:::

:::
:::

0 Ð x1C
�

an2 � a12

�
an1

a11

�½
x2 C Ð Ð Ð C

�
ann � a1n

�
an1

a11

�½
xn D bn � b1

�
an1

a11

�

Forward elimination is a repetition of this process, .n � 1/ times.
As a result, the core of the basic Gaussian elimination algorithm (without any

pivoting for now) is as shown in Fig. 3.1. In forward elimination, we start with
k D 1, and for every row i ½ 2, the first row of A is multiplied by ai1=a11 and
subtracted from the i th row. The result is saved in place of the original i th row.
This eliminates the variable x1 from all but the first equation, so that the system
is transformed as shown:

2
66666664

a.1/11 a.1/12 a.1/13 : : : a.1/1n

a.1/21 a.1/22 a.1/23 : : : a.1/2n

a.1/31 a.1/32 a.1/33 : : : a.1/3n
:::

:::
:::

: : :
:::

a.1/n1 a.1/n2 a.1/n3 : : : a.1/nn

3
77777775

2
6666664

b.1/1

b.1/2

b.1/3
:::

b.1/n

3
7777775

�!

2
66666664

a.1/11 a.1/12 a.1/13 : : : a.1/1n

0 a.2/22 a.2/23 : : : a.2/2n

0 a.2/32 a.2/33 : : : a.2/3n
:::

:::
:::

: : :
:::

0 a.2/n2 a.2/n3 : : : a.2/nn

3
77777775

2
6666664

b.1/1

b.2/2

b.2/3
:::

b.2/n

3
7777775

Input: A.1/ D A, b.1/ D b
Forward elimination:

for (k D 1; : : : ; .n � 1/) do
for (i D k C 1; : : : ; n)

mik D a.k/ik =a
.k/
kk

a.kC1/
ik D 0

for (j D k C 1; : : : ; n) do
a.kC1/

i j D a.k/i j � mika.k/k j

b.kC1/
i D b.k/i � mikb.k/k

Backward substitution:
for (k D n; : : : ; 1) do

xk D 1
a.k/kk

b.k/k �

nP
jDkC1

a.k/k j x j

!

Figure 3.1: The core of a Gaussian elimination algorithm.

DIRECT METHODS 57

where we have introduced the superscripts .1/, .2/, etc. to denote the initial and
subsequently updated entries of the system. Notice that the first row remains
the same, while all other entries of A and b have been updated. The next step
involves applying the same procedure to the sub-matrix with indices from 2 to
n and, after .n � 1/ steps, the matrix becomes upper triangular:

2
6666664

a.1/11 a.1/12 a.1/13 : : : a.1/1n

0 a.2/22 a.2/23 : : : a.2/2n

0 0 a.3/33 : : : a.3/3n
:::

:::
:::

: : :
:::

0 0 : : : 0 a.n/nn

3
7777775

x D

2
6666664

b.1/1

b.2/2

b.3/3
:::

b.n/n

3
7777775

(3.26)

In this final state of the system, notice that some rows have been updated more
times than others. The 1st row has remained the same, the 2nd row was updated
1 time, the 3rd row was updated 2 times, etc., and the nth row was updated
.n � 1/ times.

Repeated Solutions With Gaussian elimination, if the right-hand side vector
b changes, the process has to be restarted from the beginning. In many practical
cases, including some simulation scenarios, the matrix may remain fixed while
the right-hand side vector b changes. In that case, one can modify Gaussian
elimination so as to reuse previous work. Rather than operating on b with the
multipliers mik during forward elimination, the multipliers are instead saved in a
matrix. For the given b, the saved multipliers are used to operate on that vector.
Then, backward substitution is used as usual to find the solution x . Given another
right-hand side vector, the saved matrix of multipliers, and backward substitution,
are efficiently re-applied on that vector. When so modified, Gaussian elimination
becomes equivalent to LU factorization, as we will see below.

Elementary Row Operations The operations performed at every step of
Gaussian elimination are called elementary row operations (EROs), and they are
of three types:

Type 1: Exchange two rows (for row pivoting, as we will see later on).
Type 2: Multiply one row by a constant and add the result to another row.
Type 3: Multiply one row by a constant.

These operations are each equivalent to pre-multiplying the system equation
Ax D b with one of three corresponding types of so-called elementary matrices:

Type 1: Obtained by applying a type 1 ERO to the identity matrix I .
Type 2: Obtained by applying a type 2 ERO to the identity matrix I .
Type 3: Obtained by applying a type 3 ERO to the identity matrix I .

58 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

The following matrices are examples of the three types:

E1 D

2
664

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3
775 E2 D

2
6664

1 0 0 0
0 1 0 0

�a31

a11
0 1 0

0 0 0 1

3
7775 E3 D

2
66664

1 0 0 0

0
1

a.2/22

0 0

0 0 1 0
0 0 0 1

3
77775

It can be shown that matrices of these three types are always nonsingular, so
that pre-multiplying the system by such matrices does not change its solution;
the solution of the final system is the solution of the original system. Thus, the
net effect of Gaussian elimination is to pre-multiply the system equation by the
product of a number of such elementary matrices:

mY
iD1

Ei

!
Ax D

mY

iD1

Ei

!
b (3.27)

leading to the triangulated final form (3.26). Further details on this topic are
given in Chua and Lin (1975).

Pivoting Crucially, the element a.k/kk , which one divides by at every step of GE,
must not be zero; this element is referred to as the pivot . The simple algorithm
shown above assumes that pivots are all non-zero. In practice, pivots can become
zero, even for simple systems. For example, consider the following system:

x1 � x2 C x3 D 0
x1 � x2 C 2x3 D 2
x1 C 2x2 C 2x3 D 1

(3.28)

After the first step of Gaussian elimination, we have:

x1 � x2 C x3 D 0
0x2 C x3 D 2
3x2 C x3 D 1

(3.29)

No further progress can be made, because the element that was to be used as a
pivot in the second step is zero. This problem can be overcome by exchanging
rows, columns, or both. This rearrangement or reordering of the matrix is called
pivoting . For this example, to use row exchange, we would exchange the two
equations (rows of the matrix), which eliminates the problem:

x1 � x2 C x3 D 0
3x2 C x3 D 1
0x2 C x3 D 2

(3.30)

Obviously, exchanging rows, i.e., permuting the matrix rows, requires a similar
exchange in the b vector, and is equivalent to pre-multiplying the original system

DIRECT METHODS 59

equation by an appropriate permutation matrix:

Ax D b () P Ax D Pb (3.31)

Recall that left-multiplication of a matrix by a permutation matrix achieves a
permutation of its rows .

Performing a column exchange is slightly more complicated and is in fact
equivalent to a variable transformation, as follows. If Q is a permutation matrix
and if we let y D QT x so that x D Qy, then:

Ax D b () AQy D b (3.32)

This achieves a permutation (exchange) of the columns of A, which elimi-
nates the problem. For our example, if we choose x1 D y1, x2 D y3, x3 D y2,
then:

y1 C y2 � y3 D 0
y2 C 0y3 D 2
y2 C 3x3 D 1

with Q D
2
41 0 0

0 0 1
0 1 0

3
5 (3.33)

Recall that right-multiplication of a matrix by a permutation matrix achieves
a permutation of its columns . Once the temporary solution y is found, we can
easily find the required solution x , using x D Qy.

It is also possible to exchange both rows and columns, i.e., to perform a
row and column exchange, so that this most general form of pivoting is as
shown:

Ax D b () .P AQ/y D Pb; where y D QT x (3.34)

Occasionally, pivoting is absolutely required so as to avoid dividing by zero.
If the matrix is nonsingular, then pivoting will always succeed, i.e., there will
always exist a set of permutations that leads to a non-zero diagonal. In addition,
and this goes beyond simply avoiding a division by zero, pivoting is highly
advisable for two other reasons:

1. Due to finite precision of digital computers, pivoting helps reduce the
inevitable roundoff error in the result. This would be called pivoting for
accuracy and, as we will see later on, it calls for one to use the largest-
magnitude pivot.

2. When the matrix is sparse and if sparse matrix techniques are
used, then pivoting helps to drastically reduce the computational
effort. This would be called pivoting for sparsity . We will see later
on that it is indeed possible to select a pivot that helps maintains
sparsity.

We will return later on to a detailed discussion of pivoting.

60 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

3.1.3 LU Factorization

There are many kinds of matrix factorizations or decompositions that have been
found useful in numerical methods. For circuit simulation, the LU factorization
is quite useful and is the basis for most simulator implementations.

Theorem 3.1. If A 2 R
nðn is nonsingular, then there exists a permutation matrix

P such that:
P A D LU (3.35)

where L is a nonsingular lower triangular matrix and U is a nonsingular upper
triangular matrix.

Thus, the LU factorization of a matrix A is the equation:

P A D

2
6664

l11 0 0 : : : 0
l21 l22 0 : : : 0
:::

:::
: : :

:::

ln1 ln2 ln3 : : : lnn

3
7775
2
6664

u11 u12 u13 : : : u1n

0 u22 u23 : : : u2n
:::

:::
: : :

:::

0 0 0 : : : unn

3
7775 D LU (3.36)

Notice that:

det.A/ D .�1/r det.P A/ D .�1/r det.L/ det.U / D .�1/r
nY

iD1

lii uii (3.37)

where the integer r ½ 0 is the number of row exchanges performed by the per-
mutation matrix P .

Note that, in general, the L and U matrices are not unique. However, if the
diagonal of either L or U is prespecified, then the factorization becomes unique,
as we will see below. For example, if we require U to be unit upper triangular,
as in Crout’s algorithm, then the factorization is unique. Likewise, if we require
L to be unit lower triangular, as in Doolittle’s algorithm, then the factorization
is unique. The justification of these statements is via the following theorem.

Theorem 3.2. If A 2 R
nðn is nonsingular, then there exists a permutation matrix

P such that:
P A D L 0 DU 0 (3.38)

where L 0 is a nonsingular unit lower triangular matrix, D is a nonsingular diago-
nal matrix, U 0 is a nonsingular unit upper triangular matrix, and this factorization
is unique, for this P A.

The following analysis explores the link between these two theorems. Let A
be nonsingular and, using (3.35), let P A D LU , where L is lower triangular and
U is upper triangular, both nonsingular and not necessarily unique. Let DL be a
diagonal matrix whose entries are the diagonal entries of L:

DL D diag.l11; l22; : : : ; lnn/ (3.39)

DIRECT METHODS 61

Since lii 6D 0, then there exists a unit lower triangular L 0, for which:

L D L 0 DL (3.40)

Likewise, if DU D diag.u11; u22; : : : ; unn/, then there exists a unit upper trian-
gular U 0, for which:

U D DU U 0 (3.41)

If we define a diagonal matrix D � DL DU , so that dii D lii uii , then:

P A D LU D .L 0 DL/.DU U 0/ D L 0.DL DU /U
0 D L 0 DU 0 (3.42)

and, by the above theorem, this factorization is unique. Working backwards, we
can factor D in any desirable way, dii D lii uii , to achieve any desired diagonal on
U or on L (with only non-zero entries). Thus, once a diagonal for U , or for L , is
chosen, the rest of the factorization P A D LU becomes determined and unique.

Solving the System How would we solve a linear system given an LU
factorization of the system matrix? If we start with the equation Ax D b and
pre-multiply both sides by the permutation matrix P for which P A D LU , then:

P Ax D LU x D Pb (3.43)

If we let z D Pb be the new right-hand side (RHS) vector, easily found by a
number of row exchanges of the original vector b, and let y D U x , so that we
can write the two triangular systems:

Ly D z and U x D y (3.44)

We can now solve the system Ly D z for y, by forward substitution (FS) (similar
to backward substitution, but starting from the top), then solve the system U x D y
for x , by backward substitution. The overall solution flow is:

1. LU factorization (³ n3=3 operations)
2. Forward substitution (FS) (³ n2=2 operations)
3. Backward substitution (BS) (³ n2=2 operations)

Thus, overall, solving a system using LU factorization is an O.n3/ algorithm,
similar to Gaussian elimination. However, once the matrix has been LU factored,
one can find the solution for any new RHS vector b by using one FS followed
by one BS, in ³ n2 operations. This is a key advantage of LU factorization over
Gaussian elimination. Another minor advantage is that the system AT x D b can
be easily solved once the system Ax D b has been solved, because P A D LU)
.P A/T D U T LT . Note, U T is lower triangular and LT is upper triangular. This
feature can be useful in sensitivity analysis.

As mentioned, modern circuit simulators use LU factorization. It remains to
describe how to construct the LU factors, but first, we will briefly consider the
implementation of forward and backward substitution.

62 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Forward Substitution Forward substitution is concerned with solving the
system Ly D z: 2

6664
l11 0 Ð Ð Ð 0
l21 l22 Ð Ð Ð 0
:::

:::
: : :

:::

ln1 ln2 Ð Ð Ð lnn

3
7775
2
6664

y1

y2
:::

yn

3
7775 D

2
6664

z1

z2
:::

zn

3
7775 (3.45)

In principle, solving this system is trivial, because L is lower triangular, so that
we would simply perform, for k D 1; : : : ; n, yk D

�
zk �Pk�1

jD1 lk j y j

� Ž
lkk . An

algorithm based directly on this equation would be as shown in Fig. 3.2. This
implementation is efficient if a sparse L is stored by-rows . However, when L is
sparse and storage-by-columns is used, which is probably more common, then
the algorithm shown Fig. 3.3 is faster. This alternate implementation works by
pre-subtracting the product terms that contain yk from all future z entries. When
it is time to compute a certain yk value, all the subtractions for its corresponding
zk value have already been made. In either case, when L is of unit-type, then the
divisions by lkk are obviously not required.

Backward Substitution Backward substitution is concerned with solving the
system U x D y: 2

6664
u11 u12 Ð Ð Ð u1n

0 u22 Ð Ð Ð u2n
:::

:::
: : :

:::

0 0 Ð Ð Ð unn

3
7775
2
6664

x1

x2
:::

xn

3
7775 D

2
6664

y1

y2
:::

yn

3
7775 (3.46)

In principle, solving this system is trivial, because U is upper triangular, so that
we would simply perform, for k D n; : : : ; 1, xk D

�
yk �Pn

jDkC1 uk j x j

�Ž
ukk .

for .k D 1; : : : ; n/ do
for (j D 1; : : : ; k � 1) do

zk D zk � lk j y j

yk D zk= lkk

Figure 3.2: An implementation of forward substitution that is appropriate when a matrix
is stored by rows .

for (k D 1; : : : ; n) do
yk D zk= lkk

if (yk 6D 0) then
for (i D k C 1; : : : ; n) do

zi D zi � lik yk

Figure 3.3: An implementation of forward substitution that is appropriate when a matrix
is stored by columns .

DIRECT METHODS 63

for (k D n; : : : ; 1) do
for (j D k C 1; : : : ; n) do

yk D yk � ukj x j

xk D yk=ukk

Figure 3.4: An implementation of backward substitution that is appropriate when a matrix
is stored by rows .

for (k D n; : : : ; 1) do
xk D yk=ukk

if (xk 6D 0) then
for (i D k � 1; : : : ; 1) do

yi D yi � uik xk

Figure 3.5: An implementation of backward substitution that is appropriate when a matrix
is stored by columns .

An algorithm based directly on this equation would be as shown in Fig. 3.4.
This implementation is efficient if a sparse U is stored by-rows . However, when
U is sparse and storage-by-columns is used, which is probably more common,
then the algorithm in Fig. 3.5 is faster. This alternate implementation works by
pre-subtracting the product terms that contain xk from all future y entries. When
it is time to compute a certain xk value, all the subtractions for its corresponding
yk value have already been made. In either case, when U is of unit-type, then
the divisions by ukk are obviously not required.

Factoring the Matrix A few comparable algorithms are available for LU
factorization. Crout’s algorithm gives a unit upper triangular U , Doolittle’s algo-
rithm gives a unit lower triangular L , while Gauss’s algorithm, a modification of
GE, also gives a unit lower triangular L .

All three methods are asymptotically (i.e., for large n) equivalent in terms of
complexity, with ³ n3=3 operations, but Gauss’s algorithm is generally preferred,
for the following reasons. Compared to Gauss’s, the other two algorithms have
fewer memory references and smaller round-off error, but they allow only partial
(not full) pivoting. Partial pivoting is a pivoting process by which we restrict our
search for a pivot to those entries in either the kth column (followed by a row
exchange) or in the kth row (followed by a column exchange). In contrast, full
pivoting is a pivoting process that allows for any pivot from the remaining sub-
matrix to be used, thereby possibly requiring both row and column exchanges.
Gauss’s algorithm for LU factorization allows using a pivot that allows both
row and column exchange, which is useful for maintaining sparsity, as we will
see later on. Also, Gauss’s algorithm has a useful application in connection with
block matrices for parallel simulation, as we will see later on. However, it should
be also mentioned that, having uii D 1 (Crout), rather than lii D 1 (Doolittle and
Gauss), is preferable when the right-hand side vector is highly sparse. This is
because, with uii D 1, we would divide by lkk as part of solving Ly D z D Pb,

64 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

and we would have very few of these to do. Although we will show a basic
Gauss’s algorithm that gives lii D 1, it is easy to modify this to allow for uii D 1.
This is left as an exercise for the reader.

In the following, we assume that A is nonsingular and, for clarity of presen-
tation, we assume that the factorization exists with P D I as the permutation
matrix. In other words, we assume that no pivoting is required. It is not hard to
lift this requirement, by modifying the below algorithms to include pivoting, as
we will see later on.

Algorithms for LU Factorization It is actually easy to derive an algorithm
for LU factorization. Consider the matrix equation A D LU , or:2

6664
l11 0 Ð Ð Ð 0
l21 l22 Ð Ð Ð 0
:::

:::
: : :

:::

ln1 ln2 Ð Ð Ð lnn

3
7775
2
6664

u11 u12 Ð Ð Ð u1n

0 u22 Ð Ð Ð u2n
:::

:::
: : :

:::

0 0 Ð Ð Ð unn

3
7775 D

2
6664

a11 a12 Ð Ð Ð a1n

a21 a22 Ð Ð Ð a2n
:::

:::
: : :

:::

an1 an2 Ð Ð Ð ann

3
7775

If we think of the li j and ui j as unknowns, and the ai j as given constants, then
this leads to n2 nonlinear equations in .n2 C n/ unknowns:

min.i; j/X
kD1

likuk j D ai j ; 8i; j (3.47)

This system is under-determined ; it has n more unknowns than equations. Thus,
we are free to choose certain values up-front for n of the variables, and the
system can then be solved for all the rest. Because the equations (3.47) are
nonlinear, this choice cannot be arbitrary. The various LU algorithms typically
set the value of either the L or the U diagonal. If we choose lii D 1, we get
a factorization with a unit-type L . If we choose uii D 1, we get a factorization
with a unit-type U . One could choose a value other than 1, anything other than
0, but a unit-type L or U gives some reduction of the computational effort.
Once a diagonal has been chosen, finding the rest of L and U is easy. Notice,
for later reference, that (3.47) leads to the following. When i � j , then ai j DPi

kD1 likuk j D Pi�1
kD1 likuk j C lii ui j , from which:

ui j D

ai j �
i�1X
kD1

likuk j

!Ž
lii (3.48)

When i ½ j , then ai j D P j
kD1 likuk j D P j�1

kD1 likuk j C li j ui j , from which:

li j D
0
@ai j �

j�1X
kD1

likuk j

1
AŽu j j (3.49)

These equations can be combined in different ways to find L and U .

DIRECT METHODS 65

Crout’s Algorithm Let us start by assuming that uii D 1 so that U is unit
upper triangular. We use (3.47) and expand the summation, as in Vlach and
Singhal (1994), for every entry of the matrix A, to get:

A D

2
666664

l11 l11u12 l11u13 Ð Ð Ð
l21 l21u12 C l22 l21u13 C l22u23 Ð Ð Ð
l31 l31u12 C l32 l31u13 C l32u23 C l33 Ð Ð Ð
l41 l41u12 C l42 l41u13 C l42u23 C l43 Ð Ð Ð
:::

:::
:::

: : :

3
777775

Given this, we can proceed in the following way. We start at level 1 and consider
the matrix A .f1; : : : ; ng; f1; : : : ; ng/, i.e., the full original matrix. For the first
column, we immediately know that, for all i ½ 1:

li1 D ai1 (3.50)

and, for the first row , since l11 is known, then for all j ½ 2:

u1 j D a1 j= l11 (3.51)

We then consider level 2 and the sub-matrix A .f2; : : : ; ng; f2; : : : ; ng/. For the
first column , since li1 and u12 are known, then for all i ½ 2:

li2 D ai2 � li1u12 (3.52)

and, for the first row , since l21 and u1 j are known, then for all j ½ 3:

u2 j D .a2 j � l21u1 j /= l22 (3.53)

Similarly, for every subsequent level k ½ 3, we consider the remaining sub-
matrix, i.e., A .fk; : : : ; ng; fk; : : : ; ng/, and we write:

first column: lik D aik �
k�1X
mD1

limumk; 8i ½ k (3.54)

first row: uk j D

ak j �
k�1X
mD1

lkmum j

!	
lkk; 8 j ½ k C 1 (3.55)

Effectively, this is one way of interleaving the application of (3.48) and (3.49).
This leads to Crout’s algorithm, which is as shown in Fig. 3.6. Note that the
algorithm does not actually compute uii ; it is already known to be 1. One feature
of Crout’s algorithm is the alternating sequence of column and row evaluations.

Another feature is the option of doing in-place computation, as follows. Note
that each ai j is needed only in order to determine the corresponding entry of

66 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Input: A, a nonsingular matrix
for (k D 1; : : : ; n) do

for (i D k; : : : ; n) do
lik D aik �Pk�1

mD1 limumk

for (j D k C 1; : : : ; n) do

ukj D
�

akj �Pk�1
mD1 lkmumj

�	
lkk

Figure 3.6: Crout’s algorithm for LU factorization.

either L or U , depending on whether i ½ j or i < j . Then, since the 0 entries
of L and U , as well as all the uii , are known , and do not need to be stored, we
can let li j or ui j rewrite ai j . Thus, we can have L and U over-write A, to end
up with a so-called auxiliary matrix S consisting of (only) the initially unknown
elements of L and U :

S D

2
666664

l11 u12 u13 Ð Ð Ð u1n

l21 l22 u23 Ð Ð Ð u2n

l31 l32 l33 Ð Ð Ð u3n
:::

:::
:::

: : :
:::

ln1 ln2 ln3 Ð Ð Ð lnn

3
777775 D L C U � I (3.56)

The computational cost (number of multiplications and divisions) of the imple-
mentation of Crout’s algorithm, as shown in Fig. 3.6, is:

cost D
nX

kD1

0
@ nX

iDk

.k � 1/C
nX

jDkC1

.k � 1 C 1/

1
A D n3

3
� n

3
(3.57)

Two Variants on Crout There are two variants on the basic Crout’s algorithm
that can be easily derived, as follows. Starting again from uii D 1, consider once
more the expanded matrix view:

A D

2
666664

l11 l11u12 l11u13 Ð Ð Ð
l21 l21u12 C l22 l21u13 C l22u23 Ð Ð Ð
l31 l31u12 C l32 l31u13 C l32u23 C l33 Ð Ð Ð
l41 l41u12 C l42 l41u13 C l42u23 C l43 Ð Ð Ð
:::

:::
:::

: : :

3
777775

Given this, we can solve for the variables one row at a time, as follows. Start at
row 1 and perform l11 D a11 and, for all j ½ 2, perform:

u1 j D a1 j= l11 (3.58)

DIRECT METHODS 67

Then, consider row 2 and perform l21 D a21, l22 D a22 � l21u12, and, for all j ½ 3,
perform:

u2 j D .a2 j � l21u1 j /= l22 (3.59)

This process is repeated, giving the solution one row at a time. This gives a
variant on Crout that produces one row at a time, as opposed to interleaving
the column and row solutions as in the original Crout algorithm. Similarly, one
can produce another variant that gives one column at a time. When dealing with
large sparse matrices, there may be an advantage to solving the system one way
or another, either by rows or by columns. When applied to a full matrix, these
variants perform the same number of operations as Crout’s original algorithm,
but in a different order.

Doolittle’s Algorithm In this case, we start with the choice of L as unit lower
triangular, and the expanded matrix view A D LU becomes as follows:

A D

2
666664

u11 u12 u13 Ð Ð Ð
l21u11 l21u12 C u22 l21u13 C u23 Ð Ð Ð
l31u11 l31u12 C l32u22 l31u13 C l32u23 C u33 Ð Ð Ð
l41u11 l41u12 C l42u22 l41u13 C l42u23 C l43u33 Ð Ð Ð
:::

:::
:::

: : :

3
777775

We proceed similarly to Crout’s algorithm, but in this case we process a row
before we process a column, leading to Doolittle’s algorithm as shown in Fig. 3.7.

The computational complexity is exactly the same as for Crout’s algorithm,
because this is simply a reshuffling of the same operations. Here, too, one can
consider similar variants like the ones we considered for Crout’s algorithm, so
as to obtain one row at a time or one column at a time.

Gauss’s Algorithm Gauss’s algorithm for LU factorization is much more
interesting because of its links to Gaussian elimination (GE). Recall that Gaussian

Input: A, a nonsingular matrix
for (k D 1; : : : ; n) do

for (j D k; : : : ; n) do
ukj D akj �Pk�1

mD1 lkmumj

for (i D k C 1; : : : ; n) do

lik D
�

aik �Pk�1
mD1 limumk

�	
ukk

Figure 3.7: Doolittle’s algorithm for LU factorization.

68 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

elimination leads to the upper triangular final form:

2
6666664

a.1/11 a.1/12 a.1/13 : : : a.1/1n

0 a.2/22 a.2/23 : : : a.2/2n

0 0 a.3/33 : : : a.3/3n
:::

:::
:::

: : :
:::

0 0 : : : 0 a.n/nn

3
7777775

x D

2
6666664

b.1/1

b.2/2

b.3/3
:::

b.n/n

3
7777775

(3.60)

How is the final RHS vector related to the original b? We can find out if we
unravel the b computation in the inner-loop of GE, by reference to Fig. 3.1.
Notice that the last time that bi is updated is when k C 1 D i , and the sequence
of updates to bi is as follows:

b.1/i D bi

k D 1 : b.2/i D b.1/i � mi1b.1/1

k D 2 : b.3/i D b.2/i � mi2b.2/2

:::

b.kC1/
i D b.k/i � mikb.k/k

:::

k D i � 2 : b.i�1/
i D b.i�2/

i � mi;i�2b.i�2/
i�2

k D i � 1 : b.i/i D b.i�1/
i � mi;i�1b.i�1/

i�1

If we add all the above equations, we get the expression for b.i/i :

b.i/i D bi �
i�1X
jD1

mi j b
. j/
j (3.61)

This can be arranged as
Pi�1

jD1 mi j b
. j/
j C b.i/i D bi , or, in matrix form:

2
666664

1 0 0 Ð Ð Ð 0
m21 1 0 Ð Ð Ð 0
m31 m32 1 Ð Ð Ð 0
:::

:::
:::

: : :
:::

mn1 mn2 mn3 Ð Ð Ð 1

3
777775

2
6666664

b.1/1

b.2/2

b.3/3
:::

b.n/n

3
7777775

D b (3.62)

DIRECT METHODS 69

The unit lower triangular matrix in (3.62) is nonsingular, so we can multiply both
sides of (3.60) by it without affecting the solution, leading to:

2
666664

1 0 0 Ð Ð Ð 0
m21 1 0 Ð Ð Ð 0
m31 m32 1 Ð Ð Ð 0
:::

:::
:::

: : :
:::

mn1 mn2 mn3 Ð Ð Ð 1

3
777775

2
6666664

a.1/11 a.1/12 a.1/13 : : : a.1/1n

0 a.2/22 a.2/23 : : : a.2/2n

0 0 a.3/33 : : : a.3/3n
:::

:::
:::

: : :
:::

0 0 : : : 0 a.n/nn

3
7777775

x D b (3.63)

Thus, it is clear that GE implicitly performs an LU factorization, in which the
L matrix is of unit-type and is simply a matrix of the multiplier entries:

L D

2
666664

1 0 0 Ð Ð Ð 0
m21 1 0 Ð Ð Ð 0
m31 m32 1 Ð Ð Ð 0
:::

:::
:::

: : :
:::

mn1 mn2 mn3 Ð Ð Ð 1

3
777775 (3.64)

and U is the final triangulated system matrix. Indeed, one can show, similarly to
the derivation of (3.62), that LU D A, the original system matrix. Notice, finally
that the final state of the system is as follows:

U x D

2
6666664

a.1/11 a.1/12 a.1/13 : : : a.1/1n

0 a.2/22 a.2/23 : : : a.2/2n

0 0 a.3/33 : : : a.3/3n
:::

:::
:::

: : :
:::

0 0 : : : 0 a.n/nn

3
7777775

x D

2
6666664

b.1/1

b.2/2

b.3/3
:::

b.n/n

3
7777775

D L�1b (3.65)

So that L�1 is nothing but the product of all the elementary matrices by which
the system was (implicitly) pre-multiplied as part of GE.

For better comparison with other LU methods, we can rewrite the GE algo-
rithm in a form that is similar to Crout’s and Doolittle’s algorithms. We do this
by first writing the expanded form of the auxiliary matrix S, in the case when L
is unit-type, as follows. The expanded form of A D LU , based on (3.47) when
L is unit-type, is:

A D

2
666664

u11 u12 u13 Ð Ð Ð
l21u11 l21u12 C u22 l21u13 C u23 Ð Ð Ð
l31u11 l31u12 C l32u22 l31u13 C l32u23 C u33 Ð Ð Ð
l41u11 l41u12 C l42u22 l41u13 C l42u23 C l43u33 Ð Ð Ð
:::

:::
:::

: : :

3
777775

70 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Input: A, a nonsingular matrix
for (k D 1; : : : ; n) do

for (j D k; : : : ; n) do
ukj D akj

for (i D k C 1; : : : ; n) do
lik D aik=ukk

for (i D k C 1; : : : ; n) do
for (j D k C 1; : : : ; n) do

ai j D ai j � likuk j

Figure 3.8: Gauss’s algorithm for LU factorization.

And we can write an expanded form of S D L C U � I , when L is unit-type,
based on (3.48) and (3.49), as:

S D

2
666664

a11 a12 a13 Ð Ð Ð
a21=u11 a22 � l21u12 a23 � l21u13 Ð Ð Ð
a31=u11 .a32 � l31u12/=u22 a33 � l31u13 � l32u23 Ð Ð Ð
a41=u11 .a42 � l41u12/=u22 .a43 � l41u13 � l42u23/=u33 Ð Ð Ð
:::

:::
:::

: : :

3
777775

Thus, we can compute the LU factorization as follows. From the first row of S,
find u1 j D a1 j , 8 j ½ 1. Then, from the first column of S, now that we know u11,
we can find li1 D ai1=u11, 8i ½ 2. With l21 known and u1 j known, we then use
the 2nd row of S to compute the 2nd row of U , etc.

The process sounds exactly like Doolittle’s algorithm. However, we can also
organize the computation in a different way, as follows. Note that all the entries
of S involve starting with entries of A, and performing a set of subtractions
(empty for the first row and column) and a set of divisions (for entries below
the diagonal). There are more subtractions to be done as we get deeper into
the matrix. One option is to sweep across the whole remaining sub-matrix and
do a subtraction before moving down to the next level. Thus, when finding
u22 D s22 D a22 � l21u12, we can choose to perform one subtraction for the whole
sub-matrix A.f2; : : : ; ng; f2; : : : ; ng/. The process can be organized as shown in
Fig. 3.8 and, being identical to Gaussian elimination, it is referred to as Gauss’s
algorithm.

Notice that the double for-loop at the bottom performs one subtraction across
the whole remaining sub-matrix. On the next iteration, the first column has had all
the required subtractions performed and is ready for the final division. The com-
plexity is the same as before, n3=3 � n=3, and one can also develop a variant of
this algorithm that produces a unit-type U matrix. Because it accesses the whole
sub-matrix, Gauss’s algorithm performs more memory referencing than Crout,
but it does allow full pivoting. It is often implemented so that it uses in-place
computation, storing the L matrix in the bottom left of the triangulated A matrix.

In terms of its operations on the system matrix, Gauss’s method for LU
factorization is identical to the forward elimination phase of Gaussian elimination,

DIRECT METHODS 71

as one can easily see by comparing the two algorithms. In fact, in the literature,
it is often the case that the term “Gaussian elimination” actually refers to Gauss’s
method for LU factorization. If a RHS vector b is available, Gauss’s method can
also apply similar operations on it, in which case it becomes identical to the full
GE algorithm.

3.1.4 Block Gaussian Elimination

Gauss’s method for LU factorization is also useful in another context, as we now
explain. Recall that the effect of GE on the system Ax D b is to pre-multiply
both sides by L�1, so that:

Ax D b
G E�! U x D L�1b (3.66)

This is usually expressed by forming an augmented matrix
ð
AjbŁ and pre-

multiplying that with L�1:

ð
AjbŁ G E�! ð

U jL�1b
Ł

(3.67)

Now consider a system expressed in block matrix form, as shown:�
A B
C D

½ �
x1

x2

½
D
�

b1

b2

½
(3.68)

where x1, x2, b1, and b2 are vectors. Let A be nonsingular with A D LU , where
L is of unit-type. Suppose we apply Gauss’s method only partially , proceeding
down the diagonal of A, but stopping once A has been triangulated. Then, the
effect on the top equation in (3.68) is to pre-multiply it by L�1, yielding:

U x1 C L�1 Bx2 D L�1b1 (3.69)

What happens to the bottom equation in the process? Obviously, C is transformed
to 0, but what happens to D and b2?

To answer this question, recall that GE is simply a variable elimination pro-
cess, a substitution process, so that the real question is: what becomes of the
bottom equation in (3.68) if we eliminate x1 from it by making use of the top
equation? We can easily answer this by using the top equation to get:

x1 D A�1 .b1 � Bx2/ (3.70)

and substituting this into the bottom equation, leading to:

.D � C A�1 B/x2 D b2 � C A�1b1 (3.71)

This “elimination by substitution” is at the heart of GE, so that this is exactly
the new form of the bottom equation. Thus, the resulting half-way transformed

72 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

system is as follows:

�
U L�1 B
0 .D � C A�1 B/

½ �
x1

x2

½
D
�

L�1b1

b2 � C A�1b1

½
(3.72)

This is called block Gaussian elimination, and it can be understood as pre-
multiplying the system by a certain matrix, as shown:

�
L�1 0

�C A�1 I

½ �
A B j b1

C D j b2

½
D
�

U L�1 B j L�1b1

0 .D � C A�1 B/ j b2 � C A�1b1

½

Or, simply focusing on the action on the system matrix:

�
L�1 0

�C A�1 I

½ �
A B
C D

½
D
�

U L�1 B
0 .D � C A�1 B/

½
(3.73)

Effectively, this matrix transformation leads to a “partial U” matrix, which is a
partial version of the final triangulated system matrix:

U 0 �
�

U L�1 B
0 .D � C A�1 B/

½
(3.74)

It is convenient to perform this “partial GE” using Gauss’s method for LU
factorization, because it also yields the “partial L” matrix on the fly. What does
the partial L matrix, i.e., L 0, look like? We know that the top part of L 0 has an
L and a 0, but we need to determine X and Y :

L 0 �
�

L 0
X Y

½
(3.75)

We can easily solve for X because, if the full [A; B;C; D] matrix were to be
LU -factorized, we would have:�

L 0
X Ð

½ �
U L�1 B
0 Ð

½
D
�

A B
C D

½
(3.76)

where the “Ð” denotes unknown final content, so that XU D C , X D CU�1, and
therefore:

L 0 D
�

L 0
CU�1 Y

½
(3.77)

As for Y , it is convenient to assume that the matrix L 0 is initialized, at the start
of GE, as the identity matrix, so that Y D I conveniently leads to:

�
L 0

CU �1 I

½ �
U L�1 B
0 .D � C A�1 B/

½
D
�

A B
C D

½
(3.78)

DIRECT METHODS 73

Thus, adopting this initialization assumption on L 0, we have:

L 0 D
�

L 0
CU �1 I

½
and U 0 D

�
U L�1 B
0 .D � C A�1 B/

½
(3.79)

A common shorthand notation is to capture both L 0 and U 0 in a single so-called
auxiliary matrix S D L 0 C U 0 � I , so that:

S D
�
.LjU / L�1 B
CU �1 .D � C A�1 B/

½
(3.80)

where .LjU / is a packaging of L (less its unit diagonal) and U into the same
square matrix, whose diagonal consists of the U diagonal. Finally, one can also
combine this with the right-hand side vector, as:

�
.LjU / L�1 B
CU �1 .D � C A�1 B/

½ �
L�1b1

b2 � C A�1b1

½
(3.81)

3.1.5 Cholesky Decomposition

In a certain special case, which often arises in simulation, the factorization can
be simplified significantly, as follows. First, a brief review of matrix positive
definiteness is useful.

Positive Definite Recall, if A 2 Rnðn is symmetric, and if xT Ax > 0 for all
non-zero x 2 R

n , then A is said to be positive definite, or symmetric positive
definite (SPD). If A is SPD then it is nonsingular, and its inverse is also SPD.
Recall that a matrix is singular if and only if it has a zero eigenvalue. A symmetric
matrix is SPD if and only if all its eigenvalues are (strictly) positive. If A is
symmetric and strictly diagonally dominant and if all its diagonal entries are
strictly positive, then it is SPD. If A D CCT , where C 2 R

nðn is nonsingular,
then A is SPD.

If A 2 R
nðn is symmetric, and if xT Ax ½ 0 for all non-zero x 2 R

n , then
A is said to be positive semi-definite. In this case, there is no guarantee of
nonsingularity. A matrix is positive semi-definite if and only if all its eigenvalues
are non-negative. If A D CCT , where C 2 R

nðn , then A is positive semi-definite.

Theorem 3.3. A matrix A 2 R
nðn is positive definite if and only if there exists a

nonsingular, lower triangular matrix L 2 R
nðn, with (strictly) positive diagonal

entries, such that:
A D L LT (3.82)

and this decomposition is unique, i.e., there is only one such L with (strictly)
positive diagonal entries.

74 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Input: A, a symmetric, positive definite matrix
for (k D 1; : : : ; n) do

lkk D
q

akk �Pk�1
jD1 l2

k j

for (i D k C 1; : : : ; n) do

lik D 1
lkk

�
aik �Pk�1

jD1 li j lk j

�

Figure 3.9: Cholesky decomposition for LU factorization, where U D LT .

Theorem 3.4. A matrix A 2 R
nðn is positive semi-definite if and only if there

exists a lower triangular matrix L 2 R
nðn, such that:

A D L LT (3.83)

but this decomposition is not unique, in general.

The decomposition of a matrix A into the product A D L LT is called the
Cholesky decomposition.

Cholesky Decomposition We will be interested in the Cholesky decomposi-
tion only for the case of a symmetric positive definite (SPD) matrix A, which is
the case for circuit matrices in certain special cases. In this case, one can easily
derive an algorithm for performing the Cholesky decomposition, A D L LT , along
the lines of what we have done above. There is no need for permutation or pivot-
ing in this case. The Crout-Cholesky algorithm starts from the upper left corner
of the matrix and proceeds one column at a time, as shown in Fig. 3.9. Note that
the quantity under the square root sign is guaranteed to be positive because of
the positive definiteness of the matrix A. The algorithm requires ³ n3=6 � n=6
operations, half the LU case. There are other algorithms, including a variant of
Gauss’s method, i.e., a Gauss-Cholesky algorithm, and a Cholesky-Banachiewicz
algorithm that works similarly but one row at a time, instead of one column
at a time. All these methods have the same computational complexity on a full
matrix, but some may be more preferred for sparse matrices, depending on the
implementation.

3.2 ACCURACY AND STABILITY OF GE

Is Gaussian elimination (equivalently, LU factorization) a good algorithm to
use on digital computers, or does it suffer too much from numerical errors?
This seemingly simple question hides a lot of complexity and is not easy to
answer. In order to appreciate the available answers, resulting from work in
numerical analysis of algorithms over the last half century, we must develop
some deeper understanding of error, including backward error and forward error,
some knowledge of floating point number systems, and some understanding of

ACCURACY AND STABILITY OF GE 75

the general notions of stability and accuracy of numerical algorithms. It will
turn out that the answer can be stated in simple terms: GE and LU factorization
are not immune to numerical error problems, but in practice they work very well
if pivoting is used to avoid small pivots . The rest of this section aims to provide
the technical justification for this statement.

The material below is based on a number of sources, including Higham (2002),
Muller (2006), Duff et al. (1986), and Golub and Van Loan (1989). The classical
reference in this area is the pioneering work in Wilkinson (1965). Our study
will also require some review of vector and matrix norms, based in-part on the
excellent Horn and Johnson (1985), and we will study the notion of conditioning,
leading up finally to techniques of iterative refinement.

It is useful to start the discussion at the very beginning, with the obvious
statement that digital computers can use only a finite number of bits to represent
numbers. This is expressed by saying that digital computers have finite precision .
Thus, one cannot represent arbitrarily large numbers (very large numbers lead
to overflow) and cannot represent arbitrarily small non-zero real numbers (very
small numbers lead to underflow). As well, one can represent only a finite subset
of the real numbers. Real numbers that cannot be represented exactly must be
rounded off to the nearest number that can , leading to so-called roundoff error .
In general, and setting aside issues of overflow and underflow, computer arith-
metic on real numbers suffers from two types of roundoff errors: those resulting
from storing a number in memory, and those resulting from applying arithmetic
operations on numbers. Thus, we must distinguish exact arithmetic from finite
precision arithmetic or computer arithmetic.

As we will see below, one can define a unit roundoff , denoted u, as the accu-
racy with which the basic arithmetic operations (C;�;ð; =) can be performed.
In general, the value of u depends on the computer hardware, the operating sys-
tem, the compiler, and data types used in the program. We will define u more
formally below, after some preliminary discussion.

In an algorithm, roundoff errors will partially accumulate/grow, partially can-
cel out, and lead, in complex ways, to the final error in the result. Numerical
analysis of algorithms aims to understand the impact of roundoff error, in storage
and in operations, on the final algorithm output error. One can, at best, hope that
the error in the output is ³ u, but in practice one often suffers from growth in the
error. Loosely speaking, an algorithm is said to be numerically accurate and sta-
ble if it does not suffer from very large growth in the roundoff error. Numerical
analysis aims to develop practical algorithms that are accurate and stable.

3.2.1 Error

Let f : R ! R be a real scalar function of a real scalar variable x , and let us
consider the errors involved in computing y � f .x/ on a computer. Let 1x
be the roundoff error in storing x , so that we denote the stored value of x as
Qx � x C1x . Let the computed value of y be Qy � Qf .x/, where Qf represents
an algorithm for computing f on a computer with the (unavoidable) roundoff

76 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

errors, due to storing of x as Qx , and due to operating on Qx with finite precision
arithmetic.

Thus, we distinguish between two computations, the problem f .x/ which is
exact but unattainable on a digital computer, and the algorithm implementation
Qf .x/ which is attainable but inexact. One way that we may be satisfied that Qy is

close enough to y is to ensure that the following two conditions hold, for every x :

1. Forward error analysis: By analysis of the problem f .x/, we establish
that its output is not excessively sensitive to perturbations in its input. For
example, we may establish that any input perturbation of within ž would
lead to an output perturbation of within an acceptable Ž. Formally, we
would write that there exist ž > 0 and Ž > 0, such that:

8x̂ 2 R;

þþþþ x̂ � x

x

þþþþ � ž H)
þþþþ f .x̂/� f .x/

f .x/

þþþþ � Ž (3.84)

The ratio Ž=ž can be used to reflect sensitivity. In general, ž and Ž may
depend on x , but we ignore such technicalities for now.

2. Backward error analysis: By analysis of the algorithm Qf .x/, we establish
that there exists an x̂ 2 R, for which:þþþþ x̂ � x

x

þþþþ � ž and f .x̂/ D Qf .x/ (3.85)

Combining (3.84) and (3.85), we get that f .x̂/ D Qf .x/ D Qy is within Ž of f .x/ D
y, so that, for every x , we have: þþþþ Qy � y

y

þþþþ � Ž (3.86)

and the roundoff errors in the algorithm outputs are thereby bounded. The situa-
tion is illustrated in Fig. 3.10, where the direction of the one-way arrows suggests
the reason for the names: the study of the second condition (3.85) is called back-
ward error analysis , while the study of the first (3.84) is called forward error
analysis . We now discuss these notions in more detail.

Backward Error Consider an input perturbation 1x , for which x̂ � x C1x
is such that:

f .x̂/ D Qy D Qf .x/ (3.87)

In other words, Qf .x/ D f .x̂/, so that the computed solution turns out to be the
exact solution of the problem with perturbed input data . The smallest such j1x j
is called the backward error at that value of x . Backward error may also be
expressed as a relative error, min.j1x j=jx j/. An algorithm Qf for computing a
function f is said to be stable if, for any x , there is a small value of j1x j,

ACCURACY AND STABILITY OF GE 77

xxx̂

y
d

d

e e

Δx

y~

f(x)

f(x)
~

Figure 3.10: Illustration of relations among the various error terms, including forward
and backward error.

or of j1x j=jx j, for which Qf .x/ D f .x C1x/. In other words, if, for any x , the
backward error is small.

Backward error may also be understood in terms of data uncertainties. As
Higham (2002) puts it, backward error “interprets rounding errors as being equiv-
alent to perturbations in the data. The data frequently contains uncertainties due
to measurements, previous computations, or errors committed in storing numbers
on the computer : : :” He continues, “if the backward error is no larger than these
uncertainties then the computed solution can hardly be criticized—it may be the
solution we are seeking, for all we know .” It is certainly the exact solution of a
“nearby problem,” as is often expressed in the field. The computed solution is
the answer we would get if we made small perturbations to the problem and then
solved the problem exactly , and therefore one has no reason to reject it. This is
the essence of the notion of stability.

Forward Error We denote the forward error by 1y � j Qy � yj or, alternatively,
as j Qy � yj=jyj. Suppose algorithm Qf is stable, so that, for any x , there is a small
value of j1x j for which Qf .x/ D f .x C1x/. This is not enough. We still need
to know whether the difference between f .x C1x/ and f .x/ is small enough,
for small j1x j. Notice that this question relates to properties of the problem f .Ð/
and not of any algorithm Qf .Ð/. It has nothing to do with the algorithm or its
implementation, but with the intrinsic sensitivity of the problem to its input data.

Thus, forward error analysis asks the question: if small changes are made to
the input data, are the resulting changes in the exact solution also small? This
requires a so-called perturbation analysis of the problem. Again, this boils down
to a question about the problem, not about a computer implementation of an
algorithm. If the answer to the question is yes , then the problem is said to be
well-conditioned , otherwise it is said to be ill-conditioned .

78 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

For illustration, suppose that f is differentiable and sufficiently close to linear
over 1x , so that we can write a truncated Taylor series expansion as:

Qy � y D f .x C1x/� f .x/ ³ f 0.x/1x (3.88)

where, recall, the algorithm Qf is assumed stable, leading to:

1y

y
³
�

x f 0.x/
f .x/

�
1x

x
(3.89)

and we refer to the following quantity as a condition number :

c f .x/ D
þþþþ x f 0.x/

f .x/

þþþþ (3.90)

Thus, even though the algorithm is stable, the error in the output can be large
if the problem is ill-conditioned, i.e., if it has a large condition number. As a
general rule of thumb, for a stable method, we have:

(forward error) ³ (condition number) ð (backward error) (3.91)

Exactly what an appropriate condition number is in any given case will depend
on the specific problem being considered, as we will see later on in connection
with the problem of solving a linear system Ax D b.

3.2.2 Floating Point Numbers

Early computers used fixed point number representations, in which one operates
on numbers as integers, keeping in mind the position of the decimal point, possi-
bly scaling numbers so as to fit within the required range. Later on, it was found
that a floating point number system is more efficient. It requires more hardware
resources but makes programming easier. The IEEE standard 754-1985 is the
predominant standard today for floating point computer arithmetic. Apart from
specifying the number of bits in different modes, this standard requires specific
handling for exceptions and other salient details. A brief study of floating point
number systems is useful in order to appreciate error analysis of algorithms.

A floating point number system F ² R is a subset of the real numbers whose
elements have the form:

y D šmt ð þe�t (3.92)

where:

• t is the precision . In IEEE single precision, t D 24, while in double precision
it is 53.

• þ is the base, also called the radix ; þ D 2 in IEEE arithmetic.
• mt is a t-digit non-negative integer, in the base þ, referred to as the mantissa

or the significand , satisfying 0 � mt � þ t � 1.

ACCURACY AND STABILITY OF GE 79

• e is the exponent , in the range emin � e � emax . In IEEE single precision,
emin D �125 and emax D 128, while in double precision emin D �1021 and
emax D 1024.

The range of the non-zero floating point numbers in F is:

þemin�1 � jyj � þemax .1�þ t�1/ (3.93)

In IEEE single precision 1:1755 ð 10�38 � jyj � 3:4028 ð 1038 and in double
precision 2:2251 ð 10�308 � jyj � 1:7977 ð 10308, where the end-points of these
ranges have been rounded off.

Machine Epsilon Floating point numbers are not equally spaced on the real
line; in fact, the spacing increases by a factor of 2 at every power of 2. The
spacing can be characterized by the machine epsilon , which is the distance žm

from 1.0 to the next larger floating point number, given by:

žm D þ1�t (3.94)

In IEEE single precision, žm D 2�23 ³ 1:1921 ð 10�7 and in double precision
žm D 2�52 ³ 2:2204 ð 10�16.

Rounding and the Unit Roundoff If x 2 R lies in the range of F , then we
define rounding as follows. Rounding a real number x produces a real number
f l.x/, which is the element of F that is nearest to x . The question of resolving
a tie immediately comes up, and is actually quite important. There are various
ways to break a tie, such as to round to the value with even mantissa (the most
common IEEE mode), to round towards 0, or away from 0, or towards C1, or
towards �1, etc. It can be shown that, for any x in the range of F , there exists
a Ž 2 R, such that:

f l.x/ D x.1 C Ž/; with jŽj < u (3.95)

where u � þ1�t=2 D žm=2 is called the unit roundoff . In IEEE single precision,
u ³ 5:9605 ð 10�8, while in double precision u ³ 1:1102 ð 10�16. This u is
very useful to express numerical roundoff errors. For one thing, we have:þþþþ f l.x/� x

x

þþþþ D jŽj < u (3.96)

This relative error actually varies with x , from close to u down to u=þ.
The machine epsilon is sometimes defined as the smallest positive real −

which, when added to 1.0 yields a result other than 1.0, i.e., 1 C − > 1. For
example, one might find such a − using this C code fragment:

double tau = 1.0;

do{tau /= 2.0;} while((double)(1.0 + tau) != 1.0);

80 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

However, this definition is imprecise because the result depends on the rounding
mode. For the common mode of rounding to even, this gives a − that is just
slightly larger than žm=2, while, for rounding towards �1, or towards 0, this
gives − D žm . Thus, without further information on the machine, the operating
system, the compiler, etc., one can use this method to only get an idea of the
order of magnitude of žm . For our work, we will use the more reliable definition
of machine epsilon given by (3.94).

IEEE Arithmetic One advantage of IEEE arithmetic is that it guarantees the
following:

Theorem 3.5. If Ž 2 fC;�;ð; =g, then 8x; y, and z D xŽy, all in the range of F,
there exists a Ž 2 R, such that:

Qz D .xŽy/.1 C Ž/; where jŽj � u (3.97)

i.e.: þþþþ Qz � xŽy

xŽy

þþþþ D jŽj � u (3.98)

so that the computed value Qz of a basic arithmetic operation is as good as the
rounded exact answer f l.z/ D z.1 C Ž/.

This provides a “model” of computer arithmetic that forms the basis for error
analysis of numerical algorithms. If Qz is the computed value of z D x š y, then
notice that, by (3.97):

Qz D .x š y/.1 C Ž/ D x.1 C Ž/š y.1 C Ž/ (3.99)

Therefore, the atomic algorithmic steps of addition and subtraction are stable,
because a backward error of jŽj ³ u is certainly small enough. More complicated
computations (algorithms) require more detailed error analysis, which is beyond
the scope of our study.

Cautionary note: In the literature, it is common to denote the computed value
Qg.Ð/ of a computation or function g.Ð/ as simply f l.g.Ð//. This can be misleading
because one can read f l.g.Ð// as meaning the rounded value of the result of the
exact computation g.Ð/. This is not the intended meaning! However, it happens to
be true for the atomic fC;�;ð; =g arithmetic operations, which is often expressed
as f l.xŽy/ D .xŽy/.1 C Ž/. In general, one should always understand f l.g.Ð//
to simply mean Qg.Ð/.

3.2.3 Norms

A brief review of vector and matrix norms will be required before we can discuss
the stability and accuracy of Gaussian elimination.

ACCURACY AND STABILITY OF GE 81

Vector Norms A vector norm over Rn is a function k Ð k : Rn ! R such that,
8x; y 2 R

n ,

1. kxk ½ 0.
2. kxk D 0 if and only if x D 0.
3. kcxk D jcj Ð kxk for all scalars c 2 R.
4. kx C yk � kxk C kyk.

Vector norms provide a means of measuring the “size” of a vector and, for any
norm and any x; y 2 R

n , it can be shown that:

þþkxk � kykþþ � kx � yk (3.100)

There is an infinite number of possible vector norms on R
n , but a commonly

used class are the p-norms (p need not be an integer):

kxkp �

nX
iD1

jxi jp

!1=p

; p ½ 1 (3.101)

also called the l p norms, which include some important special cases, such as
the l1 norm, kxk1 � jx1j C jx2j C Ð Ð Ð C jxnj, also known as the sum norm, the l2

norm, also known as the Euclidean norm, kxk2 �
p

jx1j2 C jx2j2 C Ð Ð Ð C jxnj2,
and the l1 norm, kxk1 � max fjx1j; jx2j; : : : ; jxnjg, also known as the max norm.
It can be shown that kxk1 D limp!1 kxkp and that, for any x 2 Rn ,

1p
n

kxk2 � kxk1 � kxk2 � kxk1 � p
nkxk2 (3.102)

Another useful result is the Cauchy-Schwarz inequality :

jxT yj � kxk2kyk2 (3.103)

Norms are used to measure accuracy or errors in vector quantities, such as the
absolute error k Qx � xk and the relative error k Qx � xk=kxk (if x 6D 0).

Finally, the l1 norm helps determine the number of correct significant digits.
For example, and as a general rule of thumb, if:

k Qx � xk1
kxk1

³ 10�k (3.104)

then the largest component of Qx has about k correct significant digits.

Matrix Norms One motivation for defining a matrix norm is as follows. It
is known that the computed solution of a linear system has poor quality if the

82 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

system matrix is “nearly singular.” In the theoretical study of “near-singularity,”
we need a measure of distance on the space of matrices, and matrix norms
provide such a measure. Another motivation is that matrix norms help quan-
tify the “size” of a matrix and, therefore, its impact as a linear transformation
y D Ax .

A matrix norm is a function k Ð k : R
mðn ! R such that, 8A; B 2 R

mðn ,

1. kAk ½ 0
2. kAk D 0 if and only if A D 0
3. kcAk D jcj Ð kAk for all scalars c 2 R

4. kA C Bk � kAk C kBk
One useful norm is the Frobenius norm, defined for A 2 Rmðn , as:

kAkF D
vuut mX

iD1

nX
jD1

jai j j2 D
p

tr.AT A/ (3.105)

where tr.B/ �
Pn

iD1 bii is called the trace of a matrix B 2 R
nðn . An important

class of matrix norms are those induced by a vector norm, defined as follows. If
k Ð k is a vector norm, then the corresponding induced matrix norm is:

kAk D max
x 6D0

kAxk
kxk D max

kxkD1
kAxk (3.106)

Note that kIk D 1, where I � diag.1; 1; : : : ; 1/ is the identity matrix. Note also
that, 8x 2 R, kAxk � kAkkxk, and one can show that, in general:

kABk � kAkkBk (3.107)

where A is m ð n and B is n ð q . Thus, for induced norms, the norm is a measure
of the largest “gain” that the transformation y D Ax applies to the “size” of the
vector x . In the following, whenever a matrix norm is used without further
qualification, it will be assumed to be an induced norm.

Corresponding to the vector p-norms, one can define the induced matrix p-
norms, as:

kAkp D max
x 6D0

kAxkp

kxkp
(3.108)

For A 2 R
mðn , it can be shown that:

kAk1 D max
1� j�n

mX
iD1

jai j j (max column sum) (3.109)

kAk1 D max
1�i�m

nX
jD1

jai j j (max row sum) (3.110)

ACCURACY AND STABILITY OF GE 83

If ².B/ is the largest j½j, where ½ is an eigenvalue of the square matrix
B (².B/ is called the spectral radius), then, with A 2 R

mðn , one can
show:

kAk2 D
p
².AT A/ (spectral norm) (3.111)

which is not easy to compute, so that the following is often more useful:

kAk2 �
p

kAk1kAk1 (3.112)

(note: the eigenvalues of AT A are always real and non-negative). For any induced
norm, it can be shown that ².A/ � kAk. With A 2 R

mðn , the following relations
are also useful:

kAk2 � kAkF � p
nkAk2 (3.113)

1p
n

kAk1 � kAk2 � p
mkAk1 (3.114)

1p
m

kAk1 � kAk2 � p
nkAk1 (3.115)

max
8i; j

jai j j � kAk2 � p
mn max

8i; j
jai j j (3.116)

1

n
kAk2 � 1p

n
kAk1 � kAk2 � p

nkAk1 � nkAk2 (3.117)

Finally, because matrix p-norms are induced norms, then:

kABkp � kAkpkBkp (3.118)

3.2.4 Stability of GE and LU Factorization

How would we characterize the stability of a numerical algorithm for solving
the linear system Ax D b? Note, the input data to the algorithm is the matrix
A and the vector b, and the algorithm output is x . From basic backward error
principles, if, for every A and b, there exist “small” k1Ak and k1bk such that
the computed solution Qx satisfies:

.A C1A/ Qx D b C1b (3.119)

then the algorithm is stable—it solves exactly a nearby problem. Note, k1bk is a
vector norm and k1Ak is the matrix norm induced by it. Thus, a useful stability
metric is the normwise relative backward error , defined as:

�. Qx/ � min

²
ž : .A C1A/ Qx D b C1b;

k1Ak
kAk � ž;

k1bk
kbk � ž

¦

84 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

where the set notation refers to the set of all ž for which there exist 1A and 1b
with the stated properties. It can be shown that:

�. Qx/ D krk
kAkk Qxk C kbk (3.120)

where r � b � A Qx is called the residual . As Higham (2002) puts it, this result
“makes precise the intuitive feeling that if the residual is small then we have a
“good” approximate solution .” Thus, one way to check the quality of a computed
solution Qx is to find the residual r D b � A Qx and check if it is small relative to
kAkk Qxk or kbk. Of course, we can only compute Qr and compare it to k QAkk Qxk
and k Qbk, but the roundoff error in computing Qr should be small and acceptable.

Is Gaussian elimination (GE) (equivalently, LU factorization) stable? The
short answer is not necessarily , but in most practical cases it can be made stable
by proper pivoting. Loosely speaking, it can be shown that GE is stable if the
matrix terms in the sequence a.1/i j ; a.2/i j ; Ð Ð Ð a.k/i j ; Ð Ð Ð do not “grow” very large,
relative to ai j . We can be more specific about this, as follows.

GE/LU Given the equivalence between GE and Gauss’s method for LU fac-
torization, then, in the following, we will use the shorthand notation GE/LU to
refer to both LU factorization and the GE algorithm when implemented along the
lines of Gauss’s method for LU factorization, so that the multipliers are saved
as an L matrix, and the final triangulated matrix becomes the U matrix. When
using GE/LU to solve Ax D b, we effectively solve:

QL QU x D Qb (3.121)

using forward and backward substitution. Therefore, error can be incurred 1)
during LU factorization, and 2) during forward/backward substitution. How-
ever, it is possible to show that forward/backward substitution are in fact stable
operations, as follows.

Forward/Backward Substitution Is Stable It is useful at this point to define
the coefficient:

�k � ku

1 � ku
(3.122)

where k is an integer that will typically be equal to n, the size of the problem,
or a small multiple of n, and where u is the unit roundoff. In virtually all cases
when using IEEE arithmetic, and for practically solvable problems, it is found
that nu < 1, so that typically ku < 1 and �k > 0. This will be immediately useful.
If the triangular system T x D b, where T 2 R

nðn is nonsingular, is solved by
substitution, then it can be shown that the computed solution Qx satisfies:

.T C1T / Qx D b; where j1T j � �njT j (3.123)

where jT j denotes the matrix whose entries are jti j j. This effectively means
that the backward errors in every term of 1T are quite small; they are O.u/.

ACCURACY AND STABILITY OF GE 85

Thus, forward/backward substitution is quite stable. As a result, we consider that
the solution of QL QU x D b is stable, and we can focus on stability of the LU
factorization part of the process.

Stability of the Factorization Thus, stability monitoring of GE/LU can be
done by checking the size of H , defined as:

H � QL QU � A (3.124)

and, one can show that, as a result of GE/LU, we have:

jH j � �nj QLjj QU j (3.125)

As for the solution of Ax D b, one can prove that GE/LU leads to:

.A C1A/ Qx D b; where j1Aj � �3n j QLjj QU j (3.126)

These results don’t quite say that GE/LU is stable or not, but we do learn that
the stability of GE/LU is related to the size of the matrix j QLjj QU j.

The Need for Pivoting Looking at (3.126), we are motivated to monitor the
value of the ratio:

j QLjj QU j

kAk (3.127)

If this ratio is small, then kj1Ajk=kAk would be small, and GE/LU would be
stable. If pivoting is not used, and assuming that a divide-by-0 is not encountered,
this ratio can be arbitrarily large. For example, as pointed out in Higham (2002),
for the matrix

ð
ž 1
1 1

Ł
, where ž > 0, this ratio is of the order of 1=ž, which can

be very large. This gives us a hint that pivoting may be required for accuracy .
One would hope that, with pivoting, the entries in QL and QU can be made small
enough that the ratio in (3.127) becomes small. If pivoting is used in a way that
the pivot used is at least as large as the largest entry in the column at the present
level of the GE algorithm, then we get jli j j � 1 because the li j are the multipliers
that arise during GE. Thus, the “size” of L can be made small, but the “size” of
U is not as easy to bound. One can show that the size of U is, in fact, bounded
relative to the size of A, but the coefficient is exponential in n, so that the bound
is too loose and not useful.

The Growth Factor Given the above, it should be clear that, with a pivoting
strategy that limits the size of L , the stability of the GE/LU algorithm now rests

86 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

on the issue of whether the size of U is small or not. This leads us to the classical
results of stability of GE, which are in terms of the growth factor :

² �
maxi; j;k

þþþa.k/i j

þþþ
maxi; j

þþai j

þþ (3.128)

and one can see why this is useful because it leads to a bound on U , as:

jui j j D
þþþa.i/i j

þþþ � ²max
i; j

jai j j (3.129)

This should be expected because U is in fact the final triangular A matrix at the
end of the GE algorithm, so that growth of elements of A should be a concern.
Indeed, the growth factor directly determines the backward error, according to
this classical theorem given in Higham (2002) by reference to early work by
Wilkinson:

Theorem 3.6. (Wilkinson (1963)) Let A 2 R
nðn and suppose that GE with partial

pivoting gives a computed solution Qx to Ax D b, then:

.A C1A/ Qx D b; with
k1Ak1
kAk1

� ²�3nn2 (3.130)

It is also possible to show that, according to Golub and Van Loan (1989):

k1Ak1 � 8²kAk1un3 C O.u2/ (3.131)

which, ignoring the O.u2/ term, leads to the approximate upper bound on the
relative backward error of 8²un3. In any case, these results show that the growth
factor ² must be kept small, and one way to try and do this, though it is not
guaranteed to succeed, is by pivoting, as we now explain.

3.2.5 Pivoting for Accuracy

Given the above results, the general strategy in practice is to use pivoting to make
sure that the matrix entries do not grow too large. This requires that the pivot
element should not be too small, relative to the other elements in the column at
the present (kth) level of the GE algorithm. Such a strategy would ensure that
the multipliers mik in the GE algorithm in Fig. 3.1 are small in magnitude, which
helps avoid large growth in the updated matrix entries. Ideally, we would like the
pivot element to have the highest available absolute value in that column, or in the
remaining sub-matrix. There are two options for choosing the pivot element a.k/kk :

1. Partial pivoting: search only the kth column and pick the largest element
(in absolute value) as the pivot by exchanging rows2. This is sometimes
referred to as row pivoting , but this term is not very common.

2Note that it is possible to do “partial pivoting” of sorts by finding the largest entry in the kth
row , followed by a column exchange, but that approach would not help limit the size of the

ACCURACY AND STABILITY OF GE 87

2. Full pivoting: search the whole remaining sub-matrix (from k to n) for the
largest magnitude pivot and exchange possibly rows and columns.

For efficiency, we do not actually exchange whole rows or columns; instead,
we only change the memory pointers to get the desired permutation.

Practical experience shows that GE/LU with partial pivoting is almost always
stable, and so it is a very commonly used approach. We will use the acronym
GEPP to refer to the use of GE/LU with partial pivoting. One should keep in
mind, however, that there is no guarantee that GEPP would always be stable. In
fact, with a carefully contrived matrix, the following upper-bound on the growth
factor under GEPP is achievable, i.e., it is tight :

² � 2n�1 max
i; j

jai j j (3.132)

so that exponential element size growth can occur with GEPP. There is a
smaller upper-bound than this when using full pivoting but, in practice, partial
pivoting works quite well and there is no need for full pivoting. In terms
of computational cost, partial pivoting is O.n2/, which is not trivial but
bearable, while full pivoting is O.n3/, which is too expensive, and is rarely
required.

For matrices that are not necessarily sparse, common practice is to use only
GE with partial pivoting (GEPP), with any/all flavors of GE (classical GE, or
LU factorization). For sparse matrices, we will see later on that one must allow
for both row and column exchange, but we will study ways of choosing a pivot
that are cheaper than full pivoting.

Pivoting Example The following hypothetical scenario, from Duff et al.
(1986), provides an excellent illustration of the effects of pivoting. Suppose
we are working with a floating point system that allows only three decimal
digits—a hypothetical 3-digit floating-point computer—and consider the
problem: �

0:001 2:42
1:00 1:58

½ �
x1

x2

½
D
�

5:20
5:47

½
(3.133)

Notice that both the matrix and the right-hand side (RHS) vector use only 3-digit
values, so that no roundoff error occurs in storing the data. Any roundoff error
problems we may discover are due to the algorithm. Since a11 6D 0, the basic GE
proceeds with a11 as the pivot, and we compute:

a.2/22 D f l

�
a22 � a12

�
a21

a11

��
D f l.1:58 � 2420/ D �2420 (3.134)

multipliers, although it can help avoid a zero pivot as we saw earlier. Therefore, in this text, partial
pivoting will always mean one where we select a pivot from the kth column , followed by a row
exchange.

88 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

where the use of the small pivot 0:001 led to a growth in the value of a22. The
resulting triangulated system is:�

0:001 2:42
0 �2420

½ �
x1

x2

½
D
�

5:20
�5200

½
(3.135)

The resulting computed solution is:� Qx1

Qx2

½
D
�

0:00
2:15

½
(3.136)

while the 3-digit approximation to the true solution is:�
x1

x2

½
³
�

1:18
2:15

½
(3.137)

so that the error is clearly large, and and the residual is:�
r1

r2

½
³
��0:003

1:17

½
(3.138)

whose norm is clearly not very small relative to kbk. If we use partial pivoting,
we would interchange the two rows of A so as to use 1.00 as the pivot:�

1:00 1:58
0:001 2:42

½ �
x1

x2

½
D
�

5:47
5:20

½
(3.139)

leading to the reduced system:�
1:00 1:58

0 2:42

½ �
x1

x2

½
D
�

5:47
5:19

½
(3.140)

showing no growth in the term a22, and the computed solution:� Qx1

Qx2

½
D
�

2:09
2:14

½
(3.141)

with a residual of: �
r1

r2

½
³
�

0:01911
�0:0012

½
(3.142)

which is much smaller than before, and has small norm compared to kbk.

Remarks With sparse matrices, as we will see later on, pivoting can destroy
sparsity. A general strategy becomes to pivot for sparsity when the pivot is larger
than some threshold, and otherwise to pivot for accuracy. This is called threshold
pivoting . When this is done, stability can suffer and backward error can increase,
but iterative refinement can be help combat this, as we will see later on. When
the matrix is diagonally dominant , then no pivoting is required.

