PHP 6 AND
MYSQL 5




VISUAL QUICKPRO GUIDE

PHP6
AND MYSQL 5

FOR DYNAMIC WEB SITES

Larry Ullman

Peachpit Press



Visual QuickPro Guide

PHP 6 and MySQL 5 for Dynamic Web Sites
Larry Ullman

Peachpit Press

1249 Eighth Street

Berkeley, CA 94710

510/524-2178

510/524-2221 (fax)

Find us on the Web at: www.peachpit.com

To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2008 by Larry Ullman

Editor: Rebecca Gulick

Copy Editor: Bob Campbell

Production Coordinator: Becky Winter

Compositors: Myrna Vladic, Jerry Ballew, and Rick Gordon
Indexer: Rebecca Plunkett

Cover Production: Louisa Adair

Technical Reviewer: Arpad Ray

Notice of rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the instructions contained in this book or by the computer software and hardware products
described in it.

Trademarks

MySQL is a registered trademark of MySQL AB in the United States and in other countries. Macintosh and
Mac OS X are registered trademarks of Apple Computer, Inc. Microsoft and Windows are registered trade-
marks of Microsoft Corporation. Other product names used in this book may be trademarks of their own
respective owners. Images of Web sites in this book are copyrighted by the original holders and are used
with their kind permission. This book is not officially endorsed by nor affiliated with any of the above com-
panies, including MySQL AB.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies
with no intention of infringement of the trademark. No such use, or the use of any trade name, is intended
to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-52599-4

ISBN-10: 0-321-52599-X

987654321

Printed and bound in the United States of America



Dedication

Dedicated to the fine faculty at my alma
mater, Northeast Missouri State University.
In particular, I would like to thank: Dr. Monica
Barron, Dr. Dennis Leavens, Dr. Ed Tyler, and
Dr. Cole Woodcox, whom I also have the
pleasure of calling my friend. I would not be
who I am as a writer, as a student, as a
teacher, or as a person if it were not for the
magnanimous, affecting, and brilliant
instruction I received from these educators.



Special Thanks to:

My heartfelt thanks to everyone at Peachpit
Press, as always.

My gratitude to editor extraordinaire Rebecca
Gulick, who makes my job so much easier.
And thanks to Bob Campbell for his hard
work, helpful suggestions, and impressive
attention to detail. Thanks also to Rebecca
Plunkett for indexing and Becky Winter,
Myrna Vladic, Jerry Ballew, and Rick Gordon
for laying out the book, and thanks to Arpad
Ray for his technical review.

Kudos to the good people working on PHP,
MySQL, Apache, phpMyAdmin, and XAMPP,
among other great projects. And a hearty
“cheers” to the denizens of the various news-
groups, mailing lists, support forums, etc., who
offer assistance and advice to those in need.

Thanks, as always, to the readers, whose sup-
port gives my job relevance. An extra helping
of thanks to those who provided the transla-
tions in Chapter 15, “Example—Message
Board.” and who offered up recommendations
as to what theyd like to see in this edition.

Thanks to Nicole and Christina for enter-
taining and taking care of the kids so that
I could get some work done.

Finally, I would not be able to get through

a single book if it weren't for the love and
support of my wife, Jessica. And a special
shout out to Zoe and Sam, who give me rea-
sons to, and not to, write books!



TABLE OF CONTENTS

Introduction:

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

ix
What Are Dynamic Web Sites? ................ b'e
What Youll Need ........................... xvi
About This Book ..................... ... ... xvii
Companion Web Site ............... ... ..., xix
Introduction to PHP 1
Basic Syntax .......... ... oo 2
Sending Data to the
Web Browser ................ i 6
Writing Comments .......................... 10
What Are Variables? ......................... 14
Introducing Strings ........... ... .. .. ... 18
Concatenating Strings ....................... 21
Introducing Numbers ........................ 23
Introducing Constants ....................... 27
Single vs. Double Quotation Marks ............ 30
Programming with PHP 33
Creatingan HTML Form ..................... 34
Handling an HTML Form .................... 38
Conditionals and Operators .................. 42
Validating Form Data ........................ 46
Introducing Arrays ............c..coiiiiiia.. 52
For and While Loops ...............ccooout. 70
Creating Dynamic Web Sites 73
Including Multiple Files ...................... 74
Handling HTML Forms, Revisited ............. 84
Making Sticky Forms ........................ 89
Creating Your Own Functions ................ 92
Introduction to MySQL 107
Naming Database Elements ................. 108
Choosing Your Column Types ............... 110
Choosing Other Column Properties .......... 114
Accessing MySQL ........ ... 116

SIN3LNO) 10 378V]



TABLE OF CONTENTS

Table of Contents

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

Introduction to SQL 123
Creating Databases and Tables ............... 124
Inserting Records ................... ... .. .. 127
SelectingData .................. ... .. ... 131
Using Conditionals ......................... 133
Using LIKE and NOT LIKE .................. 136
Sorting Query Results ....................... 138
Limiting Query Results ..................... 140
UpdatingData ................ ... .. 142
DeletingData ................. ... 144
Using Functions .............. ... ... ... 146
Advanced SQL and MySQL 157
Database Design ........................... 158
Performing Joins ............ ... ... .. ... 173
Grouping Selected Results ................... 178
Creating Indexes ........................... 180
Using Different Table Types ................. 185
Performing FULLTEXT Searches ............ 188
Performing Transactions .................... 194

Error Handling and Debugging 199

Error Types and Basic Debugging ............ 200
Displaying PHP Errors ...................... 206
Adjusting Error Reportingin PHP ............ 208
Creating Custom Error Handlers ............. 211
PHP Debugging Techniques ................. 216
SQL and MySQL Debugging Techniques ... ... 220
Using PHP with MySQL 223
Modifying the Template . .................... 224
Connectingto MySQL ...................... 226
Executing Simple Queries ................... 230
Retrieving Query Results .................... 239
Ensuring Secure SQL ............... ... ... 243
Counting Returned Records ................. 249
Updating Records with PHP ................. 251
Common Programming Techniques 259
Sending Values to a Seript ................... 260
Using Hidden Form Inputs .................. 264
Editing Existing Records .................... 270
Paginating Query Results . ................... 277
Making Sortable Displays ................... 285

Vi



Table of Contents

Chapter 10:

Chapter 11:

Chapter 12:

Chapter 13:

Chapter 14:

Web Application Development 291

Sending Email ........................ 0. 292
Date and Time Functions ................... 298
Handling File Uploads ...................... 302
PHP and JavaScript .......... ... 315
Understanding HTTP Headers ............... 322
Cookies and Sessions 327
Making a Login Page ....................... 328
Making the Login Functions ................ 331
Using Cookies ..., 336
Using Sessions .............oooviiiiiiina.nn. 349
Improving Session Security .................. 358
Security Methods 361
Preventing Spam ............. ... ... 362
Validating Data by Type ..................... 369
Preventing XSS Attacks ............ ... .. .. 374
Preventing SQL Injection Attacks ............ 377
Database Encryption ....................... 383
Perl-Compatible

Regular Expressions 389
Creating a Test Script ....................... 390
Defining Simple Patterns .................... 394
Using Quantifiers ............ .. .. .. ... .. 397
Using Character Classes ..................... 400
Finding All Matches ........................ 403
Using Modifiers ............ .. .. ... .. 407
Matching and Replacing Patterns ............ 409
Making Universal Sites 413
Character Sets and Encoding ................ 414
Creating Multilingual Web Pages ............. 416
Unicode in PHP .............. ... ... ... 420
Collationin PHP ............. ... ... .. 424
Transliteration in PHP ...................... 427
Languages and MySQL ..................... 430
Time Zones and MySQL .................... 434
Working with Locales ....................... 437

vii

SIN3LNO) 10 378V]



TABLE OF CONTENTS

Table of Contents

Chapter 15:

Chapter 16:

Chapter 17:

Appendix A:

Example—Message Board

Making the Database .................
Writing the Templates ................
Creating the IndexPage ...............
Creating the Forum Page ..............
Creating the Thread Page .............
Posting Messages .....................

Example—User Registration

Creating the Templates ...............
Writing the Configuration Scripts . ... ..
Creating the Home Page ..............
Registration ................ ... . ...
Activating an Account .................
Logging In and LoggingOut ............
Password Management ................

Example—E-Commerce

Creating the Database .................
The Administrative Side ...............
Creating the Public Template ...........
The Product Catalog ..................
The Shopping Cart ....................
Recording the Orders ..................

Installation

Installation on Windows ...............
Installationon Mac OS X ..............
MySQL Permissions ...................
Testing Your Installation ...............
Configuring PHP ......................

Index

viii



INTRODUCTION

Today’s Web users expect exciting pages that are updated frequently and provide a
customized experience. For them, Web sites are more like communities, to which
they’ll return time and again. At the same time, Web site administrators want sites
that are easier to update and maintain, understanding that’s the only real way to
keep up with visitors’ expectations. For these reasons and more, PHP and MySQL
have become the de facto standards for creating dynamic, database-driven Web sites.

This book represents the culmination of my many years of Web development experi-
ence coupled with the value of having written several previous books on the technologies
discussed herein. The focus of this book is on covering the most important knowledge
in the most efficient manner. It will teach you how to begin developing dynamic Web
sites and give you plenty of example code to get you started. All you need to provide

is an eagerness to learn.

Well, that and a computer.

NOILONAOYLN]



WHAT ARE DYNAMIC WEB SITES?

Introduction

What Are Dynamic

Web Sites?

Dynamic Web sites are flexible and potent
creatures, more accurately described as
applications than merely sites. Dynamic

Web sites

¢ Respond to different parameters (for
example, the time of day or the version of
the visitor's Web browser)

¢ Have a “memory, allowing for user regis-
tration and login, e-commerce, and simi-
lar processes

¢ Often have interfaces where administra-
tors can manage the site’s content

¢ Are easier to maintain, upgrade, and

build upon than statically made sites

There are many technologies available for
creating dynamic Web sites. The most com-

mon are ASPNET (Active Server Pages, a

¢ Almost always have HTML forms, so that
people can perform searches, provide
feedback, and so forth

Microsoft construct), JSP (Java Server Pages),
ColdFusion, Ruby on Rails, and PHP. Dynamic
Web sites don't always rely on a database,
but more and more of them do, particularly
as excellent database applications like
MySQL are available at little to no cost.

é'eﬁ-eral-purpose scripting
language that is especially
suited for Web
development and can be
embedded inte HTML. If
you are new to PHP and
want to get some idea of
how it works, try the
introductory tutorial. After
that, check out the online
manual, and the example
archive sites and some of
the other resources
available in the links
section.

Ever wondered how
popular PHP is? see the
Netcraft Survey.

Thanks To

easyDNS

Directi

pair Networks
EV1Servers

Server Central

Hosted Solutions
Spry VPS Hosting

eZ Systems / HIT
OSU Open Source Lab
Yahoo! Inc.

PHP: Hypertext Preprocessor

search far IR function list

Upcoming conferences: DC PHP Conference 2007 Forum PHP Paris 2007

The new documentation build system is ready for testing

{f03-0c8-2007] The PHP documentation team is pleased te announce the initial release of the new build
system that generates the PHP Manual. Written in PHP, PhD ([PH]P based [D]ocBook renderer)
builds are now available for viewing at docs.php.net. Everyone is encouraged to test and use this
system so that bugs will be found and squashed.

Once the new build system is stable, expect additional changes to the PHP manual that will include an
improved navigation system and styling for OOP documentation.

Feel free to set this developmental mirror as your default by using my.php.

Stable |

Historical PHP 4 Stabl

Relea ate.
| Current FHP 5 RC: 5.2.5RCL

Upcoming Events [add]
October

User Group Events

28. Meeting LAMP en

PHP 5.2.4 Released

{30-Aug-2007F The PHP development team would like to announce the immediate availability of PHP
5.2.4. This release focuses on improving the stability of the PHP 5.2.X branch with over 120 various
bug fixes in addition to resclving several low priority security bugs. All users of PHP are encouraged
to upgrade to this release.

Further details about the PHP 5.2.4 release can be found in the release announcement for 5.2.4, the
full list of changes is available in the Changelog for PHP 5.

Security Enhancements and Fixes in PHP 5.2.4:

= Fixed a floating point excepticn inside wordwrap() (Reported by Mattias Bengtsson)

= Fixed several integer overflows inside the GD extension (Reported by Mattias Bengtsson)
» Fixed size calculation in chunk_split() (Reported by Gerhard Wagner)

Fixed integer overflow in str[c]spn(). (Reported by Mattias Bengtsson)

= Fixed money_format() not to accept multiple %i or %n tokens. (Reported by

Caceres

29. Long Island PHP
Users Group

30. Malaysia PHP Meetup
30. PHP Usergroup
Karlsruhe

30. PHPUG Wuerzburg
31. Irish PHP Users Group
meeting

November

Conferences

6. International PHP
Conference

7. 2007 DC PHP
Conference

BinarySEC Malyshev) 10. Anoia PHP Conference | |
NEXCESS.NET - S N - 12. ApacheCon US 2007 |.
L] |Tl:(nenri\zend_alls:r_lm_entry() memery_limit interruption vulnerability. (Reported by Stefan 21. Forum PHP - Paris ;

Figure i.1 The home page for PHP.




Introduction

What is PHP?

PHP originally stood for “Personal Home
Page” as it was created in 1994 by Rasmus
Lerdorf to track the visitors to his online
résumé. As its usefulness and capabilities
grew (and as it started being used in more
professional situations), it came to mean
“PHP: Hypertext Preprocessor.”

According to the official PHP Web site,
found at www.php.net (Figure i.1), PHP is a
“widely-used general-purpose scripting lan-
guage that is especially suited for Web devel-
opment and can be embedded into HTML.”
It’s a long but descriptive definition, whose
meaning I'll explain.

Starting at the end of that statement, to say
that PHP can be embedded into HTML means
that you can take a standard HTML page,
drop in some PHP wherever you need it, and
end up with a dynamic result. This attribute
makes PHP very approachable for anyone
that’s done even a little bit of HTML work.

Also, PHP is a scripting language, as
opposed to a programming language: PHP was
designed to write Web scripts, not stand-
alone applications (although, with some extra
effort, you can now create applications in
PHP). PHP scripts run only after an event
occurs—for example, when a user submits

a form or goes to a URL.

I should add to this definition that PHP is

a server-side, cross-platform technology, both
descriptions being important. Server-side
refers to the fact that everything PHP does
occurs on the server. A Web server applica-
tion, like Apache or Microsoft’s IIS (Internet
Information Services), is required and all
PHP scripts must be accessed through a
URL (http://-something). Its cross-platform
nature means that PHP runs on most oper-
ating systems, including Windows, Unix
(and its many variants), and Macintosh.
More important, the PHP scripts written on
one server will normally work on another
with little or no modification.

At the time the book was written, PHP was
at version 5.2.4, with version 4.4.7 still being
maintained. Support for version 4 is being
dropped, though, and it's recommended that
everyone use at least version 5 of PHP. This
edition of this book actually focuses on ver-
sion 6 of PHP, to be released in late 2007 or
in 2008. If you're still using version 4, you
really should upgrade. If that’s not in your
plans, then please grab the second edition of
this book instead. If you're using PHP 5,
either the second or this edition of the book
will work for you. In this edition, I will make
it clear which features and functions are
PHP 6-specific.

$SALIS 93 DIWYNAQ J¥Y LYHM



WHAT ARE DYNAMIC WEB SITES?

Introduction

What’s new in PHP 6

Because of the planned extinction of PHP 4,
many users and Web hosting companies will
likely make a quick transition from PHP 4 to
PHP 5 to PHP 6. To discuss what's new in
PHP 6, I'll start with the even bigger differ-
ences between PHP 4 and 5.

PHP 5, like PHP 4 before it, is a major new
development of this popular programming
language. The most critical changes in PHP 5
involve object-oriented programming
(OOP).Those changes don't really impact
this book, as OOP isn't covered (I do so in
my book PHP 5 Advanced: Visual QuickPro
Guide). With respect to this book, the
biggest change in PHP 5 is the addition of
the Improved MySQL Extension, which is
used to communicate with MySQL. The
Improved MySQL Extension offers many
benefits over the older MySQL extension
and will be used exclusively.

The big change in PHP 6 is support for
Unicode, which is to say that PHP can now
handle characters in every language in the
world. This is huge, and it’s also one of the
reasons it's taken a while to release PHP 6.
What this means in terms of programming
is covered in Chapter 14, “Making Universal
Sites.” The information in that chapter is
also used in Chapter 15, “Example—Message
Board.” Beyond Unicode support, PHP 6 cleans
up a lot of garbage that was left in PHP 5 even
though the recommendation was not to use
such things. The two biggest removals are the
“Magic Quotes” and “register globals” features.

Why use PHP?

Put simply, when it comes to developing
dynamic Web sites, PHP is better, faster, and
easier to learn than the alternatives. What
you get with PHP is excellent performance,
a tight integration with nearly every database
available, stability, portability, and a nearly
limitless feature set due to its extendibility.
All of this comes at no cost (PHP is open
source) and with a very manageable learning
curve. PHP is one of the best marriages I've
ever seen between the ease with which
beginning programmers can start using it
and the ability for more advanced program-
mers to do everything they require.

Finally, the proof'is in the pudding: PHP has
seen an exponential growth in use since its
inception, overtaking ASP as the most pop-
ular scripting language being used today. It's
the most requested module for Apache (the
most-used Web server), and by the time this
book hits the shelves, PHP will be on nearly
25 million domains.

Of course, you might assume that I, as the
author of a book on PHP (several, actually),
have a biased opinion. Although not nearly
to the same extent as PHP, I've also devel-
oped sites using Java Server Pages (JSP),
Ruby on Rails (RoR), and ASPNET. Each has
its pluses and minuses, but PHP is the tech-
nology I always return to. You might hear
that it doesn’t perform or scale as well as
other technologies, but Yahoo! handles over
3.5 billion hits per day using PHP (yes, billion).
You might also wonder how secure PHP is.
But security isn't in the language; it’s in how
that language is used. Rest assured that

a complete and up-to-date discussion of all
the relevant security concerns is provided
by this book!

Xii



Introduction

How PHP works

As previously stated, PHP is a server-side
language. This means that the code you write
in PHP sits on a host computer called a server.
The server sends Web pages to the request-
ing visitors (you, the client, with your Web
browser).

When a visitor goes to a Web site written in
PHP, the server reads the PHP code and then
processes it according to its scripted direc-
tions. In the example shown in Figure i.2,
the PHP code tells the server to send the
appropriate data—HTML code—to the Web
browser, which treats the received code as it
would a standard HTML page.

Client URL Request

This differs from a static HTML site where,
when a request is made, the server merely
sends the HTML data to the Web browser
and there is no server-side interpretation
occurring (Figure i.3). Because no server-
side action is required, you can run HTML
pages in your Web browser without using a
server at all.

To the end user and their Web browser there
is no perceptible difference between what
home . html and home . php may look like, but
how that page’s content was created will be
significantly different.

Server

11T 111 ® I

HTML

"Rl [ [ [ )

Script
HTML ) Request
™
PHP

Figure i.2 How PHP fits into the client/server model when a user requests

a Web page.

Client URL Request

Server
ei‘gj = -|~::||||||||u||||| I I |

HTML

o

Figure i.3 The client/server process when a request for a static HTML page is

made.

$SALIS 93 DIWYNAQ J¥Y LYHM



WHAT ARE DYNAMIC WEB SITES?

Introduction

What is MySQL?

MySQL (www.mysql.com, Figure i.4) is the
world’s most popular open-source database.
In fact, today MySQL is a viable competitor
to the pricey goliaths such as Oracle and
Microsoft’s SQL Server. Like PHP, MySQL
offers excellent performance, portability, and
reliability, with a moderate learning curve
and little to no cost.

MySQL is a database management system
(DBMS) for relational databases (therefore,
MySQL is an RDBMS). A database, in the
simplest terms, is a collection of interrelated
data, be it text, numbers, or binary files, that
are stored and kept organized by the DBMS.

There are many types of databases, from the
simple flat-file to relational and object-oriented.
A relational database uses multiple tables to
store information in its most discernable

parts. While relational databases may involve

more thought in the design and program-
ming stages, they offer an improvement to
reliability and data integrity that more than
makes up for the extra effort required.
Further, relational databases are more search-
able and allow for concurrent users.

By incorporating a database into a Web appli-
cation, some of the data generated by PHP
can be retrieved from MySQL (Figure i.5).
This further moves the site’s content from a
static (hard-coded) basis to a flexible one,
flexibility being the key to a dynamic Web site.

MySQL is an open-source application, like
PHP, meaning that it is free to use or even
modify (the source code itself is download-
able). There are occasions in which you
should pay for a MySQL license, especially if
you are making money from the sales or
incorporation of the MySQL product. Check
MySQL:s licensing policy for more informa-
tion on this.

GET STARTED ‘r ";ﬂ
v
-

Servers for the

11234567

8em66 MySQL AB :: The world's most popular open source database =
N
MHSQL The world's most popular open source database — ﬂl
Login | Reqister

+ Products + Services * Partners & Solutions * Community * Customers * Why MySQL? * News & Events + About * How to Buy

I"fySQL Enterprise Unlimited

Deploy an unlimited number of ¥
st of a single CPU of Oracle

wEntenprise Edition!

m TEST DRIVE LEARN w NEW

[0 RN |

ySQL Enterprise

Learn More »

» QEM/ISW Corner
» CIO Corner

- White Papers

» TCO Calculator
» DBA Calculator

Leamn how MySQL is
used in:

» Embedded
applications

» Zmall and Medium
Businesses

» Custorn Applications

» MySQL Enterprise
30-day Trial

» Enterprise Grade
Monitor and
Advisors

» Demos

» Downloads

» Buy

» Contact MySQL

MySQL Enterprise

Free Web Seminars

» Partners Cnly:
What's Mew in the
MyS0L Enterprise
Fall 2007 Release?
Thu, Mow 01

» Designing,
Evaluating and
Benchrmarking
MySQL Cluster
Thu, Mow 08

» More Web Seminars

MySQL Training

News & Events

» The MySQL
Embedded Database
Server Powers
Seiencelogic
Network
Management
Meta-appliances

» Oracle Users
Indicate Increase in
Use of Open Source

= MySQL is Hiring

+ MySQL Training iPod
Shuffle Offer

Figure i.4 The
home page for the
MySQL database
application.

Xiv



Introduction

The MySQL software consists of several
pieces, including the MySQL server (mysqgld,
which runs and manages the databases), the
MySQL client (mysql, which gives you an
interface to the server), and numerous utili-
ties for maintenance and other purposes.
PHP has always had good support for
MySQL, and that is even more true in the
most recent versions of the language.

MySQL has been known to handle databases
as large as 60,000 tables with more than five
billion rows. MySQL can work with tables as
large as eight million terabytes on some
operating systems, generally a healthy 4 GB

Client URL Request

otherwise. MySQL is used by NASA and
the United States Census Bureau, among
many others.

At the time of this writing, MySQL is on ver-
sion 5.0.45, with versions 5.1 and 6.0 in devel-
opment. The version of MySQL you have
affects what features you can use, so it’s
important that you know what you're work-
ing with. For this book, MySQL 5.0.45 was used,
although you should be able to do everything
in this book as long as you're using a version
of MySQL greater than 4.1. (My book MySQL:
Visual QuickStart Guide goes into the more
advanced and newer features of MySQL 5
that aren't used in this book.)

= fllC
« - | |
- /JZ/</’

J
W

*

e T e Sy T Jd

Script Request

Query

/" PHP .paa

Figure i.5 How most of the dynamic Web applications in this book will work,

using both PHP and MySQL.

Pronunciation Guide

Trivial as it may be, I should clarify up
front that MySQL is technically pronounced
“My Ess Que Ell,” just as SQL should be
said “Ess Que EIl” This is a question many
people have when first working with
these technologies. While not a critical
issue, it’s always best to pronounce
acronyms correctly.

XV

$SALIS 93 DIWYNAQ J¥Y LYHM



WHAT You'LL NEED

Introduction

What You’ll Need

To follow the examples in this book, you'll
need the following tools:

¢ A Web server application (for example,
Apache, Abyss, or IIS)

¢ PHP
* MySQL

¢ A Web browser (Microsoft’s Internet
Explorer, Mozilla’s Firefox, Apple’s Safari,
etc.)

¢ A text editor, PHP-capable WYSIWYG
application (Adobe’s Dreamweaver quali-
fies), or IDE (integrated development
environment)

¢ An FTP application, if using a remote
server

One of the great things about developing
dynamic Web sites with PHP and MySQL is
that all of the requirements can be met at no
cost whatsoever, regardless of your operating
system! Apache, PHP, and MySQL are each
free; most Web browsers can be had without
cost; and many good text editors are avail-
able for nothing.

The appendix discusses the installation
process on the Windows and Mac OS X
operating systems. If you have a computer,
you are only a couple of downloads away
from being able to create dynamic Web sites
(in that case, your computer would represent
both the client and the server in Figures i.2
and 1.5). Conversely, you could purchase Web
hosting for only dollars per month that will
provide you with a PHP- and MySQL-enabled
environment already online.

Xvi



Introduction

About This Book

This book teaches how to develop dynamic
Web sites with PHP and MySQL, covering
the knowledge that most developers might
require. In keeping with the format of the
Visual QuickPro series, the information is
discussed using a step-by-step approach
with corresponding images. The focus has
been kept on real-world, practical examples,
avoiding “here’s something you could do but
never would” scenarios. As a practicing Web
developer myself, I wrote about the informa-
tion that I use and avoided those topics
immaterial to the task at hand. As a practic-
ing writer, I made certain to include topics
and techniques that I know readers are ask-
ing about.

The structure of the book is linear, and the
intention is that you'll read it in order. It
begins with three chapters covering the fun-
damentals of PHP (by the second chapter,
you will have already developed your first
dynamic Web page). After that, there are
three chapters on SQL (Structured Query
Language, which is used to interact with all
databases) and MySQL. They teach the basics
of SQL, database design, and the MySQL
application in particular. Then there’s one
chapter on debugging and error manage-
ment, information everyone needs. This is
followed by a chapter introducing how to
use PHP and MySQL together, a remarkably
easy thing to do.

The following five chapters teach more
application techniques to round out your
knowledge. Security, in particular, is repeat-
edly addressed in those pages. Chapter 14,
“Making Universal Sites,” is entirely new to
this edition of the book, showing you how to
broaden the reach of your sites. Finally, I've
included three example chapters, in which
the heart of different Web applications are
developed, with instructions.

Is this book for you?

This book was written for a wide range of
people within the beginner-to-intermediate
range. The book makes use of XHTML for
future compatibility, so solid experience
with XHTML, or its forebear HTML, is a
must. Although this book covers many
things, it does not formally teach HTML or
Web page design. Some CSS is sprinkled
about these pages but also not taught.

Second, this book expects that you have one
of the following:

¢ The drive and ability to learn without
much hand holding, or...

¢ Familiarity with another programming
language (even solid JavaScript skills
would qualify), or...

¢ A cursory knowledge of PHP

Make no mistake: This book covers PHP and
MySQL from A to Z, teaching everything
you'll need to know to develop real-world
Web sites, but particularly the early chapters
cover PHP at a quick pace. For this reason I
recommend either some programming expe-
rience or a curious and independent spirit
when it comes to learning new things. If you
find that the material goes too quickly, you
should probably start off with the latest edi-
tion of my book PHP for the World Wide
Web: Visual QuickStart Guide, which goes at
a more tempered pace.

No database experience is required, since
SQL and MySQL are discussed starting at a
more basic level.

Xvii

%00g SIH] Lnogy



ABOUT THIS Book

Introduction

What’s new in this edition

The first two editions of this book have been
very popular, and I've received a lot of posi-
tive feedback on them (thanks!). In writing
this new edition, I wanted to do more than
just update the material for the latest ver-
sions of PHP and MySQL, although that is
an overriding consideration throughout the
book. Other new features you'll find are:

¢ New examples demonstrating techniques
frequently requested by readers

¢ Some additional advanced MySQL and
SQL examples

¢ A dedicated chapter on thwarting com-
mon Web site abuses and attacks

¢ A brand-new chapter on working with
multiple languages and time zones

¢ A brand-new example chapter on creat-
ing a message board (or forum)

¢ Expanded and updated installation and
configuration instructions

¢ Removal of outdated content (e.g., things
used in older versions of PHP or not
applicable to PHP 6)

For those of you that also own the first
and/or second edition (thanks, thanks,
thanks!), I believe that these new features
will also make this edition a required fixture
on your desk or bookshelf.

How this book compares to my
other books

This is my fourth PHP and/or MySQL title,
after (in order)

& PHP for the World Wide Web: Visual
QuickStart Guide

& PHP 5 Advanced for the World Wide Web:
Visual QuickPro Guide

& MySQL: Visual QuickStart Guide

I hope this résumé implies a certain level of
qualification to write this book, but how do
you, as a reader standing in a bookstore,
decide which title is for you? Of course, you
are more than welcome to splurge and buy
the whole set, earning my eternal gratitude,
but...

The PHP for the World Wide Web: Visual
QuickStart Guide book is very much a begin-
ners guide to PHP. This title overlaps it
some, mostly in the first three chapters, but
uses new examples so as not to be redun-
dant. For novices, this book acts as a follow-
up to that one. The advanced book is really a
sequel to this one, as it assumes a fair
amount of knowledge and builds upon many
things taught here. The MySQL book focus-
es almost exclusively on MySQL (there are
but two chapters that use PHP).

With that in mind, read the section “Is this
book for you?” and see if the requirements
apply. If you have no programming experi-
ence at all and would prefer to be taught
PHP more gingerly, my first book would be
better. If you are already very comfortable
with PHP and want to learn more of its
advanced capabilities, pick up the second. If
you are most interested in MySQL and are
not concerned with learning much about
PHP, check out the third.

That being said, if you want to learn every-
thing you need to know to begin developing
dynamic Web sites with PHP and MySQL
today, then this is the book for you! It refer-
ences the most current versions of both
technologies, uses techniques not previously
discussed in other books, and contains its
own unique examples.

And whatever book you do choose, make sure
you're getting the most recent edition or,
barring that, the edition that best matches
the versions of the technologies you'll be using,

Xviii



Introduction

Companion Web Site

I have developed a companion Web site
specifically for this book, which you may
reach at waw.DMCinsights.com/phpmysql3/
(Figure i.6). There you will find every script
from this book, a text file containing lengthy
SQL commands, and a list of errata that
occurred during publication. (If you have
problem with a command or script, and you
are following the book exactly, check the
errata to ensure there is not a printing error
before driving yourself absolutely mad.) At
this Web site you will also find useful Web
links, a highly popular forum where readers
can ask and answer each other’s questions
(I answer many of them myself), and more!

Questions, comments, or
suggestions?

If you have any questions on PHP or MySQL,
you can turn to one of the many Web sites,
mailing lists, newsgroups, and FAQ reposito-
ries already in existence. A quick search online
will turn up virtually unlimited resources.
For that matter, if you need an immediate
answer, those sources or a quick Web search
will most assuredly serve your needs (in all
likelihood, someone else has already seen
and solved your exact problem).

You can also direct your questions, comments,
and suggestions to me. You'll get the fastest
reply using the book’s corresponding forum
(I always answer those questions first). If
youd rather email me, my contact informa-
tion is available on the Web site. I do try to
answer every email I receive, although I can-
not guarantee a quick reply.

8em6 PHP 6 and MySQL 5 for Dynamic Web Sites: Visual QuickPro Guide (3rd Edition)::Home Page =

specializing in digital media technologies

DM ’

C 1

Ifyou have a guestion, are
geeking infarmation, want to

BookHome | Reviews = Table of Contents = Downloads | Errata | Farum

About PHP 6 and MySQL 5 for Dynamic Web Sites: Visual
QuickPro Guide (3rd Edition)

‘Welcome to the companion Web site for the third edition of the book PHP 6 and MySQL 5 for
Dwnamic Web Sites: Visual QuickPro Guide (previous editions were called just PHP and Weekend
MySQL for Dvnarmic Web Sites: |sual QuickPra Guids). The hook was written by Larry

Forums Read-Only Over the

download files, or generally
have any need related to a
specific book, please make
sure you are in the correct
Weh site. Check both the
title and the edition.

Generic Book Pages

Full Book List
Aout Pages

Buy

Contactthe Author
Extras

FAQ

Links

News

MNewsletter Slanup
MNewsletter Archives
DMCI Home

Ullman and published by Peachpit Press in December 2007. If you are using the first edition
afthe book, you should go to that Web site Ifvou are using the second edition of the baok,
wou should go to thatWeh site

This site s intenced to augment the information presented in the book, aswell asto correct
any errors that may be present. Aswith all Web sites, the content here will be constantly
changing s0 please continue to check hack time and again for more useful information,

Ithankyou far your interest and hope that the book and this site help you with your PHP and
MyS0OL Web development!

Sincerely,
Larry

Currently the site consists of:

Reviews
Formal reviews and reader comments on the book.

Table of Contents
The book's table of contents.

Downloads
Cownload every script and SQL command fram the book.

Errata

The farums will be set fo read-only
mode {i.e, you can'tpost) over the
weekend while | fransition to a new
=erver. | apologize for any
Incanvenience

(hugust 10, 2007)

Email Address Changes

To cut down on the amaunt of spam |
get, I'm getting rid of many email
addresses. Thisincludes ry primary
ermail address and the older
book-specific ones. [fyou atternpt ta
send an email to one of these, the
message will be bounced back,
indicating that you can find the
carrect address by visiting the site
My apologies for any inconvenience.
(July 18, 2007)

Announcement: Larry Uliman's
MewsletterMailing List

Ihave (nally) created a
newsletterimailing list as a way to
reqularly undate readers. |intend to

N

Figure i.6 The companion Web site for this book.

Xix

311§ 93 A NOINVdWO)



This page intentionally left blank



INTRODUCTION
TO PHP

To use an old chestnut, every journey starts with one small step, and the first step in
developing dynamic Web applications with PHP and MySQL is to learn the fundamen-
tals of the scripting language itself.

Although this book focuses on using MySQL and PHP in combination, you'll do a
vast majority of your legwork using PHP alone. In this and the following chapter,
you'll learn its basics, from syntax to variables, operators, and language constructs
(conditionals, loops, and whatnot). At the same time you are picking up these
fundamentals, you'll also begin developing usable code that you'll integrate into
larger applications later in the book.

This introductory chapter will cruise through most of the basics of the PHP language.
You'll learn the syntax for coding PHP, how to send data to the Web browser, and
how to use two kinds of variables (strings and numbers) plus constants. Some of the
examples may seem inconsequential, but they’ll demonstrate ideas you'll have to
master in order to write more advanced scripts further down the line.

dHd Ol NOILDONAOYLN]



BASIC SYNTAX

Chapter 1

Basic Syntax

As stated in the book’s introduction, PHP is
an HTML-embedded scripting language.
This means that you can intermingle PHP
and HTML code within the same file. So

to begin programming with PHP, start with
a simple Web page. Script 1.1 gives an
example of a no-frills, no-content XHTML
Transitional document, which will be used
as the foundation for every Web page in the
book (this book does not formally discuss
[X]JHTML; see a resource dedicated to the
topic for more information).

To add PHP code to a page, place it within
PHP tags:

<?php
7>

Anything placed within these tags will be
treated by the Web server as PHP (meaning
the PHP interpreter will process the code).
Any text outside of the PHP tags is immedi-
ately sent to the Web browser as regular
HTML.

Along with placing PHP code within PHP
tags, your PHP files must have a proper
extension. The extension tells the server to
treat the script in a special way, namely, as a
PHP page. Most Web servers will use . html
or .htm for standard HTML pages, and nor-
mally, .php is preferred for your PHP files.

To make a basic PHP script:

1. Create a new document in your text
editor or Integrated Development
Environment (Script 1.2).

It generally does not matter what appli-
cation you use, be it Dreamweaver (a
fancy IDE), BBEdit (a great and popular

Macintosh plain-text editor), or vi (a plain-

text Unix editor, lacking a graphical
interface). Still, some text editors and

Script 1.1 A basic XHTML 1.0 Transitional Web page.
eoce = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1-transitional.dtd">

2 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

3 <head>

4 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

5 <title>Page Title</title>

6 </head>

7 <body>

8 </body>

9 </html>




Introduction to PHP

Script 1.2 This first PHP script doesn’t do anything,
per se, but does demonstrate how a PHP script is
written. It’ll also be used as a test, prior to getting
into elaborate PHP code.

8oe = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1-transitional.dtd">

2 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

3 <head>

4 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

5 <title>Basic PHP Page</title>
6 </head>
7 <body>

8 <p>This is standard HTML.</p>

9 <?php
10 7>

11 </body>
12 </html>

IDEs make typing and debugging HTML
and PHP easier (conversely, Notepad on
Windows does some things that makes
coding harder). If you don't already have
an application you're attached to, search
the Web or use the book’s corresponding
forum (www.DMCInsights.com/phorum/) to
find one.

. Start a basic HTML document.

<!DOCTYPE html PUBLIC "-//W3C//
» DTD XHTML 1.0 Transitional//EN""
» http://www.w3.org/TR/xhtml1/DTD/
» xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="content-type"
» content="text/html; charset=
» 150-8859-1" />
<title>Basic PHP Page</title>
</head>
<body>
<p>This is standard HTML.</p>
</body>
</html>

Although this is the syntax being used
throughout the book, you can change
the HTML to match whichever standard
you intend to use (e.g., HTML 4.0 Strict).
Again, see a dedicated (X)HTML
resource if you're unfamiliar with this
HTML code (see the first tip).

continues on next page

XVLNAS JISvyg



BASIC SYNTAX

Chapter 1

3.

Before the closing body tag, insert your
PHP tags.

<?php
7>

These are the formal PHP tags, also
known as XML-style tags. Although PHP
supports other tag types (see the second
tip), I recommend that you use the for-
mal type, and I will do so throughout
this book.

Save the file as first.php.

Remember that if you don't save the file
using an appropriate PHP extension, the
script will not execute properly.

Place the file in the proper directory of
your Web server.

If you are running PHP on your own
computer (presumably after following
the installation directions in Appendix
A, “Installation”), you just need to move,
copy, or save the file to a specific folder
on your computer. Check the documen-
tation for your particular Web server to
identify the correct directory, if you don't
already know what it is.

If you are running PHP on a hosted server
(i.e., on a remote computer), you'll need
to use an FTP application to upload the
file to the proper directory. Your hosting
company will provide you with access
and the other necessary information.

Run first.php in your Web browser
(Figure 1.1).

Because PHP scripts need to be parsed
by the server, you absolutely must access
them via the URL. You cannot simply
open them in your Web browser as you
would a file in other applications.

If you are running PHP on your own
computer, you'll need to go to something
like http://1localhost/first.php,
http://127.0.0.1/first.php, or

http://localhost/~<user>/first.php
(on Mac OS X, using your actual user-
name for <user>). If you are using a
Web host, you'll need to use http://
your-domain-name/first.php (e. g.,
http://www.example.com/first.php).

® O ® Basic PHP Page =]
@ rttp://127.0.0.1:8000/first. php ¥ | >
This is standard HTML.

Dane _) (¥]

Figure 1.1 While it seems like any other
(simple) HTML page, this is in fact a PHP
script and the basis for the rest of the
examples in the book.




Introduction to PHP

7. If you don't see results like those in

Figure 1.1, start debugging.

Part of learning any programming lan-
guage is mastering debugging. It's a
sometimes-painful but absolutely neces-
sary process. With this first example, if
you don't see a simple, but perfectly
valid, Web page, follow these steps:

1. Confirm that you have a working
PHP installation (see Appendix A
for testing instructions).

2. Make sure that you are running the
script through a URL. The address
in the Web browser must begin with
http://. If it starts with file://,
that’s the problem (Figure 1.2).

3. Ifyou get a file not found (or simi-
lar) error, you've likely put the file in
the wrong directory or mistyped
the file's name (either when saving
it or in your Web browser).

If you've gone through all this and are
still having problems, turn to the book’s
corresponding forum (www.DMCInsights.
com/phorum/1ist.php?20).

v Tips

To find more information about HTML
and XHTML, check out Elizabeth
Castros excellent book HTML, XHTML,
and CSS, Sixth Edition: Visual QuickStart
Guide, (Peachpit Press, 2006) or search
the Web.

There are actually three different pairs
of PHP tags. Besides the formal

(<?php and ?>), there are the short tags
(<? and ?>), and the script style (<script
language="php"> and </script>). This
last style is rarely used, and the formal
style is recommended.

Because I am running PHP on my own
computer, you will sometimes see URLs
like http://127.0.0.1:8000/first.php in
this book’s figures. The important thing
is that I'm running these scripts via
http://; don't let the rest of the URL
confuse you.

You can embed multiple sections of PHP
code within a single HTML document
(i.e., you can go in and out of the two
languages). You'll see examples of this
throughout the book.

) Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

||:| file:: f{{{iC: {Documents: 20and%:205ettings/Larry % 20Ulman/ Desktop/first. php

[-[»)

<head>

<titlerBasic PHP Page</titles
</ head:
<hody>
<p>Thizs is standard HTML.</p>
<?php
7
</ hody>
</ htmlx>

<

<V DOCTYPE html PUBLIC "—//W3C//DTD XHTML 1.0 Transiticonal//ENT "http://wuw.ws.orog/ T
<html xmlns="http://wuw.wd.org/ 1999/ xhtml™ xml: lang="en" lang="en">

<meta http-egquiv="content-type" content="text/html; charset=isc-5859-1" />

| b3

Figure 1.2 If you see the actual PHP code (in this case, the tags) in the Web browser, this
means that the PHP Web server is not running the code for one reason or another.

XVLNAS JISvyg



SENDING DATA TO THE WEB BROWSER

Chapter 1

Sending Data to the
Web Browser

To create dynamic Web sites with PHP, you
must know how to send data to the Web
browser. PHP has a number of built-in func-
tions for this purpose, the most common
being echo() and print(). I personally tend
to favor echo():

echo 'Hello, world!"';

echo "What's new?";

You could use print() instead, if you prefer:
print "Hello, world!";
print "What's new?";

As you can see from these examples, you
can use either single or double quotation
marks (but there is a distinction between
the two types of quotation marks, which
will be made clear by the chapter’s end).
The first quotation mark after the function
name indicates the start of the message to
be printed. The next matching quotation
mark (i.e., the next quotation mark of the
same kind as the opening mark) indicates
the end of the message to be printed.

Along with learning how to send data to the
Web browser, you should also notice that in
PHP all statements (a line of executed code,
in layman’s terms) must end with a semi-
colon. Also, PHP is case-insensitive when

it comes to function names, so ECHO(),
echo(), eCHo(), and so forth will all work.
The all-lowercase version is easiest to type,
of course.

Needing an Escape

As you might discover, one of the compli-
cations with sending data to the Web
involves printing single and double quo-
tation marks. Either of the following will
cause errors:

echo "She said, "How are you?"";
echo '"I'm just ducky.';

There are two solutions to this problem.
First, use single quotation marks when

printing a double quotation mark and
vice versa:

echo 'She said, "How are you?"';

echo "I'm just ducky.";

Or, you can escape the problematic char-
acter by preceding it with a backslash:
echo "She said, \"How are you?\"";
print 'I\'m just ducky.';

As escaped quotation mark will merely
be printed like any other character.
Understanding how to use the backslash
to escape a character is an important

concept, and one that will be covered in
more depth at the end of the chapter.




Introduction to PHP

Script 1.3 Using print() or echo(), PHP can send data

to the Web browser (see Figure 1.3).
8oeé

= Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Transitional//EN" "http://www.w3.org/

TR/xhtml1/DTD/xhtml1l-transitional.dtd">

2 <html xmlns="http://www.w3.0rg/1999/xhtml"

xml:lang="en" lang="en">

3 <head>

4 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

5 <title>Using Echo()</title>

6 </head>

7 <body>

8 <p>This is standard HTML.</p>
9 <?php

10 echo 'This was generated using PHP!';

1 7>

12 </body>

13 </html>

enn Using Echo() =]

@ http: ff127.0.0. L8000/ second. php v | =

This is standard HTML.

This was generated using PHP!

Done g O |

Figure 1.3 The results still aren’t
glamorous, but this page was in
part dynamically generated by PHP.

enn Mozilla Firefox =]

@http:,f,flz?.o.o.1:8000jsec0nd.php v |

Parse error: syntax error, unexpected
T_STRING, expecting ', or ;' in
[Applications/Abyss Web
Server/htdocs/second.php on line 10

Daone » O

Figure 1.4 This may be the first of many
parse errors you see as a PHP programmer
(this one is caused by an un-escaped
quotation mark).

To send data to the Web browser:

1.

2.

Open first.php (refer to Script 1.2) in
your text editor or IDE.

Between the PHP tags (lines 9 and 10),
add a simple message (Script 1.3).

echo 'This was generated using
— PHP!'";

It truly doesn’t matter what message
you type here, which function you use
(echo() or print()), or which quotation
marks, for that matter—just be careful
if you are printing a single or double
quotation mark as part of your message
(see the sidebar “Needing an Escape”).

If you want, change the page title to bet-
ter describe this page (line 5).

<title>Using Echo()</title>

This change only affects the browser
window's title bar.

Save the file as second. php, place it in
your Web directory, and test it in your
Web browser (Figure 1.3).

If necessary, debug the script.

If you see a parse error instead of your
message (see Figure 1.4), check that you
have both opened and closed your quota-
tion marks and escaped any problematic
characters (see the sidebar). Also be cer-
tain to conclude each statement with a
semicolon.

continues on next page

YISMoug 93\ 3HL 01 viv(d ONIAN3S



SENDING DATA TO THE WEB BROWSER

Chapter 1

If you see an entirely blank page, this is
probably for one of two reasons:

A There is a problem with your HTML.
Test this by viewing the source of
your page and looking for HTML
problems there (Figure 1.5).

A An error occurred, but display_errors
is turned off in your PHP configura-
tion, so nothing is shown. In this case,
see the section in Appendix A on how
to configure PHP so that you can turn
display_errors back on.

v Tips

B Technically, echo() and print() are lan-
guage constructs, not functions. That
being said, don't be flummoxed as I con-
tinue to call them “functions” for con-
venience. Also, I include the parentheses
when referring to functions—say echo(),
not just echo—to help distinguish them
from variables and other parts of PHP.
This is just my own little convention.

B You can, and often will, use echo() and
print() to send HTML code to the Web
browser, like so (Figure 1.6):

echo '<p>Hello, <b>world</b>!</p>";

B Echo() and print() can both be used to
print text over multiple lines:

echo 'This sentence is
printed over two lines.';

What happens in this case is that the
return (created by pressing Enter or
Return) becomes part of the printed
message, which isn't terminated until
the closing single quotation mark.
The net result will be the “printing” of
the return in the HTML source code
(Figure 1.7). This will not have an effect
on the generated page (Figure 1.8).
For more on this, see the sidebar
“Understanding White Space.”

) Source of: http:/#192.168.0.103:8000/second. php - M.... [= |[B][X]
Fle Edt Wiew Help

<!DOCTY¥PE html FPUBLIC "-//W3C//DTD XHIML 1.0 Tramsition
<html xmlns="http://www.v3.org/ 1999/ xhtwl™ xml:lang="esn
<head>
<meta http-egquivr="content-type” content="rexc/h
«title>Using Echo()«<title>
</head>
<hody>
<p>This is standard HTML.</p>
This was generated using PHP!</body>
</html>

< | »

Figure 1.5 One possible cause of a blank PHP
page is a simple HTML error, like the closing title
tag here (it’s missing the slash).

en0e Hello, world! (=]
e http: ff127.0.0. L8000 template.php ¥ =

Hello, world!

Done @ 0 .

Figure 1.6 PHP can send HTML code (like
the formatting here) as well as simple text
(see Figure 1.3) to the Web browser.




Introduction to PHP

) Source of: http:/7192.168.0.103:8000/template. php
Ele Edit ‘“iew Help

< !DOCTYPE himl PUBLIC "-//W3C//DTD XHTML 1.0 Transitio
"hittp: S Swww. w3, orgd TR/ xhted 1/0TD/ xhitml 1 -t ransi

<html smlns="http://wrw.wi.org/ 1999/ xheml" xml:lang="e

<head>
<meta http-eguiv="concent-cype”™ content="textc,
<titlerHello, world!</title>

</head>

<hody>

Thiz sentence 1=z

printed over two lines.</hody:>

</html>

< >

Figure 1.7 Printing text and HTML over multiple PHP
lines will generate HTML source code that also
extends over multiple lines. Note that extraneous
white spacing in the HTML source will not affect the
look of a page (see Figure 1.8) but can make the
source easier to review.

%2 Hello, world! - Mozilla Firefox

File  Edit Miew History EBookmarks Tools  Help

| |:| httpiff192,168,0,103:8000,/template. php

This sentence is printed over two lines.

Figure 1.8 The return in the HTML source
(Figure 1.7) has no effect on the rendered
result. The only way to alter the spacing of a
displayed Web page is to use HTML tags (like
<br /> and <px/p>).

Understanding White Space

With PHP you send data (like HTML tags
and text) to the Web browser, which will,
in turn, render that data as the Web page
the end user sees. Thus, what you are
doing with PHP is creating the HTML
source of a Web page. With this in mind,
there are three areas of notable white
space (extra spaces, tabs, and blank
lines): in your PHP scripts, in your HTML
source, and in the rendered Web page.

PHP is generally white space insensitive,
meaning that you can space out your
code however you want to make your
scripts more legible. HTML is also gener-
ally white space insensitive. Specifically,
the only white space in HTML that
affects the rendered page is a single space
(multiple spaces still get rendered as
one). If your HTML source has text on
multiple lines, that doesn’'t mean it’ll
appear on multiple lines in the rendered
page (see Figures 1.7 and 1.8).

To alter the spacing in a rendered Web
page, use the HTML tags <br /> (line
break, <br> in older HTML standards)
and <p></p> (paragraph). To alter the
spacing of the HTML source created with
PHP, you can

¢ Use echo() or print() over the course
of several lines.

or

¢ Print the newline character (\n) with-
in double quotation marks.

YISMoug 93\ 3HL 01 viv(d ONIAN3S



WRITING COMMENTS

Chapter 1

Writing Comments

Creating executable PHP code is only a part
of the programming process (admittedly, it's
the most important part). A secondary but
still crucial aspect to any programming
endeavor involves documenting your code.

In HTML you can add comments using
special tags:

<!-- Comment goes here. -->

HTML comments are viewable in the source
(Figure 1.9) but do not appear in the ren-
dered page.

PHP comments are different in that they
aren't sent to the Web browser at all, mean-
ing they won't be viewable to the end user,
even when looking at the HTML source.

PHP supports three comment types. The
first uses the pound or number symbol (#):

# This is a comment.

The second uses two slashes:

// This is also a comment.

Both of these cause PHP to ignore every-
thing that follows until the end of the line
(when you press Return or Enter). Thus,
these two comments are for single lines only.

They are also often used to place a comment
on the same line as some PHP code:

print 'Hello!'; // Say hello.

A third style allows comments to run over
multiple lines:

/* This is a longer comment

that spans two lines. */

©) Source of: http://192.168.0.103: 8000/whitespace. php... |

File Edit Wiew Help

<!DOCTYPE ktml PUBLIC "-//W3C//DTD XHTML 1.0 Transition
"hitp: S www. w3 org/ TR/ xhitml 1/ DTD xhiml i -t ransit g

<html xmlng="http://uuw.w3d.oryg/ 1999/ xhtml™ xml:lang="n"

<head>
<meta http-equiv="content-type” content="text/h
<title>White Space</titlex

</head:

<hody>

<!—— This is an HTML comment. -->

Thiz was generated using PHF!</body>

</html>

< | >

Figure 1.9 HTML comments appear in the browser’s source code but
not in the rendered Web page.

10



Introduction to PHP

Script 1.4 These basic comments demonstrate the
three syntaxes you can use in PHP.

e0ce

= Script

1

10
11
12
13
14

15
16
17
18
19
20

21
22
23
24

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

<title>Comments</title>
</head>
<body>

<?php

# Created August 27, 2007
# Created by Larry E. Ullman

# This script does nothing much.

echo '<p>This is a line of text.<br />This
is another line of text.</p>';

/*
echo 'This line will not be executed.';

*/

echo "<p>Now I'm done.</p>"; // End of PHP
code.

7>
</body>

</html>

To comment your scripts:

1.

Begin a new PHP document in your text
editor or IDE, starting with the initial
HTML (Script 1.4).

<!DOCTYPE html PUBLIC "-//W3C//

— DTD XHTML 1.0 Transitional//EN"
— "http://www.w3.org/TR/xhtml1/DTD/
— xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html; charset=iso-
8859-1" />

<title>Comments</title>
</head>
<body>

. Add the initial PHP tag and write your

first comments.

<?php

# Created August 26, 2007

# Created by Larry E. Ullman

# This script does nothing much.

One of the first comments each script
should contain is an introductory block
that lists creation date, modification
date, creator, creator’s contact informa-
tion, purpose of the script, and so on.
Some people suggest that the shell-style
comments (#) stand out more in a script
and are therefore best for this kind of
notation.

Send some HTML to the Web browser.

echo '<p>This is a line of text.
— <br />This is another line of
— text.</p>";

continues on next page

11

SINIWWO) SNILIIMN



WRITING COMMENTS

Chapter 1

It doesn’t matter what you do here, just
so the Web browser has something to
display. For the sake of variety, I'll have
the echo() statement print some HTML
tags, including a line break (<br />) to
add some spacing to the generated
HTML page.

Use the multiline comments to comment
out a second echo() statement.

/*
echo 'This line will not be
— executed.';

*/

By surrounding any block of PHP code
with /* and */, you can render that code
inert without having to delete it from
your script. By later removing the com-

ment tags, you can reactivate that sec-
tion of PHP code.

Add a final comment after a third echo()
statement.

echo "<p>Now I'm done.</p>"; // End
— of PHP code.

This last (superfluous) comment shows
how to place one at the end of a line, a
common practice. Note that I used dou-
ble quotation marks to surround the
message, as single quotation marks
would conflict with the apostrophe (see
the “Needing an Escape” sidebar, earlier
in the chapter).

Close the PHP section and complete the
HTML page.

7>

</body>

</html>

Save the file as comments.php, place it in

your Web directory, and test it in your
Web browser (Figure 1.10).

enn Comments

(&= ]

0 http: 127,00 L8000 /camments. php 7 | =

This is a line of text.
This is a new line of text.

Now I'm done.

Done

g 0 /4

Figure 1.10 The PHP comments in Script
1.4 don’t appear in the Web page or the

HTML source (Figure 1.11).

12



Introduction to PHP

8. If you're the curious type, check the
source code in your Web browser to
confirm that the PHP comments do
not appear there (Figure 1.11).

v Tips

B You shouldn’t nest (place one inside
another) multiline comments (/* */).
Doing so will cause problems.

B Any of the PHP comments can be used
at the end of a line (say, after a function
call):
echo "Howdy'; /* Say 'Howdy' */

Although this is allowed, its far less
common.

B Its nearly impossible to over-comment

your scripts. Always err on the side of
writing too many comments as you code.
That being said, in the interest of saving
space, the scripts in this book will not be
as well documented as I would suggest
they should be.

It’s also important that as you change a
script you keep the comments up-to-
date and accurate. There’s nothing more
confusing than a comment that says one
thing when the code really does some-
thing else.

-
€3 Source of: hitp:#{192.168.0.103:8000/comments. php - Mozilla Firefox

File Edit ‘Wiew Help

<!DOCTYPE hitml DUBLIC "-//W3C//DTD XHTML 1.0 Transitionzl//EN" "hitp://www.w3.org/ TR zhimli/}
<html :mlns="http://uwww.w3.org/ 1999/ xhtml"™ wml:lang="en" lang="en":>

<head:>

<meta http-equiv="content—type" content="text/html; charset=iso-8559-1" j>

<title>Conmments</title>
</head>
<hody>

<p>Thiz iz a line of text.<br f>Thiz iz a new line of text.</pr<p>Now I'm done.</p></hody>

</html>

< |

Figure 1.11 The PHP comments from Script 1.4 are nowhere to be seen in the client’s browser.

13

SINIWWO) SNILIIMN



WHAT ARE VARIABLES?

Chapter 1

What Are Variables?

Variables are containers used to temporarily
store values. These values can be numbers,
text, or much more complex data. PHP has
eight types of variables. These include four
scalar (single-valued) types—Boolean (TRUE
or FALSE), integer, floating point (decimals),
and strings (characters); two nonscalar (mul-
tivalued)—arrays and objects; plus resources
(which you'll see when interacting with
databases) and NULL (which is a special
type that has no value).

