
 COMPANION eBOOK

US $29.99

Shelve in
Mobile Computing

User level:
Beginningwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Take the first step toward building your own apps with Android Apps for
Absolute Beginners and start building today. No previous experience? No

problem.

From start to finish, Android Apps for Absolute Beginners guides you through the
entire process of creating an app. You’ll discover how and where to get the Android
development environment, how to set it up, how to configure it, and how to use it
to create applications that employ many of the powerful features of Android.

This book gives you simple, step-by-step instructions and practical examples to
help get you started. You’ll learn how to:

• Get yourself and your computer set up for Android apps development
• Work more efficiently using the Eclipse programming environment
• Build useful apps and get them working immediately
• Style your application’s GUI so that it has maximum appeal to
 potential users
• Make use of Android’s built-in capabilities for smartphones,
 ebook readers, and tablets
• Create apps the easy way using XML markup and drag-and-drop
 graphical layout editors
• Create more advanced apps with just a basic knowledge of Java

and XML

If you have a great idea for an Android app but have never programmed before,
this book is for you. You don’t need to have any previous computer program-
ming skills—as long as you have a desire to learn, and you know which end of the
mouse is which, the world of Android apps development awaits! Android Apps

for Absolute Beginners
Wallace Jackson

Get started with building your
very own Android apps

Companion
eBook
Available

Jackson
Android Apps for Absolute Beginners

SOURCE CODE ONLINE

SECOND EDITION

SECOND
EDITION

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

http://www.it-ebooks.info/

Android Apps for
Absolute Beginners

Second Edition

Wallace Jackson

http://www.it-ebooks.info/

Android Apps for Absolute Beginners

Copyright © 2012 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4788-3

the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Douglas Pundick
Technical Reviewer: Chad Darby
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Kevin Shea
Copy Editor: Judy Ann Levine
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com.
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code
http://www.it-ebooks.info/

iii

Contents at a Glance

About the Author ���xiii

About the Technical Reviewer �� xv

Acknowledgments �� xvii

Introduction ��� xix

Chapter 1: Preliminary Information: Before We Get Started ■ ��1

Chapter 2: What’s Next? Our Road Ahead ■ ��13

Chapter 3: Setting Up Your Android Development Environment ■ ��������������������������������������21

Chapter 4: Introducing the Android Software Development Platform ■ �����������������������������53

Chapter 5: Android Framework Overview ■ ���99

Chapter 6: Screen Layout Design: Views and Layouts ■ ���125

Chapter 7: UI Design: Buttons, Menus, and Dialogs ■ ���163

Chapter 8: An Introduction to Graphics Resources in Android ■ ��������������������������������������209

Chapter 9: Adding Interactivity: Handling UI Events ■ ���235

Chapter 10: Understanding Content Providers ■ ��277

Chapter 11: Understanding Intents and Intent Filters ■ ���305

Chapter 12: Advanced Android Topics ■ ���351

Index ���369

http://www.it-ebooks.info/

http://www.it-ebooks.info/

v

Contents

About the Author ���xiii

About the Technical Reviewer �� xv

Acknowledgments �� xvii

Introduction ��� xix

Chapter 1: Preliminary Information: Before We Get Started ■ ��1

Some History: What Is Android? ��2

Advantage Android: How Can Android Benefit Me? ���3

The Scope of This Book ���4

What’s Covered �� 4

What’s Not Covered ��� 5

Preparing for Liftoff: SDK Tools to Download ���5

Java ��� 6

Eclipse ��� 9

Android SDK ��� 10

Summary ���11

Chapter 2: What’s Next? Our Road Ahead ■ ��13

Your Android Development IDE ��13

Java, XML, and How Android Works ��15

http://www.it-ebooks.info/

vi Contents

The Android Application Framework ���16

Screen Layout Design ���16

User Interface Design ��17

Graphics and Animation Design ��17

Interactivity ���18

Content Providers ��18

Intents and Intent Filters ���19

The Future of Android ��19

Summary ���20

Chapter 3: Setting Up Your Android Development Environment ��������������������������������������21

Installing Java, Eclipse, and Android ���21

Java 6 SE and JRE: Your Foundation for Application Development ��� 22

Eclipse Juno 4�2 for Java EE IDE: The Development Environment ��� 24

Android SDK: Android Software Development Kit for Eclipse �� 28

Android Development Tool: Android Tools for Eclipse �� 35

Configuring the Android Environment Inside of Eclipse ��� 41

Setting Up AVDs and Smartphone Connections ���46

AVDs: Smartphone Emulators �� 46

USB Smartphone Drivers: External Devices ��� 49

ADT Bundle and 64-bit IDE Support ��� 49

Installing GIMP 2�8 for Image Editing for Android Apps ��� 50

Summary ���51

Chapter 4: Introducing the Android Software Development Platform ■ �����������������������������53

Understanding Java SE and the Dalvik Virtual Machine ��54

The Directory Structure of an Android Project ���55

Common Default Resources Folders ��� 57

The Values Folder �� 58

Leveraging Android XML (Your Secret Weapon) ��59

Screen Sizes �� 60

Desktop Clocks �� 60

http://www.it-ebooks.info/

viiContents

Using Your Android Application Resources ��61

Bitmap Images ��� 61

Alternate Resource Folders ��� 62

Launching Your Application: The AndroidManifest�xml File ���63

Creating Your First Android Application ���64

Launching Eclipse �� 64

Creating an Android Project ��� 66

Inspecting and Editing the Android Application Files ��� 74

Setting a Variable Value in strings�xml �� 78

Running the App �� 80

Adding an Application Icon �� 85

Summary ���96

Chapter 5: Android Framework Overview ■ ���99

The Foundation of OOP: The Object ���100

Some OOP Terminology ��� 101

The Blueprint for an Object: The Class��� 102

Providing Structure for Your Classes: Inheritance ��� 107

Defining an Interface ��� 108

Bundling Classes in a Logical Way: The Package �� 109

An Overview of XML ��110

The Anatomy of an Android Application: The APK File ���112

Android Application Components ��115

Android Activities: Defining the UI ��� 116

Android Services: Processing in the Background �� 117

Broadcast Receivers: Announcements and Notifications �� 117

Content Providers: Data Management ��� 118

Android Intent Objects: Messaging for Components ���119

Android Manifest XML: Declaring Your Components ���119

Summary ���122

http://www.it-ebooks.info/

viii Contents

Chapter 6: Screen Layout Design: Views and Layouts ■ ���125

Android View Hierarchies ��125

Using the View Class ��� 126

Nesting Views: Using the ViewGroup Class�� 126

Defining Screen Layouts: Using XML ���127

Setting Up for Your Screen Layout ��� 128

Using Linear Layouts ��� 129

Editing the activity_main�xml File ��� 134

Using Relative Layouts �� 142

Sliding Drawer: Expanding Your UI �� 150

Using Padding and Margins with Views and Layouts �� 159

Setting Padding in Views ��� 160

Setting Margins in ViewGroups�� 160

Summary ���161

Chapter 7: UI Design: Buttons, Menus, and Dialogs ���163

Using Android UI Elements (Widgets) ��163

Adding an Image Button to Your Layout��� 164

Adding a TextView Widget to Your Layout �� 183

Adding an Image �� 185

Using Menus in Android ��188

Creating the Menu Structure with XML ��� 189

Defining Menu Item Strings ��� 191

Inflating the Menu Structure via Java �� 195

Running the Application in the Android Emulator �� 196

Making the Menu Work �� 198

Adding Dialogs ��202

Using Custom Dialog Subclasses �� 203

Displaying an Alert Dialog �� 203

Summary ���208

http://www.it-ebooks.info/

ixContents

Chapter 8: An Introduction to Graphics Resources in Android ■ ��������������������������������������209

Introducing the Drawables ��210

Implementing Images �� 211

Core Drawable Subclasses �� 211

Using Bitmap Images in Android ���212

PNG Images ��� 212

JPEG and GIF Images ��� 213

Creating Animation in Android ���214

Frame-Based or Cel-Based 2D Animation ��� 214

Tween Animation in Android �� 223

Using Transitions ���228

Summary ���233

Chapter 9: Adding Interactivity: Handling UI Events ■ ���235

An Overview of UI Events in Android ���235

Listening for and Handling Events ��� 235

Handling UI Events via the View Class ��� 236

Event Callback Methods �� 236

Handling onClick Events ��237

Implementing an onClick Listener for a UI Element��� 238

Adding an onClick Listener to an Activity in Android ��� 239

Android Touchscreen Events: onTouch ��248

Android’s Right-Click Equivalent: onLongClick ��249

Key Event Listeners: onKeyUp and onKeyDown ��252

Adding the Java for Keyboard Events �� 253

Context Menus in Android: onCreateContextMenu ��256

Adding the XML for Context Menus ��� 257

Adding the Java for Context Menus ��� 259

http://www.it-ebooks.info/

x Contents

Controlling the Focus in Android ���267

Adding the XML for Focus Control ��� 268

Adding the Java for Focus Control ��� 272

Setting Focus Availability ��� 276

Summary ���276

Chapter 10: Understanding Content Providers ■ ��277

An Overview of Android Content Providers��277

Databases and Database Management Systems �� 278

Android Built-In Content Providers �� 280

Defining a Content Provider ��283

Creating the Content Providers Example Project in Eclipse��� 284

Defining Security Permissions ��� 285

Adding Data to the Contacts Database �� 289

Working with a Database ��292

Querying a Content Provider: Accessing the Content �� 292

Appending to a Content Provider: Adding New Content ��� 298

Summary ���304

Chapter 11: Understanding Intents and Intent Filters ■ ���305

What Is an Intent? ���305

Android Intent Messaging via Intent Objects ���306

Intent Resolution: Implicit Intents and Explicit Intents ��309

Explicit Intents ��� 309

Implicit Intents ��� 310

Using Intents with Activities ��311

Writing a Digital Clock Alternate Activity ��� 316

Wiring Up the Application �� 319

Sending Intents �� 320

Android Services: Data Processing in Its Own Class ���324

Using Intents with Services ��� 324

Creating a Service ��� 329

http://www.it-ebooks.info/

xiContents

Implementing Our MediaPlayer Functions ��� 333

Wiring the Buttons to the Service �� 334

Running the Application ��� 336

Using Intents with Broadcast Receivers ��337

Creating the Timer User Interface via XML �� 338

Creating a Timer Broadcast Receiver �� 341

Configuring the AndroidManifest�xml file <receiver> Tag ��� 343

Implementing our Intent �� 344

Running the Timer Application via the Android 4�1 Emulator �� 349

Summary ���350

Chapter 12: Advanced Android Topics ■ ���351

Troubleshooting: Solving Problems on Your Own ��351

Widgets: Creating Your Own Widgets in Android ���353

Location-Based Services in Android ���354

Google Maps in Android ��354

Google Search in Android ��357

Data Storage in Android ��358

Shared Preferences ��� 358

Internal Memory �� 359

External Memory ��� 360

Using SQLite �� 360

Device Administration: Security for IT Deployments ���360

Using the Android Camera Class to Control a Camera ��361

3D Graphics: Using OpenGL ES 2�0 in Android ��361

FaceDetector ���362

SoundPool ���362

MediaRecorder ��363

http://www.it-ebooks.info/

xii Contents

VideoView: Playing Video in Your Android Apps ���364

Adding a VideoView Object �� 364

Adding the Java for Video �� 364

New Features in Android 4�2 ���365

Summary ���366

Index ���369

http://www.it-ebooks.info/

xiii

About the Author

Wallace Jackson is the CEO of Mind Taffy Design, a new media
content design and production company founded in 1991. Mind
Taffy specializes in leveraging free for commercial use open source
technologies to provide extremely compact data footprint, royalty-free,
digital new media advertising and branding campaigns for leading
international brands and manufacturers worldwide.

Wallace has been pushing the leading-edge of i3D and Rich Media
Application Design via viral digital content deliverables, using under
1MB of Total Data Footprint, for over two decades. He has worked for
leading international brands and manufacturers to create custom new
media digital campaigns for industry-leading companies, including
projects targeting brand marketing, PR, product demonstration, digital
signage, e-learning, AdverGaming, product marketing, 3D logo design,
and end-user training.

Wallace has produced cutting-edge new media projects in a number of digital media "verticals" or
content deliverable areas, including: interactive 3D [i3D], Rich Internet Applications (RIA) content
production, virtual world design, user interface (UI) design, user experience (UX) design, e-book
design, multimedia production, 3D modeling, sound design, MIDI synthesis, music composition,
image compositing, 3D animation, game programming, mobile application programming,
BrandGame creation, website design, CSS programming, data optimization, digital imaging, digital
painting, digital video editing, special effects, morphing, vector illustration, IPTV programming, iTV
application design, interactive product demos, and tradeshow multimedia.

http://www.it-ebooks.info/

xiv About the Author

Wallace has created new media digital campaigns for leading international branded manufacturers,
including Sony, Samsung, Tyco, Dell, Epson, IBM, Mitsubishi, Compaq, TEAC, KDS USA, CTX
International, ADI Systems, Nokia, Micron, ViewSonic, OptiQuest, SGI, Western Digital, Sun
Microsystems, ProView, Sceptre, KFC, ICM, EIZO, Nanao, Digital Equipment [DEC], TechMedia,
Pacific Digital, ArtMedia, Maxcall, Altrasonic, DynaScan, EZC, Smile, KFC, Krillogy, and Kinoton
GMBH.

Wallace holds an MSBA postgraduate degree in Marketing Strategy from the University of Southern
California (USC), an MBA degree in Management Information Systems Design and Implementation
from the USC Marshall School of Business, and a Bachelor's degree in Business Economics from
the University of California at Los Angeles (UCLA) Anderson School of Management. He is
currently the number 2 ranked All Time Top Expert on LinkedIn, out of more than 200,000,000

 and follow him on Twitter @wallacejackson as well.

www.WallaceJackson.com
http://www.it-ebooks.info/

xv

About the Technical
Reviewer

Chád Darby is an author, instructor, and speaker in the Java
development world. As a recognized authority on Java applications
and architectures, he has presented technical sessions at software
development conferences worldwide.

In his 15 years as a professional software architect, he has had the
opportunity to work for Blue Cross/Blue Shield, Merck, Boeing,
Northrop Grumman, and a handful of startup companies.

Chád is a contributing author to several Java books, including
Professional Java E-Commerce (Wrox Press), Beginning Java
Networking (Wrox Press), and XML and Web Services Unleashed
(Sams Publishing).

Chád has Java certifications from Sun Microsystems and IBM. He
holds a BS in Computer Science from Carnegie Mellon University.

You can read Chád's blog at www.luv2code.com and follow him on Twitter @darbyluvs2code.

www.luv2code.com
http://www.it-ebooks.info/

xvii

Acknowledgments

Steve Anglin, my lead editor, for his patience and thoughtful guidance in shaping this second edition
of Android Apps for Absolute Beginners. Steve, thanks for guiding me as a returning Apress author,
and I look forward to many future collaborations with you.

Chád Darby, my esteemed technical reviewer, for his hard work and insightful suggestions in shaping
this second edition of this best-selling book.

Douglas Pundick, my Development Editor, for all his hard work helping me to write the best
introductory Android book. I wouldn’t have been able do it at all if it were not for you!

Kevin Shea, my Coordinating Editor, for listening to all of my miscellaneous and sundry problems
during the writing of this book, and for helping to get them all sorted out.

Judy Ann Levine, my Copy Editor, for her excellent editing and book-polishing skills, and for all the
great suggestions for making this a fantastic Android book.

Plus to the many loved ones and clients who patiently awaited my return to i3D content production
from the “professional sidetracker” commonly known as writing an Android 4.1 programming book –
I thank you for your patience. . .

—Wallace Jackson

http://www.it-ebooks.info/

xix

Introduction

Over the last three years, Google’s Android operating system (OS) has gone from a virtually unknown
open source solution to the current mobile OS market leader among all mobile handsets, with over
one-half of the market share and still climbing. Android has even started to dominate the tablet OS
marketplace, and is also the foundation for the popular iTV OS known as GoogleTV as well as for
e-book e-readers from Sony, Amazon (Kindle), and Barnes and Noble (Nook). There seems to be no
end in sight for Android’s rocketing success, which is great news for the owners of this book.

I’ve heard a great many people say, “I have a really phenomenal idea for a smartphone and
tablet application! Can you program it for me!?” Rather than sit back and code all of these cool
applications for everyone, I thought it might be a smarter idea to write a book about how an absolute
beginner could code an Android application using open source tools that cost nothing to download
and that are free for commercial use, and then leverage that new found knowledge to reach their
dream of making their application idea a revenue-generating reality.

Thanks to open source tools and formats and Google’s Android development environment,
Oracle’s Java programming language, Linus Torvalds’ Linux operating system, the Eclipse code
editing software, and to this book of course, vaporizing a software product out of thin air and at no
production cost other than your PC and “sweat equity,” is now a complete reality.

The Target: The Programming Neophyte
As you may have inferred from the title, this book assumes that you have never programmed before
in any programming language. It is written for someone who has never written a single line of code,
and who is thus unfamiliar with object-oriented programming (OOP) languages such as Oracle’s Java
and markup languages such as XML. Both of these open source languages are used extensively in
creating Android applications and will be taught thoroughly in this book.

There are a lot of Java and Android books out there, but all of those books assume that you have
programmed before and know all the OOP and programming lingo. I wanted to write a book that
takes readers from knowing absolutely nothing about programming; not even knowing about how to
install a software development kit (SDK) or an integrated development environment (IDE), all of the
way from Ground Zero to being able to program useful Android applications using Java and XML
and new media assets such as images, audio, and animation.

http://www.it-ebooks.info/

xx Introduction

The Weapon: Android—An Innovative Internet 2�0
Coding Environment
Android is my Internet 2.0 development weapon of choice because it allows me to develop highly
advanced applications for the primary Internet 2.0 devices, including the primary four consumer
electronics product “verticals” where revenue potential is by far the greatest:

Smartphonesnn

Tabletsnn

e-book e-readersnn

iTVs or interactive television setsnn

download, and how to install, the various Android, Java, and Eclipse environments. We also show
how to configure these environments, and how to set them up for application development and
testing. We even show how and where to download the other leading-edge new media tools (GIMP,
for instance) that you will use in conjunction with the primary Android development tools.

We essentially show you exactly how to put together a complete and professional-level Android New
Media Content Production Workstation, and at zero cost to yourself to boot. This in itself is no easy
task, and must be done correctly, as these professional tools provide the foundation for all of our
Android development, debugging, and testing for the remainder of the book.

Next we provide you with an overview of where Android came from, why, how, and when Google
acquired it, and how it is uniquely structured among software development platforms. We introduce
XML, Java, OOP, and Android concepts soon after that, as well as covering how Android manages
its screen layout. We then move these concepts into use in later chapters in the second half of the
book; these chapters explain the most important concepts in Android, in their most logical order, as
they pertain to your applications development.

In that second half of the book, we start getting into developing a user interface (UI), as that is the
front-end or interface for your end-users to your Android application. Soon after that we cover
how your UI talks to your application via events processing. To spice up your application’s visual
appearance, we’ll get into graphics, animation, and audio, and then into even more advanced topics
after that, such as databases and communications.

http://www.it-ebooks.info/

xxiIntroduction

Finally, we will look at some of the advanced features of Android that you will want to visit
after finishing the book; these are topics that are too advanced for a first book on Android, but
which provide some of the coolest features to be found in smartphone, iTV, and tablet software
development today.

We’ll walk you through all of these topics and concepts with screenshots of the IDE and visual
examples, and then take you through step-by-step examples reinforcing these concepts.
Sometimes we may even repeat previous topics to reinforce what you have learned and apply
these programming skills in new and different ways. This enables new programmers to reapply key
development skills and feel a sense of accomplishment as they progress.

The Formula for Success
Learning to develop an Android application is an interactive process between you and the tools
and technologies (Eclipse, XML, Java, Android, GIMP, and so on) that I cover in this book. Just
like learning to play a sport, you have to develop these skills and practice them daily. You need to
work through the examples and exercises in this book, more than once if necessary, to become
comfortable with each concept and proficient in their execution.

Just because you understand a concept, that doesn’t necessarily mean you will know how to
apply it creatively and use it effectively. That takes practice and it ultimately will happen when the
“ah-ha” moment occurs, when you understand a concept in context with the other concepts that
interconnect with it.

You will learn quite a bit about how Android works from this introductory book. You will glean a lot
of insight into the inner working of Android by working through all of the exercises in this book. But
you will also learn new things not specifically mentioned in this book when you compile, run, and
debug your programs. Spending time experimenting with your code and trying to find out why it is
not working the way you want, or trying to add new features, is a learning process that is also very
valuable.

The downside of debugging is it can sometimes be quite frustrating to the new developer. If you
have never wanted to put a bullet in your computer display, you will soon. You will question why you
are doing this, and whether you are savvy enough to solve the problem. Programming can be very
humbling, even for the most experienced of applications developers.

As with an athlete, the more you practice, the better you will become at your skill. You can do some
truly amazing things as an Android programmer. The world is your oyster. It is one of the most
satisfying accomplishments you can have, seeing your app in the Google Play (Android App) Store.
However, there is a price, and that price is time spent practicing your coding.

Here is our formula for success:

Trust that you can pull it off. You may be the only one who says you can’t do nn
this. Don’t tell yourself that.

Work through all the examples and exercises in this book, twice if necessary, nn
until you understand them.

Code, code some more, and keep coding—don't stop. The more you code, the nn
better you’ll get.

http://www.it-ebooks.info/

xxii Introduction

Do further research via Google Search as well as the Developer.Android.com nn
website into areas of the Android OS that interest you, and that you want to
master.

Be patient with yourself. If you were fortunate enough to have been a star nn
pupil who could memorize material simply by reading it, this will probably not
happen with Java and XML coding. You are going to have to spend a lot of time
coding to come to understand what exactly is happening inside the Android OS
Environment.

Whatever you do: DON’T GIVE UP!nn

Windowsnn

Macintoshnn

Linuxnn

www.PriceWatch.com or you can walk into

Windows 7 or 8. There are also open source OSes such as SUSE Linux, which is free and an
amazing development operating system. SUSE Linux V12 can be downloaded at www.OpenSUSE.com
and is currently at version 12.2 and is very stable.

Operating System and IDE
Although you can use Android on many platforms, the Eclipse integrated development environment
(IDE) that developers use to develop Android apps is most commonly used on an Intel-based
Windows or Linux PC. The Eclipse Juno 4.2 for Java EE IDE is free, and is available on the Internet
at www.eclipse.org. The operating system should be Windows XP SP3 or later, or SUSE Linux 12.2
or later, to run Eclipse most effectively. Note that as of Android 4.2 API Level 17, developers can now
develop using a 64-bit “clean” Android IDE environment, so the Windows 7 64-bit or Windows 8
64-bit OSs may be the best way to go if you want to develop using a 64-bit platform.

Software Development Kits
You will need to download the Eclipse Juno 4.2 for Java EE IDE from Eclipse.org and the Android 4.1
or later SDK from Google. This is available at http://developer.android.com/SDK/. This is another area
that changed significantly with the release of Android 4.2, as there is now an ADT Bundle that can be
downloaded for either 32-bit or 64-bit OSs which makes installation much easier than it used to be. We
cover this in Chapter 3, and do the install in both ways, so that you can see the long-form installation
(and see how everything goes together in the process) as well as the streamlined installation that

www.PriceWatch.com
www.OpenSUSE.com
www.eclipse.org
http://developer.android.com/SDK/
http://www.it-ebooks.info/

xxiiiIntroduction

emerged along with the Android 4.2 Level 17 API in the end of 2012. Also note that wherever we
reference Android 4.1 or Android 4.1.2 you can now substitute Android 4.2, as we have updated
several chapters with the new 4.2 features. Whew! Caught that one just in time!

Dual Displays
It is highly recommended that developers have a second display connected to their computer. It is
great to step through your code and watch your output window and Android emulator at the same
time on dual, independent displays. Today’s PC hardware makes this easy. Just plug your second
display in to the second display port of any Intel-based PC or laptop, with the correct display port
adapter, of course, and you’re able to have two displays working independently from one another.
Note it is not required to have dual displays. You will just have to organize your open windows to fit
on your screen if you don’t. I am using a Philips 32" HDTV 1920 by 1080 LCD display to code on, so
that my code is very readable. With 40" HDTV displays at $250 at WalMart, having a big widescreen
or two to use for your Android application development workstation is a great idea!

http://www.it-ebooks.info/

http://www.it-ebooks.info/

1

Chapter 1
Preliminary Information:
Before We Get Started

This chapter introduces the Android operating system, giving you a little background information to
help put things into perspective. We’ll visit just how expansive this platform has become in today’s
Internet 2.0 environment of portable consumer electronic devices. Internet 2.0 here refers to the
consumption of the Internet over a wide variety of different types of data networks using highly
portable consumer electronic devices, including smartphones, tablets, e-book readers, and even
new emerging consumer electronic products such as interactive television (iTV).

As this is an introductory book on the subject not all of the advanced new media-related areas, such
as 3D and video streaming, will be covered. Some specifics of what the book will and will not cover
are outlined in this chapter.

At the end of the chapter, you’ll learn which tools you will need to obtain to develop for the Google
Android platform, with instructions on how to download them.

Those of you who already recognize the significance of the Android revolution and know which tools
are needed to develop Android applications development may want to skip this chapter. However,
there may be some tidbits in here that could spawn development ideas—so skip over it at your
own risk!

Just a bit of fair warning: developing reliable applications for Android is not in any way a trivial task.
It takes a fair amount of knowledge of both high-level programming languages such as Java and
markup languages such as XML. Building useful and engaging new media applications also requires
a deep knowledge of related new media technologies such as 2D imaging, 3D rendering, audio
processing, video streaming, GPS localization, and database design.

Don’t expect to learn all of this at one sitting. Becoming a top-notch Android programmer will take
years of dedication and practice as well as diligent research and trial and error. In this book, you
will gain the foundation that you need to build future expertise as well as learn the work process for
eventually building your own Android masterpiece.

http://www.it-ebooks.info/

2 CHAPTER 1: Preliminary Information: Before We Get Started

Some History: What Is Android?
Android was originally created by Andy Rubin as an operating system for mobile phones, around
the dawn of this twenty-first century. In 2005, Google acquired Android Inc., and made Andy
Rubin the Director of Mobile Platforms for Google. Many think the acquisition was largely in
response to the emergence of the Apple iPhone around that time; however, there were enough other
large players, such as RIM Blackberry, Nokia Symbian, and Microsoft Windows Mobile, that it seemed
a salient business decision for Google to purchase the talent and intellectual property necessary to
assert the company into this emerging space, which has become known as Internet 2.0.

Internet 2.0 allows users of consumer electronics to access content via widely varied data networks
through highly portable consumer electronic devices, such as smartphones, touchscreen tablets,

http://developer.android.com/about/dashboards/index.html

VERSION CODENAME API LEVEL MARKET SHARE

1.5 Cupcake 3 0.2 %

1.6 Donut 4 0.4 %

2.1 Eclair 7 3.7 %

2.2 Froyo 8 14 %

2.3.2 Gingerbread 9 0.3 %

2.3.7 Gingerbread 10 57.2 %

3.1 Honeycomb 12 0.5 %

3.2 Honeycomb 13 1.6 %

4.0.2 Ice Cream Sandwich 14 0.1 %

4.0.4 Ice Cream Sandwich 15 20.8 %

4.1 Jelly Bean 16 1.2 %

An embedded operating system is like having an entire computer on a chip small enough to fit into
handheld consumer electronics, but powerful enough to run applications (commonly known as
apps). Like today’s computers, Internet 2.0 devices such as smartphones, tablets, e-readers, and
iTVs now feature dual-core and even quad-core computer processing power as well as one or two
gigabytes of system memory.

Android has the power of a full-blown computer operating system. It is based on the Linux open
source platform and Oracle’s (formerly Sun Microsystems’s) Java, one of the world’s most popular
programming languages.

http://developer.android.com/about/dashboards/index.html
http://www.it-ebooks.info/

3CHAPTER 1: Preliminary Information: Before We Get Started

Note The term open source refers to software that has often been developed collaboratively by an
open community of individuals, is freely available for commercial use, and comes with all of its source
code so that it can be further modified if necessary. Android is open source, though Google develops it
internally before releasing the source code; from that point on, it is freely available for commercial use.

It is not uncommon for an Android product to have a 2GHz processor and 2GB of fast, computer-
grade DDR2 memory. This rivals desktop computers of just a few years ago and netbooks that
are still currently available. You will see a further convergence of handheld operating systems and
desktop operating systems as time goes on. Some examples are the new Windows 8 operating
system and Linux platform.

Once it became evident that Android and open source were forces to be reckoned with, nearly 100
major companies—including HTC, Samsung, LG Electronics, and T-Mobile—formed and joined the
Open Handset Alliance (OHA). This was done to put some momentum behind Google’s open source
Android platform, and it worked. Today, more brand manufacturers use Android as an operating
system on their consumer electronic devices than any other operating system.

The development of the OHA is a major benefit to Android developers. Android allows developers
to create their applications in a single environment, and the support by the OHA allows developers
to deliver their content across dozens of major branded manufacturer’s products, as well as across
several different types of consumer electronic devices: smartphones, iTV sets, e-book e-readers,
home media centers, set-top boxes, and touchscreen tablets. Exciting possibilities—to say the least.

So, Android is a seasoned operating system that has become one of the biggest players in
computing today, and with Google behind it. Android uses freely available open source technologies
such as Linux and Java, and standards such as XML, to provide a content and application delivery
platform to developers as well as the world’s largest consumer electronics manufacturers. Can you
spell O-P-P-O-R-T-U-N-I-T-Y? I sure can … it’s spelled ANDROID.

Advantage Android: How Can Android Benefit Me?
There are simply too many benefits of the Android platform to ignore Android development.

First of all, Android is based on open source technology, which was at its inception not as refined
as paid technologies from Apple and Microsoft. However, over the past two decades, open
source software technology has become equally as sophisticated as conventional development
technologies. This is evident in Internet 2.0, as the majority of the consumer electronics
manufacturers have chosen Linux and Java over the Windows and Macintosh operating systems.
Therefore, Android developers can develop not only for smartphones, but also for new and emerging
consumer electronic devices such as tablets and iTVs that are network compatible and thus
available to connect to the Android Marketplace, recently rebranded by Google as Google Play. This
translates into more sales onto more devices in more areas of the customer’s life, and thus more
incentive to develop for Android over closed technologies such as Windows and iOS and over less
popular and less prolific PC operating systems.

http://www.it-ebooks.info/

4 CHAPTER 1: Preliminary Information: Before We Get Started

In addition to being free for commercial use, Android has one of the largest, wealthiest, and most
innovative companies in modern-day computing behind it: Google. Add in the OHA, and you have
more than a trillion dollars of megabrand companies behind you supporting your development
efforts. It seems too good to be true, but it’s a fact, if you are an Android developer (which you are
about to be, in about a dozen chapters) then you’ve got a great support team behind you!

Finally, and most important, it’s much easier to get your Android applications published than those
for other platforms that are similar to Android (I won’t mention any names here to protect the not
so innocent). We’ve all heard the horror stories regarding major development companies waiting
months, and sometimes years, for their apps to be approved for the app marketplace. These
problems are nearly nonexistent on the open source Android platform. Publishing your app on the
Google Play Android marketplace is as easy as paying $25, uploading your .apk file, and specifying
free or paid download.

The open source tools required to develop for this platform.	

Where to get these free tools.	

How to properly install and configure the necessary tools for application development.	

Which third-party tools are useful to use in conjunction with the Android development 	
tools.

Which operating systems and platforms currently support development for the 	
Android using these tools.

The concepts and programming constructs for Java and XML, and their 	
practical applications in creating Android applications.

How Android goes about setting up an Android application.	

How it defines the user interfaces.	

How it writes to the display screen.	

How it communicates with other Android applications.	

How it interfaces with data, resources, networks, and the Internet.	

How it alerts users to events that are taking place inside and outside the application.	

www.it-ebooks.info

http://www.it-ebooks.info/

5CHAPTER 1: Preliminary Information: Before We Get Started

How Android applications are published.	

How Android applications are ultimately sold, downloaded, and updated 	
automatically through the Google Play Android marketplace.

You should realize that Android has more than 44 Java packages that contain over 7,000 pieces of
programming code functionality to allow you to do just about anything imaginable—from putting a
button on the screen to synthesizing speech and accessing advanced smartphone features like the
high-resolution camera, GPS, and accelerometer.

Note A package in Java is a collection of programming utilities that all have related and
interconnected functionality. For example, the java.io package contains utilities to deal with input and
output to your program, such as reading the contents of a file or saving data to a file. Later chapters
describe how to organize your own code into packages.

What does this mean? It means that even the most advanced Android books cannot cover the
plethora of things that the Android platform can do. In fact, most books specialize in a specific
area in the Android APIs. There is plenty of complexity in each API, which ultimately, from the
developer’s viewpoint, translates into incredible creative power. “What’s the price?” you might ask.
Your time spent in mastering each API is the only price you will pay, as Android is otherwise free for
commercial use.

What’s Not Covered
So, what isn’t covered in this book? What cool, powerful capabilities do you have to look forward to
in that next level book on Android programming?

On the hardware side, we will not be looking at how to control the camera, access GPS data from
the smartphone, and access the accelerometer and gyroscope that allow the user to turn the phone
around and have the application react to phone positioning. We will not be delving into advanced
touchscreen concepts such as gestures, or accessing other hardware such as the microphone,
Bluetooth, and wireless connections.

On the software side, we will not be diving into creating your own Android SQLite database
structure, or its new media codecs for digital video and digital audio, and its real-time 3D rendering
system (called OpenGL ES 2.0). We will not be exploring speech synthesis and recognition, or the
universal language support that allows developers to create applications that display characters
correctly in dozens of international languages and foreign character sets. We will not be getting into
advanced programming such as game development, artificial intelligence, and physics simulations.
All of these topics are better suited to books that focus on these complex and detailed topical areas.

Preparing for Liftoff: SDK Tools to Download
In Chapter 3, you’ll learn how to set up a complete Android development environment. We focus
on Windows 7 because that’s what the vast majority of developers use to develop for Android, but
the process on Mac and Linux systems is similar, and I’ll make sure you can follow along if you

www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1: Preliminary Information: Before We Get Started

prefer either of those systems. Also, because the Android r20.0.3 SDK, known as the Android Jelly
Bean 4.1 environment, uses a 32-bit programming environment, we will be using the latest Java 6
update 37 in its 32-bit version, and the Eclipse 4.2.1 Juno for Java EE 32-bit integrated development
environment (IDE) software, both of which work perfectly on 32-bit Windows OSs (such as XP, Vista,
and Win7) as well as on the 64-bit Windows 7 and Windows 8 OSs.

Here, we’ll look at where to go to download the tools you’ll need, so that you are ready for action
when the time comes to install and configure them. This is because each of these development tools
is hundreds of megabytes in file size, and depending on your connection speed, may take anywhere
from ten minutes to ten hours to download.

There are three major components of an Android development environment:

Java	

Eclipse	

Android	

Android 4.1 does not yet support the use of Java 7.

To download Java 6 SE, simply go to the Java SE Downloads section of Oracle’s web site, which is
in the Technology Network section under the Java directory, at this URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Figure 1-1 shows the Java SE Downloads site. Be sure and download Java 6 and not Java 7.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.it-ebooks.info/

7CHAPTER 1: Preliminary Information: Before We Get Started

Click the Download Java 6 JDK button to start downloading the Java 6 SE Java Development
Kit (JDK). This will take you to a second page shown in Figure 1-2 where you need to Accept the
License Agreement by selecting the shown radio button option and then download the Windows
32-bit version of the Java 6 software also highlighted in the screenshot below by clicking on the link
shown in red.

Figure 1-1. Download the Java SE 6 JDK

www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1: Preliminary Information: Before We Get Started

Note Make sure not to download Java 7 Platform, Enterprise Edition (Java EE), JavaFX 2.2, or Java
with NetBeans. These are the buttons on the top of the first download page. Scroll down to the bottom
and find Java 6 (shown in Figure 1-1).

Figure 1-2. Accept License Agreement and Download Windows x86 version of Java 6

www.it-ebooks.info

http://www.it-ebooks.info/

9CHAPTER 1: Preliminary Information: Before We Get Started

Figure 1-3. Choose to download the Eclipse 4.2.1 Juno for Java EE IDE for Java Developers

Eclipse
Eclipse is an integrated development environment (IDE), which is a piece of software dedicated
to allowing you to easily write programming code and run and test that code in an integrated
environment. In other words, you write all your code into its text editor, before running and testing
that code using commands in Eclipse, without ever needing to switch to another program.

Currently, Android requires the Eclipse IDE, and I recommend the Eclipse Juno Version 4.2 for Java
EE. You should download a version of Eclipse that supports Java—such as the Eclipse Juno 4.2 IDE
for Java EE shown in Figure 1-3. Go to the Eclipse website Downloads section at this URL:

http://www.eclipse.org/downloads/

Figure 1-3 shows the Eclipse Juno 4.2 for Java EE software package that you should download.

Click the Windows 32-bit version link in the right-hand column, and your download begins.

www.it-ebooks.info

http://www.eclipse.org/downloads/
http://www.it-ebooks.info/

10 CHAPTER 1: Preliminary Information: Before We Get Started

Android SDK
The Android software development kit (SDK) is a collection of files and utilities that work hand-in-
hand with the Eclipse IDE to create an Android-specific development tool.

To download the latest Android 4.1 SDK, go to the Android developers’ web site, located at this URL:

http://developer.android.com/sdk/index.html

Figure 1-4 shows the Android download page. Click on the Big Blue Button to download the latest
SDK for the Windows platform.

Figure 1-4. Download the Android SDK

Note We will walk through installing the other minor packages (shown on the left side of Figure 1-4) using
Eclipse in Chapter 3. For now, you don’t need to worry about anything except downloading the main SDK.

Once the Eclipse and Android SDKs are installed and configured, you can further enhance them by
installing phone emulators and other add-ins, which are covered in Chapter 3. In that chapter, we will
go through the detailed setup of the Eclipse Juno 4.2.1 for Java EE IDE for Android 4.1 development.

www.it-ebooks.info

http://developer.android.com/sdk/index.html
http://www.it-ebooks.info/

11CHAPTER 1: Preliminary Information: Before We Get Started

Summary
Andy Rubin’s creation called Android was purchased by Google in 2005 and made freely available
to developers to create mobile device applications using Java and XML. Since then, the Android
phenomenon has grown to encompass an open industry alliance of the leading manufacturers and
has become the fastest growing mobile platform today. It is the horse to bet on for the future of not
only mobile devices, but also other types of consumer electronic devices, including tablets, e-Book
e-Readers, and iTVs.

What you will learn about in this book spans from the how and where to get the Android
development environment to how to set it up properly, how to configure it optimally, and how to use
it to create applications that employ many of the powerful features of Android.

The three basic components you’ll need for Android development are Java 6, Eclipse 4.2.1, and
of course, Android. You can download these various components for free, as described in this
chapter. Once the Android r20.0.3 SDK (Android 4.1.2 AKA Jelly Bean) is installed in Eclipse, that IDE
becomes a comprehensive Android application development environment.

The next chapter provides an overview of what you will learn in this book, and then we’ll get started
with setup in Chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

13

Chapter 2
What’s Next? Our Road Ahead

Before getting into the details of Android applications development, we’ll take a look at our “road
ahead.” This chapter provides an overview of what is covered in this book, and why it’s covered in
the order that we will cover it in.

You will see the logical progression throughout the book of how each chapter builds on the previous
ones. We’ll move from setting up the Eclipse IDE in Chapter 3, to learning how Android works in
Chapters 4 and 5, to adding exciting visuals and user interfaces (UIs) in Chapters 6 through 8,
to adding interactivity and complexity in Chapters 9 through 11. The final chapter inspires you to
keep learning about the more advanced features of the Android platform, as it continues to expand
to encompass applications development for emerging consumer electronics platforms such as
interactive television sets (iTVs), tablets, and e-book readers.

Your Android Development IDE
In Chapter 1, you downloaded the Java SE, Eclipse, and Android SDK packages you need to build
an applications development environment for creating Android applications. In Chapter 3, you’ll learn
how to set up these tools as a cohesive Android development environment, and then you’ll use this
development environment throughout the rest of the book to create applications, or “apps.” You’ll do
this by creating, step-by-step, from scratch, the very latest Android IDE out there—right on your very
own development workstation.

Note that the latter part of this process must be done while online, so be sure to have your Internet
connection active and firing on all cylinders. We’ll be connecting in real time, via Google’s Android
developers website, to the latest Android application development tools, plug-ins, drivers, and
documentation. We’ll even set you up with some other related new media tools such as the new
GIMP 2.8.2 Digital Imaging software.

Although it might seem to you that the setup of Java SE, Eclipse IDE, Android’s SDK, and an Android
Virtual Device (an emulator that mimics the behavior of a real Android smartphone or tablet) is a
topic too trivial for an entire chapter, this task is actually one of the most critical in this book. If your
Android IDE does not work 100% perfectly, your code will not work 100% perfectly. In fact, without a
robust and properly configured IDE, you may not be able to develop any code at all!

www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 2: What’s Next? Our Road Ahead

The Eclipse IDE is a sophisticated programming environment that features code highlighting, device
emulation, logic tracing, debugging, and a plethora of other advanced features. Figure 2-1 shows an
example of working in Eclipse, and Figure 2-2 shows an Android Virtual Device in action.

Note An Android Virtual Device is a software-based emulator that mimics the behavior of a real
Android smartphone or tablet, as shown in Figure 2-2.

 The Eclipse IDE

www.it-ebooks.info

http://www.it-ebooks.info/

15CHAPTER 2: What’s Next? Our Road Ahead

In Chapter 3, you will learn how to customize the Eclipse Juno 4.2.1 for Java EE IDE with Android
plug-ins, which will morph the Eclipse IDE tool into one that is tailored to the particular needs of an
Android developer like yourself. As you will see, setting up the Eclipse Juno 4.2.1 for Java EE IDE for
your specific Android development goals is not a trivial undertaking by any means.

Java, XML, and How Android Works
As you’ll learn in Chapter 4, an Android application is “stratified.” Its functionality is spelled out via
Java code, its design via XML markup, and its privileges via the Android Manifest XML file in a way
that is truly unique, modular, and powerful. This modularity adds a great deal of extensibility, or
development flexibility, to applications.

Android makes heavy use of an XML-based markup language to define the basic component
design of an application, especially its visual and user interface components. XML “markup” is not
technically code, but rather consists of tags, similar to the HTML tags that web developers use to
format their online documents. XML is used in Android to define everything from UIs to animation
to data access, and even programmatic constructs such as Java object definitions and parameter
configurations.

Figure 2-2. An Android 4.1 Virtual Device (AVD) in action

www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 2: What’s Next? Our Road Ahead

XML markup tags are easier for beginners to comprehend than a complex programming language
like Java. For this reason, you’ll use XML throughout this book whenever possible, as Google
recommends. Here, you’ll get a basic beginning knowledge of Android application development, yet
this will still give you the ability to make your apps look very elegant and professional. I call it getting
the maximum return on your investment, and XML makes this possible for the absolute beginner,
and thus we will leverage it wherever and whenever possible within this book.

The Android Application Framework
By the time you reach Chapter 5, you’ll have built a rock-solid integrated Android application
software development environment. You also will have acquired a basic understanding of the

.apk file type (APK stands for Android
Kage), and how the various Android application components “talk” to each other inside your

activities, which define the user experience on the
screen, and explains how they operate. You’ll learn about Android services as well, which run in the
background, separate from the application’s activities, and provide the user with advanced functions
through the UI.

You’ll also take an initial look at broadcast receivers, which alert an Android application to events
of interest, such as the activation of a camera on an Android device, or an incoming phone call. In
fact, your app can even send out its own broadcasts, if there is some reason to let other applications
know of a change in state in one of your application’s data constructs.

The chapter finishes up with a look at content providers, which are often databases filled with
information, such as a contact list, that applications may want to access to provide functionality of
their own. Android ships with a number of preconfigured content providers, and you can also write
your own.

Screen Layout Design
By Chapter 6, you will have a better idea of how the Android operating system works internally,
and how it wants to see applications put together. You’ll be ready to design visual graphics, user
interfaces (UI), and ultimately user experiences for your Android applications.

You’ll do all of this using screen constructs called views and view groups (grouped views) which are
flexible layout containers, which can be nested inside each other to create any custom UI for your
application needs.

www.it-ebooks.info

http://www.it-ebooks.info/

17CHAPTER 2: What’s Next? Our Road Ahead

Chapter 6 explains how the display screen—the way most users interact with an Android
application—is handled in Android, using a mixture of Java code and XML markup that controls
the hierarchy of View and ViewGroup objects and Layout containers. You can also “extend” these
Java classes by adding your own custom code to create your own custom View objects and
Layout containers, when you need a more complex design. These ViewGroup layout containers
ultimately hold the other visual and UI content in your application in its proper place, and thus are
the foundation of your application design. You’ll want to learn these screen view and layout concepts
thoroughly, as they are core concepts to implementing everything else that Android can do. After all,
without a proper user interface, your software functionality cannot be accessed by your end-users in
the first place!

You’ll revisit XML yet again in Chapter 6, and learn how it allows you to define complex screen
layouts and UI designs without writing a single line of Java code. You’ll learn about the different
types of layout containers, and how each can be useful in different UI design scenarios, and even
code a really cool application that is written almost completely with XML (eXtensible markup
language).

User Interface Design
In Chapter 7, we’ll start building usable UI designs, using the XML foundation of the previous
chapters, via your screen layout and view controls, and Eclipse’s powerful Graphical Layout Editor.

We’ll cover the primary or mainstream screen resolutions for you to design UIs for Android, and
which options you have for providing extra-high-, high-, medium-, and low-resolution graphics that
allow Android to fit your application to each common device screen size and device type, such as
smartphone, tablet, e-reader, or iTV. We’ll also cover the creation of standardized Android icons for
use in your UI designs for each of these primary four screen densities.

Android has a large number of UI elements, such as buttons, text fields, radio buttons, check boxes,
menus, alert dialogs, and all of those familiar controls that allow users to interface with application
software functions. These items can be implemented both in Java as well as in XML.

In Chapter 7, we’ll again design and code another usable Android application. We’ll design views,
layouts, and UI elements as well as attaching their XML design elements to Java code that performs
some simple functions when the UI elements are used by the application’s users.

We’ll look at the differences between option menus and context-sensitive menus as well as
submenus for both of these types of menu constructs. We’ll also review different types of dialog
boxes such as alert dialogs, progress dialogs, and dialogs for picking dates and times.

Graphics and Animation Design
In Chapter 8, we’ll start adding application new media elements through images and animation.
These new media elements are key to making your application look great across all Android devices.

The Android smartphone Active-Matrix Organic Light-Emitting Diode (AMOLED) half-size video
graphics array (HVGA) and the wide video graphics array (WVGA) screens on current Android tablet
and e-reader products are impressive enough these days to allow some amazing experiences to be
created, so this is where it starts to get interesting, as far as the application visuals are concerned.

www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 2: What’s Next? Our Road Ahead

In Chapter 8, we’ll explore the following

How to use bitmap images in Android applications.	

How to animate bitmaps and vectors to create some pretty realistic effects.	

The different screen sizes and how to create icons and graphics that scale 	
between widely varying screen resolutions.

The concept of an alpha channel that allows transparency, which allows image 	
compositing to be accomplished in Android.

Basic color theory and imaging concepts, and how to optimize image quality 	
with the smallest data footprint.

How Android allows you to control images directly.	

How to cross-fade two images to create powerful image transition effects.	

events. We’ll look at the most

	Event listeners that execute the proper code in response to an event that is
triggered when a UI element is used by the user (e.g., you can run some code
when a user touches a UI element, or presses a key on the keyboard).

Default event handlers that allow you to build event handling right into your 	
UI elements.

Touch mode and navigation via the directional keys and the trackball and the 	
differences between these, mainly having to do with a concept called focus.

How focus movement is handled in Android.	

How the operation of focus in Android can be controlled via Java code.	

How focus preferences can be set in your XML files.	

Content Providers
In Chapter 10, we’ll be ready to get into the complexity of accessing data structures and Android
content providers. These content providers allow you to access databases of system information
that are available through the Android operating system as well as your own databases of
information.

Content providers are the primary method Android provides for sharing stored data across
applications, which is why they are important enough to merit their own chapter. We’ll take a close

www.it-ebooks.info

http://www.it-ebooks.info/

19CHAPTER 2: What’s Next? Our Road Ahead

look at the features of Android that allow you to query data regarding items common to the Android
platform such as images, video, audio, and contacts.

In addition, you can create your own content providers or add data to an existing one. You’ll see how
to create a content resolver so that you can interface with whichever content providers you choose
(and for which you have permissions to access).

You’ll learn about how content providers expose their data via data models similar to SQL
databases, and about how to use cursors to traverse the Android SQLite databases in various ways.

Finally, we’ll investigate URI objects, and how to use them to identify and access data sets. Each set
of data in the database will have its own uniform resource identifier (URI), which is similar to an
HTTP URL.

Intents and Intent Filters
In Chapter 11, we are going to tackle one of the more complex concepts in the Android development
environment: intents. Intents are asynchronous messages (members of the Intents class) that travel
between Android’s activities, services, and broadcast receiver components. Asynchronous means
they are not synchronized; that is, the messages can be sent and received independently (not in
sync, but without any pattern or order) from each other.

Using intents allows you to take your current Android applications to an entirely new level of
complexity. Prior to this chapter, you’ll have added functionality to your application by accessing the
cool functions that Android provides. But all easy things must come to an end, so they say.

Armed with intents (no pun intended), you can create advanced programming logic of your own that
ties together everything you have learned in the previous chapters. This allows for far more powerful
and useful programming constructs, and takes you from an absolute beginner to an intermediate level.

You’ll learn how to spawn Intent objects that can carry highly customized messages back and forth
between your Android UI (activities) and your programming logic (services), for instance, as well as
to and from broadcast receiver components.

We’ll also look at intent resolution and intent filters. These allow you to filter out events that your
apps do not need to be concerned with, allowing you to optimize the processing of internal
communications.

The Future of Android
In the final chapter, I expose you to all of those fascinating areas within the Android development
environment that we did not have the bandwidth to cover in this book, as well as to some
troubleshooting techniques. There may be a lot of unfamiliar names and acronyms in this chapter,
but that’s the nature of the future of Android.

The 3D engine inside of Android is called OpenGL ES 2.0, and OpenGL ES 3.0 is right around the
corner as well. You’ll see how it allows you to create amazing real-time rendered 3D games and
applications. And I’ll give you some great resources to find out more about this powerful 3D engine.

www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 2: What’s Next? Our Road Ahead

The SQLite database exists right inside the Android operating system, in fact, it has its own library of
classes. We’ll uncover the power it offers in allowing client-side databases to be created and used
as content providers inside your applications.

Smartphone hardware such as the high-definition camera, GPS, accelerometer, touchscreen, and
microphone can be used to capture and digitize real-world events around us as images, audio, and
gestures, and turn them into data that can be used inside your applications. Computer programming
has never been so powerful and so highly innovation oriented.

Inter-Android communication is another hot area, especially because Android devices can be used
as wireless hubs, giving access to many. We will look at Android’s integrated Bluetooth and NFC
APIs, which allow Android applications to wirelessly connect with any Android device nearby, and
even provide for multiple connections, or allow applications to talk to each other between Android

widgets, or miniature applications that can be embedded in

Summary
As you can see from this chapter, this book will take you on a wild journey through the various parts
and components of the Android operating environment—from UI design, to new media assets, to
database access, to more complicated background services and interapplication messaging. We’ll
be dealing with adding some pretty cool elements to Android applications, mainly by leveraging the
power of “design via XML” and many of Android’s powerful built-in features.

In the next chapter, you’ll build an Eclipse-based Android IDE using the open source applications
development software packages that you downloaded at the end of Chapter 1. After that, you’ll learn
about how the Android development environment is modularized as well as how to set it up to create
Android applications using this diverse mobile operating system. You’ll also get some new media
related software packages set-up that you can use to take your Android development to an entirely
different (visual) level, some of which are actually used in this book.

Enough excitement and anticipation! Let’s get right into turning your workstation into an Android app
development machine!

www.it-ebooks.info

http://www.it-ebooks.info/

21

Chapter 3
Setting Up Your Android
Development Environment

It’s time to get your hands dirty. In this chapter, starting from scratch, you’ll equip a computer system
to develop Android applications. You’ll first install Oracle’s (formerly Sun’s) Java 6 SE JDK and the Java
6 Runtime Environment, then the Eclipse for Java EE IDE, and finally the Android SDK, the tool set that
provides Eclipse with the tools you’ll need to create Android apps. Sound convoluted? It is. After all,
this is high-end software development, remember. What these Software Development Kits (SDK) are,
and how exactly they relate to each other will become evident as you proceed through this chapter.

Once the installation process is complete, you’ll finish up by fine-tuning your Android Development
environment within Eclipse to include smartphone and tablet emulators, which let you test your app
with a representation of an Android phone or tablet on your workstation. You’ll also have USB driver
support, which makes it possible for you to test your applications on a real-live Android smartphone
or tablet. With these tools in place, you’ll be ready to rock and roll, and you can begin to explore
exactly how Android does things.

Installing Java, Eclipse, and Android
If you have not downloaded the required software as described in Chapter 1, you will need to do that
before proceeding, so those packages are ready to install. Here, we will walk through installing Java 6
SE and the Java 6 JRE, Eclipse Juno 4.2 for Java EE, which is the IDE that is currently best suited
for the Android SDK, the Android SDK itself, and the Android Development Tools (ADT). For the
examples in this chapter (and book), we will install the software using 32-bit versions on a Windows 7
system, however you can also use Windows XP, Vista, or Windows 8, as long as you have them
upgraded to their latest service pack versions. Android SDK is 32-bit, and looks for 32-bit Java 6
and 32-bit Eclipse on installation, but if you have a 64-bit workstation (as I currently do) don’t worry
a bit, as 64-bit workstations will run 32-bit software environments perfectly well. Because Android
OS is currently 32-bit, we will develop for it using a 32-bit development environment, even if that
development environment is running on top of a 64-bit operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 3: Setting Up Your Android Development Environment

Note Versions of the Java 6 JDK and Runtime Environment, the Eclipse Juno Java EE IDE, the Android
SDK, and the Android Eclipse plug-in are also available for Macintosh and Linux computers. The steps
to install them are nearly identical to those described in this chapter, and you will have no problems
following along. For more information, click on the “other platforms” link on the left just underneath the
big blue “Download the SDK for Windows” button on the Android Download screenshot in Chapter 1. If
you are using Linux or Macintosh computers, then the Big Blue Button should instead say “Download
the SDK for Linux” or “Download the SDK for Macintosh” instead!

jdk-6u37-
 (or a similarly named file with later version numbering) should be on your desktop

the reason it is called a runtime—it is the environment, or software process, that is active while a
Java application is running. Java Applications or “Apps” can be said to run “on top of,” or with the
support of, this Java Runtime Environment. Note that each Java JDK has its own associated JRE, so
be sure not to “mix and match” different Java revision SDKs (also known as JDKs) with other Java
version JREs. JDK stands for: Java Software Development Kit, and thus saying JDK is the same as
saying “Java SDK.”

Oracle has made the installation of the Java 6 SE environment relatively painless. The installation
package is itself a software program (an executable, or .exe file type) that will create the necessary
folder structure on your hard disk drive and install all the Java 6 SDK files precisely where they need
to go and where other software, such as the Eclipse for Java EE IDE, will be looking to find them.

Follow these steps to install the Java 6 SE SDK and its associated JRE:

1. Double-click the JDK 6 install icon on your desktop (or in whatever folder you
downloaded it to) to launch the JDK 6 setup application; at the time of the
writing of this book, the current version was Java 6u37, or the 37th update of
Java revision 6. If your operating system asks if it is OK to run the installation
software, tell it to go right ahead.

2. The next dialog tells you which files and features will be installed, and lets
you turn off features that you do not wish to include. We are not going to
touch anything in these set-up dialogs, so simply click Next to copy the
more than 300MB of development files onto your hard drive, as shown in the
installation screen sequence shown in Figure 3-1.

Note that Android 4.2 now supports a full 64-bit Android development environment, so we added a
section at the end of this chapter covering that support via a new ADT Bundle installation that is now
available on the Android Developer web site. Luckily, we were able to add this information before the
book went to print!

www.it-ebooks.info

http://www.it-ebooks.info/

23CHAPTER 3: Setting Up Your Android Development Environment

3. After installing the JDK 6 files, the installer will suggest a folder for the JRE,
usually something like C:/Program Files/Java/jre6. Or if you have a 64-bit
workstation, it will be C:/Program Files (x86)/Java/jre6. Simply hit the Next
button to accept the default setting, as the JDK6 installer will find and use
the correct folder names for you.

Figure 3-1. Six dialogs for installing the 32-bit JDK 6 under Windows

www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 3: Setting Up Your Android Development Environment

4. Once the JDK 6 and JRE 6 have finished installing, the final screen will let
you know of a successful installation, and provide a button for you to register
the product online if you are currently connected to the Internet. It is most
likely a good idea to register the JDK 6 (as well as the Eclipse Juno 4.2 for
Java EE and the Android SDK), so that you can receive updates regarding
their future development progress.

Eclipse Juno 4.2 for Java EE IDE: The Development Environment
Now that you have successfully installed Java 6 on your computer, you can install Eclipse Juno

Note An IDE is a software package somewhat like an advanced text editor, but with features
specifically fine-tuned for writing computer programs rather than publishing text documents. If you want
to get up to speed on all the amazing features of the Eclipse Juno IDE, run through the Help or Tutorials
section once you have installed it, or get the book Android Apps with Eclipse from Apress.

eclipse-jee-juno-win32.zip file is on your desktop or in your MyDocuments/downloads/ folder and
ready to install. Eclipse is a little harder to install than Java because it does not have an installation
program (an .exe file, in the case of Windows), but instead has a folder structure of files inside a .zip
archive. The trick is to extract this file structure properly onto your hard drive, so that Eclipse for
Java EE can find the files that it needs, and so that they are in the folders where Eclipse and Android
Development Tools (ADT) are going to look for them.

Follow these steps to install Eclipse for Java EE:

1. Right-click the eclipse-jee-juno-win32.zip file in your Downloads folder, and
select the option “Extract All. . .” to launch the WinZip extractor, as shown
in Figure 3-2 (notice that the Extract All menu selection is highlighted in light
blue, as well as circled in red).

Tip If you don’t have WinZip, a free alternative called PKZIP is available for Windows, Mac, and
Linux. Simply Google “PKZIP” or “ZIP File Utility” and download the free version for your operating
system type now. Got it? Good. If you have Windows Vista or Windows 7, you can also open .zip files
natively, using the Windows Explorer application, so you don’t need to download an extractor utility
unless you want to.

www.it-ebooks.info

http://www.it-ebooks.info/

25CHAPTER 3: Setting Up Your Android Development Environment

2. Once you click on the Extract All menu selection, you will need to edit the
default location to extract the Eclipse file structure into, so that it is in the
root of your C:\ disk drive, as shown in the second dialog in the middle of
Figure 3-3. This will put Eclipse into a folder structure (defined in the .zip
file) under C:\eclipse-jee-juno-win32, which is exactly where other software
(in this case, the Android SDK) is going to look for (and find) it. Because the
Eclipse Zip file is in your Downloads folder, the initial dialog for the Eclipse
for Java EE IDE extraction will assume that that is where you want to install
Eclipse (this is shown in the first dialog in Figure 3-3 in blue). So that it will
be more prominent (and so you can find it at a later date) on your hard disk
drive, we are going to move this up a few directory (folder) levels, by placing
our editing cursor right before the word Eclipse, and backspacing over the
“Users\YourName\Downloads\” part of the filename specifier. Once you are
done, the folder name should read “C:/eclipse-jee-juno-win32” as it does in
the second dialog shown in Figure 3-3. Note that if you wanted to leave the
default install path (and thus install) Eclipse under your Downloads folder,
that other software could still find it there, and that it would still function
from that location, it’s just not a best practice to install your software under

Figure 3-2. Right-click on the eclipse-jee-juno-win32.zip file in the Downloads folder to access the Extract All function

www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 3: Setting Up Your Android Development Environment

(in) your downloads folder, although it is a good practice to download the
installer files to this location (indeed that’s exactly what it is for: Downloads).

 Renaming your Eclipse installation folder location to the top of your C: Drive

Figure 3-4. Progress Dialog showing 3,426 items totaling 250 megabytes being installed on your HDD

3. Click the “Extract” button when you are ready and Eclipse 4.2 for Java EE
will be extracted into the folder you have specified on your hard disk drive,
with an extraction progress dialog showing the progress as seen in the next
dialog screen shown in Figure 3-4. Note that if this folder does not exist on
your hard disk drive (which it doesn’t by default) the extraction process will
create it for you automatically, you do not have to create this folder before
running this step!

www.it-ebooks.info

http://www.it-ebooks.info/

27CHAPTER 3: Setting Up Your Android Development Environment

4. Next, go to the Windows Explorer application and click on the c:\eclipse-jee-
juno-win32 folder to view its file structure. Look for a folder called “eclipse”
and in that folder a file called eclipse.exe, which is the actual Eclipse program
“executable” (hence .exe) file that you will want to use to launch the Eclipse 4.2
for Java EE IDE each time you wish to use it to develop software.

5. Right-click on the eclipse.exe file and select the Pin to Taskbar option, as
shown in Figure 3-5.

Figure 3-5. Creating a shortcut for Eclipse using the Windows 7 Pin to Taskbar Function via a right-click menu

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 3: Setting Up Your Android Development Environment

6. Selecting the Pin to Taskbar option will install the eclipse.exe shortcut icon
onto your Quick Launch bar, and voila, you now have an icon that requires
only a single-click to launch the Eclipse 4.2 Java EE IDE, as shown in
Figure 3-6.

 Result of Pinning the Eclipse shortcut icon onto the Quick LaunchTaskbar in Windows 7

ad infinitum. Cool beans.

Android SDK: Android Software Development Kit for Eclipse
The last major step in putting together an Android development environment is to install the latest
Android SDK (currently at version 20.0.3 as of the writing of this book).

Note To perform the SDK configuration and updates described in this chapter, you need to be
connected to the Internet.

In Chapter 1, you downloaded the Android SDK from the Android website, so the file
installer_r20.0.3-windows.exe should be in your Downloads folder and ready to install. This process
is quite similar to the installation of the Java 6 JDK. As you did with Java 6, install the Android SDK
now, as shown in Figure 3-7.

www.it-ebooks.info

http://www.it-ebooks.info/

29CHAPTER 3: Setting Up Your Android Development Environment

Notice that the SDK software installs into a Start Menu folder called Android SDK Tools. This is the
folder where other software, such as Eclipse Juno 4.2 for Java EE, will look for the Android SDK, so
it is best to use the default folder name that Google already has defined for Android inside the .exe
installer file.

Figure 3-7. Installing the Android r20.0.3 SDK onto your hard disk drive

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 3: Setting Up Your Android Development Environment

The Android SDK environment is now installed on your system. Because the Android Software
Development Environment will run inside of the Eclipse 4.2 for Java EE IDE (the Android SDK needs
to become an integrated part of Eclipse), you don’t need to create a shortcut for it—because you
already have one for Eclipse that will also launch Android development.

The next step is to run the Android SDK Manager, which pulls over additional Android SDK
Packages from a “Software Repository” at Google. This will add even more functionality to your
Android software development environment, by pulling additional SDK assets over your Internet
connection. Because running the Android SDK Manager is such a critical step, Google has made it
an integrated part of the Android SDK installation process. As you can see in the next screenshot,
after the Android SDK install is finished and you click the “Finish” button, the Android SDK Manager
is auto-launched, so that you can continue to fine-tune your Android SDK installation. Be sure to
leave the “Start SDK Manager” option checkbox checked before you click “Finish,” and the Android

 3-8 at the bottom of the last screen.

Figure 3-8. Ending the SDK install and starting the Android SDK Manager in the same work process

www.it-ebooks.info

http://www.it-ebooks.info/

31CHAPTER 3: Setting Up Your Android Development Environment

Once the Android SDK Manager has finished communicating with the Google Android Repositories,
a screen will appear as shown in Figure 3-9 that lists the Android Packages and software application
programming interface (API) versions that are not currently installed on your system. Because this
is a fresh install, this would be all of the Android versions from 1.5 through 4.1. The screen, which
should show up next, is shown in Figure 3-9 with the recommended latest Android “Jelly Bean”
4.1 API tools shown checked and ready for installation. Note at the bottom that the SDK Manager
is finished talking to the Google Android Repositories. Also note that there are two boxes that I
recommend (as does Google) that you also check, so that you have the Android SDK Platform Tools
and the Android Support Library, which gives the 4.1 Jelly Bean API backwards compatibility with
the previous APIs to a large extent (but not completely, according to Google).

Figure 3-9. Selecting the unchecked SDK Platform Tools and Android Support Library options

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 3: Setting Up Your Android Development Environment

Once these nine options are all checked and selected for installation, click the button at the bottom
on the right that says “Install 9 Packages” and the Android 4.1 API Level 16 tools will be installed
into your Eclipse IDE. Note that because I show you the two that are unchecked (that you need to
check), the button in the screenshot in Figure 3-9 says: Install 7 Packages. Once you check the
additional two packages, this will update to: Install 9 Packages.