ACCURACY AND STABILITY OF GE 89

3.2.6 Conditioning of Ax D b

Even with partial pivoting, so that GE is stable, with a small backward error, an
ill-conditioned problem can still suffer from large forward error. Recall the rule
of thumb for a stable algorithm:

(forward error) ³ (condition number) ð (backward error) (3.143)

We are now interested in the question: what is an appropriate condition number
for a linear system problem Ax D b, and how can we detect ill-conditioning?

As an example, consider the system:�
1:0 2:0
2:0 3:999

½ �
x1

x2

½
D
�

4:0
7:999

½
(3.144)

The exact solution of the system is:�
x1

x2

½
D
�

2:0
1:0

½
(3.145)

If we only slightly perturb the system by changing the RHS vector:�
1:0 2:0
2:0 3:999

½ �
x1

x2

½
D
�

4:001
7:998

½
(3.146)

then, the exact solution becomes:�
x1

x2

½
D
��3:999

4:0

½
(3.147)

Thus, a minor change to the problem data has produced a large change in the
solution. This system is ill-conditioned.

In general, for a perturbation 1b in the RHS vector, but no perturbation in A
for now, it can be shown that:

k1xk
kxk � kAkkA�1kk1bk

kbk (3.148)

Likewise, for a perturbation 1A in the system matrix, but no perturbation in b
for now, it can be shown that:

k1xk
kx C1xk � kAkkA�1kk1Ak

kAk (3.149)

Condition Number This motivates the definition of a condition number for
the matrix A, as:

�.A/ � kAkkA�1k (3.150)

90 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

with �.A/ � 1 when A is singular. If �.A/ is large, then the problem is said to
be ill-conditioned and the forward error can be large, as is clear from (3.148) and
(3.149). If �.A/ ³ 1, then O.u/ perturbations in the data (A or b) lead to O.u/
perturbations in the solution, and the problem is said to be well-conditioned . In
general, it can be shown that �.A/ ½ 1, and that 8c 2 R, with c 6D 0, we have:

�.cA/ D �.A/ (3.151)

We are interested in the case where there are perturbations in both A and b,
and the following result is useful.

Theorem 3.7. Let Ax D b and .A C1A/.x C1x/ D .b C1b/, and 0 < ž < 1,
with: k1Ak

kAk � ž;
k1bk
kbk � ž; and ž <

1

�.A/
(3.152)

then: k1xk
kxk � ž�.A/

1 � ž�.A/

�
1 C kbk

kAkkxk
�

� 2ž�.A/

1 � ž�.A/
(3.153)

Thus, again, a large �.A/ denotes ill-conditioning. One should keep in mind
the requirements (3.152) before using this result. In practice, one would hope
that ž ³ u and that u�.A/ < 1. Indeed, as we will see below, if u�.A/ 6< 1, then
the solution of the system is entirely unreliable.

Singular Value Decomposition A brief digression to review the singular
value decomposition will be useful at this point. A matrix Q 2 R

nðn is said to
be orthogonal if QT Q D I . If A 2 R

mðn , then there exist orthogonal matri-
ces U 2 R

mðm and V 2 R
nðn leading to the following so-called singular value

decomposition (SVD):
A D U6V T (3.154)

where 6 D diag.¦1; ¦2; : : : ; ¦p/ 2 R
mðn , with p D min.m; n/, and where ¦1 ½

¦2 ½ Ð Ð Ð ½ ¦p ½ 0 are called the singular values of A. It is easy to see that
6 D U T AV , so that A is diagonalizable by means of the transformation U T AV .
One can show that the singular values ¦i are the non-negative square roots of
the eigenvalues of AAT , and hence are uniquely determined. The largest and the
smallest singular values of A are denoted ¦max.A/ and ¦min.A/, respectively:

¦max.A/ D
p
½max .AAT / and ¦min.A/ D

p
½min.AAT / (3.155)

where ½max .AAT / and ½min.AAT / are the largest and the smallest eigenvalues
of AAT , respectively, both guaranteed real and non-negative. Finally, it can be
shown that the columns of U are eigenvectors of AAT and the columns of V are
eigenvectors of AT A. Singular values also have a geometric meaning: they are
the lengths of the semi-axes of the hyperellipsoid defined by fAx : kxk2 D 1g.

ACCURACY AND STABILITY OF GE 91

Conditioning The condition number is sometimes denoted �p.A/ to signify
the fact that the matrix p-norm of A and A�1 is being used; it can be shown
that:

1

n
�2.A/ � �1.A/ � n�2.A/ (3.156)

1

n
�1.A/ � �2.A/ � n�1.A/ (3.157)

1

n2
�1.A/ � �1.A/ � n2�1.A/ (3.158)

If A is ill-conditioned in the Þ-norm, then it is also ill-conditioned in the þ-norm,
because constants c1 and c2 can always be found such that:

c1�Þ.A/ � �þ.A/ � c2�Þ.A/ (3.159)

For the 2-norm, it can be shown based on an SVD of A that:

�2.A/ D ¦max .A/

¦min.A/
(3.160)

Intuitively, as given in Ruehli (1986), a problem Ax D b is ill-conditioned if some
of the n-dimensional hyperplanes representing the n equations are nearly-parallel,
as shown in Fig. 3.11.

Conditioning and Pivoting Going back to our previous ill-conditioned
example: �

1:0 2:0
2:0 3:999

½ �
x1

x2

½
D
�

4:0
7:999

½
(3.161)

Well-conditioned System Ill-conditioned System

Figure 3.11: The geometric interpretation of ill-conditioning, in the case of a two-
dimensional system [after Ruehli (1986)].

92 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

we have:

A D
�

1:0 2:0
2:0 3:999

½
A�1 D

�
3; 999 �2; 000

�2; 000 1; 000

½
(3.162)

kAk1 D 5:999 kA�1k1 D 5; 999 (3.163)

and
�1.A/ D 35; 988 (3.164)

which is a very large condition number. Notice that det.A/ D �0:001, so that A
is nearly singular, which is usually a sign of “trouble,” and it explains the large
values of the inverse matrix. However, A�1 is not directly computed by GE, and
so this does not necessarily reflect element size growth during GE. In fact, the
matrix A has no particularly small elements, so that GE on it would not run into
any small pivot issues or any growth problems. This reinforces the point that
conditioning is an “orthogonal” issue to that of stability, and cannot be “fixed”
by pivoting. It is a property of the problem itself, not of the algorithm.

Indeed, it can be shown that the condition number is invariant to pivoting,
be it partial or full . Specifically, for any A 2 Rnðn , and if P; Q 2 Rnðn are
permutation matrices, one can show that:

�p.P AQ/ D �p.A/ (3.165)

for any p-norm. It can also be shown that �2.A/ is similarity-invariant . But, do
we conclude from this example that a small determinant (near singularity) is a
sign of ill-conditioning? The answer is no, as we will see.

Conditioning and the Determinant Note that having det.A/ ³ 0 is not
required for ill-conditioning, nor is it indicative of ill-conditioning, as we illus-
trate. Consider the following matrix:

A D
�

100:01 100
100 100:01

½
with A�1 D 1

2:0001

�
100:01 �100

�100 100:01

½
(3.166)

We have det.A/ D 2:0001, which does not seem problematic; however, �1 D
kAkkA�1k D 20; 001, so that the matrix is ill-conditioned. On the other hand,
consider a real symmetric 10 ð 10 matrix with all eigenvalues equal to 0.1, then
det.A/ D 0:110 D 10�10, while:

�2.A/ D ¦max .A/=¦min.A/ D 1:0 (3.167)

because the singular values of a real symmetric matrix are equal to the absolute
values of its eigenvalues.

ACCURACY AND STABILITY OF GE 93

Conditioning and Uneven Scaling If a matrix A is such that, for some
kvk D kwk we have kAvk × kAwk, then, with y D Aw we have:

1 − kAvk
kAwk

kwk
kvk D kAvk

kvk
kA�1 yk

kyk � kAkkA�1k D �.A/ (3.168)

so that �.A/ × 1. Thus, an informal characterization of conditioning is that
well-conditioned matrices would scale the norms of all vectors about equally.
For example, consider the same matrix we saw above:

A D
�

100:01 100
100 100:01

½
(3.169)

The following two vectors are the same “size” but scale quite differently as a
result of the transformation y D Ax :

v D
�

1
�1

½
w D

�
1
1

½
(3.170)

with:
kAvk1 D 0:01 kAwk1 D 200:01 (3.171)

and this uneven scaling of equally sized vectors is another indicator of possible
ill-conditioning. The above v and w are eigenvectors, corresponding to the two
eigenvalues (in this case, equal to the singular values) 0:01 and 200:01. The large
range is indicative of a problem. In general, it can be shown that the condition
number is the ratio of the largest to the smallest “gain” applied by A to the vector
norms:

�.A/ D
max
x 6D0

kAxk
kxk

min
x 6D0

kAxk
kxk

(3.172)

Conditioning and Pivoting Another useful example, based on a comment in
Higham (2002), is this: �

ž �1
1 1

½ �
x1

x2

½
D
�

1
0

½
(3.173)

in which ž > 0 is “small,” and where the exact solution is:�
x1

x2

½
D
�

1=.1 C ž/

�1=.1 C ž/

½
³
�

1
�1

½
(3.174)

The condition number for the system matrix is:

�1 D 4

1 C ž
³ 4:0 (3.175)

94 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

which is small, so that the matrix is well-conditioned. However, if no pivoting
is performed, the new value of a22 is:

a0
22 D f l

�
1 C 1

ž

�
D 1

ž
(3.176)

for small enough ž, due to roundoff, leading to the triangular system:�
ž �1
0 1=ž

½ �
x1

x2

½
D
�

1
�1=ž

½
(3.177)

whose computed solution is: � Qx1

Qx2

½
D
�

0
�1

½
(3.178)

which is obviously highly inaccurate, with a residual of:

r D b � A Qx D
�

0
1

½
(3.179)

which is of the same size as b, normwise.
Thus, we see that GE, applied to a very well-conditioned matrix, can turn out

to be highly unstable and lead to big errors, so that pivoting is definitely required.
But, no amount of pivoting can remedy an ill-conditioned problem!

Significant Digits As mentioned, in practice, GEPP is almost always found
to be a stable algorithm with small backward error (and a small residual r D
b � A Qx). In some problems, it is enough that the residual is small! In other
words, in some problems, the residual is an acceptable measure of solution error.
But, often, we are interested in the total (forward) error and in the high accuracy
of the solution itself, and that depends on the condition number. What is the
impact of ill-conditioning on accuracy?

With a stable GEPP (so that the backward error is ³ u), it can be shown that
the forward error is: k Qx � xk1

kxk1
³ u�1.A/ (3.180)

so that, again, (forward error) ³ (backward error)ð(condition number). Thus, a
condition number may be judged as large, or not, in relation to the unit roundoff
u of the machine. If �.A/ ½ .1=u/, then the solution is certainly unreliable! In
practice, it is generally felt that if �.A/>.1=

p
u/ then the computed solution

may not be trustworthy.
The above result leads to the following useful heuristic which is commonly

employed: if u�1.A/ ³ 10�k , then GEPP gives ³ k correct significant digits .
Two important questions remain: how do we efficiently detect ill-conditioning,
and can we do anything about it, so as to improve accuracy?

ACCURACY AND STABILITY OF GE 95

Detecting Ill-Conditioning Duff et al. (1986) report that there are several
possible ways to detect ill-conditioning, many of which turn out to be either
unreliable or too expensive. These include finding A�1, finding the singular values
or the eigenvalues of A, finding the determinant of A, and checking the pivot
values. All of these are failed options, for one reason or another. Instead, here are
two methods that have been found to be reliable and cheap in practical experience:

1. Solve a problem with a known solution and check the result. Choose a y
and compute c D Ay, then solve Ax D c and check the result Qx against the
known y. This is workable but the next method is preferred in practice.

2. The so-called LINPACK estimate: This method estimates kA�1k1 by first
solving AT v D c for a specially constructed vector c, and then solving
Aw D v and computing kA�1k1 ³ kwk1=kvk1. This is justifiable using the
singular value decomposition of A.

For further details, the interested reader should consult Duff et al. (1986).

Fixing an Ill-Conditioned Problem A matrix is said to be poorly scaled
if the range of magnitudes of its entries is very large—it has some very large
and very small entries. Equivalently, a wide range in b leads to a poorly scaled
problem. One can scale each equation to equilibrate the RHS vector entries. We
will assume that this is always done, so that a problem is poorly scaled only
if the A matrix is poorly scaled. With such a matrix the quality of the solution
suffers, due to various effects:

1. If the normwise backward error k1Ak1=kAk1 is small, the backward error
in the small magnitude entries can be large. The larger matrix elements
“mask” these errors due to the 1-norm. One could use componentwise
metrics rather than normwise metrics, but the theoretical results are not as
easily applicable in practice.

2. Roundoff error gets worse because, during GEPP, one is often adding or
subtracting some very large to very small numbers.

3. The solution comes out poorly scaled as well, so that an 1-norm error
metric for the solution vector is of little value for its smaller compo-
nents. For example, if xT D ð

2:1 1:3 ð 107
Ł
, then an error bound such as

k1xk1 � 3 means that x2 is accurate but does not convey much accuracy
in x1.

In such cases, one would do well to scale the problem first before solving it, and
this can be done by multiplication by diagonal matrices D1 and D2:

D1 AD2 y D D1b with D2 y D x (3.181)

It turns out that scaling can reduce the condition number :

9D1; D2 : �.D1 AD2/ < �.A/ (3.182)

96 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

However, the theory for this is incomplete, and there are no useful general purpose
strategies for scaling—it tends to be problem-specific. During modeling, one
should try to ensure that the system matrix is not poorly scaled, by using similar
units, normalization, and similar devices.

3.2.7 Iterative Refinement

Suppose Qx is the computed solution to Ax D b, with the residual r D b � A Qx ,
so that:

A Qx D b � r (3.183)

Let z be the exact solution to Az D r , then it is clear that:

A. Qx C z/ D b (3.184)

so that z is the required correction for Qx . Thus, with P A D LU available, one
possible approach for improvement is:

1. Compute Qr D f l.b � A Qx/.
2. Solve LU z D P Qr ; for Qz.
3. Set Qx 0 D f l. Qx C Qz/.

However, since with a stable GEPP the residual is already “small,” it turns out that
Qr D f l.b � A Qx/ has few, if any, correct significant digits. And the same becomes
true for Qz and Qx 0 (“garbage in, garbage out”). But, if true partial pivoting is not
being used, such as in order to preserve sparsity, then the backward error (and
residual) may not be too small. In this case, the above steps can be useful to
improve accuracy, and they can be applied iteratively a few times, such as, for
example, as shown in Fig. 3.12, where žrel ; žabs > 0 are user-specified relative
and absolute error tolerances . Hence the name, iterative refinement , also called
iterative improvement .

Mixed Precision Iterative Refinement Even if true partial pivoting is
being used, there is a way to get an improved solution, provided r D b � A Qx
is computed with increased precision . For example, all the computations would
be in single precision, except that computing r D b � A Qx would be done in

Input: L , U , P , and Qx as the found solution of LU x D Pb
repeat

r D b � A Qx
Solve LU z D Pr
Qx :D Qx C z

until .kzk � žrelk Qxk C žabs/

Figure 3.12: Iterative refinement algorithm.

INDIRECT/ITERATIVE METHODS 97

double precision. Notice that the original A matrix would need to be retained for
this, so that it is not enough to have only L and U available. This is referred to
as mixed precision iterative refinement .

The following heuristic is commonly employed. If the (single precision)
unit roundoff is u ³ 10�d and if �1.A/ ³ 10q , then, after k iterations, x has
³ min.d; k.d � q// correct significant digits. For example, if u ³ 10�8 and
�1.A/ ³ 104, then u�1.A/ ³ 10�4 and GEPP should give us ³ 4 correct
significant digits, but we can do better, as follows. After k D 2 iterations of
mixed precision iterative refinement, with .d � q/ D 4, then ³ min.8; 8/ D 8
significant digits should be correct. Roughly speaking, if u�1.A/ < 1, then it
can be shown that mixed precision iterative refinement can ultimately produce a
solution with full (single) precision, so that:

k Qx � xk1
kxk1

³ u (3.185)

which really is the most we can hope for.
One drawback of mixed precision iterative refinement is that its implementa-

tion is machine-dependent and may not be very portable. Another limitation, of
course, is that we cannot use it in cases when all computations are already being
done in the highest available precision. Most circuit simulators perform all com-
putations in double precision. In circuit simulation, the basic (fixed precision)
iterative refinement can be used to improve accuracy when true partial pivoting
is not used.

3.3 INDIRECT/ITERATIVE METHODS

Much research has been done to improve the efficiency of circuit simulation. One
such research direction has been the use of relaxation methods . Relaxation meth-
ods are iterative techniques which relax the accuracy requirements during early
iterations, but tighten it in later iterations. A wide range of relaxation methods
have been proposed, and a good reference for this area is Ruehli (1987), but we
will focus on a class of methods which are applicable for solving the system of
linear algebraic equations, Ax D b. Specifically, we will study the two methods:
Gauss-Jacobi and Gauss-Seidel. Solution methods like GE and LU factorization
take a predetermined number of steps before providing a solution. In contrast,
relaxation methods provide partial solutions which eventually (hopefully) con-
verge to the true solution. Thus, it is customary to refer to methods like GE
and LU factorization as direct methods , while relaxation techniques are called
indirect or iterative. Indirect methods have not been an unqualified success, and
they often work well only on certain classes of circuits. But they involve only
matrix-vector multiplications, and so can be more efficient than direct methods,
especially on very large problems, and especially on parallel computers.

In order to solve Ax D b, indirect methods generate a sequence of partial
solutions x .0/; x .1/; : : : ; x .k/; : : :, such that x .kC1/ can be obtained from x .k/ with

98 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

little computational effort, with the hope that the sequence converges to the true
solution in a small number of steps. The starting point for the study of both
Gauss-Jacobi and Gauss-Seidel is to write, for any matrix A, the expansion:

A D L C D C U (3.186)

where L is strictly lower triangular, D is diagonal, and U is strictly upper
triangular, i.e.,

L D

2
666664

0 0 0 Ð Ð Ð 0
a21 0 0 Ð Ð Ð 0
a31 a32 0 Ð Ð Ð 0
:::

:::
:::

: : :
:::

an1 an2 an3 Ð Ð Ð 0

3
777775 ; D D

2
666664

a11 0 0 Ð Ð Ð 0
0 a22 0 Ð Ð Ð 0
0 0 a33 Ð Ð Ð 0
:::

:::
:::

: : :
:::

0 0 0 Ð Ð Ð ann

3
777775 ;

and:

U D

2
666664

0 a12 a13 Ð Ð Ð a1n

0 0 a23 Ð Ð Ð a2n

0 0 0 Ð Ð Ð a3n
:::

:::
:::

: : :
:::

0 0 0 Ð Ð Ð 0

3
777775

so that the system Ax D b becomes:

.L C D C U /x D b (3.187)

In the following, we assume that D has no zero entries, so that D�1 exists.
Provided A is nonsingular, this condition can always be achieved by some per-
mutation (pivoting) of the rows of A and b.

Cautionary note: These L and U matrices in (3.186) have a zero diagonal;
they should not to be confused with the L and U matrices of LU factorization!

3.3.1 Gauss-Jacobi

With .L C D C U /x D b, we can write: Dx D b � .L C U /x , or:

x D D�1b � D�1.L C U /x (3.188)

Gauss-Jacobi (GJ) starts with any x .0/ 2 Rn , usually x .0/ D 0, then iterates using:

x .kC1/ D D�1b � D�1.L C U /x.k/; f or k D 0; 1; : : : (3.189)

INDIRECT/ITERATIVE METHODS 99

while (not converged) do
for (i D 1; : : : ; n) do

x .kC1/
i D bi

for (j D 1; : : : ; i � 1) do
x .kC1/

i D x .kC1/
i � ai j x .k/j

for (j D i C 1; : : : ; n) do
x .kC1/

i D x .kC1/
i � ai j x .k/j

x .kC1/
i D x .kC1/

i =aii

Figure 3.13: The Gauss-Jacobi algorithm.

This process can be expressed, at each iteration of k, as:

x .kC1/
i D 1

aii

0
@bi �

i�1X
jD1

ai j x
.k/
j �

nX
jDiC1

ai j x
.k/
j

1
A ; for i D 1; 2; : : : ; n (3.190)

where, by convention,
P0

jD1 ai j x
.k/
j D 0 and

Pn
jDnC1 ai j x

.k/
j D 0. Thus, the

Gauss-Jacobi algorithm is as shown in Fig. 3.13; it requires ³ n2 operations per
iteration.

3.3.2 Gauss-Seidel

With .L C D C U /x D b, we can write: .D C L/x D b � U x , or:

x D .L C D/�1b � .L C D/�1U x (3.191)

Gauss-Seidel (GS) starts with any x .0/ 2 Rn , usually x .0/ D 0, then iterates using:

x .kC1/ D .L C D/�1b � .L C D/�1U x .k/; for k D 0; 1; : : : (3.192)

To see how this can be efficiently implemented, rewrite the iteration as:

Dx .kC1/ D b � Lx .kC1/ � U x .k/ (3.193)

which, because L is lower triangular and has a zero diagonal, can be expressed,
at each iteration of k, as:

x .kC1/
i D 1

aii

0
@bi �

i�1X
jD1

ai j x
.kC1/
j �

nX
jDiC1

ai j x
.k/
j

1
A ; for i D 1; 2; : : : ; n

(3.194)
where, by convention,

P0
jD1 ai j x

.kC1/
j D 0 and

Pn
jDnC1 ai j x

.k/
j D 0. Thus, the

Gauss-Seidel algorithm is as shown in Fig. 3.14; it requires ³ n2 operations per
iteration. Notice that the difference between the two methods is that Gauss-Seidel
uses the latest available solution for the partial vector x1; x2; : : : ; xi�1.

100 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

while (not converged) do
for (i D 1; : : : ; n) do

x .kC1/
i D bi

for (j D 1; : : : ; i � 1) do
x .kC1/

i D x .kC1/
i � ai j x .kC1/

j
for (j D i C 1; : : : ; n) do

x .kC1/
i D x .kC1/

i � ai j x .k/j

x .kC1/
i D x .kC1/

i =aii

Figure 3.14: The Gauss-Seidel algorithm.

3.3.3 Convergence

One is obviously interested in whether Gauss-Jacobi and Gauss-Seidel converge
to the correct solution, and how quickly. In fact, there are four key questions for
either algorithm:

1. What exactly do we mean by “convergence” for a vector sequence?
2. Is convergence guaranteed, and under what conditions?
3. If the iteration converges, does it converge to the correct solution?
4. If the iteration converges, how fast does it converge?

To give precise answers to these questions requires a brief digression, to review
the notions of vector convergence and matrix eigenvalues.

Vector Convergence To give a precise meaning to the notion of convergence
of a sequence of vectors

ý
x .k/

�1
kD0 D x .1/; x .2/; : : : ; we make use of vector norms.

Definition 3.2. (Vector convergence) We say that the sequence
ý
x .k/

�1
kD0 of real

vectors in R
n converges to xŁ 2 R

n with respect to the norm k Ð k if:

lim
k!1

kx .k/ � xŁk D 0 (3.195)

Definition 3.3. (Norm equivalence) Two norms are said to be equivalent if,
whenever a sequence

ý
x .k/

�1
kD0 converges to a vector xŁ with respect to one of

them, it also converges to the same xŁ with respect to the other.

Theorem 3.8. (Norm equivalence theorem) For any finite-dimensional real or
complex vector space, Rn or Cn, all vector norms are equivalent.

Therefore, we use the convenient l1 norm to characterize vector convergence:
A sequence

ý
x .k/

�1
kD0 converges to a vector xŁ if and only if:

lim
k!1

x .k/i D xŁ
i ; for all i D 1; 2; : : : ; n (3.196)

INDIRECT/ITERATIVE METHODS 101

and we write:
lim

k!1
x .k/ D xŁ (3.197)

Eigenvalues Let A 2 R
nðn ; if there exists a non-zero x 2 C

n and a scalar
½ 2 C such that:

Ax D ½x; x 6D 0 (3.198)

then ½ is said to be an eigenvalue of A, and x is an eigenvector of A associ-
ated with ½. Notice that the vector 0 cannot be an eigenvector, and, if x is an
eigenvector associated with ½, then Þx is also an eigenvector associated with ½,
where Þ 2 C and Þ 6D 0.

The set of all eigenvalues of A, called the spectrum of of A, is denoted ¦.A/.
The spectrum is invariant under transposition: ¦.A/ D ¦.AT /. If A is triangular
(or diagonal), then ¦.A/ D fa11; a22; : : : ; anng. A matrix A 2 Rnðn is nonsingular
if and only if 0 62 ¦.A/. If A is symmetric, then all its eigenvalues are real and,
if they are ordered as ½1 � ½2 � Ð Ð Ð � ½n , then:

½1xT x � xT Ax � ½nxT x; 8x 2 R
n (3.199)

If Aq D 0 for some integer q > 0, then A is said to be nilpotent . If A 2 Rnðn

is nilpotent, then 9q � n such that Aq D 0. It can be shown that A is nilpotent if
and only if all its eigenvalues are 0. Every strictly triangular matrix is nilpotent.

If A 2 R
nðn , then the polynomial p.z/ � det.zI � A/ is called the charac-

teristic polynomial of A, and it has degree n. A scalar ½ is an eigenvalue of A
if and only if ½ is a root of p.z/, i.e., p.½/ D 0. Therefore, a matrix A 2 R

nðn

has at least one eigenvalue, and no more than n distinct eigenvalues. And, since
A 2 R

nðn is real, then any complex eigenvalues of A always appear in conjugate
pairs, so that ½ 2 ¦.A/ if and only if ½Ł 2 ¦.A/.

Finally, the spectral radius of A 2 R
nðn , denoted ².A/ is defined as:

².A/ � maxfj½j : ½ 2 ¦.A/g (3.200)

Notice that ².A/ ½ 0, and that ².A/ D 0 if and only if A is nilpotent.

Convergence The following theorem is available for convergence of a general
class of iterative methods.

Theorem 3.9. Let M 2 R
nðn and let the sequence

ý
x .k/

�1
kD0 be generated accord-

ing to the iteration:
x .kC1/ D Mx .k/ C c (3.201)

where x .0/; c 2 R
n; then this sequence converges if and only if ².M/ < 1, and it

converges to xŁ D ð
.I � M/�1c

Ł
.

102 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Notice that, if M is nilpotent, in which case ².M/ D 0, then clearly the itera-
tion in (3.201) converges in q � n steps. Motivated by (3.201), the Gauss-Jacobi
iteration can be written as:

x .kC1/ D MG J x .k/ C cG J (3.202)

where MG J D �D�1.L C U / and cG J D D�1b. If ².MG J / < 1, then GJ con-
verges to:

xŁ D .I � MG J /
�1cG J D �

D�1.D C L C U /
Ð�1

D�1b

D .D C L C U /�1b D A�1b

So that, if it converges, then GJ converges to the correct solution! Proceeding
similarly, the Gauss-Seidel iteration can be written as:

x .kC1/ D MGSx .k/ C cGS (3.203)

where MGS D �.L C D/�1U and cGS D .L C D/�1b. Notice that, since U has
a zero diagonal then MGS has a zero first column, and therefore it is singular
and has 0 as one of its eigenvalues. If ².MGS/ < 1, then GS converges to:

xŁ D .I � MGS/
�1cGS D �

.L C D/�1.L C D C U /
Ð�1

.L C D/�1b

D .L C D C U /�1b D A�1b

So that, if it converges, then GS converges to the correct solution!

Conditions for Convergence We can now deal with the question of whether
Gauss-Jacobi and Gauss-Seidel are convergent. The following theorem is
available.

Theorem 3.10. If A is strictly diagonally dominant, then:

².MG J / < 1 and ².MGS/ < 1 (3.204)

Thus, a sufficient condition for both GJ and GS to converge is that A is
strictly diagonally dominant. This condition is not necessary. In practice, diagonal
dominance of the NA matrix, even though not strict, often leads to a convergent
system. With MNA, in order to deal with group 2 elements, one tries to reorder
the MNA matrix so it becomes nearly diagonally dominant. We also have access
to the following result.

Theorem 3.11. If A is such that MG J ½ 0 (i.e., every entry of MG J is ½ 0), then
one and only one of the following is true:

INDIRECT/ITERATIVE METHODS 103

1. ².MG J / D ².MGS/ D 0
2. 0 < ².MGS/ < ².MG J / < 1
3. ².MG J / D ².MGS/ D 1
4. 1 < ².MG J / < ².MGS/

Rate of Convergence Let Ek D kx .k/ � xŁk for some vector norm k Ð k. If
there exists a constant 0 < c < 1 such that:

EkC1 � cEk (3.205)

for all k sufficiently large, then we say that the convergence rate is linear. For
both GJ and GS, it can be shown that, for any ž > 0, there exists a vector norm
k Ð k such that:

EkC1 � .².M/C ž/ Ek; 8k (3.206)

where M is either MG J or MGS . Therefore, if ².M/ < 1, then (3.205) is satisfied,
the convergence rate is linear , and the convergence constant, i.e., c in (3.205),
is ³ ².M/.

Although both GJ and GS have a linear convergence rate, we can use the
value of ².M/ to decide which is better. We should use the method with the
smaller ².M/. A smaller ².M/ is said to give a faster convergence speed . The
following result provides further guidance.

Theorem 3.12. For any two matrices A and B, if jai j j � bi j ; 8i; j , then:

².A/ � ².B/ (3.207)

When this theorem is applicable, one can use it to decide which method would
have a faster convergence speed. However, practical experience is that, if both
GJ and GS will converge, then it is usually faster to use GS. Recall that GS
uses more recent partial information about the solution. On the other hand, there
are cases where GJ will converge while GS will not, as we illustrate with the
following example.

Example We will show a case where GJ converges but GS does not; consider
the system:2

41 2 �2
1 1 1
2 2 1

3
5
2
4x1

x2

x3

3
5 D

2
41

3
5

3
5 ; whose solution is xŁ D

2
41

1
1

3
5 (3.208)

For Gauss-Jacobi:

MG J D
2
4 0 �2 2

�1 0 �1
�2 �2 0

3
5 (3.209)

104 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

and one finds that det.½I � MG J /
�1 D ½3, so that MG J is nilpotent and GJ should

converge in a finite q � 3 number of steps. Indeed, if x .0/ D 0, then x .3/ D xŁ:

x .0/ D
2
40

0
0

3
5 ; x .1/ D

2
41

3
5

3
5 ; x .2/ D

2
4 5

�3
�3

3
5 ; x .3/ D

2
41

1
1

3
5 ; x .4/ D

2
41

1
1

3
5

For Gauss-Seidel:

MGS D
2
40 �2 2

0 2 �3
0 0 2

3
5 (3.210)

Note that the first column is 0, as one would expect for GS, so that one of
the eigenvalues is 0; the other two eigenvalues turn out to be 2 and �2. Thus,
².MGS/ D 2> 1 and, in this case, GS will diverge:

x .0/ D
2
40

0
0

3
5; x .1/ D

2
4 1

2
�1

3
5 ; x .2/ D

2
4�5

9
�3

3
5 ; x .3/ D

2
4�23

29
�7

3
5 ;

x .4/ D
2
4�71

81
�15

3
5 ; Ð Ð Ð ; x .10/ D

2
4�13; 823

14; 337
�1; 023

3
5 ; Ð Ð Ð

3.4 PARTITIONING TECHNIQUES

Another method for speeding up the solution of large systems is to partition the
problem or, equivalently, to partition the matrix. A large variety of partitioning
approaches have been applied to circuit simulation, often in combination with
a relaxation type approach. Partitioning aims to benefit from a locality prop-
erty that circuits often have, namely that strong interactions are usually among
nearby nodes. It is hoped that one can break up a circuit at a small number
of key global boundaries, across which circuit interactions will not be strong.
In practice, partitioning can become expensive, and accuracy can occasionally
suffer, so these methods are not an unqualified success. We will focus on one
partitioning approach, called node tearing .

3.4.1 Node Tearing

Node tearing may be summarized as follows:

1. Start with a connected network graph.
2. Find a set of nodes which, if removed, would cause the graph to become

disconnected; these are called the tearing set . It is customary to include
the ground node in the tearing set.

PARTITIONING TECHNIQUES 105

Sub-circuit #3

Sub-circuit #2

Tearing Set

Sub-circuit #4

Sub-circuit #1

Figure 3.15: An illustration of node tearing, where a circuit is partitioned into four
sub-circuits.

3. Discover the sub-circuits of the (disconnected) graph and build the system
equation for each of them.

4. Combine these with the equations for the tearing set.

One hopes to solve the resulting system on a parallel computer , leading to
improved run-time. An example of the resulting partitions is shown in Fig. 3.15.

For simplicity, we will discuss the use of node tearing in the context of the
nodal analysis (NA) formulation, but this can be easily extended to MNA. The
resulting system equation, which one can see by reference to Fig. 3.15, includes
a system matrix which is said to be in bordered block diagonal (BBD) form:

2
666664

A1 0 Ð Ð Ð 0 B1

0 A2 Ð Ð Ð 0 B2
:::

:::
: : :

:::
:::

0 0 Ð Ð Ð Am Bm

C1 C2 Ð Ð Ð Cm Dt

3
777775

2
666664

x1

x2
:::

xm

xt

3
777775 D

2
666664

b1

b2
:::

bm

bt

3
777775 (3.211)

where Ai , Bi , Ci , and Dt are matrices such that each Ai is ni ð ni (ni is the
number of nodes in the i th sub-circuit), each Bi is ni ð nt (nt is the number
of nodes in the tearing set), each Ci is nt ð ni , matrix Dt is nt ð nt , and the
vectors x and b are accordingly partitioned into xi and bi (keep in mind that
these are vectors, not individual vector components). The solution plan is to
solve each sub-circuit as a smaller problem, and then somehow combine the
solutions. Effectively, one aims to solve the set of equations:

(
Ai xi C Bi xt D bi ; 8i D 1; 2; : : : ;mPm

iD1 Ci xi C Dt xt D bt
(3.212)

106 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

where the second equation will be referred to as the tearing set equation. The
equations are not totally decoupled, of course, but the m equations for the sub-
circuits can be partially solved in parallel, as we will see. We will study both a
direct approach (using LU factorization) and an indirect approach (using GJ and
GS) for solving this type of system.

3.4.2 Direct Methods

From the equation for each sub-circuit, we get:

xi D A�1
i .bi � Bi xt / ; 8i D 1; 2; Ð Ð Ð ;m (3.213)

Substitute this into the tearing set equation, to get:
Dt �

mX
iD1

Ci A�1
i Bi

!
xt D

bt �

mX
i�1

Ci A�1
i bi

!
(3.214)

which we write compactly as:

DŁ
t xt D bŁ

t (3.215)

where we define:

DŁ
t � Dt �

mX
iD1

Ci A�1
i Bi (3.216)

bŁ
t � bt �

mX
iD1

Ci A�1
i bi (3.217)

If this equation is solved for xt , we can then find each xi using (3.213). Obviously,
this would not be done by explicit matrix inversion. Instead, the elimination of xi

from the tearing set equation is done using Gaussian elimination. Specifically, we
will use the block GE approach, based on Gauss’s method for LU factorization,
as follows. Start by performing a partial LU , as we saw in the block GE approach,
on A1 only, leading to:

2
666664

.L1jU1/ 0 Ð Ð Ð 0 L�1
1 B1

0 A2 Ð Ð Ð 0 B2
:::

:::
: : :

:::
:::

0 0 Ð Ð Ð Am Bm

C1U �1
1 C2 Ð Ð Ð Cm .Dt � C1 A�1

1 B1/

3
777775

2
666664

x1

x2
:::

xm

xt

3
777775 D

2
666664

L�1
1 b1

b2
:::

bm

bt � C1 A�1
1 b1

3
777775

(3.218)
Notice that Ai , Bi , and bi , for i D 2; 3; : : : ;m are not modified because there
is a zero matrix in the corresponding rows, in the columns below A1. Likewise,

PARTITIONING TECHNIQUES 107

Ci , for i D 2; 3; : : : ;m are not modified because there is a zero matrix in the
corresponding columns, in the rows to the right of A1. This is repeated for
A2; A3; : : : ; Am and, for each Ai , the modifications are limited to Bi , Ci , bi , bt ,
and Dt , in a way which is parallelizable. The resulting system equation is:

2
666664

.L1jU1/ 0 Ð Ð Ð 0 L�1
1 B1

0 .L2jU2/ Ð Ð Ð 0 L�1
2 B2

:::
:::

: : :
:::

:::

0 0 Ð Ð Ð .Lm jUm/ L�1
m Bm

C1U �1
1 C2U �1

2 Ð Ð Ð CmU �1
m DŁ

t

3
777775

2
666664

x1

x2
:::

xm

xt

3
777775 D

2
666664

L�1
1 b1

L�1
2 b2
:::

L�1
m bm

bŁ
t

3
777775 (3.219)

where DŁ
t and bŁ

t are as defined above. Thus, the net result of the modifications
to Dt and bt is to provide the values of DŁ

t and bŁ
t that are required to solve for

xt based on (3.215), which we do using another LU factorization.
With xt in hand, we can solve each sub-circuit, in parallel, for its own voltages,

based on the original system equation:

LiUi xi D bi � Bi xt (3.220)

where, notice that, the Li and Ui factors are already available, so that no addi-
tional factorization is required. In fact, there is no need to do forward substitution,
because the final system equation is already in the form:

Ui xi D L�1
i bi � L�1

i Bi xt (3.221)

so that we only need to do backward substitution. The total computational cost
is clearly O �

n3
t CPm

iD1 n3
i

Ð
, which is much less than O

��
nt CPm

iD1 ni
Ð3�

.

3.4.3 Indirect Methods

Both Gauss-Jacobi (GJ) and Gauss-Seidel (GS) can be adapted to work with the
BBD formulation. Starting with the system equations:

(
Ai xi C Bi xt D bi ; 8i D 1; 2; : : : ;mPm

iD1 Ci xi C Dt xt D bt
(3.222)

we transform them into the equivalent form:

(
Ai xi D bi � Bi xt ; 8i D 1; 2; : : : ;m

Dt xt D bt �Pm
iD1 Ci xi

(3.223)

and GJ and GS are then applied to these equations, in slightly different ways, as
follows.

108 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

Gauss-Jacobi The GJ approach starts with an initial guess on x .0/i and x .0/t ,
then applies an iteration to compute x .kC1/

i and x .kC1/
t from x .k/t and x .k/i , as

follows:

(
Ai x

.kC1/
i D bi � Bi x

.k/
t ; 8i D 1; 2; : : : ;m

Dt x
.kC1/
t D bt �Pm

iD1 Ci x
.k/
i

(3.224)

This requires one to pre-compute the LU factors for Ai and Dt , which can be
done in parallel. Thus, computationally, the process is straightforward. But what
about convergence? In block-matrix form, the iteration is as follows:

2
666664

A1 0 Ð Ð Ð 0 0
0 A2 Ð Ð Ð 0 0
:::

:::
: : :

:::
:::

0 0 Ð Ð Ð Am 0
0 0 Ð Ð Ð 0 Dt

3
777775

2
6666664

x .kC1/
1

x .kC1/
2
:::

x .kC1/
m

x .kC1/
t

3
7777775

D

2
666664

b1

b2
:::

bm

bt

3
777775�

2
666664

0 0 Ð Ð Ð 0 B1

0 0 Ð Ð Ð 0 B2
:::

:::
: : :

:::
:::

0 0 Ð Ð Ð 0 Bm

C1 C2 Ð Ð Ð Cm 0

3
777775

2
6666664

x .k/1

x .k/2
:::

x .k/m

x .k/t

3
7777775

which, assuming the Ai ’s and Dt are nonsingular, can be written as:

2
6666664

x .kC1/
1

x .kC1/
2
:::

x .kC1/
m

x .kC1/
t

3
7777775

D

2
666664

A�1
1 b1

A�1
2 b2
:::

A�1
m bm

D�1
t bt

3
777775�

2
666664

0 0 Ð Ð Ð 0 A�1
1 B1

0 0 Ð Ð Ð 0 A�1
2 B2

:::
:::

: : :
:::

:::

0 0 Ð Ð Ð 0 A�1
m Bm

D�1
t C1 D�1

t C2 Ð Ð Ð D�1
t Cm 0

3
777775

2
6666664

x .k/1

x .k/2
:::

x .k/m

x .k/t

3
7777775

The 0-diagonal matrix is certainly not diagonally dominant, but one hopes that
the process converges anyway.

Gauss-Seidel The GS approach is slightly different: it uses the latest x .kC1/
i

when computing x .kC1/
t , as follows:

(
Ai x

.kC1/
i D bi � Bi x

.k/
t ; 8i D 1; 2; : : : ;m

Dt x
.kC1/
t D bt �Pm

iD1 Ci x
.kC1/
i

(3.225)

SPARSE MATRIX TECHNIQUES 109

As with GJ, this requires one to pre-compute the LU factors for Ai and Dt , which
can be done in parallel. Again, computationally, this process is straightforward.
As for convergence, note that, in block-matrix form, the iteration is as follows:

2
666664

A1 0 Ð Ð Ð 0 0
0 A2 Ð Ð Ð 0 0
:::

:::
: : :

:::
:::

0 0 Ð Ð Ð Am 0
C1 C2 Ð Ð Ð Cm Dt

3
777775

2
6666664

x .kC1/
1

x .kC1/
2
:::

x .kC1/
m

x .kC1/
t

3
7777775

D

2
666664

b1

b2
:::

bm

bt

3
777775�

2
666664

0 0 Ð Ð Ð 0 B1

0 0 Ð Ð Ð 0 B2
:::

:::
: : :

:::
:::

0 0 Ð Ð Ð 0 Bm

0 0 Ð Ð Ð 0 0

3
777775

2
6666664

x .k/1

x .k/2
:::

x .k/m

x .k/t

3
7777775

In this case, simple symbolic inversion is not possible, but one hopes for better
convergence compared to GJ, because of the use of latest x .kC1/

i . It is anticipated
that tearing techniques will become more important, with the increased use of
multi-core microprocessors and parallel computers.

3.5 SPARSE MATRIX TECHNIQUES

The number of elements in a large electrical network is typically only 2–4 times
the number of nodes. Given that elements usually have 2–4 terminals, then the
vertex degrees in network graphs must be small. Indeed, given the preceding
observations, it can be shown that the average vertex degree in a large network
graph should be less than some upper bound which is in the range 6–12. Thus,
even though the number of edges in a graph is, theoretically, O.n2/, where n is
the number of nodes, in practice it is only O.n/ for large circuit graphs. As a
result, circuit matrices are highly sparse, i.e., most of their elements are zero,
and one can benefit greatly from the use of sparse matrix techniques , in order to
speed up circuit simulation.

With sparse matrix techniques , zero-valued matrix entries are not stored and,
to the extent possible, not manipulated. The resulting savings can be quite sig-
nificant. GE/LU, which is theoretically O.n3/, becomes ³ O.n1:5/ in practice
for sparse matrices. For highly sparse matrices, this is reported to be as low as
³ O.n1:1/. Overall, modern simulators are observed to be O.nÞ/, empirically,
where Þ is in the range 1.2–1.5.

Sparse matrix techniques are more difficult to implement, but are worth the
effort for large circuits. In general, this is about more than just performing a sparse
GE/LU. Almost every algorithm for matrix manipulation has a specialized variant
for sparse matrices. There are specialized algorithms for matrix-vector multiplica-
tion and for forward/backward substitution. We will give only a limited treatment
of sparse matrix techniques, in order to motivate commonly used schemes of stor-
age and pivoting for sparsity . We start with some general remarks about sparse
matrices:

1. We earlier introduced what we called a technical definition of sparsity: an
n ð n matrix is called sparse if its number of non-zero entries is O.n/,

110 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

otherwise it is said to be dense or full . However, in practice, exactly
how much of a matrix must be zero in order for it to be worthwhile to
treat it as sparse, depends on several factors, such as the type of algo-
rithm/computation to be performed, the pattern of non-zeros in the matrix,
and the architecture of the computer being used. Thus, some numerical
analysts prefer a less technical definition, according to which a matrix is
said to be sparse if there is a significant advantage to be had by exploiting
its zero/non-zero structure. Note, the term structure or pattern is used to
refer to the zero/non-zero pattern of a matrix. Simulation of large circuits
definitely benefits from the use of sparse matrix methods, and large circuit
matrices are definitely sparse.

2. It is often possible to gain insight into sparse matrix techniques by working
with the graph associated with the matrix, as we will see in connection
with pivoting. In fact, results from graph theory sometimes provide direct
answers to questions associated with sparse matrix algorithms.

3. Exactly how one makes use of sparsity depends on the machine architecture.
On a serial computer, one aims to reduce the number of floating point com-
putations (C;�;ð; =), while keeping the overhead in check. On a vector
or parallel computer, there are additional opportunities, and complexities,
to be dealt with. We will limit our focus to serial machines.

We are now ready to briefly discuss sparse matrix storage, before moving on to a
detailed study of pivoting for sparsity in GE and LU factorization. This material
is based on a number of sources, including Davis (2006), Pillage et al. (1995),
and Duff et al. (1986).

3.5.1 Sparse Matrix Storage

Historically, a number of different data structures have been used for sparse
matrix storage and manipulation. Modern techniques make use of two data struc-
tures:

1. The triplet form is easy to create but not the most efficient to use.
2. The compressed-column form is more useful and is used in most sparse

matrix algorithms, including those in MATLAB,3 but harder to create.

A typical flow is to specify a matrix in triplet form, and then for the tools to
convert it to compressed-column form before further processing.

Triplet Form A triplet form data structure for an m ð n matrix A, with nz real
non-zero elements, consists of two integer arrays and one real array, as follows:

• Integer array: r [1]; r [2]; : : : ; r [nz] 2 f1; 2; : : : ;mg
3MATLAB is a registered trademark of The MathWorks, Inc.

SPARSE MATRIX TECHNIQUES 111

• Integer array: c[1]; c[2]; : : : ; c[nz] 2 f1; 2; : : : ; ng
• Real array: x[1]; x[2]; : : : ; x[nz] 2 R where x[i] � A .r [i]; c[i]/.

For example, the following matrix:

A D

2
664

5:6 0 1:8 0
2:4 1:5 0 �0:2
0 1:6 4:0 0

2:8 �3:0 0 1:7

3
775 (3.226)

has the following triplet form structure:

r D ð
3 2 4 1 2 4 4 2 1 3

Ł
c D ð

3 1 4 3 2 1 2 4 1 2
Ł

x D ð
4:0 2:4 1:7 1:8 1:5 2:8 �3:0 �0:2 5:6 1:6

Ł
A file that describes a matrix in the triplet form would typically consist of a list
of all the .r [i]; c[i]; x[i]/ triplets, in any order.

Compressed-Column Form A compressed-column form for an m ð n real
matrix A, which may contain up to nz;max non-zero entries, consists of three
arrays:

• Integer array: p[1]; p[2]; : : : ; p[n C 1] 2 f1; 2; : : : ; nz;max C 1g
• Integer array: r [1]; r [2]; : : : ; r [nz;max] 2 f1; 2; : : : ;mg
• Real array: x[1]; x[2]; : : : ; x[nz;max] 2 R, where p[1] D 1, p[n C 1] D nz C

1, and where nz � nz;max is the actual number of non-zeros, such that the
row indices of the non-zero entries in column j of A are stored, in any
order, in:

r
ð

p[j]
Ł
; r

ð
p[j] C 1

Ł
; : : : ; r

ð
p[j C 1] � 1

Ł
(3.227)

and the corresponding entry values of A are stored at:

x
ð

p[j]
Ł
; x

ð
p[j] C 1

Ł
; : : : ; x

ð
p[j C 1] � 1

Ł
(3.228)

and, if column j has all zero entries, then p[j] D p[j C 1].

For example, the matrix in (3.226) has the following compressed-column form:

p D ð
1 4 7 9 11

Ł
r D ð

1 2 4 2 3 4 1 3 2 4
Ł

x D ð
5:6 2:4 2:8 1:5 1:6 �3:0 1:8 4:0 �0:2 1:7

Ł

112 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

This representation is also referred to as storage-by-columns , and there are
other comparable representations, such as storage-by-rows, storage-by-indices,
compressed-matrix storage, compressed-diagonal storage, etc. The details are an
implementation issue and will not be pursued further here.

3.5.2 Sparse GE and LU Factorization

We now focus on the issue of pivoting for sparsity in GE and LU factorization.
It is worthwhile starting with the probably obvious comment that performing
row and column exchanges during GE/LU is equivalent to first reordering the
matrix up-front (according to the same row and column exchanges), then applying
GE/LU without any pivoting. Discussions of pivoting are often cast in terms of
up-front reordering of the matrix. Recall that matrix reordering (allowing for both
row and column exchange) can be expressed using two permutation matrices P
and Q as:

P AQ D LU (3.229)

We commented earlier that, for solving Ax D b, the matrix A�1 is often dense,
even when A is sparse, so that the method x D A�1b is unsable for solving large
systems. The loss of sparsity, in going from A to A�1 is the root of the problem.
Likewise, when using LU factorization, it would be undesirable if L and U
turned out to be dense, and we can quantify the significance of this, as follows.
Consider an LU factorization of Ax D b, and define the following:

• Let jUk j be the number of non-zeros in row k of U .
• Let jLk j be the number of non-zeros in column k of L .
• Let jLj and jU j be the number of non-zeros in L and U , respectively.

Then, it can be shown that the cost of LU factorization, using Gauss’s method
(counting only floating point multiplications and divisions, as usual), is:

Þ D
nX

kD1

jUk j .jLk j � 1/ (3.230)

and the cost of forward substitution followed by backward substitution, assuming
that b is full, is:

þ D jLj C jU j � n (3.231)

Thus, the total cost of solving the system is:

Þ C þ D .jLj � n/C
nX

kD1

jLk jjUk j (3.232)

Clearly, it is in our interest to make sure that L and U are sparse!

SPARSE MATRIX TECHNIQUES 113

A key advantage of LU factorization is that, in contrast to the basic method
of explicitly computing A�1, it can be shown that, if A is sparse, then there exist
permutation matrices P and Q, such that P AQ D LU , where both L and U are
sparse. This is equivalent to saying that there exists a matrix reordering (using
row and column exchanges) that preserves sparsity . The best ordering may not
be easy to find, as we will see, but it is possible to find good orderings. Thus,
LU factorization is practical for large systems, because it offers the opportunity
to preserve sparsity. In the following, we will study the impact of reordering on
sparsity and consider various schemes for pivot selection for sparsity.

3.5.3 Reordering and Sparsity

The sparsity of L and U depends on the matrix ordering being used. To see this,
consider this simple example of a 4 ð 4 matrix:

A D

2
664

a11 a12 a13 a14

a21 a22 0 0
a31 0 a33 0
a41 0 0 a44

3
775 denoted:

2
664

ð ð ð ð
ð ð
ð ð
ð ð

3
775 (3.233)

where ð denotes a non-zero in this structural representation. Applying LU fac-
torization on this matrix, using Gauss’s algorithm for LU factorization, gives the
usual auxiliary matrix S � L C U � I as:

A D

2
664

u11 u12 u13 u14

l21 u22 u23 u24

l31 l32 u33 u34

l41 l42 l43 u44

3
775 (3.234)

where:

u11 D a11; u12 D a12; u13 D a13; u14 D a14

l21 D a21=u11; u22 D a22 � l21u12; u23 D 0 � l21u13; u24 D 0 � l21u14

l31 D a31=u11; l32 D .0 � l31u12/=u22;

u33 D a33 � l31u13 � l32u23; u34 D 0 � l31u14 � l32u24

l41 D a41=u11; l42 D .0 � l41u12/=u22

l43 D .0 � l41u13 � l42u23/=u33; u44 D a44 � l41u14 � l42u24 � l43u34

Barring possible cancellations of exactly equal and opposite terms, the result of
each of these computations is a non-zero, so that the S matrix is a full matrix.
Effectively, a sparse A matrix has been transformed thus:

A D

2
664

ð ð ð ð
ð ð
ð ð
ð ð

3
775 ! S D

2
664

ð ð ð ð
ð ð ð ð
ð ð ð ð
ð ð ð ð

3
775 (3.235)

114 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

This is highly undesirable! The source of the problem is evident if we examine
the very first step of Gauss’s algorithm for LU factorization (equivalent to GE),
which gives:2

664
u11 D a11 u12 D a12 u13 D a13 u14 D a14

l21 D a21=u11 a22 � l21u12 0 � l21u13 0 � l21u14

l31 D a31=u11 0 � l31u12 a33 � l31u13 0 � l31u14

l41 D a41=u11 0 � l41u12 0 � l41u13 a44 � l41u14

3
775

so that the matrix is already full after the very first step:

A D

2
664

ð ð ð ð
ð ð
ð ð
ð ð

3
775 !

2
664

ð ð ð ð
ð ð ð ð
ð ð ð ð
ð ð ð ð

3
775 (3.236)

Fill-Ins The introduction of a non-zero in S where there was none in A is
referred to as a fill-in . Early fill-ins lead to more fill-ins as the algorithm proceeds.
It is in our interest to avoid fill-ins, so as to preserve sparsity! Note that, in GE
or in Gauss’s algorithm for LU factorization, when we are eliminating xk , then

a fill-in is introduced whenever a 0 entry (of the S matrix) has an ð in its row in
column k and an ð in its column in row k.

Returning to the above example, consider a reordering of the matrix, as follows:

P AQ D

2
664

a44 0 0 a41

0 a22 0 a21

0 0 a33 a31

a14 a12 a13 a11

3
775 denoted:

2
664

ð ð
ð ð

ð ð
ð ð ð ð

3
775 (3.237)

where rows 1 and 4 have been exchanged and columns 1 and 4 have been
exchanged, using:

P D

2
664

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

3
775 and Q D

2
664

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

3
775 (3.238)

In this case, LU factorization on this matrix, using Gauss’s algorithm, gives the
auxiliary matrix S � L C U � I based on:

u11 D a44; u12 D 0; u13 D 0; u14 D a41

l21 D 0; u22 D a22; u23 D 0; u24 D a21

l31 D 0; l32 D 0; u33 D a33; u34 D a31

l41 D a14=u11; l42 D .a12 � l41u12/=u22

l43 D .a13 � l41u13 � l42u23/=u33; u44 D a11 � l41u14 � l42u24 � l43u34

SPARSE MATRIX TECHNIQUES 115

so that S is just as sparse as the original matrix A, which we depict as:

P AQ D

2
664

ð ð
ð ð

ð ð
ð ð ð ð

3
775 ! S D

2
664

ð ð
ð ð

ð ð
ð ð ð ð

3
775 (3.239)

which is a much better outcome! However, this ideal scenario cannot always be
achieved and, in general, fill-ins cannot be completely avoided.

3.5.4 Pivoting for Sparsity

Based on the above test case, we are tempted to reorder (pivot) the matrix so
that the earlier processed rows and columns have fewer non-zero elements. This
way the reordered matrix would resemble that in (3.239), rather than that in
(3.235). There is some merit in this plan, as we will see later on in connection
with diagonal pivoting. However, in general, it is not sufficient; the problem is
much more complex than this. There are .n!/2 possible permutations of the rows
and columns of a square n ð n matrix, so that the search space for an optimal
ordering is huge! In fact, it can be shown that the problem is NP-hard, and we
must be satisfied with using suboptimal schemes.

Typically, one computes certain metrics to help choose a pivot element, and
then performs the required row and column exchanges. The metrics aim to mon-
itor the impact on sparsity. As well, accuracy considerations must be factored in,
so as to maintain algorithm stability; small-magnitude pivots must be somehow
avoided. Because both row and column exchanges may be required, LU factor-
ization is performed using Gauss’s method, rather than Crout or Doolittle. Being
equivalent to GE, we will refer to the solution approach as GE/LU, as we did
earlier.

By reference to Gauss’s algorithm in Fig. 3.8, note that, during GE/LU, as
one is poised to restart the outer loop for the kth time, we have that:

1. Rows and columns 1; : : : ; .k � 1/ have been fully processed and “turned
into” rows of U and columns of L , typically using in-place computation.

2. Rows and columns k; : : : ; n have been only partially processed, and they
form what is called the remaining reduced sub-matrix , which is denoted
A.k/.fk; : : : ; ng; fk; : : : ; ng/ or, more succinctly, as A.k/.k : n; k : n/.

The reader should visualize this situation and keep it in mind, as this helps
understand the various pivoting metrics to be discussed.

In the next section, we will study what is probably the most commonly used
pivoting scheme in the circuit simulation, due to Markowitz. The sections after
that will cover some alternative schemes, leading up to some modern schemes
which have probably not been fully tested yet in the circuit simulation area.
Before launching on this path, we give some general remarks:

116 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

1. It is possible for a zero to be created, in the remaining reduced sub-matrix,
due to exact cancellation in a subtraction during GE/LU. However, this is
very rare, due to roundoff error. Most often, pivoting schemes ignore the
possibility of exact cancellation. This has an impact on the fill-in count,
because the fact of having one less non-zero would be missed, but this
is not a significant issue. The more serious issue is that the creation of a
zero may have been missed, raising the possibility that a zero pivot may
be encountered at some point.

2. For efficiency reasons, some pivoting schemes are concerned only with the
zero/non-zero structure of the matrix. They do not monitor element values,
and they ignore the possibility of exact cancellation. Such techniques may
be called structural or static. They are also often called local because they
do not look for global optima; they take a greedy approach based on only
local information.

3. Any practical pivoting scheme must, in the end, avoid using very small
pivots so as to maintain accuracy, and must watch out for zero creation due
to exact cancellation. Therefore, practical methods must combine pivoting
for sparsity with some form of pivoting for accuracy. One way of doing this
is to use threshold pivoting, as we will see. Another more recent approach,
as we will also see below, is to perform column exchanges for sparsity,
and then allow further row exchanges for accuracy.

4. For circuit simulation, the zero/non-zero structure of the matrix is fixed
throughout the simulation process. The values may change, but not the
structure, as we will see in the rest of this text. Therefore, one hopes to
be able to perform pivoting for sparsity up-front, as a one-time cost at
the beginning of the simulation, and then to only do pivoting for accuracy
during the rest of the simulation, in a way that does not destroy sparsity.
This is possible with some pivoting strategies, but not with others. Many
existing circuit simulators choose pivots up-front with no concern to the
possible change in element values during the simulation.

3.5.5 Markowitz Pivoting

Markowitz (1957) proposed the following pivoting scheme, which has proven to
be quite effective, in spite of its simplicity. At the beginning of the kth outer
iteration of GE/LU, let r .k/i be the number of non-zero elements in row i of
the remaining reduced sub-matrix A.k/.k : n; k : n/, and let c.k/j be the number of
non-zero elements in column j of that same sub-matrix. Then, for every non-zero
a.k/i j in A.k/.k : n; k : n/, compute its Markowitz number as:

¼
.k/
i j D .r .k/i � 1/.c.k/j � 1/ (3.240)

and pick the .i; j/ entry with the smallest Markowitz number as the pivot. Note
that ¼.k/i j ½ 0 because it is only computed for non-zero elements, so that r .k/i ½ 1

SPARSE MATRIX TECHNIQUES 117

and c.k/j ½ 1. In case of a tie, one option, used in SPICE, is to pick the pivot with

the smaller c.k/j . Another option is to use the pivot of larger magnitude. As an
example, consider a matrix with the following structure:2

4ð
ð ð

ð ð

3
5 (3.241)

In the first iteration, with k D 1, the row and column counters, r .1/i and c.1/j , are
as shown:

2 1 2

1
2
2

2
4ð

ð ð
ð ð

3
5 (3.242)

from which the Markowitz numbers, computed only for the non-zero entries, are
as follows: 2

40
1 1

0 1

3
5 (3.243)

We break the tie between the two 0 entries, using the lower column counter,
so that element .3; 2/ is the chosen pivot. Using row and column exchange, this
element is moved to the .1; 1/ position, elimination is performed using that pivot,
and the matrix entries are updated. In the next iteration, the same approach is
repeated for the matrix A.2/.2 : 3; 2 : 3/.

The method is heuristic and suboptimal, but it works well in practice, which
can probably be explained a few different ways:

1. It approximately minimizes the number of multiplications to be performed
on this sub-matrix in this iteration, which is r .k/i .c.k/j � 1/.

2. It modifies the least number of coefficients in the remaining sub-matrix.
Recall, during GE/LU, when eliminating xk , a non-zero term is added to
a.k/i j in the remaining reduced sub-matrix if and only if there is an ð in
row i in column k and an ð in column j in row k. There are exactly
.r .k/i � 1/.c.k/j � 1/ such combinations.

3. It approximately minimizes the number of fill-ins in this iteration. This
is approximate because ¼.k/i j is the number of potential fill-ins, not the

number of true fill-ins, that would be created. Note that ¼.k/i j would be the
number of true fill-ins if the remaining sub-matrix was all zero, except for
the row and column of this pivot.

Because it is suboptimal, there are cases where the Markowitz scheme does not
give the best ordering, and the fill-ins are not as few as could have been. There

118 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

have been various attempts to improve on this scheme, notably the method by
Berry (1971), which aims to count true fill-ins, but the cost of the alternative
schemes has often been high and unjustifiable. Empirical studies have shown
that about 5% further fill-in reduction may be obtained with such schemes, but
at high computational cost.

Any practical application of the Markowitz scheme must avoid using very
small-valued pivots, i.e., it must factor in accuracy concerns. One way of doing
this is to use threshold pivoting, as follows. An element a.k/rs is deemed acceptable
as a pivot in A.k/.k : n; k : n/ only if:

ja.k/rs j ½ Žja.k/i j j; 8i; j 2 fk; : : : ; ng (3.244)

where 0 < Ž < 1 is a preset threshold parameter . A search for a pivot is made
from among only those non-zero elements of A.k/.k : n; k : n/ that are acceptable.
The best value of Ž is problem-specific and, in circuit simulation, a value of
Ž D 0:001 has been found useful. Thus, this approach “interleaves” considerations
of sparsity and accuracy. Notice that pivot choices made “for accuracy” impact
the fill-ins and the matrix zero/non-zero structure, which affects the decisions to
be made downstream “for sparsity.”

Cost of Markowitz The Markowitz numbers must be recomputed in every
successive iteration of GE/LU. This can be expensive, although only integer mul-
tiplications are required for computing the Markowitz numbers. Some strategies
have been proposed for simplifying the Markowitz scheme and thereby reducing
its cost.

In certain cases, the structure of the matrix remains fixed over a number
of successive instances of the problem. In circuit simulation, for example, this
occurs in successive iterations of Netwon’s method. For such cases, it is appealing
to generate an up-front once-only reordering of the matrix, based only on its
structure, and then to reuse this ordering for all future instances. The Markowitz
scheme itself is unchanged, except for one minor detail. Once a pivot has been
picked, we do not actually perform the variable elimination to find the fill-ins.
Instead, we use the fill-in criterion given on page 114 to predict the changes
to the matrix structure. This ignores the possibility of exact cancellation and,
to emphasize this fact, the predicted fill-ins in the structure are referred to as
structural non-zeros . More significantly, this scheme does not factor accuracy
and stability into pivot selection, so that one may end up using small pivots.
Thus, this scheme is of limited value in general, but may be an option when the
overhead of the regular Markowitz scheme is simply unacceptable.

Another possible variation is to not compute the Markowitz numbers at all,
but to make use of the (cheaper to find) r .k/i and c.k/j . This scheme, given in
Pillage et al. (1995) is as follows:

1. Find the row(s) with the smallest r .k/i value(s). In general, there may be a
tie, so that one finds a set of rows with the same smallest r .k/i value.

SPARSE MATRIX TECHNIQUES 119

2. In each row in this set, find the largest magnitude non-zero element, and
designate that as a candidate pivot.

3. Among all the candidate pivots so identified, choose the one with the
smallest c.k/j as the pivot.

This approach is interesting in that it tries to strike a balance between sparsity and
accuracy. While the row selection is done based on sparsity only, the column
selection takes accuracy into account. We will see below that there are other
recent approaches that work in similar ways, choosing rows for accuracy and
columns for sparsity, but which are perhaps faster and more rigorous. Although,
their suitability for circuit-type matrices is not yet clear.

3.5.6 Diagonal Pivoting

Diagonal pivoting is the case when pivots are chosen from among only the
diagonal elements. In some cases, this can be a good idea, as we will now see.
First, note that when using a diagonal pivot, one applies the same row and column
exchanges, so that the overall matrix reordering can be expressed as:

P APT (3.245)

which is also called a symmetric reordering of the matrix, because an initially
symmetric matrix remains symmetric under diagonal pivoting. There are two
cases where diagonal pivoting is guaranteed to give the best pivots, namely 1)
when the matrix is diagonally dominant and 2) when it is symmetric positive
definite (SPD), as follows.

If the matrix is diagonally dominant, then we are guaranteed that it has no
zero elements on the diagonal, because a (non-zero) diagonally dominant matrix
always has jaii j> 0. Furthermore, according to Duff et al. (1986), if A is diago-
nally dominant, then GE without any pivoting is guaranteed to be automatically
stable, because in this case it can be shown that:

max
i; j;k

ja.k/i j j � 2 max
i; j

jai j j (3.246)

so that, using the diagonal pivots, no significant element growth would occur.
On the other hand, if the matrix is SPD, then again we are guaranteed that

the diagonal has no zero elements, because an SPD matrix always has aii > 0.
We also have, according to Duff et al. (1986), that if A is SPD, then GE without
any pivoting is automatically stable, because it can be shown that:

max
i; j;k

ja.k/i j j � max
i; j

jai j j (3.247)

so that, again, no significant element growth would take place.
These results mean that one does not need to worry about small pivots, and

can use GE/LU, using the existing diagonal, without any stability monitoring . Of
course, it remains to choose the best ordering of the diagonal elements so as to

120 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

preserve sparsity. The problem is much simplified, however, because the number
of potential pivots is now much smaller, and because the ordering can be chosen
based only on sparsity considerations .

But, is diagonal pivoting applicable to circuits? Recall that, for linear resistive
networks, with the consistency requirements, with no controlled sources and
no voltage sources, the MNA matrix is symmetric positive definite (SPD) and
diagonally dominant, so that diagonal pivoting is applicable. In the general case,
where the MNA matrix is not necessarily SPD or diagonally dominant, diagonal
pivoting has been used in circuit simulation, because it is often the case that the
MNA matrix is nearly symmetrical .

In the SPD case in particular, some very efficient methods for pivot selection
have been developed, as we will see in detail in the following sections. The
availability of such efficient algorithms is quite appealing, and has led to the
following strategy for the case when a circuit matrix is not quite SPD. As we will
see below, the algorithms for the SPD case actually work with only a structural
description of the matrix. Therefore, when A is not quite SPD, we can consider
the symmetric structural pattern of (the symmetric) A C AT , which is very easy
to generate, and we can use it for diagonal pivoting, using the algorithms for
the SPD case, which ignore accuracy, and then use that same ordering for the
A matrix. When this is done for a matrix that is not truly SPD or diagonally
dominant it becomes prudent to monitor stability, and one may want to use
threshold pivoting.

However, practical experience with circuit simulation has shown that this
simplistic approach (based on A C AT) is not very good. It is often the case
that, for circuits with controlled sources, the largest element in a row or column
may not be on the diagonal. Typical SPICE implementations use an up-front,
one-time only, Markowitz-based ordering, with a “preference” for diagonal piv-
ots. This can create problems for MNA, where dealing with voltage sources
and inductors leads to zero diagonal elements in their equations. However, in
such cases, the MNA equations are typically pre-processed before solving them
to avoid this, by either row exchange or row additions, as described in Pil-
lage et al. (1995). In any case, as we will see below, there are other ways
of using the solution for the SPD special case to reorder general matrices,
although is not clear how well these methods are suited for circuit-type matri-
ces. We will describe these techniques after some detailed coverage of the SPD
case.