Regardless of what type you are creating, all
variables in PHP follow certain syntactical
rules:

¢ A variable’s name—also called its
identifier—must start with a dollar
sign ($), for example, $name.

¢ The variable’s name can contain a combi-
nation of strings, numbers, and the
underscore, for example, $my_reportl.

¢ The first character after the dollar sign
must be either a letter or an underscore
(it cannot be a number).

¢ Variable names in PHP are case-sensitive.
This is a very important rule. It means
that $name and $Name are entirely differ-
ent variables.

To begin working with variables, let's make
use of several predefined variables whose
values are automatically established when a
PHP script is run. Before getting into this
script, there are two more things you should
know. First, variables can be assigned values
using the equals sign (=), also called the
assignment operator. Second, variables can
be printed without quotation marks:

print $some_var;

14



Introduction to PHP

Script 1.5 This script prints three of PHP’s many
predefined variables.

806 = Script

1

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

<title>Predefined Variables</title>
</head>
<body>

<?php # Script 1.5 - predefined.php

// Create a shorthand version of the
variable names:

$file = $_SERVER['SCRIPT_FILENAME'];
$user = $_SERVER['HTTP_USER_AGENT'];

$server = $_SERVER['SERVER_
SOFTWARE'];

// Print the name of this script:

echo "<p>You are running the file:<br
/><b>$file</b>.</p>\n";

// Print the user's information:

echo "<p>You are viewing this page using:
<br /><b>$user</b></p>\n";

// Print the server's information:

echo "<p>This server is running:<br /><b>
$server</b>.</p>\n";

7>
</body>
</html>

Or variables can be printed within double
quotation marks:

print "Hello, $name";

You cannot print variables within single
quotation marks:

print 'Hello, $name'; // Won't work!
To use variables:

1. Begin a new PHP document in your text
editor or IDE, starting with the initial
HTML (Script 1.5).

<!DOCTYPE html PUBLIC "-//W3C//

DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
» content="text/html; charset=
» 1s0-8859-1" />
<title>Predefined Variables</
—  title>

</head>
<body>

2. Add your opening PHP tag and your first
comment.

<?php # Script 1.5 - predefined.php

From here on out, my scripts will no
longer comment on the creator, creation
date, and so forth, although you should
continue to document your scripts thor-
oughly. I will, however, make a comment
listing the script number and filename
for ease of cross-referencing (both in

continues on next page

15

$SI1AVINVA 38y IVHM



WHAT ARE VARIABLES?

Chapter 1

the book and when you download them
from the book’s supporting Web site,
www . DMCInsights. com/phpmysql3/).

Create a shorthand version of the first
variable to be used in this script.

$file = $_SERVER['SCRIPT_FILENAME'];

This script will use three variables, each
of which comes from the larger and pre-
defined $_SERVER variable. $_SERVER
refers to a mass of server-related infor-
mation. The first variable the script uses
is $_SERVER['SCRIPT_FILENAME']. This
variable stores the full path and name
of the script being run (for example,
C:\Program Files\Apache\htdocs\
predefined.php).

The value stored in $_SERVER['SCRIPT_
FILENAME'] will be assigned to the new
variable $file. Creating new variables
with shorter names and then assigning
them values from $_SERVER will make it
easier to refer to the variables when
printing them. (It also gets around some
other issues you'll learn about in due
time.)

Create a shorthand version of the other
two variables.

$user = $_SERVER['HTTP_USER_AGENT'];

$server = $_SERVER['SERVER_
—» SOFTWARE'];

$_SERVER["HTTP_USER_AGENT '] represents
the Web browser and operating system
of the user accessing the script. This
value is assigned to $user.
$_SERVER['SERVER_SOFTWARE '] represents
the Web application on the server that’s

running PHP (e.g., Apache, Abyss, Xitami,
1IS). This is the program that must be
installed (see Appendix A) in order to
run PHP scripts on that computer.

. Print out the name of the script being

run.

echo "<p>You are running the file:
» <br /><b>$file</b>.</p>\n";

The first variable to be printed is $file.
Notice that this variable must be printed
out within double quotation marks

and that I also make use of the PHP
newline (\n), which will add a line break
in the generated HTML source. Some
basic HTML tags—paragraph and bold—
are added to give the generated page
some flair.

. Print out the information of the user

accessing the script.

echo "<p>You are viewing this page
— using:<br /><b>$user</b></p>\n";

This line prints the second variable,
$user. To repeat what's said in the fourth
step, $user correlates to $_SERVER[ "HTTP_
USER_AGENT'] and refers to the operating
system, browser type, and browser ver-
sion being used to access the Web page.

Print out the server information.

echo "<p>This server is running:<br
— /><b>$server</b>.</p>\n";

. Complete the HTML and PHP code.

7>
</body>
</html>

16



Introduction to PHP

ene Predefined Variables =

@ http:f/127.0.0, 18000 predefined. php ¥ |l

You are running the file:
/Applications/Abyss Web Server/htdocs/predefined.php.

You are viewing this page using:
Mozilla/5.0 (Macintosh; Us Intel Mac OS X; en-US; rv:1.8.1.6)
Gecko/20070725 Firefox/2.0.0.6

This server is running:
Abyss/2.4.0.3-X1-MacOS X AbyssLib/2.4.03.

Done g O

A

Figure 1.12 The predefined.php script reports back
to the viewer information about the script, the Web
browser being used to view it, and the server itself.

©) predefined Yariables - Mozilla Firefox

File Edit Wiew History Bookmarks Tools  Help

||:| http:/flocalhost fpredefined.php |v| [}]

You are running the file:
C:\Program Files\Abyss Web Serverhtdocs\predefined.php.

Tou are wewing this page using
Mozilla/5.0 (Windows; U; Windows INT 5.1; en-US; rv:1.8.1.4)
Gecko/20070515 Firefox2.0.0.4

This server 12 rutming
Abyss/2.4.0.3-X1-Win32 AbyssLih/2.4.0.3.

Figure 1.13 This is the book’s first truly dynamic
script, in that the Web page changes depending
upon the server running it and the Web browser
viewing it (compare with Figure 1.12).

9. Save your file as predefined.php, place it
in your Web directory, and test it in your
Web browser (Figure 1.12).

v Tips

B If you have problems with this, or any
other script, turn to the book’s corre-
sponding Web forum (www.DMCInsights.
com/phorum/) for assistance.

B If possible, run this script using a differ-
ent Web browser and/or on another
server (Figure 1.13).

B The most important consideration when
creating variables is to use a consistent
naming scheme. In this book you'll
see that I use all-lowercase letters for
my variable names, with underscores
separating words ($first_name). Some
programmers prefer to use capitalization
instead: $FirstName.

B PHP is very casual in how it treats vari-
ables, meaning that you don't need to
initialize them (set an immediate value)
or declare them (set a specific type), and
you can convert a variable among the
many types without problem.

17

$SI1AVINVA 38y IVHM



INTRODUCING STRINGS

Chapter 1

Introducing Strings

The first variable type to delve into is strings.
A string is merely a quoted chunk of charac-
ters: letters, numbers, spaces, punctuation,
and so forth. These are all strings:

¢ 'Tobias'

¢ “In watermelon sugar”
¢ 100"

¢ 'August 2, 2006"

To make a string variable, assign a string
value to a valid variable name:

$first_name = 'Tobias';

$today = 'August 2, 2006';

When creating strings, you can use either
single or double quotation marks to encap-
sulate the characters, just as you would
when printing text. Likewise, you must use
the same type of quotation mark for the
beginning and the end of the string. If that
same mark appears within the string, it
must be escaped:

$var = "Define \"platitude\", please.";
To print out the value of a string, use either
echo() or print(Q):
echo $first_name;

To print the value of string within a context,
use double quotation marks:

echo "Hello, $first_name";

You've already worked with strings once—
when using the predefined variables in the
preceding section. In this next example,
you'll create and use new strings.

18



Introduction to PHP

Script 1.6 String variables are created and their values
sent to the Web browser in this introductory script.

eceé = Script

1

10
1
12
13
14
15
16

17
18
19
20

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

<title>Strings</title>
</head>
<body>

<?php # Script 1.6 - strings.php

// Create the variables:
$first_name = "Haruki';
$last_name = "Murakami';

$book = 'Kafka on the Shore';

//Print the values:

echo "<p>The book <em>$book</em> was
written by $first_name $last_name.</p>";

7>
</body>

</html>

To use strings:

1. Begin a new PHP document in your text

editor or IDE, starting with the initial
HTML and including the opening PHP
tag (Script 1.6).

<!DOCTYPE html PUBLIC "-//W3C//
— DTD XHTML 1.0 Transitional//EN"
» "http://www.w3.0rg/TR/xhtml1/DTD/
— xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
» xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 150-8859-1" />

<title>Strings</title>
</head>
<body>
<?php # Script 1.6 - strings.php

. Within the PHP tags, create three vari-

ables.

$first_name = 'Haruki';
$last_name = "Murakami';
$book = 'Kafka on the Shore';

This rudimentary example creates
$first_name, $last_name, and $book
variables that will then be printed
out in a message.

. Add an echo() statement.

echo "<p>The book <em>$book</em>
— was written by $first_name
— $last_name.</p>";

continues on next page

19

SONIYLS ONIDNAOYULN|



INTRODUCING STRINGS

Chapter 1

v

All this script does is print a statement
of authorship based upon three estab-
lished variables. A little HTML format-
ting (the emphasis on the book title) is
thrown in to make it more attractive.
Remember to use double quotation
marks here for the variable values to be
printed out appropriately (more on the
importance of double quotation marks
at the chapter’s end).

Complete the HTML and PHP code.
7>

</body>

</html>

Save the file as strings.php, place it in
your Web directory, and test it in your
Web browser (Figure 1.14).

If desired, change the values of the three
variables, save the file, and run the script
again (Figure 1.15).

Tips

If you assign another value to an existing
variable (say $book), the new value will
overwrite the old one. For example:
$book = 'High Fidelity';

$book = 'The Corrections';

/* $book now has a value of

'The Corrections'. */

PHP has no set limits on how big a string
can be. It's theoretically possible that
you'll be limited by the resources of the
server, but it’s doubtful that you'll ever
encounter such a problem.

eOe Strings (=]

ehttp:,f,f12?.0.0.1:8000jstrings.php v | |

The book Kafka on the Shore was written by
Haruki Murakami.

Done _) 0

Figure 1.14 The resulting Web page is based upon
printing out the values of three variables.

©) Strings - Mozilla Firefox

Ele Edt ‘Wew History Bookmarks Tools Help

||:| http:f flocalhoststrings.php ‘ v| [}]

The book Things Fall Apart was written by Chitua Achebe.

Figure 1.15 The output of the script is changed by
altering the variables in it.

20



Introduction to PHP

Script 1.7 Concatenation gives you the ability to easily
manipulate strings, like creating an author’s name
from the combination of their first and last names.

8oeé = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1l-transitional.dtd">

2 <html
xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

3 <head>

4 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

5 <title>Concatenation</title>

6 </head>

7 <body>

8 <?php # Script 1.7 - concat.php

10 // Create the variables:
11 $first_name = 'Melissa';
12 $last_name = 'Bank';

13 $author = $first_name . ' ' . $last_name;
14

15 $book = 'The Girls\' Guide to Hunting and
Fishing';

16
17 //Print the values:

18 echo "<p>The book <em>$book</em> was
written by $author.</p>";

19

20 7>

21 </body>
22 </html>

Concatenating Strings

Concatenation is like addition for strings,
whereby characters are added to the

end of the string. It’s performed using the
concatenation operator, which is the
period (.):

$city= 'Seattle’;
$state = 'Washington';

$address = $city . $state;

The $address variable now has the value
SeattleWashington, which almost achieves
the desired result (Seattle, Washington). To
improve upon this, you could write

$address = $city . ', ' . $state;

so that a comma and a space are added to
the mix.

Concatenation works with strings or num-
bers. Either of these statements will produce
the same result (Seattle, Washington 98101):

$address = $city . ', ' . $state .
' 98101";

$address = $city . ', ' . $state .
't . 98101,

Let’s modify strings.php to use this new
operator.

To use concatenation:

1. Open strings.php (refer to Script 1.6) in
your text editor or IDE.

2. After you've established the $first_name
and $last_name variables (lines 11 and
12), add this line (Seript 1.7):

$author = $first_name .

$last_name;

continues on next page

21

SONIYLS ONILYNILVINO)



CONCATENATING STRINGS

Chapter 1

v

As a demonstration of concatenation, a
new variable—$author—will be created
as the concatenation of two existing
strings and a space in between.

Change the echo() statement to use this
new variable.

echo "<p>The book <em>$book</em> was
»written by $author.</p>";

Since the two variables have been turned

into one, the echo() statement should be

altered accordingly.

If desired, change the HTML page title
and the values of the first name, last
name, and book variables.

Save the file as concat.php, place it in
your Web directory, and test it in your
Web browser (Figure 1.16).

Tips

PHP has a slew of useful string-specific
functions, which you'll see over the
course of this book. For example, to cal-
culate how long a string is (how many
characters it contains), use strlen():

$num = strlen('some string');

You can have PHP convert the case of
strings with: strtolower(), which makes
it entirely lowercase; strtoupper(), which
makes it entirely uppercase; ucfirst(),
which capitalizes the first character; and
ucwords(), which capitalizes the first
character of every word.

8eoeoe

Q http: /127 0.0 1: 8000/ concat.php v | =

Concatenation =

The book The Girls' Guide to Hunting and
Fishing was written by Melissa Bank.

Done g 0 4

Figure 1.16 In this revised script, the end result of
concatenation is not apparent to the user (compare
with Figures 1.14 and 1.15).

B If you are merely concatenating one
value to another, you can use the con-
catenation assignment operator (.=).

The following are equivalent:
$title = $title . $subtitle;

$title .= $subtitle;

B The initial example in this section could
be rewritten using either

$address = "$city, $state";

or
$address = $city;
$address .= ', ';
$address .= $state;

22



Introduction to PHP

Introducing Numbers

In introducing variables, I was explicit in
stating that PHP has both integer and float-
ing-point (decimal) number types. In my
experience, though, these two types can be
classified under the generic title numbers
without losing any valuable distinction (for
the most part). Valid number-type variables
in PHP can be anything like

¢ 8

3.14
10980843985
-4.2398508

* & o o

4.4e2

Notice that these values are never quoted—
in which case theyd be strings with numeric
values—nor do they include commas to
indicate thousands. Also, a number is
assumed to be positive unless it is preceded
by the minus sign (-).

Along with the standard arithmetic opera-
tors you can use on numbers (Table 1.1),
there are dozens of functions. Two common
ones are round() and number_format().

TaBLE 1.1 The standard mathematical operators.

Arithmetic Operators

OPERATOR MEANING

+ Addition

- Subtraction

* Multiplication
/ Division

% Modulus

++ Increment

-- Decrement

The former rounds a decimal to the nearest
integer:

$n = 3.14;
$n = round ($n); // 3

It can also round to a specified number of
decimal places:

$n = 3.142857;
$n = round ($n, 3); // 3.143

The number_format() function turns a num-
ber into the more commonly written version,
grouped into thousands using commas:

$n = 20943;
$n = number_format ($n); // 20,943

This function can also set a specified num-
ber of decimal points:

$n = 20943;
$n = number_format ($n, 2); // 20,943.00

To practice with numbers, let’s write a mock-
up script that performs the calculations one
might use in an e-commerce shopping cart.

23

SYIGWNN SNIDNAOYULN]



INTRODUCING NUMBERS

Chapter 1

To
1.

use numbers:

Begin a new PHP document in your text
editor or IDE (Script 1.8).

<!DOCTYPE html PUBLIC "-//W3C//

DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 150-8859-1" />

<title>Numbers</title>
</head>
<body>
<?php # Script 1.8 - numbers.php
Establish the requisite variables.
$quantity = 30;
$price = 119.95;
$taxrate = .05;

This script will use three hard-coded
variables upon which calculations will be
made. Later in the book, you'll see how
these values can be dynamically deter-
mined (i.e., by user interaction with an
HTML form).

Perform the calculations.
$total = $quantity * $price;
$total = $total + ($total * $taxrate);

The first line establishes the order total
as the number of widgets purchased
multiplied by the price of each widget.

Script 1.8 The numbers.php script demonstrates
basic mathematical calculations, like those used in an
e-commerce application.

8086

=] Seript

1

14
15
16
17

18
19
20
21
22
23

24
25
26
27

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

<title>Numbers</title>
</head>
<body>
<?php # Script 1.8 - numbers.php

// Set the variables:
$quantity = 30; // Buying 30 widgets.
$price = 119.95;

$taxrate = .05; // 5% sales tax.

// Calculate the total:
$total = $quantity * $price;

$total = $total + ($total * $taxrate); //
Calculate and add the tax.

// Format the total:

$total = number_format ($total, 2);

// Print the results:

echo '<p>You are purchasing <b>' .
$quantity . '</b> widget(s) at a cost
of <b>$' . $price . '</b> each. With
tax, the total comes to <b>$' . $total .
'</b>.</p>";

7>
</body>
</html>

24



Introduction to PHP

eoe6

Numbers (= ]

@ hitp:;/127.0.0,1:2000/numbers. php v

B

You are purchasing 30 widget(s) at a cost of
$119.95 each. With tax, the total comes to
$3.778.43.

Dane g 0O

A

Figure 1.17 The numbers PHP page (Script 1.8)
performs calculations based upon set values.

©) Numbers - Mozilla Firefox

File Edit View History Bookmarks Tools WEE

| |:| http:fflocalhostfnumbers. php | v| D]

With taz, the total comes to $46.59.

You are purchasing 12 widget(s) at a cost of $3.62 each.

Figure 1.18 To change the generated Web page,

alter any or all of the three variables (compare with

Figure 1.17).

The second line then adds the amount
of tax to the total (calculated by multi-
plying the tax rate by the total).

. Format the total.

$total = number_format ($total, 2);
The number_format() function will group
the total into thousands and round it to
two decimal places. This will make the
display more appropriate to the end user.

. Print the results.

echo '<p>You are purchasing <b>' .
»$quantity . "</b> widget(s) at a cost
of <b>$' . $price . '</b> each. With
» tax, the total comes to <b>$' .

» $total . '</b>.</p>";

The last step in the script is to print out
the results. To use a combination of
HTML, printed dollar signs, and variables,
the echo() statement uses both single-
quoted text and concatenated variables.

You could also put this all within a
double-quoted string (as in previous
examples), but when PHP encounters,
for example, at a cost of $$pricein
the echo() statement, the double dollar
sign would cause problems. You'll see
an alternative solution in the last exam-
ple of this chapter.

. Complete the PHP code and the HTML

page.

7>
</body>
</html>

. Save the file as numbers.php, place it in

your Web directory, and test it in your
Web browser (Figure 1.17).

. If desired, change the initial three vari-

ables and rerun the script (Figure 1.18).

continues on next page

25

SYIGWNN SNIDNAOYULN]



INTRODUCING NUMBERS

Chapter 1

v Tips

B PHP supports a maximum integer of
around two billion on most platforms.
With numbers larger than that, PHP will
automatically use a floating-point type.

B When dealing with arithmetic, the issue
of precedence arises (the order in which
complex calculations are made). While
the PHP manual and other sources tend
to list out the hierarchy of precedence, I
find programming to be safer and more
legible when I group clauses in parenthe-
ses to force the execution order (see line
17 of Script 1.8).

m Computers are notoriously poor at deal-
ing with decimals. For example, the num-
ber 2.0 may actually be stored as 1.99999.
Most of the time this won't be a problem,
but in cases where mathematical preci-
sion is paramount, rely on integers, not
decimals. The PHP manual has informa-
tion on this subject, as well as alternative
functions for improving computational
accuracy.

B Many of the mathematical operators also
have a corresponding assignment opera-
tor, letting you create a shorthand for
assigning values. This line,

$total = $total + ($total *
$taxrate);

could be rewritten as
$total += ($total * $taxrate);

B If you set a $price value without using
two decimals (e.g., 119.9 or 34), you

would want to apply number_format()
to $price before printing it.

26



Introduction to PHP

Introducing Constants

Constants, like variables, are used to tem-
porarily store a value, but otherwise, con-
stants and variables differ in many ways. For
starters, to create a constant, you use the
define() function instead of the assignment
operator (=):

define ('NAME', 'value');

Notice that, as a rule of thumb, constants
are named using all capitals, although this is
not required. Most importantly, constants
do not use the initial dollar sign as variables
do (because constants are not variables).

A constant can only be assigned a scalar
value, like a string or a number. And unlike
variables, a constant’s value cannot be
changed.

To access a constant’s value, like when you
want to print it, you cannot put the con-
stant within quotation marks:

echo "Hello, USERNAME"; // Won't work!

With that code, PHP would literally print
Hello, USERNAME and not the value of the
USERNAME constant (because there’s no indi-
cation that USERNAME is anything other than
literal text). Instead, either print the con-
stant by itself:

echo 'Hello, ';

echo USERNAME;

or use the concatenation operator:

echo 'Hello, ' . USERNAME;

PHP runs with several predefined constants,
much like the predefined variables used earlier
in the chapter. These include PHP_VERSION
(the version of PHP running) and PHP_0S
(the operating system of the server).

27

SLINVLSNO)D S9NIDNAOYULN]



INTRODUCING CONSTANTS

Chapter 1

To
1.

use constants:

Begin a new PHP document in your text
editor or IDE (Script 1.9).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN"

— "http://www.w3.0rg/TR/xhtml1/

— DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"

— content="text/html; charset=
— 1s0-8859-1" />

<title>Constants</title>
</head>
<body>
<?php # Script 1.9 - constants.php

Create a new date constant.
define ('TODAY', August 28, 2007');

An admittedly trivial use of constants,
but this example will illustrate the point.
In Chapter 8, “Using PHP with MySQL,
you'll see how to use constants to store
your database access information.

Print out the date, the PHP version, and
operating system information.

echo '<p>Today is ' . TODAY . '.<br
— />This server is running version
— <b>" . PHP_VERSION . '</b> of PHP
—on the <b>" . PHP_0S . '</b>

— operating system.</p>";

Since constants cannot be printed within
quotation marks, use the concatenation
operator to create the echo() statement.

Script 1.9 Constants are another temporary storage
tool you can use in PHP, distinct from variables.

eceé

=) Script

1

10
11
12
13

14

15
16
17
18

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

<title>Constants</title>
</head>
<body>

<?php # Script 1.9 - constants.php

// Set today's date as a constant:
define ('TODAY', 'August 28, 2007');

// Print a message, using predefined
constants and the TODAY constant:

echo '<p>Today is ' . TODAY . '.<br />This
server is running version <b>' . PHP_
VERSION . '</b> of PHP on the <b>' . PHP_
0S . '</b> operating system.</p>";

7>
</body>

</html>

28



Introduction to PHP

8066

Constants =

0http:,f,"12?.0.0.1:8000;c0nstants.php v | =

Today is August 28, 2007.
This server is running version 6.0.0-dev of PHP on the
Darwin operating system.

Done J 0

Figure 1.19 By making use of PHP’s constants, you
can learn more about your PHP setup.

S=Eq

File Edit Wiew History Bookmarks Tools  Help

) Constants - Mozilla Firefox

[~

||:| http:f{localhost/constants. php

Today 15 August 28, 2007
Thiz server 13 runming version 6.0.0-dev of FHEP
on the WINNT operating system.

Figure 1.20 Running the same script (refer to Script
1.9) on different servers garners different results.

Complete the PHP code and the HTML
page.

7>

</body>

</html>

Save the file as constants. php, place it in

your Web directory, and test it in your
Web browser (Figure 1.19).

v Tips

If possible, run this script on another
PHP-enabled server (Figure 1.20).

In Chapter 11, “Cookies and Sessions,”
you'll learn about another constant, SID
(which stands for session ID).

29

SLINVLSNO)D S9NIDNAOYULN]



SINGLE VS. DOUBLE QUOTATION MARKS

Chapter 1

Single vs. Double
Quotation Marks

In PHP it’s important to understand how
single quotation marks differ from double
quotation marks. With echo() and print(),
or when assigning values to strings, you can
use either, as in the examples uses so far. But
there is a key difference between the two
types of quotation marks and when you
should use which. I've introduced this differ-
ence already, but it’s an important enough
concept to merit more discussion.

In PHP, values enclosed within single quota-
tion marks will be treated literally, whereas
those within double quotation marks will be
interpreted. In other words, placing variables
and special characters (Table 1.2) within
double quotes will result in their represented
values printed, not their literal values. For
example, assume that you have

$var = 'test';

The code echo “var is equal to $var”; will
print out var is equal to test, whereas the
code echo 'var is equal to $var'; will print
out var is equal to $var. Using an escaped
dollar sign, the code echo “\$var is equal to
$var”; will print out $var is equal to test,
whereas the code echo "\$var is equal to
$var'; will print out \$var is equal to $var.

As these examples should illustrate, double
quotation marks will replace a variable’s
name ($var) with its value (test) and a
special character’s code (\$) with its repre-
sented value (§). Single quotes will always
display exactly what you type, except for the
escaped single quote (\") and the escaped
backslash (\\), which are printed as a single
quotation mark and a single backslash,
respectively.

As another example of how the two
quotation marks differ, let’s modify the
numbers.php script as an experiment.

TaBLE 1.2 These characters have special meanings
when used within double quotation marks.

Escape Sequences

CopE
\"
\'
\\
\n
\r
\t
\$

MEANING

Double quotation mark
Single quotation mark
Backslash

Newline

Carriage return

Tab

Dollar sign

30



Introduction to PHP

Script 1.10 This, the final script in the chapter,
demonstrates the differences between using
single and double quotation marks.

8oe = Script

1

O 0 ~N o uv

11
12
13
14
15
16
17

18
19
20
21
22

23

24

25
26

27

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

<title>Quotation Marks</title>
</head>
<body>
<?php # Script 1.10 - quotes.php

// Set the variables:

$quantity = 30; // Buying 30 widgets.
$price = 119.95;

$taxrate = .05; // 5% sales tax.

// Calculate the total.
$total = $quantity * $price;

$total = $total + ($total * $taxrate); //
Calculate and add the tax.

// Format the total:
$total = number_format ($total, 2);

// Print the results using double quotation
marks:

echo '<h3>Using double quotation
marks:</h3>";

echo "<p>You are purchasing <b>$quantity
</b> widget(s) at a cost of <b>\$$price</b>
each. With tax, the total comes to <b>\
$$total</b>.</p>\n";

// Print the results using single quotation
marks:

echo '<h3>Using single quotation
marks:</h3>";
(script continues)

To use single and double quotation
marks:

1. Open numbers.php (refer to Script 1.8)
in your text editor or IDE.

2. Delete the existing echo() statement
(Script 1.10).

3. Print a caption and then rewrite the
original echo() statement using double
quotation marks.

echo '<h3>Using double quotation
— marks:</h3>";

echo "<p>You are purchasing <b>$

— quantity</b> widget(s) at a cost
— of <b>\$$price</b> each. With tax,
— the total comes to <b>\$$total</
— b>.</p>\n";

In the original script, the results were
printed using single quotation marks and
concatenation. The same result can be
achieved using double quotation marks.
When using double quotation marks, the
variables can be placed within the string.

There is one catch, though: trying to
print a dollar amount as $12.34 (where
12.34 comes from a variable) would sug-
gest that you would code $$var. That will
not work; instead, escape the initial dol-
lar sign, resulting in \$$var, as you see

continues on next page

Script 1.10 continued
8686 =) Seript

28 echo '<p>You are purchasing <b>$quantity
</b> widget(s) at a cost of <b>\$$price</b>
each. With tax, the total comes to
<b>\$$total</b>.</p>\n';

29

30 7>

31 </body>
32 </html>

31

SYYVIN NOILYLIOND 318n0(Q "SA I19NIS



SINGLE VS. DOUBLE QUOTATION MARKS

Chapter 1

twice in this code. The first dollar sign
will be printed, and the second becomes
the start of the variable name.

4, Repeat the echo() statements, this time
using single quotation marks.

echo '<h3>Using single quotation
marks:</h3>";

echo '<p>You are purchasing <b>$

— quantity</b> widget(s) at a cost
— of <b>\$$price</b> each. With tax,
— the total comes to <b>\$$total

— </b>.</p>\n";

This echo() statement is used to high-
light the difference between using single
or double quotation marks. It will not
work as desired, and the resulting page
will show you exactly what does happen
instead.

5. If you want, change the pagess title.

6. Save the file as quotes.php, place it in
your Web directory, and test it in your
Web browser (Figure 1.21).

7. View the source of the Web page to see
how using the newline character (\n)
within each quotation mark type also
differs.

You should see that when you place the
newline character within double quota-
tion marks it creates a newline in the
HTML source. When placed within
single quotation marks, the literal
characters \ and n are printed instead.

806 Quotation Marks =)

@http:;;lz?.o.o.1:8000jqu0tes.php v ||

Using double quotation marks:

You are purchasing 30 widget(s) at a cost of $119.95
each. With tax, the total comes to $3,778.43.

Using single quotation marks:

You are purchasing $quantity widget(s) at a cost of
\$$price each. With tax, the total comes to \$$total.

\n

Done

g O

Figure 1.21 These results demonstrate when and
how you’d use one type of quotation mark as
opposed to the other. If you're still unclear as to the
difference between the types, use double quotation
marks and you’re less likely to have problems.

v Tips

B Because PHP will attempt to find vari-
ables within double quotation marks,
using single quotation marks is theoreti-
cally faster. If you need to print the value
of a variable, though, you must use dou-
ble quotation marks.

B Asvalid HTML often includes a lot of
double-quoted attributes, it’s often easi-

est to use single quotation marks when
printing HTML with PHP:

echo '<table width="80%" border="0"
— cellspacing="2" cellpadding="3"
— align="center">";

If you were to print out this HTML using
double quotation marks, you would have
to escape all of the double quotation
marks in the string:

echo "<table width=\"80%\" border=\
— "O\" cellspacing=\"2\" cellpadding
— =\"3\" align=\"center\">";

32




PROGRAMMING
WITH PHP

Now that you have the fundamentals of the PHP scripting language down, it’s time
to build on those basics and start truly programming. In this chapter you'll begin
creating more elaborate scripts while still learning some of the standard constructs,
functions, and syntax of the language.

You'll begin by creating an HTML form, then learning how you can use PHP to handle
the submitted values. From there, the chapter covers conditionals and the remaining
operators (Chapter 1, “Introduction to PHP presented the assignment, concatenation,
and mathematical operators), arrays (another variable type), and one last language
construct, loops.

33

dHd H1IM SNIWWVYIOOUd



CREATING AN HTML Form

Chapter 2

Creating an HTML Form

Handling an HTML form with PHP is perhaps
the most important process in any dynamic
Web site. Two steps are involved: first you
create the HTML form itself, and then you
create the corresponding PHP script that
will receive and process the form data.

It would be outside the realm of this book to
go into HTML forms in any detail, but I will
lead you through one quick example so that
it may be used throughout the chapter. If
you're unfamiliar with the basics of an
HTML form, including the various types of
elements, see an HTML resource for more
information.

An HTML form is created using the form
tags and various elements for taking input.
The form tags look like

<form action="script.php" method="post">

</form>

In terms of PHP, the most important attribute
of your form tag is action, which dictates to
which page the form data will be sent. The
second attribute—method—has its own
issues (see the “Choosing a Method” side-
bar), but post is the value you'll use most
frequently.

The different inputs—be they text boxes,
radio buttons, select menus, check boxes,
etc.—are placed within the opening and
closing form tags. As you'll see in the next
section, what kinds of inputs your form has
makes little difference to the PHP script
handling it. You should, however, pay atten-
tion to the names you give your form inputs,
as they’ll be of critical importance when it
comes to your PHP code.

Choosing a Method

The method attribute of a form dictates
how the data is sent to the handling page.
The two options—get and post—refer to
the HTTP (Hypertext Transfer Protocol)
method to be used. The get method sends
the submitted data to the receiving page
as a series of name-value pairs appended
to the URL. For example,

http://www.example.com/script. php?
» name=Homer&gender=M&age=35

The benefit of using the get method is
that the resulting page can be book-
marked in the user's Web browser (since
it's a URL). For that matter, you can also
click Back in your Web browser to return
to a get page, or reload it without prob-
lems (none of which is true for post). But
there is a limit in how much data can be
transmitted via get, and this method is
less secure (since the data is visible).

Generally speaking, get is used for
requesting information, like a particular
record from a database or the results of a
search (searches almost always use get).
The post method is used when an action
is required, as when a database record
will be updated or an email should be
sent. For these reasons I will primarily
use post throughout this book, with
noted exceptions.

34



Programming with PHP

Script 2.1 This simple HTML form will be used for
several of the examples in this chapter.

ece

= Seript

1

10

11
12

13
14

15
16

17
18

19
20
21
22

23

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" con-
tent="text/html; charset=1s0-8859-1" />

<title>Simple HTML Form</title>
</head>
<body>

<!-- Script 2.1 - form.html -->

<form action="handle_form.php"
method="post">

<fieldset><legend>Enter your
information in the form below:</legend>

<p><b>Name:</b> <input type="text"
name="name" size="20" maxlength="40"
/></p>

<p><b>Email Address:</b> <input
type="text" name="email" size="40Q"
maxlength="60" /></p>

<p><b>Gender:</b> <input type="radio"
name="gender" value="M" /> Male <input
type="radio" name="gender" value="F" />
Female</p>

<p><b>Age:</b>
<select name="age">

<option value="0-29">Under
30</option>

<option value="30-60">Between 30 and
60</option>

(script continues on next page)

To create an HTML form:

1.

Begin a new HTML document in your
text editor (Script 2.1).

<!DOCTYPE html PUBLIC "-//W3C//
— DTD XHTML 1.0 Transitional//EN"
» "http://www.w3.0rg/TR/xhtml1/DTD/
— xhtml1l-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
» xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 150-8859-1" />

<title>Simple HTML Form</title>
</head>
<body>
<!-- Script 2.1 - form.html -->

There's nothing significantly new here.
The document still uses the same basic
syntax for an HTML page as in the
previous chapter. An HTML comment
indicates the file's name and number.

Add the initial form tag.

<form action="handle_form.php"
— method="post">

Since the action attribute dictates to
which script the form data will go, you
should give it an appropriate name (han-
dle_form to correspond with this script:
form.html) and the .php extension (since
a PHP page will handle this form’s data).

Begin the HTML form.

<fieldset><legend>Enter your
— information in the form
— below:</legend>

continues on next page

35

W04 TWLH NV 9NILYIY)



CREATING AN HTML Form

Chapter 2

I'm using the fieldset and legend Script 2.1 continued
HTML tags because I like the way they 0006 2 Sript
make the HTML form look (they add a 24 <option value="60+">0ver 60@</option>
box arm’md the form with a title at top). 25 selects</p>
This isn't pertinent to the form itself, 26
though.
. 27 <p><b>Comments:</b> <textarea
4. Add two text inputs. name="comments" rows="3"

. " " cols="40"></textarea></p>
<p><b>Name:</b> <input type="text

» name="name" size="20" maxlength= 28
» 40" /></p> 29 </fieldset>
<p><b>Email Address:</b> <input 30
— type="text" name="email" size="40" 31 <div align="center"><input type=
— maxlength="60" /></p> "submit" name="submit" value=
"Submit My Information" /></div>
These are just simple text inputs, allow-
. . 32
ing the user to enter their name and
email address (Figure 2.1). In case you 33 </form>
are wondering, the extra space and 34
slash at the end of each 1nput§ tag are 35 </body>
required for valid XHTML. With stan-
36 </html>

dard HTML, these tags would conclude,
for instance, with maxlength="40"> or
maxlength="60"> instead.

Name: ILarry Ullman

5. Add a pair of radio buttons.

Email Address: [Larry@DMClnsights.com

<p><b>Gender:</b> <input type=
"radio" name="gender" value= Figure 2.1 Two text inputs.
"M" /> Male <input type=

"radio" name="gender" value=

» "E" /> Female</p> Gender: @ Male ¢ Female
The radio buttons (Figure 2.2) both Figure 2.2 If multiple radio buttons

have the same name, only one can

have the same name, meaning that
be chosen by the user.

only one of the two can be selected.
They have different values, though.

6. Add a pull-down menu.
<p><b>Age:</b>
<select name="age">

<option value="0-29">Under 30</
— option>

<option value="30-60">Between 30
— and 60</option>

36



Programming with PHP

Age: [ Under 30 |
Under 30 "

Between 30 and 60
Over 60

Figure 2.3 The pull-down
menu offers three options,
of which only one can be
selected (in this example).

he  form element type allows
for lots of text to be m
entered.The textarea form element type

Comments; [211ows for lots and lots of text to be

-

Figure 2.4 The textarea form element type allows for
lots and lots of text to be entered.

) Simple HTML Form - Mozilla Firefox

File Edit View History Bookmarks Tools Help

[0 heepesris2. 166.0. 103:6000 Ferm i [~]#]

— Enter your information in the form below:

Name| ]

Email Address: |

Gender: © Male O Female

Age: | Under 30 ~

Comments:

Submit My Information

Figure 2.5 The complete form, which requests some
basic information from the user.

10.

v

<option value="60+">0ver 60</
— option>

</select></p>

The select tag starts the pull-down
menu, and then each option tag
will create another line in the list of
choices (Figure 2.3).

Add a text box for comments.

<p><b>Comments:</b> <textarea name=
— "comments" rows="3" cols="40"></
— textarea></p>

Textareas are different from text inputs;
they are presented as a box (Figure 2.4),
not as a single line. They allow for much
more information to be typed and are
useful for taking user comments.

Complete the form.
</fieldset>
<div align="center"><input type=

— "submit" name="submit" value=
— "Submit My Information" /></div>

</form>

The first tag closes the fieldset that
was opened in Step 3. Then a submit
button is created and centered using a
div tag. Finally the form is closed.

Complete the HTML page.
</body>
</html>
Save the file as form.html, place it in
your Web directory, and view it in your
Web browser (Figure 2.5).
Tip
Since this page contains just HTML, it
uses an .html extension. It could instead
use a .php extension without harm (since

code outside of the PHP tags is treated
as HTML).

37

W04 TWLH NV 9NILYIY)



HANDLING AN HTML FOrRM

Chapter 2

Handling an HTML Form

Now that the HTML form has been created,
it’s time to write a bare-bones PHP script

to handle it. To say that this script will be
handling the form means that the PHP page
will do something with the data it receives
(which is the data the user entered into the
form). In this chapter, the scripts will simply
print the data back to the Web browser. In
later examples, form data will be stored in a
MySQL database, compared against previ-
ously stored values, sent in emails, and more.

The beauty of PHP—and what makes it so
easy to learn and use—is how well it inter-
acts with HTML forms. PHP scripts store
the received information in special variables.
For example, say you have a form with an
input defined like so:

<input type="text" name="city" />

Whatever the user types into that element
will be accessible via a PHP variable named
$_REQUEST['city']. It is very important
that the spelling and capitalization match
exactly! PHP is case-sensitive when it comes
to variable names, so $_REQUEST['city']
will work, but $_Request['city'] or
$_REQUEST['City'] will have no value.

This next example will be a PHP script that
handles the already-created HTML form
(Script 2.1). This script will assign the form
data to new variables (to be used as short-
hand, just like in Script 1.5, predefined.php).
The script will then print the received values.

To handle an HTML form:

1. Create a new PHP document in your text
editor or IDE, beginning with the HTML
(Script 2.2).

<!DOCTYPE html PUBLIC "-//W3C//
— DTD XHTML 1.0 Transitional//EN"
» "http://www.w3.0rg/TR/xhtml1/DTD/

Script 2.2 This script receives and prints out the
information entered into an HTML form (Script 2.1).

eoce |5} Script

1

10
11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" con-
tent="text/html; charset=iso-8859-1" />

<title>Form Feedback</title>
</head>
<body>

<?php # Script 2.2 - handle_form.php

// Create a shorthand for the form data:
$name = $_REQUEST['name'];

$email = $_REQUEST['email'];

$comments = $_REQUEST['comments'];

/* Not used:

$_REQUEST['age']

$_REQUEST[ 'gender']

$_REQUEST[ "submit"']

*/

// Print the submitted information:

echo "<p>Thank you, <b>$name</b>, for the
following comments:<br />

<tt>$comments</tt></p>

<p>We will reply to you at
<i>$email</i>.</p>\n";

7>
</body>
</html>

38



Programming with PHP

Table 2.1 The HTML form elements and their
corresponding PHP variables.

Form Elements to PHP Variables

ELEMENT NAME
name

email
comments
age

gender
submit

VARIABLE NAME
$_REQUEST["name']
$_REQUEST['email']
$_REQUEST[ ' comments']
$_REQUEST['age']
$_REQUEST['gender']
$_REQUEST['submit']

— xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
» content="text/html; charset=
» 1s0-8859-1" />

<title>Form Feedback</title>
</head>
<body>

. Add the opening PHP tag and create

a shorthand version of the form data
variables.

<?php # Script 2.2 - handle_form.php
$name = $_REQUEST['name'];

$email = $_REQUEST['email'];
$comments = $_REQUEST['comments'];

Following the rules outlined before, the
data entered into the first form input,
which is called name, will be accessible
through the variable $_REQUEST[ 'name ']
(Table 2.1). The data entered into the
email form input, which has a name value
of email, will be accessible through
$_REQUEST['email']. The same applies to
the comments data. Again, the spelling
and capitalization of your variables here
must exactly match the corresponding
name values in the HTML form.

. Print out the received name, email, and

comments values.

echo "<p>Thank you, <b>$name</b>,
» for the following comments:<br />

<tt>$comments</tt></p>

<p>We will reply to you at <i>
— $email</i>.</p>\n";

continues on next page

39

W¥04 TW.LH NV OSNITANVH



HANDLING AN HTML FOrRM

Chapter 2

The submitted values are simply printed
out using the echo() statement, double
quotation marks, and a wee bit of HTML
formatting.

4. Complete the HTML page.
7>
</body>
</html>

5. Save the file as handle_form.php and
place it in the same Web directory as
form.html.

6. Test both documents in your Web
browser by loading form.html through a
URL and then filling out and submitting
the form (Figures 2.6 and 2.7).

Because the PHP script must be run
through a URL (see Chapter 1), the form
must also be run through a URL.
Otherwise, when you go to submit the
form, you'll see PHP code (Figure 2.8)
instead of the proper result (Figure 2.7).

v Tips

B $_REQUEST is a special variable type,
known as a superglobal. It stores all of
the data sent to a PHP page through
either the GET or POST method, as well as
data accessible in cookies. Superglobals
will be discussed later in the chapter.

B If you have any problems with this script,
apply the debugging techniques suggest-
ed in Chapter 1. If those don't solve the
problem, check out the extended debug-
ging techniques listed in Chapter 7, “Error
Handling and Debugging.” If you're still
stymied, turn to the book’s supporting
forum for assistance (www.DMCInsights.
com/phorum/).

8606 Simple HTML Form (=]

@ nttp:4/127.0.0. 1:8000/form. html v

— Enter your information in the form below:

Name: Ecnfucius

Email Address: I(—dug@example.(um

Gender: & Male ¢ Female

Age: [ Over 60 |

ffhe greatest glory is not in never
failing, but in rising up every time we
Fal1.

‘Comments:

Submit My Information

Done )

Figure 2.6 To test handle_form.php, you must load the
form through a URL, then fill it out and submit it.

868 Form Feedback =

e http: ff127.0.0. L8000 fhandle_form.php v | |

Thank you, Confucius, for the following comments:
The greatest glory is not in never failing, but
in rising up every time we fall.

We will reply 1o you at c-dog@ example com.

Cone _) []

Figure 2.7 Your script should display results like this.

3 Mazilla Firefox

Flo ER Yew Hgory Bockeaks Joch b

L) peeinc: R R ITWE, Foem.cho A8 ]

<1DOCTYPE hEmd PUBLIC "-//WIC//DTD XNTAL 1.0 Transitional//EN® =ntep:// @
<heml xmlns="hetp://www. vl org/ 1999/ Ahtnl” wmli lang="en” lang=~en~:
<head>
<meta BELLp-SquiveTCORLEnL-Lype” content="text/himl; charset=iso
<titlerForm Feedback</Litlesr
</ nmaa>

<2php W Scripe 2.2 - bandle_form. php

/i Ceeate a shoceh
fname = §_REQUE!
femail = 3_REQO i1
fcomments = §_REQUEST(['cossenta']:
/* Not uzed:

§_REQUEST[ 'mge']
§_PEQUEST['gender']
§_REQUEST( ' submac']

b

g for the form data:

// Prios che submitced information:
echo “<p>Thank you, <brineme</b>, for the Zolloving commenta:<br />
<eEfromment sof EEnLd p

<pr¥e Will reply to you At <idSemallesis.£/pMint:

L
</body>

</ hemls
~

£ *

Figure 2.8 If you see the PHP code itself after submitting
the form, the problem is likely that you did not access
the form through a URL.

40



Programming with PHP

®00 Form Feedback (=]

Thank you, Confucius, for the following comments:

but in rising up every time we fail.
‘We will reply to you at c-dog @ example.com.

Your age and gender were entered as 60+ and M
respectively.

The greatest glory is not in never failing,

Figure 2.9 The values of gender and age correspond
to those defined in the form’s HTML.

If the PHP script shows blank spaces
where a variable’s value should have been
printed, it means that the variable has no
value. The two most likely causes are: you
failed to enter a value in the form; or you
misspelled or mis-capitalized the vari-
able’s name.

If you see any Undefined variable: vari-
ablename errors, this is because the
variables you refer to have no value and
PHP is set on the highest level of error
reporting. The previous tip provides sug-
gestions as to why a variable wouldn’t
have a value. Chapter 7 discusses error
reporting in detail.

For a comparison of how PHP handles
the different form input types, print out
the $_REQUEST['age'] and $_REQUEST
['gender'] values (Figure 2.9).

Magic Quotes

Earlier versions of PHP had a feature called Magic Quotes, which was removed in PHP 6. Magic
Quotes—when enabled—automatically escapes single and double quotation marks found in
submitted form data (there were actually three kinds of Magic Quotes, but this one kind is
most important here). So the string I'm going out would be turned into I\ m going out.

The escaping of potentially problematic characters can be useful and even necessary in some
situations. But if Magic Quotes are enabled on your PHP installation (which means you're
using a pre-PHP 6 version), you'll see these backslashes when the PHP script prints out the
form data. You can undo its effect using the stripslashes() function:

$var = stripslashes($var);

This function will remove any backslashes found in $var. This will have the effect of turning
an escaped submitted string back to its original, non-escaped value.

To use this in handle_form.php (Script 2.2), you would write:

$name = stripslashes($_REQUEST['name']);

If you're using PHP 6 or later, you no longer need to worry about this, as Magic Quotes has

been removed (for several good reasons).

41

W¥04 TW.LH NV ONITANVH



CONDITIONALS AND OPERATORS

Chapter 2

Conditionals and Operators

PHP’s three primary terms for creating con-
ditionals are if, else, and elseif (which
can also be written as two words, else if).
Every conditional begins with an if clause:
if (condition) {

// Do something!
}
An if can also have an else clause:
if (condition) {

// Do something!
} else {

// Do something else!

}

An elseif clause allows you to add more
conditions:

if (conditionl) {
// Do something!
} elseif (condition2) {
// Do something else!
} else {
// Do something different!
}

If a condition is true, the code in the follow-
ing curly braces ({}) will be executed. If not,
PHP will continue on. If there is a second
condition (after an elseif), that will be
checked for truth. The process will continue—
you can use as many elseif clauses as you
want—until PHP hits an else, which will be
automatically executed at that point, or
until the conditional terminates without an
else. For this reason, it’s important that the
else always come last and be treated as the
default action unless specific criteria (the
conditions) are met.

A condition can be true in PHP for any
number of reasons. To start, these are true
conditions:

¢ S$var, if $var has a value other than 0, an
empty string, FALSE, or NULL

¢ isset($var), if $var has any value other
than NULL, including 0, FALSE, or an
empty string

¢ TRUE, true, True, etc.

In the second example, a new function,
isset(), is introduced. This function checks
if a variable is set, meaning that it has a value
other than NULL (as a reminder, NULL is a
special type in PHP, representing no set value).
You can also use the comparative and logical
operators (Table 2.2) in conjunction with
parentheses to make more complicated
expressions.

TABLE 2.2 These operators are frequently used when
writing conditionals.

Comparative and Logical Operators

SymsolL MEANING TYPE EXAMPLE

== is equal to comparison $x == Sy

= isnotequalto | comparison $x 1= Sy

< less than comparison | $x < $y

> greater than comparison $x > %y

<= less than or comparison $x <= 3y
equal to

>= greater than comparison  [$x >= $y
or equal to

! not logical 1$x

&& and logical $x && $y

Il or logical $x 11 $y

XOR  [and not logical $x XOR $y

42



Programming with PHP

Script 2.3 Conditionals allow a script to modify

behavior according to specific criteria. In this remade

version of handle_form.php, two conditionals are
used to validate the gender radio buttons.

806 = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/

xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" con-

tent=
"text/html; charset=iso-8859-1" />

6 <title>Form Feedback</title>

7 </head>

8 <body>

9 <?php # Script 2.3 - handle_form.php #2

10

11 // Create a shorthand for the form data:

12 $name = $_REQUEST['name'];

13 $email = $_REQUEST['email'];

14 $comments = $_REQUEST['comments'];

15

16 // Create the $gender variable:

17 if (isset($_REQUEST['gender'])) {

18 $gender = $_REQUEST['gender'];

19 } else {

20 $gender = NULL;

21}

22

23 // Print the submitted information:

24 echo "<p>Thank you, <b>$name</b>, for the
following comments:<br />

25  <tt>$comments</tt></p>

26 <p>We will reply to you at <i>$email</i>.

</p>\n"};

(script continues on next page)

To use conditionals:

1.

2.

Open handle_form.php (refer to Script 2.2)
in your text editor or IDE.

Before the echo() statement, add a con-
ditional that creates a $gender variable
(Script 2.3).

if (isset($_REQUEST['gender'])) {
$gender = $_REQUEST['gender'];
} else {
$gender = NULL;
}

This is a simple and effective way to vali-
date a form input (particularly a radio
button, check box, or select). If the user
checks either gender radio button, then
$_REQUEST['gender'] will have a value,
meaning that the condition isset($_
REQUEST['gender']) is true. In such a
case, the shorthand version of this vari-
able—$gender—is assigned the value

of $_REQUEST['gender'], repeating the
technique used with $name, $email, and
$comments. If the user does not click one
of the radio buttons, then this condition
is not true, and $gender is assigned the
value of NULL, indicating that it has no
value. Notice that NULL is not in quotes.

continues on next page

43

SYO0LVIId(Q ANV STVNOILIANO)



CONDITIONALS AND OPERATORS

Chapter 2

3.

After the echo() statement, add another
conditional that prints a message based
upon $gender’s value.

if ($gender == 'M"') {

echo '<p><b>Good day, Sir!</b>
- </p>";

} elseif ($gender == 'F') {

echo '<p><b>Good day, Madam!</b>
» </p>";

} else {

echo '<p><b>You forgot to enter
— your gender!</b></p>";

}

This if-elseif-else conditional looks
at the value of the $gender variable and
prints a different message for each possi-
bility. It’s very important to remember
that the double equals sign (==) means
equals, whereas a single equals sign (=)
assigns a value. The distinction is
important because the condition
$gender == 'M' may or may not be true,
but $gender = 'M' will always be true.
Also, the values used here—M and F—
must be exactly the same as those in the
HTML form (the values for each radio
button). Equality is a case-sensitive
comparison with strings, so m will not
equal M.

Save the file, place it in your Web direc-
tory, and test it in your Web browser
(Figures 2.10, 2.11, and 2.12).

Script 2.3 continued
8086 2| Seript

27

28 // Print a message based upon the gender
value:

29 if ($gender == 'M") {

30 echo '<p><b>Good day, Sir!</b></p>';
31 } elseif ($gender == 'F') {

32 echo '<p><b>Good day, Madam!</b></p>';
33 } else { // No gender selected.

34 echo '<p><b>You forgot to enter your
gender!</b></p>";

35 3}

36

37 7>

38  </body>

39 </html>

8006 Form Feedback )

ehttp:}’le?.0.0 1:8000fhandle_farm. php ¥ | |

Thank you, Marge Simpson, for the following comments:
Bart, don't use the Touch of Death on your sister.

We will reply to you at marge@ example com.

Good day, Madam!

Done ) ©

Figure 2.10 The gender-based conditional prints a
different message for each choice in the form.

806 Form Feedback (=

Q http: [/ 127.0.0.1:8000/handle_form.php ¥ |

Thank you, Ralph Waldo Emerson, for the following comments:

Diffieulties exist te be surmounted.
‘We will reply to you at rwe@ example.com.

Good day, Sir!

Done g O

Figure 2.11 The same script will produce different
salutations (compare with Figure 2.10) when the
gender values change.

44




Programming with PHP

8an0o Form Feedback (=]

@ http:/127.0.0.1:8000/handle_form. php v |

Thank you, Alistair Cooke, for the following comments:
b professional is someone who can do his best work when
he doesn't feel like it.

‘We will reply to you at a.cooke @ example .com.

You forgot to enter your gender!

Daone ) ©

Figure 2.12 If no gender was selected, a message is
printed indicating to the user their oversight.

Switch

PHP has another type of conditional,
called the switch, best used in place of a
long if-elseif-else conditional. The
syntax of switch is
switch ($variable) {
case 'valuel':
// Do this.
break;
case 'value2':
// Do this instead.
break;
default:
// Do this then.
break;

}

The switch conditional compares the
value of $variable to the different cases.
When it finds a match, the following code
is executed, up until the break. If no match
is found, the default is executed, assuming
it exists (it’s optional). The switch condi-
tional is limited in its usage in that it can
only check a variable's value for equality
against certain cases; more complex con-
ditions cannot be easily checked.

v Tips

Although PHP has no strict formatting
rules, it’s standard procedure and good
programming form to make it clear when
one block of code is a subset of a condi-
tional. Indenting the block is the norm.

You can—and frequently will—nest con-
ditionals (place one inside another).

The first conditional in this script (the
isset()) is a perfect example of how to
use a default value. The assumption (the
else) is that $gender has a NULL value
unless the one condition is met: that
$_REQUEST[ 'gender'] is set.

The curly braces used to indicate the
beginning and end of a conditional are
not required if you are executing only
one statement. I would recommend that
you almost always use them, though, as
a matter of clarity.

45

SYO0LVIId(Q ANV STVNOILIANO)



VALIDATING FORM DATA

Chapter 2

Validating Form Data

A critical concept related to handling HTML
forms is that of validating form data. In terms
of both error management and security, you
should absolutely never trust the data being
entered in an HTML form. Whether erro-
neous data is purposefully malicious or just
unintentionally inappropriate, it's up to
you—the Web architect—to test it against
expectations.

Validating form data requires the use of
conditionals and any number of functions,
operators, and expressions. One standard
function to be used is isset(), which tests
if a variable has a value (including 0, FALSE,
or an empty string, but not NULL). You saw
an example of this in the preceding script.

One issue with the isset() function is that
an empty string tests as TRUE, meaning that
isset() is not an effective way to validate
text inputs and text boxes from an HTML
form. To check that a user typed something
into textual elements, you can use the
empty() function. It checks if a variable has
an empty value: an empty string, O, NULL,

or FALSE.

The first aim of form validation is seeing if
something was entered or selected in form
elements. The second goal is to ensure that
submitted data is of the right type (numeric,
string, etc.), of the right format (like an email
address), or a specific acceptable value (like
$gender being equal to either M or F). As
handling forms is a main use of PHP,
validating form data is a point that will be
re-emphasized time and again in subse-
quent chapters. But first, let’s create a new
handle_form.php to make sure variables have
values before they're referenced (there will
be enough changes in this version that sim-
ply updating Script 2.3 doesn’'t make sense).

To validate your forms:
1. Begin a new PHP script in your text
editor or IDE (Script 2.4).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN" "http:
— //www.w3.org/TR/xhtml1/DTD/

— xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 150-8859-1" />
<title>Form Feedback</title>
</head>
<body>
<?php # Script 2.4 - handle_
— form.php #3
2. Within the HTML head, add some CSS
(Cascading Style Sheets) code.

<style type="text/css" title="text/
» css" media="all">

.error {
font-weight: bold;
color: #(C00

}

</style>

CSS is the preferred way to handle many
formatting and layout issues in an HTML
page. You'll see a little bit of CSS here
and there in this book; if you're not
familiar with the subject, check out a
dedicated CSS reference.

continues on page 49

46



Programming with PHP

Script 2.4 Validating HTML form data before you use it is critical to Web security and achieving professional results.
Here, conditionals check that every referenced form element has a value.