If you want to install the API packages for any previous API versions of Android, there are ten prior
API revisions, three through fifteen, that can also be checked for installation. This is shown on the
next screen in Figure 3-10, and if you are going to develop apps for hardware devices that run and
support earlier versions of the Android OS, you may wish to install these as well.

Note Beware that installing all of these APIs and documentation may represent gigabytes of data
to download and install, and that this process may take some time (especially on slower Internet
connections) and some hand-holding, as working with repositories is not always as “automatic” as we
would like it to be!

www.it-ebooks.info

http://www.it-ebooks.info/

33CHAPTER 3: Setting Up Your Android Development Environment

Note that now that these other APIs are selected, that the Install Packages button says “Install 53
Packages,” so each API level has an average of about 5 packages associated with it. I recommend
that for now that you just install Android 4.1, but I wanted to show you how to install all of the
Android OS Platform API versions, in case you had a fast connection and are fearless in general
regarding software installation. In any event, once you click the Install Packages button, regardless

Figure 3-10. Selecting other Android APIs to install for the maximum cross-platform API development

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 3: Setting Up Your Android Development Environment

of which API levels you have chosen to install, you will get one more screen that confirms which
packages you wish to install. This screen is shown in Figure 3-11.

Figure 3-11. Selecting the “Accept All” option instructing that all packages be installed in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

35CHAPTER 3: Setting Up Your Android Development Environment

Figure 3-12. Selecting the Install New Software option on the Eclipse Help Menu

At the bottom of this dialog, you will see a Radio Button option labeled “Select All,” and once you
select that, all of the packages in the list (53 in this case) will be enabled for download from the
Google Android Development Software Repository. Then, once you click on the “Install” button, as
shown circled in red, you will begin the download process, and add all of this additional Android OS
functionality to the “base” Android SDK that you have installed already.

What you need to do next is show Eclipse 4.2 for Java EE where the Android SDK is located, so that
Eclipse can make the Android SDK functionality an integrated part of the Eclipse IDE. This is done
by installing the Android Development Tool plug-in for Eclipse, which we will do in the next section.

Android Development Tool: Android Tools for Eclipse
It’s time to fire up Eclipse and add the Android Development Tool (ADT) plug-in to the IDE.

Follow these steps to perform the installation:

1. Click the Eclipse Quick Launch bar icon to start Eclipse.

2. Accept the default workspace location (it will be under your C:\Users\
YourName\workspace folder).

3. From the main Eclipse menu, select Help ➤ Install New Software…, as
shown in Figure 3-12.

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 3: Setting Up Your Android Development Environment

4. In the Install dialog that appears, click the Add button at the upper right, as
shown in Figure 3-13.

Figure 3-13. Adding the Google plug-in for Eclipse 4.2 site to Eclipse Juno 4.2 for Java EE

5. In the Add Repository dialog that appears, enter the name Google Plug-In
for Eclipse 4.2 in the Name field. In the Location field, enter the following, as
shown In Figure 3-13:

	http://dl.google.com/eclipse/plugin/4.2

Figure 3-13 shows the HTTP site address entered in the Add Repository
dialog’s Location field. Click OK to add the site.

www.it-ebooks.info

http://dl.google.com/eclipse/plugin/4.2
http://www.it-ebooks.info/

37CHAPTER 3: Setting Up Your Android Development Environment

6. Once you’ve added the new Google Eclipse 4.2 plug-in option, its name
appears at the top of the Install dialog, and after a few moments, a hierarchy
of Developer Tools options populates the center of the Install dialog. Select
the first (highest) level, called Developer Tools (which will select them all), and
the Google Plug-In for Eclipse (required) as shown in Figure 3-14. Then click
Next to continue with the ADT installation. The plug-in proceeds to calculate
installation requirements and dependencies for several seconds, so hang on!

Figure 3-14. Installing Android Developer Tools and Google Plug-In for Eclipse 4.2 plug-ins in Eclipse

7. The next screen shown in Figure 3-15 lists the Android Development Tools,
Android Dalvik Debug Monitor Server (DDMS, which is a debugging tool),
Google Plug-In for Eclipse 4.2, and some other useful Android development
utilities. Click Next to accept these items.

www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 3: Setting Up Your Android Development Environment

8. The next screen is agreeing to all of the ADT and Related Software Licensing
Agreements; select the “I Accept the Terms of the License Agreements” radio
button, and then click Finish as shown in Figure 3-16.

 Reviewing the items to install for ADT and Google Plugin for Eclipse 4.2

Figure 3-16. Approving the software licenses for the Android Developer Tools

www.it-ebooks.info

http://www.it-ebooks.info/

39CHAPTER 3: Setting Up Your Android Development Environment

9. The Android development environment will be installed and updated from
the Google Android website. If a message appears asking you to approve an
unsigned certificate, click OK to continue the installation, at which point you
will see an installation progress screen like the one shown in Figure 3-17.

Figure 3-17. Software installation progress bars outlining software being installed via the repository

10. At this point the Android Development Tools and Google Eclipse 4.2 Plug-Ins
will install as shown in Figure 3-17. If you want further installation files detail,
use the Details button as shown in the screenshot (circled in red).

11. A dialog appears, asking you to restart Eclipse to allow the changes you have
just made to be installed into memory, and thereby take effect in the IDE
(which runs from system memory, not from your hard disk drive). Select Yes,
as shown in Figure 3-18.

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 3: Setting Up Your Android Development Environment

To make sure the Android Development Environment is now actually installed correctly, once
Eclipse restarts go to the File ➤ New ➤ Project… Menu Sequence, and you should see an Android

 3-19, outlining the various types of

Figure 3-18. Opting to restart Eclipse to reload software installation changes into system memory

Figure 3-19. Testing to see if ADT is installed in Eclipse by seeing if the New Android Application Project is there

www.it-ebooks.info

http://www.it-ebooks.info/

41CHAPTER 3: Setting Up Your Android Development Environment

Configuring the Android Environment Inside of Eclipse
Once Eclipse restarts and you confirm that you can now add new Android Application Projects,
the final step is to configure the ADT plug-in, which should have already found your Android SDK
installation. Let’s check and make sure, so you can see how this is done. Follow these steps:

1. In Eclipse, select Window ➤ Preferences. Click the Android node on the left
to select the Android Preferences option. A dialog shown in Figure 3-20 will
pop-up, asking you to share your usage information with Google, so that they
can improve their product. You can choose to send usage info (or not to) via
a checkbox in this dialog, as shown below. Click on the Proceed button to
continue.

Figure 3-20. Sending your Android Development Tools usage statistics to Google

2. In the Preferences window, you will see that Eclipse has already found your
Android SDK installation via the ADT plug-ins that you installed, as shown in
Figure 3-21. It also shows the API versions that you added beyond Version
4.1, in my case, I added 2.3.3 and all of the 3.x and 4.x versions, as shown
in the screenshot in Figure 3-21. Click on the Apply or the OK button,
and the Android SDK will be updated as part of Eclipse (if it isn’t already),
meaning that the Android development environment within Eclipse 4.2 will be
configured.

www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 3: Setting Up Your Android Development Environment

Note You do not need to restart Eclipse again for the Android SDK to become a part of it because all
the SDK needs is to be referenced in Eclipse, in case any of the SDK tools need to be called (used) by
Eclipse.

Figure 3-21. Viewing the Android Preferences dialog and installed SDK Targets and Android SDK location

3. Select Help ➤ Check for Updates just to make sure you have the very latest
versions of everything, as shown in Figure 3-22.

www.it-ebooks.info

http://www.it-ebooks.info/

43CHAPTER 3: Setting Up Your Android Development Environment

Your Android development environment will now check for updates to the Eclipse software to make
sure that you have the most recent release available, as shown in Figure 3-23.

Figure 3-22. Instructing Eclipse to check for any IDE updates to make sure we have the latest versions

Figure 3-23. Checking for any further updates for Eclipse that might be out there

If the Check for Updates routine finds any updates, which it did in my installation, it will show a
dialog called “Available Updates,” and allow you to select which available updates you wish to
install. In my case, there was a new version of the Google Plug-In for Eclipse 4.2, which is a critical
component in the chain between Java ➤ Eclipse ➤ ADT, so I selected it for Installation, as shown in
Figure 3-24.

www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3: Setting Up Your Android Development Environment

 3-25, which tells you the name, version, and repository location for the

 Selecting the latest available updates to install to make our environment as current as possible

Figure 3-25. Reviewing and confirming updates to install

The next dialog Is the Licensing Review and Acceptance dialog shown in Figure 3-26, where you
need to select the radio button that states that you accept the terms of the license agreement for the
update that you are about to install. Once you review the license and agree to it, click on the Finish
button, and updating process will begin.

www.it-ebooks.info

http://www.it-ebooks.info/

45CHAPTER 3: Setting Up Your Android Development Environment

Figure 3-27 shows the Updating Progress dialog that you will see once you agree to the licensing
terms.

Figure 3-26. Accepting the terms of the license agreement

Figure 3-27. Updating progress bar for software installation

After the software update download process is complete, you will get a dialog as shown in
Figure 3-28 that warns that you are about to install software that contains unsigned content. Click
OK to proceed with the installation.

Figure 3-28. Unsigned software installation warning

www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 3: Setting Up Your Android Development Environment

Once the software is installed, you will get the dialog as shown in Figure 3-29 that tells you that for
the newly updated version of Eclipse to be run (from system memory) that it must be restarted (to
load the new updated code from your hard disk drive into system memory for use).

 Restarting Eclipse to install the latest software updates into your system memory

emulator. You’ll want to

AVDs: Smartphone and Tablet Emulators
To install an AVD, you use the Eclipse Juno 4.2 AVD Manager menu item. Here are the steps:

1. To open the Android AVD Manager window, click the icon located at the top left
of the Eclipse toolbar (see Figure 3-30) or select Window ➤ AVD Manager.

Figure 3-30. Starting the AVD Manager

www.it-ebooks.info

http://www.it-ebooks.info/

47CHAPTER 3: Setting Up Your Android Development Environment

2. In the Android AVD Manager window, select the New button (see Figure 3-31).

Figure 3-31. Creating a new AVD to test Android 4.1 compatibility in an Android 4.1 emulator

3. Fill in the Create new Android Virtual Device (AVD) dialog as follows:

Enter a name for the emulator in the Name text box. I used the name 	
Android_4.1_Emulator.

From the Target drop-down menu, select an API. I chose the Android 4.1 - 	
API Level 16 from the menu of all the APIs installed.

In the SD Card section, set a memory card size for the SD card. I selected a 	
size of 512MB (for the widest phone and tablet support).

In the Skin section, choose a screen resolution for the device skin. I selected 	
the default WVGA screen setting because my Android phone has an 800 ×
480 resolution display. Most Androids smartphones and tablets out there
use WVGA or higher resolution, so by choosing this option, you’ll obtain the
widest phone handset and tablet compatibility.

Check the Snapshot Enabled Checkbox to allow the emulator to persist 	
(remain) in memory between executions for faster emulator performance
during development.

Figure 3-32 shows the dialog I completed to create an Android 4.1 smartphone
emulator. Click the Create AVD button after you’ve filled in the dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3: Setting Up Your Android Development Environment

As you can see in Figure 3-33, the new virtual device is now listed in the Virtual Devices’ section of
the Android AVD Manager window. If you also are going to test applications on the other Android
Platform versions that you have installed, go through this same process, and add these emulators as
well at this time. Some more popular Android versions include 2.3.7, 3.2.6, and 4.0.4.

Figure 3-32. Creating the 4.1 emulator for testing our apps later on in the book

www.it-ebooks.info

http://www.it-ebooks.info/

49CHAPTER 3: Setting Up Your Android Development Environment

USB Smartphone Drivers: External Devices
Because the latest USB driver for Android was installed as part of the SDK installation process in a
previous section, you’ve already taken care of installing the most up-to-date USB drivers to interface
the Eclipse Juno 4.2 for Java EE IDE with your Android smartphone or tablet devices.

It is important to note that this driver is only for Windows. Using the external Android smartphone on
Mac and Linux does not require this driver download.

The driver is not intended to make your Android phone or tablet visible to Windows. You can simply
plug your Android device in via USB, and it will be visible on your Windows desktop. However, this
driver is necessary to have the development interface to and from Eclipse 4.2.

Note that the USB driver that you installed earlier went into the ADT plug-in for Eclipse, not into the
Windows driver registry. Possibly the term driver is misleading in this instance, as this driver provides
the ability for Eclipse to talk with your Android smartphone, tablet, e-reader, or iTV set during
development, so that Android packages (.apk files) can be transferred to the smartphone, tablet,
e-reader, or iTV for testing and development purposes.

ADT Bundle and 64-bit IDE Support
Android 4.2 changed the installation process to set-up an Android IDE drastically, adding 64-bit
support, and making the entire process much easier by making Android SDK, ADT, and Eclipse into
one huge 400MB “Bundle” that can be downloaded and installed using fewer steps. I’ll go through it
briefly here, because it’s much less work, and I’ll refer to figures used earlier in this chapter, instead
of duplicating similar screens again here.

If you go to the Android Developer web site, you will now see a 400MB ADT Bundle download button,
that is all you will need to get, along with the Java 6 JDK. If you want to use 64-bit Java and Android/
Eclipse IDE on your 64-bit workstation, be sure to go to the same Java 6 site download area as

Figure 3-33. The Android 4.1 emulator once it is added to the list of installed AVDs

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3: Setting Up Your Android Development Environment

you did to get the 32-bit Java 6 JDK, but instead download the 64-bit JDK for Windows jdk-6u37-
windows-x64.exe making sure you uninstall any other versions of Java from your workstation first,
before you install the latest 64-bit version. Also, when you download the ADT Bundle, make sure to
select the 64-bit version radio button on the “accept our licensing terms before you download” screen.

After the Java 6 64-bit JDK is installed, use the same work process shown in Figures 3-2 through 3-6
to install the ADT Bundle ZIP file onto your hard disk drive. You can skip the work process shown in
Figures 3-7 through 3-19, but you will still get the dialog shown in Figure 3-20 at some point asking
you to allow Google to see how you use their product. The work process shown in Figures 3-21
through 3-23 is always a good idea to make sure that you’re current, and you will still need to set-up
AVDs, as shown in Figure 3-30 through 3-33, so that you have Emulators for the Android device
hardware that you want to test for and support. As you can see, the new ADT Bundle allows you to
skip at least a dozen or more major steps in setting up your Android Development environment, so

that you should Google the names of, and then download and install, for a complete Android,
Business and New Media development workstation are: Audacity, Blender3D, RoseGarden, Apache
OpenOffice, and EditShare Lightworks. Amazing free for commercial use software!

So, let’s get started with GIMP 2.8! Go to www.GIMP.org and click the orange download button at the
top-right of the homepage, and go to the GIMP.org/downloads/ page and click the orange link at the
top that says: Download GIMP 2.8.2—Installer for Windows XP SP3 or later. If you use Mac or Linux,
then click on the link below that says: Show Other Downloads.

Once you click on the Download 2.8.2 for Windows link, you will get a dialog saying that you have
chosen to open gimp-2.8.2-setup-1.exe—click on the Save button to save the 73MB file to your
MyDocuments/Downloads/ Folder (unless you specify another location for the file at download time).
Once the download is finished, you will have the GIMP 2.8.2 installer file. If you have more than one
workstation, copy this file to a USB key, so that you can install it on all of your systems because it’s
one hot piece of open source digital imaging software!

Find the file in your Downloads folder, using the Windows Explorer, and double-click on it to execute
it, or double-click the recent file download entry for GIMP in your browser’s download manager (or
right-click on the file, and select Open, Run or Install). Then select the language you want to install it
in (I selected English), and you will get a colorful GIMP 2.8 Installer Screen.

Click the Install button on the right, and watch the fun begin! You will get a progress bar showing you
hundreds of files, totaling hundreds of megabytes of powerful (free) digital imaging software, being
installed on your system. When the install is done, select the Finish button and Voila! Done!

www.it-ebooks.info

http://www.GIMP.org
http://www.it-ebooks.info/

51CHAPTER 3: Setting Up Your Android Development Environment

Once GIMP 2.8 and the other software packages that we suggested earlier are installed on your
system, be sure and use the “Pin to Taskbar” work process that we showed in Figures 3-5 and 3-6
earlier in this chapter to add all of your cool new software to your LaunchBar in Windows, so that
you can admire the sheer power of your Android development workstation at all times. While you are
at it, drag a few of the key system utilities that you will use in app development from your
Start ➤ All Programs ➤ Accessories folder to the Taskbar as well, such as the Notepad (a Plain Text
Editor), Calculator, the CharacterMap Utility, and your OS MediaPlayer.

Whew! We’re finally finished! Now we can get on to the business of Android development!

Summary
To set up your Android development environment, you began by installing the Oracle Java SE 6
JDK, which is required to run the Java programming language, and then the Eclipse 4.2 for Java EE
IDE (Java EE is proof that Java can indeed be used to develop very large-scale, enterprise-quality
applications).

Your next major step was to install the Android SDK, which contains all of the tools and utilities that
you will need to develop Android applications. Once the SDK was installed on your hard drive, you
went into Eclipse and pointed Eclipse to the Android SDK installation directory, so that Eclipse and
Android’s SDK can work seamlessly hand in hand.

With the JDK and Android SDK installed, the next logical step was to install ADT into the Eclipse IDE,
which the Android development environment uses as a “host,” or platform, to support its ADT plug-in.

After installation, you used the Eclipse Check for Updates features to check on the Internet for the
very latest versions of the Eclipse and Android development tools. You installed the updates that
were necessary (which unfortunately takes a while, even on a fast connection). Next, you added an
AVD on which to test your future Android applications, which you soon will be coding like a Pro.

Finally, just to make sure that you put together a comprehensive Android Development Workstation,
you stepped through the installation of GIMP 2.8 (which is used in this book for digital imaging work
processes), and also you wisely downloaded and installed the five recommended leading open
source packages in each genre that we do not specifically reference in this book but that you will
eventually use in your Android development work process.

For digital video editing, that would be EditShare Lightworks; for 3D—Blender 3D; for digital
audio editing—Audacity; for business tasks—Apache OpenOffice; and for music composition—
RoseGarden. This is admittedly a bit beyond the “call of duty” of this book, but we figured, hey, if
you are going to spend a day configuring your Android Development Workstation, why not go all the
way, and do that for every type of new media development that Android supports, and get it over
with? Besides, having all of these professional packages on your workstation makes it just that much
more valuable than it was at the start of this chapter. Congratulations, you have just recovered what
you paid for this book a hundred times over! In the next chapter, we’ll examine the Android platform
and all of its components, to prepare for writing Android applications. And speaking of prepared,
after this chapter, your Android development workstation is ready to Rock!

www.it-ebooks.info

http://www.it-ebooks.info/

53

Chapter 4
Introducing the Android Software
Development Platform

The Android platform is a collection of software that includes an operating system and a number
of higher-level libraries that simplify the task of communicating with the operating system. It also
includes several applications that smartphone, tablet, e-reader and iTV users have come to expect,
such as a phone (obviously) dialer, e-mail client, social media client, contact manager, Google Maps,
Google Search, a web browser, a calendar, basic games, and so on.

Everything in the Android development environment, as well as all of the included applications, can
be programmed with a combination of Java and XML thanks to the so-called runtime that is included
with the Android SDK. The runtime translates the Java and XML code that you write into a language
that the operating system and the device understand.

The foundation on which Android is built is carefully coded and painstakingly tested Linux 2.6, an
operating system that rarely crashes. Linux and its core services manage the physical phone, tablet,
e-book e-reader, or iTV set and give Android applications complete access to the features of each
consumer electronics device, including the touchscreen, memory, data, security, various network
receivers and transmitters, camera, GPS, Bluetooth, Wi-Fi, and more.

Linux doesn’t do it all alone. Android has a large number of libraries that provide higher-level customized
functions and services for 2D graphics, 3D graphics, and the audio and video file formats in widest
use today. In other words, Android supports all of the rich media formats you could possibly want
to use, including the powerful ON2 VP8 video codec, now in Android 4.x (for more information, visit:
http://developer.android.com/guide/appendix/media-formats.html). ON2 was acquired by Google
and rereleased as an open codec called WebM for HTML5 and Android. It’s quality to file size (and
thereby performance) ratio is impressive to say the least.

This chapter introduces the Android 4 software development environment, and shows you how to
write your first Android application.

www.it-ebooks.info

http://developer.android.com/guide/appendix/media-formats.html
http://www.it-ebooks.info/

54 CHAPTER 4: Introducing the Android Software Development Platform

importing—and then your application code can employ their built-in capabilities. You’ll learn

optimized for use in mobile and embedded environments.

Embedded environments are ones in which a computer is actually embedded inside the consumer
electronics product, and this is now commonplace in smartphones, tablets, e-book e-readers,
iTV sets, and iDVD players, to name a few. I’ve also seen phone-watches and smart appliances
(refrigerators); so it’s not limited to Internet 2.0 (portable or mobile) devices either!

The good news is that the DVM is not something that a developer needs to worry about. I describe it
here only to give you a sense of what’s going on under the hood with Android.

When you launch an Android application, it creates a process that allocates memory and CPU
processing resources (processor time slices) to the application, so that it has the resources needed
to function. Each time an application is launched and a process is spawned, an instance or copy of
the DVM is launched into your Android smartphone, iTV, or tablet’s memory. The DVM actually takes
the Java language instructions along with the application’s design guidelines (in an XML format),
and combines them with any external resources (images, audio or video files, 3D, and so on), and
translates them all into optimized low-level binary code that goes into the Android device’s memory
and eventually into the processor for processing.

So, what is the advantage of this DVM? Using DVM allows many more applications to run within
the somewhat limited memory resources (1GB to 2GB) and processing power (1GHz to 2GHz)
of consumer electronic devices, and it also protects all of the other spawned (active in memory)
processes from interfering with each other. In this way, the crash of one application will not bring
down the entire operating system (as happened in the olden days of DOS and Macintosh). That’s a
huge advantage, because other apps cannot take down your app, or heaven forbid, vice-versa.

Note In this book, you’ll build apps using a combination of XML and Java, which sit in a layer on
top of the operating system (with the runtime as the component that translates Java and XML into
instructions for the operating system). However, you could, if you wished, access the operating system
and its services directly, using lower-level languages such as C or C++ using the Android NDK, or
native development kit, rather than the higher level software development kit, or SDK, that we are using
for this book. You might consider this “under the hood” approach for an application that needs the
utmost speed, such as a 3D game or a real-time heart-monitoring program, but the NDK is far beyond
the scope of this introductory book.

www.it-ebooks.info

http://www.it-ebooks.info/

55CHAPTER 4: Introducing the Android Software Development Platform

The Directory Structure of an Android Project
Android does its best to externalize all application assets that do not absolutely need to be in your
Java code. It does this by using the simpler XML markup language to define UI (user interface)
designs and data structures that would otherwise need to be explicitly declared and coded in Java.
This modularization is aided and implemented by having a clearly defined project hierarchy folder
structure, which holds logical types of application assets together in an orderly fashion.

Because Android is very particular about where the assets of your project are stored within the
project directory, you need to learn where each belongs early in the game. When it comes time to
generate your application—a process called compilation—Android looks into these standardized
folders to locate each type of asset it needs, and expects to find, like assets logically grouped
together.

The assets of a project include its Java code, XML layouts, XML animation definitions, and the
rich media files that your Java code and XML markup reference. As shown in Figure 4-1, default
folders are automatically created in an Android project to hold menus, images, layouts, colors, fixed
data values, raw (uncompressed) media, XML constructs, and animation. These default folders will
be created by the Android Developer Toolkit (ADT) New ➤ Project ➤ Android Application Project
function that we installed and tested in Eclipse 4.2.1 at the end of Chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 4: Introducing the Android Software Development Platform

The Java code that drives an application is located in the /src (source code) folder and in any
subfolders that are defined by your Java code.

You’ll find other assets used by your application in logical subfolders of the /res (resources) folder as
needed. It is very important that only folders go in the /res folder. If the Android compiler sees any
files in this folder, it will generate a compiler error.

Figure 4-1. Android’s file structure, showing the res (resources) folder and its subfolders

www.it-ebooks.info

http://www.it-ebooks.info/

57CHAPTER 4: Introducing the Android Software Development Platform

If you don’t have any resources of a certain type (say animation), you do not need to have an empty
folder for it. This means that you do not need to create folders that you will not use.

Common Default Resources Folders
The most common of the default resources (/res) subfolders are shown in the Figure 4-1. The
following are the eight provided when you create a project in Eclipse:

	layout: UI screen layouts go in the /res/layout folder, which holds XML files
containing UI layout definitions written in XML.

	drawable-hdpi: high-resolution images in PNG format (which Google prefers)
or the JPEG format (acceptable but not favored by Google) go into the /res/
drawable-hdpi (high resolution screen-drawable imagery, usually 800 by 480
pixels) folder.

	drawable-ldpi: low-resolution images in PNG format (which Google prefers) or the
JPEG format (acceptable but not favored by Google) go into the /res/drawable-ldpi
(low resolution screen-drawable imagery, usually 320 by 240 pixels) folder.

	drawable-mdpi: medium-resolution images in PNG format (which Google
prefers) or the JPEG format (acceptable but not favored by Google) go into the
/res/drawable-mdpi (medium resolution screen-drawable imagery, usually 480
by 320 pixels) folder.

	drawable-xhdpi: extra-high-resolution images in PNG format (which Google
prefers) or the JPEG format (acceptable but not favored by Google) go into the
/res/drawable-xhdpi (high resolution screen-drawable imagery, usually 1,280 by
720 pixels or HD) folder

	values: XML files that define constant values are in the res/values folder.

	values-v11: honeycomb theme XML files that define new UI theme values are in
the res/values-v11 (referencing API Level 11 through 13, also known as Android
3.x or 3.0, 3.1, and 3.2) folder.

	values-v14: Ice Cream Sandwich theme XML files that define new UI theme
values are in the res/values-v14 (referencing API Level 14 through 16, also
known as Android 4.x or 4.0, 4.0.3, and 4.1) folder.

	menu: XML files defining menu layouts are in the res/menu folder.

Note The name of the game is to avoid compiler errors at all costs because if Eclipse sees compiler
errors in your code, it does not even bother generating your application. And if your application is not
generated, you certainly cannot test it to see how well it works.

www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 4: Introducing the Android Software Development Platform

The Values Folder
Let’s examine the res/values folder from one of my current projects in more detail. This is where you
place predefined application values in the form of XML files that define the variable names (x or y,
for instance) and their values that are later referenced in your Java code. For example, these values
might be strings (collections of text characters) or constants (hard-coded values that your Java code
uses in its program logic and can’t change).

Think of the values folder as holding all of your constant values for your application in one place. This
way, if you need to adjust them during application development and testing, you make the changes
in a single location.

Figure 4-2 shows a few examples of files that can be placed in this folder as in the following:

Figure 4-2. Files in the res/values folder. These files contain constants for an Android application

www.it-ebooks.info

http://www.it-ebooks.info/

59CHAPTER 4: Introducing the Android Software Development Platform

	colors.xml: An XML file that will define the color values to be used in the app.
These allow you to standardize the UI. For example, you would define your
background color. Then, if you decide to tweak it later, you need to do the
tweaking in only one place.

	dimens.xml: An XML file that defines dimension values, such as standard
heights and font sizes for your UI. You can then use these values across your
app to ensure it is consistent.

	arrays.xml: An XML file that defines a series of values to be used together
(known as an array). For example, this could be a list of icon files or a list of
options to display to the user.

	strings.xml: An XML file that defines text strings to be used in the application.
For example, you can place any screen titles or the app’s name here and
reference them in your code. If you need to change these items, you simply do it
here rather than in your code.

	styles.xml: An XML file that defines styles to be used in the application. These
styles are then applied to the UI elements that require them, so you separate the
look of your app from the layout and functionality. This makes your app easier to
maintain.

Notice the Android file name conventions for the different types of XML files in the values folder,
adding another level of complexity.

Leveraging Android XML (Your Secret Weapon)
One of the most useful features of Android as a development environment is its use of XML to define
a great number of attributes within your application’s infrastructure. Because you don’t need to work
inside the Java programming language to handle these attributes, you save hundreds of lines of
Java code. Everything within the application—from your UI layouts, to your text strings, animation,
or inter-process communication with Android’s operating system services (like vibrating the phone or
playing a ringtone)—can be defined via XML.

What makes XML ideal for Android development, and especially for beginners, is its ease of use. It is
no more complicated than HTML markup. So, if you know how to use tags to boldface text or insert
an image in your website, you already understand how to use XML.

You will be learning how this works in the next chapters of the book. Suffice it to say that you will
become familiar with XML in your Android development. XML brings a lot of flexibility to Android
development.

Android’s use of XML for application design is very similar to the way HTML, cascading style sheets
(CSS), and JavaScript are used in today’s popular Internet browsers. CSS is used to separate
the layout and look of a web page from its content and behavior, which are specified by HTML
markup and JavaScript code, respectively. This approach leads to more modular and logically
structured web pages. Designers can work on the look of a website using CSS, while search engine
optimization (SEO) professionals optimize its findability with HTML, leaving user interaction to
programmers who know how to use JavaScript. The same approach applies to Android. Designers

www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 4: Introducing the Android Software Development Platform

can create the UI for an application with XML, while programmers can call and access its elements
using Java without affecting screen formatting, animation, or graphics. Genius.

XML gives us amazing flexibility to accommodate variations within our apps, such as different screen
sizes, languages, themes, and UI designs. Here, we’ll look at a couple of brief examples to give you
an idea of XML’s power.

Screen Sizes
Because UI designs can be defined precisely by an XML file, it’s easy to deal with the variety of
screen sizes available on Android devices today. Let’s say that you want to do a custom layout for
each of the four primary screen sizes used in Android phones:

Quarter VGA (QVGA), 240 × 320 pixels also known as low DPI or LDPI	

Half VGA (HVGA), 320 × 480 pixels (the “sweet spot” for low-cost Android 	
phones) also known as medium DPI or MDPI

Wide VGA (WVGA), 800 × 480 pixels (found on the newer phones and now a 	
common tablet and e-reader resolution) also known as High DPI or HDPI

Wide SVGA (WSVGA), 1,024 × 600 pixels (found on the newest smartphones 	
and tablets) also known as extra high DPI or XHDPI

HDTV 1280 x 720 and 1920 x 1080 (found on HD smartphones, tablets, 	
e-readers and iTVs) also known as TVDPI

How does XML provide a solution? Simply create a UI design in XML for each size and use Java to
determine the screen resolution of the phone. We also noted in the previous section that Android
provides drawable folders for the graphics file assets for each of these standard screen resolutions,
so be aware that you must develop graphics for at least four different screen size targets for your
Android applications. No one said that Android applications development was going to be easy!

Desktop Clocks
As another example of how XML can be leveraged, let’s take a look at a few lines of code that define
an important utility: Android’s popular desktop clock. (In Chapter 6, you’ll learn how to create your
own custom desktop clocks.)

The XML tag for an Android program function usually has the same name as its Java counterpart, so
you can access the power of the programming language from simple XML. For example, here is the
XML tag that corresponds to Java’s AnalogClock:

<AnalogClock />

Android’s XML tags start with a left-angle bracket (<), followed immediately (no space) by a class
name, a space, a slash mark, and a right-angle bracket (/>).

www.it-ebooks.info

http://www.it-ebooks.info/

61CHAPTER 4: Introducing the Android Software Development Platform

To customize an AnalogClock, you must add attributes to the AnalogClock tag, inserting them before
the closing part of the tag (/>). Suppose you want to add an ID to reference the utility from other
parts of the application. Here’s how:

<AnalogClock android:id="@+id/AnalogClock" />

This adds an ID to your AnalogClock with the name AnalogClock, which you can use to reference it
elsewhere in your application.

For each XML tag in Android, there are dozens of parameters that allow you to control the tag’s
appearance and implementation, including its positioning, naming (used in the Java code), and other
options.

In real-life, for readability, programmers usually write this code with each configuration parameter
indented on a separate line, like this:

<AnalogClock
 android:id="@+id/AnalogClock"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
/>

The Android compiler considers everything inside the AnalogClock tag to be a parameter, or a
customization option, until it reaches a closing tag (/>). The fill_parent parameter stretches
content to fill a container, and the wrap_content parameter shrink-wraps the content. We’ll cover
these and other view and layout concepts later on in Chapters 6 and 7.

Using Your Android Application Resources
In addition to Java code and XML markup, the resources your application draws on consist primarily
of new media elements and other file types that contribute to its functionality in one way or another.
These may include XML files that contain animation parameters or text strings, bitmap image files,
and even audio and video files (audio and video “streams” on the other hand are external to an app
and come from a server, and thus are not a resource in this context).

One of the primary reasons for externalizing resources is that you can have sets of resources for
variations, such as different screen sizes or language versions. Language localization localizes the
application to any given country. These language localizations can be easily referenced in the Java
code and switched when necessary by pointing to different external file names or folders.

Bitmap Images
Let’s look at an example of a common application resource: the bitmap image. Your PNG or JPEG
bitmap image goes into its proper /res/drawable folder depending on its pixel dimensions. It can
then be referenced by its file name only (excluding its extension) in the Java code, as well as in XML.
For this important reason, be sure not to give a PNG file and a JPG file the same name, or you will
have problems when it comes time to compile your code.

www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 4: Introducing the Android Software Development Platform

Also, contrary to normal file-naming conventions, image file names can contain only numbers, an
underscore character, and lowercase letters, so make sure to remember this rule (one of the many
anomalies of Android programming).

In summary, to set up bitmap images to be used in your application, do the following:

Name them correctly, using only numbers, underscores, and lowercase letters.	

Use the PNG or JPG format, or WebP if you are creating apps for the Android 4 	
or later (4.0, 4.0.4, and 4.1) platforms only.

Make sure they are in the proper 	 /res/drawable folder, based on their pixel
dimensions, so that Android can find them.

in your Java code. We can provide resources for different screen orientations and resolutions in this
fashion, and have Android decide which folders to look in for our application resources based on
each user’s smartphone, tablet, or e-reader model.

Android currently offers four screen resolutions: low resolution (320 × 240), medium resolution
(480 × 320), high resolution (800 × 480) and extra high resolution (1,024 × 600 or 1,280 × 720). Look
for a fifth TVDPI resolution 1,920 × 1,080 classification to be added in Android 4.2 to accommodate
Google TV and HD iTVs. Note that you can always add your own alternate resources folders now,
Android just creates the /drawable-ldpi folders for you as a convenience and to remind you to
provide graphics for all the common device screen sizes, but if you were doing an iTV app you could
create a /drawable-tvdpi folder yourself and reference it from your app.

To add an alternate resource folder, create a directory under /res with the form <resource_name>−
<config-qualifier>. For instance, android created /res/drawable-hdpi for you in its New Project Creation
Process, to hold your high DPI resolution drawables or images.

This created an alternate resource folder for high-density dots per inch (hdpi) images. The alternate
folder will be used automatically if the Android smartphone screen uses a WVGA (800 × 480) screen
high-end model. Otherwise, it will use the normal HVGA (320 × 480) screen images, located in the
default /res/drawable-mdpi folder, if the device screen resolution is not automatically detected.

If you want to also support low-end screens, you can use the low-density dots per inch qualifier,
ldpi. There is a medium-density dots per inch qualifier, mdpi, as well as an extra high dots per inch
qualifier called xhdpi.

www.it-ebooks.info

http://www.it-ebooks.info/

63CHAPTER 4: Introducing the Android Software Development Platform

So, to have images for QVGA, HVGA, WVGA, and WSVGA screens arranged into folders in a way
that allows Android to automatically recognize the folder hierarchy, set up your folder structure as
follows:

	/res, with only subfolders, place NO individual files in this folder

	/res/drawable-ldpi, with the following low-density DPI (120 DPI) screen images
(QVGA):

	ic_launcher.png (application icon file), 36 × 36 pixels

	background.png (application background), 320 × 240 pixels

	/res/drawable-mdpi, with the following medium-density DPI (160 DPI) screen
images (HVGA):

	ic_launcher.png, 48 × 48 pixels

	background.png, 320 × 480 pixels

	/res/drawable-hdpi, with the following high-density DPI (240 DPI) screen images
(WVGA):

	ic_launcher.png, 72 × 72 pixels

	background.png, 800 × 480 pixels

	/res/drawable-xhdpi, with the following extra-high-density DPI (320 DPI) screen
images (WSVGA or HDTV):

	ic_launcher.png, 96 × 96 pixels

	background.png, 1,024 × 600 or 1,280 × 720 pixels

Note that there are two HDTV resolution graphics standards, HDTV 1,280 by 720 and True HD 1,920
by 1,080. You’re well on your way to correctly setting up your Android application’s resources. One
more file we need to examine is AndroidManifest.xml.

Launching Your Application: The AndroidManifest.xml File
When Android launches your application, the first file it seeks out is the application manifest file. This
file is always located in the root of your project folder and directory structure, and is always called
AndroidManifest.xml so that it can be located easily on startup.

The Android manifest declares some very high-level definitions and settings for your application using
(surprise!) the XML markup language. The following are some of the key items AndroidManifest.xml
includes:

References to the Java code you will write for your application, so that your 	
code can be found and run.

Definitions of the components of your Android application, including when they 	
can be launched.

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 4: Introducing the Android Software Development Platform

Definitions of permissions for application security and for talking with other 	
Android applications.

Declaration of the a minimum level of Android operating system version support, 	
which amounts to defining which version(s) of Android your application is going
to support.

All of the apps to be written in this book will support Android versions 2.2, 2.3.7, 3.0, 3.1, 3.2, 4.0,
4.0.4, and 4.1.2. We call this “Android API Level 8 through 16 compatibility” because it supports
every version of Android from Version 2.2 (Froyo) through the current Version 4.1.2 (Jelly Bean).

Tip I try to develop for the 2.2 API Level 8 so that my applications run on API versions 2.2, 2.3.7, 3.0,
3.1, 3.2, 4.0, 4.0.4, and 4.1.2. Later versions are obviously backward compatible, so the further back
you develop your minimum version level support, the more people will be able to use your application. If
you want to make money selling Android apps, this concept translates directly into dollars, as there are
millions of 2.2 and 2.3.7 devices still out there, including the original Amazon Kindle Fire which runs 2.3.7.

users is the crafting of the “Hello World” application, so let’s create our own Hello Absolute Beginner
application right here and now.

First, we’ll launch Eclipse and create the application. Then we’ll take a look at the files and Java and
XML code that Eclipse generates to get your app up and running. Finally, we’ll give the app an icon
to display on the Android device’s (smartphone, tablet, e-reader or iTV) main menu.

Launching Eclipse
The first step is to launch Eclipse Juno 4.2 for Java EE. From there, you’ll create an Android project
to house the application code, markup, and assets.

To launch Eclipse, find and click the Eclipse shortcut launch icon on your workstation. If a security
warning dialog like the one shown in Figure 4-3 appears, click Run. If you don’t want to see this
dialog every time you start Eclipse, uncheck the box that reads “Always ask before opening this file.”

www.it-ebooks.info

http://www.it-ebooks.info/

65CHAPTER 4: Introducing the Android Software Development Platform

Next you will see the Eclipse Juno startup screen. Then, in a few more seconds, a dialog will appear,
allowing you to tell Eclipse where your projects folder is kept on your hard disk drive. I’m going to
accept the default User Directory with my nickname, so the entry is C:\Users\Walls\workspace, as
shown in Figure 4-4. If you don’t want to specify this each time you start Eclipse, you can check the
“Use this as the default and do not ask again” option. Once you click the OK button, Eclipse will
start, and the IDE will appear.

Figure 4-3. The Windows security warning dialog for Eclipse Juno 4.2 for Java EE launch

Figure 4-4. The Eclipse workspace location definition dialog

www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 4: Introducing the Android Software Development Platform

Creating an Android Project
1. Once the IDE has launched, select File ➤ New ➤ Project in the Eclipse main

menu to create a new project just like we did in Chapter 3 to see if Android
Development Tools had installed correctly inside of Eclipse. This is shown in
Figure 4-5 using two screenshots combined into one (to save space) the File
➤ New ➤ Project menu sequence as well as the resulting New Project Dialog.

2. In the New Project dialog, open the Android folder using the arrow just to the left.

3. Next, select Android Application Project from the list of wizards to tell Eclipse
the type of project you wish to create, as shown on the right in Figure 4-5.
Click the Next button to continue.

Figure 4-5. The Eclipse 4.2 New ➤ Project ➤ Android Application Project menu sequence and dialog

Next you’ll see the New Android Application dialog, which allows you to specify all types of
important variables for your applications. Let’s address them one by one.

	Application Name: This is the name of the application and will be displayed
on the top of the screen on the Android device. Let’s give this the same name
as our Project name (note that the dialog does this for you as you type it in,
entering it into both fields): HelloAbsoluteBeginner.

Caution We have omitted spaces from the folder name because spaces are not supported in Java
names. It is not advisable to use spaces in names of folders that you use for software development.

www.it-ebooks.info

http://www.it-ebooks.info/

67CHAPTER 4: Introducing the Android Software Development Platform

	Project Name: This is the name of the folder in your C:\Users\YourName\
workspace\ folder that holds your Hello Absolute Beginner application
folders and files. Let’s give this folder the same name as our application:
HelloAbsoluteBeginner

	Package name: This is the name you want to use for your Java package. For
now, we will simply define this as the name of the container that will hold all of
the Java code our application uses. Let’s name this package first.example.
helloabsolutebeginner. (Java package names are separated by periods, much
like file pathnames are separated by back slashes.)

	Build SDK: This panel allows you to specify the version of Android that your
application will support. The more you support, the more users will be able to
use your application, so usually we would use a build target of Android 1.6. That
version has everything that we will need to build most applications that work
across all current Android smartphones. For now, however, let’s just accept the
default current API Level 16, which means we’re developing this first application
to run on the current Android 4.1 Jelly Bean platform and 4.1 phone and tablet
emulator we just installed in Chapter 3.

	Minimum Required SDK: I am also going to accept the default Minimum
Required SDK of API Level 8, which means your application will be compatible
back to Android 2.2 smartphones and tablets, meaning users with Android 2.2,
2.3.7, 3.0, 3.1, 3.2, 4.0, 4.0.4, and 4.1 compatible hardware will be able to run
the application.

	Create Custom Launcher Icon: Leave this box selected so that we can see
the dialog (next) that helps to automate creation of an App Icon for the Launch
Area on your Android smartphone or tablet. We also will see how to create these
icons manually later on in this chapter as well.

	Create Project in Workspace: Leave this box selected as well so that Android
will create the project folder structure for this application under your C:/Users/
Name/workspace/ folder on your system’s hard disk drive.

Figure 4-6 shows the completed New Android Application dialog for this example. When you are
finished filling it out, click the Next button.

www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 4: Introducing the Android Software Development Platform

After you click the Next button in the New Android Application dialog, you will get the Configure
Launcher Icon Dialog as shown in Figure 4-7. Because we haven’t created our Application Launch
Icons as yet, just accept the default settings and click on the Next button to advance on into the new
Android App project creation process.

Figure 4-6. The New Android Application dialog for your HelloAbsoluteBeginner Android app

www.it-ebooks.info

http://www.it-ebooks.info/

69CHAPTER 4: Introducing the Android Software Development Platform

Next you will see the Create Activity Type Dialog shown in Figure 4-8 and for which we will be
selecting a settings value of “Blank Activity,” so that we can create a Blank (basic) Activity and
see the basic (minimum) code that the New Android App functionality in Eclipse will create for us
automatically. This auto-code generation is just what we need right now as an absolute beginner,
and as you will see Android Development Tools in Eclipse does a great job at giving new developers
a head start by writing some of the basic application bootstrapping code for them! Let’s hit the Next
button shown in Figure 4-8 and continue the New Android App project creation process to set the
parameters for our Activity as shown in Figure 4-9.

Figure 4-7. Accepting the Default Configure Launcher Icon Dialog settings

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4: Introducing the Android Software Development Platform

The New Blank Activity Dialog allows us to set the parameters for our apps activity, which is
essentially the user interface or “front end” of our app that the users will use to control and utilize the
app. Let’s use “HelloActivity” for our Activity Name and Title and “activity_hello” as our layout (user
interface) name as shown in Figure 4-9. Leave the Navigation Type and Hierarchical Parent settings
at their defaults for now, and let’s see how Android inserts our naming conventions into the Java
code and XML markup for our app. Click on the Next button to continue the process.

Figure 4-8. Creating a Blank Activity in the New Android Application series of dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

71CHAPTER 4: Introducing the Android Software Development Platform

Normally the New Android Application process would now create your New Android Project for
you, but before it does so, it checks the state of your current Android Development Environment
Installation (which we created in Chapter 3) to make sure that you have all of the SDKs, APIs, and so
on that will be needed for the New Project you are specifying. In this case, Android found a missing
API that would be needed to be installed for this Application to work (compile) properly, so it brings
up the following dialog to let you know it needs something to be added to your current development
environment. Again I am combining two screens into one in Figure 4-10 to show both the alert dialog
and the repository search and fetch progress after you click the “Install/Update” button, to OK the
addition of Android 2.2 support to your collection of SDKs and APIs. Make sure you are connected
to the Internet before clicking the Install/Update button shown in Figure 4-10! Note that if your
Android installation is 100% up to date that you will not get the Install Dependencies dialog and will
not have to go through the process shown here in Figures 4-10 through 4-12.

Figure 4-9. Filling out the parameters for our New Blank Activity in the New Android Application dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4: Introducing the Android Software Development Platform

After you click the Install/Upgrade button in the New Android Application dialog, and the necessary
files are located and fetched from the repository, you will get the Choose Packages to Install Dialog
as shown in Figure 4-11. Select the Accept All Radio Button as we have in the past and then click on
the Install button to have the Froyo Android 2.2 API packages installed via your Internet connection.

Figure 4-10. Installing/Upgrading Dependencies found to be needed by Android to support your application

www.it-ebooks.info

http://www.it-ebooks.info/

73CHAPTER 4: Introducing the Android Software Development Platform

After you click Install in the Choose Packages to Install dialog, you will get the progress bar dialog
shown in Figure 4-12 showing you the speed and progress of your installation.

Figure 4-11. Accepting the suggested Packages to Install that are needed to support your New Android Application settings

Figure 4-12. Download Progress Bar for installing the Android Support Library needed for your application

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4: Introducing the Android Software Development Platform

Once the Android 2.2 API installations are complete you will be finished with the New Android
Application Project Creation and returned to Eclipse where the IDE will now be populated with your
new (empty) project ready for development!

Inspecting and Editing the Android Application Files
After you click Finish in the New Android Application dialog, you are returned to Eclipse. In the IDE,
you can navigate through the new (empty) project structure using the Package Explorer pane.

Let’s look at the folder hierarchy that Eclipse has automatically created for our project. Click the
arrow icons next to the HelloAbsoluteBeginner folder, and then click the arrow icons next to the src
and res folders under it.

first.example.helloabsolutebeginner, menu,
, and values folders, so you can see the Java and XML files that Eclipse has so kindly created

 4-13 shows the Package Explorer pane at this point.

Figure 4-13. The Eclipse 4.2 IDE with Package Explorer pane and activity_hello.xml markup shown

Now let’s open some of these files and see just how much coding Eclipse has done for this project.

To open any of the files listed in the Package Explorer, select the file by clicking once on it (the icon
will turn blue), and then press F3. Alternatively, right-click the file name to get a context-sensitive
menu, and then select the Open option. You will see that the activity_hello.xml file is already open, to
see the markup code click the activity_hello.xml tab at the bottom right of the center coding area of
Eclipse as shown in Figure 4-13. A later screen will show the Graphical Layout view of this XML file.

www.it-ebooks.info

http://www.it-ebooks.info/

75CHAPTER 4: Introducing the Android Software Development Platform

Opening the HelloActivity.java Activity
The HelloActivity.java file holds our activity class. Right-click it and select Open to explore it now.
As shown in Figure 4-14, Eclipse has already written the code to create a UI screen for the application
and set its content to the UI defined in the activity_hello.xml file (with the R.layout.activity_hello
text), which we will look at next.

Figure 4-14. Our HelloActivity.java activity creation code shown in the Eclipse 4.2 IDE

Let’s examine this in a little more detail:

package first.example.helloabsolutebeginner;

import android.os.Bundle;

public class HelloActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_hello);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_hello, menu);
 return true;
 }
}

As you can see, Eclipse used the information in our New Android Application Project dialog to create
a usable Java file, which includes a first.example.helloabsolutebeginner package declaration,
import statements, a HelloActivity activity class, and onCreate() methods that create a layout

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 4: Introducing the Android Software Development Platform

(UI) and menu structure placeholder. Also notice in Figure 4-14 that on the right of the Eclipse IDE
a useful “Outline Pane,” which gives a bird’s-eye hierarchical overview of your java code, which will
become more useful as your code becomes more complicated!

Opening the UI Definition
Next, let’s take a look at our UI (user interface) markup code in the activity_hello.xml file in the layout
folder, as shown in Figure 4-13. The XML code in the activity_hello.xml file is quite a bit different from
the Java code. To see it, click the activity_hello.xml tab at the bottom of the middle code editing
pane or section of Eclipse, or see Figure 4-13.

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/hello_world"
 tools:context=".HelloActivity"
 />

XML uses tags similar to those used in HTML markup to define structures that you will be using in
your applications. In this case, it is a UI structure that contains a RelativeLayout tag, which keeps
our UI elements organized via relative layout positioning and a TextView tag, which allows us to put
our text message on the application screen.

Note If you don’t see something such as Figure 4-13 or Figure 4-15, to view the file, right-click its
icon in the layout folder, select Open, and then choose activity_hello.xml at the bottom of the middle
pane in the Eclipse window.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

77CHAPTER 4: Introducing the Android Software Development Platform

Notice that the TextView tag uses an attribute called android:text, which is set equal to @string/
hello_world. This is a reference to the strings.xml file, which we are going to look at next.

Opening the Strings Resource File
So far, we have looked at the Java code, which points to the activity_hello.xml file, which in turn
points to the strings.xml file. Open that file now (right-click the file’s icon in the Package Explorer and
select Open) it is located in the values folder underneath the resources folder (/res/values). The file
will open in a third tab within the Eclipse IDE, as shown in Figure 4-16.

Figure 4-15. The Graphical Layout Editor in Eclipse where our UI layout for our activity is created

www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4: Introducing the Android Software Development Platform

strings.xml file, you will see that Eclipse has already added four variables:
, hello_world, menu_settings , and title_activity_hello. The string variable named

 is to hold the text that we want our application to display. The app_name variable is

specified it in the New Android Application dialog as HelloAbsoluteBeginner.

Notice the tabs at the bottom of the editing pane labeled Resources and strings.xml. These tabs
allow you to switch between the actual XML code and the more user-friendly interface that you
see in Figure 4-16, which makes editing Android resources a bit easier than coding straight XML.
Because we’re absolute beginners we’ll utilize these features to make our development work easier,
at least for now.

Because the app_name value is already specified thanks to our New Android Application dialog, let’s
leave it alone and set the value of hello_world to something new.

Setting a Variable Value in strings.xml
To set the value of hello_world, all you need to do is to click its name in the left pane of the
Resources view and edit its text in the right pane of the Resources view. Once you click hello_world,
two fields will appear. One contains the string variable name (hello_world), and the other has its
value. In the Value field, type Hello Absolute Beginner!, as shown in Figure 4-17. This is the value
(the text) that will appear on the screen of our App when we run it later on in this chapter.

 The strings.xml file when it first opens showing the default values

www.it-ebooks.info

http://www.it-ebooks.info/

79CHAPTER 4: Introducing the Android Software Development Platform

Once you have entered a new string value for the hello_world variable, click the strings.xml tab at
the bottom of the editing pane, and take a look at the XML code that Eclipse has generated for you,
as shown in Figure 4-18.

Figure 4-17. Editing the value of the hello_world String to display: Hello Absolute Beginner!

Figure 4-18. The updated XML code for the strings.xml resource file as shown under the strings.xml tab

www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4: Introducing the Android Software Development Platform

In this view, you can see the actual XML code for the string tags, which are nested inside the
<resources> tags that allow us to define resources for our Android application.

<resources>
 <string name="app_name">HelloAbsoluteBeginner</string>
 <string name="hello_world">Hello Absolute Beginner!</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_hello">HelloActivity</string>
</resources>

Each <string> tag has a variable name attribute so we can refer to it by name in our Java code.
Tags end with the same tag that they started with, but they have an added forward slash, like this:
<string>XXX</string>.

strings.xml file you just edited using the CTRL-S shortcut (File ➤ Save) and

HelloWorldAndroid folder icon in the Eclipse
Package Explorer and select Run As ➤ Android Application as shown in Figure 4-19.

www.it-ebooks.info

http://www.it-ebooks.info/

81CHAPTER 4: Introducing the Android Software Development Platform

The first thing Eclipse will do when you try to run your app is to make sure your files are all saved.
If they are not, you will see a dialog like the one shown in Figure 4-20, which appears in this case
because we modified the hello_world variable but did not hit the CTRL-S (Save) keystroke afterward
that saves the file. Therefore, we’ll let Android Development Tools do it for us by clicking the “Yes”
option in the dialog that asks us if we want to save the file before running the app.

Figure 4-19. Using the right-click (on Project Folder) Run As ➤ Android Application menu sequence

Figure 4-20. If you forgot to save your strings.xml file via CTRL-S then Eclipse will let you know about it

Eclipse will then compile your app, and will open a version 4.1 emulator window to display a
virtual Android device (smartphone or tablet) representation (emulator) on which to run it. When
the emulator first starts up, it will display the standard smartphone (or it could be a tablet) screen,
simulating an Android OS background image and the standard Android icons for system time, signal

www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4: Introducing the Android Software Development Platform

strength, battery charge level, network type (3G, 4G, etc.) and so on. Note that it may take some
time for the emulator to load into memory (especially the first time) and to load your app and run it
once it is in memory.

The app should launch automatically once the emulator starts, but if for some reason it doesn’t, to
actually run the app in the emulator, you may need to click the Menu button in the center-bottom
area of the screen, or use the Home button to display your application icons and then select an icon
to run. Usually your application will just run automatically, you just need to wait long enough for this
to happen. You can also use the phone interface, finding and running the app as you would in real
life because this is a test environment. Give it a shot now. Figure 4-21 shows the Hello Absolute
Beginner App running in the Android 4.1 emulator.

Figure 4-21. Running the Hello Absolute Beginner’s app in the Android 4.1 device emulator

www.it-ebooks.info

http://www.it-ebooks.info/

83CHAPTER 4: Introducing the Android Software Development Platform

After you exit the 4.1 Emulator for the first time by clicking the Red X at the top right of the window,
you will probably get an “Auto Monitor Logcat” error dialog as shown in Figure 4-22, which suggests
that you enable ADT to automatically monitor the Logcat output for messages (usually error messages)
from the Android Applications run in the Emulator. Select the “Yes, Monitor Logcat” option, and click
on the OK button to continue.

Figure 4-22. Setting Android to monitor LogCat and display LogCat view in the Eclipse IDE

After you click OK you will be returned to Eclipse where you will see what no programmer or
developer wants to see in his or her IDE—Red Ink! The red text at the bottom of the IDE In the
Console tab will show feedback on the compile and run process, and in this case it related not
to problems in our code but to the fact that the Logcat was not set up, which we rectified in our
previous step by telling the ADT to set it up for us. You can see the Logcat error messages in
Figure 4-23.

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4: Introducing the Android Software Development Platform

➤ Android Application menu sequence again,
and see if we can get some black text in the console window this time, which is what we want to see
and represents feedback on what ADT is doing to compile and run your app each time you invoke
this Run As Android App menu sequence. The results are shown in Figure 4-24.

 Displaying where compiler and emulator errors appear in the Console Tab/Pane of the Eclipse IDE

www.it-ebooks.info

http://www.it-ebooks.info/

85CHAPTER 4: Introducing the Android Software Development Platform

Congratulations, you have created your first error-free Android 4.1 application. Next, we’ll customize
its Android icon.

Adding an Application Icon
The final item that we are going to do in this chapter is give our application an icon that will show up
on users’ Android devices and can be used by them to launch the application. We’ll use what you
have learned about defining alternate resources by creating an icon that works on small, medium,
large, and extra large screens. We’ll add the appropriate ic_launcher.png files into the correct
alternate dpi resolution folders provided by our Android Application project we just created, so that

Figure 4-24. Displaying what a clean compile and emulator console feedback output should look like

www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 4: Introducing the Android Software Development Platform

Android automatically finds and uses the correct application launcher icon for each type of Android
device screen size and density:

	/res/drawable-ldpi for small low density dot per inch (LDPI) screens

	/res/drawable-mdpi for average medium density dot per inch (MDPI) screens

	/res/drawable-hdpi for large high density dot per inch (HDPI) screens

/res/drawable-xhdpi for extra large extra-high density dot per inch (XHDPI) 	
screens

Not surprisingly, this is done by giving your icon an exact name and file format, and putting it into
an exact directory. When Android finds an icon file there, it automatically puts it into play as your

Be placed in the correct 	 /res/drawable-dpi folder, which holds all of the drawable
resources for that screen resolution

Be named 	 ic_launcher.png

Be a 24-bit PNG file with an alpha channel (transparency), also known as a 32-bit 	
PNG, so that the icon overlays on any system background wallpaper seamlessly

Adding Transparency
The first thing we need to do is to put the logo onto a transparency. Here are the steps to remove the
white background from the logo

1. Open the MindTaffyLogoAndroidGreen.gif logo file using the GIMP File ➤ Open
menu sequence. It is 200 × 200 pixels and the first frame of an Animated GIF
file that is from my WallaceJackson.com website.

2. Select the “Select By Color” tool (fifth in the toolbar) and set the tolerance at
15 (bottom middle tool tab for Select by Color tool settings) and the Select
By setting to Composite. Make sure the Antialiasing option is checked as
well and then click the white area to select it as shown in Figure 4-25.

www.it-ebooks.info

http://www.it-ebooks.info/

87CHAPTER 4: Introducing the Android Software Development Platform

3. Right-click in the white area in the layers tab (upper-left in Figure 4-25), which
is directly underneath the layer showing the MindTaffyLogoAndroidGreen.
gif image that we opened in Step 1, and select the “New Layer” option to
open the New Layer Dialog as shown in Figure 4-26. Name the new layer
“Transparency,” and accept the other defaults as provided, and click OK.

Figure 4-25. Selecting the white area in the image that will be our transparent icon to remove white values

www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 4: Introducing the Android Software Development Platform

4. Choose the Select Menu and then the Invert menu option shown in Figure 4-27
to invert the selected white areas. This will grab only the logo because before
only the white (nonlogo) areas were selected and therefore after the Invert
operation only the logo pixels (nonwhite area) will be selected. Pretty cool.

 Naming the layer “Transparency” and setting its width, height, and fill type options

www.it-ebooks.info

http://www.it-ebooks.info/

89CHAPTER 4: Introducing the Android Software Development Platform

5. Next select the Edit Menu ➤ Copy Option shown in Figure 4-28 to copy this
selected logo image data to the clipboard. Note that in GIMP when you have
your mouse over a menu or option it tells you exactly what it will do, and I
have included these in the screens in this chapter to make it even easier to
follow along.

Figure 4-27. Using a Select ➤ Invert menu sequence to select the logo portion of the image rather than the white

www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 4: Introducing the Android Software Development Platform

6. Click on your Transparency Layer on the left to select it (the layer will
turn blue) if it isn’t selected already, and then hit the CTRL-V keystroke
combination to paste the pixel data from the clipboard, or you can use the
Edit Menu ➤ Paste Option if you want a more visual work process. Next,
click on the Eye Icon (turns layer visibility on or off) next to the original
MindTaffyLogoAndroidGreen.gif layer at the bottom of the layer stack, so
all that is showing in your preview on the right is the transparency layer and
the floating selection (the logo only pixels), which you just pasted. The result
of this work process are shown in Figure 4-29. Transparency in GIMP (and
Photoshop for that matter) is represented by a checkerboard pattern, in case
you are wondering!

 Using the Edit ➤ Copy menu sequence to copy the selected logo data to the clipboard (memory)

www.it-ebooks.info

http://www.it-ebooks.info/

91CHAPTER 4: Introducing the Android Software Development Platform

7. Now that we have the Launcher Icon image in the transparent format needed
to “composite” it (blend it seamlessly) with any Android desktop out there,
we will use the Image Menu’s Scale Image Option, shown in Figure 4-30, to
turn this 200 by 200 pixel image into the target icon image sizes (96, 72, 48,
and 36 pixels) that we will need for our four Drawable Resources Folders.

Figure 4-29. Pasting the Logo (icon) data onto the transparency layer and turning off visibility of original art

www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4: Introducing the Android Software Development Platform

The Scale Image dialog shown in Figure 4-31 allows us to specify what image size we wish to scale
our image down to, in this case 96 pixels for our /drawable-xhdpi/ folder location, and to also choose
an Interpolation Algorithm, in this case “Cubic” (known as “Bi-Cubic” in Photoshop) interpolation,
which yields the highest quality level, as you will see. Once you set your scaling parameters, click
the “Scale” button to commit the scaling operation, and scale your 200 pixel image into a 96 pixel
extra high density Android device icon!

 Using the Image ➤ Scale Image… menu sequence to scale the image to target icon resolutions

www.it-ebooks.info

http://www.it-ebooks.info/

93CHAPTER 4: Introducing the Android Software Development Platform

Next we will select the File Menu ➤ Export Option shown in Figure 4-32. Also note that our
transparent icon is now at the required 96 by 96 pixel size.

Figure 4-31. Setting the Scale Image parameters to 96 by 96 pixel for XHDPI icon requirements

Figure 4-32. Using the File ➤ Export menu sequence to export our 96 pixel XHDPI icon

www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4: Introducing the Android Software Development Platform

In the File Export dialog, use the Places Navigator Pane on the left to find your workspace folder and the
HelloAbsoluteBeginner project folder and drawable-xhdpi target folder as shown in Figure 4-33. Click
on the ic_launcher.png file that was auto-created for us previously to select that file for replacement with
our new custom icon. The filename will be placed automatically in the top Name field for you when you
do this, and the Save in Folder field will also have the proper path to your drawable-xhdpi folder from
your C: drive! Once everything is configured correctly, click on the “Export” button to over write your
custom XHDPI icon and replace the generic one that was auto-created for us earlier.

Figure 4-33. Exporting our ic_launcher.png file to the workspace project resource drawable XHDPI folder

Once you click on Export you will get two dialogs as shown in Figure 4-34, the first confirming
that you want to replace (overwrite) the existing ic_launcher.png launcher icon, and the second
requesting File Export settings that pertain to the PNG file format.

www.it-ebooks.info

http://www.it-ebooks.info/

95CHAPTER 4: Introducing the Android Software Development Platform

To create the other three resolution icons, rather than going through the entire work process outlined
earlier, let’s take a clever shortcut that involves the Edit Menu ➤ Undo Option shown in Figure 4-35
to save a dozen steps of work! All we need to do is use the Edit ➤ Undo Scale and redo the last
couple of steps (Image Scale and File Export) and then do the same work process to scale the
200 pixel transparent image to 72, 48, and 36 pixels and then File ➤ Export to the HDPI, MDPI, and
LDPI drawable folders under your project file, replacing the ic_launcher.png file in each folder with its
required resolution equivalent. Make sure to scale from the 200 pixel image each time (i.e.,
200 pixels scale to 72 pixels, 200 pixels scale to 48 pixels, and 200 pixels scaled to 36 pixels) as the
quality result will be significantly better than if you used a work process in which you scaled from
200 to 96 and then 96 to 72, 72 to 48, and 48 to 36. This is because the more data you give the
original Image Scaling Algorithm the better job it will do (the more it will have to work with) giving
you a great result, so if you want to design your Launcher Icons at 864 pixels (which is what Google
recommends in their graphics design guidelines) then by all means go for it!

Figure 4-34. Confirming the replacement of the original icon and settings for the PNG32 file format

www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 4: Introducing the Android Software Development Platform

Summary
Android is very particular about which types of files you use and where you put them in your project
folder. We will be looking at the particulars of how things need to be set up to work properly in
Android throughout the rest of this book.

In this chapter, you created and compiled your first project for Android inside Eclipse using
the Android application development environment you installed in Chapter 3. You saw that the
Android Development Environment in Eclipse gives you a lot of development assistance, and
as a beginner, you’ll want to take advantage of every bit of help you can get. The proof is in the
pudding, as they say.

You just developed your first Android Hello Absolute Beginner application and needed to change
only a single line of code in the Eclipse for Java EE IDE. You saw how Android sets up a basic
application file and directory structure, and which Java and XML files are needed to create a UI, a
menu, and a basic application. You saw how to Compile and Run your app in the Android 4.1 Device
Emulator using the Run as Android Application command.

 Undo the 200 pixel to 96 pixel scale operation so we can scale to other sizes

www.it-ebooks.info

http://www.it-ebooks.info/

97CHAPTER 4: Introducing the Android Software Development Platform

Your Android application icon is very important to the branding of your application, as it represents
your application on the users’ desktop, which is usually crowded with all of the other installed
application icons. Customizing your own app icon is as simple as creating the PNG32 graphics and
then putting the icon files into their correct target resolution (DPI) folders. You just must make sure
that the icon is saved in the correct file type, is the correct resolution, uses an alpha channel, and
has the correct file name: ic_launcher.png.