3.5.7 The Symmetric (SPD) Case

Many techniques have been developed for the special case of a symmetric positive
definite (SPD) matrix, using diagonal pivoting. As we saw above, a key advantage
in this case is that stability is guaranteed, so that one need not worry about small
or zero pivots. This simplifies pivoting for sparsity, because there is no interfer-
ence from the accuracy concerns, and very efficient techniques become possible.
In this case, it is known that the diagonal entry with the smallest Markowitz

SPARSE MATRIX TECHNIQUES 121

number has the smallest Markowitz number in the whole sub-matrix:

min
i
¼
.k/
i i D min

i j
¼
.k/
i j (3.248)

Due to symmetry, r .k/i D c.k/i , and ¼.k/i i D .r .k/i � 1/2 D .c.k/i � 1/2, so that mini-
mizing ¼.k/i i becomes equivalent to minimizing r .k/i (equivalently, c.k/i). Further-
more, r .k/i D c.k/i is the vertex degree for node i , in a specially constructed graph
associated with the matrix zero/non-zero structure. Thus, looking for a diagonal
element with the smallest Markowitz number becomes equivalent to finding the
minimum degree vertex in the graph. The specialization of the Markowitz method
to the SPD case, by Tinney and Walker (1967), is thus called the minimum degree
(MD) algorithm . We will examine this in detail.

Matrix Graphs For a general square n ð n matrix A, we can construct a
directed graph that reflects the zero/non-zero pattern of A, as follows. The set
of nodes is V � f1; 2; : : : ; ng, corresponding to the matrix rows (equivalently,
columns). The set of edges is the set of ordered pairs, E � f.i; j/ : ai j 6D 0; i 6D
jg. Notice that the graph has no self-loops and that it depends only on the
zero/non-zero structure of the matrix. Sparsity of the matrix may be studied by
examining the graph.

For a structurally symmetric matrix A, we redefine the graph, so that it
becomes undirected , by simply redefining the set of edges, E , so that we create
an undirected edge between nodes i and j if ai j 6D 0, with i 6D j , and, as before,
E is the set of all such edges in the graph. Here, too, the graph has no self-loops
and depends only on the zero/non-zero structure of the matrix. We are interested
primarily in the undirected (symmetric matrix) case.

In this case, it is clear that the vertex degree d.i/ is easily related to the
Markowitz numbers:

d.i/ D ri � 1 D ci � 1 and ¼i i D d.i/2 (3.249)

and that ¼kk D min
i
¼i i if and only if d.k/ D min

i
d.i/. Thus, again, finding a

pivot element with the smallest ¼i i can be done by finding a minimum degree
vertex in the graph.

Vertex Elimination There is also a corresponding graph transformation for the
GE/LU step of variable elimination, called vertex elimination, defined as follows:

1. Remove vertex i .
2. If any two of its neighbors are not already connected by an edge, then

introduce a new edge between them.

As a result, the neighbors of a vertex that has been eliminated form a clique (a
complete subgraph). Any edges that are created as a result of vertex elimination

122 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

correspond to fill-ins in the matrix resulting from elimination of that variable.
In fact, every such edge corresponds to two fill-ins in the matrix, at symmetric
locations.

Diagonal pivot selection and variable elimination, in the outer loop of GE/LU
on a SPD matrix, can be “simulated” on the graph by repeatedly finding a min-
imum degree vertex in the graph, and eliminating that vertex, until all vertices
have been eliminated. Using Markowitz numbers to implement such an algorithm
is the Tinney and Walker minimum degree (MD) algorithm . A tie-breaking strat-
egy is required, and there is empirical data that shows that the chosen strategy
has a significant impact on the results. However, there is no well-defined general
tie-breaking strategy.

Minimum Degree The minimum degree (MD) reordering strategy has been
very successful in practice, in spite of its simplicity. It is quite fast, given good
data structures and a good implementation. When the graph is a tree, it can be
shown that MD gives the optimal result, with zero fill-ins. But, in general, it
remains sub-optimal and heuristic. Despite its apparent simplicity, however, MD
hides much complexity below the surface, arising from two complications:

Storage requirements: A straightforward implementation would have us
explicitly create new edges corresponding to fill-ins, but this requires
excessive storage. One way around this, using so-called quotient graphs ,
leads to an algorithm that performs edge/fill-in creation implicitly .

Redundant computations: Two equations that have identical non-zero pat-
terns correspond to graph nodes that are neighbors and also have the same
neighbors. Such nodes are called indistinguishable. Significant savings in
computation are achieved by grouping indistinguishable nodes together and
performing so-called mass elimination on them.

With such optimizations, the complexity of MD becomes O.jV j2 E/ but, for
sparse matrices, it is much faster than this worst-case bound. The earliest effi-
cient implementation of MD was given in the multiple minimum degree (MMD)
algorithm, by George and Liu (1989). More recently, the state-of-the-art is a
more efficient approach, called the average minimum degree (AMD) algorithm,
by Amestoy et al. (1996). AMD uses an approximate way to compute the vertex
degrees, so that the theoretical complexity becomes O.jV jjE j/. On large prob-
lems, it is reported that AMD can be 10–100 times faster than MMD, with fewer
fill-ins, but this is not always guaranteed.

3.5.8 Extension to the Non-SPD Case

As a result of an MD algorithm, we get an up-front symmetric reordering of the
whole SPD matrix, i.e., we have the permutation matrix P to form:

P APT (3.250)

SPARSE MATRIX TECHNIQUES 123

Being independent of any accuracy concerns, this is then factorized as is, using
a Cholesky decomposition, because of the SPD property, giving:

P APT D L LT (3.251)

If the structure of the matrix is fixed but its values change, while remaining SPD,
we can refactor the matrix using the same ordering P . Ideally, one would like to
have similar capabilities for the general non-SPD case; this would certainly be
useful for circuit simulation. There is a way to do this, due to George and Ng
(1985), based on the following result.

Theorem 3.13. Let B be a nonsingular, possibly non-symmetric, n ð n matrix.
It is known that B can be efficiently permuted so that it has no zero diagonal
elements, and so we readily assume that bii 6D 0;8i . Because BT B is SPD, let Lc

be its Cholesky factor:
BT B D Lc LT

c (3.252)

Now, let P B be a row permutation of B resulting from the use of standard Gaus-
sian elimination with partial pivoting (GEPP) that gives:

P B D LU (3.253)

Then, it can be shown that the non-zero pattern of Lc C LT
c includes the non-zero

pattern of L C U, so that if element .i; j/ in Lc C LT
c is 0, then element .i; j/ in

L C U is also 0. In other words, L and U are at least as sparse as Lc.

This key result can be used to formulate an algorithm for reordering and
factorization of a general non-SPD matrix A, as follows.

Let A be a nonsingular, possibly non-symmetric, n ð n matrix. Use an MD
algorithm to efficiently find a symmetric reordering QT for the SPD matrix AT A,
aimed at a sparse Cholesky decomposition:

QT �AT A
Ð

Q D Lc LT
c (3.254)

but there is no need to actually perform this factorization. Let N be a permutation
matrix so that B D N AQ has a zero-free diagonal by row permutation, so that
Lc is also the Cholesky factor of BT B:

BT B D �
QT AT N T Ð .N AQ/ D QT �AT A

Ð
Q D Lc LT

c (3.255)

Now, let M B be a row permutation of B resulting from the use of standard
Gaussian elimination with partial pivoting (GEPP) that gives:

M B D LU (3.256)

or:
P AQ D LU (3.257)

124 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

where P � M N . Then, using the above result, the non-zero pattern of Lc C LT
c

includes the non-zero pattern of L C U , so that L and U are sparse. The resulting
strategy in practice becomes as follows:

1. Use an MD algorithm to find a sparsity-preserving symmetric reordering
QT for AT A, so that the Cholesky factor Lc is sparse.

2. Apply Q as a column permutation on A, then apply standard Gaussian
elimination with partial pivoting (GEPP) on AQ, leading to P AQ D LU .
Note, GEPP will avoid zero pivots, so that N is implicit in P D M N . The
use of GEPP provides an accuracy-preserving row-permutation.

3. Write the final factorization of A as P AQ D LU .

Irrespective of what row permutation M is used by GEPP (for accuracy), we are
guaranteed that L and U are sparse, at least as sparse as Lc.

COLMMD and COLAMD Thus, the above approach combines a choice of
columns for sparsity with a choice of rows for accuracy. The column permuta-
tion guarantees a certain level of sparsity, irrespective of what row permutation
may be applied for accuracy. These choices are not interleaved, as was the case
earlier, because the column permutation is chosen up-front, irrespective of any
row choices. This effectively decouples the sparsity and accuracy concerns, so
that accuracy decisions do not impact sparsity decisions. Circuit simulation, with
its fixed matrix structure, should benefit greatly from this type of approach. The
“catch,” historically, has been that the cost of explicitly forming AT A is high,
because AT A can be dense even when A is sparse.

This disadvantage was lifted in the algorithm COLMMD, by Gilbert et al.
(1992). The structure of A was used to implicitly deduce the structure of AT A
and provide the required column permutation. This was further improved in the
algorithm COLAMD, by Davis et al. (2004). Both COLMMD and COLAMD
are available for MATLAB.

Because AT A is typically denser than A, it is not clear if Lc is actually as
sparse as one would like L and U to be. Indeed, one would expect Lc to be about
as sparse as AT A, because QT is sparsity-preserving , but we would like L and
U to be as sparse as A. Thus, the Lc bound on fill-ins may be too pessimistic.
Nevertheless, the speed of MD makes this approach worth considering. It is not
known if any recent circuit simulation systems have made use of the COLMMD
and COLAMD techniques. There is some evidence in the literature that the Lc

bound on fill-ins may indeed be pessimistic for circuit-type matrices.

KLU Finally, there are variations on the above themes. For example, the recent
KLU package, by Davis and Stanley (2004), first puts the matrix into a block-
triangular form (BTF), then performs factorization on the blocks. KLU uses
AMD for each block, because they are so nearly symmetrical, and COLAMD
turns out to be pessimistic for these cases. The KLU package was tailored for
circuit-type matrices, with the observation that these matrices have certain key
properties. They are reported to have a zero-free or nearly zero-free diagonal, to

PROBLEMS 125

be roughly structurally symmetric but with unsymmetric values, to be permutable
to block triangular form (BTF), to be highly sparse but that the blocks in the
BTF can be dense, and it is reported that they can be ordered so that the LU
factors remain sparse. KLU is claimed to achieve 1000 times speed-up over
the original Markowitz-based scheme (Kundert’s Sparse 1.3) used in early SPICE
implementations. It is not clear how it compares to more recent circuit simulation
implementations. Additional information is available on the KLU package at the
web site: www.cise.ufl.edu/research/sparse/klu.

Notes For a reference on the theory and application of matrices, see Horn and
Johnson (1985). General material on direct methods for solving linear systems is
available in the following sources. In Chua and Lin (1975), see sections 4.3–4.6.
In Ruehli (1986), see chapter 6. In Vlach and Singhal (1994), see sections 2.4–2.8
and 20.1. In Pillage et al. (1995), see sections 3.4–3.5 and chapter 7. In
Duff et al. (1986), see chapters 4 and 7, and appendix A. In Golub and Van
Loan (1989), see sections 2.1–2.4, 2.7, and 3.1–3.5. In Higham (2002), see
sections 1.1–1.6, 2.1–2.4, 7.1, and chapters 12 and 15. And in Davis (2006),
see chapter 7. For more on indirect methods, see Ruehli (1987) and Saad (2003).

Sparse matrix solvers continue to be a lively research topic. For more focused
study of this area, see the following. For the original Markowitz scheme, see
Markowitz (1957). For a review of MD algorithms, see George and Liu (1989).
For the COLMMD algorithm, see Gilbert et al. (1992). For the AMD algorithm,
see Amestoy et al. (1996). For the COLAMD algorithm, see Davis et al. (2004).
Finally, for the KLU package, see Davis and Stanley (2004) and the news item
in Sipics (2007), as well as the web site given above.

Problems

3.1. Show that the computational cost of the basic Gaussian elimination (GE)
algorithm, counting only multiplications and divisions, is n3=3 C n2 � n=3.

3.2. Revise Crout’s algorithm to give the P A D L DU decomposition.

3.3. Give a detailed listing of the row variant of Crout’s algorithm, and find
an expression for its computational complexity.

3.4. Derive a Gauss’s algorithm for LU factorization that provides uii D 1.

3.5. If A D CCT , where C 2 R
nðn is nonsingular, show that A is SPD.

3.6. Derive the Cholesky algorithm.

3.7. Derive a Gauss-Cholesky algorithm for SPD matrices.

3.8. If A is a nonsingular n ð n matrix, and x is an n-vector, prove that:

min
x 6D0

kAxk
kxk D 1

kA�1k
where matrix norms are induced norms.

126 SOLUTION OF LINEAR ALGEBRAIC CIRCUIT EQUATIONS

3.9. Prove that the condition number of a matrix is at least 1.

3.10. Prove that, for any induced norm, kABk � kAkkBk, where A and B are
matrices.

3.11. Prove that, if k Ð k is a vector norm on R
n , then there exists a � > 0, � 2 R,

such that, 8x 2 R
n , kxk � � kxk1.

3.12. Prove that, for any A 2 R
nðn and any two permutation matrices P; Q 2

R
nðn , we have:

�p.P AQ/ D �p.A/

so that the condition number is pivoting-invariant.

3.13. Give an algorithm that accepts a matrix description in compressed-column
form and produces its transpose, also in compressed-column form.

3.14. Write an algorithm for converting a matrix from a triplet form data structure
to a compressed-column form.

3.15. Write the Gauss-Jacobi algorithm in a form that uses the compressed-
column form for a sparse matrix.

3.16. (Computer Project) Based on the code developed previously in problem
2.10, write a C or C++ program that solves any linear resistive circuit
with no controlled sources using MNA. Your linear solver should use
Gauss’s method for LU -factorization, using partial (row) pivoting,
and using an in-place computation so that L and U simply over-write
the system matrix. Partial pivoting (using row-exchanges) should be
performed to find the best pivot for accuracy, and not only to avoid
a zero pivot. You can ignore issues of sparsity. Your implementation
should be general, in the sense that it should accept any linear circuit
description consisting of any combination of linear resistors and
independent voltage and current sources. Use your code to solve the
test circuit given in problem 2.10, where the 10� and 50� resistors
are required to be in group 2. The correct solution is V .4/ D 1:9888 V,
V .8/ D 1 V, V .3/ D 2:00879 V, V .2/ D 1:80879 V, V .6/ D 1:98814 V,
V .5/ D 2 V, V .1/ D 1:88527 V, V .7/ D 3:98814 V, I .R8/ D 198:88 mA,
I .R3/ D 3:82 mA, I .V 3/ D 0 A, I .V 2/ D �199:88 mA, and I .V 1/ D
�198:88 mA.

CHAPTER 4

Solution of Nonlinear Algebraic Circuit
Equations

In the presence of nonlinear elements, the network equations can be formulated as
a system of nonlinear equations. Solving such systems is not trivial and, in fact, is
much harder than solving systems of linear equations. As we will see, the practical
approach for solving nonlinear equations is to repeatedly linearize them and solve
the resulting linear systems. In general, nonlinear systems of equations can have
a unique solution, no solution, multiple solutions, or an infinity of solutions.
Practical methods for solving nonlinear systems can only hope to provide the
approximate value of “a solution,” if at all; they never provide closed-form
solutions, only numerical and approximate ones. We will study the formulation of
nonlinear network equations, the general solution methods, and their application
to circuit simulation.

4.1 NONLINEAR NETWORK EQUATIONS

The need to solve a system of nonlinear equations arises in several ways as
part of circuit simulation. For one thing, it comes up under DC Analysis, for
finding either the quiescent steady state (t D 1) solution under DC inputs, the
initial (t D 0) solution required to initiate Transient Analysis, or for finding
the DC transfer characteristic, by means of a DC-sweep. As well, the need to
solve nonlinear equations arises throughout Transient Analysis, as the circuit
response at every time-point is solved given the circuit response at the previous
time point(s). Considering the formulation of the nonlinear network equations, it
should be clear that KCL and KVL remain as linear relationships. Nonlinearity
is due only to the nonlinear element equations . In the following, we will study
nonlinear elements, nonlinear equation formulation, and the preparation required
for DC Analysis.

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

127

128 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

4.1.1 Nonlinear Elements

Nonlinear elements come in three varieties:

1. Nonlinear resistors, both voltage-controlled, with an element equation i D
f .v/, and current-controlled, with v D f .i/, where i and v are the current
in the element and the voltage across it.

2. Nonlinear capacitors, C.v/, and nonlinear inductors, L.i/, where v is the
voltage across the capacitor and i the current in the inductor.

3. Nonlinear controlled sources, with the element equation i D f .x/ or v D
f .x/ where, in general, x is the vector of variables in the MNA system.

In connection with nonlinear controlled sources, and as a notational conven-
tion, we will always assume the following. Given an element equation in the
form y D f .x/, where x is the MNA variable vector, and suppose that y is itself
an MNA variable, which it can sometimes be. Then, we will implicitly assume
that f .Ð/ does not depend on y via x . In other words, f .x/ does not depend on
the component of the vector x that corresponds to y. This is required in order to
ensure that the y value in the element equation can always be explicitly evaluated,
given x , by a single evaluation of the function f .Ð/.

We will postpone the coverage of nonlinear capacitors and inductors until
later, when we cover the simulation of dynamic circuits. Thus, for now, we will
study nonlinear equation formulation excluding dynamic elements; the equations
will be only algebraic, not differential. Hence the title of this chapter.

It is often the case that simple nonlinear controlled sources can be replaced
by a sub-circuit consisting of a nonlinear resistor and a couple of linear con-
trolled sources. For example, a nonlinear VCVS implementing ve D f .vx / can
be replaced by the sub-circuit shown in Fig. 4.1. In such cases, it is possible to
formulate the network equations in such a way that the only nonlinear elements
are nonlinear resistors. However, more complex controlled sources cannot be
so simplified. On the other hand, it is always possible to represent a nonlinear
resistor by a nonlinear controlled source. Thus, in all cases, one can formulate
the network equations in such a way that the only nonlinear elements are non-
linear controlled sources. Using controlled sources is a more versatile approach
in practice, and is often the approach used in commercial simulators.

Therefore, in general, and this is the approach we will adopt, it suffices to
consider that we have only two types of nonlinear resistive elements:

ie

ve = kiy = f(vx)vx

iy

vy = vx iy = f(vy)/k

− −

+

−

+

−+ −+
+

Figure 4.1: An equivalent circuit for a nonlinear VCVS, ve D f .vx /, using linear con-
trolled sources.

NONLINEAR NETWORK EQUATIONS 129

1. Those whose current can be written as an explicit function of other vari-
ables, i.e., i D f .x/, where x is the vector of MNA variables. We will refer
to these elements as simply controlled current sources (CCS).

2. Those whose voltage can be written as an explicit function of other vari-
ables, i.e., v D f .x/, where x is the vector of MNA variables. We will
refer to these elements as simply controlled voltage sources (CVS).

We are now ready to consider equation formulation.

4.1.2 Nonlinear MNA Formulation

We will revisit the MNA equations and see how they are modified by the intro-
duction of nonlinear resistive elements. Recall that, in formulating the MNA
equations, we had divided the elements into two groups, and correspondingly
divided the element currents .i1; i2/ and branch voltages .u1; u2/. As well, KCL
was partitioned:

A1i1 C A2i2 D 0 (4.1)

and KVL was broken up:

u1 D AT
1 v and u2 D AT

2 v (4.2)

where v is the vector of nodal voltages.
In the linear case, recall that elements in group 1 were such that their currents

can be expressed as explicit functions of other variables. Thus, they could only
be (linear) resistors, independent current sources, VCCS, or CCCS. To this list,
we now add nonlinear controlled current sources i D f .v; i2/. As a result, the
branch equations for group 1 elements can be expressed in the following matrix
form:

i1 C Z12i2 D Y11u1 C Y12u2 C Þ.v; i2/C s1 (4.3)

where Þ.v; i2/ is a vector function of the MNA variables, in which Þ j .v; i2/ is
either 0 or is the nonlinear function corresponding to one nonlinear CCS. Writing
KCL and plugging i1 from the above, along with KVL, leads to the top part of
the MNA equations, as:

�
A1Y11 AT

1 C A1Y12 AT
2

Ð
v C .A2 � A1 Z12/ i2 C A1Þ.v; i2/ D �A1s1 (4.4)

As for nonlinear voltage sources, they belong in group 2, whose branch equations
are thereby augmented to become in this form:

þ.v; i2/C Z22i2 D Y21u1 C Y22u2 C s2 (4.5)

where þ.v; i2/ is a vector function of the MNA variables, in which þ j .v; i2/

is either 0 or is the nonlinear function corresponding to one nonlinear CVS.

130 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

In general, in order to also allow the inclusion of nonlinear controlled current
sources in group 2, this can be written in the more general form:

þ.v; i2/C Z22i2 D Y21u1 C Y22u2 C � .v; i2/C s2 (4.6)

where � .v; i2/ is a vector function of the MNA variables, in which � j .v; i2/ is
either 0 or is the nonlinear function corresponding to one nonlinear CCS. Note
that, if an entry of þ.v; i2/ is not identically 0, then the corresponding entry of
� .v; i2/ is identically zero, and vice-versa. Thus, the bottom part of the MNA
equations becomes:

� �
Y21 AT

1 C Y22 AT
2

Ð
v C Z22i2 C þ.v; i2/� � .v; i2/ D s2 (4.7)

and the final nonlinear MNA system (excluding dynamic elements, for now)
becomes:��

A1Y11 AT
1 C A1Y12 AT

2

Ð
.A2 � A1 Z12/

� �
Y21 AT

1 C Y22 AT
2

Ð
Z22

½ �
v

i2

½
C
�

A1Þ.v; i2/

þ.v; i2/� � .v; i2/

½

D
��A1s1

s2

½
(4.8)

Thus, the MNA equations have been modified by the addition of nonlinear
terms to the equations. For the top part, the KCL at each node is augmented by
adding, with appropriate signs, all the nonlinear Þ.v; i2/’s for nonlinear group
1 elements incident on that node. For the bottom part, each nonlinear group
2 element contributes a new equation with a nonlinear term, as in þ.v; i2/ or
� .v; i2/. Similar development can be done for the sparse tableau approach, but
we will focus on MNA.

We now introduce some further notation, for clarity of presentation. Let

x D
�
v

i2

½
denote the combined solution vector. Let G denote the system matrix

that multiplies x . Let s D
��A1s1

s2

½
denote the right-hand side (RHS) vector.

Therefore, the MNA system can be written more compactly as:

Gx C
�

A1Þ.v; i2/

þ.v; i2/� � .v; i2/

½
D s (4.9)

Then, because A1 is an incidence matrix, notice that each entry of the nonlinear

vector function

�
A1Þ.v; i2/

þ.v; i2/� � .v; i2/

½
is either identically 0, a single nonlinear

function (with coefficient š1) corresponding to a single CCS or CVS element in
group 2, or a linear combination (with coefficients š1) of one or more nonlinear
functions corresponding to CCS elements in group 1. Then, to simplify further, let
g.x/ be a vector whose every entry gi .x/ is the nonlinear function corresponding

NONLINEAR NETWORK EQUATIONS 131

to a single nonlinear element. Note, the number of entries in g.x/ is equal to the
total number of nonlinear elements in the network. Then, the MNA system can
be more compactly expressed as:

Gx C Hg.x/ D s (4.10)

where H is a matrix whose entries are either 0 or š1. Finally, let:

f .x/ D Gx C Hg.x/� s (4.11)

so that:
f .x/ D 0 (4.12)

is the nonlinear system of equations to be solved.

Example We will formulate the MNA equations for the circuit in Fig. 4.2, in
which the nonlinear elements are as follows:

• For diode D1: iD D Is
�
eu D=�VT � 1

Ð
, with u D D v1 � v2.

• For resistor R2: u R D i3
2 .i2 � 1/, with u R D v3 � 0 D v3.

As for element classification, group 1 consists of R1, R3, R4, and D1, while
group 2 consists of R2 and Vs . To write the top part of the MNA system, we
write the KCL at every node:

At node 1: Is
�
e.v1�v2/=�VT � 1

ÐC v1 � v3

1�
C is D 0

At node 2: � Is
�
e.v1�v2/=�VT � 1

ÐC v2

1�
C v2 � v3

1�
D 0

At node 3:
v3 � v1

1�
C v3 � v2

1�
C i2 D 0

To write the bottom part of the MNA system, we write the group 2 element
equations:

Vs R1

uD

iD
D1

R2

R3

R4

is
i2

2V
−

−
+

+
1

1Ω

1Ω

1Ω

2
3

Figure 4.2: A nonlinear circuit used to illustrate equation formulation.

132 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

• For R2: v3 � i3
2 .i2 � 1/ D 0.

• For Vs : v1 � 2V D 0.

This leads to the nonlinear MNA equations:

2
6664

1 0 �1 0 1
0 2 �1 0 0

�1 �1 2 1 0
0 0 1 0 0
1 0 0 0 0

3
7775
2
6664
v1

v2

v3

i2

is

3
7775C

2
66664

Is
�
e.v1�v2/=�VT � 1

Ð
�Is

�
e.v1�v2/=�VT � 1

Ð
0

�i3
2 .i2 � 1/

0

3
77775 D

2
6664

0
0
0
0
2

3
7775 (4.13)

which can be written as:

2
6664

1 0 �1 0 0
0 2 �1 0 0

�1 �1 2 1 0
0 0 1 0 0
1 0 0 0 0

3
7775
2
6664
v1

v2

v3

i2

is

3
7775C

2
6664

1 0
�1 0

0 0
0 �1
0 0

3
7775
�

Is
�
e.v1�v2/=�VT � 1

Ð
i3
2 .i2 � 1/

½
D

2
6664

0
0
0
0
2

3
7775

which is in the standard form:

Gx C Hg.x/ D s (4.14)

with:

G D

2
6664

1 0 �1 0 0
0 2 �1 0 0

�1 �1 2 1 0
0 0 1 0 0
1 0 0 0 0

3
7775 ; H D

2
6664

1 0
�1 0

0 0
0 �1
0 0

3
7775 ; s D

2
6664

0
0
0
0
2

3
7775

and:

x D

2
6664
v1

v2

v3

i2

is

3
7775 ; g.x/ D

�
Is
�
e.v1�v2/=�VT � 1

Ð
i3
2.i2 � 1/

½

As was the case with linear circuits, the above matrix equation can be set up by
inspection of the circuit, as the circuit description file is parsed.

SOLUTION TECHNIQUES 133

4.1.3 Preparing for a DC Analysis

In general, one starts with a network that includes dynamic elements. When
intending to run any type of DC Analysis, and before being able to set up the
MNA equations seen above, the dynamic elements must be removed, somehow.
Thus, one must “prepare” the circuit for running DC Analysis.

To see how this should be done, note that, as we will see later on, the general
dynamic nonlinear MNA system is of this form:

Gx.t/ C Hg.x.t// C D.x/x0.t/ D s.t/ (4.15)

where, D.x/ is a matrix of element stamps of, possibly nonlinear, capacitors
and inductors. At a DC steady state, with x 0.t/ D 0, this reduces to the familiar
nonlinear system:

Gx C Hg.x/ D s (4.16)

In order to arrive at a circuit that corresponds to this DC system, it would seem
that simply disabling all the dynamic elements should be sufficient. To disable a
capacitor, we replace it by an open circuit because, at DC, dv=dt D 0, so that
i D C dv

dt D 0, an open circuit. To disable an inductor we replace it by a short
circuit because, at DC, di=dt D 0, so that v D L di

dt D 0, a short circuit. Note that
a short circuit can be represented in MNA by a 0 V voltage source.

However, this can be problematic because, as a result, some nodes can be left
isolated, which may create a singular or ill-conditioned Jacobian (the meaning
and significance of this will become clear in the following sections). To over-
come this, it is common to attach a large resistor, e.g., 100 ð 106�, from every
node to ground, or across certain pn-junctions. With all the dynamic elements
disabled and such resistors added, the network is typically solvable with little or
no numerical problems. Such resistance simulates the presence of leakage current
in circuits, thereby injecting some often needed realism into the circuit model.
Thus, it is not to be “sneered at” as a remedy. Numerically, this helps ensure
that no nodes are isolated, which helps provide a Jacobian that is nonsingular
and often more diagonally dominant.

4.2 SOLUTION TECHNIQUES

Solving nonlinear equations is a classical problem with a very rich history, dating
back to the ancient Babylonians who used an iterative method to find square roots.
More recently, the best known and most influential approach is called Newton’s
method and has its roots in the work of Isaac Newton in the late 1600s. Another
British mathematician, Joseph Raphson, later published a simplified description
of the method and, as a result, the method is also sometimes referred to as the
Newton-Raphson method . We will refer to it by its more common name, as simply
Newton’s method . This method is the basis for a large class of modern techniques
that are at the heart of all practical nonlinear solvers, including quasi-Newton

134 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

methods, modified-Newton methods, inexact-Newton methods, Newton-Krylov
methods, etc. We will see that Newton’s method can be derived as a special case
of a certain fixed point method . We will return to Newton’s method, and fixed
point, after covering some preliminary introductory material.

The material in this section is based on a number of sources, including the
texts by Kelley (1995), Burden and Faires (2005), Bartle (1976), Dennis and
Schnabel (1996), Chua and Lin (1975), and Press et al. (2007).

4.2.1 Iterative Methods and Convergence

As mentioned earlier, practical methods for solving a general f .x/ D 0 can, at
best, provide an approximate value of “a” solution. They cannot, a priori, answer
questions relating to existence or uniqueness of the solutions. An approximate
solution is either found within the allotted time, or not. Practical approaches
typically consist of an iterative method that generates a sequence

ý
x .k/

�1
kD0 of

candidate solutions . The iterative method starts with an initial candidate solution
x .0/ and stops when the sequence has converged to a solution, which we denote
as xŁ. We earlier defined the notion of convergence of vector sequences, in
connection with indirect (iterative) methods for solving linear systems, and we
saw that a vector sequence

ý
x .k/

�1
kD0 converges to a vector xŁ if and only if

lim
k!1

x .k/i D xŁ
i , for all i . We also studied the notion of convergence rate, but we

now discuss it in some more detail.

Rate of Convergence Of crucial importance, in practice, is the question of
how fast a sequence converges; we seek iterative methods that produce sequences
that converge quickly. Thus, we are interested in the rate of convergence.

Suppose the sequence
ý

x .k/
�1

kD0 converges to xŁ, with x .k/ 6D xŁ for all k.
We say that this sequence converges q-linearly to xŁ if there exists a number
c 2 .0; 1/ such that:

lim
k!1

kx .kC1/ � xŁk
kx .k/ � xŁk D c (4.17)

and the number c is called the asymptotic error constant . An alternate, equivalent,
definition of q-linear convergence is to say that there exists a ¦ 2 .0; 1/ such that:

kx .kC1/ � xŁk � ¦kx .k/ � xŁk (4.18)

for all k sufficiently large, and ¦ is called the q-factor . If (4.17) holds with c D 0,
then we say the sequence converges q-superlinearly . If the sequence converges,
but if the convergence is neither q-linear nor q-superlinear, then it is said to
converge q-sublinearly .

When the convergence is superlinear, then we can further distinguish between
different rates of convergence using the notion of convergence order , as follows.

SOLUTION TECHNIQUES 135

We say that the sequence converges q-superlinearly with order Þ, if there exist
Þ > 1 and c> 0 such that:

lim
k!1

kx .kC1/ � xŁk
kx .k/ � xŁkÞ D c (4.19)

or, equivalently, if there exists a ¦ > 0 such that:

kx .kC1/ � xŁk � ¦kx .k/ � xŁkÞ (4.20)

for all k sufficiently large. Typically, a sequence with a higher convergence order
converges faster. Convergence with order 2 is called q-quadratic convergence,
and convergence with order 3 is called q-cubic convergence. One can describe a
q-linearly convergent sequence as having order 1.

Some remarks are noteworthy at this point:

• The asymptotic constants, c or ¦ , do affect the speed of convergence, but
are not as important as the order.

• A q-superlinearly convergent sequence is also q-linearly convergent with
q-factor ¦ , for any ¦ 2 .0; 1/.

• When comparing iterative methods, one needs to study not only the order
of convergence but also the cost of each iteration.

• With a q-quadratic method, the number of correct significant digits is approx-
imately doubled with every iteration.

The “q” prefix stands for “quotient,” because of the ratio used to define con-
vergence in (4.17) and (4.19). This is to differentiate this type of convergence
from the following more general notion of “r-convergence”, in which “r” stands
for “root”: If žk ! 0 is q-<type> convergent and if kx .k/ � xŁk � žk; 8k, then
fx .k/g1

kD0 is said to be r-<type> convergent. Here, q-<type> can denote any of
the above, q-linear, q-superlinear, q-quadratic, etc. This “r” notion of convergence
is more useful for certain algorithms. Finally, the above convergence notions
can be further extended, as follows. If, we replace x .kC1/ by x .kC j/ throughout,
then the convergence is said to be j-step q-linear , j-step q-superlinear , j-step
q-quadratic, etc.

Examples This sequence converges q-sublinearly to 0:

²
1

k C 1

¦1

kD0
D 1;

1

2
;

1

3
;

1

4
;

1

5
; Ð Ð Ð (4.21)

This sequence converges q-linearly to 0, with asymptotic constant 1/2:

²
1

2k

¦1

kD0
D 1;

1

2
;

1

4
;

1

8
;

1

16
; Ð Ð Ð (4.22)

136 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

Table 4.1: A comparison of linear and quadratic
convergence rates.

k 1=2k 1=22k

1 0:500 ð 10�0 0:250 ð 10�0

2 0:250 ð 10�0 0:625 ð 10�1

3 0:125 ð 10�0 0:391 ð 10�2

4 0:625 ð 10�1 0:153 ð 10�4

5 0:312 ð 10�1 0:233 ð 10�9

6 0:156 ð 10�1 0:542 ð 10�19

7 0:781 ð 10�2 0:294 ð 10�38

This sequence converges q-quadratically to 0:

²
1

22k

¦1

kD0
D 1

2
;

1

4
;

1

16
;

1

256
;

1

65536
; Ð Ð Ð (4.23)

It is instructive to compare q-linear convergence, as in the case of (4.22), with
q-quadratic convergence, as in the case of (4.23), and the results are shown in
Table 4.1. From this, it is clear that quadratic convergence is indeed much faster
than linear convergence!

4.2.2 Introduction to Newton’s Method

We are now ready to start looking at solution methods. Recall, our problem is
that, with x 2 R

n and f : R
n ! R

n , we are interested to find a solution of:

f .x/ D 0 (4.24)

The most widely used solution method for this is Newton’s method, whose
description can be very simple and brief, as shown in Fig. 4.3, where J .x/
is the Jacobian matrix of f .Ð/, evaluated at x , i.e.:

J .x/i j � @ fi

@x j
.x/ (4.25)

The convergence theory for Newton’s method is local , i.e., it depends on
the initial candidate solution x .0/ being close enough to the true solution xŁ.
Specifically, three conditions are required, which are sufficient for convergence.
First, the function f .x/ must have a solution xŁ, and f .x/ must be continuously
differentiable near xŁ. Second, the Jacobian J .x/ must be Lipschitz continuous
near xŁ, i.e., there must exist a � > 0 such that, for all x; y sufficiently near xŁ,
we have:

kJ .x/� J .y/k � � kx � yk (4.26)

SOLUTION TECHNIQUES 137

Input: function f .Ð/ and initial guess x
Output: a value of x for which f .x/ ³ 0

while (f .x/ 6³ 0) do
Solve J .x/Ž D � f .x/
x D x C Ž

Figure 4.3: Newton’s method.

and � is called the Lipschitz constant . Third, the Jacobian, evaluated at the true
solution, J .xŁ/, must be nonsingular. Given these three conditions, then, if x .0/

is close enough to xŁ, it can be shown that J .x .k// is nonsingular, 8k, and the
algorithm converges q-quadratically to xŁ.

We could stop here! However, in order to get a full appreciation of this method,
and its links to other methods, we will examine the various ways in which it may
be derived, leading up to it in small steps. For example, it is possible to derive
Newton’s method from either a Taylor series viewpoint or as a special case of a
fixed point method.

Plan of Work In the remainder of this introductory section, we will review
some concepts from calculus, leading up to a study of the question of Lipschitz
continuity of the Jacobian. In the next section, we then consider solutions for the
one-dimensional case, so as to convey the geometric intuition behind Newton’s
method. Several root-finding methods in one-dimension will be noted, and New-
ton’s method singled out. As well, we will illuminate the links between Newton’s
method and the fixed point method, and present some convergence results. We
will then discuss the multidimensional case, illustrating two ways in which the
method can be derived, and give its convergence theory. Finally, we will give a
brief discussion of quasi-Newton methods.

Lipschitz Continuity A function f , defined from D ² R
p to R

q , is continuous
in D if and only if, for any ž > 0 and u 2 D, there is a Ž.ž; u/> 0 such that if
x 2 D and kx � uk � Ž, then k f .x/� f .u/k � ž. Notice that Ž depends on both
ž and u; a stronger continuity condition can be defined for the case when Ž does
not depend on u, as follows. A function f , defined on D ² Rp to Rq , is said
to be uniformly continuous in D if, for any ž > 0, there is a Ž.ž/> 0 such that
if x; u 2 D and kx � uk � Ž, then k f .x/� f .u/k � ž. Clearly, if a function is
uniformly continuous then it is continuous, but the converse is not true.

A set D ² R
p is said to be open if, for any x 2 D, there exists r > 0, such

that S � fy 2 R
p : kx � yk < rg is a subset of D. A set D ² R

p is said to be
closed if its complement in R

p is open. A set D ² R
p is said to be bounded if

there exist real numbers ai ; bi , for i D 1; 2; : : : ; p, such that D ² fx 2 R
p : ai �

xi � bi ; 8i D 1; 2; : : : ; pg. One can show that, if f is continuous on a closed and
bounded K ² Rp, then f is uniformly continuous on K .

A stronger condition still is the Lipschitz condition , as follows. If f has domain
D ² R

p and range in R
q , then we say that f is Lipschitz continuous in D if

138 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

there exists a constant L > 0 such that:

k f .x/� f .y/k � Lkx � yk (4.27)

for all x; y in D, and L is called the Lipschitz constant . If a function is Lipschitz
continuous then it is uniformly continuous, but the converse is not true. Any
linear function f : Rp ! Rq is Lipschitz continuous. The Lipschitz condition is
not sufficient for differentiability. For example, the function:

f .x/ D
(

x sin.1=x/; x 6D 0I
0; x D 0:

(4.28)

is Lipschitz continuous but not differentiable at x D 0. Thus, loosely speaking,
Lipschitz continuity constitutes a little more than continuity, but a little less than
differentiability.

Sufficient Conditions What are the sufficient conditions in order for a func-
tion to be Lipschitz? This question is obviously relevant to the use of Newton’s
method. We now consider some answers. In the one-dimensional case, let f
be continuous on [a; b] ² R and its derivative f 0.x/ exist in .a; b/. If f 0.x/ is
bounded on .a; b/, i.e., if 9M 2 R such that j f 0.x/j � M , for all a < x < b, then
f is Lipschitz continuous on [a; b].

The multidimensional case requires some further preliminary definitions. A
function f : D ² R

n ! R is said to be continuously differentiable at x 2 D,
if .@ f .x/=@xi / exist and are continuous at x , 8i D 1; 2; : : : ; n. It is said to be
continuously differentiable in an open set K ² D, if it is continuously differen-
tiable at every x 2 K . A function f : D ² R

n ! R
m is said to be continuously

differentiable at x 2 D, if each of its component functions fi is continuously
differentiable at x . It is said to be continuously differentiable in an open set
K ² D, if it is continuously differentiable at every x 2 K . In this case, its Jaco-
bian matrix J .x/ exists and is continuous in D. Recall, a subset D of R

n is said
to be convex if, whenever x; y 2 D, and given a real number t 2 .0; 1/, then
z D .1 � t/x C t y 2 D.

With this, we can now give the sufficient condition in the multidimensional
case. Let D ² Rp be open and convex , and let f : D ! Rq be continuously
differentiable in D. Let the Jacobian of f have a bounded norm in D, i.e.,
kJ .x/k � M; 8x 2 D, for some M > 0, and based on some induced matrix norm.
Then f is Lipschitz continuous in D, with the Lipschitz constant M .

The Jacobian Is Lipschitz To understand the conditions under which New-
ton’s method is convergent, it is important to study when the Jacobian is Lipschitz
continuous. The Jacobian is a matrix-valued or simply a “matrix function,” not
a vector-valued, function, so that some further definitions are needed. Using an

SOLUTION TECHNIQUES 139

induced matrix norm, we say that a matrix function J .x/, defined from D ² R
n

to R
mðn , is Lipschitz continuous in D if 9M > 0 such that:

8x; y 2 D; kJ .x/� J .y/k � Mkx � yk (4.29)

We say a function J : D ² Rn ! Rmðn is continuously differentiable at x 2 D,
if each of its components Ji j .x/ is continuously differentiable at x . It is said
to be continuously differentiable in an open set K ² D, if it is continuously
differentiable at every x 2 K . Note, if f .x/ has a Jacobian J .x/, then saying
that J .x/ is continuously differentiable means that all its @2 fk=@xi@x j entries
exist and are continuous.

Using the preceding results, one can prove the following:

Theorem 4.1. Let D ² R
n be open and convex, and let f : D ! R

m have a
Jacobian J .x/ which is continuously differentiable in D. Suppose also that all the
2nd derivatives, @2 fk=@xi@x j are bounded in D, i.e., 9M > 0, such that 8i; j; k,
and 8x 2 D, j@2 fk.x/=@xi@x j j � M. Then J .x/ is Lipschitz continuous in D,
with constant � D n3 M, so that:

8x; y 2 D; kJ .x/� J .y/k � � kx � yk (4.30)

Thus, a sufficient condition for Lipschitz continuity of the Jacobian is that
all the 2nd derivatives of f must be continuous and bounded. With this, we are
now ready to return to the study of Newton’s method, and we start with the
one-dimensional case.

4.2.3 The One-Dimensional Case

In the one-dimensional case, f : R ! R, and we are interested to solve the
following scalar equation, which is basically the classical root finding problem:

f .x/ D 0 (4.31)

The apparent similarity between this problem and the multidimensional case
is misleading—it is much harder to solve the multidimensional case! The key
difference is that, in one dimension, it is possible to bracket or “trap” a root
between two values of x and then to “hunt it down.” A root is said to be bracketed
in .a; b/ if f .a/ and f .b/ have opposite signs. In multiple dimensions, you can
never be sure that the root is there at all, until you have found it.

There are many methods for finding a root of a nonlinear function, often
differentiated by whether the derivatives are available/required or not. Given a
continuous function, and supposing that the derivatives are not available, then,
as described in Press et al. (2007), the following methods are available:

• The bisection method reduces by 1/2 the size of the bracketing interval in
every iteration; it is guaranteed to find a root, but is not very fast.

140 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

• The secant method and the false position (or regula falsi) method can be
faster than bisection, both requiring smooth functions near the root. Regula
falsi maintains a bracketed root, while the secant method does not, although
secant is generally faster.

• Brent’s method (c. 1973) is well known and superior to the above; it com-
bines bisection and interpolation to find a bracketed root.

• Ridder’s method (c. 1979) is a close competitor, is easier to code, and also
is guaranteed to converge; it is a powerful variant on regula falsi.

Of the above methods, secant is the only one that does not require, and does
not maintain, a bracket around the root. However, it is quite appealing because
it extends to multiple dimensions.

The above techniques may be described as derivative-free methods. When
derivatives are available, the best known method is Newton’s method, mainly
due to its fast q-quadratic convergence. However, even if derivatives are avail-
able, they can often be expensive to compute and, in practice, one is often
interested in cheaper alternatives. The secant method may be viewed as a means
to approximate the derivative, and there is one other method that tries to do the
same, called the Newton-chord method . Like secant, the Newton-chord method
does not require a bracketed root and, like secant, it can be extended to multiple
dimensions.

Thus, we will describe only three one-dimensional methods: Newton’s method,
the secant method, and the Newton-chord method. We will then see that both
Newton’s method and the Newton-chord method are special cases of the general
fixed point method.

Newton’s Method Since we are working in a single dimension, we will sim-
plify the notation and denote successive candidate solutions using subscripts:
x0; x1; x2; etc. Let xk be the current candidate solution, and suppose that xk is
sufficiently close to the true solution xŁ. In a small neighborhood around xk that
includes xŁ, we can approximate the function f .x/ by a local linearized model .
Newton’s method uses the tangent to the curve y D f .x/, at xk , as the local lin-
earized model around xk . The secant and chord methods use different linearized
models. Strictly speaking, these models are not linear, but affine. To construct a
local linearized model, consider a Taylor series expansion of f .x/ around xk :

f .x/ D f .xk/C .x � xk/ f 0.xk/C .x � xk/
2

2
f 00.¾/ (4.32)

for some ¾ between x and xk , i.e., either ¾ 2 .x; xk/ or ¾ 2 .xk; x/. In a small
neighborhood around xk , we expect the third term above to be very small, due
to the square, and we form our local linearized model as:

Mk.x/ D f .xk/C .x � xk/ f 0.xk/ (4.33)

SOLUTION TECHNIQUES 141

To the extent that this affine model is a good approximation to f .x/ in the
neighborhood, we may solve Mk.x/ D 0 instead of solving f .x/ D 0. Setting
Mk.x/ D 0 leads to:

x D xk � f .xk/

f 0.xk/
(4.34)

assuming that f 0.xk/ 6D 0. We do not expect that this value of x is equal to the
true solution xŁ, because the affine model is only an approximation. However,
we would hope that this is a better candidate solution than the one we had
previously, and this leads to Newton’s method as the iteration:

xkC1 D xk � f .xk/

f 0.xk/
(4.35)

By repeatedly applying the above as a correction to the candidate solution, we
hope to iteratively move closer to the true solution xŁ. Graphically, the progress
of the algorithm is depicted in Fig. 4.4.

Example It is instructive to study how Newton’s method applies in simple
cases, such as in the example given in Dennis and Schnabel (1996), in which:

f .x/ D x2 � a (4.36)

where a> 0 and the solution is xŁ D p
a, starting with some x0 6D 0. The Newton

iteration in this case becomes:

xkC1 D xk � x2
k � a

2xk
D x2

k C a

2xk
(4.37)

D
�
xk � p

a
Ð2

2xk
C p

a (4.38)

x0x1x2

Figure 4.4: A graphical illustration of Newton’s method in one dimension.

142 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

so that:

xkC1 � p
a D

�
xk � p

a
Ð2

2xk
(4.39)

and we can write an error update equation as:

þþxkC1 � p
a
þþ D

þþxk � p
a
þþ2

j2xk j (4.40)

which, with Ek � jxk � xŁj, gives:

EkC1 D E2
k

j2xk j (4.41)

It is evident from this that the error does not necessarily decrease in every
iteration—it depends on the value of Ek=j2xk j—so that convergence is not guar-
anteed. However, if we are close enough to xŁ D p

a, in this case if jxk � p
aj <

j2xk j, then EkC1 < Ek , and the algorithm will converge to the true solution.

Convergence This is the convergence result for the one-dimensional New-
ton’s method:

Theorem 4.2. Let f : R ! R be continuously differentiable (i.e., f 0 exists and
both f and f 0 are continuous) in an open interval D that contains a solution
xŁ. Let f 0 be Lipschitz continuous in D, and let there exist a ² > 0 such that
j f 0.x/j ½ ² for every x 2 D (in particular, note that f 0.xŁ/ 6D 0). Then, if x0 is
sufficiently close to xŁ, it follows that f 0.xk/ 6D 0; 8k; and the sequence fxkg1

kD0
exists, and it converges q-quadratically to xŁ.

It is interesting to note that, if f 0.xŁ/ D 0, then it can be shown that Newton’s
method converges, but only q-linearly. The requirement, in the theorem, that f 0
is Lipschitz continuous can be achieved by ensuring that f 00.x/ exists and is
bounded in D, i.e., 9M > 0 : j f 00.x/j � M; 8x 2 D. Another form of the theorem
can be given, in which the Lipschitz condition on f 0 is dropped, and replaced
by the requirement that f 000.x/ exist in D. These conditions, that either f 00.x/ is
bounded or that f 000.x/ exists, become desirable requirements for device modeling
for circuit simulation. These conditions are not necessary ; they are part of the
sufficient conditions for quadratic convergence.

Although the above results are reassuring, in practice we can never be sure
that we are starting close enough to a root of f .x/. This is particularly problem-
atic during DC Analysis, where one typically does not have a very reliable initial
solution. However, it is less of a problem during Transient Analysis because,
with the use of a small enough time step, we have a good initial solution, namely
the solution at the previous time point. In general, far from a root, one can get

SOLUTION TECHNIQUES 143

−4 −2 0

−10

−5

0

5

10

15

20

−3.7563

−1 1 2 4

Figure 4.5: Oscillation in Newton’s method.

grossly inaccurate, meaningless corrections, and the sequence of candidate solu-
tions can diverge! Thus, Newton’s method is useful for its fast local convergence,
but must be combined with other strategies to give a reliable global method.

One example of a problem that can arise in connection with Newton’s method
is shown in Fig. 4.5. Here, we are solving the equation f .x/ D 0, where f .x/ D
x3 C 2x2 � 5x C 6, and where the exact solution is xŁ ³ �3:7563. If we start
with an initial solution of x0 D �1, the tangent to the curve at that point would
lead us to the next solution x1 D 1, and the computations are simple enough
(mostly integer, x1 D �1 C .12=6/) that no roundoff error would be expected.
In the next step, the tangent to the curve at the point x1 D 1 would return us
to the previous point, x2 D �1, again with no roundoff (using x2 D 1 � .4=2/).
The result is an endless oscillation between the two points �1 and 1. Real-
istically, depending on exactly how the division is implemented, one may get
some amount of roundoff error, but it may take a very long time to get out
of the oscillation, if at all. Indeed, a C implementation of Newton’s method
applied to this problem, using double precision arithmetic, was still oscillating
between š1:000000 after 106 iterations! On the other hand, if we happen to
reach the point xk ³ 0:9257, for some k value, then it is clear from Fig. 4.6
that we would have another problem. The tangent at that point would lead us
to xkC1 ³ �2:1196, which happens to be the point at which the curve has a
maximum and where the slope of the tangent is zero, and the next point is either
at infinity or is a very large value. Either way, we would diverge, and we may
or may not be able to return from that excursion to the neighborhood of the true
solution.

144 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

−4 −2 0

−10

−5

0

5

10

15

20

0.9257

−2.1196
−3.7563

2 4

Figure 4.6: Divergence in Newton’s method.

The Secant Method As mentioned earlier, one drawback of Newton’s method
is the need to compute the derivatives f 0.xk/. To avoid this, notice that:

f 0.xk/ D lim
x!xk

f .x/� f .xk/

x � xk
(4.42)

so that, if xk�1 is close to xk , we can write:

f 0.xk/ ³ f .xk�1/� f .xk/

xk�1 � xk
(4.43)

Using this as an approximation to f 0.xk/ in Newton’s method, we get:

xkC1 D xk � xk � xk�1

f .xk/� f .xk�1/
f .xk/ (4.44)

This is called the secant method , and is illustrated in Fig. 4.7. Under fairly
general conditions, the secant method is q-superlinearly convergent, and its order
of convergence is equal to the so-called golden ratio:

� D
�

1 C
p

5
�
=2 D 1:6180339887 : : : (4.45)

provided that we start close enough to the true solution xŁ. It can also be shown
to be 2-step q-quadratic, so that EkC1 � c E2

k�1, where, as before, Ek � jxk � xŁj.
Secant has the dangerous property that, when jxk � xk�1j is very small, the finite

SOLUTION TECHNIQUES 145

x0x1x2x3

Figure 4.7: A graphical illustration of the secant method.

difference approximation to f 0.xk/ suffers severe roundoff errors. However, its
extension to multiple dimensions leads to some very powerful quasi-Newton
methods, such as Broyden’s method.

The Newton-Chord Method Another way to approximate the derivative is
to simply compute f 0.x0/ and use that as the approximation to f 0.xk/, for all
subsequent k values. With this, Newton’s method becomes:

xkC1 D xk � f .xk/

f 0.x0/
(4.46)

This is called the Newton-chord method (or, simply, the chord method) and is
shown in Fig. 4.8. Under fairly general conditions, and if we start near enough
to xŁ, this method is q-linearly convergent.

Fixed Point We now consider the very important fixed point method. If g :
R ! R, then a point xŁ 2 R is said to be a fixed point for g.x/ if:

g.xŁ/ D xŁ (4.47)

x0x1x2

Figure 4.8: A graphical illustration of the Newton-chord method.

146 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

There is an intimate relationship between root finding for nonlinear equations and
finding a fixed point of a function. Indeed, it is easy to see that xŁ is a solution
of f .x/ D 0 if and only if it is a fixed point of:

g.x/ D x � � f .x/ (4.48)

where � 6D 0 is some real number. Even though our main interest is in root
finding, the fixed point form of the problem is easier to analyze. In fact, the
fixed point problem often provides insight for developing powerful root-finding
techniques. As to the existence and uniqueness of fixed points, we have the
following result.

Theorem 4.3. If g : R ! R is a continuous function on its domain [a; b] and if
its range is a subset of [a; b], then g has at least one fixed point in [a; b]. If, in
addition, g0.x/ exists on .a; b/ and there exists k < 1 such that jg0.x/j � k, for
all x 2 .a; b/, then the fixed point in [a; b] is unique.

Thus, if the graph of the function lies in a square a � x � b, a � y � b, and
if its slope is bounded and less than 1, then the function has a unique fixed point
where its graph meets the diagonal line y D x , as shown in Fig. 4.9.

Fixed Point Method In order to find a fixed point of a function, we can
consider the iterative method shown in Fig. 4.10. This is called a fixed point
method ; it operates as illustrated in Fig. 4.11 and it generates the sequence fxkg
according to:

xkC1 D g.xk/ (4.49)

In general, the fixed point method may converge to a unique solution, may
diverge, or may converge to a non-unique solution. The method is guaranteed to
converge in certain cases, as given in the following theorem.

Theorem 4.4. Let g : R ! R have domain [a; b] and range in [a; b], and suppose
that g0 exists on .a; b/ and a constant k < 1 exists such that:

jg0.x/j � k; 8x 2 .a; b/ (4.50)

a b

b

a

Figure 4.9: Existence of a fixed point [after Burden and Faires (2005)].

SOLUTION TECHNIQUES 147

Input: function g.Ð/ and initial guess x
Output: a value of x for which g.x/ ³ x

while (g.x/ 6³ x) do
x D g.x/

Figure 4.10: The fixed point algorithm.

x0

g(x0)

x1

g(x1)

x2

y = x

Figure 4.11: Illustration of progress of the fixed point method [after Chua and Lin
(1975)].

Then, for any x0 2 [a; b], the sequence generated by xkC1 D g.xk/ converges to
the unique fixed point xŁ in [a; b]. Furthermore, if g0.xŁ/ 6D 0, then the sequence
is q-linearly convergent.

Quadratic Fixed-Point Method Under certain conditions, fixed point
becomes q-quadratically convergent, as follows.

Theorem 4.5. Let g : R ! R have a fixed point xŁ and suppose that g0 exists and
is Lipschitz continuous on an open interval containing xŁ, with g0.xŁ/ D 0. Then, if
x0 is close enough to xŁ, the fixed point method is q-quadratically convergent to xŁ.

Quadratic convergence being so attractive, we should try to construct a q-
quadratic fixed point problem g.x/ for a given root finding problem f .x/.
Suppose we choose g.x/ D x � �.x/ f .x/ and, inspired by the above theorem,
let us require that g0.xŁ/ D 0, where f .xŁ/ D 0, then:

0 D g0.xŁ/ D 1 � �0.xŁ/ f .xŁ/� �.xŁ/ f 0.xŁ/ D 1 � �.xŁ/ f 0.xŁ/ (4.51)

so that we need to ensure that �.xŁ/ D 1= f 0.xŁ/, assuming f 0.xŁ/ 6D 0. One way
to do this is to choose �.x/ D 1= f 0.x/, for all x , so that the resulting fixed point
method would be:

xkC1 D g.xk/ D xk � f .xk/

f 0.xk/
(4.52)

which, of course, is simply Newton’s method. Notice that, if we choose �.x/ D
1= f 0.x0/ D constant , then we would get the Newton-chord method which, as
we know, is q-linearly convergent.

148 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

In spite of the fact that Newton’s method is faster than a general fixed point
method, it is not always the winner. Consider the function f .x/ D x C 2x1=3 � 4,
whose solution is ³ 1:6410, and suppose we start with x0 D 27. You would find
that a fixed point method on g.x/ D x � f .x/ converges in about 20 iterations,
while Newton’s method on f .x/ converges to 0. If you start Newton’s method
with x0 D 0:001, it would converge to the correct solution in about 7 iterations.

4.2.4 The Multidimensional Case

In multiple dimensions, we can again derive Newton’s method starting from
either a Taylor series based argument, or as a special case of fixed point. In a
small neighborhood around x .k/ that includes xŁ, we can approximate the function
f .x/ by a local linearized model . Newton’s method uses the tangent hyperplane
to the surface y D f .x/, at x.k/, as the local linearized model around x .k/. Secant
and Chord use different linearized models. Strictly speaking, these models are
not linear, but affine.

To construct a local linearized model, consider a Taylor series expansion of
f .x/ around xk , then, for each i D 1; 2; : : : ; n we get:

fi .x/ D fi .x
.k//C @ fi

@x1

þþþþ
x.k/

�
x1 � x .k/1

�

C @ fi

@x2

þþþþ
x.k/

�
x2 � x .k/2

�
C Ð Ð Ð C @ fi

@xn

þþþþ
x.k/

�
xn � x .k/n

Ð
C higher-order terms involving

�
xi � x .k/i

�m

where m ½ 2. In a small neighborhood around x .k/, we would expect the higher-
order terms to be small and, therefore, we form our local linearized model as:

Mk.x/ D f .x.k//C

2
666666666664

@ f1

@x1

@ f1

@x2
Ð Ð Ð @ f1

@xn

@ f2

@x1

@ f2

@x2
Ð Ð Ð @ f2

@xn

:::
:::

:::
@ fn

@x1

@ fn

@x2
Ð Ð Ð @ fn

@xn

3
777777777775
.x � x .k// (4.53)

or:
Mk.x/ D J .x.k//.x � x.k//C f .x.k// (4.54)

To the extent that this affine model is a good approximation to f .x/ in the
neighborhood, we may solve Mk.x/ D 0 instead of solving f .x/ D 0. Setting
Mk.x/ D 0 leads to:

x D x .k/ � J .x .k//�1 f .x .k// (4.55)

SOLUTION TECHNIQUES 149

We do not expect that this value of x is equal to the true solution xŁ, because
the affine model is of course approximate. However, we would hope that this is
a better candidate solution than the one we had previously, and this leads to:

x .kC1/ D x .k/ � J .x .k//�1 f .x .k// (4.56)

which is the familiar form of Newton’s method. By repeatedly applying the above
“correction” to the candidate solution, we hope to iteratively move closer to the
true solution xŁ.

The main convergence result for Newton’s method, is as follows:

Theorem 4.6. Let f : Rn ! Rn be continuously differentiable in an open convex
set D ² R

n that contains a solution xŁ. Let J .x/ be Lipschitz continuous in D,
and let J .xŁ/ be nonsingular. Then, if x0 is sufficiently close to xŁ, it follows
that J .x .k//�1 exists 8k; so the sequence fx .k/g1

kD0 exists, and it converges q-
quadratically to xŁ.

Note that, if f is itself an affine function, then Newton’s method solves the
problem exactly in one iteration. If a component fi of f is affine, then fi .x .k// D
0 for all k ½ 1, irrespective of the initial candidate solution x .0/. We will next
study the links between Newton’s method and the fixed point problem in multiple
dimensions.

Fixed Point in Multiple Dimensions Let g : R
n ! R

n , then a point xŁ 2 R
n

is said to be a fixed point of g.x/ if:

g.xŁ/ D xŁ (4.57)

As we saw in the scalar case, we will examine the relationship between root
finding and fixed point in multiple dimensions. Notice that xŁ is a solution of
f .x/ D 0 if and only if it is a fixed point of:

g.x/ D x �8 f .x/ (4.58)

where 8 is some nonsingular matrix.

Theorem 4.7. Let D D fx 2 R
njxi 2 [ai ; bi];8i D 1; 2; : : : ; ng, for some collec-

tion of constants ai and bi , and let g : R
n ! R

n be continuous on D. If g.x/ 2 D
whenever x 2 D, then g has a fixed point in D. Furthermore, suppose, for all
i; j 2 f1; 2; : : : ; ng, that @gi=@x j exists and is continuous in D, and that a constant
L < 1 exists with: þþþþ@gi .x/

@x j

þþþþ � L

n
; whenever x 2 D (4.59)

150 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

Then, the sequence generated by the fixed point method x .kC1/ D g.x .k//, starting
from any x .0/ 2 D, converges to the unique fixed point xŁ 2 D, and:

x .k/ � xŁ

1 � Lk

1 � L

x .1/ � x .0/

1 (4.60)

This result is a special case of the contraction mapping theorem , given below,
and shows that in general the fixed point method has q-linear convergence.

Contraction If a function g : R
n ! R

n is Lipschitz continuous on a domain
D ² R

n , with a Lipschitz constant L < 1, then g is called a contraction . Among
other things, this means that, starting from any x .0/ 2 D, the step sizes taken by
a fixed point method decrease by at least L at each iteration:

x .kC1/ � x .k/

 D

g.x .k//� g.x .k�1//

 � L

x .k/ � x .k�1/

 (4.61)

so that:

x .kC1/ � x .k/

 <

x .k/ � x .k�1/

 (4.62)

Theorem 4.8. (Contraction Mapping Theorem) Let g : D ! D, where D is a
closed subset of R

n, and let g be a contraction on D with the constant L < 1,
then the contraction g has a unique fixed point xŁ 2 D and, for any x .0/ 2 D,
the sequence fx .k/g generated by x .kC1/ D g.x .k// remains in D and converges
q-linearly to xŁ, with constant L, and:

x .k/ � xŁ

 � Lk

1 � L

x .1/ � x .0/

 (4.63)

Quadratic Fixed-Point Method It remains to explore what conditions lead
to a fixed point method which is q-quadratically convergent, and how that relates
to Newton’s method.

Theorem 4.9. Let g : R
n ! R

n have a fixed point at xŁ 2 R
n. Suppose there

exists Ž > 0 such that @2gi=.@x j@xk/ exists and is continuous on the open set D D
fx 2 R

njkx � xŁk < Žg; 8i; j; k 2 f1; 2; : : : ; ng. Suppose there exists M > 0 such
that, 8x 2 D, j@2gi .x/=.@x j@xk/j � M, for all i; j; k 2 f1; 2; : : : ; ng. Suppose
@gi .xŁ/=@xk D 0, for all i; k 2 f1; 2; : : : ; ng. Then, if x .0/ is chosen sufficiently
close to xŁ, the sequence generated by the fixed point method x .kC1/ D g.x .k//
converges q-quadratically to xŁ.

Thus, if the second derivatives are all continuous and bounded around xŁ and
the first derivatives all vanish at xŁ, then fixed point is q-quadratic. Guided by
this, we can design a q-quadratic fixed point problem to solve the root finding
problem f .x/ D 0, as follows. Suppose we choose g.x/ D x �8.x/ f .x/, where
8.xŁ/ is a nonsingular matrix, so that xŁ is a zero of f .x/ if and only if it is a
fixed point of g.x/. Inspired by the above theorem, if we set @gi .xŁ/=@xk D 0,

SOLUTION TECHNIQUES 151

for all i; k 2 f1; 2; : : : ; ng, then it is easy to show that 8.xŁ/J .xŁ/ D I and,
therefore:

8.xŁ/ D J .xŁ/�1 (4.64)

Thus, a suitable choice for 8.x/ would be 8.x/ D J .x/�1, for all x , so that the
fixed point method becomes:

x .kC1/ D g.x .k// D x .k/ � J .x .k//�1 f .x .k// (4.65)

which, of course, is simply Newton’s method.

Termination When does one terminate the Newton iterations? It is tempting
to terminate the method when the corrections Ž � kx .kC1/ � x .k/k become small
enough, perhaps smaller than some built-in threshold. But how small is small
enough? There is no perfect answer to this question; the answer depends on
the particular problem instance. It is good practice to check that the relative
magnitude Ž=kxnomk is small, where xnom is some nominal value of x that, ideally,
should be representative of “typical” x values in the particular problem instance.
Typically, one makes an a priori choice of a threshold value of relative tolerance,
−rel > 0, say −rel D 0:1%, and terminates the algorithm when .Ž=kxnomk/ � −rel .
It remains to consider what the value of xnom should be and how it should be
derived from the problem instance.

One approach, and this is often used, is to set xnom D x .0/, so that Newton’s
method is terminated when x .0/ has been “improved” to a high enough degree.
Thus, the criterion becomes to check if .Ž=kx .0/k/ � −rel . But, if kx .0/k is very
small, then it may be overkill to aim for Ž � −relkx .0/k, so this is often augmented
with an absolute tolerance threshold, −abs > 0, and the approach becomes to
check if:

kx .kC1/ � x .k/k � −relkx .0/k C −abs (4.66)

Furthermore, one should watch out for the following. It is known that,
if J .x .k// becomes nearly singular, then the corrections Ž � kx .kC1/ � x .k/k
approach zero. In this case if one is only monitoring step sizes, then one may
falsely conclude that convergence has been achieved. In one dimension, this is
the case when the slope of the curve becomes very large so that the tangent is
nearly vertical. Thus, one should also check the residual , k f .x .k//� 0k, such
as by using the additional termination condition:

k f .x .k//k � −relk f .x .0//k C −abs (4.67)

Remarks The above results, relating to the convergence of Newton’s method,
have some implications for device modeling. Recall that one of the sufficient
conditions for convergence of Newton’s method is that the Jacobian must be
Lipschitz continuous. In turn, as we saw earlier, a sufficient condition for this is
that the 2nd partial derivatives @2 fk=@xi@x j must all be continuous and bounded.

152 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

This provides a desirable smoothness property for nonlinear device models in
circuit simulation: the 2nd derivatives of the device equations must be continu-
ous and bounded. This can be a significant complication for device modeling,
especially at the boundaries between different device operating modes. Never-
theless, this is highly desirable in order to improve the chances of convergence
of Newton’s method.

Finally, it is useful to reiterate that Newton’s method works quite well on
nearly linear problems, because it finds the zero of a nonsingular affine function
in a single iteration.

4.2.5 Quasi-Newton Methods

There are two problem areas with Newton’s method that motivate the study of
alternative so-called quasi-Newton methods , namely:

1. Locality: Newton’s method works well if x .0/ is close enough to xŁ and
if J .xŁ/ is nonsingular. As a result, it is a good local method , and should
be augmented with a global strategy to ensure convergence in the general
case.

2. The Jacobian: The Jacobian may not be analytically available, or may
be expensive to compute. The Jacobian may also become singular or ill-
conditioned, so that finding the correction cannot be done reliably.

To address these difficulties, quasi-Newton methods typically include a global
strategy , i.e., some means to improve the convergence prospects when far away
from the solution, as well as some scheme to overcome the expense of Jaco-
bian evaluations . This remains an important research topic, although much has
advanced in the field in the last 50 years.

Global Strategies The vector s.k/ � x .kC1/ � x .k/ is referred to as the step
taken in every iteration, and the full Newton step is denoted:

s.k/N D �J .x .k//�1 f .x .k// (4.68)

A good component of any global strategy is some means to take steps, in the
Newton direction, that are shorter than the full Newton step. This is done when
far away from the solution, because otherwise one can over-shoot the solution
region altogether, or run into overflow problems. When we get closer to the
true solution, the full Newton steps are definitely taken, so as to benefit from
the quadratic convergence rate. One may refer to these schemes as stepping
strategies .

In the general literature, outside any specific problem domain, a commonly
used, often successful, stepping strategy is to take steps that ensure that the norm
k f .x/k2 is reduced with every step (iteration). Specifically, a scalar objective

SOLUTION TECHNIQUES 153

function .x/ is monitored to ensure that it is reduced as a result of every step,
where:

 .x/ D 1

2
k f .x/k2

2 D 1

2
f .x/T f .x/ (4.69)

where the 1=2 is there for algebraic convenience. Clearly .x/ ½ 0, 8x , and, at
the solution xŁ, we have .xŁ/ D 0, so that:

f .x/ D 0 () .x/ D 0 (4.70)

If J .x/ is nonsingular, then one can show that the Newton direction is a descent
direction for .x/ but, nevertheless, too large a step size can cause .x/ to
increase. To take shorter steps, there are rules, such as those by Armijo, Goldstein,
and Wolfe, that guarantee a decrease of .x/ in every step. For additional details,
the reader should consult Dennis and Schnabel (1996).