806 =) Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.@ Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/
» xhtml1l-transitional.dtd">

2 <html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

3 <head>

4 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

5 <title>Form Feedback</title>

6 <style type="text/css" title="text/css" media="all">

7 .error {

8 font-weight: bold;

9 color: #C00

10 }

11 </style>

12 </head>

13 <body>

14  <?php # Script 2.4 - handle_form.php #3

15

16 // Validate the name:

17 if (lempty($_REQUEST['name'])) {

18 $name = $_REQUEST['name'];

19 1} else {

20 $name = NULL;

21 echo '<p class="error">You forgot to enter your name!</p>';

22}

23

24 // Validate the email:

25 if (lempty($_REQUEST['email'])) {

26 $email = $_REQUEST['email'];

27 } else {

28 $email = NULL;

29 echo '<p class="error">You forgot to enter your email address!</p>';

30 3}

31

32 // Validate the comments:

33 if ('empty($_REQUEST['comments'])) {

34 $comments = $_REQUEST['comments'];

35 } else {

36 $comments = NULL;

(script continues on next page)

47

V1VQ@ W04 ONILYAITVA



VALIDATING FORM DATA

Chapter 2

Script 2.4 continued

808 =) Script

37 echo '<p class="error">You forgot to enter your comments!</p>';
38 3}

39

40 // Validate the gender:
41  if (isset($_REQUEST['gender'1)) {

43 $gender = $_REQUEST['gender'];

45 if ($gender == 'M") {

46 echo '<p><b>Good day, Sir!</b></p>";
47 } elseif ($gender == 'F') {

48 echo '<p><b>Good day, Madam!</b></p>";
49 } else { // Unacceptable value.

50 $gender = NULL;

51 echo '<p class="error">Gender should be either "M" or "F"!</p>';
52 1

53

54 3} else { // $_REQUEST['gender'] is not set.
55 $gender = NULL;

56 echo '<p class="error">You forgot to select your gender!</p>";

59 // If everything is OK, print the message:
60 if ($name && $email && $gender && $comments) {

61
62 echo "<p>Thank you, <b>$name</b>, for the following comments:<br />
63 <tt>$comments</tt></p>

64 <p>We will reply to you at <i>$email</i>.</p>\n";

66 1} else { // Missing form value.

67 echo '<p class="error">Please go back and fill out the form again.</p>";
68 }

69

7w 7>

71 </body>

72 </html>




Programming with PHP

In this script I'm defining one CSS class,
called error. Any HTML element that has
this class name will be formatted in a
bold, red color (which will be more
apparent in your Web browser than

in this black-and-white book).

Check if the name was entered.

if ('empty($_REQUEST['name'])) {
$name = $_REQUEST['name'];

} else {
$name = NULL;

echo '<p class="error">You forgot
— to enter your name!</p>';

}

A simple way to check that a form text
input was filled out is to use the empty()
function. If $_REQUEST['name'] has a
value other than an empty string, 0, NULL,
or FALSE, assume that their name was
entered and a shorthand variable is
assigned that value. If $_REQUEST[ 'name"]
is empty, the $name variable is set to NULL
and an error message printed. This error
message uses the CSS class.

Repeat the same process for the email
address and comments.

if ('empty($_REQUEST['email'])) {
$email = $_REQUEST['email'];

} else {
$email = NULL;

echo '<p class="error">You forgot
to enter your email address!</p>';

}
if (lempty($_REQUEST['comments'])) {
$comments = $_REQUEST['comments'];
} else {
$comments = NULL;

echo '<p class="error">You forgot
— to enter your comments!</p>';

}

Both variables receive the same treat-
ment as $_REQUEST[ 'name '] in Step 3.

. Begin validating the gender variable.

if (isset($_REQUEST['gender'])) {
$gender = $_REQUEST['gender'];

The validation of the gender is a two-step
process. First, check if it has a value or
not, using isset(). This starts the main
if-else conditional, which otherwise
behaves like those for the name, email
address, and comments.

. Check $gender against specific values.

if ($gender == 'M') {
echo '<p><b>Good day, Sir!</b>
» </p>";
} elseif ($gender == "F') {
echo '<p><b>Good day, Madam!</b>
- </p>";
} else {
$gender = NULL;
echo '<p class="error">Gender

— should be either "M" or "F"!
- </p>";

}

Within the gender if clause is a nested
if-elseif-else conditional that tests the
variables value against what's acceptable.
This is the second part of the two-step
gender validation.

continues on next page

49

V1VQ@ W04 ONILYAITVA



VALIDATING FORM DATA

Chapter 2

The conditions themselves are the same
as those in the last script. If gender does
not end up being equal to either M or F,
a problem occurred and an error mes-
sage is printed. The $gender variable is
also set to NULL in such cases, because it
has an unacceptable value.

If $gender does have a valid value, a
gender-specific message is printed.

. Complete the main gender if-else

conditional.
} else {
$gender = NULL;

echo '<p class="error">You forgot
— to select your gender!</p>";

}

This else clause applies if $_REQUEST

['gender'] is not set. The complete,

nested conditionals (see lines 41-57

of Script 2.4) successfully check every

possibility:

A $_REQUEST['gender'] is not set

A $_REQUEST['gender'] has a value
of M

A $_REQUEST['gender'] has a value
of F

A $_REQUEST['gender'] has some
other value

You may wonder how this last case may
be possible, considering the values are
established in the HTML form. If a mali-
cious user creates their own form that
gets submitted to your handle_form.php
script (which is very easy to do), they
could give $_REQUEST['gender'] any
value they want.

8.

10.

Print the message if all of the tests have
been passed.

if ($name && $email && $gender &&
— $comments) {

echo "<p>Thank you, <b>$name</b>,
— for the following comments:
— <br />

<tt>$comments</tt></p>

<p>We will reply to you at <i>$
— email</i>.</p>\n";

} else { // Missing form value.

echo '<p class="error">Please go
— back and fill out the form
— again.</p>";

}

This main condition is true if every listed
variable has a true value. Each variable
will have a value if it passed its test but
have a value of NULL if it didn't. If every
variable has a value, the form was com-
pleted, so the Thank you message will
be printed. If any of the variables are
NULL, the second message will be print-
ed (Figures 2.13 and 2.14).

Close the PHP section and complete
the HTML code.

7>
</body>
</html>

Save the file as handle_form.php,
place it in the same Web directory
as form.html, and test it in your Web
browser (Figures 2.13 and 2.14).

Fill out the form to different levels of

completeness to test the new script
(Figure 2.15).




Programming with PHP

©) Form Feedback - Mozilla Firefox

File Edit ‘ew History Bookmarks Tools  Help

||:| http: filacalhast/handle_form.php ‘ v‘ [)-l

You forgot to enter your name!

You forgot to enter your email address!
You forgot to enter your comments!
You forgot to select your gender!

Please go back and fill out the form again.

Figure 2.13 The script now checks
that every form element was filled out
(except the age) and reports on those
that weren’t.

©) Form Feedback - Mozilla Firefox

File Edit ‘ew History Bookmarks Tools  Help

||:| http: filacalhast/handle_form.php | '| [b']

You forgot to enter your email address!
You forgot to select your gender!

Please go back and fill out the form again.

Figure 2.14 If even one or two fields
were skipped, the Thank you message
is not printed...

©) Form Feedback - Mozilla Firefox

File Edit Yew History Bookmarks Tools Help

||:| http:ilocalhost/handle_form.php |Y| D]

Good day, Sir!
Thank you, Henry Ford, for the following comments
Failure is the opportunity to hegin again more

intelligently.

We will reply to you at keury@example.com

Figure 2.15 ...but if everything was entered
properly, the script behaves as it previously had
(although the gender-specific message now
appears at the top of the results).

v Tips

B To test if a submitted value is a number,

use the is_numeric() function.

In Chapter 13, “Perl-Compatible Regular
Expressions,” you'll see how to validate
form data using regular expressions.

The $age variable is still not used or
validated for the sake of saving book
space. To validate it, repeat the $gender
validation routine, referring to
$_REQUEST['age'] instead. To test
$age’s specific value, use an
if-elseif-elseif-else, checking
against the corresponding pull-down
options (0-29, 30-60, 60+).

It's considered good form (pun intended)
to let a user know which fields are
required when theyre filling out the form,
and where applicable, the format of that
field (like a date or a phone number).

51

V1VQ@ W04 ONILYAITVA



INTRODUCING ARRAYS

Chapter 2

I ntrod UCi ng Arrays Table 2.3 The $artists array uses numbers for its keys.
The final variable type covered in this book Array Example 1: Sartists
is the array. Unlike strings and numbers Kev vaLue
(which are scalar variables, meaning they 0 Death Cab for Cutie
can store only a single value at a time), an 1 Postal Service
array can hold multiple, separate pieces of 2 Wilco
information. An array is therefore like a list 3 Damien Rice
of values, each value being a string or a 4 White Stripes
number or even another array.
Arrays are structured as a series of key-value Table 2.4 The $states array uses strings (specifically
pairs, where one pair is an item or element of the state abbreviation) for its keys.
that array. For each item in the list, there is a
key (or index) associated with it (Table 2.3). Array Example 2: Sstates
Key VALUE
PHP supports two kinds of arrays: indexed, MD Maryland
which use numbers as the keys (as in Table PA Pennsylvania
2.3), and associative, which use strings as I Winois
keys (Table 2.4). As in most programming MO Missouri
languages, with indexed arrays, your arrays A lowa

will begin with the first index at 0, unless
you specify the keys explicitly.

An array follows the same naming rules as
any other variable. So offhand, you might
not be able to tell that $var is an array as
opposed to a string or number. The impor-
tant syntactical difference arises when
accessing individual array elements.

To refer to a specific value in an array, start
with the array variable name, followed by
the key in square brackets:

echo $artists[2]; // Wilco
echo $states['MD']; // Maryland
You can see that the array keys are used like

other values in PHP: numbers (e.g., 2) are
never quoted, whereas strings (MD) must be.

52



Programming with PHP

® O O Mozilla Firefox =]
My list of states: Array

s

Figure 2.16 Attempting to print an
array by just referring to the array
name results in the word Array
being printed instead.

Superglobal Arrays

PHP includes several predefined arrays
called the superglobal variables. They are:
$_GET, $_POST, $_REQUEST, $_SERVER, $_ENV,
$_SESSION, and $_COOKIE.

The $_GET variable is where PHP stores all
of the values sent to a PHP script via the
get method (possibly but not necessarily
from an HTML form). $_POST stores all

of the data sent to a PHP script from an
HTML form that uses the post method.
Both of these—along with $_COOKIE—

are subsets of $_REQUEST, which you've
been using.

$_SERVER, which was used in Chapter 1,
stores information about the server PHP
is running on, as does $_ENV. $_SESSION
and $_COOKIE will both be discussed in
Chapter 11, “Cookies and Sessions.”

One aspect of good security and pro-
gramming is to be precise when referring
to a variable. This means that, although
you can use $_REQUEST to access form
data submitted through the post method,
$_POST would be more accurate.

Because arrays use a different syntax than
other variables, printing them can be
trickier. First, since an array can contain
multiple values, you cannot easily print
them (Figure 2.16):

echo "My list of states: $states”;

However, printing an individual element’s
value is simple if it uses indexed (numeric)
keys:

echo "The first artist is $artists[0].";

But if the array uses strings for the keys, the
quotes used to surround the key will muddle
the syntax. The following code will cause a
parse error:

echo "IL is $states['IL']."; // BAD!

To fix this, wrap the array name and key in
curly braces when an array uses strings for
its keys:

echo "IL is {$states['IL']}.";

If arrays seem slightly familiar to you already,
that’s because you've already worked with
two: $_SERVER (in Chapter 1) and $_REQUEST
(in this chapter). To acquaint you with
another array and how to print array values
directly, one final basic version of the
handle_form.php page will be created using
the more specific $_POST array (see the
sidebar on “Superglobal Arrays”).

53

SAVIYY 9NIDNAOYULN]



INTRODUCING ARRAYS

Chapter 2

To use arrays:

1.

Begin a new PHP script in your text
editor (Seript 2.5).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN"

— "http://www.w3.org/TR/xhtml1/

— DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 1s0-8859-1" />

<title>Form Feedback</title>

<style type="text/css" title=
» "text/css" media="all">

.error {
font-weight: bold;
color: #C00

}
</style>

</head>
<body>

<?php # Script 2.5 - handle_
— form.php #4

As with the previous handle_form.php
(Script 2.4), this one defines a CSS class.

Perform some basic form validation.

if ( lempty($_POST['name']) &&
— lempty($_POST['comments']) &&
— lempty($_POST['email']) ) {

In the previous version of this script, the
values are accessed by referring to the
$_REQUEST array. But since these variables
come from a form that uses the post
method (see Script 2.1), $_POST would be
a more exact, and therefore more secure,
reference (see the sidebar).

Script 2.5 The superglobal variables, like $_POST here,
are just one type of array you’ll use in PHP.

eoce

= Script

1

10
11
12
13
14
15
16
17

18

19
20

21
22

23
24
25
26

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.
org/TR/xhtml1/DTD/xhtml1-transitional.
dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html; charset=
iso-8859-1" />

<title>Form Feedback</title>

<style type="text/css" title="text/css"
media="all">

.error {
font-weight: bold;
color: #C00
}
</style>
</head>
<body>
<?php # Script 2.5 - handle_form.php #4

// Print the submitted information:

if ( 'empty($_POST['name']) && 'empty
($_POST["comments']) && !empty($_POST
["email']) ) {

echo "<p>Thank you, <b>{$_POST['name']}
</b>, for the following comments:
<br />

<tt>{$_POST[' comments']}</tt></p>

<p>We will reply to you at <i>
{$_POST ['email']}</i>.</p>\n";

} else { // Missing form value.

echo '<p class="error">Please go back
and fill out the form again.</p>";

}

7>
</body>
</html>

54



Programming with PHP

This conditional checks that these three
text inputs are all not empty. Using the
and operator (&&), the entire conditional
is only true if each of the three subcondi-
tionals is true.

3. Print the message.

echo "<p>Thank you, <b>{$_POST
» ["name']}</b>, for the following
» comments:<br />

<tt>{$_POST[ ' comments']}</tt></p>

<p>We will reply to you at <i>{$_
— POST['email']}</i>.</p>\n";

After you comprehend the concept of an
array, you still need to master the syntax
involved in printing one. When printing
an array element that uses a string

for its key, use the curly braces (as in
{$_POST["name"']} here) to avoid parse
errors.

[ Xs)s) Form Feedback =]

Please go back and fill out the form again.

Figure 2.17 If any of the three tested
form inputs is empty, this generic
error message is printed.

[CXE)E] Form Feedback =)

Thank you, Milhouse Van Houten, for the following comments:
Remember that time he ate my goldfish and you lied
to me and said I never had any goldfish? Then why
did I have the bowl, Bart? Why did I have the bowl?

‘We will reply to you at mvh@ example .com.

Figure 2.18 The fact that the script now uses the
$_POST array has no effect on the visible result.

4. Complete the conditional begun in Step 2.

} else {

echo '<p class="error">Please go
— back and fill out the form
— again.</p>";

}

If any of the three subconditionals in
Step 2 is not true (which is to say, if any
of the variables has an empty value), then
this else clause applies and an error
message is printed (Figure 2.17).

5. Complete the PHP and HTML code.
7>
</body>
</html>

6. Save the file, place it in the same Web
directory as form.html, and test it in your
Web browser (Figure 2.18).

v Tips

B Because PHP is lax with its variable
structures, an array can even use a com-
bination of numbers and strings as its
keys. The only important rule is that the
keys of an array must each be unique.

B Ifyou find the syntax of accessing super-
global arrays directly to be confusing
(e.g., $_POST['name']), you can use the
shorthand technique at the top of your
scripts as you have been:

$name = $_POST["'name'];

In this script, you would then need to
change the conditional and the echo()
statement to refer to $name et al.

55

SAVIYY 9NIDNAOYULN]



INTRODUCING ARRAYS

Chapter 2

Creating arrays

The preceding example uses a PHP-generated
array, but there will frequently be times
when you want to create your own. There
are two primary ways to define your own
array. First, you could add an element at a
time to build one:

$band[] = 'Jemaine';
$band[] = 'Bret';
$band[]

'"Murray';

Now $band[@] has a value of Jemaine;
$band[1], Bret, and $band[2], Murray
(because arrays are indexed starting at 0).

Alternatively, you can specify the key when
adding an element. But it’s important to
understand that if you specify a key and

a value already exists indexed with that
same key, the new value will overwrite the
existing one.

$band['fan'] = 'Mel';

$band['fan'] = 'Dave'; // New value
$array[2]
$array[2]

'apple';

'orange'; // New value

Instead of adding one element at a time, you
can use the array() function to build an
entire array in one step:

$states = array ("IA' => 'Iowa', 'MD' =>
— 'Maryland');

This function can be used whether or not
you explicitly set the key:

$artists = array ('Clem Snide', 'Shins’',
— 'Eels'");

Or, if you set the first numeric key value, the
added values will be keyed incrementally
thereafter:

$days = array (1 => 'Sun', 'Mon', 'Tue');

echo $days[3]; // Tue

56



Programming with PHP

Fehruary
March

April

May

June

July
August
September
October
MNovember
December

Figure 2.19 These pull-down menus will be
created using arrays and the foreach loop.

The array() function is also used to initial-
ize an array, prior to referencing it:

$tv = arrayQ;
$tv[] = 'Flight of the Conchords';

Initializing an array (or any variable) in PHP
isn't required, but it makes for clearer code
and can help avoid errors.

Finally, if you want to create an array of
sequential numbers, you can use the
range() function:

$ten = range (1, 10);

Accessing arrays

You've already seen how to access indi-
vidual array elements using its keys (e.g.,
$_POST['email']). This works when you
know exactly what the keys are or if you
want to refer to only a single element.
To access every array element, use the
foreach loop:

foreach ($array as $value) {
// Do something with $value.
}

The foreach loop will iterate through every
element in $array, assigning each element’s
value to the $value variable. To access both
the keys and values, use

foreach ($array as $key => $value) {
echo "The value at $key is $value.";

}

(You can use any valid variable name in
place of $key and $value, like just $k and $v,
if youd like.)

Using arrays, I'll show how easy it is to make
a set of form pull-down menus for selecting
a date (Figure 2.19).

57

SAVIYY 9NIDNAOYULN]



INTRODUCING ARRAYS

Chapter 2

To

1. Create a new PHP document in your text

create and access arrays:

editor or IDE (Script 2.6).
<!DOCTYPE html PUBLIC "-//W3C//
— DTD XHTML 1.0 Transitional//EN"
» "http://www.w3.0org/TR/xhtml1/DTD/
— xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
» xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 150-8859-1" />

<title>Calendar</title>
</head>
<body>
<form action="calendar.php"
method="post">
<?php # Script 2.6 - calendar.php

One thing to note here is that even
though the page won't contain a com-
plete HTML form, the form tags are still
required to create the pull-down menus.

Script 2.6 Arrays are used to dynamically create three
pull-down menus (see Figure 2.19).

ece

|5} Script

1

10
11

12
13
14
15

16
17
18
19
20
21
22
23
24

25
26
27

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html; charset=
iso-8859-1" />

<title>Calendar</title>
</head>
<body>
<form action="calendar.php" method="post">

<?php # Script 2.6 - calendar.php

// This script makes three pull-down
menus

// for an HTML form: months, days, years.

// Make the months array:

$months = array (1 => 'January',
'February', 'March', 'April', 'May',
'June', 'July', 'August', 'September',
'October', 'November', 'December');

// Make the days and years arrays:
$days = range (1, 31);
$years = range (2008, 2018);

// Make the months pull-down menu:
echo '<select name="month">';
foreach ($months as $key => $value) {

echo "<option value=\"$key\">$value
</option>\n";

}

echo '</select>';

(script continues on next page)

58



Programming with PHP

Script 2.6 continued
806 = Seript

28 // Make the days pull-down menu:
29 echo '<select name="day">';
30 foreach ($days as $value) {

31 echo "<option value=\"$value\">$value
</option>\n";

32 %

33 echo '</select>';

34

35 // Make the years pull-down menu:
36 echo '<select name="year">';

37  foreach ($years as $value) {

38 echo "<option value=\"$value\">$value
</option>\n";

39 3}

40 echo '</select>';

41
42 7>

43 </form>
44 </body>
45  </html>

2. Create an array for the months.

$months = array (1 => 'January',
— "February', 'March', 'April',

— 'May', "June', 'July', 'August',
— 'September', 'October',

— "'November', 'December');

This first array will use numbers for the
keys, from 1 to 12. Since the value of the
first key is specified, the following values
will be indexed incrementally (in other
words, the 1 => code creates an array
indexed from 1 to 12, instead of from

0 to 11).

. Create the arrays for the days of the

month and the years.
$days = range (1, 31);
$years = range (2008, 2018);

Using the range() function, you can
easily make an array of numbers.

. Generate the month pull-down menu.

echo '<select name="month">";
foreach ($months as $key => $value) {

echo "<option value=\"$key\">
— $value</option>\n";

}

echo '</select>';

continues on next page

59

SAVIYY 9NIDNAOYULN]



INTRODUCING ARRAYS

Chapter 2

The foreach loop can quickly generate
all of the HTML code for the month
pull-down menu. Each execution of the
loop will create a line of code like
<option value="1">January</option>
(Figure 2.20).

5. Generate the day and year pull-down
menus.

echo '<select name="day">"';
foreach ($days as $value) {

echo "<option value=\"$value\">
— $value</option>\n";

}

echo '</select>';

echo '<select name="year">';
foreach ($years as $value) {

echo "<option value=\"$value\">
— $value</option>\n";

}

echo '</select>"';

Unlike the month example, both the
day and year pull-down menus will use
the same thing for the option’s value
and label (a number, Figure 2.20).

6. Close the PHP, the form tag, and the
HTML page.

7>
</form>
</body>
</html>
7. Save the file as calendar.php, place it in

your Web directory, and test it in your
Web browser.

©) Source of: http://localhost/calendar.php - Mozilla Firefox ‘ZHEHZ‘
Fle Edt WYew Help

<!DOCTYPE ktml FPUBLIC "-//W3C//DTD XHTML 1.0 Transitlonal,:
"kt tp: /S www. w3 orgy TR xhtml 1/DTD xhtml 1-transitio

<html xmilns="htctp://www. w3.org/ 1999/ xhewl” xml:lang="en"

<head>
<meta http-egquiv="content-type” content="text/htm
<titlerCalendar</titles

</head:>

<hody>

<form action="calendar.php” method="post">

<select name="month"><option value="1">January</option>

<option value="2">February</option:

<option value="3">March</option>

<option value="4">Aipril</option>

<option value="5">May</option>

<option value="¢">June</option>

<option value="7">July</option>

<option value="38">Aiugust</option>

<option value="9">September</option:

<option value="10">October</option>

<option value="11">November</option:

<option value="12Z">December</option:

</select><select name="day"><option value="1">1</option>

<option value="2">2</option>

<option value="3">3</option:>

<option value="4">4</option:>

<option value="5":>5</option>

<option value="¢">6</option>

< I >

|

Figure 2.20 Most of the HTML source was generated
by just a few lines of PHP.

v Tips

B To determine the number of elements
in an array, use the count(Qfunction.

$num = count($array);

B The range() function can also create an
array of sequential letters:

$alphabet = range ('a', 'z');

B An array’s key can be multiple-worded
strings, such as first name or phone
number.

B The is_array() function confirms that
a variable is of the array type.

B If you see an Invalid argument supplied
for foreach() error message, that means
you are trying to use a foreach loop on
a variable that is not an array.

60



Programming with PHP

Script 2.7 The multidimensional array is created by
using other arrays for its values. Two foreach loops,
one nested inside of the other, can access every
array element.

806 = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.
org/TR/xhtml1/DTD/xhtml1-transitional.
dtd">

2 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

3 <head>

4 <meta http-equiv="content-type"
content="text/html; charset=
is0-8859-1" />

5 <title>Multidimensional Arrays</title>
6 </head>
7 <body>

8 <p>Some North American States, Provinces,
and Territories:</p>

9 <?php # Script 2.7 - multi.php
10

11 // Create one array:

12 $mexico = array(

13 'YU' => 'Yucatan',

14 'BC' => 'Baja California',
15 '0A'" => 'Oaxaca'

16 );

17

18 // Create another array:
19 $us = array (

20 'MD' => 'Maryland',

21 'IL' => 'Illinois’,

22 'PA' => 'Pennsylvania’',

23 'IA' = 'Iowa'

24 ),

25

26 // Create a third array:
27  $canada = array (

28 'QC' => 'Quebec',

(script continues on next page)

Multidimensional arrays

When introducing arrays, I mentioned that
an array's values could be any combination of
numbers, strings, and even other arrays. This
last option—an array consisting of other
arrays—creates a multidimensional array.

Multidimensional arrays are much more
common than you might expect but remark-
ably easy to work with. As an example, start
with an array of prime numbers:

$primes = array(2, 3, 5, 7, .);

Then create an array of sphenic numbers
(don't worry: I had no idea what a sphenic
number was either; I had to look it up):

$sphenic = array(30, 42, 66, 70, ..);

These two arrays could be combined into
one multidimensional array like so:

$numbers = array ('Primes' => $primes,
— 'Sphenic' => $sphenic);

Now, $numbers is a multidimensional array.
To access the prime numbers sub-array, refer
to $numbers['Primes’']. To access the prime
number 5, use $numbers['Primes'][2] (it’s
the third element in the array, but the array
starts indexing at 0). To print out one of
these values, surround the whole construct
in curly braces:

echo "The first prime number is
» {$numbers['Prime'][0]1}.";

Of course, you can also access multidimen-
sional arrays using the foreach loop, nesting
one inside another if necessary. This next
example will do just that.

To use multidimensional arrays:

1. Create a new PHP document in your text
editor (Script 2.7).

continues on next page

61

SAVIYY 9NIDNAOYULN]



INTRODUCING ARRAYS

Chapter 2

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN" "http:
— //www.w3.org/TR/xhtml1/DTD/

— xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0org/
» 1999/xhtml" xml:lang="en"
» lang="en">
<head>
<meta http-equiv="content-type"

— content="text/html; charset=
— 1s0-8859-1" />
<title>Multidimensional Arrays
»</title>
</head>
<body>

<p>Some North American States,
» Provinces, and Territories:</p>

<?php # Script 2.7 - multi.php

This PHP page will print out some of the
states, provinces, and territories found in
the three North American countries
(Mexico, the United States, and Canada,
Figure 2.21).

Create an array of Mexican states.
$mexico = array(

'YU' => 'Yucatan',

'BC' => 'Baja California’',

'0A' => 'Oaxaca'

)3

This is an associative array, using the
state’s postal abbreviation as its key. The
state’s full name is the element’s value.

This is obviously an incomplete list, just
used to demonstrate the concept.

Because PHP is generally whitespace-
insensitive, the creation of the array can
be written over multiple lines, which
makes it easier to read.

Script 2.7 continued

000 2 Script

29 'AB' => 'Alberta',

30 'NT' => 'Northwest Territories',

31 'YT' => 'Yukon',

32 'PE' => 'Prince Edward Island'

33 )

34

35 // Combine the arrays:

36 $n_america = array(

37 'Mexico' => $mexico,

38 'United States' => $us,

39  'Canada' => $canada

40 );

41

42 // Loop through the countries:

43 foreach ($n_america as $country => $list)

{

44

45 // Print a heading:

46 echo "<h2>$country</h2><ul>";

47

48 // Print each state, province, or
territory:

49 foreach ($list as $k => $v) {

50 echo "<li>$k - $v</1i>\n";

51 3

52

53 // Close the list:

54 echo '</ul>';

55

56 } // End of main FOREACH.

57

58 7>

59  </body>

60  </html>

62



Programming with PHP

3. Create the second and third arrays.
$us = array (
'MD' => 'Maryland',
'IL'" = 'Illinois’,
'PA" => 'Pennsylvania’',
'"IA" => '"Iowa'
J;
$canada = array (
'QC" => 'Quebec',
'AB'" => 'Alberta’,
'NT' => 'Northwest Territories',
"YT' => 'Yukon',
'"PE' => 'Prince Edward Island’

);

06 Multidimensional Arrays =

Some North American States, Provinces, and Territories:

Mexico

* YU - Yucatan
+ BC - Baja California
+ OA - Oaxaca

United States

» MD - Maryland

+ IL - Hllinois

+ PA - Pennsylvania
s IA -Jowa

Canada

* QC - Quebec

« AB - Alberta

« NT - Northwest Territories
« YT - Yukon

+ PE - Prince Edward Island

Figure 2.21 The end result of running this PHP page
(Script 2.7), where each country is printed, followed
by an abbreviated list of its states, provinces, and
territories.

. Combine all of the arrays into one.

$n_america = array(
'"Mexico' => $mexico,
'United States' => $us,

'Canada’ => $canada

)3

You don't have to create three arrays
and then assign them to a fourth in
order to make the desired multidimen-
sional array. But I think it’s easier to
read and understand this way (defining
a multidimensional array in one step
makes for some ugly code).

The $n_america array now contains three
elements. The key for each element is a
string, which is the country’s name. The
value for each element is the list of states,
provinces, and territories found within
that country.

. Begin the primary foreach loop.

foreach ($n_america as $country =>
» $list) {

echo "<h2>$country</h2><ul>";

Following the syntax outlined earlier,
this loop will access every element of
$n_america. This means that this loop
will run three times. Within each itera-
tion of the loop, the $country variable
will store the $n_america array’s key
(Mexico, Canada, or United States). Also
within each iteration of the loop, the
$list variable will store the element’s
value (the equivalent of $mexico, $us,
and $canada).
To print out the results, the loop begins
by printing the country’s name within
H2 tags. Because the states and so forth
should be displayed as an HTML list, the
initial unordered list tag (<ul>) is printed
as well.

continues on next page

63

SAVIYY 9NIDNAOYULN]



INTRODUCING ARRAYS

Chapter 2

6. Create a second foreach loop.

10.

foreach ($list as $k => $v) {
echo "<li>$k - $v</1i>\n";

}

This loop will run through each sub-
array (first $mexico, then $us, and then
$canada). With each iteration of this
loop, $k will store the abbreviation and
$v the full name. Both are printed out
within HTML list tags. The newline
character is also used, to better format
the HTML source code.

Complete the outer foreach loop.
echo '</ul>';
} /7 End of main FOREACH.

After the inner foreach loop is done,
the outer foreach loop has to close
the unordered list begun in Step 5.

Complete the PHP and HTML.

7>

</body>

</html>

Save the file as multi.php, place it in

your Web directory, and test it in your
Web browser (Figure 2.21).

If you want, check out the HTML
source code to see what PHP created.

v Tips

B Multidimensional arrays can also come

from an HTML form. For example, if a
form has a series of checkboxes with the
name interests[|]—

<input type="checkbox" name=
» "interests[]" value="Music"
» /> Music

<input type="checkbox" name=
— "interests[]" value="Movies"
— /> Movies

<input type="checkbox" name=

— "interests[]" value="Books"

— /> Books

—the $_POST variable in the receiving
PHP page will be multidimensional.
$_POST['interests'] will be an array,
with $_POST['interests'][@] storing
the value of the first checked box (e.g.,
Movies), $_POST['interests'][1]
storing the second (Books), etc. Note
that only the checked boxes will get
passed to the PHP page.

You can also end up with a multidimen-
sional array if an HTML forms select
menu allows for multiple selections:

<select name="interests[]" multiple=
— "multiple">

<option value="Music">Music
» </option>

<option value="Movies">Movies
— </option>

<option value="Books">Books
— </option>

<option value="Napping">Napping
» </option>

</select>

Again, only the selected values will be
passed to the PHP page.

64



Programming with PHP

Arrays and Strings

Because arrays and strings are so com-
monly used, PHP has two functions for
converting between them.

$array = explode (separator,
» $string);

$string = implode (glue, $array);

The key to using and understanding these
two functions is the separator and glue
relationships. When turning an array into
a string, you set the glue—the characters
or code that will be inserted between

the array values in the generated string.
Conversely, when turning a string into

an array, you specify the separator, which
is the token that marks what should
become separate array elements. For
example, start with a string:

$s1 = 'Mon-Tue-Wed-Thu-Fri';
$days_array = explode ('-', $s1);
The $days_array variable is now a five-

element array, with Mon indexed at 0,
Tue indexed at 1, etc.

$s2 = implode (', ', $days_array);

The $string2 variable is now a comma-
separated list of days: Mon, Tue, Wed,
Thu, Fri.

Sorting arrays

One of the many advantages arrays have
over the other variable types is the ability

to sort them. PHP includes several functions
you can use for sorting arrays, all simple

in syntax:

$names = array ('Moe', 'Larry',
» "Curly');
sort($names);

The sorting functions perform three kinds
of sorts. First, you can sort an array by value,
discarding the original keys, using sort().
It's important to understand that the array’s
keys will be reset after the sorting process,
so if the key-value relationship is important,
you should not use this function.

Second, you can sort an array by value while
maintaining the keys, using asort(). Third,
you can sort an array by key, using ksort(Q).
Each of these can sort in reverse order if you
change them to rsort(), arsort(), and
krsort() respectively.

To demonstrate the effect sorting arrays
will have, I'll create an array of movie titles
and ratings (how much I liked them on a
scale of 1 to 10) and then display this list in
different ways.

65

SAVHUY SNIDNAOYLN]



INTRODUCING ARRAYS

Chapter 2

To sort arrays:

1.

Create a new PHP document in your text
editor or IDE (Script 2.8).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN" "http:
— //www.w3.org/TR/xhtml1/DTD/

— xhtmll-transitional.dtd">

<html xmlns="http://www.w3.
— 0org/1999/xhtml" xml:lang="en"
— lang="en">

<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 1s0-8859-1" />

<title>Sorting Arrays</title>
</head>
<body>

Create an HTML table.

<table border="0" cellspacing="3"
— cellpadding="3" align="center">

<tr>
<td><h2>Rating</h2></td>
<td><h2>Title</h2></td>
</tr>

To make the ordered list easier to read,
it'll be printed within an HTML table.
The table is begun here.

Script 2.8 An array is defined, then sorted in two
different ways: first by value, then by key (in
reverse order).

8086

=] Seript

1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN" "http://www.w3.org/
TR/xhtm11/DTD/xhtml1l-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
content="text/html; charset=
iso0-8859-1" />

<title>Sorting Arrays</title>
</head>
<body>

<table border="0" cellspacing="3"
cellpadding="3" align="center">

<tr>
<td><h2>Rating</h2></td>
<td><h2>Title</h2></td>
</tr>

<?php # Script 2.8 - sorting.php

// Create the array:

$movies = array (

10 => 'Casablanca',

9 => 'To Kill a Mockingbird",

2 => 'The English Patient',

8 => 'Stranger Than Fiction',

5 => 'Story of the Weeping Camel',
7 => 'Donnie Darko'

DK

// Display the movies in their original
order:

echo '<tr><td colspan="2"><b>In their
original order:</b></td></tr>";

(script continues on next page)

66



Programming with PHP

Script 2.8 continued
806 = Seript

27  foreach ($movies as $key => $value) {
28 echo "<tr><td>$key</td>
29 <td>$value</td></tr>\n";

32 // Display the movies sorted by title:
33 asort($movies);

34 echo '<tr><td colspan="2"><b>Sorted by
title:</b></td></tr>";

35 foreach ($movies as $key => $value) {
36 echo "<tr><td>$key</td>

37 <td>$value</td></tr>\n";

38 %

39

40 // Display the movies sorted by rating:

41 krsort($movies);

42 echo '<tr><td colspan="2"><b>Sorted by
rating:</b></td></tr>";

43 foreach ($movies as $key => $value) {
44 echo "<tr><td>$key</td>

45 <td>$value</td></tr>\n";

46 }
47
48 7>

49  </table>
50  </body>
51  </html>

3.

Add the opening PHP tag and create a
new array.

<?php

$movies = array (

10 => 'Casablanca',

9 => '"To Kill a Mockingbird',

2 => 'The English Patient’',

8 => 'Stranger Than Fiction',

5 => 'Story of the Weeping Camel',

7 => 'Donnie Darko'

)3

This array uses movie titles as the values
and their respective ratings as their key.
This structure will open up several
possibilities for sorting the whole list.
Feel free to change the movie listings

and rankings as you see fit (just don't
chastise me for my taste in films).

Print out the array as is.

echo '<tr><td colspan="2"><b>In
— their original order:</b></td>
- </tr>";

foreach ($movies as $key => $value)
- {
echo "<tr><td>$key</td>
<td>$value</td></tr>\n";

}

At this point in the script, the array is

in the same order as it was defined. To
verify this, print it out. A caption is first
printed across both table columns.
Then, within the foreach loop, the key is
printed in the first column and the value
in the second. A newline is also printed
to improve the readability of the HTML
source code.

continues on next page

67

SAVIYY 9NIDNAOYULN]



INTRODUCING ARRAYS

Chapter 2

5.

Sort the array alphabetically by title and
print it again.
asort($movies);

echo '<tr><td colspan="2"><b>Sorted
— by title:</b></td></tr>";
foreach ($movies as $key => $value)
- {
echo "<tr><td>$key</td>
<td>$value</td></tr>\n";

}

The asort() function sorts an array by
value while maintaining the key-value
relationship. The rest of the code is a
repetition of Step 4.

Sort the array numerically by descending
rating and print again.
krsort($movies);

echo '<tr><td colspan="2"><b>Sorted
— by rating:</b></td></tr>";

foreach ($movies as $key => $value)
- {
echo "<tr><td>$key</td>
<td>$value</td></tr>\n";

}

The ksort() function will sort an array
by key, but in ascending order. Since the
highest-ranking films should be listed
first, the order must be reversed, using
krsort(). This function, like asort(),
maintains the key-value relationships.

68



Programming with PHP

eoc6

Sorting Arrays =

Rating Title

In their original order:
10 Casablanca
9 To Kill a Mockingbird
2 The English Patient
8 Stranger Than Fiction
3 Story of the Weeping Camel
7 Donnie Darko
Sorted by title:
10 Casablanca
7 Donnie Darko
5 Story of the Weeping Camel
8 Stranger Than Fiction
2 The English Patient
9 To Kill a Mockingbird
Sorted by rating:
10 Casablanca
To Kill a Mockingbird

Stranger Than Fiction
Donnie Darko

Story of the Weeping Camel
The English Patient

S T R - I

Figure 2.22 This page demonstrates the different
ways arrays can be sorted.

7.

Complete the PHP, the table, and the
HTML.

7>

</table>

</body>

</html>

Save the file as sorting.php, place it in

your Web directory, and test it in your
Web browser (Figure 2.22).

v Tips

If you want to use decimal ratings for
the movies, the rating numbers must

be quoted or else PHP would drop the
decimal points (numeric keys are always
integers).

To randomize the order of an array, use
shuffle().

PHP’s natsort() function can be used
to sort arrays in a more natural order
(primarily handling numbers in strings
better).

Multidimensional arrays can be sorted
in PHP with a little effort. See the PHP
manual for more information on the
usort() function or check out my PHP 5
Advanced: Visual QuickPro Guide book.

PHP will sort arrays as if they were in
English by default. If you need to sort
an array in another language, use PHP’s
setlocale() function to change the
language setting. Chapter 14, “Making
Universal Sites,” goes into using different
languages.

69

SAVIYY 9NIDNAOYULN]



FOR AND WHILE LooPS

Chapter 2

For and While Loops

The last language construct to discuss in
this chapter is loops. You've already used
one, foreach, to access every element in
an array. The next two types of loops you'll
use are for and while.

The while loop looks like this:
while (condition) {

// Do something.
}

As long as the condition part of the loop

is true, the loop will be executed. Once it
becomes false, the loop is stopped (Figure
2.23). If the condition is never true, the

loop will never be executed. The while loop
will most frequently be used when retrieving

results from a database, as you'll see in
Chapter 8, “Using PHP with MySQL.”

The for loop has a more complicated
syntax:
for (initial expression; condition;
closing expression) {

// Do something.
}

Upon first executing the loop, the initial
expression is run. Then the condition is
checked and, if true, the contents of the
loop are executed. After execution, the

closing expression is run and the condition

is checked again. This process continues
until the condition is false (Figure 2.24).
As an example,

for ($i = 1; $i <= 10; $i++) {

echo $i;

do this if
TRUE

Exit loop
once
condition is
FALSE

Figure 2.23 A flowchart representation of
how PHP handles a while loop.

For

initial
expression

after
expression

do this if
TRUE

Exit loop
once
condition is
FALSE

Figure 2.24 A flowchart representation of how
PHP handles the more complex for loop.

70



Programming with PHP

Script 2.9 Loops are often used in conjunction with or
in lieu of an array. Here, two for loops replace the
arrays and foreach loops used in the script previously.

000 = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1l/
DTD/xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=
is0-8859-1" />

6 <title>Calendar</title>
7 </head>
8 <body>

9 <form action="calendar.php" method="post">

10 <?php # Script 2.9 - calendar.php #2

11

12 // This script makes three pull-down menus

13 // for an HTML form: months, days, years.

14

15 // Make the months array:

16 $months = array (1 => 'January',
'February', 'March', 'April', 'May’,
'June', 'July', 'August', 'September’,
'October', 'November', 'December');

17

18 // Make the months pull-down menu:

19 echo '<select name="month">';

20 foreach ($months as $key => $value) {

21 echo "<option value=\"$key\">$value</
option>\n";

22 %

23 echo '</select>';

24

25 // Make the days pull-down menu:
26 echo '<select name="day">';

(script continues on next page)

The first time this loop is run, the $i variable
is set to the value of 1. Then the condition is
checked (is I less than or equal to 10?). Since
this is true, 1 is printed out (echo $1). Then,
$1 is incremented to 2 ($i++), the condition
is checked, and so forth. The result of this
script will be the numbers 1 through 10
printed out.

The functionality of both loops is similar
enough that for and while can often be
used interchangeably. Still, experience will
reveal that the for loop is a better choice for
doing something a known number of times,
whereas while is used when a condition will
be true an unknown number of times.

In this chapter’s last example, the calendar
script created earlier will be rewritten using
for loops in place of two of the foreach
loops.

To use loops:

1. Open calendar.php (refer to Script 2.6) in
your text editor or IDE.

2. Delete the creation of the $days and
$years arrays (lines 18-19).

Using loops, the same result of the two
pull-down menus can be achieved with-
out the extra code and memory overhead
involved with an array. So these two
arrays will be deleted, while still keeping
the $months array.

3. Rewrite the $days foreach loop as a for
loop (Script 2.9).
for ($day = 1; $day <= 31; $day++) {

echo "<option value=\"$day\">$day
» </option>\n"};

continues on next page

71

Sd007 I1IH/M ANV ¥04



FOR AND WHILE LooPS

Chapter 2

This standard for loop begins by initial-
izing the $day variable as 1. It will
continue the loop until $day is greater
than 31, and upon each iteration, $day
will be incremented by 1. The content
of the loop itself (which is executed 31
times) is an echo() statement.

Rewrite the $years foreach loop as a
for loop.

for ($year = 2008; $year <= 2018;
» $year++) {

echo "<option value=\"$year\">$year
— </option>\n";

}

The structure of this loop is fundamen-
tally the same as the previous for loop,
but the $year variable is initially set to
2008 instead of 1. As long as $year is less
than or equal to 2018, the loop will be
executed. Within the loop, the echo()
statement is run.

Save the file, place it in your Web direc-
tory, and test it in your Web browser
(Figure 2.25).

v Tips

PHP also has a do..while loop with a
slightly different syntax (check the man-
ual). This loop will always be executed at
least once.

When using loops, watch your parame-
ters and conditions to avoid the dreaded
infinite loop, which occurs when a loop’s
condition is never going to be false.

Script 2.9 continued
e08©e

=] Seript

27 for ($day = 1; $day <= 31; $day++) {

28 echo "<option value=\"$day\">$day</
option>\n";

29 }

30 echo '</select>';

31

32 // Make the years pull-down menu:
33  echo '<select name="year">';

34 for ($year = 2008; $year <= 2018;
$year++) {

35 echo "<option value=\"$year\">$year</
option>\n";

36 }

37 echo '</select>';

38

39 7>

40  </form>
41  </body>
42 </html>

©J Calendar - Mozilla Firefox |:||E z|
Bookmarks  Tools

File Edit ‘“iew History

January

2004
2010
2011
2z
203
2014
2ms
2016
207
2018

Figure 2.25 The calendar form looks
quite the same as it had previously
(see Figure 2.19) but was created with
two fewer arrays (compare Script 2.9
with Script 2.6).

72



CREATING
DYNAMIC
WEB SITES

With the fundamentals of PHP under your belt, it’s time to begin building truly
dynamic Web sites. Dynamic Web sites, as opposed to the static ones on which the
Web was first built, are easier to maintain, are more responsive to users, and can

alter their content in response to differing situations. This chapter introduces three
new ideas, all commonly used to create more sophisticated Web applications
(Chapter 10, “Web Application Development,” covers another handful of topics
along these same lines).

The first subject involves using external files. This is an important concept, as more
complex sites often demand compartmentalizing some HTML or PHP code. Then
the chapter returns to the subject of handling HTML forms. You'll learn some new
variations on this standard process. Finally, you'll learn how to define and use your
own functions.

73

S3LIS 93\ DJIWVNA(Q SNILYVIY)



INCLUDING MULTIPLE FILES

Chapter 3

Including Multiple Files

To this point, every script in the book has
consisted of a single file that contains all of
the required HTML and PHP code. But as
you develop more complex Web sites, you'll
see that this methodology has many limita-
tions. PHP can readily make use of external
files, a capability that allows you to divide
your scripts and Web sites into distinct
parts. Frequently you will use external files
to extract your HTML from your PHP or to
separate out commonly used processes.

PHP has four functions for using external
files: include(), include_once(), require(),
and require_once(). To use them, your PHP
script would have a line like

include_once('filename.php');

require('/path/to/filename.html");

Using any one of these functions has the
end result of taking all the content of the
included file and dropping it in the parent
script (the one calling the function) at that
juncture. An important consideration with
included files is that PHP will treat the
included code as HTML (i.e.,, send it directly
to the browser) unless the file contains code
within the PHP tags.

In terms of functionality, it also doesn’'t mat-
ter what extension the included file uses, be
it .php or .html. However, by giving the file a
symbolic name, it helps to convey its pur-
pose (e.g., an included file of HTML might
use .inc.html). Also note that you can use
either absolute or relative paths to the
included file (see the sidebar for more).

Absolute vs. Relative Paths

When referencing any external item, be it
an included file in PHP, a CSS document
in HTML, or an image, you have the
choice of using either an absolute or a rel-
ative path. An absolute path says where a
file is starting from the root directory of
the computer. Such paths are always cor-
rect, no matter the location of the refer-
encing (parent) file. For example, a PHP
script can include a file using

include ('C:/php/includes/file.php');
include('/usr/xyz/includes/file.php")

)

Assuming file.php exists in the named
location, the inclusion will work (barring
any permissions issues). The second
example, in case you're not familiar with
the syntax, would be a Unix (and Mac
OS X) absolute path. Absolute paths
always start with something like C:/ or /.

A relative path uses the referencing (par-
ent) file as the starting point. To move up
one folder, use two periods together. To
move into a folder, use its name followed
by a slash. So assuming the current script
is in the www/ex1 folder and you want to
include something in www/ex2, the code
would be:

include('../ex2/file.php');
A relative path will remain accurate, even

if moved to another server, as long as the
files keep their current relationship.

74



Creating Dynamic Web Sites

ann Mazilla Firefox [=)

Warning: nu.huddmclun!cs.kwkr hlln]J [function inclade]): f.lllcd In npcn stream: No such fike or
disectory in Web Ser ph

Warning: include() [ function.mclude}: Ialhlnpcmnﬂ inchsdexheader amb for inclusion
iinclude_path="") in /; eh Ser php on line 3

Content Header

This is where the page-specific content goes. This section, and the comesponding header. will

change from one page (o the next

Volutpat al varus sed sollcitdin el, arcu. Yivamus viverm. Nullam trpis, Yestibulum sed etiam,
Lorem ipsum sit amet dolore. Nulla facilisi. Sed tortor. Aenean felis. Quisque enos. Cras kobortis

commado metus. Vestibulum vel punis. In eget odso in sapien adipiscing blandit, Quisque angue
tortor, facilisis sit amet. aliquam, suscipit vitae, cursus sed_ ancu lorem ipsum dolor sit amet.

Warning: ||| Iml.ﬂlr): Iullr\hmnrr hml) [functsonanclube]: Giled o u|i)r|| stream: No such file or
directory in /s Weh Ser php on line 13

Warning: ||||.I|udciJ|LI|.m.]m_n_Lm.llu.h.[ I'alh:d op:mng: umludcﬁ[mnn el for inchusion

(nclude_path=") in [A py php on line 13

Figure 3.1 Two failed include() calls generate these
four error messages (assuming that PHP is configured
to display errors), but the rest of the page continues
to execute.

CIEIE) Mazilla Firefox =

Warning: mquxmlm[\ldcdwndcrhm\lllw] failed 10 open stream: No such file or

directory m fAp php on linc 3

Fatal error: quulrLllI[um.Ll'_u_muuK] Fm.lml uprmme mgulml |mlm.lwhc.|uui|l|nl
{inclode_path=""} in /A pplicat php on line 3

Figure 3.2 The failure of a require() function call will
print an error and terminate the execution of the
script. If PHP is not configured to display errors, then
the script will terminate without printing the problem
first (i.e., it’'d be a blank page).

The include() and require() functions are
exactly the same when working properly but
behave differently when they fail. If an
include() function doesn’t work (it cannot
include the file for some reason), a warning
will be printed to the Web browser (Figure
3.1), but the script will continue to run. If
require() fails, an error is printed and the
script is halted (Figure 3.2).

Both functions also have a *_once() version,
which guarantees that the file in question is
included only once regardless of how many
times a script may (presumably inadver-
tently) attempt to include it.

require_once('filename.php');

include_once('filename.php');

In this next example, included files will sep-
arate the primary HTML formatting from
any PHP code. Then, the rest of the exam-
ples in this chapter will be able to have the
same appearance—as if they are all part of
the same Web site—without the need to
rewrite the HTML every time. This tech-
nique creates a template system, an easy
way to make large applications consistent
and manageable. The focus in these exam-
ples is on the PHP code itself; you should
also read the sidebar later in the chapter
on “Site Structure” so that you understand
the organizational scheme on the server.

If you have any questions about the CSS
(Cascading Style Sheets) or (X)HTML used
in the example, see a dedicated resource on
those topics.

75

S3114 I1dILTINIA ONIANTON]



INCLUDING MULTIPLE FILES

Chapter 3

To
1.

include multiple files: — Your Webslte

Design an HTML page in your text or
WYSIWYG editor (Seript 3.1 and
Figure 3.3).

Content Header

To start creating a template for a Web
site, design the layout like a standard

HTML page, independent of any PHP
code. For this chapter’s example, I'm Figure 3.3 The HTML and CSS design as it appears in
using a slightly modified version of the the Web browser (without using any PHP).

“Plain and Simple” template created by

Christopher Robinson (www.edg3. co.uk)

and used with his kind permission.

Mark where any page-specific content
goes.

Almost every Web site has several com-
mon elements on each page—header,
navigation, advertising, footer, etc.—and
one or more page-specific sections. In
the HTML page (Script 3.1), enclose the
section of the layout that will change
from page to page within HTML com-
ments to indicate its status.

continues on page 78

Script 3.1 The HTML template for this chapter’s Web pages. Download the style.css file it uses from the book’s
supporting Web site (www.DMCInsights.com/phpmysql3/).

8606 =) Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1l-strict.dtd">

2 <html xmlns="http://www.w3.0rg/1999/xhtml">

3 <head>

4 <title>Page Title</title>

5 <link rel="stylesheet" href="includes/style.css" type="text/css" media="screen" />

6 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

7 </head>

8 <body>

9 <div id="header">

10 <h1>Your Website</hl>

11 <h2>catchy slogan...</h2>

12 </div>

13 <div id="navigation">

(script continues on next page)

76




Creating Dynamic Web Sites

Script 3.1 continued

806 =) Seript

14 <ul>

15 <li><a href="index.php">Home Page</a></1i>

16 <li><a href="calculator.php">Calculator</a></1i>

17 <li><a href="dateform.php">Date Form</a></1i>

18 <li><a href="#">1link four</a></1i>

19 <li><a href="#">1link five</a></1i>

20 </ul>

21 </div>

22 <div id="content"><!-- Start of the page-specific content. -->
23 <h1l>Content Header</hl>

24

25 <p>This is where the page-specific content goes. This section, and the corresponding

header, will change from one page to the next.</p>

26
27 <p>Volutpat at varius sed sollicitudin et, arcu. Vivamus viverra. Nullam turpis. Vestibulum
sed etiam. Lorem ipsum sit amet dolore. Nulla facilisi. Sed tortor. Aenean felis.
Quisque eros. Cras lobortis commodo metus. Vestibulum vel purus. In eget odio in sapien
adipiscing blandit. Quisque augue tortor, facilisis sit amet, aliquam, suscipit vitae,
cursus sed, arcu lorem ipsum dolor sit amet.</p>
28
29 <!-- End of the page-specific content. --></div>
30
31 <div id="footer">
32 <p>Copyright &copy; <a href="#">Plain and Simple</a> 2007 | Designed by <a href="http://
www.edg3.co.uk/">edg3.co.uk</a> | Sponsored by <a href="http://www.opendesigns.org/">0pen
Designs</a> | Valid <a href="http://jigsaw.w3.org/css-validator/">CSS</a> &amp; <a
href="http://validator.w3.org/">XHTML</a></p>
33 </div>
34 </body>
35  </html>

77

S3114 I1dILTINIA ONIANTON]



INCLUDING MULTIPLE FILES

Chapter 3

3. Copy everything from the first line of the Script 3.2 The initial HTML for each Web page is
layout’s HTML source to just before the stored in a header file.
page-specific content and paste it in a 8eoceé =) Seript
new document (Script 3.2). 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
" 1.0 Strict//EN" "http://www.w3.org/TR/
<IDOCTYPE html PUBLIC "-//W3C//DTD html L/DTD/xhtml1-strict . dtd™
— XHTML 1.0 Strict//EN" "http://

2 <html xmlns="http://www.w3.0rg/1999/
— www.w3.org/TR/xhtml1/DTD/ xhtml"s

— xhtmll-strict.dtd">
3 <head>

<html xmlns="http://www.w3.org/

4 <title><?php echo $page_title; ?>
— 1999/xhtml"> </title>
<head> 5 <link rel="stylesheet" href="includes/
. . . style.css" type="text/css" media=
<title>Page Title</title> "screen” />
<link r‘e1="sty1esheet" href= 6 <meta http-equiv="content-type"
— "includes/style.css" type="text/ content="text/html; charset=utf-8" />
— css" media="screen" /> 7 </head>
<meta http-equiv="content-type" 8  <body>
— content="text/html; charset=utf-8" 9 <div ide"header"s
/>
10 <h1>Your Website</hl>
</head>
11 <h2>catchy slogan...</h2>
<body> 12 </divs
<div id="header"> 13 <div id="navigation">
<hl>Your Website</hl> 14 «wl>
<h2>catchy slogan...</h2> 15 <li><a href="index.php">Home Page
</div> </a></1i>
o . o 16 <li><a href="calculator.php">
<div id="navigation"> Calculator</a></li>
<ul> 17 <li><a href="dateform.php">Date
. . Form</a></11
<li><a href="index.php">Home et
— Page</a></11> 18 <li><a href="#">1ink four</a></li>
<li><a href="calculator.php"> 19 <li><a href="#">link five</a></1li>
— Calculator</a></1i> 20 </ul>
<li><a href="dateform.php"> 21 </div>
— Date Form</a></1i> 22 <div id="content"><!-- Start of the
. w1 e-specific content. --
<li><a href="#">1link four</a> page-specitt g
O </li> 23 <!-- Script 3.2 - header.html -->
<li><a href="#">1ink
five</a></11i>

78



Creating Dynamic Web Sites

Script 3.3 The concluding HTML for each Web page is
stored in this footer file.

8oeé = Script

1 <!-- Script 3.3 - footer.html -->

2 <!-- End of the page-specific

>content. --></div>

3

4 <div id="footer">

5 <p>Copyright &copy; <a href="#">Plain
and Simple</a> 2007 | Designed by
<a href="http://www.edg3.co.uk/
">edg3.co.uk</a> | Sponsored by <a
href="http://www.opendesigns.org/
">0pen Designs</a> | Valid <a
href="http://jigsaw.w3.org/
css-validator/">(CSS</a> &amp; <a
href="http://validator.w3.org/">
XHTML</a></p>

6 </div>

7 </body>

8 </html>

</ul>
</div>
<div id="content"><!-- Start of the
— page-specific content. -->

<!-- Script 3.2 - header.html -->

This first file will contain the initial
HTML tags (from DOCTYPE through the
head and into the beginning of the page
body). It also has the code that makes
the Web site name and slogan, plus the
horizontal bar of links across the top
(see Figure 3.3). Finally, as each page’s
content goes within a DIV whose id value
is content, this file includes that code

as well.