The next chapter provides an overview of Java and how Android compartmentalizes things having
to do with an application. In the remaining chapters, we will get down to actually coding in Java and
creating XML markup that delivers your application’s UI and functionality in more advanced ways
and with more advanced features.

www.it-ebooks.info

http://www.it-ebooks.info/

99

Chapter 5
Android Framework Overview

The primary programming language used in developing your Android applications is Java SE, from
Oracle (formerly Sun Microsystems). As noted in Chapter 1, Java SE stands for Java Standard
Edition, and many people shorten this to just Java when referring to the programming language.
Two other editions of the Java programming language are called Java EE, short for Java Enterprise
Edition, and Java ME, for Java Micro Edition.

Java EE was designed for use on potentially massive computer networks, such as vast collections
of blade computers that are used to run large enterprises or corporations with thousands of active
users, although Java EE also can be run on smaller installations as well as long as they have enough
system memory and a couple of processing cores. Its differentiating features beyond Java SE are
that Java EE features more multiuser scalable functionality than Java SE, which is designed more
for a single user on a single computer system, say a home PC or a laptop, or better yet, an Android
device such as an iTV set, e-book e-reader, tablet, or smartphone.

Java ME is designed for embedded systems to create highly portable computers such as mobile
phones. It has fewer features than Java SE, so that it can fit onto a standard mobile phone (usually
termed a “feature phone” today) without using too much memory and resources to run it. Most entry-
level mobile phones (flip-phones) run Java ME, but Android smartphones run the more powerful Java
SE. Android phones can run Java SE because they have a full gigabyte of memory and a 1GHz or
faster CPU, so essentially today’s Android touchscreen smartphones are tiny Linux computers.

Java is an object-oriented programming (OOP) language. It is based on the concepts of developing
modular, self-contained constructs called objects, which contain their own attributes and
characteristics. In this chapter, you will learn about the OOP characteristics of Java, and the logic
behind using these modular programming techniques which are used to build applications that are
easier to share and debug due to implementing this OOP approach.

After you’ve had a taste of the power of Java, we’ll quickly cover XML because it’s the way you
define UIs and configurations in your Android apps, as you saw firsthand in Chapter 4 when you built
your first Android application. Without XML, you would need to rely solely on Java code to define
everything, which would make developing apps a lot more complicated, especially for the design
department.

www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 5: Android Framework Overview

Finally, we’ll cover the main parts of the Android framework, and you will be able to see the
object-oriented programming (OOP) underpinnings that Android supports. We’ll briefly cover each
component and explain which chapter covers it in more detail.

The Foundation of OOP: The Object
The foundation of OOP is the object itself. Objects in OOP languages are similar to objects that you
see around you every day, except they are virtual and not tangible. As with tangible real-world
objects, Java objects have characteristics, called states, and things that they can do, called
behaviors. One way to think about this is that objects are nouns, or things that exist in and of
themselves, and behaviors are like verbs, or things that nouns do.

Color (red)	

Direction (N, S, E, or W)	

Speed (15 miles per hour)	

Engine type (gas, diesel, hydrogen, propane, or electric)	

Gear setting (1, 2, 3, 4, or 5)	

Drivetrain type (2WD or 4WD)	

Accelerate	

Shift gears	

Apply the brake	

Turn the wheels	

Turn on the stereo	

Use the headlights	

Use the turn signals	

You get the idea.

Figure 5-1 is a simple diagram of the object structure using the car example. It shows the
characteristics, or attributes, of the car that are central to defining the car object, and the behaviors
that can be used. These attributes and behaviors define the car to the outside world.

SHIFT GEARS

RED

15 MPH
N 4

GEAR: 1

GAS

ACCELERATE TURN WHEELS
APPLY BRAKE

ANATOMY OF A CAR OBJECT

Figure 5-1. Car object showing car characteristics (inner oval) and car behaviors (outer oval)

www.it-ebooks.info

http://www.it-ebooks.info/

101CHAPTER 5: Android Framework Overview

Objects can be as complicated as you want them to be, and can nest or contain other objects
within their structure, or object hierarchy. A hierarchy is like a tree structure, with a main trunk and
branches and subbranches as you move up (or down) its structure. A good example of a hierarchy
that you use every day is the multilevel directory or folder structure on your computer’s hard
disk drive.

Directories or folders on your hard disk drive can contain other directories or folders, which can in
turn contain yet other directories and folders, allowing complex hierarchies of organization to be
created. We saw a great example of this in Chapter 4, where our Eclipse Workspace folder was in
our Users folder, our HelloAbsoluteBeginner project folder was in our Workspace folder, and our
Launch Icons were in Resource (Drawable) folders within that HelloAbsoluteBeginner project folder!

You can do this same hierarchical construction with objects that can contain subobjects, which
can themselves contain further subobjects, as needed to create your structure. You’ll see plenty of
nested objects when working with Android because nested objects are useful for grouping objects
that are used in only one place. In other words, some types of objects are useful only to one other
type of object in an Android app, so they are provided in a nested hierarchy underneath that
object type.

You should practice identifying objects in the room around you, and then break their definition down
into states (characteristics) and behaviors (things that they can do), as this is how you will need
to think to become more successful in your OOP endeavors with the Java programming language
and the XML markup language. It is important to note that both Java and XML can be used to
define objects for Android applications. We already defined a TextView resource object having six
characteristics in Chapter 4 using XML (see lucky Figure 4-13 for that object definition).

You’ll notice that in real life, objects can be made up of other objects. For example, a car engine
object is made up of hundreds of discrete objects that function together to make the engine object
work as a whole. This same construction of more complicated objects out of simpler objects can be
done in OOP languages, where complex hierarchies of objects can contain other objects that have
been created in previous Java code.

Some OOP Terminology
Now let’s cover some of the technical terminology used for Java objects. First, objects have fields
and methods, as follows:

	Fields, called variables, hold the object’s states.

	Methods are programming routines that operate on the object’s internal states. If
object characteristics can be thought of as nouns, then methods can be thought
of as verbs, using this analogy. Methods also allow other objects external to the
object itself to communicate with the object.

One of the key concepts of OOP is data encapsulation, where the object’s fields are allowed to be
modified directly only through that same object’s methods. This allows the object to be self-sufficient.
For example, to turn the car, you use the steering method, which positions the wheels in the
desired direction.

www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 5: Android Framework Overview

With data encapsulation, each object that is part of a larger object construct can be built and tested
individually, without requiring accessing data from other objects or modules of the application (which
can translate into bugs). Without data encapsulation, people could simply access any part of your
object’s data and use it however they pleased. This could introduce bugs, affecting the methods you
have perfected to manipulate your object and provide your solution.

Data encapsulation promotes the core concept in OOP of modularity. Once an object is created and
tested, it can be used by other objects without worrying about its integrity. Data encapsulation thus
allows code reuse, so programmers can develop libraries of useful objects that do not need to be
rewritten or retested by other programmers. You can see how this can save developers time and
money by structuring only the work that needs to be done and avoiding redundant work processes.

Data encapsulation also allows developers to hide the data and the internal workings of the object

seating capacity, engine types, fuel types, transmission types, and so on.

In Java SE, we write something called a class to define what an object can do (its methods) and the
fields it has. Once this class has been coded in Java, we can then create an instance of each object
that we wish to use by referencing the class definition. In architectural terms, the class is a type of
blueprint as to what the object is, what states it contains, and what it can do (what methods it has).

Note An instance is a concrete object created from the blueprint of the class, with its own states or
unique data attributes. For example, you might have a (second) blue car instance that is traveling south
in third gear. (In the example, our first car instance is red and traveling north in first gear.)

To illustrate this further, let’s construct a basic class for our car object example. To create a car class,
you use the Java keyword class, followed by your name for the new class that you are writing, and
then curly brackets to hold your code definition, like so:

class Car {Code definition for a car class goes in here. We will do this next.}

The first thing that we usually put inside our class (inside the curly {} brackets) is the data fields
(variables) that will hold the states, or attributes, of our car. In this case, we have six fields that define
the car’s gear, speed, direction, fuel type, color, and drivetrain (two- or four-wheel drive), as specified
in the basic diagram shown earlier in Figure 5-1.

www.it-ebooks.info

http://www.it-ebooks.info/

103CHAPTER 5: Android Framework Overview

To define a variable in Java, you first declare its data type (int means a whole number, and String
means text), followed by your variable name. You can also (optionally) set a default, or starting, value
by using an equal sign and a data value. The variable definition ends with a semicolon.

Note Semicolons are used in programming languages to separate each code construct or definition
from the other ones within the same body of code.

So, with our six variables from our anatomy of an object diagram in place, our class definition looks
like this:

class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas";
}

Remember that these are all the default values—the ones each object instance will have when we
create it.

Notice how the example spaces out the curly braces ({}) on their own lines and indents lines, so that
you can see what is contained within those braces more easily.

The next part of the class file will contain the methods that define how the car object will operate on
the variables that define its current state of operation. Methods also can return a value to the calling
entity, such as values that have been successfully changed or even answers to an equation. For
instance, there could be a method to calculate distance that multiplies speed by time and returns a
distance value.

To declare a method that does not return any value to the calling entity, you use the void keyword.
A good example of using void is a method that triggers something—the method is used to invoke a
change in the object, but does not need to send a value back to the calling function.

If your method or function returns a value, instead of using the void keyword, you use the data type
of the data that is to be returned, say int or string. For example, an addition method would return a
number after finishing its calculation, so you would use int.

After the void keyword comes a name for the method (say, shiftGears). This is followed by the type
of data (in this case, an int) and variable name (newGear) in parentheses.

void shiftGears (int newGear) {

The variable contains a data parameter that will be passed to the method, so the method now has
this variable with which to work.

www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 5: Android Framework Overview

Note The normal method-naming convention is to start a method name with a lowercase
letter, and to use uppercase letters to begin words embedded within the method name, like this:
methodNameExample(). Read more about naming conventions for Java at:
http://www.oracle.com/technetwork/java/codeconv-138413.html

Some methods are called without variables, as follows:

methodSample();

shiftGears() method, you would use the following format:

shiftGears() method’s newGear variable, which sets its value. This value is
shiftGears() method logic (the part inside the curly braces),

upShift() method and a
 method that would upshift and downshift by one gear level each time they were called,

gears on our car; we would just call upShift() or downShift() whenever gear shifting was needed.

Note Notice the empty parentheses after the method names in the text. These are used when writing
about the method, so that the reader knows that the author is talking about a method. You will see this
convention used throughout the rest of this book.

After the method declaration, the method’s code procedures are contained inside the curly braces.
In this example, we have four methods:

The 	 shiftGears() method sets the car’s gear to the gear that was passed into
the shiftGears() method.

 void shiftGears (int newGear) {
 gear = newGear;
 }

The 	 accelerateSpeed() method takes the object’s speed state variable and adds
an acceleration factor to the speed, which causes the object to accelerate. This
is done by taking the object’s current speed setting, or state, and adding an
acceleration factor to it, and then setting the result of the addition back to the
original speed variable, so that the object’s speed state now contains the new
(accelerated) speed value.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.it-ebooks.info/

105CHAPTER 5: Android Framework Overview

 void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

The 	 applyBrake() method takes the object’s speed state variable and subtracts
a braking factor from the current speed, which causes the object to decelerate,
or to brake. This is done by taking the object’s current speed setting and
subtracting a braking factor from it, and then setting the result of the subtraction
back to the original speed variable, so that the object’s speed state now contains
the updated (decelerated) braking value.

 void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

The 	 turnWheel() method is straightforward, much like the shiftGears() method,
except that it uses a string value of N, S, E, or W to control the direction that the
car turns. When turnWheel("W") is used, the car will turn left.

 void turnWheel (String newDirection) {
 direction = newDirection;
 }

The methods go inside the class and after the variable declarations, as follows:

class Car {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas";

 void shiftGears (int newGear) {
 gear = newGear;
 }

 void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 void turnWheel (String newDirection) {
 direction = newDirection;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 5: Android Framework Overview

This Car class allows us to define a car object, but it can’t do anything until we use it to instantiate
an object. In other words, it does not do anything until it is called.

For us to create an instance of an object, we must instantiate it. Here’s the onCreate() method of an
Android application, where we instantiate two cars and use them (refer to the example in Chapter 4
to see how to create an onCreate() method in an Android app):

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_car);

 Car carOne = new Car(); // Create Car Objects
 Car carTwo = new Car();

 carOne.shiftGears(3);
 carOne.accelerateSpeed(15); // Invoke Methods on Car 1
 carOne.turnWheel("E");

 carTwo.shiftGears(2); // Invoke Methods on Car 2
 carTwo.applyBrake(10);
 carTwo.turnWheel("W");

Car() class constructor, along with the new keyword, which creates a new object

Car carOne = new Car();

The syntax for doing this is very similar to what we used to declare our variables:

Define the object type 	 Car.

Give a name to our object (carOne).

Set the 	 carOne object equal to a new Car object definition, which has all the
default variable values set.

To invoke our methods using our new car objects requires the use of something called dot notation.
Once an object has been created and named, you can call methods by using the following code
construct:

 objectName.methodName(variable);

So, to shift into third gear on car object number one, we would use this:

carOne.shiftGears(3);

So, as you can see in the final six lines of code in the onCreate() method, we set carOne to third
gear, accelerate it from 15 to 30 mph by accelerating by a value of 15, and turn east by using the
turnWheel() method with a value of "E" (the default direction is north, or "N"). Car two we shift

www.it-ebooks.info

http://www.it-ebooks.info/

107CHAPTER 5: Android Framework Overview

into second, applyBrake() to slow it down from 15 to 5 mph, and turn the car west by using the
turnWheel("W") method via our dot notation. Also note that you can place comments in your code
by preceding them with two forward slashes. When the compiler sees this it ignores anything after
the two slashes until the end of that line.

Providing Structure for Your Classes: Inheritance
There is also support in Java for developing different types of car objects by using a technique
called inheritance, where more specific car classes (and thus more uniquely defined objects) can
be subclassed from a more generic car class. Once a class is used for inheritance by a subclass, it
becomes the superclass. There can be only one superclass, but there can be an unlimited number of
subclasses. All of the subclasses inherit the methods and fields from the superclass.

For instance, from our Car class, we could subclass an Suv class that extended the Car class to
include those attributes that would apply only to an SUV type of car, in addition to the methods
and states that apply to all types of cars. An SUV car class could have onStarCall() and
turnTowLightOn() methods, in addition to the usual car operation methods. Similarly, we could
generate a subclass for sports cars that includes an activateOverdrive() method to provide faster
gearing and an openTop() method to put down the convertible roof. You can see these subclasses in
the extension of our car object diagram shown in Figure 5-2.

TOW LIGHTON STAR
SHIFT GEARS

SHIFT GEARS

SHIFT GEARS
OVERDRIVE OPEN TOP

SPORTSUV

INHERITANCE OF A CAR OBJECT

ACCELERATE

ACCELERATE

ACCELERATE
APPLY BRAKE
TURN WHEELS

APPLY BRAKE
TURN WHEELS

RED

15 MPH
N 4
GEAR: 1

GAS

RED

15 MPH
N 4
GEAR: 1

GAS

RED

15 MPH
N 4
GEAR: 1

GAS

APPLY BRAKE
TURN WHEELS

Figure 5-2. Inheritance of a Car object superclass to create SUV and SPORT Car subclasses

To create a subclass from a superclass, you extend the subclass from the superclass using the
extends keyword in the class declaration, as in the following:

class Suv extends Car { New Fields and Methods Go Here }

This extends to Suv all of the fields and methods that Car features, so that the developer can focus
on just the new or different fields and methods that relate to the differentiation of the SUV from
the regular car definition. Because the original core fields and methods come from the Car class, it
becomes the superclass, and the Suv class becomes the subclass. Suv is said to be subclassed from
the Car superclass.

www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 5: Android Framework Overview

To refer to one of the superclass methods from within the subclass you are writing, you can use the
super keyword. For example, in the Suv class, we may want to use a generic car’s applyBrake()
method, and then apply some other factor to the brakes that is specific to SUVs. The following code
does this:

class Suv extends Car {
 void applyBrake (int brakingFactor) {
 super.applyBrake(brakingFactor);
 speed = speed - brakingFactor;
 }
}

This means the SUV’s brakes are twice as powerful as a generic car’s brakes because
applyBrake() method first calls the applyBrake() of the superclass via the

 line of the method and then again decrements the speed

In many Java applications, the classes conform to a certain pattern, so that the rest of the
application knows what to expect of those classes when they are instantiated as objects. This is
especially common when using a framework like Android.

The public interface that the classes present to the rest of the application makes using them more
predictable and allows you to use them in places where any class of that pattern is suitable. In other
words, the public interface is a label that tells the application what this class can do, without the
application needing to test its capabilities.

In Java terms, making a class conform to a pattern is done by implementing an interface. The
following is an ICar interface that forces all cars to have the methods defined in the interface. This
also means that the rest of the application knows that each car can do all of these actions because
the ICar interface defines the public interface of all cars.

public interface ICar {
 void shiftGears (int newGear);
 void accelerateSpeed (int acceleration);
 void applyBrake (int brakingFactor);
 void turnWheel (String newDirection);
}

So, a car is not a car unless it contains these particular methods.

To implement an interface, use the implements keyword as follows, and then define all the methods
as before, except they must be public.

www.it-ebooks.info

http://www.it-ebooks.info/

109CHAPTER 5: Android Framework Overview

class Car implements ICar {
 int speed = 15;
 int gear = 1;
 int drivetrain = 4;
 String direction = "N";
 String color = "Red";
 String fuel = "Gas ";

 public void shiftGears (int newGear) {
 gear = newGear;
 }

 public void accelerateSpeed (int acceleration) {
 speed = speed + acceleration;
 }

 public void applyBrake (int brakingFactor) {
 speed = speed - brakingFactor;
 }

 public void turnWheel (String newDirection) {
 direction = newDirection;
 }
}

Adding the public keyword before the void keyword allows other classes to call these methods,
even if those classes are in a different package (packages are discussed in the next section). After
all, this is a public interface, and anyone (more accurately any class) should be able to use it.

Bundling Classes in a Logical Way: The Package
Each time you start a new project in Android, the Eclipse IDE will create a package to contain your
own custom classes that you will define to implement your application’s functionality. In the Hello
Absolute Beginner application that we created in the previous chapter, our package was named
first.example.helloabsolutebeginner. In fact, the New ➤ Project ➤ Android Application Project
dialog asked us for this package name.

The package declaration is the first line of code in any Android application, or in any Java application
for that matter. The package declaration tells Java how to package your application. Recall the first
line of code in our Hello Absolute Beginner application:

package first.example.helloabsolutebeginner;

After the package keyword and declaration come import statements, which import existing Java
classes and packages into your declared package. So, a package is not only for your own code that
you write yourself, but also for all code that your application uses, even if it is open source code
written by another programmer or company, or in the case of Android applications, API code that
serves up functionality available within the Android operating system (OS).

www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 5: Android Framework Overview

Basically, the package concept is similar to the folder hierarchy on your computer. A package is
just a way of organizing your code by its functionality. Android organizes its classes into logical
packages, which we will routinely import and use throughout this book. Each Android API Level
(Level 16 for the current Android Jelly Bean OS version 4.1) contains a collection of functional
packages that are used by developers to access its feature set.

In our Hello Absolute Beginner application in the previous chapter, we needed the following import
statements in our HelloActivity.java file to support class functions in our application:

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

import statement is located. Here is a
import statement follows a path to the class:

platform.functionality.classname;

	android says this is an Android package.

	os refers to the broad operating systems functionality of the package in
question.

	Bundle refers to the class we are importing and subclassing.

Thus, the Activity class, which is the super class for any activity that you create, is found within
the android.app package. This app part says that this package logically contains classes that are
necessary for the creation of Android OS applications, and one of these is the Activity class, which
allows us to define UIs, and the other is the Bundle class from the android.os package that allows
us to bundle up application variables. Both of these can be seen in our Chapter 4 Java code in the
Eclipse IDE by clicking the plus (+) symbol next to the import statements.

You may be wondering if the package is the highest level of organization in Java. The answer is
no, there is one higher level. This level is sometimes called a platform or application programming
interface (API) level. This is a collection of all the core packages for a given language, such as Java
SE or Java ME, or all the packages of a specialized product, such as Android. Android 4.1 Jelly Bean
API Level 16 is the sixteenth Android Platform to be released so far and it contains a great many
packages with which to define it’s total functionality.

An Overview of XML
There are actually two types of languages used in Android development: Java and XML. XML stands
for eXtensible Markup Language. Developed in 1996, XML is similar to HTML (which stands for Hyper-
Text Markup Language), which is used for website design.

The primary use of XML is to structure data for items that require a predefined data structure, such
as address books or computer-aided design (CAD). Like Java, XML is very modular, which allows
complicated data definition constructs to be created.

www.it-ebooks.info

http://www.it-ebooks.info/

111CHAPTER 5: Android Framework Overview

XML uses structures called tags, just as HTML does. And as in HTML, these tags use tag keywords
bracketed by the < and > characters. For example, in Android, the <resources> tag contains resource
definitions, and the <string> tag contains string resource definitions. The <string> tag also features
attributes (which I think of more as parameters of sorts); for instance, a <string> tag has a name
attribute that allows it to be named. Remember that the values must be inside quotation marks to be
validated (passed over to) the XML processor (parser). Like this:

<string name=”string_name_here”>This is the Value of the String Here</string>

Note A parameter is a choice of data options that can be set, telling some code what you want it to
do—sort of a way that you can configure it exactly to your liking. So, you could set a background color of
red by specifying a red parameter to a method or as an attribute to an XML color element or parameter.

In our Hello Absolute Beginners application in Chapter 4, we defined four string resources with the
following XML in the strings.xml file:

<resources>
 <string name="app_name">HelloAbsoluteBeginner</string>
 <string name="hello_world">Hello Absolute Beginner!</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_hello">HelloActivity</string>
</resources>

You can readily see the modularity via the nesting of tags. The <resources> tag contains the four
<string> tags and their attributes, putting them into one resources group. Nesting can be as many
levels deep as required for more complicated data definition constructs.

XML is used in Android to define constructs so that you do not need to create them in the more
complicated Java code environment. It is easier to write definitions in XML than it is to write them
in Java. This is because XML has the simpler markup format used in HTML, rather than the more
complicated block code structure used in Java. This makes it easier for nonprogrammers to help
write applications.

XML constructs can be turned into Java constructs by a process called “inflating,” which we actually
got a taste of in the Java code in our HelloAbsoluteBeginner application that created (inflated) the
Options Menu using our activity_hello.xml menu definition via the line of code that reads:

getMenuInflater().inflate(R.menu.activity_hello, menu);

Because XML is easier to use than Java, and because this is a book for absolute beginners, we will
do everything that we can using XML instead of Java. Android allows this, and the XML works as
well as Java code to achieve exactly the same results.

www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 5: Android Framework Overview

The Anatomy of an Android Application: The APK File
The cornerstone of Android application development is the application package file format, or the
APK file format. When you compile and output an application for distribution to your Android users,
the Eclipse IDE and Android SDK output your application file name with an .apk extension. There is
only one .apk file, and it includes all of your application code (in the form of a DVM executable .dex
file format), as well as any new media resources or assets and the AndroidManifest.xml file (which
we’ll discuss in detail in the final section of this chapter).

Interestingly, the Android Market, now branded as “Google Play” increased APK file size limits
for .apk files from 25MB to 50MB, which is great news for developers. Using something called
“expansion files” as of May 2012 an application can now support up to 4GB (4,000 Megabytes) of

Zoomerza.apk, and it will run on any Android phone, iTV,
.jar format, and uses the

.apk file is specifically set up so that it can be run in place

.apk file using the familiar file packing and unpacking software packages,
such as PKZIP, WinZip, WinRAR, Ark, and 7-Zip. If you are interested in looking inside your
application’s .apk file to see its folders, it will not hurt the .apk file to do so because you are using a
nondestructive “Read” operation and not writing or rewriting (overwriting) the APK file.

If you have Windows Vista, Windows 7, or Windows 8, the ZIP functionality is built into the operating
system. An easy way to see your .apk file is to rename it as a .zip extension and open it inside the
Windows Explorer file management utility. By now you should know how to find your Workspace
Folder and HelloAbsoluteBeginner Project Folder. The HelloAbsoluteBeginner.apk file will be in the
/bin subfolder under the main project folder. Bin stands for “Binary” an early term for “Executable”
files, and as expected in this folder we have the Android executable APK file and the “classes.dex”
Dalvik executable class files needed for the App. The Windows 7 Explorer and the folders (path) to
the file, as well as the /bin folder contents and the right-click menu (right-click on the APK file) and
rename option are all shown in Figure 5-3.

www.it-ebooks.info

http://www.it-ebooks.info/

113CHAPTER 5: Android Framework Overview

Another clever way to do this without renaming the file is to right-click the .apk file and use the Open
with option to select a ZIP extraction utility. Let’s do it the easy way here using just the Windows 7
Explorer utility, so you can see what I’m talking about.

1. Rename HelloAbsoluteBeginner.apk to HelloAbsoluteBeginner.zip. This is
shown In Figure 5-4.

Figure 5-3. Renaming an APK file to a ZIP file using the right-click on filename ➤ Rename option in Windows 7

www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 5: Android Framework Overview

2. When you’re warned about changing the file name extension, which the
OS uses to determine what type of file it is working with, choose to do the
rename operation via the Yes button.

3. Click to select the renamed HelloWorldAndroid.zip. You will now be able to
see the internal file structure, as shown in Figure 5-5. This is because by
renaming the APK file extension to a ZIP file extension, the Windows OS
now knows to use its ZIP File Viewing Code to see the APK File Contents!
If we could somehow teach the Windows OS that an APK file extension is
the same as a ZIP file extension, then we would not have to do the rename
operation to get around the fact that Windows does not know that an APK
file is essentially a ZIP file, only using a different file extension delimiter. File
extensions are usually three letters preceded by a period, so an .EXE is an
executable file, for instance, whereas a .DOC is a MS Word document and a
.PDF is an Adobe Acrobat portable document format file.

Figure 5-4. Confirm an intent to rename a APK file to a ZIP file so we can look inside it

www.it-ebooks.info

http://www.it-ebooks.info/

115CHAPTER 5: Android Framework Overview

As shown in Figure 5-5, the application includes an AndroidManifest.xml file and a classes.dex
file. It also contains the /res folder with all of the /drawable subfolders as well as the /menu and /
layout subfolders, which hold and organize the various application assets we used to develop the
HelloAbsoluteBeginner Android 4.1 application.

Android Application Components
Android is designed to afford developers with the maximum amount of modularity possible. This
modularity makes it easy for developers to exchange functionality between their applications, which
is a central concept of the open source paradigm on which Android is based. For instance, if you
have coded a cool animated UI element, and you make this available to other applications, they can
implement your class and use that element in their own apps. You do not even need to have that
code located inside those other applications. As long as the application that contains the element’s
code is running (or can be launched) on the Android smartphone, you can call the method via the
Android operating system.

There are four main types of components that can be (but do not need to be) used within an Android
application:

	Activities—These handle the UI that is displayed on the smartphone screen.

	Services—These handle any background processing needed for the application.

	Broadcast receivers—These handle communication within and between
your apps.

	Content providers—These handle data and database management operations.

Let’s take a closer at each of these components, to prepare for their hands-on use during the rest
of this book. Here, you’ll get an overview of what Android is made of, before we get into the details
about class creation and more advanced topics in later chapters.

Figure 5-5. Viewing the internal file structure of our recently renamed HelloWorldAndroid.zip

www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 5: Android Framework Overview

Android Activities: Defining the UI
An Android activity contains a UI construct that accomplishes a given user-input task via the
smartphone, tablet, e-reader, or iTV display screen.

Android applications can have more than one activity. In fact, more complex applications usually
have one activity for each UI screen implementation. For example, if you are programming a game,
you might have the following activities:

The introductory splash screen with the Continue to Play Game button OR Press 	
Button to Play Game button and an Exit Game Now button

The instructions screen, with a scrolling text UI outlining the Game Rules	

The high-score screen, with UI elements that allow the user to manage their 	
high-score entries

A player groups screen, where users choose who will play the game with them	

The actual core gameplay screen itself allowing users to interface with the game	

onCreate() method that calls the activity_hello.xml file, as

activity_splash.xml.

onCreate() method from the Activity base, or super, class (note the super
keyword) and sets the content View to the activity_hello.xml UI definition:

public class HelloAbsoluteBeginner extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_hello);
 }
}

An activity can be full screen, or it can be part of a screen, allowing for floating windows on top of
other windows. An activity can also make use of other windows. For instance, an activity might show
a pop-up dialog requesting that the user enter information, or it could display a product information
window when a user clicks a product name or SKU. We will learn how to code each of these Activity
scenarios, and much more, throughout the remainder of this book.

We will get into Activity class creation in all of the following chapters, and cover it specifically in
Chapters 6, 7, and 8 next.

www.it-ebooks.info

http://www.it-ebooks.info/

117CHAPTER 5: Android Framework Overview

Android Services: Processing in the Background
Unlike activities, services do not have any visual UI (that’s what an activity is for). Services handle
the processing or heavy lifting for your application. They are often used for doing things that need to
be done in the background or back end of the application, while the user works with your UI in the
foreground or front end of your application.

Here are some examples of what service components can do:

Calculate complex numeric values	

Process game logic in real time	

Play new media elements such as video or audio files (local) or streams (remote)	

Pull data from remote network locations (servers)	

Transfer data between devices via Bluetooth	

Services handle calculations or processing that needs to be done in the background while the user is
busy looking at the results of this processing on the activity-generated UI screen elements.

Not surprisingly, you create your own services in Android by subclassing the Android Service class.
Services can run in the background, even after an activity UI screen is no longer visible, such as
when a user picks an MP3 audio file to play, and then does something else with the phone while
listening to the music. We will take a closer look at using services in Chapter 11. There, you’ll learn
how to use a MediaPlayer to play audio and video streams in the background of your applications.

Broadcast Receivers: Announcements and Notifications
Broadcast receivers are communication components that receive messages that are sent between
the Android operating system and other application components, or between Android application
components themselves.

The Android operating system often sends out messages regarding the status of what is going on
in real time with the Android phone itself. These are statuses that any Android application may want
or even need to know about to protect the application integrity, such as if the phone is about to lose
power and your app needs to save files.

The following are some examples of Android operating system-initiated broadcast messages:

A low battery life warning	

A time zone change notice	

A language preference change notice	

A message that the camera has been used to snap a picture	

And here are a couple examples of application-to-application broadcast messages:

An alert that data has finished downloading.	

A message that streaming video media has arrived, is cached, and is ready for 	
the start of playback.

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 5: Android Framework Overview

Your application can implement as many broadcast receivers as you like to intercept any of the types
of messages that need to be monitored for your application’s operation.

Like Android services, broadcast receivers operate in the background and thus, do not have any
associated UI elements. However, this does not mean that the broadcast receivers cannot trigger
or invoke a UI activity in response to the messages that they carry. In fact, it is common practice
to have broadcast receivers trigger UI elements that alert the user as to what is going on within the
application.

Broadcast receivers can also use the Android NotificationManager class to alert the user via built-in
phone notification methods, such as flashing the screen backlight, playing a sound, triggering phone
vibrations, and placing a persistent alert icon on the smartphone status bar.

Broadcast receivers are created by extending the Android BroadcastReceiver class. We will look at

 in Android provide a way to make data available to your application and to other

For example, an Android phone utility uses a content provider to access the Contacts database that
is kept within your smartphone, tablet, e-reader, or iTV set. Android comes with a number of built-
in content provider databases, including contacts, images, audio, and video, among others. These
can be accessed via Android operating system utilities, as well as by your applications through your
custom Java coding.

Content data can be stored in a file system on your SD card in your smartphone, tablet, e-reader, or
iTV, off-device in a remote HTTP server, or in a proper SQLite database. The latter is the preferred
method for storing and accessing data within Android, and you’ll see that in action in Chapter 10,
which covers using content providers via Android’s built-in SQLite functionality.

To create your own content provider, you extend the ContentProvider base class, which implements
a standard set of methods that are used to store and retrieve data. Applications access the methods
defined by your ContentProvider class with a ContentResolver object, which is used to talk to any
content provider, to navigate through the data in the database that is needed by the application.

A content provider is activated when it receives a request for data from a content resolver, which
you will see in detail as we cover Content Providers in Chapter 10. The other three components—
activities, services, and broadcast receivers—are activated via asynchronous messages called
intents, which we’ll look at next, and again in greater detail in Chapter 11.

www.it-ebooks.info

http://www.it-ebooks.info/

119CHAPTER 5: Android Framework Overview

Android Intent Objects: Messaging for Components
An Intent object in Android holds the contents of a message that is sent between modules, typically
to launch them or to send them new task instructions. For activities and services, an Intent object
provides an action to be taken, the data that the action needs to operate on, and optionally, some
details or additional information that may be required for more complicated operations.

You communicate with each type of Android component (activity, service, and broadcast receiver)
using a different set of methods to receive the Intent object that is passed to it. For this reason,
Intent objects are easy to keep separate and well-defined, as they will be different for each type of
Android component.

The components use the Intent object methods as follows:

An activity is started up, or if it’s already started, given a new task, by passing an 	
Intent object to the Context.startActivity() method. The Activity class can
look at the contents of the Intent object via the getIntent() method, and at
subsequent intent objects via the onNewIntent() method.

An Android service component is started by passing an 	 Intent object to the
Context.startService() method, which then calls the service class onStart()
method, and passes it the Intent object that contains the actions for the service
to perform and the data on which to perform them.

If the service is already running and the 	 Intent object contains new instructions,
then the intent is passed to the Context.bindService() method to establish
an open connection between the calling component and the service that is
being used. This always open, real-time connection between code modules is
commonly called binding in programming.

An Android broadcast receiver component is started by passing an 	 Intent
object to the Context.sendBroadcast() method, or optionally to the Context.
sendOrderedBroadcast() method or Context.sendStickyBroadcast() method.
The Intent object in this case contains the message action to be taken and the
data (the message) on which that action needs to be taken.

We will look very closely at using Intent objects with activities later on in Chapter 11.

Android Manifest XML: Declaring Your Components
You have seen that Android needs to have a single XML file in your root project folder:
AndroidManifest.xml, which is the file that Android uses to launch your application. The only other
file in your project root folder is default.properties, which is generated by Eclipse and should
never be modified. So, the only file in your project root folder that you ever need to worry about is
AndroidManifest.xml. As you saw in Figure 5-5 earlier in this chapter, the AndroidManifest.xml is
also in the resulting APK file that holds your application code and resources, so it is obviously a very
important file.

www.it-ebooks.info

http://dx.doi.org/10.1007/9781430247883_11
http://www.it-ebooks.info/

120 CHAPTER 5: Android Framework Overview

The Android manifest uses XML for several good reasons:

It is easy to code as it uses easy to understand markup programming structure.	

It allows you to define a logical data structure that is easy for Android to parse 	
(break down into logical data definition components) and understand.

It can exist outside your Java code, so that Android can access it (inflate it) 	
before it starts looking at your Java code and asset resources.

The Android manifest XML file is essentially a road map for the Android operating system, telling it
what your application is going to do, which components will be needed, and which Android assets it
needs permission to use within the Android operating system environment.

When your application is launched initially, the AndroidManifest.xml data definitions are used by

AndroidManifest.xml also is used to define secure access permissions for

AndroidManifest.xml file for our Hello Absolute Beginner app.

http://schemas.android.com/apk/res/android"
 package="first.example.helloabsolutebeginner"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="8" />
 <uses-sdk android:targetSdkVersion="16" />

 <application android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity android:name=".HelloActivity"
 android:label="@string/title_activity_hello">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

The opening parameter of the manifest tag is the XML schema version and encoding declaration—
standard fare inserted for us by Eclipse (as are the other manifest entries). This is followed by the
following tags:

	<manifest>: This tag has four standard attributes, including the first.example.
helloabsolutebeginner package name that we entered in our New Android
Application Project dialog. The xmlns:android attribute points to the online
definition of the Android XML schema and is also standard fare in all XML files.
The other two attributes are the Android XML version code and name, which are
version 1 and 1.0, respectively.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

121CHAPTER 5: Android Framework Overview

	<application>: This tag’s android:icon attribute points to our ic_launcher.
png files in our /drawable folders. The android:label attribute points to our
application name (the name that goes in the application title bar at the top of the
smartphone screen) in the strings.xml file. The android:theme attribute points to
our application themes in the styles.xml files. Note that the <application> tag
is nested inside the <manifest> tag. You can see this nesting by looking at the
order of the closing tags at the end of the manifest file structure as well as the
amount of indentation.

	<activity>: Here, we declare our application’s activity class by specifying its
name via the android:name attribute as .HelloActivity, which we also specified
in our New Android Application Project dialog. We also declare our activity label
via the android:label attribute as title_activity_hello found in the strings.
xml file. Note that if we had a service class or broadcast receiver class, we
also would declare them in this area of the manifest, along with their related
<service> and <receiver> tags, as you will see in Chapter 11.

	<intent-filter>: This tag specifies the action and category of the Intent object
that launches our application. The action is android.intent.action.MAIN, which
launches the activity on the main screen of the Android device. The category is
android.intent.category.LAUNCHER, which specifies that HelloActivity is the
activity that launches the application (because it is the activity that contains this
<intent-filter> tag).

	<uses-sdk>: This tag specifies our minimum SDK support level of Android 2.2
SDK 8 via the attribute named android:minSdkVersion, which we also specified
in our New Android Application Project dialog. This tag also specifies our
target SDK support level of Android 4.1 SDK 16 via the attribute named
android:targetSdkVersion, which we also specified in our New Android
Application Project dialog. This comes before the opening (and thus closing)
tags for the <application>, <activity>, and <intent-filter> tags.

After closing the <application>, <activity>, and <intent-filter> tags (in reverse order, of course,
so they are nested properly, we close our <manifest> tag, and we are finished declaring our Hello
Absolute Beginner application manifest XML file.

We will look at Android manifest files in later chapters that cover more advanced Android features,
so you will be learning more about these tags before you are finished with this book.

Note An XML schema definition is a road map as to what is allowed in a given XML file—that is—the
structure that it must follow and the tags or attributes it may contain. Think of it as defining all of the
rules that you need to follow for any given class of XML file in which the Android manifest is a certain
class of XML for use with Android development that needs to conform to a set format and rules.

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5: Android Framework Overview

Summary
This chapter gave you an overview of the Java and XML languages as well as the various
components of the Android operating system. We also looked at the AndroidManifest.xml file, which
ties everything together and is utilized when Android initially launches your application.

The main component of Java is the object, which contains fields, or states, and methods that
operate on those object states to change the attributes of the object, just as in real life.

This object-oriented programming, or OOP, approach allows objects to mimic real-world objects,
and also allows data encapsulation, which helps us to develop and code objects that are more
secure and self-contained. This modularization helps in testing and debugging, especially with more
complex programming projects because problems can be localized more precisely.

inheritance. Through

package, which allows you to group your classes, and even your application, together as one logical,
well, package. You use the import statement to load Android packages and classes. The format
import platform.package.classname allows you to precisely specify which packages and classes
you wish to include and use in your own Java applications.

We also took a look at XML, which uses tags to allow users to structure data. Tags can be nested
to become subsets of other tags, and thus complicated and precise data structures can be created.
Android uses XML so that some of the programming can be done in an easier language than Java.
This allows nonprogrammers to become involved in the application design process.

The Android APK (.apk) file holds our application code binaries and resources in a compressed .zip
file format. This includes the classes.dex Dalvik executable classes file and the Android manifest
XML file and the application resources. Renaming the .apk file to .zip allows you to look inside the file
and see its assets. Recently, file size limits for .apk files were increased from 25MB to 50MB, and by
using two external 2GB expansion files Android applications can now be as large as 4GB!

Next we looked at Android application components. Android activity components hold your
application’s UI elements, and are the front-end of your application to your end users; let’s call
them your application’s “eyes,” as they let users “see” your application’s content. Android services
define your processing routines, and are the back end of your applications; let’s call them your
application’s “brain,” as they do the thinking (processing) for your app. Android broadcast receivers
send messages between your application components and are your intercomponent application
messengers; let’s call them your application’s “mouth and ears” because they do the communicating

www.it-ebooks.info

http://www.it-ebooks.info/

123CHAPTER 5: Android Framework Overview

for your app. Android content providers store and distribute your application data within your
application to other applications and to the Android operating system itself; let’s call them your
application’s “memory” because they store things away long-term for your app.

We next looked at Android Intent objects. These are our task managers. They send instructions
between our application components as to which actions to perform and on which data to perform
them. Using our analogy from the previous paragraph, think of these as the neurons that fire in
your app’s “brain” and carry thoughts (intents) and impulses from one part of your app’s “brain” to
another.

Finally, we covered the all-important Android manifest XML file, AndroidManifest.xml. This file
defines for the Android operating system exactly how to start up your application, including which
components will be used, and which permissions and SDK levels your application will support on
various model smartphones, tablets, e-readers, and iTV sets.

All of the concepts in this chapter will be covered again in greater detail in the remaining chapters
of this book, so by the end of the book, you will have gone from Absolute Beginner to Android
Applications Programmer!

www.it-ebooks.info

http://www.it-ebooks.info/

125

Chapter 6
Screen Layout Design: Views
and Layouts

One of the most important parts of any application’s design and development is the graphical user
interface (GUI) and screen layout design. Many of the most widely circulated Android applications
are popular because of their visual design, animated graphics, and easy- or fun-to-use interfaces.
We will explore the Java classes that provide the core foundation for all of these front-end
capabilities in this chapter.

Android View Hierarchies
In Google Android, to interface with the smartphone, tablet, or iTV screen, you use two core Java
classes. These are two of the most important and often used classes in Android development:

The 	 View class (Hierarchy: java.lang.Object ➤ android.view.View)

The 	 ViewGroup class (java.lang.Object ➤ android.view.View ➤ android.view.
ViewGroup)

View and ViewGroup are core, high-level classes, created or subclassed from the Java Object class,
as are all Java classes. As can be seen, the View class is taken from (subclassed from) the Java
language Object class and the ViewGroup is then subclassed from the View superclass. So Views
are the highest level view objects in Android and ViewGroups are more specialized view objects
because they are farther down in the hierarchy. Remember, farther down in the class hierarchy
means more specialized in what they do (just like in real life).

View objects are created using the View class. The View class also can be used to create many
lower-level, or more customized, Java classes. Those classes that are subclassed from the View
class, such as the ViewGroup class, inherit the characteristics of their superclass.

So, the basic screen layout in Android is controlled by the View class, which contains a complex data
structure that represents the content and layout parameters for a given rectangular section of the
device’s display screen, whether that is a smartphone, tablet, e-reader, or iTV.

www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 6: Screen Layout Design: Views and Layouts

Using the View Class
There may be one or more View objects that make up the entire display screen, depending on how you
use the View and ViewGroup classes to create the UI structure for your Android application’s screen.

Each View object controls and references its own rectangular view parameters, allowing you to
control many attributes. Here are just some examples of the many attributes controlled by the View
class parameters that are available to Android application programmers:

Bounds (measurements)	

Layout on the screen (position)	

Order in which its layers are drawn (compositing)	

Scrolling (directional movement)	

Focus (which screen elements are currently active)	

Keystroke interactions	

Gesture interactions	

Views have the ability to receive events—interaction events between your application’s
View object itself. For this reason, the View class is the logical Java construct to

Note The View class serves as the foundation for UI elements that are subclasses of the View class.
Recall that in Java, a subclass is a more specific or detailed implementation of the class from which
it is subclassed. For instance, the Button class is subclassed from the TextView class, which is
subclassed from the View class, which is subclassed from the Object class. The Button class is
subclassed from the TextView class because the Button has a TextView label and is thus a more
specialized version of a TextView; that is, it is a clickable TextView with a button background and
appearance.

So many UI classes have been subclassed from the View class that there is a name for them:
widgets. All of these widgets are contained in a package (a collection of classes) called android.
widget. For example, you can access a Button class via this package using android.widget.Button.

Nesting Views: Using the ViewGroup Class
One of the most useful classes subclassed from the View class is the ViewGroup class. The ViewGroup
class is used to subclass layout container classes, which allow groups of View objects to be logically
grouped, arranged, and cascaded onto the screen.

ViewGroups are layout containers, usually collections of UI elements. In the diagram in Figure 6-1, View
could mean a button, a text field, a check box, and so on. This applies to any other type of UI element.

www.it-ebooks.info

http://www.it-ebooks.info/

127CHAPTER 6: Screen Layout Design: Views and Layouts

The remainder of this chapter explores the different types of ViewGroup subclasses. These are the
foundation that Android developers use to organize and group their View objects (UI elements) on the
Android device display screen, whether that is a smartphone, tablet, e-reader, or iTV set.

Direct subclasses of the ViewGroup class include AbsoluteLayout, RelativeLayout, FrameLayout,
GridLayout, LinearLayout, ViewPager, PagerTitleStrip, AdapterView, FragmentBreadCrumbs, and
SlidingDrawer. We’ll look at the two most often used ViewGroup subclasses: LinearLayout and
RelativeLayout. We’ll also explore one of the coolest ViewGroup subclasses: SlidingDrawer. This
layout class can be used to greatly expand your Android screen real estate by 100% by adding
another screen that can be pulled in from offscreen.

In the diagram in Figure 6-1, the top level ViewGroup object is the parent of the View objects and
ViewGroup objects underneath it, which are called its children. The ViewGroup object in the second
row is both a child as well as a parent, and the same goes for the ViewGroup object in the third
row. The View objects in the fourth row of the diagram are children only (joke: but not only children
because there are two of them).

As you can see, ViewGroup objects can contain other ViewGroup objects (a concept called nesting;
it’s all so familial, isn’t it?), but View objects cannot contain other objects. They are the end object,
so to speak, and are simply UI components for which you can set properties via a plethora of
configuration parameters, as you will soon see.

Defining Screen Layouts: Using XML
The primary way of defining screen layouts (I will stop calling them ViewGroup objects now, assuming
that you are now classifying them as such when you see the term) is via XML. This screen definition
XML goes inside a file you define in your Android Application Project creation process, in our case, in
Chapter 4, it was called activity_hello.xml, placed inside a folder called /res/layout within your project
folder. Layouts are important to your Android applications, which is why Layouts have their very own
layout folder in the standard project resource folder architecture for Android.

Once this activity_hello.xml file was in place, with your XML screen layout (UI) definition inside it, you
then used the Java onCreate() method to push it onto your screen on the startup of your application

ViewGroup

ViewGroup

ViewGroup

View

View

ViewView

View View

Figure 6-1. ViewGroups and nested Views and ViewGroups

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 6: Screen Layout Design: Views and Layouts

activity, as you experienced first hand in your Hello Absolute Beginner app that you created back
in Chapter 4.

We’ll first take a look at the onCreate() code and how it works, and then we’ll use it for real in the
following sections, where we will create three vastly different types of user interface screen layouts.

Setting Up for Your Screen Layout
Back in Chapter 4, three simple lines of Java code inside an onCreate() method set your content
view to the activity_hello.xml screen layout XML definition:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_hello);

public method is one that is open
void method is one that completes a task

Parameters are chunks of data that the

savedInstanceState object is a Bundle object, which is a collection of all of the states for your
activity screen UI elements. It exists so that the screen UI elements can be restored to their previous
positions if the screen is replaced by navigation to other screens during the use of your application.
As you learned in Chapter 5, the state of a UI screen consists of its attributes and their values,
including the UI element user settings, which UI element has the focus, and similar attributes that
define the current user (usage) settings or state of use of your screen user interface elements.

Note The Activity class saves your state for you, so you don’t need to worry. Simply extend it, pass
it the savedInstanceState Bundle, and it does the rest for you.

The super keyword calls the superclass (the class containing the onCreate() method that was
subclassed from android.app.Activity), so it is basically referencing the onCreate() method of
the android.app.Activity class from which our activity class was subclassed. Thus, the keyword
“super” is really just a shortcut (shorthand) for android.app.Activity.onCreate(savedInstanceState).

Because it is called locally from this activity class via super, it affects this activity locally, and applies
to this activity only, even though it accesses the parent code by using the super keyword to jump up
one level to get the original code routine. This local savedInstanceState object is the one Android
kindly saves for us when it deals with saving state for the Activity in which it was declared.

www.it-ebooks.info

http://www.it-ebooks.info/

129CHAPTER 6: Screen Layout Design: Views and Layouts

The onCreate() method will always be called by the Android operating system when any activity
(remember that all activities for your app are defined in the AndroidManifest.xml file) is started. This
part of your code is where all of your initializations and UI definitions will be performed, so it must be
present—at least if you need your users to interact with the Android device’s screen area.

The way that layouts contain other nested layouts in XML code (as shown previously in Figure 6-1)
is by nesting them inside each other’s tags. The closing tags are nested at the bottom of these
structures, and they must be nested in the correct order, to show Android which layouts are nested
inside of which other layouts. Layouts inside of another layout tag structure conform to, and are
controlled by, their parent layout container. The code examples in this chapter indent the nested
code structures to more clearly show the nested layout hierarchy.

You are about to see all of this in action in the next few sections, where we’ll start with the
most basic layout container in Android: the linear layout, and progress to more complex layout
configurations. First we’ll talk about the LinearLayout class, which has been subclassed from
the ViewGroup class, which is subclassed from the View class, which is subclassed from the Java
language Object class like this: java.lang.Object ➤ android.view.View ➤ android.view.ViewGroup.

Note Java implements subclasses so that there is no redundancy within the construction of your
code. Once a method has been written, it is then available to every subclass (and their subclasses) that
inherit from its base class. The one exception to this is a method or class that is declared using the
“private” keyword, such as: private void doNotComeIn() and with this declaration keyword the other
classes or methods cannot see the data or variables inside of that class or method.

Using Linear Layouts
In a standard screen user interface (UI) layout, buttons are usually placed across the top of the
screen, or sometimes down the side of the screen, in a straight line. This is exactly what the
LinearLayout class does for you. It is designed to contain and automatically arrange UI elements
placed inside of it across the screen (using the horizontal orientation parameter) or up and down the
screen (using the vertical orientation parameter).

Note The LinearLayout container should not contain any scrolling views (I think that’s common
sense, but some folks will try anything once) as there are other containers specifically designed
(subclassed) for precisely that purpose.

In Java code, to set the LinearLayout object’s orientation, use the .setOrientation(integer)
method, with either the constant HORIZONTAL for horizontal or VERTICAL for vertical:

myLinearLayout.setOrientation(HORIZONTAL);

HORIZONTAL is a Android OS predefined constant that represents the integer value of zero (0) and
VERTICAL is an Android OS predefined constant that represents the integer value of one (1) just in
case you are wondering what the actual integer values are that are used internal to the class.

www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 6: Screen Layout Design: Views and Layouts

We mention this just to let you know that after the LinearLayout has been set up in your XML
markup, it’s possible to change its orientation on the fly inside your Java code if you need to. In most
cases however a LinearLayout is declared once in XML and then used as-is in the app.

Note Recall that constants are hard-coded values that your Java code uses in its program logic

and can’t change. In this case, Android provides easy-to-remember names so that you don’t need to

remember numeric values. You use the name HORIZONTAL, rather than the value it is set to, which is 0.

This also helps if the value of HORIZONTAL ever changes. You’re protected because the name does not

change, even if the value inside Android does.

LinearLayout tag for XML:

LinearLayout opening tag for a Vertical UI layout looks like this:

LinearLayout tag to make it more

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">
 <The Items To Be Arranged Horizontally Would Be Inside This Container>
</LinearLayout>

The first parameter of the LinearLayout XML tag is the path to the Android XML naming schema
definition (xmlns:android stands for: eXtensible Markup Language Naming Schema for Android, just
in case you may be wondering). This parameter sets the variable android used in the rest of the tag
to: http://schemas.android.com/apk/res/android, so that you don’t need to write all of the other
XML parameters like this:

http://schemas.android.com/apk/res/android:layout_width="match_parent"

The value for the layout width and height parameters, match_parent, simply tells the LinearLayout
to expand to match its parent container size. Because this is the top level LinearLayout container,
the android:layout_width=“match_parent” would mean to fill the Android device (smartphone, tablet,
e-reader, or iTV) display screen width from one side to the other side. We already know what the
orientation does, so now we have our LinearLayout defined. Anything we place inside this container
will display horizontally across the screen, from left to right.

As discussed earlier in the chapter, the Java onCreate() method is used to load the activity_main.xml
layout parameters for an application.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android:layout_width="match_parent
http://www.it-ebooks.info/

131CHAPTER 6: Screen Layout Design: Views and Layouts

Well, it’s time to fire up Eclipse again, and create a new application to see how all of this cool stuff
works together.

Creating the LinearLayouts Project in Eclipse
We’ll build a simple UI that stacks some TextView elements along the left side of the screen, just to
see how LinearLayout works. Let’s fire up Eclipse and get started!

After you launch Eclipse, you will be presented with a Workspace Launcher dialog, where Eclipse will
present you with a suggested workspace folder. Because this was demonstrated in Chapter 4, let’s
not re-create the wheel here, if you need a visual refresher, please refer to the screenshot as shown
in Chapter 4 in Figure 4-4.

The first item that we need to do is to CLOSE the open HelloAbsoluteBeginner project that we have
been working on so far in Eclipse because Eclipse always saves your current open project on each
EXIT of its application. To do this, simply right-click on the top-level HelloAbsoluteBeginner project
folder name, and bring up the context-sensitive menu that shows everything that you can do with
that object (right-clicks are really helpful once you master them).

Near the bottom of the lengthy menu (there are lots of things that can be done with a top-level
project, familiarize yourself with this menu as a means of learning Eclipse) you will find the “Close
Project” option, which once selected, will close the HelloAbsoluteBeginner project folder (but will still
keep it’s closed folder icon on the screen, as you will see in future screen shots in this chapter and
throughout the book). This is shown below in Figure 6-2.

Figure 6-2. Closing the HelloAbsoluteBeginner project workspace inside of Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 6: Screen Layout Design: Views and Layouts

After you have closed your HelloAbsoluteBeginner project folder, select File ➤ New ➤ Project, as
shown in Chapter 4, Figure 4-5. Then select the Android Application project wizard from the Android
folder, as shown in Figures 6-3 and 6-4.

Figure 6-3. Defining a new LinearLayout Android application project in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

133CHAPTER 6: Screen Layout Design: Views and Layouts

Once we hit the Next button shown in Figure 6-3 and accept our default icon dialog settings, we get
to the New Blank Activity dialog shown in Figure 6-4 and accept its default values as well. Default
values in Eclipse ADT (Android Development Tools Plug-In Environment) give us an indication of how
Android wants to see things named, numbered, and referenced, showing Android Best Development
Practices, if you will.

Now we need to create our new project resources, as shown in Figure 6-3. This involves the same
important project elements that we defined for our project in Chapter 4:

	Application name: In the Application name field in the New Android Application
Dialog, enter: LinearLayout_Example. This is the name that will appear under
our icon and in the title bar of our application.

	Project name: In this field, enter LinearLayouts. This is the Eclipse project
name. Because this dialog “dual types” the App and Project names together, do
this by backspacing over the “_Example” part and then add an “s”. This will be
the name of the top-level folder in Eclipse that will hold all of this project’s files.

	Build target: For our build target, we want to use the current Android Jelly Bean
4.1 OS, which is signified by API Level 16.

Figure 6-4. Creating a new Android Blank Activity in Eclipse using the default (Android suggested) values

www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 6: Screen Layout Design: Views and Layouts

	Package name: In the package name field in the Properties section, enter
second.example.linearlayouts. (Remember that the package name is at least
two names separated by a period, and preferably three names.)

	Create custom launcher icon: Make sure the Create custom launcher icon
check box is checked, and then in the next dialog select the Blank Activity as we
did in Chapter 4 in the third dialog in the series (accept the default icons in the
second dialog, as we did In Chapter 4). To refresh your memory as to what these
two dialogs should look like, refer to Figures 4-7 and 4-8.

	Min SDK version: For our build target, we want as much platform compatibility
as possible, so we choose support all the way back to Android 2.2. This way,
our app also will work on Android versions 2.2, 2.3.7, 3.0, 3.1, 3.2, 4.0, 4.0.4,
and 4.1. Version 2.2 equated to package release 8, as you can see in the middle
area of this dialog. These are also the default settings for this dialog, so you will
not need to modify them, and as such are the currently recommended settings
for app compatibility. If you want compatibility all the way back to Android 1.5
select API Level 3 for your Minimum SDK version setting.

	New blank activity dialog: Accept the default new blank activity naming
conventions of MainActivity and activity_main as shown in Figure 6-4 and then
click on the Finish button.

 6-3 and 6-4 show the two completed new Android Application project dialogs that we need

Editing the activity_main.xml File
Now it’s time to work on the activity_main.xml file that was generated for us by the New ➤ Project ➤
Android Application project sequence of dialogs. Right-click activity_main.xml (if it is not open in a
tab already, which it should be) and select Open. Click on the activity_main.xml tab at the bottom of
the central coding pane, and you will see some default XML code setting up a RelativeLayout with a
TextView. Let’s rename the TextView object’s text parameter from hello to textareaone because we
need more than one object to align vertically.

Next let’s change the word Relative to Linear in the top (opening) tag and the bottom (closing) tag,
and notice how the information in the Outline Pane on the right changes to reflect that you are now
using a LinearLayout container instead of a RelativeLayout container.

Next let’s add the android:orientation=“vertical” attribute above the layout default attributes. Notice
that after you type in the android and hit the colon, a helper window pops up (shown in Figure 6-5)
and gives you all of the LinearLayout parameter options that are possible.

www.it-ebooks.info

http://www.it-ebooks.info/

135CHAPTER 6: Screen Layout Design: Views and Layouts

Double-click on the orientation option and Eclipse will insert the code for you, then just type
in “vertical” between the quotes and you’re finished adding the parameter that will orient your
LinearLayout UI vertically.

Finally, let’s remove the android:layout_centerHorizontal=“true” and the android:layout_
centerVertical=“true” parameters because these are parameters that are used with RelativeLayout,
and because we don’t want to center our UI. If you forget to remove these, Eclipse will flag these two
lines with a yellow triangle on the left side of each line of code, and if you mouse over the tiny yellow
triangles on each line, Eclipse will advise you via the ToolTip pop-up that android:layout_center is not
a valid parameter for a LinearLayout. Pretty sleek IDE feature!

Here is how the final code should look, which also appears in the activity_main.xml tab shown in
Figure 6-6:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 tools:context=".MainActivity" />
</LinearLayout>

Figure 6-5. Adding the android:orientation parameter to our LinearLayout container in Eclipse

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

136 CHAPTER 6: Screen Layout Design: Views and Layouts

TextView object, by copy and pasting the <TextView> element like this:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 tools:context=".MainActivity" />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 tools:context=".MainActivity" />
</LinearLayout>

Next we will edit the text strings in the strings.xml file to say: “Text Area One!” and “Text Area Two!”

Editing the strings.xml File
The text strings are edited in the strings.xml file, found in your project’s /res/values folder (shown in
the Package Explorer). Right-click on the strings.xml file and select Open, so it opens in its own tab
in the editing area, or simply select the file and press the F3 key to open it.

 View of the Eclipse activity_main.xml once all of the editing is finished

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

137CHAPTER 6: Screen Layout Design: Views and Layouts

Change the hello text to Text Area One! Also add another string variable textareatwo and set it to
Text Area Two! Here’s the code:

<resources>
 <string name="app_name">LinearLayout_Example</string>
 <string name="textareaone">Text Area One!</string>
 <string name="textareatwo">Text Area Two!</string>
 <string name="menu_settings">Settings</string>
 <string name="title_activity_main">MainActivity</string>
</resources>

Figure 6-7 shows the strings added to the file.

Figure 6-7. Editing the strings.xml file to add our Text Area One and Text Area Two string values

Notice that the app_name, menu_settings, and title_activity_main strings were added from the
information you gave in the new Android Application project creation dialogs, so you don’t need to
code this (but this is where you change the app_name later on, if you want to be meticulous, when we
do our RelativeLayout and SlidingDrawer examples).

Updating activity_main.xml File
Next, change activity_main.xml to reference the textareaone and textareatwo string variables, which
we set in the strings.xml file in the previous step, as shown in the TextView tag XML markup and in
Figure 6-8.

www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 6: Screen Layout Design: Views and Layouts

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/textareaone"
 tools:context=".MainActivity" />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/textareatwo"
 tools:context=".MainActivity" />

Figure 6-8. Final LinearLayout XML code in activity_main.xml Eclipse XML editor tab and pane

Viewing MainActivity.java
Now it is time to take a look at what our Java code is doing. Right-click the MainActivity.java file on
the left in the Package Explorer and select Open.

Tip REMEMBER there is another way to open a file for editing in its own tab: just select the .java or
XML file and press the F3 key. A tab will open showing the contents of that file.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

139CHAPTER 6: Screen Layout Design: Views and Layouts

The file opens in its own tab next to the activity_main.xml and strings.xml tabs in Eclipse. Here is the
code (Figure 6-9 shows what it looks like in Eclipse):

package second.example.linearlayouts;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(savedInstanceState);
 setContentView(R.menu.activity_main, menu);
 return true;
 }
}

Figure 6-9. The LinearLayouts application MainActivity.java Java code view and the Code Outline pane

www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 6: Screen Layout Design: Views and Layouts

As you can see, the package name that we defined in the New Android Application project dialog
is declared at the top of the Java code, as well as three import statements that reference the Java
classes that are needed (accessed or used) in the Java code: the Activity class, View class and the
Bundle class. Below this is the Java code that loads the XML layout that we created earlier in the
other two tabs and another routine that loads the Menu (currently not used) that is added as part of
the default create a new blank activity routine that we have now encountered twice.

Running the LinearLayout App
Now we are ready to compile and run our Android application. Make sure you have saved all of your
changes in each of the three tabs in Eclipse by clicking on each tab and then hitting CTRL-S on your
keyboard (the File ➤ Save shortcut), and notice that before you Save, there is an asterisk on the top

LinearLayouts project
Run As ➤ Android Application. Also make

 6-10, you can see the process that the Android compiler goes through to compile and

our activity as they are loaded into the emulator. The only line of red code is the last line that tells us
that we have closed the emulator.

www.it-ebooks.info

http://www.it-ebooks.info/

141CHAPTER 6: Screen Layout Design: Views and Layouts

You’ll see that the LinearLayout vertically stacks our text fields as expected, as shown in Figure 6-11.

Figure 6-10. View of Eclipse IDE with LinearLayout XML code and Console Tab compiler progress output

www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 6: Screen Layout Design: Views and Layouts

Using Relative Layouts
Relative layouts are for the more complicated UI layouts where you need to define the UI elements in
not quite a linear fashion. In fact, the RelativeLayout tag is the default tag used in the standard blank
activity code bootstrap provided by the New ➤ Project ➤ Android Application project sequence of
dialogs, as we have seen twice already, so it’s clearly a recommended default layout container as far
as Google Android is concerned.

The RelativeLayout class allows you to define how the UI elements (the View objects) are to be
placed on the screen relative to each other, rather than just laid out linearly. For this reason, the
XML definition for a RelativeLayout may contain more screen layout variables and parameters, so
this example will be a number of lines of markup code longer (eight additional lines of code, or 50%
more code, to be exact) than the LinearLayout example.

Figure 6-11. Running the LinearLayouts application in the Android 4.1 emulator

www.it-ebooks.info

http://www.it-ebooks.info/

143CHAPTER 6: Screen Layout Design: Views and Layouts

If you start to get into the habit of nesting several LinearLayout containers to achieve a more
complex UI layout result, you may want to consider using a single RelativeLayout container to
achieve the same results with better control, fewer nested levels, and more efficient XML code.

Simpler is always better, so if you can write a UI layout using fewer nested ViewGroup containers,
it will always use less memory, and will function more quickly (smoothly). The RelativeLayout
container allows you to arrange all sorts of UI elements together in a single ViewGroup to achieve a
more complex layout using only a single layout container.

RelativeLayouts are also the optimal type of layout container for using sliding drawers, another direct
subclass of the ViewGroup class. Sliding drawers extend the screen real estate of the smartphone,
tablet, or iTV by allowing drawers to slide out onto the screen from any of the four sides (top, left,
bottom, or right). This is very cool layout container functionality (class) that is built into the Android
SDK, as you’ll see in the last part of this chapter.

Because we already have our linear layout application open in Eclipse, let’s change it to a relative
layout configuration. That way, we won’t need to type in all the same code, or go through the Project
Close and New Project sequence of dialogs yet again. To change a layout, all you need to do is to
change the XML code in your activity_main.xml file.

Because our Java code references activity_main.xml, we do not need to change anything in the
MainActivity.java tab to make these changes work, a testimony to the power of modularity via XML
in Android. We also do not need to change (or even remove) the content in strings.xml, even though
the second text area string setting will not be used in the application anymore. If you are meticulous,
which is a good thing for a programmer to be, you can always remove it because you know that it is
not referenced any more.

Note If the unused code were lines of code in Java, Eclipse would notice that these variables were
not used (referenced by other code, more accurately) and Eclipse would warn you about it much as it
warns you about unsupported XML parameters via the little yellow caution signs.

We’ll edit activity_main.xml now. And while we are at it, we’ll also add some other UI elements—an
editable text field and a couple of buttons—so that you can see how easy it is to create (or in this
case, change and refine) a UI layout scheme inside of the Android Development Environment.