For a given problem domain, such as circuit simulation in our case, better
domain-specific techniques for taking shorter steps become possible. Later on,
we will see examples of such strategies, which are called damping in the circuit
simulation area.

Efficient Jacobian Replacements In order to avoid the expensive Jaco-
bian evaluations in practice, one can consider several modifications of Newton’s
method, such as the following:

• Use a finite-difference approximation to approximate the Jacobian. If
the finite-difference step size is properly chosen, this method can be
q-quadratically convergent. But this can be expensive in terms of function
evaluations and may not be worth the effort.

• Use a Newton-Chord method. Use a fixed matrix, possibly J .x .0//, as a fixed
approximation for the Jacobian at all future steps. This method is q-linearly
convergent.

• Use Broyden’s method. This is a generalization/extension of the secant
method to the multidimensional case. The data, from all the steps taken
so far, is used to construct an approximation to the Jacobian at the present
point. This method is q-superlinearly convergent and is also 2n-step
q-quadratic.

Traditionally, these methods are not used in circuit simulation, because the Jaco-
bian can be constructed by inspection, and is not as hard to build as it can be in
other disciplines. The true Jacobian, used in Newton’s method, offers the benefit
of quadratic convergence. Nevertheless, due to the cost of having to refactor the
Jacobian in every iteration, modern “fast SPICE” simulators are using some alter-
native approaches. This is an advanced topic and will not be discussed further
here.

154 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

4.3 APPLICATION TO CIRCUIT SIMULATION

Armed with problem-specific knowledge, one can often improve on the generic
and general formulation of Newton’s and quasi-Newton methods. In applying
Netwon’s and quasi-Newton methods to circuit simulation, we will study three
areas of improvement:

1. The Jacobian can be constructed by inspection, by linearizing each nonlin-
ear element around the present operating point.

2. Linearized macromodels can be developed for complex devices with fixed
model topology, which helps reduce the size of the MNA system.

3. Stepping strategies, to implement a quasi-Newton approach, can be devel-
oped based on knowledge of specific semiconductor device operation.

Such techniques are implemented in all modern circuit simulators.

4.3.1 Linearization and Companion Models

The winning approach to solving nonlinear circuits is to not solve their nonlinear
equations directly but, instead, to linearize the circuits, build their corresponding
linear equations, solve them, and repeat until convergence. We will see that this
approach is the direct result of applying Newton’s method to the nonlinear MNA
equations of the circuit.

Affine Approximation We start with some useful definitions and terminology
in the one-dimensional case. If g : R ! R is differentiable at x0 2 R, then we
define an approximation, which we call the affine approximation of g at x0, as
the affine function:

ĝx0.x/ � g0.x0/ .x � x0/C g.x0/ (4.71)

where we use the familiar notation:

g0.x0/ � dg

dx
.x0/ D dg

dx

þþþþ
x0

(4.72)

Notice that ĝx0.x/ is the unique function that satisfies the two conditions:

ĝx0.x0/ D g.x0/ and ĝ0
x0
.x/ D g0.x0/; 8x (4.73)

Geometrically, y D ĝx0.x/ is the equation of the tangent line to the graph of the
function y D g.x/ at x0. In a neighborhood around x0, ĝx0.x/ is a useful linear
approximation of the function g.x/; it is a linearization of g.x/. The affine
approximation is motivated by a Taylor series expansion, in the same way as we
saw earlier in connection with Newton’s method.

APPLICATION TO CIRCUIT SIMULATION 155

vd

id

−+

Figure 4.12: A diode.

Companion Model Let g.x/ be the nonlinear function corresponding to a
certain nonlinear element e, which can be either a CCS or a CVS, biased at
some x0. We define the companion model of e, at x0, as an equivalent (linear)
circuit whose terminal response (either current or voltage) is given by ĝx0.x/.
Effectively, the affine approximation is the element equation of the companion
model, viewed as a composite element. Note that the companion model is not
unique; several circuit realizations can have the same terminal characteristics
ĝx0.x/.

For example, consider a diode (effectively, a nonlinear resistor, captured as a
CCS), as shown in Fig. 4.12, that has the element equation:

id D g.vd/ D Isat
ð
evd=�VT � 1

Ł
(4.74)

Assuming the diode is biased at v.k/d and i .k/d , define:

G.k/
eq � g0

�
v
.k/
d

�
D did

dvd

þþþþ
v
.k/
d

D Isat

�VT
ev

.k/
d =�VT (4.75)

so that the affine approximation at v.k/d is:

i D ĝ
v
.k/
d
.v/ D G.k/

eq

�
v � v

.k/
d

�
C i .k/d

D G.k/
eq v C I .k/eq

where:

I .k/eq � i .k/d � G.k/
eq v

.k/
d D Isat

h
ev

.k/
d =�VT � 1

i
� Isat

�VT
v
.k/
d ev

.k/
d =�VT (4.76)

Then, the companion model of the diode is as shown in Fig. 4.13.

Affine Approximation in Multiple Dimensions It will also be useful to
define the notion of an affine approximation in multiple dimensions, as follows.
If g : R

n ! R
m has partial derivatives @gi=@x j at x .k/ 2 R

n;8i; j , we define the
affine approximation of g at x .k/, for x 2 Rn , as the affine function:

ĝx.k/ .x/ � Jg.x
.k//

�
x � x .k/

ÐC g.x .k// (4.77)

156 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

vd

id

v

i

Affine
Approximation

Companion
Model

Slope = Geq
(k)

Ieq
(k)

Ieq
(k)

id
(k)

vd
(k)

1

−

+

(k)Geq

Figure 4.13: Companion model for adiode.

where Jg.x/ is the m ð n Jacobian matrix of g:

Jg.x/ D

2
66666666664

@g1

@x1

@g1

@x2
Ð Ð Ð @g1

@xn

@g2

@x1

@g2

@x2
Ð Ð Ð @g2

@xn
:::

:::
:::

@gm

@x1

@gm

@x2
Ð Ð Ð @gm

@xn

3
77777777775

(4.78)

Notice that ĝx.k/ .x/ is the unique function that satisfies the two conditions:

ĝx.k/ .x
.k// D g.x .k// and Jĝx.k/

.x/ D Jg.x
.k//; 8x (4.79)

If the partial derivatives are continuous at x .k/, then y D ĝx.k/ .x/ is the equation
of the tangent hyperplane to the surface y D g.x/ at x .k/. In this case, ĝx.k/ .Ð/ is
called the (multidimensional) derivative of g, also called the Fréchet derivative
of g, or the differential of g, at x .k/. In a neighborhood around x .k/, ĝx.k/ .x/ is
a useful linear approximation of the function g.x/; it is a linearization of g.x/.
The affine approximation is motivated by a Taylor series expansion, in the same
way as we saw earlier in connection with Newton’s method.

4.3.2 Some Test Cases

We will consider some instructive test cases that will lead us towards a general
solution approach.

Example Consider the diode circuit shown in Fig. 4.14, where the diode ele-
ment equation is:

id D g.vd/ D Isat
ð
evd=�VT � 1

Ł
(4.80)

Combining KCL, KVL, and the diode element equation leads to:

vd

RS
C g.vd/ D IS (4.81)

APPLICATION TO CIRCUIT SIMULATION 157

IS vdRS

id

−

+

Figure 4.14: A simple diode circuit.

If we let:
f .vd/ D vd

RS
C g.vd/� IS (4.82)

this leads to a 1-dimensional nonlinear equation to be solved:

f .vd/ D 0 (4.83)

In order to find the value of vd that solves the system, we use Newton’s
method and apply the iteration:

v
.kC1/
d D v

.k/
d � f .v.k/d /

f 0.v.k/d /
(4.84)

where:

f .v.k/d / D v
.k/
d

RS
C g.v.k/d /� IS (4.85)

f 0.v.k/d / D 1

RS
C g0.v.k/d / (4.86)

This means that we seek a v.kC1/
d such that:

f 0.v.k/d /
�
v
.kC1/
d � v

.k/
d

�
C f .v.k/d / D 0 (4.87)

so that we are effectively solving for a zero of the affine approximation to the
circuit function f at v.k/d . This is to be expected, because this is how we derived
Newton’s method in the first place.

Now, using the affine approximation of the diode at v.k/d , we have:

f 0.v.k/d / D 1

RS
C G.k/

eq (4.88)

Thus, the k-th Newton iteration can be written as:

�
1

RS
C G.k/

eq

��
v
.kC1/
d � v

.k/
d

�
C v

.k/
d

RS
C g.v.k/d /� IS D 0 (4.89)

158 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

RS

IS vd
(k+1) Ieq

(k)
Geq

(k)
1

−

+

Figure 4.15: A linear circuit replacement that provides the solution for the k-th Newton
iteration.

or:
v
.kC1/
d

RS
C
h
G.k/

eq

�
v
.kC1/
d � v

.k/
d

�
C g.v.k/d /

i
D IS (4.90)

which, using the affine approximation of the diode, can be written as:

v
.kC1/
d

RS
C ĝ

v
.k/
d

�
v
.kC1/
d

�
D IS (4.91)

Comparing this to (4.81), it is clear that the solution of the k-th Newton
iteration can be achieved by the following scheme:

1. Replace the diode by its companion model corresponding to v.k/d .

2. Solve the resulting linear circuit to find v.kC1/
d .

Thus, v.kC1/
d can be obtained as the solution to the linear circuit shown in

Fig. 4.15. Solving the linear equation resulting from the k-th Newton iteration is
equivalent to solving this linear circuit.

Remarks The companion model is a linear circuit , corresponding to the diode
operating point .v.k/d ; i .k/d /, which is valid in the k-th Newton iteration. This
companion model is an equivalent circuit , but only for the purpose of solving
the k-th Newton iteration. The companion model represents a linearization of the
diode equation at the operating point .v.k/d ; i .k/d /. Solving the circuit by repeated
linearization is not an ad hoc method; we will see that it is valid in general,
and not only in this simple case. This, in fact, becomes the general strategy for
solving nonlinear circuits, to repeatedly linearize all nonlinear elements and solve
the resulting linear circuit, until (Newton) convergence has been achieved.

Example As another example, consider the diode circuit, shown in Fig. 4.16.
The MNA equations for this circuit are:2

64
1

RS
0

0
1

R

3
75�v1

v2

½
C
�C1
�1

½
g.v1; v2/ D

�
IS

0

½
(4.92)

where:
g.v1; v2/ D id D Isat

ð
e.v1�v2/=�VT � 1

Ł
(4.93)

APPLICATION TO CIRCUIT SIMULATION 159

We introduce vector notation and write the above system equation as:

Gv C Hg.v/ D s (4.94)

where:

v D
�
v1

v2

½
; G D

2
64

1

RS
0

0
1

R

3
75 ; H D

�C1
�1

½
; s D

�
IS

0

½

We want to solve the 2-dimensional system f .v/ D 0, where:

f .v/ D Gv C Hg.v/� s (4.95)

The k-th Newton iteration consists of finding:

v.kC1/ D v.k/ � J f .v
.k//�1 f .v.k// (4.96)

where J f is the Jacobian of f , and this leads to:

J f .v
.k//

�
v.kC1/ � v.k/

ÐC f .v.k// D 0 (4.97)

so that we seek a zero of the affine approximation to f .Ð/ at v.k/. The Jacobian
matrix, J f .v

.k// is given by:

J f .v
.k// D

2
6664
@ f1

@v1

þþþþ
v.k/

@ f1

@v2

þþþþ
v.k/

@ f2

@v1

þþþþ
v.k/

@ f2

@v2

þþþþ
v.k/

3
7775 (4.98)

where:

@ f1

@v1

þþþþ
v.k/

D 1

RS
C Isat

�VT
e.v

.k/
1 �v.k/2 /=�VT (4.99)

@ f1

@v2

þþþþ
v.k/

D � Isat

�VT
e.v

.k/
1 �v.k/2 /=�VT (4.100)

@ f2

@v1

þþþþ
v.k/

D � Isat

�VT
e.v

.k/
1 �v.k/2 /=�VT (4.101)

@ f2

@v2

þþþþ
v.k/

D 1

R
C Isat

�VT
e.v

.k/
1 �v.k/2 /=�VT (4.102)

Recall the affine approximation to the diode, where:

G.k/
eq � did

dvd

þþþþ
v
.k/
d

D Isat

�VT
ev

.k/
d =�VT D Isat

�VT
e.v

.k/
1 �v.k/2 /=�VT (4.103)

160 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

so that:

J f .v
.k// D

"
1

RS
C G.k/

eq �G.k/
eq

�G.k/
eq

1
R C G.k/

eq

#
(4.104)

D G C
�C1
�1

½ h
CG.k/

eq �G.k/
eq

i
D G C H

h
CG.k/

eq �G.k/
eq

i
(4.105)

Thus, the k-th Newton iteration becomes:�
G C H

h
CG.k/

eq �G.k/
eq

i� �
v.kC1/ � v.k/

ÐC Gv.k/ C Hg.v.k//� s D 0
(4.106)

or:

Gv.kC1/ C H
nh

CG.k/
eq �G.k/

eq

i �
v.kC1/ � v.k/

ÐC g.v.k//
o

D s (4.107)

Now, notice that the affine approximation to g.v/ at v.k/ is:

ĝv.k/ .v/ D Jg.v
.k//

�
v � v.k/

ÐC g.v.k// (4.108)

where:

Jg.v
.k// D

�
@g

@v1

þþþþ
v.k/

@g

@v2

þþþþ
v.k/

½
(4.109)

and:

@g

@v1

þþþþ
v.k/

D C Isat

�VT
e.v

.k/
1 �v.k/2 /=�VT D CG.k/

eq (4.110)

@g

@v2

þþþþ
v.k/

D � Isat

�VT
e.v

.k/
1 �v.k/2 /=�VT D �G.k/

eq (4.111)

so that:

ĝv.k/ .v
.kC1/ D

h
CG.k/

eq �G.k/
eq

i �
v.kC1/ � v.k/

ÐC g.v.k// (4.112)

and the k-th Newton iteration becomes:

Gv.kC1/ C H ĝv.k/ .v
.kC1/ D s (4.113)

Comparing this expression to (4.94), it is clear that, again, the k-th Newton
iteration may be solved by replacing the diode by its companion model and
solving the resulting linear circuit. It will be instructive to actually do this for
this simple circuit and see that the final MNA system is the same; we do this
next.

APPLICATION TO CIRCUIT SIMULATION 161

vd

id

R

1 2

RSIS

−+

Figure 4.16: Another diode circuit.

Using the form J f .v
.k//v.kC1/ D J f .v

.k//v.k/ � f .v.k//, the Newton iteration
can be written as:

2
64

1

RS
C G.k/

eq �G.k/
eq

�G.k/
eq

1

R
C G.k/

eq

3
75
"
v
.kC1/
1

v
.kC1/
2

#
D

2
64

1

RS
C G.k/

eq �G.k/
eq

�G.k/
eq

1

R
C G.k/

eq

3
75
"
v
.k/
1

v
.k/
2

#

�

2
664
v
.k/
1

RS
C i .k/d � IS

v
.k/
2

R
� i .k/d

3
775

Then, recall from the diode companion model that:

I .k/eq D i .k/d � G.k/
eq v

.k/
d D i .k/d � G.k/

eq

�
v
.k/
1 � v

.k/
2

�

so that the Newton iteration becomes:

2
64

1

RS
C G.k/

eq �G.k/
eq

�G.k/
eq

1

R
C G.k/

eq

3
75
"
v
.kC1/
1

v
.kC1/
2

#
D
"

IS � I .k/eq

I .k/eq

#
(4.114)

Now, replace the diode by its companion model, to get the circuit shown in
Fig. 4.17. The MNA equations for this circuit are:

2
64

1

RS
C G.k/

eq �G.k/
eq

�G.k/
eq

1

R
C G.k/

eq

3
75
"
v
.kC1/
1

v
.kC1/
2

#
D
"

IS � I .k/eq

I .k/eq

#
(4.115)

which are the same as those of the k-th Newton iteration (4.114).

162 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

RRSIS

vd
(k+1)

Ieq
(k)

1/Geq
(k)

1 2
−+

Figure 4.17: A linearization of the circuit in Fig. 4.16, using the diode companion model.

Element Stamps Finally, we see clearly that the diode has an element stamp
in the above equation, consisting of:"

G.k/
eq �G.k/

eq

�G.k/
eq G.k/

eq

#"
v
.kC1/
1

v
.kC1/
2

#
D
"

�I .k/eq

I .k/eq

#
(4.116)

In general, this suggests that we should be able to directly build the equation for
the k-th Newton iteration by combining element stamps of the linear elements
and element stamps of the linearized elements (companion models). We will see
below that this procedure is quite general and applies to all nonlinear circuits
and elements.

4.3.3 Generalization

We now consider the general nonlinear MNA equations, to be solved using
Newton’s method; recall that the MNA system was put in the form:

Gx C Hg.x/ D s (4.117)

where G and H are constant matrices, obtained by inspection of the circuit. We
want to solve the system f .x/ D 0, where:

f .x/ D Gx C Hg.x/� s (4.118)

which we do using Newton’s method, based on the iteration:

x .kC1/ D x .k/ � J f .x
.k//�1 f .x .k// (4.119)

where J f is the Jacobian of f , and this leads to:

J f .x
.k//

�
x .kC1/ � x .k/

ÐC f .x .k// D 0 (4.120)

which shows that we seek a zero of the affine approximation of f at x .k/. Because
G and H are constant matrices, then the Jacobian of f is:

J f .x/ D G C H Jg.x/ (4.121)

APPLICATION TO CIRCUIT SIMULATION 163

where Jg is the Jacobian of g, so that the k-th Newton iteration becomes:�
G C H Jg.x

.k//
Ð �

x .kC1/ � x .k/
ÐC Gx .k/ C Hg.x .k//� s D 0 (4.122)

or:
Gx .kC1/ C H

ý
Jg.x

.k//
�
x .kC1/ � x .k/

ÐC g.x .k//
� D s (4.123)

but, the term inside the brace (f g) is the affine approximation of g, so that this
becomes:

Gx .kC1/ C H ĝx.k/ .x
.kC1// D s (4.124)

which, compared with (4.117), shows that the k-th Newton iteration can be solved
if we replace g in the original system by its affine approximation.

The affine approximation of the multidimensional g is achieved if each of
its entries is replaced by its affine approximation. And this, in turn, is achieved
if we replace every nonlinear element in the original circuit by its companion
model. This essentially proves that solving any nonlinear circuit can be done by
repeatedly replacing all nonlinear elements by their companion models at x .k/

and solving the resulting linear circuit for x .kC1/, until convergence.

Assembling the MNA System from Element Stamps In practice, one
does not actually replace any elements in the circuit graph; instead, the required
element stamps are entered directly into the linearized system equation. Recall,
in the k-th Newton iteration, we want to solve the system:

J f .x
.k//

�
x .kC1/ � x .k/

Ð D � f .x .k// (4.125)

or:
J f .x

.k//x .kC1/ D J f .x
.k//x .k/ � f .x .k// (4.126)

which, using J f .x .k// D [G C H Jg.x .k//] gives:

J f .x
.k//x .kC1/ D H Jg.x

.k//x .k/ � Hg.x .k//C s (4.127)

or:
J f .x

.k//x .kC1/ D s.k/ (4.128)

as the linear MNA system to be solved. A few remarks are in order in relation
to this system:

1. Were it not for the nonlinear elements, the above equation would reduce
to the linear case Gx .kC1/ D s.

2. The matrix J f .x .k// D [G C H Jg.x .k//] on the left-hand side is the key
system matrix that we need to build, using element stamps. This matrix is
commonly referred to as “the Jacobian” of the system, but we have taken
care here to distinguish it from the Jacobian of g.x/.

164 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

3. The right-hand side (RHS) vector s.k/ �
ð
H Jg.x .k//x .k/ � Hg.x .k//C s

Ł
is another key vector to be built from element stamps.

4. Linear elements have their usual element stamps, and they contribute to
the Jacobian [G C H Jg.x .k//] via G, and to the RHS vector via s.

5. Nonlinear elements contribute element stamps to [G C H Jg.x .k//] via
Jg.x .k//, and to the RHS vector via Jg.x .k//x .k/ � g.x .k//.

6. Once the above linear system has been assembled, standard methods (such
as GE, LU factorization, etc.) can be used to solve it.

Finally, in order to check whether to terminate the Newton iterations, as we
saw earlier, one would need to compute the residual k f .x .k/k, from f .x .k// D
Gx .k/ C Hg.x .k//� s. This means that the matrices G and H , and the nonlin-
ear vector g.x .k//, must be maintained and evaluated as part of the simulator
implementation.

General Companion Models In general, any two-terminal nonlinear resistive
element with a (single, for now) controlling variable, be it a CCS or CVS:

i D g.v/ or v D g.i/ (4.129)

has an affine approximation in either admittance form (for a CCS) or impedance
form (for a CVS):

i D G.k/
eq v C I .k/eq or v D R.k/eq i C V .k/

eq (4.130)

where, for a CCS, making use of i .k/ D g.v.k//:

G.k/
eq D g0.v.k// and I .k/eq D g.v.k//� G.k/

eq v
.k/ (4.131)

and, for a CVS, making use of v.k/ D g.i .k//:

R.k/eq D g0.i .k// and V .k/
eq D g.i .k//� R.k/eq i .k/ (4.132)

and a corresponding companion model in either a Norton source form or a
Thévenin source form. If it has several controlling variables, x1; : : : ; xm , a CCS
i D g.x/ can be linearized as:

i D
mX

jD1

@g

@x j

þþþ
x.k/
.x j � x .k/j /C i .k/ (4.133)

D
mX

jD1

@g

@x j

þþþ
x.k/

x j C
0
@g.x .k//�

mX
jD1

@g

@x j

þþþ
x.k/

x .k/j

1
A (4.134)

APPLICATION TO CIRCUIT SIMULATION 165

and has a companion model consisting of m C 1 current sources in parallel, one
of which is independent while the others are each a linear CCS. If it has several
controlling variables, x1; : : : ; xm , a CVS v D g.x/ can be linearized as:

v D
mX

jD1

@g

@x j

þþþ
x.k/
.x j � x .k/j /C v.k/ (4.135)

D
mX

jD1

@g

@x j

þþþ
x.k/

x j C
0
@g.x .k//�

mX
jD1

@g

@x j

þþþ
x.k/

x .k/j

1
A (4.136)

and has a companion model consisting of m C 1 voltage sources in series, one
of which is independent while the others are each a linear CVS.

Complex Element Stamps For a complex device, such as a transistor
or a diode, before an element stamp can be generated, one must have a
model in hand, from which to generate the companion model. This is part
of device modeling and is separate from simulation per se. In general, a
complex device can have multiple companion models, depending on the
mode of operation. In order to generate the element stamps, one has two
options:

1. For each companion model, enter the element stamps due to each of its
elements, individually, into the system Jacobian and the RHS vector. For
example, for a diode, enter the stamp due to the resistor, then enter the
stamp due to the current source.

2. Pre-build the element stamp for the companion model based on a study of
its collective contributions to the system Jacobian and the RHS vector. For
example, based on what we saw earlier, the complete element stamp for a
diode in group 1 is as follows:

vC v� j RHS
:::

::: j :::

nC Ð Ð Ð CG.k/
eq Ð Ð Ð �G.k/

eq Ð Ð Ð j �I .k/eq
:::

::: j :::

n� Ð Ð Ð �G.k/
eq Ð Ð Ð CG.k/

eq Ð Ð Ð j CI .k/eq
:::

::: j :::

(4.137)

For complex nonlinear elements and because the companion model topology is
known a priori and fixed, the second option can be faster.

166 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

4.3.4 Considerations for Multiterminal Elements

A multiterminal element (MTE) is a device with more than two terminals. At
first glance, it may seem that MTEs do not fit within the MNA framework that
we have described so far; it would seem there are many questions. For example,
how would we determine whether an element is in group 1 or group 2, and
how would we assign its terminal equations in the MNA system? However, with
only a mild requirement on the form in which their terminal characteristics are
specified, MTEs can fit quite easily in MNA, as follows.

Assumption 4.1. We assume that the terminals of any MTE are partitioned up-
front into two groups, group I and group V , as shown in Fig. 4.18, such that,
if we let vector x consist of the voltage signals at group I terminals and the
current signals into group V terminals, and let vector y consist of the current
signals into group I terminals and the voltage signals at group V terminals, then
the MTE terminal characteristics can be expressed in the form y D h.x/, where
h. / is some general, possibly nonlinear, vector function.

Most MTEs of interest, e.g., semiconductor devices, can be modeled so that
all their terminals are in group I , and they are specified using i D h.v/.

Given this general assumption, it is clear that any terminal of an MTE may
be viewed as connected internally to a two terminal , possibly nonlinear, CCS or
CVS, yi D hi .x/, to ground, as shown in Fig. 4.19. As a result, MTEs bring no
new complications and they fit quite naturally into the MNA framework we have
developed. Indeed, each hi .x/ terminal function of the MTE becomes a distinct
component of the MNA g.x/ vector, as part of the nonlinear MNA system:

Gx C Hg.x/ D s (4.138)

For each CCS or CVS corresponding to a terminal of the MTE, we classify it as
group 1 or group 2, in the usual way, and proceed with MNA.

Some remarks may be useful at this point. Recall that all nonlinear elements,
be they two-terminal elements or MTEs, contribute to the MNA nonlinear vector

xm

ym

x2

y2

x1

y1

xm+2ym+2

xnyn

xm+1ym+1

y = h(x) +

−

+

−

+

−

+−

+−

+−

gr
ou

p
Vgroup

I

MTE

Figure 4.18: A general multiterminal element.

APPLICATION TO CIRCUIT SIMULATION 167

xm

ym

x2

y2

x1

y1

xm+2

ym+2

xn

yn

xm+1

ym+1

y = h(x)

h1(x)

h2(x)

hm(x)

hm+1(x)

hm+2(x)

hn(x)

+−

+−

+−

+

−

+
−

+
−

+

−

+
−

+
−

group
Vgr

ou
p

I

MTE

Figure 4.19: An equivalent circuit for a general multiterminal element.

function g.x/. This g.x/ need not be available as a closed-form algebraic expres-
sion. Instead, we only require that g.x/ be a well defined function that may be
evaluated in some way, such as by means of a software function. As well, g0.x/
must be available, so that we can evaluate the companion model. For some
elements, gi .x/ or h.x/ may be specified by means of an equivalent circuit of
linear and/or nonlinear elements. The equivalent circuit might consist of a few
two-terminal elements.

4.3.5 Multivariable Differentiation

Fluency in multivariable calculus is useful in order to appreciate some subtle
aspects of multiterminal affine approximations and companion models. Thus, we
will briefly review differentiation in the multivariable case before proceeding
further. The material in this section is based mainly on Bartle (1976) and the
user should consult that source for additional background.

Several complications and interesting new features arise in connection with
differentiation of functions in R

p, where p> 1. This happens mainly because, in
multidimensional space, it is possible to approach a point c 2 R

p from “many
directions.” Recall that, in one dimension, the derivative of a function f : R ! R

at a point c 2 R is defined as the number L 2 R, such that:

L D lim
x!c

f .x/� f .c/

x � c
(4.139)

when the limit exists, and we write f 0.c/ D L . Equivalently, one can show that
the derivative could have been defined as the number L 2 R, such that:

lim
x!c

þþ f .x/� ð
L.x � c/C f .c/

Ł þþ
jx � cj D 0 (4.140)

168 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

This alternate definition makes precise the sense in which we can approximate the
values of a function by its affine approximation, defined earlier. It is this alternate
approach to the derivative that provides the insight for defining derivatives in
multiple dimensions, as we will see. But, first, we will review the generalization
of the notion of a partial derivative.

Partial Derivative A point c is said to be an interior point of a set D if c
belongs to an open set that is a subset of D. Thus, if c 2 R

p is an interior point
of D ² R

p, then, for any u 2 R
p, the point c C tu belongs to D for sufficiently

small jt j, with t 2 R.
If f : R

p ! R, then we are familiar with the notion of a partial derivative
of f .x/ with respect to one of its variables , @ f=@xi . We now define the (more
general) notion of a partial derivative of a function with respect to a vector , or
in a certain direction . Let f : D ² Rp ! Rq , and let c be an interior point of D,
t 2 R, and u be any point in Rp. The partial derivative of f at c with respect
to u is the vector:

Lu D lim
t!0

f .c C tu/� f .c/

t
(4.141)

when the limit exists, and we write fu.c/ D Lu 2 Rq . Notice that this partial
derivative is a vector , not a scalar (unless if q D 1). If u is a unit vector in Rp,
i.e., if kuk D 1, then fu.c/ is often called the directional derivative of f at c in
the direction u. If f has range in R, i.e., q D 1, and if ei 2 R

p is such that its i-th
entry is 1, while all others are zero, then fei is the same as the familiar @ f=@xi .
In general, @ fi=@x j is the directional derivative of the component function fi in
the direction of a unit vector aligned with the j -th coordinate axes.

We are now ready to define the notion of derivative in multidimensions. Let
f : D ² R

p ! R
q , let c be an interior point of D, and let x 2 D, then the

derivative of f at c is the q ð p real matrix L , if it exists, such that:

lim
x!c

 f .x/� ð
L.x � c/C f .c/

Ł

kx � ck D 0 (4.142)

and we write f 0.c/ D L and say that f is differentiable at c. Notice that this
derivative is a matrix , not a scalar.

When it exists, this derivative is unique. Crucially, x can approach c from
“any direction,” and the same unique matrix L must satisfy the above limit in
all cases; if not, then the derivative at c does not exist. There are other ways to
define this same derivative that are more technical and do not rely on the notion of
“approach from any direction.” However, for our purposes, the above definition
is sufficient and attractive, because it highlights the link to the notion of affine
approximation. This definition of derivative is called the Frechét derivative, also
called the differential , of f at c, and there are other alternative definitions.

If f is differentiable at c, then one can show that f is continuous at c.
Furthermore, if f : D ² R

p ! R
q is differentiable at c 2 D, then for any vector

APPLICATION TO CIRCUIT SIMULATION 169

u 2 R
p, the partial derivative of f at c with respect to u exists and is given by:

fu.c/ D f 0.c/u (4.143)

(recall, f 0.c/ is a matrix). Thus, the directional derivative, at c in the direction
of u, may be obtained by multiplying the derivative (a matrix) by the unit vector
u. The above definition begs the question of whether the matrix f 0.c/ is simply
the Jacobian of f at c. We will now deal with this question.

Partial Derivatives and the Jacobian If f .x/ is differentiable at c, then all
the partial derivatives @ fi=@x j exist and f 0.c/ is simply the Jacobian matrix of
f evaluated at c, i.e., J f .c/. The converse of this is not true; existence of the
Jacobian J f at a point is not sufficient to conclude that f is differentiable at
that point! However, it can be shown that if all the partial derivatives exist in a
neighborhood of c and are continuous at c, then f is differentiable at c.

To illustrate these points, consider the function, given in Bartle (1976):

f .x; y/ D
8<
:

xy2

x2 C y2
; for .x; y/ 6D .0; 0/;

0; for .x; y/ D .0; 0/:
(4.144)

for which it can be shown, using the definition, that the partial derivative of f
at .0; 0/ with respect to any vector u 6D 0, is given by:

fu.0; 0/ D u1u2
2

u2
1 C u2

2

(4.145)

In particular, if we let e1 D ð
1 0

ŁT
and e2 D ð

0 1
ŁT

, then:

@ f

@x
.0; 0/ D fe1.0; 0/ D 0 and

@ f

@y
.0; 0/ D fe2.0; 0/ D 0

thus, all partial derivatives, and the Jacobian, exist at .0; 0/; the function is also
continuous at .0; 0/. However, the function is not differentiable at .0; 0/, and this
is easily proven by contradiction because, if it is differentiable, it would mean
that, for any u 2 R

2:

fu.0; 0/ D f 0.0; 0/u D J f .0; 0/u

D @ f

@x
.0; 0/ Ð u1 C @ f

@y
.0; 0/ Ð u2 D 0

which contradicts the above (4.145). The “problem” may be traced to the fact
that the partial derivatives are not continuous at the origin, because, away from
the origin:

@ f

@x
.x; y/ D y2

�
y2 � x2

Ð
�
x2 C y2

Ð2 (4.146)

170 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

so that, for any point along the y-axis, we have that @ f=@x D 1, while, at the
origin, we already know that @ f=@x D 0.

But, what is the significance of the Jacobian and the affine approximation
when the function is not differentiable? The answer is, not much. If the partial
derivatives exist, but the function is not differentiable, then the Jacobian is simply
a matrix of the partial derivatives at that point. The affine approximation can be
built from the Jacobian, and it does represent a hyperplane, but not the tangent
hyperplane at that point. Indeed, the tangent hyperplane to the function at that
point does not exist when the function is not differentiable.

When the tangent hyperplane does not exist, the affine approximation to the
function is no longer a unique hyperplane under coordinate transformations. To
see this, consider that, for the above function, the affine approximation at the
origin is:

f̂ .x; y/ D J f .0; 0/

��
x
y

½
�
�

0
0

½�
C f .0; 0/ (4.147)

D ð
0 0

Ł �x
y

½
D 0 (4.148)

which is the z D 0 plane in the 3-dimensional xyz-space. Then, let us introduce
a coordinate transformation by rotating the .x; y/ axes by C45Ž, so that the new
axes are in the directions of the unit vectors:

u D
�

1=
p

2

1=
p

2

½
and v D

�
�1=

p
2

1=
p

2

½
(4.149)

If we denote the coordinates in the new system by . Qx; Qy/, then:�
x
y

½
D 1p

2

�C1 �1
C1 C1

½ � Qx
Qy
½

(4.150)

If Qfu.0; 0/ is the partial derivative in the new system, then:

Qfð 1
0

Ł.0; 0/ D fu.0; 0/ D 1

2
p

2
(4.151)

and
Qfð 0

1

Ł.0; 0/ D fv.0; 0/ D � 1

2
p

2
(4.152)

so that the affine approximation in the new system becomes:

f̂ . Qx; Qy/ D
h

1
2
p

2
� 1

2
p

2

i � Qx
Qy
½

(4.153)

which is different from the z D 0 plane. Thus, where f is not differentiable,
the affine approximation depends on the coordinate system, and does not corre-
spond to a unique tangent hyperplane. This point is relevant to linearization of
multiterminal elements.

APPLICATION TO CIRCUIT SIMULATION 171

4.3.6 Linearization of Multiterminal Elements

We now return to multiterminal elements (MTE), where there are three issues
to discuss: affine approximations, companion models, and element stamps. As
we saw earlier, once the element equation is available in the form y D h.x/, the
affine approximation for it is well defined, provided the Jacobian Jh.x/ exists.
There are at least two ways to obtain the affine approximation:

1. Perform a Taylor series expansion on the element equation y D h.x/ and
retain only the first order terms and the constant.

2. Using an equivalent circuit of the MTE, linearize each element in that
circuit and solve for the affine terminal characteristics ĥi .x/.

Notice that the existence of a tangent hyperplane, i.e., of the derivative of h.x/,
does not seem to be required for the above procedure to be applicable; it is
sufficient that the partials @hi=@x j exist. However, there are two good reasons
to insist on existence of the derivative:

1. If the derivative exists, then the affine approximation becomes unique,
independent of exactly how it is obtained. One can obtain the affine approx-
imation either by using a Taylor series expansion on h.x/, or by linearizing
the elements of an equivalent circuit.

2. In order to guarantee local convergence of Newton’s method, we need
@2hk=@xi@x j to exist and be continuous. This, in turn, requires the exis-
tence and continuity of @hi=@x j and, therefore, the existence of the tangent
hyperplane and the derivative.

Therefore, to ensure existence of the derivative, it is generally required that the
element equation y D h.x/ have continuous 1st partial derivatives.

Uniqueness of the Affine Approximation Given that the derivative of h.Ð/
exists, what is it that guarantees that the affine approximation, obtained by the
two methods given above, is the same? The answer is: the linearity of the KCL
and KVL equations, as follows.

Consider an MTE with a specified element equation y D h.x/ and an equiva-
lent circuit consisting of a number of possibly nonlinear two-terminal elements.
Construct a circuit around the MTE, in which an independent current source
is applied to every terminal in group V , and an independent voltage source is
applied to every terminal in group I . Then, the MNA equations for this circuit
would effectively provide a mapping from x to y, equivalent to h.Ð/.

Linearizing the MNA equations would yield the same affine approximation as
linearizing h.Ð/. But we already know that, due to linearity of KCL and KVL,
linearizing the MNA equations is equivalent to linearizing its nonlinear vector
g.x/. Thus, linearizing the individual elements inside the equivalent circuit is
equivalent to inearizing its terminal equations.

172 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

Companion Model and Element Stamp The companion model of an MTE,
being a circuit realization of the affine approximation, is well defined and can be
obtained in at least two ways:

1. If the affine approximation equations are available in algebraic form,
“reverse engineer” a circuit that would realize those equations.

2. If the affine approximation is available as a result of a linearized equivalent
circuit, then that circuit is itself the companion model.

Before we can generate the element stamp, we must classify the terminal signals
of the MTE as contributing either to the top or bottom parts of the MNA system.
Recall, each terminal signal yi D hi .x/ is either a CCS or a CVS from that
terminal to ground. A CVS must belong to group 2, while a CCS may be in
either group. Thus, the MTE terminals themselves are assigned as either group 1
(contributing to top part of MNA system) or group 2 (bottom part). Generation
of the element stamp can then proceed, in at least two ways:

1. If the affine approximation is available as an equation, read off the stamps
from the equation, depending on the terminal group assignments.

2. Using the companion model, use the stamp of each element in it to cumu-
latively discover the MTE element stamp, using group assignments.

We will illustrate this process in connection with BJTs and MOSFETs.

A BJT Example Consider an npn BJT with its Ebers-Moll model, shown in
Fig. 4.20, with the model equations:

ie D �Ies
�
evbe=VTe � 1

ÐC aR Ics
�
evbc=VTc � 1

Ð
(4.154)

ic D aF Ies
�
evbe=VTe � 1

Ð� Ics
�
evbc=VTc � 1

Ð
(4.155)

ib D � .ie C ic/ (4.156)

c

c

e

e

bb

ic

ic

ie

ie

ibib

iF

iR
aFiF

aRiR

Figure 4.20: The Ebers-Moll model for an npn BJT.

APPLICATION TO CIRCUIT SIMULATION 173

These equations specify the function y D h.x/ that relates the MTE terminal
currents (vector y) to the terminal voltages (vector x):

y D
2
4ie

ic

ib

3
5 x D

2
4ve

vc

vb

3
5 (4.157)

using vbe D vb � ve and vbc D vb � vc. Alternatively, because the equations are
in terms of vbe and vbc only, we can define:

y D
2
4ie

ic

ib

3
5 x D

�
vbe

vbc

½
y D h.x/ (4.158)

We will proceed with this more compact notation, so that the function h.Ð/ is
explicitly specified by the above Ebers-Moll equations.

To find the affine approximation, we will linearize the equations h.x/ directly,
employing the notation introduced in Pillage et al. (1995), and we start by finding
the Jacobian Jh.x/:

@ie

@vbe
D � Ies

VTe

evbe=VTe � �gee (4.159)

@ie

@vbc
D aR

Ics

VTc

evbc=VTc � gec (4.160)

@ic

@vbe
D aF

Ies

VTe

evbe=VTe � gce (4.161)

@ic

@vbc
D � Ics

VTc

evbc=VTc � �gcc (4.162)

@ib

@vbe
D gee � gce (4.163)

@ib

@vbc
D gcc � gec (4.164)

Thus, the affine approximation becomes:

2
4îe

îc

îb

3
5 D

2
64 �g.k/ee g.k/ec

g.k/ce �g.k/cc

g.k/ee � g.k/ce g.k/cc � g.k/ec

3
75
 "
v̂be

v̂bc

#
�
"
v
.k/
be

v
.k/
bc

#!
C

2
64i .k/e

i .k/c

i .k/b

3
75

The affine approximation for each terminal signal, yi D ĥi .x/, may now be
written as:

îe D �g.k/ee v̂be C g.k/ec v̂bc C I .k/e (4.165)

174 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

îc D g.k/ce v̂be � g.k/cc v̂bc C I .k/c (4.166)

îb D �.îe C îc/ (4.167)

where:

I .k/e � i .k/e C g.k/ee v
.k/
be � g.k/ec v

.k/
bc (4.168)

I .k/c � i .k/c � g.k/ce v
.k/
be C g.k/cc v

.k/
bc (4.169)

and where:

i .k/e D �Ies

�
ev

.k/
be =VTe � 1

�
C aR Ics

�
ev

.k/
bc =VTc � 1

�
(4.170)

i .k/c D aF Ies

�
ev

.k/
be =VTe � 1

�
� Ics

�
ev
.k/
bc =VTc � 1

�
(4.171)

This leads to the companion model shown in Fig. 4.21, and the BJT ele-
ment stamp, obtained by combining the stamps of the individual elements in the
companion model is as follows:

e c b j RHS
:::

:::
::: j :::

e Ð Ð Ð g.k/ee �g.k/ec .g.k/ec � g.k/ee / j �I .k/e

c Ð Ð Ð �g.k/ce g.k/cc .g.k/ce � g.k/cc / j �I .k/c

b Ð Ð Ð .g.k/ce � g.k/ee / .g.k/ec � g.k/cc / .g.k/cc C g.k/ee � g.k/ce � g.k/ec / j I .k/e C I .k/c

Note that we have assumed that all three terminals of this BJT have been classified
in group 1 of the MNA system.

c

e

b

ie

ic

ib

ve

vb

vc

Ic
(k)

Ie
(k)1/gee

(k)

1/gcc
(k)

gcevbe
(k)

gecvbc
(k)

Figure 4.21: A companion model for the npn BJT.

APPLICATION TO CIRCUIT SIMULATION 175

d

g

s

id

ig

is

Figure 4.22: An n-channel MOSFET.

A MOSFET Example Consider an n-channel MOSFET, as shown in Fig. 4.22,
with the simple DC model:

id D

8><
>:

0; if vgs � Vt (cut-off)I
þ
ð
.vgs � Vt /vds � 1

2v
2
ds

Ł
; if 0 � vds � vgs � Vt (linear)I

þ

2 .vgs � Vt /
2.1 C ½vds/; if 0 � vgs � Vt � vds (saturation):

(4.172)

with:
is D �id and ig D 0 (4.173)

These equations specify the element characteristics y D h.x/, where in this case:

y D
2
4id

is

ig

3
5 x D

�
vds

vgs

½
(4.174)

To build the Jacobian Jh.x/, we find:

Gds � @id

@vds
D

8>><
>>:

0; if vgs � Vt (cut-off)I
þ
ð
vgs � Vt � vds

Ł
; if 0 � vds � vgs � Vt (linear)I

þ

2
½.vgs � Vt /

2; if 0 � vgs � Vt � vds (saturation):

gm � @id

@vgs
D

8><
>:

0; if vgs � Vt (cut-off)I
þvds; if 0 � vds � vgs � Vt (linear)I
þ.vgs � Vt /.1 C ½vds/; if 0 � vgs � Vt � vds (saturation):

where Gds > 0 is the small-signal drain-to-source conductance and gm > 0 is the
small-signal transconductance. Thus, the affine approximation becomes:

2
4îd

îs

îg

3
5 D

2
4 G.k/

ds g.k/m

�G.k/
ds �g.k/m

0 0

3
5
 "
v̂ds

v̂gs

#
�
"
v
.k/
ds

v
.k/
gs

#!
C

2
64i .k/d

i .k/s

i .k/g

3
75

176 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

The affine approximation for each terminal signal, yi D ĥi .x/, is:

îd D G.k/
ds v̂ds C g.k/m v̂gs C I .k/eq (4.175)

îs D �îd (4.176)

îg D 0 (4.177)

where:
I .k/eq � i .k/d � G.k/

ds v
.k/
ds � g.k/m v.k/gs (4.178)

and where:

i .k/d D

8>>><
>>>:

0; if v.k/gs � Vt I
þ
h
.v
.k/
gs � Vt /v

.k/
ds � 1

2v
.k/
ds

2i
; if 0 � v

.k/
ds � v

.k/
gs � Vt I

þ

2
.v.k/gs � Vt /

2.1 C ½v
.k/
ds /; if 0 � v

.k/
gs � Vt � v

.k/
ds :

(4.179)

From this, the companion model is as shown in Fig. 4.23 and, assuming all
terminals are in group 1, the element stamp is:

d s g j RHS
:::

:::
::: j :::

d Ð Ð Ð G.k/
ds �

�
G.k/

ds C g.k/m

�
g.k/m j �I .k/eq

s Ð Ð Ð �G.k/
ds

�
G.k/

ds C g.k/m

�
�g.k/m j I .k/eq

g Ð Ð Ð 0 0 0 j 0

4.3.7 Elements with Internal Nodes

In general, multiterminal elements can have complex companion models, possibly
including several internal nodes . The examples we have seen so far have only fea-
tured internal elements connected between terminal nodes , but no internal nodes.

d

s

g
gm

(k)vgs

is

id

ig

vs

vg

vd

1/Gds
(k)

Ieq
(k)

Figure 4.23: A simple companion model for the n-channel MOSFET.

APPLICATION TO CIRCUIT SIMULATION 177

c

e

b

ie

ic

ib

ve

vb

vc

d

s

g

RC

RB

RE

id

vd

isvs

ig

vg

RD

Rs

BJT

MOSFET

Ieq
(k)1/Gds

(k)
gm

(k)vgs

Ic
(k)

Ie
(k)

1/gcc
(k)

1/gee
(k)

gcevbe
(k)

gecvbe
(k)

Figure 4.24: More detailed companion models for the BJT and the MOSFET, including
series resistance and internal nodes.

However, even for these simple models, the mere addition of series terminal
resistance to the model leads to several internal nodes, as shown in Fig. 4.24.

In principle, there is no “problem” with having such internal nodes; they
can simply become additional nodes in the MNA system. However, this would
drastically increase the number of MNA variables and, therefore, the size of
the MNA system. We can reap significant savings if we are able to somehow
avoid having to explicitly account for these nodes as additional MNA variables.
Luckily, there is a way to do this, by benefiting from the fact that the companion
model topology is fixed for any given device, as follows.

Because the companion model topology is fixed, we can perform symbolic
node elimination on all internal nodes of the model. We demonstrate this for the
simple case of a diode with series resistance, which can be modeled as a resistor
in series with an ideal diode, as shown in Fig. 4.25, where we refer to a diode
without any series resistance as an ideal diode. With vd as the internal (ideal)
diode voltage, the element equation is the (system of) two equations:

i D Isat
ð
evd=�VT � 1

Ł
(4.180)

vd D v � Ri (4.181)

Diode with Internal
Series Resistance

Companion Model

vd

i
R

v

(ideal)

−−

+

+ i
R

v

vd Ieq
(k)

− −

+

+
Geq

(k)

1

Figure 4.25: A diode with series resistance and its companion model.

178 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

The companion model parameters are, for the ideal diode portion:

G.k/
eq D Isat

�VT
evd

.k/=�VT (4.182)

I .k/eq D i .k/ � G.k/
eq v

.k/
d D Isat

h
ev

.k/
d =�VT � 1

i
� G.k/

eq v
.k/
d (4.183)

both of which depend on v.k/d , and it has terminal characteristics that are captured
by the (system of) two equations:

î D I .k/eq C G.k/
eq v̂d (4.184)

v̂d D v̂ � Rî (4.185)

both of which are linear equations, so that we can use variable elimination in
order to achieve node elimination, as follows. In order to eliminate the inter-
nal node from the circuit, we eliminate the variable v̂d from the equations, by
plugging (4.185) into (4.184), so that:

î D I .k/eq C G.k/
eq

�
v̂ � Rî

Ð
(4.186)

which leads to:

î D I .k/eq

1 C G.k/
eq R

C v̂

R C 1
G.k/eq

(4.187)

As a result, we can use the new companion model for the diode, shown in
Fig. 4.26, which does not include an internal node, and in which:

G.k/
eq D Isat

�VT
evd

.k/=�VT

I .k/eq D i .k/ � G.k/
eq v

.k/
d

i .k/ D Isat

h
ev

.k/
d =�VT � 1

i
Notice that the evaluation of these model parameters requires the internal (elim-
inated) variable v.k/d . This issue is dealt with as follows:

v

i

−

+

R+
Geq

(k)
1

1+ GeqR
(k)

Ieq
(k)

Figure 4.26: A transformed companion model for the diode, in which the internal node
has been eliminated.

APPLICATION TO CIRCUIT SIMULATION 179

1. Given the companion model based on the k-th solution .v.k/; v.k/d /, solve
the MNA system and find the .k C 1/-st solution v.kC1/.

2. Recover the value of the eliminated variable v̂d , at the .k C 1/-st solution
point, by combining (4.185) and (4.187), using v̂ D v.kC1/, so that:

v
.kC1/
d D v.kC1/ � R

2
4 I .k/eq

1 C G.k/
eq R

C v.kC1/

R C 1
G.k/eq

3
5 (4.188)

3. Use this to build the companion model at the .k C 1/-st solution point, and
this process is repeated until convergence.

How do we start this process? In other words, how do we set the value of the
very first v.k/d D v

.0/
d ? It is typical to use the initialization v.0/d D v.0/.

If internal node elimination is applied to every diode, the size of the MNA
system is reduced by one variable for every diode, which is obviously desirable.
For transistors, the gains are more significant; thus, this is a winning strategy and
is always employed in practice.

Systematic Internal Nodes Elimination McCalla (1988) gives the lengthy
procedure by which internal node elimination can be done for the BJT Ebers-
Moll model with series resistance. A sequence of Y -1 and Thévenin-Norton
transformations are applied to remove all internal nodes. For a fresh new device
model, one would have to look for such smart combinations of just the right
transformations to get the job done. Alternatively, as we now propose, it is
possible to describe a systematic procedure for achieving this in the general case.

Recall, node elimination in the circuit graph is identical to Gaussian elimi-
nation of the corresponding variable in the system equations. To see how this
works in the simple case of the diode, we apply signals to the diode according
to the bias configuration we saw earlier for MTEs:

1. Drive the group I terminals by voltage sources and the group V terminals
by current sources.

2. Monitor the currents in the group I terminals and the voltages on the group
V terminals.

For the diode, this bias configuration leads to the circuit shown in Fig. 4.27.
The MNA equations for this circuit capture the companion model terminal
characteristics i D ĥ.v/ and lead to:

vd

R
C i D v

R
(4.189)�

G.k/
eq C 1

R

�
vd D v

R
� I .k/eq (4.190)

180 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

i
R

v

vd

−
+

Geq
(k)

1
Ieq

(k)

Figure 4.27: A diode with series resistance, biased in the standard bias arrangement for
multiterminal elements.

We can eliminate variable vd by multiplying the 1st equation (4.189) by the term
.1 C G.k/

eq R/ and subtracting from the 2nd (4.190), which gives:

� �
1 C G.k/

eq R
Ð

i D �G.k/
eq v � I .k/eq (4.191)

or:

i D I .k/eq

1 C G.k/
eq R

C v

R C 1
G.k/eq

(4.192)

which is the same result we saw above. Thus, the general strategy becomes
to symbolically eliminate all internal nodes from the MNA system, under the
appropriate bias configuration.

Symbolic Block-GE for Node Elimination In the general case, under the
appropriate bias configuration for the companion model of a given MTE, we
write the MNA equations in the form:

"
A.k/11 A.k/12

A.k/21 A.k/22

#�
z
y

½
D
�

x1

x2

½
C
"

s.k/1

s.k/2

#
(4.193)

where A.k/i j and s.k/i depend on companion model parameters, z is the vector of
the internal variables to be eliminated, y is the vector of the external variables
to be kept, and x1 and x2 are vectors that contain the applied external bias. Note
that z can consist of both node voltages and/or branch currents. Our purpose is
to eliminate the variables in z so as to reduce the system to a an affine functional
relationship y D ĥ.x1; x2/. This can be easily done using block-GE, which we
studied earlier, and leads to:

y D
�

A.k/22 � A.k/21 A.k/11

�1
A.k/12

��1 h
x2 C s.k/2 � A.k/21 A.k/11

�1 �
x1 C s.k/1

�i

QUASI-NEWTON METHODS IN SIMULATION 181

The required matrix inversions would have to be done symbolically, up-front,
possibly using determinants and Cramer’s rule, as required. Note, these matrices
would typically be small, probably no larger than 4 ð 4 or similar; it may be
laborious but is worth the effort. Once this is done, we have a resulting expression
for the terminal responses y as a function of the applied terminal bias x , similar
to (4.187) of the diode. We use this to build a new companion model that contains
no internal nodes, in much the same way as we did for the diode.

The eliminated internal variables may need to be computed so as to find the
parameters of the companion model, as we saw with the v.k/d variable in the case
of the diode, using:

z.kC1/ D A.k/11

�1 �
x .kC1/

1 C s.k/1 � A.k/12 y.kC1/
�

(4.194)

and initialization may be done using some z.0/, either arbitrarily set, or derived
in some simple way from x .0/ or y.0/, as appropriate for that device. The lengthy
symbolic expressions that result from the above elimination become part of the
model evaluation routines in a circuit simulator.

4.4 QUASI-NEWTON METHODS IN SIMULATION

As mentioned earlier, Newton’s method is a good local method, and must be
augmented with some global strategy to ensure convergence in general. Methods
that implement such global convergence strategies are referred to as quasi-Newton
methods . In circuits, convergence problems may be classified as two types:

1. Non-convergence due to having taken too large a Newton step, which can
arise both during DC Analysis and during Transient Analysis.

2. Non-convergence due to having used an initial solution that is too far away
from the true solution, which mainly arises during DC Analysis.

The second type of problem (being too far away to begin with) is much more
problematic and requires more drastic measures in practice. Correspondingly,
solutions for non-convergence in circuits fall into two classes:

1. Step-size limiting methods to ensure that dangerously large steps are
avoided, sometimes referred to as damping in the circuits literature.

2. Continuation, homotopy, and related heuristic methods to overcome the
severe problems that arise during DC Analysis.

These classes are in fact orthogonal, in the sense that one can use step-size
limiting schemes as part of an implementation of, say, a homotopy approach. We
will now describe these two classes of solutions.

182 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

4.4.1 Damping Methods

We first consider the problems arising from having taken too large a step in
Newton’s method for solving f .x/ D 0. These problems arise both in
DC Analysis and in Transient Analysis. As we saw earlier, a general stepping
strategy, outside any specific application domain, is to ensure that the norm
of the function f is reduced in every Newton iteration. A potential step that
is found to increase the norm is rejected. Instead, a shorter step is taken,
typically in the same direction. Such general strategies were tested in circuit
simulation in the early 1970s. No problem-specific knowledge was used; circuit
equations were simply treated as a set of general nonlinear equations. Other
approaches were also studied, which used problem-specific knowledge to tailor
the strategies to circuits. It was found that, although both approaches lead to
improved convergence, the circuit-specific techniques work faster in practice.
We will focus on the circuit-specific techniques.

Early on, these techniques were focused on the key problem of overflow that
results from the exponential characteristics of pn-junctions. If too large a step
is taken, so that the diode voltage v.kC1/

d is large, then the corresponding diode
current can become larger than the machine limits. Of course, overflow is a
generic numerical algorithms issue, irrespective of whether one is solving lin-
ear or nonlinear equations. However, in the context of Newton’s method, the
steep exponentials of diodes and BJTs can easily cause overflow that leads to
divergence of the iterations. In the late 1970s, those techniques that had been
originally developed for pn-junctions were then adapted to general circuits, as
we will see below.

Overflow in pn-Junctions Overflow can arise due to the exponential diode
characteristic, and appropriate circuit-based solutions have been devised for this
circuit-specific problem. Large voltage steps and the corresponding extremely
large currents are only temporary values that arise during the iterative Newton’s
method. As such, they are sometimes referred to as being “non-physical.” Being
“non-physical,” one possible remedy is to take some “liberties” with the charac-
teristics and apply some approximation. Generally, one introduces gentler slopes
as approximations to the nonlinear exponential characteristics in steep physically-
unrealistic regions.

For example, there is a difficulty with pn-junctions that arises in the 3rd
quadrant, i.e., where vd < 0 and id < 0. With the current nearly constant at Isat

in that region, the tangent is nearly horizontal and the conductance in the diode
companion model becomes nearly zero, which can cause the Jacobian to be
nearly singular. One way to avoid this problem is to use a secant (line through
the origin) instead of a tangent, as explained in Pillage et al. (1995). Effectively,
an alternative companion model is used for the diode when vd < 0, consisting
of only an equivalent conductance:

G.k/
eq D i .k/d

v
.k/
d

(4.195)

QUASI-NEWTON METHODS IN SIMULATION 183

Such special case remedies can be devised for different situations. However, the
common and more general approach is to use a step limiting algorithm, in which
the stepping strategy is circuit-motivated, as we will see below. Limiting the step
size is sometimes called damping in the circuits literature. It is a strategy that
aids convergence, but at the cost of additional Newton iterations.

The essence of the problem is that a large positive voltage excursion in v.kC1/
d

produces overflow in i .kC1/
d . To properly address this issue, we introduce some

notation, relative to the k-th Newton iteration:

• Let v.k/d be the present value of the diode voltage.
• Let v̂d be the candidate next value of the diode voltage, resulting from

solving the linearized MNA system using the companion models.

• Let s.k/N D v̂d � v
.k/
d be the full Newton step in vd .

• Let v.kC1/
d be the actual value chosen for the updated solution.

• Let s.k/ D v
.kC1/
d � v

.k/
d be the actual step taken.

Several damping techniques have been proposed and tested to address the over-
flow problem, as described in McCalla (1988). In one strategy, for diode voltages
v
.k/
d greater than 10VT , the excursion is limited to v.k/d š 2VT . This was used in

the CANCER program by Nagel and Rohrer (1971). Another method, implemented
in the SLIC program by Idleman et al. (1971), uses the hyperbolic tangent to limit
the step size:

v
.kC1/
d D v

.k/
d C 10VT tanh

v̂d � v

.k/
d

10VT

!
(4.196)

which limits the maximum excursion to v.k/d š 10VT , and can be written more
compactly as:

s.k/ D 10VT tanh

s.k/N

10VT

!
(4.197)

However, a more popular method, used in typical SPICE simulators, is motivated
by the so-called current/voltage iteration scheme, which we now describe.

Current/Voltage Iteration Scheme Normally, once the linearized circuit is
solved for v̂d , we set the next voltage value as v.kC1/

d D v̂d and proceed with
Newton’s method. The next iteration uses the diode equation to find i .kC1/

d based
on v.kC1/

d :

i .kC1/
d D Isat

�
ev

.kC1/
d =�VT � 1

�
(4.198)

in order to build the companion model for that iteration. Meanwhile, the total
companion model current, îd , is not computed because, typically, vd is the MNA
system variable, not id . As described above, this standard approach can run into
problems, because the current value i .kC1/

d often ends up being extremely large,

184 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

causing overflow and subsequent non-convergence. The problem is that the full
Newton step is too large. Instead, to overcome this problem, the step size is
checked and a shorter step is possibly taken, based on a pre-set “critical voltage”
value, vcrit > 0, such as by the following process:

1. If v̂d � vcrit , then we accept the full Newton step as is. Otherwise, we want
to choose a step size that limits the diode current, as follows.

2. Compute the missing îd D G.k/
eq v̂d C I .k/eq from the companion model.

3. Since the last known good (not overflowed) value of current is îd , then set
i .kC1/
d D îd , and use the diode equation to find v.kC1/

d , discarding v̂d :

v
.kC1/
d D �VT ln

1 C i .kC1/

d

Isat

!
(4.199)

As a result, the new diode voltage can be shown to be:

v
.kC1/
d D v

.k/
d C �VT ln

1 C v̂d � v

.k/
d

�Vt

!
(4.200)

or:
s.k/

�VT
D ln

1 C s.k/N

�VT

!
(4.201)

This is effectively a logarithmic damping scheme which, due to the logarithm,
weakly limits small steps and strongly limits large steps. Effectively, we have
scaled back the step size so that the new operating point has i .kC1/

d D îd , instead
of the usual v.kC1/

d D v̂d . When we do this, we are said to be (in the circuits
literature) using a “current iteration” instead of a “voltage iteration.”

But this raises the question: if a current iteration is better than a voltage
iteration, shouldn’t we always use it, even for small or negative v̂d? The answer
is “no” because, for vd − 0, we have the reverse situation: a small current change
can produce a large voltage change, due to:

dvd

did
D �VT

Isat
e�vd=�VT (4.202)

Instead, a current iteration should be used when vd >vcrit > 0 and a voltage
iteration used when vd < vcrit .

What is a good value of vcrit ? Nagel (1975) reports that empirical studies
have shown that a good value to use is the voltage where the diode characteristic
has the smallest radius of curvature, so that:

vcrit D �VT ln

�
�VTp
2Isat

�
³ 0:734 V (4.203)

where we have used values of VT D 26 mV, � D 1, and Isat D 10�14 A.

QUASI-NEWTON METHODS IN SIMULATION 185

Radius of Curvature Intuitively, curvature is the extent to which a geomet-
rical object deviates from “flatness,” and the radius of curvature is the reciprocal
of curvature. For a straight line, the curvature is 0 and the radius of curvature is
1. For a circle, the radius of curvature is equal to the circle’s radius. In general,
the radius of curvature is the radius of the circle that best approximates the curve
in a neighborhood around a point on that curve. For a general curve in the plane,
defined by the mapping x ! y, it can be shown that the radius of curvature at
x is given by:

r.x/ D 1þþþ d2 y
dx2

þþþ
þþþþþþ
"

1 C
�

dy

dx

�2
#3=2

þþþþþþ (4.204)

Generalized Damping Schemes The above current/voltage iteration scheme
was derived for pn-junctions and has been used in SPICE for both diode and BJT
circuits. It has been adapted to other devices as well, and has been extended to
the multivariable case, as in Ho et al. (1977). Basically, viewed as a formula for
general logarithmic damping, this scheme leads to a general-purpose step limiting
scheme, used in SPICE, based on:

s.k/ D �

k
sgn.s.k/N / ln

�
1 C k

þþþs.k/N

þþþ� (4.205)

where sgn .a/ 2 f�1;C1g gives the sign of a 2 R, and s.k/ and s.k/N are the steps
in a component of the solution vector, so that for the i-th component:

s.k/N D x̂i � x .k/i and s.k/ D x .kC1/
i � x .k/i (4.206)

and where k> 0 replaces the constant 1=�VT , which becomes meaningless in the
general case, and 1 < � < 1:5 is an empirical constant.

The parameters k and � control the rate of step limiting. Larger k values more
severely limit the step size, and good values of k have been sought in empirical
studies. For BJTs, k should be in the range 12–20, while MOSFETs work best
with a k in the range 2–5. BJTs, with their exponential characteristics, present
more difficulties in Newton convergence than MOSFETs, which follow a square
law. A value of � D 1:3 seems to work well in practice, at least for BJTs. It is
also possible to vary k during the Newton iterative process, typically decreasing
it linearly with the iteration count. Stricter limits on step size are applied early
in the process, when we would probably be still far from the true solution. The
settings and variations of these parameters in commercial simulators are heuristic
measures, based on practical experience.

In extending this scheme to multiple dimensions, one has two options:

1. Keep the step (the vector) in the same (Newton) direction. Thus, apply the
same damping factor to the whole solution vector, so that s.k/=s.k/N is the
same for all components of the vector. In this case, the damping factor
½ � s.k/=s.k/N is based on the most problematic device in the circuit.

186 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

2. Apply a different damping factor to each component of the solution vector,
thus using a direction possibly different from the Newton direction.

Strictly speaking, keeping to the Newton direction is a good strategy because it
is known to be a descent direction for the norm of the cost function. However,
typical SPICE implementations actually adopt the second option, where each com-
ponent of the vector is scaled individually. Indeed, typical SPICE implementations
often build the step limiting code into the device model evaluation routines, so
it becomes device-specific.

4.4.2 Overview of More General Methods

The second class of convergence problems, due to having started with an initial
solution which is too far from the true solution, arise mainly during DC Analysis.
Commercial simulators use a battery of techniques to combat this class of prob-
lems, which generally fall under the heading of continuation methods or homo-
topy methods . We will study three popular methods in this class: source stepping ,
Gmin stepping , and pseudo-transient .

These methods include a Newton loop at their core, and thus they can all make
use of the step-limiting strategies covered above. In addition, they employ various
techniques that “wrap around” the Newton loop and make use of it, as we will
see in the following. Note that any user-provided initial voltage specifications
for certain nodes can be incorporated in the network as additional independent
voltage sources.

Continuation and Homotopy Methods In general, a continuation method is
an algorithm for solving the parameterized nonlinear system h.x; ½/ D 0, where
x is a vector and ½ is a scalar. A specific type of continuation method is concerned
with the case where the parameterization represents a homotopy : two continuous
functions are called homotopic if one of them can be “continuously deformed”
into the other, and such a deformation is called a homotopy between the two
functions. Formally, one uses a scalar parameter ½ 2 [0; 1] that serves to deform
a function f .x/ into g.x/ and we define a homotopy between f and g as the
continuous function h.x; ½/, such that:

h.x; 0/ D f .x/; 8x and h.x; 1/ D g.x/; 8x

For the solution of the nonlinear algebraic system f .x/ D 0, with a solution xŁ,
homotopy is applied by constructing, for some known/given x0, a function:

h.x; ½/ D f .x/ � .1 � ½/ f .x0/ (4.207)

so that, for ½ D 0, the equation h.x; ½/ D 0 has the known solution x0 and, for
½ D 1, the equation h.x; ½/ D 0 has the sought solution xŁ. In other words:

h.x0; 0/ D 0 and h.xŁ; 1/ D 0 (4.208)

QUASI-NEWTON METHODS IN SIMULATION 187

The solution approach becomes to start with ½ D 0 and the known solution x0,
then to gradually increase ½, while tracking the solution from x0 to xŁ. Even if
x0 is far from xŁ, one hopes that the gradual steps in ½ would take us reliably
from x0 to xŁ. The approach is not without its pitfalls and complexities, as there
are issues of step size selection, bifurcations, and multiple solutions.

4.4.3 Source Stepping

While not the most efficient, the following scheme is simple to implement and
quite popular; it is the fall-back approach used in SPICE when direct DC Analysis
or DC sweep, using a plain Newton’s method, fails to converge. Recall, the non-
linear MNA equations are:

Gx C Hg.x/ D s (4.209)

where the RHS vector s contains all (and only) the contributions from the inde-
pendent sources; it is called the “source vector.” Most circuits have the useful
property that if all independent sources are turned “off,” then all voltages and
currents in the circuit become zero. Thus, when s D 0, x0 D 0 is a solution of the
system. Note, “turning off” a voltage source means setting its voltage to zero,
while for a current source it means setting its current to zero.

For circuits with this property, source stepping consists of first turning off
all independent sources, so that x D 0 becomes a solution, then ramping them
up to their full value while solving the DC system at every point. Solving the
DC circuit may be done using a plain Newton’s method, with the solution at the
previous source setting as an initial solution.

By using small enough increments (steps) in the source values, it is hoped
that Newton convergence will be achieved at every point. If it fails to converge,
one can retry with a smaller step size. Alternatively, one can try “bringing up”
the different sources separately, or at different rates, etc. There are many such
variations in the literature. In the following, we will see that a) in fact any circuit
can be transformed so as to have the above property, and b) that source stepping
is a standard homotopy type method.

Offsets Considering the nonlinear DC MNA system (4.209), let f .x/ � Gx C
Hg.x/� s, as usual, so that the system to be solved is in the standard form:

f .x/ D 0 (4.210)

When x D 0, this system evaluates to:

f .0/ D Hg.0/� s (4.211)

Thus, if s D 0 and if g.0/ D 0, then x0 D 0 is a valid solution of the system.
Therefore, in order for x0 D 0 to be a valid solution when s D 0, we require
that every nonlinear CVS or CCS must evaluate to zero when all its controlling

188 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

variables (MNA voltages and/or currents) are set to zero (gi.0/ D 0). For the i-th
nonlinear element, we will refer to gi .0/ as it’s offset , and we will write:

g.x/ D g.0/C g.x/ (4.212)

where, clearly, g.0/ D 0. It is a simple matter to pre-process the circuit so that
the offset of every nonlinear source is made explicit, as an independent source.
With this, effectively, the MNA system becomes:

Gx C H g.x/ D s � Hg.0/ (4.213)

where the source vector s has been augmented with all the new independent
sources (the offsets) g.0/, and all nonlinear elements now have zero offsets.
Going further, we denote s � s � Hg.0/, and write:

Gx C H g.x/ D s (4.214)

as the new system to be solved. This system is such that, if s D 0 then x D 0 is
a valid solution. Thus, for any circuit, if the independent sources and the offsets
are turned off, then x D 0 becomes a valid solution of the MNA system.