. Change the pages title line to read

<title><?php echo $page_title; ?>
— </title>

The page title (which appears at the top
of the Web browser; see Figure 3.3)
should be changeable on a page-by-page
basis. For that to be possible, this value
will be based upon a PHP variable, which
will then be printed out. You'll see how
this plays out shortly.

. Save the file as header .html.

As stated already, included files can use
just about any extension for the file-
name. So this file is called header.html,
indicating that it is the template’s header
file and that it contains (primarily) HTML.

. Copy everything in the original template

from the end of the page-specific content
to the end of the page and paste it in a
new file (Seript 3.3).

<!-- Script 3.3 - footer.html -->

<!-- End of the page-specific
» content. --></div>

continues on next page

79

S3114 I1dILTINIA ONIANTON]



Chapter 3

Script 3.4 This script generates a complete Web page
by including a template stored in two external files.

<div id="footer">

INCLUDING MULTIPLE FILES

<p>Copyright &copy; <a href=

» "#">Plain and Simple</a> 2007
» | Designed by <a href="http://
» www. edg3. co.uk/">edg3.co.uk

» </a> | Sponsored by <a href=

» "http://www.opendesigns.org/">
» Open Designs</a> | Valid <a

» href="http://jigsaw.w3.org/

» css-validator/">CSS</a> &amp;

eoce

= Script

1 <?php # Script 3.4 - index.php
2 $page_title = 'Welcome to this Site!';
3 include ('includes/header.html');

4 7>

6 <h1>Content Header</hl>

» <a href="http://validator. 7
» w3.org/">XHTML</a></p> 8 <p>This is where the page-specific
</div> content goes. This section, and the
corresponding header, will change
</body> from one page to the next.</p>
</html> 9
The footer file starts by Closing the con- 10 <p>Volutpat at varius sed sollicitudin
K et, arcu. Vivamus viverra. Nullam
tent DIV opened in the header file (see turpis. Vestibulum sed etiam. Lorem
Step 3). Then the footer is added, which ipsum sit amet dolore. Nulla
will be the same for every page on the fac_:11151. Sed tortor. Aengan felis.

X . R Quisque eros. Cras lobortis commodo
site, and the HTML document itself is metus. Vestibulum vel purus. In eget
Completed. odio in sapien adipiscing blandit.

Quisque augue tortor, facilisis sit
. Save the file as footer.html. amet, aliquam, suscipit vitae, cursus
sed, arcu lorem ipsum dolor sit
8. Begin a new PHP document in your text amet.</p>
editor or IDE (Script 3.4). 11
<?php # Script 3.4 - index.php 12 <?php

Since this script will use the included
files for most of its HTML, it can begin
and end with the PHP tags.

Set the $page_title variable and include

the HTML header.

$page_title = '"Welcome to this
— Site!';

include ('includes/header.html');

The $page_title variable will store the
value that appears in the top of the
browser window (and therefore, is also
the default value when a person book-
marks the page). This variable is printed

13  include ('includes/footer.html');

14 7>

80



Creating Dynamic Web Sites

10.

in header.html (see Script 3.2). By defin-
ing the variable prior to including the
header file, the header file will have
access to that variable. Remember that
this include() line has the effect of
dropping the contents of the included
file into this page at this spot.

The include() function call uses a
relative path to header.html (see the
sidebar, “Absolute vs. Relative Paths”).
The syntax states that in the same
folder as this file is a folder called
includes and in that folder is a file
named header.html.

Close the PHP tags and add the page-
specific content.

7>
<hl>Content Header</h1>

<p>This is where the page-specific
— content goes. This section, and
— the corresponding header, will
— change from one page to the

— next.</p>

<p>Volutpat at varius sed

— sollicitudin et, arcu. Vivamus
— viverra. Nullam turpis.

— Vestibulum sed etiam. Lorem

— ipsum sit amet dolore. Nulla

— facilisi. Sed tortor. Aenean

— felis. Quisque eros. Cras

— lobortis commodo metus.

— Vestibulum vel purus. In eget
— odio in sapien adipiscing

— blandit. Quisque augue tortor,
— facilisis sit amet, aliquam,

— suscipit vitae, cursus sed, arcu
— lorem ipsum dolor sit amet.</p>

11.

12.

13.

For most pages, PHP will generate this
content, instead of having static text.
This information could be sent to the
browser using echo(), but since there’s
no dynamic content here, it’s easier
and more efficient to exit the PHP tags
temporarily.

Create a final PHP section and include
the footer file.

<?php
include ('includes/footer.html');

7>

Save the file as index.php, and place it
in your Web directory.

Create an includes directory in the
same folder as index.php. Then place
header.html, footer.html, and
style.css (downloaded from

www . DMCInsights. com/phpmysql3/),
into this includes directory.

Note: in order to save space, the CSS
file for this example (which controls
the layout) is not included in the book.
You can download the file through the
book’s supporting Web site (see the
Extras page) or do without it (the
template will still work, it just won't
look as nice).

continues on next page

81

S3114 I1dILTINIA ONIANTON]



INCLUDING MULTIPLE FILES

Chapter 3

14. Test the template system by going
to the index.php page in your Web
browser (Figure 3.4).
The index.php page is the end result of
the template system. You do not need
to access any of the included files
directly, as index.php will take care of
incorporating their contents. As this is
a PHP page, you still need to access it
through a URL.

15. If desired, view the HTML source of the
page (Figure 3.5).

-
) Source of: http://localhostfindex. php#

Your Website

Content Header

Figure 3.4 Now the same layout (see Figure 3.3) has
been created using external files in PHP.

File Edit “ew Help

<!DOCTYPE html PEBLIC "—//W3C//DTR XHTML 1.0 Strict//EN" "http:/ www.w3.org’ TR xhtn)
<html xmlns="http://www.w3.org/ 1999/ xhtml">
<head">
<titlexWelcowe to this Sice!</titlex
<link rel="styleshest" href="includes/style.css" type="text/czs" media="scr
<meta http-equiv="content-type" content="text/html; charset=utf-g" j»
</head:
<hody>
<div id="header">
<hl>¥our Website</hl>
<h2roatchy slogan...</h2>

</div>
<div id="navigation":
<ulx
<li><a href="index.php">Home Page</a></li>
<lir<a href="calculator.php">Calculator</a></1i>
<lir<a href="dateform.php™>Date Form</a></1lix
<lir<a href="#">link four</a»></li>
<lir<a href="#">link five</a»</1lix
</ulx
</div>
<div id="content"»<!—— Start of the page-specific content. -->
<!—— Scpipt 3.2 - header.html -->

<hl:rContent Header</hl:x
<p>This i=s where the page-specific content goes. This section, and the corr
<prVolutpat at wvarius sed sollicitudin et, arcu. Vivawus viverra. Nullam tul

<!—— Script 3.3 - footer.hitml -->
<!-— End of the page-specific comnteant. --></div>

<dir id="footer™:
<p>Copyright &copy: <a href="#">Plain and Jimple</a> 2007 | Designe
<fdivs
</body>
</html>

< >

Figure 3.5 The generated HTML source of the Web page should replicate the code in
the original template (refer to Script 3.1).

82



Creating Dynamic Web Sites

v Tips

B In the php.ini configuration file, you can
adjust the include_path setting, which
dictates where PHP is and is not allowed
to retrieve included files.

Your Website

catchy slogan...

Content Header

Copmght © Flan s0d Sampls 2007 | Dengned by 2dg3 <o ok | Spossored by Open Decms | Vabid 55 & XHIMI

Figure 3.6 This is the same HTML page without using
the corresponding CSS file (compare with Figure 3.4).

As you'll see in Chapter 8, “Using PHP
with MySQL,” any included file that con-
tains sensitive information (like database
access) should be stored outside of the
Web document directory so it can't be
viewed within a Web browser.

Since require() has more impact on a
script when it fails, it's recommended for
mission-critical includes (like those that
connect to a database). The include()
function would be used for less impor-
tant inclusions. The *_once() versions
provide for nice redundancy checking in
complex applications, but they may be
unnecessary in simple sites.

Because of the way CSS works, if you
don't use the CSS file or if the browser
doesn't read the CSS, the generated result
is still functional, just not aesthetically as
pleasing (see Figure 3.6).

Site Structure

When you begin using multiple files in your Web applications, the overall site structure
becomes more important. When laying out your site, there are three considerations:

& Ease of maintenance
¢ Security

¢ Ease of user navigation

Using external files for holding standard procedures (i.e., PHP code), CSS, JavaScript, and the
HTML design will greatly improve the ease of maintaining your site because commonly
edited code is placed in one central location. I'll frequently make an includes or templates
directory to store these files apart from the main scripts (the ones that are accessed directly

in the Web browser).

I recommend using the .1inc or .html file extension for documents where security is not an
issue (such as HTML templates) and . php for files that contain more sensitive data (such as
database access information). You can also use both .inc and .html or .php so that a file is
clearly indicated as an include of a certain type: db.1inc.php or header.inc.html.

Finally, try to structure your sites so that they are easy for your users to navigate, both by click-
ing links and by manually typing a URL. Try to avoid creating too many nested folders or using
hard-to-type directory names and filenames containing both upper- and lowercase letters.

83

S3114 I1dILTINIA ONIANTON]



HANDLING HTML Forms, REVISITED

Chapter 3

Handling HTML Forms,
Revisited

A good portion of Chapter 2, “Programming
with PHP; involves handling HTML forms
with PHP. All of those examples use two
separate files: one that displays the form
and another that receives it. While there’s
certainly nothing wrong with this method,
there are advantages to putting the entire
process into one script.

To have one page both display and handle a
form, a conditional must check which action
(display or handle) should be taken:

if (/* form has been submitted */) {
// Handle it.

} else {
// Display it.

}

To determine if the form has been submitted,
check if a $_POST variable is set (assuming
that the form uses the POST method, of
course). For example, create a hidden form
input with a name of submitted and any
value:

<input type="hidden" name="submitted"
— value="1" />

Then the condition testing for form submis-
sion would be (Figure 3.7)
if (isset($_POST['submitted'])) {
// Handle 1it.
} else {
// Display it.
3

If you want a page to handle a form and
then display it again (e.g., to add a record to
a database and then give an option to add
another), lose the else clause:

if (isset($_POST['submitted'])) {
// Handle it.

3
// Display the form.

Using that code, a script will handle a form
if it has been submitted and display the
form every time the page is loaded.

To demonstrate this important technique (of
having the same page both display and handle
a form), let’s create a simple sales calculator.

1. GET
= = -
2. HTML FORM B [~ omitted) {
telse{ )
3. POST Display it.

> |}

*4. FORM HANDLING RESULT

Figure 3.7 The interactions between the user and this PHP script on the server involves the user making
two requests of this script. The first is a standard request (a GET request); where the form has not been
submitted, $_POST is therefore empty, and so the script displays the form. When the form is submitted,
the same script is requested again (a POST request this time), $_POST['submitted'] has a value, and so

the form is handled.

84



Creating Dynamic Web Sites

Script 3.5 The calculator.php script both displays a
simple form and handles the form data: performing
some calculations and reporting upon the results.

000 2 Seript

1 <?php # Script 3.5 - calculator.php

2

3 $page_title = 'Widget Cost Calculator';

4 include ('includes/header.html');

5

6 // Check for form submission:

7 if (isset($_POST['submitted'])) {

8

9 // Minimal form validation:

10 if ( is_numeric($_POST['quantity']) &&
is_numeric($_POST['price']) &&
is_numeric($_POST['tax']) ) {

11

12 // Calculate the results:

13 $total = ($_POST['quantity'] *

$_POST['price']);

14 $taxrate = ($_POST['tax'] / 100); //

Turn 5% into .05.

15 $total += ($total * $taxrate); // Add

the tax.

16

17 // Print the results:

18 echo '<hl>Total Cost</hl>

19 <p>The total cost of purchasing '
$_POST['quantity'] . ' widget(s) at $' .
number_format ($_POST['price'], 2) . '
each, including a tax rate of ' .
$_POST["tax'] . '%, is $' .
number_format ($total, 2) . '.</p>";

20

21 } else { // Invalid submitted values.

22 echo '<hl>Error!</hl>

23 <p class="error">Please enter a valid

quantity, price, and tax.</p>';

24 3

25

26 '} // End of main isset() IF.

(script continues on next page)

To handle HTML forms:

1. Create a new PHP document in your text

editor or IDE (Script 3.5).
<?php # Script 3.5 - calculator.php

$page_title = '"Widget Cost
Calculator';

include ('includes/header.html');

This, and all the remaining examples in
the chapter, will use the same template
system as index.php (Script 3.4). The
beginning syntax of each page will there-
fore be the same, but the page titles will
differ.

. Write the conditional for handling the

form.
if (isset($_POST['submitted'])) {

As suggested already, checking if a form
element, like $_POST['submitted'], is set
can test if the form has been submitted.
This variable will be correlate to a hidden
input in the form.

. Validate the form.

if ( is_numeric($_POST['quantity'])
— && is_numeric($_POST['price']) &&
— is_numeric($_POST["tax']) ) {

The validation here is very simple: it mere-
ly checks that three submitted variables
are all numeric types. You can certainly
elaborate on this, perhaps checking that
the quantity is an integer and that all
values are positive (in fact, Chapter 12,
“Security Methods,” has a variation on
this script that does just that).

If the validation passes all of the tests,
the calculations will be made; otherwise,
the user will be asked to try again.

continues on next page

85

Q3LISIATY ‘SWH0J JWLH ONITaNVH



HANDLING HTML Forms, REVISITED

Chapter 3

4,

Perform the calculations.

$total = ($_POST['quantity'] *
— $_POST['price']);

$taxrate = ($_POST['tax'] / 100);
$total += ($total * $taxrate);

The first line calculates the before-tax
total as the quantity times the price. The
second line changes the tax value from a
percentage (say, 5%) to a decimal (.05),
which will be needed in the subsequent
calculation. The third line adds to the
total the amount of tax, calculated by
multiplying the total by the tax rate. The
addition assignment operator (+=) makes
the code a bit shorter. Alternatively you
could write

$total = $total + ($total *
— $taxrate);

Print the results.
echo '<hl>Total Cost</hl>

<p>The total cost of purchasing '

— $_POST['quantity'] . ' widget(s)

—at $' . number_format ($_POST

— ['price'], 2) . ' each, including
— a tax rate of ' . $_POST['tax'] .
— '%, is $' . number_format ($total,
—2) . ".</p>";

All of the values are printed out, format-
ting the price and total with the
number_format() function. Using the
concatenation operator (the period)
allows the formatted numeric values to
be appended to the printed message.

Script 3.5 continued

8ge =) Seript

27

28 // Leave the PHP section and create the

HTML form:

29 7>

30 <hl>Widget Cost Calculator</hl>

31 <form action="calculator.php" method=

"post">

32 <p>Quantity: <input type="text" name=
"quantity" size="5" maxlength="5" /></p>

33 <p>Price: <input type="text" name=
"price" size="5" maxlength="10" /></p>

34 <p>Tax (%): <input type="text" name=
"tax" size="5" maxlength="5" /></p>

35 <p><input type="submit" name="submit"
value="Calculate!" /></p>

36 <input type="hidden" name="submitted"
value="1" />

37 </form>

38 <?php // Include the footer:

39 include ('includes/footer.html');

40 7>

86



Creating Dynamic Web Sites

6. Complete the conditionals and close the

PHP tag.
} else {
echo '<hl>Error!</hl>

<p class="error">Please enter
— a valid quantity, price, and
- tax.</p>";

}
7>

The else clause completes the validation
conditional (Step 3), printing an error if
the three submitted values aren't all
numeric. The final closing curly brace
closes the isset($_POST['submitted'])
conditional. Finally, the PHP section is
closed so that the form can be created
without using echo() (see Step 7).

. Display the HTML form.

<h1>Widget Cost Calculator</hl>

<form action="calculator.php"
— method="post">

<p>Quantity: <input type="text"
— name="quantity" size="5"
— maxlength=— "5" /></p>

<p>Price: <input type="text" name=
— "price" size="5" maxlength="10"
- /></p>

<p>Tax (%): <input type="text"
— name="tax" size="5" maxlength="5"
— /></p>

<p><input type="submit" name=
— "submit" value="Calculate!"
— /></p>

<input type="hidden" name=
— "submitted" value="1" />

</form>

The form itself is fairly obvious, contain-
ing only two new tricks. First, the action
attribute uses this script’s name, so that
the form submits back to this page
instead of to another. Second, there is a
hidden input called submitted with a
value of 1. This is the flag variable whose
existence will be checked to determine
whether or not to handle the form (see
the main conditional in Step 2 or on line
7). Because this is just a flag variable, it
can be given any value (I'll normally use
either 1 or TRUE).

. Include the footer file.

<?php
include ('includes/footer.html');

7>

87

Q3LISIATY ‘SWH0J JWLH ONITaNVH



HANDLING HTML Forms, REVISITED

Chapter 3

9. Save the file as calculator.php, place .
it in your Web directory, and test it in WIdQEtCOStcaICUIator
your Web browser (Figures 3.8, 3.9, Quantity:
and 3.10).
. Frice:
v Tips
Tax (%)
B Another common method for checking
if a form has been submitted is to see Calculate!
if the submit button’s variable—

' . - Figure 3.8 The HTML form, upon first
$_POST,[ Smelt, 1 here 1§ set. The onl’y viewing it in the Web browser. The
downside to this method is that it won't CSS style sheet gives the inputs and the
work in some browsers if the user sub- submit button a more subtle appearance
mits the form by pressing Return or (in Firefox, at least). To save space, I've
Enter captured only the form and not the page

header or footer.
W If you use an image for your submit but-
ton, you'll also want to use a hidden 558 o o oo =
input to test for the form’s submission. Your Website

B You can also have a form submit back
to itself by using no value for the action Total Cot
attribute: ey

Widget Cost Calculator

<form action="" method="post">

By doing so, the form will always submit
back to this same page, even if you later
change the name of the script.

Calculatel

Figure 3.9 The page performs the calculations,
reports on the results, and then redisplays the form.

Please enter a valid quantity, price, and tax.

Widget Cost Calculator

Ciuantity:
Price:
Tax (%)

Calculate!

Figure 3.10 If any of the submitted values is
not numeric, an error message is displayed.

88



Creating Dynamic Web Sites

Making Sticky Forms

A sticky form is simply a standard HTML
form that remembers how you filled it out.
This is a particularly nice feature for end
users, especially if you are requiring them to
resubmit a form after filling it out incorrect-
ly in the first place, as in Figure 3.10. (Some
Web browsers will also remember values
entered into forms for you; this is a separate
but potentially overlapping issue from using
PHP to accomplish this.)

To preset what's entered in a text box, use
its value attribute:

<input type="text" name="city" size="20"
» value="Innsbruck" />

To have PHP preset that value, print the
appropriate variable (this assumes that the
referenced variable exists):

<input type="text" name="city" size="20"
— value="<?php echo $city; ?>" />

(This is also a nice example of the benefit of
PHP’s HTML-embedded nature: you can
place PHP code anywhere, including within
form elements.)

To preset the status of radio buttons or
check boxes (i.e., to precheck them), add the
code checked="checked" to their input tag.
Using PHP, you might write:
<input type="radio" name="gender" value=
— "F" <?php if ($gender == 'F')) {

echo 'checked="checked"';

/>

To preset the value of a textarea, place the
value between the textarea tags:

<textarea name="comments" rows="10"
» cols="50"><?php echo $comments;
» 7></textarea>

Note hear that the textarea tag does not
have a value attribute like the standard
text input.

To preselect a pull-down menu, add
selected="selected” to the appropriate
option. This is really easy if you also use
PHP to generate the menu:

echo '<select name="year">";

for ($y = 2008; $y <= 2018; $y++) {

echo

if ($year == $y) {

'<option value=\"$y\";

echo

}

echo ">$y</option>\n";

}

echo '</select>"';

selected="selected"';

With this new information in mind, let’s
rewrite calculator.php so that it’s sticky.

89

SWY 04 AMIDILS 9NDIVIN



MAKING STICKY FORMS

Chapter 3

To make a sticky form:

1.

Open calculator.php (refer to Script 3.5)
in your text editor or IDE.

Change the quantity input to read
(Script 3.6)

<p>Quantity: <input type="text"

— name="quantity" size="5"

— maxlength="5" value="<?php if

— (isset($_POST['quantity'])) echo
— $_POST['quantity']; ?>" /></p>

The first change is to add the value
attribute to the input. Then, print out the
value of the submitted quantity variable
($_POST['quantity']). Since the first time
the page is loaded, $_POST['quantity']
has no value, a conditional ensures that
the variable is set before attempting to
print it. The end result for setting the
input’s value is the PHP code

<?php

if (isset($_POST['quantity'])) {
echo $_POST['quantity'];

}

7>

This can be condensed to the more
minimal form used in the script (you
can omit the curly braces if you have
only one statement within a conditional
block, although I very rarely recommend
that you do so).

Repeat the process for the price and tax.

<p>Price: <input type="text" name=
» "price" size="5" maxlength="10"

» value="<?php if (isset($_POST

» ['price'])) echo $_POST['price'];
» " /></p>

Script 3.6 The calculator’s form now recalls the
previously entered values (creating a sticky form).

eoce = Script

1 <?php # Script 3.6 - calculator.php #2

2

3 $page_title = 'Widget Cost Calculator';

4 include ('includes/header.html');

5

6 // Check for form submission:

7 if (isset($_POST['submitted'])) {

8

9 // Minimal form validation:

10 if ( is_numeric($_POST['quantity']) &&
is_numeric($_POST['price']) &&
is_numeric($_POST['tax']) D {

11

12 // Calculate the results:

13 $total = ($_POST['quantity'] *

$_POST['price']);

14 $taxrate = ($_POST['tax'] / 100); //

Turn 5% into .05.

15 $total += ($total * $taxrate); // Add

the tax.

16

17 // Print the results:

18 echo '<hl>Total Cost</hl>

19 <p>The total cost of purchasing
$_POST['quantity'] . ' widget(s) at $' .
number_format ($_POST['price'], 2) . '
each, including a tax rate of ' .
$_POST["tax'] . '%, is $' .
number_format ($total, 2) . '.</p>";

20

21 } else { // Invalid submitted values.

22 echo '<hl>Error!</hl>

23 <p class="error">Please enter a valid

quantity, price, and tax.';

24 1

25

26 } // End of main isset() IF.

27

(script continues on next page)

90



Creating Dynamic Web Sites

Script 3.6 continued
606 = Script
28 // Leave the PHP section and create the
HTML form:
29 7>

30 <hl>Widget Cost Calculator</hl>

31 <form action="calculator.php"
method="post">

32 <p>Quantity: <input type="text" name=
"quantity" size="5" maxlength="5"
value="<?php if (isset($_POST['quantity']
)) echo $_POST['quantity']; ?>" /></p>

33 <p>Price: <input type="text" name="price'
size="5" maxlength="10" value="<?php if
(isset($_POST['price'])) echo $_POST
['price']; ?>" /></p>

34  <p>Tax (¥): <input type="text" name="tax"
size="5" maxlength="5" value="<?php if
(isset($_POST["tax'])) echo $_POST
["tax']; 2" /></p>

35 <p><input type="submit" name="submit"
value="Calculate!" /></p>

36 <input type="hidden" name="submitted"
value="TRUE" />

37  </form>
38 <?php // Include the footer:
39 include ('includes/footer.html');

40 7>

Total Cost

Caltulate!

<p>Tax (%): <input type="text"

— name="tax" size="5" maxlength="5"
— value="<?php if (isset($_POST

— ["tax'])) echo $_POST['tax']; 7>"
— /></p>

4. Save the file as calculator.php, place it
in your Web directory, and test it in your
Web browser (Figures 3.11 and 3.12).

v Tips

B Because some PHP code in this example
exists inside of the HTML form value
attributes, error messages may not be
obvious. If problems occur, check the
HTML source of the page to see if PHP
errors are printed within the value
attributes.

B You should always double-quote HTML
attributes, particularly the value attrib-
ute of a form input. If you don’t, multi-
word values like Elliott Smith will appear
as just Elliott in the Web browser.

B On account of a limitation in how HTML
works, you cannot preset the value of a
password input type.

Please enter a valid quantity, price, and tax.

Widget Cost Calculator

Cuantity:
Price: 34.50
Tax (%) 3.25

Calculate!

Figure 3.11 The form now recalls the previously
submitted values...

Figure 3.12 ..whether or not the form
was completely filled out.

91

SWY 04 AMIDILS 9NDIVIN



CREATING YOUR OWN FUNCTIONS

Chapter 3

Creating Your Own
Functions

PHP has a lot of built-in functions, address-
ing almost every need you might have. More
importantly, though, PHP has the capability
for you to define and use your own func-
tions for whatever purpose. The syntax for
making your own function is

function function_name () {
// Function code.

}

The name of your function can be any com-
bination of letters, numbers, and the under-
score, but it must begin with either a letter
or the underscore. You also cannot use an
existing function name for your function
(print, echo, isset, and so on). One perfectly
valid function definition is

function do_nothing() {
// Do nothing.
}

In PHP, as mentioned in the first chapter,
function names are case-insensitive (unlike
variable names), so you could call that func-
tion using do_Nothing() or DO_NOTHING() or
Do_Nothing(), etc (but not donothing() or
DoNothing()).

The code within the function can do nearly
anything, from generating HTML to per-
forming calculations. This chapter runs
through a couple of examples and you'll see
some others throughout the rest of the book.

Script 3.7 This user-defined function creates a series
of pull-down menus (see Figure 3.13).

eoce = Script
1 <?php # Script 3.7 - dateform.php

2
3 $page_title = 'Calendar Form';

4 include ('includes/header.html');

6 // This function makes three pull-down
menus

7 // for selecting a month, day, and year.

8 function make_calendar_pulldowns() {

10 // Make the months array:

11 $months = array (1 => 'January',
'February', 'March', 'April', 'May',
'June', 'July', 'August', 'September',
'October', 'November', 'December');

12

13 // Make the months pull-down menu:

14 echo '<select name="month">";

15 foreach ($months as $key => $value) {

16 echo "<option value=\"$key\">
$value</option>\n";

17 3

18 echo '</select>';

19

20 // Make the days pull-down menu:
21 echo '<select name="day">';

22 for ($day = 1; $day <= 31; $day++) {

23 echo "<option value=\"$day\">$day
</option>\n";

24 3

25 echo '</select>';

26

27 // Make the years pull-down menu:
28 echo '<select name="year">';

29 for ($year = 2008; $year <= 2018;
$year++) {

(script continues on next page)

92



Creating Dynamic Web Sites

Script 3.7 continued

00 = Seript

30 echo "<option value=\"$year\">

$year</option>\n";

31 }

32 echo '</select>';

33

34 '} // End of the function definition.
35

36 // Create the form tags:

37 echo '<hl>Select a Date:</hl>

38 <form action="dateform.php" method=

"post">";

39

40 // Call the function.

41  make_calendar_pulldowns();

42

43 echo '</form>';

44

45 include ('includes/footer.html');
46 7>

To create your own function:

1. Create a new PHP document in your text

editor or IDE (Script 3.7).

<?php # Script 3.7 - dateform.php
$page_title = 'Calendar Form';
include ('includes/header.html');

This page will use the same HTML tem-
plate as the previous two.

. Begin defining a new function.

function make_calendar_pulldowns() {

The function to be written here will gen-
erate the form pull-down menus neces-
sary for selecting a month, day, and a
year, just like calendar.php (refer to
Script 2.9). The functions name clearly
states its purpose.

Although not required, it's conventional
to place a function definition near the
very top of a script or in a separate file.

. Generate the pull-down menus.

$months = array (1 => 'January',
» "February', 'March', 'April',
» 'May', 'June', 'July', 'August',
» 'September', 'October', 'November',
» "December');
echo '<select name="month">";
foreach ($months as $key => $value) {

echo "<option value=\"$key\">$value
» </option>\n";

continues on next page

93

SNOILONNJ NMQ ¥3NOA SNILYVIY)



CREATING YOUR OWN FUNCTIONS

Chapter 3

echo '</select>';
echo '<select name="day">"';
for ($day = 1; $day <= 31; $day++) {

echo "<option value=\"$day\">$day
— </option>\n";

}

echo '</select>';
echo '<select name="year">';

for ($year = 2008; $year <= 2018;
» $year++) {

echo "<option value=\"$year\">$year

— </option>\n";

}
echo '</select>';

This code is exactly as it was in the origi-
nal script, only it's now placed within a
function definition.

Close the function definition.
} // End of the function definition.

It’s helpful to place a comment at the
end of a function definition so that you
know where a definition starts and stops.

Create the form and call the function.
echo '<hl>Select a Date:</hl>

<form action="dateform.php"

— method="post">";
make_calendar_pulldowns();

echo '</form>"';

This code will create a header tag, plus
the tags for the form. The call to the
make_calendar_pulldowns() function

will have the end result of creating the
code for the three pull-down menus.

6.

Complete the PHP script by including
the HTML footer.

include ('includes/footer.html');

7>

. Save the file as dateform.php, place it in

your Web directory (in the same folder as
index.php), and test it in your Web
browser (Figure 3.13).

v Tips

If you ever see a call to undefined function
function_name error, this means that you
are calling a function that hasn't been
defined. This can happen if you misspell
the function’s name (either when defin-
ing or calling it) or if you fail to include
the file where the function is defined.

Because a user-defined function takes up
some memory, you should be prudent
about when to use one. As a general rule,
functions are best used for chunks of
code that may be executed in several
places in a script or Web site.

Select a Date:

January
| February

March

April

May

June

July

August

September

October

November

December

|1 >[2008 ~|

right @ Plain and

Figure 3.13 These pull-down
menus are generated by a
user-defined function.

9%



Creating Dynamic Web Sites

Creating a function that
takes arguments

Just like PHP’s built-in functions, those

you write can take arguments (also called
parameters). For example, the isset()
function takes as an argument the name of
a variable to be tested. The strlen() func-
tion takes as an argument the string whose
character length will be determined.

A function can take any number of argu-
ments, but the order in which you list them
is critical. To allow for arguments, add vari-
ables to a function’s definition:

function print_hello ($first, $last) {

// Function code.
}

The variable names you use for your argu-
ments are irrelevant to the rest of the script
(more on this in the “Variable Scope” sidebar
toward the end of this chapter), but try to
use valid, meaningful names.

Once the function is defined, you can then
call it as you would any other function in
PHP, sending literal values or variables to it:

print_hello ('Jimmy', 'Stewart');
$surname = 'Stewart';

print_hello ('Jimmy', $surname);

As with any function in PHP, failure to send
the right number of arguments results in an
error (Figure 3.14).

To demonstrate this concept, let’s rewrite
the calculator process as a function.

Warning: Missing argument 3 for calculate_total(), called infApplicationsAbyssWeb Serverhtdocsicalculator.php on line 30 and defined
in fApplications/iAbyss Weh Serverhtdocs/calculator.php on line 8

Figure 3.14 Failure to send a function the proper number (and sometimes type) of arguments creates an error.

95

SNOILONNJ NMQ ¥3NOA SNILYVIY)



CREATING YOUR OWN FUNCTIONS

Chapter 3

To define functions that take
arguments:

1. Open calculator.php (Script 3.6) in your
text editor or IDE.

2. After including the header file, define the
calculate_total() function (Script 3.8).

function calculate_total ($qty,
— $cost, $tax) {

$total = ($qty * $cost);
$taxrate = ($tax / 100);
$total += ($total * $taxrate);

echo '<p>The total cost of
— purchasing ' . $qty . ' widget(s)
—at $' . number_format ($cost, 2)

— . ' each, including a tax rate of

— "' . $tax . '%, is $' . number_
— format ($total, 2) . '.</p>';

}

This function performs the same calcula-
tions as it did before and then prints out
the result. It takes three arguments: the
quantity being ordered, the price, and the
tax rate. Notice that the variables used as
arguments are not $_POST['quantity'],
$_POST['price'], and $_POST['tax'].
The function’s argument variables are
particular to this function and have their
own names. Notice as well that the cal-
culations, and the printed result, use
these function-specific variables, not
those in $_POST (which will actually be
sent to this function when it’s called).

3. Change the contents of the validation
conditional (where the calculations were
previously made) to read

echo '<hl>Total Cost</hl>';

calculate_total ($_POST['quantity'],
»$_POST['price'], $_POST['tax']);

Script 3.8 The calculator.php script now uses a
function to perform its calculations. Unlike the
make_calendar_pulldowns() user-defined function,
this one takes arguments.

806 = Seript
1 <?php # Script 3.8 - calculator.php #3

2
3 $page_title = 'Widget Cost Calculator';

4 include ('includes/header.html');

6 /* This function calculates a total
7 and then prints the results. */

8 function calculate_total ($qty, $cost,
$tax) {

10 $total = ($qty * $cost);

11 $taxrate = ($tax / 100); // Turn 5%
into .05.

12 $total += ($total * $taxrate); //
Add the tax.

13
14 // Print the results:

15 echo "<p>The total cost of purchasing '
. $qty . " widget(s) at $' . number_
format ($cost, 2) . ' each, including a
tax rate of ' . $tax . '%, is $' .
number_format ($total, 2) . '.</p>";

16

17 '} // End of function.

18

19 // Check for form submission:

20 if (isset($_POST['submitted'])) {
21

22 // Minimal form validation:

23 if ( is_numeric($_POST['quantity']) &&
is_numeric($_POST['price']) &&
is_numeric($_POST['tax']) ) {

24
25 // Print the heading:
26 echo "<h1>Total Cost</h1>'";

(script continues on next page)

96



Creating Dynamic Web Sites

Script 3.8 continued
006 = Script
27
28 // Call the function:
29 calculate_total ($_POST['quantity'],

$_POST['price'], $_POST['tax'1);
30
31 } else { // Invalid submitted values.
32 echo '<hl>Error!</hl>

33 <p class="error">Please enter a valid
quantity, price, and tax.</p>';

34 1
35

36} // End of main isset() IF.

37

38 // Leave the PHP section and create the
HTML form:

39 7>

40 <hl>Widget Cost Calculator</hl>

41  <form action="calculator.php" method=
"post">

42 <p>Quantity: <input type="text" name=
"quantity" size="5" maxlength="5" value=
"<?php if (isset($_POST['quantity']))
echo $_POST['quantity']; ?>" /></p>

43 <p>Price: <input type="text" name=
"price" size="5" maxlength="10" value=
"<?php if (isset($_POST['price'])) echo
$_POST['price']; 7>" /></p>

44 <p>Tax (%): <input type="text" name=
"tax" size="5" maxlength="5" value=
"<?php if (isset($_POST['tax'])) echo
$_POST["tax']; 7>" /></p>

45 <p><input type="submit" name="submit"
value="Calculate!" /></p>

46 <input type="hidden" name="submitted"
value="TRUE" />

47  </form>

48 <?php // Include the footer:

49 include ('includes/footer.html');
50 7>

Again, this is just a minor rewrite of the
way the script worked before. Assuming
that all of the submitted values are
numeric, a heading is printed (this is not
done within the function) and the func-
tion is called (which will calculate and
print the total).

When calling the function, three argu-
ments are passed to it, each of which

is a $_POST variable. The value of
$_POST['quantity'] will be assigned to
the function’s $qty variable; the value of
$_POST['price'] will be assigned to the
function’s $cost variable; and the value of
$_POST['tax'] will be assigned to the
function’s $tax variable.

4. Save the file as calculator.php, place it
in your Web directory, and test it in your
Web browser (Figure 3.15).

Total Cost

Thee total cost of purchasing 7
Widget Cost Calculator

Suantity: 7

Price: 16.75

Calculatel

Figure 3.15 Although a user-defined function is used
to perform the calculations (see Script 3.8), the end
result is no different to the user (see Figure 3.11).

97

SNOILONNJ NMQ ¥3NOA SNILYVIY)



CREATING YOUR OWN FUNCTIONS

Chapter 3

Setting default argument values

Another variant on defining your own func-
tions is to preset an argument’s value. To do
80, assign the argument a value in the func-
tion’s definition:

function greet ($name, $msg = "Hello') {
echo "$msg, $name!";

}

The end result of setting a default argument
value is that that particular argument
becomes optional when calling the function.
If a value is passed to it, the passed value is
used; otherwise, the default value is used.

You can set default values for as many of the
arguments as you want, as long as those
arguments come last in the function defini-
tion. In other words, the required arguments
should always be listed first.

With the example function just defined, any
of these will work:

greet ($surname, $message);

greet ('Zoe');

greet ('Sam', 'Good evening');

However, just greet() will not work. Also,
there’s no way to pass $greeting a value
without passing one to $name as well (argu-

ment values must be passed in order, and
you can't skip a required argument).

To set default argument values:

1. Open calculator.php (refer to Script 3.8)
in your text editor or IDE.

2. Change the function definition line (line 9)
so that only the quantity and cost are
required (Script 3.9).

function calculate_total ($qty,
— $cost, $tax = 5) {

continues on page 100

Script 3.9 The calculate_total() function now
assumes a set tax rate unless one is specified when
the function is called.

80e =] Seript

1 <?php # Script 3.9 - calculator.php #4
2
3 $page_title = '"Widget Cost Calculator';

4 include ('includes/header.html');

6 /* This function calculates a total
7 and then prints the results.

8 The $tax argument is optional (it has a
default value). */

9 function calculate_total ($qty, $cost, $tax
=5) {

10

11 $total = ($qty * $cost);

12 $taxrate = ($tax / 100); // Turn 5% into
.05.

13 $total += ($total * $taxrate); // Add
the tax.

14
15 // Print the results:

16 echo '<p>The total cost of purchasing
. $qty . ' widget(s) at $' . number_
format ($cost, 2) . ' each, including a
tax rate of ' . $tax . '%, is §' .
number_format ($total, 2) . '.</p>';

17
18 '} // End of function.

20 // Check for form submission:

21 if (isset($_POST['submitted'])) {

23 // Minimal form validation:

24  if ( is_numeric($_POST['quantity']) &&
is_numeric($_POST['price']) ) {

26 // Print the heading:

(script continues on next page)

98



Creating Dynamic Web Sites

Script 3.9 continued
000 2 seript
27 echo '<hl>Total Cost</hl>";
28
29 // Call the function, with or without tax:
30 if (is_numeric($_POST['tax'])) {
31 calculate_total ($_POST['quantity'], $_POST['price'], $_POST['tax']);
32 } else {
33 calculate_total ($_POST['quantity'], $_POST['price']);
34 }
35
36 } else { // Invalid submitted values.
37 echo '<hl>Error!</hl>
38 <p class="error">Please enter a valid quantity and price.</p>';
39 }
40
41 } // End of main isset() IF.
42
43 // Leave the PHP section and create the HTML form:
4 7
45 <hl>Widget Cost Calculator</hl>
46  <form action="calculator.php" method="post">
47 <p>Quantity: <input type="text" name="quantity" size="5" maxlength="5" value="<?php if
(isset($_POST['quantity'])) echo $_POST['quantity']; ?>" /></p>
48 <p>Price: <input type="text" name="price" size="5" maxlength="10" value="<?php if
(isset($_POST['price'])) echo $_POST['price']; ?>" /></p>
49 <p>Tax (%): <input type="text" name="tax" size="5" maxlength="5" value="<?php if
(isset($_POST['tax'])) echo $_POST['tax']; ?>" /> (optional)</p>
50 <p><input type="submit" name="submit" value="Calculate!" /></p>
51 <input type="hidden" name="submitted" value="TRUE" />
52  </form>
53 <?php // Include the footer:
54  include ('includes/footer.html');
55 7>

99

SNOILONNJ NMQ ¥3NOA SNILYVIY)



CREATING YOUR OWN FUNCTIONS

Chapter 3

The value of the $tax variable is now
hard-coded in the function definition,
making it optional.

3. Change the form validation to read
if (is_numeric($_POST['quantity'])
&& is_numeric($_POST['price'])) {

Because the tax value will be optional,
only the other two variables are required
and need to be validated.

4. Change the function call line to
if (is_numeric($_POST['tax'])) {

calculate_total ($_POST
— ["quantity'], $_POST
— ['price'], $_POST['tax']);

} else {

calculate_total ($_POST
» ["quantity'], $_POST['price'l]);

}

If the tax value has also been submitted
(and is numeric), then the function

will be called as before, providing the
user-submitted tax rate. Otherwise, the
function is called providing just the two
arguments, in which case the default
value will be used for the tax rate.

5. Change the error message to only report
on the quantity and price.

echo '<hl>Error!</hl>

<p class="error">Please enter a valid
— quantity and price.</p>";

Since the tax will now be optional, the
error message is changed accordingly.

6. If you want, mark the tax value in the
form as optional.

<p>Tax (%): <input type="text"
name="tax" size="5" maxlength="5"
value="<?php if (isset($_POST
["tax'])) echo $_POST['tax']; ?>"
/> (optional)</p>

A parenthetical is added to the tax input,
indicating to the user that this value is
optional.

7. Save the file, place it in your Web direc-
tory, and test it in your Web browser
(Figures 3.16 and 3.17).

v Tips

B To pass a function no value for an argu-
ment, use either an empty string (' "),
NULL, or FALSE.

B In the PHP manual, square brackets ([])
are used to indicate a function’s optional
parameters (Figure 3.18).

Total Cost

The total cost of purchasing 4 widget(s) at $1.99 each, including a tax rate of 5%, is $8.36.

Widget Cost Calculator

Quantity: 4
Price: 1.99
Tax (%) ioptional}

Calculate!

Figure 3.16 If no tax value is entered, the default
value of 5% will be used in the calculation.

100



Creating Dynamic Web Sites

Total Cost

The total cost of purchasing 4 widget(s) at $1.99 each, including = tax rate of 6%, is $8.44,

Widget Cost Calculator

Quantity: 4
Price: 1.99

Tax (%): 6 (optional)

Calculate!

Figure 3.17 If the user enters a tax value, it will be
used instead of the default value.

Returning values from a function

The final attribute of a user-defined func-
tion to discuss is that of returning values.
Some, but not all, functions do this. For
example, print() will return either a I or
a 0 indicating its success, whereas echo()
will not. As another example, the strlen()
function returns a number correlating to
the number of characters in a string.

To have a function return a value, use the
return statement.

function find_sign ($month, $day) {
// Function code.
return $sign;

}

A function can return a value (say a string
or a number) or a variable whose value has
been created by the function. When calling a
function that returns a value, you can assign
the function result to a variable:

$my_sign = find_sign ('October', 23);

or use it as an argument when calling anoth-
er function:

print find_sign ('October', 23);

Let’s update the calculate_total() function

one last time so that it returns the calculat-
ed total instead of printing it.

continues on next page

$thousands_sep]] )

string number_format ( float $number [, int $decimals [, string $dec_point, string

Figure 3.18 The PHP manual’s description of the number_format() function shows that only the

first argument is required.

101

SNOILONNJ NMQ ¥3NOA SNILYVIY)



CREATING YOUR OWN FUNCTIONS

Chapter 3

To have a function return a value:

1. Open calculator.php (refer to Script 3.9)

in your text editor or IDE.

Script 3.10 The calculate_total() function
now performs the calculations and returns the
calculated result.

8086

=] Seript

2.

Remove the echo() statement from the

function definition and replace it with a

return statement (Script 3.10)

return number_format($total, 2);
This version of the function will not
print the results. Instead it will return
just the calculated total, formatted to
two decimal places.

Change the function call lines to

if (is_numeric($_POST['tax'])) {

$sum = calculate_total ($_POST
— ['quantity'], $_POST['price'],
— $_POST["tax']);

} else {

$sum = calculate_total ($_POST
— ["quantity'], $_POST['price'l]);

}

Since the function now returns instead

of prints the calculation results, the invo-

cation of the function needs to be
assigned to a variable so that the total
can be printed later in the script.

continues on page 104

1 <?php # Script 3.10 - calculator.php #5

2

3 $page_title = '"Widget Cost Calculator';

4 include ('includes/header.html');

5

6 /* This function calculates a total

7 and then returns the results.

8 The $tax argument is optional (it has a

default value). */
9 function calculate_total ($qty, $cost,
$tax = 5) {

10

11 $total = ($qty * $cost);

12 $taxrate = ($tax / 100); // Turn 5% into
.05.

13 $total += ($total * $taxrate); // Add
the tax.

14

15 return number_format($total, 2);

16

17 '} // End of function.

18

19 // Check for form submission:

20 if (isset($_POST['submitted'])) {

21

22 // Minimal form validation:

23 if ( is_numeric($_POST['quantity']) &&
is_numeric($_POST['price']) ) {

24

25 // Print the heading:

26 echo '<hl>Total Cost</hl>";

27

28 // Call the function, with or without

tax:
29 if (is_numeric($_POST['tax'1)) {

(script continues on next page)

102



Creating Dynamic Web Sites

Script 3.10 continued

06 2 Script

30 $sum = calculate_total ($_POST['quantity'], $_POST['price'], $_POST['tax']);

31 } else {

32 $sum = calculate_total ($_POST['quantity'], $_POST['price']);

33 }

34

35 // Print the results:

36 echo '<p>The total cost of purchasing ' . $_POST['quantity'] . ' widget(s) at $' . number_

format ($_POST['price'], 2) . ' each, with tax, is $' . $sum . ".</p>';

37

38 } else { // Invalid submitted values.

39 echo '<hl>Error!</hl>

40 <p class="error">Please enter a valid quantity and price.</p>";

41 3

42

43 } // End of main isset() IF.

44

45 // Leave the PHP section and create the HTML form:

46 7>

47  <hl>Widget Cost Calculator</hl>

48  <form action="calculator.php" method="post">

49 <p>Quantity: <input type="text" name="quantity" size="5" maxlength="5" value="<?php if
(isset($_POST['quantity'])) echo $_POST['quantity']; ?>" /></p>

50 <p>Price: <input type="text" name="price" size="5" maxlength="10" value="<?php if
(isset($_POST['price'])) echo $_POST['price']; ?>" /></p>

51 <p>Tax (%): <input type="text" name="tax" size="5" maxlength="5" value="<?php if
(isset($_POST['tax'])) echo $_POST['tax']; ?>" /> (optional)</p>

52 <p><input type="submit" name="submit" value="Calculate!" /></p>

53 <input type="hidden" name="submitted" value="TRUE" />

54  </form>

55 <?php // Include the footer:

56 include ('includes/footer.html');

57 7>

103

SNOILONNJ NMQ ¥3NOA SNILYVIY)



CREATING YOUR OWN FUNCTIONS

Chapter 3

4.

Add a new echo() statement that prints
the results.

echo '<p>The total cost of

» purchasing ' . $_POST['quantity']

» . ' widget(s) at $' . number_

» format ($_POST['price'], 2) . '

» each, with tax, is $' . $sum .

»</p>";
Since the function just returns a value, a
new echo() statement must be added to
the main code. This statement uses the
quantity and price from the form (both
found in $_POST) and the total returned
by the function (assigned to $sum). It
does not, however, report on the tax rate
used (see the final tip).

Save the file, place it in your Web direc-
tory, and test it in your Web browser
(Figure 3.19).

v Tips

Although this last example may seem
more complex (with the function per-
forming a calculation and the main code
printing the results), it actually demon-
strates better programming style. Ideally,
functions should perform universal, obvi-
ous tasks (like a calculation) and be
independent of page-specific factors like
HTML formatting.

The return statement terminates the
code execution at that point, so any code
within a function after an executed
return will never run.

Total Cost

Widget Cost Calculator
Quantity: 100
Price: &7
Tax (%] [pptianal)

Calculatel

Figure 3.19 The calculator’s user-defined function
now returns, instead of prints, the results, but this
change has little impact on what the user sees.

104

The tatal cost of purchasing 100 widget(s) at $0.57 each, with tax, is $59.85




Creating Dynamic Web Sites

B A function can have multiple return
statements (e.g., in a switch statement or
conditional) but only one, at most, will
ever be invoked. For example, functions
commonly do something like this:

function some_function () {
if (/* condition */) {
return TRUE;
} else {
return FALSE;

}

B To have a function return multiple val-
ues, use the array() function to return
an array. By changing the return line in
Script 3.10 to

return array ($total, $tax);

the function could return both the total
of the calculation and the tax rate used
(which could be the default value or a
user-supplied one).

B When calling a function that returns an
array, use the 1ist() function to assign
the array elements to individual vari-
ables:

list ($sum, $taxrate) = calculate_
— total ($_POST['quantity'],
— $_POST["price'], $_POST['tax']1);

105

SNOILONNJ NMQ ¥3NOA SNILYVIY)



CREATING YOUR OWN FUNCTIONS

Chapter 3

Variable Scope

Every variable in PHP has a scope to it, which is to say a realm in which the variable

(and therefore its value) can be accessed. For starters, variables have the scope of the page
in which they reside. So if you define $var, the rest of the page can access $var, but other
pages generally cannot (unless you use special variables).

Since included files act as if they were part of the original (including) script, variables
defined before an include() line are available to the included file (as you've already seen
with $page_title and header.html). Further, variables defined within the included file are
available to the parent (including) script after the include() line.

User-defined functions have their own scope: variables defined within a function are not
available outside of it, and variables defined outside of a function are not available within it.
For this reason, a variable inside of a function can have the same name as one outside of it
but still be an entirely different variable with a different value. This is a confusing concept for
many beginning programmers.

To alter the variable scope within a function, you can use the global statement.
function function_name() {
global $var;
}
$var = 20;
function_name(); // Function call.
In this example, $var inside of the function is now the same as $var outside of it. This

means that the function $var already has a value of 20, and if that value changes inside
of the function, the external $var’s value will also change.

Another option for circumventing variable scope is to make use of the superglobals: $_GET,
$_POST, $_REQUEST, etc. These variables are automatically accessible within your functions
(hence, they are superglobal). You can also add elements to the $GLOBALS array to make
them available within a function.

All of that being said, it's almost always best not to use global variables within a function.
Functions should be designed so that they receive every value they need as arguments and
return whatever value (or values) need to be returned. Relying upon global variables within
a function makes them more context-dependent, and consequently less useful.

106



INTRODUCTION
TO MYSQL

Because this book discusses how to integrate several technologies (primarily PHP,
SQL, and MySQL), a solid understanding of each individually is important before you
begin writing PHP scripts that use SQL to interact with MySQL. This chapter is a
departure from its predecessors in that it temporarily leaves PHP behind to delve
into MySQL.

MySQL is the world’s most popular open-source database application (according to
MySQL's Web site, www.mysql.com) and is commonly used with PHP. The MySQL soft-
ware comes with the database server (which stores the actual data), different client
applications (for interacting with the database server), and several utilities. In this
chapter you'll see how to define a simple table using MySQLSs allowed data types and
other properties. Then you'll learn how to interact with the MySQL server using two
different client applications. All of this information will be the foundation for the
SQL taught in the next two chapters.

This chapter assumes you have access to a running MySQL server. If you are working
on your own computer, see Appendix A, “Installation,” for instructions on installing
MySQL, starting MySQL, and creating MySQL users (all of which must already be
done in order to finish this chapter). If you are using a hosted server, your Web host
should provide you with the database access.

107

TOSAW OL NOLLDNAOWYLN|



NAMING DATABASE ELEMENTS

Chapter 4

Naming Database
Elements

Before you start working with databases, you
have to identify your needs. The purpose of
the application (or Web site, in this case)
dictates how the database should be designed.
With that in mind, the examples in this chap-
ter and the next will use a database that
stores some user registration information.

When creating databases and tables, you
should come up with names (formally called
identifiers) that are clear, meaningful, and
easy to type. Also, identifiers

¢ Should only contain letters, numbers, and
the underscore (no spaces)

¢ Should not be the same as an existing key-
word (like an SQL term or a function name)

@ Should be treated as case-sensitive

¢ Cannot be longer than 64 characters
(approximately)

¢ Must be unique within its realm

This last rule means that a table cannot have
two columns with the same name and a data-
base cannot have two tables with the same
name. You can, however, use the same column
name in two different tables in the same
database (in fact, you often will do this). As
for the first three rules, I use the word should,
as these are good policies more than exact
requirements. Exceptions can be made to
these rules, but the syntax for doing so can
be complicated. Abiding by these sugges-
tions is a reasonable limitation and will help
avoid complications.

108



Introduction to MySQL

To name a database’s elements:

1.

Determine the database’s name.

This is the easiest and, arguably, least
important step. Just make sure that the
database name is unique for that MySQL
server. If you're using a hosted server, your
Web host will likely provide a database
name that may or may not include your
account or domain name.

For this first example, the database will be
called sitename, as the information and
techniques could apply to any generic site.

Determine the table names.

The table names just need to be unique
within this database, which shouldn't be
a problem. For this example, which stores
user registration information, the only
table will be called users.

Determine the column names for
each table.

The users table will have columns to
store a user ID, a first name, a last name,
an email address, a password, and the
registration date. Table 4.1 shows these
columns, with sample data, using proper
identifiers. As MySQL has a function
called password, I've changed the name
of that column to just pass. This isn't
strictly necessary but is really a good idea.

Table 4.1 The users table will have these six columns,
to store records like the sample data here.

registration_date

users Table

CoLumN NAME EXAMPLE

user_id 834

first_name Larry

last_name David

email |[d@example.com

pass emilyo7

2007-12-3119:21:03

v Tips

Chapter 6, “Advanced SQL and MySQL.”
discusses database design in more detail,
using a more complex example.

To be precise, the length limit for the
names of databases, tables, and columns
is actually 64 bytes, not characters. While
most characters in many languages require
one byte apiece, it's possible to use a multi-
byte character in an identifier. But 64 bytes
is still a lot of space, so this probably
won't be an issue for you.

Whether or not an identifier in MySQL is
case-sensitive actually depends upon
many things. On Windows and normally
on Mac OS X, database and table names
are generally case-insensitive. On Unix
and some Mac OS X setups, they are case-
sensitive. Column names are always
case-insensitive. It’s really best, in my
opinion, to always use all lowercase letters
and work as if case-sensitivity applied.

109

SIN3IW313 3Svavivg SNIWVN



CHOOSING YOUR COLUMN TYPES

Chapter 4

Choosing Your
Column Types

Once you have identified all of the tables
and columns that the database will need,
you should determine each column’s data
type. When creating a table, MySQL requires
that you explicitly state what sort of infor-
mation each column will contain. There are
three primary types, which is true for almost
every database application:

& Text (aka strings)
¢ Numbers

& Dates and times

Within each of these, there are a number

of variants—some of which are MySQL-
specific—you can use. Choosing your column
types correctly not only dictates what infor-
mation can be stored and how but also
affects the database’s overall performance.
Table 4.2 lists most of the available types
for MySQL, how much space they take up,
and brief descriptions of each type.

Table 4.2 The common MySQL data types you can use for defining columns. Note: some of these limits may change
in different versions of MySQL, and the character set may also impact the size of the text types.

TEXT String length + 2 bytes

MEDIUMTEXT String length + 3 bytes
LONGTEXT String length + 4 bytes
TINYINT[Length] 1byte
SMALLINT[Length] 2 bytes
MEDIUMINT[Length] 3 bytes

INT[Length] 4 bytes
BIGINT[Length] 8 bytes
FLOAT[Length, Decimals] |4 bytes
DOUBLE[Length, Decimals] |8 bytes

DECIMAL[Length, Decimals] |Length + 1 or 2 bytes

DATE 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

TIME 3 bytes

ENUM 10r 2 bytes

SET 1,2, 3, 4, 0r 8 bytes

MySQL Data Types

TYPE Si1zE DESCRIPTION

CHAR[Length] Length bytes A fixed-length field from o to 255 characters long
VARCHAR[Length] String length + 1 or 2 bytes | A variable-length field from o to 65,535 characters long
TINYTEXT String length + 1 bytes A string with a maximum length of 255 characters

A string with a maximum length of 65,535 characters

A string with a maximum length of 16,777,215 characters

A string with a maximum length of 4,294,967,295 characters
Range of —128 to 127 or o0 to 255 unsigned

Range of -32,768 to 32,767 or o to 65,535 unsigned

Range of -8,388,608 to 8,388,607 or 0 to 16,777,215 unsigned
Range of —2,147,483,648 t0 2,147,483,647 or 0 to
4,294,967,295 unsigned

Range of -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 or o to
18,446,744,073,709,551,615 unsigned

A small number with a floating decimal point

A large number with a floating decimal point

A DOUBLE stored as a string, allowing for a fixed decimal point
In the format of YYYY-MM-DD

In the format of YYYY-MM-DD HH:MM:SS

In the format of YYYYMMDDHHMMSS; acceptable range ends in
the year 2037

In the format of HH:MM:SS

Short for enumeration, which means that each column can have
one of several possible values

Like ENUM except that each column can have more than one of
several possible values

110



Introduction to MySQL

Many of the types can take an optional Length
attribute, limiting their size. (The square
brackets, [], indicate an optional parameter
to be put in parentheses.) For performance
purposes, you should place some restrictions
on how much data can be stored in any col-
umn. But understand that attempting to
insert a string five characters long into a
CHAR(2) column will result in truncation of
the final three characters (only the first two
characters would be stored; the rest would
be lost forever). This is true for any field in
which the size is set (CHAR, VARCHAR, INT, etc.).
So your length should always correspond to
the maximum possible value (as a number)
or longest possible string (as text) that might
be stored.