In the first tag of activity_main.xml, change LinearLayout and its closing tag back to RelativeLayout
and remove the android:orientation="vertical" parameter. We will add some UI elements to the
inside of the RelativeLayout tag (before the closing tag </RelativeLayout> line of markup code).

Let’s leave in one <TextView> tag and delete the other. Give the remaining tag an ID and a default, or
starting, text value. So, this can be specified not only via a reference to a data declaration in strings.xml
(as in our previous example), but also directly, right here in the activity_main.xml file (just to show you
two ways to do it) without referencing strings.xml, as follows:

<TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Type here:"
 tools:context=".MainActivity"/>

www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 6: Screen Layout Design: Views and Layouts

Note If you choose to “hard code” text into the activity_main.xml file without using the proper work
process of referencing the string variables in the strings.xml file, Eclipse will flag that line of markup
with a yellow hazard sign with an exclamation point in it. So that we can generate clean screens in
Eclipse for the rest of this book, we will use the strings.xml file to hold our string values because that is
clearly the way Android wishes things to be done relative to our use of strings!

The TextView is the first UI element, so we don’t have any relative layout attributes—there is nothing
for this UI element to be relative to yet, other than to be relative to the upper-left corner of the
screen, which by the way, is the default alignment, and can be referenced by pixel X,Y coordinates

<EditText> element. This can be done either by typing in the code shown in

 6-12. Because this is an Absolute

 6-12.

Figure 6-12. Adding the EditText UI widget using drag-and-drop in the Eclipse Graphical Layout Editor

www.it-ebooks.info

http://www.it-ebooks.info/

145CHAPTER 6: Screen Layout Design: Views and Layouts

Next, click on the activity_main.xml tab next to the Graphical Layout tab to see the XML markup that
was just written for us! The resulting XML markup should read as follows (if it does not, edit it directly
so that it does):

<EditText
 android:id="@+id/editText1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@+id/label"
 android:layout_marginTop="10dip" (add this tag to the code the GLE has written for you)
 android:ems="10" >
 <requestFocus />
</EditText>

It will be laid out relative to (below) the TextView as shown because that is where you drag-N-
dropped it in the visual layout editor. The key line of XML is the fourth parameter, called layout_
below, which references the ID of the TextView, telling Android to position the EditText object below
the TextView object that has an ID value of “label.” This is pretty straightforward logic, and is also
very powerful.

You’ll soon see that Eclipse (Android ADT more accurately) wants you to use the strings.xml file to
hold text constants, as you will see a little triangular yellow “warning” icon next to your android:text
parameter. When you mouse-over this, it will say: “Hard-Coded String: Should Use @string
Resource” and you will also see another one of these next to the <EditText> tag that reads: “Text
Field does not specify an Input Type or a Hint.” Both of these warnings are not important now (that
is, they will not prevent your app from compiling and running in the 4.1 emulator), but these warnings
are generally helpful to the programmer, and also let us know how Android thinks things should be
done (optimally) within their development environment, and within your app code structure.

Because the text label and the text field are a little cramped together, lets add an android:layout_
marginTop=”10dip” to space things out a little bit. This adds 10 device independent pixels (DIP; you
can also use the abbreviation DP if you like) to the top of the EditText field, which spaces (pushes) it
down and away from the text label that we already had in place in the upper-left 0.0 corner location
on the screen.

Finally, we observe that Eclipse GLE added a nested <requestFocus /> tag inside (before) the end
of the </EditText> closing tag. This is so that this UI element will have “focus” on application launch
and will be ready to receive text data. What this does is to get the text entry area ready for use and is
the equivalent of the user manually clicking on the text field to tell it to accept text data entry. What
having this <requestFocus/> tag inside of the <EditText> tag does for you is that now your user does
not have to touch the screen to show Android where they want to start working (i.e., entering text),
and your end user can simply begin entering text immediately on launching the app, because the
focus has been set for them where it logically should be set—within the first text entry field on the
user interface screen.

Note that to set the focus on the button (which we will add next) would be wrong UI design because
you can’t click the OK button until you have entered the text in the first place! Figure 6-13 shows
what the XML should look like in Eclipse; notice that selecting the EditText tag (shown in light blue
highlighting) shows the span (medium blue spanning the left margin) of the code contained within
that tag.

www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 6: Screen Layout Design: Views and Layouts

 6-14.

positioning location are via a light-yellow tool-tip. Super cool stuff, so play around with it for a while!

 EditText widget XML code generated by the Graphical Layout Editor plus our 10 DIP margin

Figure 6-14. Dragging the OK button widget out of the Form Widgets drawer in the Graphical Layout Editor

www.it-ebooks.info

http://www.it-ebooks.info/

147CHAPTER 6: Screen Layout Design: Views and Layouts

You can also hand code this OK button via the <Button> XML tag, as in the following example,
if you prefer not to use the Drag-N-Drop GUI Editor in Eclipse. Note that the helper tooltip in the
screenshot in Figure 6-14 shows what XML parameters will be placed in the following code based
on the orange dashed line representation of where your mouse is holding the button for eventual
placement via mouse button release (drop).

Here’s the code that Eclipse GLE generates for you:

<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_below="@+id/editText1"
 android:text="OK" />

This <Button> tag shows some of the power of relative positioning. The button is below the EditText
(using the parent’s ID parameter), aligned right relative to the parent container, which means aligned
to the right side of the screen because the parent container is the <RelativeLayout> tag, which has
parameters telling it to fill the screen (this is what match_parent means for this tag), thus in this case
the RelativeLayout container (tag) IS the screen.

Let’s add a Cancel button to the left of the OK button, over on the left side of the screen, and let’s
align it below the EditText UI element, using this code (or you can try using the Graphical Layout
Editor in Eclipse, as shown in Figure 6-15, again to get some more practice doing it the easy way).

Figure 6-15. Dragging the Cancel Button onto the user interface in the Graphical Layout Editor

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 6: Screen Layout Design: Views and Layouts

Here’s the XML markup that should be generated

<Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editText1"
 android:text="Cancel" />

Notice that because the default button alignment is to the left of the screen that the only relative
positioning definition tag that we need is one that specifies android:layout_below of the EditText
UI widget named editText1. Here is all of the new RelativeLayout code in the activity_main.xml file
(Figure 6-16 shows it in Eclipse):

http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Type here:" (Generates Warning: Hard Coded Text)
 tools:context=".MainActivity" />

<EditText (Generates Warning: No Hint Parameter Included)
 android:id="@+id/editText1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@+id/label"
 android:layout_marginTop="10dip"
 android:ems="10" >
 <requestFocus />
</EditText>

<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_below="@+id/editText1"
 android:text="OK"/> (Generates Warning: hard Coded Text)

<Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editText1"
 android:text="Cancel"/> (Generates Warning: Hard Coded Text)

</RelativeLayout>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

149CHAPTER 6: Screen Layout Design: Views and Layouts

Now let’s compile the project and run it in the Android 4.1 emulator. Right-click the LinearLayouts
project folder at the top of the Package Explorer pane and select Run As ➤ Android Application.
Figure 6-17 shows our app running in the Android 4.1 device emulator. As you can see, the
RelativeLayout code works great and formats our UI perfectly.

Figure 6-16. Final XML markup for the RelativeLayout in the activity_main.xml file with warnings

www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 6: Screen Layout Design: Views and Layouts

Now let’s add some animation to our UI by creating a sliding drawer layout container for our UI
elements.

Sliding Drawer: Expanding Your UI
One of the more advanced layout containers in Android is SlidingDrawer, another direct subclass
of the ever so useful ViewGroup class. This layout is not used quite as often as the others, but it’s
extremely handy and a lot of fun as well.

A sliding drawer is useful because it gives us a way to expand the screen area that can be used by
UI components, or even for application content, for that matter.

A SlidingDrawer container should be used inside either the RelativeLayout container or the
FrameLayout container, according to the developer documentation, which you should always review
on developer.android.com before using any Android Class, just to see what it can do and how it

Figure 6-17. Running the RelativeLayout example in the Android 4.1 device emulator in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

151CHAPTER 6: Screen Layout Design: Views and Layouts

should be coded. Android Developer documents in this case recommend using the RelativeLayout
container, if possible, instead of the FrameLayout container. You cannot use SlidingDrawer as its
own container because it needs to slide out of (and over) something. Logical enough when you think
about it.

Note FrameLayout is not as useful as LinearLayout or RelativeLayout, and as such, is not as
frequently used as a standard Android layout container type. It can be used to hold a single UI element
inside of a frame, and for that reason it is useful in certain scenarios and thus is still supported.

How does sliding drawer expand your screen area? By sliding a drawer (vertically or horizontally)
onto the display from off the screen, you have another virtual (hidden) screen available for use. This
can be useful if you need the entire screen for your content because you can keep your UI controls
in a drawer that slides on or off the screen whenever those UI elements are needed.

Now let’s add a sliding drawer to our RelativeLayout of the previous section, and see just how cool
an application user interface (UI) we can create using only two dozen lines of XML code. We’ll create
an app with an analog clock that slides out inside of its own drawer whenever we need to see what
time it is.

Leave our existing project’s RelativeLayout XML tag intact, but delete the text and button elements
inside. Then add the SlidingDrawer tag inside of the RelativeLayout container because a drawer
always needs to slide out of something (and over the top of the other content in the RelativeLayout
container). Let’s practice doing this the easy way, with the Eclipse Graphical Layout Editor, and then
we’ll take a look at the XML code once it’s been auto-generated for us and “tweak” it with our own
customized parameters to fine-tune our desired end result.

After you delete the TextView, EditText, and Button tags inside of the RelativeLayout container tag
using the activity_main.xml tab in Eclipse, switch over to the Graphical Layout Editor by clicking on
the Graphical Layout tab at the bottom of the central editing pane in Eclipse. Click on the Composite
(stands for Composite Layouts) section (notice that the UI works as a type of sliding drawer that we
are implementing here) and drag the SlidingDrawer icon onto the now blank App UI screen on the
right, and once the green lines fill the app screen, drop it into place as shown in Figure 6-18.

www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 6: Screen Layout Design: Views and Layouts

Now click on the activity_main.xml tab and take a look at the code that Eclipse (more accurately, the
ADT plug-in) wrote for us. You’ll see a SlidingDrawer container inside of the RelativeLayout container,
and inside of the sliding drawer you will see a Button UI element used for the SlidingDrawer “handle”
(a SlidingDrawer UI element must always have a handle defined) and a LinearLayout container ready
to hold your content that will be inside of the SlidingDrawer. Figure 6-19 shows the XML code that
was auto-generated.

Figure 6-18. Dragging the SlidingDrawer UI widget onto the blank RelativeLayout container to fill screen

www.it-ebooks.info

http://www.it-ebooks.info/

153CHAPTER 6: Screen Layout Design: Views and Layouts

If you like, you can right-click on the project name and do a Run As ➤ Android Application and see
the handle at the bottom of the screen, click it, watch it animate to the top of the screen (opening
the drawer), and then click it again, and watch it animate back down to its original position (i.e.,
drawer closed). Then close the emulator and go back to the Eclipse Graphical Layout Editor tab, so
that we can add an AnalogClock object (widget) inside of the drawer to give our app some useful
functionality.

Find the AnalogClock icon under the Time and Date section at the left side of the Graphical Layout
Editor and drag the AnalogClock widget icon onto the UI area on the right. Once you drop it, you will
have a square resizable area at the upper-left of the container (default position of 0,0 as we learned
about previously). Shown below in Figure 6-20 is the drag operation we went through to place the
AnalogClock UI widget into our SlidingDrawer; notice that Eclipse ADT gives you guidelines for
positioning as you are dragging the UI elements into place; again, be sure to play around a bit with
this functionality to get used to it, and then to leverage it completely to your development advantage.

Figure 6-19. XML markup generated by the Graphical Layout Editor for the SlidingDrawer tag

www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 6: Screen Layout Design: Views and Layouts

Grab the bottom-right handle of the AnalogClock widget box and drag it down and to the right until
it fills the container (screen). This will center the AnalogClock widget on the screen (the AnalogClock
widget does not scale as some of the other UI widgets do). You might think that you can click and
drag in the middle of this square area to move and position it, but once you try that, you will see that
it does not work that way, so position it with the lower-right handle instead. ADT will show you the
original size (green square) and the new size (orange square) as you drag the handle, as shown on
Figure 6-21.

Figure 6-20. Dragging and positioning the AnalogClock widget within the SlidingDrawer container

www.it-ebooks.info

http://www.it-ebooks.info/

155CHAPTER 6: Screen Layout Design: Views and Layouts

Now let’s take a look at the XML markup that was generated for us, by simply clicking on the
activity_main.xml tab. There should now be an AnalogClock tag inside of the LinearLayout tag,
which there is, as shown in Figure 6-22. We now can see a really good example of tags that are
nested deeply inside of each other.

Figure 6-21. Positioning the AnalogClock size boundaries in the SlidingDrawer via the Graphical Layout tab

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6: Screen Layout Design: Views and Layouts

➤ Android Application to see our SlidingDrawer
open up and give us a nicely centered analog clock. Figure 6-23 shows the before and after of the
SlidingDrawer closed and open in the display portion of the Android 4.1 emulator.

 XML markup generated by Graphical Layout Editor for AnalogClock widget

www.it-ebooks.info

http://www.it-ebooks.info/

157CHAPTER 6: Screen Layout Design: Views and Layouts

Now let’s make a couple of minor modifications to the XML code to make the app a little bit more
colorful, user friendly, use fewer lines of code, and work across all screen sizes automatically. Notice
that our AnalogClock parameters are different, one uses “match_parent” and the other uses “355dp,”
which would work fine on a 320 by 480 smartphone, but not as well on a 800 by 480 tablet or 1,280 by
720 iTV. So, first, to make our app work across different screen sizes, lets change the android:layout_
height to have the same match_parent setting as the android:layout_width parameter does.

Next let’s make the app more user friendly and change the Button text parameter to read “Open
Drawer” instead of “Handle,” so the user sees what is going on with the app. Now you can
Run As ➤ Android Application (again) if you wish to see that the app still works the same with the
new parameters and settings.

Next you may be wondering: is the LinearLayout container that the Graphical Layout Editor coded
for us unused (or redundant) in this example? Couldn’t the AnalogClock be directly inside of the
SlidingDrawer container, along with the Button Handle? Let’s remove the LinearLayout tag, its
parameters, and closing tag, and find out!

Be sure to rename the AnalogClock ID parameter to “content” so that the SlidingDrawer
android:content parameter points to something (the ID of the LinearLayout container that we

Figure 6-23. Android 4.1 emulation screens of SlidingDrawer container in an open/close position

www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 6: Screen Layout Design: Views and Layouts

deleted had been set to “content” and so we need to change the ID AnalogClock1 to “content”). Now
Run As ➤ Android Application again and see that the new code indeed works the same, saving
several lines of code, and more important, memory space that would have been used to define a
redundant container that was not really needed. This also puts us into the two dozen lines of code
realm that we were shooting for.

Finally, let’s add an android:background=“#D0A0A0” parameter to the SlidingDrawer tag to set a
background color to differentiate the open drawer state from the closed drawer state, so you can
really see the edges of the SlidingDrawer container itself. Although we are doing this with XML code,
shown next, it is also doable by entering #D0A0A0 in the background field under the Properties pane
to the lower-right of the Graphical Layout Editor pane when you have the SlidingDrawer container
selected in the Graphical Layout Editor (click just above the AnalogClock selection to select the
SlidingDrawer container above it).

 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <SlidingDrawer
 android:id="@+id/slidingDrawer1"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:background="#D0A0A0"
 android:content="@+id/content"
 android:handle="@+id/handle" >
 <Button
 android:id="@+id/handle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Open Drawer" />
 <AnalogClock
 android:id="@+id/content"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 </SlidingDrawer>
</RelativeLayout>

As you can see from the code indenting, the SlidingDrawer tag goes inside the RelativeLayout
tag. It has two other XML tags that go inside of it: one that defines the button that will be used as
the handle for opening and closing the sliding drawer (the Button tag), and another that defines the
content inside of the drawer (the AnalogClock tag).

There are two required tags that must be in a SlidingDrawer layout container, the android:handle
and the android:content. The android:handle can point to anything that can be used as a handle, the
most common would be a button (default) or a drawable asset such as a custom 3D handle that you
might create just for this purpose.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

159CHAPTER 6: Screen Layout Design: Views and Layouts

The other XML tag that must be inside any SlidingDrawer layout container is android:content.
Whatever XML tag you want to use for your content must have an ID specified that matches the
name that is specified in the SlidingDrawer android:content parameter. In this case, we are using
content as the content container’s ID, but it could be anything you like, for instance we could
have specified android:content=“@+id/analogClock1” instead of changing the AnalogClock’s ID to
“content.”

We used the Android’s AnalogClock XML tag to give us some impressive working content for this
exercise with very little coding effort. Note that we are accomplishing this in only three lines of
XML code. In fact, this entire “clock in a drawer” Android application is using primarily XML, and
essentially no Java logic, other than to display the UI design on the Android smartphone, tablet,
e-reader, or iTV screen.

So that we can see the boundaries of the SlidingDrawer, which we have set in the SlidingDrawer
tag layout_width and layout_height parameters, we have placed an android:background parameter
in the SlidingDrawer tag. The content is given a teaberry color value background that matches our
Android RAZR phone. This android:background parameter will work in virtually any XML tag relating
to the screen, and uses a standard hexadecimal color value representation (#D0A0A0) inside of
quotes just as it is used in HTML and CSS. If you are entering the value into the Properties Editor
pane on the right side of Eclipse, then you don’t need to include the quotes around the hexadecimal
color value.

Finally, just to be super precise and exacting, you can click the strings.xml tab and change
LinearLayout_Example to SlidingDrawers_Example and delete any unused TextView values.

Figure 6-23 shows the sliding drawer example running in the emulator. Some cool things to change
so that you can see what this layout container can do are to change the orientation (to horizontal)
and the layout width and height parameters of the SlidingDrawer tag itself. I suggest that you
practice compiling and testing Android applications by changing these XML parameters and
then choosing Run As ➤ Android Application a bunch of times. This will help you to get used to the
development work process and more comfortable with Eclipse, and how easy it is to use.

Using Padding and Margins with Views and Layouts
Padding adds spacing to a View (or a widget subclassed therefrom), so that that View’s content is
offset by a certain number of pixels on each of the four sides. This way, the content doesn’t touch
the edges of the View and look unprofessional. In other words, padding adds space around the
outside of a View’s content, and you can choose to do so on any of the four sides of the View object.
When using padding, the padding is considered to be part of the View, which may affect the way
Android lays out the View. Remember, we are talking here about a View Class or Object, that is, a
user interface widget, not the view on your Android device’s screen!

Padding values are only available to Views, not to ViewGroups (and thus not available in screen layout
containers). This is logical because View objects (usually widgets) are contained inside something
(ViewGroups) but contain nothing inside of them, that is, they are what they are (Button, Clock, Radio
Button, Text Field, etc.).

ViewGroups instead support margins, which allow the same results as padding to be obtained,
except that the margins are not considered part of the ViewGroup. For me, this makes UI design more
organized and easy to remember: Views use padding values and ViewGroups use margin values and
also can use padding values.

www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6: Screen Layout Design: Views and Layouts

Setting Padding in Views
Padding can be set for your View objects (usually widgets) in three ways, two of which we have seen
so far in this book. The first and easiest way to set a padding value for a UI element widget is to
use the Properties Editor pane in Eclipse, where all of the properties of a selected UI element in the
Graphical Layout Editor will be displayed on the right side (or wherever you place that pane) of the
Eclipse IDE.

The second way to set properties of a UI widget is in the XML editor pane, where when you type
android: a window containing all of the parameter options (including padding settings) will pop-up
as soon as you type the colon symbol after you type in android (in lower case). Then you can
double-click on the parameter that you want and type in its value or even type in the entire
parameter from memory without using the helper that works in the XML editing pane. Most of the

setPadding() method with four

getPaddingLeft(). To set just the padding on
the top to eight pixels, you would write something like this:

ObjectName.setPaddingTop(8);

Setting Margins in ViewGroups
For ViewGroups, including layout containers (the subject of this chapter), the easiest way to set
margins during development is via the XML parameters for any ViewGroup object.

Four layout margin values are available in XML:

	android:layout_marginBottom

	android:layout_marginLeft

	android:layout_marginRight

	android:layout_marginTop

We used the android:layout_marginTop in our RelativeLayout example earlier in this chapter to
space the text entry UI element down and away from the text label UI element. In fact, we will be
using this throughout the book to space out our centered UI objects evenly.

www.it-ebooks.info

http://www.it-ebooks.info/

161CHAPTER 6: Screen Layout Design: Views and Layouts

Be sure to experiment with using these four parameters on your UI elements. You’ll see that you can
control exactly how your UI elements are spaced around on the screen as you become familiar with
what margins can do.

Summary
Android allows us to easily design screen layouts via XML, which makes it much simpler than it
would be via Java code. Nonprogrammers, such as designers, can get involved with the UI design
process without needing to know any Java coding.

We also saw that we can use the Graphical Layout Editor tab/pane in Eclipse to visually drag-N-drop
UI elements (widgets) onto our screen design, and have the ADT plug-in in Eclipse write the bulk of
our XML UI markup code for us, which is really great for absolute beginners!

In this chapter, we started to take a look at the foundation for laying out our UI areas on the Android
smartphone, tablet, e-reader, or iTV screen using the View and ViewGroup classes. We use the View
class, its subclasses (widgets) and the ViewGroup class and its subclasses (layout containers) to
lay out our UI screen and its component UI elements. Android provides several of these ViewGroup
subclasses, including the LinearLayout, SlidingDrawer, and RelativeLayout classes that we
looked at (and used) specifically in this chapter.

LinearLayout is one of the most used layout containers in Android programming, and the one used
in many of the basic Android apps that come with the operating system. It arranges UI elements
from right to left or top to bottom. It is possible to nest LinearLayout containers within each other
to achieve more complicated UIs, but often it is better to use a RelativeLayout container for more
complex UI designs.

RelativeLayout is another often used layout container in Android programming. It allows you to
arrange UI elements by specifying their placement on the screen relative to each other. This allows
for more complicated UI layouts than just the rows or columns supported by the LinearLayout class.
We also have seen that the RelativeLayout is the layout container that Android will use if you have
Android Development Tools (the ADT Eclipse Plug-In) create a blank activity for you in the New ➤
Project ➤ Android Application Project sequence of dialogs.

We also took a look at one of the more innovative (and animated) ViewGroup layout containers called
SlidingDrawer. This allows you to slide UI elements on and off the screen, in and out of view of the
user. This layout container can be used to greatly increase screen real estate by allowing UI elements
to exist offscreen in a “drawer” that slides out only when the user needs it.

In the next chapter, we will look at adding more complex UI elements into RelativeLayout ViewGroup
layout containers using even more View objects (called widgets). The android.widget package gives
us all sorts of precoded UI elements that are derived from the android.view.View superclass. Let’s
move on to Chapter 7 now as you understand layouts and are ready to create (code) full-blown UI
designs!

www.it-ebooks.info

http://www.it-ebooks.info/

163

Chapter 7
UI Design: Buttons, Menus,
and Dialogs

The UI design determines the usability of your application, which will ultimately determine its
success and even its profitability if you are selling it. We’ll build on what we learned in Chapter 6
as UI elements in Android are View classes (widgets) and are grouped together using ViewGroup
classes (layout containers).

A standard UI is composed of a number of familiar components that can be used by your
application’s users to control their user experience (often called the UX). These UI elements include
items such as buttons, check boxes, radio buttons, menus, text fields, dialog boxes, progress
bars, system alerts, and similar screen-based elements that are available to us under Android as
widgets as we learned in Chapter 6.

This chapter covers how to use several of the most important Android widgets for UI design. First,
we’ll cover adding image buttons, text, and images to your UI. Then you’ll learn about the different
types of menus available. Finally, we’ll cover displaying dialogs, including alerts, which carry
messages to your application user. There’s a lot of cool stuff to cover, so let’s get started.

Using Android UI Elements (Widgets)
One of the foundational areas of user interface (UI) design is creating and placing the functional
elements of the design that allow your user to seamlessly interface with your application. These
elements include buttons, text fields, check boxes, radio buttons, scrollable lists, and the like.
We can’t cover all of these in one chapter, but we can cover some of the more useful and visually
impressive UI elements, just in case you need to make your apps stand apart from the crowd!

One of the most impressive types of user interface elements is the image button, which is an image
that is a button itself or an icon on a button that visually represents what that button will do. In this next
section we will learn how to combine an Android ImageButton widget along with a TextView widget
and an ImageView widget to show how these Android View Classes can be implemented to add some

www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

graphics-intensive UI elements to your layout containers that we learned about in Chapter 6. This will
provide a good foundation for then learning more about using graphics in Android in Chapter 8 which
covers graphics design in Android.

Android has all of the standard UI elements already coded and ready to use in a single package
called android.widget. Here, we’ll explore how to add an image button, text area, and image to
your app’s UI.

Note Recall that a package in Java is a collection of ready-to-use classes that you can leverage
within your application. You just need to tell Java that you are going to use them by importing them via
the Java import command.

6, we crafted a UI that included the Button class, which is used to create the standard

ImageButton class. For professional, customized, high-end graphical UIs, this is the

android.widget package’s ImageButton class allows you to use your own imagery to create

with the Android operating environment.

There is a distinct work process to creating a successful multistate 24-bit or 32-bit PNG image
button; one that will composite perfectly over background imagery if the button is using an 8-bit
alpha channel. We’ll get into much more detail about PNGs and alpha channels in the next couple
of chapters.

Android supports 24 bits of PNG image data, with another 8 bits of anti-aliased image transparency
channel (requiring another 8-bit alpha channel). Let’s do the math: 24 + 8 = 32. So, what we really
have is a 32-bit PNG image, with 8 bits of data for each of the red, green, and blue image channels,
and another 8 bits of data for the alpha (transparency) channel. Therefore, 24-bit images are usually
called RGB images, and 24-bit images with 8-bit alpha channels are usually called 32-bit images or
RGBA (Red Green Blue Alpha) images.

In case you’re not familiar with some of the terms I used in the previous description, here are some
brief definitions:

	Compositing: The process of using (partially) transparent layers (like vellum
on an overhead projector) to form a single new image out of more than one
component parts or layers.

	Alpha channel: That portion of each layer which is transparent, and thus does
not hold any image data, thereby passing through visible image data from other
layers underneath it.

www.it-ebooks.info

http://dx.doi.org/10.1007/9781430247883_6
http://www.it-ebooks.info/

165CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

	Anti-aliasing: The edge treatment that is used to make the edges of images
within these transparency layers perfectly smooth when these edges are not
perfectly square, which they rarely are. Anti-aliasing can be seen by zooming
into an image and looking at the edges between different colors. Pixels at the
edges are averaged between the two colors to creating a slight fade effect
that makes the edges look smoother when the image is zoomed out.

Defining Multi-state Image Button Graphics in XML
The XML markup is significantly more complex for multistate image buttons than it is for regular
buttons. Your XML file needs to tell Android which image to use for each state of the button:

Pressed (for touchscreens, the pressed image will be shown when the finger is 	
actually touching the button image on the screen)

Released or normal (untouched); this is the “default” image state	

Focused (in use currently and/or was last touched and thus is currently holding 	
the UI Focus until another UI widget is utilized [touched or used] by the user)

Let’s look at the code for our button1.xml file, which we will reference later when we create our
ImageButton XML entry in the activity_main.xml file that goes in the /res/layout folder. You don’t need
to create this file now.

<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true"
 android:drawable="@drawable/button1_pressed" />
 <item android:state_focused="true"
 android:drawable="@drawable/button1_focused" />
 <item android:drawable="@drawable/button1_normal" />
</selector>

The first line defines a selector tag and points to the Android XML naming schema, as you have seen
in previous chapters. A selector tag allows selection between several <item> options contained inside
(nested within) it, as you may have guessed already. Inside the selector tag, we nest three item tags to
show which drawable (bitmap) images to use (to select) for state_pressed=true, state_focused=true,
and finally the default or normal button state. These item tags must be in the exact order outlined
above, as they are evaluated by Android in that order (Is it Pressed? Does it have Focus? Is it not
Pressed or does not have Focus?).

For this XML code to work we must have three 32-bit bitmap PNG images in each of our
project’s /res/drawable-dpi folders named button1_pressed.png, button1_focused.png, and
button1_normal.png.

Just like we did with our icons, we will have to go through the digital imaging work process that
yields buttons optimized for LDPI, MDPI, HDPI, and XHDPI pixel density screens because Android
devices now span smartphones to tablets to e-readers to iTV sets. So we will really be creating a
dozen image assets for each ImageButton UI element that we utilize in our screen design. We’ll do
this after we create our new UI design project (next), and before we create and code our UI design
project, so that our app’s image assets are ready for use before we actually write the code that tries
to access them.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

166 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

The first item tag has an android:state_pressed attribute, which is set equal to true, and a second
android:drawable attribute, which is set equal to the location of the file and its name (sans the .png
extension, as we learned about previously) and will automatically point to the correct /drawable-dpi/
folder based on what screen density Android detects that your app is running on.

@ equates to your project’s resources folder, /project/res/, so in this case, a low DPI resolution
@drawable/button1_pressed will equate to C:/Users/YourName/workspace/UI_Design/res/

 in the Android compiler (as well as the folders for the MDPI,

item tags follow the same format as the first one.

File ➤ New ➤ Project ➤ Android Application Project to create a
new Android application project.

We’ll create the UI_Design Project first, so that Eclipse will create a nice graphic for us that we can
modify with GIMP and then use for our ImageButton for this example. Let’s get started!

In the New Android Application Project dialog sequence, set the project configuration options as
follows:

	Application name: We’ll call this application UI_Designs.

	Project name: Name the folder UI_Design.

	Package name: Using the proper package name format, enter third.example.
userinterfacedesign as the name.

	Build target: So our application runs on the current Android operating system
version 4.1, choose Android 4.1 API Level 16.

	Min SDK version: So our application runs on all of the popular Android
operating system versions from 2.2 through 4.1, choose Android 2.2 or API
Level 8 (the default setting) for our minimum or lowest level API support.

	Configure launcher icon: Accept the Default (Checked) Value for this dialog
option.

	Create blank activity: Accept the MainActivity and activity_main defaults for
this sequence of dialogs as we have done before.

Note Recall that each of the PNG image file names must use only lowercase letters and numbers and
also can use the underscore character. These are Android’s file naming rules. If you stray from this file
naming rule at all, you will generate errors, warnings, and debugging headaches! So memorize this rule
now to minimize future wasted debugging time!

www.it-ebooks.info

http://www.it-ebooks.info/

167CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

If you need to refresh your memory on how to fill out all of the New Project Dialogs, please revisit the
screenshots in Chapters 4 and 6 now. I’ll include the main (initial) dialog in Figure 7-1 to show our
primary project naming settings.

Creating Our Three UI Design Image Buttons in GIMP 2.8
The first thing that we need to do is to create the three button graphics that we will use to show you
how to create multistate image buttons in Android using the ImageButton widget. Because Android
has provided us a cool graphic with an alpha channel (transparency) called ic_launcher.png in our
new project creation process, let’s use that for our ImageButton graphic, as it’s already in our /res/
drawable/ folders, now that we have created our UI_Design Project.

You will need to go through the work process shown below (we’ll use the XHDPI image asset for our
example) on each of the ic_launcher.png files in each of the four /drawable-dpi/ folders. Remember
that they all need to be named the same way, because Android will differentiate between which file is
which using the folder name and not the file name.

Fire up GIMP from your OS TaskBar and go into the File ➤ Open Image menu sequence to access
the Open Image Dialog shown in Figure 7-2. Navigate using the left file navigation pane of the
dialog to your C:/Users/YourName/workspace/UI_Design/res/drawable-xhdpi/ folder and select the
ic_launcher.png file as shown in Figure 7-2 and then click on the Open button.

Figure 7-1. Naming our UI_Design project, application, and package in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Next, click on the Colors Menu at the top of GIMP, as shown in Figure 7-3, and select the Hue-Saturation
submenu item. Notice that GIMP is as good as Eclipse is at giving you a context-sensitive tooltip telling
you what that menu selection will do before you select it. In this case, it tells us we are about to adjust the
color (hue) value of the graphic that we have just opened.

 Find and Open the ic-launcher.png file in the /drawable-xhdpi/ folder

www.it-ebooks.info

http://www.it-ebooks.info/

169CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Once we have the Hue-Saturation color adjustment tool dialog on the screen, use the HUE slider or
the Hue value numeric entry box on the right to shift our Hue (color) value backwards in the color
wheel by 90 degrees, or a value entry of −90 if you wish to type it in. Make sure that the Preview
Checkbox has a check in it (is selected for use) as shown in Figure 7-4, so that you can see the color
change in the ic_launcher graphic go from blue to green. This will make our ImageButton graphic
turn green when our users touch it. When everything is set, and you have a nice green color, select
the OK button to make the color change permanent.

Figure 7-3. Selecting the Hue-Saturation tool from the Color Menu in GIMP 2.8

www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Because the “Pressed” button state is more effective when it animates when the user touches it
on the screen, let’s also rotate it 90 degrees so the little guy (or gal) depicted in the image turns
their head to the side. To do this, we click on the Image Menu at the top of GIMP and select the
Transform submenu and then the Transform 90 degrees counter-clockwise sub-submenu as shown
in Figure 7-5.

Figure 7-4. Changing the ic_launcher color value from blue to green

www.it-ebooks.info

http://www.it-ebooks.info/

171CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Now we are ready to use the GIMP File ➤ Export dialog to save our button1_pressed.png graphic
file to it’s new name and target location in the /drawable-xhdpi/ folder in our resource folder. Select
the File ➤ Export menu as shown in Figure 7-6 to bring up the File ➤ Export Dialog so we can save
our first of three ImageButton state files.

Figure 7-5. Image Transform Menu path for rotating our Pressed State graphic 90 degrees counter-clockwise

www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Name the button graphic button1_pressed.png in the Export Image dialog’s name field as shown in
Figure 7-7 using the Places Pane on the left to show GIMP where you want to save the file. Note the
path to the File will also be shown graphically at the top of the dialog underneath the file name, next
to the “Save in folder:” specifier. Once everything is set correctly, use the Export button to save the
first of your three ImageButton image graphics to the /res/drawable-xhdpi/ folder.

Figure 7-6. Using the File ➤ Export utility to save the new Pressed State graphic PNG

www.it-ebooks.info

http://www.it-ebooks.info/

173CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

When the PNG format settings dialog comes up make sure to use the same PNG settings that we
used back in Chapter 4 in Figure 4-34 (just in case you have forgotten which of these options need
to be selected).

Next, let’s create the button1_focused.png button graphic by using the GIMP Edit ➤ Undo feature
(or the CTRL-Z keystroke sequence) twice, to undo the rotation and the color changes, taking us
back to the original blue image. Another way to do this would be to use the File ➤ Revert function,
or to use the File ➤ Close function (without saving, of course), and then to use the File ➤ Open on
the ic_launcher.png file again, as we did at the beginning of this work process back in Figure 7-2.

Next we are going to apply the same Color ➤ Hue-Saturation menu sequence that we used (shown
previously in Figure 7-3) to turn our ImageButton graphic from blue to green, but this time we are
going to turn it red to indicate that it has the focus, and is in use or is the one last (currently) used.

To do this we will use a color rotation value of 150 degrees clockwise (positive) around the color
wheel from blue, which as you can see in Figure 7-8 gives us a nice bright red color result in our
button image. Make sure that you have the Preview Option checked so that you can see what the
dialog is doing to your image as you play around with the color adjustment options.

Figure 7-7. Saving the button1_pressed PNG file to the /drawable-xhdpi/ folder

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

 7-6 and 7-7, except that
you will want to use the file name: button1_focused.png for this red version that will turn your
ImageButton red when it is in use! Pretty cool! Now finally let’s create our button1_normal.png
ImageButton state graphic so that it is different from our application launcher icon, and we’ll be
ready to code!

Finally we are going to apply yet again the same Colors ➤ Hue-Saturation menu sequence that we
used (shown previously in Figure 7-3) to turn our ImageButton graphic from blue to green, but this
time we are going to turn it Amber to indicate our Normal (default) Image Button state. Don’t forget
the two Undo steps that will bring your button back to it’s original blue state, just like we did before.

To do this we will use a color rotation value of 160 degrees counter-clockwise (negative) around the
color wheel from blue, which as you can see in Figure 7-9 gives us a rich amber color result in our
button image. Make sure that you have the Preview Option checked so that you can see what the
dialog is doing to your image as you play around with the color adjustment options.

 Creating the button1_focused.png graphic using the Colors ➤ Hue-Saturation... tool

www.it-ebooks.info

http://www.it-ebooks.info/

175CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Once you have an acceptable amber color, again go through the steps shown in Figure 7-6 and 7-7
except that this time you will want to use the file name: button1_normal.png for this amber version
that will be the default image (state) used for your button.

Next we need to create the XML file that will show Android which of the button states to select for
each of the user actions that will be involved with animated buttons: Normal (no action), Pressed
(touched), and Focused (last touched). Let’s get into that now! Open up Eclipse and take a look in
your UI_Design Project resource folder under the /res/drawable-xhdpi/ folder to make sure that all of
your new ImageButton states (assets) are ready for use. This is shown in Figure 7-10.

Figure 7-9. Creating the button1_normal.png graphic again using the Colors ➤ Hue-Saturation... tool

www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Creating the button1.xml File
You now have an empty Eclipse project loaded with image assets. Next, we’ll create the button1.xml
file so that we can add the button state definition XML, which we looked at earlier in the chapter.

Open the project tree on the left in the Package Explorer tab, and expand the /res folder by clicking
the arrow. Then right-click the drawable-xhdpi folder and select New ➤ File, as shown in Figure 7-11.

Figure 7-10. UI_Design Project resource folder and drawable-xhdpi sub-folder with ImageButton assets

www.it-ebooks.info

http://www.it-ebooks.info/

177CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

In the New File dialog, ask Eclipse to create the file button1.xml in the UI_Design/res/drawable-xhdpi
folder, as shown in Figure 7-12. Then click Finish to create an empty text file. This is one of the most
basic ways that you can have Eclipse create a new, empty text file for you. We will cover other ways
of creating new XML files in later chapters.

Figure 7-11. Creating a new file in the /res/drawable-xhdpi/ folder to hold our button1.xml XML markup

www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Click the button1.xml tab at the top of your screen, and then type in the XML code that defines the
selector and item tags for setting the three different image button states:

<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true"
 android:drawable="@drawable/button1_pressed" />
 <item android:state_focused="true"
 android:drawable="@drawable/button1_focused" />
 <item android:drawable="@drawable/button1_normal" />
</selector>

If you enter this XML markup before you create your three image file assets, you’ll notice that Eclipse
will show you that there are three errors in the markup relating to the missing image file assets.
Place your mouse over the red X on the left margin by the markup code. This pops up a diagnostic
message regarding why Eclipse thinks this code needs your attention, and you will be informed that
your code references image assets that do not yet exist or Eclipse cannot locate.

If you have added them but Eclipse cannot “see” them, then right-click on your UI_Design
project folder and select the “Refresh” option, and the error flags will disappear as Eclipse will
“refresh” it’s view of your project assets and find the unrecognized (missing) file references.

Figure 7-12. Specifying the drawable-xhdpi folder and button1.xml file name in the New File dialog

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

179CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Once everything matches up then Eclipse will show your code in a clean (unwarning laden)
environment, as shown in Figure 7-13.

Figure 7-13. The button1.xml code and matching button1 state PNG files in Eclipse

Note Once we have valid XML specifiers and code in place, the Eclipse error messages will disappear.
But this does show us how Eclipse is watching out for you in real time, and offering warnings about what
might be missing, what might generate compiler errors, and other common problems. You will observe
this throughout your use of the Eclipse IDE.

Editing the activity_main.xml File
Next, open the /res/layout/ folder and right-click the activity_main.xml file to open it for editing.
Notice that our image button source files now appear inside of the Package Explorer pane.

We need to replace the default text tag in the activity_main.xml file with an ImageButton tag, as
follows:

<ImageButton android:id="@+id/button_one"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

 android:src="@drawable/button1"
 android:contentDescription="@string/app_name">
</ImageButton>

Figure 7-14 shows the IDE at this point.

Figure 7-14. Eclipse with a default RelativeLayout container and a new ImageButton tag added on the inside

The first attribute adds an ID of button_one to the ImageButton so we can access it inside our Java
code. The next two lines define the width and height of the image button via the wrap_content
attribute—all very standard Android programming fare.

The next line accesses the button1.xml file that we created to reference the various image button
states. Notice that you do not need to add the .xml extension here, just as you don’t need to add the
.png for your graphic files. Finally, we have the android:contentDescription tag set to our app_name
variable that we already defined in our strings.xml file as UI Design.

The Content Description tag is a relatively new tag for ImageView and ImageButton objects that is
there for accessibility purposes, primarily for the sight and hearing impaired. If you do not include an
android:contentDescription tag in your ImageView or ImageButton UI element widgets, Eclipse will
place a warning (yellow triangle) symbol next to the (in this case) ImageButton tag in the left margin.
This warns you that you will need to add this tag for accessibility reasons, at least if you want to get
rid of this warning icon. Note that your code will still compile and run without it.

To provide this accessibility for your UI elements, you would need to define a text variable in
your strings.xml file that describes each of your visual UI elements in a way that if someone who
is impaired was navigating your UI, they will know what element functions they are dealing with
(have pressed or focus status).

www.it-ebooks.info

http://www.it-ebooks.info/

181CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

In this case because the ImageButton is a UI design element, I am simply using an existing variable
in strings.xml so that we do not have to go into the strings.xml and create a new variable, as we have
already learned how to do that in previous chapters, and don’t really need the extra practice here.

Figure 7-15 shows how our UI Examples app looks when run in the Android 4.1 emulator (right-click
UI_Design folder and select Run As ➤ Android Application).

Figure 7-15. Our multistate image button running in the Android 4.1 emulator

When you click the image button, it rotates left and changes color from amber to green and uses the
standard blue background to highlight the button being clicked.

Because we want just the nontransparent part of the image to be the button, which is why we use
transparency and an alpha channel in GIMP 2.8, we will need to also set a background color, or
transparency, for the ImageButton widget itself next. This will pass the transparency in the Image
through the ImageButton transparency to whatever is behind both of these design elements. In this
case, it will remove the gray background color setting of the ImageButton widget (replacing it with
transparency) and let the white background color setting of the RelativeLayout container through.

www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Replacing the Default Background
We usually do not want to use the default Android ImageButton solid grey color background for a
graphic image button, as we normally want the button image to seamlessly overlay the background
content, usually a background image. We want the ImageButton background to be transparent, so
we can use this ImageButton to put an image on top of a button and its text, or in this case, allow us
to make the image (the nontransparent portion, anyway) itself into a button.

In this example, we are changing the color of the button, rather than changing the size or shape of
the button, so the transparent area remains exactly the same, pixel for pixel, between the different
image state graphics. Thus, we can either set the background image to our normal button state
(which has transparency exactly where we need it to be), or we can set the background color
using a 32-bit color value setting that features a 100% transparent 8-bit alpha channel by using

#00000000 setting (which means zero red, zero green, zero blue, zero alpha). This is similar to
#RRGGBBAA. This is the most elegant solution because it uses

ImageButton (see Figure 7-16) so

As you have seen in previous chapters, Eclipse will render your XML markup exactly as it would look in
the emulator. Eclipse also provides (on the left) drag-and-drop widgets and layouts, so you can visually
design your UI. The normal work process is to switch back and forth between the XML markup coding
tab and the Graphical Layout Editor tab, so you can make sure your XML code is nested properly. This
is also a great way to learn XML layout and UI coding in Android.

Figure 7-16. Using Graphical Layout Editor and Properties tabs to set an image background value to transparent

www.it-ebooks.info

http://www.it-ebooks.info/

183CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

An even more useful tab is the Properties tab at the right side of the screen. This tab shows all of
the properties assigned or available to the UI element tag that you have selected in the Graphical
Layout Editor. Click the ImageButton element, and a blue line with resizing handles will surround the
ImageButton, showing you what is currently actively selected. In the Properties tab, you will see all
of the properties and variables that you can set and customize for the ImageButton class.

Click the Background property in the Properties tab to highlight it. Notice that for many of the
parameter option fields in the Properties Pane that Eclipse provides a button with three dots (called
an “ellipse” in coding terms) on it; this is used to search for a file to use as a background image.

Because we are just going to set the background value to transparent, we do not need to use this
file locator button for this particular example. Instead, let’s type the transparency value of #00000000
into the field next to Background in the Properties tab, as shown in Figure 7-16. Then click
somewhere else in the IDE, or hit the return key to accept the value. The value will then be accepted
and the results displayed in the Graphical Layout Editor tab.

That finishes up our custom image button. If you want to confirm that our ImageButton has no
background, and changes color and rotates as its own button now, right-click on the UI_Design
folder, and Run As ➤ Android Application to view your success! I’ll include a partial view of the
emulator in Figure 7-17 to show the button without any background coloring. It looks much more
professional because you can’t see the boundaries of its UI container (in this case the ImageButton
Tag/Widget). Click it and it turns green and rotates—but now, just the circular part!

Figure 7-17. Running the ImageButton in the 4.1 emulator to see transparent background

Next, let’s take a closer look at how to add text to your application’s UI, as text is such an important
element of any application.

Adding a TextView Widget to Your Layout
Besides buttons, another very common UI element is text. Android provides the TextView class to
implement text in a UI. We have already seen this UI element briefly in our Hello Absolute Beginner
App in Chapter 4 and our LinearLayout App in Chapter 6, so let’s get a little bit more practice with it
here, and explore some of it’s other setting parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Because we have been leveraging the Graphical Layout Editor in Eclipse, let’s continue to explore
its functionality because it’s a great learning tool for an absolute beginner. Click the left header bar
called Form Widgets to open the form widgets selection view. Clicking these headers will toggle
them open, and shut others that are open at any time (as we have seen in Chapters 4 and 6).

Next, click the scrollbar (gray, with a tiny arrow) if you don’t see the TextView widget, which
should be at the top left of the widgets listed. Select and drag (and drop) it into the Layout view
window under the ImageButton. Our TextView is now in the UI graphical layout view and is ready to
customize by using the Properties tab at the right side of the Eclipse IDE. Let’s do that now.

Scroll down to the Text properties and set up some custom values, such as Sample Text, and a text
color of dark gold to match the ImageButton default image (an RGB value of #777722 will work well;
this is a hexadecimal numeric representation of a 24-bit value). Figure 7-18 shows the Eclipse IDE at

Figure 7-18. Using the Eclipse Graphical Layout Editor to add and configure a TextView widget

Finally, we’ll set a DIP (device independent pixel) value for padding, so there is some space around
our TextView. Scroll to the Padding properties in the Properties tab at the right side of your Eclipse
IDE, and type in 12dip, as shown in Figure 7-19, with no spaces between the 12 and the dip. Then
click another field, and you will see the text space itself out. If you can’t find the Padding parameter
field, notice that there are little plus and minus sign UI widgets inside of the Properties Pane. Click
the minus sign next to the Layout Parameters that will close that grouping of parameters and then
click on the plus sign next to the View (parameters) that will open up the parameters for items like
Padding and Focus. Leave the TextView parameters widget closed (which will show a plus sign,
whereas open will show a minus sign) as shown in Figure 7-19.

www.it-ebooks.info

http://www.it-ebooks.info/

185CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Adding an Image
Finally, let’s add another popular type of UI element used for design: the image. Go to the code
bundle for this book and copy the two 32-bit PNG image files named image1.png and image2.png
into your UI_Design/res/drawable-xhdpi folder.

Right-click the UI_Design folder in the Package Explorer pane, and select the Refresh command to
update the project inside of Eclipse, or select the folder and then hit the F5 function key at the top
of your keyboard. Both work processes will achieve the same result and Eclipse will “see” the new
image files.

Now, let’s add an ImageView tag to our XML. To do this, drag the ImageView from the Images & Media
drawer on the left, and then drop it under the TextView as shown in Figure 7-20. As you can see in
the screenshot, the Graphical Layout Editor gives us a real-time code view (using the tooltip, which
changes it’s tag parameter data display in real time as you drag the UI element to determine your
UI widget placement) of what our XML parameters are going to be if we drop the widget at exactly
that location. Kudos to the Eclipse/ADT UI designers for an amazing GLE feature. This now gives us
a RelativeLayout ViewGroup containing our ImageButton, TextView, and ImageView tags (remember
that these are all Views or widgets).

Figure 7-19. Setting the padding value for our TextView via the Properties tab in the Eclipse IDE

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

image1 for our ImageView source imagery, as shown in Figure 7-21. Click the OK button to select
image1.png and close the dialog.

 Dragging an ImageView widget onto our RelativeLayout UI container in the Eclipse Graphical Layout Editor Tab

www.it-ebooks.info

http://www.it-ebooks.info/

187CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

In your Graphical Layout Editor tab, you will now see the image and how its transparency area
composites smoothly with the white background color.

Later, when we add a menu to our app, we will change the background color to black to show how
this image transparency can help with UI compositing over different background colors or imagery.

So now in the next 4.1 emulator screen, you will see our ImageButton, TextView, and ImageView
with enough screen area to hold a bottom menu with five menu items. Right-click on the UI_Design
project folder, and select Run As ➤ Android Application to see the results of your work, as shown in
Figure 7-22. We’ll add the bottom menu in the next section, so that you can learn about how to add
useful menus to your Android applications.

Figure 7-21. Choosing our image1 resource via the Reference Chooser dialog, accessed by dropping the ImageView in our
RelativeLayout container

www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Using Menus in Android
Menus in Android are quite different from the top-mounted text menus found directly beneath the
title bar in PC applications. The menu function on a smartphone or tablet is a bit different for ease
of use, and is sometimes an actual physical button called Menu on some Android smartphones and
tablets. Other Android devices may have a soft button or touchscreen button area for menu access,
or even a Menu button on a remote control for GoogleTV. Nevertheless, the menu function is an
important one in Android, as well as in application development in general, so we’re covering it in
detail in our UI Design chapter.

Pressing the Menu button calls up a menu, which is—you guessed it—at the bottom of the screen,
instead of at the top. To make it even more user-friendly, it is composed of five large rectangular
icons stacked on top of each other that can be easily touched to control your application features.

For our application, we will have our menus do things with our ImageView object, background color,
and alert dialog (which we’ll add later on in this chapter), so that everything we cover in this chapter
ties together nicely in one single UI_Design application.

Figure 7-22. Running our completed UI design in the Android 4.1 emulator

www.it-ebooks.info

http://www.it-ebooks.info/

189CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Creating the Menu Structure with XML
As you might have guessed, you set up your entire menu structure in an XML file. In fact, you
encountered menu inflater code in the Java that your New ➤ Project ➤ Android Application ➤ Blank
Activity generated for you! Once you learn how to code menus in this section, you will be able to
modify that bootstrap menu inflating code and turn it into your own application’s menu system.

The menu XML file goes in a /res subfolder named /menu, as required by Android. This folder is
created for you by the New Android Application Project functionality, so it’s all ready for us to use. In
fact, it has a default activity_main.xml file with the single menu item XML already in it for us, ready to
open and edit.

You are probably wondering why Android (via the File ➤ New ➤ Project ➤ Android Application
project creation helper) named both our Menu and Layout folder XML names with the activity_main
name that Android specified as a default in the new project creation sequence of screens. It may
seem confusing now, but there is a very good reason for it, and you are already used to files
with exactly the same name in different folders being completely different assets, as that is how
multiresolution image assets are handled in the /res/drawable-dpi/ folders. Same concept here.

The reason why this is done becomes clearer as you develop more complex apps with multiple
activities (screen layouts containing UI elements and menus), because each set of Layout and
Menu folders has their own XML definition with exactly the same name, thereby grouping them
logically together by name. Android figures that developers are smart enough to know (remember)
that Menu-related XML is in the /res/menu/ folder and that Layout (UI) XML is in the /res/layout/
folder. So if you had an activity_alternate.xml file for a second UI screen (which we actually will,
in a later chapter) the widget UI layout activity_alternate.xml file would live in /res/layout/ and the
activity_alternate.xml for the second screen’s menuing system would live in /res/menu/. Got it?!

Let’s open up the activity_main.xml file in our /res/menu/ subfolder and type in the XML shown below
to create our five button menu. The easiest way to do this is to edit the first item text to match what
we want, and then to copy and paste it four times underneath it, and edit a few minor parameters to
differentiate each button.

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/buttonone"
 android:title="@string/showimage1"
 android:orderInCategory="100"
 android:showAsAction="never" />

 <item android:id="@+id/buttontwo"
 android:title="@string/showimage2"
 android:orderInCategory="200"
 android:showAsAction="never" />

 <item android:id="@+id/buttonthree"
 android:title="@string/showwhite"
 android:orderInCategory="300"
 android:showAsAction="never" />

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

190 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

 <item android:id="@+id/buttonfour"
 android:title="@string/showblack"
 android:orderInCategory="400"
 android:showAsAction="never" />

 <item android:id="@+id/buttonfive"
 android:title="@string/showalert"
 android:orderInCategory="500"
 android:showAsAction="never" />
</menu>

The menu XML tag is fairly straightforward. It simply declares the location of its XML schema
definition and inside (before the </menu> specifier) it contains nested item tags that specify

item tags has the following five attributes:

The 	 android:id attribute allows the item tag to be given a name and referenced
within your Java code.

The 	 android:title attribute is the title or label for the menu button. The title is in
the strings.xml file, where text constants are defined (we’ll do that next).

The 	 android:orderInCategory attribute is the order of importance of the menu
item within its group of menu items.

The 	 android:showAsAction="never" attribute makes sure that the menu items
only appear in your bottom menu area, and not in the top action bar items in
the Android OS. The android:showAsAction is only supported on Android 3.x
and Android 4.x devices, and because we are coding in this book to support
2.x devices, we are leaving it set to the “never” setting for this reason. If you are
coding to Android 3.x or Android 4.x devices and you wish to have your menu
items displayed on the top action bar in the OS, then you set this parameter to
“ifRoom” instead.

Figure 7-23 shows the completed UI_Design/res/menu/activity_main.xml file.

www.it-ebooks.info

http://www.it-ebooks.info/

191CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Defining Menu Item Strings
Next, we’ll go into the strings.xml file in the /res/values folder (located below the menu folder in the
Package Explorer pane in Figure 7-23) to edit our application’s string constants. We’ll add the text
for our five menu items. Follow these steps to add the five /res/values/ folder’s strings.xml file data
values that are referenced inside of our /res/menu/ folder’s activity_main.xml file:

1. Right-click the strings.xml file and select Open to open it in a tab for editing
in the Eclipse IDE, as shown in Figure 7-24.

Figure 7-23. View of the /res/menu/ folder and the activity_main.xml menu file showing menu and item tags

www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

2. Click the Resources tab at the bottom of the pane to see a visual representation
of the string data resource values in the strings.xml file. Notice that besides
string (text value) resources there are also color, dimension, and other kinds of
resources that can be represented as string values in the strings.xml file in the
/res/values/ folder.

 Adding string values for our five menu items in the Resources Editor in Eclipse

Tip Remember that if you want to see the XML, click the strings.xml tab next to the Resources tab.
You can switch back and forth between the code view and the helper view, which is a great way to
learn how to code XML UI elements!

3. Click the Add button to bring up the dialog shown on the right in Figure 7-24.
We have again combined two screens in one here to save space and time.
Select String and click OK to add a string value to our strings.xml file.

www.it-ebooks.info

http://www.it-ebooks.info/

193CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

4. In the area on the right, in the Name field, enter showimage1. In the Value
field, enter IMAGE ONE. Click on the Add button to add this string value to
the strings.xml file and simultaneously request the string value for your next
string data entry.

5. Repeat step 4 to add four more string values with the following names and
values:

	 showimage2, IMAGE TWO

	 showwhite, USE WHITE

	 showblack, USE BLACK

	 showalert, SHOW ALERT

6. Set our default white background color of #FFFFFF as a Color object, as
shown in Figure 7-26, by selecting a Color Data Object (rather than a String
Data Object) on the last two Add Data Value sequences.

Figure 7-25. Entering String Value Parameters in the resource dialog as part of the Add String Resource work process

www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

7. Add a black background called background2, using a value of #000000.
To add this to the list on the left, click the Add button as if you were going
to add another value, and simply leave the data fields blank and exit the
Resources Editor.

If you want some practice using the Remove Button, and want to be meticulous in your programming
and make sure that there are no unused string variables in your strings.xml file, you can select (and
Remove) the menu_settings variable that ADT created for us in the New ➤ Project sequence, as we have
replaced that needed variable with five of our own, and it will thus be unreferenced in any code, and can
therefore be deleted (but does not absolutely have to be). Figure 7-27 shows the strings.xml Resource
Editor Pane after we have added our five menu title and two background color string variables.

 Adding the two background color string data resources in the strings.xml file via the Eclipse Resources Editor tab

Figure 7-27. Android Resources Editor and Outline tabs showing the seven added resources

www.it-ebooks.info

http://www.it-ebooks.info/

195CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Inflating the Menu Structure via Java
Now it is time to add in our Java code, which inflates our menu from the XML file into our
application’s memory. The term inflating a resource describes the process of the Android operating
system taking the data definition described in an XML file and populating a Java object that can be
accessed and used in Java with that data. In this case, it is our activity_main.xml object from the
/res/menu/ folder, which contains five menu selection buttons, their settings, and their text captions.

Here are the three lines of Java code that Eclipse so generously added to our MainActivity.java file
for us during the File ➤ New ➤ Project ➤ Android Application Project creation operation:

public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }

Android has a dedicated Java object for inflating XML code constructs into a Java object-based format
for use with Java. This is precisely what you are seeing here inside of the onCreateOptionsMenu()
method, which uses the .inflate() method and the R.menu.activity_main path to our activity_main.xml
file. This method creates a MenuInflater object, which contains our inflated menu objects. The OS then
“gets” the MenuInflater object and puts into memory via the getMenuInflater() method. Later on in the
book we’ll learn about the Java construct that allows us to “chain” Java commands together into a single
line of code, as we see here as the method() attaches itself to the .method call.

As you learned previously, the R equates to the /res/ folder of our project, so R.menu.activity_main in
this case is equivalent to (inflates to, if you will) the following complete file path reference: C:/Users/
Walls/workspace/UI_Design/res/menu/activity_main.xml.

ADT also added a menu-related import statement at the top of our code to tell Android which
UI code we would be using. We should specify android.view.Menu that forms the Menu Class
foundation for our menu and android.app.Activity for the inflation methods that access the data
structures defined in the /res/menu/activity_main.xml file containing our menu UI design coded in the
XML format. In this case Eclipse added the import statement for us.

import android.view.Menu;

Figure 7-28 shows the code our New ➤ Project ➤ Android Application helper added to
MainActivity.java.

www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Running the Application in the Android Emulator
Let’s run our code and see our menu in action. Right-click on the UI_Design folder in the Package
Explorer pane, and select: Run As ➤ Android Application. After the emulator loads, and you start
up your application, the emulator should look like Figure 7-29.

 Creating our menu using the getMenuInflater() method in the Eclipse Java editing pane

www.it-ebooks.info

http://www.it-ebooks.info/

197CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

As you can see, the Android phone has a prominent Menu button, second from the left (bottom row)
in the emulator, which we can press to display our menu at the bottom of the screen. If you click the
various buttons, they will highlight in blue and close the menu, which you can re-open again with the
Menu button.

So, the default way an empty menu (no code yet completing its function) works is harmless to the
application. This allows us to develop and test the way our menu looks via XML before we add in the
Java logic to implement the actions that will be called when each button is pressed. This allows our
UI designers to work separately from our programmers without breaking the application! Next we’ll
code some basic programming logic to make our menu items functional.

Figure 7-29. Running our UI Design application in the Android 4.1 emulator

www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Making the Menu Work
Let’s add our menu item implementations now. First, we need to give our RelativeLayout an ID, so
that we can find it in our Java code.

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/uilayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

Now, we need to implement the onOptionsItemSelected() method, where we code the choices
between our different menu item selections, and write the code that defines what they do in our

 RelativeLayout bkgr = (RelativeLayout)findViewById(R.id.uilayout);
 ImageView image = (ImageView)findViewById(R.id.imageView1);

 switch (item.getItemId()) {

 case R.id.buttonone:
 image.setImageResource(R.drawable.image1);
 return true;
 case R.id.buttontwo:
 image.setImageResource(R.drawable.image2);
 return true;
 case R.id.buttonthree:
 bkgr.setBackgroundResource(R.color.background2);
 return true;
 case R.id.buttonfour:
 bkgr.setBackgroundResource(R.color.background);
 return true;
 case R.id.buttonfive:
 // The Alert Code For Next Section Goes Here!
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }

 }

This code is a bit more complex than our MenuInflater() code. At its core, it implements a switch
structure. The switch is a Java iteration construct that says, “In the case of this, do that, and in
the case of this, do that; otherwise, as a default, do this.” This type of code construct is perfect for
the main Android menu, as it usually has only five or six items. Let’s type this code block into our
MainActivity.java editing pane after the routine that inflates our new menu.

Once you are finished typing the new method into your MainActivity.java class, you will notice that
there are three little red X icons in the left of the Java editing pane that signify that our code has a
problem. Click on the first one as shown in Figure 7-30 to get Eclipse and ADT to tell you what is
wrong and to give you some solutions to the problem.

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

199CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

As you can see, Eclipse is telling us that we do not have the import statement that is required to
run the method referenced in that line of code. Pretty Nifty! Double-click on the Import MenuItem
(android.view) selection listed at the top of the pop-up, and Eclipse and ADT will write the import
statement code for you. Do this for the next two warning flags as well to import the other packages
(libraries) that are needed for RelativeLayouts and ImageView widget usage.

Figure 7-31 shows the MainActivity.java code in the Eclipse editor in context with our previous two
code blocks once our Import statements are added and the editing area is “clean” with no errors or
warnings showing. In the figure, the new code is boxed. We will cover the top import statements, then
the outer onOptionsItemSelected() method, and then its inner switch statement and programming
logic for each button inside of the case statement, and what it needs to do regarding the UI (switch
images, set background colors, and so on).

Figure 7-30. Debugging error flags inside Eclipse and adding Import statements needed

www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

First are the import statements for the Android classes that we are going to use in our
onOptionsItemSelected() method (see the top box in Figure 7-31):

Because we reference 	 MenuItem in our onOptionsItemSelected() method, we
need to import android.view.MenuItem.

Because we are going to switch image resources in our 	 ImageView UI object, we
also need to import android.widget.ImageView.

Because we are going to change our 	 RelativeLayout background color from
black to white, we need to import android.widget.RelativeLayout as well.

Remember that importing the class libraries that we are going to use in our Java code makes sure
that these classes are in memory when Eclipse needs to use them during the compilation of our
Java code.

Next, let’s examine our onOptionsItemSelected() code. First, we need to create references to our
RelativeLayout and ImageView objects, so that we can operate on these objects. This way, we can
adjust their resource values to change the image used in the UI and the background color used
when the user selects our menu buttons’ image and background color change menu options.

Figure 7-31. Java code to implement our menu functionality shown in the Eclipse IDE

www.it-ebooks.info

http://www.it-ebooks.info/

201CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

The first line creates a RelativeLayout object called bkgr and sets it to the RelativeLayout that is
assigned the ID uilayout via the findViewById() method. The second line creates an ImageView
object called image and sets it to the ImageView that is assigned the ID imageView1 in the same way.
These IDs can be seen in the /res/layout/ folder’s activity_main.xml file and corresponding tab, so
you can check that everything matches.

Finally, we have the Java switch statement. It starts with switch(item.getItemId, which means
“Decide between the following options (each case statement) based on the ID of the MenuObject
that we named item. If nothing matches, just use the default action at the bottom of the statement
decision tree list.” The case statements work as follows:

The first 	 case statement says, “In the case of the item MenuItem with an ID
of buttonone being passed into this case statement, set the image ImageView
object’s image resource to the 32-bit PNG image called image1 in the
/res/drawable folder, using the setImageResource() method.”

The second 	 case statement says, “In the case of the item MenuItem with an ID of
buttontwo being passed over, set the image ImageView object’s image resource
to the 32-bit PNG image called image2 in the /res/drawable folder, using the
setImageResource() method.”

The third 	 case statement says, “In the case of the item MenuItem with an
ID of buttonthree being passed over, set the bkgr RelativeLayout object’s
background resource to the color resource called background in the /res/values/
strings.xml resource, using the setBackgroundResource() method.”

The fourth 	 case statement says, “In the case of the item MenuItem with an
ID of buttonfour being passed over, set the bkgr RelativeLayout object’s
background resource to the color resource called background2 in the /values/
strings.xml resource using the setBackgroundResource() method.”

The fifth 	 case is left open for our next section, and thus the button does nothing
at this point.

If none of the case statements match IDs passed over to them to operate on, then the default action
is called (executed), which is to pass over to the onOptionsItemSelected() method of the superclass
(in this case, to do nothing).

Now let’s Run As ➤ Android Application, and make sure that our code works! Shown below is a screen
shot of the Android 4.1 emulator after the menu is brought up (twice) via the Menu Button (see right
side of emulator), and the Image Two option and then the black background option were selected.

www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Adding Dialogs
An Android dialog can be created as part of an activity, and is presented in the form of a small, gray
and white pop-up window that appears on top of the current activity’s UI. Android dims that UI so
that it does not compete with the dialog box.