Source Stepping as Homotopy With f .x/ D Gx C H g.x/� s, we want a
solution xŁ for f .x/ D 0, and with x0 D 0 we know that f .x0/ D �s. To solve
this system, we construct the standard homotopy:

h.x; ½/ D f .x/ � .1 � ½/ f .x0/ (4.215)

D Gx C H g.x/� ½s (4.216)

so that, by solving h.x; ½/ D 0 while stepping ½ from 0 to 1, we are effectively
solving f .x/ D 0 while stepping the sources in s from 0 to their full values. In
practice, most nonlinear elements have zero offsets but, as we have seen, even if
the offsets are non-zero, source stepping can be easily applied. Effectively, source
stepping is a DC Sweep that simultaneously sweeps all the independent sources
(and offsets) in the network. It takes more iterations than solving the problem
directly using a plain Newton’s method, but has more reliable convergence.

Source stepping is not guaranteed to converge, and much theoretical work has
been done on this and other aspects of homotopy methods. In practice, there
is a need for many heuristics to guide the solution, and complex theoretical
techniques may not always be the best choice. The key reason for this is the
severe nonlinearity that one sees at the switching threshold in logic circuits. This
threshold is the voltage value at the input of a logic gate at which the gate output
makes a transition from one logic value to another. At that point, the high gain
of fast logic circuits translates to a very steep response surface in h.x; ½/, which
causes convergence problems. While there are much “fancier” methods, such

QUASI-NEWTON METHODS IN SIMULATION 189

simple homotopy methods, as source stepping, are often employed in simulation,
typically with many heuristics.

If source stepping fails to converge, there are other options, other homotopies,
such as Gmin stepping and pseudo-transient, which we explore next.

4.4.4 Gmin Stepping

Another homotopy, called Gmin stepping is as follows:

1. A large conductance (called Gmin), such that, say 100� D 1=Gmin, is
connected from every node to ground. These high conductances “swamp”
any large resistance in the elements, so that the circuit solution x0 has every
node voltage at very close to 0. This solution is easily found using a plain
Newton’s method, starting with an initial solution of x D 0.

2. Then, the Gmin value is stepped down in small increments to some very
small value, corresponding to a large resistance of, say 1012� D 1=Gmin.
At every step, the circuit is solved using a plain Newton’s method, using
the solution at the previous step as a starting value.

3. The final solution is the DC solution of the original circuit.

Having a small Gmin attached to every node gives a probably more realistic circuit
model, and is not really an “approximation.” Obviously, one can do one more
(final) step and solve the circuit with a Gmin of 0, but this is often pointless. It
is easy to see that this method is a homotopy, with:

h.x; ½/ D .½Gmin I C G/ x C Hg.x/� s (4.217)

so that, with ½ D 1, we can easily find a solution x0, which is close to zero and,
with ½ D 0, we get the desired solution xŁ of the original system.

There are other “flavors” of Gmin stepping, in which the conductances are
connected across pn-junctions, or similar. It is a fairly simple technique to imple-
ment, similar to source stepping, and is available in most commercial simulators.
As with source stepping, if it fails to converge, one can retry with a smaller step
size. If it does not converge after several trials, one may resort to more “heavy
duty” methods, such as pseudo-transient, which we now explore.

4.4.5 Pseudo-Transient

Both source stepping and Gmin stepping require disabling the dynamic ele-
ments (optionally adding resistance from every node to ground). Source stepping
requires modification of the independent sources, while Gmin stepping leaves
the sources as they are but modifies the network. Both methods use stepping of
a certain ½, as the homotopy parameter, and solve the DC circuit at every point
using a plain Newton’s method. Pseudo-transient is another homotopy, where
the homotopy parameter is time, and which has the salient features that a) the

190 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

independent sources and the dynamic elements are left intact and b) additional
dynamic elements are added to the network.

The idea is to first modify the network by adding dynamic elements, in such
a way that a prespecified state x0 becomes a valid initial state, and then to carry
out a transient simulation of the network, starting from x0, until a DC steady
state is (hopefully) reached. During this transient simulation, the values of the
independent sources are kept fixed , at their prespecified values for the intended
DC Analysis run. Hence the name, pseudo-transient. If we successfully reach a
DC steady state, then that steady state is the desired DC solution.

In pseudo-transient, the circuit dynamic elements help damp out the oscilla-
tions frequently encountered during the early phase of DC Analysis. It can be
slow, reportedly 2–10 times slower than plain Newton’s method. But, it has
proven to be quite successful in practice. Nevertheless, the scheme can fail, for
various reasons:

1. At some time point, the Newton loop may not converge, even for the
smallest allowable time-step.

2. We may not reach a DC steady state but, instead, an oscillatory response
may be generated by the transient simulation.

3. The simulation may not reach a DC steady state during the time budget
allotted to this pseudo-transient run.

There are variations on the basic pseudo-transient method. One simpler possibility
is to not modify the network in any way, but to ramp up the values of the
independent sources over time. This would be a combination of source stepping
and pseudo-transient. Another variant includes adding a nonlinear capacitor from
every node to ground, whose value is decreased over time.

During the transient simulation part of pseudo-transient, and because we only
care about the final steady state solution, then:

1. We can take large time-steps, with little regard to numerical errors, provided
we eventually converge to a DC steady state. This gives significant speed-up
relative to regular Transient Analysis.

2. We can modify the dynamic elements, in an arbitrary fashion, provided
we eventually converge to a DC steady state. This, crucially, is the key to
establishing the existence of a valid initial state.

The second point leads to the key construction behind the approach, and will be
explained in the following.

Valid Initial State A key question in connection with pseudo-transient is:
what does it mean for a certain state x0 to be a valid initial state, at t D 0, of
the dynamic MNA system:

Gx.t/ C Hg.x.t// C D.x/x0.t/ D s (4.218)

QUASI-NEWTON METHODS IN SIMULATION 191

The obvious answer is that x0 must be such that the following equation is true:

Gx0 C Hg.x0/C D.x0/x
0.0/ D s (4.219)

i.e., there must exist an assignment of x 0.0/ that balances this equation. We do not
actually need to know the slopes x 0.0/ in order to use pseudo-transient; we only
need to know that a valid x 0.0/ exists, for a given x0. The subsequent transient
simulation of the network, starting from x0, implicitly discovers these slopes “on
the fly,” as part of numerical integration.

It is possible for a certain assignment of x 0.0/ to be inconsistent , in the fol-
lowing sense. Note that KVL and KCL can be expressed in differential forms,
both locally and globally. Locally, if u1.t/, u2.t/, : : :, um.t/, are potential differ-
ences across branches that form a loop, then KVL implies that

P
j u0

j .t/ D 0; 8t .
Likewise, if i1.t/, i2.t/, : : :, im.t/, are all the branch currents that are incident
on a node, then KCL implies that

P
j i 0

j .t/ D 0; 8t . Globally, the differential
forms are Ai 0.t/ D 0 and AT u0.t/ D v0.t/. Thus, one may wonder if the implicit
assignment of x 0.0/ satisfies these differential forms of the network laws. One
can go further and differentiate the MNA system equation itself, and wonder
if this x 0.0/ assignment satisfies that new higher-order system. This would lead
to higher order derivatives, and to further questions about consistency, and is
a fruitless path to follow. For one thing, we are not concerned with satisfying
all the higher differential orders of the MNA system, only the basic first-order
system. Secondly, questions of existence of solutions to dynamical systems under
arbitrary stimulus remain an open research area. Instead, pseudo-transient applies
a transient simulation of the system, in spite of the possible inconsistencies at
t D 0. As the dynamics of the system die down over time, any inconsistencies
will typically vanish and the final DC steady state is a valid DC solution.

Pseudo-Transient Construction The construction required for pseudo-
transient consists of two steps:

1. Add an inductor in series with every independent voltage source and with
every controlled voltage source (CVS) that has a non-zero offset.

2. Add a capacitor in parallel with every independent current source and with
every controlled current source (CCS) that has a non-zero offset.

Each source is replaced by a combination of itself and the added Ls or Cs , as
shown in Fig. 4.28. Note that, with every new inductor, we get a new node in the
network, at the connection between the inductor and its corresponding voltage
source, and this introduces a new MNA variable as the voltage on that node. As
well, the currents in the new inductors become additional new MNA variables.

Notice that, if a current ik is an MNA variable (i.e., it is the control variable
to some controlled source) which, in the original network, goes through a (inde-
pendent or controlled) current source, then, in the new network, this current is
the total current going through the parallel combination of that current source

192 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

Is

j

k
Is

j

k

Cs

i

vv

i

i

Vs

j

k

i

Vs

j

k

Ls

i

vv

new
node

i
g(x)

j

k

i
g(x)

j

k

Ls

i

vv

new
node

g(x)

j

k

j

k

Cs

i

vv

i

g(x)

−
+

−+

−+

−+

−+

−
+

Figure 4.28: Source transformations for pseudo-transient.

and its new capacitor. One way to “access” this current is to insert a 0 V voltage
source in series with the parallel combination and to label its current as ik . Like-
wise, if a controlling variable uk D vi � v j is the voltage across a (independent
or controlled) voltage source in the original network, then, in the new network,
uk becomes the voltage across the series combination of that source and its new
inductor.

With these source transformations, the new MNA system is then built and the
modified network is initialized as per the following “recipe”:

1. All pre-existing nodes are initialized to 0 Volts and, so, all capacitor branch
voltages are initialized to 0 Volts.

2. Every new node is initialized to the voltage value of its independent voltage
source or the offset value of its controlled voltage source.

3. All MNA current variables are initialized to 0 Amps and all inductor branch
currents are initialized to 0 Amps.

The transient simulation run is then applied on this network, starting from this
initial condition.

QUASI-NEWTON METHODS IN SIMULATION 193

In the following, we will explain why it is that the above initialization gives
a valid initial state for the network. In other words, we will demonstrate the
existence of an x 0.0/ that balances the MNA equation for the case when the
initial state is determined by the above settings. Intuitively, we will see that this
is the case because the added dynamic elements effectively nullify the influence
of all independent sources at time t D 0.

4.4.6 Justification for Pseudo-Transient

Without loss of generality, we will work with an MNA system for a transformed
network, as follows:

1. All nonlinear elements are transformed so as to have zero offsets, by making
their offsets into explicit independent sources, as we saw earlier.

2. The network is transformed so that no capacitors are connected directly
to a terminal of an independent current source. This can be done without
impacting the network response in any way by either a) introducing a short
circuit (0 V voltage source or 0� resistor) in series with the current source,
or in series with the capacitor, or b) introducing a resistor in series with
the current source.

3. The network is transformed so that it contains no current source cycles.
This can be done without impacting the network response, by introducing
either a short circuit or a resistor in series with a current source.

These transformations have no impact on the network response and are only a
mathematical convenience; they allow an easier proof.

With these transformations, let the following be the MNA system of the result-
ing network (before addition of the new capacitors and inductors):

Gx.t/ C Hg.x.t// C D.x/x 0.t/ D s (4.220)

As a result of the 1st transformation, we have g.0/ D 0. As a result of the
2nd transformation, we have the following key property: if xk.t/ is the terminal
voltage of an independent current source, then Dik.x/ D 0; 8i , in (4.220). Thus,
the columns of D.x/ corresponding to terminals of independent current sources
are all zero. We are now interested in establishing x0 D 0 as a valid initial state
of the MNA system in (4.220).

Given that g.0/ D 0, then we must find an assignment x 0.0/ such that:

D.0/x 0.0/ D s (4.221)

but it is not obvious how this can be achieved. The idea behind pseudo-transient
is to add new dynamic elements to the network, so that the MNA system equation
can be expressed as:

Gx.t/ C Hg.x.t// C D.x/x0.t/ C K .x/x 0.t/ D s (4.222)

194 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

where G, H , g.Ð/, s, and x remain exactly the same as before, and the only
change is the new matrix K .x/, in such a way that, at t D 0, we have:

D.0/x 0.0/ D 0 and K .0/x 0.0/ D s (4.223)

so that x0 D 0 becomes a valid initial state of this modified network. Note, even
though adding new dynamic elements can potentially add new nodes/currents to
the original circuit and its MNA vector, but because of how we have transformed
the network, we will see below that (4.222) can indeed be written using the same
x.t/ as before. Under steady state, when x 0.t/ D 0, the system reduces to the DC
equation for the original system:

Gx C Hg.x/ D s (4.224)

so that the DC steady state is indeed a DC solution of the original system.

Voltage Source Consider the MNA system (4.220) and the voltage source
transformation shown in Fig. 4.29. The element equation for the original voltage
source is:

v j � vk D Vs (4.225)

where .v j � vk/ contributes to the G matrix and Vs contributes to s. In the
modified circuit, this becomes:

v j � vk C Lsi 0.t/ D Vs (4.226)

The new term Lsi 0.t/ contributes to the new matrix K .x/, only, so that the
modified network has an MNA equation of the form:

Gx.t/ C Hg.x.t// C D.x/x0.t/ C K .x/x 0.t/ D s (4.227)

where G, H , g.Ð/, s, and x remain exactly the same as before.1 Note that i.t/,
as the original voltage source current, is already a member of x.t/, and D.x/

i

j

k

Ls

i

v

−+

−
+

j

k
Vs Vs

i v−
+

Figure 4.29: Voltage source transformation for pseudo-transient.

1Notice that, because the current in the new inductor is equal to the current in the voltage source,
which is already an MNA variable, we have been able, for purpose of this proof, to accommodate
the new inductors without introducing new MNA nodes and currents, thereby keeping the same
variable vector x.t/. A practical application of pseudo-transient may introduce new MNA nodes and
currents, which entails a change in x.t/.

QUASI-NEWTON METHODS IN SIMULATION 195

i j

k

IsIs

Cs

i

v

j

k

v

Figure 4.30: Current source transformation for pseudo-transient.

always has a 0 coefficient that multiplies i 0.t/. Thus, at time 0, the initial condition
i 0.0/ D Vs=Ls achieves K .x/x 0.0/ D s (in the row corresponding to i.t/2), and
it contributes only zero terms to the product D.x/x 0.0/.

Current Source Consider the MNA system (4.220) and the current source
transformation shown in Fig. 4.30. The element equation for the original current
source is:

i.t/ D Is (4.228)

which contributes to s and, if this source happens to be in group 2, to G. In
the modified circuit, we can view the capacitor and current source as forming a
composite element, with the element equation:

i.t/ D Is � Cs
d

dt

�
v j .t/� vk.t/

Ð
(4.229)

or
i.t/ C Cs

�
v0

j .t/ � v0
k.t/

Ð D Is (4.230)

The new term Cs

�
v0

j .t/� v0
k.t/

�
contributes to the new matrix K .x/, only, so

that the modified network has an MNA equation of the form:

Gx.t/ C Hg.x.t// C D.x/x0.t/ C K .x/x 0.t/ D s (4.231)

where G, H , g.Ð/, s, and x remain exactly the same as before. Note that D.x/
has 0 coefficients that multiply v0

j .t/ and v0
k.t/, due to the 2nd transformation

that we saw earlier, on page 193. Therefore, at time 0, the initial condition
v0

j .0/� v0
k.0/ D Is=Cs achieves K .x/x 0.0/ D s, in the rows of the MNA system

corresponding to nodes j and k, but it contributes only zero terms to the product
D.x/x 0.0/. And, due to the 3rd transformation on page 193, we have no current
source cycles, and we should be able to assign values of v0

j .0/ and v0
k.0/ around

the network in order to achieve v0
j .0/� v0

k.0/ D Is=Cs for every current source,
without running into a conflict.

2The row of K .x/x 0.t/ D s corresponding to i.t/ is Lsi 0.t/ D Vs .

196 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

Valid Initial State As a result, we have identified the required assignments
x 0

i .0/ for all terminals of the new capacitors and currents of the new inductors,
such that a) these assignments lead to K .0/x 0.0/ D s, and b) they contribute zero
terms to the product D.x/x 0.0/. For all other x 0

j .0/, which do not correspond
to voltage terminals of the new capacitors or currents of the new inductors, we
simply set x 0

j .0/ D 0. In this way, we achieve D.0/x 0.0/ D 0, and the state x D 0
becomes a valid initial state of the system:

Gx.t/ C Hg.x.t// C D.x/x0.t/ C K .x/x 0.t/ D s (4.232)

In a practical application of pseudo-transient, as we saw above, new nodes
and new currents may be introduced, as additional MNA variables, and these
must be initialized as well. For the new nodes, since the voltage at the other side
of the voltage source (or CVS) is initialized to zero, the new node is initialized
to Vs (or the offset value of the CVS). For the new currents, they are equal to
the voltage source or CVS currents, which have been initialized to zero, so they
are initialized to 0 as well. Thus, the initialization “recipe” given earlier indeed
leads to a valid initial state for the modified network. We close this section with
a couple of remarks:

1. The values of the added dynamic elements are somewhat arbitrary. They
may be set to arbitrary fixed values, as in SPICE, where they are set at 1 H
and 1 F. They may also be chosen as nonlinear elements, and their values
may be changed over time, as in some modern research proposals.

2. As for the original circuit dynamic elements, they may be kept, removed,
or their values modified, as seen fit to aid convergence. This is because
these original elements contribute to D.x/ only and, since D.x/x 0.0/ D 0,
they do not affect the validity of the initial state. It is often advantageous
to keep them in the network because, in general, they contribute to a better
conditioned Jacobian and better convergence.

This continues to be a lively research area.

Notes Even the best known methods for solving nonlinear circuits are not
guaranteed to always converge, and problems can arise in practice, in both DC
and Transient Analysis. In Transient Analysis, one way to recover from a
non-convergence problem is to reduce the time-step and try again, as done in
SPICE. With a shorter time-step, the initial Newton solution is closer to the final
true solution, and convergence becomes easier. However, simulators typically
impose an internal lower limit on the size of the time-step. If this limit is reached,
and convergence not yet achieved, SPICE will abort with an error message “Time
step too small.” For DC Analysis, convergence can be aided by the use of initial
node voltage specification by the user, for certain key nodes in the circuit.

Additional reading is available in Pillage et al. (1995), chapter 10, in Vlach
and Singhal (1994), chapter 12, and in McCalla (1988), chapter 4. For additional
coverage of solution methods for nonlinear equations in general, consult the texts

PROBLEMS 197

by Kelley (1995), Burden and Faires (2005), Bartle (1976), Dennis and Schnabel
(1996), Chua and Lin (1975), and Press et al. (2007).

Problems

4.1. Consider the function f .x/ D x C 2x1=3 � 4, with x 2 R.

(a) Starting with x0 D 27, use the fixed point method to find a fixed point
of g.x/.

(b) Starting with the same x0 D 27, apply Newton’s method to find a
solution of f .x/ D 0.

(c) Starting with x0 D 0:001, apply Newton’s method again to find a solu-
tion of f .x/ D 0.

4.2. Consider the function:

f .x/ D
(p

x x ½ 0

�pjx j x � 0

(a) Show that Newton’s method, applied to this function, gives an oscil-
lating sequence x0;�x0; x0;�x0; : : :, for any initial candidate solution
x0 6D 0, ignoring roundoff.

(b) Does this function satisfy the standard assumptions for convergence
of Newton’s method?

4.3. Let f : R
n ! R

n have a nonsingular Jacobian J f .x/, for all x 2 R
n , and

let f .xŁ/ D 0, for some xŁ 2 R
n .

(a) If f is affine and invertible, show that xŁ is unique and that Newton’s
method would find it in a single iteration.

(b) If fi is affine for only some i , show that, for any initial candidate
solution x .0/, Newton’s method would give fi .x .k// D 0 for all k ½ 1.

4.4. Let f : R
n ! R

n , let J f .x/ be its Jacobian, let xŁ be a solution of f .x/ D
0, and let 8.x/ be an n ð n matrix. Let g.x/ D x �8.x/ f .x/ and Jg.x/
be its Jacobian. Prove that Jg.xŁ/ D 0 if and only if 8.xŁ/J f .xŁ/ D I ,
where I is the identity matrix.

4.5. Give the companion model for a nonlinear resistor with the following
element equation:

v D
(

i2 i ½ 0

�i2 i � 0

4.6. If v 2 R
p is a vector, we denote by jvj the vector formed by replacing

each entry of v by its absolute value. If v;w 2 R
p and if jvi j � jwi j for all

198 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

i 2 f1; 2; : : : ; pg, then we write that jvj � jwj. By definition of p-norms, it
is clear that kvk D kjvjk, for any v 2 R

p. This is expressed by saying that
p-norms are absolute. It follows that p-norms are also monotone, which
is to say that jvj � jwj implies that kvk � kwk, for any v;w 2 Rp.

(a) For any vector p-norm k Ð kp, prove that:

8v 2 R
n : .1=n/kvk1 � kvkp � n1=pkvk1

(b) For any matrix A 2 R
mðn , let v.A/ be a vector in R

mn consisting of all
the entries of A. Then, for any vector p-norm and the corresponding
induced matrix p-norm, prove that:

kAk � nkv.A/k

(c) Let f : D ² R
n ! R

m , where D is open and convex. If all the 2nd

derivatives @2 fk=@xi@x j are continuous and bounded by M in D, prove
that the Jacobian J .x/ is Lipschitz continuous in D, with a Lipschitz
constant � D n3 M .

4.7. Show that the diode i-v characteristic has the smallest radius of curva-
ture at:

vd D �VT ln

�
�VTp
2Isat

�

4.8. (Computer Project) Based on the linear solver that was developed previ-
ously in problem 3.16, write a C or C++ implementation of a DC solver
for nonlinear resistive circuits, using Newton’s method based on the use
of companion models and element stamps. Your implementation should be
general, in the sense that it should accept any linear or nonlinear circuit
description consisting of any combination of linear resistors, independent
voltage and current sources, diodes, BJTs, and MOSFETs. You will model
diodes, BJTs, and MOSFETs using the simple models given in the text,
with no series resistance. Thus, the diode has the standard exponential
diode model (4.74), the BJT has the Ebers-Moll model we saw earlier
in Fig. 4.20, and MOSFETs have the simplest (quadratic) model we saw
above in (4.172), which is suitable for long-channel devices.
As a first step in your solution, you should scan the element list and cre-
ate the matrix G that is the contribution to the Jacobian by the linear
elements, the vector s that is the contribution to the RHS vector by the
linear elements, and the vector g.x/ of nonlinear functions that corre-
spond to each nonlinear CVS or CCS in the network. When using New-
ton’s method, you should build the Jacobian J f .x .k// � G C H Jg.x .k//
by using element stamps, instead of by using the defining expression
G C H Jg.x .k// directly. In each Newton iteration, you should build the

PROBLEMS 199

system J f .x .k//x .kC1/ D s.k/ by creating fresh copies of G and s and then
adding the stamps due to the nonlinear elements.
In order to determine when to stop the Newton iterations, you should
check both the size (norm) of the steps in x and the value (norm) of the
function f .x/ D Gx C Hg.x/� s, using a relative tolerance of 0:1% and
an absolute tolerance of 1 mV (for voltages) and 1¼A (for currents). To

1 2

3

4
5

6

7

0

100Ω

450Ω

3V

450Ω

640Ω

−
+

Figure 4.31: A nonlinear test circuit.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Voltage at Node 1 (V)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2

V
ol

ta
ge

 a
t N

od
e

7
(V

)

Figure 4.32: Solution of problem 4.8.

200 SOLUTION OF NONLINEAR ALGEBRAIC CIRCUIT EQUATIONS

evaluate the function f .x/, you need to know the matrix H , which you can
infer from the incidence relations in the circuit, and you need to evaluate
g.x/. In order to improve the chances of convergence in Newton’s method,
you should use generalized damping with � D 1:3 and k D 16.
Use your code to perform a DC Sweep of the circuit shown in Fig. 4.31,
based on the following parameters. For the MOSFET, Vt D 0:6 V, ½ D
0:01/V, and þ D 0:5 mA/V2. For the BJT, ÞF D 0:99, ÞR D 0:02, Ies D
2 ð 10�14 A, Ics D 99 ð 10�14 A, and VT c D VT e D 26 mV. Generate a
plot of the output DC voltage (at node 7) versus the input DC voltage
(at node 1), as it is swept from 0 V to 3 V, in steps of 0.01 V. The correct
solution is shown in Fig. 4.32.

CHAPTER 5

Solution of Differential
Circuit Equations

In the presence of dynamic (L and C) elements, the network equations can be
formulated as a system of differential equations. Solving such systems is not
easy, and gets harder when the dynamic elements are nonlinear. As we will
see, the practical approach for solving differential equations is to repeatedly
discretize them and solve the resulting algebraic equations. The need to solve a
dynamic network arises as part of the Transient Analysis mode of standard cir-
cuit simulators. We will study dynamic elements and the resulting dynamic MNA
equations, general solution methods, and their application to circuit simulation.

5.1 DIFFERENTIAL NETWORK EQUATIONS

Considering the formulation of the network equations, it should be clear that
KCL and KVL remain as linear algebraic relationships. The network equations
become differential due only to the dynamic element equations .

5.1.1 Dynamic Elements

The most basic dynamic elements are the familiar two-terminal capacitors and
inductors, be they linear or nonlinear, which we will now review. As well, and in
order to incorporate internal dynamic elements of multiterminal elements (MTE),
we will study some generalizations of the basic L and C elements.

Capacitors If q.t/ is the charge on a capacitor, then recall that capacitor
current is the rate of change of charge, so that:

i.t/ D d

dt
q.t/ D q 0.t/ (5.1)

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

201

202 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

As well, recall that the charge q is a function of the voltage v across the capacitor,
so that:

i.t/ D dq

dv

dv

dt
D C.v/

dv

dt
D C.v/v0.t/ (5.2)

where C.v/ � dq=dv is the capacitance. Note that the dependence of v on t is
implicit when we write C.v/, but is omitted to simplify the notation. If dq=dv
is a constant, independent of v, then the capacitor is said to be linear and its
capacitance is fixed, otherwise it is nonlinear and its capacitance is a function
of voltage.

More generally, the charge can be a function of other voltages or currents in
the network, so that, if x.t/ is the MNA vector, then:

i.t/ D d

dt
q .x.t// D

X
j

@q

@x j

dx j

dt
(5.3)

In practice, where this arises, such as in MOSFETs, the charge is typically a
function of the MOSFET terminal voltages. If we let C j .x/ � @q=@x j , then:

i.t/ D
X

j

C j .x/x
0
j .t/ (5.4)

When x j is not a terminal voltage of this capacitor, C j is referred to as a mutual
capacitance, otherwise it is the self-capacitance. Equivalently, one can view
the expression (5.4) as representing the current through a parallel collection of
several dynamic controlled current sources (DCCS), to ground:

i.t/ D
X

j

p j .x; x 0
j / (5.5)

However, the best way to handle mutual capacitance is to consider it as part of the
device model of a multiterminal element. This ensures that charge conservation is
maintained, as we will see later. Therefore, we will mainly be concerned with self,
not mutual, capacitance, except for brief coverage later on under multiterminal
elements.

Inductors If �.t/ is the flux in an inductor, then recall that voltage across the
inductor is the rate of change of flux, so that:

v.t/ D d

dt
�.t/ D �0.t/ (5.6)

As well, recall that the flux � is a function of the current i in the inductor, so
that:

v.t/ D d�

di

di

dt
D L.i/

di

dt
D L.i/i 0.t/ (5.7)

DIFFERENTIAL NETWORK EQUATIONS 203

where L.i/ � d�=di is the inductance. Note that the dependence of i on t is
implicit when we write L.i/, but is omitted to simplify the notation. If d�=di
is a constant, independent of i , then the inductor is said to be linear and its
inductance is fixed, otherwise it is nonlinear and its inductance is a function of
current.

More generally, the flux can be a function of other voltages or currents in the
network, so that, if x.t/ is the MNA vector, then:

v.t/ D d

dt
� .x.t// D

X
j

@�

@x j

dx j

dt
(5.8)

If we let L j .x/ � @�=@x j , then:

v.t/ D
X

j

L j .x/x
0
j .t/ (5.9)

When x j is not the current in this inductor, L j is referred to as a mutual
inductance, otherwise it is the self-inductance. Equivalently, one can view the
expression (5.9) as representing the voltage across a series collection of several
dynamic controlled voltage sources (DCVS):

v.t/ D
X

j

p j .x; x 0
j / (5.10)

However, as with capacitance, we will mostly be concerned with self, not mutual,
inductance.

5.1.2 Dynamic MNA Equations

We saw earlier that the dynamic MNA equations in the linear case can be written
as:

Gx.t/ C Dx 0.t/ D s.t/ (5.11)

where G is the MNA system matrix and D is a constant matrix arising from the
contributions of all the dynamic L and C elements. We also saw, in the case of
nonlinear DC circuits, that the MNA equations can be written as:

Gx C Hg.x/ D s (5.12)

where H is a matrix whose entries are either 0 or š1 and g.x/ is a vector of
all the element functions g j .Ð/ of the nonlinear controlled current source (CCS)
and controlled voltage source (CVS) elements. Combining the above, if we have
general nonlinear resistive elements and only linear dynamic elements, then the
MNA system becomes:

Gx.t/ C Hg.x/C Dx 0.t/ D s.t/ (5.13)

204 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

where the dependence of x on t is implicit when we write g.x/, but is omitted in
order to simplify the notation. Finally, in the presence of nonlinear two-terminal
dynamic elements, this becomes:

Gx.t/ C Hg.x/C D.x/x 0.t/ D s.t/ (5.14)

where D.x/ is a matrix that includes contributions from all the linear and non-
linear (self and mutual) capacitance and inductance terms.

More generally, it is easy to see that, as was done in the case of nonlinear
resistive circuits, we can write the dynamic MNA system as:

Gx.t/ C Hg.x/C Ep.x; x 0/ D s.t/ (5.15)

where E is a matrix whose entries are either 0 or š1 and p.x; x 0/ is a vector of the
functions p j .Ð/ of all the DCCS and DCVS elements. This form (5.15) subsumes
the previous two special cases (5.13) and (5.14), but is only of theoretical interest;
we will see that (5.14) is the form that will be most useful.

5.1.3 DAEs and ODEs

An equation x 0.t/ D f .x; t/ where x : R ! R and f : R ð R ! R is called
a first-order ordinary differential equation (ODE). The equation is ordinary
because it has an ordinary derivative, as opposed to a partial derivative. It is of
first order because it includes only the first derivative. For our purposes, t 2 R

represents time, but, in general, it can be otherwise. When x and f are vectors,
and t a scalar, then

x 0.t/ D f .x; t/ (5.16)

is a system of ordinary differential equations, or simply an ODE system . As we
will see, ODEs have a rich history, with the earliest techniques for their numerical
solution dating back to the late 1800s.

Unfortunately, in general, circuit equations are not ODEs. Only under certain
conditions can the dynamic MNA system be transformed to an ODE, a form
which is called the state variable representation in the circuits literature. For
example, if the system is of the form (5.13) or (5.14), and if D or D.x/ is
nonsingular, then we can easily transform the MNA system to an ODE system,
but this is not guaranteed in general. There are methods, based on the construction
of a hybrid port matrix , as described in Chua and Lin (1975), to convert any
circuit to a state variable representation, but these methods are computationally
expensive and generally not suitable for use in circuit simulation.

In general, then, the dynamic MNA system is of the form:

F.x; x 0; t/ D 0 (5.17)

where F : .Rm ð Rm ð R/ ! Rm , which is called a system of differential-
algebraic equation (DAE), or a DAE system. DAEs are more difficult to solve,

DIFFERENTIAL NETWORK EQUATIONS 205

and techniques for their solution are not yet fully understood and developed;
they remain an active area of research. Indeed, in contrast to ODEs, as we will
see, there is no general theorem that guarantees existence and uniqueness of
solutions for DAEs.

Loosely speaking, integration is a smoothing process, while differentiation is
the opposite; one may call it an antismoothing process, as in Burden and Faires
(2005). An ODE, like x 0.t/ D Ax.t/ C b.t/ involves integration of the right hand
side, so that the solution x.t/ is, again loosely speaking, smoother than b.t/. A
DAE, on the other hand, involves both differentiation and integration. By taking
derivatives of a DAE, one can often transform it into an ODE. The minimum
number of differentiations required to do this is called the index of the DAE. As
a simple example, given in Ascher and Petzold (1998), consider the following
DAE system, where the dependence of xi on t is suppressed to simplify the
notation:

x1 D a.t/

x2 D x 0
1

(5.18)

We can differentiate the first equation to get x 0
1 D a0.t/. We can also differentiate

the second equation, x 0
2 D x 00

1 , so that x 0
2 D a00.t/, leading to the ODE system:

x 0
1 D a0.t/

x 0
2 D a00.t/

(5.19)

Because two differentiations of a.t/ were needed, this is an index 2 DAE. The
notion of index is useful to understand the mathematical structure, and difficulty,
of DAE systems, but it is not helpful as far as solving them. For the general
MNA system, a DAE, the index depends on the type of circuit considered; it is
often 0 or 1, but can be higher. In general, lower-index DAEs are easier to solve
and, for DAEs of index greater than 2, one often attempts to reduce their index
before solving them. But there is no general systematic technique for doing so.

Even though there are no fully developed solution methods for DAEs, it is
possible to use some ODE solution methods to solve DAEs, and this often works
well in practice, but there are no guarantees. However, many of the attractive
properties (accuracy, stability) that these methods have when used on ODEs are
lost when they are applied to DAEs. There are in fact DAEs for which even
the best known ODE methods lead to unstable behavior. One such strategy (of
adapting ODE solution methods to DAEs) is called direct discretization, and is the
method of choice in circuit simulation, and many other fields where DAEs arise.

Therefore, our plan of work in the remainder of this chapter will be to study
ODE solution methods in some detail, with emphasis on those methods that can
be applied to DAEs by means of direct discretization, and then to illustrate how
these methods can be applied to DAEs in general, and to circuit simulation in
particular.

206 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

5.2 ODE SOLUTION TECHNIQUES

In this section, and the next two, we will describe numerical methods for solving
ODEs. The treatment is general, and not specific to circuit simulation. However,
much care has been taken to limit the discussion to those techniques and con-
cepts that are essential to circuit simulation. This material is based on a number
of sources, including primarily Lambert (1991), as well as Ascher and Petzold
(1998), Burden and Faires (2005), and Ralston and Rabinowitz (2001).

For the following material, it will be useful to introduce the 0.h/-notation. We
are already familiar with the O.h/-notation, which is useful to capture behavior
at large h, and we now define notation that is useful for small h.

Definition 5.1. If r 2 R and F.r/ is either a scalar or a vector, and if there is
a constant K > 0 such that kF.r/k � K h p for sufficiently small jhj, then we
write:

F.h/ D 0.h p/ (5.20)

5.2.1 ODE Systems and Basic Theorems

Recall, a first-order ODE system is the m-dimensional system:

x 0.t/ D f .x; t/ (5.21)

where t 2 R, x : R ! R
m , and f : R

m ð R ! R
m . The general solution of such

a system contains, in general, m arbitrary constants. For example, after Lambert
(1991), the system:

x 0
1 D x1

t
C t x2 (5.22)

x 0
2 D �

x2
2 � 1

Ð t

x1
(5.23)

has the general solution:

x1.t/ D t

c1
cos .c1t C c2/ (5.24)

x2.t/ D � sin .c1t C c2/ (5.25)

for arbitrary constants c1 and c2, provided c1 6D 0. If an additional set of m
side conditions are imposed on the system, they can serve to select a spe-
cific solution with specific c1 and c2 values. If these m conditions are that
x1.t/; x2.t/; : : : ; xm.t/ take given values at the same initial time-point t0, then
the resulting problem is called an initial value problem (IVP):

x 0.t/ D f .x; t/

x.t0/ D x0

(5.26)

ODE SOLUTION TECHNIQUES 207

and we are typically interested in the solution for t ½ t0, up to some t � t f .
For the time-domain solution of circuit equations, we are primarily interested in
solution methods for IVPs.

Notice that x.t/ solves the IVP (5.26) if and only if:

x.t/ D x.t0/C
Z t

t0

f .x.− /; −/ d− (5.27)

Thus, as we will see, there is a strong connection between numerical solution
methods for ODEs and methods for numerical integration . Indeed, the act of
solving an ODE is often referred to as numerical integration, and ODE solution
methods are often called numerical integration methods.

Existence and Uniqueness Not all IVPs possess a unique solution, nor
indeed any solution at all. For example, with m D 1, the IVP x 0 D 3x C 2; x.0/ D
5, has the unique solution x.t/ D .17=3/e3t � .2=3/. As another 1-dimensional
example, the IVP:

x 0 D
(p

x; if x ½ 0I
0; otherwise:

(5.28)

x.0/ D 0 (5.29)

has the solution:

x.t/ D
8<
:
.t � c/2

4
; for t ½ cI

0; for 0 � t � c:
(5.30)

where c> 0 is arbitrary, so that the solution is not unique. The following theorem
gives a local existence result:

Theorem 5.1. (Peano Existence Theorem) If f .x; t/ is continuous at .x0; t0/, then
there exists a solution to the IVP x 0 D f .x; t/; x.t0/ D x0, over some interval that
contains t0.

Peano’s theorem does not guarantee a unique solution, as shown by an example
in Chua and Lin (1975). For a local existence and uniqueness result, we have
access to the following:

Theorem 5.2. (Picard-Lindelöf Theorem) Let D ² R
m and I ² R be closed and

let f : D ð I ! R
m be bounded, continuous in t, 8t 2 I , and Lipschitz contin-

uous in x, 8x 2 D. Then, for any .x0; t0/ 2 D ð I, there exists a unique solution
x.t/ of the IVP x 0 D f .x; t/; x.t0/ D x0, over some interval I 0 ² I , with t0 2 I 0.
Moreover, the solution x.t/ is continuous with respect to .x0; t0/.

Loosely speaking, the final statement, of continuity with respect to .x0; t0/,
means that the system is not “overly sensitive” to its initial conditions. This is

208 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

a desirable property because, otherwise, a numerical solution of such a system
would be unreliable, due to inevitable roundoff error. We will have more to say
about this property of ODE systems.

Well-Posedness Given the IVP x 0 D f .x; t/; x.t0/ D x0, and with t 2 [t0; t f],
we define the following perturbed IVP:

x̂ 0 D f .x̂; t/C Ž.t/

x̂.t0/ D x0 C Ž0

(5.31)

where Ž : R ! R
m and Ž0 2 R constitute a perturbation .Ž.t/; Ž0/ of the system,

and where the solution x̂.t/ is called the perturbed solution . Due to inevitable
roundoff errors, numerical methods are, in practice, always solving a perturbed
version of the intended problem. Thus, we are mostly interested in small mag-
nitude perturbations, such as would be representative of numerical or roundoff
errors. The following definition, after Lambert (1991), is useful to capture a type
of stability under perturbations:

Definition 5.2. Let .Ž.t/; Ž0/ and .ŽŁ.t/; ŽŁ
0/ be any two perturbations of the

IVP x 0 D f .x; t/, x.t0/ D x0, and let x̂.t/ and x̂Ł.t/ be the resulting perturbed
solutions. If there exists a S> 0 such that, for all t 2 [t0; t f], we have:

kx̂.t/� x̂Ł.t/k � Sž; whenever kŽ.t/ � ŽŁ.t/k � ž and kŽ0 � ŽŁ
0k � ž;

then the IVP is said to be totally stable, or well-posed .

Thus, loosely speaking, a problem is totally stable if small perturbations in
the data produce correspondingly small perturbations in the solution. Note that
this is a property of the problem and not of any numerical method for solving
it; a problem with this property is also said to be well-posed . If a problem
is not well-posed, i.e., not totally stable, then any numerical solution for it is
totally unreliable. We are only interested in problems that are totally stable or
well-posed.

Standard Theorem The following standard theorem gives sufficient condi-
tions for existence and uniqueness of a global solution of an IVP, as well as for
total stability:

Theorem 5.3. (Standard Theorem) Let D D ý
.x; t/jt0 � t � t f and x 2 R

m
�

where t0 and t f are finite, and let f .x; t/ be continuous in t on D and Lipschitz
continuous in x on D. Then, for any x0 2 R

m, there exists a unique solution x.t/
of the IVP x 0 D f .x; t/; x.t0/ D x0, where x.t/ is continuous and differentiable
in D. Moreover, the IVP is well-posed (totally stable).

In all the subsequent work, we will always assume that the hypotheses of this
theorem apply to the systems under study.

ODE SOLUTION TECHNIQUES 209

Linear Systems with Constant Coefficients The ODE system x 0 D f .x; t/
is said to be linear if f .x; t/ takes the form:

f .x; t/ D A.t/x C b.t/ (5.32)

where A.t/ is an m ð m matrix (of time-functions) and b : R ! R
m . Further-

more, if A.t/ D A is independent of time, then the system is said to be linear
with constant coefficients:

x 0 D Ax C b.t/ (5.33)

The study of the (special case) of linear constant-coefficient systems will turn
out to be useful in order to study the stability of general numerical methods.
Associated with a system x 0 D Ax C b.t/ is the so-called homogeneous
system:

x 0 D Ax (5.34)

If Qx.t/ is the general solution of (5.34) (which allows for m arbitrary con-
stants) and .t/ is a particular solution of (5.33), then one can show that:

x.t/ D .t/C Qx.t/ (5.35)

is the general solution of (5.33).
Suppose that A has m distinct eigenvalues, ½1; ½2; : : : ; ½m , with the corre-

sponding eigenvectors q1; q2; : : : ; qm . It is easy to check by substitution that
e½i t qi is a particular solution of (5.34), and one can prove that:

Qx.t/ D
mX

iD1

ci e
½i t qi (5.36)

is the general solution of (5.34), where the ci are arbitrary constants. As a result,
the general solution of the linear ODE system with constant coefficients (5.33)
is given by:

x.t/ D .t/ C
mX

iD1

ci e
½i t qi (5.37)

5.2.2 Overview of Solution Methods

Exact solutions to ODE systems can be found only in certain limited cases. In the
general case, we must resort to numerical solution methods. Numerical methods
can only provide particular solutions, i.e., a solution for a given initial value
assignment. Numerical methods start with the known value of x at t D t0 and
then, as Butcher (2000) puts it, “their basic approach is to extend the set of t
values for which an approximation to x.t/ is known, in a step-by-step fashion ,”
up to some t D t f .

210 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Numerical methods also involve the use of discretization . The continuous
interval [t0; t f] is replaced by the discrete point set ftng:

t0 < t1 < t2 < Ð Ð Ð < tn�1 < tn < Ð Ð Ð (5.38)

where hn � tn � tn�1 is called the step-size or the time-step. In many cases,
we will work with a fixed time-step h, so that tn D t0 C nh. Numerical methods
provide approximate values of the solution at the time-points tn . Thus, we dis-
tinguish between the exact solution to the IVP over [t0; t f] and the approximate
or numerical solution over ftng.

In order to simplify the notation, it will be useful to denote the (numerically
found) approximate solution at time tn by xn , so that our aim is to achieve:

xn ³ x.tn/ (5.39)

To avoid confusion, we will denote the components of a vector x by x. j/ rather
than x j ; we will only rarely have need to refer to x. j/. Thus, we are interested
in numerical methods that produce a sequence fxng that approximates the exact
solution evaluated at ftng, i.e., that approximates the sequence fx.tn/g.

History and Classification Numerical methods for solving ODEs, specifically
IVPs, have a rich history, summarized in Butcher (2000), and the earliest solutions
were proposed in the late 1800s. There are two classes of methods:

1. Linear multistep (LMS) methods, due originally to work by J. C. Adams,
published in a paper by F. Bashforth and J. C. Adams in 1883, leading to
the Adams-Bashforth methods, with later work by F. R. Moulton, published
in 1926, leading to the Adams-Moulton methods.

2. One-step methods, called Runge-Kutta methods, due originally to the work
of C. Runge, published in 1895, further developed in a work by K. Heun,
dated 1900, and a work by W. Kutta, published in 1901.

Multistep methods make use of the previously found values xn; xn�1; : : : in order
to produce a value of xnC1. In contrast, Runge-Kutta methods make use of the
previously computed xn to produce a value of xnC1. They do make use of one
or more evaluations of the function at intermediate points between tn and tnC1

in order to improve accuracy. However, these function evaluations are then dis-
carded and are not reused in making future steps.

Linear multistep methods are more computationally efficient than Runge-Kutta
methods, and are more suitable for solving stiff systems .1 Thus, we will focus on
linear multistep methods; these are the methods that are typically used in circuit
simulators, SPICE included. The modern analysis schemes for linear multistep
methods are due largely to the work of G. Dahlquist in the 1950s. The study of

1We will return later on to the topic of stiffness; circuit equations often turn out to be stiff systems .

ODE SOLUTION TECHNIQUES 211

stiff systems dates back to the early work of C. F. Curtiss and J. O. Hirschfelder,
published in 1952, and practical methods for solving them were developed by
Gear (1971). Gear gave a detailed study of the backward differentiation formulas
(BDF) which are among the best modern methods for solving stiff systems.

General Form Following the notation of Lambert (1991), almost all numerical
methods for IVPs can be written in the following general form:

k�1X
jD�1

Þ j xn� j D h� f .xnC1; xn; : : : ; xn�kC1; tnI h/ (5.40)

where the time-step h has been assumed fixed, k ½ 1 is the step-number , and
� f .Ð/ is a function that depends on the system function f .Ð/. The above (5.40) is
called a k-step method; if k D 1, it is a one-step method , otherwise it is a multistep
method . Multistep methods require some start-up scheme, which we discuss later
on. If the specific � f .Ð/ being used does not actually depend on xnC1, then the
method is called explicit , otherwise it is said to be implicit . Implicit methods are,
in general, more powerful but harder to solve, and typically require the solution
of a nonlinear equation to find xnC1.

Linear multistep (LMS) methods are characterized by a � f .Ð/ which is a linear
function of the values of f .Ð/ at the current and previous time-points, so that:

k�1X
jD�1

Þ j xn� j D h
k�1X
jD�1

þ j f .xn� j ; tn� j / (5.41)

where Þ�1 � 1 and where, as a technical condition that does not reduce the gen-
erality of the formula in any way, we require that jÞk�1j C jþk�1j 6D 0. It is cus-
tomary to introduce the notation fi � f .xi ; ti /, and to write the LMS method as:

k�1X
jD�1

Þ j xn� j D h
k�1X

jD�1

þ j fn� j (5.42)

where, if þ�1 D 0, the method is explicit , otherwise it is implicit .

5.2.3 Three Basic Methods: FE, BE, and TR

We will now study three simple and basic linear multistep methods, before return-
ing to a formal study of their general properties.

Forward Euler (FE) The forward Euler (FE) method, also called simply
Euler’s rule, is rarely used in practice, but is simple enough to allow a detailed
analysis. In the 1-dimensional case, we can write a Taylor series expansion at tn :

x.t/ D x.tn/C .t � tn/x
0.tn/C .t � tn/2

2
x 00.¾/ (5.43)

212 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

for some ¾ between tn and t . Then, at t D tnC1 D tn C h, we have:

x.tnC1/ D x.tn/C hx 0.tn/C h2

2
x 00.¾/ (5.44)

In the m-dimensional case, we can write this as:

x.tnC1/ D x.tn/C hx 0.tn/C 0.h2/ (5.45)

This is the motivation for Euler’s rule, or the forward Euler (FE) method, for
solving the IVP x 0 D f .x; t/, as:

xnC1 D xn C h f .xn; tn/ (5.46)

or, simply:
xnC1 D xn C h fn (5.47)

Notice that this is a linear multistep method, with Þ�1 D 1, Þ0 D �1, þ0 D 1, and
all other coefficients at 0. It is an explicit method, providing an explicit formula
for computing xnC1.

Euler’s rule ignores the 0.h2/ remainder term, but how accurate is it? In other
words, how good is the approximation xn ³ x.tn/ resulting from its use? We can
expect that “fresh” error may be introduced at every step, due to truncation of
the Taylor series expression. This is called the local truncation error (LTE) and
will be defined later. We can also expect that error may accumulate as we move
forward in time, leading to a global error which is possibly larger than the LTE.
We can further expect that additional error would be introduced due to roundoff
and finite precision arithmetic.

FE is simple enough that we have access to the following results. If f .x; t/
is Lipschitz continuous for all x 2 R and all t0 � t � t f , with constant L , and if
jx 00.t/j � M; 8t 2 [t0; t f], then, for Euler’s rule, it is shown in Burden and Faires
(2005) that: þþxn � x.tn/

þþ � hM

2L

ð
eL.tn�t0/ � 1

Ł
(5.48)

Considering this result, notice that local (truncation) error is introduced at every
step, and it shrinks linearly with smaller h, and that the global error accumulates
over time, growing exponentially as tn � t0 increases. Because the local error
is reduced for smaller h, we are motivated to use smaller time-steps. However,
for very small time-steps, roundoff error becomes problematic; the above result
actually does not address roundoff, but the next one does.

If the roundoff error introduced in each application of FE is no larger than
Ž > 0, then the above result is modified, as in Burden and Faires (2005), to give:

þþxn � x.tn/
þþ � 1

L

�
hM

2
C Ž

h

� ð
eL.tn�t0/ � 1

ŁC ŽeL.tn�t0/ (5.49)

ODE SOLUTION TECHNIQUES 213

The behavior of this error bound is more complex; it does not decrease uniformly
with h. Instead it has a non-monotone behavior: it decreases as we decrease h
from very large values, it decreases as we increase h from very small values,
and it achieves a minimum at:

h D
r

2Ž

M
(5.50)

In practice, however, Ž is small enough relative to typical values of the LTE,
that this optimal value of h is extremely small, and does not affect the practical
application of FE.

Global and Roundoff Error As we will see later on, practical methods for
solving IVPs vary the size of the time-step based on the estimated local truncation
error. Strictly speaking, this is not enough. One would like to be able to also
monitor error accumulation over time, i.e., the global error, not just the local error.
As well, one would like to be able to take roundoff error into account. However,
while there are some theoretical results for taking both global and roundoff errors
into account, these results are not useful in practice. They give only error bounds
that are extremely loose, as described in Lambert (1991). It is provable that,
for linear multistep methods, the bound on the total error (including global and
roundoff error) behaves in a way similar to FE. It decreases as h is decreased
from very high values, but eventually increases, as 1=h, as h is decreased further
to very small values. However, as mentioned, these bounds are extremely loose
and cannot be used for error estimation and time-step control.

Thus, in practice, numerical methods for solving IVPs are applied while mon-
itoring only the local truncation error. This means that there is no iron-clad
guarantee that these methods are as accurate as we think they are. Yet these
methods are quite successful in practice, and they continue to be used in many
fields of science and engineering. It may be, as is the case with forward Euler,
that the range of values of h where roundoff error becomes significant, compared
to LTE, is so low that we should never have to worry about them; but we really
do not know this for sure.

Backward Euler (BE) In fact, as we will see later on, the problem with
forward Euler is not so much its accuracy, but its stability. As an alternative, the
backward Euler (BE) method is preferred, and is as follows. In the 1-dimensional
case, writing a Taylor series expansion at tnC1, then:

x.t/ D x.tnC1/C .t � tnC1/x
0.tnC1/C .t � tnC1/

2

2
x 00.¾/ (5.51)

for some ¾ between tnC1 and t . Then, at t D tn D tnC1 � h, we have:

x.tn/ D x.tnC1/� hx 0.tnC1/C h2

2
x 00.¾/ (5.52)

214 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

In the m-dimensional case, we can write this as:

x.tn/ D x.tnC1/� hx 0.tnC1/C 0.h2/ (5.53)

This is the motivation for the backward Euler (BE) method for solving the IVP
x 0 D f .x; t/, as:

xnC1 D xn C h f .xnC1; tnC1/ (5.54)

or, simply:
xnC1 D xn C h fnC1 (5.55)

Notice that this is a linear multistep method, with Þ�1 D 1, Þ0 D �1, þ�1 D 1,
and all the other coefficients at 0. It is an implicit method, providing only an
implicit formula for xnC1. In general, as the function f .Ð/ is nonlinear, this would
require the use of a nonlinear solution method, such as Newton’s method, to find
xnC1. Backward Euler ignores the 0.h2/ error term, and has comparable LTE to
forward Euler, but is more stable, as we will see later on.

Trapezoidal Rule (TR) Both FE and BE have error terms that are 0.h2/; better
accuracy can be obtained by using “higher order” methods, a notion that we will
define below. One such method, the trapezoidal rule (TR), is as follows. In the
1-dimensional case, using a Taylor series expansion at tn , we can write:

x.t/ D x.tn/C .t � tn/x
0.tn/C .t � tn/2

2
x 00.tn/C .t � tn/3

6
x 000.¾/ (5.56)

for some ¾ between tn and tnC1, which we can differentiate to get:

x 0.t/ D x 0.tn/C .t � tn/x
00.tn/C .t � tn/2

2
x 000.¾/ (5.57)

Writing both results, (5.56) and (5.57), at t D tnC1 D tn C h, and multiplying the
first equation by 2 and the second by .�h/, we get:

2x.tnC1/ D 2x.tn/C 2hx 0.tn/C h2x 00.tn/C h3

3
x 000.¾/ (5.58)

�hx 0.tnC1/ D �hx 0.tn/� h2x 00.tn/� h3

2
x 000.¾/ (5.59)

Adding the two equations, then dividing by 2, we get:

x.tnC1/� x.tn/ D h

2

ð
x 0.tnC1/C x 0.tn/

Ł� h3

12
x 000.¾/ (5.60)

In the m-dimensional case, we can write this as:

x.tnC1/� x.tn/ D h

2

ð
x 0.tnC1/C x 0.tn/

ŁC 0.h3/ (5.61)

ODE SOLUTION TECHNIQUES 215

This is the motivation for the trapezoidal rule (TR) as:

xnC1 D xn C h

2

ð
f .xnC1; tnC1/C f .xn; tn/

Ł
(5.62)

or, simply:

xnC1 D xn C h

2
. fnC1 C fn/ (5.63)

The trapezoidal rule is probably the most often used solution method in circuit
simulation; it is the workhorse of most SPICE engines. It is a linear multistep
method with Þ�1 D 1, Þ0 D �1, þ�1 D þ0 D 1=2, and all other coefficients at 0.
TR is an implicit method with 0.h3/ error and excellent stability. It is suitable
for stiff systems, and has better accuracy than both FE and BE. It does have
one weakness, however, as we will see later on. It is also classified as a 1-step
Adams-Moulton method and thus is among the oldest of linear multistep methods,
dating back to the 19th century.

The trapezoidal rule has an alternate form, as follows. Let y.t/ D x 0.t/, then
TR (5.60) gives:Z tnC1

tn

y.t/dt D x.tnC1/� x.tn/ D h

2

ð
x 0.tnC1/C x 0.tn/

Ł� h3

12
x 000.¾/ (5.64)

D h

2

ð
y.tnC1/C y.tn/

Ł� h3

12
y00.¾/ (5.65)

which gives an alternate form of TR, suitable for numerical integration, as:Z tnC1

tn

y.t/dt ³ h

2

ð
y.tnC1/C y.tn/

Ł
(5.66)

which approximates the integral over [tn; tnC1], i.e., the area under y.t/ over
[tn; tnC1], by the area of a trapezoid; hence the name.

There are many ways of deriving the linear multistep formulas, including FE,
BE, and TR. We have derived FE, BE, and TR starting from the familiar Taylor
series. Higher order multistep methods can be derived in other ways, as we’ll
see later. But, first, we will “return to basics,” so to speak, and discuss issues of
accuracy and stability of general numerical methods for IVPs.

5.2.4 Quality Metrics

What does one require of a “good” numerical method? Obviously, one would like
it to be accurate and computationally efficient . As we will see, this will mean
that the method must also be stable. Linear multistep methods are the most
computationally efficient methods available today, but it remains to discuss their
accuracy and stability . The study of stability will also require an understanding
of the notions of convergence and consistency of numerical methods. We will
first discuss these issues for general numerical methods, and then specifically
address linear multistep methods.

216 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Convergence Using again the notation of Lambert (1991), consider a numer-
ical method in the general form:

k�1X
jD�1

Þ j xn� j D h� f .xnC1; xn; : : : ; xn�kC1; tnI h/ (5.67)

In the limit, as h ! 0, the discrete set of points ftng approaches the continuous
interval [t0; t f]. An obvious property to require of a “good” numerical method
is that, as h ! 0, the numerical solution fxng must approach the exact solution
x.t/. A numerical method with this property is said to be convergent . This can
be formalized as follows.

Definition 5.3. (Convergence) A numerical method is said to be convergent if,
for all IVPs satisfying the hypotheses of Theorem 5.3, we have that:

lim
h!0

�
max

tn2[t0;t f]
kx.tn/� xnk

�
D 0 (5.68)

This is an asymptotic notion—it describes what happens in the limit as h !
0, and is not helpful otherwise. Nevertheless, it is a good starting point. We
obviously would not be interested in a numerical method which, even in the limit
as h ! 0, does not produce a result that approaches x.t/! What properties must a
numerical method satisfy, in order for it to be convergent? We consider this next.

Consistency Consider a numerical method in the general form:

k�1X
jD�1

Þ j xn� j D h� f .xnC1; xn; : : : ; xn�kC1; tnI h/ (5.69)

Being a scheme for generating future values of the sequence fxng from its past val-
ues, this formula is effectively a difference equation . In general, it is a nonlinear
difference equation , because the functions f .Ð/ and � f .Ð/ may be nonlinear. Thus,
we are using a difference equation as a proxy for a differential equation. In order
for the method to be convergent, one would expect that one requirement would
be that the difference equation must be, as Lambert (1991) puts it, “a sufficiently
accurate representation of the differential system .” Suppose it were the case that,
if xn�kC1; : : : ; xn in (5.69) are replaced by the exact x.tn�kC1/; : : : ; x.tn/, then
(5.69) would yield an xnC1 D x.tnC1/. In such a case, the difference equation
would be an “infinitely accurate” representation of the differential equation. The
assumption that all previous values are exact is obviously artificial and hypothet-
ical; it is referred to as a localizing assumption . Nevertheless, it motivates our
interest in the residual , defined as:

RnC1 �
k�1X
jD�1

Þ j x.tn� j /� h� f .x.tnC1/; x.tn/; : : : ; x.tn�kC1/; tnI h/ (5.70)

ODE SOLUTION TECHNIQUES 217

Thus, the residual is the result of applying the numerical method to the true
solution x.t/. Having a zero residual, RnC1 D 0, would mean that the method is
exact under the localizing assumption considered above. Except for a vanishing
higher-order term, as we will see later on, the residual is essentially equal to the
local truncation error.

In order for the difference equation to be, in some sense, consistent
with the differential equation, we will insist on a small residual. We must,
essentially, insist that the local truncation error approach zero, and fast enough,
at each step, as the time-step approaches zero. This can be formalized as
follows.

Definition 5.4. (Consistency) A numerical method is said to be consistent if, for
all IVPs satisfying the hypotheses of Theorem 5.3, we have that:

lim
h!0

�
max

tn2[t0;t f]

1

h
RnC1

�

D 0 (5.71)

Consistency is, again, an asymptotic property and, by itself, it does not guaran-
tee convergence, but it is one key ingredient. It can be shown that convergence
implies consistency, but the converse is not true. There is one other required
ingredient, as we will see below, but first we will examine consistency a little
more closely.

Definition 5.5. For the general numerical method (5.67), we define the first
characteristic polynomial , in z 2 C, as:

².z/ D
k�1X
jD�1

Þ j z
k� j�1 D Þ�1zk C Þ0zk�1 C Ð Ð Ð C Þk�2z C Þk�1 (5.72)

As h ! 0, and the right-hand side of the method (5.67) vanishes, due to the
term h� f .Ð/, its properties are pretty much determined by the Þ j terms on the left-
hand side. Thus, it should be useful to study this first characteristic polynomial,
².z/. Indeed, it can be shown that a numerical method is consistent if and only
if, for any t 2 [t0; t f], the following two conditions hold:

².1/ D 0 (5.73)

� f .x.t/; x.t/; : : : ; x.t/; tI 0/ D ² 0.1/ð f .x.t/; t/ (5.74)

The term � f .x.t/; x.t/; : : : ; x.t/; tI 0/ is the result, in the limit, of the following
process. Let h ! 0, and consider the index n ! 1 such that tn ! t , where
t is a fixed preselected time value. In the limit, all the time-points, tnC1; tn ,
tn�1; : : : ; tn�kC1, approach t , and all the values xnC1; xn; xn�1; : : : ; xn�kC1

approach x.t/.

218 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Examples We give a couple of examples, based on test cases given in Lambert
(1991), one of which turns out to be consistent, and the other not. Consider the
numerical method:

xnC1 C xn � 2xn�1 D h

4
. fnC1 C 8 fn C 3 fn�1/ (5.75)

which is a 2-step method (k D 2) for which ².z/ D z2 C z � 2 and ² 0.z/ D 2z C
1, so that ².1/ D 0, as it should be for consistency, and ²0.1/ D 3. In order to
check the second condition for consistency, and since:

� f .xnC1; xn; xn�1; tnI h/ D 1

4
. fnC1 C 8 fn C 3 fn�1/ (5.76)

then:

� f .x.t/; x.t/; x.t/; tI 0/ D 1

4

ð
f .x.t/; t/C 8 f .x.t/; t/C 3 f .x.t/; t/

Ł
D 3 f .x.t/; t/

therefore, the method is consistent. Consider another numerical method:

xnC1 � xn D h

3
.3 fn � 2 fn�1/ (5.77)

which is a 2-step method (k D 2) for which ².z/ D z2 � z and ² 0.z/ D 2z � 1,
so that ².1/ D 0, as it should be for consistency, and ²0.1/ D 1. In order to check
the second condition for consistency, and since:

� f .xnC1; xn; xn�1; tnI h/ D 1

3
.3 fn � 2 fn�1/ (5.78)

then:

� f .x.t/; x.t/; x.t/; tI 0/ D 1

3

ð
3 f .x.t/; t/� 2 f .x.t/; t/

Ł
D 1

3
f .x.t/; t/

therefore, the method is not consistent. It is easy to show that FE, BE, and TR,
are all consistent. We are now ready to examine the second ingredient that is
required for convergence.

Zero-Stability Recall that we discussed earlier a notion of total stability , or
well-posedness, as a property of the differential system. We are now concerned
with notions of stability of the numerical method, i.e., of the difference equation.
Nonlinear difference equations are much harder to study than differential

ODE SOLUTION TECHNIQUES 219

equations, so there are several different useful notions of stability. We will start
with a notion of stability in an asymptotic sense, i.e., in relation to what happens
as h ! 0, hence the name zero-stability .

Zero-stability of the difference system will be defined in a way which is
analogous to the earlier definition of total stability for the differential system.
This requires that we be a bit more precise regarding the starting values of the
numerical method. Strictly speaking, we are interested in the difference system,
consisting of the numerical method and its startup scheme:

k�1X
jD�1

Þ j xn� j D h� f .xnC1; xn; : : : ; xn�kC1; tnI h/

xi D �i .h/; i D 0; 1; : : : ; k � 1

where the �i .h/ are the starting values. We now consider the effect of perturba-
tions of the function � f .Ð/ and of the starting values �i .h/, and we define the
perturbed numerical method as:

k�1X
jD�1

Þ j x̂n� j D h
ð
� f .x̂nC1; x̂n; : : : ; x̂n�kC1; tnI h/C ŽnC1

Ł
x̂i D �i .h/C Ži ; i D 0; 1; : : : ; k � 1

where fŽng is a perturbation of the system, and where the solution fx̂ng is called
the perturbed solution. We can now give the definition of zero-stability of the
difference system, after Lambert (1991).

Definition 5.6. Let fŽng and fŽŁ
ng be any two perturbations of the difference

system, and let fx̂ng and fx̂Ł
n g be the resulting perturbed solutions. If there exist

constants S and h0 such that, for all 0 < h � h0, we have:

kx̂n � x̂Ł
n k � Sž; 8n whenever kŽn � ŽŁ

nk � ž; 8n; (5.79)

then, we say that the difference system is zero-stable.

Note that zero-stability is, again, an asymptotic result, and it is a property
of the numerical method , not of the system. Recall, Lipschitz continuity of the
function f .Ð/ ensures the differential system is totally stable (well-posed) and
insensitive to perturbations. Zero-stability, as a property of the difference system
ensures that the difference system is likewise insensitive to perturbations. It is
equivalent to saying that the difference system is well-posed. If the difference
system is not zero-stable, then essentially, the solution is not computable using
finite precision computers.

Thus, zero-stability would seem to be another excellent property that we must
insist upon, but how do we achieve it? How do we guarantee that a numerical
method is zero-stable? As we will now see, the answer has to do with the roots
of the first characteristic polynomial.

220 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

The Root Condition It turns out that the roots of the first characteristic
polynomial, ².z/, are quite important for studying zero-stability.

Definition 5.7. A numerical method is said to satisfy the root condition if every
root of the first characteristic polynomial ².z/ is either inside the unit circle (in
the complex plane), or on the unit circle but with multiplicity 1 (i.e., it is a simple
root).

Thus, the root condition requires that the magnitudes of all the roots must
be less than or equal to 1, and those whose magnitudes are equal to 1 must be
simple roots. We can now state the following key result:

Theorem 5.4. A difference system is zero-stable if and only if it satisfies the root
condition.

Thus, the root condition is a key quality metric that we must insist upon, in
order to guarantee a “good” numerical method. As an example, the numerical
method in (5.77) is a 2-step method (k D 2), for which ².z/ D z2 � z, whose
roots are 0 and 1, so that this method is zero-stable. In contrast, the method in
(5.75) is a 2-step method (k D 2), for which ².z/ D z2 C z � 2, whose roots are
1 and �2, so that this method is not zero-stable. It is easy to show that FE, BE,
and TR are all zero-stable.

Fundamental Theorem We can now state the fundamental theorem of the
study of IVPs, as:

Theorem 5.5. A difference system is convergent if and only if it is both consistent
and zero-stable.

Thus, consistency and zero-stability are the two key ingredients that are
required to ensure that a numerical method is convergent. Since they are con-
sistent and zero-stable, FE, BE, and TR are convergent. We now restrict our
attention to linear multistep (LMS) methods.

5.2.5 Linear Multistep Methods

Recall, a k-step LMS method for solving x 0 D f .x; t/ has the general form:

k�1X
jD�1

Þ j xn� j D h
k�1X
jD�1

þ j f .xn� j ; tn� j / (5.80)

or, using the more compact notation:

k�1X
jD�1

Þ j xn� j D h
k�1X

jD�1

þ j fn� j (5.81)

ACCURACY OF LMS METHODS 221

where Þ�1 � 1 and jÞk�1j C jþk�1j 6D 0. An LMS method is explicit if þ�1 D 0;
otherwise, it is implicit . Note, the value of k is the difference between the largest
and smallest index. We saw earlier that FE, BE, and TR, are examples of 1-step
LMS methods. FE is explicit, while BE and TR are implicit. Here are some other
explicit examples, a few of the Adams-Bashforth methods:

xnC1 D xn C h fn .k D 1/

xnC1 D xn C h

2
.3 fn � fn�1/ .k D 2/

xnC1 D xn C h

12
.23 fn � 16 fn�1 C 5 fn�2/ .k D 3/

xnC1 D xn C h

24
.55 fn � 59 fn�1 C 37 fn�2 � 9 fn�3/ .k D 4/

the first of which is FE, and here are some implicit examples, a few of the
Adams-Moulton methods:

xnC1 D xn C h

2
. fnC1 C fn/ .k D 1/

xnC1 D xn C h

12
.5 fnC1 C 8 fn � fn�1/ .k D 2/

xnC1 D xn C h

24
.9 fnC1 C 19 fn � 5 fn�1 C fn�2/ .k D 3/

xnC1 D xn C h

720
.251 fnC1 C 646 fn � 264 fn�1 C 106 fn�2 � 19 fn�3/ .k D 4/

the first of which is the trapezoidal rule. Collectively, the above two classes of
methods are referred to simply as the Adams methods .

5.3 ACCURACY OF LMS METHODS

In this and the next section, we will study various issues related to accuracy and
stability of LMS methods, and we will see how one can derive the LMS formulas.

5.3.1 Order

To study accuracy, we start with the notion of order . Inspired by the earlier
definition of the residual (5.70), which for an LMS method becomes:

RnC1 D
k�1X

jD�1

Þ j x.tn� j /� h
k�1X

jD�1

þ j f .x.tn� j /; tn� j / (5.82)

D
k�1X

jD�1

Þ j x.tn � jh/� h
k�1X

jD�1

þ j x
0.tn � jh/ (5.83)

we now define the linear difference operator , as follows.