The various date types have all sorts of
unique behaviors, which are documented in
the MySQL manual. You'll use the DATE and
TIME fields primarily without modification,
so you need not worry too much about their
intricacies.

There are also two special types—ENUM and
SET—that allow you to define a series of
acceptable values for that column. An ENUM
column can have only one value of a possible
several thousand, while SET allows for sever-
al of up to 64 possible values. These are
available in MySQL but aren't present in
every database application.

111

S3idAl NWNT10) ¥dNOA 9NISOOH)



CHOOSING YOUR COLUMN TYPES

Chapter 4

To select the column types:

1. Identify whether a column should be a text,

number, or date/time type (Table 4.3).
This is normally an easy and obvious step,
but you want to be as specific as possible.
For example, the date 2006-08-02 (MySQL
format) could be stored as a string—
August 2, 2006. But if you use the proper
date format, you'll have a more useful
database (and, as you'll see, there are
functions that can turn 2006-08-02 into
August 2, 2006).

Choose the most appropriate subtype for
each column (Table 4.4).

For this example, the user_id is set as

a MEDIUMINT, allowing for up to nearly

17 million values (as an unsigned, or non-
negative, number). The registration_date
will be a DATETIME. It can store both the
date and the specific time a user regis-
tered. When deciding among the date
types, consider whether or not you'll
want to access just the date, the time, or
possibly both. If unsure, err on the side
of storing too much information.

The other fields will be mostly VARCHAR,
since their lengths will differ from record
to record. The only exception is the pass-
word column, which will be a fixed-length
CHAR (you'll see why when inserting
records in the next chapter). See the side-
bar “CHAR vs. VARCHAR” for more informa-
tion on these two types.

Table 4.3 The users table with assigned generic data

types.

users Table

CoLumN NAME TyrE
user_id number
first_name text
last_name text
email text

pass text
registration_date date/time

Table 4.4 The users table with more specific data types.

users Table

CoLumn NAME
user_id
first_name
last_name

email

pass
registration_date

TYPE
MEDIUMINT
VARCHAR
VARCHAR
VARCHAR
CHAR
DATETIME

Table 4.5 The users table with set length attributes.

users Table

CoLumN NAME
user_id
first_name
last_name

email

pass
registration_date

TYPE
MEDIUMINT
VARCHAR(20)
VARCHAR(40)
VARCHAR(60)
CHAR(40)
DATETIME

112




Introduction to MySQL

CHAR vs. VARCHAR

Both of these types store strings and can
be set with a maximum length. One pri-
mary difference between the two is that
anything stored as a CHAR will always be
stored as a string the length of the column
(using spaces to pad it; these spaces will
be removed when you retrieve the stored
value from the database). Conversely,
strings stored in a VARCHAR column will
require only as much space as the string
itself. So the word cat in a VARCHAR(10)
column requires four bytes of space (the
length of the string plus 1), but in a
CHAR(10@) column, that same word requires
10 bytes of space. So, generally speaking,
VARCHAR columns tend to take up less
disk space than CHAR columns.

However, databases are normally faster
when working with fixed-size columns,
which is an argument in favor of CHAR.
And that same three-letter word—cat—
in a CHAR(3) only uses 3 bytes but in a
VARCHAR(10) requires 4. So how do you
decide which to use?

If a string field will always be of a set length
(e.g., a state abbreviation), use CHAR; other-
wise, use VARCHAR. You may notice, though,
that in some cases MySQL defines a column
as the one type (like CHAR) even though
you created it as the other (VARCHAR). This
is perfectly normal and is MySQL's way of
improving performance.

3.

Set the maximum length for text columns
(Table 4.5).

The size of any field should be restricted
to the smallest possible value, based upon
the largest possible input. For example, if
a column is storing a state abbreviation,
it would be defined as a CHAR(2). Other
times you might have to guess some-
what: I can’t think of any first names
longer than about 10 characters, but just to
be safe I'll allow for up to 20.

v Tips

The length attribute for numeric types
does not affect the range of values that
can be stored in the column. Columns
defined as TINYINT(1) or TINYINT(20)
can store the exact same values. Instead,
for integers, the length dictates the dis-
play width; for decimals, the length is the
total number of digits that can be stored.

Many of the data types have synony-
mous names: INT and INTEGER, DEC and
DECIMAL, etc.

The TIMESTAMP field type is automatically
set as the current date and time when an
INSERT or UPDATE occurs, even if no value
is specified for that particular field. If

a table has multiple TIMESTAMP columns,
only the first one will be updated when
an INSERT or UPDATE is performed.

MySQL also has several variants on the
text types that allow for storing binary
data. These types are BINARY, VARBINARY,
TINYBLOB, MEDIUMBLOB, and LONGBLOB.
Such types are used for storing files or
encrypted data.

113

S3idAl NWNT10) ¥dNOA 9NISOOH)



CHOOSING OTHER COLUMN PROPERTIES

Chapter 4

Choosing Other
Column Properties

Besides deciding what data types and sizes
you should use for your columns, you should
consider a handful of other properties.

First, every column, regardless of type, can be
defined as NOT NULL. The NULL value, in data-
bases and programming, is equivalent to
saying that the field has no value. Ideally, in
a properly designed database, every column of
every row in every table should have a value,
but that isn't always the case. To force a field
to have a value, add the NOT NULL description
to its column type. For example, a required
dollar amount can be described as

cost DECIMAL(S5,2) NOT NULL

When creating a table, you can also specify
a default value for any column, regardless of
type. In cases where a majority of the records
will have the same value for a column, pre-
setting a default will save you from having to
specify a value when inserting new rows
(unless that row’s value for that column is
different from the norm).

gender ENUM('M', 'F') default 'F'

With the gender column, if no value is specified
when adding a record, the default will be used.

If a column does not have a default value and
one is not specified for a new record, that field
will be given a NULL value. However, if no
value is specified and the column is defined
as NOT NULL, an error will occur.

The number types can be marked as UNSIGNED,
which limits the stored data to positive
numbers and zero. This also effectively dou-
bles the range of positive numbers that can
be stored (because no negative numbers will
be kept, see Table 4.2). You can also flag the
number types as ZEROFILL, which means that

any extra room will be padded with zeros
(ZEROFILLs are also automatically UNSIGNED).

Finally, when designing a database, you'll
need to consider creating indexes, adding
keys, and using the AUTO_INCREMENT property.
Chapter 6 discusses these concepts in greater
detail, but in the meantime, check out the
sidebar “Indexes, Keys, and AUTO_INCREMENT”
to learn how they affect the users table.

To finish defining your columns:

1. Identify your primary key.
The primary key is quixotically both arbi-
trary and critically important. Almost
always a number value, the primary key
is a unique way to refer to a particular
record. For example, your phone number
has no inherent value but is unique to
you (your home or mobile phone).
In the users table, the user_id will be the
primary key: an arbitrary number used to
refer to a row of data. Again, Chapter 6
will go into the concept of primary keys
in more detail.

2. Identify which columns cannot have
a NULL value.

In this example, every field is required
(cannot be NULL). If you stored peoples’
addresses, by contrast, you might have
address_linel and address_line2, with
the latter one being optional (it could
have a NULL value). In general, tables that
have a lot of NULL values suggest a poor
design (more on this in...you guessed
it...Chapter 6).

3. Make any numeric type UNSIGNED if it
won't ever store negative numbers.

The user_id, which will be a number,
should be UNSIGNED so that it’s always
positive. Other examples of UNSIGNED
numbers would be the price of items in
an e-commerce example, a telephone
extension for a business, or a zip code.

114



Introduction to MySQL

Table 4.6 The final description of the users table. The
user_id will also be defined as an auto-incremented
primary key.

users Table

CoLumN NAME TYre

user_id MEDIUMINT UNSIGNED
NOT NULL

first_name VARCHAR(20) NOT NULL

last_name VARCHAR(40) NOT NULL

email VARCHAR(6@) NOT NULL

pass CHAR(40) NOT NULL

registration_date DATETIME NOT NULL

. Establish the default value for any

column.

None of the columns here logically
implies a default value.

. Confirm the final column definitions

(Table 4.6).

Before creating the tables, you should
revisit the type and range of data you'll
store to make sure that your database
effectively accounts for everything.

v Tip

B Text columns can also have defined char-

acter sets and collations. This will mean
more once you start working with multi-
ple languages (see Chapter 14, “Making
Universal Sites”).

Indexes, Keys, and AUTO_INCREMENT

Two concepts closely related to database design are indexes and keys. An index in a database
is a way of requesting that the database keep an eye on the values of a specific column or
combination of columns (loosely stated). The end result of this is improved performance
when retrieving records but marginally hindered performance when inserting records or

updating them.

A key in a database table is integral to the normalization process used for designing more
complicated databases (see Chapter 6). There are two types of keys: primary and foreign.
Each table should have one primary key, and the primary key in one table is often linked as

a foreign key in another.

A tables primary key is an artificial way to refer to a record and should abide by three rules:

1. It must always have a value.

2. That value must never change.

3. That value must be unique for each record in the table.

In the users table, the user_id will be designated as a PRIMARY KEY, which is both a descrip-
tion of the column and a directive to MySQL to index it. Since the user._id is a number
(which primary keys almost always will be), also add the AUTO_INCREMENT description to the
column, which tells MySQL to use the next-highest number as the user_id value for each
added record. You'll see what this means in practice when you begin inserting records.

115

S311433d0d¥d NWNT0) ¥3HLQ DNISOOH)



ACCESSING MYSQL

Chapter 4

Accessing MySQL

In order to create tables, add records, and
request information from a database, some
sort of client is necessary to communicate
with the MySQL server. Later in the book,
PHP scripts will act in this role, but being
able to use another interface is necessary.
Although there are oodles of client applica-
tions available, I'll focus on two: the mysgl
client (or mysql monitor, as it is also called)
and the Web-based phpMyAdmin. A third
option, the MySQL Query Browser, is not dis-
cussed in this book but can be found at the
MySQL Web site (www.mysql.com), should
you not be satisfied with these two choices.

Using the mysql Client

The mysql client is normally installed with
the rest of the MySQL software. Although
the mysql client does not have a pretty
graphical interface, it’s a reliable, standard
tool that’s easy to use and behaves consis-
tently on many different operating systems.

The mysql client is accessed from a command-
line interface, be it the Terminal application
in Linux or Mac OS X (Figure 4.1), or a DOS
prompt in Windows (Figure 4.2). If you're not
comfortable with command-line interactions,
you might find this interface to be challeng-
ing, but it becomes easy to use in no time.

eoe

Last login: Hed Sep 12 28:48:13 on ttyp2 5
Helcome to Darwin!

Terminal

To start an application from the command
line, type its name and press Return or Enter:

mysql

When invoking this application, you can add
arguments to affect how it runs. The most
common arguments are the username, pass-
word, and hostname (computer name or URL)
you want to connect using. You establish these
arguments like so:

mysql -u username -p -h hostname

The -p option will cause the client to
prompt you for the password. You can also
specify the password on this line if you pre-
fer—by typing it directly after the -p
prompt—but it will be visible, which is inse-
cure. The -h hostname argument is optional,
and you can leave it off unless you cannot
connect to the MySQL server without it.

Within the mysql client, every statement
(SQL command) needs to be terminated by
a semicolon. These semicolons are an indi-
cation to the client that the query is com-
plete and should be run. The semicolons are
not part of the SQL itself (this is a common
point of confusion). What this also means is
that you can continue the same SQL state-
ment over several lines within the mysqgl
client, which makes it easier to read and to
edit, should that be necessary.

o CAWINDOWS\system32\cmd.exe - [B[x

icrosoft Windows KP [Uersion 5.1.260881] -
{C» Copyright 1985-28@1 Microsoft Corp. o

:N\Documents and Settings\Larry Ullman>_

< | 2

Figure 4.1 A Terminal window in Mac OS X.

Figure 4.2 A Windows DOS prompt or console (although
the default is for white text on a black background).

116



Introduction to MySQL

As a quick demonstration of accessing and
using the mysql client, these next steps will
show you how to start the mysql client,
select a database to use, and quit the client.
Before following these steps,

¢ The MySQL server must be running,

¢ You must have a username and password
with proper access.

Both of these ideas are explained in
Appendix A.

As a side note, in the following steps and
throughout the rest of the book, I will con-
tinue to provide images using the mysql
client on both Windows and Mac OS X.
While the appearance differs, the steps and
results will be identical. So in short, don't be
concerned about why one image shows the
DOS prompt and the next a Terminal.

To use the mysql client:

1. Access your system from a command-

line interface.

On Unix systems and Mac OS X, this is
just a matter of bringing up the Terminal
or a similar application.

If you are using Windows and followed
the instructions in Appendix A, you can
choose Start > Programs > MySQL >
MySQL Server X.X > MySQL Command
Line Client (Figure 4.3). Then you can
skip to Step 3. If you don't have a MySQL
Command Line Client option available,
you'll need to choose Run from the Start
menu, type cmd in the window, and press
Enter to bring up a DOS prompt (then
follow the instructions in the next step).

continues on next page

6 ‘Windows Media Player
ﬂ ‘Windows Messenger

I Mozila Firefax »
IF@ Mwsnap »

Internet " 3
Q' Mizila Firefios ) Microsaft Office v

s E-mail
Cutlook Express
@ MusSphere PhpED
IF) HEA HomeFlanner

E MyWSsnap 3
IF@ coreFTP

@ Abyss Web Server ¥ o Opera

ﬂ Employes Directory
Command Frompt | €8 ScreenPlay

1 Hello world
E Motepad
ﬁ Dev-C++

@ Bloodshed Dev-C++
@ Cygwin

@ MuSphere
-

1) cauicken Wilkaker Flus 2007
@ Parallels Shared Applications
@ Parallels Tools

@ Abyss Web Server

- v v v ¥

- vy v v ¥

0 MysCL Administrator

@ My5QL Migration Toolkit

5 MySQL Query Browser

G My3QL System Tray Monitor
B MysoL workbench

@ MySQL Server Instance Config Wizard

iy start

Figure 4.3 The MySQL Windows installer creates a link in your Start menu so that you can easily get

into the mysql client.

117

TOSAW ONISSIIIY



ACCESSING MYSQL

Chapter 4

2.

Invoke the mysql client, using the appro-
priate command (Figure 4.4).

/path/to/mysql/bin/mysql -u username -p

The /path/to/mysql part of this step will
be largely dictated by the operating sys-
tem you are running and where MySQL
was installed. This might therefore be

A /usr/local/mysql/bin/mysql - u
— username -p (on Mac OS X and
Unix)

or

A C:\mysqgl\bin\mysql -u username -p
(on Windows)
The basic premise is that you are run-
ning the mysql client, connecting as
username, and requesting to be prompt-
ed for the password. Not to overstate the
point, but the username and password
values that you use must already be
established in MySQL as a valid user (see
Appendix A).

Enter the password at the prompt and
press Return/Enter.

The password you use here should be for
the user you specified in the preceding
step. If you used the MySQL Command
Line Client link on Windows (Figure 4.3),
the user is root, so you should use that
password (probably established during
installation and configuration, see
Appendix A).

If you used the proper username/pass-
word combination (i.e., someone with
valid access), you should be greeted as
shown in Figure 4.5. If access is denied,
you're probably not using the correct val-
ues (see Appendix A for instructions on
creating users).

@06

Terminal

Last login: Thu Sep 13 B9:24:82 on console
Helcome to Darwin!

: fusr/local/mysql/bin/mysql -u root -p
Enter pazsword:

Figure 4.4 Access the mysql client by entering the full

path to the utility, along with the proper arguments.

e

Terminal

: Jusr/local/mysql/bin/mysql -u root -p

Enter password:

Heleame to the MySOL monitor. Commands end with ; or \g.
Your MySOL connection id is 1

Server wersion: 5.8.45 MySOL Community Server (GPL)

Type 'help;' or 'Sh' for help. Type '%c' to clear the buffer.

mysal> [l

< — Y |1

Figure 4.5 If you are successfully able to log in, you'll

see a welcome message like this.

118




Introduction to MySQL

+ MySOL Comenand Line Client

fnter password: WHEMHMEN
lecome to the HySGL monitor. Commands end with @ or “g.

our My80L connection id is

wrver version: 5.0.45-community-nt AyS0L Community Edition (GPL}

ype "help;’ ar 'Sk far help. Type "o’ to clear the huffer.

wanls USE teat;
tabase changed

psgly o
4| | ﬂJ

Figure 4.6 After getting into the mysgl client, run a
USE command to choose the database with which you
want to work.

eoe Terminal

Server version: 5.8.45 MySQL Cammunity Server (GPL)

e

Type ‘help;' or 'Mh' for help. Type '“\c' to clear the buffer.

mysql> USE test;
Dotabase changed
mysql> quit

Bye

I =

Figure 4.7 Type either exit or quit to terminate your
session and leave the mysql client.

4. Select the database you want to use
(Figure 4.6).

USE test;

The USE command selects the database
to be used for every subsequent com-
mand. The test database is one that
MySQL installs by default. Assuming it
exists on your server, all users should be
able to access it.

5. Quit out of mysql (Figure 4.7).
quit
You can also use the command exit to
leave the client. This step—unlike most
other commands you enter in the mysql

client—does not require a semicolon at
the end.

If you used the MySQL Command Line
Client, this will also close the DOS
prompt window.

v Tips

B If you know in advance which database
you will want to use, you can simplify
matters by starting mysql with

/path/to/mysql/bin/mysql -u username
— -p databasename

B To see what else you can do with the
mysql client, type
/path/to/mysql/bin/mysql --help

B The mysql client on most systems allows
you to use the up and down arrows to
scroll through previously entered com-
mands. If you make a mistake in typing
a query, you can scroll up to find it, and
then correct the error.

B Ifyou are in a long statement and make
a mistake, cancel the current operation
by typing c and pressing Return or Enter.
If mysql thinks a closing single or double
quotation mark is missing (as indicated by
the '> and "> prompts), you'll need to
enter the appropriate quotation mark first.

119

TOSAW ONISSIIIY



ACCESSING MYSQL

Chapter 4

Using phpMyAdmin

phpMyAdmin (www.phpmyadmin.net) is one
of the best and most popular applications
written in PHP. Its sole purpose is to provide
an interface to a MySQL server. It's some-
what easier and more natural to use than
the mysql client but requires a PHP installa-
tion and must be accessed through a Web
browser. If you're running MySQL on your
own computer, you might find that using the
mysql client makes more sense, as installing
and configuring phpMyAdmin constitutes
unnecessary extra work (although all-in-one
PHP and MySQL installers may do this for
you). If using a hosted server, your Web host
is virtually guaranteed to provide phpMyAdmin
as the primary way to work with MySQL
and the mysql client may not be an option.

Using phpMyAdmin isn't hard, but the next
steps run through the basics so that you'll
know what to do in the following chapters.

To use phpMyAdmin:

1. Access phpMyAdmin through your Web
browser (Figure 4.8).
The URL you use will depend upon your
situation. If running on your own com-
puter, this might be http://localhost/
phpMyAdmin/. If running on a hosted site,
your Web host will provide you with the
proper URL. In all likelihood, phpMyAdmin
would be available through the site’s con-
trol panel (should one exist).

Note that phpMyAdmin will only work if
it’s been properly configured to connect to
MySQL with a valid username/password/
hostname combination. If you see a mes-
sage like the one in Figure 4.9, you're
probably not using the correct values
(see Appendix A for instructions on
creating users).

[ - T hook Joe ficathoal | php MOS0 0 =]
phpligfdinin 0 oaihost phpMyAdmin - 2.11.0
FEEE 2 Server version: 5.0.45 » MySOL olent verslon: 8.0.240
; ¥ Protocol version: 10 ¥ Used PHP extensions; mysdl
3 Sorver: Looalhast vin UNIX socket & Language @ : [ English 2
E}l] User: root @ooathast & Theme ! Stybo: [Griginal =l
-~ MySCL charsel: UTF-8 Unicode (i) » Font slze: m
[ syson connecsion collation: [Ti8_unicode.ci o -]
phphtyAdmin documentation
1 Create new database
[ | caltation k|
i} Otficial phpMyAdmin Homepage
_Create | » [Changslog) [Sutwension] [Lists]
& Show MySOL runtime information
Bl show MySCL system vannblos @
B Processes @
[H characior Sots and Collations
B Siceage Engines
¥ Rsload privieges @
B Prvileges
& Dutshases
& Expon
B impont Al
phpMy#Aamin
_\"_ Your PHP MySOL library version 5.0.24a differs from your MySOL senver version 5.0.45. This may cause unpeodiotable bohavior.
= Open new phihyAdmin window
|

Figure 4.8 The first phpMyAdmin page (when connected as a MySQL user that can access

multiple databases).

120



Introduction to MySQL

2. If possible and necessary, use the menu
on the left to select a database to use
(Figure 4.10).

What options you have here will vary
depending upon what MySQL user
phpMyAdmin is connecting as. That user
might have access to one database, several

databases, or every database. On a hosted
site where you have just one database, that
database will probably already be selected
for you (Figure 4.11). On your own com-
puter, with phpMyAdmin connecting as
the MySQL root user, you would see a pull-
down menu (Figure 4.10) or a simple list
of available databases (Figure 4.8).

continues on next page

866 Access denied o
Welcome to phpMyAdmin 2,11.0

pphyAdmin tried 1o connect ta the MySCL server, and the server mected the connection. You shoukd chack the hos,

usOmame and password in your configuration and make sune that thay comespand o the infamation given by the

sdministralor of the MySOL server.

Error
a MySOL sald: @
: -
= | Opan new phphly Admin window

Figure 4.9 Every client application requires a proper username/password/
hostname combination in order to interact with the MySQL server.

manapemyvps. com: £443 / bocalhost

ullmanl_dmcimain (9)
zips (2)

MySQL -4.1.20
MM » Protocol version: 10
- — - B Seever Localhost via LINIX
4 B2 (e |0 sockst
m + User re30UNred@iocahost
forum (21) [ MySCL charset UTF-8
b2 Unicode {utfe)
m‘:;:’”“ [ MySOL connection collation
forums_auth uel_genarel_ci o o
- Database e s hag # Create new database: @
test o . . Toruns_ ONo Privileges
o Figure 4.10 Use the list of o erigos | @ Stos:
aja>:I :22) databases on the left side e
t . phonm,_ Tof
W o of the window to choose Enanm g
cp_temp (8) X X phonsm_masiages
ecommerce (8) with which database you P e P
ecommercel (5) P phonum_subscrbars
e wan't to work. ThIS.IS the onm s "
mysql (17) equivalent of running a o ter_nav liga
& e
fe'::((o)) USE databasename query

within the mysql client
(see Figure 4.6). < >

phphyAdmin - 2.8.2.4

» MyS0L chent version: 4.1.12
+ Utod PHP gadensions: mysal

phpMuddmin

Dpan e phohtyAdmin windon

Figure 4.11 If phpMyAdmin only has access to one
database, it’ll likely already be selected when you load

the page.

121

TOSAW ONISSIIIY



ACCESSING MYSQL

Chapter 4

3. Use the SQL tab (Figure 4.12) or the SQL
query window (Figure 4.13) to enter
SQL commands.

The next two chapters, and the occasion-
al one later in the book, will provide SQL
commands that must be run to create,

populate, or alter tables. These might
look like

INSERT INTO tablename (coll, colZ2)
— VALUES (x, y)

These commands can be run using the
mysql client, phpMyAdmin, or any
other interface. To run them within
phpMyAdmin, just type them into one
of the SQL prompts and click Go.

v Tips

B Theres a lot more that can be done with
phpMyAdmin, but full coverage would
require a chapter in its own right (and
a long chapter at that). The information
presented here will be enough for you
to follow any of the examples in the
book, should you not want to use the
mysql client.

B phpMyAdmin can be configured to use
a special database that will record your
query history, allow you to bookmark
queries, and more.

B One of the best reasons to use phpMyAdmin is
to transfer a database from one comput-
er to another. Use the Export tab in
phpMyAdmin connected to the source
computer to create a file of data. Then, on
the destination computer, use the Import
tab in phpMyAdmin (connected to that
MySQL server) to complete the transfer.

ane powerbooklocal [ localhost [ test | phpMyAdmin 2.11.0 =)
m ) Server: localhost b [§ Database: best
_pSstucture JTSOL  J Search [hOuery jiExport jhimpert £ZDesignes  $20g
L e i
Catabase
test (0 =l -Run SOL query/queries on database test: @
test (0)
No tabias found in database.
Bockmark this SOL quary: ™ Lot every user acoess this bookmark . .
[~ Peplace existing bookmark of same name Flgure 4.12 The SQL tab, n
[ Deolimitee [ | 1= Show this quory horo again _Go| the main part of the window,
— e A can be used to run any SQL
command.

[=Xa)s) hitp:/ {powerbook.local - phpMyAdmin =,

JIS0L  miimpon files SQL his
_mmmmah%umm

Bookmark this SOL query:
[~ Let every user access this bockmark [ Replace existing boockmark of same name

[~ Do not overwrite this query from outside the window (,ol

[ Dellmllul_ | = Show this query here again

Figure 4.13 The SQL window can also be used to run
commands. It pops up after clicking the SQL icon at the
top of the left side of the browser (see the second icon
from the left in Figure 4.10).

122



INTRODUCTION
TO SQL

The preceding chapter provides a quick introduction to MySQL. The focus there is on
two topics: using MySQLs rules and data types to define a database, and how to interact
with the MySQL server. This chapter moves on to the lingua franca of databases: SQL.

SQL, short for Structured Query Language, is a group of special words used exclusively
for interacting with databases. Every major database uses SQL, and MySQL is no
exception. There are multiple versions of SQL and MySQL has its own variations on
the SQL standards, but SQL is still surprisingly easy to learn and use. In fact, the
hardest thing to do in SQL is use it to its full potential!

In this chapter you'll learn all the SQL you need to know to create tables, populate
them, and run other basic queries. The examples will all use the users table discussed
in the preceding chapter. Also, as with that other chapter, this chapter assumes you
have access to a running MySQL server and know how to use a client application to
interact with it.

123

70S OL NOILLONAOYLN|



CREATING DATABASES AND TABLES

Chapter 5

Creating Databases
and Tables

The first logical use of SQL will be to create
a database. The syntax for creating a new
database is simply

CREATE DATABASE databasename

That's all there is to it (as I said, SQL is easy
to learn)!

The CREATE term is also used for making
tables:

CREATE TABLE tablename (
columnlname description,
columnZname description

)

As you can see from this syntax, after nam-
ing the table, you define each column within
parentheses. Each column-description pair

should be separated from the next by a comma.

Should you choose to create indexes at this
time, you can add those at the end of the
creation statement, but you can add indexes
at a later time as well. (Indexes are more for-
mally discussed in Chapter 6, "Advanced SQL
and MySQL,” but Chapter 4, “Introduction to
MySQL,” introduced the topic.)

In case you were wondering, SQL is case-
insensitive. However, I strongly recommend
making it a habit to capitalize the SQL key-
words as in the preceding example syntax
and the following steps. Doing so helps to
contrast the SQL terms from the database,
table, and column names.

To create databases and tables:

1. Access MySQL using whichever client
you prefer.
Chapter 4 shows how to use two of the
most common interfaces—the mysql
client and phpMyAdmin—to communi-
cate with a MySQL server. Using the steps
in the last chapter, you should now con-
nect to MySQL.

Throughout the rest of this chapter, most
of the SQL examples will be entered using
the mysql client, but they will work just
the same in phpMyAdmin or any other
client tool.

2. Create and select the new database
(Figure 5.1).

CREATE DATABASE sitename;
USE sitename;

This first line creates the database (assum-
ing that you are connected to MySQL as
a user with permission to create new data-
bases). The second line tells MySQL that
you want to work within this database
from here on out. Remember that within
the mysql client, you must terminate
every SQL command with a semicolon,
although these semicolons aren't techni-
cally part of SQL itself. If executing mul-
tiple queries at once within phpMyAdmin,
they should also be separated by semi-
colons (Figure 5.2). If running only a
single query within phpMyAdmin, no
semicolons are necessary.

If you are using a hosting company’s
MySQL, they will probably create the
database for you. In that case, just con-
nect to MySQL and select the database.

124



Introduction to SQL

eno Terminal

Helgome to the MySOL monitor. Commands end with ; or ig. [=]
Your MySQL connection id is 1 r
Server version: 5.8.45 MySQL Community Serwer (GPL)

Type 'help;' or '“h' for help. Type 'M¢' to clear the buffer.

mysql> CREATE DATABASE sitename;
Query OK, 1 row affected (B.26 sec)

mysql> USE sitename; a
Dotabase changed v
mysql> ]

Figure 5.1 A new database, called sitename, is created
in MySQL. It is then selected for future queries.

| MSOL _mimportfiles _mSQL history

~Run SAL query/queries on server “localhost™: @ -
sitename;

SE sitename:|

Bookmark this SQL query:
I Let evary user access this bookmark
I~ Replace existing bookmark of same name

806 gt pewarbook |9 < phipAAGRAT ="

F Do not overwrite this query from outside the window Go
[ Delimiter | 1+ Show this query here again

Bune * -]
Figure 5.2 The same commands for creating and
selecting a database can be run within phpMyAdmin’s
SQL window.

~ MySOL Command Line Client |:|| x

Enter passuord:

elcone to the nysm. monitor. Commands end with ; or \g.

Your MySQL connection id is L |
erver version= .45-comnunity-nt My$QL Comnunity Edition ¢GPL)

Type *helps’ or *“h’ for help. Type ’“c’ to clear the huffer.

mysql) CRERTE DATABASE sitename;
Que: vou affected (B.@2 sec)

nysql> USE sitename;
atabase change
pusql> CRENTE TABLE usors
L en ia NEDTURTNT UNSIGNED NOT NULL
33 3T TNCREHENT
-5 firct_name UARCAARC28> NOT NULL,
-> last_name UARCHARC2B) NOT NUL
-> email UARCHARC6@) NOT MULL,
-> pass CHARC4B> NOT MULL,
-> registration_date DATETIME NOT NULL,
3 PRIMARY WEY Tuser_id)

'luler'y OK. rous affected (B.16 sec) b
[l

Figure 5.3 This CREATE SQL command will make the
users table.

3. Create the users table (Figure 5.3).
CREATE TABLE users (
user_id MEDIUMINT UNSIGNED NOT NULL
AUTO_INCREMENT,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(40) NOT NULL,
email VARCHAR(6@) NOT NULL,
pass CHAR(40) NOT NULL,
registration_date DATETIME NOT NULL,
PRIMARY KEY (user_id)
DR
The design for the users table is developed
in Chapter 4. There, the names, types,
and attributes of each column in the
table are determined based upon a num-
ber of criteria (see that chapter for more
information). Here, that information is
placed within the CREATE table syntax to
actually make the table in the database.
Because the mysql client will not run a
query until it encounters a semicolon,
you can enter statements over multiple
lines as in Figure 5.3 (by pressing Return
or Enter at the end of each line). This
often makes a query easier to read and
debug. In phpMyAdmin, you can also run

queries over multiple lines, although they
will not be run until you click Go.

continues on next page

125

S$374V] ANV S3Svaviv(g SNILVIY)



CREATING DATABASES AND TABLES

Chapter 5

4. Confirm the existence of the table
(Figure 5.4).

SHOW TABLES;
SHOW COLUMNS FROM users;

The SHOW command reveals the tables in

a database or the column names and
types in a table.

Also, you might notice in Figure 5.4 that
the default value for user_id is NULL, even

though this column was defined as NOT
NULL. This is actually correct and has to
do with user_id being an automatically
incremented primary key. MySQL will

often make minor changes to a column’s

definition for better performance or
other reasons.

In phpMyAdmin, a database’s tables are

listed on the left side of the browser window;
under the database’s name (Figure 5.5).

Click a table’s name to view its columns
(Figure 5.6).

v Tips

B The rest of this chapter assumes that you
are using the mysql client or comparable
tool and have already selected the site-
name database with USE.

B The order you list the columns when cre-

ating a table has no functional impact,
but there are stylistic suggestions for
how to order them. I normally list the
primary-key column first, followed by
any foreign-key columns (more on this
subject in the next chapter), followed by
the rest of the columns, concluding with
any date columns.

When creating a table, you have the
option of specifying its type. MySQL sup-
ports many table types, each with its
own strengths and weaknesses. If you do
not specify a table type, MySQL will
automatically create the table using the
default type for that MySQL installation.
Chapter 6 discusses this in more detail.

When creating tables and text columns,
you have the option to specify its colla-
tion and character set. Both come into
play when using multiple languages or
languages not native to the MySQL server.
Chapter 14, “Making Universal Sites,”
covers these subjects.

DESCRIBE tablename is the same state-
ment as SHOW COLUMNS FROM tablename.

»~. MySOL Command Line Client HER
A row in set (A.PA sec) J Figure 5 5
mysql> SHOU COLUMNS FROM userss .
! Field ! Type ! Null ! Hey ! Default ! ] phpiiyAdmin p:pMyg]dTln
. T : : T === Shows tha
! ouser_id E neﬂ)ununts) unsigned E NO E PRI E NULL E auto_increment E m ;
fieme @i g ! ; the sitename
enai E varchar(c@ E l 1 Database
r:;sistratinn_date ! 5:::;:3; ! Hg sitename (1) j datab'ase
6 rous in set <B.81 sec) s contains one
1
mysql> @ table, named
H e users.

Figure 5.4 Confirm the existence of, and columns in, a table using the

SHOW command.
Fleld Type Collation Attributes  Null  Defaull

[~ userid mediumind () [ No
[~ first name varchan(20)  latint_swedish ¢l Mo
[~ last_name warchar40) latin_swedish_ci L
- emall vercharfB)  lafin]_swedish ci No
[~ pass charf0) latin1_swesdish_ci o
[~ registration_date datetime No

Figure 5.6 phpMyAdmin shows a table’s definition
on this screen (accessed by clicking the table’s
name in the left-hand column).

126



Introduction to SQL

Quotes in Queries
In every SQL command:
¢ Numeric values shouldn’'t be quoted.

¢ String values (for CHAR, VARCHAR, and
TEXT column types) must always be
quoted.

¢ Date and time values must always be
quoted.

¢ Functions cannot be quoted.
¢ The word NULL must not be quoted.

Unnecessarily quoting a numeric value
normally won't cause problems (although
you still shouldn't do it), but misusing
quotation marks in the other situations
will almost always mess things up. Also, it
does not matter if you use single or double
quotation marks, so long as you consis-
tently pair them (an opening mark with

a matching closing one).

And, as with PHP, if you need to use a
quotation mark in a value, either use the
other quotation mark type to encapsulate
it or escape the mark by preceding it with
a backslash:

INSERT INTO tablename (last_name)
» VALUES ('O\'Toole")

Inserting Records

After a database and its table(s) have been
created, you can start populating them using
the INSERT command. There are two ways
that an INSERT query can be written. With
the first method, you name the columns to
be populated:

INSERT INTO tablename (columnl, column2
»..) VALUES (valuel, value2 ..)

INSERT INTO tablename (column4, column8)
— VALUES (valueX, valueY)

Using this structure, you can add rows of
records, populating only the columns that
matter. The result will be that any columns
not given a value will be treated as NULL (or
given a default value, if one was defined).
Note that if a column cannot have a NULL
value (it was defined as NOT NULL) and does
not have a default value, not specifying a
value will cause an error.

The second format for inserting records is
not to specify any columns at all but to
include values for every one:

INSERT INTO tablename VALUES (valuel,
— NULL, valueZ, value3, ..)

If you use this second method, you must
specify a value, even if it's NULL, for every col-
umn. If there are six columns in the table,
you must list six values. Failure to match the
number of values to the number of columns
will cause an error. For this and other rea-
sons, the first format of inserting records is
generally preferable.

continues on nextpage

127

SAY0D3IY INILIISN]



INSERTING RECORDS

Chapter 5

MySQL also allows you to insert multiple
rows at one time, separating each record by
a comma.

INSERT INTO tablename (columnl, column4)
» VALUES (valueA, valueB),

(valueC, valueD),

(valueE, valueF)

While you can do this with MySQL, it is not
acceptable within the SQL standard and is
therefore not supported by all database
applications.

Note that in all of these examples, placeholders
are used for the actual table names, column
names, and values. Furthermore, the exam-
ples forgo quotation marks. In real queries,
you must abide by certain rules to avoid
errors (see the “Quotes in Queries” sidebar).

To insert data into a table:

1. Insert one row of data into the users table,
naming the columns to be populated
(Figure 5.7).

INSERT INTO users

(first_name, last_name, email, pass,
— registration_date)

VALUES ('Larry', 'Ullman',
— 'email@example.com',
— SHA1("mypass'), NOW())D;

Again, this syntax (where the specific
columns are named) is more foolproof
but not always the most convenient. For
the first name, last name, and email
columns, simple strings are used for the
values (and strings must always be quoted).
For the password and registration date
columns, two functions are being used to
generate the values (see the sidebar “Two
MySQL Functions”). The SHA1() function
will encrypt the password (mypass in
this example). The NOW() function will set
the registration_date as this moment.

When using any function in an SQL state-
ment, do not place it within quotation

marks. You also must not have any spaces
between the functions name and the fol-
lowing parenthesis (so NON() not NOW Q).

2. Insert one row of data into the users
table, without naming the columns
(Figure 5.8).

INSERT INTO users VALUES

(NULL, 'Zoe', 'Isabella',
— 'email2@example.com',
— SHAL('mojito'), NOWQ));

In this second syntactical example, every
column must be provided with a value.
The user_id column is given a NULL value,
which will cause MySQL to use the next
logical number, per its AUTO_INCREMENT
description. In other words, the first
record will be assigned a user_id of 1, the
second, 2, and so on.

- MySOL Comimand Line Cliem

weqly IMSLET DTG users
3 ifimet_name.  Lact_nane
~% UNLUEE ¢*Larey’, ‘U1lman®,
ry OK. 1 row affected 8.3 o
4|

el o
=

Figure 5.7 This query inserts a single record into the
users table. The 1 row affected message indicates the
success of the insertion.

ane Terminal

mysql> IHSERT INTO users VALUES [
* (NULL, "Zoe’, 'lsabella’. 'esol [Mexoaple.coa’, SHAL('majite’d, HOW(D:

Query 0K, 1 row affected (0,00 sec)

Figure 5.8 Another record is inserted into the table, this
time by providing a value for every column in the table.

128



Introduction to SQL

3. Insert several values into the users table
(Figure 5.9).

INSERT INTO users (first_name,
— last_name, email, pass,
— registration_date) VALUES

("John', 'Lennon',
— "john@beatles.com',
— SHA1('Happin3ss'), NOWQ)),

('George', 'Harrison',
— 'george@beatles.com',
— SHAL('something'), NOW()),
('Ringo', 'Starr’',
» 'ringo@beatles.com',
» SHAL("thisboy'), NOW());

Since MySQL allows you to insert multi-
ple values at once, you can take advantage

('Paul’, 'McCartney’ of this and fill up the table with records.

— 'paul@beatles.com’,
—» SHAL('letITbe'), NOWQ)),

continues on next page

@06 Terminal

mysql> INSERT INTO users (first_name, last_nams, email, pass, registration_date) WALUES =
-» {'John', 'Lennon', 'john@beatles.com', SHAL({'Happindss'), HOM()), r
=¥ {'Paul', 'NcCartney', 'paul@beatles.com', SHAL1('let|Tbe'), HOW()J,

- {'Gearge', 'Harrisen', 'georgefbeatles.com ', SHA1{'something'), HOW{DD,
-> {'Ringa', 'Starr', 'ringofbeatles.com', SHAL('thisboy'), MOM()D;
Query OK, 4 rows affected (B.B8 sec) m
Fecords: 4 Ouplicotes: @ Hornings: @ ¥
v

mysql> I

Figure 5.9 This one query—which MySQL allows but other databases will not—inserts several records
into the table at once.

Two MySQL Functions

Although functions are discussed in more detail later in this chapter, two need to be intro-
duced at this time: SHA1() and NOWQ).

The SHA1Q) function is one way to encrypt data. This function creates an encrypted string
that is always exactly 40 characters long (which is why the users table’s pass column is
defined as CHAR(40)). SHAL() is a one-way encryption technique, meaning that it cannot be
reversed. It's useful for storing sensitive data that need not be viewed in an unencrypted form
again, but it's obviously not a good choice for sensitive data that should be protected but later
seen (like credit card numbers). SHA1() is available as of MySQL 5.0.2; if you are using an earlier
version, you can use the MD5() function instead. This function does the same task, using a dif-
ferent algorithm, and returns a 32-character long string (if using MD5(), your pass column
could be defined as a CHAR(32) instead).

The NOWQ) function is handy for date, time, and timestamp columns, since it will insert the cur-
rent date and time (on the server) for that field.

129

SAY0D3IY INILIISN]



INSERTING RECORDS

Chapter 5

4. Continue Steps 1 and 2 until you've thor-

oughly populated the users table.

Throughout the rest of this chapter I will
be performing queries based upon the
records I entered into my database.
Should your database not have the same
specific records as mine, change the par-
ticulars accordingly. The fundamental

v Tips

On the downloads page of the book’s
supporting Web site (www.DMCInsights.
com/phpmysql3/), you can download all of
the SQL commands for the book. Using
some of these commands, you can popu-
late your users table exactly as I have.

thinking behind the following queries B The term INTO in INSERT statements is
should still apply regardless of the data, optional in current versions of MySQL.
Slrice the Sléei’l(ll)liﬂe database has a set | phpMyAdmin’s INSERT tab allows you to
column and table structure. insert records using an HTML form
(Figure 5.10).
Field Type Function Null Value
user_id mediumint(8) unsigned I j I
first_name varchar(20) I j ILE"W
last_name varchar({40} I j IUIIman
email varchar(60) I j Iemail@example.com
=0 char(40) I SHA1 j Imvpass
registration_date datetime I NOW j I 5 |
Go |

Figure 5.10 phpMyAdmin’s INSERT form shows a table’s columns and provides text boxes for entering values.
The pull-down menu lists functions that can be used, like SHAL() for the password or NOW() for the

registration date.

130



Introduction to SQL

Selecting Data

Now that the database has some records in
it, you can retrieve the stored information

with the most used of all SQL terms, SELECT.

A SELECT query returns rows of records
using the syntax

SELECT which_columns FROM which_table

The simplest SELECT query is

SELECT * FROM tablename

The asterisk means that you want to view
every column. The alternative would be to

specify the columns to be returned, with
each separated from the next by a comma:

SELECT columnl, column3 FROM tablename

There are a few benefits to being explicit
about which columns are selected. The first
is performance: There's no reason to fetch
columns you will not be using. The second is
order: You can return columns in an order
other than their layout in the table. Third—
and you'll see this later in the chapter—naming
the columns allows you to manipulate the
values in those columns using functions.

To select data from a table:

1. Retrieve all the data from the users table
(Figure 5.11).

SELECT * FROM users;

This very basic SQL command will retrieve
every column of every row stored within
that table.

continues on next page

®@0e Terminal
mysgl> SELECT * FROM users; 5
| user_id | first_name | last_name | email poss | registration_date |
1 | Larry UL lman emal l@examp le. com eT27d14640e12436e809a726daSh2f 11465381026 | 2B867-A9-22
2 Zoe |zabella email2@example.cam 6b793calc216535bad5c1 fbd1399ce729234b4eS 28A7-89-22
3 | John Lennon johr@beat les. com 2058435bE{512f60986dbT191060256fbTed36F1 | 2607-09-22
4 | Paul HeCartney | paul®beat les.com Gael6792c5A205b47dal8Acef456e50a7d65e262 | 2BAT-A9-22
5 | George Harrison george@beat les.com 1af17e73721dbefc48B] 1bE2ed4bblaTdbe3ce2d | 2887-89-22
6 | Ringo Starr ringo@beat les. com 528173691bcf69d508d923a2dbebetfaSbefbdz2 | 26867-09-22
T | David Jones davey@monkees. com ec2i244edB]3Tef 727653267 f1TedbcTebb2bA19Y | 2BA7-A9-22
g Peter Tark peter@monkees. com bEfebcBch4afESecbf2TE53f6473aetaedl fd382 28A7-89-22
9 | Micky Dolenz micky@monkees. com B5999b6e3c92B86ef135c03a921294bat+1 7dbeO?3 | 2B887-09-22
168 | Mike Hesmith mike@monkees. com GA4a17T5e99850bebl f26A5eAcc22211ec58chib | 266T-A9-22
11| David Sedaris david@authors. com 154eT460e9624210402eeb2c1509 1508601 1872 | 2B87-09-22
12 | Hick Hornby nick@authors. com 615112d7b9d7cd690d4781015c2aba5blaez@7cl | 26867-09-22
13 | Melissa Bank me | i sso@aut hors. com 15acA7956420dd34Tch f24hB6G40 07947 fAITA1 | 2BAT-A9-22
14 | Toni Marrison toni@authors. com ce3a791858796241762chlechbBobeeThilefTdfS | 26867-09-22
15 | Jonathan Franzen jonathan@authors.com | c969581aBa7dof790f+b520225f34fd900B9cEET | 2007-09-22
16 | Dan Delillo don@authors. com A1aGffOal1b326afd3eSaf fehatccle530cdc45S | 266T-A9-22
17 | Graham Greene graham@authors.com Tocléeclfobedciec9979825c310ef63febblbb3 | 2867-69-22
18 | Michael Chabon michae l@authors. com bd58ec413197c3393077041 0abdbd2dbTT20ded] | 2B07-89-22
19 | Richard Broutigan | richard@outhors.com blfE414ARSCc218fb53b661 f1Th4f671bocecendd | 2BA7-A9-22
28 | FAussell Banks russel (@authors. com 6bctA56557e33f1e269678ab578d362f5b3c1bE | 26867-09-22
21 Homer Simpson homer@simpson. com S4aBb2dcbeon944987d29384+05 TAS02344b 3647 2667-89-22
22 | Marge Simpson marge@simpson. com ceadbe7h57elGidealete fARA4E0feATI0ACAC | 2BAT-A9-22
23 Bart Simpson bart@simpson.com 732657 74abd1828ediefB6afcSfalfIaTccbbbaa 28A7-89-22
24 Li=a Simpson lisa@simpson. com aB9bb16971ecBTo9dff f7OcEEEfEA4e2B0c%e2Th 2667-89-22
25 | Maggie Simpson maggie@simpson. com Bed735Ab305ceced1d4751b828d16162be125db | 2BA7-A9-22
26 Abe Simpson abe@simpson.com 6591527c8e3dt624edfcleed24f31 fa389fdafbt | 2887-89-22
26 rows in set (B.81 sec) al
¥
mysal> [l

Figure 5.11 The SELECT * FROM tablename query returns every column for every record stored in the table.

131

viv@g SNI1D313S



SELECTING DATA

Chapter 5

2. Retrieve just the first and last names - MySQL Command Line Clent -[E[]
from users (Figure 5_12). B6 rows in set 0.8 sec) =
mysql; %EBECT first_name, last_nane
SELECT first_name, last_name +:E§E}E?E§E§;
Larey 11lnan
FROM users; $ofn Snen
Gorae oreison’
Instead of showing the data from every Hingo Sears
. eter ork
column in the users table, you can use e esnich
the SELECT statement to limit the results Nk e ornhy
Toni orrison
to only the fields you need. on e | Beitite
raham reene
. iehad raneigan
v/ Tips TS
P
o inhcon
B In phpMyAdmin, the Browse tab runs sdic mwn
a simple SELECT query. bo vowo in sot <B-88 soo>
mysql> _ -
; o

B You can actually use SELECT without
naming tables or columns. For example, Figure 5.12 Only two of the

P columns for every record in the
SELECT NOWOY; (Flgure 5.13). table are returned by this query.

B The order in which you list columns in
your SELECT statement dictates the order Figure 5.13 M o
: . . any querie
in which the values are presented (com- can be run without

pare Figure 5.12 with Figure 5.14). specifying a database or

) ) ) . MySQL Command Line ... !Eu table. ThiS query SeleCtS
B With SELECT queries, you can even retrieve hysql> SELECT N = the result of calling the

the same column multiple times, a fea- o NOW() function, which

ture that enables you to manipulate the i row in st <2.68 son) returns the current date
; ; ; hysql> = and time (according to
columns data in many different ways. ;

] MysQD).

= MySQL Command Line Client IEH
mysql> SELECT last_name, first_name .
—> FROM users;
PRt ——
i last_name i first_name i
b e e
1lman Larry
sahella oe
ohn
McCartney aul
arrison eorge
tare ingo
Jones avid
Tork eter
Dolenz icky
Nesmith ike
edaris David
ornby Nick
ank Melissa
lorrison Teni
ranzen Jonathan
elillo on
reene Grahan
hahon ichael
paut igan ichard
anks ussell
impson omer
impson arge
impson art
impson iza
impson aggie
impson be
i
26 rous in set (0.00 sec>
mysql> =
4 AP

Figure 5.14 If a SELECT query
specifies the columns to be
returned, they’ll be displayed in
that order.

132



Introduction to SQL

Table 5.1 These MySQL operators are frequently (but
not exclusively) used with WHERE expressions.

MySQL Operators

OPERATOR MEANING

= Equals

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

1= (also <>) Not equal to

IS NOT NULL Has a value

IS NULL Does not have a value

BETWEEN Within a range

NOT BETWEEN Outside of a range

N Found within a list of values

OR (also I1) Where one of two conditionals is true
AND (also &&) |Where both conditionals are true
NOT (also !) Where the condition is not true

Using Conditionals

The SELECT query as used thus far will always
retrieve every record from a table. But often
you'll want to limit what rows are returned,
based upon certain criteria. This can be
accomplished by adding conditionals to
SELECT queries. These conditionals use the
SQL term WHERE and are written much as
youd write a conditional in PHP.

SELECT which_columns FROM which_table
» WHERE condition(s)

Table 5.1 lists the most common operators
you would use within a conditional. For
example, a simple equality check:

SELECT name FROM people WHERE
birth_date = '2008-01-26'
The operators can be used together, along

with parentheses, to create more complex
expressions:

SELECT * FROM items WHERE

(price BETWEEN 10.00 AND 20.0@) AND
(quantity > @)

SELECT * FROM cities WHERE

(zip_code = 90210) OR (zip_code = 90211)

To demonstrate using conditionals, let’s run
some more SELECT queries on the sitename
database. The examples that follow will be
just a few of the nearly limitless possibilities.
Over the course of this chapter and the
entire book you will see how conditionals
are used in all types of queries.

133

STVNOILIANO) 9NISN



UsING CONDITIONALS

Chapter 5

To use conditionals:

1

. Select all of the users whose last name is

Simpson (Figure 5.15).
SELECT * FROM users

a WHERE. The reason for this is that the
columns listed after SELECT dictate only
what columns to return and the columns
listed in a WHERE dictate which rows

to return.

WHERE last_name = *Simpson’; 3. Select every column from every record in
This simple query returns every column the users table that does not have an
of every row whose last_name value is email address (Figure 5.17).
Simpson. SELECT * FROM users
2. Select just the first names of users whose WHERE email IS NULL;
last name is Simpson (Figure 5.16). The IS NULL conditional is the same as
SELECT first_name FROM users saying does not have a value. Keep in
WHERE last_name = 'Simpson'; mind that an empty string is different
) ) than NULL and therefore would not match

Here only one column (first_name) is being . .

/ this condition. Such a case would, how-
returned for each row. Although it may ever match
seem strange, you do not have to select ' .
a column on which you are performing SELECT * FROM users WHERE email="";

@00 Terminal

mysql> SELECT * FRON wsers

-» HHERE last_name = 'Simpson’;

uzer_id | first_name | last_name | email

pass | registration_date |
| 21 | Homer | Simpson | homer@simpson.com | StaBbZdcbcSa9449A7d293A44A5TAS52344b3647 | 2087-89-22 13:16:59 |
| 22 | Marge | Simpson | marge@simpson.com | ceaSbe?hSTelBddeafietc{ABA4A0fedT30REcACc | 20B7-B9-22 13:1A:59 |
| 23 | Bart | Simpson | bart@simpson.com | 73265774obd1B2Gedfie fRGafcSfadfdatechbfon | 2AB7-B9-22 13:1A:59 |
| 24 | Lisa | Simpson | liso@simpson.com | 0B9bblGAT1ecB?SOdf{f75cAEEfRA4+205c9:27h | 2087-89-22 13:16:50 |
| 25 | Maggie | Simpson | moggiemsimpson.com | BedTISEbIVIcecedld4TS1bA2Ed16162hel23edb | 2BET-B-22 13:16:50 |
| 26 | Abe | Simpson | abe@simpson.com | 6591627cEedd4624ebicles324f3l faddtfdafbt | 20B7-89-22 13:16:59 |

6 rows in set (8,88 sec)

mysqgl > I

-

Figure 5.15 All of the Simpsons who have registered.

806

Terminal

mysql> SELECT first_nome FROM users =]

6

mysal> ]

-» WHERE last_name = 'Simpson’;

Figure 5.16 Just
the first names
of all of the
Simpsons who

™
a
5

rows in set (0.88 sec)

|
|
|
|
|
|
|
|
|
|
|
i
PRI = ]

have registered.

we. MySOL Command Line Client HEH

ysgl>

ysgl> SELECT * FROM users
—> WHERE email IS NULL;
mpty set <B.82 sec)

Figure 5.17 No records
are returned by this
query because the
email column cannot
have a NULL value. So
this query did work; it
Jj just had no matching
t records.

134



Introduction to SQL

#- MySQL Command Line Client

I user_id | first_name | last_name |

1 | Larry i Ullman

i wrow in set (B.88 sec)

mysql> .
4 »

mysgl> SELECT user_id. first_name, last_name -
—> FROM

users
—> WHERE pass = SHAL<'mypass’'>;

A

Figure 5.18 Conditionals can make use of
functions, like SHAL() here.

@06 Terminal
mysql> SELECT first_name, last_name 5
—» FROMN users HHERE r
-: (user_id < 18) OR {(user_id > 28);
| first_name | last_name |
Larry Ullman
Zoe Isabella
John Lennon
Faul HeCartney
George Harrison
Ringo Starr
David Jones
Peter Tork
Micky Dolenz
Homer Simpson
Marge Simpsan
Bart Simpson
Lisa Simpson
Maggie Simpsan
Abe Simpson
15 rows in set (B.81 sec) @
v
mysqle? I 4

Figure 5.19 This query uses two
conditions and the OR operator.

4, Select the user ID, first name, and last

name of all records in which the pass-
word is mypass (Figure 5.18).

SELECT user_id, first_name, last_name
FROM users
WHERE pass = SHA1('mypass');

Since the stored passwords were encrypted
with the SHA1() function, you can match
it by using that same encryption function
in a conditional. SHA1() is case-sensitive,
so this query will work only if the pass-

words (stored vs. queried) match exactly.

. Select the user names whose user ID is less

than 10 or greater than 20 (Figure 5.19).
SELECT first_name, last_name

FROM users WHERE

(user_id < 10) OR (user_id > 20);
This same query could also be written as
SELECT first_name, last_name FROM
users WHERE user_id

NOT BETWEEN 10 and 20;

or even

SELECT first_name, last_name FROM
users WHERE user_id NOT IN

(10, 11, 12, 13, 14, 15, 16, 17, 18,
— 19, 20);

v Tip

B You can perform mathematical calculations

within your queries using the mathematic
addition (+), subtraction (-), multiplica-
tion (*), and division (/) characters.