The Dialog class is used to create an interruption of your current activity to collect or relay
information to your application’s end user. Examples of uses for dialogs include alert notifications,
end-user option selection, information data collection, date selection, time selection, task or
processing progress bar monitoring, and so on.

Figure 7-32. Running our UI Design App with the option menus functioning

www.it-ebooks.info

http://www.it-ebooks.info/

203CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Using Custom Dialog Subclasses
Five custom subclasses of the android.app.Dialog class are provided as part of the Android API:

	AlertDialog

	CharacterPickerDialog

	ProgressDialog

	DatePickerDialog

	TimePickerDialog

You can also subclass your own custom Dialog class (say, CustomDialog), so that it does exactly
what you need it to do.

The general way to create a basic dialog within any given activity is via the onCreateDialog(int)
method. Android uses this method to track the dialog created, which activity it belongs to, and its
current state.

To display a dialog once it is created, you use the showDialog(int) method, specifying the number
of the dialog you wish to display. To hide or dismiss a Dialog object, use the dismissDialog(int)
method, and the Dialog object will be removed from memory and the application.

Here, we’ll take a closer look at the most often used (and the recommended) Dialog class:
AlertDialog. Android provides an easy and powerful way to construct alert dialogs with many
features.

Displaying an Alert Dialog
The AlertDialog class provides a lot of built-in dialog features, such as a title, user message, up
to three buttons, and a list of selectable items. You can even use check boxes and radio buttons in
your dialog.

The AlertDialog works its magic via a dialog builder that provides a ready-made dialog code
structure for you to easily create complicated dialogs via the android.app.AlertDialog class.

As shown in the boxed areas of Figure 7-33, there are four main parts to adding our AlertDialog to
our existing Android application.

www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

First, we add the import statements for the Android utilities we are going to leverage to provide our
AlertDialog object:

import android.app.AlertDialog;
import android.content.DialogInterface;

Next, we create our AlertDialog.Builder object, which we name builder. This is a new (empty and
initialized) AlertDialog.Builder object.

public boolean onOptionsItemSelected(MenuItem item) {
 RelativeLayout bkgr = (RelativeLayout)findViewById(R.id.uilayout);
 final ImageView image = (ImageView)findViewById(R.id.imageView1);
 AlertDialog.Builder builder = new AlertDialog.Builder(this);

To work with the image object inside the builder dialog object that we are constructing, we need to
add the keyword final to our declaration of this object variable (you’ll see why in the next step). The
final keyword is used for variables, methods, and classes. A final variable cannot be given a new

Figure 7-33. Java code for implementing our alert dialog builder in the Eclipse IDE

www.it-ebooks.info

http://www.it-ebooks.info/

205CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

value after it has been assigned one (although we can alter the variable object like any other object).
A final method cannot be overridden. Also, a final class cannot be extended, and is thus, in a
sense, protected from further programming modifications.

The preceding code basically says, “I want to declare an object named builder that is of the type
AlertDialog.Builder, and I wish to set it equal to this new AlertDialog.Builder object that I am
creating here. Therefore, please instantiate an empty AlertDialog.Builder object for me to define
and fill with my own custom parameters.”

After this has been declared, builder exists as an empty AlertDialog ready to fill with our own
custom parameters. OK, on to the fun part, and to the third and major part of our AlertDialog
definition.

Here is the code to customize our dialog:

builder.setTitle("Pick an Image!")
 .setMessage("Please Select Image One or Image Two:")
 .setCancelable(false)
 .setPositiveButton("IMAGE 1", new DialogInterface.OnClickListener()
 {
 public void onClick(DialogInterface dialog, int id) {
 image.setImageResource(R.drawable.image1);
 }
 })

 .setNegativeButton("IMAGE 2", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 image.setImageResource(R.drawable.image2);
 }
 });

We work with the image object, which we know can’t be reassigned a value because it is final.
This is to deal with situations where the event listener is used after the onOptionsItemSelected()
method has terminated. In this case, a non final image variable would not be around to take a new
assignment, whereas a final variable is frozen in memory for access at all times (of course, this may
never happen, but Java was built this way just to be sure).

Notice in this block of code that sets our AlertDialog parameters (I am amazed that they did
not offload AlertDialog parameters to an alert_dialog.xml file) that a new concept called method
chaining is used. This allows a large number of parameters to be set without the builder object
being explicitly typed before each dot-notation construct.

In method chaining, the first method is attached to its object with dot notation. In our example, it
looks like this:

builder.setTitle("Pick an Image!")

The follow-up methods that set the other parameters are simply .setMessage(),
.setCancelable(false), and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

I’ve formatted the preceding code for ease of reading. But to give you a little more grip on method
chaining, the first three method calls could be rewritten as follows, illustrating the method chain:

builder.setTitle("Pick an Image!").setMessage("Please Select...").setCancelable(false)

Also note that between contiguous methods, there is no semicolon at the end of these parameter
setting lines of code. Semicolons are required on only the last and final method call—in this case,
after .setNegativeButton() to end the builder definition. This chaining allows programmers to write
denser code, or to use fewer lines of code to accomplish more tasks. Pretty cool stuff.

Note In this case, the order of the chained methods doesn’t matter because each one returns an
AlertDialog.Builder object with the new parameter set, alongside all the other parameters that
have been set so far. In other cases, the order of chaining may matter. Android has been well designed
to make chaining easy and convenient.

AlertDialog object. These buttons are hard coded into the

	PositiveButton

	NeutralButton

	NegativeButton

This explains the setPositiveButton() and setNegativeButton() methods shown in the preceding
code.

The convention in Android AlertDialogs is to use PositiveButton for one-button dialogs,
PositiveButton and NegativeButton for two-button dialogs, and all three for three-button dialogs.
The code inside the two buttons in our dialog is nearly identical, so let’s go over what is happening
inside the first button, IMAGE 1.

 .setPositiveButton("IMAGE 1", new DialogInterface.OnClickListener()
 {
 public void onClick(DialogInterface dialog, int id) {
 image.setImageResource(R.drawable.image1);
 }
 })

www.it-ebooks.info

http://www.it-ebooks.info/

207CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

The setPositiveButton() method allows us to name the button IMAGE 1 and creates a new
OnClickListener() implementation for the DialogInterface. Note that we declared android.
content.DialogInterface in an import statement initially, and it is being used here to create a
PositiveButton.

Inside the OnClickListener, we have a public method onClick(), which defines what will be done
when the button is clicked. We pass onClick a dialog object of type DialogInterface and an integer
ID value that represents which of the buttons was clicked or the numerical order of the button that
was clicked—both of which are what OnClickListener wants to evaluate in the event the user clicks
that button. Note that we will be getting into event listeners in much greater detail in Chapter 9.

Inside this onClick container is where our code goes to change our ImageView object to the
appropriate image resource. Because we have already done that in the menu code, we can simply
copy the image.setImageResource(R.drawable.image1) code from down in our switch construct for
ButtonOne.

Finally, down inside of our switch statement, where before we had a placeholder comment, we can
now display the dialog by calling the show() method of the builder object that we created earlier.
This line of code could not be much simpler:

builder.show();

Whenever the fifth menu button is clicked, our dialog will be shown. We can select between the two
images, which will then be set on our screen appropriately.

Now, right-click on your UI_Design folder, and select Run As ➤ Android Application to see your
work. Figure 7-34 shows the dialog as it appears in the emulator after you click the SHOW ALERT
button in the menu.

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 7: UI Design: Buttons, Menus, and Dialogs

Figure 7-34. Viewing our Pick an Image! alert dialog in the Android 4.1 emulator

Summary
With the exception of dialogs, Android allows us to put together our user interface, or UI, designs
using XML markup instead of Java code, and to implement them using just a few dozen lines of code
in many instances, such as when creating a system options menu. Allowing user interface design via
XML markup allows applications designers to get one step closer to the application coding process.

In this chapter, we created an application that has all of the primary UI objects that can be used to
construct an application:

	ImageButtons allow us to create custom, highly visual UI elements.

	TextView and ImageView objects allow us to put relevant information on the screen.

	Menu items allow us to use the Android Menu button to control our application.

Alert dialogs interface with our users to gather information or inform about 	
decisions.

In the next chapter, you will learn how to add graphics design elements, to provide even more visual
new media user experiences within your Android applications. Right after that in Chapter 9 we'll revisit
in detail the OnClick() event handler that you learned about briefly in the last section on AlertDialogs.

www.it-ebooks.info

http://www.it-ebooks.info/

209

Chapter 8
An Introduction to Graphics
Resources in Android

This chapter will serve as an introduction to how to best integrate and optimize graphical elements
within your Android apps. These include static graphics such as bitmap images, as well as motion
graphics, such as tween animation (transform-based or procedural animation), bitmap animation
(frame-based or flipbook animation) as well as image transitions (crossfades, or blended image fades
from one image into another image).

You will learn how to best use imaging techniques available to your application’s View objects that
make up your UI, and how to support all four levels of Android screens (QVGA, HVGA, WVGA, and
WSVGA) via custom resource assets.

Note Because VGA is 640 × 480 pixels, quarter VGA (QVGA) is 320 × 240 pixels, or one-quarter of a VGA
screen or LDPI; half VGA (HVGA) is 480 × 320, or one-half of a VGA screen (MDPI); wide VGA (WVGA) is
800 × 480, or a widescreen version of a VGA screen (HDPI), wide SVGA (WSVGA) is 1,024 × 600; and the
latest Android devices on the market are now supporting HD resolution, which is 1,280 × 720 and these
would currently be termed XHDPI. Android 4.2 added the TVDPI specification, which supports GoogleTV iTV
sets running 1920 x 1080 and Mega-Tablets running 1920 x 1200 resolutions.

We’ll cover the use of graphics objects in both the areas of user interface (UI) design (custom
buttons, for instance) and user experience (UX) design (the content itself, say music videos or an
interactive children’s storybook). If the graphic is used to control the operation of the app, it is
classified as UI design, if the graphic is used as eye-candy, or is part of the content (the storyline for
instance), it is classified as UX design. Both are vitally important to the success of your application.

We’ll look at two primary graphics related packages: the android.graphics.drawable package
(I knew there was a reason that resource folder was called drawable) and the android.view.animation

www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8: An Introduction to Graphics Resources in Android

package. These are collections of useful classes for maximizing bitmap imagery and for working with
images that support the fourth dimension (time) via motion, commonly called animation.

In a later chapter, once we know how to control events (which connect our UI elements to functions
such as video playback), we’ll take a look at digital video. Using the VideoView class makes playing
digital video a snap. Android 4.0 and later added one of the most impressive video codecs available
today to Android. VP8 was acquired by Google from ON2 who developed it. It was originally called
VP8 and is sometimes called WebM, as it was released for HTML5 by Google, who generously
released this technology into open source. There is also a technology (supported in Android 4.0
and later) called WebP, which is the static image version of WebM. Both WebM and WebP use an
advanced compression technology to get better quality with a smaller data footprint (better file
compression, or a smaller file size). If you are developing for Android 4.x exclusively, you can use
WebP instead of PNG24 and PNG32, otherwise, stick with PNG24 and it’s slightly larger (25% larger

drawable package. This package handles classes and methods related to

	Bitmaps: In a bitmap, a collection of pixels make up an image—it’s a map of
image bits, if you will. This is the most commonly used drawable asset.

	Shapes: Shapes are line drawings. They also are known as vectors, like the lines
architects use in CAD drawings. Common vector formats are EPS, AI, or SVG.

	Gradients: Gradients are smooth transitions from one color to another color.
They can be shaped in a straight line or occupy a circular area.

	Transitions: Shape transitions are smooth vector changes between one shape
and another shape. This process is sometimes referred to as morphing or
tweening.

	Animation: Animation involves an image, shape, or object that moves in
some way.

	Image transitions: These are smooth cross-fades between one image and
another image. They are usually used to smoothly transition from one image to
another image.

In Android development, graphics-related items such as gradients, image transitions, animated
transformations, and frame-based animation can all be termed drawables. With the exceptions of
transformational (tween or procedural) animation, all of these center their resource assets in the /res/
drawable folder. (And you thought tweens were 12-year-olds, right?)

The /res/drawable folder is also where you should put XML files that define things like frame-based
image animations and crossfading image transitions (which we will look at throughout this chapter).
So get used to seeing drawable everywhere you look because it will be one of the most used folders
in your resources (/res) folder.

www.it-ebooks.info

http://www.it-ebooks.info/

211CHAPTER 8: An Introduction to Graphics Resources in Android

Implementing Images
The way that Android is set up to automatically implement your images via the project folder
hierarchy is a bit hard to understand at first. But once you get used to it, you’ll find that it is actually
amazingly simple to use graphic resources, as extensive asset reference coding is all but eliminated.
You will see this in action in this chapter, as we will implement powerful graphics features using as
few as five or six lines of Java programming logic.

I’m not sure what could be much simpler than this: put your imagery into the appropriate project/
res/drawable folder, and then reference it by file name in your Java or XML code. Yes, all that you
need to do is reference it in your XML and Java code, and you are finished, and with perfect results
(assuming that your imagery is optimized correctly, which we are also teaching in this book).

In this chapter, we will look at which image formats to use, which techniques to implement, and
which work processes to follow as much as (or more than) we will be dealing with XML attributes
and Java code snippets (although these are fun to play with as well).

Core Drawable Subclasses
Android offers more than a dozen types of customized drawable objects. In this chapter, we’ll look at
the following core subclasses of android.graphics.drawable:

	BitmapDrawable object: Used to create, tile, stretch, and align bitmaps.

	ColorDrawable object: Used to fill certain other objects with color.

	GradientDrawable object: Used to create and draw custom gradients.

	AnimationDrawable object: Used to create frame-based animations.

	TransitionDrawable object: Used to create crossfade transitions.

	LayerDrawable object: Used to create composited PNG32 bitmaps or WebP
bitmaps via multiple image layers.

Note If you want to review all of the drawable objects, look at the android.graphics.drawable
package document on the Android Developers website (http://developer.android.com/
reference/android/graphics/drawable/Drawable.html). You’ll find that there is a plethora of
graphics power in Android’s 2D engine.

The most pervasive and often used type of drawable is the bitmap. A bitmap is an image composed
of a collection of dots called pixels, where “pix” stands for “pictures” and “els” stands for
“elements.” Yes, a bitmap is, quite literally, a map of bits. So, let’s get started with adding bitmaps to
your Android apps.

www.it-ebooks.info

http://developer.android.com/reference/android/graphics/drawable/Drawable.html
http://developer.android.com/reference/android/graphics/drawable/Drawable.html
http://www.it-ebooks.info/

212 CHAPTER 8: An Introduction to Graphics Resources in Android

Using Bitmap Images in Android
How do we best optimize our static (motionless or fixed-in-place) bitmap imagery for use within our
Android applications? That’s what this section is all about. We have already worked with bitmap
images in the previous chapters, in the context of our ImageButton and ImageView objects, so you
already have a decent amount of experience with using truecolor 32-bit PNG (PNG32) files to obtain
an excellent graphic result. Remember that a 32-bit PNG is a portable network graphic format with
8-bits of red, green, blue, and alpha (ARGB or RGBA) and that 4 × 8 = 32, thus: PNG32.

Besides the WebP format that is supported in Android 4.0 and later, Android supports three
mainstream bitmap image file formats: PNG, JPEG, and GIF. We’ll talk about how Android truly feels
about each one, so you can choose the right formats to meet your graphics-related design and user

	Indexed-color PNG8, which uses a limited 256-color (8-bits of color allows 256
color values) image palette, which is an index of up to 256 colors that an image
uses to make up its pixel colors

	Truecolor PNG32, which uses a 32-bit color image that includes a full 8-bit
alpha channel (used for image compositing) and 8-bits each of red, green,
and blue image channels, or PNG24 for a truecolor PNG image with no alpha
channel included

PNG is known as a lossless image file format because it loses zero image data during the
compression processing. This means that the image quality is always 100% maintained. If designers
know what they are doing, they can get very high-quality graphics into a reasonably small data
footprint by using either the indexed-color PNG8 or the truecolor PNG32 or PNG24 image file
formats, depending upon how many colors are using in that image.

Indexed-color PNG8 files use approximately one-fourth of the amount of data (bits) that a truecolor
32-bit RGBA PNG32 image does. Remember the math we did in the previous chapter: 8 × 4 = 32. A
smaller data footprint is achieved by using only 8 bits, or a 256-color “palette” of 256 of the most optimal
(the most frequently used in the image) colors that are best suited to represent a particular image, but
with much the same visual result as if 24-bits (16,777,216 colors) worth of color values were used. This is
done primarily to save data file size, thereby decreasing the image’s data footprint (file size) considerably.

Each 8-bit “indexed” color image (PNG8 or GIF) will have its own custom index or palette of colors
to use to represent the pixels in that image. More colors can be simulated in 8-bit images by
“dithering,” which is a process where fine dot patterns are used between two different colors to
simulate an intermediate color (similar to the concept of anti-aliasing that we discussed earlier in
the book). This is done to minimize “color banding” in 8-bit images, and dithering is an option in the
8-bit image compression process that can be turned on or off as needed. Dithering adds a small
amount of data overhead to the file size, or increases the data footprint slightly, within the resulting

www.it-ebooks.info

http://www.it-ebooks.info/

213CHAPTER 8: An Introduction to Graphics Resources in Android

file, as more data (the resulting dot patterns) is added to the compressed file, but the visual results
are usually well worth the few extra kilobytes.

Truecolor PNG32 images use a full 32 bits of data for each of the image pixels to represent the
four image data channels that are found in most bitmap images: alpha channel, red channel,
green channel, and blue channel (RGBA or ARGB). If an alpha channel is not used to define image
transparency for compositing purposes, then the RGB PNG image would be called a 24-bit PNG24
image, as it uses 24-bits (3 × 8) of data, rather than 32-bits.

The alpha channel determines where the image is going to be transparent and is used for image
compositing. As you learned in Chapter 7, compositing is the process of using more than one
image in a series of layers to create a final image out of several component layers or parts. Image
compositing is so important that Android even has a LayerDrawable, which you learned at the
beginning of this chapter, and which you can research farther at: http://developer.android.com/
reference/android/graphics/drawable/LayerDrawable.html if you are going to be doing a lot of
compositing in your application. We already looked at using layers in GIMP earlier in the book, and
this drawable class gives your Android applications this same capability.

Another benefit of image compositing is that in your programming code, you can access different
image elements of a composited or layered image independently of other image elements because
they are all on their own layer. For example, you might do this for more advanced game engine
programming, where what seems to be one image to the game player is actually in fact a series
of image layers that composite seamlessly together at run time, via code and clever GIMP or
Photoshop compositing work. This allows your Java (and XML) code to grab onto individual image
elements without having to use 3D (OpenGL ES) rendering, which is beyond the scope of an
introductory book such as this but which we look at in Chapter 12 just so that you know about it.

It is important to note that at compile time, Android looks at your PNG32 (or PNG24) graphics, and if
they use less than 256 colors within the image, Android automatically remaps them to be an indexed
PNG8 image, just as you would want it to do to save space (app data footprint). This means that you
don’t need to worry about analyzing your images to see if they should be in truecolor or indexed-
color PNG format. You can simply do everything in truecolor, and if it can be optimized into indexed-
color with no loss of data, Android will do that for you—making your data footprint three to four
times smaller, depending on if you have used an alpha channel (PNG32 RGBA) or are using only the
RGB image channels (PNG24 RGB).

If for some reason you don’t want your images optimized at compile time, you can put them into
the project /res/raw folder, which is for data that is accessed directly from your Java code. A good
example of this is video files that have been perfectly optimized for size and quality, and just need
to be played. This concept will come up in a media player example in Chapter 11, so stay tuned,
as we will be using the /raw folder soon enough, I just wanted to point it out here, as it relates
to circumventing the mandatory PNG image optimization that Android has implemented into it’s
compile-time processing.

JPEG and GIF Images
The next most desirable format to use is the JPEG image file type. This type does not have an
alpha channel. It uses lossy compression, which means that it throws away some data to get a
much better compression result, but at the expense of your image quality. JPEG stands for joint
photographic experts group.

www.it-ebooks.info

http://developer.android.com/reference/android/graphics/drawable/LayerDrawable.html
http://developer.android.com/reference/android/graphics/drawable/LayerDrawable.html
http://www.it-ebooks.info/

214 CHAPTER 8: An Introduction to Graphics Resources in Android

If you look closely at (zoom into, using GIMP) JPEG images, you will see a lot of artifacts, such as
areas of strange color variations or what looks like dirt on the image (dirt that was not on the camera
lens). JPEG is useful for much higher-resolution (print resolution) images, where artifacts are too
small to be seen. So, it is not really as suitable for lower-resolution smartphone screens. JPEG is
supported, but is not recommended for Android apps because Google wants their product to look
as pristine as possible, and PNG or WebP formats are the sure-fire way to accomplish this.

Finally, we have GIF, the CompuServe graphic information format, a much older 8-bit file format. The
use of this file format is discouraged because it has the poorest quality to file size ratio. Stay away
from using GIFs for your Android apps if possible. Use PNG8 instead, as it has a superior image
compression algorithm that results in a smaller data footprint (file size).

activity_
 file in the /res/layout/ folder. So, let’s get right into the fun stuff with animation and add

cels, or hand-drawn images, creating the illusion of motion. To steal a more

called a frame. This term refers back to the original days of film, where actual film stock would be run
through a projector, displaying 24 frames per second (known in the industry as fps).

In Android, frame-based animation is the easiest to implement via XML and gives us great results.
You just need to define some basic XML animation attributes—what and where the frames are—in
the correct place for Android to find them. Then you can control your animation via your Java code if
you need to.

In our example, we are going to animate a solid gold 3D logo. It will circle around smoothly, casting
a T-shaped shadow onto the ground. Let’s fire up a new project in Eclipse, and we’ll see how
animation works in Android.

1. If you still have the UI_Design project folder open from the previous chapter
examples, right-click on that folder, and select Close Project. This closes the
project folder in Eclipse (of course, it can be reopened later; as you can see,
it’s still there).

2. Select Eclipse File ➤ New ➤ Project and choose Android Application
Project to open the New Android Application Project dialog sequence. Fill it
out as follows (and shown in Figure 8-1).

	Project name: Name this project GraphicDesign.

	Application name: Let’s call this application GraphicDesign.

	Package name: Name the package fourth.example.graphicdesign.

www.it-ebooks.info

http://www.it-ebooks.info/

215CHAPTER 8: An Introduction to Graphics Resources in Android

	Build SDK target: Choose Android 4.1 SDK Level 16 (Jelly Bean).

	Min required SDK version: Enter API Level 8, which matches with the
recommended Android 2.2 compatibility build target setting.

	Create custom launcher icon: Check this box.

Figure 8-1. Creating our GraphicDesign Android 4.1 project

3. Now we need to define our animation’s frames in an XML file, which we’ll
call logo_animation. Right-click your GraphicDesign folder and select
New ➤ File. At the bottom of the dialog, enter logo_animation.xml. In the
GraphicDesign navigation pane in the middle of the dialog, expose your
directory structure (via the arrows next to the folders), and select the
/res/drawable folder, so that the parent folder field above shows
GraphicDesign/res/drawable-xhdpi. This places our logo_animation XML file
in the correct folder. Figure 8-2 shows the completed New File dialog as well
as the drop-down menu sequence, together in a single screenshot.

www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 8: An Introduction to Graphics Resources in Android

Caution Because frame-based animation in Android uses bitmap images, you must place the XML file
that references these bitmap images into the same folder the images occupy: the /res/drawable folder.
Do not put frame animation images or XML specifications into the /res/anim folder. That folder is for
transform animation (covered in the next section of this chapter). This is an important difference in how
frame-based animations and transform-based or tween animations are set up and created in Android.
This is also a very common mistake, as one would assume that all animation-related XML would
logically go into the /res/anim/ folder, but this is not in fact the case. Bitmap (frame) animation goes into
the /res/drawable/ folders alongside the image assets that it uses, and procedural (vector) animation
goes into /res/anim. Memorize this now to avoid hours of frustrating debugging later on!

 Creating our logo_animation.xml file in the GraphicDesign/res/drawable-xhdpi folder

4. Next, click the logo_animation.xml tab in Eclipse, and type in the following
XML markup to define our frame-based animation for Android (Figure 8-3
shows the new file in Eclipse):

<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
 android:oneshot="false">
 <item android:drawable="@drawable/logoanim0" android:duration="200" />
 <item android:drawable="@drawable/logoanim1" android:duration="200" />
 <item android:drawable="@drawable/logoanim2" android:duration="200" />
 <item android:drawable="@drawable/logoanim3" android:duration="200" />
 <item android:drawable="@drawable/logoanim4" android:duration="200" />
 <item android:drawable="@drawable/logoanim5" android:duration="200" />
 <item android:drawable="@drawable/logoanim6" android:duration="200" />

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

217CHAPTER 8: An Introduction to Graphics Resources in Android

 <item android:drawable="@drawable/logoanim7" android:duration="200" />
 <item android:drawable="@drawable/logoanim8" android:duration="200" />
 <item android:drawable="@drawable/logoanim9" android:duration="200" />
</animation-list>

Figure 8-3. Creating the XML mark-up for the logo_animation.xml file

This is pretty straightforward XML tag markup logic here. We add an animation-list tag to hold our
frame-based animation image (item) listings. This tag has its android:oneshot attribute set to false,
which will allow our seamless animation to loop continuously. Setting oneshot equal to true will stop
the animation after one full iteration through the ten files. We’ll try both settings later, so that you can
get used to using this important parameter.

Inside of the animation-list tag, we have ten nested item tags (nested because the animation-list
closing tag comes after these ten item tags). These specify the location of each image in our /res/
drawable-xhdpi folder, where each image is a frame in the animation.

Using each item tag entry, we specify the name and location of each of our ten animation frames
logoanim0 through logoanim9, as well as the duration of the frame display time in milliseconds (ms).
In this case, we start off using 200 ms, or one-fifth of a second, for each frame, so that the entire
animation plays over 2 seconds, and at 5 fps, just barely fast enough to fake movement. We can
adjust frame times later, to fine-tune the visual result and to make the animation loop more smoothly
and more rapidly.

We need to put our animation frame images into the /res/drawable-xhdpi folder, so that the XML
code can reference them successfully. As you know by now, in Android, everything needs to be in
the correct place for things to work properly (or at all, for that matter).

1. Copy the ten animation frames into the /res/drawable-xhdpi folder from the
code download.

2. Right-click the GraphicDesign folder in the Package Explorer and select
Refresh, so that the IDE can see the new animation frame image assets that
you have added.

www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 8: An Introduction to Graphics Resources in Android

Note To right-click the MainActivity.java file, the /src folder and subfolders need to be showing in the
expanded Package Explorer project-tree view, so click on those arrows to make your Java Source Code
hierarchy visible.

MainActivity.java file, which holds our MainActivity class from our fourth.
 package:

package fourth.example.graphicdesign;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;
import android.widget.ImageView;
import android.graphics.drawable.AnimationDrawable;

public class MainActivity extends Activity {

 AnimationDrawable logoAnimation;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 final ImageView logoAnimHolder = (ImageView) findViewById(R.id.imageView1);
 logoAnimHolder.setBackgroundResource(R.drawable.logo_animation);
 logoAnimHolder.post(new Runnable() {
 public void run() {
 logoAnimation = (AnimationDrawable) logoAnimHolder.getBackground();
 }
 });
 }

3. If there are still errors on your XML editing pane, right-click your
GraphicDesign folder and select Validate to clear these as well. Validate
checks and validates your project and all of its code, so it looks one level
deeper than Refresh, which just looks at folders to make sure that Eclipse
sees all of your resource assets.

At this point, you should see a screen that looks similar to Figure 8-3.

Controlling Frame-Based Animation via Java
Now we are going to write our Java code to access and control our 2D animation. If the MainActivity.
java tab is not already open, right-click the MainActivity.java file in the Package Explorer pane, and

Open, or simply select the file and then hit the F3 key.

4
www.it-ebooks.info

http://www.it-ebooks.info/

219CHAPTER 8: An Introduction to Graphics Resources in Android

 @Override
 public void onWindowFocusedChanged(boolean hasFocus) {
 logoAnimation.start();
 }
 @Override
 Public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }
}

In Android Java code, AnimationDrawable is the class we need to use to implement our frame-based
animation sequences. We import the android.graphics.drawable.AnimationDrawable class. Then
we import the android.widget.ImageView class, which we will use as a view container to display the
animation. We add the two new import statements to the ones that Android starts us out with (the
first three).

Next, we add the object declaration for our AnimationDrawable object, which we are calling
logoAnimation. This is as simple as writing the following:

AnimationDrawable logoAnimation;

Next, we create a final ImageView object called logoAnimHolder, which we assign to ImageView
imageView1, which we will declare in the activity_main.xml file and access via the findViewById()
method.

After that, we set the background resource for this newly created ImageView to our logo_animation
XML file, which specifies our animation sequence and timing. This is the bridge between
display (ImageView) and animation data definition (logo_animation.xml) that we set up via the
.setBackgroundResource() method so that our animation will display through the background image
setting for the ImageView.

If you are wondering why we are using the ImageView widget’s Background Image parameter rather
than the Source Image, this leaves it open for us to have a source image in our ImageView that uses
transparency (an alpha channel) to create cool effects on top of the animated background. This
essentially gives us two layers in the ImageView UI Object, as we can set source and background
images for any ImageView object, and both of these could be animated if we like. If you need to,
you can get some more practice by changing this source code from using getBackground() and
setBackgroundResource() to instead using setImageResource() and getImageResource().

To run the animation we use the .post() method on the logoAnimHolder ImageView to implement
(post to the OS) a runnable() method that will contain our run() method that runs (cycles through the
animation frames, in this case) our core animation drawable object logoAnimation that we declared
at the top of our MainActivity Class.

Inside of the run() method, we define the logoAnimation object that we want to run() and which
we declared in the very first line of code in our MainActivity class. The logoAnimation is an
AnimationDrawable object that gets its data from the logoAnimHolder object via its getBackground()
method, which grabs the ImageView background image. As you can see from the logoAnimHolder
.setBackgroundResource() declaration a few lines earlier, that image has been obtained from the
logo_animation.xml file, where we define our animation frame sequence.

www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 8: An Introduction to Graphics Resources in Android

Thus, to get our animation to play, we use a new method called post(). This method uses a new
Runnable method to invoke a run() method that runs the getBackground() method that gets the
animation frames from our logoAnimHolder ImageView object. This is the code that handles the
real-time nature of getting the frames every 200 ms and putting them into the ImageView object
background for display on the screen.

To finally get our animation to play on the screen when the app launches, we use a
onWindowFocusChanged() method to initially detect when the window (app UI screen) has Focus,
in this case, to detect when the app has started, or more precisely, when the onCreate() and run()
methods have finished loading (preparing themselves for execution). If we don’t do this, then our
app tries to run our animation before the screen is ready to accept it, and the gold logo does not
animate.

onCreate() method
activity_main.xml UI layout specification and our

 method of our activity is using our activity_main.xml UI menu specification,
 8-4 shows the four logical sections of code that we need to

MainActivity class and onCreate() and onWindowFocusChanged() code:

Import the Android Java classes that we are leveraging in our code.	

Create and name an 	 AnimationDrawable object that is accessible to every code
construct in our MainActivity class.

Create an 	 ImageView object tied to our activity_main.xml screen layout, set the
background image resource of that ImageView to reflect our logo_animation.xml
attributes, and then have our logoAnimation AnimationDrawable object take that
frame data from the ImageView via getBackground().

Run the animation with a 	 run()method inside of an Android Runnable thread
created by our logoAnimHolder.post() method.

Start the animation using logoAnimation.start() method inside of our 	
onWindowFocusChanged() method used to detect app initialization completion.

www.it-ebooks.info

http://www.it-ebooks.info/

221CHAPTER 8: An Introduction to Graphics Resources in Android

Finally, we need to remember put in place the ImageView named imageView1, which ties the
ImageView in our Java code to the ImageView defined in our XML document (activity_main.xml) that
defines our screen layout UI. To set-up our UI Layout activity_menu.xml markup in /res/layout/, we’re
using a default RelativeLayout container with an ImageView called imageView1 inside of it to hold our
frame animation.

Here is the code, which is also shown in Figure 8-5:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/relativelayout1"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <ImageView
 android:id="@+id/imageView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="=24dp"
 android:contentDescription="@+string/content_desc" />

</RelativeLayout>

Figure 8-4. Creating the Java code that sets up and starts our XML defined frame-based animation

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

222 CHAPTER 8: An Introduction to Graphics Resources in Android

The next three parameters were automatically written for us based on our placement in the Graphical
Layout Editor, and the final android:contentDescription parameter points to a short line of XML
markup that we need to add to our /res/values/strings.xml file that reads (place here whatever
content you want the physically impaired to hear):

<string name="content_desc">Frame Animation Example</string>

Running the Frame-Based Animation App in the Emulator
Now let’s see our animation in action. Right-click your GraphicDesign folder and choose Run As ➤
Android Application. When the 4.1 emulator comes up with a white screen, watch the 3D gold logo
animation playing on it—simply amazing. But a tad too slow as the animation is not smooth enough.
You’ll fix that next with a little parameter “tweaking!”

Because a screenshot cannot display an animation, we’ll forego the screenshot of the 4.1 emulator
here to save space. Now, here’s a simple exercise to try after you run this version. Make the
following changes, and then save the modified logo_animation.xml file:

1. Change the logo_animation time values from 200 to 100 for all of the image
parameters. This will play the animation faster, with a 1 second duration, at
10fps or ten frames per second, yielding a smoother animation result.

2. Change the animation-list tag’s android:oneshot attribute to true.

 Naming our ImageView UI element in the activity_main.xml file so it matches the imageView1 name used in our

www.it-ebooks.info

http://www.it-ebooks.info/

223CHAPTER 8: An Introduction to Graphics Resources in Android

To run our nonlooping smoother animation version, right-click the GraphicDesign folder and select
Run As ➤ Android Application. Now when you launch the app in the 4.1 emulator, the animation
will play one time and then stop. Note that by increasing the frame-rate that we obtained a much
smoother visual appearance.

Next, let’s add a transformational animation directly underneath our frame-based animation.

Tween Animation in Android
Tween animation is used for shape-based animation, where shapes are animated from one state
to another without specifying the intermediate states. In other words, you define the start and end
positions of the shape, and Android fills in the gaps to make the animation work. This shape based
animation is sometimes called “Vector Animation” whereas frame based animation would be called
“Raster Animation.”

This contrasts with frame-based animation, which uses a sequence of cels, or bitmap images,
as the flipbook animations of days gone by. So, frame animation does its work via pixels, while
tween animation does its work via transforms that move, rotate, or scale a shape, image, or even
text. Thus, tween animation is more powerful than frame-based animation. It can also be used in
conjunction with frame-based animation to achieve even more spectacular results.

Tween animation in Android is completely different than frame animation. It is implemented with
the set of classes found in the android.view.animation package. These classes represent the true
power of tween animation in Android. They include things such as advanced motion interpolators,
which define how animation transformations accelerate (or decelerate) over time; and animation
utilities, which are needed to rotate, scale (resize), translate (move), and fade (effect transparency)
View objects over time.

“Wait a minute,” you must be musing, “does ‘View objects’ mean that I can apply all of this animation
class power to, say, TextViews, for instance? Or even VideoViews?” Indeed it does. If you transform
a TextView (rotate it, for instance), and it has a background image, that image is transformed
correctly, right along with the text elements of the TextView and all of its settings.

Note Here, the word transformation refers to the process of rotation (spinning something around a
pivot point), scaling (resizing in x and y dimensions relative to a pivot point or reference point), and
x or y movement, which is called translation in animation. Don’t get Translation and Transformation
confused!

As you might imagine, tween animation definitions can get very complex. This is where the power of
using XML to define complicated things, such as transformational animation constructs, becomes
very apparent. Again, we thank Android for off-loading work like this from Java coding to XML
constructs, so our designers can take care of it for the programmers.

In XML, the tween animation transforms are simply lists of nested tags; they are not usually set
up via classes and methods. It is certainly far easier to fine-tune and refine these types of detailed

www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 8: An Introduction to Graphics Resources in Android

animations via XML line-entry tweaks, rather than inside of the Java code, although you could
probably do it that way if you wanted to, once you are an expert Java programmer.

The XML for tween animations goes in an entirely different directory (folder) than frame animation
(which goes in /res/drawable). Transform animation XML definitions (files) go in the /res/anim folder.

Creating the text_animation.xml File
We will use a different XML file-creation method to create our transform animation XML file and its
folder, so let’s get into that right now.

1. Open the Eclipse File Menu at the top left of the IDE and select New ➤ Other... ➤
Android ➤ Android XML File, as shown in Figure 8-6. Then click Next.

Figure 8-6. Selecting to create a new XML file via the Eclipse File ➤ New ➤ Other menu selection route and dialog

2. As you can see by the options in the New Android XML dialog, Android in
Eclipse has a powerful XML file-creator utility that supports ten different
genres of XML files via a drop-down menu, including animation. Fill out the
dialog as follows (and as shown in Figure 8-7):

	File: The first field we want to fill out is the name of the animation XML file,
which is: text_animation.xml.

	Which type of resource would you like to create?: Select Tween
Animation as the XML file type, which automatically puts the XML file
created into the /res/anim Folder.

	Select the root element for the XML file: Make sure that set is selected
as the root element for the file. (The root element is the outermost tag in
an XML file and contains all of the other tags.) A <set> is used to group

www.it-ebooks.info

http://www.it-ebooks.info/

225CHAPTER 8: An Introduction to Graphics Resources in Android

and nest transforms into a Set of Transforms to achieve more powerful and
flexible results, as you will see in our transform XML mark-up.

Figure 8-7. Filling out the New Android XML File dialog to specify the Tween Animation XML file

3. Now click Finish. You will see the /res/anim folder appear in your project
hierarchy tree in the Package Explorer pane, with the text_animation.xml file
inside it.

4. Now let’s add in our XML tags to define our scale and rotation transforms, as
shown in Figure 8-8. (Click the Source tab at the bottom of the main window
to open the XML code editing window if it does not appear automatically.)

<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:shareInterpolator="false">

 <scale android:interpolator="@android:anim/accelerate_decelerate_interpolator"
 android:fromXScale="1.0"
 android:toXScale="1.4"
 android:fromYScale="1.0"
 android:toYScale="0.6"
 android:pivotX="50%"
 android:pivotY="50%"
 android:fillAfter="false"
 android:duration="700" />

 <set android:interpolator="@android:anim/decelerate_interpolator">
 <scale android:fromXScale="1.4"
 android:toXScale="0.0"

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

226 CHAPTER 8: An Introduction to Graphics Resources in Android

 android:fromYScale="0.6"
 android:toYScale="0.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="700"
 android:duration="400"
 android:fillBefore="false" />

 <rotate android:fromDegrees="0"
 android:toDegrees="-45"
 android:toYScale="0.0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="700"
 android:duration="400" />
 </set>
</set>

Figure 8-8. Coding our tween animation tags and their parameters in the text_animation.xml file

Notice that there are quite a few attributes for the tags that allow transformational animation over
time. For instance, our scale tags allow us to specify to and from values for both the x and y
dimensions, pivot points (where the scale emanates from, or from which location on the object the
scale is to be performed), scale offsets for nonuniform scaling, time duration, and whether to fill
before or after the transformation.

For rotation tags, we have rotation to and from degree specifications, as well as x and y pivot point
settings. We also have both an offset for skewed rotations and a duration attribute that controls the

www.it-ebooks.info

http://www.it-ebooks.info/

227CHAPTER 8: An Introduction to Graphics Resources in Android

speed of the rotational transformation. The pivot point defines the center point of the rotation, and
an offset defines how to skew the rotation from that point, much like the old Spirograph sets that
created cool, flower-like graphics.

Controlling Tween Animation via Java
Now that our TextView transform animation XML data is in place inside of our newly created /res/
anim/text_animation.xml file, we can insert a half dozen lines of Java code into our MainActivity.java
file, to implement the transform animation within our application, directly underneath our
frame-based animation.

1. As shown in Figure 8-9, the first thing we must do is to import the Android
classes that are going to be used in the text animation transformation:
android.widget.TextView and the android.view.animation classes called
Animation and AnimationUtils.

import android.widget.TextView;
import android.view.animation.Animation;
import android.view.animation.AnimationUtils;

Figure 8-9. Setting up our text tween animation in our GraphicDesign project's Java code

2. Then down in our onCreate() method, we specify the TextView object
textAnim and the Animation object textAnimation.

TextView textAnim = (TextView) findViewById(R.id.animText);
Animation textAnimation = AnimationUtils.loadAnimation(this,
 R.anim.text_animation);

www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 8: An Introduction to Graphics Resources in Android

3. We then call the startAnimation() method on the TextView object,
specifying that we want to use the textAnimation Animation object.

textAnim.startAnimation(textAnimation);

4. Finally, we need to add a TextView object named animText to our
RelativeLayout tag and UI container in our activity_main.xml file, as shown in
Figure 8-10.

Figure 8-10. Adding a TextView UI object to our activity_main.xml file with an ID of animText

5. Now we can try out the tween animation. Right-click the GraphicDesign folder
in the Package Explorer pane and select Run As ➤ Android Application. It
only runs once (it is not looped), so keep an eye on the emulator as it starts up!

6. It runs pretty fast. Let’s add a zero on the time values in our text_animation.
xml file, changing 400 to 4,000 and 700 to 7,000.

7. Compile and run the app again. You’ll see that the animation runs ten times
slower, so you can actually see what the transforms are doing to the text
object. If you want it to run another order of magnitude (10×) slower still,
simply add another zero as we did in Step 6 above.

Using Transitions
Transitions are preprogrammed custom special effects, like crossfades (also called dissolves) and
things such as directional wipes, which we can code ourselves. By using these effects, especially in
combination with each other, you can increase the perceived professionalism of your application.

www.it-ebooks.info

http://www.it-ebooks.info/

229CHAPTER 8: An Introduction to Graphics Resources in Android

You can (and should) use XML to set up such graphics transition transformations.

Android provides the TransitionDrawable class. Here, we will use it in conjunction with an XML
file in the /res/drawables directory, just as we did in the frame-based animation example because
transitions are designed to work with bitmap images just like frame-based animation.

So, let’s get started.

1. Right-click the GraphicDesign folder and select New ➤ File to create a
standard text file for our XML in the /res/drawable-xhdpi folder (because we
are working with bitmap images).

Name the file image_transition.xml, found at the bottom of the New File dialog. We’ll forego the
screen shot because you’ve seen it before. Open the GraphicDesign folder, then open the /res folder,
then select the /drawable-xhdpi folder, where the new file will be created.

2. Next, add the <transition> tag as follows. The <transition> tag has the
usual xmlns reference (to make our file valid Android XML). Inside the tag, we
specify two <item> tags referencing the images that we need to transition
from and transition to. We are using the two images that we used in Chapter
7 here to show that the transitions will accommodate the alpha channel
and more complicated masking of images, which is important for advanced
animation design:

<transition xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:drawable="@drawable/image1"/>
 <item android:drawable="@drawable/image2"/>

</transition>

3. Add these two images to the /res/drawable-xhdpi folder. Figure 8-11 shows
what your screen should look like once you have added the two images,
refreshed the IDE, and typed in your tags.

Figure 8-11. Writing our XML markup to transition between two images in our image_transition.xml file

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

230 CHAPTER 8: An Introduction to Graphics Resources in Android

Figure 8-12. Adding an ImageView UI object to our /res/layout/activity_main.xml file to hold our image transition

4. Now we need to add an ImageView in our RelativeLayout to hold our image
transition source imagery. Put the following in the activity_main.xml file
underneath our animated TextView, as shown in Figure 8-12.

<ImageView
 android:id="@+id/imageTrans"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/animText"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="48dp"
 android:src="@drawable/image1"
 android:contentDescription="@+string/content_desc2" />

We are specifying the first image (the “from” image) of our transition as the source image to use
in the ImageView object, and we are naming it imageTrans via the now familiar @+id/imageTrans
notation. We are also using the now familiar RelativeLayout android:layout_ below parameter to
place the imageTrans ImageView object underneath (below) the animText TextView object, and using
the layout margin and centering parameters as we did with the other two objects declared in the
activity_main.xml found in the /res/layout/ folder.

www.it-ebooks.info

http://www.it-ebooks.info/

231CHAPTER 8: An Introduction to Graphics Resources in Android

Finally, let’s not forget the sight impaired, and let’s add an android:contentDescription parameter,
which should, via our /res/values/strings.xml file, reference the text “Image Animation Example.” Be
sure to right-click and open the strings.xml file and copy and paste the content_desc string tag, and
then change the name to be content_desc2 and value to be Image Animation Example because we
are referencing this in our activity_main.xml file here.

Now we are ready to drop a few lines of Java code (a whopping five this time) into MainActivity.java
to add the ability to do a fade transition from one image slowly into another.

First we need to add the import statement for the class library that we are going to use in the Image
Transition example, namely the android.graphics.drawable.TransitionDrawable class:

import android.graphics.drawable.TransitionDrawable;

Here is the code to set up the TransitionDrawable implementation that we will use to create the
trans object that is used to access the image_transition XML file in our /res/drawable-xhdpi folder:

TransitionDrawable trans = (TransitionDrawable)
 getResources().getDrawable(R.drawable.image_transition);

This is all on one line, as shown in Figure 8-13.

Figure 8-13. Adding our Java code to MainActivity.java to define and start our image transition

www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 8: An Introduction to Graphics Resources in Android

TransitionDrawable object, which we name trans. It sets trans to the
getDrawable() method of the object (which retrieves our image_transition

getResources() method that calls it to get the

image_
 transition drawable specification into the TransitionDrawable trans object all in one

TransitionDrawable object and loading it with our XML file is the most difficult line of

ImageView transImage = (ImageView) findViewById(R.id.imageTrans);
transImage.setImageDrawable(trans);
trans.startTransition(10000);

We create an ImageView object in Java called transImage and, via the findViewById() method, we
link it to the imageTrans ID, referenced from the second ImageView XML tag we added earlier to
the activity_main.xml file in our /res/layout/ folder. We then use the setImageDrawable() method to
set the transImage ImageView object to the trans TransitionDrawable object that we just created
above it, linking or “wiring” the two objects to each other, in essence. This is the bridge between the
two main objects that allows things to work properly in this image transition section of code.

Finally, we can now talk to the trans TransitionDrawable object via its
startTransition(milliseconds) method. We will use that method to tell the transition (once it begins)
that we want it to take place over 10,000 ms, or over a 10-second duration (a slow cross-fade).

Select Run As ➤ Android Application and watch all the fun animation begin immediately on App
start-up. That’s a lot of animation going on all at once! Be sure your users have decent processing
power (dual-core Intel processor is the best, or soon, quad-core processor Android devices) if you
choose to place a lot of animation in a single Activity UI screen in your Android application.

Tip We have one new import statement to add, so we need to open up the import statements
block of code as shown in in Figure 8-13. This can be done by clicking on the plus sign (+) next to the
import block of code. The plus sign indicates that this code block can be expanded (just click the +).
You can click any of the minus signs (–) in your Java code window to close classes you are finished
editing, if you want to see a higher-level view of your code, similar to the Outline Pane view on the right
side of the Eclipse IDE. Once your code becomes long and involved, you will find that you will use this
simple but powerful code organization feature regularly. Try it, and get used to making it a part of your
work process inside of the Eclipse IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

233CHAPTER 8: An Introduction to Graphics Resources in Android

Summary
In this chapter, we took a look at the more advanced graphics and animation capabilities that
Android offers, including what Android wants to see you using as far as graphic formats are
concerned, as well as two different types of animation, and how to code image transitions.

You also learned a little more about the Eclipse IDE, the Android Runnable interface and run()
method, and the high-quality WebP, PNG24, and PNG32 image file formats that are optimal for use
in Android apps.

Here are some important points to remember:

Always use PNG24 format (which is really PNG32 format, if you are using the 	
alpha channel) or you can use WebP, but only if you are supporting Android 4 or
later (4.04, 4.1, 5.0).

Bitmap animation and tween animation are two completely different things as far 	
as Android is concerned. Bitmap-related animation and transitions are handled
through the /res/drawable folder. Tween animation is handled via XML files
defined in the /res/anim folder, and can affect other objects besides just bitmap
images, such as TextViews.

Don’t limit yourself when using tween animation. Use it on any type of 	 View
container you like—text, image, video, button, layout, or whatever; wax creative,
and be sure to experiment.

In Chapter 9, we’ll start looking at how to make all of what we have been learning about so far
become interactive! This is done by setting up our applications to handle events and to listen for
those events via event listeners.

We’ll also cover new media assets such as audio and video using the Android MediaPlayer class
over the last couple chapters of the book, so your capabilities are going to get more and more
powerful! Let’s get interactive with our end-users next, and get right into Chapter 9.

www.it-ebooks.info

http://www.it-ebooks.info/

235

Chapter 9
Adding Interactivity: Handling
UI Events

In this chapter, we will explore how to wire those super-cool UI designs that you have seen in the
previous chapters, so that your UI design becomes highly functional within your Android application.
You worked briefly with event handling in the last section on Dialogs in Chapter Seven, so we’ll give
you the foundation in this chapter to be able to handle all types of events within the Android OS.

With Android’s convenient event listeners, you can easily add in your own custom programming
logic. Using the event handling described in this chapter, you’ll be able to have your UI and graphical
elements actually do something productive or impressive after they are tapped on (touchscreen),
navigated to (navigation keypad), or typed into (keyboard).

We’ll begin with an overview of how Android listens to its touchscreen and keyboard, and how to
harness the power of input devices.

An Overview of UI Events in Android
The way that we talk to all of the input devices in Java, and thus in Android, is via events for each
type of input device (touchscreen, keyboard, and navigation keys). Events are actually system-
generated messages that are sent to the View object whenever a UI element is accessed in some
fashion by a user. Event refers to something that you attend or otherwise recognize as being
significant, and thus is the perfect term for these UI occurrences via Android input devices.

Listening for and Handling Events
Handling and handlers are two other terms used in conjunction with events in Java and Android.
Once these events are triggered by a user’s touch, keystroke, or navigation key, they must be
handled within your application. This is accomplished inside a method (such as onClick() or
onKeyDown()) that specifies exactly what you want to happen when one of these input events is
detected by Android and is sent over to your appropriate event handler for processing.

n
www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 9 : Adding Interactivity: Handling UI Events

This concept of handling events is termed listening in Android. You will see the terms event listeners
and event handlers throughout this chapter. That’s because they are what the chapter is all about:
how to put into place the proper event listeners and event handlers to cover your app users’
interaction via touchscreen, navigation keys, and keyboard input devices that are part of an Android
device’s hardware, whether it be a smartphone handset, an iTV set remote control, or a tablet or
e-reader touchscreen.

Handling UI Events via the View Class
Each of the UI elements in your application is a View object widget of one incarnation or another,
and each has events that are unique to that element. This is how user interaction with specific UI
elements is kept separate and well organized. Each of these View objects keeps track of its own

View object within your layout talks with the rest of your application program logic is
View

Button widget is touched, an onClick() method is called on that object

View class and override the method from the View class that your UI widget was
override a method means to declare and define that exact method

Because your UI design is made of a collection of View objects (UI widgets) laid out in one or more
ViewGroup layout containers, you can see how this might represent a gaggle of coding just to make
sure all of your UI elements are properly listening to the keyboard, touchscreen, and navigation keys.
Has Android done anything here to make things easier on us, as it has in other areas of application
development?

Yes, Android has provided a way to facilitate event handling. The View class from which all of our
UI widgets are subclassed contains a collection of nested interfaces featuring callbacks that are far
easier to define, as they are part of the system that makes up the View class and all of its methods.

These nested interfaces that are already a part of all of your View class-based widgets are called
event listeners. They provide the easiest way to quickly set in place code that will capture user-input
events and allow them to be processed right there within your application program logic.

Event Callback Methods
In the most simple of terms, an event listener is a Java interface in the View class that contains a
single callback method to handle that type of user-input event. When you implement a specific event
listener interface, you are telling Android that your View class will handle that specific event on that
specific View object (widget).

These callback methods are called by Android when the View object that the callback method is
registered to is triggered by the user-input device used to access that UI interface element.

www.it-ebooks.info

http://www.it-ebooks.info/

237CHAPTER 9 : Adding Interactivity: Handling UI Events

(I like to say the method is wired up to the View object, but then again, I am a programmer and drink
far too much exotic coffee.)

The callback methods that we are going to cover in this chapter are the most common ones used in
Android application development. They are listed in Table 9-1.

Table 9-1. Common Android Callback Methods

Method From Triggered by

onClick() View.OnClickListener Touch of screen or click of navigation keys

onLongClick() View.OnLongClickListener Touch or Enter held for 1 second or longer

onKey() View.OnKeyListener Press/release of key on phone or iTV remote

onTouch() View.OnTouchListener Touch, release, or gesture events

onFocusChange() View.OnFocusChange Focus change

onCreateContextMenu() View.OnCreateContextMenuListener Context menu

In the table, two of the methods are not directly triggered by user input, but they are related to
input events. These are onFocusChange() and onCreateContextMenu(). The onFocusChange()
method tracks how the user moves from one UI element to the next. The term focus refers to
which UI element the user is using or accessing currently. When a user goes from one UI element
to another one, the first UI element is said to have “lost focus,” and the next element is said
to now “have the focus.” The onCreateContextMenu() method is related to the onLongClick()
callback method, in the sense that context menus in Android are generated via a long-click user
action. This is the touchscreen equivalent of a right-click on most computers, and is used for
context-sensitive menus such as those right-click menus that we have been using frequently in the
Eclipse Project Explorer pane.

To define one of these callback methods to handle certain types of events for one of your View objects,
simply implement the nested interface in your activity or define it as an anonymous class within your
application. If you define it as an anonymous class, you pass an instance of your implementation of the
listener to the respective setListener() method, as you’ll see in the next section.

In the rest of this chapter, you’ll learn how to leverage the primary event listeners in Android, so that
you can make your application interactive and useful.

Handling onClick Events
The onClick() method is triggered when the user touches a UI element. As you might guess, it’s
the most commonly used event handler out there. So, it only makes sense to start with handling
onClick events.

www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 9 : Adding Interactivity: Handling UI Events

Implementing an onClick Listener for a UI Element
First, let’s create an anonymous OnClickListener:

final OnClickListener exampleListener = new OnClickListener()
{
 public void onClick(View arg0) {
 //Code here that does something upon click event.
 }
};

This is an example of an anonymous class. This line of code sets up a variable called
exampleListener as a new OnClickListener object, which listens for onClick events.

Note Recall from Chapter 7 that a final variable cannot be reassigned a value once it has been set.
This ensures that another listener does not get assigned.

onClick(View arg0) handler
onClick event. The public onClick handler is passed an ID reference to the View object

View object to handle. Note that the View that has been
arg0, so if you want to reference the View object in the code inside this method,

terminology would be called argument zero (arg0) as in computers we start counting from zero and
not from one like we learned in school. The second argument used would be arg1 and so on.

How any given onClick handler handles a click event is up to the code inside of the onClick handler.
That code basically explains what to do if that UI element was clicked on or touched, or typed with a
keystroke.

If you want to come off as really cool right now, simply look up casually from the book and exclaim
to your family, “I’m coding an onClick event handler in Java right now,” and then look back down
and continue reading.

We have defined an OnClickListener, but we need to wire it to a UI element (attach it to a UI View
object) before that code can be triggered. Usually, this will go inside the onCreate() method (which
you have become familiar with in the first two-thirds of this book).

It takes only two lines of code to connect a button to the exampleListener object. The first is simply
our XML declaration of the Button UI object in our activity_main.xml UI layout definition:

<Button android:text="First Button"
 android:id="@+id/firstButton"
 android:layout_gravity="center"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

c
www.it-ebooks.info

http://www.it-ebooks.info/

239CHAPTER 9 : Adding Interactivity: Handling UI Events

The second line is where we connect the button construct with the event listener construct, by using
the Button widget’s setOnClickListener() method, like so:

Button exampleButton = (Button)this.findViewById(R.id.firstButton);
exampleButton.setOnClickListener(exampleListener);

Adding an onClick Listener to an Activity in Android
You will probably not be surprised when I tell you that there is an even sleeker way to define your
event listeners for your activities, using even fewer object references and fewer lines of code. This is
normally how you will want to do things in your Android applications programming activities, so this
is how we are going to do them in all of the examples in this chapter.

You can implement an event listener directly inside the declaration of your activity, within the actual
class declaration. Wow. Event listeners must be muy importante.

Here is a class declaration that uses the implements keyword to embed an OnClickListener directly
into the class via its declaration:

public class MainActivity extends Activity implements OnClickListener() {...}

The previous two lines of code declaring the Button and wiring via setOnClickListener() would still
exist inside the onCreate() code block, but the declaration of the exampleListener object and class
would not be necessary.

Now it’s time to create our EventHandling project folder and implement a button and an onClick()
listener so that you can see event handling in action.

Creating the Event Handling Examples Project in Eclipse
For our first example, we’ll set up a top-level button so that when it is clicked, the text in a TextView
below it changes.

In Eclipse, close the GraphicDesign project folder (right-click on it in Package Explorer and select
Close Project) if it’s still open. Also, close all the empty tabs at the top of the Eclipse IDE, using the x
icons in the top-right side of each tab. Now we’re ready to create our new Android Application Project.

1. Select File ➤ New ➤ Project and choose Android Application Project
to open the New Android Application Project series of dialogs as we have
done before.

2. Fill it out as follows (and shown in Figure 9-1):

	Project name: Name the project EventHandling.

Build target	 : Choose Android 4.1.

	Application name: Name the application EventHandling.

	Package name: The package name should be fifth.example.eventhandling.

www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 9 : Adding Interactivity: Handling UI Events

	Create custom launcher icon: Check this box.

	Min SDK version: Set this to 8, which matches the Android 2.2
recommended build target and is the default setting.

Figure 9-1. Creating the EventHandling Android project using the New Android Application series of dialogs

3. Accept the default settings in the remaining three dialogs as we did in
Chapters 4 through 8.

Editing the MainActivity.java File
Now let’s edit the java code:

1. In the Package Explorer, open your project tree hierarchy by clicking the
arrows next to the /src and /res folders, so that you can see their contents.
Select the MainActivity.java file under the /src/fifth.example.eventhandling
folder by clicking once on it (it will turn blue), and then hit the F3 key on your
keyboard. This is the keyboard shortcut for the Open option.

2. Notice that some code has been written for us. The first thing we need to do
is to implement an OnClickListener. Add implements OnClickListener to
the end of the class declaration, as shown in Figure 9-2, like this: public class
MainActivity extends Activity implements OnClickListener {…}

www.it-ebooks.info

http://www.it-ebooks.info/

241CHAPTER 9 : Adding Interactivity: Handling UI Events

3. As you can see in Figure 9-2, after we type in the “Implements
onClickListener” and Eclipse adds our import statement for the
onClickListener Class, Android Developer Tools (ADT) and Eclipse alerted
us that something is amiss. If you hold the mouse over the red X on the left
margin of the coding pane, Eclipse will tell you what it thinks is wrong. Click
on the red X and the MainActivity class is highlighted in blue. When you
mouse-over the MainActivity keyword highlighted in the class definition,
up pops a helper box (shown in Figure 9-2) saying that Eclipse wants to
see the unimplemented onClick() method. To fix this, double-click the Add
unimplemented methods link (the first one), and Eclipse will add the method
and its @override for you (see Figure 9-3), as follows:

 @Override
 public void onClick(View arg0) {
 // TODO Auto-generated method stub

 }

Figure 9-2. Editing MainActivity.java to implement the onClickListener functionality

www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 9 : Adding Interactivity: Handling UI Events

Note Because the onClick code uses a View object, Eclipse imports android.view.View, which
is shown at the top of the file.

4. There is nothing better than having our IDE write code for us. Notice that
when we had Eclipse write our onClick() method that it also imported the
android.view.View Class, so both of the classes we will need for Event
Handling for Clicks have been added. This is all highlighted at the top of
Figure 9-3.

Note You need to get used to looking at what Eclipse is telling you as you code. This awareness is
especially useful while you are learning the programming language and are inside the development
environment. That is why I am showing you some of these automatic coding functions here in this book,
rather than writing perfect lines of code every time in exactly the correct order. One of the things you
need to master is your process of working within the Eclipse IDE and paying close attention to what it is
telling you. If you mouse-over or click on the things it flags or highlights, you will get pop-up windows
as well as tool-tips containing additional helpful information.

5. Now let’s define our Button and attach our setOnClickListener() to it as we
did earlier in Figure 9-4. We talked about this earlier in the chapter, but this
time, the containing activity is the event listener, so we use this to refer to the
containing object.

 Button button = (Button)findViewById(R.id.button1);
 button.setOnClickListener(this);

 Implementing an OnClickListener in our class definition via the implements keyword

www.it-ebooks.info

http://www.it-ebooks.info/

243CHAPTER 9 : Adding Interactivity: Handling UI Events

This is all shown in Figure 9-4, along with the import android.widget.Button; statement that we
need to use the Button in our code. Next, we will add the Button UI element to our RelativeLayout,
using the Eclipse Graphical Layout Editor (GLE), and then hand modify the XML code to place it
above our text, so that it’s more intuitive for the end-users. This will remove any flags in our Java
code editing pane that tell us that a button1 XML object definition does not yet exist! The first step
in this process is shown in Figure 9-5.

Figure 9-4. Adding the Button widget and setOnClickListener() method in Eclipse

Figure 9-5. Creating a Button in /res/layout/activity_main.xml via the Graphical Layout Editor in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 9 : Adding Interactivity: Handling UI Events

Editing the activity_main.xml File
Now it’s time to set up the XML mark-up in our activity_main.xml file in the /res/layout/ folder.

1. Select the activity_main.xml file under the /res/layout folder and hit F3 to
open it in the IDE in its own tab, or use right-click (on the activity_main.xml
file) and the Open menu selection to open it that way instead.

2. Click the Graphical Layout Editor tab at the bottom of the IDE to show
the layout visually (see Figure 9-5), Then drag the Button widget (shown
selected and being dragged in Figure 9-5) onto the screen to the right, and
drop it into place under the TextView widget. Make sure the tool-tip says
centerHorizontal=true as well as alignParentTop=true and margin=50dp as
shown in the screen shot in Figure 9-5.

3. Now click the activity_main.xml tab at the bottom of the IDE to switch the
view from visual layout to XML coding view. Cut and paste the Button code
so that it comes before the TextView code (but after the RelativeLayout tag).
The Button should be the first thing at the top of the screen.

4. Now open the /res/values/ folder and right-click on the strings.xml file and
select Open and then use the Properties Editor to change the Hello World
default text string to use variable name button_caption and a text value of:
CLICK TO GENERATE EVENT as shown in Figure 9-6.

5. Now click the strings.xml XML editor tab at the bottom of the middle editing
pane and duplicate the text string (or use the Add … button, shown in
Figure 9-6, and add the second variable via the Visual Resources Editor) for
the text output. Name the variable text_message and set its value to: NO
EVENT RECEIVED YET as shown in Figure 9-7.

Figure 9-6. Editing the button_caption string property to read CLICK TO GENERATE EVENT

www.it-ebooks.info

http://www.it-ebooks.info/

245CHAPTER 9 : Adding Interactivity: Handling UI Events

6. Add the android:text @string XML variables, text message TextView
object ID and the button1 Button object ID, and the centering attributes that
you learned about in the previous chapters shown in Figure 9-8. Note that
the Graphical Layout Editor added all of the android:layout_ parameters for
you based on how you dragged and dropped the button earlier. Pretty cool.
Here is what the final code should look like:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="50dp"
 android:text="@string/button_caption" />

<TextView
 android:id="@+id/textmessage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/text_message"
 tools:context=".MainActivity" />
</RelativeLayout>

Figure 9-7. The strings.xml file after the EventHandling project’s related text string tags have been added

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

246 CHAPTER 9 : Adding Interactivity: Handling UI Events

1. Click the MainActivity.java tab at the top of the code editor pane.

2. Add the code that responds to a click on the button, as follows (see Figure 9-9):

 public void onClick(View arg0) {
 TextView text = (TextView)findViewById(R.id.textmessage);
 text.setText("BUTTON HAS BEEN CLICKED. EVENT PROCESSED.");
 }

 Editing Button and TextView object parameters in our /res/layout/activity_main.xml file

www.it-ebooks.info

http://www.it-ebooks.info/

247CHAPTER 9 : Adding Interactivity: Handling UI Events

We add our TextView object declaration into onClick(). We also add a setText("BUTTON HAS BEEN
CLICKED. EVENT PROCESSED.") call to the TextView object we named text, created in the previous
line. Finally, we add an Import android.widget.TextView; statement, or we have Eclipse do it for us,
via the error-warning icon mouse-over work process. You’re getting pretty good at this, aren’t you?

Running the Event Handling Examples App in the Emulator
To run this example, right-click your EventHandling folder in the Package Explorer pane and select
Run As ➤ Android Application. We have our first UI that responds to the most common event
handler out there: the onClick handler. Figure 9-10 shows the results.

Figure 9-9. Defining the onClick() event handler code for a TextView in MainActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 9 : Adding Interactivity: Handling UI Events

Android Touchscreen Events: onTouch
Android handsets that feature touchscreens—the vast majority of them today—can take advantage
of advanced touchscreen features, such as gestures.