222 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Definition 5.8. The linear difference operator of an LMS method, denoted D,
is an operator which, applied to an arbitrarily differentiable time function s.t/,
produces another time function:

D[s.t/I h] �
k�1X
jD�1

Þ j s.t � jh/� h
k�1X
jD�1

þ j s
0.t � jh/ (5.84)

The term arbitrarily differentiable means that s.t/ differentiable as often as
desired. Notice that, if D is applied to the true solution of the system, i.e., if s.t/
is replaced by x.t/, and the resulting function is evaluated at tn , we would get
exactly the residual; we express this by the notation:

RnC1 D D[x.t/I h]tn (5.85)

The linear difference operator allows us to define the notion of order of an
LMS method, as follows. Using a Taylor series expansion of s.− / around t , we
write:

s.− / D s.t/C
1X

qD1

1

q!
s.q/.t/.− � t/q (5.86)

where s.q/.t/ is the q-th derivative of s.Ð/ evaluated at t ; then, taking the deriva-
tive of (5.86) with respect to − , we get:

s 0.− / D
1X

qD1

1

.q � 1/!
s.q/.t/.− � t/q�1 (5.87)

where 0! � 1. Evaluating the above two results at − D t � jh, we get:

s.t � jh/ D s.t/ C
1X

qD1

1

q!
s.q/.t/.� jh/q (5.88)

and:

s0.t � jh/ D
1X

qD1

1

.q � 1/!
s.q/.t/.� jh/q�1 (5.89)

Plugging these results into the expression for D[s.t/I h] and collecting similar
terms, we get the series:

D[s.t/I h] D C0s.t/ C C1hs.1/.t/ C Ð Ð Ð C Cq hqs.q/.t/C Ð Ð Ð (5.90)

where:

C0 D
k�1X

jD�1

Þ j (5.91)

ACCURACY OF LMS METHODS 223

C1 D �
k�1X

jD�1

jÞ j �
k�1X
jD�1

þ j (5.92)

:::

Cq D .�1/q

q!

k�1X
jD�1

jqÞ j � .�1/q�1

.q � 1/!

k�1X
jD�1

jq�1þ j (5.93)

:::

We now define the key notion of order of an LMS method:

Definition 5.9. An LMS method is said to be of order p if C0 D Ð Ð Ð D Cp D 0,
but CpC1 6D 0, and C pC1 is called the error constant of the LMS method.

Note that the above discussion employed a Taylor series expansion of s.− /
around the point t . However, this does not mean that the order is dependent on
the point around which the Taylor series is taken. Indeed, it can be shown, as in
Lambert (1991), that the order of an LMS method is independent of the point
t 2 R around which the Taylor series expansion is taken: for a method of order
p, it turns out, C0 D C1 D Ð Ð Ð D Cp D 0 irrespective of t , CpC1 is independent
of t , while CpC2;CpC3; : : : are dependent on t . Thus, the order and the value of
the error constant are well-defined intrinsic properties of an LMS formula.

A higher-order method would typically (but not always) have better accuracy,
keeping in mind the following result, called the first Dahlquist barrier :

Theorem 5.6. (The first Dahlquist Barrier) No zero-stable k-step LMS method
can have order exceeding k C 1 when k is odd and k C 2 when k is even.

Thus, while selecting a desired order for an LMS method, one must select it
in relation to the chosen number of steps k.

Finally, if the true solution, x.t/, has derivatives up to at least .p C 1/, then it
is clear, due to (5.85) and (5.90), that the residual for an LMS method of order
p is given by:

RnC1 D CpC1h pC1x .pC1/.tn/C 0.h pC2/ (5.94)

This expression will be useful in order to capture the local truncation error, as
we will see below.

5.3.2 Consistency

Recall that we had earlier defined the first characteristic polynomial ².z/ of a
general numerical method for IVPs. We now define the second characteristic
polynomial of an LMS method, as follows.

224 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Definition 5.10. For a general LMS method (5.80), we define the second char-
acteristic polynomial , in z 2 C, as:

¦.z/ �
k�1X
jD�1

þ j z
k� j�1 D þ�1zk C þ0zk�1 C Ð Ð Ð C þk�2z C þk�1 (5.95)

It is easy to verify that:

C0 D ².1/ and C1 D ² 0.1/� ¦.1/� .k � 1/².1/ (5.96)

Due to (5.85), then an LMS method is consistent if and only if:

lim
h!0

1

h

�
C0x.tn/C C1hx .1/.tn/C C2h2x .2/.tn/C Ð Ð ÐÐ D 0 (5.97)

Thus, an LMS method is consistent if C0 D C1 D 0, i.e., if it has an order p ½ 1,
so that every LMS method with order p ½ 1 is consistent . In general, it is easy
to show that an LMS method is consistent if and only if ².1/ D 0 and ²0.1/ D
¦.1/, since � f .x.t/; Ð Ð Ð ; x.t/; tI 0/ D ¦.1/ f .x.t/; t/. Furthermore, the condition
C0 D C1 D 0 means that:

².1/ D 0 and ²0.1/ D ¦.1/ (5.98)

Notice that if ¦.1/ D 0, then a consistent LMS method would have ².1/ D
² 0.1/ D 0, so that C1 is a double root of ².z/ and the LMS method would
not be zero-stable. Thus, all consistent zero-stable LMS methods, must have
¦.1/ 6D 0.

5.3.3 The Backward Differentiation Formulas

For circuit simulation, the most useful formulas are TR and the so-called back-
ward differentiation formulas (BDF), which are all implicit. The BDFs for k D
1; 2; : : : ; 6, with, respectively, order p D 1; 2; : : : ; 6, are as follows:

xnC1 � xn D h fnC1

xnC1 � 4

3
xn C 1

3
xn�1 D 2

3
h fnC1

xnC1 � 18

11
xn C 9

11
xn�1 � 2

11
xn�2 D 6

11
h fnC1

xnC1 � 48

25
xn C 36

25
xn�1 � 16

25
xn�2 C 3

25
xn�3 D 12

25
h fnC1

ACCURACY OF LMS METHODS 225

xnC1 � 300

137
xn C 300

137
xn�1 � 200

137
xn�2 C 75

137
xn�3 � 12

137
xn�4 D 60

137
h fnC1

xnC1�360

147
xn C 450

147
xn�1�400

147
xn�2C 225

147
xn�3� 72

147
xn�4C 10

147
xn�5 D 60

147
h fnC1

Notice that the first BDF (for k D 1 and p D 1) is simply BE and, it can be
shown that, any BDF with order higher than 6 is zero-unstable. We will return,
below, to a formal definition and derivation of the BDFs. The most commonly
used BDF in circuit simulation is the second order two-step BDF, which we
will denote as BDF2. This is also referred to in the circuit simulation literature
as the Gear-Shichman formula or the second order Gear formula. Higher order
formulas are useful because they can be more accurate, but they also bring certain
complications with them, e.g., it becomes more complicated to vary the time-step.

Many numerical methods, such as the BDFs but also the Adams methods we
saw earlier, come in families , consisting of several members of different orders.
To start a higher-order LMS method, it is typical to first use the lower order
members of the family to establish starting values, and then use the higher order
ones. For example, to use BDF2, you start with only x0 and use BE to get x1,
and, only then, can you start up BDF2 using x0 and x1.

5.3.4 Local Truncation Error

We are now ready to define the local truncation error (LTE). Let QxnC1 be the
value returned by the LMS method when we artificially set xn� j D x.tn� j /, for
j D 0; 1; : : : ; k � 1 (the localizing assumption). Then, the local truncation error
(LTE) is defined as:

−nC1.h/ � x.tnC1/� QxnC1 (5.99)

Thus, −nC1.h/ is the “fresh” error incurred when stepping from tn to tnC1, due
only to the local truncation of the Taylor series of x.t/. But it is this error only
under the localizing assumption!

In order to find an expression for the LTE, we now explore the relationship
between the LTE and the residual, as in Lambert (1991). Firstly, based on the
definition of QxnC1, and since Þ�1 D 1, we can write:

QxnC1 C
k�1X
jD0

Þ j x.tn� j / D hþ�1 f . QxnC1; tnC1/C h
k�1X
jD0

þ j x
0.tn� j / (5.100)

Secondly, based on the definition of the residual, we can write:

x.tnC1/C
k�1X
jD0

Þ j x.tn� j / D hþ�1 f .x.tnC1/; tnC1/C h
k�1X
jD0

þ j x
0.tn� j /C RnC1

(5.101)

226 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Subtracting the first equation from the second, we have:

x.tnC1/� QxnC1 D hþ�1
ð

f .x.tnC1/; tnC1/� f . QxnC1; tnC1/
ŁC RnC1 (5.102)

Using the mean value theorem, we can write:

f .x.tnC1/; tnC1/� f . QxnC1; tnC1/ D J .x.tnC1/� QxnC1/ (5.103)

where J is a “special” evaluation of the Jacobian of f .Ð/, obtained by evaluating
each row i at a different point ¾i along the line segment from x.tnC1/ to QxnC1 in
Rm . Therefore, the key relationship between the LTE and the residual is:

�
I � hþ�1 J

�
−nC1.h/ D RnC1 (5.104)

As a result, for an explicit LMS method, with þ�1 D 0, the LTE is equal to
the residual, while for an implicit LMS method, the same is true with some
approximation. In general, for an LMS method of order p, and if the solution is
differentiable up to at least .p C 1/, then it follows from (5.104) and (5.94) that:

LTE D −nC1.h/ D CpC1h pC1x .pC1/.tn/C 0.h pC2/ (5.105)

so that, in general:
−nC1.h/� RnC1 D 0.h pC2/ (5.106)

and we define the principal local truncation error (PLTE) as:

PLTE D CpC1h pC1x .pC1/.tn/ (5.107)

In most cases, we only care to find (or we can only estimate) the PLTE, so that
the two names are often used interchangeably in the literature.

Some remarks are in order. Because the LTE is essentially the same as the
residual, except for a vanishing higher-order term, it is common to use:

LTE D −nC1.h/ ³ RnC1 ³ PLTE (5.108)

As far as an overall bound for the LTE, the following bound is available:

k−nC1.h/k ³ kRnC1k � Gh pC1 max
¾2[t0;t f]

kx .pC1/.¾/k (5.109)

where G is a constant that depends on the coefficients Þi and þi , although this
does not seem to be of much practical use. Finally, note that some authors define
the LTE to be (exactly) the residual, while some others define it as the residual
divided by h.

ACCURACY OF LMS METHODS 227

Examples We study the order and accuracy of the basic methods: FE, BE,
and TR.

Forward Euler: With xnC1 D xn C h f .xn; tn/, we have that:

QxnC1 D x.tn/C hx 0.tn/ (5.110)

while from the Taylor series expansion, we have:

x.tnC1/ D x.tn/C hx 0.tn/C 1

2
h2x 00.¾/ (5.111)

where ¾ is between tn and tnC1, so that:

−nC1.h/ D 1

2
h2x 00.¾/ (5.112)

or, equivalently, for a slightly longer Taylor series and for some other ¾ between
tn and tnC1:

−nC1.h/ D 1

2
h2x 00.tn/C 1

6
h3x 000.¾/ (5.113)

so that FE has order 1, with C2 D 1=2, and its LTE is said to be of order 2.

Backward Euler: With xnC1 D xn C h f .xnC1; tnC1/, we have that Þ�1 D 1,
Þ0 D �1, and þ�1 D 1, so that:

C0 D 0; C1 D 0; and C2 D �1

2
(5.114)

so that BE has order 1, with C2 D �1=2, and its LTE is of order 2, given by:

−nC1.h/ D �1

2
h2x 00.tn/C 0.h3/ (5.115)

Trapezoidal Rule: With xnC1 D xn C .h=2/. fnC1 C fn/, we have that Þ�1 D 1,
Þ0 D �1, þ�1 D 1=2, and þ0 D 1=2, so that:

C0 D 0; C1 D 0; C2 D 0; and C3 D � 1

12
(5.116)

so that TR has order 2, with C3 D �1=12, and its LTE is of order 3, given by:

−nC1.h/ D � 1

12
h3x 000.tn/C 0.h4/ (5.117)

228 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

5.3.5 Deriving the LMS Methods

There is an infinite variety of possible LMS methods but, obviously, one is
interested only in the good ones. So far, we have seen that quality metrics include
convergence and small error (high p and small C pC1). Soon, we will add stability
as the third key quality metric. But there is one question yet to be addressed:
how does one derive an LMS formula? How do we find the coefficients?

A k-step LMS formula can have up to 2k C 1 coefficients that need to be
determined (recall, Þ�1 D 1 is assumed). Some of these may be specified up-
front, due to various considerations; for example, explicit methods have þ�1 D 0.
Otherwise, the zero/non-zero pattern of the coefficients may be captured by speci-
fying the two characteristic polynomials ².z/ and ¦.z/. For example, the Adams
methods are characterized by having the simplest possible first characteristic
polynomial (subject to consistency):

².z/ D zk � zk�1 (5.118)

while the BDFs are characterized by having the simplest possible second char-
acteristic polynomial (subject to implicitness):

¦.z/ D þ�1zk (5.119)

Once the step number k along with ².z/ and ¦.z/ are specified, we know
exactly how many coefficients there are to be determined. Then, we must specify
the desired order, p, keeping in mind the first Dahlquist barrier. As a result, the
equations C0 D C1 D Ð Ð Ð D Cp D 0 provide a set of .p C 1/ simultaneous linear
equations in the unknown coefficients. This system of equations is then solved
and, in general, it may have no solution, a unique solution, or an infinity of
solutions. Where multiple solutions are possible, other criteria may be used to
help make a selection.

A simpler alternative approach to finding the coefficients is as follows. Con-
sider the set of polynomials s.t/ 2 f1; t; t2; : : : ; t pg. Note that they are arbitrarily
differentiable, and that s.q/.t/ D 0, 8q> p, and consider the linear difference
operator applied to s.t/:

D[s.t/I h] D C0s.t/ C C1hs.1/.t/ C C2h2s.2/.t/C Ð Ð Ð (5.120)

Then, for a method of order p, D[s.t/I h] D 0, for every s.t/, because the first
.p C 1/ terms are zero due to C0 D C1 D Ð Ð Ð D Cp D 0, while the rest are zero
because they contain s.q/ with q > p. Thus, by plugging the above .p C 1/ poly-
nomials into the LMS formula, we get a system of .p C 1/ simultaneous linear
equations in the unknown coefficients. The resulting equations apply for any
tn , so we set tn arbitrarily. This system is solved, if possible, and the LMS
method is thereby determined. We will now see how this applies to deriving the
BDFs.

ACCURACY OF LMS METHODS 229

Deriving the BDFs A k-step BDF is defined by:

².z/ D Þ�1zk C Þ0zk�1 C Ð Ð Ð C Þk�2z C Þk�1 (5.121)

¦.z/ D þ�1zk (5.122)

so that there are only .k C 1/ coefficients to be determined, because Þ�1 D 1, to
build the BDF:

k�1X
jD�1

Þ j xn� j D hþ�1 f .xnC1; tnC1/ (5.123)

It can be shown that a k-step BDF has order p D k and an error constant:

C pC1 D �1

.p C 1/
Pp

iD1.1= i/
(5.124)

Plugging the polynomials x.t/ D tq , for q D 0; 1; : : : ; p, into the LMS formula
gives the following .p C 1/ equations in .p C 1/ unknowns:

8>>><
>>>:

k�1P
jD�1

Þ j D 0

k�1P
jD�1

Þ j t
q
n� j D hþ�1qtq�1

nC1 ; q D 1; 2; : : : ; p
(5.125)

and, arbitrarily setting tn D 0, the system of equations becomes:

8>>><
>>>:

k�1P
jD�1

Þ j D 0

1 C
k�1P
jD1
Þ j .� j/q D þ�1q; q D 1; 2; : : : ; p

(5.126)

This system is then solved for all the coefficients.

5.3.6 Solving Implicit Methods

For an implicit LMS method, finding xnC1 requires solving the possibly nonlinear
system:

xnC1 C
k�1X
jD0

Þ j xn� j D hþ�1 f .xnC1; tnC1/C
k�1X
jD0

þ j f .xn� j ; tn� j / (5.127)

or:
xnC1 D hþ�1 f .xnC1; tnC1/C n (5.128)

230 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

where:

 n � �
k�1X
jD0

Þ j xn� j C
k�1X
jD0

þ j f .xn� j ; tn� j / (5.129)

is easily found from previously computed values. The nonlinear (5.128) can
be solved by any of the standard methods, such as the fixed point method or
Newton’s method. Practical experience shows that, for non-stiff problems, fixed
point is quite good, according to Lambert (1991), given a good initial candidate
solution. Even better, one does not have to iterate the fixed point method until
convergence. Instead, the iterations are cut short (a fixed number of iterations
is applied) and the remaining error is accepted as simply part of the overall
local error that is incurred when solving an ODE. However, for stiff problems
(such as in circuit simulation), where implicit methods are required for stability
reasons, this approach does not work well. Instead, the nonlinear (5.128) must be
solved by Newton’s method, and the iterations must be carried out until Newton
convergence is achieved.

Predictor-Corrector Methods When solving the implicit nonlinear (5.128)
using either fixed point or Newton’s method, what should be the initial can-
didate solution? The standard method is to first use an explicit LMS method
to get a candidate value of xnC1, and then use that as the initial solution for
Newton’s method or fixed point. As a result, a pair of LMS methods are used,
an explicit one (called the predictor) and an implicit one (called the correc-
tor). The use of predictor-corrector pairs is standard practice in all modern
codes for solving ODEs. For non-stiff problems, a typical combination is to
use an Adams-Bashforth predictor with an Adams-Moulton corrector. The result
is called an Adams-Bashforth-Moulton (ABM) method. For stiff problems, the
better approach is to extrapolate an interpolation polynomial as a predictor (see
below) with a TR or BDF as the corrector.

It turns out that there is a significant advantage to be had by requiring both
the predictor and corrector to have the same order . This greatly simplifies the
LTE estimation, as we will see. It usually requires that the predictor have a step
number, k, that is larger by 1 than that of the corrector. When the corrector
iterations are not carried out to convergence, the accuracy and stability of the
pair is dependent on both of them. One must analyze the pair, working together,
to study their accuracy and stability properties; this is a significant complication.
When the corrector is applied to convergence, as done in the stiff case, then the
properties of the pair are identical to those of the corrector alone. No further
detailed analysis of the pair is required. Thus, for our purposes, the only rel-
evant part of predictor-corrector theory is the choice of predictor and the LTE
estimation, which we cover below.

Although the use of predictor-corrector methods has been tested in the circuits
research literature, it is not clear if any existing simulators use it. Instead, a
simpler method that is often employed is to use the solution at the previous time-
point as the initial candidate solution. The original SPICE program used only TR

ACCURACY OF LMS METHODS 231

with no predictor because, according to Nagel (1975), the advantages of higher
order methods did not outweigh their complexities. Nevertheless, we will give a
brief coverage of how predictor-corrector methods can be applied to circuits.

Practical experience shows that the best predictor for stiff problems is to use
an interpolation polynomial, rather than a regular LMS method, as follows. It
can be shown, as we will see below, that an interpolation polynomial on .p C 1/
points, which itself is a valid LMS method, has order p. Thus, to get a predictor
of order p, we use a degree � p polynomial that interpolates (passes through)
the most recent .p C 1/ previous values:

.tn; xn/ .tn�1; xn�1/ Ð Ð Ð .tn�p; xn�p/ (5.130)

and that polynomial is extrapolated to get an initial candidate value of xnC1,
which we denote by x .0/nC1. Thus, for the first-order BDF (BE), we interpolate the
points .tn; xn/ and .tn�1; xn�1/ with a straight line and extrapolate that line to
find x .0/nC1. For the second-order BDF (BDF2), or for TR, we interpolate .tn; xn/,
.tn�1; xn�1/, and .tn�2; xn�2/ with a parabola and extrapolate to get x .0/nC1. In
general, there is a unique polynomial of degree no more than p that interpolates
(passes through) the previous .p C 1/ points.

In the following, to complete our coverage of accuracy of LMS methods, we
will discuss polynomial interpolation and LTE estimation.

5.3.7 Interpolation Polynomial

There are two general canonical forms for an interpolation polynomial, depend-
ing on whether we have equidistant data or not. When previous time-steps are
all identical (same h) we say that we have equidistant data; all the numerical
methods we have seen so far assume fixed time-step and equidistant data. Non-
equidistant data arise in the context of variable time-step methods, and there are
two approaches to deal with that:

1. Interpolate previous data values at a (new) equidistant time mesh, and
restart the method from that point with new equidistant data.

2. Re-derive the LMS methods to use non-equidistant data.

We will return to this topic later on, but first, on the topic of interpolation, we
give a theorem, from Dahlquist and Björck (2008), that provides the interpolation
error.

Theorem 5.7. Let x.t/ : R ! R and consider the discrete .p C 1/ time-points
tn > tn�1 > Ð Ð Ð> tn�p which, in general, may not be equidistant. Let x .pC1/.t/ be
continuous in the smallest interval that contains the points t and tn; : : : ; tn�p,
which we denote by J .t; tn; : : : ; tn�p/. Let Pn.t/ be the unique degree � p poly-
nomial that passes through (interpolates) the points:

.tn; x.tn// .tn�1; x.tn�1// Ð Ð Ð .tn�p; x.tn�p// (5.131)

232 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Then, there exists a point ¾ 2 J .t; tn; : : : ; tn�p/ such that:

x.t/ � Pn.t/ D x .pC1/.¾/

.p C 1/!

pY
jD0

.t � tn� j / (5.132)

When the points tn; : : : ; tn�p are equidistant, the polynomial can be compactly
expressed as the Newton-Gregory backward interpolation formula , which makes
use of the backward difference operator . When the points tn; : : : ; tn�p are not
equidistant, the polynomial can be expressed as the Newton divided difference
interpolation formula , which makes use of the divided difference operator . We
describe these two possibilities, below.

Backward Difference Operator Let x j , j D 0; 1; 2; : : :, be a sequence in
R

m , then we define the backward difference operator , denoted r, as one that
generates the sequence:

rx j D x j � x j�1; j D 1; 2; : : : (5.133)

and higher powers are defined recursively, so that rk x j D rk�1.rx j /. Because
r.x j � x j�1/ D rx j � rx j�1, and:

rk x j D rk�2[r.rx j /] D rk�2[r.x j � x j�1/] (5.134)

then:
rk x j D rk�1x j � rk�1x j�1 (5.135)

Thus, for example:

r2xn D r.xn � xn�1/ D .xn � xn�1/� .xn�1 � xn�2/ (5.136)

D xn � 2xn�1 C xn�2 (5.137)

and:

r3xn D r.xn � 2xn�1 C xn�2/ (5.138)

D xn � 3xn�1 C 3xn�2 � xn�3 (5.139)

When x j are the result of evaluating a continuous function x.t/ at the discrete
time-points t j , then we simply write rx.t j / D x.t j /� x.t j�1/, etc.

Newton-Gregory Backward Interpolation Polynomial If we let t D tn C
sh, where s 2 R, s D .t � tn/=h, then the interpolation polynomial of degree
� p that passes through the .p C 1/ points:

.tn; xn/ .tn�1; xn�1/ Ð Ð Ð .tn�p; xn�p/ (5.140)

ACCURACY OF LMS METHODS 233

where h is the separation between the time-points, can be expressed as:

Pn.t/ D xn C
pX

kD1

2
4 1

k!

k�1Y
jD0

.s C j/

3
5rk xn (5.141)

which is called the Newton-Gregory backward interpolation formula. For
example, suppose we want to interpolate the points:

.tn; xn/ .tn�1; xn�1/ .tn�2; xn�2/ (5.142)

then p D 2 and:

Pn.t/ D xn C srxn C 1

2
s.s C 1/r2xn (5.143)

When xn� j are the result of evaluating at tn� j a function x.t/ 2 R, which is
differentiable up to .p C 1/, then (5.132) leads to the interpolation error:

x.t/� Pn.t/ D h pC1 x .pC1/.¾/

.p C 1/!

pY
jD0

.s C j/ (5.144)

where ¾ is a point in the smallest interval that contains t and tn; : : : ; tn�p . When
x.t/ 2 R

m , then x .pC1/.¾/ is replaced by vector x .pC1/.¾/ in which each compo-
nent is evaluated at a different ¾i , forming the vector ¾ .

For use as a predictor, to be evaluated at tnC1, we are interested only in
the setting s D 1, so that the general Newton-Gregory backward interpolation
formula reduces to:

x .0/nC1 D xn C
pX

kD1

rk xn (5.145)

and the case p D 2, for example, becomes:

x .0/nC1 D xn C rxn C r2xn (5.146)

D 3xn � 3xn�1 C xn�2 (5.147)

which makes for a very simple predictor for the equidistant TR or BDF2.

Polynomial Predictor The polynomial predictor is an explicit LMS method
with no þn� j coefficients and with:

k�1X
jD0

Þ j xn� j D �Pn.tnC1/ D �xn �
pX

jD1

r j xn (5.148)

What is the order of this explicit LMS method? Because it is the unique poly-
nomial that interpolates the .p C 1/ points, then it is clear that it must be exact

234 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

if applied to x.t/ D tq , for q D 0; 1; : : : ; p. By this we mean that, under the
localizing assumption, it would have a zero LTE and zero residual. Looking at
the linear difference operator, it is easy to see that this gives:

C0 D C1 D Ð Ð Ð D Cp (5.149)

because the fact that x .k/.tn/ D 0, for all k> q leads to:

• When q D 0 and x.t/ D 1, we have 0 D RnC1 D C0, so C0 D 0.
• When q D 1 and x.t/ D t , we have 0 D RnC1 D C0tn C C1h, so C1 D 0.
• And so on, until q D p and C p D 0.

And, using the above error expression (5.144), we have for the s D 1 case:

x.tnC1/� Pn.tnC1/ D h pC1x .pC1/.¾/ (5.150)

and one can easily show that x .pC1/.¾/ D x .pC1/.tn/C 0.h/, so that:

x.tnC1/� Pn.tnC1/ D h pC1x .pC1/.tn/C 0.h pC2/ (5.151)

which, because Pn.tnC1/ interpolates (exactly) the previous points (the localizing
assumption), means that Pn.tnC1/ D QxnC1, so that the LTE is:

LTE D RnC1 D h pC1x .pC1/.tn/C 0.h pC2/ (5.152)

in this (explicit) case being equal to the residual. As a result, this polynomial
predictor is of order p and has an error constant C pC1 D 1.

Deriving the BDFs We digress briefly to see another way in which the BDFs
can be derived, which makes use of an interpolation polynomial over past data
points. This alternate approach will be useful in our future study of DAEs. For
a BDF of order p D k, consider the interpolation polynomial PnC1.t/, of degree
� k, that interpolates the k C 1 equidistant points:

.tnC1; xnC1/; .tn; xn/; : : : ; .tn�kC1; xn�kC1/ (5.153)

As we saw previously, the Newton-Gregory backward interpolation polynomial
is:

PnC1.t/ D xnC1 C
kX

iD1

2
4 1

i!

i�1Y
jD0

.s C j/

3
5r i xnC1 (5.154)

where t D tnC1 C sh, h is the time-step, and s 2 R, so that:

x.t/ ³ xnC1 C
kX

iD1

2
4 1

i!

i�1Y
jD0

.s C j/

3
5r i xnC1 (5.155)

ACCURACY OF LMS METHODS 235

If we differentiate both sides of the above, we can write:

x 0.t/ ³ 1

h

kX
iD1

Ži .s/ri xnC1 (5.156)

where:

Ži .s/ D 1

i!

d

ds

i�1Y
jD0

.s C j/ (5.157)

At tnC1, with s D 0, it is easy to show that:

Ž0.0/ D 0; and Ži .0/ D 1= i; 8i D 1; 2; : : : (5.158)

so that:

x 0.tnC1/ ³ 1

h

kX
iD1

1

i
r i xnC1 (5.159)

and, because x 0.t/ D f .x; t/, this motivates the introduction of the BDF, in back-
ward difference form (hence the name), as:

f .xnC1; tnC1/ D 1

h

kX
iD1

1

i
r i xnC1 (5.160)

which is equivalent to the formulas given earlier for the BDFs.

Divided Difference Operator To deal with non-equidistant data, we need
the concept of a divided difference operator , as follows. For a sequence fxng
corresponding to the time-points ftng, define the zeroth divided difference of fxng
relative to ti , denoted x[ti], as simply the value of x corresponding to ti :

x[ti] D xi (5.161)

The first divided difference of fxng with respect to ti and ti�1 is denoted x[ti ; ti�1]
and is defined as:

x[ti ; ti�1] D x[ti] � x[ti�1]

ti � ti�1
(5.162)

The second divided difference of fxng with respect to ti , ti�1, and ti�2 is denoted
x[ti ; ti�1; ti�2] and defined as:

x[ti ; ti�1; ti�2] D x[ti ; ti�1] � x[ti�1; ti�2]

ti � ti�2
(5.163)

236 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

In general, the k-th divided difference of fxng relative to ti ; ti�1; : : : ; ti�k , is:

x[ti ; ti�1; : : : ; ti�kC1; ti�k] D x[ti ; : : : ; ti�kC1] � x[ti�1; : : : ; ti�k]

ti � ti�k
(5.164)

Thus, for example, given three data points, the divided difference is:

x[tn; tn�1; tn�2] D
xn�xn�1
tn�tn�1

� xn�1�xn�2
tn�1�tn�2

tn � tn�2
(5.165)

and, if we denote hn D tn � tn�1 and hn�1 D tn�1 � tn�2, then:

x[tn; tn�1; tn�2] D 1

hn�1 C hn

�
xn � xn�1

hn
� xn�1 � xn�2

hn�1

�
(5.166)

Newton Divided Difference Interpolation Formula Consider the .p C 1/
points:

.tn; xn/ .tn�1; xn�1/ Ð Ð Ð .tn�p; xn�p/ (5.167)

where, in general, the time-points are not equidistant. Then, the degree � p
polynomial that interpolates these points can be expressed as the Newton divided
difference interpolation polynomial:

Pn.t/ D xn C
pX

kD1

2
4k�1Y

jD0

.t � tn� j /

3
5 x[tn; : : : ; tn�k] (5.168)

For example, suppose we want to interpolate the points:

.tn; xn/ .tn�1; xn�1/ .tn�2; xn�2/ (5.169)

then p D 2 and:

Pn.t/ D xn C .t � tn/x[tn; tn�1] C .t � tn/.t � tn�1/x[tn; tn�1; tn�2] (5.170)

leading to:

Pn.t/D xn C.t �tn/
.xn � xn�1/

tn � tn�1
C .t � tn/.t � tn�1/

tn � tn�2

�
xn � xn�1

tn � tn�1
� xn�1 � xn�2

tn�1 � tn�2

�

For use as a predictor, we are interested only in the setting t D tnC1, so that the
general formula becomes:

x .0/nC1 D xn C
pX

kD1

2
4k�1Y

jD0

.tnC1 � tn� j /

3
5 x[tn; : : : ; tn�k] (5.171)

ACCURACY OF LMS METHODS 237

and the case p D 2 becomes:

x .0/nC1 D xn C .tnC1 � tn/
.xn � xn�1/

tn � tn�1

C .tnC1 � tn/.tnC1 � tn�1/

tn � tn�2

�
xn � xn�1

tn � tn�1
� xn�1 � xn�2

tn�1 � tn�2

�

which makes for a simple predictor for the non-equidistant TR or BDF2.

5.3.8 Estimating the LTE

It is always better to vary the time-step during the process of solving an ODE.
This is done by monitoring the LTE, as in the following framework:

1. A step is taken, and xnC1 is found.
2. The LTE is computed and compared to a prespecified threshold.
3. If the LTE is too large, the step is not accepted, the time-step h is reduced,

and the step is re-attempted.
4. If the LTE is smaller than the threshold, the step is accepted. If the LTE is

very small, the time-step is increased for future steps.

Since the LTE is the error relative to the exact solution, one may well wonder
how exactly it is to be found in practice. In fact, there is no exact way of finding
the LTE. Generally, we estimate the PLTE and use that as a proxy for the LTE.
But, even that is not easy, and will require some approximation. We now examine
several ways in which the PLTE can be estimated.

In the context of predictor-corrector methods, the standard method for esti-
mating the PLTE uses Milne’s estimate, after Milne (1949), which is as follows.
Let x .0/nC1 be the initial candidate solution, obtained by using an order p predic-
tor based on an extrapolated degree p interpolation polynomial. Then, based on
(5.151), we can write:

x.tnC1/� Qx .0/nC1 D h pC1x .pC1/.tn/C 0.h pC2/ (5.172)

where Qx .0/nC1 is the value of x .0/nC1 under the localizing assumption. Let xnC1 be the
final solution obtained by an order p corrector , with error constant C pC1, using
Newton’s method, applied to convergence. Then, as we already know:

x.tnC1/� QxnC1 D CpC1h pC1x .pC1/.tn/C 0.h pC2/ (5.173)

where, again, QxnC1 is the value of xnC1 under the localizing assumption. Sub-
tracting the first equation from the second, we get:

.1 � CpC1/h
pC1x .pC1/.tn/ D . QxnC1 � Qx .0/nC1/C 0.h pC2/ (5.174)

238 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

from which:

CpC1h pC1x .pC1/.tn/ D CpC1

1 � CpC1

�
QxnC1 � Qx .0/nC1

�
C 0.h pC2/ (5.175)

where the left-hand side is simply the PLTE. Therefore, the PLTE is given by:

PLTE D C pC1

1 � CpC1

�
QxnC1 � Qx .0/nC1

�
C 0.h pC2/ (5.176)

which, because we do not, in practice, have access to the values under the local-
izing assumption, motivates the practical estimate:

PLTE ³ C pC1

1 � CpC1

�
xnC1 � x .0/nC1

�
(5.177)

with the expectation that the difference between the two is negligible.
If not using a predictor-corrector pair, as would seem to be the case in most

simulators, then alternate approaches are available, as follows.

Richardson Extrapolation Richardson extrapolation is the ancestor of many
extrapolation methods used in numerical analysis, whose purpose is to increase
the accuracy. It is an old method, dating back to 1927 or earlier. A special
application of it leads to a PLTE estimate similar to Milne’s, and we summarize
this here only for the case of 1-step LMS methods. Having found xn�1 and xn , let
h D tnC1 � tn , with tn � tn�1 D Þh, where Þ > 0, and use a 1-step LMS method
to find xnC1 in two ways:

1. Using a time-step h, find xnC1 from xn , denote the solution by x .1/nC1, and
under the localizing assumption denote the solution by Qx .1/nC1, so that:

x.tnC1/� Qx .1/nC1 D LTE D CpC1h pC1x .pC1/.tn/C 0.h pC2/ (5.178)

2. Using time-step tnC1 � tn�1 D .1 C Þ/h, find xnC1 from xn�1, and under
the localizing assumption denote the solution by Qx .2/nC1, so that:

x.tnC1/� Qx .2/nC1 D LTE D CpC1..1 C Þ/h/pC1x .pC1/.tn�1/C 0.h pC2/

(5.179)

By a Taylor series expansion of x .pC1/.t/ around tn , it is easy to see that
x .pC1/.tn�1/ D x .pC1/.tn/C 0.h/, so that we can write:

x.tnC1/� Qx .2/nC1 D CpC1..1 C Þ/h/pC1x .pC1/.tn/C 0.h pC2/ (5.180)

Subtracting (5.178) from (5.180), we get:

Qx .1/nC1 � Qx .2/nC1 D �
.1 C Þ/pC1 � 1

Ðð PLTE C 0.h pC2/ (5.181)

ACCURACY OF LMS METHODS 239

from which:

PLTE D Qx .1/nC1 � Qx .2/nC1

.1 C Þ/pC1 � 1
C 0.h pC2/ (5.182)

In practice, with no access to the values under the localizing assumption, this
motivates the practical estimate:

PLTE ³ x .1/nC1 � x .2/nC1

.1 C Þ/pC1 � 1
(5.183)

This approach is expensive because xnC1 is computed twice, but the cost is
worthwhile in certain special cases, such as in the case where TR is being used
with extrapolation, as we will see later on.

Estimating the PLTE When not using predictor-corrector methods, and if the
expensive Richardson extrapolation is not an acceptable option, we can estimate
the PLTE directly by first estimating x .pC1/.tn/, and then computing:

PLTE D C pC1h pC1x .pC1/.tn/ (5.184)

There are two ways of estimating x .pC1/.tn/, depending on whether we have
equidistant data or not. Studying both cases is important because, even for 1-step
methods, the estimation of x .pC1/.tn/ requires more than two time-points and
therefore often involves non-equidistant data. If the data is equidistant, we have
access to a method for estimating x .pC1/.tn/ based on backward differences . If
the data is not equidistant, we have access to a method for estimating x .pC1/.tn/
based on divided differences . We will describe these, below.

Equidistant Data We saw earlier the notion of backward differences. For a
sequence x.t j /, where the time-points t j are equidistant, it can be shown that:

h pC1x .pC1/.tn/ D r pC1x.tn/C 0.h pC2/ (5.185)

which motivates the estimate:

h pC1x .pC1/.tn/ ³ r pC1x.tn/ (5.186)

Not having access to x.tn/ values, we make the further approximation:

h pC1x .pC1/.tn/ ³ r pC1xn (5.187)

leading to the PLTE estimate:

PLTE ³ CpC1r pC1xn (5.188)

For example, for TR with equidistant data:

PLTE ³ C3r3xn D � 1

12
.xn � 3xn�1 C 3xn�2 � xn�3/ (5.189)

240 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Non-Equidistant Data We saw earlier the notion of divided differences for
a sequence xn corresponding to time-points tn . One can also define the same in
connection with a time function x.t/ that is evaluated at a sequence of time-
points tn , leading to a sequence x.tn/. Thus, the zeroth divided difference of x.t/
relative to ti is:

x[ti] D x.ti / (5.190)

The first divided difference of x.t/ with respect to ti and ti�1 is:

x[ti ; ti�1] D x[ti] � x[ti�1]

ti � ti�1
(5.191)

and so on. In this context, the following result is useful:

Theorem 5.8. If x.t/ : R ! R is k times differentiable, then there exists a ¾ 2
[ti�k; ti] such that:

x .k/.¾/ D k!x[ti ; : : : ; ti�k] (5.192)

If we apply this result on the interval [tn�p; tnC1], which contains tn , then:

x .pC1/.¾/ D .p C 1/!x[tnC1; : : : ; tn�p] (5.193)

When x.t/ 2 R
m , then x .pC1/.¾/ is replaced by vector x .pC1/.¾/ in which each

component is evaluated at a different ¾i 2 [tn�p; tnC1], and the ¾i terms form a
vector ¾ . One can easily show that x .pC1/.tn/ D x .pC1/.¾/C 0.tnC1 � tn�p/, so
that, with hnC1 � tnC1 � tn , we have:

h pC1
nC1 x .pC1/.tn/ D h pC1

nC1 .p C 1/!x[tnC1; : : : ; tn�p] C 0
�
.tnC1 � tn�p/

pC2Ð
(5.194)

from which, for a one-step method of order p, for example:

PLTE ³ CpC1h pC1
nC1 .p C 1/!x[tnC1; : : : ; tn�p] (5.195)

This is the LTE estimate used in SPICE for TR and BE. For example, for a
first-order method, with p D 1, we find:

PLTE ³ 2C2h2
nC1

hnC1 C hn

�
xnC1 � xn

hnC1
� xn � xn�1

hn

�
(5.196)

where, notice, we have used the available xn�1, xn , and xnC1 in place of the
unavailable x.tn�1/, x.tn/, and x.tnC1/. When p D 2, we find:

PLTE ³ 6C3h3
nC1

tnC1 � tn�2

 xnC1�xn
tnC1�tn

� xn�xn�1
tn�tn�1

tnC1 � tn�1
�

xn�xn�1
tn�tn�1

� xn�1�xn�2
tn�1�tn�2

tn � tn�2

!
(5.197)

STABILITY OF LMS METHODS 241

In the equidistant case, this reduces to:

PLTE ³ C3 .xnC1 � 3xn C 3xn�1 � xn�2/ D C3r3xnC1 (5.198)

which, for TR, becomes:

PLTE ³ � 1

12
r3xnC1 (5.199)

5.4 STABILITY OF LMS METHODS

We saw earlier the notion of stability, in relation to the presence of perturbations
in both the differential problem and the difference method. We saw that a problem
is said to be totally stable or well-posed if its solution is not extremely sensitive to
perturbations. Likewise, we saw that a numerical method is said to be zero-stable
if, as h ! 0, its solution is not extremely sensitive to perturbations.

These notions were satisfying, in the sense that the notion of stability of the
numerical method was analogous to the notion of stability of the problem . Keep
in mind that, while the problem is a continuous-time differential equation, the
numerical method is a discrete time difference equation. Effectively, numerical
methods solve a difference equation instead of solving the differential equation.
Our hope, and goal, is that the difference equation would be a good proxy for
the differential equation. Indeed, this is what the property of consistency is all
about. It is meant to ensure that, as h ! 0, the difference equation is actually
solving the correct differential equation, and not some other.

However, even if a numerical method is zero-stable, there are things that can
“go wrong” with it when h is non-zero. These issues are related only to the
numerical method and not to the problem itself. The problem is always a h D 0
problem; it is in continuous-time. These issues arise because we are using a
discrete-time difference equation, with a non-zero h, to solve a continuous-time
differential system. Thus, these issues are somewhat artificial and their study will
not be as satisfying and as well motivated as that of zero-stability.

One thing that can go wrong with the use of a numerical method is that local
errors can accumulate over time. Naturally, one would expect some level of
error accumulation. But when it becomes so excessive that the resulting solution
is not reliable, the method becomes useless. Another thing that can go wrong
is that the method can be too sensitive to the initial conditions. Here, too, one
would expect the method to be sensitive, to some extent, to its initial conditions.
However, extreme sensitivity can make the method, again, useless. A method
that is inadequate due to such issues is said to be unstable.

While it is easy to give a qualitative description of what stability, and instabil-
ity, mean, it is not as easy to describe it quantitatively and formally. Indeed, there
are various ways of describing stability in quantitative terms, some of which are
more suitable to some problem domains than to others. Broadly speaking there
are two theories of stability, a classical linear stability theory, and a more recent

242 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

nonlinear stability theory. The latter is not fully developed yet, and only some
results are available. Those available results are not commonly used in computer
codes, because it turns out that the linear theory is adequate in most cases. Thus,
we will focus on linear stability theory.

5.4.1 Linear Stability Theory

Linear stability theory proceeds as follows. Consider a general homogeneous
linear differential system with constant coefficients:

x 0 D Ax (5.200)

whose solution vector x.t/ is assumed to die down to 0 as t ! 1, for any finite
initial condition. This is called a test system or a test equation; it is a system
for which the stability of a numerical method will be tested . For simplicity, and
because it does not affect the results, it is assumed that the system matrix has
distinct eigenvalues. Then, linear stability theory asks the following question:
for this general class of problem, does the candidate numerical method also
produce solutions that die down to 0 as t ! 1? If yes , then that is a “good
thing,” and we call the method stable, in one sense or another. If not , then that’s
a “bad thing,” and we call the method unstable. A method that is deemed to
be stable in this way is found, most often, to be also good for solving more
general problems in practice, including linear problems whose solutions do not
necessarily die down to zero, linear problems with time-varying coefficients, and
general nonlinear problems. Basically, such methods are found to not excessively
accumulate errors and to not be excessively sensitive to initial conditions.

We may want to refer to a homogeneous linear problem whose solution dies
down to zero over time as a “stable problem.” One is tempted, in fact, to think of
any systems that do not have this property as being impractical or non-physical.
After all, if its solution does not die down to zero over time, then the problem
would seem to be one that has infinite memory of its past, or that infinitely
amplifies the values of its initial condition. Either way, it does not sound like
a very useful or practical system. However, one should exercise caution with
this line of thinking. In practice, if one encounters a homogeneous system whose
solutions grow over time, the system may be actually designed to operate that
way. For example, an oscillator requires this property, and a linearization of
an oscillator around some operating point would produce a homogeneous linear
system with non-decaying outputs. Or, it may be that the system is modeled in
this way for only a limited time period in its operational cycle. So, in general,
while one may want to call such systems “unstable,” one should not assume
that they are somehow badly modeled, non-physical, or ill-posed.2 Given this
notion of stability of homogeneous linear problems, then one can succinctly say

2Going back to the definition of well-posed (totally stable) problems given earlier, recall that that
definition is with respect to a given finite time period of operation [t0; t f]. A system can have
solutions that grow over time and still be well-posed (totally stable) over a finite time period.

STABILITY OF LMS METHODS 243

that classical linear stability theory asks the following question: when applied
to a (homogeneous, linear) differential problem that is “stable,” is my difference
method “stable” as well?. In other words: does it produce decaying numerical
solutions for stable linear homogeneous problems?

That is all that the theory does! Significantly, the theory makes no mention of
how the method may behave when the problem is unstable. That is important too;
as mentioned above, a homogeneous problem whose solutions do not die down
over time may well be encountered in practice. Thus, the definitions and results
of linear stability theory should be used with the above caveats in mind. One
should try to check, in practice, how a given numerical method would perform
on systems that are slightly unstable.

We will now proceed with the detailed study of linear stability theory, by
first studying the notions of a test equation and of absolute stability . We will
then define the concept of a stability region , and give the two key properties of
A-stability and stiff stability . There are other definitions of stability that can be
given, as in Lambert (1991), but it will suffice for us to focus on these two.

5.4.2 The Test Equation

As our test system , we have introduced the arbitrary homogeneous linear differ-
ential system with constant coefficients:

x 0 D Ax (5.201)

whose solution vector x.t/ is assumed to die down to 0, as t ! 1, for any finite
initial condition, and we have assumed that the eigenvalues ½i of A are distinct.
As we saw earlier, the exact general solution for such a system is given by:

x.t/ D
mX

iD1

ci e
½i t qi (5.202)

where qi is the eigenvector corresponding to ½i , for all i D 1; 2; : : : ;m, and the ci

are constant coefficients. Because eigenvalues can be complex, ½i 2 C, some of
the individual terms in the summation in (5.202) may be complex time functions.
However, the presence of complex conjugate ½i , and the possibility of complex
qi , leads to an overall solution which is real. Because the system is assumed to
have a solution that dies down over time for any (finite) initial condition, then
it follows that:

<.½i / < 0; 8i (5.203)

so that all eigenvalues are strictly in the left half-plane.
If we apply a k-step LMS method to the above test system, the resulting

difference system is:

k�1X
jD�1

Þ j xn� j D h
k�1X

jD�1

þ j Axn� j (5.204)

244 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

or:
k�1X
jD�1

�
Þ j I � hþ j A

Ð
xn� j D 0 (5.205)

where I is the m ð m identity matrix. We are interested to learn what conditions
must be imposed so that the numerical solution fxng dies down to zero over time,
in other words, to ensure that:

lim
n!1 kxnk D 0 (5.206)

Because the ½i are distinct, it is known that there exists a nonsingular matrix
Q such that 3 D Q�1 AQ is a diagonal matrix whose diagonal elements are
½1; ½2; : : : ; ½m . We now define a sequence fyng by yn D Q�1xn , so that xn D
Qyn , and we pre-multiply (5.205) by Q�1, leading to:

k�1X
jD�1

�
Þ j I � hþ j3

Ð
yn� j D 0 (5.207)

In general, Q can have complex entries, so that fyng is a complex sequence.
Because both I and 3 are diagonal matrices, this system is decoupled , and we
can write it as:

k�1X
jD�1

�
Þ j � hþ j½i

Ð
yn� j .i/ D 0; for i D 1; 2; : : : ;m (5.208)

so that it is a collection of m single-variable difference equations. Because xn D
Qyn and Q is nonsingular, then clearly (5.206) is satisfied if and only if:

lim
n!1 kynk D 0 (5.209)

which can be written as a condition to be met by each of the m difference
equations, as:

lim
n!1 jyn.i/j D 0; for i D 1; 2; : : : ;m (5.210)

In other words, we can express the original stability question in relation to a
single-variable as follows: if fzng is a scalar, possibly complex , sequence, what
conditions must be met by the difference equation:

k�1X
jD�1

�
Þ j � hþ j½

Ð
zn� j D 0 (5.211)

where ½ 2 C, so that its solution fzng satisfies:

lim
n!1 jznj D 0 (5.212)

STABILITY OF LMS METHODS 245

It is enough to answer this question once, in connection with the z-system,
because the m individual y-systems are exactly identical. Thus, effectively, we
are concerned with the solution of a single-variable complex test equation:

x 0 D ½x; where x; ½ 2 C; with <.½/ < 0 (5.213)

whose exact solution is x.t/ D ce½t , and with the application of an LMS method
to this test equation, leading to the difference equation:

k�1X
jD�1

� j xn� j D 0 (5.214)

where � j � .Þ j � þ j h½/, whose solution fxng is required to satisfy:

lim
n!1 jxnj D 0 (5.215)

Equation (5.214) is a homogeneous linear difference equation with constant coef-
ficients , because the Þ j and þ j coefficients are independent of n. For example,
for the case of FE, applied to the test equation x 0 D ½x , the resulting difference
equation is:

xnC1 D xn C h½xn (5.216)

or:
xnC1 � .1 C h½/xn D 0 (5.217)

For the case of BE, the difference equation is:

xnC1 D xn C h½xnC1 (5.218)

or:
.1 � h½/xnC1 � xn D 0 (5.219)

And, for TR, the difference equation is:

xnC1 D xn C h½

2
.xnC1 C xn/ (5.220)

or:
.1 � h½=2/xnC1 � .1 C h½=2/xn D 0 (5.221)

Such difference equations admit a general solution that depends on some arbitrary
constants, whose values can in practice be found using initial conditions. The
solutions are not hard to find, as we will now see.

246 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Consider the value of the left-hand side of (5.214), upon substitution of the
candidate solution xn D rn

1 , for some non-zero r1 2 C:

k�1X
jD�1

� j r
n� j
1 D rn�kC1

1

�
��1rk

1 C �0rk�1
1 C Ð Ð Ð C �k�2r1 C �k�1

�
(5.222)

It is easy to see that a sequence of the form xn D rn
1 is a solution of (5.214), if

r1 is a root of the so-called characteristic polynomial :

k�1X
jD�1

� j r
k� j�1 D ��1rk C �0rk�1 C Ð Ð Ð C �k�2r C �k�1 (5.223)

Indeed, if ri is a root of the characteristic polynomial, with multiplicity ¼i , it can
be shown that the following sequences are all valid solutions:

frn
i g; fnrn

i g; fn2rn
i g; : : : ; fn¼i �1rn

i g (5.224)

The set of all such sequences, corresponding to every root ri , forms a so-called
fundamental system of linearly independent solutions of (5.214). It can be shown
that the general solution of (5.214) can be written as a linear combination of the
solutions that form this fundamental system.

Given the above, and in order for the general solution of the difference
equation (5.214), resulting from application of the candidate numerical method
to the test equation, to die down to zero over time, it is clear that we must require
that jri j < 1, for all roots ri of its characteristic polynomial (5.223).

5.4.3 Absolute Stability

The characteristic polynomial of the difference equation can be written in terms
of the first and second characteristic polynomials of the LMS method, as:

³.r; ĥ/ D
k�1X
jD�1

.Þ j � þ j ĥ/r
k� j�1 D ².r/� ĥ¦.r/; where ĥ � h½ (5.225)

and is referred to as the stability polynomial of the LMS method. Clearly, jxnj !
0 as n ! 1 if all the roots of ³.r; ĥ/ are strictly inside the unit circle of the
complex plane, which motivates the following definition.

Definition 5.11. (Absolute Stability) A LMS method is said to be absolutely
stable for a given ĥ if, for that ĥ, all the roots of ³.r; ĥ/ are strictly inside the
unit circle. Otherwise, it is said to be absolutely unstable for that ĥ.

Where, in the complex plane, are the roots of ³.r; ĥ/? Note that any common
roots of ².r/ and ¦.r/ are also roots of ³.r; ĥ/, for any ĥ. Otherwise, any point

STABILITY OF LMS METHODS 247

r0 of the complex plane which is not a root of ¦.r/ can be a root of ³.r; ĥ/ for
some value of ĥ, namely for:

ĥ0 D ².r0/

¦ .r0/
(5.226)

In most cases, ².r/ and ¦.r/ have no common roots, so that ri is a root of
³.r; ĥ/ if and only if ĥ D ².ri /=¦ .ri /. In fact, because the roots of a polynomial
are continuous functions of its coefficients, the roots of ³.r; ĥ/ are parameterized
by ĥ; they move in the plane as ĥ is varied. For some values of ĥ, all the roots
would be strictly inside the unit circle and the method would be absolutely stable.
For some other values of ĥ, one or more roots would not be strictly inside the
unit circle and the method would not be absolutely stable.

We are clearly interested in the values of ĥ for which all the roots are strictly
inside the unit circle, and the LMS method is absolutely stable.

Region of Absolute Stability The above discussion motivates the following
definition.

Definition 5.12. (Region of Absolute Stability) A LMS method is said to have
a region of absolute stability RA, in the complex plane, if it is absolutely stable
for all ĥ 2 RA.

The region of absolute stability is a characteristic of the LMS method, and we
can plot it for a given method, as a fixed region of the complex plane. It is useful
to visualize the relation between RA and the unit circle as a mapping from the
ĥ-plane to the r -plane, as shown in Fig. 5.1.

For a given specific system, x 0 D Ax , with known eigenvalues, we may be
able to set the time-step h so as to ensure that ĥ 2 RA. This raises the possibility
that one may apply time-step control for stability, and not just for accuracy.
This is not a “good thing,” however, because we would prefer to be able to
set the time-step based only on considerations of accuracy. If one must satisfy
considerations of both accuracy and stability, one has much less flexibility in the

hl-plane r-plane

unit circle

RA

Figure 5.1: The region of absolute stability in the h½-plane maps to the interior of the
unit circle in the r-plane.

248 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

choice of time-step. In such cases, one is forced to take short time-steps much
more often. We will return to this issue in our discussion of stiffness; for now,
we are interested to identify the region of absolute stability.

In this regard, one can show (see Lambert (1991)) that the stability polynomial
of any convergent LMS method must have a root r1 that approaches 1 as ĥ ! 0.
Furthermore, by examining the rate at which this root approaches 1, one arrives at
the following conclusion, to quote from Lambert (1991), “the region of absolute
stability of any convergent LMS method cannot contain the positive real axis in
the neighborhood of the origin .”

Finding the Region of Absolute Stability One way of finding the region
of absolute stability, called the boundary locus method is as follows. Because
the roots of a polynomial are continuous functions of its coefficients, then the
roots of the stability polynomial are continuous functions of the parameter ĥ.
Therefore, any continuous path in the h½-plane that starts inside RA and ends
outside it must pass through a point that corresponds to the stability polynomial
having a root of magnitude 1. These points define a boundary of RA, consisting
of certain points in the h½-plane for which at least one root of ³.r; ĥ/ has
magnitude 1.

The set of all points in the plane where at least one root has magnitude 1 can
be discovered by setting:

³.ei� ; ĥ/ D 0 (5.227)

keeping in mind that this set may include points that are not necessarily boundary
points of RA. This leads to a way to discover the boundary, based on:

ĥ D ².ei� /

¦ .ei� /
D
Pk�1

jD�1 Þ j ei�.k� j�1/Pk�1
jD�1 þ j ei�.k� j�1/

(5.228)

D Þ�1eik� C Þ0ei.k�1/� C Ð Ð Ð C Þk�2ei� C Þk�1

þ�1eik� C þ0ei.k�1/� C Ð Ð Ð C þk�2ei� C þk�1
(5.229)

By sweeping � from 0 to 2³ , we can discover the boundary. Once the boundary
has been found, we can then test the regions on both sides of the boundary to
identify the region of absolute stability, RA, as we will now demonstrate for a
few test cases.

Stability of Forward Euler For the case of forward Euler (FE), xnC1 D xn C
h fn , or:

xnC1 � xn D h fn (5.230)

we have k D 1 and Þ�1 D 1, Þ0 D �1, þ0 D 1, so that:

².z/ D z � 1 and ¦.z/ D 1 (5.231)

STABILITY OF LMS METHODS 249

(which have no common roots) and the stability polynomial is:

³.r; ĥ/ D ².r/� ĥ¦.r/ D r � ĥ � 1 (5.232)

with the single root:
r1 D ĥ C 1 (5.233)

and it is clear that, in order for r1 to be inside the unit circle, we must keep ĥ
inside the circle of radius 1 centered at �1. Indeed, using the boundary locus
method, the boundary of RA is given by:

ĥ D ².ei� /

¦ .ei� /
D ei� � 1 (5.234)

which traces the circle of radius 1 centered at �1, as shown in Fig. 5.2, and we
know that RA is the inside of this circle because, for the convergent FE, recall,
RA cannot contain parts of the positive real axis near the origin.

What do we learn from the region of absolute stability FE? Because <.½/ <
0 and h> 0, then ĥ D h½ is strictly in the left half-plane, and can always be
“brought into” the region RA by a small enough h. This is useful—FE can
always be made stable by the use of a small enough time-step—but this is not a
surprise because we already know that FE is zero-stable. However, the problem
with FE is that the region RA is quite limited and small. For large ½, a very
small time-step may be required to achieve stability. In practice, one finds that
a very small time-step is often required to maintain stability and control error
accumulation when using FE. This renders the method somewhat useless; better
methods are available.

Stability of Backward Euler For the case of backward Euler (BE), xnC1 D
xn C h fnC1, or:

xnC1 � xn D h fnC1 (5.235)

–4 –2 0 2 4

–2

0

2

Figure 5.2: The region of absolute stability for FE.

250 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

we have k D 1 and Þ�1 D 1, Þ0 D �1, þ�1 D 1, so that:

².z/ D z � 1 and ¦.z/ D z (5.236)

(which have no common roots) and the stability polynomial is:

³.r; ĥ/ D ².r/� ĥ¦.r/ D r � ĥr � 1 (5.237)

with the single root:

r1 D 1

1 � ĥ
(5.238)

and it is clear that, in order for r1 to be inside the unit circle, we must keep
ĥ outside the circle of radius 1 centered at 1. Indeed, using the boundary locus
method, we have that the boundary of RA is given by:

ĥ D ².ei� /

¦ .ei� /
D 1 � e�i� (5.239)

which traces the circle of radius 1 centered at 1, as shown in Fig. 5.3, and we
know that RA is the outside of this circle because, for the convergent BE, recall,
RA cannot contain parts of the positive real axis near the origin.

What do we learn from the region of absolute stability BE? An immediate
observation is that the region of absolute stability is much larger than that of
FE. Generally, it is often the case that implicit methods (like BE) have larger
regions of absolute stability than explicit methods (like FE). Practical experience
is that methods with larger regions of absolute stability out-perform those with
smaller regions. Furthermore, because <.ĥ/ < 0 and RA contains the whole left
half-plane, it is clear that BE is absolutely stable for any value of time-step h.
Thus, when using BE, time-step control can be based solely on considerations of
accuracy, without worrying about stability.

–4 –2 0 2 4

–2

0

2

Figure 5.3: The region of absolute stability for BE.

STABILITY OF LMS METHODS 251

However, notice that RA contains most of the right half-plane as well. As
a result, when applied to a problem with slightly positive <.½i /, BE may erro-
neously produce stable decaying responses. As discussed earlier, such problems
may well arise in practice, so that one should exercise caution when using BE—it
may be “too stable.” It would seem that, ideally, we would want RA to consist
of the full left half-plane and no more.

Stability of the Trapezoidal Rule For the case of the trapezoidal rule (TR):

xnC1 � xn D h

�
1

2
fnC1 C 1

2
fn

�
(5.240)

we have k D 1 and Þ�1 D 1, Þ0 D �1, þ�1 D 1=2, þ0 D 1=2, so that:

².z/ D z � 1 and ¦.z/ D z

2
C 1

2
(5.241)

(which have no common roots) and the stability polynomial is:

³.r; ĥ/ D ².r/� ĥ¦.r/ D r � ĥ
r

2
� ĥ

2
� 1 (5.242)

with the single root:

r1 D 1 C ĥ=2

1 � ĥ=2
(5.243)

for which it can be easily shown that jr1j < 1 if and only if <.ĥ/ < 0, and that
jr1j D 1 if and only if <.ĥ/ D 0. Indeed, using the boundary locus method, we
have that the boundary of RA is given by:

ĥ D ².ei� /

¦ .ei� /
D 2

�
ei� � 1

ei� C 1

�
(5.244)

which traces the imaginary axis, with <.ĥ/ D 0 and =.ĥ/ D 2 tan.�=2/, as shown
in Fig. 5.4, and we know that RA is the left half-plane because, for the convergent
TR, recall, RA cannot contain parts of the positive real axis near the origin.

What do we learn from the region of absolute stability TR? As with BE,
because RA contains the whole left half-plane, TR is absolutely stable for any
choice of time-step. Contrary to BE, however, and because RA does not include
any parts of the right half-plane, then TR does not suffer from the issue identified
above with BE; it will not cause true growing responses to die down to zero; it
is not “too stable.” TR is not ideal, however, and there are issues to watch out
for in practice, as we will see below in the study of stiffness.

252 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

–4 –2 0 2 4

–2

–4

0

4

2

Figure 5.4: The region of absolute stability for TR.

5.4.4 Stiff Systems

Stiffness is a phenomena that is often exhibited by ODE systems from a wide
range of applications, including circuit simulation. It does not have a precise
mathematical definition, and thus is better termed a phenomena rather than a
property . The visible “symptom” of stiffness is that one finds that very short
time-steps are required to maintain accuracy and stability, and the solution takes
a long time to complete. Stiffness usually arises in connection with numerical
methods that have a finite region of absolute stability, such as FE, but is not
restricted to such cases.

As described in Lambert (1991), a number of ways have been proposed to
explain and define stiffness mathematically. For example, one approach is to say
that a linear constant coefficient system with <.½i / < 0, 8i , is stiff if the ratio of
its largest j<.½i /j to its smallest j<.½i /j is very large. Another, related, method
is to say that stiffness occurs when some components of the solution decay much
more rapidly than others. A third, more general, view is that stiffness occurs when
stability requirements, rather than accuracy requirements, dictate the time-step
that should be used. However, counter-examples can be given to show that each
of these characterizations misses the mark, in some way, for some stiff systems.

The following, slightly paraphrased from Lambert (1991), is perhaps the best
way to characterize stiffness today: if a numerical method with a finite RA,
applied to a system with any initial conditions, is forced to use, in a certain
time interval, a time-step which is exceedingly small in relation to the smoothness
of the exact solution in that interval, then the system is said to be stiff in that
interval . This “definition” is not very helpful because it does not provide an a
priori method to check whether a system is stiff or not; unfortunately, this is the
state of the art today.

TR and the BDFs are probably the best modern methods for solving stiff sys-
tems, but one should keep in mind that there is no “silver bullet” to tackle stiffness
in all cases. In the context of linear stability theory, one can identify certain traits
that aid in combating stiffness. One key requirement, for example, is to ensure
that there are no stability-imposed restrictions on the time-step. Thus, methods

STABILITY OF LMS METHODS 253

like FE, with a very limited region of absolute stability, are to be avoided.
Instead, methods like BE and TR whose regions of absolute stability include the
whole left half-plane, are quite attractive. This motivates the following definition.

Definition 5.13. (A-stability) A LMS method is said to be A-stable if its region of
absolute stability includes the whole left half-plane, i.e., if fĥj<.ĥ/ < 0g ² RA.

Thus, both BE and TR are A-stable. At this point, it is useful to introduce the
following key result, the second of Dahlquist’s “barriers.”

Theorem 5.9. (The second Dahlquist barrier)

1. An explicit LMS method cannot be A-stable.
2. The order of an A-stable LMS method cannot exceed 2.
3. The 2nd order A-stable LMS method with the smallest error constant is TR.

In other words, if we insist on A-stability, then TR is the most accurate
LMS method! Thus, A-stability is viewed as being a bit too restrictive and some
alternate definitions of stability have been proposed. We will consider only one
of these, called stiff stability.

5.4.5 Stiff Stability

One way to slacken the requirements of A-stability is by appealing to the types of
problems typically encountered in practice and to the properties of band-limited
signals. This was done by Gear (1971) and (as later modified by others) leads to
the following definition.

Definition 5.14. (Stiff Stability) A numerical method is said to be stiffly stable
if its region of absolute stability includes R1 and R2, where, with positive real
a and c:

R1 D fĥj<.ĥ/ < �ag (5.245)

R2 D fĥj � a � <.ĥ/ < 0; j=.ĥ/j � cg (5.246)

In Fig. 5.5, we show the type of region R1 [R2 that must be included in
RA in order for an LMS method to be stiffly stable. It is clear that an A-stable
method is also stiffly stable, but not vice versa. Both TR and BE are stiffly stable,
but other methods can be stiffly stable as well, such as all the BDFs, as we will
now see.

Stability of the BDFs It is easy to verify that BDF2 is A-stable and stiffly
stable, with the region of absolute stability shown in Fig. 5.6. Thus, both the first
order BDF (BE) and the 2nd order BDF (BDF2) are A-stable and stiffly stable.

254 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

c

–c

–a

Figure 5.5: The shaded region must be part of the region of absolute stability for any
stiffly stable system.

–4 –2 0 2 4 6

-4

-2

0

2

4

Figure 5.6: The region of absolute stability for BDF2.

BDF2 has an error constant of �2=9 which, as we would expect, is larger (in
magnitude) than that of TR, which is �1=12. The remaining BDFs, of orders
3, 4, 5, and 6, are stiffly stable as well, but not A-stable, as we see from their
regions of absolute stability, shown in Fig. 5.7, Fig. 5.8, Fig. 5.9, and Fig. 5.10,
and their error constants are given in Table 5.1.

–4 –2 0 2 4 6 8 10

–4

–2

0

2

4

Figure 5.7: The region of absolute stability for the 3rd order BDF.

STABILITY OF LMS METHODS 255

–5 0 5 10 15

–8

–6

–4

–2

0

2

4

6

8

Figure 5.8: The region of absolute stability for the 4th order BDF.

-10 -5 0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Figure 5.9: The region of absolute stability for the 5th order BDF.

-30 -20 -10 30 40

-20

0

20

0 10 20

-10

10

Figure 5.10: The region of absolute stability for the 6th order BDF.

256 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Table 5.1: Error constants for the BDFs.

k D p: 1 2 3 4 5 6

C pC1: �1

2
�2

9
� 3

22
� 12

125
� 10

137
� 20

343

5.4.6 Remarks

This is a good point to summarize our findings and make a few remarks. Firstly,
with regard to stiff systems:

1. It can be shown that no explicit LMS method or explicit Runge-Kutta
method can be A-stable or stiffly stable. Thus, one must use implicit meth-
ods to tackle stiff systems.

2. When using implicit methods on stiff nonlinear problems, it is found in
practice that one must use Newton’s method (not a fixed point method)
and one must iterate to convergence.

More generally, the following summary points are worth reiterating:

1. The great advantage of methods that are A-stable, like TR, BE, and BDF2,
is that their stability imposes no restrictions on time-step. This is because
their region of absolute stability includes the whole left half-plane. This
allows one to efficiently handle stiff systems using these methods. With
these methods, stable (negative real part) eigenvalues of the differential
system lead to stable (within the unit circle) roots of the difference system.
In other words, an A-stable method produces a stable difference system,
for any given stable differential test system.

2. TR is the prototypical A-stable system—its region of absolute stability
consists exactly of the left half-plane.

3. Some methods, like BE and BDF2, have bigger regions of absolute stability
than TR, but they run the risk of being “too stable,” as we saw earlier. For
some systems which have eigenvalues with small positive real parts, the
response from such methods would be erroneously decaying down to zero.

4. Non-A-stable but stiffly stable methods, like the BDFs of orders 3–6, have
regions of absolute stability that do not include the full left half-plane. Nev-
ertheless, these methods are very good at handling practical stiff systems.

In circuit simulation, the most popular methods are BE, TR, and BDF2. Higher
order BDFs are difficult to implement, especially with regard to variable time-
step approaches; it is not clear if they are worth the effort. TR is probably the
most commonly used method, because:

1. It is a one-step method, thus easier to implement than the two-step BDF2,
but it has the same order as the BDF2.

TRAPEZOIDAL RINGING 257

2. It is a second-order method, thus more accurate than BE.
3. It does not suffer from the possibility of being “too stable” as is the case

with BE and BDF2.

But, as we commented earlier, TR is not perfect, and it does suffer from
a weakness, commonly referred to as trapezoidal ringing , which we now
explain.