135

STVNOILIANO) 9NISN



UsING LIKE AND NOT LIKE

Chapter 5

Using LIKE and NOT LIKE

Using numbers, dates, and NULLs in condi-
tionals is a straightforward process, but
strings can be trickier. You can check for
string equality with a query such as

SELECT * FROM users
WHERE last_name = 'Simpson'

However, comparing strings in a more liberal
manner requires extra operators and charac-
ters. If, for example, you wanted to match

a persons last name that could be Smith or
Smiths or Smithson, you would need a more
flexible conditional. This is where the LIKE
and NOT LIKE terms come in. These are
used—primarily with strings—in conjunc-
tion with two wildcard characters: the
underscore (_), which matches a single char-
acter, and the percentage sign (%), which
matches zero or more characters. In the last-
name example, the query would be

SELECT * FROM users

WHERE last_name LIKE 'Smith%’

This query will return all rows whose
last_name value begins with Smith. Because
it’s a case-insensitive search by default, it

would also apply to names that begin
with smith.

To use LIKE:

1. Select all of the records in which the last
name starts with Bank (Figure 5.20).

SELECT * FROM users
WHERE last_name LIKE 'Bank%';

®eceé

mysql> SELECT * FROM users
-» HHERE lost_name LIKE ‘Bank%';

| user—id | first_name | last_name | email | pass

| registration_date |

| 13 | Melissa | Bank
| L] ‘ Russell | Banks

| melisso@authors.con | 15act793642add347ch 24bABA4bITI4T(5I7A0] | 2007-09-22 13:16:59 |
| russel [Bauthors, com | 6bc4856557e33f1e2B9670ab S THed362f6b3c1bE ‘ 2887-89-22 13:16:39 ‘

2 rows in set (0.88 sec)

mgsqt)l

IE

Figure 5.20 The LIKE SQL term adds flexibility to your conditionals. This query matches any record where the

last name value begins with Bank.

136



Introduction to SQL

n-. MySOL Command Line Client

mysgl> SELECT first_name. last_name
—>» FROM users WHERE
—2> email MOT LIKE ‘xBPauthors.com’;

i First_name | last_name |

i Larry 1 Ullman i

i Zoe i Isabella |

i John i Lennon i

i Paul i McCartney |

| George i Harrison |

i Ringo I Stare i

i Dawid i Jones i

i Peter i Tork i

i Micky i Dolenz H

I Mike i Nesmith i

i Homer I Simpson i

i Marge i Simpson i

| Bart I Simpson i

i Lisa i Simpzon H

| Maggie i Simpson i

i Abe ! Simpson i

16 rows in set (B.PA sec>

mysgl> _

‘ | »

Figure 5.21 A NOT LIKE conditional returns records
based upon what a value does not contain.

2.

Select the name for every record whose
email address is not of the form some-
thing@authors.com (Figure 5.21).

SELECT first_name, last_name
FROM users WHERE
email NOT LIKE '%@authors.com';

To rule out the presence of values in a
string, use NOT LIKE with the wildcard.

v Tips

Queries with a LIKE conditional are gen-
erally slower because they can't take
advantage of indexes, so use this format
only if you absolutely have to.

The wildcard characters can be used
at the front and/or back of a string in
your queries.

SELECT * FROM users
WHERE user_name LIKE '_smith%'

Although LIKE and NOT LIKE are normally
used with strings, they can also be applied
to numeric columns.

To use either the literal underscore or the
percentage sign in a LIKE or NOT LIKE
query, you will need to escape it (by pre-
ceding the character with a backslash) so
that it is not confused with a wildcard.

The underscore can be used in combina-
tion with itself; as an example, LIKE '__"
would find any two-letter combination.

In the next chapter you'll learn about
FULLTEXT searches, which can be better
than LIKE searches.

137

T LON anv 3|7 SNIsn



SORTING QUERY RESULTS

Chapter 5

Sorting Query Results

By default, a SELECT query’s results will be
returned in a meaningless order. To sort
them in a meaningful way, use an ORDER
BY clause.

SELECT * FROM tablename ORDER BY column
SELECT * FROM orders ORDER BY total

The default order when using ORDER BY is
ascending (abbreviated ASC), meaning that
numbers increase from small to large, dates go
from older to most recent, and text is sorted
alphabetically. You can reverse this by speci-
tying a descending order (abbreviated DESC).

SELECT * FROM tablename
ORDER BY column DESC

You can even order the returned values by
multiple columns:

SELECT * FROM tablename
ORDER BY columnl, column2

You can, and frequently will, use ORDER BY
with WHERE or other clauses. When doing so,
place the ORDER BY after the conditions:

SELECT * FROM tablename WHERE conditions
ORDER BY column

To sort data:

1. Select all of the users in alphabetical
order by last name (Figure 5.22).
SELECT first_name, last_name FROM
users ORDER BY last_name;

If you compare these results with those
in Figure 5.12, you'll see the benefits of
using ORDER BY.

re MySQL Command Line Client - IDI x

-

mysql> SELECT first_name,. last_name FROM —
—» users ORDER BY last_name;

i first_name | last_name |

i Melissa i Bank

i Russell i Banks

! Richard | Brautigan |

i Michael i Chabon

i Don i DeLillo

i Micky i Dolenz

i Jonathan i Franzen

i Geraham i Greene

| George | Harrison

i Hick i Hornhy

i Zoe i Isabella

i David i Jones

i John ! Lennon

i Paul i McCartney |

! Toni ! Morrison

i Mike i Nesmith

! Dawid ! Sedaris

i Bart i Simpson

i Lisa i Simpson

i Maggie i Simpson

i Marge i Simpson

i Homer i Simpson

i Ahe i Simpson

! Ringo I Starr

i Peter i Tork

| Larry I Ullman

26 rows in set (@.A1 sec

mysql>y _ et

4 » v

Figure 5.22 The records in alphabetical
order by last name.

re MySOL Command Line Client !EB
mysql> SELECT first_name, last_name FROM ‘I
—»> users ORDER BY last_name ASC.
—> first_name ASC;
i first_name | last_name |
i Melissa i Bank
i Russell i Banks
! Richard | Brautigan |
i Michael i Chabon '
i Don i DeLillo
i Micky i Dolenz
i Jonathan i Franzen
i Geraham i Greene
| George | Harrison
i Hick i Hornhy
i Zoe i Isabella
i David i Jones
i John ! Lennon
i Paul i McCartney |
! Toni ! Morrison
i Mike i Nesmith
! Dawid ! Sedaris
i Abe i Simpson
I Bart i Simpson
i Homepr i Simpson
i Lisa i Simpson
i Maggie i Simpson
i Marge i Simpson
! Ringo I Starr
i Peter i Tork
| Larry I Ullman
26 rows in set (A.AA@ sec
mysgl> 4
4 » v

Figure 5.23 The records in alphabetical
order, first by last name, and then by first
name within that.

138




Introduction to SQL

2. Display all of the users in alphabetical

order by last name and then first name
(Figure 5.23).

SELECT first_name, last_name FROM
users ORDER BY last_name ASC,
first_name ASC;

In this query, the effect would be that
every row is returned, first ordered by the
last_name, and then by first_name with-
in the last_names. The effect is most evi-
dent among the Simpsons.

3. Show all of the non-Simpson users by

date registered (Figure 5.24).
SELECT * FROM users
WHERE last_name !=
ORDER BY registration_date DESC;

'Simpson’

You can use an ORDER BY on any column
type, including numbers and dates. The
clause can also be used in a query with a
conditional, placing the ORDER BY after
the WHERE.

Tips

Because MySQL works naturally with any

number of languages, the ORDER BY will
be based upon the collation being used

(see Chapter 14).

B If the column that you choose to sort

on contains NULL values, those will

appear first, both in ascending and

descending order.

@06 Terminal
mysql> SELECT * FROM users 5
-» HHERE last_name != 'Simpson’ r
-» ORDER BY registration_date DESC;
user_id | first_name | last_name | email | pass | registration_date |
28 | Russell Banks russel |@authors.cam 6bc4B56557e3311e2096T00b5TEed362 fBb3c1bE | 20B7-69-22 13:16:59
12 | Hick Hornby nick@authors.com 815f12d7b9d7cdo908d4781015c2aba0bIae2BTcl | 20B7-B9-22 13:16:59
13 | Melissa Bank melissofauthors. com 15aci795642add347ch {24b8864bI7I47 fASTADL | 2BAT-BO-22 13:16:59
14 | Toni Morrison toni@authors.com celaT9185879624f T62cHlecbfabeetb3ledvdfS | 20B7-69-22 13:16:59
13 | Jonathan Franzen jonathan@authors.com | c969581aBa7d6f 796 f4b020225f34fd90aBcBOf | 2BET-B9-22 13:16:59
16 | Don DeLillo don@aut hors. com Bla3fflal1b326afdieSaf febatece539c4c455 | 2AAT-BI-22 13:16:59
17 | Graham Greene groham@authors. com TclBeclfcbefciecd979Af25c31Bef63febblbbl | 2AB7-B9-22 13:16:59
18 | Michael Chabon michae [@quthors.com bd5B8cct]3f97c339307 7641 0a6dbd2d67720dc4]l | 28B7-B9-22 13:16:59
19 | Richard Broutigan | richard@authors.com b1f8414AA5c216fbS3bAG1f1Th4f67Ibooeceadd | 2ABT-B0-22 15:16:59
11 | David Sedaris david@authors. com fSteT4iae9624218402eeb2c 150915860l 182172 | 20B7-69-22 13:16:59
18 | Nike Hesmith mikeEmonkees.com 88401 773e99800beb1 f2680ebcc22211ccd8cblb | 2BB7-B9-22 13:16:59
9 | Micky Dolenz mickygZmonkees. com B599b6e3c92A6e f 1350830021 294ba641 7dbe673 | 2ABT-B0-22 15:16:59
G Peter Tork peter@monkees. com bGfEbcBchb46f68echf27A53 847 3aetaed] 4302 2887-89-22 13:16:59
7 | David Jones davey@monkees.com ec23244etB137ef72763267f1 TedocTebb2bB19f | 2BET-B9-22 13:16:59
3 | John Lennon john@beat les.com 205B435bAf512166958dbT191 060258 fh7e3361f | 2AB7-B9-22 13:16:12
4 Paul McCartney paul@beat les. com Bael6792c502a5b47dal508ce8456e50eTdB5e262 2887-89-22 13:16:12
5 | George Harrison george@beat les.com lafl7e73721dbeldctBB] 1b82edtbblatdbedce2d | 20E7-B9-22 13:16:12
& | Ringo Starr ringo@beat les.com 52Af73601bef89d5AGd92302dbelet faS8afh522 | 2ABT-A0-22 15:16:12
2 Zoe |sabella email2@example. com 6b793calc216835ba55c1 fbd1 3990729 34b%es 2887-89-22 13:15:85
1 Larry Ullman enai l@example. com e727d1404eel 24360e099a720da0b211d8361026 2867-0B9-22 13:14:36
20 rows in set (B.81 sec) @
v
mysgl > I

Figure 5.24 All of the users not named Simpson, displayed by date registered, with the most recent listed first.

139

S1T1NS3IY AYINY INILIOS



LIMITING QUERY RESULTS

Chapter 5

Limiting Query Results

Another SQL clause that can be added to
most queries is LIMIT. In a SELECT query,
WHERE dictates which records to return, and
ORDER BY decides how those records are
sorted, but LIMIT states how many records
to return. It is used like so:

SELECT * FROM tablename LIMIT x

In such queries, only the initial x records
from the query result will be returned. To
return only three matching records, use:

SELECT * FROM tablename LIMIT 3

Using this format
SELECT * FROM tablename LIMIT x, y

you can have y records returned, starting
at x. To have records 11 through 20 returned,
you would write

SELECT * FROM tablename LIMIT 10, 10

Like arrays in PHP, result sets begin at 0 when
it comes to LIMITs, so 10 is the 11th record.

You can use LIMIT with WHERE and/or ORDER
BY clauses, always placing LIMIT last.

SELECT which_columns FROM tablename WHERE
conditions ORDER BY column LIMIT x

To limit the amount of data returned:

1. Select the last five registered users
(Figure 5.25).
SELECT first_name, last_name
FROM users ORDER BY
registration_date DESC LIMIT 5;

To return the latest of anything, sort the
data by date, in descending order. Then,
to see just the most recent five, add
LIMIT 5 to the query.

w~ MySQL Command Line Client

myzgl> SELECT first_name. last_name
—» FROM users ORDER BY
—» registration_date DESC LIMIT 5;

I first_name ! last_name |
i Abe i Simpson i
i Jonathan i Franzen i
i Don ! DeLillo i
i Graham i Greene i
i Michael i Chabon i

L rous in set ¢B.88 sec)

mysgl> i
4 | v

Figure 5.25 Using the LIMIT clause, a query can return
a specific number of records.

140



Introduction to SQL

® 00 Terminal

mysql> SELECT first_name, laost_name 5
-» FROM users ORDER BY r
-» registration_date ASC LIMIT 1, 1;

tom tomm +

| first_nome | lost_nome |

tom tomm +

| Zoe | Isabella |

tom tomm + w

1 row in set (@81 sec) 1

v
mysqgl> I :

Figure 5.26 Thanks to the LIMIT clause, a query can
even return records from the middle of a group, using
the LIMIT x, y format.

2. Select the second person to register
(Figure 5.26).

SELECT first_name, last_name
FROM users ORDER BY
registration_date ASC LIMIT 1, 1;

This may look strange, but it's just a
good application of the information
learned so far. First, order all of the
records by registration_date ascending,
so the first people to register would be
returned first. Then, limit the returned
results to start at 1 (which is the second
row) and to return just one record.

v Tips

B The LIMIT x, y clause is most frequently
used when paginating query results
(showing them in blocks over multiple
pages). You'll see this in Chapter 9,
“Common Programming Techniques.”

B A LIMIT clause does not improve the exe-
cution speed of a query, since MySQL
still has to assemble the entire result and
then truncate the list. But a LIMIT clause
will minimize the amount of data to han-
dle when it comes to the mysql client or
your PHP scripts.

B The LIMIT term is not part of the SQL
standard and is therefore (sadly) not
available on all databases.

B The LIMIT clause can be used with most
types of queries, not just SELECTs.

141

S1TINS3IY AYINY ONILIWIT



UPDATING DATA

Chapter 5

Updating Data

Once tables contain some data, you have the
potential need to edit those existing records.
This might be necessary if information was
entered incorrectly or if the data changes
(such as a last name or email address). The
syntax for updating records is

UPDATE tablename SET column=value

You can alter multiple columns at a single time,
separating each from the next by a comma.
UPDATE tablename SET columnl=valueA,
column5=valueB..

You will almost always want to use a WHERE
clause to specify what rows should be updat-

ed; otherwise, the change would be applied
to every record.

UPDATE tablename SET columnZ=value
WHERE column5=value

Updates, along with deletions, are one of the
most important reasons to use a primary key.
This value—which should never change—
can be a reference point in WHERE clauses,
even if every other field needs to be altered.

To update a record:

1. Find the primary key for the record to be
updated (Figure 5.27).

SELECT user_id FROM users
WHERE first_name = 'Michael’
AND last_name="Chabon';

In this example, I'll change the email for
this author’s record. To do so, I must first
find that record’s primary key, which this
query accomplishes.

2. Update the record (Figure 5.28).
UPDATE users
SET email="mike@authors.com’
WHERE user_id = 18;
To change the email address, I use an
UPDATE query, using the primary key
(user_id) to specify to which record the
update should apply. MySQL will report

upon the success of the query and how
many rows were affected.

we MYSOL Command Line Client !EE
mysql) SELECT user_id FROH users AI
> WHE *Michael’

RE first_name
—» AND last_name—’Chahnn H

1 row in set (B.88 sec>

nusgl> _ i
4 » A

Figure 5.27 Before updating a record, determine
which primary key to use in the UPDATE’s WHERE clause.

®@00 Terminal
mysql> UPODATE wsers 5
-» SET email="mike@authors.com’ r

- WHERE user—_id = 18;
Query 0K, 1 row affected (B.85 sec)
Rows matched: 1 Changed: 1 Harnings: @

e

mysgl > I

Figure 5.28 This query altered the value of one
column in just one row.

142



Introduction to SQL

3. Confirm that the change was made
(Figure 5.29).

SELECT * FROM users
WHERE user_id=18;

Although MySQL already indicated the
update was successful (see Figure 5.28), it
can't hurt to select the record again to
confirm that the proper changes occurred.

v Tips

B Be extra certain to use a WHERE conditional
whenever you use UPDATE unless you
want the changes to affect every row.

B If you run an update query that doesn’t
actually change any values (like UPDATE
users SET first_name="mike' WHERE
first_name="mike'), you won't see any
errors but no rows will be affected.

More recent versions of MySQL would
show that X rows matched the query but
that 0 rows were changed.

B To protect yourself against accidentally

updating too many rows, apply a LIMIT
clause to your UPDATEs:

UPDATE users SET
email="mike@authors.com'

WHERE user_id = 18 LIMIT 1

You should never perform an UPDATE on a
primary-key column, because this value
should never change. Altering the value
of a primary key could have serious
repercussions.

To update a record in phpMyAdmin, you
can run an UPDATE query using the SQL
window or tab. Alternatively, run a SELECT
query to find the record you want to
update, and then click the pencil next to
the record (Figure 5.30). This will bring
up a form similar to Figure 5.10, where
you can edit the record’s current values.

®06 Terminal

mysql> SELECT * FROM users
-» WHERE user_id=1f;

| user_id | first_name | lost_name | email | pass

| registration_date |

| 18 | Michael | Chaban | mike@outhors.com | bdS8cctl3f7c3393077641606dbd2d67720det] | 28A7-89-22 13:16:59 |

1 row in set (B.A1 sec)

LIELTR |

I

Figure 5.29 As a final step, you can confirm the update by selecting the record again.

=TT ,' user_id first_ name last name email
|7 2= 1 Larry Ullman email@example.com
r 2 X 2 Zoe Isabella email2@example.com
|| = 3 John Lennon john@beatles.com
r & X 4 Paul McCartney  paul@beatles.com

Figure 5.30 A partial view of browsing records in phpMyAdmin. Click the

pencil to edit a record; click the X to delete it.

143

viv@ ONILVad()



DELETING DATA

Chapter 5

Deleting Data

Along with updating existing records, another
step you might need to take is to entirely
remove a record from the database. To do
this, you use the DELETE command.

DELETE FROM tablename

That command as written will delete every
record in a table, making it empty again.
Once you have deleted a record, there is no
way of retrieving it.

In most cases you'll want to delete individ-
ual rows, not all of them. To do so, use a
WHERE clause

DELETE FROM tablename WHERE condition

To delete a record:

1. Find the primary key for the record to be
deleted (Figure 5.31).

SELECT user_id FROM users
WHERE first_name='Peter'
AND last_name='Tork";

Just as in the UPDATE example, I first need
to determine which primary key to use
for the delete.

mysgl>» SELECT user_id FROM users —
—» WHERE first_name='Peter’

i row in set {B.01 sec>

mysgl> _ w2
4 4 &

Figure 5.31 The user_id will be used to
refer to this record in a DELETE query.

eooe
mysql> SELECT # FRON users 5
-> WHERE user—id = &; "
| user_id | first_nome | last_name | email | pass | registration_date |
| 8 | Peter | Tork | peter@monkees.com | bBf6bcBoo46{68ech 276531647 30etaabl 1d302 | 2087-A9-22 13:16:59 |
1 row in set (B.98 sec) @
]
mysql> I Y

Figure 5.32 To preview the effect of a DELETE query, first run a syntactically similar SELECT query.

144



Introduction to SQL

2. Preview what will happen when the
delete is made (Figure 5.32).

SELECT * FROM users
WHERE user_id = 8;

A really good trick for safeguarding against
errant deletions is to first run the query
using SELECT * instead of DELETE. The
results of this query will represent which
row(s) will be affected by the deletion.

3. Delete the record (Figure 5.33).
DELETE FROM users
WHERE user_id = 8 LIMIT 1;

As with the update, MySQL will report
on the successful execution of the query
and how many rows were affected. At
this point, there is no way of reinstating
the deleted records unless you backed up
the database beforehand.

Even though the SELECT query (Step 2
and Figure 5.32) only returned the one
row, just to be extra careful, a LIMIT 1
clause is added to the DELETE query.

#+. MySOL Command Line Client

yzql> DELETE FROM users
—» WHERE user_id = 8 LIMIT 1;
uwery OK. 1 row affected (A.A3 sec)

ysgl>
1

Figure 5.33 Deleting one record from the
table.

4. Confirm that the change was made
(Figure 5.34).

SELECT user_id, first_name, last_name
FROM users ORDER BY user_id ASC;

You could also confirm the change by
running the query in Step 1.

v Tips

B The preferred way to empty a table is to
use TRUNCATE:
TRUNCATE TABLE tablename

B To delete all of the data in a table, as well
as the table itself, use DROP TABLE:
DROP TABLE tablename

B To delete an entire database, including
every table therein and all of its data, use

DROP DATABASE databasename

. MySQL Command Line Client = |EI| x
mysgl> SELECT wser_id, first_name, last_name .
—» FROM users ORDER BY user_id ASC; b

} user_id | first_name | last_name |

1 | Larry i Ullman

2 | Zoe i Isabella

3 1 John i Lennon

4 | Paul | McCartney |

5 | George i Harpison

6 | Ringo I Starr

7 1 David i Jones

92 | Micky | Dolenz

18 | Mike i Hesmith

11 | Dawid | Sedaris

12 | Hick i Hornhy

13 | Melissa i Bank

14 | Toni i Morrison

15 ! Jonathan ! Franzen

16 i Don i DeLillo

1?7 ! Graham ! Greene

18 i Michael i Chabon

19 | Richard ! Brautigan |

28 | Russell i Banks i

21 | Homer i Simpson

22 | Marge i Simpson

23 | Bart i Simpson

24 | Lisa I Simpson

25 | Maggie i Simpson

26 | Abe I Simpson
25 rows in set (B.80 sec>
mysql> _ i
1 | v

Figure 5.34 The record whose user_id was 8 is
no longer part of this table.

145

viv@ 9NI1313Q



USING FUNCTIONS

Chapter 5

Using Functions

To wrap up this chapter, you'll learn about a
number of functions that you can use in
your MySQL queries. You have already seen
two—NOW() and SHA1()—but those are just
the tip of the iceberg. Most of the functions
you'll see here are used with SELECT queries
to format and alter the returned data, but
you may use MySQL functions other types
of queries as well.

To apply a function to a column’s values, the
query would look like

SELECT FUNCTION(column) FROM tablename

To apply a function to one columns values
while also selecting some other columns,
you can write a query like either of these:

& SELECT *, FUNCTION(column) FROM
» tablename

& SELECT columnl, FUNCTION(column2),
— column3 FROM tablename

Before getting to the actual functions, make
note of a couple more things. First, functions
are often applied to stored data (i.e., columns)
but can also be applied to literal values. Either
of these applications of the UPPER() function
(which capitalizes a string) is valid:

SELECT UPPER(first_name) FROM users
SELECT UPPER('this string')

Second, while the function names them-
selves are case-insensitive, I will continue to
write them in an all-capitalized format, to
help distinguish them from table and col-
umn names (as [ also capitalize SQL terms).
Third, an important rule with functions is
that you cannot have spaces between the
function name and the opening parenthesis
in MySQL, although spaces within the
parentheses are acceptable. And finally,
when using functions to format returned
data, you'll often want to make uses of aliases,
a concept discussed in the sidebar.

Aliases

An alias is merely a symbolic renaming
of a thing in a query. Normally applied
to tables, columns, or function calls,
aliases provide a shortcut for referring to
something. Aliases are created using the
term AS:

SELECT registration_date AS reg
FROM users

Aliases are case-sensitive strings composed
of numbers, letters, and the underscore
but are normally kept to a very short length.
As you'll see in the following examples,
aliases are often reflected in the headings
of the returned results. For the preceding
sample, the query results returned will
contain one column of data, named reg.

If you've defined an alias on a table or a
column, the entire query must consis-
tently use that same alias rather than the
original name. For example,

SELECT first_name AS name FROM users
» WHERE name="'Sam'

This differs from standard SQL, which
doesn't support the use of aliases in WHERE
conditionals.

146



Introduction to SQL

Text functions While you can—and normally will—apply
CONCAT(Q) to columns, you can also incorpo-

rate strings, entered within quotation marks.

For example, to format a persons name as
most common of the functions in this cate- First<SPACE>Last, you would use

gory are listed in Table 5.2.

The first group of functions to demonstrate
are those meant for manipulating text. The

SELECT CONCAT(first_name, ' ', last_name)
CONCATQ), perhaps the most useful of the

! ) } FROM users
text functions, deserves special attention.
The CONCAT() function accomplishes con- Because concatenation normally returns val-
catenation, for which PHP uses the period ues in a new format, it’s an excellent time to
(see Chapter 1, “Introduction to PHP”). The use an alias (see the sidebar):
syntax for concatenation requires you to SELECT CONCAT(first_name, ' ', last_name)

place, within parentheses, the various values
you want assembled, in order and separated
by commas:

SELECT CONCAT(t1, t2) FROM tablename

AS Name FROM users

Table 5.2 Some of MySQL’s functions for working with text. As with most functions, these can be applied to either
columns or literal values (both represented by t, t1, t2, etc).

Text Functions

FuncTiOoN UsAGE RETURNS

CONCATO) CONCAT(t1, t2, ...) A new string of the form t1t2.

CONCAT_WSO) CONCAT(S, t1,t2, ...) A new string of the form t15t25...

LENGTHO LENGTH(t) The number of characters in t.

LEFTO LEFT(t, y) The leftmost y characters from t.

RIGHT() RIGHT(t, x) The rightmost x characters from t.

TRIMO TRIM(t) t with excess spaces from the beginning and end removed.
UPPERQ) UPPER(t) t capitalized.

LOWERQ) LOWER(t) tin all-lowercase format.

SUBSTRING() SUBSTRING(t, x, y) y characters from t beginning with x (indexed from o).

147

SNOILONN4 ONISN



USING FUNCTIONS

Chapter 5

To format text:

1.

Concatenate the names without using an
alias (Figure 5.35).

SELECT CONCAT(last_name, ', ',
— first_name) FROM users;

This query will demonstrate two things.
First, the users’ last names, a comma and
a space, plus their first names are con-
catenated together to make one string
(in the format of Last, First). Second, as
the figure shows, if you don't use an alias,
the returned data’s column heading will
be the function call. In the mysql client
or phpMyAdmin, this is just unsightly;
when using PHP to connect to MySQL,
this will likely be a problem.

Concatenate the names while using an
alias (Figure 5.36).

SELECT CONCAT(last_name, ', ',
» first_name)

AS Name FROM users ORDER BY Name;

To use an alias, just add AS aliasname
after the item to be renamed. The alias
will be the new title for the returned
data. To make the query a little more
interesting, the same alias is also used in
the ORDER BY clause.

8ene Terminal

5
mysql> SELECT COMCAT(last_name, ', ', first_nome} FROM users; &

COMCAT{last_name, ', ', first_name)

Ullman, Larry
Isabella, Zoe
Lennon, John
MeCartney, Paul
Harrisen, George
Starr, Ringo
Jones, Daovid
Dalenz, Hicky
Nesmith, Mike
Sedaris, David
Harnby, Hick
Bank, Melissa
Morrison, Taoni
Franzen, Jonathan
DeLillo, Don
Greene, Graham
Chabon, Michael
Brautigan, Richard
Bonks, Russell
Simpson, Homer
Simpson, Marge
Simpson, Bart
Simpson, Lisa
Simpson, Maggie
Simpson, Abe

25 rows in set (B.81 sec)

y

mysal> [l

Figure 5.35 This simple concatenation returns every
registered user’s full name. Notice how the column
heading is the use of the CONCAT() function.

8ene6 Terminal

mysql> SELECT CONCAT(last_name, ', ', first_name) =
-» RS Mome FROM users ORDER BY Home; "

e +

\ Hame

T +

Bank, Melissa
Bonks, Russell
Braut igan, Richard
Chaben, Michasl
OeLillo, Don
Dalenz, Hicky
Franzen, Jonathan
Greene, Graham
Harrisen, George
Hornby, Mick
|zabella, Zoe
Jones, David
Lennon, John
MeCartney, Paul
Morrison, Toni
Nesmith, Mike
Sedaris, David
Simpson, Abe
Simpson, Bart
Simpson, Homer
Simpson, Lisa
Simpson, Maggie
Simpson, Marge
Starr, Ringo
Ullman, Larry

4mmmmmm e + u]
Y
v

25 rows in set (@.81 sec)

nysal> I

Figure 5.36 By using an alias, the returned
data is under the column heading of Name
(compare with Figure 5.35).

148




Introduction to SQL

n-. MySOL Command Line Client

myzgl> SELECT LENGIH(last_name> A% L. AI
>

—2» last_name FROM users
—» ORDER BY L DESC LIMIT i;
+

i last_name 1
b ——— +
| McCartney 1
+
1 row in set <B.B1 sec)
mysgl> _ &7
‘ | v

Figure 5.37 By using the LENGTH() function, an alias, an

ORDER BY clause, and a LIMIT clause, this query returns
the length and value of the longest stored name.

3. Find the longest last name (Figure 5.37).
SELECT LENGTH(last_name) AS L,
last_name FROM users
ORDER BY L DESC LIMIT 1;

To determine which registered user’s last
name is the longest (has the most char-
acters in it), use the LENGTH() function.
To find the name, select both the last
name value and the calculated length,
which is given an alias of L. To then find
the longest name, order all of the results
by L, in descending order, but only return
the first record.

v Tips

B A query like that in Step 3 (also Figure 5.37)
may be useful for helping to fine-tune
your column lengths once your database
has some records in it.

B MySQL has two functions for performing
regular expression searches on text:
REGEXP() and NOT REGEXP(). Chapter 13,
“Perl-Compatible Regular Expressions,”
introduces regular expressions using PHP.

B CONCATQ) has a corollary function called
CONCAT_WS(), which stands for with sepa-
rator. The syntax is CONCAT_WS(separator,
t1, t2, ..). The separator will be inserted
between each of the listed columns or
values. For example, to format a person’s
full name as First<SPACE>Middle<SPACE>
Last, you would write

SELECT CONCAT_WS(' ', first, middle,
— last) AS Name FROM tablename

CONCAT_WSQ) has an added advantage over
CONCATQ) in that it will ignore columns
with NULL values. So that query might
return Joe Banks from one record but
Jane Sojourner Adams from another.

149

SNOILONN4 ONISN



USING FUNCTIONS

Chapter 5

Numeric functions

Besides the standard math operators that
MySQL uses (for addition, subtraction, mul-
tiplication, and division), there are a couple
dozen functions for formatting and per-
forming calculations on numeric values.
Table 5.3 lists the most common of these,
some of which will be demonstrated shortly.

I want to specifically highlight three of these
functions: FORMAT(), ROUND(), and RANDQ).
The first—which is not technically number-
specific—turns any number into a more
conventionally formatted layout. For example,
if you stored the cost of a car as 20198.20,
FORMAT(car_cost, 2) would turn that num-
ber into the more common 20,198.20.

ROUNDQ) will take one value, presumably from
a column, and round that to a specified
number of decimal places. If no decimal
places are indicated, it will round the num-
ber to the nearest integer. If more decimal
places are indicated than exist in the original
number, the remaining spaces are padded
with zeros (to the right of the decimal point).

The RANDQ) function, as you might infer, is used
for returning random numbers (Figure 5.38).
SELECT RANDQ)

A further benefit to the RAND() function is

that it can be used with your queries to
return the results in a random order.

SELECT * FROM tablename ORDER BY RAND()

Table 5.3 Some of MySQL’s functions for working with
numbers. As with most functions, these can be applied
to either columns or literal values (both represented
by n, n1, n2, etc.).

Numeric Functions

Function USAGE RETURNS
ABSQ) ABS(n) The absolute value of n.
CEILING() |CEILING(n) The next-highest integer

based upon the value
of n.

FLOOR()  |FLOORCN) The integer value of n.

FORMAT() |FORMAT(n1, n2) |[n1formatted as a number
with n2 decimal places
and commas inserted
every three spaces.

MODQ) MoD(n1, n2) The remainder of dividing
n1by n2.
POWO) POW(n1, n2) n1 to the n2 power.

A random number
between o and 1.0.

ROUND()  |ROUND(n1, n2) |n1rounded to n2 decimal
places.

The square root of n.

RAND()  |RANDQ)

SQRTQ SQRT(n)

® OO Terminal

mysql> SELECT RAND(); g

8,70383727266219 |

o +
1 row in set (A.68 sec)

mysql> SELECT RAND();
+

_________________ +

| RAHDLY |

| B.54B935474407E | o Figure 5.38 The RANDQ)
1 row in set (B.88 sec) 4| function returns a

+| random number
mysql> I B

between o and 1.0.

150



Introduction to SQL

. MYSOL Command Line Client

8 cost;
+—— +

$5.637.608 1

'
i

. +

1 row in set <B.88 sec)

mysgl> _
<

| »

Al
mysql> SELECT GONCGAT<’$’, FORMAT(5639.6. 2>}
->h

4

Figure 5.39 Using an arbitrary example, this query
shows how the FORMAT() function works.

®06e Terminal

mysql> SELECT email FROM users 5
-» ORDER BY RAND() LINIT 1; r

oo +

| email |

S +

1 row in set (8.82 sec)

mysqgl> SELECT email FROM users
-» ORDER BY RANDCY LIMIT 13

+
;
.
.
i
.
i
.
i
.
i
.
i
.
i
.
4
N =)

1 row in set (8.82 sec)

mysgl> [l

Figure 5.40 Subsequent executions
of the same query return different
random results.

To use numeric functions:

1. Display a number, formatting the amount
as dollars (Figure 5.39).

SELECT CONCAT('$', FORMAT(5639.6, 2))
AS cost;

Using the FORMAT() function, as just
described, with CONCAT(), you can turn
any number into a currency format as
you might display it in a Web page.

2. Retrieve a random email address from
the table (Figure 5.40).

SELECT email FROM users
ORDER BY RAND() LIMIT 1;

What happens with this query is: All of
the email addresses are selected; the order
they are in is shuffled (ORDER BY RANDQ));
and then the first one is returned. Running
this same query multiple times will pro-
duce different random results. Notice
that you do not specify a column to
which RANDQ) is applied.

v Tips

B Along with the mathematical functions
listed here, there are several trigonometric,
exponential, and other types of numeric
functions available.

B TheMODQ function is the same as using
the percent sign:

SELECT MOD(9,2)
SELECT 9%2

It returns the remainder of a division (I
in these examples).

151

SNOILINNJ ONISN



USING FUNCTIONS

Chapter 5

Date and time functions

The date and time column types in MySQL
are particularly flexible and useful. But
because many database users are not familiar
with all of the available date and time func-
tions, these options are frequently underused.
Whether you want to make calculations based
upon a date or return only the month name
from a value, MySQL has a function for that
purpose. Table 5.4 lists most of these; see
the MySQL manual for a complete list.

MySQL supports two data types that store
both a date and a time (DATETIME and
TIMESTAMP), one type that stores just the date
(DATE), one that stores just the time (TIME),

and one that stores just a year (YEAR). Besides
allowing for different types of values, each
data type also has its own unique behaviors
(again, I'd recommend reading the MySQL
manual’s pages on this for all of the details).
But MySQL is very flexible as to which func-
tions you can use with which type. You can
apply a date function to any value that con-
tains a date (i.e., DATETIME, TIMESTAMP, and
DATE), or you can apply an hour function

to any value that contains the time (i.e.,
DATETIME, TIMESTAMP, and TIME). MySQL will
use the part of the value that it needs and
ignore the rest. What you cannot do, however,
is apply a date function to a TIME value or

a time function to a DATE or YEAR value.

Table 5.4 Some of MySQL’s functions for working with dates and times. As with most functions, these can be applied
to either columns or literal values (both represented by dt, short for datetime).

Date and Time Functions

FuncTion UsAGE

HOURQ) HOUR(dt)
MINUTEQ) MINUTE(dt)
SECONDQ) SECOND(dt)
DAYNAMEQ) DAYNAME(dt)
DAYOFMONTH() DAYOFMONTH(dt)
MONTHNAME() MONTHNAME (dt)
MONTHQO) MONTH(dt)
YEARQ YEAR(Ccolumn)
CURDATEQ) CURDATEQ)
CURTIMEQ CURTIMEQ
NOW() NOW()
UNIX_TIMESTAMP() UNIX_TIMESTAMP(dt)

RETURNS

The hour value of dt.

The minute value of dt.

The second value of dt.

The name of the day for dt.
The numerical day value of dt.
The name of the month of dt.
The numerical month value of dt.
The year value of dt.

The current date.

The current time.

The current date and time.

The number of seconds since the epoch until the current moment
or until the date specified.

152



Introduction to SQL

®006 Terminal

mysql> SELECT DATE(registration_date) RS =]
-* Date FROM users ORODER BY &
-» registration_date OESC LIMIT 1;

e —————————— +

| Date |

o +

| 28@7-RO-22 |

o + m

1 row in set (B.88 sec) 3

v
mysgl> I §

Figure 5.41 The date functions can be used to extract
information from stored values.

@66

Terminal

mysql> SELECT DAYMAME(registration_daote} AS
-» Heekday FROM users ORODER BY
-» registration_date ASC LIMNIT 1;

)M

1 row in set (B.84% zec)

+
!
1
1
1
1
1
1
!
+
NRILY = )

mysql> I

Figure 5.42 This query returns the name of the day
that a given date represents.

v MySQL Command Line Client !EH

Eysql) use sitename; Al
atabase changed -

mysql> SELECT CURDATEC>. CURTIME(>;

! CURDATEC> | CURTIHE(> ?

| 2087-89-23 | 09:34:88 :

1l row in set (B.80 secl "

mysqgl> =
4] | H 4

Figure 5.43 This query, not run on any particular table,
returns the current date and time on the MySQL server.

To use date and time functions:

1. Display the date that the last user regis-
tered (Figure 5.41).

SELECT DATE(registration_date) AS
Date FROM users ORDER BY
registration_date DESC LIMIT 1;

The DATEQ) function returns the date
part of a value. To see the date that the
last person registered, an ORDER BY clause
lists the users starting with the most
recently registered and this result is lim-
ited to just one record.

2. Display the day of the week that the first
user registered (Figure 5.42).

SELECT DAYNAME(registration_date) AS
Weekday FROM users ORDER BY
registration_date ASC LIMIT 1;

This is similar to the query in Step 1 but
the results are returned in ascending
order and the DAYNAME() function is
applied to the registration_date column.
This function returns Sunday, Monday,
Tuesday, etc., for a given date.

3. Show the current date and time, accord-

ing to MySQL (Figure 5.43).

SELECT CURDATE(), CURTIMEQ);

To show what date and time MySQL cur-
rently thinks it is, you can select the
CURDATE() and CURTIME(Q) functions,
which return these values. This is another
example of a query that can be run with-
out referring to a particular table name.

continues on next page

153

SNOILONN4 ONISN



USING FUNCTIONS

Chapter 5

4, Show the last day of the current month
(Figure 5.44).

SELECT LAST_DAY(CURDATEQ)),
MONTHNAME (CURDATE(Q));

As the last query showed, CURDATE()
returns the current date on the server.
This value can be used as an argument to
the LAST_DAY() function, which returns
the last date in the month for a given
date. The MONTHNAME() function returns
the name of the current month.

v Tips

B The date and time returned by MySQL's
date and time functions correspond to
those on the server, not on the client
accessing the database.

B Not mentioned in this section or in Table
5.4 are ADDDATE(), SUBDATE(), ADDTIME(),
and SUBTIMEQ). Each can be used to per-
form arithmetic on date and time values.
These can be very useful (for example, to
find everyone registered within the past
week) but their syntax is cumbersome.
As always, see the MySQL manual for
more information.

B As of MySQL 5.0.2, the server will also
prevent invalid dates (e.g., February 31,
2009) from being inserted into a date or
date/time column.

mysgl> SELECT LAST_DAY<CURDATE<>>.
—» MONTHMAMECCURDATEC2);

i LAST_DAY<CURDATE<>> | MONTHNAME{CURDATE<>> !
i 28@87-8%-30

e MySOL Command Line Client - |EI| X
=

i September

i row in set (B.83 sec)

mysgl> -
1 | H o4

Figure 5.44 Among the many things MySQL can do
with date and time types is determine the last date in
a month or the name value of a given date.

154



Introduction to SQL

Table 5.5 Use these parameters with the DATE_FORMAT()

and TIME_FORMAT(Q) functions.

*_FORMAT() Parameters

TERM
%e
%d

%D
oW
%a
%C
%m

oM
%b

%Y
%y
%1

%h
%k
%H

%1
%S
%r
%T
%p

UsaGE
Day of the month

Day of the month,
two digit

Day with suffix
Weekday name
Abbreviated

Month number

Month number,
two digit
Month name

Month name,
abbreviated

Year
Year

Hour
(lowercase L)

Hour, two digit
Hour, 24-hour clock

Hour, 24-hour clock,
two digit

Minutes

Seconds

Time

Time, 24-hour clock
AM or PM

EXAMPLE
131
01-31

15t-31st
Sunday-Saturday
Sun-Sat weekday name
112

01-12

January-December
Jan-Dec

2002
02
1-12

01-12
0-23
00-23

00-59
00-59
8:17:02 PM
20:17:02
AM or PM

Formatting the date and time

There are two additional date and time
functions that you might find yourself using
more than all of the others combined:
DATE_FORMAT() and TIME_FORMAT(Q). There is
some overlap between the two and when
you would use one or the other.

DATE_FORMAT() can be used to format both the
date and time if a value contains both (e.g.,
YYYY-MM-DD HH:MM:SS). Comparatively,
TIME_FORMAT() can format only the time
value and must be used if only the time value
is being stored (e.g., HH:MMSS). The syntax is
SELECT DATE_FORMAT(datetime, formatting)
The formatting relies upon combinations of
key codes and the percent sign to indicate
what values you want returned. Table 5.5
lists the available date- and time-formatting
parameters. You can use these in any combi-
nation, along with literal characters, such as
punctuation, to return a date and time in a
more presentable form.

Assuming that a column called the_date has
the date and time of 1996-04-20 11:07:45
stored in it, common formatting tasks and
results would be

¢ Time (11:07:45 AM)
TIME_FORMAT(the_date, '%r')

¢ Time without seconds (11:07 AM)
TIME_FORMAT(the_date, '%l:%i %p')

¢ Date (April 20th, 1996)
DATE_FORMAT(the_date, '%M %D, %Y')

155

SNOILONN4 ONISN



USING FUNCTIONS

Chapter 5

To format the date and time:

1. Return the current date and time as
Month DD, YYYY - HH:MM (Figure 5.45).

SELECT DATE_FORMAT(NOW(Q), '%M %e, %Y
— - %L:%1");

Using the NOWQ) function, which returns
the current date and time, you can prac-
tice formatting to see what results are
returned.

2. Display the current time, using 24-hour
notation (Figure 5.46).

SELECT TIME_FORMAT(CURTIMEQ), '%T');

3. Select the email address and date regis-
tered, ordered by date registered, format-
ting the date as Weekday (abbreviated)
Month (abbreviated) Day Year, for the last
five registered users (Figure 5.47).

SELECT email,
— DATE_FORMAT(registration_date,
— "%a %b %e %Y')

AS Date FROM users
ORDER BY registration_date DESC
LIMIT 5;

This is just one more example of how
you can use these formatting functions
to alter the output of an SQL query.

v Tips

B In your Web applications, you should
almost always use MySQL functions to for-
mat any dates coming from the database.

B The only way to access the date or time
on the client (the user’s machine) is to
use JavaScript. It cannot be done with
PHP or MySQL.

. MySOL Command Line Client ! H

mysql> SELECT DATE_FORMAT<NOWCY,.’xM ze. =¥ — xl:zi’>; =
i DATE_FORMATCNOWCY, ‘M xe, xY¥ — xl:=xi’) | =
! Septemher 23, 2087 — 9:43

i row in set <B.08 sec>

mysgl> =
| | vz

Figure 5.45 The current date and time, formatted.

e MySOL Command Line Client

mysql> SELECT TIME_FORMATCCURTIMEC>.*xT'>; jA
I TIME_FORMATCCURTIMEC> . *=T'> | =
| B89:43:56 H

1 row in set (B.B0 sec?

mysgl> -
< | | 4

Figure 5.46 The current time, in a 24-hour format.

ene6 Terminal

mysgl> SELECT email, DATE_FORMAT(registration_dote, '%a %b %e #y') B
-» A5 Date FROM users r
-> ORDER BY registration_date DESC

-3 LIMIT 5;

| email | Date |

| abemsimpson.com | Sat Sep 22 zo@7 |

| dor@authors.com | sat Sep 22 zp87 |

| groham@authors.com | Sat Sep 22 2887 |

| mike@authors.con | sat Sep 22 2087 |

| richard@authors.con | Sat Sep 22 2687 |

5 rows in set (1.15 sec) r
k3

myzal> JJ

Figure 5.47 The DATE_FORMAT() function is used to
pre-format the registration date when selecting
records from the users table.

156




ADVANCED
SQL AND MYSQL

This chapter picks up where its predecessor left off, discussing more advanced SQL and
MySQL topics. While the basics of both technologies will certainly get you by, it's these
more complex ideas that make sophisticated applications possible.

The chapter begins by discussing database design in greater detail, using a message
board as the example. More elaborate databases like a forum require SQL queries
called joins, so that subject will follow. From there, the chapter introduces a category
of functions that are specifically used when grouping query results.

After that, the subjects turn to advanced MySQL concepts: indexes, changing the
structure of existing tables, and table types. The chapter concludes with two more
MySQL features: performing full text searches and transactions.

157

TJOSAW ANV TOS G3IdNVAQAY



DATABASE DESIGN

Chapter 6

Database Design

Whenever you are working with a relational
database management system such as MySQL,
the first step in creating and using a data-
base is to establish the database’s structure
(also called the database schema). Database
design, aka data modeling, is crucial for suc-
cessful long-term management of informa-
tion. Using a process called normalization,
you carefully eliminate redundancies and
other problems that will undermine the
integrity of your database.

The techniques you will learn over the next
few pages will help to ensure the viability, use-
fulness, and reliability of your databases. The
specific example to be discussed—a forum
where users can post messages—will be more
explicitly used in Chapter 15, “Example—
Message Board,” but the principles of nor-
malization apply to any database you might
create. (The sitename example as created in
the past two chapters was properly normal-
ized, even though that was never discussed.)

Normalization

Normalization was developed by an IBM
researcher named E.F. Codd in the early 1970s
(he also invented the relational database).

A relational database is merely a collection
of data, organized in a particular manner,
and Dr. Codd created a series of rules called
normal forms that help define that organiza-
tion. In this chapter I will discuss the first
three of the normal forms, which are suffi-
cient for most database designs.

Before you begin normalizing your database,
you must define the role of the application
being developed. Whether it means that you
thoroughly discuss the subject with a client
or figure it out for yourself, understanding
how the information will be accessed dictates
the modeling. Thus, this process will require
paper and pen rather than the MySQL soft-

ware itself (although database design is
applicable to any relational database, not
just MySQL).

In this example I want to create a message
board where users can post messages and
other users can reply. I imagine that users
will need to register, then log in with a user-
name/password combination, in order to
post messages. I also expect that there could
be multiple forums for different subjects. I
have listed a sample row of data in Table 6.1.
The database itself will be called forum.

v Tips

B One of the best ways to determine what
information should be stored in a data-
base is to think about what questions
will be asked of the database and what
data would be included in the answers.

B Normalization can be hard to learn if you
fixate on the little things. Each of the
normal forms is defined in a very cryptic
way; even when put into layman’s terms,
they can still be confounding. My best
advice is to focus on the big picture as you
follow along. Once you've gone through
normalization and see the end result, the
overall process should be clear enough.

Table 6.1 Representative data for the kind of
information to be stored in the database.

Sample Forum Data

ITEM EXAMPLE

username troutster

password mypass

actual name Larry Ullman

user email email@example.com
forum MySQL

Question about normalization.
| have a question about...

message subject
message body

message date February 2, 2008 12:20 AM

158



Advanced SQL and MySQL

Keys

As briefly mentioned in Chapter 4,
“Introduction to MySQL,” keys are integral
to normalized databases. There are two
types of keys: primary and foreign. A pri-
mary key is a unique identifier that has to
abide by certain rules. They must

¢ Always have a value (they cannot be NULL)

& Have a value that remains the same
(never changes)

¢ Have a unique value for each record in
a table

The best real-world example of a primary key
is the U.S. Social Security number: each indi-
vidual has a unique Social Security number,
and that number never changes. Just as the
Social Security number is an artificial con-
struct used to identify people, you'll frequently
find creating an arbitrary primary key for
each table to be the best design practice.

The second type of key is a foreign key. Foreign
keys are the representation in Table B of the
primary key from Table A. If you have a cine-
ma database with a movies table and a direc-
tors table, the primary key from directors
would be linked as a foreign key in movies.
You'll see better how this works as the nor-
malization process continues.

Table 6.2 A primary key is added to the table as an
easy way to reference the records.

Sample Forum Data

ITEM EXAMPLE

message ID 325

username troutster

password mypass

actual name Larry Ullman

user email email@example.com

forum MySQL

message subject Question about normalization.
message body I have a question about...
message date February 2, 2008 12:20 AM

The forum database is just a simple table as
it stands (Table 6.1), but before beginning
the normalization process, identify at least
one primary key (the foreign keys will come
in later steps).

To assign a primary key:

1. Look for any fields that meet the three
tests for a primary key.
In this example (Table 6.1), no column
really fits all of the criteria for a primary
key. The username and email address will
be unique for each forum user but will
not be unique for each record in the data-
base (because the same user could post
multiple messages). The same subject
could be used multiple times as well. The
message body will likely be unique for
each message but could change (if edited),
violating one of the rules of primary keys.

2. If nological primary key exists, invent

one (Table 6.2).

Frequently, you will need to create a pri-
mary key because no good solution pres-
ents itself. In this example, a message ID
is manufactured. When you create a pri-
mary key that has no other meaning or
purpose, it's called a surrogate primary key.

v Tips

B As arule of thumb, I name my primary
keys using at least part of the table’s
name (e.g., message) and the word id.
Some database developers like to add the
abbreviation pk to the name as well.

B MySQL allows for only one primary key
per table, although you can base a primary
key on multiple columns (this means the
combination of those columns must be
unique and never change).

W Ideally, your primary key should always
be an integer, which results in better
MySQL performance.

159

N9IS3Q IsvavivQ



DATABASE DESIGN

Chapter 6

Relationships

Database relationships refer to how the data
in one table relates to the data in another.
There are three types of relationships between
any two tables: one-to-one, one-to-many, or
many-to-many. (Two tables in a database
may also be unrelated.)

A relationship is one-to-one if one and only
one item in Table A applies to one and

only one item in Table B. For example, each
U.S. citizen has only one Social Security num-
ber, and each Social Security number applies
to only one U.S. citizen; no citizen can have
two Social Security numbers, and no Social
Security number can refer to two citizens.

A relationship is one-to-many if one item in
Table A can apply to multiple items in Table
B. The terms female and male will apply to
many people, but each person can be only
one or the other (in theory). A one-to-many
relationship is the most common one
between tables in normalized databases.

Finally, a relationship is many-to-many if
multiple items in Table A can apply to mul-
tiple items in Table B. A record album can
contain songs by multiple artists, and artists
can make multiple albums. You should try to
avoid many-to-many relationships in your
design because they lead to data redundancy
and integrity problems. Instead of having
many-to-many relationships, properly
designed databases use intermediary tables
that break down one many-to-many relation-
ship into two one-to-many relationships.

Relationships and keys work together in that
a key in one table will normally relate to a key
in another, as mentioned earlier.

v Tips

B Database modeling uses certain conven-
tions to represent the structure of the
database, which I'll follow through a
series of images in this chapter. The sym-
bols for the three types of relationships
are shown in Figure 6.1.

B The process of database design results in
an ERD (entity-relationship diagram) or
ERM (entity-relationship model). This
graphical representation of a database
uses boxes for tables, ovals for columns,
and the symbols from Figure 6.1 to repre-
sent the relationships.

B There are many programs available to help
create a database schema, including
MySQL Workbench (www.mysql . com),
which is in alpha release at the time of
this writing.

B The term “relational” in RDBMS actually
stems from the tables, which are techni-
cally called relations.

Entity Entity
Entity Entity
Entity Entity

Figure 6.1 These symbols, or variations on them, are
commonly used to represent relationships in
database modeling schemes.

160



Advanced SQL and MySQL

First Normal Form

As already stated, normalizing a database is
the process of adjusting the database’s struc-
ture according to several rules, called forms.
Your database should adhere to each rule
exactly, and the forms must be followed

in order.

Every table in a database must have the fol-
lowing two qualities in order to be in First
Normal Form (1NF):

¢ Each column must contain only one
value (this is sometimes described as
being atomic or indivisible).

¢ No table can have repeating groups of
related data.

Table 6.3 The actual name column has been broken in
two to store data more atomically.

Forum Database, Atomic

ITEM EXAMPLE

message ID 325

username troutster

password mypass

first name Larry

last name Ullman

user email email@example.com
forum MySQL

Question about normalization.
| have a question about...
February 2, 2008 12:20 AM

message subject
message body
message date

A table containing one field for a person’s
entire address (street, city, state, zip code,
country) would not be INF compliant, because
it has multiple values in one column, violating
the first property above. As for the second, a
movies table that had columns such as
actorl, actor2, actor3, and so on would fail
to be 1NF compliant because of the repeat-
ing columns all listing the exact same kind
of information.

I'll begin the normalization process by check-
ing the existing structure (Table 6.2) for INF
compliance. Any columns that are not atomic
will be broken into multiple columns. If a table
has repeating similar columns, then those
will be turned into their own, separate table.

To make a database 1NF compliant:

1. Identify any field that contains multiple
pieces of information.

Looking at Table 6.2, one field is not INF
compliant: actual name. The example
record contained both the first name and
the last name in this one column.

The message date field contains a day,

a month, and a year, plus a time, but sub-
dividing past that level of specificity is
really not warranted. And, as the end of
the last chapter shows, MySQL can handle
dates and times quite nicely using the
DATETIME type.

Other examples of problems would be if

a table used just one column for multiple
phone numbers (mobile, home, work), or
stored a person’s multiple interests (cook-
ing, dancing, skiing, etc.) in a single column.

2. Break up any fields found in Step 1 into
distinct fields (Table 6.3).

To fix this problem, I'll create separate
first name and last name fields, each of
which contains only one value.

continues on next page

161

N9IS3Q IsvavivQ



DATABASE DESIGN

Chapter 6

3.

Turn any repeating column groups into
their own table.

The forum database doesn't have this
problem currently, so to demonstrate
what would be a violation, consider
Table 6.4. The repeating columns (the
multiple actor fields) introduce two
problems. First of all, there's no getting
around the fact that each movie will be
limited to a certain number of actors
when stored this way. Even if you add
columns actor 1 through actor 100, there
will still be that limit (of a hundred).
Second, any record that doesn’t have the
maximum number of actors will have
NULL values in those extra columns. You
should generally avoid columns with
NULL values in your database schema. As
another concern, the actor and director
columns are not atomic.

To fix the problems in the movies table, a
second table would be created (Table 6.5).
This table uses one row for each actor in
a movie, which solves the problems men-
tioned in the last paragraph. The actor
names are also broken up to be atomic.
Notice as well that a primary-key column
should be added to the new table. The
notion that each table has a primary key
is implicit in the First Normal Form.

Double-check that all new columns and
tables created in Steps 2 and 3 pass the
INF test.

v Tips

B The simplest way to think about 1NF is
that this rule analyzes a table horizontally.
You inspect all of the columns within a
single row to guarantee specificity and
avoid repetition of similar data.

B Various resources will describe the nor-
mal forms in somewhat different ways,
likely with much more technical jargon.
What is most important is the spirit—and
end result—of the normalization process,
not the technical wording of the rules.

Table 6.4 This movies table violates the 1NF rule for
two reasons. First, it has repeating columns of similar
data (actor 1 etc.). Second, the actor and director
columns are not atomic.

Movies Table

CoLumn VALUE

movie ID 976

movie title Casablanca

year released 1943

director Michael Curtiz
actor1 Humphrey Bogart
actor 2 Ingrid Bergman
actor 3 Peter Lorre

Table 6.5 To make the movies table (Table 6.4) 1INF
compliant, the association of actors with a movie
would be made in this table.

Movies-Actors Table

ID |MoviIE AcToRrR FIRST NAME |ACTOR LAST NAME
1 |Casablanca Humphrey Bogart

2 |Casablanca Ingrid Bergman

3 [Casablanca Peter Lorre

4 |The Maltese Falcon | Humphrey Bogart

5 |The Maltese Falcon | Peter Lorre

162



Advanced SQL and MySQL

; ; movies-
directors movies actors actors

director ID

Figure 6.2 To make the cinema database 2NF compliant
(given the information being represented), four tables
are necessary. The directors are represented in the
movies table through the director ID key; the movies
are represented in the movies-actors table through
the movie ID key; and the actors are represented in the
movies-actors table through the actor ID key.