Figure 9-10. Running the onClick() event handling example in the Android 4.1 emulator

Note Gestures are movements with the user’s finger across the touchscreen that invoke certain
program functions. They are popular for interaction on large screen smartphones and tablets. You
will want to learn about implementing gestures when you become a more experienced Android
developer. Gestures became available in Android 1.6, and thus they do work in Android 2.2, which is
the recommended minimum SDK version that we are developing for in this book to provide a wider
audience of user compatible devices. However, coding to the Gestures API is a bit too advanced for this
Absolute Beginner book.

www.it-ebooks.info

http://www.it-ebooks.info/

249CHAPTER 9 : Adding Interactivity: Handling UI Events

It is important to note that an onClick event handler also works on a touchscreen, but an onTouch
handler does NOT work with the navigation keys or selector key (the center selector Enter key).

Therefore, it may well be wise to use the onClick() method for your apps for most UI operations for
the widest compatibility, and use onTouch() specifically when working with more advanced touch
events such as gestures that involve only the touchscreen.

Because we have already covered implementing onClick(), we’ll continue here with the other
important event handlers. These are the ones you will use most frequently in your application design
and coding: onLongClick, OnKeyUp, onKeyDown, onCreateContextMenu, and onFocus, along with
onClick as the most often used.

Android’s Right-Click Equivalent: onLongClick
After OnClick, OnLongClick is the next most used interface event. It is generated by most input
hardware and is also the basis for the context menu in Android.

The onLongClick() method works in the following scenarios:

When the user touches and holds on the touchscreen for 1 second or longer	

When the user holds down the Enter key on the phone for 1 second or longer	

When the user holds down the center navigation key for 1 second or longer	

When the user presses and holds down the Trackball for 1 second or longer	

Any of these will generate an OnLongClick event for whatever UI widget currently has the focus or, in
the case of a touchscreen, is underneath the area of the screen being touched (or long-touched, in
this instance!).

Because any View object can trap an onLongClick() callback, the most elegant way to show this
event handling is to add it to our Button UI object in our current EventHandling example code. This
also will allow you to see the common scenario of more than one type of handler being used right
alongside other types of event handlers in the same View and class.

1. In MainActivity.java, add a comma after OnClickListener in the public
class MainActivity definition and add OnLongClickListener, as shown in
Figure 9-11. Then mouse-over the red-underlined OnLongClickListener
and select the option to add the import statement (boom bam—there is
our import code for this listener). Then mouse-over the red-underlined
MainActivity class name and select the link to add unimplemented
methods. Voila, we now have the following:

 public boolean onLongClick(View arg0) {
 // TODO Auto-generated method stub
 return false;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 9 : Adding Interactivity: Handling UI Events

2. Now copy the text object and text.setText() code from the onClick
handler and paste it into the onLongClick handler, where the placeholder
comment code is. Change the text message to reflect the hold and long-click,
as shown in Figure 9-12. Note that we can use the same object name text
in both handlers. Because it is a local variable to each handler, neither text
object sees the other reference. Finally, wire the OnLongClick handler to the
button using the button.setOnLongClickListener(this); method call just like we
did with the setOnClickListener() method earlier.

 Implementing an OnLongClick listener in the MainActivity.java class

www.it-ebooks.info

http://www.it-ebooks.info/

251CHAPTER 9 : Adding Interactivity: Handling UI Events

3. Now try the new functionality. Right-click the EventHandling folder and
choose Run As ➤ Android Project. This time, you get an app that displays
one message when you click and another when you hold the click. But when
you release the long-click, the onClick message appears. The onLongClick
message does not stay on the screen. Why is this?

4. Well, we forgot to change the default onLongClick() code, which returns
false. This tells Android that nothing has been handled in that code block,
so we are happy for Android to pass the event on to any other handlers
that might be interested. But we don’t want this to happen in our example.
Instead, we need to return true when we handle the event, as follows (see
Figure 9-13):

 public boolean onLongClick(View arg0) {
 TextView text = (TextView)findViewById(R.id.textmessage);
 text.setText("BUTTON HAS BEEN HELD. onLongClick EVENT PROCESSED.");
 return true;
 }

Figure 9-12. Attaching an OnLongClick listener to our Button object in MainActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 9 : Adding Interactivity: Handling UI Events

true or false value) to tell the calling code whether
consumed the event, as the programming terminology goes).

true if you have handled the event (in our case, setText() has been done) and processing
false if you have not handled it, or if you want the event to “bubble up”—

Now compile and run our OnLongClick app version. It works perfectly. A click displays the proper
message and stays on the screen, and a long-click displays the proper message that stays on the
screen until a short-click changes it back again.

Now let’s add an onKeyListener and trap some keystroke events.

Key Event Listeners: onKeyUp and onKeyDown
Events that will become familiar to you in Android app programming are onKey, or onKeyUp (key
released) and onKeyDown (key pressed down). Key is short for keyboard, but more and more Android
devices do not feature a traditional computer keyboard (unless you have a Bluetooth external
keyboard as an accessory) but some still do have smaller sets of keys (a mini keyboard) or in the
case of GoogleTV possibly some sort of remote control that has keys. Some iTVs may even come
with a wireless keyboard, so this is an important event to handle for many Android applications.

These onKey() events are commonly used for games and to implement keyboard or keypad
shortcuts in your application, much like the F5 shortcut that we use in Eclipse for Refresh or the F3
shortcut we use for Open.

To show how easy the keyboard event listeners are to implement, we are going to add a couple more
lines (OK, a dozen more) to our Java code to listen for a key event (the center keypad hardware key,
found on every Android Device).

 Returning a true flag from our EventHandling Project’s onLongClick() method

www.it-ebooks.info

http://www.it-ebooks.info/

253CHAPTER 9 : Adding Interactivity: Handling UI Events

Adding the Java for Keyboard Events
In our MainActivity.java file, we want to add one simple import statement and two basic blocks of
code that will allow us to handle keyboard events via the OnKeyDown handler. We will only add about
a dozen lines of code to be able to handle key events in our current EventHandling Project. We are
using one EventHandling project for all our code in this chapter to show how all the different types of
Android Event Handling can coexist peacefully in a single application and so that you get experience
writing more complex apps with more than one hundred lines of code.

Here is the code that we will need to add to the bottom of our current EventHandling Project’s Java
code (see Figure 9-15):

 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 textUpdate();
 return true;
 }
 return false;
 }

Figure 9-14. Having Eclipse Add our KeyEvent import statement for us

www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 9 : Adding Interactivity: Handling UI Events

 public void textUpdate() {
 TextView text = (TextView)findViewById(R.id.textmessage);
 text.setText("CENTER KEYPAD KEY PRESSED");
 }
}

We need to import android.view.KeyEvent for the onKeyDown handler (first code block) or we can let
Eclipse do it for us while we are writing the onKeyDown handler method (this is shown in Figure 9-14).
We don’t need to import android.widget.TextView for the textUpdate() method that we write in our
second code block, because we are already using a TextView widget in our current application, and
will use that TextView to display the text that our onKeyDown() handler sets.

We will leave the class declaration and the onCreate() and onClick event handling blocks of code
exactly as they are.

The first block of code we write is the onKeyDown handler, which is a public method that returns a
Boolean value that tells us if the event was handled (true), or not handled and needs to be passed
along (false). The onKeyDown() method takes two parameters: the keyCode (the key that was
pressed) and details of the event (event).

Figure 9-15. Adding an onKeyDown listener and textUpdate() method to our MainActivity class Java code

www.it-ebooks.info

http://www.it-ebooks.info/

255CHAPTER 9 : Adding Interactivity: Handling UI Events

Our program logic inside the onKeyDown handler first looks at the keyCode passed into the handler. If
it is equal to the center keypad hardware keyCode, signified by the KEYCODE_DPAD_CENTER constant,
it runs the textUpdate() method, and then returns true to signify that we handled the event.
Otherwise, onKeyDown() returns false to signify that an event was not handled.

This is the first time we have written our own method: the textUpdate() method that is called from
inside onKeyDown(). This demonstrates some standard Java programming. The two lines of code
that are in the textUpdate() routine could have been written where the textUpdate(); line of code is
inside the onKeyDown() handler, like this:

public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 TextView text = (TextView)findViewById(R.id.textmessage);
 text.setText("CENTER KEYPAD KEY PRESSED");
 return true;
 }
 return false;
 }

In actual programming practice the textUpdate() method can (and will) contain all of the various
things that you want to do when someone clicks the center keypad hardware key. You can use this
method to contain all of your code statements, rather than putting them all inside the onKeyDown
handler, where they could be in among actions for other keys. Doing it this way simply makes things
more organized and modular, and really comes in very handy when you get into more complex code
constructs, so we are teaching you to write your own method (and call it) here for this reason.

Finally, you might be wondering why there is an onKeyUp and onKeyDown, rather than just one
onKey listener. As you might imagine, onKeyDown is sent when the key is pressed down, and
onKeyUp is sent when the key is released. The reason both are supported is because some
applications need to know when a given key is being held down (like the repeating characters feature
in a word processor) and for how long, thus in that application the code would look for both the
onKeyDown (repeat these functions while onKeyDown) and onKeyUp (stop doing the functions now)
events, and handle them with different code.

Now let’s compile and run the application.

You’ll see a text field that says “NO EVENTS RECEIVED YET” that changes after you click down the
center keypad hardware key in the emulator (shown on the right in blue in Figure 9-16).

www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 9 : Adding Interactivity: Handling UI Events

Tip If you want to detect a range of keystrokes and send them to different custom methods, a good
programming construct to use is the switch construct, which allows you to outline different cases
from which to select. We used switch in Chapter 7’s examples.

Figure 9-16. Pressing center keypad Button in 4.1 Emulator to send onKeyDown event

Context Menus in Android: onCreateContextMenu
The concept of the context menu is a very clever one. Unfortunately, it is often underutilized in PC,
tablet, iTV, e-reader, and smartphone applications. Fortunately, Android provides us all the prebuilt
classes we need, as well as a special event, to make implementing context-sensitive menus in our
apps as easy as possible to code. Why does Android do this for us? It is because Google has a
vested interest in making their Android OS and apps as easy to use and as standardized as possible.

A context menu should provide quick and easy access to all application functions related to a given
UI object. For instance, when I right-click here in my word processor, I get a context-sensitive menu
with options for cut, copy, paste, font, paragraph, bullets, numbering, styles, hyperlinks, lookup,
synonyms, and translate.

www.it-ebooks.info

http://www.it-ebooks.info/

257CHAPTER 9 : Adding Interactivity: Handling UI Events

The context menu in Android is always accessed by the LongClick event (covered earlier in the
chapter), just as on a PC it is always accessed via a right-click of the mouse.

To demonstrate, we will add context menus to this chapter’s example project. We’ll add two classes,
along with two custom methods, to implement our context menus. We’ll take a look at the Android
Toast widget, which is very handy to use to blast quick little messages to the user. This way, you
don’t need to use a full-blown dialog implementation, as we learned about in Chapter 7, and in this
way we can learn about a different and new widget at the same time.

Adding the XML for Context Menus
First, let’s add a second Button tag to our activity_main.xml RelativeLayout so that we have a UI
element (button) to use to access our Context Menu.

1. Click the activity_main.xml file in the /res/layout/ folder and hit the F3 key
to open it in the Eclipse central editing pane, and then click the Graphical
Layout Editor tab at the bottom of that pane. Now drag a Button View out
onto to the pane, and center it under the TextView, exactly as we did in
Figure 9-5 earlier in the chapter, and with exactly the same parameters.

2. Once the button appears under your text, switch back into XML editing mode
via the activity_main.xml tab at the bottom of the pane. Now we’ll edit our
Button tag attributes. The first one is android:text. Let’s add a context_button_
caption name and a "Long-Click for Context Menu" value to a <string> tag
in our /res/values folder strings.xml file and reference it with the Button tag
parameter android:text=”@string/context_button_caption” and we’ll use the
GLE generated Button object ID of button2 because it’s our second button.

3. Let’s also center our button using the android:layout_centerHorizontal =
"true" attribute, as we have done previously. GLE can also do this for us via
tool-tip feedback.

4. Make sure that the RelativeLayout positioning tag android:layout_below
references the textmessage object.

5. Finally, make sure that the android:layout_marginTop is set to the same 50dp
that the button1 object uses, so we keep our spacing even and professional
looking.

Here is what your XML tags should look like (see Figure 9-17):

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">
 <Button
 android:id="@+id/button1"
 android:text="@string/button_caption"
 android:layout_width="wrap_content"

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

258 CHAPTER 9 : Adding Interactivity: Handling UI Events

 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="50dp"
 android:id="@+id/contextButton" />

 <TextView
 android:id="@+id/textmessage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontaltrue"
 android:layout_centerVertical="true"
 android:text="@string/text_message"
 tools:context=".MainActivity" />

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/textmessage"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="50dp"
 android:text="@string/context_button_caption" />

Figure 9-17. Adding a second Button object in our activity_main.xml file to receive the long-click event

We will reference the textmessage and button2 inside our Java code.

www.it-ebooks.info

http://www.it-ebooks.info/

259CHAPTER 9 : Adding Interactivity: Handling UI Events

Adding the Java for Context Menus
The main two Java methods that we override are onCreateContextMenu() and
onContextItemSelected(), which replace Android’s default methods of the same name. The use
of the super object in the first one allows us to reference a method in the parent class that we are
overriding. Note that overriding does not replace a class; it just allows us to customize it, leaving the
original class that was extended intact and usable. This also leaves us a lot less code to write, as
none of the code written in (for) the superclass is revisited.

Now let’s add the code for our onContextMenu event handling in MainActivity.java. We’ll add the new
code in with the previous code that we wrote, right before the onKey() section we added to handle
onKeyDown events.

First, we need to use an import statement to import the Java classes that we are going to reference
in the code we are about to write, or we can just write the code into Eclipse and let Eclipse add
the import statements. Three of the six relevant import statements for this code are related to our
UI elements (android.view.View, android.widget.Button, and android.widget.Toast), and the
other three are related to our implementation of our LongClick context menu. Some of the import
statements relating to what we are going to do with Context Menus are already in our code so far.
The four that will need to be added (or will be added by Eclipse, if you forget to add them) are:

import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.MenuItem;
import android.widget.Toast;

ContextMenu contains the methods that are related to the top level of the menu, such as what it is
called, how it looks, and so forth. ContextMenuInfo relates to the information about any one given
ContextMenu, which is really a collection of options. Within that container or level, we have the
MenuItems, which are their own level of objects. Each MenuItem can have a name and styling, and can
call methods once it is selected.

Now, let’s see how Android attaches our UI element to a ContextMenu.

First, we need to add two key lines of code to our onCreate() method for our activity. The first
declares and establishes a Button object, which we call Button2 and find by its button2 ID from the
activity_main.xml file. The next line of code wires our newly created Button2 Button object to the
ContextMenu system in Android.

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Button Button2 = (Button) findViewById(R.id.button2);
 registerForContextMenu(Button2);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 9 : Adding Interactivity: Handling UI Events

Tip When I first started working with Android, I wondered which class contained the
registerForContextMenu() method. To again demonstrate how to use Eclipse as a learning tool,
I’ll tell you how to answer a question like that. Place your cursor over the method you are interested
in and a box full of information about the method in question will pop up in Eclipse including the class
that contains the method. In Eclipse you will find that mouse-over and right-click are very helpful in
researching what is going on, especially in relation to error flags and warning icons (left-click on these
as well to reveal potential solutions).

Now let’s get into our custom logic for creating our ContextMenu and its content. The first of the two
onCreateContextMenu(), which takes three objects as parameters:

The 	 ContextMenu object named menu

The 	 View object (UI widget) that called it

The 	 ContextMenuInfo object named menuInfo, which contains information about
the menu configuration

super keyword. The next three lines of code call methods against
menu object, which is of type ContextMenu. This code is configuring our

ContextMenu object by giving it a title using menu.setHeaderTitle() and adding two menu
menu.add() methods.

 public void onCreateContextMenu(ContextMenu menu, View view,
 ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, view, menuInfo);
 menu.setHeaderTitle("Android Context Menu");
 menu.add(0, view.getId(), 0, "Invoke Context Function 1");
 menu.add(0, view.getId(), 0, "Invoke Context Function 2");
 }

Shown in Figure 9-18 is the screenshot of Eclipse after adding the code, and the screenshot shows
how Eclipse flags and then suggests and even adds our import statements for the ContextMenu and
ContextMenuInfo classes. You should be getting used to this work process by now!

www.it-ebooks.info

http://www.it-ebooks.info/

261CHAPTER 9 : Adding Interactivity: Handling UI Events

The second context menu method is onContextItemSelected(), which is passed a single parameter
of type MenuItem named item. Note that this method has a Boolean return type, which means we
need to return a true (handled) or false (not done yet) reply.

To start with, we have an if-then-else loop that compares the title of each MenuItem to a string. If the
title matches, it runs the appropriate contextFunction1 or contextFunction2 (which we will code next).

 public boolean onContextItemSelected(MenuItem item) {
 if(item.getTitle().equals("Invoke Context Function 1")) {
 contextFunction1(item.getItemId());
 }
 else if(item.getTitle().equals("Invoke Context Function 2")) {
 contextFunction2(item.getItemId());
 }
 else {
 return false;
 }
 return true;
 }

Recall that the first code after the if in parentheses is the condition. It reads, “If the title that we are
getting from the item object is equal to the text string 'Invoke Context Function 1', then perform
the statements in the curly braces that follow this conditional statement.” Note that this could also
be written as: if(item.getTitle()==“Invoke Content Function 1”); however using the .equals() method is
considered a better programming practice when comparing String values.

Figure 9-18. Adding onCreateContextMenu() and importing ContextMenu and ContextMenuInfo classes via mouse-over

www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 9 : Adding Interactivity: Handling UI Events

Note Remember that == (two equal signs) means is equal to, and compares two integer or string
values to each other, and = (one equal sign) means to set the value of a variable or constant to another
value, so that is setting a value rather than simply comparing two values to see if they are the same
or if they are different. What we are using here for ContextMenu is the .equals() method, which is
considered “Best Practices” for comparing String values, and can also be chained, so we are using it
here to show you both Java comparison operation solutions in a single chapter!

If this does not equate to true for the first if condition, then the next else block is encountered,
if statement that is almost completely identical to the first, except that

else
false from the method to the calling code, telling it, “Sorry, no menu options here that

if condition is met, the true, which is under the conditional code block is

 9-19 to add the import statement, and then we’ll be

Figure 9-19. Adding an onContextItemSelected() method and importing a MenuItem class

www.it-ebooks.info

http://www.it-ebooks.info/

263CHAPTER 9 : Adding Interactivity: Handling UI Events

Now we need to write our own methods for the two options, which we’ll call contextFunction1()
and contextFunction2(). We declare these methods as public and as void, as they do not return
any values. They simply carry out a task with no result to report back. We name the first method
contextFunction1() and define one integer data parameter to pass, in this case an ID.

 public void contextFunction1(int id){

Inside this method, we make a call to the Toast widget, which allows us to send brief messages
to our end users during their use of the application. To do this, we use the makeText() method and
access it directly from the Toast class via the following one (admittedly dense) line of code:

Toast.makeText(this, "function 1 invoked!", Toast.LENGTH_SHORT).show();

This is another one of those “chaining” lines of code we talked about earlier in the book that does
several things within a single code construct. Once you get really good at programming, this type of
coding becomes a really great way to write more “compact” or dense code.

So we call the .makeText() method and pass it three parameters:

The activity that is running the 	 Toast alert, in this case the one it’s contained
in (this)

What the message should be, contained between quotes	

How long (in this case, a short length of time) to show the 	 Toast pop-up

After the Toast.makeText(), another .show() is appended. This displays (shows onscreen) the
message that we just specified with makeText(). One line of code does everything. And the best part
is, you can now use this same line of code to pop up little messages to your users whenever you
want to do so. Grab that glass of wine on your left, and let’s make a Toast to Toast!

Note that the context menu code that we learned about earlier has nothing to do with this one-line
Toast construct, which will send a message to your screen anyplace you put it in your code. Some
programmers use this for debugging, with messages like, “Setting X variable to 7 at (System Time)” or
similar, so that you can see on the screen a visual progress of your app running through its code logic.

After our contextFunction2 code construct, which is very similar to contextFunction1, we have our
key event handlers from the previous section working at the same time as our ContextMenu. Once
you write these two methods into Eclipse, be sure to note the flags that tell you that you need an
import statement to use the Toast class, and use the usual work process shown in Figure 9-20 to
have Eclipse insert the import statements needed for you.

www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 9 : Adding Interactivity: Handling UI Events

The entire body of code in MainActivity.java should now look like the following (see Figure 9-21).

Figure 9-20. Adding our two custom methods and having Eclipse import the Toast class for us

www.it-ebooks.info

http://www.it-ebooks.info/

265CHAPTER 9 : Adding Interactivity: Handling UI Events

Figure 9-21. Adding the Java methods needed to implement a context menu in MainActivity.java

package fifth.example.eventhandling;

import android.os.Bundle;
import android.app.Activity;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;
import android.view.KeyEvent;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.view.View.OnClickListener;
import android. view.View.OnLongClickListener;
import android.widget.Button;
import android.widget.TextView;

import android.widget.Toast;

public class MainActivity extends Activity Implements OnClickListener, OnLongClickListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {

www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 9 : Adding Interactivity: Handling UI Events

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Button button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(this);
 button.setOnLongClickListener(this);
 Button button2 = (Button) findViewById(R.id.button2);
 registerForContextMenu(button2);
 }

 public void onCreateContextMenu(ContextMenu menu, View view,
 ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, view, menuInfo);
 menu.setHeaderTitle("Android Context Menu");
 menu.add(0, view.getId(), 0, "Invoke Context Function 1");
 menu.add(0, view.getId(), 0, "Invoke Context Function 2");
 }

 public boolean onContextItemSelected(MenuItem item) {
 if(item.getTitle().equals("Invoke Context Function 1")) {
 contextFunction1(item.getItemId());
 }
 else if(item.getTitle().equals("Invoke Context Function 2")){
 contextFunction2(item.getItemId());
 }
 else {
 return false;
 }
 return true;
 }

 public void contextFunction1(int id){
 Toast.makeText(this, "function 1 invoked!", Toast.LENGTH_SHORT).show();
 }

 public void contextFunction2(int id){
 Toast.makeText(this, "function 2 invoked!", Toast.LENGTH_SHORT).show();
 }
 public boolean onCreateOptionsMenu (Menu menu) {...}
 public void onClick (View arg0) {...}
 public boolean onLongClick (View arg0) {...}
 public boolean onKeyDown(int keyCode, KeyEvent event) {...}
 public void textUpdate() {...}
}

Now let’s run our code with Run As ➤ Android Application and see how it all works together. A long-click
on the button brings up the context menu. A touch or click on one of the buttons highlights it, as
shown in Figure 9-22. Once it is clicked, a Toast menu tells us our method has been run. Also notice
that our previous section code for onKeyDown() as well as for both onClick() and for onLongClick()
all still works perfectly together.

www.it-ebooks.info

http://www.it-ebooks.info/

267CHAPTER 9 : Adding Interactivity: Handling UI Events

Controlling the Focus in Android
One of the most challenging aspects of UI design and programming is tracking and controlling the focus
of your application. The focus is where the UI is paying attention, or focusing its attention currently, and
this equates to representing which UI element the user is presently dealing with (or is using).

The tough part about focus is that you can’t always see it visually. Even as an end user, it is sometimes
difficult to see where the focus is currently at within an application. We have all experienced this with
our computers at one time or another, most commonly while we are filling out forms, where the active
text entry cursor for a field moves or “jumps” from one field to another as the form is filled out, or as
the Tab key is used to jump (or progress) the input focus from one field to the next field.

It is even more difficult to control, track, and implement focus from a programming standpoint. Note
that focus is typically not something that you need to specifically worry about (Android handles it
automatically), unless it is somehow tripping up your application’s user experience, or unless you
want to implement finer or tighter control over how your users interface with your UI Design or
Application’s UX (user experience).

Android has an internal algorithm that decides how it hops from one UI element (View or Widget) to
another, based on which View is closest to the previous View, but you can also control how the focus

Figure 9-22. Running our application in the Android 4.1 emulator after adding a context menu

www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 9 : Adding Interactivity: Handling UI Events

moves from one UI element widget to the next with your own custom code. Here we will go over the
basics, to get you started and familiar with the concepts, in case you need to intervene with your
own XML or Java code to manually control the focus inside of your application.

First, we will look at how to control focus via XML, as that is easier to understand and implement
than the Java coding route. Later, we will go over which Java methods will allow you to take focus or
otherwise control the focus, based on what the user is doing in the application.

Adding the XML for Focus Control
To start, let’s add a couple more buttons to the bottom of the UI we’ve been developing in this
chapter, and then we’ll set the focus to do something that is not standard focus procedure in Android.

button2 tag in our activity_main.xml file and paste
button2 tag markup (see Figure 9-23). You can also use

Figure 9-23. Adding a third and fourth UI button to the /res/layout/activity_main.xml file

www.it-ebooks.info

http://www.it-ebooks.info/

269CHAPTER 9 : Adding Interactivity: Handling UI Events

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">

 <Button
 android:id="@+id/button1"
 android:text="@string/button_caption"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="50dp"
 android:id="@+id/contextButton" />

 <TextView
 android:id="@+id/textmessage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontaltrue"
 android:layout_centerVertical="true"
 android:text="@string/text_message"
 tools:context=".MainActivity" />

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/textmessage"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="50dp"
 android:text="@string/context_button_caption" />

 <Button
 android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/button2"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="10dp"
 android:text="@string/third_button_caption" />

 <Button
 android:id="@+id/button4"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/button3"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="10dp"
 android:text="@string/fourth_button_caption" />

</RelativeLayout>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

270 CHAPTER 9 : Adding Interactivity: Handling UI Events

To make our Button tags unique, we also need to rename their IDs to button3 and button4, which
if you use the Graphical Layout Editor will be done for you automatically, as will the centering and
margin spacing of 10dp parameters. This way, we can access the buttons in our Java code and also
change their display text to reflect that they are the third and fourth buttons, respectively. Make sure
to add their names and values to the /res/values/strings.xml file via the <string> tag, as we did in the
previous sections, and as is shown in Figure 9-27 later on in this exercise.

We will leave all of the other Button tag attributes for scaling and centering the same, and use a
android:layout_marginTop value of 10dp to keep the bottom three buttons closer together.

Now we will add our android:nextFocus attributes, so that we will have control over which UI
elements our focus jumps to and from when the user navigates the UI with the up and down arrow
keys on the front of the smartphone, iTV remote, e-reader or tablet.

button1 tag attributes, we want to add an android:nextFocusUp attribute and point it

button4, this tag attribute will read as follows:

button1 from our first onClick and onLongClick examples).

To control advancement of focus from the button1 to the button2 button, we add this:

android:nextFocusDown="@+id/button2"

Now we have defined all of the focus movements that can happen for the first (top) Button UI element
button1, and we are ready to define the focus movements for the next three user interface buttons.

This will be a very similar process. In fact, you can simply cut and paste the two lines of code that
you wrote for the first Button (button1) tag and change the ID attributes after you paste them into
the next three Button element tags for button2, button3, and button4.

For the second Button tag, we will add in another two android:nextFocus attributes. This time, these
point to the buttons immediately above and below the second and third button, so the middle two
buttons are the easiest to code. Their code will look like the following:

android:nextFocusUp="@+id/button1"
android:nextFocusDown="@+id/button3"

android:nextFocusUp="@+id/button2"
android:nextFocusDown="@+id/button4"

For the fourth Button tag, we will add in another two android:nextFocus attributes, which finally point
to the buttons immediately above and back up to the top button in our loop of buttons, as follows:

android:nextFocusUp="@+id/button3"
android:nextFocusDown="@+id/button1"

www.it-ebooks.info

http://www.it-ebooks.info/

271CHAPTER 9 : Adding Interactivity: Handling UI Events

The first attribute is pretty straightforward, as the button3 button is above our fourth button. For
the nextFocusDown attribute because there is no button underneath the fourth button, we actually
want the focus to wrap, or loop back, to our first button1 button, so that is the ID we use in the
android:nextFocusDown attribute that we add to the final Button tag.

Note There are nextFocusLeft and nextFocusRight attributes available (one for each arrow key)
if you are using a horizontal LinearLayout tag attribute, for instance, or if you have things arranged
from side to side within a RelativeLayout container.

Here are the four blocks of nextFocus attributes that we added to our four buttons (we’ll omit the
dozens of other parameters, so as to show only the focus-related coding) so that you can check
your work (also see Figure 9-24 for the complete XML code):

<Button
 android:id="@+id/button1"
 android:nextFocusUp="@+id/button4"
 android:nextFocusDown="@+id/button2"
 (other button parameters) />

<Button
 android:id="@+id/button2"
 android:nextFocusUp="@+id/button1"
 android:nextFocusDown="@+id/button3"
 (other button parameters) />

<Button
 android:id="@+id/button3"
 android:nextFocusUp="@+id/button2"
 android:nextFocusDown="@+id/button4"
 (other button parameters) />

<Button
 android:id="@+id/button4"
 android:nextFocusUp="@+id/button3"
 android:nextFocusDown="@+id/button1"
 (other button parameters) />

www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 9 : Adding Interactivity: Handling UI Events

Adding the Java for Focus Control
Now let’s declare the two new buttons we defined in our activity_main.xml markup in our Java code,
and point them toward our ContextMenu code that we wrote in the previous section, so that they
actually do something useful, and bring up a Context Menu when we long-click on them.

Here are the four new lines of code that we need to write to support these new buttons (see
Figure 9-25), which go in the end part of our onCreate() method as follows:

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Button button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(this);
 button.setOnLongClickListener(this);
 Button Button2 = (Button) findViewById(R.id.button2);

Figure 9-24. Controlling the focus via XML markup in /res/layout/activity_main.xml

www.it-ebooks.info

http://www.it-ebooks.info/

273CHAPTER 9 : Adding Interactivity: Handling UI Events

 registerForContextMenu(Button2);
 Button Button3 = (Button) findViewById(R.id.button3);
 registerForContextMenu(Button3);
 Button Button4 = (Button) findViewById(R.id.button4);
 registerForContextMenu(Button4);
 }

To implement this in the quickest fashion, select the two lines of code that define and point our
button2 object to the registerForContextMenu() method, and paste them twice below the original
two lines of code.

Change the Button2 and button2 references to Button3 and button3 in the first two lines, and to
Button4 and button4 in the last two lines. You have now declared all four buttons in Java and set
them to actually do something in your code when they are either clicked or long-clicked on.

Now let’s use our familiar Run As ➤ Android Application work process to compile and run this
application, as shown in Figure 9-26. It now traps or handles onKey events, onClick events, and
onLongClick events as well as handling onContextMenu events, and additionally implements control
of focus among the usable UI elements, namely the four buttons.

Figure 9-25. Registering our bottom two buttons for the context menu in MainActivity.java in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 9 : Adding Interactivity: Handling UI Events

You will notice now that when you compile and run this code, all three buttons at the bottom of the
app will call up a ContextMenu. In your own apps, you may want all (or many) of your UI elements to
bring up the same context menu selections (say the application default context menu), and this is
the way that you would do that using just a very few lines of code.

If your code does not run for some reason, you can use the Eclipse Project ➤ Clean … option to
“clean” your project. This regenerates the R.java class that lives in the /gen/ folder and that holds
the generated (compiled) Java files for the application. Three key commands in Eclipse that you will
use frequently are: Refresh, Validate, and Clean, usually in that order, to help Eclipse to troubleshoot
code problems that you may be experiencing in the IDE.

The reason I mention this here is because when I first ran the focus code in this chapter, which I
know is correct and bug-free, the activity would not run in the emulator, and I was getting an error in
LogCat that said that I was “casting” a Button object into a TextView object. For this to have been
true, I would have had to switch the FindById references for button1 (or button2, button3, or button4)
with the FindById reference for textmessage in my Java code.

As this was not the case, I ran the Eclipse Project ➤ Clean … utility, which regenerated my R.java
file, and fixed the problem for me. One of the tricky things about programming is that sometimes

Figure 9-26. Running our EventHandling project application in the Android 4.1 emulator after adding focus control

www.it-ebooks.info

http://www.it-ebooks.info/

275CHAPTER 9 : Adding Interactivity: Handling UI Events

It is important to test your applications vigorously, as some bugs will show up only after all of the
features have been used already once or twice. Let’s do that now.

To test the application, long-click on each of the buttons, and select either option. Everything should
work as expected and pull up the context menu. To see the cycling focus that we have implemented,
use the up or down arrow/keys in the middle of the Android smartphone or tablet (in this case, on
the 4.1 emulator) to cycle the focus among the buttons (focus is shown in blue). You will notice no
matter which direction (up or down arrow button) you choose, the focus cycles or loops through the
buttons correctly and seamlessly.

your code can be correct, and the code in the IDE or the Compiler (SDK) can have bugs in it too!
Add to this the quick SDK revision cycles for Java and Android (between Version 1 and Version 2
of this book, Android went from SDK Level 3 to SDK Level 16) and programming becomes a
“moving target” significantly more challenging than if it were inherently within a fixed or unchanging
programming environment.

If the code still does not compile and run, you may have forgotten to add all of the string tags needed
to the /res/values/strings.xml file as shown in Figure 9-27. Also shown at the bottom of the screenshot
is the successful running of the app in the emulator under the Console Tab at the bottom of the IDE.

Figure 9-27. Adding the Button captions in the strings.xml file and view of the Android Console tab

Note Remember that Android will handle focus for you as a matter of routine. This includes jumping
between UI elements on the screen and even jumping to the next logical UI element if a UI element (a View
object) is hidden (or shown) or removed (or added) as a matter of the application programming logic.

www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 9 : Adding Interactivity: Handling UI Events

Setting Focus Availability
View objects can be defined (in XML or Java) to be able to accept (or deny) focus using the
isFocusable() method or the android:focusable (XML) attribute. If you define a View (UI object)
to be focusable (or not focusable) in XML, and then want to change this later at runtime (while your
application is running), there is also a setFocusable() method that can flip this (Boolean) switch.
To switch Focus On .setFocusable(true); and Off would be .setFocusable(false); as you may have
suspected. These focus methods control focus navigation via the smartphone, tablet, e-reader or
iTV set navigation key hardware.

There are separate methods to control the focus in relation to the touchscreen, and these are named
very similarly: isFocusableInTouchMode() and setFocusableInTouchMode(). For XML markup coding,
you would use the format android:focusableInTouchMode, similar to nontouch focus.

onFocusChanged() method. This method can be called to find out if there is a change in state
true to false, or focused to not focused, that you can use in more advanced programming

well as in Android app development. The topics ranged from setting up event listeners and event
handlers to invoking context-sensitive menus to more ethereal topics such as controlling the focus
of your UI design as the user moves through it, all of which represent important parts of your user
experience design—interactivity, predictability, and responsiveness.

You now know how to handle clicks via hardware navigation keys or via the touchscreen, as well as
handling long-clicks and keyboard use. We even covered more advanced features such as context
menus, the Toast system widget for brief user message notifications, and controlling the focus in
your XML or Java code, or via both.

You coded an app that used all the primary event handlers in Android all in one codebase (well over
a hundred lines of XML and Java code was written—congratulations on coding your first major
project) with no errors, warnings, or crashes. You also learned about the Eclipse Project ➤ Clean …
utility; this can help “Clean” or regenerate generated Java files in the project’s /gen/ folder as a way
of “cleaning” (debugging) your code when there are no apparent logic or variable errors visible.

We covered a lot of important material in this chapter, so be sure to review it all again very soon.
This chapter includes some clever and new ways to use the Eclipse IDE as well, and that is also
important to master by the time you are finished with this book, so make sure to play around with
the different “panes” in Eclipse such as the Properties, Overview, LogCat, and the Graphical Layout
Editor. You should be exploring Eclipse (your IDE tool) as much as you are exploring the Java
Classes, XML Tags, Android Libraries, and Method Functions.

www.it-ebooks.info

http://www.it-ebooks.info/

277

Chapter 10
Understanding Content Providers

In this chapter, we are going to take a look at how to provide content within your application. We’ll
cover how to share that content, and how to access, add, and display the data that represents
that content.

We have gotten significantly more advanced as we have progressed from chapter to chapter, and
this chapter is no different. Data access is significantly more complex than event handling and
UI design. This is because it involves database design, and thus you also have to know how the
database is structured (how it was originally designed) to be able to access the data correctly.
Database use in Android also involves requesting security permissions for database access.

In Android, requesting permissions is done via the Android Manifest file that bootstraps every
Android Application Launch, kind of like index.html does with a website. In fact, starting with this
chapter, we will need to modify the application’s AndroidManifest.xml file, so be warned that we are
getting into some fairly complicated concepts and code here all the way around.

We’ll begin with an overview of exactly what Android content providers are, and what they do for
your Android user. After that, you will learn how to use these SQLite-based native Android OS
content providers to read and write database content for your Android applications.

An Overview of Android Content Providers
Content provider is a term that is unique to Android development that means nothing more than
a datastore of data values, most often found in the form of a SQLite database that is already part
of the Android operating system (OS). You can also create your own content providers for your
application.

An Android content provider provides you with access to sharable data structures commonly called
databases. The basic procedure is as follows:

1. Get permission to read the database, and possibly to write to the database.

2. Query (find) the data.

www.it-ebooks.info

http://www.it-ebooks.info/

278 Chapter 10: Understanding Content providers

3. Access (read) the data.

4. Modify (add, change (overwrite), append to, or delete) the data.

In accessing data, you might simply read the data, write to the data (i.e., change the values of the
existing data); append (add) new data onto the database structure; or delete existing data, based on
the type and level of security permissions that have been established in the AndroidManifest.xml file.

Data can be in Android internal (system) memory, in a SQLite database, or in external memory such
as an SD card, or even on an external server that is remote to the Android device itself.

Databases and Database Management Systems

www.SQLite.org.

such as a database server.

Later in this chapter, we will take a look briefly at how Android allows you to access the Android
Contacts database data records and the data contained within their individual data fields. All you
really need to know about SQLite is that it is a part of Android and that you can use it for data
storage. Android takes care of the DBMS functions for you via classes that are already written for
you and that do most of the work. All you have to do is learn how to use them properly, which is not
a simple task, due to the database complexity (read: power) that has evolved in Android API Level 16
(also known as Android “Jelly Bean” version 4.1).

In a DBMS, the highest level of data storage is the database itself, which contains tables of data
in rows and columns. Each table is two-dimensional, where a row is called a record. Within each
record are fields, organized into columns, which contain the individual data items that make up the
records. Fields can contain different data types, such as numbers, text, or even references to data
that is stored somewhere else. However, each field must contain the same data type as the other
fields in that same column (see Figure 10-1).

www.it-ebooks.info

http://www.SQLite.org
http://www.it-ebooks.info/

279Chapter 10: Understanding Content providers

Note that there can be more than one table in a database (and there usually is, for both performance
and for organizational reasons). As long as there is a key (a unique index) for each record in each
table, information for a single data entry can span more than one table using that key, called an ID
and designated via the constant “_ID” in Android SQLite databases. For instance, if your key or _ID
value is 217, your personal information and phone information can be in two different tables stored
under that same key value.

Figure 10-1. A MySQL RDBMS database

Caution After the record structure, and data fields that define this record structure, are set-up,
don’t change the record structure later, if you are designing your own databases. This is because the
currently loaded records and fields may not fit into the new database structure definition correctly.
So, it’s best to ascertain and design what your database record structure will be up-front, making the
DBMS design process especially critical to the success of any given project going out over time.

The content provider classes that are provided with the Android OS all use SQLite because it is
compact and open source, and a part of the Android OS, so we are going to focus on those in this
chapter. There is also an Android library of SQLite classes that can access SQLite directly, for more
advanced use. If that is of interest, there are several books regarding using SQLite libraries inside of
Android that focus only on this topic.

www.it-ebooks.info

http://www.it-ebooks.info/

280 Chapter 10: Understanding Content providers

Android Built-In Content Providers
A significant number of SQLite-based database structures are “hard-coded” into the Android
OS to handle things that users expect from their phones, iTVs, e-readers, and tablets, such as
contact directories, address books, calendars, camera picture storage, digital video storage, music
libraries, playlists, and so forth. The most extensive of these SQLite database structures is the
Contacts database, which contains many different tables (subdatabases) for contact names, phone
numbers, e-mails, preferences, social media settings, and so forth. This structure is very complex,
and because this book is focused on programming for Absolute Beginners, and not database
theory, we will only be working with the primary contact name database, to keep it more about Java
programming and Android Content Providers, rather than about database structure and theory.

The base-level interfaces of the android.provider package allow us to access those data structures

 10-1 lists the Contacts database interfaces for Android 1.5, 1.6, and 2.0 that can be found on
http://developer.android.com/reference/android/provider/package-

).

Table 10-1. The Contacts Interfaces for Android 1.x and 2.0 Supports

Interface Contents

Contacts.OrganizationColumns Organization

Contacts.GroupsColumns Groups

Contacts.PeopleColumns People

Contacts.PhonesColumns Phone numbers

Contacts.PhotosColumns Contact photographs

Contacts.PresenceColumns IM presences

Contacts.SettingsColumns Phone settings

Contacts.ContactMethodsColumns Contact methods

Contacts.ExtensionsColumns Phone extensions

If you browse the current Android Developer documentation, you’ll see that the interfaces listed in
Table 10-1 are all described as “deprecated.” Deprecated means that these classes, methods, or
even database structures have been replaced by other classes, methods, or database structures in
a newer version of the programming language (such as Java) or API (such as Android). The newer
classes, methods, or database structures that replace the older ones are usually more robust
or feature filled, or sometimes they differ only in how they are implemented, or in the case of a
database, which fields of data they contain, and how those fields of data are organized.

www.it-ebooks.info

http://developer.android.com/reference/android/provider/package-summary.html
http://developer.android.com/reference/android/provider/package-summary.html
http://www.it-ebooks.info/

281Chapter 10: Understanding Content providers

This deprecation is exactly what has happened with the Contacts interfaces between Android
versions 1.x and 2.0 (1.0, 1.1, 1.5, 1.6, and 2.0) and Android versions 2.1, 3.x, and 4.x (2.1, 2.2, 2.3,
3.0, 3.1, 3.2, 4.0, and 4.1). So, the database interfaces that work with Android 1.x and 2.0 phones
are different than the ones that work on the Android 2.1 through 4.1 phones (more advanced or
feature-rich database structures, in this particular case).

If you are going to support 1.5, 1.6, and 2.0 phones, you will need to use the database interfaces
listed in Table 10-1. In this book, however, we have been taking the Android suggested application
support default settings of API Level 8 (Android 2.2) through API Level 16 (Android 4.1) so we need
to use the more advanced database structures that replaced the original database structures starting
in Android API Level 7 (Android 2.1).

The good news is that deprecated does not mean disabled. It more accurately means in this case,
“not suggested for general use unless you need to support pre-2.1 OS versions for your Android
users.” So, if you need to support Android 1.5, 1.6, and 2.0 phones, you can use the interfaces
listed in Table 10-1, and they will still work on 2.1 (and 3.x and 4.x) smartphones. Note that inside of
Eclipse, deprecated structures and program calls are “lined out” in the code, to show that they are
deprecated, and that can be a bit unnerving, so because most devices these days are 2.3.7 through
4.1 compatible, we suggest that you take Android’s “advice” and develop for API Levels 8 through 16.

You may not be able to access data from the new database fields or tables unless you add support
for the new 2.1, 3.x, and 4.x DBMS structures in your code by detecting what OS the user is using,
and have code sections that deal with each (1.x and 2.x vs. 3.x and 4.x) database access structure
differently (using vastly different code).

Note If you want to be able to access every new feature, you can have your code detect which
version of the OS the phone is using and have custom code in place that delivers the optimal
functionality for each OS version, if you wish.

In the case of Android, deprecation (a common problem that developers need to get used to, hence
we are covering it here, so that as an Absolute Beginner, you can learn all about it now, and not be
blind-sided by this concept later) equates to different versions of the Android OS being able to do
different things, and thus having different sets of functionality that can be used for each operating
system level or version. With Android, this is especially prevalent, as different OS versions will feature
support for different hardware features for newer phones, iTVs, e-readers, and tablets, requiring new
APIs, and changing existing APIs to support the newest hardware features.

For instance, Android was initially created for smartphones. Then tablets (and e-readers) came
along, and Android 3.x OS features added support for that type of consumer electronics (CE) device.
Now iTVs are becoming popular, and GoogleTV (Android 4.x and Android 5.x) is adding even more
features and APIs.

www.it-ebooks.info

http://www.it-ebooks.info/

282 Chapter 10: Understanding Content providers

Note Over time, versional functionality gets more and more difficult to keep track of. Indeed, we already
have sixteen (if you don’t count Android 5.0 currently in beta as of the writing of this book) different OS
versions (levels) that our code must work across. Keeping track of all the current programming constructs,
database structures, and logic mazes is enough of a challenge for most, without another layer on top that
involves remembering which constructs and interfaces work or do not work with any given OS API level
version. This is one of many reasons why programmers are so very well paid.

Table 10-2. Android 2.1 through 4.1 Content Providers

Interface Contents
ContactsContract.CommonDataKinds.CommonColumns For subclassing databases

ContactsContract.ContactsColumns Contact main information

ContactsContract.ContactOptionsColumns Contact options

ContactsContract.ContactStatusColumns Contact status

ContactsContract.PhoneLookupColumns Phone numbers

ContactsContract.GroupsColumns Group definitions

ContactsContract.PresenceColumns IM presences

ContactsContract.SettingsColumns Account settings

ContactsContract.StatusColumns IM visibility

Table 10-2 lists some of the newer versions 2.1 through 4.1 compatible content providers for
manipulating contact information. The vastly different content provider database structure

All of these replace the deprecated versions that are listed in Table 10-1 and are available from the
same Android developer site link: (http://developer.android.com/reference/android/provider/
package-summary.html).

Android MediaStore Content Providers
The other collections of content providers that you may find important for new media content within
the Android OS are the MediaStore content providers. These are listed in Table 10-3.

www.it-ebooks.info

http://developer.android.com/reference/android/provider/package-summary.html)
http://developer.android.com/reference/android/provider/package-summary.html)
http://www.it-ebooks.info/

283Chapter 10: Understanding Content providers

In the rest of this chapter, we will look at how to declare content providers for use, access them,
read them, and write to them. Because we are using the default OS support suggested in the New ➤
Project ➤ Android Application Project of API Level 8 (OS 2.2) through API Level 16 (OS 4.1) we will
use the more modern (i.e., not deprecated) content providers in our code examples.

Defining a Content Provider
Before a content provider can be used, it must be registered for use by your Android application.
This is done by using some XML markup in the AndroidManifest.xml file. The <provider> tag so
aptly named, allows us to define which content providers we are going to access once our
application is launched. Here’s an example <provider> tag for the Images content provider:

<provider android:name = "MediaStore.Images.ImageColumns" />

All Android content providers expose to developers a publicly accessible unique reference, or
address, if you will, to each database. This address is called a URI, and the Android constant that
points to the data location within the database table is always called CONTENT_URI. Providers built-in
to the OS do not need a <provider> declaration (such as the examples we are using in this chapter).

A content provider that provides access to multiple tables will expose a unique URI for each table.
Here are a couple examples of predetermined Android URI constants:

android.provider.ContactsContract.PhoneLookupColumns.CONTENT_URI
android.provider.ContactsContract.StreamItemPhotosColumns.CONTENT_URI

The first reads “android (the OS) dot provider (the component type) dot ContactsContract (the
database) dot PhoneLookupColumns (the table) dot CONTENT_URI (the constant that points to the data
location).” Yes, there is a logical method to the madness here.

Table 10-3. Android MediaStore Content Providers

Interface Contents
MediaStore.Audio.AlbumColumns Album information

MediaStore.Audio.ArtistColumns Artist information

MediaStore.Audio.AudioColumns Audio information

MediaStore.Audio.GenresColumns Audio genre information

MediaStore.Audio.PlaylistsColumns Audio playlist information

MediaStore.Files.FileColumns Fields for master table for all media files

MediaStore.Images.ImageColumns Digital images

MediaStore.Video.VideoColumns Digital video

MediaStore.MediaColumns Generic media store

www.it-ebooks.info

http://www.it-ebooks.info/

284 Chapter 10: Understanding Content providers

Note URI objects are used for much more than just Android content providers, as you have seen in
Chapter 8. All of the ones that are used to access Android content providers start with content://,
just like a web address starts with http://.

Figure 10-2. Creating the ContentProviders Android 4.1 project in Eclipse

Creating the Content Providers Example Project in Eclipse
Let’s set up our ContentProviders project folder in Eclipse right now, so you can learn a little more
about the Android Manifest Editor and how Eclipse can automate the Android Manifest XML coding
process for us.

EventHandling project folder open from the previous chapter, right-click that

1. Then select File ➤ New ➤ Project and choose Android Application Project
to open the New Android Application Project series of dialogs.

2. Fill it out as follows (and shown in Figure 10-2).

www.it-ebooks.info

http://www.it-ebooks.info/

285Chapter 10: Understanding Content providers

	Project name: Name the project ContentProviders.

	Build target: Set this to Android 4.1.

	Application name: Name the application ContentProviders.

	Package name: Set this to sixth.example.contentproviders.

	Create custom launcher icon: Check this box and accept the defaults in
the follow-on dialogs, as we have been doing in the earlier chapters.

	Minimum SDK version Enter 8, which matches the recommended minimum
SDK version of 8, and thus supports Android 2.2 through 4.1 and thus the
more modern (complex or detailed) database structures.

Defining Security Permissions
The AndroidManifest.xml file is usually referred to as the manifest for your application, and it tells the
Android OS what you intend to do with your application. It is accessed during the initial launch of
your application to set up the memory for the application, and to boot up any system resources or
pointers (addresses to things that we are going to talk with, or connect to, that need to be ready in
system memory) that are needed for the application to be run successfully.

In this case, that means we will be asking Android for permission to access, and possibly even
change (depending on the tags we add), one of the Android databases outlined within the previous
tables. The reason that we need to get permissions to use certain areas of the OS is so that Android
can implement a robust level of data security within its OS infrastructure.

To define permissions, use the <uses-permission> tag:

<uses-permission android:name="android.permission.READ_CONTACTS" />

This tag allows the application to READ the CONTACTS database. Read-only operations are inherently
safe, as we are only looking into these databases, and reading data from them. A read operation is
thus termed to be a “nondestructive operation” to, or on, a database.

If we wish to change (overwrite or update, delete, or append to) data in a database, we need to
use a different permission tag that tells Android that we are going to write data to an Android OS
database. In this case, WRITE_CONTACTS represents the permission to change the Contacts database
that we will be using. As you may have guessed, the WRITE version of the tag looks like this:

<uses-permission android:name="android.permission.WRITE_CONTACTS"/>

Permission for write operations is a bit more serious matter, due to the fact that we are now able
to screw up the database, which is why the industry terms a database Write Operation to be
“destructive.” In this case, we are dealing with the Android device user’s contacts data, and we
might overwrite data that was there before our app ever accessed it.

www.it-ebooks.info

http://www.it-ebooks.info/

286 Chapter 10: Understanding Content providers

2. In the ContentProviders Manifest tab, click the Permissions tab at the bottom
of the window (see Figure 10-3).

3. Click the Add … button in the right pane (also shown at left in Figure 10-3).

4. Select the Uses Permission entry at the bottom of the list, and then click
OK (also shown on right in Figure 10-3; I get a lot of mileage out of my
screenshots).

Figure 10-3. Adding a permission in the ContentProviders manifest using the Eclipse visual editor

Tip There are different permission tags that control different levels of access to services or databases
that are part of Android. To see a list of all of them, and to get an idea of what Android will let you
access with regard to smartphone; tablet; e-reader; or iTV hardware, features, and databases, check
out this link: developer.android.com/reference/android/Manifest.permission.html.
You will be amazed and empowered and learn a heck of a lot about what features Android currently
offers as well.

Now let’s see how easy it is to use Eclipse to add the necessary permissions. Follow these steps:

1. Right-click the AndroidManifest.xml file in the Project Explorer navigation
pane under your ContentProviders folder (near the bottom), as shown in
Figure 10-3, and select Open, or just hit the F3 key on the keyboard once the
file is selected.

www.it-ebooks.info

http://www.it-ebooks.info/

287Chapter 10: Understanding Content providers

Figure 10-4. Selecting the READ_CONTACTS Permission entry from the drop-down menu

5. You’ll now see the uses-permission tag in the Permissions pane (see
Figure 10-4 just left of center). From the drop-down menu that lists
permissions on the right, select android.permission.READ_CONTACTS (see
Figure 10-4 on right side). Next click the Add … button to add another Uses
Permission Tag, which once you click on it will add the READ_CONTACTS
Android Permission to the left pane list of tags.

6. Selecting the Uses Permission type on the right should update the pane at
the left, but currently it does not, so we go ahead and proceed to click the
Add … button to add another Uses Permission option and then the WRITE_
CONTACTS tag (as we did with the READ_CONTACTS just prior), which will
force the visual manifest Permissions Editor to update the left pane with the
proper uses-permission tag setting.

7. Once you select the WRITE_CONTACTS option from the drop-down menu,
then click on the Up button to add the android.permission.WRITE_CONTACTS
option (see Figure 10-5) to the permissions list pane. Alternately you could
click the Add button and then simply not add another permission if you like.

www.it-ebooks.info

http://www.it-ebooks.info/

288 Chapter 10: Understanding Content providers

 Selecting the WRITE_CONTACTS permission and UP Button to display

 10-6 shows our AndroidManifest.xml
file XML with the two permission tags at the bottom, before the closing tag:

<uses-permission android:name="android.permission.READ_CONTACTS" />
<uses-permission android:name="android.permission.WRITE_CONTACTS" />

Figure 10-6. The XML output for the permission additions we made in the visual Permissions Editor

www.it-ebooks.info

http://www.it-ebooks.info/

289Chapter 10: Understanding Content providers

Table 10-4. ContactsContract.Contacts Database Table (simplified) with Sample Data

_ID _COUNT DISPLAY_NAME_PRIMARY PHONE

44 4 Bill Gates 212 555 1234

13 4 Steven Jobs 425 555 6677

53 4 Larry Ellison 201 555 4433

27 4 Mark Zuckerburg 213-555-4567

Tip Anytime you are working with the Eclipse Visual Manifest Editors, you can click the AndroidManifest.xml
tab at the bottom of the window and see what this helper is doing as far as writing the actual XML markup
code for your project’s AndroidManifest.xml.

Now that we have permissions to read and write to the Contacts database, we can get started
working with databases.

Adding Data to the Contacts Database
Android SQLite uses a table-based database model, where rows represent each data record and the
columns represent the data fields, each with a predefined constant type used in Android to access
the data. In this way, each piece of data in each column is the same exact type or classification, and
each row is a unique collection of data of these types spanning across the row.

In this example, we are going to work with the ContactsContract.Contacts table. After we add some
sample data to this table, it will look like Table 10-4.

The column headers are the names that are used by Android to reference the data held in each column.
These are what you use in your Java code to access each field of data within each record. For example,
in some Java code we will write, we will refer to ContactsContract.Contacts.DISPLAY_NAME_PRIMARY.

The column names that are prefaced by an underscore character (_ID and _COUNT) are data fields
assigned and controlled by Android; that is, you cannot WRITE to these values, you can only READ
from them.

Now let’s add the four data records shown in Table 10-4 into our Android emulator. (If you like, you
can add more than four records.) We’ll do this using the utilities that come with the Android OS.
Follow these steps:

1. Run the 4.1 emulator as usual by choosing Run As ➤ Android Application.

Note Another way to start the emulator is to select Window ➤ AVD Manager as shown in
Figure 10-7. Select your 4.1 emulator and press the Start button and then the Launch button. Any
contacts you enter should be saved for later, even if you close the 4.1 emulator, unless you specify
otherwise within the Launch dialog settings.

www.it-ebooks.info

http://www.it-ebooks.info/

290 Chapter 10: Understanding Content providers

2. Press the Home button. You will see four icons on the bottom of the home
screen (shown in Figure 10-8 on the left side) with icons signifying Dialer
(Phone), Messaging, Contacts, and Browser (Globe) in that order. The middle
icon opens the desktop icon holder view. The icon called Contacts on the left
(second one in) is a front-end to our Contacts database, and will allow us to
add in the records shown in Table 10-4.

Figure 10-8. Adding new contacts to the Android Contacts database via the Contacts utility

 The AVD Manager Start... and Launch buttons used to start the Android 4.1 Emulator

www.it-ebooks.info

http://www.it-ebooks.info/

291Chapter 10: Understanding Content providers

3. Click on the Contacts icon to launch the Contacts database, which is initially
empty. The screen tells us that we do not yet have any contacts. Click
the “Create a new contact” button to add new contacts to the Contacts
database (as shown in the middle of Figure 10-8). In the next screen select
“Keep local” because we are doing this exercise in the IDE and emulator, and
we do not want to influence your real Android account.

4. On the next screen, enter the first contact name (Bill Gates) using the
onscreen keypad, and use the “Next” button at the bottom right when you
are done, to advance to the Phone Number entry field.

5. Add a Phone Number just to practice adding contact info, and then click the
“Done” button at the top right of the screen to see the record you created.
Note that you can also use the Add New option to create multiple records at
one time, if you like.

6. On the Data Record Display Screen, click the back arrow at the top left of the
screen (shown in the middle of Figure 10-9) to see all your contact records by
alphabetical order.

Figure 10-9. Adding a record to the Contact database

7. Select the Add New Record Icon (a + next to a new member head icon)
to continue adding the other three records (as shown in the right side of
Figure 10-9). Notice the Toast Notification telling us we are going to create a
new entry! Even the Android OS uses Toast!

www.it-ebooks.info

http://www.it-ebooks.info/

292 Chapter 10: Understanding Content providers

8. Repeat Steps 4 through 7 to add the three other names in Table 10-4, and
maybe a few of own if you wish. When you are done, close the 4.1 emulator,
there is no need to save or exit, as records are written to the Database as
you add them, as long as you left the “Wipe User Data” option unchecked in
the Emulator launch dialog shown in Figure 10-7 (if you even used that more
complex emulator launch methodology).

Working with a Database
Let’s get started writing our application that will access the Contacts database and Query, Add, and
Display our Contact Name data. We’ll do some data queries against the Contact name, query (read)

activity_main.xml file that will trigger our database query
onClick event (as discussed in Chapter 9 regarding events processing).

1. Right-click the activity_main.xml file, which as we know is located under the
/res/layout folder. Then open the Eclipse Graphical Layout Editor and drag
the TextView (HelloWorld) up to the top so that you get an AlignParentTop
and centerHorizontal parameter added for you.

2. Next, add a button via drag-and-drop, as you have done in many of the
previous examples. Make the button centered as well and aligned below the
TextView with a 50dp marginTop parameter. Here is the code that shows the
parameters for the Button and TextView that the GLE writes for us inside of
our standard RelativeLayout tag (see Figure 10-10):

<TextView
 android:id="@ + id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:text="@string/display_data"
 tools:context=".MainActivity" />

<Button
 android:id="@ + id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@ + id/textView1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="50dp"
 android:text="@string/button_title" />

www.it-ebooks.info

http://www.it-ebooks.info/

293Chapter 10: Understanding Content providers

Figure 10-10. Adding a Button to the RelativeLayout in our activity_main.xml file

3. Next, right-click on the /src/sixth.example.contentproviders/MainActivity.java
file and select Open.

4. First, we will add in our Button object declaration and our onClick event
handling code, as we did in the previous chapter. Later, we’ll write our
custom query method, once our UI is in place. To get things going, let’s add
the following three import statements (or allow Eclipse to do it for us later)
that we need to define our Button:

import android.widget.Button;
import android.view.View;
import android.view.View.OnClickListener;

Note Remember that you use the import statement to pull in the classes that you are going to
leverage (utilize) within your code.

5. Now declare our Button object, like so, with some fairly standard code:

Button queryButton = (Button)findViewById(R.id.button1);

6. Next, let’s use a setOnClickListener() method to add the ability to handle
events for this button, using the lines of code shown below (and shown
in Figure 10-11). First, we will attach the new OnClickListener to our
queryButton, and then inside the onClick event handler, we will assign the

www.it-ebooks.info

http://www.it-ebooks.info/

294 Chapter 10: Understanding Content providers

Tip As you’ve seen, when a method does not yet exist, Eclipse puts a red X in the left margin of the
code-editing pane, as well as a red underline under the method name. If you want to remove those
error indicators immediately, simply hover your cursor (mouse) over the red underline for a second, and
select the Create Method option when the list of possible solutions pops up underneath it. Hovering
your mouse over underlined (highlighted) code (either red for error or yellow for warning) in this way is
a great technique for learning more about Java and Eclipse. Don’t be afraid to explore and experiment
with the Eclipse IDE as you work through this book.

queryContact() method (which we will code next), to be run when an onClick
event is encountered. Note in Figure 10-11 that queryContact() is underlined
in red in Eclipse, which tells us that the method we are calling does not (yet)
exist.

queryButton.setOnClickListener(new OnClickListener() {

 public void onClick(View arg0) {
 queryContact ();
 }
});

Figure 10-11. Adding a query button and setting an OnClickListener() method in MainActivity.java

Note that you can have the Eclipse IDE write most of this code for you, including all of the import
statements and the onClick() container simply by mouse-overing red-lined elements in the IDE and
selecting the import … and add unimplemented … options.

www.it-ebooks.info

http://www.it-ebooks.info/

295Chapter 10: Understanding Content providers

7. Next, let’s add the three new import statements that we need (shown at the
top in Figure 10-12). Remember that you can also just write in your Java
code, and let Eclipse insert these import statements for you automatically, if
you prefer. The first brings in the database structure that we will be accessing
via the android.provider.ContactsContract Class. The second imports the
all-important database Cursor class android.database.Cursor that allows us
to traverse (access or look at) the data within all of the Android databases.
Finally, our familiar android.widget.Toast class needs to be imported to
allow us to easily display our data via the Toast message broadcasting
widget:

import android.provider.ContactsContract;
import android.database.Cursor;
import android.widget.Toast;

Figure 10-12. Java method for our queryContact() method and the database related import statements

8. Now we can write our queryContact() method, to query the database (also
shown in Figure 10-12).

private void queryContact() {
 Cursor nameCursor =
getContentResolver().query(ContactsContract.Contacts.CONTENT_URI,null,null,null,null);
 while (nameCursor.moveToNext()) {
 String contactName =
nameCursor.getString(nameCursor.getColumnIndex(ContactsContract.Contacts.DISPLAY_NAME_PRIMARY);

www.it-ebooks.info

http://www.it-ebooks.info/

296 Chapter 10: Understanding Content providers

 Toast.makeText(this, myname, Toast.LENGTH_SHORT).show();
 }
 nameCursor.close();
}

Let’s decipher exactly what is going on in this queryContact() method that we have written. Our
method is declared private (meaning it operates completely inside of the class that contains it) and
void, as it returns no values. The first line creates a Cursor object called nameCursor and assigns
it the results of the call to the getContentResolver() .query() method. This method uses the
ContactsContract.Contacts.CONTENT_URI Uri constant and four nulls that represent more complex
(and unused) SQLite operation options that are beyond the scope of an Absolute Beginners book.

Cursor nameCursor = getContentResolver().query(ContactsContract.Contacts.CONTENT_URI, null, null,

Cursor object that is now properly populated with our getContentResolver() .query() results

 10-9) will be used in our iterative code, a while loop that will traverse the records of
getContentresolver().query() was used to access.

while part of the statement is true whenever the nameCursor object is able to move to the next

while statement are executed.

 while (nameCursor.moveToNext()) {

As long as there is another record that can be moved to next this while statement will equate to true.
When it cannot move to the next record (at the end of, or after, the last record in the results), it will
equate to false, and will drop out of the loop, which will cease to function, just as we intended. In other
words, as long as there is another record to process, we’ll do another run of the code in the loop.

Now let’s look at the two things done in the while loop while there are records to read.

First, we declare and set a String variable called contactName to the value of a fairly complex
chained Java statement that gets the indexed data from the column of the ContactsContract.
Contacts database record field (column) called DISPLAY_NAME_PRIMARY using the
.getColumnIndex() function. That value is then turned into a String variable (made text compatible)
value by passing the result of the nameCursor.getColumnIndex() function into the nameCursor.
getString() function which then places that value into the contactName String object.

The data that is found in each current record of the results (on the first loop entry, this is the
first record; on the second loop entry, this is the second record; and so on) is thus stored in the
contactName string variable declared on the left side of the equals (=) sign as follows.

String contactName =
nameCursor.getString(nameCursor.getColumnIndex(ContactsContract.Contacts.DISPLAY_NAME_PRIMARY));

www.it-ebooks.info

http://www.it-ebooks.info/

297Chapter 10: Understanding Content providers

We do this via two key (no pun intended) methods of the nameCursor Cursor object:

The .	 getColumnIndex() method gets the internal reference or index number
for the ContactsContract.Contacts.DISPLAY_NAME_PRIMARY column for the
current record.

	The .getString() method gets the string data from that location in the results
and puts it into the contactName string variable that we declared on the left side
of the equals sign.

Once our contactName string variable is loaded with the data value from the database record, we call
our familiar Toast widget, and we display each record on the screen as it is read from the database
during the execution of the while loop.