5.5 TRAPEZOIDAL RINGING

Consider the standard test equation:

x 0 D ½x; with x; ½ 2 C; and <.½/ < 0 (5.247)

whose exact solution is x.t/ D ce½t , where c 2 C. Given that tnC1 D t0 C h.n C
1/, we can write the exact solution at tnC1 as:

x.tnC1/ D x.t0/
�
eh½ÐnC1

(5.248)

Suppose we use TR, xnC1 � xn D h
2 . fnC1 C fn/, to solve the above system. Then,

substituting fn D f .xn; tn/ D ½xn , and similarly for fnC1, into the TR expression,
gives:

xnC1 D
�

1 C h½=2

1 � h½=2

�
xn D x0

�
1 C h½=2

1 � h½=2

�nC1

(5.249)

Thus, the term .1 C h½=2/=.1 � h½=2/ is supposed to approximate the term eh½

of the exact solution and, for simplicity, we focus on the nth terms and compare
the two series:

xn D x0

�
1 C h½=2

1 � h½=2

�n

(5.250)

and:

x.tn/ D x.t0/
�
eh½Ðn (5.251)

We recognize the term .1 C h½=2/=.1 � h½=2/ as the single root, r1, of the sta-
bility polynomial of TR:

r1 D
�

1 C h½=2

1 � h½=2

�
(5.252)

which, we already know, has jr1j < 1 because <.½/ < 0. Also, because jezj D
e<.z/ , we also know that jeh½j < 1. Thus, both rn

1 and eh½n go to zero as n ! 1,
which we already expect for the exact solution (because <.½/ < 0) and for TR
(because it is A-stable).

258 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

However, consider what happens in the case when jh<.½/j is large. A large-
magnitude, negative <.½/ would correspond to a fast transient in the true solution
(due to jezj D e<.z/), such as what may be observed in digital circuits when a
signal makes a logic transition. A large h is desirable and, of course, is the
whole point of using an A-stable method like TR. As jh½j ! 1, it is easy
to see that r1 approaches �1 on the real axis, maintaining jr1j < 1, while eh½

approaches 0. As a result, as n increases, we have that the term eh½n (and the
true solution, therefore) goes to zero very quickly, while the term rn

1 (and the
numerical solution, therefore) goes to zero very slowly, and with alternating signs.
In practice, this leads to a slowly damped oscillating error, that is commonly
referred to as trapezoidal ringing , such as shown in Fig. 5.11.

To overcome this problem, one must either reduce the time-step or else resort
to another method, such as BDF2, which does not suffer from ringing but is
more complex to implement. Other alternatives involve trying to “fix” the ringing
problem, such as by using TR in conjunction with smoothing , as we now discuss.

5.5.1 Smoothing

Smoothing is a technique, similar to the application of a filter to a noisy signal,
that aims to reduce ringing, such as observed with TR, by “smoothing out” the
waveform, as follows. Suppose we are using TR and we have already computed
xnC1 from xn , and suppose that tn�1, tn , and tnC1 are equidistant, so that tn �
tn�1 D tnC1 � tn . Then, we can recompute another, hopefully better, value of xn

as follows:
x̂n D 1

4
.xn�1 C 2xn C xnC1/ (5.253)

0 5 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Accurate
Computed (TR)

Figure 5.11: Typical trapezoidal ringing, from simulation.

TRAPEZOIDAL RINGING 259

and we adopt this weighted average, of xn and its two neighbors, as the new
value of xn :

xn D x̂n (5.254)

and then re-compute xnC1 using standard TR before marching on forward.
There is no perfect or best recipe for when or how often to apply smoothing.

Typically, it should be applied right after any “event” that is expected to generate
fast transients, or whenever one suspects that ringing may occur. Smoothing is
obviously expensive because of the cost of computing xnC1 twice, so it is not
always worth the effort. Furthermore, practical experience shows that smoothing
by itself does not guarantee significant improvement in the quality of the solu-
tion. However if, in addition, we also apply extrapolation , whose purpose is to
improve the accuracy, then smoothing becomes worthwhile, as reported in Lind-
berg (1971), both in terms of computational cost and quality of solution. In the
next section, we will describe extrapolation and its application to the TR. When
extrapolation is being used anyway, then LTE estimation can be done using the
technique we saw earlier, based on Richardson extrapolation. Thus, fully-featured
implementations of TR employ smoothing, extrapolation, and LTE estimation by
means of Richardson extrapolation.

What if tn � tn�1 6D tnC1 � tn? There are no good alternatives to standard
smoothing in this case. Perhaps one can explore alternative smoothing techniques
that use unequal weights for xn�1 and xnC1, or other possibilities. It is not clear
if this has been attempted or tested in the field.

5.5.2 Extrapolation

Extrapolation is a scheme by which accuracy can be improved by combining
the numerical solutions at different time-step settings. We first solve the system
over [t0; t] using a fixed time-step h1, starting from some initial condition x0.
We then re-solve the system, over the same time-span and starting with the same
initial condition, but using a different fixed time-step h2 < h1. The goal, then,
is to extrapolate those two results to hopefully come closer to the h D 0 (i.e.,
the exact) solution, which is our ultimate goal. Extrapolation can be repeatedly
applied, producing iterative refinement of the solution, but we will describe only
a single application of it.

For a given fixed time-step h over [t0; t], suppose that the error between the
computed and exact solutions at time t , is given by the expansion:

E.h/ �
1X
jD1

a j h
� j ; where �1 < �2 < Ð Ð Ð (5.255)

and where the coefficients a j do not depend on h; this is a typical situation, but
notice that E.h/ is not an LTE, but rather a global truncation error (GTE). Now,
suppose that two solutions are found over [t0; t], corresponding to two different

260 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

(fixed) time-step values h1 and h2 < h1, and let ² � .h2=h1/ < 1. If we denote
the two computed solutions at t by x .1/.t/ and x.2/.t/, then:

x.t/ D x.1/.t/ C
1X
jD1

a j h
� j
1 (5.256)

x.t/ D x.2/.t/ C
1X
jD1

a j h
� j
2 (5.257)

where the coefficients a j and exponents � j are the same in both expressions.
Proceeding as in Ralston and Rabinowitz (2001), if we multiply (5.256) by h�1

2
and (5.257) by h�1

1 , then subtract the two results and solve for x.t/, we find that
the terms with h�1

i cancel out, and we have:

x.t/ D
�

x .2/.t/ � ²�1 x .1/.t/

1 � ²�1

�
C

1X
jD2

�
²� j � ²�1

1 � ²�1

�
a j h

� j
1 (5.258)

Thus, we can compute an improved solution at t as:

x̂.t/ D
�

x .2/.t/ � ²�1 x .1/.t/

1 � ²�1

�
(5.259)

for which:

x.t/ � x̂.t/ D
1X
jD2

b j h
� j
1 (5.260)

where:

b j �
�
²� j � ²�1

1 � ²�1

�
a j (5.261)

Crucially, the order of the global error has been improved from �1 to �2. Note,
we do not need to know the values of a j or b j in order to use extrapolation;
we merely find x̂.t/ and reap the benefits of the increased order. We do need to
know �1, but that is known for any given LMS method.3

Extrapolation is applicable to many numerical problems, such as for finding
derivatives, computing definite integrals, as well as solving ODEs. But, it is
obviously not cheap, because we have to re-solve the system over the same time-
span and because we have to use a fixed time-step across that time-span. So, it is
not clear that it is always worth the effort. However, because of a special property
of TR, which we describe next, extrapolation becomes especially compelling in
that case.

3In general, it can be shown that the global truncation error (GTE) of an LMS method of order p is
0.h p/, in contrast to the LTE which is 0.h pC1/, so that �1 D p. For example, TR has an LTE which
is 0.h3/ but a GTE which is only 0.h2/, so that an order of 1 is “lost” due to error accumulation,
and �1 D 2.

VARIABLE TIME-STEP METHODS 261

Even Powers Expansion The trapezoidal rule is called a symmetric rule
because, if the sign of h is reversed, then the roles of xn and xnC1 are reversed.
Such rules are also called reflexive by some authors. Because of this, and under
certain general conditions having to do with differentiability of the system func-
tion, f .x; t/, then it can be shown, as in Stetter (1965), that the global truncation
error of the trapezoidal rule has an expansion in terms of only even powers of h
(so that �1 D 2, �2 D 4, �3 D 6, etc.):

E.h/ D
1X
jD1

c j h
2 j (5.262)

where, as before, the c j coefficients are independent of h (this expansion is
asymptotic in the sense that is only accurate as h ! 0). The consequences of
this, when applying extrapolation to TR, are immediately clear and compelling:
whereas, in general, we would expect extrapolation to improve the order by an
increment of 1, in this case it doubles the order, from 2 to 4. This makes it worth-
while to apply extrapolation to TR. Experimental evidence, according to Lindberg
(1971), shows that using extrapolation and smoothing in an implementation of
TR gives good accuracy with reduced ringing.

Applicability to simulation: One difficulty in using extrapolation for circuit
simulation is the fact that the time-steps h1 and h2 must be fixed over [t0; t].
One can envision allowing both h1 and h2 to be relatively large, but even then,
the use of a fixed time-step would seem to be expensive for simulation. It is
not clear if this has been attempted or used in circuit simulation, even while
“bending the rules” somewhat by relaxing the fixed time-step requirement. It
may make sense, for example, to apply extrapolation over a limited, short, time-
span, instead of over the whole time period from the beginning of simulation
time.

5.6 VARIABLE TIME-STEP METHODS

General purpose ODE codes always include the ability to vary the time-step,
because that provides a considerable speed advantage. This is also the case for
circuit simulation, especially given the widely varying time-scales employed in
digital signaling. Generally speaking, a variable time-step approach requires three
components:

1. A way to estimate the local error (PLTE).
2. A strategy for deciding, based on the estimated error, whether to increase

or decrease the time-step, and by how much.
3. A way to implement the time-step change, by accordingly updating the

numerical method being used.

262 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Regarding the first item, we have already discussed PLTE estimation at length,
and we will briefly return to this later on for circuit-specific methods. Regarding
the second item, a typical approach is to compare the error estimate against a
threshold, in order to decide whether a change of time-step is required. The
threshold typically includes both a relative and an absolute error term, which are
user-specified. As for deciding by how much to change the time-step, commonly
used methods are mostly heuristic, and there are no theoretical results for what
constitutes a “best” strategy. A typical strategy is to double and halve the time-
step when needed, while restricting how large and how small the time-step is
allowed to become. We will return to time-step control later on in a circuit-
specific context. As for the third item, this is a rich and detailed area of study,
which we now summarize briefly.

5.6.1 Implementing a Change of Time-Step

It should be clear that one-step methods, like FE, BE, and TR, present no dif-
ficulties at all with regard to implementing a change of time-step. One simply
sets a new value of h for the next step, and moves on. Difficulties arise only
in connection with k> 1 multistep methods, such as the BDFs of orders higher
than 1, as well as many other LMS methods. The previous data, xn , xn�1, xn�2,
etc., are separated by the previous value of time-step, which may be different
from the new, intended, .xnC1 � xn/. This, in fact, is the main disadvantage of
LMS methods compared to Runge-Kutta methods, but there are many ways to
deal with this. The available solutions are in two categories:

1. Interpolation methods: use an interpolation polynomial to obtain the
required back-data at a mesh with the required (new) time-step value.
As a result, the method is restarted as a fresh fixed time-step method,
using the new value of the time-step. The interpolation polynomial can
be stored and updated in various ways; some highly efficient techniques
have been developed for this. For circuit simulation, and because the
higher-order BDFs are rarely used, one probably does not need to use the
most advanced methods.

2. Variable-coefficient methods: these methods re-derive the whole LMS the-
ory based on an LMS template that has non-equidistant data. Here, too,
there is a large body of work, and the techniques are quite involved; we
will only give highlights of such methods.

In the following, we will summarize both of these categories.

5.6.2 Interpolation Methods

One way to implement a time-step change is to use an interpolation polynomial to
interpolate the back-data at the missing time-points. For the BDFs, this requires
interpolation of the xn� j values only, and no interpolation of the fn� j values is

VARIABLE TIME-STEP METHODS 263

required. Suppose we have just solved for xn , so that we have the back-data:

.tn; xn/; .tn�1; xn�1/; .tn�2; xn�2/; : : : (5.263)

with h D .tn � tn�1/ D .tn�1 � tn�2/ D Ð Ð Ð. Suppose we now want to implement
a change of time-step, using a new value of time-step Þh, where Þ > 0, to find
the next solution point. Effectively, we are starting a new time mesh which we
denote t .Þ/nC1, t .Þ/nC2, etc., where t .Þ/n D tn and Þh D t .Þ/nC1 � t .Þ/n D t .Þ/nC2 � t .Þ/nC1 D Ð Ð Ð.
To make the description more concrete, suppose we are using BDF2:

xnC1 � 4

3
xn C 1

3
xn�1 D 2

3
h fnC1 (5.264)

Finding the next solution point at t .Þ/nC1, which we will denote by x .Þ/nC1, using BDF2
requires a value of the solution at tÞn D tn , which we have, as x .Þ/n D xn , and a
value of the solution at t .Þ/n�1 � tn � Þh, i.e., x .Þ/n�1, which we do not have! To be
able to proceed, we need a value of x .Þ/n�1, and we can find it by interpolating the
previous data xn; xn�1; xn�2; : : : using an interpolation polynomial. For higher
order BDFs, other back-data values have to be estimated as well. But, how many
back-data points xn� j should we use for interpolation? In other words, what
should be the degree of the interpolation polynomial?

Recall, the interpolation error for a polynomial over k C 1 equidistant data
points is 0.hkC1/, which is the same order as the LTE of the k-step BDF. Thus,
it is sufficient in practice to interpolate the previous k C 1 points, when using a
k-step BDF method. For BDF2, this means that we interpolate the previous three
points xn , xn�1, and xn�2, using a quadratic equation (a parabola).

In general, as we saw earlier, the Newton-Gregory backward interpolation
polynomial over k C 1 equidistant points, xn; xn�1; : : : ; xn�k , is:

Pn.t/ D xn C
kX

iD1

2
4 1

i!

i�1Y
jD0

.s C j/

3
5r i xn (5.265)

where t D tn C sh, h is the time-step, and s 2 R. For high-order methods, main-
taining and updating this polynomial over time becomes a significant overhead
that can be expensive if not done well. There are highly developed methods for
doing this efficiently, as described in Lambert (1991). However, for circuit sim-
ulation, where BDF2 is often the highest order method used, requiring a simple
parabola, these advanced methods are “overkill.” Instead, for the BDF2 case, we
can simply write:

Pn.t/ D xn C srxn C s.s C 1/

2
r2xn (5.266)

D xn C s.xn � xn�1/C s.s C 1/

2

�
xn � 2xn�1 C xn�2

�
(5.267)

264 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

so that we can interpolate for the value at t D t .Þ/n�1 as:

x .Þ/n�1 D 1

2
.2 � 3Þ C Þ2/xn C Þ.2 � Þ/xn�1 � Þ

2
.1 � Þ/xn�2 (5.268)

With the required back-data thus complete and available, we simply move forward
in time using the standard fixed time-step BDF2.

5.6.3 Variable-Coefficient Methods

The study of variable-coefficient methods is too detailed and involved for our
purposes, and beyond the scope of our study. Suffice it to say that, one can re-
derive the LMS methods, their predictors, their truncation errors, etc., for the case
of non-equidistant data. Note that one-step LMS methods require no modification
to their formulas, but may require new predictors and new Milne’s LTE estimates.

For the BDFs, the derivation is not that hard; we simply use an interpolation
formula for the non-equidistant data case to derive the formulas, and proceed as
usual. For BDF2, the re-derived LMS method is as follows:

xnC1�
�
.hnC1 C hn/

2

hn.2hnC1 C hn/

½
xn C

"
h2

nC1

hn.2hnC1 C hn/

#
xn�1 D

�
hnC1.hnC1 C hn/

2hnC1 C hn

½
fnC1

where hnC1 � .tnC1 � tn/ and hn � .tn � tn�1/, which reduces to the regular
BDF2 when hnC1 D hn D h, and the PLTE is this:

PLTE D �
"

h2
nC1.hnC1 C hn/

2

6.2hnC1 C hn/

#
x .3/.tn/ (5.269)

which reduces to the regular result when hnC1 D hn D h, of �.2=9/h3x .3/.tn/.
For TR, being a one-step method, its formula is unchanged, and we have:

PLTE D � 1

12
h3

nC1x .3/.tn/ (5.270)

A predictor can be used based on extrapolation of an interpolation polynomial,
as we saw earlier, which for TR and BDF2 is this:

x .0/nC1 D
�

hnC1.hnC1 C hn/

hn�1.hn C hn�1/

½
xn�2 �

�
hnC1.hnC1 C hn C hn�1/

hnhn�1

½
xn�1

C
�
.hnC1 C hn/.hnC1 C hn C hn�1/

hn.hn C hn�1/

½
xn

For TR, this leads to the Milne’s PLTE estimate:

PLTE ³ �h2
nC1

h2
nC1 C 2.hnC1 C hn/.hnC1 C hn C hn�1/

�
xnC1 � x .0/nC1

�
(5.271)

APPLICATION TO CIRCUIT SIMULATION 265

These results are really all that is needed for circuit simulation from the theory
of variable-coefficient methods.

5.6.4 Variable Step Variable Order (VSVO) Methods

Finally, it should be mentioned that general purpose ODE codes vary not only
the time-step, but also the order, so they are called variable step variable order
(VSVO) methods. For example, one approach is to monitor the LTE in several
formulas at once, and pick the one with the lowest LTE to proceed forward.
These methods have been tested in circuit simulation, and it was found that, for
integrated circuits simulation at least, the order most often selected is two. Thus,
the earliest simulators, including SPICE, were based on the use of (only) second-
order methods like TR and BDF2. During circuit simulation, one mostly uses
TR, and it is easy to switch-over to BE or BDF2 if ringing becomes a significant
problem. For reference, Brayton et al. (1972) describe a VSVO implementation
of circuit simulation based on the BDFs 1–6.

5.7 APPLICATION TO CIRCUIT SIMULATION

In applying the above ODE solution methods to circuit simulation, one finds
that efficiency gains are possible by making use of (another variety of) com-
panion models . Similar to the case of nonlinear resistive circuits, companion
models are useful so as to quickly construct the numerical problem to be solved
upon a simple inspection of the circuit. Companion models are built for dynamic
elements, for different numerical solution methods. Inspecting the circuit, one
then (conceptually) replaces every dynamic element by its companion model.
This effectively transforms a (possibly nonlinear) differential problem into a
(possibly nonlinear) algebraic problem. The solution can then be found by
repeatedly applying a linear or nonlinear solver, like GE or Newton’s method,
at every time-point. Such techniques are implemented in all modern circuit
simulators.

Before we present this standard solution approach using companion models,
however, we will start with a brief overview of relevant solution methods for
DAEs. Recall that, in general, circuit equations are DAEs, not ODEs. Recall
also that the solution methods for DAEs are not as fully developed, and that
many ODE methods are used in practice to solve DAEs, but that this is possible
with some, not all DAEs, and that the guarantees of accuracy and/or stability of
these ODE methods no longer necessarily hold when they are applied to DAEs.
Indeed, as pointed out earlier, there are DAEs for which even the best known ODE
methods lead to unstable behavior. One common way in which ODE methods
are applied to DAEs is by means of so-called direct discretization, which we will
describe below. Direct discretization works well in practice for many low-index
(index 1 or 2) DAEs; it is the method of choice for circuit simulation. After that,
we will address issues of companion models, element stamps, error estimation,
and time-step control.

266 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

The material in this section is based on a number of sources, including Ascher
and Petzold (1998), McCalla (1988), Ogrodzki (1994), Pillage et al. (1995), and
Kundert (1995).

5.7.1 From DAEs to Algebraic Equations

Recall that, in the most general case, the MNA system is a DAE of the general
form:

F
�
x; x 0; t

Ð D 0 (5.272)

where F : .Rm ð R
m ð R/ ! R

m . As we did with ODEs, suppose we have
solved for xi ³ x.ti / for i � n and we now need to find xnC1 ³ x.tnC1/, by
means of some numerical method. We can write the system equation at time tnC1

as:
F
�
x.tnC1/; x 0.tnC1/; tnC1

Ð D 0 (5.273)

and the essence of direct discretization is to then remove the dependence of
this equation on x 0.tnC1/. Once this is done, the equation becomes an algebraic
equation; it is no longer differential . This is done in a way that is specific to the
numerical method being used, and is quite different for implicit versus explicit
LMS methods, as we will see.

BE Direct Discretization In order to see the way forward, it is instructive to
recall how we arrived at some simple numerical methods for ODEs, such as BE.
Given an ODE x 0 D f .x; t/, the justification for the BE method, in the context
of ODEs, can be re-stated as the following argument. We first write the ODE at
tnC1, and use x.tnC1/ ³ xnC1, so that:

x 0.tnC1/ D f .x.tnC1/; tnC1/ ³ f .xnC1; tnC1/ � fnC1 (5.274)

We then note that, from a Taylor series expansion, we have:

x.tn/ ³ x.tnC1/� hx 0.tnC1/ (5.275)

which, combined with x.tn/ ³ xn and x.tnC1/ ³ xnC1, leads to:

x 0.tnC1/ ³ xnC1 � xn

h
(5.276)

Then, equating the two expressions for x 0.tnC1/ from (5.274) and (5.276) provides
the motivation for the BE method:

xnC1 D xn C h fnC1 (5.277)

This round-about way of re-stating the motivation for BE may seem pointless,
but its value will immediately become apparent as we now apply it to motivate

APPLICATION TO CIRCUIT SIMULATION 267

a BE-inspired solution method for DAEs. Indeed, we can follow the same above
process for a general DAE (5.272), by first writing it at tnC1 as (5.273), then
using x.tnC1/ ³ xnC1, to write:

F
�
xnC1; x 0.tnC1/; tnC1

Ð ³ 0 (5.278)

and then combining this with (5.276), leading to the BE-inspired numerical
method:

F

�
xnC1;

xnC1 � xn

h
; tnC1

�
D 0 (5.279)

This is a valid numerical solution method because it provides an (implicit) alge-
braic equation for finding xnC1, given xn . This approach for solving a DAE is
called a direct discretization approach; in this case, it is based on BE. Effectively,
a differential equation (5.273) (the DAE) has been transformed into an algebraic
equation (5.279). Whether this equation is easily solvable or not depends on the
DAE. Note that all that is needed from “the past,” in this case, is the previous
data value, xn .

BDF Direct Discretization We can extend the BE-inspired approach to the
rest of the BDF family, as follows. At time tnC1, we use (5.278) and recall the
approximation, introduced earlier (5.159), as part of the alternate derivation of
the BDFs, based on polynomial interpolation:

x 0.tnC1/ ³ 1

h

kX
iD1

1

i
r i xnC1 D 1

hþ�1

k�1X
jD�1

Þ j xn� j (5.280)

Combining (5.280) with (5.278), leads to the BDF-inspired numerical method:

F

0
@xnC1;

1

þ�1h

k�1X
jD�1

Þ j xn� j ; tnC1

1
A D 0 (5.281)

Here, too, we have a viable (direct discretization) approach for stepping forward
in time that depends on previous xi data only. In contrast, we will see that the
case of TR leads to an approach which requires additional information about the
past.

TR Direct Discretization In the case of TR, we write the familiar DAE
approximation at time tnC1, (5.278), and recall the result, derived earlier (5.61)
from a Taylor series expansion in connection with TR, namely:

x.tnC1/� x.tn/ D h

2

ð
x 0.tnC1/C x 0.tn/

ŁC 0.h3/ (5.282)

268 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

which we now combine with x.tn/ ³ xn and x.tnC1/ ³ xnC1, leading to:

x 0.tnC1/ ³ 2

h
.xnC1 � xn/� x 0.tn/ (5.283)

We then combine this with (5.278), leading to the TR-inspired numerical method:

F

�
xnC1;

2

h
.xnC1 � xn/� x 0.tn/; tnC1

�
D 0 (5.284)

A distinguishing feature of this method is that it requires not only the past data
xn , but also the past value of the derivative x 0.tn/. In general, this would not
be a viable approach, because of the need to compute the past values of the
derivatives. Derivative estimation is feasible, but not easy, and certainly requires
a dedicated numerical method for accurate estimation, such as a BDF. However,
we will see that for circuit simulation, because of the special form of the element
equations, this issue is easy to deal with and does not present any complications.

Discretization in Circuit Equations To see how the above discretization
techniques can be carried out in circuit simulation, the first step is to recall the
constitutive equations of the MNA system:

1. KCL:
Ai D 0 (5.285)

where i is a vector of all the branch currents.
2. KVL:

AT v D u (5.286)

where u is a vector of all branch voltages and v the nodal voltages vector.
3. The element equations, be they resistive or dynamic. For the resistive ele-

ments, their equations can be collected in matrix form as:

Er

�
i
u

½
D g.x/ (5.287)

where x is the MNA vector of variables, Er is a diagonal matrix whose
elements are either 0 or 1, and g.x/ is a vector function representing all
the (possibly nonlinear) resistive elements. For the dynamic elements, their
equations can be collected in matrix form as:

Ed

�
i
u

½
D D.x/x 0.t/ (5.288)

where Ed is another diagonal matrix whose elements are either 0 or 1, and
D.x/ is a matrix function representing all the (possibly nonlinear) dynamic
elements. Note, this is not to be confused with the D.x/ matrix that we
employed earlier in (5.14).

APPLICATION TO CIRCUIT SIMULATION 269

Altogether, these four equations form the system of equations (5.272) that has
been the subject of our direct discretization approach. We will refer to the four
equations (5.285), (5.286), (5.287), and (5.288) as the unraveled form of the
circuit equations. Instead of applying direct discretization to the DAE (5.272),
the key idea is to apply it to each of the four constitutive equations separately. Of
these four equations, it is only the last one (5.288) that has a time dependence,
and is impacted by discretization. Therefore, discretization is applied directly to
only this last set of equations (5.288), which are the dynamic element equations.

This approach leads directly to the concept of a companion model for dynamic
elements, as we will see below in connection with different numerical methods.
In every case, we will focus on a single capacitor and a single inductor with only
self capacitance/inductance. The method can be easily extended to the case of
elements with mutual capacitance/inductance.

5.7.2 FE Discretization

Consider first the use of the simplest numerical method, forward Euler (FE). To
simplify the notation, we will use i.t/ to denote the current in a dynamic element
and u.t/ to denote its branch voltage. For FE, we start by writing the dynamic
element equations at tn :

i.tn/ D C.u.tn//u
0.tn/ and u.tn/ D L.i.tn//i

0.tn/ (5.289)

then, using i.tn/ ³ in and u.tn/ ³ un , we have:

in ³ C.un/u
0.tn/ and un ³ L.in/i

0.tn/ (5.290)

then, using the familiar result from the Taylor series expansion, we write:

in ³ C.un/

�
unC1 � un

h

�
and un ³ L.in/

�
inC1 � in

h

�
(5.291)

leading to the FE-inspired direct discretization scheme:

unC1 D un C
�

h

C.un/

�
in and inC1 D in C

�
h

L.in/

�
un (5.292)

Because the previous data, in and un , are available, then the voltages across all
capacitors and the currents in all inductors, at tnC1, are known . No solution of the
overall system of equations is required in order to reveal the values of capacitor
voltages or inductor currents at tnC1. This curious result is a special feature of
explicit methods like FE; such methods have an interesting predictive quality,
which is also a source of their weakness.

We can plug all these values in the other equations (of the unraveled form),
which we would then solve for the remaining variables at tnC1. This can be
efficiently achieved by replacing all capacitors and inductors in the netlist by

270 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

ideal voltage and current sources, and solving the resulting circuit. Each capacitor
is replaced by a voltage source of value unC1, from (5.292), and each inductor is
replaced by a current source of value inC1, from (5.292). Once the whole circuit
is solved at tnC1, using possibly Newton’s method and MNA, we would then
repeat the process for the next time-point, etc.

Companion Models The above replacements for dynamic elements at tnC1

are called the companion models of these elements, and they depend on the LMS
method being used. For the case of FE, as we have seen, the companion models
for the dynamic elements are as shown in Fig. 5.12. Once all dynamic elements
have been replaced by their companion models, the rest of the circuit is resistive,
possibly nonlinear, and can be solved, typically using Newton’s method, in which
each iteration requires solution of the familiar linear system:

J .x .k//x .kC1/ D s.k/ (5.293)

The unraveled form of the equations is never explicitly constructed. Because
the FE companion models consist of only sources, their values affect only the
RHS vector, s.k/, and not the Jacobian (i.e., the MNA) matrix J .x .k//. Thus,
the Jacobian is independent of the time-step h and of the values of the dynamic
elements in the network. It does not change over time! This is a great advantage
of the FE case; among other things, it means that, for a linear dynamic circuit,
the Jacobian needs to be built and factored only once!

Note that, from one time-point to the next, the values of the companion models
may change, but the topology of the netlist remains fixed. Both inC1 and unC1 for
each dynamic element must be stored and used at the next time-point, as in and
un , in order to update the FE companion models. Thus, once the MNA system is
built, after the first time-step, it never has to be rebuilt again; only the element
stamp values are updated over time.

Element Stamps From the above, it is easy to see that the FE element stamps
are as follows. For a capacitor, we denote by V .k/

nC1 the value of the voltage source

i

L(i)

FE

i

C(u)

FE
un+1 = un + in

h
C(un)

in+1 = in + un
h

L(in)

in+1

un+1

u
+

−

+
−

u
+

−

+

−

Figure 5.12: Companion models for the case of FE.

APPLICATION TO CIRCUIT SIMULATION 271

that replaces the capacitor at time tnC1, for finding x .kC1/, i.e.:

V .k/
nC1 � un C

�
h

C.un/

�
in (5.294)

so that the (already) linearized companion model of the capacitor, in the k-th
Newton iteration at tnC1, has the element equation:

u D V .k/
nC1 (5.295)

From this, we see that a capacitor has the FE MNA stamp shown in Table 5.2,
where the row and column labels in the table refer to the corresponding rows
and columns of the MNA system equation, as usual. Similarly, for an inductor,
denoting:

I .k/nC1 � in C
�

h

L.in/

�
un (5.296)

the FE element stamp, representing the element equation i D I .k/nC1 is shown in
Table 5.3.

5.7.3 BE Discretization

Consider now the case of the implicit backward Euler (BE). In contrast to FE,
we write the dynamic element equations at tnC1:

i.tnC1/ D C.u.tnC1//u
0.tnC1/ and u.tnC1/ D L.i.tnC1//i

0.tnC1/ (5.297)

Table 5.2: Element stamp for a capacitor, based on
FE discretization and linearization.

vC v� i RHS

vC 1
v� �1
i 1 �1 V .k/

nC1

Table 5.3: Element stamp for
an inductor, based on FE
discretization and linearization.

RHS

vC �I .k/nC1

v� I .k/nC1

272 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

then, using i.tnC1/ ³ inC1 and u.tnC1/ ³ unC1, we have:

inC1 ³ C.unC1/u
0.tnC1/ and unC1 ³ L.inC1/i

0.tnC1/ (5.298)

then, using the familiar result from the Taylor series expansion, we write:

inC1 ³ C.unC1/

�
unC1 � un

h

�
and unC1 ³ L.inC1/

�
inC1 � in

h

�
(5.299)

For a capacitor, this leads to the BE-inspired direct discretization:

inC1 D
�

C.unC1/

h

�
unC1 �

�
C.unC1/

h

�
un (5.300)

or, equivalently:

unC1 D
�

h

C.unC1/

�
inC1 C un (5.301)

For an inductor, we also get the BE-inspired direct discretization:

unC1 D
�

L.inC1/

h

�
inC1 �

�
L.inC1/

h

�
in (5.302)

or, equivalently:

inC1 D
�

h

L.inC1/

�
unC1 C in (5.303)

In contrast to the FE case, we do not here have immediate solutions for the inC1

and unC1 values. Instead, we have (algebraic) relations between inC1 and unC1,
that include, among other parameters, past data values un and in .

For linear C and L , the above discretization schemes are simplified as follows.
For a linear capacitor C , we have:

inC1 D
�

C

h

�
unC1 �

�
C

h

�
un (5.304)

or, equivalently:

unC1 D
�

h

C

�
inC1 C un (5.305)

For a linear inductor L , we have:

unC1 D
�

L

h

�
inC1 �

�
L

h

�
in (5.306)

APPLICATION TO CIRCUIT SIMULATION 273

or, equivalently:

inC1 D
�

h

L

�
unC1 C in (5.307)

To solve for the tnC1 responses, we can replace all the differential equations of
the dynamic elements (in the unraveled form) by these algebraic equations. As
in the case of FE, this can be more efficiently achieved by:

1. Replacing every dynamic element in the netlist by a companion model that
embodies the above terminal characteristics between its inC1 and unC1.

2. Constructing the MNA system for the resulting netlist using element stamps
and solving it, typically using Newton’s method.

This is repeated for every time-step, knowing that the topology of the netlist
remains fixed, but only the element values may change.

Companion Models for Linear Elements We first consider the BE com-
panion models in the linear case. It is easy to see that, for the BE case, and
for a linear C and L , the companion models can be given as the linear circuits
in Fig. 5.13. Note, we have deliberately chosen the form of the equations that
allows a companion model based on a current source, instead of a voltage source.
The advantages of this for MNA are obvious; whenever possible, we use this
Norton form of the companion model instead of the Thévenin form. In the BE
case, the companion model values affect both the RHS vector and the system
matrix, i.e., the Jacobian. However, if the dynamic elements are linear, and if a
fixed time-step is used, then their contributions to the Jacobian do not change
over time.

Once the netlist has been solved at tnC1, we then need to compute unC1 for
every capacitor and inC1 for every inductor. These are required at the next time-
point, in order to update the model parameter values that go into (5.304) and
(5.307), namely un and in . It is trivial to find unC1 for every capacitor, as simply
the difference of its two node voltages. As for inC1 in every inductor, we can
compute it using (5.307), provided we first compute unC1 across it, which, as for
capacitors, is very easy to do. This requires knowledge of in , which should have

un+1

in+1

h
C h

C un un+1

in+1

L
h

in

(Capacitor) (Inductor)

+

−

+

−

Figure 5.13: Companion models for linear L and C , for the case of BE.

274 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

been stored at the previous time-point, and therefore at all previous time-points,
going back to the beginning of simulation time, t0, where i0 is required! This gen-
erates a requirement that, as part of the DC Analysis run at t0, one should find and
store the current for every inductor. We will briefly digress to discuss this further.

A Note on Initialization Recall that the simpler methods of performing
DC Analysis involve stripping the circuit of its dynamic elements, by disabling
all the L and C elements. Disabling dynamic elements means that every capacitor
is replaced by an open circuit, and so the voltage across that open circuit can be
easily found from the DC Analysis results. It also means that every inductor is
replaced by a short circuit, typically represented by a 0 V voltage source, whose
current is also easily available from the MNA solution vector. More complex
methods, such as pseudo-transient, maintain and add to the dynamic elements
in the circuit. However, pseudo-transient also provides an initial state for the
whole circuit, including capacitor voltages and inductor currents: they are all set
to zero. Thus, in all cases, DC Analysis can provide the initial “state” of all
dynamic elements: currents in inductors and voltages across capacitors.

Element Stamps for Linear Elements The above BE companion models
are already linear, so that no further linearization is required in the Newton loop.
The corresponding element stamps are as follows. For a linear capacitor, denote:

G.k/
nC1 D C

h
and I .k/nC1 D �C

h
un (5.308)

so that the (already) linearized element equation is:

i D G.k/
nC1u C I .k/nC1 (5.309)

and the resulting MNA element stamp is as shown in Table 5.4. For a linear
inductor, denote:

G.k/
nC1 D L

h
and I .k/nC1 D in (5.310)

so that the (already) linearized element equation is:

i D G.k/
nC1u C I .k/nC1 (5.311)

and the resulting MNA element stamp is shown in Table 5.5.

Table 5.4: Element stamp for a linear capacitor,
based on BE discretization and linearization.

vC v� RHS

vC G.k/
nC1 �G.k/

nC1 �I .k/nC1

v� �G.k/
nC1 G.k/

nC1 I .k/nC1

APPLICATION TO CIRCUIT SIMULATION 275

Table 5.5: Element stamp for a linear inductor,
based on BE discretization and linearization.

vC v� RHS

vC G.k/
nC1 �G.k/

nC1 �I .k/nC1

v� �G.k/
nC1 G.k/

nC1 I .k/nC1

Companion Models for Nonlinear Elements For a nonlinear capacitor,
we use (5.300) instead of (5.301) so as to get a valid (explicit, in this case
voltage-controlled) nonlinear element form:

inC1 D C.unC1/

h
.unC1 � un/ � gC .unC1/ (5.312)

Notice that, if we were to use (5.301), we would get an element equation in
the unacceptable implicit form unC1 D g.unC1; inC1/. For a nonlinear inductor,
we use (5.302) instead of (5.303) so as to get a valid (explicit, in this case
current-controlled) nonlinear element form:

unC1 D L.inC1/

h
.inC1 � in/ � gL.inC1/ (5.313)

The companion models, in this case nonlinear, can be as shown in Fig. 5.14. For
a capacitor, finding unC1 to plug into (5.312), as un at the next time-point, is just
as simple as in the linear capacitor case (voltage difference). For an inductor, as
we will see below, it is also easy to compute inC1, to plug into (5.313) as in at
the next time-point.

Element Stamps for Nonlinear Elements In the nonlinear case, the BE
element stamps can be found as follows. For a nonlinear capacitor C.u/, the BE
companion model has the element equation i D gC.u/ which, linearized in the

in+1

(Capacitor)

un+1 un+1

in+1

(Inductor)

gC (un+1) gL(in+1)

+

−

+

−

+
−

Figure 5.14: Companion models for nonlinear L and C , for the case of BE.

276 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Newton loop at tnC1, becomes:

i D g0
C

�
u.k/nC1

� �
u � u.k/nC1

�
C gC

�
u.k/nC1

�
(5.314)

D g0
C

�
u.k/nC1

�
u C

h
gC

�
u.k/nC1

�
� g0

C

�
u.k/nC1

�
u.k/nC1

i
(5.315)

� G.k/
nC1 u C I .k/nC1 (5.316)

which represents a familiar Norton type model, with the element stamp shown
in Table 5.6. Recall, the terms of this element stamp depend, not only on u.k/nC1,
but also on un at the previous time-point, which is available.

For a nonlinear inductor L.i/, the BE companion model has the element
equation u D gL.i/ which, linearized in the Newton loop at tnC1, becomes:

u D g0
L

�
i .k/nC1

� �
i � i .k/nC1

�
C gL

�
i .k/nC1

�
(5.317)

D g0
L

�
i .k/nC1

�
i C

h
gL

�
i .k/nC1

�
� g0

L

�
i .k/nC1

�
i .k/nC1

i
(5.318)

� R.k/nC1 i C V .k/
nC1 (5.319)

which is a Thévenin model, but can also be written in the Norton form:

i D

1

R.k/nC1

!
u �

V .k/

nC1

R.k/nC1

!
(5.320)

� G.k/
nC1u C I .k/nC1 (5.321)

for which the element stamp is the same form as for the nonlinear capacitor, but
the values of G.k/

nC1 and I .k/nC1 are, of course, computed differently.
The current i .kC1/

nC1 is needed, to be used as i .k/nC1 in the next Newton iteration,
as it is required to update the affine approximation and element stamp. One can
easily find this using (5.321), based on u.kC1/

nC1 (easily computable from the MNA
vector), i .k/nC1, and in (both available from previous work). It is prudent, when
using this “current update” during the Newton loop, to ensure that the current
value has converged before loop termination. Thus, one should check the step-
sizes of the current vector representing all the inductor currents, which may not

Table 5.6: Element stamp for a nonlinear capacitor,
based on BE discretization and linearization.

vC v� RHS

vC G.k/
nC1 �G.k/

nC1 �I .k/nC1

v� �G.k/
nC1 G.k/

nC1 I .k/nC1

APPLICATION TO CIRCUIT SIMULATION 277

be part of the MNA vector. Here, too, we rely on having the inductor currents
at t0, the beginning of the simulation time, as a by-product of the DC Analysis
run.

5.7.4 TR Discretization

The flow of the argument should be clear by now:

1. For a given LMS method, apply discretization to the individual dynamic
element equations to discover relations between inC1 and unC1.

2. Construct companion models that embody these same relations as their
terminal characteristics.

3. The network is solved at every time-point by replacing all dynamic ele-
ments by their companion models and solving the resulting (possibly non-
linear) resistive circuit.

The topology of the network, and the structure of the MNA matrix, do not change
over time; only the element stamp values may change. It is easy to extend the
BE case to the other BDFs, notably to the case of BDF2 which is used in
some commercial simulators. This is left as an exercise for the reader. But the
application of direct discretization to the case of TR offers an interesting “twist,”
as we will now see.

Consider the case of the trapezoidal rule (TR), an implicit method. As in the
case of BE, we write the dynamic element equations at tnC1:

i.tnC1/ D C.u.tnC1//u
0.tnC1/ and u.tnC1/ D L.i.tnC1//i

0.tnC1/ (5.322)

then, using i.tnC1/ ³ inC1 and u.tnC1/ ³ unC1, we have:

inC1 ³ C.unC1/u
0.tnC1/ and unC1 ³ L.inC1/i

0.tnC1/ (5.323)

then, using the familiar TR result from the Taylor series expansion, namely:

x 0.tnC1/ ³ 2

h
.xnC1 � xn/� x 0.tn/ (5.324)

we get, for a capacitor:

inC1 ³ C.unC1/

�
2

h
.unC1 � un/� u0.tn/

�
(5.325)

and, for an inductor:

unC1 ³ L.inC1/

�
2

h
.inC1 � in/� i 0.tn/

�
(5.326)

278 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

The presence of the derivatives u0.tn/ and i 0.tn/ may seem problematic, but we
can easily eliminate them by making use of:

in ³ C.un/u
0.tn/ and un ³ L.in/i

0.tn/ (5.327)

which give:

u0.tn/ ³ in

C.un/
and i 0.tn/ ³ un

L.in/
(5.328)

both of which are computable from previous data. Replacing u0.tn/ and i 0.tn/ by
these values, leads to, for a capacitor:

inC1 ³ C.unC1/

�
2

h
.unC1 � un/� in

C.un/

�
(5.329)

and, for an inductor:

unC1 ³ L.inC1/

�
2

h
.inC1 � in/� un

L.in/

�
(5.330)

For a capacitor, this leads to the TR-inspired direct discretization:

inC1 D C.unC1/

�
2

h
.unC1 � un/� in

C.un/

�
(5.331)

or:

unC1 D
�

h

2C.unC1/

�
inC1 C

�
un C

�
h

2C.un/

�
in

½
(5.332)

For an inductor, we get the TR-inspired direct discretization:

unC1 D L.inC1/

�
2

h
.inC1 � in/� un

L.in/

�
(5.333)

or:

inC1 D
�

h

2L.inC1/

�
unC1 C

�
in C

�
h

2L.in/

�
un

½
(5.334)

For linear C and L , these relations are simplified as:

inC1 D
�

2C

h

�
unC1 �

�
in C

�
2C

h

�
un

½
(5.335)

and:

inC1 D
�

h

2L

�
unC1 C

�
in C

�
h

2L

�
un

½
(5.336)

APPLICATION TO CIRCUIT SIMULATION 279

where we have selected the forms that lead to a companion model that includes
a current source, instead of a voltage source.

As in the case of BE, this being another implicit method, we do not have
immediate solutions for the inC1 and unC1 values. Instead, we have (algebraic)
relations between inC1 and unC1 that include, among other parameters, past data
values un and in . To solve for the tnC1 responses, we replace all the differential
equations of the dynamic elements (in the unraveled form) by these algebraic
equations. And, as in the BE case, we can more efficiently do this by replacing
the dynamic elements by their TR companion models, which we now consider.

Companion Models for Linear Elements We first consider the TR com-
panion models in the linear case. It is easy to see that, for the TR case, and for
a linear C and L , the companion models can be given as the linear circuits in
Fig. 5.15, where, for a capacitor, we have:

Geq D 2C

h
and Ieq D in C

�
2C

h

�
un (5.337)

and, for an inductor:

Geq D h

2L
and Ieq D in C

�
h

2L

�
un (5.338)

and where, again, we have selected the forms of the companion models that are
based on a current source, instead of a voltage source.

Once the netlist has been solved at tnC1, we need to compute unC1 and inC1

for every dynamic element. These are required at the next time-point, to update
the model parameter values that go into (5.335) and (5.336), namely un and in .
It is trivial to find unC1 for every L and C , as simply the difference of its two
node voltages, and inC1 can then be found using (5.335) and (5.336). As in the
case of BE, we also rely on having all inductor currents available at the start of
simulation time, as a result of DC Analysis.

Finally, construction of the MNA element stamps is very similar to the BE
case, and is left as an exercise for the reader.

un+1

in+1

Ieq un+1

in+1

Ieq

(Capacitor) (Inductor)

+

−

+

−

Geq

1
Geq

1

Figure 5.15: TR companion models for linear elements.

280 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Companion Models for Nonlinear Elements In the nonlinear case, as was
the case with BE, we must use the explicit forms of the element equations, which
are, for a capacitor:

inC1 D C.unC1/

�
2

h
.unC1 � un/� in

C.un/

�
� gC.unC1/ (5.339)

and, for an inductor:

unC1 D L.inC1/

�
2

h
.inC1 � in/� un

L.in/

�
� gL.inC1/ (5.340)

The companion models, in this case nonlinear, can be as shown in Fig. 5.16.
These models are linearized during the Newton loop and can both be put into a
(linear) companion model in the standard Norton form:

i D G.k/
nC1u C I .k/nC1 (5.341)

for which construction of the MNA element stamps is very similar to the BE
case, and is left as an exercise for the reader.

In order to be able to update the element stamps throughout the Newton loop,
the same comments apply as in the BE case. One must have in-hand un and in ,
from the previous time-point, relying on having available u0 and i0 at time t0 from
the DC Analysis run. One must also have in-hand u.k/nC1 and i .k/nC1, both of which
should be available from the previous Newton iteration. From the results of this
Newton iteration, one can compute u.kC1/

nC1 from the MNA vector and i .kC1/
nC1 using

(5.341). Here, too, it is prudent to check the step sizes ki .kC1/
nC1 � i .k/nC1k before

declaring convergence of the Newton loop.

Example Consider the circuit shown in Fig. 5.17 where, provided u>�1=2,
the capacitance is:

C.u/ D 10�12

p
1 C 2u

(5.342)

which is similar to the characteristics of pn-junction depletion capacitance.

un+1

in+1

(Capacitor)

un+1

in+1

(Inductor)

gC(un+1) gL(in+1)+

+

−
−

+

−

Figure 5.16: TR companion models for nonlinear elements.

APPLICATION TO CIRCUIT SIMULATION 281

u
C(u)

R

v(t) +
−

+

−

Figure 5.17: A nonlinear RC circuit.

un+1
gC(un+1)

R

v(tn+1) +

+

−

−

Figure 5.18: The circuit of Fig. 5.17, using companion models to find the solution at
time tnC1.

Using the strategy of direct discretization, we assume that the circuit has been
solved up to time tn , and we consider the circuit at tnC1, as shown in Fig. 5.18,
where, suppose we are using BE as the solution method, so that:

gC.unC1/ D 10�12

p
1 C 2unC1

�
unC1 � un

h

�
(5.343)

and:

g0
C.unC1/ D 10�12=.2h/p

1 C 2unC1

�
2 C 3unC1 C un

1 C 2unC1

�
(5.344)

Inside the Newton loop, the above nonlinear circuit is linearized, using the com-
panion model introduced earlier, leading to the circuit shown in Fig. 5.19, where,
as we saw earlier:

G.k/
nC1 D g0

C

�
u.k/nC1

�
and I .k/nC1 D

h
gC

�
u.k/nC1

�
� g0

C

�
u.k/nC1

�
u.k/nC1

i
(5.345)

is

R

v(tn+1) In+1
(k)+

− Gn+1
(k)

1

1 2

Figure 5.19: The circuit of Fig. 5.18, after replacement of the nonlinear controlled source
by its linearized companion model.

282 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

so that:

G.k/
nC1 D 10�12=.2h/q

1 C 2u.k/nC1

2 C 3u.k/nC1 C un

1 C 2u.k/nC1

!
(5.346)

and:

I .k/nC1 D 10�12q
1 C 2u.k/nC1

u.k/nC1 � un

h

!
� 10�12=.2h/q

1 C 2u.k/nC1

2 C 3u.k/nC1 C un

1 C 2u.k/nC1

!
u.k/nC1

(5.347)
With this, the MNA system J .k/nC1x .kC1/

nC1 D s.k/nC1 is then built using element stamps:2
64

1=R �1=R 1

�1=R .G.k/
nC1 C 1=R/ 0

1 0 0

3
75
2
64
v1

v2

is

3
75 D

2
64

0

�I .k/nC1

v.tnC1/

3
75 (5.348)

The overall solution flow, for this example and also in general, is as shown in
Fig. 5.20.

5.7.5 Charge-Based and Flux-Based Models

Time discretization results in numerical errors, because we cannot take infinites-
imally small time-steps. This, we know, and have come to expect by now.
However, in the case of nonlinear dynamic elements, the type of companion
models developed above can give severe numerical errors. The reasons for this
are somewhat subtle and will be explained below. We will also see that there is
an alternative; we will develop better companion models for nonlinear dynamic
elements that do not have such problems.

This problem is often observed in the simulation of circuits with nonlinear
capacitors, whose response is strongly dependent on capacitor charges .
Examples include DRAMs and switched-capacitor filters. In such circuits,
the problem is manifested as a charge non-conservation problem. Consider
a capacitor whose voltage starts out as v.t0/ D V , varies arbitrarily over the

Input: Initial condition x0 at t0.
for (n D 0; tn � T ; n D n C 1) do

tnC1 D tn C h
k D 0; x .0/nC1 D xn

while (not converged) do fNewton loopg
Update element stamps and the Jacobian.
Solve J .k/nC1x .kC1/

nC1 D s.k/nC1 for x .kC1/
nC1

k D k C 1
xnC1 D x .k/nC1

Figure 5.20: Overall solution flow.

APPLICATION TO CIRCUIT SIMULATION 283

time interval [t0; t1], then again becomes v.t1/ D V . If the initial charge on the
capacitor, at time t0, was q.t0/ D Q, then the final charge, at t1, should also
be q.t1/ D Q, because v.t1/ D v.t0/. If, as a result of numerical integration of
currents, it is not, then we say that charge has not been conserved. A tell-tale
sign of charge non-conservation is finding a (simulated) DC current flowing in a
capacitor.

This has spurred the development of charge-based models for nonlinear capac-
itors, and for semiconductor devices with internal nonlinear capacitance. There
is ample empirical evidence that these charge-based models are much better at
conserving charge during circuit simulation. Likewise, there is a flux conserva-
tion issue with nonlinear inductors, and a similar development of flux-conserving
models has been done for them. In the following, we will examine the roots of
this problem, for capacitors, and see how the improved class of charge-based
models can be developed.

Consider the case of a nonlinear capacitor using BE discretization. In the
preceding, we developed the BE companion model for a nonlinear capacitor,
with voltage u and current i , starting from the element equation:

i.t/ D C.u/u0.t/ (5.349)

which we wrote at tnC1, then used the finite difference approximation of the
derivative, from the Taylor series expansion, to motivate the BE discretization:

inC1 D C.unC1/

�
unC1 � un

h

�
D
�

C.unC1/

h

�
unC1 �

�
C.unC1/

h

�
un (5.350)

a function which we earlier denoted as inC1 D gC.unC1/.
We could have proceeded differently, as follows. Let q.t/ be the charge on

the capacitor. Because it is a function of the branch voltage u, we will also write
it as q.u/, and we know that:

C.u/ � dq

du
(5.351)

Capacitor current is the rate of change of charge, so that:

i.t/ D dq

dt
(5.352)

which we can write at tnC1 and, using the finite difference approximation for the
derivative, we can write:

i.tnC1/ ³ q.tnC1/� q.tn/

h
(5.353)

284 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

and we can use this, along with i.tnC1/ ³ inC1, q.tn/ ³ q.un/, and q.tnC1/ ³
q.un/, to motivate the BE discretization:

inC1 D q.unC1/� q.un/

h
D q.unC1/

h
� q.un/

h
(5.354)

a function which we denote as inC1 D gQ.unC1/.
Now, let us consider how these two discretization schemes (5.350) and (5.354),

lead to linearized models in the Newton loop. For our original (capacitance-based)
model, inC1 D gC.unC1/, we have:

g0
C

�
u.k/nC1

�
D

C 0.u.k/nC1/

h

!
u.k/nC1 C C.u.k/nC1/

h
�

C 0.u.k/nC1/

h

!
un (5.355)

which gives the (linearized) companion model i D G.k/
nC1u C I .k/nC1, where:

G.k/
nC1 D C 0.u.k/nC1/

h

�
u.k/nC1 � un

�
C C.u.k/nC1/

h
(5.356)

I .k/nC1 D �C 0.u.k/nC1/

h

�
u.k/nC1 � un

�
u.k/nC1 �

C.u.k/nC1/

h

!
un (5.357)

For the new (charge-based) model, inC1 D gQ.unC1/, we have:

g0
Q

�
u.k/nC1

�
D C.u.k/nC1/

h
(5.358)

which gives the (linearized) companion model i D G.k/
nC1u C I .k/nC1, where:

G.k/
nC1 D C.u.k/nC1/

h
(5.359)

I .k/nC1 D q.u.k/nC1/

h
� q.un/

h
�

C.u.k/nC1/

h

!
u.k/nC1 (5.360)

The two models are quite different, in both G.k/
nC1, which contributes to the Jaco-

bian, and I .k/nC1, which contributes to the RHS vector. Note that the form of the
model is the same, and the companion model circuit diagram is the same, but
the values of the elements are different. The difference in the Jacobian may be
inconsequential, but the difference in the RHS vector can be a serious problem.
Recall, the exact value of the Jacobian is not important, as long as the Newton
loop converges—think of the Newton-chord method, for example. In the case of
a linear capacitor, with C 0.u/ D 0, the two models become exactly the same,
and there is no problem with charge conservation.

APPLICATION TO CIRCUIT SIMULATION 285

Both models are approximate, and both will have numerical errors, but the
capacitance-based model gives additional error, at least due to the following
reason. Notice that, in (5.350), it is as if the capacitance C.unC1/ is assumed
fixed across the interval [un; unC1], and C.un/ is not part of the model. In
fact, the rate of change of capacitance with respect to voltage is not part of the
model at all. The model would give the same value whether C.un/ − C.unC1/ or
C.un/ × C.unC1/, for example. The charge-based model does not make this sort
of assumption; it “monitors” the charge at both ends of the interval [un; unC1].

In practice, charge-based models give much better performance, especially in
terms of charge conservation. Charge-based models do not perfectly conserve
charge; some small charge error is inevitable due to truncation, roundoff, and
error accumulation. But they give charge errors that are much smaller and quite
acceptable, compared with capacitance-based models. We will now look at one
example that shows errors resulting from the use of capacitance-based models.

Example Consider the circuit shown in Fig. 5.21, consisting of a constant
current source and a nonlinear capacitor, with the following settings:

i.t/ D I > 0 (fixed current source)

q.v/ D v2=2 (nonlinear capacitor)

h D t1 � t0 (one time-step)

v.t0/ D
p

2I h

and we are interested in v.t1/, the capacitor voltage at time t1. Notice that the
capacitance is C.v/ D v and that the exact voltage solution is governed by the
differential equation:

v
dv

dt
C I D 0 (5.361)

with v.t0/ D p
2I h, from which it is easy to find that:

v.t1/
2 D v.t0/

2 � 2I h D 0 (5.362)

so that v.t1/ D 0 is the exact voltage at time t1.

v

i(t) = I
C(v)

Figure 5.21: A simple test circuit.

286 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

We will now solve this circuit with BE discretization, in two ways, using a
capacitance-based model and a charge-based model. We assume that v0 D v.t0/
is exact, and we seek a v1 ³ v.t1/. Using the capacitance-based BE companion
model, writing KCL at t1 gives:

�I D gC .v1/ D
�

C.v1/

h

�
v1 �

�
C.v1/

h

�
v0 (5.363)

leading to:
v2

1 � v0v1 C v2
0=2 D 0 (5.364)

which is a quadratic equation with no (real) solution! Newton’s method, applied
to this equation, would not converge. Alternatively, it may give v2

0=4 as solution,
in case v2

0=4 is smaller than the error tolerance. Either way, the situation is
problematic.

Using the charge-based BE companion model, writing KCL at t1 gives:

�I D gQ.v1/ D q.v1/

h
� q.v0/

h
(5.365)

and this equation is actually exact because of the constant current in this case,
so we should expect zero truncation error. Indeed, using q.vi / D v2

i =2, we get:

�I D v2
1

2h
� v2

0

2h
D v2

1

2h
� I (5.366)

so that the solution is v1 D 0, and Newton’s method is actually guaranteed to
converge on this problem, because of the ease of solving f .x/ D x2=2h.

Again, one indication of a problem, and a cause for concern, is the fact that
(5.363) depends only on C.v1/ and not on C.v0/. It gives the same solution as if
we had a constant fixed C � C.v1/. One might think that the use of TR, instead
of BE, would “fix” this problem because TR “monitors” the derivative at both
ends of the interval. However, this not true because, using a capacitance-based
model, TR leads to the following equation, to be solved for v1:

4v2
1 � 5v0v1 C v2

0 D 0 (5.367)

whose solutions are v0 and v0=4, both of which are incorrect.

Sensitivity and Stability Ogrodzki (1994) shows another test case which
illustrates that, in the presence of nonlinear capacitance, and especially if we have
strong local nonlinearity, we get heightened sensitivity of numerical integration
errors to time-step sizes when capacitance-based models are used, and that these
problems disappear when charge-based models are used. Building on early work
by Calahan (1972), Ogrodzki (1994) also argues that capacitance-based models

APPLICATION TO CIRCUIT SIMULATION 287

v

R

C(v)

i

Figure 5.22: An RC circuit with a nonlinear capacitor.

can lead to error accumulation and amplification over time. We make further
illustration of this effect with the following example.

Consider the circuit shown in Fig. 5.22, which makes use of a nonlinear
capacitor, assumed to have been initially charged, whose exact solution obeys:

v D �Ri D �R
dq

dt
D �RC.v/

dv

dt
(5.368)

Using the shorthand vn � v.tn/ and vnC1 � v.tnC1/, and considering the solution
from tn to tnC1 D tn C h, we find:Z vnC1

vn

C.v/

v
dv D � h

R
(5.369)

We are interested in the effect of error in vn on the solution vnC1; the sensitivity
of vnC1 to vn is captured by the derivative:

dvnC1

dvn
(5.370)

Taking the derivative of both sides of (5.369) with respect to vn , leads to:

dvnC1

dvn
D
��

vn

vnC1

��
CnC1

Cn

�½�1

(5.371)

where we have introduced Cn � C.vn/ and CnC1 � C.vnC1/, to simplify the
notation.

We now explore the response in the case of BE discretization with charge-
based models, which gives:

vnC1 D �RinC1 D � R

h
q.vnC1/C R

h
q.vn/ (5.372)

from which:
dvnC1

dvn
D � RCnC1

h

dvnC1

dvn
C RCn

h
(5.373)

288 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

which leads to:
dvnC1

dvn
D
��

h

RCn

�
C
�

CnC1

Cn

�½�1

(5.374)

which is not exactly the same sensitivity as in the exact solution, nor would we
expect it to be, but it does not show signs of trouble.

Using capacitance-based models, we start with:

vnC1 D �RinC1 D � RCnC1

h
vnC1 C RCnC1

h
vn (5.375)

and, using the notation C 0
nC1 � d

dvC.v/jvnC1 , we eventually arrive at:

dvnC1

dvn
D
�

1 C
�

h

RCnC1

�
C
�

C 0
nC1

CnC1

�
.vnC1 � vn/

½�1

(5.376)

³
�

1 C
�

h

RCnC1

�
C
�

CnC1 � Cn

CnC1

�½�1

(5.377)

and here we see signs of trouble if/when the nonlinearity of C.v/ is strong. In that
case, it is possible for the third term on the right-hand side to become “negative
enough,” causing the overall sensitivity dvnC1=dvn to increase tremendously. In
such cases, error is amplified, and instability may be observed, unless a very
small time-step is used.

Truncation Error We make yet one more exploration of the difference between
capacitance-based models and charge-based models, by looking at the Taylor
series. Exactly how much error do we incur when we truncate the Taylor series?

Recall that BE discretization starts with a Taylor series:

x.tn/ D x.tnC1/� hx 0.tnC1/C h2

2
x 00.tnC1/C 0.h3/ (5.378)

from which:

x 0.tnC1/ D x.tnC1/� x.tn/

h
C h

2
x 00.tnC1/C 0.h2/ (5.379)

For a capacitance-based model i D C.u/u0, we have:

u0.tnC1/ D u.tnC1/� u.tn/

h
C h

2
u00.tnC1/C 0.h2/ (5.380)

from which, using the shorthand u00
nC1 � u00.tnC1/, we get:

i.tnC1/ D CnC1

h
u.tnC1/� CnC1

h
u.tn/C h

2
CnC1u00

nC1 C 0.h2/ (5.381)

APPLICATION TO CIRCUIT SIMULATION 289

in which the leading error term . h
2 /CnC1u00

nC1 is insensitive to Cn and C 0.u/. For
a charge-based model i D q 0, we have:

q 0.tnC1/ D q.tnC1/� q.tn/

h
C h

2
q 00.tnC1/C 0.h2/ (5.382)

from which, using the shorthand u0
nC1 � u0.tnC1/, we get:

inC1 D q.unC1/

h
� q.un/

h
C h

2

d

dt

dq

du

þþþþ
unC1

u0
nC1

!
C 0.h2/ (5.383)

D q.unC1/

h
� q.un/

h
C h

2

�
C 0

nC1u0
nC1 C CnC1u00

nC1

ÐC 0.h2/ (5.384)

The difference between the two leading error terms is:

1 D h

2
C 0

nC1u0
nC1 (5.385)

which can be significant if h is not very small and/or if C 0
nC1 is large. Again,

we see a problem in case of strong nonlinearity of capacitance with respect to
voltage.

RHS Charge Terms As we saw above, the charge-based companion model
for a nonlinear capacitor contributes charge terms q.u j /=h to the MNA RHS
vector:

i D

C.u.k/nC1/

h

!
u C

"
q.u.k/nC1/

h
� q.un/

h
�

C.u.k/nC1/

h

!
u.k/nC1

#
(5.386)

With capacitance-based models, these charge terms are absent, and the RHS
vector depends only on capacitance. In order for both models to produce the
same results, the simulation when using capacitance-based models must implic-
itly compute charges somehow. Given only C.v/ D dq

dv , this can only be done
(implicitly) using numerical integration of currents. This makes capacitance-
based models much more susceptible to numerical errors, compared with simply
evaluating the charge equations. As we saw above, evaluation of i .k/nC1 for the
capacitor incurs error in the leading error term, relative to the charge-based
formulation, of hC 0

nC1u0
nC1=2. Thus, using explicit charge terms in the RHS

ensures that charge is the same for the same voltage, and helps avoid charge
non-conservation.

290 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Explicit Methods The above development of a charge-based model for BE
can be applied to other implicit formulas as well, including TR and the BDFs.
This leads to new element stamps that represent the charge-based models of the
nonlinear dynamic elements. However, explicit integration (such as by using FE)
for charge-based models requires an invertible q.u/, for the following reason.
Suppose we want to use FE for a nonlinear capacitor, then, starting with i.tn/ D
q 0.tn/, we write:

in D q.unC1/

h
� q.un/

h
(5.387)

from which we would need to compute:

unC1 D q�1 .hin C q.un// (5.388)

which may not be well-defined. Thus, in general, using explicit methods with
charge-based models is not possible.

Convergence Criteria As we saw above in the case of a nonlinear capaci-
tor, charge-based models introduce capacitance terms in the Jacobian and charge
terms in the RHS vector. Otherwise, using charge-based models for the nonlinear
elements does not alter the rest of the MNA formulation; the solution vector con-
tains no charge variables, for example. However, for better charge conservation,
it is reported that, as part of the convergence check in the Newton loop, one
should also check that ku.kC1/ � u.k/k has become (close enough to) zero, where
u is a vector of all the capacitor branch voltages.

Furthermore, it is possible to incorporate a charge-based local error check, as
follows. Define the two error metrics, in capacitor branch voltages and charges:

−u D jun � u.tn/j −q D jq.un/� q.u.tn//j (5.389)

then, write the Taylor series expansion:

q.u.tn// D q.un/C .u.tn/� un/ q 0.un/C Ð Ð Ð (5.390)

so that:
−q ³ jC.un/j−u (5.391)

Thus, once −u has been estimated, such as by using an LTE estimate, we can
use the above to estimate −q and check that against its own threshold, in order
to determine if the time-step size is acceptable. Some simulators use an internal
charge error tolerance CHGTOL for this purpose. According to Yang et al. (1983),
it is advisable that the tolerances in voltage, charge, and current be set “appropri-
ately,” i.e., so they are commensurate with each other. Likewise, for use during
the Newton loop, it is possible to express the step sizes in charge in terms of
step sizes in voltage:

sq ³ jC.u.k//jsu (5.392)

so that it is possible to also check convergence in the charge step sizes.

APPLICATION TO CIRCUIT SIMULATION 291

xm

ym

x2

y2

x1

y1

xm+2ym+2

xnyn

xm+1ym+1

y = p(x,x′) +

−

+

−+

−

+−

+−

+−

gr
ou

p
Vgroup

I

MTE

Figure 5.23: A general template for multiterminal elements.

The above comments also apply to the case of a nonlinear inductor, so we
may check current step-sizes, and possibly the LTE and step-sizes of flux.

5.7.6 Multiterminal Elements

As with resistive multiterminal elements (MTE), dynamic MTEs can be easily
handled, provided some restrictions are made on their specification. We assume
that the terminals of any MTE are partitioned up-front into two groups, a group
I and a group V , as shown in Fig. 5.23, such that, if we let vector x consist
of the voltage signals at group I terminals and the current signals into group V
terminals, and let vector y consist of the current signals into group I terminals and
the voltage signals at group V terminals, then the MTE terminal characteristics
can be expressed in the form:

y D p.x; x 0/ (5.393)

where p.Ð/ is some general, possibly nonlinear, vector function. Notice that this
restriction has some subtle implications:

1. If the MTE contains any internal capacitors, then they must be connected
(only) to terminal nodes in the group I .

2. If the MTE contains any internal inductors, then their currents must be
equal to currents of terminals in the group V .

More generally, if the MTE has any internal charges or fluxes, then they must
depend only on terminal voltages and currents that are in x vector. This is a practi-
cal requirement, since any variables that carry circuit state must be “remembered,”
and the MNA vector is a convenient place for them.

Most MTEs of interest, e.g., semiconductor devices, can be modeled so that
all their terminals are in group I , and they are specified using i D p.v; v0/. With
this, it is clear that any terminal of an MTE may be viewed as connected to

292 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

xm

ym

x2

y2

x1

y1

xm+2

ym+2

xn

yn

xm+1

ym+1

y = p(x,x′)

p1(x,x′)
pm+1(x,x′)

p2(x,x′)

pm(x,x′)

pm+2(x,x′)

pn(x,x′)

+

−

+

−

+

−
+

−

+

−

+

−

+−

+−

+−

group
Vgr

ou
p

I

MTE

Figure 5.24: An equivalent circuit for a general multiterminal element.

a two terminal , possibly nonlinear, DCCS or DCVS, yi D pi .x; x 0/, as shown
in Fig. 5.24. Thus, MTEs fit quite easily in the familiar MNA framework. In
general, the model y D p.x; x 0/ may be either given explicitly or captured by
a nonlinear dynamic equivalent circuit. The model may also come with cer-
tain additional features, such as different modes of operation, different levels of
accuracy/complexity, etc.

In practice, most MTEs, such as MOSFETs, do not use the general form
(5.393), but can be represented in the slightly simpler form:

y D g.x/C D.x/x 0.t/ (5.394)

in which one part, g.x/, is the familiar nonlinear resistive term we saw earlier,
and the other, D.x/x 0.t/, is the new dynamic term. Note, this D.x/ matrix is not
to be confused with the D.x/ notation that we employed earlier in (5.14) and
in (5.288). In our previous study of pseudo-transient and of companion models,
we have focused on this less-general form. One can view this model as being
decoupled , consisting of two models: a DC model and an AC or transient model.
Most devices are specified in this way, by means of two models.