Second Normal Form

For a database to be in Second Normal Form
(2NF), the database must first already be in
INF (you must normalize in order). Then,
every column in the table that is not a key
(i.e., a foreign key) must be dependent upon
the primary key. You can normally identify

a column that violates this rule when it has
non-key values that are the same in multiple
rows. Such values should be stored in their
own table and related back to the original
table through a key.

Going back to the cinema example, a movies
table (Table 6.4) would have the director
Martin Scorsese listed twenty-plus times.
This violates the 2NF rule as the column(s)
that store the directors’ names would not be
keys and would not be dependent upon the
primary key (the movie ID). The fix is to cre-
ate a separate directors table that stores the
directors’ information and assigns each
director a primary key. To tie the director
back to the movies, the director’s primary
key would also be a foreign key in the
movies table.

Looking at Table 6.5 (for actors in movies),
both the movie name and the actor names
are also in violation of the 2NF rule (they
aren't keys and they aren’t dependent on the
table’s primary key). In the end, the cinema
database in this minimal form requires four
tables (Figure 6.2). Each director’s name,
movie name, and actor’s name will be stored
only once, and any non-key column in a
table is dependent upon that tables primary
key. In fact, normalization could be summa-
rized as the process of creating more and
more tables until potential redundancies
have been eliminated.

163

NOIS3Q 3svaviv(q



DATABASE DESIGN

Chapter 6

To make a database 2NF compliant:

1.

Identify any non-key columns that aren’t
dependent upon the tables primary key.
Looking at Table 6.3, the username, first
name, last name, email, and forum values
are all non-keys (message ID is the only
key column currently), and none are
dependent upon the message ID.
Conversely, the message subject, body,
and date are also non-keys, but these do
depend upon the message ID.

Create new tables accordingly (Figure 6.3).

The most logical modification for the
forum database is to make three tables:
users, forums, and messages.

In a visual representation of the database,
create a box for each table, with the table
name as a header and all of its columns
(also called its attributes) underneath.

Assign or create new primary keys
(Figure 6.4).

Using the techniques described earlier in
the chapter, ensure that each new table
has a primary key. Here I've added a user
ID field to the users table and a forum ID
field to forums. These are both surrogate
primary keys. Because the username field
in the users table and the name field in
the forums table must be unique for each
record and must always have a value, you
could have them act as the primary keys
for their tables. However, this would mean
that these values could never change (per
the rules of primary keys) and the data-
base will be a little slower, using text-
based keys instead of numeric ones.

users messages forums

Figure 6.3 To make the forum database 2NF compliant,
three tables are necessary.

users messages forums

message

D forum ID

user ID

Figure 6.4 Each table needs its own primary key.

164



Advanced SQL and MySQL

forums

forum ID

Figure 6.5 To relate the three tables, two foreign
keys are added to the messages table, each key
representing one of the other two tables.

v Tips

B Another way to test for 2NF is to look at

the relationships between tables. The
ideal is to create one-to-many situations.
Tables that have a many-to-many rela-
tionship may need to be restructured.

Looking back at Figure 6.2, the movies-
actors table is an intermediary table, which
turns the many-to-many relationship
between movies and actors into two one-
to-many relationships. You can often tell
a table is acting as an intermediary when
all of its columns are keys. In fact, in this
table, no ID column would be required, as
the primary key could be the combina-
tion of the movie ID and the actor ID.

Create the requisite foreign keys and
indicate the relationships (Figure 6.5).

The final step in achieving 2NF compli-
ance is to incorporate foreign keys to
link associated tables. Remember that

a primary key in one table will most likely
be a foreign key in another.

With this example, the user ID from

the users table links to the user ID column
in the messages table. Therefore, users
has a one-to-many relationship with mes-
sages (because each user can post multi-
ple messages but each message can only
be posted by one user).

Also, the two forum ID columns are linked,
creating a one-to-many relationship
between messages and forums (each mes-
sage can only be in one forum but each
forum can have multiple messages).

There is no relationship between the users
and forums tables.

A properly normalized database should
never have duplicate rows in the same table
(two or more rows in which the values in
every non-primary key column match).

To simplify how you conceive of the nor-
malization process, remember that 1INF

is a matter of inspecting a table horizon-
tally, and 2NF is a vertical analysis (hunt-
ing for repeating values over multiple rows).

165

N9IS3Q IsvavivQ



DATABASE DESIGN

Chapter 6

Third Normal Form

A database is in Third Normal Form (3NF) if
it is in 2NF and every non-key column is
mutually independent. If you followed the
normalization process properly to this point,
you may not have 3NF issues. You would
know that you have a 3NF violation if chang-
ing the value in one column would require
changing the value in another. In the forum
example (see Figure 6.5), there aren't any 3NF
problems, but I'll explain a hypothetical sit-
uation where this rule would come into play.

Take, as a common example, a single table
that stores the information for a business’
clients: first name, last name, phone number,
street address, city, state, zip code, and so on.
Such a table would not be 3NF compliant
because many of the columns would be
interdependent: the street would actually be
dependent upon the city; the city would be
dependent upon the state; and the zip code
would be an issue, too. These values are sub-
servient to each other, not to the person
whose record it is. To normalize this data-
base, you would have to create one table for
the states, another for the cities (with a for-
eign key linking to the states table), and
another for the zip codes. All of these would
then be linked back to the clients table.

If you feel that all that may be overkill, you are
correct. To be frank, this higher level of nor-
malization is often unnecessary. The point is
that you should strive to normalize your data-
bases but that sometimes you'll make conces-
sions to keep things simple (see the sidebar
“Overruling Normalization”). The needs of
your application and the particulars of your
database will help dictate just how far into
the normalization process you should go.

As 1 said, the forum example is fine as is,
but I'll outline the 3NF steps just the same,
showing how to fix the clients example
just mentioned.

To make a database 3NF compliant:

1. Identify any fields in any tables that are
interdependent.

As Ijust stated, what you look for are
columns that depend more upon each
other (like city and state) than they do
on the record as a whole. In the forum
database, this isn't an issue. Just looking
at the messages table, each subject will be
specific to a message ID, each body will
be specific to that message ID, and so forth.

2. Create new tables accordingly.

If you found any problematic columns in
Step 1, like city and state in a clients
example, you would create separate cities
and states tables.

3. Assign or create new primary keys.

Every table must have a primary key, so
add city ID and state ID to the new tables.

4. Create the requisite foreign keys that link
any of the relationships (Figure 6.6).
Finally, add a state ID to the cities table
and a city ID to the clients table. This
effectively links each client’s record to
the city and state in which they live.

clients cities states

state ID

client ID

@ state ID

Figure 6.6 Going with a minimal version of a
hypothetical clients database, two new tables are
created for storing the city and state values.

166



Advanced SQL and MySQL

v Tips

B As a general rule, I would probably not

Overruling Normalization

As much as ensuring that a database is in
3NF will help guarantee reliability and
viability, you won't fully normalize every
database with which you work. Before
undermining the proper methods, though,
understand that doing so may have dev-
astating long-term consequences.

The two primary reasons to overrule nor-
malization are convenience and perform-
ance. Fewer tables are easier to manipulate
and comprehend than more. Further,
because of their more intricate nature, nor-
malized databases will most likely be slower
for updating, retrieving data from, and
modifying. Normalization, in short, is a
trade-off between data integrity/scalability
and simplicity/speed. On the other hand,
there are ways to improve your database’s
performance but few to remedy corrupted
data that can result from poor design.

Practice and experience will teach you
how best to model your database, but do
try to err on the side of abiding by the
normal forms, particularly as you are still
mastering the concept.

normalize the clients example to this
extent. If I left the city and state fields in
the Clients table, the worst thing that would
happen is that a city would change its
name and this fact would need to be
updated for all of the users living in that
city. But this—cities changing their
names—is not a common occurrence.

Despite there being these set rules for how
to normalize a database, two different
people could normalize the same exam-
ple in slightly different ways. Database
design does allow for personal preference
and interpretations. The important thing
is that a database has no clear and obvi-
ous NF violations. Any of those will likely
lead to problems down the road.

167

N9IS3Q IsvavivQ



DATABASE DESIGN

Chapter 6

Creating the database

There are three final steps in designing the
database:

1. Double-checking that all the requisite
information is being stored.

2. Identifying the column types.
3. Naming all database elements.

Table 6.6 shows the final database design.
One column has been added to those shown
in Figure 6.5. Because one message might be
a reply to another, some method of indicating
that relationship is required. The solution is
to add a parent_id column to messages. If a
message is a reply, its parent_id value will be
the message_id of the original message (so
message_id is acting as a foreign key in this
same table). If a message has a parent_id of
0, then it’s a new thread, not a reply.

If you make any changes to the tables, you
must run through the normal forms one more
time to ensure that the database is still
normalized.

In terms of choosing the column types and
naming the tables and columns, this is cov-
ered in Chapter 4.

Once the schema is fully developed, it can be
created in MySQL, using the commands
shown in Chapter 5, “Introduction to SQL”

To create the database:

1. Access MySQL using whatever client you
prefer.

Like the preceding chapter, this one will
also use the mysq] client for all of its exam-
ples. You are welcome to use phpMyAdmin
or other tools as the interface to MySQL.

2. Create the forum database (Figure 6.7).
CREATE DATABASE forum;
USE forum;

Depending upon your setup, you may not
be allowed to create your own databases.
If not, just use the provided database and
add the following tables to it.

Table 6.6 The final plan for the forum database. Note
that every integer column is UNSIGNED, the three primary
key columns are also designated as AUTO_INCREMENT,
and every column is set as NOT NULL.

The forum Database with Types

CoLumn Name TABLE CoLumn TypE
forum_id forums TINYINT

name forums VARCHAR(60)
message_id messages INT

forum_id messages TINYINT
parent_id messages INT

user_id messages MEDIUMINT
subject messages VARCHAR(100)
body messages LONGTEXT
date_entered messages TIMESTAMP
user_id users MEDIUMINT
username users VARCHAR(30)
pass users CHAR(40)
first_name users VARCHAR(20)
last_name users VARCHAR(40)
email users VARCHAR(80@)
866 Terminal

Helcome to the MySOL monitar. Commands end uwith 5 ar \g. E]
Yaur HySOL connect ion id is 61 F

Server version: 5.0.45 MySOL Community Server (GPL
Type 'help;' or '%h' for help. Type '“c¢' to clear the buffer.

mysql> CREATE DATABASE forum;
Query 0K, 1 rou affected (B.83 sec)

mysqgl> USE forum;
Database changed
mysal> ||

bt

Figure 6.7 The first steps are to create and select the
database.

168



Advanced SQL and MySQL

3. Create the forums table (Figure 6.8).
CREATE TABLE forums (

forum_id TINYINT UNSIGNED NOT NULL
— AUTO_INCREMENT,

name VARCHAR(60) NOT NULL,

PRIMARY KEY (forum_id)

)3

It does not matter in what order you cre-
ate your tables, but I'll make the forums
table first. Remember that you can enter

your SQL queries over multiple lines for
convenience.

®@0 6 Terminal

- forum_id TIHYIHT UMSIGHED HOT HULL -
-> AUTO_IHCRENENT,
-» name VARCHAR(EG) NOT HULL,
-» PRINARY KEY (forum_id)
R H
Query 0K, B rows affected (B.12 sec)

mysql > I

mysql> CREATE TABLE farums ( =

«»B

Figure 6.8 Creating the first table.

®00 Terminal

mysql> CREATE TABLE messages (
-» message—id IHT UHSIGHED
-» HOT HULL AUTO_IHCREMEHNT,
=» forum_id TIHYINT UHSIGHED NHOT HULL,
-» parent_id INT UNSIGHED MOT HULL,
=-» user—_id MEDIUMINT UNSIGHED HOT HULL,
-» subject WARCHAR{188) HOT HULL,
-» body LOHGTERT HOT HULL,
-» dote_entered TINESTAMP MOT HULL,
-> PRINARY KEY (message_id)
-y 3
Query OK, B rows affected (B.12 sec)

mysql > I

)

«» &

Figure 6.9 Creating the second table.

This table only contains two columns
(which will happen frequently in a nor-
malized database). Because I don't expect
there to be a lot of forums, the primary
key is a really small type (TINYINT). If you
wanted to add descriptions of each
forum, a VARCHAR(255) column could be
added to this table.

. Create the messages table (Figure 6.9).

CREATE TABLE messages (

message_id INT UNSIGNED

NOT NULL AUTO_INCREMENT,

forum_id TINYINT UNSIGNED NOT NULL,
parent_id INT UNSIGNED NOT NULL,
user_id MEDIUMINT UNSIGNED NOT NULL,
subject VARCHAR(100) NOT NULL,

body LONGTEXT NOT NULL,

date_entered TIMESTAMP NOT NULL,
PRIMARY KEY (message_id)

)3

The primary key for this table has to be
big, as it could have lots and lots of
records. The three foreign key columns—
forum_id, parent_id, and user_id—will all
be the same size and type as their pri-
mary key counterparts. The subject is
limited to 100 characters and the body of
each message can be a lot of text. The
date_entered field is a TIMESTAMP type. It
will store both the date and the time that
a record is added, and be automatically
updated to the current date and time

when the record is inserted (this is how
TIMESTAMP behaves).

continues on next page

169

N9IS3Q IsvavivQ



DATABASE DESIGN

Chapter 6

5. Create the users table (Figure 6.10).
CREATE TABLE users (

user_id MEDIUMINT UNSIGNED NOT NULL
>AUTO_INCREMENT,

username VARCHAR(30) NOT NULL,

pass CHAR(40) NOT NULL,

first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(4@) NOT NULL,

email VARCHAR(80) NOT NULL,

PRIMARY KEY (user_id)

DK

Most of the columns here mimic those in
the sitename databases users table, created
in the preceding two chapters. The pass
column is defined as CHAR(40), because
the SHA1() function will be used and it

always returns a string 40 characters long
(see Chapter 5).

6. If desired, confirm the database’s struc-
ture (Figure 6.11).

SHOW TABLES;

SHOW COLUMNS FROM forums;
SHOW COLUMNS FROM messages;
SHOW COLUMNS FROM users;

This step is optional because MySQL
reports on the success of each query as it
is entered. But it’s always nice to remind
yourself of a database’s structure.

v Tip

B When you have a primary key-foreign
key link (like forum_id in forums to
forum_id in messages), both columns
should be of the same type (in this case,
TINYINT UNSIGNED NOT NULL).

ans Terminal

mysals SHOM TRELES: B
| Tablessinforua |

| forums |

| messages

| users

3 rows in set (0,00 sec)

mysql> SHOM COLUMHS FROM forums:

| Field | Type | Hutl | key | Defauir | Extra |
| forum_id | vingyint{3) unaigred | MO | PRI | HULL | oute_ineresent |

| nose | varcharica) | no
2 rows in set (B.87 asc)

mysql? SHOM COLUNKS FRON messoges:

| Field | Tupe | tutl | key | Defauit | Estra |
5 . v .
| message_id | inti18) unsigned | wo | Per | HuLL | suta_increment |
| Vorum_id | vingint(3) uenigeed | WO | | | |
| parent_id int (1) unsigned | Ho
| user_id mediumintiB} unaigned | HO
| subiject | warekar{1ga) | mo | | | |
| body Langtest | no |
| doteentered | timestonp | o CURREHTT I HESTRAP
@06 Terminal T rows in sel (8,01 sec)
mysal> CREATE TRBLE users = mysals SHOM COLUMIKS FROM uners:
=% user—id NEDIUNIHT UHSIGHED HOT HULL RUTO_INWCREMEMT,
-» username YARCHAR(3A) NOT HULL, | Field | Tyee | Hutl | Key | Defaulr | Exira |
- pass CHAR(4@) HOT HULL,
=5 first_nome VARCHAR(ZB) HOT HULL, I uaer_id | ..—.ﬁ:..;.;;l;} unaigred E :: | PR | muLe | ot inerement |
usernoae war-char
-> last_name YARCHAR(46) NOT HULL, Siat St | o |
-> email YARCHAR(SA) HOT HULL, | first_nome | varchar(i) fm | | | |
-» PRINARY KEY (user_id) | lestonase warchor{#) | no
BN m | enait varchar(80) | no
Query 0K, B rows affected [B.B1 sec) 1 e TR
-
mysql> ] B wysnl> |

Figure 6.10 The database’s third and final table.

Figure 6.11 Check the structure of any database or table
using SHOW.

170




Advanced SQL and MySQL

Populating the database

In Chapter 15, a Web-based interface to the
message board will be written in PHP. That
interface will be the standard way to popu-
late the database (i.e., register users and post
messages). But theres still a lot to learn to get
to that point, so the database has to be pop-
ulated using a MySQL client application. You
can follow these steps or download the SQL
commands from the book’s corresponding
Web site (www.DMCInsights.com/phpmysql3/,
click Downloads).

v+ MySOL Command Line Client

ysgl> INSERT INTO forums <name)> UALUES
= C'MySQL* >, C'PHP'>, ('Sports’'), ey
=» CHIML'>,. (’C88’'>,. (’Kindling’>;

mery OK, 6 rows affected (B.88 sec?

ecords: 6 Duplicates: @ Warnings: 8

[« | oz

ysgl> INSERT INTO users {(username, pass.,
—» first_name, last_name. email> UALUES
—» ('troutster’, SHAL{'mypass’').,
=» 'Larry’,. ‘Ullman’. *lulexample.com’>, —I
=» C’funny man’,. SHAL{'monkey’>,
—» *David’, ‘Brent’, 'dbPexample.com’).
—> ’Gareth’, SHAL{'asstmgr’'>, ’Gareth’,

—» 'Keenan’, ’gkBexample.com’>;
wery OK. 3 rows affected (B.08 sec)>
ecords: 3 Duplicates: B UWarnings: 8

ysgl>
[+ | M o

Figure 6.13 Adding records to the users table.

To populate the database:

1. Add some new records to the forums
table (Figure 6.12).

INSERT INTO forums (name) VALUES
("MySQL"), ('PHP'), ('Sports'),
C'HTML™), ('CSS'), ('Kindling');
Since the messages table relies on values
retrieved from both the forums and users
tables, those two need to be populated
first. With this INSERT command, only the
name column must be provided a value
(the table’s forum_id column will be given

an automatically incremented integer
by MySQL).

2. Add some records to the users table
(Figure 6.13).
INSERT INTO users (username, pass,
first_name, last_name, email) VALUES
("troutster', SHA1('mypass'),
'Larry', 'Ullman', 'lu@example.com'),
("funny man', SHA1('monkey'),
'David', 'Brent', 'db@example.com'),
('Gareth', SHA1('asstmgr'), 'Gareth',
'Keenan', 'gk@example.com');

If you have any questions on the INSERT
syntax or use of the SHA1() function here,
see Chapter 5.

continues on next page

171

NOIS3Q 3svaviv(q



DATABASE DESIGN

Chapter 6

3. Add new records to the messages table
(Figure 6.14).

SELECT * FROM forums;
SELECT user_id,

INSERT INTO messages (forum_id,

— parent_id, user_id, subject, body)
— VALUES

(1, @, 1, 'Question about

— normalization.', 'I\'m confused

username FROM users;

— dbout normalization. For the second
— normal form (2NF), I read...'),

(1, 0, 2, 'Database Design', 'I\'m

— creating a new database and am

— having problems with the structure.
— How many tables should I have?..."),
(1, 2, 1, 'Database Design', 'The

— number of tables your database

— includes..."),

(1, 3, 2, 'Database Design', 'Okay,
— thanks!"),
(2, 0, 3, '"PHP Errors', 'I\'m using

— the scripts from Chapter 3 and I
— can\'t get the first calculator

— example to work. When I submit the
— form...");

Because two of the fields in the messages
table (forum_id and user_id) relate to
values in other tables, you need to know

= MySOL Command Line Client

B rous in et <8.80 sec)
mysql) INSERT INTO nmessages (forum_id, pavent_id, user_id, subject, body) UALUES

novnal fnrm (ZNF) 1 read.
8. 2, ’Database Design’

actupe Hnw many tables should I have?.
et 1, ’Database Design’. ’The number of tables your datahase ineludes.

3405 5 harapase Design’; ‘Okay, thankst'>,

-> <2, B, 3. 'PHP Errors’
culator example to work. When I subnit the Fo
Query OK. 5 rous affected <0.81 sec)
Records: 5 Duplicates: B Warnings: @

nysql>

uestion ahuut normalization. 'IN'm confused about normalization. For the secend
3.

*Iv'm greating a new database and an having problems with the st

"IN'n using the s:rlpts from Chapter 3 and I can\'t get the first cal
P

those values before inserting new records
into this table. For example, when the
troutocity user creates a new message in
the MySQL forum, it will have a forum_id
of 1 and a user_id of 1.

This is further complicated by the parent_id
column, which should store the message_id
to which the new message is a reply. The
second message added to the database
will have a message_id of 2, so replies to
that message need a parent_id of 2.

With your PHP scripts—once you've cre-
ated an interface for this database, this
process will be much easier, but it’s
important to comprehend the theory in
SQL terms first.

You should also notice here that you don’t
need to enter a value for the date_entered
field. MySQL will automatically insert the
current date and time for this TIMESTAMP
column.

Repeat Steps 1 through 3 to populate the
database.

The rest of the examples in this chapter will
use the populated database. You'll probably
want to download the SQL commands from
the book’s corresponding Web site, although
you can populate the tables with your own
examples and then just change the queries

in the rest of the chapter accordingly.

]

Figure 6.14 Normalized
databases will often require
you to know values from one
table in order to enter records
RE into another. Populating the
messages table requires
knowing foreign key values

=l from users and forums.

172



Advanced SQL and MySQL

Performing Joins

Because relational databases are more com-
plexly structured, they sometimes require
special query statements to retrieve the
information you need most. For example, if
you wanted to know what messages are in
the kindling forum, you would need to first
find the forum_id for kindling, and then use
that number to retrieve all the records from
the messages table that have that forum_id.
This one simple (and, in a forum, often nec-
essary) task would require two separate
queries. By using a join, you can accomplish
all of that in one fell swoop.

Ajoin is an SQL query that uses two or more
tables, and produces a virtual table of results.
The two main types of joins are inner and
outer (there are subtypes within both).

An inner join returns all of the records from
the named tables wherever a match is made.
For example, to find every message in the
kindling forum, the inner join would be writ-
ten as (Figure 6.15)

SELECT * FROM messages INNER JOIN forums
ON messages.forum_id = forums.forum_id

WHERE forums.name = 'kindling'

This join is selecting every column from
both tables under two conditions. First, the
forums.name column must have a value of
kindling (this will return the forum_id of 6).
Second, the forum_id value in the forums
table must match the forum_id value in the
messages table. Because of the equality com-
parison being made across both tables
(messages.forum_id = forums.forum_id),
this is known as an equijoin.

Inner joins can also be written without for-
mally using the term INNER JOIN:

SELECT * FROM messages, forums WHERE
messages.forum_id = forums.forum_id

AND forums.name = 'kindling'

When selecting from multiple tables, you
must use the dot syntax (table.column) if the
tables named in the query have columns
with the same name. This is normally the
case when dealing with relational databases
because a primary key from one table will
have the same name as a foreign key in
another. If you are not explicit when refer-
encing your columns, you'll get an error
(Figure 6.16).

continues on next page

sarest_id | wsar_id | subject | body

Terminal

1s | i
| i | Becoue | Becoae

|

15 8| 8| 4| byt | Bhy do you hove @ fores dedicated to k
|
|

ndling? Bon't yos deal moatly with PHE, MyS0L. ond a0 forth? | 2007

Figure 6.15 This join returns every column from both tables where the forum_id values represent the kindling forum (6).

866

Terminal

]

mysql> SELECT * FROM messages, forums HHERE
- forum_id = forum_id
-> AND forums.name = ‘kindling';
ERROR 1852 (23888): Column 'forun_id' in where clouse is ambiguous

mysql> |

Figure 6.16 Generically referring to a column name present
in multiple tables will cause an ambiguity error. In this query,
referring to just name instead of forums.name would be
fine, but it’s still best to be precise.

173

SNIO[ 9NIWYO04¥3d



PERFORMING JOINS

Chapter 6

An outer join differs from an inner join in
that an outer join could return records not
matched by a conditional. There are three
outer join subtypes: left, right, and full. An
example of a left join is

SELECT * FROM forums LEFT JOIN messages
» ON forums.forum_id = messages.forum_id

The most important consideration with left
joins is which table gets named first. In this
example, all of the forums records will be
returned along with all of the messages infor-
mation, if a match is made. If no messages
records match a forums row, then NULL values
will be returned instead (Figure 6.17).

In both inner and outer joins, if the column
in both tables being used in the equality
comparison has the same name, you can
simplify your query with USING:

SELECT * FROM messages INNER JOIN forums
USING (forum_id)
WHERE forums.name = 'kindling'

SELECT * FROM forums LEFT JOIN messages
— USING (forum_id)

Before running through some examples, two
last notes. First, because of the complicated
syntax with joins, the SQL concept of an
alias—introduced in Chapter 5—will come
in handy when writing them. Second, because
joins often return so much information, it’s
normally best to specify exactly what columns
you want returned, instead of selecting them
all (Figure 6.17, in its uncropped form, couldn't
even fit within my 22" monitor’s screen!).

mysql> SELECT * FROM forums LEFT JOIH messages OH forums. forum_id = messages.forum_id;

| message_id | forum_id | parent_id | user_id | subject

HULL HUL

1 Question about normalization.

2 | Database Design

2 | Database Design

3 | Database Design

3 | PHP Errars

1 | PHF Errors

3 | PHP Erraors

1 | PHP Errors
3 | Dynamic HTHL using PHP
1 | Dynamic HTHL using PHP
3 | Dynamic HTHL using PHP, still not clear

18 2 | Dynamic HTHL using PHF, clearer?
2
1
3
1
3
1
4
4
1
L

S uocND @M D@

Rex Grossman
Rex Grossman
HTHL ws. BHTML
HTHL ws. HHTHL
LS55 Resources
LSS Resources
Hhy?

Hhy? Hhy? Hhy?
Because

HULL

| farun_id | name
1| HMySOL 1 1
L | MySQL H 1
1| MysOL 3 1
1| HMySOL 4 1
2 | PHP 3 2
2 | PHP 6 2z
2 | PHP T 2
2 | PHP & 2
2 | PHP 16 2z
2 | PHP 17 2
2 | PHP 16 2
2 | PHP 19 2z
3 Sports 9 3
3 Sparts 18 3
4+ | HTHL 13 +
4 | HTHL 14 +
5 | CSS 11 5
5| 0S5 12 g
6 | Kindling 15 6
6 | Kindling 28 g
6 | Kindling 21 4
7 | Modern Dance HULL HULL
22 rows in set (6,88 sec)

Figure 6.17 An outer join returns more records than an inner join because all of the first table’s
records will be returned. This join returns every forum name, even if there are no messages in a
forum (like Modern Dance at bottom). Also, to make it legible, I've cropped this image, omitting
the body and date_entered columns from the result.

174



Advanced SQL and MySQL

To use joins:

1.

w MySOL Command Line Client HEE

mysql}> SELECT f.name,. m.subject FROI‘I forums

Retrieve the forum name and message
subject for every record in the messages
table (Figure 6.18).

SELECT f.name, m.subject FROM forums
AS f INNER JOIN messages AS m
USING (forum_id) ORDER BY f.name;

This query, which contains an inner join,
will effectively replace the forum_id value
in the messages table with the correspon-
ding name value from the forums table
for each of the records in the messages
table. The end result is that it displays
the textual version of the forum name for
each message subject.

Notice that you can still use ORDER BY
clauses in joins.

—> AS f INNER JOIN messages AS
—> USING {(forum_id> ORDER BY f. name,

! name ! subject i
I C88 ! C8S Resources i
i G88 i GBS Resources H
i HTML i HIML vs. EHTML i
i HTML i HTML vs. KHTML H
i Kindling | Why? Why? Why? i
i Kindling | Uhy? H
i Kindling ! Because H
I MySQL | Database Design i
i MySQL i Database Design H
! MySQL ! Database Design

i MySQL ! Question about normalization. H
i PHP i Dynamic HTML using PHP, clearer? i
i PHP i PHP Errors H
i PHP i Dynamic HTML using PHP, still not clear |
I PHP I PHP Errors i
i PHP i Dynamic HITML using PHP

i PHP i PHP Errors

i PHP i Dynamic HITML using PHP H
i PHP i PHP Errors i
! Sports i Rex Grossman H
i Sports i Rex Grossman i

21 rows in set €8.81 sec)
mysgql>

<

| 2

Figure 6.18 A basic inner join that returns only two
columns of values.

2. Retrieve the subject and date entered

value for every message posted by the
user funny man (Figure 6.19).

SELECT m.subject,

— DATE_FORMAT(m.date_entered, '%M %D,
— %Y') AS Date FROM users

AS u INNER JOIN messages AS m

USING Cuser_id)

WHERE u.username = 'funny man';

This join also uses two tables, users and
messages. The linking column for the
two tables is user_id, so that’s placed in
the USING clause. The WHERE conditional
identifies the user being targeted, and

the DATE_FORMAT() function will help for-
mat the date_entered value.

continues on next page

e 'ml ‘\FI ECT m.aubject, DATE_FORMAT(m.dote_entored, 'SH %0, ¥V') AS Dote FROM usera 15§
* RS u INHER JOIN messoges AS o &
» USING (user_

Terminal

| Datobose Design | Sepreaber 24th, 2007 |
| Datohase Design

| Rex Grosssan

| Dyncmic HTHL using PHP, ¢leorer?

| Septenber 24th, 2887 |
Septenber 24th, 2007 |
Septenber 24th, 2007 |

in set {(9.01 sec)

Figure 6.19 A slightly more complicated version of an
inner join, using the users and messages tables.

175

SNIO[ 9NIWYO04¥3d



PERFORMING JOINS

Chapter 6

3. Retrieve the message ID, subject, and

forum name for every message posted by
the user troutster (Figure 6.20).

SELECT m.message_id, m.subject,
f.name FROM users AS u INNER JOIN
messages AS m USING (user_id)
INNER JOIN forums AS f

USING (forum_id)

WHERE u.username = 'troutster';

This join is similar to the one in Step 2,
but takes things a step further by incor-
porating a third table. Take note of how a
three-table inner join is written and how
the aliases are used for shorthand when
referring to the three tables and their
columns.

(@686 Terminal
mysql> SELECT m.messoge_id, m.subject, =5
=» f.name FROM users AS u I[HHER JOIN r

-> messages AS m USING (user_id)
-» INNER JOIM forums AS f
= USING {forum_id}

-> HHERE u.username = 'troutster’;
| message_id | subject | name |
\ 1 | Quest ion about normalization. \ MysnL |
| & | PHP Errors | PHP |
| 4 | PHP Errors | PHP |
\ 18 | Rex Grossman \ Sports |
| 12 | £S5 Resources | ess |
| 14 | HTHL ws. RHTHL | HTHL |
| 7 | Dynamic HTHL using PHP | PHP |
| 1 | Because | Kindling |

8 rows in set (8.81 sec)

mysal> ||

b

4, Retrieve the username, message sub-
ject, and forum name for every user
(Figure 6.21).

SELECT u.username, m.subject,
f.name FROM users AS u LEFT JOIN
messages AS m USING (user_id)
LEFT JOIN forums AS f

USING (forum_id);

If you were to run an inner join similar to
this, a user who had not yet posted a
message would not be listed (Figure 6.22).
So an outer join is required to be inclusive
of all users. Note that the fully included
table (here, users), must be the first table
listed in a left join.

EXs)S) Terminal
mysql> SELECT u.username, m.subject, =
-> f.name FROM users AS u LEFT JOIH &

-> messages AS m USING (user—id)
-> LEFT JOIN forums AS f
- USIMG {forum_id);

| usernane | subject | name |

troutster | Question about normalization. MySQL
troutster [ PHP Errors PHP
troutster | PHP Errors PHP
troutster Rex Grossman Sports
troutster | C55 Resources Css
troutster [ HTHL ws. RHTHL HTHL
troutster | Oynamic HTML using PHP PHP
troutster | Becauss Kindling
funny man | Database Design HyS0L
funny man | Ootobose Design MgsOL
funny man Rex Grossman Sports
funny man | Dynamic HTHL using PHP, clearer? PHP
Gareth Database Design HySOL
Gareth FHP Errars PHP
Gareth FHP Errors PHP
Gareth C55 Resources Css
Gareth HTHL ws. WHTHL HTHL
Gareth Oynamic HTML using PHP PHP
Gareth Dynamic HTML using PHP, still not clear | PHP

tim Hhy? Kindling
tim Hhy? Hhy? Hhy? Kindling
finchy HULL HULL

22 rows in set (B.81 sec)

g

mysql> ||

Figure 6.20 An inner join across all three tables.

Figure 6.21 This left join returns for every user, every posted
message subject, and every forum name. If a user hasn’t
posted a message (like finchy at the bottom), their subject
and forum name values will be NULL.

176



Advanced SQL and MySQL

v Tips [

You can even join a table with itself
(a self-join)!

Joins can be created using conditionals
involving any columns, not just the pri-
mary and foreign keys, although that’s
most common.

You can perform joins across multiple
databases using the database.table.column
syntax, as long as every database is on
the same server (you cannot do this
across a network) and you're connected
as a user with permission to access every
database involved.

Joins that do not include a WHERE clause
(e.g. SELECT * FROM urls, url_associations)
are called full joins and will return every
record from both tables. This construct
can have unwieldy results with larger tables.

A NULL value in a column referenced in
a join will never be returned, because
NULL matches no other value, includ-
ing NULL.

®n0o Terminal
mysgl> SELECT w.username, m.subject, 5
-» f.nome FROM users AS u INNER JOIH r
-» messages AS m USIHG {user_id)
-» INNER JOIN forums RS f
=> USING {forum_id);
username | subject | nane |
troutster | Question about normalization. HySOL
troutster | PHP Errors FHP
troutster | PHP Errors PHP
troutster | Rex Grossman Sports
troutster | C55 Resources (-1
troutster | HTHL ws. SHTML HTML
troutster | Dynamic HTHL using PHP FHP
troutster | Because Kindling
funny man | Database Design HysoL
funny man | Database Design Hy50L
funny man Rex Grossman Sports
funmy man | Dynamic HTHL using PHP, clearen? PHP
Gareth Database Design HyS0L
Gareth PHF Errors PHP
Gareth FHP Erraors PHP
Gareth LS55 Resources (-1
Gareth HTHL vs. HHTIL HTIL
Gareth Oynamic HTHL using PHP FHP
Gareth Dynamic HTHL using PHP, still not clear | PHP
tim Hhy? Kindling
tim Hhy? Hhy? Hhy? Kindling
21 rows in set (A.08 sec) ;
v
mysql> [

Figure 6.22 This inner join will not return any users who
haven’t yet posted messages (see finchy at the bottom of

Figure 6.21).

177

SNIO[ 9NIWYO04¥3d



GROUPING SELECTED RESULTS

Chapter 6

Grouping Selected Results

In the preceding chapter, two different
clauses—ORDER BY and LIMIT—were intro-
duced as ways of affecting the returned
results. The former dictates the order in
which the selected rows are returned; the
latter dictates which of the selected rows are
actually returned. This next clause, GROUP

BY, is different in that it works by grouping
the returned data into similar blocks of
information. For example, to group all of the
messages by forum, you would use

SELECT * FROM messages GROUP BY forum_id

The returned data is altered in that you've
now aggregated the information instead of
returned just the specific itemized records.
So where you might have lots of messages in
each forum, the GROUP BY would return all
those messages as one row. That particular
example is not particularly useful, but it
demonstrates the concept.

You will often use one of several aggregate
functions either with a GROUP BY clause or
without. Table 6.7 lists these.

You can apply combinations of WHERE, ORDER
BY, and LIMIT conditions to a GROUP BY, nor-
mally structuring your query like this:

SELECT what_columns FROM table
WHERE condition GROUP BY column
ORDER BY column LIMIT x, y

To group data:

1. Count the number of registered users
(Figure 6.23).

SELECT COUNT(Cuser_id) FROM users;

COUNT() is perhaps the most popular group-
ing function. With it, you can quickly
count records, like the number of records
in the users table here. Notice that not all
queries using the aggregate functions
necessarily have GROUP BY clauses.

Table 6.7 MySQL’s grouping functions.

Grouping Functions

FuncTion RETURNS

AVGQ) The average of the values in the
column.

COUNTQ) The number of values in a column.

GROUP_CONCAT() | The concatenation of a column’s
values.

MAX() The largest value in a column.

MINO) The smallest value in a column.

SUMQO) The sum of all the values ina
column.

- MySOL Command Line Client

1 row in set (A.00 sec)

mysqgl>

| | v s

Figure 6.23 This grouping query counts the
number of user_id values in the users table.

178



Advanced SQL and MySQL

2. Count the number of times each user has
posted a message (Figure 6.24).

SELECT username,

COUNT(message_id) AS Number

FROM users LEFT JOIN messages AS m
USING (Cuser_id) GROUP BY (m.user_id);

This query is an extension of that in Step
1, but instead of counting users, it counts
the number of messages associated with
each user. A join allows the query to
select information from both tables. An
inner join is used so that users who have
not yet posted will also be represented.

MySOL Command Line Client

mysgl>» SELECT username. AI
—» GOUNI<message_id> AS Number

—>» FROM users LEFT JOIN mezszages AS m

—» USING Cuser_id> GROUP BY {(m.user_id>;

! username | Number !
i finchy H a i
! troutster | g8 1
! funny man | 4 1
i Gareth i 7
! tim H 21

5 rows in set (B.83 sec)

-

mysgl> _
1 | [ 4

Figure 6.24 This GROUP BY query counts the number of
times each user has posted a message.

MyS0L Command Line Client
1> SELECT userna Al
—>» COUNI<{message_id> AS Mumber
—» FROM users LEFT JOIN messages AS m

=» USING C(user_id> GROUP BY (m.user_idd
—> ORDER BY Humber DESC LIMIT 2;

! username | Number !
i troutster | 8 i
I Garet i 71

2 rows in set (@.80 sec)

mysgl> i
[ | M 4

Figure 6.25 An ORDER BY clause is added to sort the
most frequent posters by their number of listings. A
LIMIT clause cuts the result down to two.

3. Find the top two users that have posted

the most (Figure 6.25).

SELECT username,

COUNT(message_id) AS Number

FROM users LEFT JOIN messages AS m
USING (Cuser_id) GROUP BY (m.user_id)
ORDER BY Number DESC LIMIT 2;

With grouping, you can order the results
as you would with any other query.
Assigning the value of COUNT(*) as the
alias Number facilitates this process.

v Tips

B NULL is a peculiar value, and it’s interest-

ing to know that GROUP BY will group
NULL values together, since they have the
same nonvalue.

You have to be careful how you apply the
COUNTQ) function, as it only counts non-
NULL values. Be certain to use it on either
every column (*) or on columns that will
not contain NULL values (like the primary
key). That being said, if the query in

Step 2 and Figure 6.24 applied COUNT() to
every column (*) instead of just message_id,
then users who did not post would erro-
neously show a COUNT(*) of 1, because the
whole query returns one row for that user.

The GROUP BY clause, and the functions
listed here, take some time to figure out,
and MySQL will report an error whenever
your syntax is inapplicable. Experiment
within the mysql client to determine the
exact wording of any query you might
want to run from a PHP script.

A related clause is HAVING, which is like
a WHERE condition applied to a group.

179

S11NS3Y d3Ld313S ONIdNOYH



CREATING INDEXES

Chapter 6

Creating Indexes

Indexes are a special system that databases
use to improve the performance of SELECT
queries. Indexes can be placed on one or
more columns, of any data type, effectively
telling MySQL to pay particular attention to
those values.

MySQL allows for a minimum of 16 indexes
for each table, and each index can incorpo-
rate up to 15 columns. While a multicolumn
index may not seem obvious, it will come in
handy for searches frequently performed on
the same combinations of columns (e.g., first
and last name, city and state, etc.).

Although indexes are an integral part of any
table, not everything needs to be indexed.
While an index does improve the speed of
reading from databases, it slows down queries
that alter data in a database (because the
changes need to be recorded in the index).

Indexes are best used on columns

¢ That are frequently used in the WHERE
part of a query

¢ That are frequently used in an ORDER BY
part of a query

¢ That are frequently used as the focal
point of a join

¢ That have many different values (columns
with numerous repeating values ought
not to be indexed)

MySQL has four types of indexes: INDEX (the
standard), UNIQUE (which requires each row
to have a unique value for that column),
FULLTEXT (for performing FULLTEXT searches,
discussed later in this chapter), and PRIMARY
KEY (which is just a particular UNIQUE index
and one you've already been using). Note
that a column should only ever have a single
index on it, so choose the index type that's
most appropriate.

With this in mind, let’s modify the forum
database tables by adding indexes to them.
Table 6.8 lists the indexes to be applied to
each column. Adding indexes to existing
tables requires use of the ALTER command,
as described in the sidebar.

Table 6.8 The indexes to be used in the forum database.
Not every column will be indexed, and there are two
indexes created on a pair of columns: user.pass plus
user.username and messages.body plus messages.
subject.

The forum Database with Indexes

CoLumn Name TABLE INDEX TYPE
forum_id forums PRIMARY
name forums UNIQUE
message_id messages PRIMARY
forum_id messages INDEX
parent_id messages INDEX
user_id messages INDEX
body/subject messages FULLTEXT
date_entered messages INDEX
user_id users PRIMARY
username users UNIQUE
pass/username users INDEX
email users UNIQUE

180



Advanced SQL and MySQL

@66

Terminal

mysql> I

mysql> ALTER TABLE forums ADD UHIQUE(name); =
Query 0K, 7 rows affected (B.21 sec) 1
Records: 7 Duplicates: @ Harnings: A

Figure 6.26 A unique index is placed on the name
column. This will improve the efficiency of certain
queries and protect against redundant entries.

To add an index to an existing table:

Add an index on the name column in the
forums table (Figure 6.26).

ALTER TABLE forums ADD UNIQUE(name);

The forums table already has a primary
key index on the forum_id. Since the name
may also be a frequently referenced field
and since its value should be unique for
every row, add a UNIQUE index to the table.

continues on next page

Altering Tables

The ALTER SQL term is primarily used to modify the structure of an existing table. Commonly
this means adding, deleting, or changing the columns therein, but it also includes the addition
of indexes. An ALTER statement can even be used for renaming the table as a whole. While
proper database design should give you the structure you need, in the real world, making
alterations is commonplace. The basic syntax of ALTER is

ALTER TABLE tablename CLAUSE

There are many possible clauses; Table 6.9 lists the most common ones. As always, the MySQL
manual covers the topic in exhaustive detail.

Table 6.9 Common variants on the ALTER command (where t represents the table’s name, ¢ a column’s name, and / an

index’s name). See the MySQL manual for the full specifications.

CHANGE COLUMN

DROP COLUMN

ADD INDEX
DROP INDEX
RENAME AS

ALTER TABLE

ALTER TABLE

ALTER TABLE
ALTER TABLE
ALTER TABLE

CHANGE COLUMN ¢ c TYPE

DROP COLUMN ¢

ADD INDEX i (¢)
DROP INDEX i
RENAME AS new_t

ALTER TABLE Clauses
CLAUSE USAGE MEANING
ADD COLUMN ALTER TABLE t ADD COLUMN c TYPE Adds a new column to the end of the table.

Allows you to change the data type and prop-
erties of a column.

Removes a column from a table, including all
of its data.

Adds a new index on c.
Removes an existing index.
Changes the name of a table.

181

S3IX3AN| ONILVIY)



CREATING INDEXES

Chapter 6

2. Add indexes to the messages table

(Figure 6.27).

ALTER TABLE messages
ADD INDEX(forum_id),
ADD INDEX(parent_id),
ADD INDEX(user_id),

ADD FULLTEXT(body, subject),

ADD INDEX(date_entered);

v MySOL Command Line Client .

mysgl> USE

->Af
[ERROR 1214
mysgl> _

<

This table contains the most indexes,

because it’s the most important table
and has three foreign keys (forum_id,

parent_id, and user_id), all of which

should be indexed. The body and subject
columns get a FULLTEXT index, to be used
in FULLTEXT searches later in this chapter.
The date_entered column is indexed, as

sort messages by date).

it will be used in ORDER BY clauses (to

If you get an error message that the table
type doesn't not support FULLTEXT indexes
(Figure 6.28), omit that one line from this
query and then see the next section of the
chapter for how to change a tables type.

@06

Terminal

mysqgl>
-
-
-
-
-

Records:

ALTER TRELE messages

AOD
ADD
ADD
AOD
AOD

mysql> I

21

INDE®{ forum_idJ,
IHDER(parent_id},
INDE®(uzer_id],
FULLTEXRT(body, subject),
IHOEX(dat e_entered);

Query 0K, 21 rows affected (B.82 sec)
Ouplicates: B Harnings: B

1|

MR =)

Figure 6.27 Several indexes are added to the

messages table. MySQL will report on the success of

the alteration and how many rows were affected

(which should be every row in the table).

forum;

Database changed
mysgl> ALTER TABLE messages
D INDEX (forum_id>,

INDER {parent_id>.
INDEX Cuser_id>.
FULLTEXT (hody, subject).

D INDEX(date_entered);
(H¥BBB@>: The used tabhle type doesn’'t support FULLTEXT indexes

Ll

-

H 4

Figure 6.28 FULLTEXT indexes cannot be used on all table types. If you see this error

message, read “Using Different Table Types” in this chapter for the solution.

182



Advanced SQL and MySQL

3. Add indexes to the users table
(Figure 6.29).

ALTER TABLE users

ADD UNIQUE(username),

ADD INDEX(pass, username),
ADD UNIQUE(email);

The users table has two UNIQUE indexes
and one multicolumn index. UNIQUE
indexes are important here because you
don’t want two people trying to register
with the same username (which, among

@06

Terminal

mysql> ALTER TAELE wsers AOD UNIQUE{username],
-» ADD IHDEX{pass, username),
-» ADD UMIQUE{email);

Query 0K, 5 rows affected (B.B7 sec)

Records: 5 Duplicates: @ Harnings: @

mysal> |

L]

v

Figure 6.29 The requisite indexes are added to the
third and final table.

other things, would make it impossible
to log in), nor do you want the same user
registering multiple times with the same
email address.

The index on the combination of the pass-
word and username columns will improve
the efficiency of login queries, when the
combination of those two columns will
be used in a WHERE conditional.

View the current structure of each table
(Figure 6.30).

DESCRIBE forums;

DESCRIBE messages;

DESCRIBE users;

The DESCRIBE SQL term will tell you infor-
mation about a table’s column names
and order, column types, and index types
(under Key). It also indicates whether or
not a field can be NULL, what default
value has been set (if any), and more.

continues on next page

ene6 Terminal
mysql> DESCRIBE forums; =
=

| Field | Type | Hull | key | Default | Extra |
| forum_id | tinyint(3) unsigned | HO | PRI | HULL | auto_increment |

name | varchar (6@} | Mo ] wunr | |
2 rows in set (8.6 sec)
mysqgl> DESCRIBE messages;
| Field | Tupe | Mull | Key | Default | Extra |
| message_id | int{18) unsigned | MO | PRI | NULL | aute_increment |
| forum_id | tingint(3) unsigred | HO | nuL | | |
| parent_id | int{18) unsigned [T T | |
| user_id | mediumint(8) unsigned | HO | HUL | | |
| subject | varchar(188) | voo | | |
| body | longtext | o] moe | | |
| date_entered | timestamp | WO | MUL | CURREWT_TIMESTANP | |
T rows in oset (8,81 sec)
mysql> DESCRIBE users;
| Field | Type | Mull | key | Default | Extra |
| user_id | mediumint(8) unsigned | MO | PRI | MULL | aute_increment |
| username | warchar(3@} | Mo | wunr | | |
| pass | chari4a) | MO ] nue | | |
| first_name | varchar(28} | moo | | | |
| tast_name | varchari{4a) | w0 | | | | N . .
| email | varchar(88} | w0 | unn | | | Flgure 6.30 To view the details of a
: PP @ table’s structure, use DESCRIBE.

rows in se .88 sec ..

14 The Key column indicates the

mysal> || indexes.

183

S3IX3AN| ONILVIY)



CREATING INDEXES

Chapter 6

v Tips

B You'll get an error and the index will not
be created if you attempt to add a UNIQUE
index to a column that has duplicate values.

B Indexes can be named when they
are created:
ALTER TABLE tablename
ADD INDEX indexname (columnname)

If no name is provided, the index will
take the name of the column to which it
is applied.

B The word COLUMN in most ALTER statements
is optional.

B Suppose you define an index on multiple
columns, like this:

ALTER TABLE tablename
ADD INDEX (coll, col2, col3)

This effectively creates an index for
searches on colI, on coll and col2 together,
or on all three columns together. It does
not provide an index for searching just
col2 or col3 or those two together.

184



Advanced SQL and MySQL

Using Different Table Types

The MySQL database application supports
several different types of tables (a table’s
type is also called its storage engine). Each
table type supports different features, has
its own limits (in terms of how much data
it can store), and even performs better or
worse under certain situations. Still, how
you interact with any table type—in terms
of running queries—is generally consistent
across them all.

The most important table type is MyISAM,
which is the default table type on all operating
systems except for Windows. MyISAM tables
are great for most applications, handling
SELECTs and INSERTs very quickly. The MyISAM
storage engine cannot handle transactions,
though, which is its main drawback.

After MyISAM, the next most common
storage engine is InnoDB, which is also the
default table type for Windows installations
of MySQL. InnoDB tables can be used for
transactions and perform UPDATEs nicely. But
the InnoDB storage engine is generally slower
than MyISAM and requires more disk space
on the server. Also, an InnoDB table does
not support FULLTEXT indexes (which is why,
if you're running Windows, you might have
seen the error message in Figure 6.28).

To specify the storage engine when you define
a table, add a clause to the end of the crea-
tion statement:

CREATE TABLE tablename (
columnlname COLUMNTYPE,
columniname COLUMNTYPE..
) ENGINE = INNODB

If you don't specify a storage engine when
creating tables, MySQL will use the default
type for that MySQL server.

To change the type of an existing table—
which is perfectly acceptable—use an ALTER
command:

ALTER TABLE tablename ENGINE = MYISAM

Because the next example in this chapter
will require a MyISAM table, let’s run through
the steps necessary for making sure that the
messages table is the correct type. The first
couple of steps will show you how to see the
current storage engine being used (as you may
not need to change the messages tables type).

185

S3dA] 318V LNI¥3441Q ONIS)



USING DIFFERENT TABLE TYPES

Chapter 6

To change a table’s type:

1. View the current table information

(Figure 6.31).
SHOW TABLE STATUS;

The SHOW TABLE STATUS command returns
all sorts of useful information about a
database’s tables. The returned result will
be hard to read, though, as it is a wide
table displayed over multiple lines. What
you're looking for is this: The first item
on each row is the table’s name, and the
second item is the tables engine, or table
type. The engine will most likely be
either MyISAM (Figure 6.31) or InnoDB
(Figure 6.32).

2. Ifnecessary, change the messages table

to MyISAM (Figure 6.33).
ALTER TABLE messages ENGINE=MYISAM;

If the results in Step 1 (Figures 6.31 and
6.32) indicate that the engine is anything
other than MyISAM, you'll need to change
it over to MyISAM using this command
(capitalization doesn’t matter). For me,
using the default MySQL installation and
configuration, changing the tables type
wasn't necessary on Mac OS X but was
on Windows.

my=ql> SHOW TRELE STATUS;

| Hame | Engine | Wersion | Row_format | Rows | Awg_row_length |
| farums | MylsAR | 18 | Dynamic | 7 8 |
| messages | MylsAn | 18 | Dynamic | 21 | 03 |
| users | myrsAn | 18 | Dynamic | 5 | a4 |

3 rows in set (B.81 sec)

my=ql> I

Figure 6.31 Before altering a table’s type, view its current type
with the SHOW TABLE STATUS command. This is a cropped version
of the results using MySQL on Mac OS X.

- MySQL Command Line Client

mysgl> SHOW TABLE STATUS;

Engine ! Uersion ! Row_format ! Rous ! Avg_row_length ! Data_length ! Max_data_length !

Index length i Data_free ! Auto_increment | Create_time i Update_time ! Check_time |

Hon Checksum | Create_options ! Comment H

i forums ! InnoDB ! 18 ! Compact H 40 | 16384 ! a i
16384 | a i 8 i ZEB'? Bﬁ' 24 10:82: 56 i NULL i MULL i utf8 g

eneral ci ! NULL H InnuDB free 3072 kB

i messages ! InnoDB ! 18 | Compact H 88 ! 16384 | a i

H a i 22 1 2.37—39 24 10:82: 56 i NULL i H P utf8 g

eneral_ci | NULL !} H Innnl)B free 3872 kB !

| users ! InnoDB ! 18 ! Compact H 5 3276 1 16384 | a i
49152 !} a i 6 1 20887 E9 24 10:82: 56 i NULL i NULL ! utfB g

eneral ci ! NULL ! ! InnoDE free: 3072 kB

B rows in set (B.808 sec)

mysgl>

4

Figure 6.32 The SHOW TABLE STATUS query (using MySQL on Windows) shows that all three

tables are, in fact, InnoDB, not MyISAM.

186



Advanced SQL and MySQL

v+ MySOL Command Line Client

yzgl> ALTER TABLE messages ENGINE=MYISAM;
nery OK. 21 rows affected (B.26 sec’
ecords: 21 Duplicates: B Warnings: @

[« | L

Figure 6.33 Successfully changing a table’s type (or
storage engine) using an ALTER command.

3. If desired, confirm the engine change by

rerunning the SHOW TABLE STATUS command.

v Tips

B To make any query’s results easier to view

in the mysql client, you can add the \G
parameter (Figure 6.34):

SHOW TABLE STATUS \G

This flag states that the table of results
should be displayed vertically instead of
horizontally. Notice that you don't need
to use a terminating semicolon now,
because the \G ends the command.

The same database can have tables of
different types. This may be true for your
forum database now (depending upon
your default table type). You may also see
this with an e-commerce database that
uses MyISAM for customers and prod-
ucts but InnoDB for orders (to allow

for transactions).

®006 Terminal

mysgl> SHOM TABLE STATUS \G

ym|

1. row
Hame: forums
Engine: MylSAN
Wersion: 18
Row_format: Oynomic
Rows: 7
Avg_row_length: 28
Oata_length: 148
Mox_data_length: 281474076718655
Index_length: 3872
Oata_fres: @
Auto_increment: &
Create_time: 2BET-89-24 23:20:43
Update_time: 2BA7-09-24 23:29:43
Check_time: HULL
Collation: latinl_swedish_ci
Checksum: HULL
Create_aptions:
Comment :

Home: messages
Engine: MylSAN

<+ (3

Figure 6.34 For a more legible version of a query’s results, add

the \G option in the mysgl client.

187

S3dA] 318V LNI¥3441Q ONIS)



PERFORMING FULLTEXT SEARCHES

Chapter 6

Performing FULLTEXT
Searches

In Chapter 5, the LIKE keyword was introduced
as a way to perform somewhat simple string
matches like

SELECT * FROM users
WHERE last_name LIKE 'Smith%'

This type of conditional is effective enough
but is still very limiting. For example, it would
not allow you to do Google-like searches
using multiple words. For those kinds of sit-
uations, you need FULLTEXT searches.

FULLTEXT searches require a FULLTEXT index,
which itself requires a MyISAM table. These
next examples will use the messages table in
the forum database. If your messages table is
not of the MyISAM type and/or does not have
a FULLTEXT index on the body and subject
columns, follow the steps in the previous few
pages to make that change before proceeding.

v Tips

W Inserting records into tables with FULLTEXT
indexes can be much slower because of
the complex index that’s required.

B You can add FULLTEXT indexes on multiple
columns, if those columns will all be
used in searches.

B FULLTEXT searches can successfully be
used in a simple search engine. But a
FULLTEXT index can only be applied to
a single table at a time, so more elaborate
Web sites, with content stored in multi-
ple tables, would benefit from using more
formal search engines.

Performing Basic FULLTEXT
Searches

Once you've established a FULLTEXT index on
a column or columns, you can start query-
ing against it, using MATCH...AGAINST in a
WHERE conditional:

SELECT * FROM tablename WHERE MATCH
(columns) AGAINST (terms)

MySQL will return matching rows in order
of a mathematically calculated relevance,
just like a search engine. When doing so,
certain rules apply:

¢ Strings are broken down into their indi-
vidual keywords.

¢ Keywords less than four characters long
are ignored.

¢ Very popular words, called stopwords,
are ignored.