Toast.makeText(this, contactName, Toast.LENGTH_SHORT).show();

Note that this could also be written in two lines of code (if we were not chaining methods):

Toast.makeText(this, contactName, Toast.LENGTH_SHORT);
Toast.show();

Note that outside of the while loop once we are all done cycling through the database records,
and drop out of the while loop at EOF, that we “close” our Cursor object with the contactName.
close() method call. We don’t want to leave open database access objects in memory, especially as
they usually contain many records to be looked through, so this is what is termed “clean” (memory
efficient) coding, as we clean out (up) memory space when we are finished utilizing it, freeing it up for
a different use!

Now, right-click on your ContentProviders folder, and choose Run As ➤ Android Project. Try out
the Click to Query Contacts Database button to see it trigger our query method, displaying the
Primary Name data that we added earlier in the Chapter. Figure 10-13 shows the app in action.

www.it-ebooks.info

http://www.it-ebooks.info/

298 Chapter 10: Understanding Content providers

Appending to a Content Provider: Adding New Content
Now you’ll see how to add new content to a content provider database. In database terminology
adding data records to the end of a database is called “appending” data records, but more
important, now we’re going to the next level (albeit a destructive one) and “writing” a new database
record into the database. You’ve come a long way, Baby. Next, we will add a new contact name to
the ContactsContract.Contacts database.

1. First, copy and paste the first Button tag in our activity_main.xml file or
use the Eclipse Graphical Layout Editor to drag a second button onto your
current UI, and center it 20dp underneath the first button. The text label of
the button should be set to @string/append_data (see Figure 10-14).

Figure 10-13. Running a Contacts Database Name query in the Android 4.1 emulator

www.it-ebooks.info

http://www.it-ebooks.info/

299Chapter 10: Understanding Content providers

<Button
 android:id="@ + id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layoutBelow="@ + id/button1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="20dp"
 android:text="@string/append_data" />

Figure 10-14. Adding in our second button tag in activity_main.xml to use to add a new contact

2. Next let’s add in the <string> tag with a name value of append_data and
its text value that specifies the text label for our second button that reads:
“Click to add to Contacts Database."

3. Next, let’s add in the code to implement the second button for our UI
by copying the button1 Button object declaration and the onClick event
handling code and pasting it immediately underneath the existing UI code in
our MainActivity class to create our database Add button.

4. Change the queryButton variable name to read: addButton, and change the
R.id to point to our new button2 ID. Also, set our method call to the new
addContact() method that we are going to write (see Figure 10-15). Here is
the new code:

www.it-ebooks.info

http://www.it-ebooks.info/

300 Chapter 10: Understanding Content providers

Button addButton = (Button)findViewById(R.id.button2);

addButton.setOnClickListener(new OnClickListener() {
 public void onClick(View arg0) {
 addContact("Steve Wozniak");
 }
});

Note This line of code calls our addContact() method and passes it a new database record
Primary Name data value, so that a new contact entry will be added to the ContactsContract.Contacts
database.

Figure 10-15. Adding the Java code to add in the second append data button functionality

5. Next, we are going to add the new method addContact().

private void addContact(String newName) {
 ContentValues myContact = new ContentValues();
 myContact.put(RawContacts.ACCOUNT_NAME, newName);
 myContact.put(RawContacts.ACCOUNT_TYPE, newName);
 Uri addUri = getContentResolver().insert(RawContacts.CONTENT_URI, myContact);
 long rawContactId = contentUris.parseId(addUri);
 myContact.clear();
 myContact.put(Data.RAW_CONTACT_ID, rawContactId);
 myContact.put(Data.MIMETYPE, StructuredName.CONTENT_ITEM_TYPE);

www.it-ebooks.info

http://www.it-ebooks.info/

301Chapter 10: Understanding Content providers

 myContact.put(StructuredName.DISPLAY_NAME, newName);
 getContentResolver().insert(Data.CONTENT_URI, myContact);
 Toast.makeText(this, "New Contact: " + newName,
 Toast.LENGTH_SHORT);
 }

We make sure that the addContact() private method is declared with the correct parameters,
as follows:

private void addContact(String newName) {

This is quite different from our queryContact() method, as we are passing the method a string
parameter: a name (in this case, Steve Wozniak). Because the addContact() method does not return
any values, it is still a void method and is declared as such, just like the others.

Now we are ready to write the code that will add a new name to the Contacts database. The first
thing that we need to do is to create a ContentValues object called myContact that defines the
table, column, and data values that needs to be passed into the content provider. Because this
is a new class that we are using in our code, we also need to add an import statement to our list
of import statements (see Figure 10-16) or have Eclipse do that for us once we type in the new
ContentValues() line of code that establishes a new ContentValues() object named myContact.

import android.content.ContentValues;

Figure 10-16. Writing the Java code for our AddContact() method

www.it-ebooks.info

http://www.it-ebooks.info/

302 Chapter 10: Understanding Content providers

After we add the import statement, we can instantiate a new ContentValues object called myContact
via the following declaration:

ContentValues myContact = new ContentValues();

Immediately after that, we need to configure that ContentValues object with a data pair via the put()
method. This loads the ContentValues object with the table (RawContacts), the columns (or fields of
data to operate on) ACCOUNT_NAME and ACCOUNT_TYPE, and the string variable with the name in it,
newName.

myContact.put(RawContacts.ACCOUNT_NAME, newName);
myContact.put(RawContacts.ACCOUNT_TYPE, newName);

Next, we use the getContentResolver() method to insert the myContact ContentValues object into
RawContacts table, which is at the location specified by CONTENT_URI constant we discussed

 = getContentResolver().insert(RawContacts.CONTENT_URI, myContact);

newName variable that we loaded (via myContact.put) into our myContact
 object into the RawContacts.ACCOUNT_NAME database column that we specified in

newName variable passed to our method has been taken care of. After
addUri will hold the location of the newly inserted record. Notice that we declared

Uri object named addUri that appends the RawContacts.CONTENT_URI
onto the addUri and creates a new, more detailed URI object for the next query. (We are basically
setting the location of where to add the new name by using the location of the new name record as
a reference.) Now all we need to do is parse the data in the myContact ContentValues object via the
addUri for the final data-insertion operation. This is done by calling the parseId() method off of the
contentUris Class and putting the value into the long variable rawContactId that we will use in our
next line of code.

 long rawContactId = contentUris.parseId(addUri);

The next thing we want to do to the myContact object is to clear it, or basically turn it into an
empty object with a clean slate. Then, in the next three lines, we use the put() method to load the
myContact ContentValues object with the parsed ContentUris URI ID and table and column values
for the DISPLAY_NAME field that we wish to write, and the newName primary name string variable
data (“Steve Wozniak”), using the following lines of code:

myContact.clear();

myContact.put(Data.RAW_CONTACT_ID, rawContactId);
myContact.put(Data.MIMETYPE, StructuredName.CONTENT_ITEM_TYPE);
myContact.put(StructuredName.DISPLAY_NAME, newName);

www.it-ebooks.info

http://www.it-ebooks.info/

303Chapter 10: Understanding Content providers

Finally, we call our powerhouse getContentResolver() method to go into our content provider and
insert the new name data into the correct table and data column (data field) location. This is done
with the following code:

getContentResolver().insert(data.CONTENT_URI, myContact);

Once our data record is written by the two getContentResolver() operations, we can send a Toast
to our users in the usual way, telling them that the write has been performed.

Toast.makeText(this, "New Contact: " + newName, Toast.LENGTH_SHORT);

Figure 10-16 shows the code as it appears in Eclipse with the import statements and our addContact()
method highlighted.

Now right-click your ContentProviders project folder and select Run As ➤ Android Application. As
you will see when you click the second button, the new name in our code is added to the Contacts
database and a message confirming this is toasted (isn’t that a cool term? Hope you’re not toasted
as well as trying to learn Java programming!) to the screen, as shown in Figure 10-17. Now let’s go
into our Android 4.1 emulator desktop and find the Contact Editor Utility so we can see the name
data that we added.

Figure 10-17. Adding a contact name in the Android 4.1 emulator and seeing it added in the Contacts Editor

www.it-ebooks.info

http://www.it-ebooks.info/

304 Chapter 10: Understanding Content providers

To see the new data for Steve Wozniak, select the Contacts icon, hit the Menu button at the bottom
of the screen (on the phone), and choose the Search function. Then scroll down the list until you see
the Steve Wozniak entry (seen on the right screen in Figure 10-17). Even better, let’s click the Top
Query Button, once you’ve added Steve Wozniak, and see his name pop up in the end of the query
code (that is Toasted to the screen) that you wrote earlier in this chapter! Pretty Cool.

Summary
This is probably one of the most complicated chapters in this book because it combines the following:

Knowledge of SQLite database design, functionality, and access—in and of itself 	
a topic that can easily span several books, and usually does

The Android concept of content providers and setting up their permissions tags 	
within the AndroidManifest.xml file

The Java programming language iterative (looping) constructs that are 	
necessary to access and manipulate these database structures

How to read and write database records for the Android contacts database	

included in the Android OS.

Most of the content providers that you will be working with in Android are already a part of the OS.
They provide access to the common functions that users want in their phones, including contacts,
music (audio), entertainment (video), and so on. The built-in content providers were listed in this
chapter.

We also covered the concept of deprecation because after Android 2.1, the internal content provider
database structures were enhanced, making pre-2.1 OS tables deprecated, although still usable,
although it’s not recommended that you do. Beware of code samples on the Internet using the older
deprecated database table structures, as they will not work for anything other than Android 1.5, 1.6,
and 2.0 support.

The primary Java classes in Android that handle content providers are (surprise!) the
ContentProvider class, the ContentResolver class, and the ContentValues class. Each plays
a critical role in defining (ContentProvider), accessing (ContentResolver), and addressing
(ContentValues) a SQLite database structure. If you want to do really heavy SQL database
programming in Android learn to use the SQLite database class libraries in Android, which are simply
beyond the scope of this book, and probably have a book or two out there of their own!

Although there are other ways to pull in data to your Android application, such as off your SD card
or off a remote server, the SQLite DBMS is the most robust approach and the only one that can be
accessed between applications. Furthermore, this is the most useful content provider type to learn,
because all of Android’s user data is stored and accessed via these SQLite databases. Unfortunately,
it’s also the most difficult way to implement content providers (database access) in the Android OS.

www.it-ebooks.info

http://www.it-ebooks.info/

305

Chapter 11
Understanding Intents and
Intent Filters

This chapter will delve into intents, which are messaging objects that carry communications between
the major components of your application—your activities, services, and broadcast receivers, which
handle Android messaging. We have seen that Android development is highly modularized, and
intents provide a way to wire these modules together to form a cohesive yet flexible application with
secure, fluid communication among all of its components.

This is a fairly complex and important topic, and we are going to cover intents as they pertain to
activities, services, and broadcast providers in detail. In fact, by the time we get to the end of the
chapter, we will have an application that has four different XML files and four different Java files open
in the Eclipse IDE. Lucky we are close to the end of the book because for a book on Android for
absolute beginners, this chapter is going to seem a bit advanced. We’ll chalk it up to a rapid learning
process and dive right in.

What Is an Intent?
An intent is represented by the android.content.Intent class. It is in the content package because
intents can be used to quickly access content providers, as we will see in this chapter. But its use
is much broader than that; in fact, the Android Developer Reference says, “An intent is an abstract
description of an operation to be performed,” so intents can be used to quickly accomplish many
tasks that would otherwise take more programming code. An intent is sort of a programming
shortcut that’s built into the Android OS and programming environment.

An Intent object is basically a passive data object (a bundle of instructions, if you will) that both
provides a description of some sort of standard operating system or developer created “action”
that needs to be performed and passes the data which that action needs to operate on to the code
receiving the intent.

www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 11: Understanding Intents and Intent Filters

In addition to a specified action, the Intent object also can contain relevant data needed to complete
that action, as well as data type specifications, constants, flags, and even extra data related to the
data needed by the action.

Because intents provide a detailed data and process communication structure among Android
application components, they also can be rather complex data structures (objects). We’ll see the
various parts of an intent’s structure in the next section.

There are three types of Intent objects that can be used inside the Android OS to communicate
with activities, services, and broadcast receivers. In fact, there is one intent type for each of these.
None of these types of Intent objects are allowed to intersect with (i.e., interfere with, collide with,
or mistakenly be used with or by) any of the other types of Intent objects. For this reason, we will
cover each type of Intent object separately, so we can see how intent-based communication with

connected as modules of each other, if needed.

Intent object-based messages can contain up to seven different kinds of informational parts, as
shown in Figure 11-1:

	Component name: The name of the class that the intent and its action are
targeting, specified by using the package name and the class name.

	Action: A predefined type of action that is to be performed, such as ACTION_
DIAL to initiate a phone dialing sequence or ACTION_VIEW to view records in a
database.

	Data: The actual data to be acted on, such as the address of the database
records to view, or the phone number to dial.

	Category: Android has predefined intents that are part of the OS that are
divided into various types or categories for easy access and use. The category
name tells what area of the OS the action that follows it is going to affect. For
instance, CATEGORY_HOME deals with the Android Home screen. An ACTION_MAIN
following a CATEGORY_HOME would cause the Home screen to be launched in the
smartphone, tablet, e-reader, or iTV.

	Type: This attribute specifies the type of the data using a MIME format. It’s often left
out, as Android is usually able to infer the data type from analyzing the data itself.

	Flags: This allows on/off flags to be sent with the intent. Flags are not used for
typical intents, but allow more complicated intents to be crafted if needed by
advanced developers.

www.it-ebooks.info

http://www.it-ebooks.info/

307CHAPTER 11: Understanding Intents and Intent Filters

	Extras: This parameter allows any extra information that is not covered in the
previous fields to be included in the intent. This allows very complex intents to
be created.

Table 11-1. Examples of Action Constants and Their Primary Functions

Action constant Target activity Function

ACTION_DIAL Activity Displays the phone dialer

ACTION_CALL Activity Initiates a phone call

ACTION_EDIT Activity Display data for user to edit

ACTION_MAIN Activity Start up an initial task activity

ACTION_BATTERY_LOW Broadcast Receiver Battery low warning message

ACTION_HEADSET_PLUG Broadcast Receiver Headset plug/remove message

ACTION_SCREEN_ON Broadcast Receiver The screen turned on message

ACTION_TIMEZONE_CHANGED Broadcast Receiver Time zone has changed

Figure 11-1. The anatomy of an Intent object

With these seven different types of information, the messaging construct that an Intent object
communicates can become quite an intricate data structure, if you need it to be, it can also be quite
simple, depending on the application use that is involved.

The first thing an Intent object usually specifies is the name of the application component you are
targeting (usually a class you create); this is specified via the package and class name, like so:

ComponentName(string package, string class)

The component name is optional. If it is not specified, the Android OS will utilize all of the other
information contained within the Intent object to infer what component of the application or Android
OS the Intent object should be passed to for further processing. It is safer to always specify this
information. On the other hand, intents are intended to be used as programming shortcuts, and for
many standard or common instances, Android is designed to properly infer how to process them.

The most important part of the Intent object is the action specification. The action defines the type
of operation that the intent is requesting to be performed. Some of the common action constants are
listed in Table 11-1, along with their primary functions, so you can get an idea of where these intents
might be utilized in the Android OS.

www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 11: Understanding Intents and Intent Filters

It is important to note that in many cases the action constant that is specified determines the type
and structure of the data of the Intent object. The data parameter is as important to the overall
result of the intent resolution as the specified action to be performed. Without providing the data
for the action to operate on, the action is as useless as the data would be without any action to be
performed on it!

The ACTION_DIAL action constant is a good example; it targets an activity and displays the
smartphone dialing utility with the phone number (the data passed to it) to be dialed. The data is the
phone number the user entered into the user interface, and because the action constant is ACTION_
DIAL, Android can infer that the data passed to it is the phone number to be dialed.

Thus, the next most important part of the Intent object is the data component, which contains the
data that is to be operated on. This is usually done via a URI object that contains information about

ACTION_VIEW or ACTION_EDIT intent action. So, to

The type part of the Intent object allows you to specify an explicit MIME data definition or data type
that, if present, overrides any inference of the data type by the Android OS. You may already be
familiar with the MIME data type declarations, as they are quite common on web servers and other
types of data servers.

MIME TYPES

MIME stands for “Multipurpose Internet Mail Extensions” and was originally designed for e-mail servers to define their
support for different types of data. It has since been extended to other server definitions of supported data and content
types, and to communication protocols (such as HTTP) data type definitions, and now to Android OS to define content data
types as well. Suffice it to say that MIME has become a standard for defining content data types in a myriad of computing
environments. Examples of MIME definition include the following:

Content-Type: text/plain	

Content-Type: image/jpeg	

Content-Type: audio/mp3	

Content-Type: video/mp4	

	Content-Type: application/msword

www.it-ebooks.info

http://www.it-ebooks.info/

309CHAPTER 11: Understanding Intents and Intent Filters

Another important parameter of an Intent object is the category, which is meant to give additional or
more fine-tuned information about the action that is specified to execute. This is more useful with
some actions than with others.

A good example of how categories help define what to do with a given action is launching the home
screen on a user’s Android phone via an Intent object. You use the Action constant ACTION_MAIN
with a category constant CATEGORY_HOME and voila! Android launches the phone’s Home screen and
shows it on the display.

Finally, the extras parameter allows additional data fields to be passed with the Intent object to the
activity, service, or broadcast receiver. This parameter uses a Bundle object to pass a collection of
data objects.

This is a slick way to allow you to piggyback any additional data or more complex data structure you
wish to pass along with the Action request/message.

Intent Resolution: Implicit Intents and Explicit Intents
Intents, like events, need to be resolved so that they can be processed properly. Resolution in this
case means ascertaining the appropriate component to handle the intent and its data structure.

There are two broad categories of intents—explicit intents and implicit intents. We will look at explicit
intent resolution first, as it is much more straightforward. Then, we’ll cover implicit Intents and see
how they need to be filtered so that Android knows how to handle them properly.

Explicit Intents
Explicit intents use the component portion of the Intent object via the ComponentName data field.
You’ll generally use these when working with applications you have developed, as you’ll know which
packages and classes are appropriate for the Intent object to send an action message and data to
be acted on. Because the component is specified explicitly, this type of intent is also safer, as there
is zero room for error in interpretation. Best programming practices dictate that you thoroughly
document your code and thereby give other programmers using your intent code the proper
component name information. However in the real world, this best case does not always happen,
and thus Android also has implicit intents and intent filters to handle other scenarios.

Other developers may not know what components to explicitly declare when working with your
application, and thus explicit intents are a better fit for private interapplication communication. In
fact, developing your application so that other developers can use the intents is what implicit intents
and intent filters are all about. As noted earlier, if there is a component name specified, it will override
all of the other parts of the Intent object as far as determining which code will handle the intent
resolution.

There are two ways to specify a component. One way is via the setComponent() method, which uses
the ComponentName object:

.setComponent(ComponentName);

www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 11: Understanding Intents and Intent Filters

The other way is using the setClass(Context, Class) method to provide the exact class to use to
process the intent. Sometimes this is the only information in the intent, especially if the desired result
from using the intent is simply to launch parallel activities that are internal to the application when
they are needed by the user.

Implicit Intents
Implicit intents are those that don’t specify the component within the intent object. This means that
Android has to infer from the other parameters in the intent object what code it needs to pass the
intent message to for successful processing.

Android does this inference based on a comparison of the various actions, data, and categories

AndroidManifest.xml file.

AndroidManifest.xml using the <intent-filter> tag, and they filter

Intent filters provide a description of intent object structures that need to be matched as well as
a priority attribute to be used if more than one match is encountered. If no action filters are
specified, the action parameter of the intent will not be tested at all, moving the testing on to the
data parameter of the intent. If no data filters are specified, then only intents that contain no data
will be matched. Here is an example intent-filter definition from an AndroidManifest.xml file that
specifies that video MPEG4 and audio MPEG3 can be retrieved from the internet via HTTP:

<intent-filter>
<data android:mimeType="video/mp4" android:scheme="http" />
<data android:mimeType="audio/mp3" android:scheme="http" />
</intent-filter>

For Intent filtering based on data characteristics, the data parameter gets broken down into four
subcategories:

	Data type: This is the MIME data type, for instance, image/jpeg or audio/mp3

	Data scheme: This is written as scheme://host:port/path

	Data authority: This is the server host and the server port (see the data scheme
format) specified together.

	Data path: A data path is an address to the location of the data, for instance,
http://www.apress.com/datafolder/file1.jpg

www.it-ebooks.info

http://www.apress.com/datafolder/file1.jpg
http://www.it-ebooks.info/

311CHAPTER 11: Understanding Intents and Intent Filters

Any of these you specify will be matched precisely to the content of the intent itself, for example:

content://com.apress.project:300/datafolder/files/file1

In this example, the scheme is content, the host is com.apress.project, the port is 300, and the path
is datafolder/files/file1.

Because we can specify intents explicitly, we can use intent objects productively via the methodologies
outlined in the rest of this chapter without having to learn the convoluted hierarchy of how to match
unspecified intents. If you wish to delve into the complexities of how to set up levels of intent filters
for implicit intent matching, visit the Android developer site and get ready to wrap your mind around
some intense global logic structures.

Using Intents with Activities
Enough theory, let’s write an Android application that uses intents to switch back and forth between
two different activities—an analog clock activity and a digital clock activity—so you can see how
intents are sent back and forth between more than one Activity class.

1. First, let’s close our ContentProviders project folder (via a right-click and
Close Project) and create a new IntentFilters Android project with the
following parameters, as shown in Figure 11-2:

	 Project name: IntentFilters

	 Application name: IntentFilters

	 Package name: seventh.example.intentfilters

	 Create custom launcher icon: Selected (checked)

	 Build target: Android 4.1 (API 16)

	 Min SDK version: Android 2.2 (API 8)

www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 11: Understanding Intents and Intent Filters

2. Now we are going to create a second Activity class, so we can switch back
and forth between the two activities using an intent. To do this, we need to
right-click on the IntentFilters folder, and select New ➤ Class, which opens
a dialog (Figure 11-3) that will create a new Java activity class in the same
folder as the MainActivity.java class our New Android Application Project
series of dialogs just created.

3. If you right-clicked on the IntentFilters folder to do the New ➤ Class
operation, the dialog will already have the first field filled out, with the Source
folder field set to IntentFilters/src. In the next field, you can either type in
the seventh.example.intentfilters package name we created in our New
Android Application Project dialog, or you can click the Browse button to
the right of the field, and select this package from the bottom of the list.

Figure 11-2. Creating our IntentFilters project in Eclipse New Android Application dialog series

www.it-ebooks.info

http://www.it-ebooks.info/

313CHAPTER 11: Understanding Intents and Intent Filters

4. Next we need to fill out the Name field, which will name our class. Let’s use
AlternateActivity as it’s the alternate activity to the MainActivity that we’ll
use in this exercise.

5. Leave the Modifiers as set. Because we are creating an Activity class,
we need to extend the superclass android.app.Activity. This is the full
pathname to the Activity class, which is part of the android.app package in
Android OS.

Now let’s create our user interface for our first activity, which we will leave in its default activity_main.xml
file container (shown in Figure 11-4 on page 315).

1. Let’s expand our TextView tag with some new attributes:

a. Create a main_activity_text in your strings.xml file, which text value is set to: “You Are
Currently in the MainActivity”. Or you can edit the hello world string tag to serve this
purpose, so that you don’t have to delete it, as it will be unused in this exercise.

b. Use the android:text attribute to set the pointer to the strings.xml file value via the
“@string/main_activity_button” setting.

Figure 11-3. Creating new Java AlternateActivity class by right-click on IntentFilters project folder

www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 11: Understanding Intents and Intent Filters

c. Let’s use the android:textSize attribute to increase the text size to 18 device-
independent pixels, so it’s large and readable. You can do this via the Properties Tab
in Eclipse to the right of the bold TextSize parameter.

d. Finally, let’s use the android:centerHorizontal="true" attribute to center the text
heading at the top of the screen. Note that the GLE and default XML TextView
settings have done this for you, all you have to do is delete the android:centerVertical
parameter to place the TextView at the top of the UI screen where it belongs.

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:centerHorizontal="true"
 android:text="@string/main_activity_text"
 android:textSize="18dp"
 tools:context=".MainActivity" />

2. Next, let’s add a Button tag using the GLE (drag and drop it centered under
the TextView by 30dp) and then make sure it’s XML attributes are set correctly:

a. Create a main_activity_button in your strings.xml file, and set it’s text value to: “Go To
the Alternate Activity to use a Digital Clock” so we can point our text attribute to
“@string/main_activity_button”

b. Set the layout_below attribute to “@+id/textView1” so we have our button defined as
being underneath our TextView in our RelativeLayout container.

c. Now let’s make sure to center our button using the android:centerHorizontal="true".

d. Finally, we’ll space our UI button down a little bit with the familiar android:layout_
marginTop="30dp", and we are done creating the button UI attributes as shown below.

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/textView1"
 android:centerHorizontal="true"
 android:layout_marginTop="30dp"
 android:text="@string/main_activity_button" />

3. Now we’ll add an AnalogClock tag, so we can create a cool watch. Use the
Graphical Layout Editor tab at the bottom of the Eclipse editor (circled in
Figure 11-4) and drag the AnalogClock View element icon out of the Views
List on the left, and drop and center it 30dp underneath the Button element
in the UI layout view.

4. Then, either go into the Properties tab at the bottom of Eclipse, find the
Misc section, and add in Layout centerHorizontal and Layout marginTop
values of true and 30dp, respectively, or click the activity_main.xml tab at the
bottom of the editor, and add in these tags yourself by hand.

www.it-ebooks.info

http://www.it-ebooks.info/

315CHAPTER 11: Understanding Intents and Intent Filters

Figure 11-4. Using the Eclipse Graphical Layout Editor to add and configure AnalogClock

Note If Eclipse is not showing the Properties tab at the bottom, simply go into the Window menu
and select Show View ➤ Other . . . and select Properties and then OK.

5. Next, let’s use Windows Explorer to copy the image1.png file from our earlier
UI_Design/res/drawable-xhdpi folder into the IntentFilters/res/drawable-xhdpi
folder, then right-click on the IntentFilters folder and use the Refresh
option so that Android can see this image file inside our project.

6. Go into the Properties tab again and find the image1 file using the
Background option, then click on the search ellipses . . . to open a dialog
where you can select image1.png in the drawable folder to use as a
background. Here’s the final AnalogClock tag:

<AnalogClock
 android:id="@+id/analogClock1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/button1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="30dip"
 android:background="@drawable/image1" />

www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 11: Understanding Intents and Intent Filters

And here is the final code, which is also shown in Figure 11-5 for context:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:centerHorizontal="true"
 android:text="@string/main_activity_text"
 android:textSize="18dp"
 tools:context=".MainActivity" />
 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/textView1"
 android:centerHorizontal="true"
 android:layout_marginTop="30dp"
 android:text="@string/main_activity_button" />
 <AnalogClock
 android:id="@+id/analogClock1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/button1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="30dip"
 android:background="@drawable/image1" />
</RelativeLayout>

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

317CHAPTER 11: Understanding Intents and Intent Filters

Writing a Digital Clock Alternate Activity
Now let’s copy the user interface we have just developed in our activity_main.xml to use for our
second activity, for which we’ve already created an AlternateActivity.java class.

1. The easiest way to do this is to right-click on the activity_main.xml file
under the /res/layout folder and select Copy from the pop-up context
menu, then right-click on the /res/layout folder in the Package Explorer
pane (right above the file name) and select Paste, which will paste a copy of
activity_main.xml right alongside activity_main.xml in the same folder. When
you do this you will get a Name Conflict dialog, like the one in Figure 11-6.

2. Eclipse sees the duplicate file names and automatically provides a
simple dialog box that allows you to change the name. Change it to
activity_alternate.xml and click OK.

Figure 11-5. Adding user interface elements to our activity_main.xml file and image1 file to drawable-xhdpi folder

www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 11: Understanding Intents and Intent Filters

3. We are ready to right-click on the new activity_alternate.xml and select
Open, or select the file and hit the F3 key to open the copied file in its own
editor pane, so that we can change some of the key tag attributes and quickly
craft a user interface for our second (digital clock) activity. Do this now.

4. Edit the AnalogClock tag as follows:

a. Change it to a DigitalClock tag.

b. Remove the background image reference to image1.png.

c. Change the id to digitalClock1.

d. Add a textSize attribute of 40dp.

e. Add a textColor attribute of #7AC to add some nice blue coloring. Note that #7AC is
the same as (shorthand for) #77AACC.

f. Finally, add an android:typeface="monospace" attribute for readability, and we’re
ready to change our TextView and Button UI objects.

<DigitalClock
 android:id="@+id/digitalClock1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/button1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="30dip"
 android:textSize="40dp"
 android:textColor="#7AC"
 android:typeface="monospace"/>

5. Change the button text to “@string/alt_activity_button” and leave the ID
at button1. Why? Because these two different XML files are going to be
called by two different Activity classes, and thus the ID does not conflict.
If one Activity class referenced both these XML files, we might have a

Figure 11-6. Specifying activity_alternate.xml as the new copy name for activity_main.xml

www.it-ebooks.info

http://www.it-ebooks.info/

319CHAPTER 11: Understanding Intents and Intent Filters

naming conflict. Be sure and add the <string> tag to strings.xml that adds
the alt_activity_button name and value of “Go to the MainActivity to use an
AnalogClock” as well.

<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/textView1"
 android:centerHorizontal="true"
 android:layout_marginTop="30dp"
 android:text="@string/alt_activity_button" />

6. Finally, we change the TextView object text to read “@string/alt_activity_text”
and change the android:textSize to the 17dp value so the text fits on a
single line at the top of the screen.

<TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:centerHorizontal="true"
 android:text="@string/alt_activity_text"
 android:textSize="17dp"
 tools:context=".AlternateActivity" />

When you’re done, the whole UI layout should look like this (also shown in Figure 11-7):

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:centerHorizontal="true"
 android:text="@string/alt_activity_text"
 android:textSize="17dp"
 tools:context=".AlternateActivity" />

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/textView1"
 android:centerHorizontal="true"
 android:layout_marginTop="30dp"
 android:text="@string/alt_activity_button" />

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools
http://www.it-ebooks.info/

320 CHAPTER 11: Understanding Intents and Intent Filters

 <DigitalClock
 android:id="@+id/digitalClock1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/button1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="30dip" />
</RelativeLayout>

Wiring Up the Application
While we’re working with XML files, let’s add an activity tag in our AndroidManifest.xml file so that
our second activity can be recognized by Android, before finishing off the configuration.

Right-click on the AndroidManifest.xml file name under your IntentFilters folder (at the bottom of the
list), and select Open, or simply select the file name and hit F3. Add a second activity tag after the
first tag (which our New Android Application Project series of dialogs has already created) that points
to the new AlternateActivity.java class that we created earlier (see Figure 11-8). Here is the code:

<activity
 android:name=".AlternateActivity"
 android:label="@string/title_activity_alternate" >
</activity>

Figure 11-7. XML mark-up for activity_alternate.xml our second user interface activity shown in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

321CHAPTER 11: Understanding Intents and Intent Filters

Figure 11-8. Adding the .AlternateActivity tag to our IntentFilters Project’s AndroidManifest.xml file

Make sure to add the <string> tag to the strings.xml file by copying the MainActivity string tag and
changing the “Main” to “Alternate” (and “main” to “alternate”).

Now let’s make sure both Activities have user interfaces. Thanks to our handy New Android
Application Project dialog, our MainActivity class is ready and pointing to the activity_main.xml
file so that the MainActivity side of the equation is already taken care of for us. So now, all we have
to worry about is the AlternateActivity class.

Copy the three import statements and the onCreate() method over to the AlternateActivity.java
class and then change the R.layout specification to point to the activity_alternate XML user
interface specification. Now we’ve implemented our user interface logic for each of our two Activity
classes as follows:

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.alternate_activity);
 }

Sending Intents
Now we need to add in our Button object and Intent object code to the onClick() event handler in
each activity so each can send an intent to the other activity, allowing us to switch between the two
activities using the button.

So let’s get started with the primary MainActivity.java activity class first, and add in our familiar
Button object instantiation and an onClick() event handler that will contain the code that creates our
Intent object. Remember to also add in (or have Eclipse add in for you, using the hover-over-redline
method we learned about earlier) the import statements for the android.view.View and
android.widget.Button packages, as well as a new import we haven’t used before called
android.contact.Intent, which defines our Intent object class.

www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 11: Understanding Intents and Intent Filters

Because we’ve already covered adding a button and attaching it to an onClick() event handler
routine, we’ll get right into the two lines of code that create our Intent object and send it over to
the second alternate activity. Here is the code, which you’ll also see in Figure 11-9. The screenshot
shows what your Eclipse editor pane for MainActivity.java will look like when we are finished.

 Button activity1 = (Button) findViewById(R.id.button1);
 activity1.setOnClickListener(new View.OnClickListener() {
 public void onClick(View arg0) {
 Intent myIntent =
 new Intent(arg0.getContext(), AlternateActivity.class);
 startActivityForResult(myIntent, 0);
 }
 });

Figure 11-9. Adding the MainActivity Java code for the UI button, event listener, and Intent object

To create an Intent object, we use the now familiar structure where we declare the object type
(Intent) and our name for it (myIntent). We set it equal to a new Intent object using the new keyword,
along with a call to the Intent class’s constructor. The constructor takes the context this intent is
created in (in this case, from a button obtained from the View via a arg0.getContext() method call)
and the activity class (AlternateActivity.class) into which we want to pass our Intent object.

We then use the startActivityForResult() method (part of the android.app.Activity class we
imported) to pass the intent object we just created, myIntent, and a parameter of zero; this is
what we are sending to the other activity to be acted on. This would typically consist of data that
your application wants to pass from one activity class to another via the Intent object for further
processing. In this case, we are simply calling (switching to) the other user interface activity.

Now let’s look at the code in our AlternateActivity class and see how the second activity talks
back to the first activity. We will skip over the Button instantiation and onClick() event handling
explanations, and get right into the intent declaration and the Java code that returns a result to the
calling activity class via yet another Intent object. Here’s the code (also shown in Figure 11-10).

z
www.it-ebooks.info

http://www.it-ebooks.info/

323CHAPTER 11: Understanding Intents and Intent Filters

Figure 11-10. Java Code for the AlternateActivity, event listener, and intent object

 Button activity2 = (Button) findViewById(R.id.button1);
 activity2.setOnClickListener(new View.OnClickListener() {
 public void onClick(View arg0) {
 Intent replyIntent = new Intent();
 setResult(RESULT_OK, replyIntent);
 finish();
 }
 });

In this activity class, in the onClick() listener we create a new (empty) intent object called
replyIntent, then load it with the setResult() method, which loads a constant called RESULT_OK.
When we have finished handling the intent (in this case by loading a new intent with the reply data),
we call the finish() method to send the intent back, after the button in the second activity is clicked
on to send us back to the first activity.

Now let’s right-click on our IntentFilters project folder in the Package Explorer pane of Eclipse
and then Run As ➤ Android Application, so we can see that we can now switch back and forth
between the two activities that contain the two different time utilities we created in one application.
As you can see in Figure 11-11, we can switch between the two activities by clicking on the
respective buttons, and we can do this as many times as we like, and the application performs as
expected and does not crash. That is important, by the way, that the app does not crash under
repeated use.

www.it-ebooks.info

http://www.it-ebooks.info/

324 CHAPTER 11: Understanding Intents and Intent Filters

Figure 11-11. Running our app in the Android 4.1 emulator and switching back and forth between activities

Next we will use an intent object to call a service, the MediaPlayer, to play some audio in the
background, and allow us to start the audio and stop the audio.

To do this we first must learn what services are, and how they can help us do things in the
background without affecting our application’s user interface functionality. We will then get into an
example that uses intents with both services and activities.

Android Services: Data Processing in Its Own Class
Android has an entire Service class dedicated to enabling developers to create services that run
apart from the main user interface program logic. These services can either run in a separate
process (known as a thread in Java programming, as well as in other programming languages) or
in the same process as the user interface activities. With new Android devices featuring multiple
processors, the preference would be to run processing-intensive services (such as 3D rendering via
OpenGL ES or audio or video playback via the MediaPlayer class) in their own thread.

A thread is an area of the operating system’s memory where a program function has its own
resources and can run in parallel with other applications (termed: multitasking) or in parallel with
other application components or processor-intensive functions. For instance, a video player can run
in a different thread from the rest of the application, so that it doesn’t hog all of the main application
thread resources. If an Android device has a dual-core or quad-core CPU, it is also conceivable that
a processing-intensive thread could even get its own processor allocated to it. Pretty cool!

www.it-ebooks.info

http://www.it-ebooks.info/

325CHAPTER 11: Understanding Intents and Intent Filters

Threads and Processes were originally devised for multi-tasking operating systems such as Mac,
Linux, and Windows, so that if a program or task crashed, it would not bring down the entire
operating system. Instead, just that thread or process could crash or lock-up, and the others that
were running wouldn’t be affected adversely. Because Android OS runs on top of a full version of the
Linux OS kernel, it simply passes that capability through (up) to the Android OS.

A service is a type of Android application component that needs to run asynchronously (not in step
with the usual flow of the user interface). For example, if you have some processing that takes a
bit longer than the user is willing to wait for, you can set off that processing task asynchronously
in the background, while the main program continues to respond to the user. When the processing
has finished, the results can be delivered to the main program and then dealt with appropriately. A
service can also be used by other Android applications, so it is more extensible (widely usable) than
an activity.

To create your own service class to offload programming tasks like calculating things or playing
media such as audio or video in real-time, you need to subclass the Service class and implement
at least its onCreate(), onStart(), and onDestroy() methods with your own custom programming
logic. You also must declare the Service class in your AndroidManifest.xml file using the <service>
tag, all of which we’ll get into in detail a bit later on.

Using Intents with Services
To see how to control a service class via intent objects, we will need to add some user interface
elements to our IntentFilters project’s MainActivity activity, namely two button objects that will start
and stop our service. In this case, the service is the Android MediaPlayer, which needs to run in the
background, independently of our user interface elements.

1. First, let’s add a Button tag to our activity_main.xml file by using the
Graphical Layout Editor to drag out a new button and center it horizontally
underneath (android:layout_centerHorizontal tag) the AnalogClock tag by a
margin of 20dp.

2. Change the android:text to “@string/start_media_button” and add a
<string> tag to your strings.xml file setting that variable value to: “Start the
Media Player Service” and leave the other attributes in the tag the same, as
again the GLE has done all of the heavy lifting for you. Your tag should read
as follows:

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="analogClock1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="20dp"
 android:text="@string/start_media_button" />

3. Next, do the exact same thing with a third button UI element (button3) that
we will use to stop the media player.

www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 11: Understanding Intents and Intent Filters

Figure 11-12. Designing a media player service user interface in the Eclipse Graphical Layout Editor

4. Change the android:text to read “@string/stop_media_button” and add a
<string> tag to the strings.xml file that sets this variable to the value: “Stop
the Media Player Service” so that we now have a stop button and a start
button. Figure 11-12 shows both buttons in place in the Graphical Layout
tab of Eclipse and Figure 11-13 shows the code in the XML Editor tab.

<Button
 android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="button2"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="20dp"
 android:text="@string/stop_media_button" />

www.it-ebooks.info

http://www.it-ebooks.info/

327CHAPTER 11: Understanding Intents and Intent Filters

Figure 11-13. Adding the start and stop buttons for our media player service in activity_main.xml

5. Now let’s change the AnalogClock tag attribute android:layout_marginTop
to use 20dp rather than 30dp. Make the same modification for the first button
(button1) so that all of our UI elements use a marginTop setting of 20dp.

<AnalogClock
 android:id="@+id/analogClock1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/button1"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="20dip"
 android:background="@drawable/image1" />

6. Click the Graphical Layout tab at the bottom of the activity_main.xml pane
to make sure the user interface layout looks good, and then check Figure 11-13
to see that your XML looks right.

www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 11: Understanding Intents and Intent Filters

Next we need to let our Android application know that we are going to be calling a service, and this
is done via the AndroidManifest.xml file. We will edit that file next to add the service tag that points
to our MediaPlayerService class, which we are going to code next. We will add this service tag right
after the second activity tag that we added in the previous example (see Figure 11-14 for context).
This is how the service tag is structured:

<service android:enabled="true" android:name=".MediaPlayerService" />

Figure 11-14. Adding a .MediaPlayerService <Service> Tag to the AndroidManifest.xml file in Eclipse

The first attribute of the service tag android:enabled indicates that the service is enabled for use. If
you set this attribute to false, the service is still declared to Android for the application and can later
be enabled via Java code. As we have seen, everything that can be done in XML can also be later
accessed and changed inside of our Java code.

The second attribute, android:name , specifies the name of the service class that we will code. We
are going to name it MediaPlayerService.java so we specify that in XML with a leading period, as
.MediaPlayerService. Now we are ready to start coding the service that will play media files without
interfering with the user interface code in our activity class.

If you haven’t done so already, be sure to add the <string> tags for the Start Button and Stop Button
labels as shown in Figure 11-15. We now have ten <string> tag entries in our strings.xml file and all
of the UI and app labeling of activities and UI elements can be modified from one central location.
The best part of all is that we have a “clean” IDE where our XML code is concerned, as Android does
not like “hard coded” text values, and flags them in the IDE UI, which can be disconcerting, so we
are doing things using the proper work process here for our string values.

www.it-ebooks.info

http://www.it-ebooks.info/

329CHAPTER 11: Understanding Intents and Intent Filters

Now that we’ve added the XML markup, let’s create the MediaPlayerService.java class,
extending the Android Service class to create our own custom service class that we’ll call from our
IntentFilters Project’s MainActivity.java Activity class.

Creating a Service
To do this, we will use the same work process as before:

1. Right-click on your IntentFilters project folder in the Eclipse Package Explorer
pane on the left and select New ➤ Class.

2. Fill out the New Java Class dialog as follows:

	 Source folder: IntentFilters/src Default entry, as auto-specified by Eclipse

	 Package: seventh.example.intentfilters. Click Browse button and select this from
the bottom of the list

	 Name: MediaPlayerService

	 Modifiers: public

	 Superclass: android.app.Service

3. When everything is filled out, select Finish.

The completed dialog is shown in Figure 11-16. It will create an empty class where we can put our
media player logic for creating, starting, and stopping the media player.

Figure 11-15. Adding the two new button labels to the strings.xml file in the XML Editor

www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 11: Understanding Intents and Intent Filters

Here (and in Figure 11-17) is the empty class that the New Java Class dialog created for us,
complete with the import statements that let us use the Service class, the Intent class, and the
IBinder interface. We won’t actually be using the IBinder interface in this example, but will leave it
in the code. This won’t affect how the app runs because it is used by a null method, onBind(). We
need to keep this method here because Android expects it to be implemented when we extend the
Service class, so we’ll just leave it as is.

Figure 11-16. Creating the MediaPlayerService.java class via the New Java Class dialog in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

331CHAPTER 11: Understanding Intents and Intent Filters

package seventh.example.intentfilters;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

public class MediaPlayerService extends Service {
 @Override
 public IBinder onBind(Intent arg0) {
 // TODO Auto-generated method stub
 return null;
 }
}

Figure 11-17. Eclipse-created MediaPlayerService base service class created by New ➤ Class

Note Binding is a concept in services where your activity can talk with the Service class while it is
running and more than one time; but our example simply needs to start and stop the service, so the
complexity of binding is not needed.

Here is the code that lets our MediaPlayerService class do things. I’ll show you each of the sections
in turn as I describe what they do, so you can type them in as we go:

package seventh.example.intentfilters;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.media.MediaPlayer;

public class MediaPlayerService extends Service {
 MediaPlayer myMediaPlayer;

www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 11: Understanding Intents and Intent Filters

 @Override
 public IBinder onBind(Intent arg0) {
 // TODO Auto-generated method stub
 return null;
 }

 @Override
 public void onCreate() {
 myMediaPlayer = MediaPlayer.create(this, R.raw.mindtaffy);
 myMediaPlayer.setLooping(true);
 }

 @Override
 public void onStart(Intent intent, int startid) {
 myMediaPlayer.start();
 }

 @Override
 public void onDestroy() {
 myMediaPlayer.stop();
 }

 11-18.

Figure 11-18. Adding our MediaPlayerService Class onCreate(), onStart(), and onStop() methods

www.it-ebooks.info

http://www.it-ebooks.info/

333CHAPTER 11: Understanding Intents and Intent Filters

The first code structure we always add to a new class is the onCreate() method, which tells the
class what to do to set itself up when it is called the first time (i.e., created). This is where you would
put initialization variables, for instance, if you were coding a game level. Then we’ll add an onStart()
method and finally an onDestroy() method. Here’s a simple diagram of what happens when the
startService(MediaPlayer) code we’ll write later is called:

startService.Media.PlayerObject > onCreate() (Initialize) > onStart() (Do) > onDestroy (Clean Up)

We will use the onCreate() method to instantiate and configure our MediaPlayer object, and load
it with our audio file. Because the audio file is an MP3 file and already optimized for compression,
we will put it in the /res/raw folder. Files in the /raw folder are left alone by the Android app
compression process and are simply put into the .apk file as is. As you can see in Figure 11-18
Eclipse will tell you if it cannot find the /raw/mindtaffy.m4a file referenced in your code. We’ll add that
file now before explaining the code in detail.

1. Let’s create the IntentFilters/res/raw folder to hold the mindtaffy.m4a file
that we will call in our MediaPlayerService class. You can either create the
new /raw folder under the /IntentFilters/res folder using your operating
system’s file manager, or you can right-click on the /res folder in the Eclipse
Package Explorer pane and select New ➤ Folder and enter raw in the
Folder name: field.

2. Copy mindtaffy.m4a into the new /raw folder

3. Right-click on the IntentFilters folder and select Refresh and, if necessary,
Validate to remove any error flags you might get in Eclipse. Usually if
Refresh does not make something visible to Android and get rid of error
flags in Eclipse, the Validate procedure will. If it doesn’t, you may have a
problem and may need to examine your overall application structure.

Implementing Our MediaPlayer Functions
Now it’s time to go into the code so you can add the media player functionality to your own app:

1. First, at the top of the MediaPlayerService class, declare a public global
variable called myMediaPlayer of object type MediaPlayer. This will be
accessed in one way or another by each of the methods that we’ll be coding,
so we declare it at the top of the class to make it visible to the entire class full
of methods.

MediaPlayer myMediaPlayer;

2. In the onCreate() code block, let’s set the myMediaPlayer object to contain
the results of a create() method call with the mindtaffy.m4a file passed as
a parameter using the R.raw.mindtaffy reference. The create() method call
creates an instance of the media player and loads it with the audio file that
we are going to play.

www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 11: Understanding Intents and Intent Filters

3. Next we call the setLooping() method on the myMediaPlayer object and set
a true parameter so that the audio file loops while we are testing the rest of
the code.

@Override
public void onCreate() {
 myMediaPlayer = MediaPlayer.create(this, R.raw.mindtaffy);
 myMediaPlayer.setLooping(true);
}

4. Now that our myMediaPlayer object has been declared, loaded with MPEG4
audio data, and set to loop when started, we can trigger it with the start()
method, which we will code next in the onStart() method (onStart() is
called when the service is started by our activity).

@Override
public void onStart(Intent intent, int startid) {
 myMediaPlayer.start();
}

5. In the onDestroy() method we use the stop() method to stop the
myMediaPlayer object. The onDestroy() method is called when the service
is closed and disposed of by Android, allowing the release of the memory
locations (memory space) containing the media player and the audio file
when we exit the application.

@Override
public void onDestroy() {
 myMediaPlayer.stop();
}

Wiring the Buttons to the Service
Now let’s go back into our MainActivity.java class using the Eclipse Editor tab and add our Button
objects, associated onClick() event handlers for each button, and the necessary calls to our Service
class onStart() and onDestroy() methods, as shown in Figure 11-19.

www.it-ebooks.info

http://www.it-ebooks.info/

335CHAPTER 11: Understanding Intents and Intent Filters

First we have the start button.

Button startButton = (Button) findViewById(R.id.button2);
startButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View arg0) {
 startService(new Intent(getBaseContext(), MediaPlayerService.class));
 }
});

As usual, we declare our startButton Button object with the button2 ID reference, then use the
setOnClickListener() method to add onClick() event handling to the startButton. We are now
ready to call the startService() method inside of the onClick() programming construct.

The startService() calls the onStart() method of the Service class we just wrote, and requires an
intent object; this intent object tells Android what service to start and call the onStart() method on.
We will get a little tricky here and create a new intent object inside of the startService() call using
the following code structure:

startService(new Intent(getBaseContext(), MediaPlayerService.class));

To create a new intent object, we need to declare the current context as the first parameter and
then pass the name of the service class we wish to call as the second parameter. In a third level of
nesting (inside the new intent creation), we use another method called getBaseContext() to obtain
the current context for the new intent object. As the second parameter, we will declare the name
of the MediaPlayerService.class to complete the creation of a valid intent object.

Figure 11-19. Implementing the start and stop buttons to control the media player

www.it-ebooks.info

http://www.it-ebooks.info/

336 CHAPTER 11: Understanding Intents and Intent Filters

Now let’s go through the same procedure with the stopButton Button object, inserting the button3
ID reference and then using the trusty setOnClickListener() method to add onClick() event
handling to our new stopButton. Now we’re ready to call the stopService() method in our newest
onClick() programming routine.

Button stopButton = (Button) findViewById(R.id.button3);
stopButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View arg0) {
 stopService(new Intent(getBaseContext(), MediaPlayerService.class));
 }
});

The stopService() method calls the onDestroy() method of our Service class and requires an intent
onDestroy() method on.

stopService() call, using the following code

MediaPlayerService()class as our second parameter.

Now we are ready to right-click our IntentFilters folder and Run As ➤ Android Application to run
our app. You’ll find when you test the application that everything works perfectly with everything
else; you can start and stop the media player as many times as you like, the audio plays smoothly in
the background without faltering, and you can switch back and forth between the two activities as
many times as you want without affecting the media playback of the audio file. See Figure 11-20.

www.it-ebooks.info

http://www.it-ebooks.info/

337CHAPTER 11: Understanding Intents and Intent Filters

Next we are going to take a look at using Intent objects with broadcast receivers, and then we will
have covered all three areas of Intent use within Android.

Using Intents with Broadcast Receivers
The final type of intent object we will look at in this chapter is the broadcast receiver, which is
used for communication between different applications or different areas of Android, such as the
MediaPlayer or Alarm functions. These intents send, listen to, or receive messages, sort of like a
head’s up notification system, to let your application know what’s going on around it during the
ongoing operation of the Android smartphone, tablet, e-reader, or iTV, whether that’s a phone call
coming in, an alarm going off, or a media player finishing a file playback.

Because we already have an analog watch and a digital clock, let’s add a timer and alarm function to
finish off our suite. Because our analog clock user interface screen is full of UI elements, let’s add the
alarm functions to our digital clock user interface screen in our AlternateActivity Class, as that’s the
most logical place to add an alarm anyway. Figure 11-21 shows a basic diagram of what we will do
in XML and then Java to create the intent and implement the alarm in our next application segment.

Figure 11-20. Running our media player service inside the Android 4.1 emulator

www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 11: Understanding Intents and Intent Filters

EditText tag via the Eclipse Graphical Layout Editor so that we can let users

 11-22

Figure 11-22. Using the Eclipse Graphical Layout Editor to add our EditText widget using the tool-tip guide

 What we have to do in XML and then in Java to create the intent and alarm

www.it-ebooks.info

http://www.it-ebooks.info/

339CHAPTER 11: Understanding Intents and Intent Filters

Now open up the strings.xml file and add a <string> tag with an edit_text_hint variable that points to
the text value “Enter Number of Seconds” so we can add a “Hint” to our EditText field. Then use
the properties editor as shown in Figure 11-22 (on the right side) to add a hint that points to the
@string/edit_text_hint string (you can use the three . . . ellipses to choose this variable once you add
it to the strings.xml file and save it so that the entry is permanent).

This should place the following markup in your activity_alternate.xml file after the
DigitalClock tag:

<EditText
 android:id="@+id/editText1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:ems="10"
 android:hint="@string/edit_text_hint"
 android:inputType="numberDecimal" >
 <requestFocus />
<EditText/>

The EditText tag has an ID of editText1 and a layout_center in both vertical and horizontal planes
for consistency with our prior UI design. Because EditText is a new user interface object for us,
we added an android:hint attribute that says “Enter Number of Seconds” so that you would have
experience with that important EditText parameter.

Note The hint attribute is text you enter to appear in the text field when it is created by Android and
placed on the screen in the layout container. This hint tells the user what to type in the field, which in
this case, is the number of seconds the timer should count down.

Next we have an important android:inputType attribute, which tells us what data type the field will
contain, in this case a real number that is represented by the numberDecimal constant. The timer
uses milliseconds, so if we want the timer to count 1,534 milliseconds, we can type 1.534 in this field
and achieve this precise result.

We’ll also add a Button that we will call startTimer in our Java code to, well, start the timer.
Let’s use the GLE to drag out a second button and center it and position it below EditText with a
marginTop value of 30dp, all of which you will be able to see via the real-time tool-tip as you position
the button via the GLE. We’ll accept the GLE assigned ID of button2 and edit the android:text
value to read: “@string/timer_button_label” so be sure and add a <string> variable and value of
“Start Timer Countdown” to the strings.xml file so we can prompt the user to action via the button
label. Our strings.xml file now has a dozen variables defining all of our UI text elements as shown in
Figure 11-23.

www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 11: Understanding Intents and Intent Filters

android:layout_centerHorizontal="true" to center our

 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editText1"
 android:layout_centerHorizontal="true"
 android:marginTop="30dp"
 android:text="@string/timer_button_label" />

Figure 11-24 shows how our activity_alternate.xml file should look in the Eclipse IDE.

 Adding string tags for our Timer Utility in the strings.xml file in Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

341CHAPTER 11: Understanding Intents and Intent Filters

Creating a Timer Broadcast Receiver
Now let’s create our TimerBroadcastReceiver class, which is a subclass of the BroadcastReceiver
class.

1. As we are now used to doing, let’s create a new class using New ➤ Class,
and use the following parameters:

	Source folder: IntentFilters/src Default entry, as specified by Eclipse

	Package: seventh.example.intentfilters Click the Browse button and select
from the bottom of the list

	Name: TimerBroadcastReceiver

	Modifiers: public

	Superclass: android.content.BroadcastReceiver

2. When everything is filled out, select Finish.

Figure 11-24. Adding our timer user interface elements to the activity_alternate.xml file

www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 11: Understanding Intents and Intent Filters

Figure 11-25 shows what your New Java Class dialog should look like when you’ve entered all of
the relevant new Java class information.

Figure 11-25. Creating a new TimerBroadcastReceiver class via the New Java Class dialog in Eclipse

Now we have an empty class shell with all of the import statements that we need for our
BroadcastReceiver class and an empty onReceive() method for us to fill out with our programming
logic. The onReceive() method will receive our intent and broadcast a message via the Toast class,
which will notify us regarding the alarm status.

Let’s add an import statement for the Toast widget, so that we can use it to broadcast a message to
the user when the broadcast receiver is used. It is important to note that this Toast message could
be replaced by anything we want to happen when our timer goes off, including but not limited to
playing a song, playing a ringtone, vibrating the phone, playing a video, or anything else you can

www.it-ebooks.info

http://www.it-ebooks.info/

343CHAPTER 11: Understanding Intents and Intent Filters

think of. As you know by now, you can add the Import statement below or let Eclipse do it for you
when you code the Toast.makeText statement that follows.

import android.widget.Toast;

The Toast widget’s makeText() method can be coded as follows:

 public void onReceive(Context arg0, Intent arg1) {
 Toast.makeText(arg0, "Alarm Notification", Toast.LENGTH_LONG).show();
 }

We first pass the Toast widget the context parameter received along with the onReceive() call and
then tell it what to write to the screen (our “Alarm Notification” string) and how long to show it on the
screen (the LENGTH_LONG constant). We then append the show() method to makeText() to draw the
message on the screen.

Figure 11-26 shows how all of this should look on the TimerBroadcastReceiver tab in the Eclipse IDE.

Figure 11-26. Our TimerBroadcastReceiver class

Configuring the AndroidManifest.xml file <receiver> Tag
Now we need to declare our broadcast receiver using the receiver tag in our AndroidManifest.xml
file so it is registered for use with Android. We will do this right after the service tag that we added in
the previous section, entering the following line of XML markup code:

<receiver
 android:name=".TimerBroadcastReceiver"
 android:enabled="true" >
</receiver>

This is fairly straightforward. We use the name attribute to assign our .TimerBroadcastReceiver class
name to the receiver declaration tag and then enable it for use in our application by setting the
android:enabled attribute to true so that the broadcast receiver is live (Figure 11-27).

www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 11: Understanding Intents and Intent Filters

Now our broadcast receiver is set up to notify users via a Toast message when the broadcast
receiver is utilized. The next thing we need to do is add the code to our AlternateActivity class to
implement an alarm clock function that triggers this Broadcast Receiver class via an intent object, so
we can see how all this works together.

Implementing our Intent
The modifications to our AlternateActivity class will be done via several new import statements,
an event handler for a click on our startTimer countdown button, and the timerAlert() method that
we will write to do all the heavy lifting to implement the new timer functionality to our application and
to trigger our broadcast receiver class using intent objects.

Let’s start with the onCreate() method:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_alternate);

 Button activity2 = (Button) findViewById(R.id.button1);
 activity2.setOnClickListener(new View.OnClickListener() {
 public void onClick(View arg0) {
 Intent replyIntent = new Intent();
 setResult(RESULT_OK, replyIntent);

 Adding a <receiver> tag to our AndroidManifest.xml file for .TimerBroadcastReceiver

www.it-ebooks.info

http://www.it-ebooks.info/

345CHAPTER 11: Understanding Intents and Intent Filters

 finish();
 }
 });

Button startTimer = (Button) findViewById(R.id.button2);
startTimer.setOnClickListener(new View.OnClickListener() {
 public void onClick(View arg0) {
 timerAlert(arg0);
 }
});
}

Now let’s see how to add the highlighted code, starting with the import statements needed.

1. We need to import the two new widgets that we are going to use to
implement editable text and a toast notification message, or have the IDE
do it for us, either way. Both of these classes are from the android.widget
package:

import android.widget.EditText;
import android.widget.Toast;

2. Next let’s create our startTimer Button object for the start timer countdown
button and use the findViewById() method to set it to the new button2
button tag we previously added to our activity_alternate.xml file. Place
the following in the onCreate() method after the existing button code:

 Button startTimer = (Button) findViewById(R.id.button2);

3. Now we’ll add a setOnClickListener() method to handle events generated
by the startTimer button. Inside of that construct we will create an onClick()
method that calls a timerAlert() method, which holds all of the relevant
program logic to set up intents and construct the alarm feature for our digital
clock activity:

startTimer.setOnClickListener(new View.OnClickListener() {
 public void onClick(View arg0) {
 timerAlert(arg0);
 }
});

We will pass the arg0 variable (the onClick View or Button that was passed from the onClick()
method) to the timerAlert() method so that it has the context needed for the PendingIntent. Here
is the code for the timerAlert() method, which we will go over line by line:

public void timerAlert(View view) {
 EditText textField = (EditText) findViewById(R.id.editText1);
 int i = Integer.parseInt(textField.getText().toString());
 Intent timerIntent = new Intent(this, TimerBroadcastReceiver.class);

www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 11: Understanding Intents and Intent Filters

 PendingIntent myPendingIntent =
 PendingIntent.getBroadcast(this.getApplicationContext(), 0, timerIntent, 0);
 AlarmManager myAlarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);
 myAlarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() +
 (i * 1000), myPendingIntent);
 Toast.makeText(this, "Alarm is set for " + i + " seconds!",
 Toast.LENGTH_LONG).show();
}

4. First, we need two import statements for two new classes from the android.app
package.

	 android.app.AlarmManager is a class that manages alarm functions for
the Android OS.

	 android.app.PendingIntent is a class that allows intents to be pending,
which means they can be scheduled. This means they can be handled
by classes in Android even if the calling class is paused, missing,
asleep, stopped, or destroyed before the called intent has been
processed. This is important for an alarm, especially if the timer is set
to hours rather than minutes or seconds, because the phone could run
out of charge before the Intent was ever satisfied.

import android.app.AlarmManager;
import android.app.PendingIntent;

5. The timerAlert() method is void because it just performs some tasks
relating to setting up intents and alarm functions. It takes a View object
named view as its passed parameter.

public void timerAlert(View view) {

6. The first thing we do in this method’s code block is to declare the EditText
object, name it textField, and locate it in our activity_alternate.xml
layout definition via its editText1 ID parameter.

EditText textField = (EditText) findViewById(R.id.editText1);

7. Once we have the textField object we can use the getText() method along
with the toString() method to get the string that the user types into the
field. We then use the parseInt() method to convert that string value into an
integer value and store it in the i variable of type int (or integer). Later we
will use this integer value with our set() method to set the alarm duration.

int i = Integer.parseInt(textField.getText().toString());

8. In the third line of code we declare an Intent object that we name
timerIntent and set it to a new Intent object with the context of this
and the class of TimerBroadcastReceiver.class as we have done in the
previous sections of this chapter. We will use this timerIntent object in the
PendingIntent object.

www.it-ebooks.info

http://www.it-ebooks.info/

347CHAPTER 11: Understanding Intents and Intent Filters

Intent timerIntent = new Intent(this, TimerBroadcastReceiver.class);

9. Now let’s create a PendingIntent object called myPendingIntent and set it to
the result of the getBroadcast() method call; this takes four parameters:

The context	

Code	

The intent object we want to use as a 	 PendingIntent

Any constants	

Note In this case we need no code or constants, so we use zeroes in those slots, and simply pass the
current context, which we get using the getApplicationContext() method, and the timerIntent
object we created just prior in the previous line of code.

PendingIntent myPendingIntent =
 PendingIntent.getBroadcast(this.getApplicationContext(), 0, timerIntent, 0);

10. Now we are ready to create our alarm using the AlarmManager class. To do
this we declare an AlarmManager object named myAlarmManager and call the
getSystemService() method with the ALARM_SERVICE constant to specify that
we want to get the alarm system service and set it to the myAlarmManager
object. Once we have defined myAlarmManager as an alarm service object we
can use the set() method to configure it for our use in the application.

 AlarmManager myAlarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);

11. The next line in the code block is the one that ties everything else together.
The set() method we will use on our myAlarmManager object has three
parameters:

	 TYPE: The type of alarm trigger we wish to set.

	 TRIGGER TIME: The alarm will trigger when it reaches this system time.

	 OPERATION: The PendingIntent object containing the context and target
intent code we wrote in TimerBroadcastReceiver.java, as specified using the
getBroadcast() method.

 myAlarmManager.set(AlarmManager.RTC_WAKEUP, System.currentTimeMillis() +
 (i * 1000), myPendingIntent);

In our incarnation of the set() method on the myAlarmManager object, we first specify the
AlarmManager.RTC_WAKEUP, which uses the Real Time Clock (RTC) method and wake-up constant to
specify that we want to wake up the phone (if it is asleep) to deliver the alarm. The RTC method uses
the system clock in milliseconds as its time reference.

www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 11: Understanding Intents and Intent Filters

Using RTC only (without the _WAKEUP) will not wake the phone up if it triggers while the phone is
asleep, and thus will be delivered only when the phone wakes up again. This makes it not nearly as
accurate as the RTC_WAKEUP constant. You can imagine how handy it is to be able to wake up your
phone at a certain discreet time even if it is asleep, so it’s a good thing we are exposing you to this
handy constant here.

The next parameter we need to specify is the precise system time, in milliseconds, to trigger the
alarm. We will wax a bit tricky here, and we will specify this middle parameter using a bit of inline
programming logic.

We call the currentTimeMillis() method on the Android System object to get the current system
time in milliseconds, then we add to the system time the number of seconds specified by our user in
milliseconds, by multiplying the number of seconds in variable i by 1,000 because there are 1,000

set() method’s second parameter, when our inline code is evaluated at

myPendingIntent object as our third parameter. This object, created
timerIntent

timerIntent object references our
 class, which will ultimately be called when the alarm is triggered, and will

The final line of code sends a familiar Toast message to the end user, confirming that the alarm has
been set for the proper number of seconds. This is done by passing the Toast makeText() method
the current context (this) along with the Toast.LENGTH_LONG constant and two strings with the i
variable between them like this:

Toast.makeText(this, "Alarm is set for " + i + " seconds!", Toast.LENGTH_LONG).show();

As we’ve seen here, Java is very flexible in how it allows us to mix different data types. Figure 11-28
shows our newly enhanced AlternateActivity class with the new import statements, onCreate()
method and timerAlert() method modifications shown. Notice in the Package Explorer pane that
we now have seven actively used project files with XML and Java code that we have either modified
or written. Actually, if you include the AndroidManifest we have eight files, four Java and four XML
that we have customized for this project! This is the most robust application we’ve written so far!
Now we will run and test our new app in the Android 4.1 emulator.

www.it-ebooks.info

http://www.it-ebooks.info/

349CHAPTER 11: Understanding Intents and Intent Filters

Running the Timer Application via the Android 4.1 Emulator
Let’s right-click on our IntentFilters folder, and select Run As ➤ Android Application, and get right
into our final IntentFilters project application. You’ll find that when you run this application that all
three sections we’ve added work perfectly together.

This shows us that all of the different types of intents can work seamlessly together in Android, and
that they don’t interfere with each other, as we noted at the beginning of the chapter.