Discretization is applied to x 0, in the usual way, in order to build companion
models for MTEs; linearization then leads to element stamps for MNA. The
model evaluation routine in a circuit simulator is one that returns the MNA
element stamp and RHS vector contributions, for the given operating point.

MTE Companion Models Generation of companion models for MTEs
involves a few complications, some more subtle than others, but none of
which are insurmountable. If we focus on the less-general form (5.394) and,
specifically, on its transient component:

y D D.x/x 0.t/ (5.395)

APPLICATION TO CIRCUIT SIMULATION 293

then each component of the model may involve several mutual capacitances or
inductances, as we saw earlier:

i.t/ D
X

j

C j .x/x
0
. j/.t/ or v.t/ D

X
j

L j .x/x
0
. j/.t/ (5.396)

where we have employed the subscript notation introduced earlier, on page 210,
using the more familiar v instead of u to represent branch voltages, and where
as usual:

C j .x/ � @q

@x. j/
and L j .x/ � @�

@x. j/
(5.397)

Allowing for nonlinear capacitance/inductance, and in the interest of charge and
flux conservation, we now express these relations differently, as:

i.t/ D
X

j

q 0
j .x/ or v.t/ D

X
j

�0
j .x/ (5.398)

where each of the q j .x/ or � j .x/ terms can be thought of as representing a
separate element, which can be a function of several voltages or currents. For
example, given an element with element equation i D q 0.v/, where v is a vector
of node voltages, we construct the companion model by BE direct discretization:

i.tnC1/ D d

dt
q.v.t//

þþþþ
tnC1

³ q.vnC1/

h
� q.vn/

h
� gQ.vnC1/ (5.399)

which we then linearize in the usual way as a nonlinear element with multiple
controlling variables, which makes use of the several partial derivatives:

@gQ.v/

@v. j/

þþþþ
vnC1

D 1

h

@q.v/

@v. j/

þþþþ
vnC1

D C j .vnC1/

h
(5.400)

which requires that the model provide means to compute q.v/ and @q=@v. j/. The
process then proceeds as usual. However, some further subtle details must be
noted, in the interest of charge conservation, as we will now describe for the
case of the MOSFET.

MOSFET Model In a MOSFET, the internal capacitances depend on several
voltages. In fact, there is more to it than this, as we will see that accurate modeling
of the MOSFET requires the notion of a non-reciprocal capacitance. An early
capacitance model for MOSFETs was given in Meyer (1971), and is called the
Meyer model. In addition to the diffusion junction capacitors CJSB and CJDB ,
this model also includes:

Cgs � @Qg

@vs
; Cgd � @Qg

@vd
; and Cgb � @Qg

@vb
(5.401)

294 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

where Qg is the total gate charge and vs , vd , and vb are the source, drain, and
bulk node voltages, respectively. With nonlinear equations provided for the above
capacitances, this model is quite sophisticated and works well in most cases.

However, it was found to lead to charge non-conservation for certain circuits
whose response depends more on charge than on capacitance. The model leads to
a situation where, as pointed out in Ward and Dutton (1978), “the charge stored
in a node is not equal to the integrated net current flowing into the node.” The
problems were traced to several issues with this model, notably:

1. The absence of source-to-bulk and drain-to-bulk capacitors that represent
the (rate of change of) space charge in the channel.

2. The fact that the Meyer capacitances are reciprocal, i.e., that the model
assumes that, for example, Cgb � @Qg=@vb D @Qb=@vg � Cbg .

Ward and Dutton (1978) improved this model by including the missing capaci-
tances and allowing the capacitors to be non-reciprocal, so that:

Cgb � @Qg

@vb
6D @Qb

@vg
� Cbg (5.402)

As a result, Cgb and Cbg are not really physical “capacitors,” but are merely two
measures of “capacitance,” related to different space charges. Yang et al. (1983)
later improved this model by incorporating charge terms in the RHS vector. The
result is a charge conserving nonlinear capacitance model for the MOSFET that
is in use in many modern simulators. Further details are available in Yang et al.
(1983) and in Ruehli (1986).

This model, focusing only on its transient component, is based on the recogni-
tion of the presence of several space charges : Qg is the total gate charge, Qb is
the total bulk (substrate, body) charge, and .Qs C Qd/ is the total channel charge
(partitioned into source-side and drain-side portions). The model also includes
junction and overlap capacitance, but we leave them out here, because they are
not as problematic for simulation.

For any region of space with charge Q, the net current flowing into that region
is given by d Q=dt . For the MOSFET, we write:

ig D d Qg

dt
; ib D d Qb

dt
; id D d Qd

dt
; and is D d Qs

dt
(5.403)

which, again, is only the transient part of the total current, and it also excludes
the junction and overlap capacitor currents. The above current equations are then
discretized and linearized in the usual way, leading to the MOSFET companion
model and element stamp. To explore further, we can write:

ig D @Qg

@vgb
v0

gb C @Qg

@vgd
v0

gd C @Qg

@vgs
v0

gs (5.404)

ib D @Qb

@vbg
v0

bg C @Qb

@vbd
v0

bd C @Qb

@vbs
v0

bs (5.405)

APPLICATION TO CIRCUIT SIMULATION 295

id D @Qd

@vdg
v0

dg C @Qd

@vdb
v0

db C @Qd

@vds
v0

ds (5.406)

is D @Qs

@vsg
v0

sg C @Qs

@vsb
v0

sb C @Qs

@vsd
v0

sd (5.407)

leading to a matrix of 12 nonlinear non-reciprocal capacitances:

Ci j � @Qi

@vi j
(5.408)

For charge conservation, we require:

Qg C Qb C Qd C Qs D 0 (5.409)

which, by taking derivatives, also leads to the expected KCL:

ig C ib C id C is D 0 (5.410)

Some conclusions follow from this. Notably, KCL leads to:X
j 6Di

Ci j D
X
j 6Di

C ji ; 8i 2 fg; b; d; sg (5.411)

so that the capacitances are not all independent. In fact, it can be shown that
three of the twelve capacitances can be computed from the other nine. To ensure
conservation of charge, these nine capacitances are computed from the provided
model equations, then the three others are computed from them.

Thus, modern MOSFET models typically include equations to compute the
following 3 ð 3 capacitance matrix:2

4Cgb Cgd Cgs

Cbg Cbd Cbs

Cdg Cdb Cds

3
5 (5.412)

Any approximation of the model capacitances, by omitting or simplifying some
of them as in the Meyer model, can lead to charge non-conservation. As well,
for better numerical results, it has been shown that charge terms should appear
in the RHS vector, as we saw with 2-terminal nonlinear capacitors. This makes
the charge computation more robust to numerical errors.

MTE with Internal Nodes Finally, it remains to consider the case of an
MTE with internal nodes. For resistive MTEs, as we saw earlier, it is possible
to eliminate the internal nodes, so that they do not show up as variables in the
MNA vector. In the case of a dynamic MTE, one cannot do this if any internal
nodes are terminals of any capacitors or if any internal branches are inductive.
This is the reason behind our earlier requirement that capacitor voltages must

296 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

be terminal voltages and inductor currents must be terminal currents. If, say, a
MOSFET contains series resistance, then any internal nodes that are are terminals
of Ci j capacitances must be made explicit new terminal nodes and must appear
in the MNA vector. Other internal nodes do not carry state information and they
may be eliminated in the same way as we did earlier in the resistive case.

5.7.7 Time-Step Control

Practical experience confirms the intuitive notion that small (large) time-steps
must (can) be taken when the solution is changing quickly (slowly). Thus, it
is imperative, for efficiency reasons, to use a variable time-step approach in
simulation, typically based on an LTE metric. By the use of such schemes, it is
hoped that the resulting LTE would be approximately constant, at some acceptable
level, for all the time-steps taken during the simulation.

In one scheme for using LTE to manage the time-step, once the Newton loop
has converged for a value of xnC1, we check the PLTE at tnC1, typically by
checking whether:

PLTE � ž � žrel jxnC1j C žabs (5.413)

where žrel and žabs are relative and absolute error tolerances, respectively. Instead
of the normalizing vector jxnC1j, some authors use a vector whose i-th entry is
the largest value observed so far in xk .i/, 8k � n C 1. Some others, instead, check
whether:

PLTE � ž � žrel jx 0.tnC1/j C žabs (5.414)

with some suitable approximation scheme to find x 0.tnC1/, so that the LTE check
is effectively relaxed when x.t/ is changing rapidly.

If the error meets the test criterion then we accept the solution xnC1, otherwise
we reject it, we backtrack to xn , and we use a new value of time-step to re-
attempt the step from tn to tnC1. If the error meets the test criterion by a large
margin, then the solution xnC1 is (obviously) accepted and the time-step is reduced
subsequently. We will, shortly, discuss how the new time-step value is chosen.

In some simulator implementations, only the LTEs in the voltage entries of
the MNA vector are checked, and not in the current entries. The rationale given
for this is that the current variables are “artificial,” introduced only to be able
to complete the MNA formulation and, therefore, do not merit an LTE check.
However, this view is not universal and, in general, modern simulators may check
the LTE in all MNA variables, as well as in charge and flux, as we saw earlier.

Choice of Time-Step It is hard to predict up-front exactly what the time-step
should be. In a fixed time-step regime, or for a one-step method, we have access
to the simple result:

PLTE.tnC1/ D CpC1h pC1x .pC1/.tn/ (5.415)

APPLICATION TO CIRCUIT SIMULATION 297

from which, if the maximum tolerable error is a vector ž > 0, then the time-step
should obviously be:

h � min
8i

ž.i/

CpC1x .pC1/
.i/ .tn/

! 1
pC1

(5.416)

and this may be used to provide some guidance for setting the time-step. This
result does not hold for the variable time-step case, except when using a one-step
method, like BE or TR. In fact, for one-step methods, this result can be further
extended, as in Ogrodzki (1994), as follows. If we, heuristically, assume that
x .pC1/.tn/ ³ x .pC1/.tn�1/, then, 8i :

PLTE.i/.tnC1/

PLTE.i/.tn/
³
�

hnC1

hn

�pC1

(5.417)

so that, if žn D PLTE.tn/ is the computed PLTE at tn and ž is the desired PLTE
at tnC1, then we should take:

hnC1 ³ hn min
8i

�
ž.i/

žn .i/

� 1
pC1

(5.418)

as the next time-step. By the same logic, if we have backtracked from tnC1

because of too large a PLTE, then we should choose a smaller/corrected hnC1

based on:

hnew
nC1 ³ hnC1 min

8i

ž.i/

žnC1.i/

! 1
pC1

(5.419)

where ž is the desired PLTE and žnC1 is the computed PLTE, both at tnC1. It
is not clear how effective these heuristic methods are in practice. Much simpler
strategies are often employed, for example, by simply doubling or halving the
time-step.

Alternatives The use of LTE for time-step control can be expensive, due to
the need to estimate the LTE and the wasted effort whenever a step is rejected. In
addition, practical experience shows that LTE-based schemes can be overly con-
servative, leading to exceedingly small time-steps. For example, using a divided
differences approach has been found to give LTE estimates that can be 10 times
larger than the true LTE. Thus, alternatives have been sought, and one of them
is as follows. It has been observed that slow (fast) signals that allow (require) a
large (small) time-step turn out to also require a small (large) number of Newton
iterations to converge. This suggests that one can make the choice of the next
time-step value based on how many iterations were required to converge at the
present time-point. For example, one scheme can be as follows:

298 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

1. If xn is found to converge in less than, say, five Newton iterations, then
double the time-step to find xnC1, i.e., set tnC1 � tn D 2.tn � tn�1/.

2. Otherwise, if xn is found to converge in more than, say, ten Newton iter-
ations, then halve the time-step to find xnC1, i.e., set tnC1 � tn D .tn �
tn�1/=2.

3. Otherwise, keep the time-step fixed at its present value.

These are obviously heuristic schemes and there is no way to determine their
effectiveness a priori ; one must simply test them out in the field.

As well, the choice of time-step is guided by the input “breakpoints.” Input
signal sources are typically piece-wise linear (PWL) waveforms, and the points
where two linear segments meet are called breakpoints . The time-step is always
reduced in order to to make sure that breakpoint times coincide with solution time-
points. In addition, the choice of the first time-step taken beyond a breakpoint is
guided by the slope of that linear segment of the input waveform. For example,
it may be set to 1/10 of the time-span of that segment. Finally, the time-step
may be reduced at the end of the simulation time so that a solution time-point
coincides with the end of simulation time, t f .

5.7.8 Enhancements

It is reported, in McCalla (1988), that the total time spent performing Newton
iterations breaks down as follows:

• About 80% of it is spent linearizing and evaluating nonlinear elements, i.e.,
generating the element stamps for the nonlinear elements, and

• The remaining 20% is spent on solving the linear equations.

Thus, there is great interest in reducing the computational effort expended on
linearizing and evaluating the nonlinear elements. It is expensive to have to do
this in every Newton iteration. One successful scheme for reducing this cost,
from McCalla (1988), is as follows. At time tnC1, treat any nonlinear dynamic
elements as linear dynamic elements, whose values are computed based on xn

at tn , so that:
C.unC1/ � C.un/ and L.inC1/ � L.in/ (5.420)

If the LTE is in check, then the error introduced by this is usually acceptable. Of
course, other (resistive) nonlinear elements must still be linearized and evaluated
in every Newton iteration.

If one carries out this scheme to its extreme, then one can also apply this to
the other (resistive) nonlinear elements, as well. This would mean that the Jaco-
bian would remain fixed throughout the Newton iterations at a given time-point.
Effectively, this would be a Newton-Chord method. Note, while the Jacobian
may be fixed, updates to the RHS vector due to the nonlinear elements would
still be required.

APPLICATION TO CIRCUIT SIMULATION 299

5.7.9 Overall Flow

Putting together all that we have seen so far, we can now give a basic “bare
bones” simulation flow, including DC Analysis and Transient Analysis, with
time-step control, as shown in Fig. 5.25.

Input: Initial time t0 and final time T .
fPerform DC analysis at t0:g
Disable all dynamic elements.
Choose an initial candidate solution at t0.
while (x.t0/ has not converged and not timed-out) do fNewton loopg

For every (resistive) element in the network, evaluate its
linearized element stamp and construct the MNA system.
Solve the resulting MNA system using LU factorization.

endwhile
if (Newton loop has timed-out) then

Abort! fUnable to find initial DC solutiong
endif

fPerform Transient Analysis:g
Reinstate all dynamic elements.
Set n D 0, and choose an initial time-step h1.
while (tn < T) do fTime discretization loopg

tnC1 D tn C hnC1

Use x.tn/ as the initial candidate solution at tnC1.
while (x.tnC1/ has not converged and not timed-out) do fNewton loopg

For every element in the network, evaluate its discretized,
linearized element stamp and construct the MNA system.
Solve the resulting MNA system using LU factorization.

endwhile
if (Newton loop has timed-out) then fNeed to reduce the time-stepg

hnC1 D hnC1=2
else

Compute the LTE at tnC1.
if (LTE is too large) then fNeed to reduce the time-stepg

hnC1 D hnC1=2
else fAccept the solution x.tnC1/ and move forward in timeg

n D n C 1
if (LTE is too small) then fWe can increase the time-stepg

hnC1 D 2hn

else fKeep the same time-stepg
hnC1 D hn

endif
endif

endif
if (hnC1 is too small) then

Abort! fTime-step too smallg
endif

endwhile

Figure 5.25: Overall simulation flow.

300 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

Notes Additional reading is available in the following sources. In Lambert
(1991), see chapters 1–6. In Ascher and Petzold (1998), see chapters 1–5 and
9–10. In Burden and Faires (2005), see chapters 3–5. In McCalla (1988), see
chapter 5. In Ogrodzki (1994), see chapter 5. In Pillage et al. (1995), see chapters
4 and 10. Finally, much useful information is available in the classic texts Ruehli
(1986) and Ruehli (1987).

The problem of transient analysis continues to be an interesting topic of
research. While it is clear that the classical solutions are quite mature, it is
also clear that they do not offer iron-clad guarantees of accuracy and stability.
Besides the above general references on the topic, the research literature includes
some noteworthy publications, including Lindberg (1971); Brayton et al. (1972);
Van Bokhoven (1975); Ward and Dutton (1978); Yang et al. (1983); Hosea and
Shampine (1996); Tischendorf (1996).

Problems

5.1. Show that FE, BE, and TR are consistent, zero-stable, and convergent.

5.2. Check whether the following LMS methods are convergent (after Lambert
(1991)):

xnC1 C xn � 2xn�1 D h

4

ð
f .xnC1; tnC1/C 8 f .xn; tn/C 3 f .xn�1; tn�1/

Ł
xnC1 � xn D h

3

ð
3 f .xn; tn/� 2 f .xn�1; tn�1/

Ł
xnC1 C 1

4
xn � 1

2
xn�1 � 3

4
xn�2 D h

8

ð
19 f .xn; tn/C 5 f .xn�2; tn�2/

Ł

5.3. Write a program to solve the following IVP using FE, BE, and TR:

x 0.t/ D �
�

4

3

�
x.t/; x.0/ D 1

Generate and plot the solutions over the interval 0 � t � 10, using three
fixed time-step settings of h D 0:5, h D 1:0, and h D 2:0.

5.4. Write a program, using FE, BE, and TR to solve the following IVP:

x 0.t/ D
�

0:1 �2

8 0:1

½
x.t/; x.0/ D

�
0

�2

½

whose exact solution is:

x.t/ D
"

et=10 sin.4t/

�2et=10 cos.4t/

#

PROBLEMS 301

Use a time-step value of h D 0:05 and find the solutions over the interval
[0; 4].

5.5. Derive the expression for BDF2 in three ways:

(a) In the equidistant data case, using the polynomial basis f1; t; t2; : : :g.
(b) In the equidistant data case, using the Newton-Gregory backward inter-

polation polynomial.
(c) In the non-equidistant data case, using the Newton divided difference

interpolation polynomial.

5.6. Show that, in the non-equidistant case, the general formula for a BDF
method of order p D k is given by:

f .xnC1; tnC1/ D
kX

iD1

i�1Y
jD1

0
@ j�1X

lD0

hnC1�l

1
A x[tnC1; : : : ; tnC1�i]

5.7. Consider the equidistant points tn; tn�1; : : : ; tn�p , where the time-step is
h, and let x.t/ be arbitrarily differentiable. If ¾ 2 [tn�p; tn], and − D
h pC1x .pC1/.¾/C 0.h pC2/, show that − D h pC1x .pC1/.tn/C 0.h pC2/.

5.8. Consider the non-equidistant data points tnC1; tn; : : : ; tn�p , where h j � t j

� t j�1, and let x.t/ be arbitrarily differentiable. For any ¾ 2 [tn�p; tnC1],
and if − D h pC1

nC1 x .pC1/.tn/, show that − D h pC1
nC1 x .pC1/.¾/C 0

�
.tnC1 �

tn�p/
pC2
Ð
.

5.9. For the case of TR with non-equidistant data, with h j � t j � t j�1, derive
a Milne’s estimate for the LTE, in two steps:

(a) Show that the interpolation polynomial, extrapolated to provide an
initial candidate solution x .0/nC1 at tnC1, provides:

x .0/nC1 D
�

hnC1.hnC1 C hn/

hn�1.hn C hn�1/

½
xn�2 �

�
hnC1.hnC1 C hn C hn�1/

hnhn�1

½
xn�1

C
�
.hnC1 C hn/.hnC1 C hn C hn�1/

hn.hn C hn�1/

½
xn

(b) If such an extrapolation is used, followed by the application of New-
ton’s method until convergence to solve the implicit TR for the solution
xnC1, show that the resulting Milne’s estimate for the LTE would be
this:

LTE ³ �h2
nC1

h2
nC1 C 2.hnC1 C hn/.hnC1 C hn C hn�1/

�
xnC1 � x .0/nC1

�

302 SOLUTION OF DIFFERENTIAL CIRCUIT EQUATIONS

5.10. For the single root of the stability polynomial for the trapezoidal rule,
given by:

r1 D 1 C ĥ=2

1 � ĥ=2

show that:

(a) jr1j < 1 if and only if <.ĥ/ < 0.
(b) jr1j D 1 if and only if <.ĥ/ D 0.

5.11. Using the boundary locus method, and with � 2 [0; 2³], the boundary of
the region of absolute stability of the trapezoidal rule is given by:

ĥ D 2

�
ei� � 1

ei� C 1

�

Prove that <.ĥ/ D 0 and =.ĥ/ D 2 tan.�=2/.

5.12. Write a program to generate the region of absolute stability for the 5th
order BDF, using the boundary locus method.

5.13. (Computer Project) Based on the nonlinear solver that was developed
previously in problem 4.8, write a C or C++ implementation of a time-
domain circuit simulator, based on the trapezoidal rule. Your implemen-
tation should be general, in the sense that it should accept any circuit
description consisting of any combination of linear resistors, independent
voltage and current sources, diodes, BJTs, MOSFETs, and linear capacitors
and inductors. As in problem 4.8, you should use the simple DC models
for the semiconductor devices given in chapter 4.

1 2

3

4

5

6

0

10kΩ

450Ω

3V

640Ω

2pF2pF

1mH

+
−

Figure 5.26: A test circuit for time-domain simulation.

PROBLEMS 303

0 5 10 15 20
Time (nsec)

0

1

2

3

4
V

ol
ta

ge
s

(V
)

Node 1
Node 5
Node 4

Figure 5.27: The solution for the circuit in Fig. 5.26.

Use your code to perform a time-domain simulation of the circuit
in Fig. 5.26, based on v1.t/ D 3e�t=− Volts, where − D 2 nsec, over
the interval [0; 20 nsec], and using the following parameters. For the
MOSFET, Vt D 0:6 V, ½ D 0:01=V, and þ D 0:5 mA/V2. For the BJT,
ÞF D 0:99, ÞR D 0:02, Ies D 2 ð 10�14 A, Ics D 99 ð 10�14 A, and
VT c D VT e D 26 mV. For the Newton stopping criteria, use a relative
tolerance of 0:1% and an absolute tolerance of 1 mV (for voltages) and
1¼A (for currents). The overall flow of your solution should be as shown
in Fig. 5.25, based on a minimum allowable time-step of 1psec. For
the time-step control scheme in Fig. 5.25, you should use the following
thresholds for the PLTE vector. To check if the PLTE is too large, use
(5.413) based on a relative tolerance of 0:1% and an absolute tolerance
of 1 mV (for voltages) and 1¼A (for currents). To check if the PLTE is
too small, use a relative tolerance of 0:001% and an absolute tolerance
of 10¼V (for voltages) and 10 nA (for currents). Generate a plot of the
voltage waveforms at nodes 1, 4 and 5. The correct solution is shown in
Fig. 5.27.

GLOSSARY

ABM: Adams-Bashforth-Moulton
AC: alternating current
AMD: average minimum degree
BBD: bordered block diagonal
BDF: backward differentiation formula
BDF2: second order BDF
BE: backward Euler
BJT: bipolar junction transistor
BS: backward substitution
BTF: block-triangular form
CCCS: current-controlled current source
CCS: controlled current source
CCVS: current-controlled voltage source
COLAMD: column average minimum degree
COLMMD: column multiple minimum degree
CVS: controlled voltage source
DAE: differential-algebraic equation
DC: direct current
DCCS: dynamic controlled current source
DCVS: dynamic controlled voltage source
DRAM: dynamic random access memory
ERO: elementary row operation
FE: forward elimination
FE: forward Euler
FET: field-effect transistor
FS: forward substitution
GE: Gaussian elimination

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

305

306 GLOSSARY

GEPP: GE with partial pivoting
GE/LU: shorthand, refers to both LU factorization and GE when implemented

as in Gauss’s method for LU factorization.
GJ: Gauss-Jacobi
GS: Gauss-Seidel
GTE: global truncation error
IEEE: institute of electrical and electronics engineers
IVP: initial value problem
KCL: Kirchoff’s current law
KLU: “Clark Kent” LU factorization
KVL: Kirchoff’s voltage law
LMS: linear multistep
LTE: local truncation error
MD: minimum degree
MMD: multiple minimum degree
MNA: modified nodal analysis
MOSFET: metal-oxide-semiconductor field-effect transistor
MTE: multiterminal element
NA: nodal analysis
ODE: ordinary differential equation
PLTE: principal local truncation error
PWL: piece-wise linear
RHS: right-hand side
SPD: symmetric positive definite
STA: sparse tableau analysis
SVD: singular value decomposition
TR: trapezoidal rule
VCCS: voltage-controlled current source
VCVS: voltage-controlled voltage source
VSVO: variable step variable order

BIBLIOGRAPHY

P. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM Journal on Matrix Analysis and Applications , 17(4):886–905, October
1996.

U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations . SIAM, Philadelphia, PA, 1998.

R. G. Bartle. The Elements of Real Analysis . John Wiley & Sons, Ltd., New York, NY,
second edition, 1976.

R. D. Berry. An optimal ordering of electronic circuit equations for a sparse matrix
solution. IEEE Transactions on Circuit Theory , 18(1):40–50, January 1971.

R. K. Brayton, F. G. Gustavson, and G. D. Hachtel. A new efficient algorithm for solv-
ing differential-algebraic systems using implicit backward differentiation formulas.
Proceedings of the IEEE , 60(1):98–108, January 1972.

R. L. Burden and J. D. Faires. Numerical Analysis . Thomson Books/Cole, Belmont, CA,
eighth edition, 2005.

J. C. Butcher. Numerical methods for ordinary differential equations in the 20th century.
Journal of Computational and Applied Mathematics , 125(1-2):1–29, December 2000.

D. A. Calahan. Computer-Aided Network Design . McGraw-Hill, Inc., New York, NY,
revised edition, 1972.

L. O. Chua, C. A. Desoer, and E. S. Kuh. Linear and Nonlinear Circuits . McGraw-Hill
Book Company, Inc., New York, NY, 1987.

L. O. Chua and P-M. Lin. Computer-Aided Analysis of Electronic Circuits: Algorithms
and Computational Techniques . Prentice-Hall Inc., Englewood Cliffs, NJ, 1975.

G. Dahlquist and Å. Björck. Numerical Methods in Scientific Computing , volume One.
SIAM, Philadelphia, PA, 2008.

T. A. Davis. Direct Methods for Sparse Linear Systems . SIAM, Philadelphia, PA, 2006.

T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate
minimum degree ordering algorithm. ACM Transactions on Mathematical Software,
30(3):353–376, September 2004.

T. A. Davis and K. Stanley. Sparse LU factorization of circuit simulation matrices. In
SIAM Conference on Parallel Processing for Scientific Computing , San Francisco, CA,
February 2004.

J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations . SIAM, Philadelphia, PA, 1996.

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

307

308 BIBLIOGRAPHY

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices . Oxford
University Press, New York, NY, 1986.

D. Estévez Schwarz and C. Tischendorf. Structural analysis of electric circuits and
consequences for MNA. International Journal of Circuit Theory and Applications ,
28(2):131–162, March 2000.

C. W. Gear. Numerical initial value problems in ordinary differential equations . Prentice-
Hall Inc., Englewood Cliffs, NJ, 1971.

A. George and J. Liu. The evolution of the minimum degree ordering algorithm. SIAM
Review , 31(1):1–19, March 1989.

A. George and E. Ng. An implementation of Gaussian elimination with partial pivoting for
sparse systems. SIAM Journal on Scientific and Statistical Computing , 6(2):390–409,
April 1985.

J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and
implementation. SIAM Journal on Matrix Analysis and Applications , 13(1):333–356,
January 1992.

G. H. Golub and C. F. Van Loan. Matrix Computations . The Johns Hopkins University
Press, Baltimore, MD, second edition, 1989.

G. D. Hachtel, R. K. Brayton, and F. G. Gustavson. The sparse tableau approach to
network analysis and design. IEEE Transactions on Circuit Theory , 18(1):101–113,
January 1971.

N. J. Higham. Accuracy and Stability of Numerical Algorithms . SIAM, Philadelphia, PA,
second edition, 2002.

C.-W. Ho, A. E. Ruehli, and P. A. Brennan. The modified nodal approach to network
analysis. IEEE Transactions on Circuits and Systems , 22(6):504–509, June 1975.

C. W. Ho, D. A. Zein, A. E. Ruehli, and P. A. Brennan. An algorithm for DC solutions in
an experimental general purpose interactive circuit design program. IEEE Transactions
on Circuits and Systems , 24(8):416–422, August 1977.

R. A. Horn and C. R. Johnson. Matrix Analysis . Cambridge University Press, New York,
NY, 1985.

M. E. Hosea and L. F. Shampine. Analysis and implementation of TR-BDF2. Applied
Numerical Mathematics , 20(1-2):21–37, February 1996.

T. E. Idleman, F. S. Jenkins, W. J. McCalla, and D. O. Pederson. SLIC—A simulator for
linear integrated circuits. IEEE Journal of Solid-State Circuits , 6(4):188–203, August
1971.

C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations . SIAM, Philadelphia,
PA, 1995.

K. S. Kundert. The Designer’s Guide to SPICE and Spectre. Kluwer Academic Publishers,
Norwell, MA, 1995.

J. D. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value
Problem . John Wiley & Sons, Ltd., Chichester, UK, 1991.

B. Lindberg. On smoothing and extrapolation for the trapezoidal rule. BIT Numerical
Mathematics , 11(1):29–52, March 1971.

H. M. Markowitz. The elimination form of the inverse and its application to linear pro-
gramming. Management Science, 3(3):255–269, April 1957.

W. J. McCalla. Fundamentals of Computer-Aided Circuit Simulation . Kluwer Academic
Publishers, Norwell, MA, 1988.

BIBLIOGRAPHY 309

J. E. Meyer. MOS models and circuit simulation. RCA Review , 32(1):42–63, March 1971.

W. E. Milne. A note on the numerical integration of differential equations. Journal of
Research of the National Bureau of Standards , 43(6):537–542, December 1949.

J.-M. Muller. Elementary Functions—Algorithms and Implementation . Birkhäuser,
Boston, MA, second edition, 2006.

L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits . PhD
thesis, University of California, Berkeley, 1975. Memorandum No. ERL-M520.

L. W. Nagel and D. O. Pederson. Simulation program with integrated circuit emphasis. In
Proceedings of the Sixteenth Midwest Symposium on Circuit Theory , Waterloo, Canada,
April 12, 1973.

L. W. Nagel and R. A. Rohrer. Computer analysis of nonlinear circuits, excluding radiation
(CANCER). IEEE Journal of Solid-State Circuits , 6(4):166–182, August 1971.

T. Nishi and L. O. Chua. Topological criteria for nonlinear resistive circuits contain-
ing controlled sources to have a unique solution. IEEE Transactions on Circuits and
Systems , 31(8):722–741, August 1984.

J. Ogrodzki. Circuit Simulation Methods and Algorithms . CRC Press, Boca Raton, FL,
1994.

D. O. Pederson. A historical review of circuit simulation. IEEE Transactions on Circuits
and Systems , 31(1):103–111, January 1984.

L. T. Pillage, R. A. Rohrer, and C. Visweswaraiah. Electronic Circuit and System Simu-
lation Methods . McGraw-Hill Book Company, Inc., New York, NY, 1995.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes—
The Art of Scientific Computing . Cambridge University Press, New York, NY, third
edition, 2007.

A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis . Dover Publications,
Inc., Mineola, NY, second edition, 2001.

G. Reißig. Extension of the normal tree method. International Journal of Circuit Theory
and Applications , 27(2):241–265, March 1999.

A. E. Ruehli, editor. Circuit Analysis, Simulation and Design—Part 1 . North-Holland,
Amsterdam, 1986. Part 1 of 2, published as Volume 3 of Advances in CAD for VLSI .

A. E. Ruehli, editor. Circuit Analysis, Simulation and Design—Part 2 . North-Holland,
Amsterdam, 1987. Part 2 of 2, published as Volume 3 of Advances in CAD for VLSI .

Y. Saad. Iterative Methods for Sparse Linear Systems . SIAM, Philadelphia, PA, second
edition, 2003.

M. Sipics. Sparse matrix algorithm drives SPICE performance gains. SIAM News , 40(4),
May 2007. Available online at http://siam.org/news/news.php?idD1121.

H. J. Stetter. Asymptotic expansions for the error of discretization algorithms for non-
linear functional equations. Numerische Mathematik , 7(1):18–31, February 1965.

W. F. Tinney and J. W. Walker. Direct solution of sparse network equations by opti-
mally ordered triangular factorization. Proceedings of the IEEE , 55(11):1801–1809,
November 1967.

C. Tischendorf. Solution of Index-2 Differential Algebraic Equations and its Application
in Circuit Simulation . PhD thesis, Humboldt University, Berlin, 1996.

W. M. G. Van Bokhoven. Linear implicit differentiation formulas of variable step and
order. IEEE Transactions on Circuits and Systems , 22(2):109–115, February 1975.

310 BIBLIOGRAPHY

J. Vlach and K. Singhal. Computer Methods for Circuit Analysis and Design. Van Nostrand
Reinhold Co., New York, NY, second edition, 1994.

A. Vladimirescu. The SPICE Book . John Wiley & Sons, Ltd., New York, NY, 1994.

D. E. Ward and R. W. Dutton. A charge-oriented model for MOS transistor capacitances.
IEEE Journal of Solid-State Circuits , 13(5):703–708, October 1978.

J. H. Wilkinson. Rounding Errors in Algebraic Processes . Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1963. Reprinted by Dover, New York, NY, 1994.

J. H. Wilkinson. The Algebraic Eigenvalue Problem . Oxford University Press, New York,
NY, 1965. Reprinted, 1988.

P. Yang, B. D. Epler, and P. K. Chatterjee. An investigation of the charge conserva-
tion problem for MOSFET circuit simulation. IEEE Journal of Solid-State Circuits ,
18(1):128–138, February 1983.

INDEX

�, 14

AC Small-Signal Analysis, 10
Adams method(s), 221, 225, 228
Adams-Bashforth method(s), 210, 221, 230
Adams-Bashforth-Moulton (ABM) method, 230
Adams-Moulton method(s), 210, 215, 221, 230
Addition, 80
Admittance form, 30, 164
Admittance matrix, see Matrix, admittance
Affine approximation(s), 154–160, 162–164,

168, 170–173, 276
uniqueness of, 171

Affine function, 140, 141, 148, 149, 152, 155
Algorithm(s), 75, 76

accurate/accuracy of, 75
stable/stability of, 75–78, 80, 83, 85, 89, 92

Analysis modes, in SPICE, 9
Average minimum degree (AMD) algorithm, 122

Backward difference operator, 232
Backward difference(s), 239
Backward differentiation formula(s) (BDF), 211,

224, 225, 228–231, 234, 235, 252, 253,
262–265, 267, 268, 277, 290

coefficients of, 229
deriving the, 229, 234
error constants for, 254, 256
second order (BDF2), 225, 231, 233, 237, 253,

254, 256–258, 263–265, 277
stability of, 253–256

Backward Euler (BE), 213, 214, 218, 220, 221,
225, 227, 240, 245, 256, 257, 262, 266,
267, 271–273, 275, 277, 279–281, 286,
290, 293, 297

stability of, 249–251, 253, 256, 257, 265
Backward substitution (BS), 54, 55, 61–63, 84,

85, 112
Basis matrix, 25–27

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

Basis vectors, 25
Bipolar junction transistor (BJT), 172, 174, 182,

185
affine approximation for, 173
companion model for, 174, 177
element stamp for, 174
with series resistance, 179

Bond space, 23–25
Boundary locus method, 248–251
Branch[es], 19
Branch constraints, 19. See also Branch

equations
Branch equation(s), 19, 27–30, 32, 33, 35, 42.

See also Branch constraints
Broyden’s method, 145, 153

Cancellation(s), 113, 116, 118
CANCER, 2, 183
Candidate solution(s), 134, 141, 149

initial, 136, 149, 299
Capacitance(s), 14, 202, 203, 285, 289, 290,

293–296
internal, 293. See also Capacitor(s), internal
mutual, 202, 293
non-reciprocal, 293, 295
nonlinear, 286, 289, 293, 294
self, 202

Capacitance-based model(s), 284–286, 288, 289
Capacitor(s), 13, 42, 43, 133, 201, 202, 269–275,

277–279, 282, 283, 285, 289, 290, 293–295
companion model of, see Companion models,

for dynamic elements
element stamp of, 43, 271, 274, 276
internal, 291. See also Capacitance, internal
linear, 14, 202, 272–274, 278, 279, 284
nonlinear, 14, 128, 202, 275, 280, 282, 283,

285, 287, 289, 290, 295
Cauchy-Schwarz inequality, 81
Characteristic polynomial, see Difference

equation, characteristic polynomial of

311

312 INDEX

Charge(s), 13, 201, 202, 282, 283, 285,
289–291, 294–296

conservation/non-conservation, 282–285, 289,
290, 293–295

Charge term(s)/equation(s), 289, 290, 294, 295
Charge-based model(s), 282–290
CHGTOL, 290
Cholesky decomposition, 73, 74, 123
Cholesky factor, 123, 124
Chord method, see Newton-chord method
Circuit model, 17, 133
Circulation, 23, 24, 26

fundamental, 25, 26
Clique, 121
Column exchange(s), 59, 63, 86, 116
Combinatorics, 54
Companion model(s), for dynamic elements, 8,

265, 269, 270, 277, 281, 282, 289, 292
backward Euler (BE), 273–276, 283, 284,

286, 293
forward Euler (FE), 270, 271
trapezoidal rule (TR), 279, 280

Companion model(s), for nonlinear resistive
elements, 8, 155, 158, 160–165, 171, 172,
174, 177–181, 184

Compressed-column form, 110, 111
Condition number, 78, 89, 91–95
Conditioning, 89, 91–93
Conductance, 13
Conductance matrix, see Matrix, conductance
Connected/connected graph, see Graph,

connected
Consistency requirements, for network equations,

30–32
Consistent/consistency, of numerical methods for

differential equations, see Initial value
problems, numerical methods for, consistent

Continuation method(s), 181, 186
Continuous, 137, 138, 169

Lipschitz, 136–139, 142, 147, 149–151
uniformly, 137, 138

Contraction, 150
Contraction mapping theorem, 150
Controlled source(s), 16, 28, 45, 120

nonlinear, 128
Convergence, of a sequence, see Vector

convergence
Convergent/convergence, of numerical methods

for differential equations, see Initial value
problems, numerical methods for,
convergent

Corrector, 230, 237
Cramer’s rule, 49
Crout’s algorithm, 60, 63, 65–67

Current assignment, 22, 23
valid, 23, 25, 26

Current source(s), 29, 30
controlled (CCS), 15, 129, 130, 155, 164–166

nonlinear, 129
current-controlled (CCCS), 16, 28, 29, 33, 129
dynamic controlled (DCCS), 202, 204, 292
independent, 15, 29, 36, 129
voltage-controlled (VCCS), 16, 17, 28, 29, 129

Current variables, 30
Current/voltage iteration scheme, 183
Cutset(s), 30

current source, 30, 31
CV -loop(s), 45
Cycle(s), 20, 25, 26, 30
Cycle space, 23–26

Dahlquist barrier(s), 223, 253
first, 223, 228
second, 253

Damping, 153, 181–186
Datum, 20
DC Analysis, 8–10, 127, 133, 142, 181, 182,

186, 187, 190, 196, 274, 277, 279, 280, 299
preparing for, 133

DC Sweep, 10, 188
Derivative(s), 8, 167–169, 171, 222, 223

directional, 168
Fréchet, 156, 168
multidimensional, 156, 168
multivariable, see Derivative,

multidimensional
partial, 155, 156, 168–171

Derivative-free methods, 140
Determinant, 49–53, 92, 95
Device, 2
Device model(s)/modeling, 142, 151, 152, 165,

202
Diagonal, 61
Diagonally dominant, see Matrix, diagonally

dominant
Difference equation(s)/system(s), 216–219, 241,

243–246, 256. See also Initial value
problem(s), numerical methods for

characteristic polynomial of, 246
consistent/consistency of, 217
convergent/convergence of, 220
zero-stable/zero-stability of, 219, 220

Differentiable, 169, 170, 222, 226
arbitrarily, 222, 228
continuously, 136, 138, 139, 149

Differential equation(s)/system(s), 45, 201,
216–219, 241

INDEX 313

index of, see Differential-algebraic equation,
index of

ordinary (ODE), 204–210, 230, 252, 260, 261,
265, 266. See also Initial value problem
(IVP)

linear, 209, 242, 243, 256
numerical method(s) for, 204, 206, 207,

209, 210. See also Initial value
problem (IVP), numerical methods for

numerical solution(s) of, 208, 210
Differential-algebraic equation(s) (DAE), 204,

205, 265–267, 269
index of, 205, 265

Diode(s), 17, 131, 155–162, 177–179, 181–185
affine approximation for, 155
companion model for, 155, 156, 178
element stamp for, 162
with series resistance, 177, 179, 180

Direct method(s), for solving linear systems,
7, 50, 97

Discretization, 205, 210, 268, 269, 272, 277,
282, 284, 292, 299

backward Euler (BE), 271, 272, 274–276,
283, 284, 286–288

direct, 205, 265–267, 269, 272, 277, 278, 281,
293

forward Euler (FE), 269, 271
trapezoidal rule (TR), 278

Divided difference operator, 232, 235
Divided difference(s), 235, 236, 239, 240, 297
Doolittle’s algorithm, 60, 63, 67, 70

Ebers-Moll model/equations, 172, 173, 179
Edge(s), 19, 109, 121

directed, 21
Eigenvalue(s), 32, 51–53, 73, 83, 90, 92, 93, 95,

101, 209, 242, 243, 247, 256
conjugate pairs, 101

Eigenvector(s), 90, 93, 101, 209, 243
Element(s), 2, 13, 19

active, 13, 15
dynamic, 13, 133, 189, 190, 193, 194, 196,

201, 203, 204, 265, 268–271, 273, 274,
277, 279, 298, 299

nonlinear, 282, 290, 298
linear, 2, 13
nonlinear, 3, 13, 127, 128, 131, 298
passive, 13
resistive, 13, 203, 268, 298, 299

nonlinear, 128, 129
Element equation(s), 3–5, 13, 19, 27, 28, 30, 35,

155, 156, 201, 268, 269, 271, 274–277,
280, 283

Element groups, in MNA, 33

Element stamp(s), 6, 8, 35–38, 43, 162–165,
171, 172, 265, 270, 273–275, 277, 279,
280, 282, 290, 292, 294, 298, 299

Elementary row operation(s) (ERO), 51, 57
Equidistant data, 231, 233, 234, 239, 241, 263
Equivalent circuit, 17, 158, 171, 172
Error(s), 74, 75

backward, 74, 76–78, 80, 83, 84, 86, 89,
94–96

forward, 74, 76–78, 89, 94
numerical, 74, 75
overflow, 75, 152, 182–184
roundoff, 59, 75–77, 79, 84, 87, 94, 95, 116,

208, 212, 213
underflow, 75

Error constant, see Linear multistep (LMS)
method, error constant of

Error tolerance(s), 96, 151, 296
Euler’s rule, 211, 212. See also Forward Euler

(FE)
Exponent, 79
Extrapolation, of numerical solutions of

differential equations, 238, 239, 259–261,
264

Fill-in(s), 114–118, 122
Finite difference approximation, 8, 283
Finite precision, 59, 75, 76, 212
First characteristic polynomial, see Initial value

problem, numerical methods for, first
characteristic polynomial of

Fixed point, 145–147, 149, 150
Fixed point method/algorithm, 134, 145–148,

150, 151, 230, 256
Floating point number(s), 74, 78, 79, 87
Flux[es], 14, 202, 203, 291, 296

conservation/non-conservation, 293
Flux-based model(s), 282
Forward elimination (FE), 54, 55, 70
Forward Euler (FE), 211–214, 218, 220, 221,

227, 245, 262, 269–273, 290
error(s) in, 212, 213
stability of, 248–250, 252, 253

Forward substitution (FS), 61, 62, 84, 85, 112
Frequency domain, 43, 44
Fundamental potential difference, 27
Fundamental theorem, of the study of IVPs, 220

Gauss’s algorithm/method, 63, 67, 70–72, 84,
106, 112–115

Gauss-Jacobi (GJ), 7, 50, 97–99, 106–109
convergence of, 100, 102–104

Gauss-Seidel (GS), 7, 50, 97–100, 106–108
convergence of, 100, 102–104

314 INDEX

Gaussian elimination (GE), 7, 50, 54–58, 63, 67,
69–72, 74, 75, 86, 87, 97, 106, 112, 114,
115, 119, 179

accuracy of, 74
block, 71, 72, 106, 180
sparsity of, see GE/LU sparsity
stability of, 74. See also GE/LU stability
with partial pivoting, see GEPP

GE/LU sparsity, 109, 112, 115–119, 121, 122
GE/LU stability, 84, 85, 87, 89, 92, 94, 115
Gear formula(s), 225. See also Backward

differentiation formula(s) (BDF)
Gear-Shichman formula, 225
GEPP, 87, 94–97, 123, 124
Gmin stepping, 186, 189
Golden ratio, 144
Graph, 13, 26, 121

connected, 20, 25, 27, 30
strongly, 31

directed, 19–22, 24, 121
loopless, 20, 22
planar, 41
quotient, 122
undirected, 19, 20, 41, 121

Graph node, 20
Group 1, in MNA, 33, 35, 129–131, 166, 172
Group 2, in MNA, 33–35, 129–131, 166, 172
Group I, for an MTE, 166, 291
Group V , for an MTE, 166, 291
Growth factor, 85–87

Head, 20, 21
Homotopy, 181, 186–189
Hyperellipsoid, 90
Hyperplane(s), 91

IEEE arithmetic, 80, 84
IEEE double precision, 79
IEEE single precision, 79
IEEE standard 754–1985, 78
Ill-conditioned/ill-conditioning, 77, 78,

89–94
detecting, 95
fixing, 95

Impedance form, 30, 164
In-degree, 21
Independent source, 28
Indirect/iterative method(s), for solving linear

systems, 7, 50, 97
Inductance(s), 14, 203

mutual, 203, 293
nonlinear, 293
self, 203

Inductor(s), 14, 42, 43, 133, 201–203, 269–275,
277–279, 296

companion model of, see Companion models,
for dynamic elements

element stamp of, 43, 271, 274–276
internal, 291
linear, 14, 203, 272–275, 278, 279
nonlinear, 15, 128, 203, 275, 276, 280, 283,

291
Inductor current(s), 33, 274–277, 279, 280
Initial value problem(s) (IVP), 206–208,

210–217, 220
numerical method(s) for, 211, 213, 216–218,

220
accurate/accuracy of, 212, 213, 215
as a difference equation, see Difference

equation(s)
consistent/consistency of, 215–218, 220
convergent/convergence of, 215–218, 220
error(s) in, 213
explicit, 211
first characteristic polynomial of, 217, 219,

220, 223, 228
implicit, 211
stable/stability of, 215
zero-stable/zero-stability of, 218–220

numerical solution(s) of, 208, 216
perturbation(s) of, 208
perturbed, 208
perturbed solution(s) of, 208
totally stable, 208, 218, 219, 241, 242
well-posed[ness], 208, 218, 219, 241, 242

Internal node(s), 176–181
Interpolation error, 231, 233, 263
Interpolation method(s), for an LMS when

implementing a change of time-step, 262
Interpolation polynomial(s), 230–232, 234, 237,

262–264
error(s) in, see Interpolation error
Newton divided difference, 232, 236
Newton-Gregory backward, 232–234, 263

Irreducible matrix, see Matrix, irreducible
Iterative method(s), 134
Iterative refinement/improvement, 75, 88, 96, 97

mixed precision, 96, 97

Jacobian, see Matrix, Jacobian

Kirchoff’s current law (KCL), 3, 19, 22, 23, 25,
27, 30, 34, 35, 127, 129–131, 156, 201,
268, 286, 295

Kirchoff’s voltage law (KVL), 3, 19, 21–23, 25,
30, 34, 35, 127, 129, 156, 201, 268

KLU, 124, 125

INDEX 315

Left half-plane, 243, 249–251, 253, 256
L I -cutset(s), 45
Linear algebraic equations, 27, 28
Linear difference operator, see Linear multistep

(LMS) method, linear difference operator of
Linear dynamic equations, 42
Linear multistep (LMS) method(s)/formula(s),

210–215, 220–226, 228–231, 238, 243,
246–248, 253, 256, 260, 262, 264

A-stable/A-stability of, 253, 254, 256–258
absolutely stable/absolute stability of, 246,

247, 250, 251
region(s) of, 247–256

accurate/accuracy of, 215, 221, 223, 225, 227,
230, 231, 247, 250, 252, 259, 261

coefficients of, 228
consistent/consistency of, 223, 224, 228, 241.

See also Initial value problem (IVP),
numerical methods for, consistent

convergent/convergence of, 248–251. See also
Initial value problem (IVP), numerical
methods for, convergent

deriving the, 228
error constant of, 223, 229, 234, 237, 253, 254
error(s) in, 213
explicit, 212, 221, 226, 230, 233, 234, 250,

253, 256, 266, 269
first characteristic polynomial of, 246. See also

Initial value problem (IVP), numerical
methods for, first characteristic
polynomial of

global truncation error (GTE), 259–261
implicit[ness], 214, 215, 221, 224, 226,

228–230, 250, 256
linear difference operator of, 221, 222,

228, 234
local truncation error (LTE), 223, 225–227,

230, 234, 237, 238, 240, 259, 260,
263–265

order of, 221–231, 233, 234, 237, 240, 253,
260, 261, 265

principal local truncation error (PLTE), 226,
237–241, 261, 262, 264, 296, 297

residual of, 221–223, 225, 226, 234
second characteristic polynomial of, 223, 224,

228, 246
stability polynomial of, 246, 248–251, 257
stable/stability of, 215, 221, 230, 241–244,

247, 250, 252, 256
stiffly stable/stiff stability of, 253, 254, 256
zero-stable/zero-stability of, 223, 224

Linearly independent, 21, 22
LINPACK, 95
Lipschitz constant, 137, 138, 150

Lipschitz continuous/continuity, see Continuous,
Lipschitz

Local truncation error (LTE), 212–214, 217,
296–299. See also Linear multistep (LMS)
method, local truncation error (LTE)

Localizing assumption, 216, 217, 225, 234,
237–239

LU factorization, 7, 50, 57, 60, 61, 63, 64, 66,
67, 69–72, 74, 75, 87, 97, 106, 112–115

sparsity of, see GE/LU sparsity
stability of, see GE/LU stability
with partial pivoting, see GEPP

M-matrix, 32
Machine epsilon, 79
Mantissa, 78
Markowitz number(s), 116–118, 121, 122
Markowitz scheme/pivoting, see Pivoting,

Markowitz
MATLAB, 110, 124
Matrix/matrices, 50

admittance/conductance, 30–32
augmented, 71
auxiliary, 66, 69, 73, 113, 114
bordered block diagonal (BBD), 105
characteristic polynomial of, 101
dense, see Matrix, full
diagonal, 52, 60, 98
diagonally dominant, 31, 88, 119, 120

irreducibly, 31, 32
strictly, 31, 32, 73, 102

elementary, 57
full, 49, 67, 74, 110, 112–114
incidence, 20, 21, 24

reduced, 4, 21, 22, 27
inverse, 50, 92
irreducible, 31
Jacobian, 136–139, 151–154, 156, 159,

162–165, 169, 170, 173, 175, 182, 196,
226, 270, 273, 282, 284, 290, 298

lower triangular, 52, 60
strictly, 52, 98
unit, 53, 60, 61, 63

nearly singular/near singularity, 82, 92, 151
nilpotent, 101, 102
nonsingular, 32, 73, 101
of unit-type, 52, 53
orthogonal, 90
permutation, 53, 59–61, 92, 112, 113, 122

nonsingular, 53
positive definite, see Matrix, symmetric,

positive definite (SPD)
positive semi-definite, 73, 74
properties of, 50, 51

316 INDEX

Matrix/matrices (Continued)
reordering of, 58, 112–115, 117–120

symmetric, 119, 122, 124
scaling of, 95
singular, 102
sparse/sparsity of, 23, 27, 28, 30, 40, 41, 49,

50, 59, 62, 63, 67, 74, 87, 88, 96, 109,
110, 112–116, 118–121, 124

spectral radius of, 83, 101
spectrum of, 101
structure/pattern of, 110, 113, 116, 118, 120,

121, 123, 124
symmetric, 32, 73, 92, 101, 121

positive definite (SPD), 32, 73, 74, 119,
120, 122

structurally, 121
trace of, 82
transpose of, 51
triangular, 52, 53, 61

nonsingular, 53
strictly, 101

upper triangular, 52, 54, 57, 60, 68
strictly, 52, 98
unit, 52, 60, 61, 63

Matrix graph, 31
Matrix norm(s), see Norm(s), matrix
Matrix reordering(s), see Matrix, reordering of
Matrix-vector multiplication(s), 97
Milne’s estimate, 237, 238, 264
Minimal basic set, 17
Minimum degree (MD) algorithm, 121, 122, 124
Model evaluation routine(s), 181
Modified nodal analysis (MNA), 4–7, 23, 28–30,

32–36, 38, 41, 42, 102, 105, 120, 128–131,
133, 154, 158, 160–162, 166, 172, 177,
179, 180, 266, 268, 270, 271, 273, 274,
276, 277, 280, 282, 289–292, 295, 296, 299

assembling, 35, 163
dynamic, 42, 43, 133, 201–205
nonlinear, 129–131, 133, 154, 162, 166
sparsity, 40

MOSFET, 17, 172, 175, 176, 185, 202,
292–294, 296

affine approximation for, 175
charge-based model for, 293–295
companion model for, 176, 177, 294
element stamp for, 176

Multiple minimum degree (MMD) algorithm,
122

Multiterminal element(s) (MTE), 166, 167,
170–173, 176, 180, 201, 202, 291, 292, 295

Network(s), 13, 18, 24
connected, 13

dynamic, 18
resistive, 18

linear, 27, 49
Network constraints, 19
Network graph(s), 19, 109
Network topology, 23, 27
Newton direction, 153, 185, 186
Newton iteration(s), 157–164, 182, 183, 271,

276, 280, 297, 298
Newton loop, 274, 276, 280–282, 284, 290, 296,

299
Newton step(s), 152, 181, 183, 184
Newton’s method, 7, 118, 133, 134, 136–145,

147–154, 156, 157, 162, 181–183,
187–190, 214, 230, 237, 256, 265, 270,
273, 286

convergence of, 142, 149, 151, 152, 171, 181,
290

divergence of, 143, 144
oscillation of, 143
termination of, 151

Newton-chord method, 140, 145, 147, 153, 284,
298

Newton-Raphson method, 133. See also
Newton’s method

Nodal analysis (NA), 29–31, 33, 102, 105
Node(s), 13, 109
Node elimination, 177–180
Node tearing, 104, 105
Noise Analysis, 10
Non-equidistant data, 231, 235–237, 239, 240,

262, 264
Nonlinear equation(s), 127
Norm(s), 75, 80, 88

matrix, 75, 80–82
p-norm, 82, 83, 91, 92
Frobenius, 82
induced, 82, 83
max column sum, 82
max row sum, 82

vector, 75, 80, 81, 93, 100
l1/sum, 81
l2/Euclidean, 81
l p/p-norm, 81
l1/max, 81, 100

Norm equivalence, 100
Norm equivalence theorem, 100
Norton source, 164
Numerical integration, 207, 215. See also Initial

value problem (IVP), numerical methods for
Numerical methods, for differential equations,

see Differential equations, ordinary,
numerical methods for; Initial value
problems, numerical methods for

INDEX 317

Offset(s), 187, 188, 191–193, 196
Operations, 55
Ordinary differential equation (ODE), see

Differential equation, ordinary
Orthogonal, 24
Out-degree, 21

Parallel computer(s), 97, 105, 109, 110
Parasitics, 45
Partitioning, 104
Peano existence theorem, 207
Permutation(s), 53, 58, 87
Perturbation(s), in the input data of numerical

algorithms, 76, 77, 89
Picard-Lindelöf theorem, 207
Pivot(s), 58, 59, 63, 75, 86–88, 95, 115, 116,

118–120
diagonal, 119, 120, 122

Pivoting, 58, 59, 63, 75, 84–88, 91–94, 110,
112, 115, 116

diagonal, 115, 119, 120
full, 63, 87, 92
Markowitz, 115–118, 121, 125
partial, 63, 86–89, 92, 96, 97
row, 86
threshold, 88, 116, 118, 120

Pivoting for accuracy, 59, 85, 86, 88, 116
Pivoting for sparsity, 59, 88, 109, 112, 115, 116,

120
pn-junction(s), 133, 182, 185, 189
Pole-Zero Analysis, 10
Positive definite, see Matrix, symmetric, positive

definite (SPD)
Positive semi-definite, see Matrix, positive

semi-definite
Potential, 21
Precision, 78
Predictor, 230, 231, 233, 236, 237

polynomial, 233, 234
Predictor-corrector method(s)/pair(s)/theory, 230,

231, 237, 238
Primitive, 2
Principal local truncation error (PLTE), see

Linear multistep (LMS) method, principal
local truncation error (PLTE)

Pseudo-transient, 186, 189–196
construction for, 191
justification for, 193

Quasi-Newton method(s), 145, 152, 154, 181
in simulation, 181

Radius of curvature, 184, 185
Range, 79

Reduced tableau, 28, 29
Redundant, 22
Reference node, 20–22
Relaxation method(s), 97, 104
Remaining reduced sub-matrix, 115–117
Residual, in Newton’s method, 151, 164
Residual, of a linear system, 84, 88, 94, 96
Residual, of linear multistep (LMS) methods, see

Linear multistep (LMS) methods, residual of
Residual, of numerical methods for initial value

problems (IVP), 216, 217
Resistance, 13
Resistor(s), 13, 28, 29, 35, 36, 129

current-controlled, 13, 128
linear, 13
nonlinear, 13, 128
voltage-controlled, 13, 128

Richardson extrapolation, 238, 239, 259
Right half-plane, 251
Right-hand side (RHS) vector, 35, 57, 63, 68, 89,

95, 130, 164, 165, 187, 270, 273, 284, 289,
290, 292, 294, 295, 298

Root condition, the, 220
Root finding problem, 139, 149
Rounding, 79, 80
Roundoff/roundoff error(s), see Error(s), roundoff
Row and column exchange(s), 59, 63, 87, 112,

113, 115, 117
Row exchange(s), 58, 60, 61, 63, 86, 116, 120
Runge-Kutta method(s), 210, 256, 262

Secant method, 140, 144, 145, 153
Sensitive/sensitivity, 76, 77
Sensitivity Analysis, 10
Series resistance, 177
Short circuit, 133, 193, 274
Significand, 78
Significant digits, 81, 94, 96, 97, 135
Similarity-invariant, 92
Singular value(s), 90, 92, 93, 95
Singular value decomposition (SVD), 90, 95
SLIC, 183
Smoothing, of numerical solutions of differential

equations, 258, 259, 261
Source stepping, 186–189
Sparse tableau analysis (STA), 4, 5, 23, 28, 29
Sparse/sparsity, of matrices, see Matrix,

sparse/sparsity of
SPICE, 1, 2, 9, 117, 120, 125, 153, 183,

185–187, 196, 210, 215, 230, 240, 265
Stable algorithm(s), see Algorithm(s), stable
State variable representation, 204
Stepping strategy/strategies, 152, 182, 183

318 INDEX

Stiff system(s)/problem(s)/stiffness, 210, 211,
215, 230, 231, 252, 256

Storage by columns, 112
Subtraction, 80
Symmetric positive definite, see Matrix,

symmetric, positive definite (SPD)

Tail, 20, 21
Tangent, 7, 8, 140, 143, 151, 154
Tangent hyperplane, 148, 156, 170, 171
Taylor series, 78, 140, 148, 154, 156, 171,

211–214, 222, 223, 225, 227, 238, 266,
267, 269, 272, 277, 283, 288, 290

Tearing set, 104
Tearing set equation, 106
Tellegen’s theorem, 24
Test equation/system, for stability of LMS

methods, 242, 243, 245, 246, 256, 257
Thévenin source, 164
Thévenin’s theorem, 29
Thévenin-Norton transformation(s), 179
Time discretization, 8
Time-invariant, 18
Time-step(s), 190, 196, 210–213, 217, 225, 231,

234, 237, 238, 247–252, 256, 258, 259,
261–265, 270, 273, 282, 285, 286, 288,
290, 296–299

fixed, 210, 259–261, 273, 296
variable, 231, 256, 261, 296, 297

Time-step control, 247, 250, 262, 265, 296,
297, 299

Tolerance(s), see Error tolerance(s)
Topological constraints, 19, 23, 25, 27, 28
Topology, 19
Totally stable/total stability, see Initial value

problem (IVP), totally stable
Transient Analysis, 8–10, 127, 142, 181, 182,

190, 196, 201, 299
Trapezoidal rule (TR), 214, 215, 218, 220, 221,

224, 227, 230, 231, 233, 237, 239–241,
245, 253, 256, 257, 260–262, 264, 265,
267, 268, 277–279, 286, 290, 297

even powers expansion for, 261
extrapolation for, 261
ringing in, 257–259, 261, 265
smoothing for, 258, 259
stability of, 251–254, 256

Tree, 20
spanning, 26, 27

Triplet form, 110, 111

Uneven scaling, 93
Uniquely solvable, 30, 32, 44, 45

Unit circle, of the complex plane, 220, 246, 247,
249, 250, 256

Unit roundoff, 75, 79, 84, 94, 97

Valid current assignment, see Current
assignment, valid

Valid voltage assignment, see Voltage
assignment, valid

Variable step variable order (VSVO)
method(s), 265

Variable-coefficient method(s), for an LMS when
implementing a change of time-step, 262,
264, 265

Vector convergence, 100, 101, 134
order of, 134

cubic/q-cubic, 135
linear/q-linear, 136
quadratic/q-quadratic, 135–137, 140, 142,

147, 149, 150, 152, 153
rate of, 103, 134

linear/q-linear, 134–136, 142, 145, 147,
150, 153

sublinear/q-sublinear, 134, 135
superlinear/q-superlinear, 134

speed of, 103, 135
Vector norm(s), see Norm(s), vector
Vertex, 19

degree of, 109, 121
minimum, 121, 122

Vertex elimination, 121
Voltage assignment, 21, 24

valid, 24, 25
Voltage source(s), 29, 30, 32, 120

controlled (CVS), 15, 129, 130, 155,
164–166

current-controlled (CCVS), 16, 28, 33, 37
dynamic controlled (DCVS), 203, 204, 292
ideal, 29, 30
independent, 15, 37
voltage-controlled (VCVS), 16, 28, 37,

128
Voltage source currents, 33
Voltage source loop, 30, 31

Well-conditioned, 77, 90, 93, 94
Well-posed[ness], see Initial value problem

(IVP), well-posed

Y -1 transformation(s), 179

Zero-stable/zero-stability, see Initial value
problem (IVP), numerical methods for,
zero-stable

	CIRCUIT SIMULATION
	CONTENTS
	List of Figures
	List of Tables
	Preface
	1 Introduction
	1.1 Device Equations
	1.2 Equation Formulation
	1.3 Solution Techniques
	1.3.1 Nonlinear Circuits
	1.3.2 Dynamic Circuits

	1.4 Circuit Simulation Flow
	1.4.1 Analysis Modes

	Notes
	Problems

	2 Network Equations
	2.1 Elements and Networks
	2.1.1 Passive Elements
	2.1.2 Active Elements
	2.1.3 Equivalent Circuit Model
	2.1.4 Network Classification

	2.2 Topological Constraints
	2.2.1 Network Graphs

	2.3 Cycle Space and Bond Space
	2.3.1 Current Assignments
	2.3.2 Voltage Assignments
	2.3.3 Orthogonal Spaces
	2.3.4 Topological Constraints
	2.3.5 Fundamental Circulation
	2.3.6 Fundamental Potential Difference

	2.4 Formulation of Linear Algebraic Equations
	2.4.1 Sparse Tableau Analysis
	2.4.2 Nodal Analysis
	2.4.3 Unique Solvability
	2.4.4 Modified Nodal Analysis

	2.5 Formulation of Linear Dynamic Equations
	2.5.1 Dynamic Element Stamps
	2.5.2 Unique Solvability

	Notes
	Problems

	3 Solution of Linear Algebraic Circuit Equations
	3.1 Direct Methods
	3.1.1 Matrix Preliminaries
	3.1.2 Gaussian Elimination (GE)
	3.1.3 LU Factorization
	3.1.4 Block Gaussian Elimination
	3.1.5 Cholesky Decomposition

	3.2 Accuracy and Stability of GE
	3.2.1 Error
	3.2.2 Floating Point Numbers
	3.2.3 Norms
	3.2.4 Stability of GE and LU Factorization
	3.2.5 Pivoting for Accuracy
	3.2.6 Conditioning of Ax = b
	3.2.7 Iterative Refinement

	3.3 Indirect/Iterative Methods
	3.3.1 Gauss-Jacobi
	3.3.2 Gauss-Seidel
	3.3.3 Convergence

	3.4 Partitioning Techniques
	3.4.1 Node Tearing
	3.4.2 Direct Methods
	3.4.3 Indirect Methods

	3.5 Sparse Matrix Techniques
	3.5.1 Sparse Matrix Storage
	3.5.2 Sparse GE and LU Factorization
	3.5.3 Reordering and Sparsity
	3.5.4 Pivoting for Sparsity
	3.5.5 Markowitz Pivoting
	3.5.6 Diagonal Pivoting
	3.5.7 The Symmetric (SPD) Case
	3.5.8 Extension to the Non-SPD Case

	Notes
	Problems

	4 Solution of Nonlinear Algebraic Circuit Equations
	4.1 Nonlinear Network Equations
	4.1.1 Nonlinear Elements
	4.1.2 Nonlinear MNA Formulation
	4.1.3 Preparing for a DC Analysis

	4.2 Solution Techniques
	4.2.1 Iterative Methods and Convergence
	4.2.2 Introduction to Newton’s Method
	4.2.3 The One-Dimensional Case
	4.2.4 The Multidimensional Case
	4.2.5 Quasi-Newton Methods

	4.3 Application to Circuit Simulation
	4.3.1 Linearization and Companion Models
	4.3.2 Some Test Cases
	4.3.3 Generalization
	4.3.4 Considerations for Multiterminal Elements
	4.3.5 Multivariable Differentiation
	4.3.6 Linearization of Multiterminal Elements
	4.3.7 Elements with Internal Nodes

	4.4 Quasi-Newton Methods in Simulation
	4.4.1 Damping Methods
	4.4.2 Overview of More General Methods
	4.4.3 Source Stepping
	4.4.4 Gmin Stepping
	4.4.5 Pseudo-Transient
	4.4.6 Justification for Pseudo-Transient

	Notes
	Problems

	5 Solution of Differential Circuit Equations
	5.1 Differential Network Equations
	5.1.1 Dynamic Elements
	5.1.2 Dynamic MNA Equations
	5.1.3 DAEs and ODEs

	5.2 ODE Solution Techniques
	5.2.1 ODE Systems and Basic Theorems
	5.2.2 Overview of Solution Methods
	5.2.3 Three Basic Methods: FE, BE, and TR
	5.2.4 Quality Metrics
	5.2.5 Linear Multistep Methods

	5.3 Accuracy of LMS Methods
	5.3.1 Order
	5.3.2 Consistency
	5.3.3 The Backward Differentiation Formulas
	5.3.4 Local Truncation Error
	5.3.5 Deriving the LMS Methods
	5.3.6 Solving Implicit Methods
	5.3.7 Interpolation Polynomial
	5.3.8 Estimating the LTE

	5.4 Stability of LMS Methods
	5.4.1 Linear Stability Theory
	5.4.2 The Test Equation
	5.4.3 Absolute Stability
	5.4.4 Stiff Systems
	5.4.5 Stiff Stability
	5.4.6 Remarks

	5.5 Trapezoidal Ringing
	5.5.1 Smoothing
	5.5.2 Extrapolation

	5.6 Variable Time-Step Methods
	5.6.1 Implementing a Change of Time-Step
	5.6.2 Interpolation Methods
	5.6.3 Variable-Coefficient Methods
	5.6.4 Variable Step Variable Order (VSVO) Methods

	5.7 Application to Circuit Simulation
	5.7.1 From DAEs to Algebraic Equations
	5.7.2 FE Discretization
	5.7.3 BE Discretization
	5.7.4 TR Discretization
	5.7.5 Charge-Based and Flux-Based Models
	5.7.6 Multiterminal Elements
	5.7.7 Time-Step Control
	5.7.8 Enhancements
	5.7.9 Overall Flow

	Notes
	Problems

	Glossary
	Bibliography
	Index