We can now go back and forth between the analog (main) and digital (alternate) activities using the
intents we created; turn on the audio and go back and forth while it is playing; and use the timer
function while the digital audio is playing back as a service.

In the digital clock alternate activity, we can use the editable text field to set our timer value and the
start timer countdown button to trigger the broadcast intent, which broadcasts a Toast to the screen
when the specified number of seconds has passed.

Figure 11-29 shows the application running in the Android 4.1 emulator displaying the digital clock,
the timer function, and the button that allows us to switch back and forth between our two different
activities and their user interfaces.

Figure 11-28. Adding the startTimer button UI code and timerAlert() method

www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 11: Understanding Intents and Intent Filters

components communicate to form a cohesive and seamless application. From user interface
activities to background processing services and systems utilities, intent objects are used in
integral ways to pass requests for processing actions on data structures between different types of
application components.

This serves to enforce a modular, logical programming work process on the Android applications
developer, which ultimately increases security, decreases bugs and poorly constructed code,
and attempts to facilitate the kind of optimization that will be needed in the mobile embedded
environment of smartphones, tablets, e-readers, and iTV sets.

Ultimately, the proper use of intents and the creative structuring of application components is what
set the successful Android developer apart from the crowd, so be sure to practice using intents and
delve deeper into this area of the Android developer documentation whenever you get a chance.

 Running our timerAlert() method in the Android 4.1 emulator to show broadcast receiver intents

www.it-ebooks.info

http://www.it-ebooks.info/

351

Chapter 12
Advanced Android Topics

There are a number of advanced Android topics that are beyond the scope of this book, but it’s still
good for you to know about them, so that you can continue learning on your own. I will try to expose
as much of this information within this chapter as possible. This will be information that we were
unable to cover in this book, outlined here just so that you know it exists, and that you should take a
closer look at when you have a chance. Most of it is really amazing functionality that you can add to
your apps to make them more marketable.

This chapter will cover how to research on your own the more specialized areas of programming
for Android. It will provide a summary of what is available, where to find it, what it can do for your
applications, and what classes it uses for its implementation, as well as provide some resources for
finding more detailed information and tutorials on implementing these features and attributes in your
future Android applications. Any code examples, where given in this chapter, will be very short and
sweet, to give you a taste of what is to come if you take the initiative to go out there and find it.

Troubleshooting: Solving Problems on Your Own
I’d like to start out with troubleshooting problems in Android first because what’s the use in
researching new Classes if you can’t get the Classes that you are already working with to function
properly? We have already covered a number of commands in Eclipse that can be used to find and
even fix the source of code errors and warnings that are being highlighted in your Eclipse IDE. These
are as follows, in order of their logical application to the problem at hand:

Right-Click (Project Folder) 	 ➤ Refresh [F5] (look for missing files and resources)

Right-Click (Project Folder) 	 ➤ Validate (look for missing interrelationships in
project)

Project (Menu) 	 ➤ Clean ... (delete and regenerate R.java runtime Java binary for
project)

Window (Menu) 	 ➤ AVD Manager ➤ Start ➤ User Data Option (Emulator Reset)

www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 12: Advanced Android Topics

Eclipse LogCat Pane in the IDE (show exactly what errors are occurring)	

	http://developer.android.com/guide/faq/troubleshooting.html (latest
Android developer website troubleshooting information)

The last option is the Android Development website’s troubleshooting web page section. Go there
now and you will see that there are over a dozen of the most commonly encountered errors right
there on the Troubleshooting “homepage.” There also are over a dozen other areas on the left that
expand to reveal dozens of subsections when the “down-arrows” next to them are clicked. Some of
the subsections also will have down-arrows next to them that reveal sub-subsections as well.

The first 12 of these sections essentially cover things that we have learned about in this book, so if
you want to go into further Android development documentation regarding these areas, this would

Computation (Runtime API Reference, Advanced Renderscript)	

Media and Camera (Media Playback, Camera, JetPlayer, Audio)	

Location and Sensors (motion/position/environment sensors, maps)	

Connectivity (Bluetooth, NFC, Wi-Fi Direct, SIP, USB)	

Text and Input (Cut and Paste, Creating an IME, Spelling Checker)	

Data Storage (Storage Options, Data backup, App Install Location)	

Administration (Device Policies)	

Web Apps (Building, Debugging, Best Practices, Targeting Screens)	

Best Practices (Compatibility, Multi-Screen, Security, Performance)	

Google Services (In-App Billing, Licensing, Play, Cloud Messaging)	

These areas of the OS may or may not be important to your particular application, depending on
what its functionality entails, so you can pick and choose these topical sections based on the priority
of your application development and what you want to do using the Android OS. I will cover a few
of them in the next several sections of this chapter regarding your future research and development
with the Android OS.

You also will find a lot of Android Developer forums online that are very useful, as well as sites such
as StackOverflow that document a ton of questions and answers regarding Android programming.
Simply go to Google.com and type in “Android Forums” or “StackOverflow” and you will find all of
these great resources at your fingertips!

Finally, one last tip regarding research into troubleshooting any given Android programming issue:
Learn How to Optimally Use Google! Yes, the Android Development website works well, and has a
lot of information, as well as its own search functionality, but beware—they have a hard time keeping
all of that information completely up to date for each API level. For that reason, I often use Google.
com to research other websites that may have more recent solutions or programmers who are facing
similar issues or problems.

www.it-ebooks.info

http://developer.android.com/guide/faq/troubleshooting.html
http://www.it-ebooks.info/

353CHAPTER 12: Advanced Android Topics

To use Google effectively, make sure to use the Class and/or method names in the search parameters,
or even cut and paste the error message right out of the Eclipse LogCat pane in the Eclipse IDE! If you
do this, you will find that your search results will often return precise and highly relevant information
that has already been asked on the Internet regarding that exact coding issue. Also, you can pose
questions in the search bar, complete with a question mark at the end, such as: How do I register to
use Google Maps in Android 4.1? Don’t forget, Google is working on the Semantic Web (Internet 3.0),
and searches such as this are going to work better and better each day as time goes on.

Widgets: Creating Your Own Widgets in Android
As we discussed in Chapter 7, Android has its own collection of user-interface widgets that can be
used to easily populate your layouts with functional elements that allow your users to interface with the
program logic that defines what your application does. These widgets have their own package called
android.widget that can be imported into your application and used without further modification.

Android extends this widget capability for its programmers by allowing us to also create our own
widgets that can be used by Android as mini-application portals or views that float on the Android
home screen, or even inside other applications (just like the standard UI widgets).

If you remember, user-interface elements are Widgets that are subclassed from View objects.
Widgets can be used to provide cool little extras for the Android homescreen, such as weather
reports, MP3 players, calendars, stopwatches, maps, or snazzy clocks and similar micro-utilities.

To create an app widget, you utilize the Android AppWidgetProvider class, which extends the
BroadcastReceiver class. The documentation on the App Widget Development can be found at:

http://developer.android.com/reference/android/appwidget/AppWidgetProvider.html—and—
http://developer.android.com/guide/topics/appwidgets/index.html#AppWidgetProvider

To create your own app widget, you need to extend this class and override one or more of its key
methods to implement your custom app widget functionality. Key methods of the AppWidgetProvider
class include the following:

	onUpdate(Context, AppWidgetManager, int[])

	onDeleted(Context, int[])

	onEnabled(Context)

	onDisabled(Context)

	onReceive(Context, Intent)

To create an app widget, you need to create an AppWidgetProviderInfo object that will contain the
metadata and parameters for the app widget. These are details such as the user interface layout,
how frequently it is updated or refreshed, and the convenience class that it is subclassed from
(AppWidgetProvider). This can all be defined via XML, which should be no surprise to you by now.

The AppWidgetProvider class defines all of the methods that allow your application to interface with
the app widget class via broadcast events, making it a broadcast receiver. These broadcast events,
as we discussed in Chapter 11, will update the widget, with some frequency if required, as well as
enabling (turning it on), disabling (turning it off), and even deleting it if required.

www.it-ebooks.info

http://developer.android.com/reference/android/appwidget/AppWidgetProvider.html�and�http://developer.android.com/guide/topics/appwidgets/index.html#AppWidgetProvider
http://developer.android.com/reference/android/appwidget/AppWidgetProvider.html�and�http://developer.android.com/guide/topics/appwidgets/index.html#AppWidgetProvider
http://www.it-ebooks.info/

354 CHAPTER 12: Advanced Android Topics

App widgets also (optionally) offer a configuration activity that can launch itself when the user first
installs your app widget. This activity adds a user interface layout that allows your users to modify
the app widget settings before (or at the time of) its launch. The app widget must be declared in the
AndroidManifest.xml file, so that the application has registered it with the OS for communications, as
it is a broadcast receiver.

More information on widget design can be found at the App Widget Design Guidelines page
located at:

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html

Location-Based Services in Android

android.location package, which is a collection of classes or routines for

LocationManager system service.

LocationManager is not instantiated directly, but
getSystemService(Context)

method, which then returns a handle to the new LocationManager instance, like this:

getSystemService(Context.LOCATION_SERVICE)

Once a LocationManager has been established inside of your application, you will be able to do the
following three things in your application:

Query for a list of all 	 LocationProviders for the last known user location.

Register (or unregister) for periodic updates of the user’s current location.	

Register (or unregister) for a given Intent to be fired once the device is within 	
certain proximity of a specified latitude or longitude specified in meters.

Google Maps in Android
Google provides an external library called Google Maps that makes it relatively easy to add powerful
mapping functions to your Android applications. It is a Java package called com.google.android.maps,
and it contains classes that allow for a wide variety of functions relating to downloading, rendering,
and caching map tiles, as well as a variety of user control systems and display options.

One of the most important classes in the maps package is the MapView class, a subclass of
ViewGroup, which displays a map using data supplied from the Google Maps service. Essentially
this class is a wrapper providing access to the functions of the Google Maps API, allowing your
applications to manipulate Google Maps through MapView methods that allow maps and their data to
be accessed, much as though you would access any other View object.

www.it-ebooks.info

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://www.it-ebooks.info/

355CHAPTER 12: Advanced Android Topics

The MapView class provides programmers with all of the various user interface assets that can be
used to create and control Google Maps data. When your application passes focus to your MapView
object, it automatically allows your users to zoom into, and pan around, the map using gestures or
keypresses. It can also handle network requests for additional map tiles, or even an entirely new map.

Before you can write a Google Maps-based application, you must obtain a Google Maps API key to
identify your app:

1. To begin with, you need to provide Google with the signature of your
application. To do so, run the following at the command prompt (in Windows
the Command Prompt Utility is located in the Start Menu under the All
Programs menu in the Accessories folder):

keytool -list -keystore C:\users\<username>\.android\debug.keystore

Note The signature of your application proves to Google that your application comes from you.
Explaining the niceties of this is beyond the scope of this book, but for now, just understand that you
are proving a guarantee to Google that you created this application.

2. When prompted, the password is android. Here is what you should see:

Enter keystore password: Keystore type: JKS
Keystore provider: SUN
Your keystore contains 1 entry
androiddebugkey, 21-Jan-2011, PrivateKeyEntry,
Certificate fingerprint (MD5): <fingerprint>

3. Select and Copy (CTRL-C) the fingerprint string value. You’ll need it in the
next step.

4. Go to http://code.google.com/android/maps-api-signup.html and enter the
fingerprint data you copied into the “My certificate’s MD5 fingerprint:” box.

5. Accept the terms and conditions, and then click: Generate API Key.

6. On the next page, make a note of your API key.

Now that we have our key, here are the basic steps for implementing a Google Maps app:

1. First you would want to create a new project called MyGoogleMap, an Activity
called MainActivity, with a Project Build Target of Google APIs for default
version support for 2.2 through 4.1. We need to do this to use the Google
Maps classes.

Note You may have to install the Google APIs using the Android SDK and AVD Manager. They are listed
as Google APIs by Google Inc.

www.it-ebooks.info

http://code.google.com/android/maps-api-signup.html
http://www.it-ebooks.info/

356 CHAPTER 12: Advanced Android Topics

2. In the AndroidManifest.xml file, within the <application> tag use the
<uses-library> tag to point to the Google Maps library address specified
above as follows:

<uses-library android:name="com.google.android.maps" />

3. Also in the AndroidManifest.xml file, and within the <application> tag, use
the <uses-permission> tag to request permission to access the Internet as
follows:

<uses-permission android:name="android.permission.INTERNET" />

4. Next you would want to define some simple user interface elements within
your activity_main.xml layout definition, using a basic linear layout with a
vertical parameter specified, and then a Google Maps MapView user interface
element with the clickable parameter set to true, allowing the user to
navigate the map, as follows:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/linearLayout1"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <com.google.android.maps.MapView
 android:id="@+id/mapview"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:clickable="true"
 android:apiKey="Your Maps API Key Goes Here"
 />
</LinearLayout>

5. Now enter your unique Google Maps API key that was assigned to you in the
apiKey parameter in the last parameter of the MapView tag.

6. Next open your MainActivity.java activity and extend your class to use a
special subclass of the Activity class called the MapActivity class, as follows:

public class MainActivity extends MapActivity {...}

7. One of the primary methods of the MapActivity class is the
isRouteDisplayed() method, which must be implemented, and once it is,
you will be able to pan around a map, so add this little bit of code as follows
to complete your basic map:

@Override
protected boolean isRouteDisplayed() {
 return false;
}

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

357CHAPTER 12: Advanced Android Topics

8. At the top of your MainActivity class instantiate two handles for the MapView
and the ZoomTool controls (LinearLayout) we are going to add next, as
follows:

LinearLayout linearLayout;
MapView mapView;

9. Next in your onCreate() method, initialize your MapView UI element and add
the ZoomControls capability to it via the setBuiltInZoomControls() method
as follows:

mapView = (MapView) findViewById(R.id.mapview);
mapView.setBuiltInZoomControls(true);

Note that we are using the built-in MapView zoom controls so we do not have to
write any code, and yet when we run this basic application, the user will be able
to zoom the MapView via zoom controls that will appear when the user touches
the map and then disappear after a short time-out period (of nonuse).

10. Compile and run to test your MainActivity in your myGoogleMap project
application in the Android 4.1 emulator.

It is important to note that the external Google Maps library is not an integral part of the Android OS,
but is actually something that is hosted externally to the smartphone/tablet environment, and which
requires access externally via a Google Maps key that you must apply for and secure before your
applications utilize this service from Google. This is the same way that this works when using Google
Maps from a website; it’s just that the MapView class fine-tunes this for Android usage. To learn more
about the Google Maps external library visit:

https://developers.google.com/android/add-ons/google-apis/

Google Search in Android
Google has built its business model on one major service that it has always offered: search. It should
not be a surprise that search is thus a well-supported core service in Android. Android users can
search for any data that is available to them on their Android device or across the Internet.

Android, not surprisingly, provides a seamless, consistent search experience across the board, and
Android provides a robust search implementation framework for you to implement search functions
inside of your Android applications.

The Android search framework provides an interface for search that includes both the interaction
and the search itself, so that you do not have to define a separate Activity in Android. The advantage
of this is that the use of search in your application will not interrupt your current Activity.

Using Android search puts a search dialog at the top of the screen, pushing other content down on
the screen as it is utilized. Once you have everything set up to use this capability in Android, you can
integrate your application with search by providing search suggestions based on your app or recent
user queries, offer you own custom application specific search suggestions in the system-wide quick
search function, and even turn on voice search functions.

www.it-ebooks.info

http://code.google.com/android/add-ons/google-apis
http://www.it-ebooks.info/

358 CHAPTER 12: Advanced Android Topics

Search in Android is handled by the SearchManager class; however, that class is not used
directly, but rather is accessed via an Intent specified in XML or via your Java code via the
context.getSystemService(context.SEARCH_SERVICE) code construct. Here are the basic steps
to set up capability for a search within your AndroidManifest.xml file.

Specify an <intent-filter> in the <activity> section of the AndroidManifest.xml:

<intent-filter>
 <action android:name="android.intent.action.SEARCH" />
</intent-filter>

<meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable" />

1. Next, create the res/xml/searchable.xml file specified in the <meta-data> tag
in Step 1.

2. Inside searchable.xml, create a <searchable> tag with the following data:

<searchable
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/search_label"
 android:searchSuggestAuthority="dictionary"
 android:searchSuggestIntentAction="android.intent.action.VIEW">
</searchable>

3. Now in res/values/strings.xml, add a string called search_label via text
value: "Search" or whatever you want it to say next to the search data
entry field.

Now you are ready to implement a search in your application as described here:

http://developer.android.com/guide/topics/search/search-dialog.html

Note that many Android phones, tablets, iTVs, and e-reader devices come with a search button built
in, which will pop up the search dialog. You can also provide a button to do this, in a menu maybe,
or as an icon. That’s for you to experiment with, so have some fun with Search.

Data Storage in Android
Android has a significant number of ways for you to save data on your smartphone, from private
data storage for your application, called shared preferences, to internal storage on your smartphone
device’s memory chips, to external storage via your smartphone device’s external storage (SD card
or Micro-SD), to network connection (Network Accessed Storage) via your own network server, to an
entire DBMS (database management system) via open source SQLite private databases.

Shared Preferences
Shared preferences are persistent data pairs that remain in memory even if your application is killed
(or crashes), and thus this data remains persistent across multiple user sessions. The primary use of

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/search/search-dialog.html
http://www.it-ebooks.info/

359CHAPTER 12: Advanced Android Topics

shared preferences is to store user preferences for a given user’s Android applications and this is a
main reason why they persist in memory between application runs.

To set your application’s shared preferences Android provides us with the SharedPreferences class.
This class can be used to store any primitive data types, including Booleans (1/0, on/off, true/false,
or visible/hidden), floats, integers, strings, and longs. Note that the data created with this class will
remain persistent across user sessions with your application even if your application is killed (the
process is terminated, or crashes).

There are two methods in the SharedPreferences class that are used to access the preferences; if
you have a single preference file use getPreferences and if you have more than one preference file,
you can name each and use getSharedPreferences(name) and access them by name. Here is an
example of the code in use, where we retrieve a screen name. The settings.getString call returns
the screenName parameter, or the default name Android Fan if the setting is not set:

public static final String PREFS_NAME = "PreferenceFile";
...
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
 String screenName = settings.getString("screenName", "Android Fan");
 // do something with the screen name.
 }

We can set the screen name with the following:

SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
SharedPreferences.Editor editor = settings.edit();
editor.putString("screenName", screenName);
editor.commit();

Internal Memory
Accessing internal memory storage on Android is done a bit differently, as that memory is unique
to your application and cannot be directly accessed by the user or by other applications. When
the application is uninstalled these files are deleted from memory. To access files in memory use
the openFileOutput() with the name of the file and the operation needed, which will return a
FileOutputStream object that you can use the read(), write(), and close() methods to manipulate
the data into and out of the file. Here is some example code showing this concept:

String FILENAME = "hello_file";
String string = "hello world!";
FileOutputStream fos = openFileOutput(FILENAME, Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();

2
www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 12: Advanced Android Topics

External Memory
The method that is used for accessing external memory on an Android device is
getExternalStorageState. It checks to see whether the media (usually an SD card or internal
micro SD) is in place (inserted in the slot for an SD card) and available for usage. Note that files
written to external removable storage media also can be accessed outside of Android and its
applications by PCs or other computing devices that can read the SD card format. This means
there is no security in place on files that are written to external removable storage devices.

Using SQLite

getWritableDatabase and
 methods, which return a SQLiteDatabase object that represents the database

 methods, which accept all common data query parameters such as the

are mainstream in database programming. This is a complex topic, so I suggest getting a book on
SQLite for Android from Apress if you want to master this database technology inside of Android.

Device Administration: Security for IT Deployments
As of Android version 2.2 (API Level 8), Google has introduced support for secure enterprise
applications via its Android Device Administration API. This API provides developers with employee
device administration at a lower system level, allowing the creation of “security aware” applications
that are necessary in MIS enterprise applications that require that IT maintain a tight level of control
over the employees’ Android Smartphone devices at all times. Support for this feature between API
Level 8 and 16 may be yet another reason why these are the default API Level support (Minimum
and Target) recommendations that are set as default values in the New Android Application Project
series of dialogs that we have seen throughout this book.

A great example of this is the Android e-mail application, which has been upgraded in OS version
2.2 to implement these security features to provide more robust e-mail exchange security and
support. Exchange Administrators can now implement and enforce password protection policies in
the Android e-mail application spanning both alphanumeric passwords and simpler numeric PINs
across all of the devices in their organization.

IT administrators can go as far as to remotely restore the factory defaults on lost or stolen handsets,
clearing sensitive passwords and wiping clean proprietary data. E-mail Exchange End-Users can
now sync their e-mail and calendar data as well.

www.it-ebooks.info

http://www.it-ebooks.info/

361CHAPTER 12: Advanced Android Topics

Using the Android Camera Class to Control a Camera
The Android Camera class is used to control the built-in camera that is in every Android smartphone
and in most tablets. This Camera class is used to set image capture settings and parameters, start
and stop the preview modes, take the actual picture, and retrieve frames of video in real-time for
encoding to a video stream or video file format. The Camera class is a client for the camera service,
which manages the camera hardware.

To access your Android device’s camera, you need to declare a permission in your AndroidManifest.xml
that allows the camera features to be included in your application. You need to use the <uses-
feature> tag to declare any camera features that you wish to access in your application so that
Android knows to activate them for use in your application. The following XML AndroidManifest.xml
entries allow the camera to be used and define it as a feature along with including the autofocus
capabilities:

<uses-permission android:name="android.permission.CAMERA" />
<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.camera.autofocus"/>

The developer.android website has plenty of Java code for you to experiment with at the following
link locations:

http://developer.android.com/reference/android/hardware/Camera.html
http://developer.android.com/guide/topics/media/camera.html
http://developer.android.com/reference/android/hardware/Camera.Parameters.html

3D Graphics: Using OpenGL ES 2.0 in Android
One of the most impressive capabilities of the Android OS is its ability to “render” 3D graphics in
real-time using only the open source OpenGL (open source graphics language) ES 1.x API prior to
API Level 8 (2.2), and in later releases of Android after 2.2, the OpenGL ES 2.0 APIs. OpenGL ES
stands for OpenGL for embedded systems. OpenGL ES 3.0 was recently ratified, and OpenGL ES 4.0
is under consideration and should be available soon as well. Apress has several books covering
Android 4 game development using OpenGL including Beginning Android Games.

OpenGL ES is an optimized embedded devices version of the OpenGL 2.0 API that is used on
computers and game consoles. OpenGL ES is highly optimized for use in embedded devices similar
to the way Android Dalvik Virtual Machine optimizes your code by making sure there is no “fat” that
the smartphone CPU and memory need to deal with, a streamlining of sorts. OpenGL ES 2.0 is a
feature parallel version to the full OpenGL 2.0 standard version, so if what you want to do on Android
is doable in OpenGL 2.x, it should be possible to do it in OpenGL ES 2.0.

The Android OpenGL ES 2.0 is a custom implementation but is somewhat similar to the J2ME
JSR239 OpenGL ES API, with some minor deviations from this specification due to its use with the
Java Micro Edition (JavaME) for cell phones.

To access the OpenGL ES 2.0 API, you need to write your own custom subclass of the View Class
and obtain a handle to an OpenGL Context, which will then provide you with access to the OpenGL
ES 2.0 functions and operations. This is done in the onDraw() method of the custom View class that

www.it-ebooks.info

http://developer.android.com/reference/android/hardware/Camera.html
http://developer.android.com/guide/topics/media/camera.html
http://developer.android.com/reference/android/hardware/Camera.Parameters.html
http://www.it-ebooks.info/

362 CHAPTER 12: Advanced Android Topics

you create, and once you have a handle to the OpenGL Object, you can use that object’s methods
to access and call the OpenGL ES functional operations.

More information on OpenGL ES can be found at: www.khronos.org/opengles/

Information about version 1.0 can be found at: www.khronos.org/opengles/1_X/

Information about version 2.0 can be found at: www.khronos.org/opengles/2_X/

Information about version 3.0 can be found at: www.khronos.org/opengles/3_X/

Android Developer Documents do in fact exist for OpenGL ES 1.0 and 1.1 at

http://developer.android.com/reference/javax/microedition/khronos/opengles/
package-summary.html

FaceDetector.

 automatically identified faces of subjects inside of a Bitmap graphic object. I would

FaceDetector object by using the public constructor FaceDetector:

public FaceDetector (width integer, height integer, maxFaces integer)

The method you use to find faces in the bitmap file is findFaces(Bitmap bitmap, Face[] faces),
which returns the number of faces successfully found.

SoundPool
The SoundPool class is great for game development and audio playback applications on Android
because it manages a pool of Audio Resources in an optimal fashion for Android Apps that use a lot
of audio, or where audio is a critical part of the end-user’s overall experience.

A SoundPool is a collection of audio “samples,” such as sound effects or short songs that need to
be loaded into Android memory from an external resource, either inside the application’s .apk file, or
from an external file or from the internal file system.

The cool thing about the SoundPool Class is that it works hand in hand with the MediaPlayer Class
that we looked at earlier to decode the audio into a raw PCM mono or stereo 16-bit CD quality audio
stream. This makes it easier for an application to include compressed audio inside its APK, and then
decompress it on application start-up, load it into memory, and then play it back without any hiccups
when it is called or triggered within the Android application code.

It gets even more interesting. It turns out that SoundPool can also control the number of audio assets
that are being simultaneously “rendered” or turned from data values into audio sound waves. Essentially
this means that the SoundPool is an audio “Mixing Console” that can be used to layer audio in real-time
to create custom mixes based on your gameplay or other application programming logic.

www.it-ebooks.info

http://www.khromos.org/opengles/
http://www.khronos.org/opengles/1_X/
http://www.khronos.org/opengles/2_X/
http://www.khronos.org/opengles/3_X/
http://developer.android.com/reference/javax/microedition/khronos/opengles/package-summary.html
http://developer.android.com/reference/javax/microedition/khronos/opengles/package-summary.html
http://www.it-ebooks.info/

363CHAPTER 12: Advanced Android Topics

SoundPool defines a maxStreams parameter that limits the number of parallel audio streams that
can be played, so that you can put a “cap” on the amount of processing overhead that is used
to mixdown audio in your application, in case this starts to affect the visual elements that are
also possibly rendering in real-time on the screen. If the maxStreams value is exceeded, then the
SoundPool turns off individual audio streams based on their priority values, or if none are assigned,
based on the age of the audio stream.

Individual audio streams within the SoundPool can be looped infinitely (using a value of −1) or any
number of discreet times (0 to …) and also counts from zero, so a loop setting of three plays the
audio loop four times. Playback rates can also be scaled from 0.5 to 2.0, or at half the pitch to twice
the pitch, allowing real-time pitch shifting, and with some clever programming, one could even
simulate effects such as Doppler via fairly simple Java code. Samples can also be pitch-shifted to
give a range of sound effect tones, or to create keyboard-like synthesizers.

SoundPool also lets you assign a Priority to your individual audio samples, with higher numbers
getting higher priority. Priority only comes into play when the maxStreams value specified in the
SoundPool Object is hit and an audio sample needs to be removed from the playback queue
to make room for another audio sample playback request with a higher priority level. Be sure to
prioritize your audio samples, so that you can have complete control of your audio and effects
mixing during real-time playback.

MediaRecorder
In Chapter 11 we discussed the Android MediaPlayer class, which is commonly used to play back
audio or video files. Android also can record audio and video media files at a high level of fidelity and
the counterpart to the MediaPlayer class for this is, logically, the MediaRecorder class. It is important
to note that MediaRecorder does not currently work on the Android smartphone emulators.

There are five main MediaRecorder classes that control the process of media recording. They are as
follows (note that these are defined inside the MediaRecorder class, hence the dot notation):

	MediaRecorder.AudioEncoder

	MediaRecorder.AudioSource

	MediaRecorder.OutputFormat

	MediaRecorder.VideoEncoder

	MediaRecorder.VideoSource

You construct a MediaRecorder object and operate on it using the public methods such as start(),
stop(), prepare(), release(), reset(), setAudioChannels(), setCamera(), setOutputFile(), and
a plethora of other methods that control how the new media data is captured and stored on your
Android device.

More information on the MediaRecorder class can be found at

http://developer.android.com/reference/android/media/MediaRecorder.html

www.it-ebooks.info

http://developer.android.com/reference/android/media/MediaRecorder.html
http://www.it-ebooks.info/

364 CHAPTER 12: Advanced Android Topics

VideoView: Playing Video in Your Android Apps
As our final topic, just to make sure we cover everything major you will want to do in your Android
apps in this book, we’ll look at how to simply and effectively play digital video files in your Android
applications. You do this through a very handy class called VideoView. We are going to show the
ability to play video in our application using only three lines of XML code and eight lines of Java
code, or less than a dozen lines of code in total.

Adding a VideoView Object
For video playback, we would use the VideoView class. As with TextView and ImageView objects,

 objects make it easy to access MPEG-4 H.264 or WebM (VP8) video in your Android

VideoView to our activity_main.xml, place the following tag in your UI layout container:

 android:layout_height="match_parent"
 android:layout_width="match_parent" />

VideoView and tells it to match its parent container size using match_parent.
match_parent value does the opposite of wrap_content. It sizes the content up to fill the layout

Adding the Java for Video
First, add three new import statements for the classes we need:

import android.net.Uri;
import android.widget.VideoView;
import android.widget.MediaController;

To get the video from our server, we also need to define its path using a Uri object, so we must
import the android.net.Uri class. We next import the VideoView widget (android.widget.VideoView).
Finally, to play the video in the VideoView, we will use a MediaController object, so we import the
android.widget.MediaController class as well.

Next, add the following to your MainActivity.java onCreate() method to create our VideoView object:

Uri vidFile = Uri.parse("http://commonsware.com/misc/test2.3gp");
VideoView videoView = (VideoView) findViewById(R.id.videoView1);
videoView.setVideoURI(vidFile);
videoView.setMediaController(new MediaController(this));
videoView.start();

First, we create the Uri reference object, which holds the path, or address, to the video file on the
server. The uniform resource identifier (URI) can use the familiar HTTP server paradigm or a more

www.it-ebooks.info

http://commonsware.com/misc/test2.3gp
http://www.it-ebooks.info/

365CHAPTER 12: Advanced Android Topics

advanced real-time streaming protocol. As you can see, here we are using the HTTP protocol,
which works fine, and is the industry standard, thanks to the Internet. We create a Uri object called
vidFile using the parse() method with the HTTP URL to any valid path and file name in quotes.
Here, the Uri object points to the content at http://commonsware.com/misc/test2.3gp, so that we
have some video to play.

Now we have an object called vidFile that contains a reference to our video file. Next, we set up
our VideoView object, calling it videoView and using findViewById() to locate the videoView1 ID we
created in our XML layout file. This is the same thing we have been doing with the other View types,
and should be very familiar to you at this point.

Now that we have a VideoView object, we use the setVideoURI() method to pass the vidFile Uri
object to the videoView VideoView object, so that the VideoView is loaded with the file path to
use to retrieve the video. Now our Uri is wired into our VideoView, and we need only to wire the
MediaController into the VideoView so that the video can be played.

Finally let’s declare a new MediaController object named mediaControl and in the next line of code
connect that MediaController to the videoView object using the .setMediaController() method.

MediaController mediaControl = new MediaController(this);
videoView.setMediaController(mediaControl);

Finally, to start our videoView object playing, we send it a .start() method call, like this:

videoView.start()

New Features in Android 4.2
Right before we went to press (the holiday weekend before, actually) Android 4.2 was released,
with a lot of operating system level features that will automatically make your apps better without
your intervention, which is a boon to absolute beginners, so we’re covering them here. Some of
these include a new user interface element style treatment, performance (speed) optimizations,
international language optimizations, dozens of security enhancements, HDR Camera support, and
support for multiple users on a single Android device. Other features that we cover in this book, such
as SoundPool and 3D Rendering via hardware GPUs, were also greatly enhanced with new code and
features. I will point out some of the other new Android 4.2 API Level 17 (called: Jelly Bean Plus, or
JellyBean+) additions in this section, so that you know about them and can further investigate their
relevance to your Android application development on your own.

Presentation is a big area of enhancement in Android 4.2, in fact, there is a new Presentation Dialog
UI element that you can code to, as well as support for Miracast technology. Using Miracast,
users using Miracast-certified Android devices can connect to external displays (even non-Android
displays) using Wi-Fi via Miracast, a peer-to-peer wireless display standard created by the Wi-Fi
Alliance. When a wireless display is connected to an Android device, Android users can stream any
type of new media content to that external screen, including: images, photos, videos, maps, audio,
and much more. Your applications can now take advantage of wireless displays in a similar way
as it can currently with direct-wired external displays, and no extra programming work is needed.
Hey! That’s another absolute beginner’s feature! The Android operating system manages all of the
network connections for you, and even automatically streams your Presentation or application

www.it-ebooks.info

http://commonsware.com/misc/test2.3gp
http://www.it-ebooks.info/

366 CHAPTER 12: Advanced Android Topics

content over to the wireless displays as needed. So be sure and research the new Presentation
Classes and the Wi-Fi Alliance Miracast technology soon.

Two more areas you will want to take a look at if you are into widget development are Lock Screen
Widgets and the new Daydream Interactive Screen Saver Mode. Lock Screen Widgets are fairly
self-explanatory; they are widgets that display on your user’s Locked Screens! This is a really cool
new feature, as it essentially allows developers to provide custom Lock Screens. Android users can
have up to five Lock Screen Widgets, each of which can have its own panel in the five screen panel
navigator that became so popular via the Android RAZR. Lock screen widgets can display any kind
of content, and they can accept direct user interaction. Lock Screen Widgets can be entirely
self-contained, such as a widget that controls audio playback and can even allow users to jump
straight inside an application Activity (after unlocking, of course). Daydreams merge the capabilities
of live wallpaper with home screen widgets; they are essentially an interactive screen saver mode

Summary
There are a lot of really great features in Android that we simply do not have enough time to cover
in one book, or that are too complex for an absolute beginners’ book. That doesn’t mean that you
should not investigate all of the cool features that Android has to offer on your own, however, so this
chapter introduced some that are very powerful and advanced for a mobile phone, tablet, iTV, and
e-reader operating system.

We started out covering the most important area that you will want to research: troubleshooting.
Fortunately, Android has a troubleshooting section for Android development research, and this page
has references on the left-side to some on the most key areas that you will want to research further
once you are finished with this book. Please make sure that you do so, it will increase your overall
knowledge of what Android is currently capable of considerably.

Widgets are another key part of Android, and something that you may well want to create at some
point in time, as they are like mini-apps that users can use on their desktops. They are so important,
in fact, that Android has given them their own Class and section of the Android Developer website.

Location based services and Google Maps are another ideal way to add really cool features to your
apps with relatively little programming effort, and Google Search is another great way to leverage
things that Google has already mastered and is offering on its servers and generously allows you to
offer these features to your users again with almost zero coding effort on your part.

Where graphics are concerned, there is no more powerful open source graphics library than
OpenGL, and Android 2.2 through 4.1 implements the latest OpenGL ES 2.0 technology, just like

www.it-ebooks.info

http://developer.android.com/about/versions/jelly-bean.html
http://developer.android.com/about/versions/android-4.2.html
http://www.it-ebooks.info/

367CHAPTER 12: Advanced Android Topics

HTML5 does currently. Because Android phones have built-in GPU (graphics processing unit)
hardware, this means that you can “render” real-time 3D on the fly, to visualize just about anything
that you want to within your application, and in three dimensions to boot! This is another very logical
reason to use that default (suggested) API Level 8 through 16 support that is set as a default in the
New Android Application Project series of dialogs in Eclipse and that we have been using throughout
this book.

There are many other interesting areas to be discovered in Android as well, from creating your own
Audio Mixing App using the SoundPool Audio Engine to creating your very own SQLite databases
to using the Smartphone or Tablet Camera and MediaRecorder class to using the Face Recognition
class to identify unique people within your content. All of this is covered in fine detail on the Google
developer.android.com website, so be sure to go there to explore at length to enhance your
knowledge of the literally thousands of interesting features in Android OS, with many more to come
soon in the Android OS Version 5.0!

www.it-ebooks.info

http://www.it-ebooks.info/

369

Index

■ A
ACTION_DIAL, 306
ACTION_VIEW, 306
Active-Matrix Organic Light-Emitting Diode

(AMOLED), 17
activity_alternate.xml file, 339
activity_main.xml file, 165, 179
Advanced android topics, 351

camera class, 361
data storage

external memory, 360
internal memory, 359
MySQL Lite, 360
shared preference, 358

device administration, 360
3D graphics, 362
FaceDetector, 362
Google map, 357
Google search, 358
location-based service, 354
MediaRecorder, 363
SoundPool class, 362
troubleshooting, 353
VideoView class, 365
widget, 354

AlertDialog class, 203
AlertDialog.Builder class, 203
AlertDialog.Builder object, 204–205
AlertDialog object, 204
AlertDialog parameters, 205
builder dialog object, 204
builder object, 207
built-in dialog features, 203
customization code, 205
final method and class, 205
image object, 204–205

ImageView object, 207
import statements, 204
Java code, 204
method chaining, 205
NegativeButton, 206
NeutralButton, 206
OnClickListener() method, 207
onClick() method, 207
onOptionsItemSelected() method, 205
Pick an Image! alert dialog, 207–208
PositiveButton, 206
setNegativeButton() method, 206
setPositiveButton() method, 206
switch statement, 207

Alpha channel, 164
AlternateActivity.java class, 317
AnalogClock tag, 314, 318
Android

activities, 16
advantages of, 3–4
context menus, 256
focus control, 267
history of, 2–3
onKeyUp and onKeyDown

keyboard event listeners, 252
MainActivity class Java code, 254
shortcuts, 252

onLongClick() method, 249
touchscreen events, 248
UI events handling, 235

android.app.AlarmManager, 346
android.app.Dialog class, 203
Android application

APK file format, 112
components

activities, 115–116
broadcast receivers, 115, 117

www.it-ebooks.info

http://www.it-ebooks.info/

370 Index

content providers, 115, 118
Intent objects, 119
Manifest XML, 119
services, 115, 117

Android application development
Android location package, 20
application framework, 16
app widgets, 20
AVD, 14–15
content providers, 18
development environment, 13
Eclipse IDE, 14–15
Eclipse Juno 4.2.1, 15
Google Maps, 20
graphics and animation design, 17
intents and intent filters, 19
interactivity, 18
Inter-Android communication, 20
Internet connection, 13
Java, 15
Java EE IDE, 15
media tools, 13
screen layout design, 16
Smartphone hardware, 20
SQLite database, 20
user interface design, 17
XML, 15

Android Application option, Run As menu, 289
android.app.PendingIntent, 346
AndroidBasic color theory, 18
Android center Horizontal=“true” attribute, 314
Android Contacts database, 290
Android content providers

addButton, 299
addContact() method, 299–301, 303
addUri object, 302
AndroidManifest.xml file, 278
built-in content providers

Android MediaStore Content
Providers, 282

android.provider package, 280
Contacts Database Contact

Providers, 280
SQLite-based database

structures, 280
Button object, 299
Button tag, 298

Contacts icon, 304
CONTENT_URI constant, 302
ContentValues object, 301–302
databases, 277, 292
databases and database management

systems, 278
definition

Application name, 285
Build target, 285
Close Project option, 284
custom launcher icon creation, 285
data addition, 289
dot CONTENT_URI, 283
Minimum SDK version, 285
Package name, 285
Project name, 285
Project series of dialogs, 284
provider tag, 283
Security Permissions, 285

getContentResolver() method, 302–303
getContentResolver() operations, 303
import statements, 301, 303
MainActivity class, 299
Menu button, 304
myContact ContentValues object, 302
myContact object, 301–302
newName variable, 302
onClick event, 299
put() method, 302
queryButton variable, 299
queryContact() method, 301
RawContacts table, 302
Search function, 304
Uri object, 302
void method, 301

Android Developers web site, 10
Android Developer Toolkit (ADT), 55
Android development environment, 21, 53

AndroidManifest.xml file, 63
Android SDK

Accept All option, 34
API packages, 32–34
download, 28
Google Android Repositories, 31
Google servers, 30
installation, 28–30
Manager, 30
tools, 29

Android application (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

371Index

application creation
Android Application dialog, 68
application icon, 85
application name, 66
Blank Activity, 71
build SDK, 67
Custom Launcher Icon, 67
HelloActivity.java file, 75
inspecting and editing, 74
installing/upgrading dependencies, 72
launch Eclipse, 64
Launcher Icon configuration, 69
menu sequence and dialog, 66
Minimum Required SDK, 67
package installation, 73
package name, 67
progress bar, 74
project name, 67
run the app, 80
strings resource file, 77
UI layout definition, 76
variable value setting, 78
in workspace, 67

64-bit operating system, 21
components, 6
configuration

Android preferences dialog, 41–42
Check for Updates, 43
critical component, installation, 43–44
IDE updates, 43
information sharing, 41
license agreement, 44
restart Eclipse, 46
security warning, 45
update details, 44
updating software, 45

development tools
Android Project types, 40
DDMS, 37
Eclipse Quick Launch bar, 35
Google pulg, 36
HTTP site address, 36
installation requirements, 37
New Software installation, 35
restart Eclipse dialog box, 39
review the items, 37
software license approvement, 38
software outline, 39

directory structure
ADT, 55
compilation, 55
default resources, 57
resources folder and subfolders, 56
values folder, 58

DVM, 54
Eclipse Juno 4.2

download, 24
eclipse exe program execution, 27
extract file structure, 25
folder structure, 24
hard disk drive installation, 26
Pin to Taskbar option, 27
Quick Launch Taskbar

function, 28
WinZip extractor launch, 24

GIMP 2.8 installation, 50
installation 32-bit, 21
Java SE, 54
Java 6 SE and JRE, 22
language localization

alternate resource folders, 62
bitmap image, 61

rich media formats, 53
runtime, 53
Smartphone emulators, 46
transparency

copy menu sequence, 90
export menu sequence, 93
invert menu sequence, 89
layer, naming, 88
pixel scale operation, 96
scale image, 92
white background removal, 86

USB Smartphone drivers, 49
XML

for beginners, 59
CSS, 59
desktop clocks, 60
flexibility, 60
JavaScript, 59
screen sizes, 60

android:drawable attribute, 166
Android 4.1 emulator, 187–188, 248,

267, 274
alert dialog, 208
running UI design application, 197

www.it-ebooks.info

http://www.it-ebooks.info/

372 Index

android:inputType attribute, 339
AndroidManifest.xml, 63, 310

<activity> tag, 121
<application> tag, 121
components, 119–120
default properties, 119

secure access permissions, 120
system resources and memory, 120

<intent-filter> tag, 121
<manifest> tag, 120
<uses-sdk> tag, 121

AndroidManifest.xml file, 288, 328

ImageView object, 188
implementations

android.view.MenuItem, 200
android.widget.ImageView, 200
android.widget.RelativeLayout, 200
case statements, 199, 201
findViewById() method, 201
ID uilayout, 201
ImageView objects, 200–201
import statements, 200
MainActivity.java class, 198
MainActivity.java code, 199–200
vs. MenuInflater() code, 198
MenuObject, 201
onOptionsItemSelected()

method, 198–200
option menus, 202
RelativeLayout, 198
RelativeLayout object, 200–201
switch statement, 198–199, 201

inflating via Java, 195
item strings, 191
vs. PC menus, 188
running application, Android

Emulator, 196
structure with XML

activity_main.xml file, 189
activity_main.xml menu file, 190–191
id attribute, 190
inflater code, 189
item tags, 190–191
menu XML tag, 190
orderInCategory attribute, 190
showAsAction=”never” attribute, 190
title attribute, 190

Android package (APK), 16
android.permission.READ_CONTACTS, 287
android.permission.WRITE_CONTACTS

option, 287
Android SDK downloading, 10–11
Android services, 16

Android application component, 325
Android MediaPlayer, 325–328

activity_main.xml, 327
AndroidManifest.xml file,

eclipse, 328
GLE, 325
Graphical Layout tab of

Eclipse, 326
Start Button and Stop Button

labels, 328
third button UI element, 325

android name, 328
Button objects, 334
media player functional, 333
New Java Class, 329
processing-intensive services, 324
Run As ➤ Android Application, 336
service tag android enabled, 328

android:state_pressed attribute, 166
Android text attribute, 313
Android textSize attribute, 314
android.view.Menu, 195
Android virtual device (AVD), 14–15, 46
Anti-aliasing, 165
.apk file, 4, 16
Application package (APK) file

format, 112
expansion files, 112
packing and unpacking software

packages, 112
ZIP functionality, 112
Zoomerza, 112

App widgets, 20
AVD emulator, 16

■ B
Bitmap image, 211
bkgr RelativeLayout object, 201
Broadcast receivers, 16
Button class, 164
button1.xml file, 165

www.it-ebooks.info

http://www.it-ebooks.info/

373Index

■ C
CATEGORY_HOME, 306
Cel-based 2D animation

animation-list tag, 217
basic XML animation attribute, 214
control, Java

AnimationDrawable class, 219
ImageView, 219
ImageView UI element, 222
logoAnimHolder, 219
MainActivity java file, 218
onCreate() method, 220
onWindowFocusChanged()

method, 220
package fourth, graphics design, 218
run() method, 219

frame definition, 214
GraphicDesign Android 4.1 project, 214–215
item tag, 217
logo_animation, 215–216
running, emulator, 222
solid gold 3D logo, 214
XML code, 217
XML mark-up, 216–217

Close Project option, 284
Compilation process, 55
Contacts.ContactMethodsColumns, 280
ContactsContract.CommonDataKinds.

CommonColumns interface, 282
ContactsContract.ContactOptionsColumns

interface, 282
ContactsContract.ContactsColumns

interface, 282
ContactsContract.Contacts table, 289
ContactsContract.ContactStatusColumns

interface, 282
ContactsContract.GroupsColumns

interface, 282
ContactsContract.PhoneLookupColumns

interface, 282
ContactsContract.PresenceColumns

interface, 282
ContactsContract.SettingsColumns

interface, 282
ContactsContract.StatusColumns interface, 282
CONTACTS database, 285
Contacts.ExtensionsColumns, 280

Contacts.GroupsColumns, 280
Contacts icon, 291
Contacts.OrganizationColumns, 280
Contacts.PeopleColumns, 280
Contacts.PhonesColumns, 280
Contacts.PhotosColumns, 280
Contacts.PresenceColumns, 280
Contacts.SettingsColumns, 280
Content providers, 16
ContentProviders project folder, 311
Content resolver, 19
Context menus

Java
Button2 Button object, 259
contextFunction1(), 263
contextFunction2(), 263
ContextMenuInfo, 259
equals() method, 261
import statements, 259
MainActivity.java code, 264
makeText() method, 263
menu.add() methods, 260
menu.setHeaderTitle(), 260
onContextItemSelected() method, 259,

261–262
onContextMenuItemSelected()

method, 262
onCreateContextMenu() method,

259–261
registerForContextMenu() method, 260
Toast class, 263–264

LongClick event, 257
XML, 257

currentTimeMillis() method, 348

■ D
Dalvik Virtual Machine (DVM)

advantages, 54
embedded environments, 54

Database
activity_main.xml file, 292
android.database.Cursor class, 295
Android Project option, Run As menu, 297
android.widget.Toast class, 295
Button and TextView, 292
Button object declaration, 293
contactName string variable, 297

www.it-ebooks.info

http://www.it-ebooks.info/

374 Index

ContactsContract.Contacts.DISPLAY_
NAME_PRIMARY column, 297

Cursor object, 296
getColumnIndex() method, 297
getContentResolver() .query() method, 296
getString() method, 297
import statements, 293, 295
namCursor Cursor object, 297
nameCursor object, 296
onClick() container, 294
onClick event, 292–294
OnClickListener, 293
queryButton, 293
queryContact() method, 294–295
setOnClickListener() method, 293
/src/sixth.example.contentproviders/

MainActivity.java file, 293
while statement, 296

constant “_ID”, 279
fields, 278
record, 278
SQLite, 278

Device independent pixel (DIP), 184
Dialog class, 202–203
DialogInterface, 207
Dialog object, 203
Digital Clock Alternate Activity, 317
Download JDK button, 7
Downloads site, Java SE, 6
Drawable package, 210
drawable-xhdpi folder, 176–178

■ E
Eclipse Graphical Layout Editor, 184
Eclipse IDE, 184–185
Eclipse IDE, for Android development, 11
Eclipse SDK downloading, 9
Event callback methods, 236
Event listeners, 18
Explicit intents, 309
eXtensible Markup Language (XML)

constructs, 111
parameter, 111
tags, 111
uses, 110

■ F
FaceDetector, 362
Final class, 205
Finish() method, 323
Focus concept, 18
Focus control

availability setting, 276
Java

Android 4.1 emulator, 274
button2, 273
button3, 273
button4, 273
Eclipse Project ➤ Clean option, 274
onCreate() method, 272
registerForContextMenu() method, 273

XML
android:nextFocus attributes, 270–271
android:nextFocusDown attribute, 271
android:nextFocusUp attribute, 271
button2, 268
button3, 270
button4, 270
markup, 272
nextFocus attributes, 271
nextFocusDown attribute, 271

■ G
Galileo package, 9
getMenuInflater() method, 195
GIMP 2.8.2 Digital Imaging software, 13
GIMP 2.8, image button

button1_focused.png button, 173
button1_focused.png graphic, 173–174
button1_normal.png graphic, 174–175
button1_pressed png button, 173
button1_pressed.png graphic file, 171
Colors Menu, 168–169
90 degrees rotation, 170–171
Export dialog, 171–172
Hue-Saturation color adjustment tool

dialog, 169–170
Hue-Saturation submenu item, 168–169
ic_launcher.png file, 167
Open Image Dialog, 167–168
resource folder and drawable-xhdpi

sub-folder, 175–176

Database (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

375Index

Revert function, 173
three button graphics, 167
Transform submenu, 170
XML file, 175

Graphical Layout Editor (GLE), 243, 325
ImageView, 185
replacing default background, 182
TextView, 184

Graphics resources
bitmap images, 212–213

JPEG and GIF images, 213
ping (PNG) images, 212
WebP format, 212

drawable folder, 209
drawable package, 210
frame-based animation, 214
image implementation, 211
imaging techniques, 209
static graphics, 209
transitions

definition, 228
design, 229–230
image_transition.xml, 232
ImageView object, 230
setImageDrawable() method, 232
transImage, 232
TransitionDrawable class, 231–232

tween animation
control, java, 227
definition, 223
java code, 224
Raster Animation, 223
text_animation.xml file, 224
transformation, 223
Vector Animation, 223

user interface and experience design, 209
VP8, 210
WebP, 210

■ H
Half-size video graphics array (HVGA), 17

■ I
ImageButton class, 164, 183
ImageButton tag, 179, 185
ImageView object, 201

ImageView tag, 185
Implicit intents, 310
Indexed color, 212
Integrated development environment (IDE), 9
Intent

analog clock activity, 311
broadcast receivers

alarm function, 337
AlarmManager object, 347
AlternateActivity class, 344
android.app package, 346
Android 4.1 Emulator, 349
AndroidManifest.xml file, 343
android.widget package, 345
currentTimeMillis() method, 348
EditText object, 346
makeText() method, 348
myPendingIntent object, 348
onCreate() method, 344
PendingIntent object, 347
set() method, 347
setOnClickListener() method, 345
startTimer Button object, 345
timerAlert() method, 345–346
timerIntent, 346
Timer User Interface via XML

creation, 338
toString() method, 346
UI code and timerAlert() method, 349

Button tag, GLE, 314
class, 19
definition, 305
digital clock activity, 311
digital clock alternate activity, 317
Eclipse Graphical Layout Editor, 315
filters, 19
IntentFilters Android project, 311
MainActivity.java class, 312
main.xml file container, 313
objects

action, 306
ACTION_VIEW or ACTION_EDIT, 308
anatomy, 307
Bundle object, 309
category, 306
component name, 306–307
data, 306

www.it-ebooks.info

http://www.it-ebooks.info/

376 Index

extra information, 307
flags, 306
Intent, 308
IntentAndroid Services, 324
MIME types, 308
primary functions, 307
type, 306

onCreate() method, 321
resolution, 19

explicit, 309
implicit, 310

sending, 321
TextView tag, 313

311
1

20
166, 217

 J, K
7

6
5

99
Java Platform, Enterprise Edition

(Java EE), 8, 99
Java Platform, Standard Edition (Java SE), 6, 99
Java programming language

Java EE, 99
Java SE, 99
OOP characteristics, 99

Java SDK downloading, 6
Java SE Downloads section, Oracle, 6

■ L
Layout_below attribute, 314
Layout containers, 17
lossless image file, 212

■ M
MainActivity.java file, 195
makeText() method, 343
MediaPlayer, 324
MediaStore.Audio.AlbumColumns interface, 282
MediaStore.Audio.ArtistColumns interface, 283

MediaStore.Audio.AudioColumns interface, 283
MediaStore.Audio.GenresColumns

interface, 283
MediaStore.Audio.PlaylistsColumns

interface, 283
MediaStore.Files.FileColumns, 283
MediaStore.Images.ImageColumns

interface, 283
MediaStore.MediaColumns interface, 283
MediaStore.Video.VideoColumns

interface, 283
MenuInflater object, 195
Menu-related import statement, 195
Method chaining, 205
Multipurpose Internet Mail Extensions

(MIME), 308

■ N
New Android Project dialog, 284
New Java Class, 329

■ O
onClick events handling

activity_main.xml file editing, 244
anonymous class, 238
class declaration, 239
Eclipse, 239
emulator, 247
exampleListener variable, 238
MainActivity.java File editing

Add unimplemented methods, 241
Button widget and setOnClickListener()

method, 243
class definition, 242
GLE, 243
implements OnClickListener, 240
MainActivity keyword, 241
/src/EventHandling folder, 240

MainActivity.java updating, 246
onClick handler, 238
onCreate() method, 238
setOnClickListener() method, 239

OnClickListener() method, 207
onClick() method, 207, 236
onCreateContextMenu() method, 237
onCreate() method, 321

Intent (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

377Index

onCreateOptionsMenu() method, 195
onFocusChange() method, 237
onKeyDown() method, 254
onOptionsItemSelected() method,

198–201
OOP languages

behaviors, 100
car class

accelerateSpeed() method, 104
applyBrake() method, 105
class definition, 103
constructor, 106
dot notation, 106
inheritance, 107
instances, 102
onCreate() method, 106
package declaration, 109
public interface, 108
shiftGears() method, 104
turnWheel() method, 105
upShift() and downShift()

method, 104
variable definition, 103
void keyword, 103

car object, 100
object hierarchy, 101
states, 100
technical terminology, 101

OpenGL ES, 5
OpenGL ES 2.0, 361
Open Handset Alliance (OHA), 3
Open source, 3

■ P
Permissions tab, 286
Pixels, 211
Primitive data types, 359

■ Q
queryContact() method, 294

■ R
Real Time Clock (RTC) method, 347
RelativeLayout ViewGroup, 185
replyIntent, 323
Rubin, Andy, 2
Runtime software process, 22

■ S
Screen layout design

padding and margins, 159–160
view hierarchies

using XML, 127–129
view class, 125–126
viewGroup class, 125–126

selector tag, 165
Sending intent

AlternateActivity class, 322
android.view.View package, 321
android.widget.Button package, 321
Button object, 321
MainActivity.java, 322
MediaPlayer, 324
onClick() event handler, 321
replyIntent, 323
Run As Android Application, 323
startActivityForResult() method, 322

setBackgroundResource() method, 201
setCancelable(false) method, 205
setImageResource() method, 201
setListener() method, 237
setMessage() method, 205
setNegativeButton() methods, 206
setPositiveButton() method, 206
setResult() method, 323
Smartphone hardware, 20
Software Development Kits (SDKs), 5, 11

downloading
Android SDK, 10–11
Eclipse SDK, 9
Java SDK, 6

SoundPool class, 362
SQLite database, 20
startActivityForResult() method, 322
startService() method, 335
stopService() method, 336
strings.xml file, 180

■ T
Technology Network section, Java directory, 6
textUpdate() method, 254–255
TextView class, 183
TextView tag, 185
TextView widget, 183
Truecolor, 212–213

www.it-ebooks.info

http://www.it-ebooks.info/

378 Index

■ U
UI events, 18
UI events handling

event callback methods, 236
listening, 236
onClick events handling, 237
view class, 236

Uniform resource identifier (URI), 19
URI objects, 19
User interface (UI) design

dialog addition, 203
functional elements, 163
image addition, 185
image button addition

activity_main.xml file, 179
alpha channel, 164
anti-aliasing, 165
24-bit/32-bit PNG image, 164
Button class, 164
button1.xml file creation, 176
compositing, 164
Eclipse, 166
ImageButton class, 164
impressive type element, 163
multi-state image button graphics,

XML, 165
replacing default background, 182
three button, GIMP 2.8, 167

menus, 188
TextView widget addition, 183

Uses Permission entry option, 286
Uses-permission tag, 287
Uses Permission type option, 287

■ V
ViewGroup object, 17
View groups, 16
View object, 17
Views, 16

■ W
Wide video graphics array

(WVGA), 17
wrap_content attribute, 180
WRITE_CONTACTS, 285

■ X, Y, Z
XML, screen definition, 127
XML, screen layout definition

linear layouts, 129
activity_main.xml file,

134, 137
in Eclipse, 131
MainActivity.java file, 138
run the app, 140
strings.xml file, 136

onCreate() method, 128–129
relative layouts, 147, 149

activity_main.xml, 143
EditText element, 144
Graphical Layout Editor

tab, 146
layout_below, 145
project compilation, 149
sliding drawers, 143
Button tag, 147
requestFocus/tag, 145
TextView, 144

setting up, 128–129
sliding drawer, 150, 158

activity_main.xml, 152
AnalogClock UI widget, 153
android, 158–159
boundaries of, 159
in emulator, 159
FrameLayout, 151
open/close position, 157
XML markup, 153

www.it-ebooks.info

http://www.it-ebooks.info/

	Android Apps for Absolute Beginners
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Preliminary Information: Before We Get Started
	Some History: What Is Android?
	Advantage Android: How Can Android Benefit Me?
	The Scope of This Book
	What’s Covered
	What’s Not Covered

	Preparing for Liftoff: SDK Tools to Download
	Java
	Eclipse
	Android SDK

	Summary

	Chapter 2: What’s Next? Our Road Ahead
	Your Android Development IDE
	Java , XML , and How Android Works
	The Android Application Framework
	Screen Layout Design
	User Interface Design
	Graphics and Animation Design
	Interactivity
	Content Providers
	Intents and Intent Filters
	The Future of Android
	Summary

	Chapter 3: Setting Up Your Android Development Environment
	Installing Java, Eclipse, and Android
	Java 6 SE and JRE: Your Foundation for Application Development
	Eclipse Juno 4.2 for Java EE IDE: The Development Environment
	Android SDK: Android Software Development Kit for Eclipse
	Android Development Tool: Android Tools for Eclipse
	Configuring the Android Environment Inside of Eclipse

	Setting Up AVDs and Smartphone Connections
	AVDs: Smartphone and Tablet Emulators
	USB Smartphone Drivers: External Devices
	ADT Bundle and 64-bit IDE Support
	Installing GIMP 2.8 for Image Editing for Android Apps

	Summary

	Chapter 4: Introducing the Android Software Development Platform
	Understanding Java SE and the Dalvik Virtual Machine
	The Directory Structure of an Android Project
	Common Default Resources Folders
	The Values Folder

	Leveraging Android XML (Your Secret Weapon)
	Screen Sizes
	Desktop Clocks

	Using Your Android Application Resources
	Bitmap Images
	Alternate Resource Folders

	Launching Your Application: The AndroidManifest.xml File
	Creating Your First Android Application
	Launching Eclipse
	Creating an Android Project
	Inspecting and Editing the Android Application Files
	Opening the HelloActivity.java Activity
	Opening the UI Definition
	Opening the Strings Resource File

	Setting a Variable Value in strings.xml
	Running the App
	Adding an Application Icon
	Adding Transparency

	Summary

	Chapter 5: Android Framework Overview
	The Foundation of OOP: The Object
	Some OOP Terminology
	The Blueprint for an Object: The Class
	Providing Structure for Your Classes: Inheritance
	Defining an Interface
	Bundling Classes in a Logical Way: The Package

	An Overview of XML
	The Anatomy of an Android Application: The APK File
	Android Application Components
	Android Activities: Defining the UI
	Android Services: Processing in the Background
	Broadcast Receivers: Announcements and Notifications
	Content Providers: Data Management

	Android Intent Objects: Messaging for Components
	Android Manifest XML: Declaring Your Components
	Summary

	Chapter 6: Screen Layout Design: Views and Layouts
	Android View Hierarchies
	Using the View Class
	Nesting Views: Using the ViewGroup Class

	Defining Screen Layouts: Using XML
	Setting Up for Your Screen Layout
	Using Linear Layouts
	Creating the LinearLayouts Project in Eclipse

	Editing the activity_main.xml File
	Editing the strings.xml File
	Updating activity_main.xml File
	Viewing MainActivity.java
	Running the LinearLayout App

	Using Relative Layouts
	Sliding Drawer: Expanding Your UI
	Using Padding and Margins with Views and Layouts
	Setting Padding in Views
	Setting Margins in ViewGroups

	Summary

	Chapter 7: UI Design: Buttons, Menus, and Dialogs
	Using Android UI Elements (Widgets)
	Adding an Image Button to Your Layout
	Defining Multi-state Image Button Graphics in XML
	Creating the UI Design Image Button Project in Eclipse
	Creating Our Three UI Design Image Buttons in GIMP 2.8
	Creating the button1.xml File
	Editing the activity_main.xml File
	Replacing the Default Background

	Adding a TextView Widget to Your Layout
	Adding an Image

	Using Menus in Android
	Creating the Menu Structure with XML
	Defining Menu Item Strings
	Inflating the Menu Structure via Java
	Running the Application in the Android Emulator
	Making the Menu Work

	Adding Dialogs
	Using Custom Dialog Subclasses
	Displaying an Alert Dialog

	Summary

	Chapter 8: An Introduction to Graphics Resources in Android
	Introducing the Drawables
	Implementing Images
	Core Drawable Subclasses

	Using Bitmap Images in Android
	PNG Images
	JPEG and GIF Images

	Creating Animation in Android
	Frame-Based or Cel-Based 2D Animation
	Controlling Frame-Based Animation via Java
	Running the Frame-Based Animation App in the Emulator

	Tween Animation in Android
	Creating the text_animation.xml File
	Controlling Tween Animation via Java

	Using Transitions
	Summary

	Chapter 9: Adding Interactivity: Handling UI Events
	An Overview of UI Events in Android
	Listening for and Handling Events
	Handling UI Events via the View Class
	Event Callback Methods

	Handling onClick Events
	Implementing an onClick Listener for a UI Element
	Adding an onClick Listener to an Activity in Android
	Creating the Event Handling Examples Project in Eclipse
	Editing the MainActivity.java File
	Editing the activity_main.xml File
	Updating MainActivity.java
	Running the Event Handling Examples App in the Emulator

	Android Touchscreen Events : onTouch
	Android’s Right-Click Equivalent: onLongClick
	Key Event Listeners: onKeyUp and onKeyDown
	Adding the Java for Keyboard Events

	Context Menus in Android: onCreateContextMenu
	Adding the XML for Context Menus
	Adding the Java for Context Menus

	Controlling the Focus in Android
	Adding the XML for Focus Control
	Adding the Java for Focus Control
	Setting Focus Availability

	Summary

	Chapter 10: Understanding Content Providers
	An Overview of Android Content Providers
	Databases and Database Management Systems
	Android Built-In Content Providers
	Contacts Database Contact Providers
	Android MediaStore Content Providers

	Defining a Content Provider
	Creating the Content Providers Example Project in Eclipse
	Defining Security Permissions
	Adding Data to the Contacts Database

	Working with a Database
	Querying a Content Provider: Accessing the Content
	Appending to a Content Provider: Adding New Content

	Summary

	Chapter 11: Understanding Intents and Intent Filters
	What Is an Intent?
	Android Intent Messaging via Intent Objects
	Intent Resolution: Implicit Intents and Explicit Intents
	Explicit Intents
	Implicit Intents

	Using Intents with Activities
	Writing a Digital Clock Alternate Activity
	Wiring Up the Application
	Sending Intents

	Android Services: Data Processing in Its Own Class
	Using Intents with Services
	Creating a Service
	Implementing Our MediaPlayer Functions
	Wiring the Buttons to the Service
	Running the Application

	Using Intents with Broadcast Receivers
	Creating the Timer User Interface via XML
	Creating a Timer Broadcast Receiver
	Configuring the AndroidManifest.xml file <receiver> Tag
	Implementing our Intent
	Running the Timer Application via the Android 4.1 Emulator

	Summary

	Chapter 12: Advanced Android Topics
	Troubleshooting: Solving Problems on Your Own
	Widgets: Creating Your Own Widgets in Android
	Location-Based Service s in Android
	Google Maps in Android
	Google Search in Android
	Data Storage in Android
	Shared Preferences
	Internal Memory
	External Memory
	Using SQLite

	Device Administration: Security for IT Deployments
	Using the Android Camera Class to Control a Camera
	3D Graphics: Using OpenGL ES 2.0 in Android
	FaceDetector
	SoundPool
	MediaRecorder
	VideoView: Playing Video in Your Android Apps
	Adding a VideoView Object
	Adding the Java for Video

	New Features in Android 4.2
	Summary

	Index