¢ If more than fifty percent of the records
match the keywords, no records are
returned.

This last fact is problematic to many users
as they begin with FULLTEXT searches and
wonder why no results are retrieved. When
you have a sparsely populated table, there
just won't be sufficient records for MySQL
to return relevant results.

188



Advanced SQL and MySQL

To perform FULLTEXT searches:

1. Thoroughly populate the messages table,
focusing on adding lengthy bodies.

Once again, SQL INSERT commands can
be downloaded from this book’s corre-
sponding Web site.

2. Run a simple FULLTEXT search on the
word database (Figure 6.35).

SELECT subject, body FROM messages
WHERE MATCH (body, subject)
AGAINST('database');

This is a very simple example that will
return some results as long as at least one
and less than fifty percent of the records
in the messages table have the word
“database” in their body or subject. Note
that the columns referenced in MATCH
must be the same as those on which the
FULLTEXT index was made. In this case,
you could use either body, subject or
subject, body, but you could not use
just body or just subject (Figure 6.36).

continues on next page

®00 Terminal

mysqgl> SELECT subject, body FROM messoges =
-> HHERE MATCH (body, subject} r
-> AGAINST( database'};

| subject | body |

| Databamse Design | I'm creating o new database and am having problems with the structure. How many tables should | have?...

| Databamse Design | The number of tables your datsbase includes... |

| Databmse Design | Okay, thanks!

3 rows in set (8.82 sec) @

53
mysgl> I A

Figure 6.35 A basic FULLTEXT search.

®@00 Terminal

mysql> SELECT subject, body FROM messages
-» WHERE MATCH {subject)
-» AGAINST( 'database'};

mysgl> I

ERROR 1191 (HYBRA): Can't find FULLTERT index matching the column List

Figure 6.36 A FULLTEXT query can only be run on the same column or
combination of columns that the FULLTEXT index was created on. With
this query, even though the combination of body and subject has a
FULLTEXT index, attempting to run the match on just subject will fail.

189

S3IHJAVIS 1XI1T11N4 ONIWHO4d3d



PERFORMING FULLTEXT SEARCHES

Chapter 6

3.

Run the same FULLTEXT search while also
showing the relevance (Figure 6.37).

SELECT subject, body, MATCH (body,
subject) AGAINST('database') AS R
FROM messages WHERE MATCH (body,

v Tips

Remember that if a FULLTEXT search returns
no records, this means that either no
matches were made or that over half of
the records match.

— subject) AGAINST('database'); B For sake of simplicity, all of the queries in
If you use the same MATCH..AGAINST this section are simple SELECT statements.
expression as a selected value, the actual You can certainly use FULLTEXT searches
relevance will be returned. within joins or more complex queries.
4. Run a FULLTEXT search using multiple ® MySQL comes with several hundred stop-
keywords (Figure 6.38). words already defined. These are part of
, the applications source code.
SELECT subject, body FROM messages
WHERE MATCH (body, subject) B The minimum keyword' length—fourb
characters by default—is a configuration
AGAINST("html xhtml'); setting you can change in MySQL.
With th_ls query, a match ‘_Nﬂl be made if W FULLTEXT searches are case-insensitive
the subject or body contains either word. b
. ) y default.
Any record that contains both words will
be ranked higher.
@00 Terminal
mysql> SELECT subject, body, MATCH (body, subject) AGAINST('databose'JAS A FROM messages WHERE NMATCH (body, subject) =]
-» AGAINST('database'}; r
| subject | body | A |
| Database Design | I'm creating @ new database and am having problems with the structure. How mony tobles should | have?... | 2.5448827713776 |
Database Design | The number of tables your database includes... | 2.5194842815399 |
| Database Design | Okay, thanks! | 1.7514755725661 |

3

my

raus in set (B.48 sec)

ELTEN |

»

Figure 6.37 The relevance of a FULLTEXT search can be selected, too. In this case, you’'ll see that the two records with
the word “database” in both the subject and body have higher relevance than the record that contains the word in
just the subject.

my

sql> ||

e0e Terminal

mysql> SELECT subject, body FROM messoges =}
- HHERE NMATCH (bady, subject) "
-> AGAINST('html xhtml');

| subject | body |

| HTML va. ®HTRL | RHTHL is a crass betusen HTHL and KML. The diffsrences are largely syntactic. Blah, blah, blah... |

| HTHL vs. ®HTHL | What are the differences betwsen HTHL and HHTHL? |

\ Oynamic HTHL using PHP \ Can | use PHP to dynomically generate HTHL on the fly? Thanks... \

| Dynamic HTHL using PHP | vou mast esrtainly can. |

| Dynamic HTHL wsing PHP, still not clear | Um, how? |

\ Oynamic HTHL using PHP, clearer? \ | think what Larry is trying to say is that you should buy and read his book. \

| £55 Resources | Read Elizabeth Castro's excellent book on HTHL and CSS. Or search Google on "C55". |

T rows in set (8,088 sec) @

-

Figure 6.38 Using the FULLTEXT search, you can easily find messages that contain multiple keywords.

190



Advanced SQL and MySQL

Performing Boolean FULLTEXT
Searches

The basic FULLTEXT search is nice, but a
more sophisticated FULLTEXT search can be
accomplished using its Boolean mode. To do
so, add the phrase IN BOOLEAN MODE to the
AGAINST clause:

SELECT * FROM tablename WHERE
MATCH(Ccolumns) AGAINST('terms' IN BOOLEAN
MODE)

Boolean mode has a number of operators

(Table 6.10) to tweak how each keyword is
treated:

SELECT * FROM tablename WHERE
MATCH(Ccolumns) AGAINST('+database
-mysql' IN BOOLEAN MODE)

In that example, a match will be made if the
word database is found and mysql is not
present. Alternatively, the tilde (~) is used as
a milder form of the minus sign, meaning
that the keyword can be present in a match,
but such matches should be considered

less relevant.

Table 6.10 Use these operators to fine-tune your
FULLTEXT searches.

Boolean Mode Operators

OPERATOR MEANING

+ Must be present in every match

- Must not be present in any match
~ Lowers a ranking if present

* Wildcard

< Decrease a word’s importance
> Increase a word’s importance
Must match the exact phrase

0] Create subexpressions

The wildcard character (*) matches variations
on a word, so cata* matches catalog, catalina,
and so on. Two operators explicitly state
what keywords are more (>) or less (<) impor-
tant. Finally, you can use double quotation
marks to hunt for exact phrases and paren-
theses to make subexpressions.

The following query would look for records
with the phrase Web develop with the word
html being required and the word JavaScript
detracting from a match’s relevance:

SELECT * FROM tablename WHERE
MATCH(Ccolumns) AGAINST('>"Web develop"
+html ~JavaScript' IN BOOLEAN MODE)

When using Boolean mode, there are several
differences as to how FULLTEXT searches work:

¢ If a keyword is not preceded by an opera-
tor, the word is optional but a match will
be ranked higher if it is present.

¢ Results will be returned even if more
than fifty percent of the records match
the search.

¢ The results are not automatically sorted
by relevance.

Because of this last fact, you'll also want to
sort the returned records by their relevance,
as demonstrated in the next sequence of
steps. One important rule that’s the same
with Boolean searches is that the minimum
word length (four characters by default) still
applies. So trying to require a shorter word
using a plus sign (+php) still won't work.

191

S3IHJAVIS 1XI1T11N4 ONIWHO4d3d



PERFORMING FULLTEXT SEARCHES

Chapter 6

To perform FULLTEXT Boolean

searches:

(Figure 6.40).
1. Run a simple FULLTEXT search that

2. Find matches involving databases,
with an emphasis on normal forms

finds HTML, XHTML, or (X)HTML
(Figure 6.39).

SELECT subject, body FROM
messages WHERE MATCH(body, subject)
AGAINST('"*HTML' IN BOOLEAN MODE)\G

The term HTML may appear in messages
in many formats, including HTML,
XHTML, or (X)HTML. This Boolean mode
query will find all of those, thanks to the

SELECT subject, body FROM messages
WHERE MATCH (body, subject)
AGAINST('>"normal form"* +database*’
IN BOOLEAN MODED\G

This query first finds all records that have
database, databases, etc. and normal
form, normal forms, etc. in them. The
database* term is required (as indicated
by the plus sign), but emphasis is given
to the normal form clause (which is pre-

wildcard character (*).

To make the results easier to view; I'm using
the \G trick mentioned earlier in the chap-

ter, which tells the mysql client to return

the results vertically, not horizontally.

= MySQL Command Line Client

mysql> SELECT subject. ho [=]

dy
—> messages WUHERE HRTCH(hndy subject)
—> AGALNST ¢’ «HTML’ IN BO(i)LERN MODE>~G
- row

subject: C88 Resources
dy: Read Elizaheth Castro’s excellent hook on (XDHTML and C88. Or seawrch Google on 'CSS".
- rou

subject: HTHL ve. RHTHL
hody: What are the differgm:es between HIML and RHIML?
- row

subject: HTML vs. KHTML
body: RKHTHL is a cross hetween HTML and XML. The differences are largely syntactic. Blah. blah, b

lah...
4. rou
ubject: Dynamic HIML using PHP
body: Can I use PHP to dynamically generate HIML on the fly? Thanks... J

kubject: Dynamic HIML using pir"
body: You most cewtainly can.

isubject: Dynamic HTML using PHP, s:ill not clear
hody: Um,. how?

. rou
subject: Dynamic HIML using PHP, clearer?

body: I think what Larry is trying to say is that you should buy and read his hook.
@ rous in set <B.8B0 sec?

mysgl>

-~ MySQL Command Line Client

nysql) SELECT subgject. hody FROM massages -
> WHERE MATCH <hody. sub_]ec

—> AGAINSTC’ >"normal form'= +databasex’

—> IN BOOLEAN MODE>-G

1. row
Sub,]ect Database Design

: I'm creating a now database and an having problems with the stvucturs. How many tables shou
14 T have?

2. rou

subject: Database Design
body: The number of tables your database includes...
. row

subject: Database Design
hody: Okay. thanks?
B pows in set (.80 sec>

nysql> j

ceded by the greater-than sign).

Figure 6.39 A simple
Boolean-mode
FULLTEXT search.

Figure 6.40 This
search looks for
variations on two
different keywords,
ranking the one
higher than the other.

192



Advanced SQL and MySQL

Database Optimization

The performance of your database is pri-
marily dependent upon its structure and
indexes. When creating databases, try to

¢ Choose the best storage engine

¢ Use the smallest data type possible for
each column

¢ Define columns as NOT NULL whenever
possible

¢ Use integers as primary keys

¢ Judiciously define indexes, selecting
the correct type and applying them to
the right column or columns

¢ Limit indexes to a certain number of
characters, if applicable

Along with these tips, there are two simple
techniques for optimizing databases. One
way to improve MySQLSs performance is
to run an OPTIMIZE command on such
tables. This query will rid a table of any
unnecessary overhead, thereby speeding
any interactions with it.

OPTIMIZE TABLE tablename

Running this command is particularly
beneficial after changing a table via an
ALTER command.

To improve a query’s efficiency, it helps to
understand how exactly MySQL will run
that query. This can be accomplished using
the EXPLAIN SQL keyword. Explaining
queries is a very advanced topic, so see
the MySQL manual or search the Web for
more information.

v Tips

MySQL 5.1.7 added another FULLTEXT
search mode: natural language. This is
the default mode, if no other mode (like
Boolean) is specified.

The WITH QUERY EXPANSION modifier can
increase the number of returned results.
Such queries perform two searches and
return one result set. It bases a second
search on terms found in the most rele-
vant results of the initial search. While a
WITH QUERY EXPANSION search can find
results that would not otherwise have
been returned, it can also return results
that aren't at all relevant to the original
search terms.

193

S3IHJAVIS 1XI1T11N4 ONIWHO4d3d



PERFORMING TRANSACTIONS

Chapter 6

Performing Transactions

A database transaction is a sequence of queries
run during a single session. For example, you
might insert a record into one table, insert
another record into another table, and
maybe run an update. Without using trans-
actions, each individual query takes effect
immediately and cannot be undone. With
transactions, you can set start and stop
points and then enact or retract all of the
queries as needed (for example, if one query
failed, all of the queries can be undone).

Commercial interactions commonly require
transactions, even something as basic as
transferring $100 from my bank account to
yours. What seems like a simple process is
actually several steps:

¢ Confirm that I have $100 in my account.
¢ Decrease my account by $100.

¢ Increase the amount of money in your
account by $100.

& Verify that the increase worked.

If any of the steps failed, I would want to
undo all of them. For example, if the money
couldn’t be deposited in your account, it
should be returned to mine until the entire
transaction can go through.

To perform transactions with MySQL, you
must use the InnoDB table type (or storage
engine). To begin a new transaction in the
mysql client, type

START TRANSACTION;

Once your transaction has begun, you can
now run your queries. Once you have fin-
ished, you can either enter COMMIT to enact
all of the queries or ROLLBACK to undo the
effect of all of the queries.

After you have either committed or rolled
back the queries, the transaction is considered
complete, and MySQL returns to an autocom-
mit mode. This means that any queries you
execute take immediate effect. To start another
transaction, just type START TRANSACTION.

It is important to know that certain types of
queries cannot be rolled back. Specifically
those that create, alter, truncate (empty), or
delete tables or that create or delete databases
cannot be undone. Furthermore, using such
a query has the effect of committing and
ending the current transaction.

Finally, you should understand that transac-
tions are particular to each connection. So
one user connected through the mysql client
has a different transaction than another
mysql client user, both of which are different
than a connected PHP script.

With this in mind, I'll run through a very
trivial use of transactions within the mysql
client here. In Chapter 17, “Example—
E-Commerce,” transactions will be run
through a PHP script.

194



Advanced SQL and MySQL

To perform transactions:

1. Connect to the mysql client and select
the test database.

Since this is just a demonstration, I'll use
the all-purpose test database.

2. Create a new accounts table (Figure 6.41).
CREATE TABLE accounts (

id INT UNSIGNED NOT NULL
— AUTO_INCREMENT,

name VARCHAR(4@) NOT NULL,

balance DECIMAL(10,2) NOT NULL
» DEFAULT 0.0,

PRIMARY KEY (id)
) ENGINE=InnoDB;

»- MySQL Command Line Client

Nter password: MHEsEsEssx
elcome to the MySQL monitor.
Your My8QL connection id is

Type ‘help;’ or *Sh' for help. Type ‘“c’

mysql>» USE test;
Database chang ad
mysql> CRERTE TABLE accounts
—> name UARCHARC4@> NOT MNULL,
—>» PRIMARY KEY <id>
—> > ENGINE=InnoDB;
Query OK. @ rows affected (A.28 sec?
mysql> _

<

Commands end with ; or “g. —
Berver version: 5. B._45%-—community—-nt MySQL Community Edition ¢(GPL>
to clear the bhuffer.

—> id INT UNSIGMED NOT NULL AUTO_INCREMENT .
—> balance DECIMALC1@.2> NOT NULL DEFAULT 8.8.

Obviously this isn't a complete table or
database design. For starters, normaliza-
tion would require that the user’s name
be separated into multiple columns, if
not stored in a separate table altogether.
But for demonstration purposes, this will
be fine.

The most important aspect of the table
definition is its engine—InnoDB, which
allows for transactions.

. Populate the table.

INSERT INTO accounts (name, balance)
VALUES ('Sarah Vowell', 5460.23),

', 909325.24),
892.00);

You can use whatever names and values
here that you want. The important thing
to note is that MySQL will automatically
commit this query, as no transaction has
begun yet.

('David Sedaris

("Kojo Nnamdi',

continues on next page

-

| ol 4

Figure 6.41 A new table is created within the test database for the

purposes of demonstrating transactions.

195

SNOILDVSNYY] SNIWYO4d3d



PERFORMING TRANSACTIONS

Chapter 6

4, Begin a transaction and show the table’s
current contents (Figure 6.42).

START TRANSACTION;
SELECT * FROM accounts;

5. Subtract $100 from David Sedaris’ (or any
user’s) account.
UPDATE accounts
SET balance = (balance-100)
WHERE id=2;
Using an UPDATE query. a little math, and
a WHERE conditional, T can subtract 100
from a balance. Although MySQL will
indicate that one row was affected, the
effect is not permanent until the transac-
tion is committed.

6. Add $100 to Sarah Vowell’s account.
UPDATE accounts
SET balance = (balance+100)
WHERE id=1;
This is the opposite of Step 5, as if $100
were being transferred from the one per-
son to the other.

7. Confirm the results (Figure 6.43).
SELECT * FROM accounts;
As you can see in the figure, the one bal-

ance is 100 more and the other is 100 less
then they originally were (Figure 6.42).

v MySOL Command Line Client

ysgl> START TRANSACTION; jA

n
Query OK. B rows affected (.08 zec) —

mysgl> SELEGCT = FROM accounts;
1 id

name i balance H

Sarah Yowell | L468.23 |
David Sedaris | 989325.24 |
Kojo MWnamdi i 892.88 |

o

3 rows in set (B.B@ secd

-

| H

Figure 6.42 A transaction is begun and the existing
table records are shown.

v MySOL Command Line Client

ysgl> UPDATE accounts jA

m
—> 8ET balance = (halance-188>
—» WHERE id=2;
Query OK, 1 row affected (8.8l secd
Rows matched: 1 Changed: 1 Warnings: J

myzgl> UPDATE accounts
—» SET balance = <balance+1B88>
—» WHERE id=1;
Query 0K, 1 row affected (B.B2 sec)
Rows matched: 1 Changed: 1 Warnings:

mysgl>» SELECT = FROM accounts;

1 id | name i balance H

i 1 ! Sarah Uowell | 5568.23 |

i 2 1 David Sedaris | 989225.24 |

i 3 ! Hojo Nnamdi H 892.88 |

3 rows in set (B.BA secd>

mysgl> _

0 | v

Figure 6.43 Two UPDATE queries are executed and the
results are viewed.

196




Advanced SQL and MySQL

~ MySOL Command Line Client

1 id | name i balance H

i i Sarah Uowell | 5568.23 |
i 2 1 David Sedaris [ 989225.24 |
H ! Kojo Nnamdi H 892.08 |

3 rows in set (B.BA sec’

mysql> ROLLBACK;
Query OK. 8 rows affected (B.84 secd

mysgl> SELECT = FROM accounts;

I id | name i balance H
i 1 1 Sarah Uowell | 5468.23 |
I 2 | David Sedaris | 999325.24 |
! 3 | Kojo Nnamdi H 892.00 !

3 rows in set (B.BA sec’

mysgl>

]

nysql> SELECT * FROM accounts; |

-

M 4

Figure 6.44 Because | used the ROLLBACK command,

the potential effects of the UPDATE queries were ignored.

v MySOL Command Line Client

myzgql> UPDATE accounts

—» SEI balance = (balance—188>

—> WHERE id=2;
Query OK. 1 row affected (B.B6 sec)
[Rows matched: 1 Changed: 1 Warnings:

mysqgl>
mysql> UPDATE accounts
—>» 8EI bhalance = (halance+188>
—>» WHERE id=1;
Query 0K, 1 row affected (B.81 sec)>
[Rows matched: 1 Changed: 1 Warnings:

mysgl>

mysgl> COMMIT;

Query QK. 8 rows affected <8.88 sec>
my=qgl> SELECT * FROM accounts;

I id | name i balance H

i i Sarah Uowell | 5568.23 1
I 2 | David Sedaris | 989225.24 |
H ! Kojo Hnamdi H 892.@88 |

B rows in set <(B.B8 sec>

my=gl>

I

T

-

H 4

Figure 6.45 Invoking the COMMIT command makes the

transaction’s effects permanent.

8.

10.

11.

Roll back the transaction.
ROLLBACK;

To demonstrate how transactions can
be undone, I'll undo the effects of these
queries. The ROLLBACK command
returns the database to how it was prior
to starting the transaction. The com-
mand also terminates the transaction,
returning MySQL to its autocommit
mode.

Confirm the results (Figure 6.44).
SELECT * FROM accounts;

The query should reveal the contents of
the table as they original were.

Repeat Steps 4 through 6.

To see what happens when the transac-
tion is committed, the two UPDATE queries
will be run again. Be certain to start the
transaction first, though, or the queries
will automatically take effect!

Commit the transaction and confirm
the results (Figure 6.45).

COMMIT;

SELECT * FROM accounts;

Once you enter COMMIT, the entire trans-
action is permanent, meaning that any
changes are now in place. COMMIT also
ends the transaction, returning MySQL
to autocommit mode.

continues on next page

197

SNOILDVSNYY] SNIWYO4d3d



PERFORMING TRANSACTIONS

Chapter 6

v Tips

One of the great features of transactions
is that they offer protection should a ran-
dom event occur, such as a server crash.
Either a transaction is executed in its
entirety or all of the changes are ignored.

To alter MySQLSs autocommit nature, type
SET AUTOCOMMIT=0;

Then you do not need to type START
TRANSACTION and no queries will be per-
manent until you type COMMIT (or use an
ALTER, CREATE, etc., query).

You can create savepoints in transactions:
SAVEPOINT savepoint_name;

Then you can roll back to that point:
ROLLBACK TO SAVEPOINT savepoint_name;

198



ERROR
HANDLING
AND DEBUGGING

If you're working through this book sequentially (which would be for the best), the
next subject to learn is how to use PHP and MySQL together. However, that process
will undoubtedly generate errors, errors that can be tricky to debug. So before moving
on to new concepts, these next few pages address the bane of the programmer:

errors. As you gain experience, you'll make fewer errors and pick up your own debug-
ging methods, but there are plenty of tools and techniques the beginner can use to
help ease the learning process.

This chapter has three main threads. One focus is on learning about the various
kinds of errors that can occur when developing dynamic Web sites and what their
likely causes are. Second, a multitude of debugging techniques are taught, in a step-
by-step format. Finally, you'll see different techniques for handling the errors that
occur in the most graceful manner possible.

Before reading on, a word regarding errors: they happen to the best of us. Even the
author of this here book sees more than enough errors in his Web development
duties (but rest assured that the code in this book should be bug-free). Thinking that
you'll get to a skill level where errors never occur is a fool’s dream, but there are tech-
niques for minimizing errors, and knowing how to quickly catch, handle, and fix
errors is a major skill in its own right. So try not to become frustrated as you make
errors; instead, bask in the knowledge that you're becoming a better debugger!

199

ONI99NE83g ANV SNITANVH d0¥d]



ERROR TYPES AND BASIC DEBUGGING

Chapter 7

Error Types and Basic
Debugging

When developing Web applications with
PHP and MySQL, you end up with potential
bugs in one of four or more technologies. You
could have HTML issues, PHP problems,
SQL errors, or MySQL mistakes. To be able
to stop the bugs, you must first find the
crack they're sneaking in through.

HTML problems are often the least disrup-
tive and the easiest to catch. You normally
know there’s a problem when your layout is
all messed up. Some steps for catching and
fixing these, as well as general debugging
hints, are discussed in the next section.

PHP errors are the ones you'll see most
often, as this language will be at the heart of
your applications. PHP errors fall into three
general areas:

¢ Syntactical
¢ Run time
¢ Logical

Syntactical errors are the most common and
the easiest to fix. You'll see them if you merely
omit a semicolon. Such errors stop the script
from executing, and if display_errors is on in
your PHP configuration, PHP will show an
error, including the line PHP thinks it's on
(Figure 7.1). If display_errors is off, you'll
see a blank page. (You'll learn more about
display_errors later in this chapter.)

Run-time errors include those things that
don't stop a PHP script from executing (like
parse errors do) but do stop the script from
doing everything it was supposed to do.
Examples include calling a function using the
wrong number or types of parameters. With
these errors, PHP will normally display a mes-
sage (Figure 7.2) indicating the exact prob-
lem (again, assuming that display_errors is on).

|06 Mozilla Firefox (=]

Parse error: syntax error, unexpected
T_FOREACH in /Applications/Abyss Web
Server/htdocs/display_errors.php on line 16

Figure 7.1 Parse errors—which you’ve probably
seen many times over by now—are the most
common sort of PHP error, particularly for
beginning programmers.

806 Display Errors (&)

‘Warning: round() expects at least 1 parameter, 0 given
in /Applications/Abyss YWeb
Server/htdocs/display_errors.php on line 14

Figure 7.2 Misusing a function (calling it with
improper parameters) will create errors during
the execution of the script.

200



Error Handling and Debugging

The final category of error—logical—is
actually the worst, because PHP won't
necessarily report it to you. These are out-
and-out bugs: problems that aren’t obvious
and don't stop the execution of a script.
Tricks for solving all of these PHP errors
will be demonstrated in just a few pages.

SQL errors are normally a matter of syntax,
and they’ll be reported when you try to run
the query on MySQL. For example, I've done
this many times (Figure 7.3):

DELETE * FROM tablename

The syntax is just wrong, a confusion
with the SELECT syntax (SELECT * FROM
tablename). The right syntax is

DELETE FROM tablename

Again, MySQL will raise a red flag when you
have SQL errors, so these aren’t that difficult
to find and fix. With dynamic Web sites, the
catch is that you don't always have static
queries, but rather ones dynamically gener-
ated by PHP. In such cases, if there’s a syntax
problem, the issue is probably in your

PHP code.

Besides reporting on SQL errors, MySQL has
its own errors to consider. An inability to
access the database is a common one and a
showstopper at that (Figure 7.4). You'll also

see errors when you misuse a MySQL func-
tion or ambiguously refer to a column in a
join. Again, MySQL will report any such
error in specific detail. Keep in mind that
when a query doesn't return the records or
otherwise have the result you expect, that’s
not a MySQL or SQL error, but rather a logi-
cal one. Toward the end of this chapter you'll
see how to solve SQL and MySQL problems.

But as you have to walk before you can run,

the next section covers the fundamentals of
debugging dynamic Web sites, starting with
the basic checks you should make and how

to fix HTML problems.

Basic debugging steps

This first sequence of steps may seem obvi-
ous, but when it comes to debugging, missing
one of these steps leads to an unproductive
and extremely frustrating debugging experi-
ence. And while I'm at it, I should mention
that the best piece of general debugging
advice is this:

When you get frustrated, step away from the
computer!

I have solved almost all of the most perplex-
ing issues I've come across by taking a break,
clearing my head, and coming back to the

continues on next page

we MySOL Command Line Client
1> DELETE ®* FROM users;

ysgl>

IT -
RROR 1864 <(42@88@>: You have an error in your S5QL syntax; check the manual that corresponds to your —
ySQL server version for the right syntax to use near '* FROM users’ at line 1 _J

-

Figure 7.3 MySQL will report any errors found in the syntax of an SQL command.

eoo6 Terminal

t Jusr/local/mysql/bin/mysql -u root —p
Enter password:

{using password: YES)

ERROR 1845 {28888): Access denied for user 'root'®'localhost'

Figure 7.4 An inability to connect to a MySQL server or a specific

database is a common MySQL error.

201

ONI99ng3( JISYY ANV SIdA] ¥O¥¥]



ERROR TYPES AND BASIC DEBUGGING

Chapter 7

code with fresh eyes. Readers in the book’s
supporting forum (www.DMCInsights.com/

phorum/) have frequently found this to be true

as well. Trying to forge ahead when you're
frustrated tends to make things worse.

To begin debugging any problem:

¢ Make sure that you are running the
right page.

It’s altogether too common that you try

to fix a problem and no matter what you
do, it never goes away. The reason: you've

actually been editing a different page
than you thought.

¢ Make sure that you have saved your
latest changes.

An unsaved document will continue to
have the same problems it had before
you edited it (because the edits haven't
been enacted).

¢ Make sure that you run all PHP pages
through the URL.

Because PHP works through a Web serv-
er (Apache, IIS, etc.), running any PHP
code requires that you access the page
through a URL (http://www.example.
com/page.php or http://localhost/
page.php). If you double-click a PHP page
to open it in a browser (or use the brows-
er’s File > Open option), you'll see the
PHP code, not the executed result. This
also occurs if you load an HTML page
without going through a URL (which will
work on its own) but then submit the
form to a PHP page (Figure 7.5).

Know what versions of PHP and MySQL
you are running.

Some problems are specific to a certain
version of PHP or MySQL. For example,
some functions are added in later versions
of PHP, and MySQL added significant new
features in versions 4, 4.1, and 5. Run a
phpinfo() script (Figure 7.6, see
Appendix A, “Installation,” for a script
example) and open a mysq] client session

handle_form.php ——

®xhtml1/DTD/xhtmll-transitional.dtd">
<head>
<title>Form Feedback</title>

.error {
font-weight: bold;
color: #CO0O
}
</style>
</head>
<body>

// Print the submitted information:

<tt>{$_POST[ 'comments']}</tt></p>
} else { // Missing form wvalue.

}

>
</body>
</html>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
<html =mlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<meta http-equiv="content-type” content="text/html; charset=iso-885%-1" />

<style type="text/css" title="text/css" media="all">

<?php # Script 2.5 = handle_form.php #4

if { lempty($_POST|'name')]) && !empty($_POST['comments')]) && lempty($_POST['email']) ) {
echo "<p>Thank you, <b>{$_POST[ 'name')}</b>, for the following comments:<br />

<p>We will reply to you at <i>{§_POST[ 'email’]}</i>.</p>\n":

echo '<p class="error">Please go back and fill out the form again.</p>";

Figure 7.5 PHP code will only be executed if run through a URL. This means that forms that
submit to a PHP page must also be loaded through http://.

202



Error Handling and Debugging

8606 BRpIRTe0. t‘a (Figure 7.7) to determine this informa-

tion. phpMyAdmin will often report on
the versions involved as well (but don’t
confuse the version of phpMyAdmin,

which will likely be 2.something with the
versions of PHP or MySQL).

I consider the versions being used to be

such an important, fundamental piece of
information that I won't normally assist
people looking for help until they provide
this information!

Figure 7.6 A phpinfo() script is one of your best tools '
for debugging, informing you of the PHP version and continues on next page
how it’s configured.

|

+ MySOL Command Line Client |EI| x

Enter password:

elcome to the HySQL monitor. Commands end with ; or “\g.

Mour MySQL connection id is

Server version: 5.8.45-community-—nt MySQL Community Edition {GPL>

Type ‘helps;’ or *~h' For help. Type ‘¢’ to clear the huffer.
nysgl>

| 2

Figure 7.7 When you connect to a MySQL server, it should let you
know the version number.

Book Errors

If you've followed an example in this book and something’s not working right, what should
you do?

1.
2.

3.

Double-check your code or steps against those in the book.

Use the index at the back of the book to see if I reference a script or function in an earlier
page (you may have missed an important usage rule or tip).

View the PHP manual for a specific function to see if it’s available in your version of PHP
and to verify how the function is used.

Check out the book's errata page (through the supporting Web site, waw.DMCInsights. com/
phpmysql3/) to see if an error in the code does exist and has been reported. Don't post
your particular problem there yet, though!

Triple-check your code and use all the debugging techniques outlined in this chapter.

Search the book’s supporting forum to see if others have had this problem and if a solu-
tion has already been determined.

If all else fails, use the book’s supporting forum to ask for assistance. When you do, make
sure you include all the pertinent information (version of PHP, version of MySQL, the
debugging steps you took and what the results were, etc.).

203

ONI99ng3( JISYY ANV SIdA] ¥O¥¥]



ERROR TYPES AND BASIC DEBUGGING

Chapter 7

*

Know what Web server you are running.

Similarly, some problems and features are
unique to your Web serving application—
Apache, IIS, or Abyss. You should know
which one you are using, and which
version, from when you installed the
application.

Try executing pages in a different Web
browser.

Every Web developer should have and
use at least two Web browsers. If you test
your pages in different ones, you'll see if
the problem has to do with your script or
a particular browser.

If possible, try executing the page using a
different Web server.

PHP and MySQL errors sometimes stem
from particular configurations and ver-
sions on one server. If something works
on one server but not another, then you'll
know that the script isn't inherently at
fault. From there it's a matter of using
phpinfo() scripts to see what server set-
tings may be different.

v Tips

W Iftaking a break is one thing you should

do when you become frustrated, here’s
what you shouldn’t do: send off one or
multiple panicky and persnickety emails
to a writer, to a newsgroup or mailing
list, or to anyone else. When it comes to
asking for free help from strangers,
patience and pleasantries garner much
better and faster results.

For that matter, I would highly advise
against randomly guessing at solutions.
I've seen far too many people only com-
plicate matters further by taking stabs at
solutions, without a full understanding of
what the attempted changes should or
should not do.

B Theres another different realm of errors
that you could classify as usage errors:
what goes wrong when the site’s user
doesn’t do what you thought they would.
These are very difficult to find on your
own because it’s hard for the program-
mer to use an application in a way other
than she intended. As a golden rule,
write your code so that it doesn't break
even if the user doesn't do anything right!

Debugging HTML

Debugging HTML is relatively easy. The
source code is very accessible, most prob-
lems are overt, and attempts at fixing the
HTML don't normally make things worse (as
can happen with PHP). Still, there are some
basic steps you should follow to find and fix
an HTML problem.

To debug an HTML error:

¢ Check the source code.

If you have an HTML problem, you'll
almost always need to check the source
code of the page to find it. How you view
the source code depends upon the
browser being used, but normally it’s a
matter of using something like View >
Page Source.

¢ Use a validation tool (Figure 7.8).

Validation tools, like the one at
http://validator.w3.org, are great for
finding mismatched tags, broken tables,
and other problems.

¢ Add borders to your tables.

Frequently layouts are messed up because
tables are incomplete. To confirm this,
add a prominent border to your table to
make it obvious where the different
columns and rows are.

204



Error Handling and Debugging

3 [Vatil] Markop Valldation of form. s - 30 Markup Yabdetar - Mo | ovfa

Be bR fem ey ool Dok tee

Jump To:

This Page |5 Valid XHTML 1.0 Transitional!

Result:

Figure 7.8 Validation tools like the one provided by
the W3C (World Wide Web Consortium) are good for
finding problems and making sure your HTML
conforms to standards.

= ubfoxiia fefox -
+ [ ¢85+ B forms = (B amages + B Informasion + U3 Mizcelianeous v o Outing v &2 Resize
Display Form Details
Show Passwords
View Form Information

Convert Form Methods ¥ GETs To POSTS
Convert Select Elements To Text Inputs POSTs To GETs

Enable Auto Completion
Enable Form Fields

Clear Radio Buttons

Make Form Flelds Writable
Popullate Form Fields
Remave Maximum Lengths

Figure 7.9 Firefox’s Web Developer widget provides
quick access to lots of useful tools.

v Tip

B The first step toward fixing any kind of
problem is understanding what’s causing
it. Remember the role each technology—
HTML, PHP, SQL, and MySQL—plays as
you debug. If your page doesn't look right,
that’s an HTML problem. If your HTML
is dynamically generated by PHP, it’s still
an HTML problem but you'll need to
work with the PHP code to make it right.

¢ Use Firefox or Opera.

I'm not trying to start a discussion on
which is the best Web browser, and as
Internet Explorer is the most used one,
you'll need to eventually test using it, but I
personally find that Firefox (available for
free from www.mozilla.com) and Opera
(available for free from www.opera.com)
are the best Web browsers for Web devel-
opers. They offer reliability and debugging
features not available in other browsers.
If you want to stick with IE or Safari for
your day-to-day browsing, that's up to
you, but when doing Web development,
start with either Firefox or Opera.

¢ Use Firefox’s add-on widgets (Figure 7.9).

Besides being just a great Web browser,
the very popular Firefox browser has a
ton of features that the Web developer
will appreciate. Furthermore, you can
expand Firefox’s functionality by
installing any of the free widgets that are
available. The Web Developer widget in
particular provides quick access to great
tools, such as showing a table’s borders,
revealing the CSS, validating a page, and
more. [ also frequently use these add-ons:
DOM Inspector, Firebug, and HTML
Validator, among others.

¢ Test the page in another browser.
PHP code is generally browser-independ-
ent, meaning you'll get consistent results
regardless of the client. Not so with
HTML. Sometimes a particular browser
has a quirk that affects the rendered
page. Running the same page in another
browser is the easiest way to know if it’s
an HTML problem or a browser quirk.

205

ONI99ng3( JISYY ANV SIdA] ¥O¥¥]



DisPLAYING PHP ERRORS

Chapter 7

Displaying PHP Errors

PHP provides remarkably useful and descrip-
tive error messages when things go awry.
Unfortunately, PHP doesn't show these errors
when running using its default configuration.
This policy makes sense for live servers, where
you don’t want the end users seeing PHP-
specific error messages, but it also makes
everything that much more confusing for the
beginning PHP developer. To be able to see
PHP’s errors, you must turn on the display._
errors directive, either in an individual script
or for the PHP configuration as a whole.

To turn on display_errors in a script, use the
ini_set() function. As its arguments, this
function takes a directive name and what
setting that directive should have:

ini_set('display_errors', 1);

Including this line in a script will turn on
display_errors for that script. The only
downside is that if your script has a syntax
error that prevents it from running at all,
then you'll still see a blank page. To have
PHP display errors for the entire server,
you'll need to edit its configuration, as is
discussed in the “Configuring PHP” section
of Appendix A.

To turn on display_errors:

1. Create a new PHP document in your text
editor or IDE (Script 7.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/
— xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
» xhtml" xml:lang="en" lang="en">

<head>

Script 7.1 The ini_set() function can be used to tell a
PHP script to reveal any errors that might occur.

eoce = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=
is0-8859-1" />

6 <title>Display Errors</title>
7 </head>
8 <body>

9 <h2>Testing Display Errors</h2>

10 <?php # Script 7.1 - display_errors.php
11

12 // Show errors:

13 ini_set('display_errors', 1);

14

15 // Create errors:

16 foreach ($var as $v) {}

17 $result = 1/0;

18

19 7>

20 </body>
21 </html>

206



Error Handling and Debugging

<meta http-equiv="content-type"
— content="text/html; charset=
— 1s0-8859-1" />
<title>Display Errors</title>
</head>
<body>

<?php # Script 7.1 - display_
» errors.php

After the initial PHP tags, add
ini_set('display_errors', 1);

From this point in this script forward,
any errors that occur will be displayed.

Create some errors.
foreach ($var as $v) {}
$result = 1/0;

To test the display_errors setting, the
script needs to have an error. This first
line doesn't even try to do anything, but
it's guaranteed to cause an error. There
are actually two issues here: first, there’s a
reference to a variable ($var) that doesn’t
exist; second, a non-array ($var) is being
used as an array in the foreach loop.

The second line is a classic division by
zero, which is not allowed in program-
ming languages or in math.

8eoe

Display Errors =

Testing Display Errors

‘Warning: Invalid argument supplied for foreach() in
/Applications/Abyss Web
Server/htdocs/display_errors.php on line 16

‘Warning: Division by zero in /A pplications/A byss
‘Web Server/htdocs/display_errors.php on line 17

Figure 7.10 With display_errors turned on (for
this script), the page reports the errors when
they occur.

4.

Complete the page.
7>

</body>

</html>

Save the file as display_errors.php,
place it in your Web directory, and test it
in your Web browser (Figure 7.10).

If you want, change the first line of PHP
code to read

ini_set('display_errors', 0);

and then save and retest the script
(Figure 7.11).

v Tips

There are limits as to what PHP settings
the ini_set() function can be used to
adjust. See the PHP manual for specifics
as to what can and cannot be changed
using it.

As a reminder, changing the display._
errors setting in a script only works so
long as that script runs (i.e., it cannot
have any parse errors). To be able to
always see any errors that occur, you'll
need to enable display_errors in PHP’s
configuration file (again, see the appendix).

® O O Display Errors =

Testing Display Errors

Figure 7.11 With display_errors
turned off (for this page), the same
errors (Script 7.1 and Figure 7.10)
are no longer reported.
Unfortunately, they still exist.

207

SYOUU] dHd ONIAVIdSIQ



ADJUSTING ERROR REPORTING IN PHP

Chapter 7

Adjusting Error Reporting
in PHP

Once you have PHP set to display the errors
that occur, you might want to adjust the
level of error reporting. Your PHP installa-
tion as a whole, or individual scripts, can be
set to report or ignore different types of
errors. Table 7.1 lists most of the levels, but
they can generally be one of these three
kinds:

¢ Notices, which do not stop the execution
of a script and may not necessarily be a
problem.

¢ Warnings, which indicate a problem but
don't stop a script’s execution.

¢ Errors, which stop a script from continu-
ing (including the ever-common parse
error, which prevent scripts from running
at all).

As a rule of thumb, you'll want PHP to report
on any kind of error while you're developing
a site but report no specific errors once the
site goes live. For security and aesthetic
purposes, it’s generally unwise for a public
user to see PHP’s detailed error messages.
Frequently, error messages—particularly
those dealing with the database—will reveal

Suppressing Errors with @

Individual errors can be suppressed in
PHP using the @ operator. For example,
if you don't want PHP to report if it
couldn't include a file, you would code

@include ('config.inc.php');

Or if you don't want to see a “division by
Zero~ error:

$x = 8;
$y = 0;
$num = @($x/$y);

The @ symbol will work only on expres-
sions, like function calls or mathematical
operations. You cannot use @ before con-
ditionals, loops, function definitions, and
so forth.

As a rule of thumb, I recommend that @
be used on functions whose execution,
should they fail, will not affect the func-
tionality of the script as a whole. Or you
can suppress PHP’s errors when you will
handle them more gracefully yourself (a
topic discussed later in this chapter).

Table 7.1 PHP’s error-reporting settings, to be used with the error_reporting() function or in the php.1ini file. Note
that E_ALL’s number value was different in earlier versions of PHP and did not include E_STRICT (it does in PHP 6).

Error-Reporting Levels

NuMBER CONSTANT REPORT ON

1 E_ERROR

2 E_WARNING

4 E_PARSE Parse errors
8 E_NOTICE

256 E_USER_ERROR

512 E_USER_WARNING

1024 E_USER_NOTICE

2048 E_STRICT

8191 E_ALL

Fatal run-time errors (that stop execution of the script)
Run-time warnings (non-fatal errors)

Notices (things that could or could not be a problem)

User-generated error messages, generated by the trigger_error() function
User-generated warnings, generated by the trigger_error() function
User-generated notices, generated by the trigger_error() function
Recommendations for compatibility and interoperability

All errors, warnings, and recommendations

208



Error Handling and Debugging

Script 7.2 This script will demonstrate how error
reporting can be manipulated in PHP.

8oeé = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Report Errors</title>
7 </head>
8 <body>

9 <h2>Testing Error Reporting</h2>
10 <?php # Script 7.2 - report_errors.php
11

12 // Show errors:

13 ini_set('display_errors', 1);

14

15 // Adjust error reporting:

16 error_reporting(E_ALL);

17

18 // Create errors:

19 foreach ($var as $v) {3

20  $result = 1/0;

21

22 7>

23 </body>
24 </html>

certain behind-the-scenes aspects of your
Web application that are best not shown.
While you hope all of these will be worked
out during the development stages, that may
not be the case.

You can universally adjust the level of error
reporting following the instructions in
Appendix A. Or you can adjust this behavior
on a script-by-script basis using the
error_reporting() function. This function
is used to establish what type of errors PHP
should report on within a specific page. The
function takes either a number or a con-
stant, using the values in Table 7.1 (the PHP
manual lists a few others, related to the core
of PHP itself).

error_reporting(@); // Show no errors.

A setting of 0 turns error reporting off
entirely (errors will still occur; you just won't
see them anymore). Conversely,
error_reporting (E_ALL) will tell PHP to
report on every error that occurs. The num-
bers can be added up to customize the level
of error reporting, or you could use the bit-
wise operators— | (or), ~ (not), & (and)—with
the constants. With this following setting
any non-notice error will be shown:

error_reporting (E_ALL & ~E_NOTICE);
To adjust error reporting:

1. Open display_errors.php (Script 7.1) in
your text editor or IDE.

To play around with error reporting levels,
use display_errors.php as an example.

2. After adjust the display_errors setting,
add (Script 7.2)

error_reporting (E_ALL);

For development purposes, have PHP
notify you of all errors, notices, warnings,
and recommendations. This line will

continues on next page

209

dHd NI O9NILY0d3Y ¥0o¥AJ ONILSNnlay



ADJUSTING ERROR REPORTING IN PHP

Chapter 7

accomplish that. In short, PHP will let
you know about anything that is, or may
be, a problem.

Because E_ALL is a constant, it is not
enclosed in quotation marks.

3. Save the file as report_errors.php, place
it in your Web directory, and run it in
your Web browser (Figure 7.12).

I also altered the pagess title and the
heading, but both are immaterial to the
point of this exercise.

4. Change the level of error reporting to
something different and retest (Figures
7.13 and 7.14).

v Tips

B Because you'll often want to adjust the
display_errors and error_reporting for
every page in a Web site, you might want
to place those lines of code in a separate
PHP file that can then be included by
other PHP scripts.

B In case you are curious, the scripts in
this book were all written with PHP’s
error reporting on the highest level (with
the intention of catching every possible
problem).

®eo6 Report Errors =1

Testing Error Reporting

Notice: Undefined variable: var in /Applications/Abyss Web
Server/htdocs/report_errors.php on line 19

‘Warning: Invalid argument supplied for foreach() in
/Applications/Abyss Web Server/htdocs/report_errors.php
on line 19

‘Warning: Division by zero in /Applications/Abyss Web
Server/htdocs/report_errors.php on line 20

Figure 7.12 On the highest level of error reporting,
PHP has two warnings and one notice for this page
(Script 7.2).

®06 Report Errors (=)

Testing Error Reporting

‘Warning: Invalid argument supplied for foreach() in
/A pplications/Abyss Web Server/htdocs/report_errors.php
on line 19

‘Warning: Division by zero in /Applications/Abyss Web
Server/htdocs/report_errors.php on line 20

Figure 7.13 The same page (Script 7.2) after disabling
the reporting of notices.

ene Report Errors =

Testing Error Reporting

Figure 7.14 The same page again
(Script 7.2) with error reporting
turned off (set to 0). The result is
the same as if display_errors was
disabled. Of course, the errors still
occur; they’re just not being
reported.

210



Error Handling and Debugging

Creating Custom Error
Handlers

Another option for error management with

your sites is to alter how PHP handles errors.

By default, if display_errors is enabled and
an error is caught (that falls under the level
of error reporting), PHP will print the error,
in a somewhat simplistic form, within some
minimal HTML tags (Figure 7.15).

You can override how errors are handled by
creating your own function that will be
called when errors occur. For example,

function report_errors (arguments) {
// Do whatever here.
}

set_error_handler ('report_errors');

The set_error_handler() function is used
to name the function to be called when an
error occurs. The handling function (report_
errors, in this case) will, at that time, receive
several values that can be used in any possi-
ble manner.

This function can be written to take up to
five arguments. In order, these arguments
are: an error number (corresponding to
Table 7.1), a textual error message, the name
of the file where the error was found, the
specific line number on which it occurred,
and the variables that existed at the time of
the error. Defining a function that accepts
all these arguments might look like

function report_errors ($num, $msg,
$file, $line, $vars) {..

To make use of this concept, the report_
errors.php file (Script 7.2) will be rewritten
one last time.

<br />
<br />

<]

<b>Notice</b>: Undefined variable: var in <b>/Applications/Abyss Web Server/htdocs/report_errors.php</b> on line <b>19</b><br />
<b>Warning</b>: Invalid argument supplied for foreach() in <b>/Applications/Abyss Web Server/htdocs/report_errors.php</b> on line <b>19</b><br />
br />

<b>Warning</b>: Division by zero in <b>/Applications/Abyss Web Server/htdocs/report_errors.php</b> on line <b>20</b><br />

Figure 7.15 The HTML source code for the errors shown in Figure 7.12.

211

SYTTANVH dOoUI3 WOLSN) ONILYIY)



CREATING CusTOM ERROR HANDLERS

Chapter 7

To create your own error handler:

1.

2.

Open report_errors.php (Script 7.2) in
your text editor or IDE.

Remove the ini_set() and error_
reporting() lines (Script 7.3).

When you establish your own error han-
dling function, the error reporting levels
no longer have any meaning, so that line
can be removed. Adjusting the display._
errors setting is also meaningless, as the
error handling function will control
whether errors are displayed or not.

Before the script creates the errors, add
define ('LIVE', FALSE);

This constant will be a flag used to indi-
cate whether or not the site is currently
live. It’s an important distinction, as how
you handle errors and what you reveal in
the browser should differ greatly when
you're developing a site and when a site
is live.

This constant is being set outside of the
function for two reasons. First, I want to
treat the function as a black box that does
what I need it to do without having to go
in and tinker with it. Second, in many
sites, there might be other settings (like
the database connectivity information)
that are also live versus development-
specific. Conditionals could, therefore,
also refer to this constant to adjust those
settings.

Begin defining the error handling function.

function my_error_handler ($e_number,
— $e_message, $e_file, $e_line,
— $e_vars) {

The my_error_handler() function is set
to receive the full five arguments that a
custom error handler can.

Script 7.3 By defining your own error handling
function, you can customize how errors are treated

inyour PHP scripts.
006 3 Script
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtml1l-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />
6 <title>Handling Errors</title>
7 </head>
8 <body>
<h2>Testing Error Handling</h2>
10 <?php # Script 7.3 - handle_errors.php
11
12 // Flag variable for site status:
13 define('LIVE', FALSE);
14
15 // Create the error handler:
16  function my_error_handler ($e_number,
$e_message, $e_file, $e_line, $e_vars) {
17
18 // Build the error message:
19 $message = "An error occurred in script
'$e_file' on line $e_line: $e_message\
n";
20
21 // Append $e_vars to $message:
22 $message .= print_r ($e_vars, 1);
23
24 if ('LIVE) { // Development (print the
error).
25 echo '<pre>' . $message . "\n";
26 debug_print_backtrace();
27 echo '</pre><br />';
28 } else { // Don't show the error.

(script continues on next page)

212



Error Handling and Debugging

Script 7.3 continued
006 2 Saipt
29 echo '<div class="error">A system

30
31
32
33
34
35
36
37
38
39
40
41
42
43

error occurred. We apologize for
the inconvenience.</div><br />";

} // End of my_error_handler() definition.

// Use my error handler:

set_error_handler ('my_error_handler');

// Create errors:
foreach ($var as $v) {}

$result = 1/0;

7>
</body>
</html>

. Create the error message using the

received values.

$message = "An error occurred in
— script '$e_file' on line $e_line:
— $e_message\n";

The error message will begin by referenc-
ing the filename and number where the
error occurred. Added to this is the actu-
al error message. All of these values are
passed to the function when it is called
(when an error occurs).

. Add any existing variables to the error

message.
$message .= print_r ($e_vars, 1);

The $e_vars variable will receive all of
the variables that exist, and their values,
when the error happens. Because this
might contain useful debugging informa-
tion, it's added to the message.

The print_r() function is normally used
to print out a variable's structure and
value; it is particularly useful with arrays.
If you call the function with a second
argument (I or TRUE), the result is
returned instead of printed. So this line
adds all of the variable information to
$message.

Print a message that will vary, depending
upon whether or not the site is live.

if (ILIVE) {
echo '<pre>' . $message . "\n";
debug_print_backtrace();
echo '</pre><br />';

} else {

echo '<div class="error">A

— system error occurred. We

— apologize for the

— inconvenience.</div><br />';

continues on next page

213

SYTTANVH dOoUI3 WOLSN) ONILYIY)



CREATING CusTOM ERROR HANDLERS

Chapter 7

If the site is not live (if LIVE is false),
which would be the case while the site is
being developed, a detailed error message
should be printed (Figure 7.16). For ease
of viewing, the error message is printed
within HTML PRE tags (which aren’t
XHMTL valid but are very helpful here).
Furthermore, a useful debugging func-
tion, debug_print_backtrace(), is also
called. This function returns a slew of
information about what functions have
been called, what files have been includ-
ed, and so forth.

If the site is live, a simple mea culpa will
be printed, letting the user know that an
error occurred but not what the specific
problem is (Figure 7.17). Under this
situation, you could also use the error_
log() function (see the sidebar) to have
the detailed error message emailed or
written to a log.

8.

10.

Complete the function and tell PHP to
use it.

3
set_error_handler('my_error_handler'
-);

This second line is the important one,

telling PHP to use the custom error
handler instead of PHP's default handler.

Save the file as handle_errors.php,
place it in your Web directory, and test
it in your Web browser (Figure 7.16).

Change the value of LIVE to TRUE, save,
and retest the script (Figure 7.17).

To see how the error handler behaves
with a live site, just change this one
value.

ene Handling Errors

Testing Error Handling

Array
[GLOBALS] => Array
+RECURSION*®
[_POST] => Array
{
)
[_GET] => Array
{
)
[_COOKIE] => Array
(
)
[_FILES) => Array
{
)

)

Array
[GLOBALS] => Array
+RECURSION*®
[_POST] => Array
{
)
[_GET) => Array
{
)
[_COOKIE] => Array
{

)
LS = ]

An error occurred in script '/Applications/Abyss Web Server/htdocs/handle_errors.php’ on line 38: Undefined variable

#0 my error handler(8, Undefined variable: var, /Applications/Abyss Web Server/htdocs/handle errors.php, 38, Array

An error occurred in script '/Applications/Abyss Web Server/htdocs/handle_errors.php’ on line 38: Invalid argument si

a
v

Yalrl

Figure 7.16 During the development phase, detailed error messages are printed in the Web browser.
(In a more real-world script, with more code, the messages would be more useful.)

214



Error Handling and Debugging

e Handling Errors =

Testing Error Handling

A sysiem error occurred. We apologize for the inconvenience.
A system error occurred. We apologize for the inconvenience.

A system error occurred. We apologize for the inconvenience.

Figure 7.17 Once a site has gone live, more user-
friendly (and less revealing) errors are printed.
Here, one message is printed for each of the three
errors in the script.

Logging PHP Errors

In Script 7.3, errors are handled by simply
printing them out in detail or not.
Another option is to log the errors: make
a permanent note of them somehow. For
this purpose, the error_log() function
instructs PHP how to file an error. It’s
syntax is

error_log (message, type,

— destination,

extra headers);

The message value should be the text of
the logged error (i.e., $message in Script
7.3). The type dictates how the error is
logged. The options are the numbers 0
through 3: use the computer’s default log-
ging method (0), send it in an email (1),
send to a remote debugger (2), or write it
to a text file (3).

The destination parameter can be either
the name of a file (for log type 3) or an
email address (for log type 1). The extra
headers argument is used only when
sending emails (log type 1). Both the des-
tination and extra headers are optional.

v Tips

If your PHP page uses special HTML for-
matting—like CSS tags to affect the lay-
out and font treatment—add this infor-
mation to your error reporting function.

Obviously in a live site you'll probably
need to do more than apologize for the
inconvenience (particularly if the error
significantly affects the page’s functional-
ity). Still, this example demonstrates how
you can easily adjust error handling to
suit the situation.

If you don’t want the error handling
function to report on every notice, error,
or warning, you could check the error
number value (the first argument sent to
the function). For example, to ignore
notices when the site is live, you would
change the main conditional to

if (ILIVE) {
echo '<pre>' . $message . "\n";
debug_print_backtrace();
echo '</pre><br />';

} elseif ($e_number !'= E_NOTICE) {

echo '<div class="error">A

» system error occurred. We

» apologize for the

» inconvenience.</div><br />";

}

You can invoke your error handling func-
tion using trigger_error().

215

SYTTANVH dOoUI3 WOLSN) ONILYIY)



PHP DEBUGGING TECHNIQUES

Chapter 7

PHP Debugging
Techniques

When it comes to debugging, what you'll
best learn from experience are the causes of
certain types of errors. Understanding the
common causes will shorten the time it
takes to fix errors. To expedite the learning
process, Table 7.2 lists the likely reasons for
the most common PHP errors.

The first, and most common, type of error
that you'll run across is syntactical and will
prevent your scripts from executing. An
error like this will result in messages like the
one in Figure 7.18, which every PHP devel-
oper has seen too many times. To avoid
making this sort of mistake when you pro-
gram, be sure to:

¢ End every statement (but not language
constructs like loops and conditionals)
with a semicolon.

¢ Balance all quotation marks, parenthe-
ses, curly braces, and square brackets
(each opening character must be closed).

¢ Be consistent with your quotation marks
(single quotes can be closed only with
single quotes and double quotes with
double quotes).

¢ Escape, using the backslash, all single-
and double-quotation marks within
strings, as appropriate.

One thing you should also understand about
syntactical errors is that just because the
PHP error message says the error is occur-
ring on line 12, that doesn't mean that the
mistake is actually on that line. At the very
least, it is not uncommon for there to be

eooe Mozilla Firefox [=)

Parse error: syntax error, unexpected
T_ENCAPSED_AND_WHITESPACE, expecting T_STRING or
T_VARIABLE or T_NUM_STRING in /Applications/Abyss Web
Server/htdocs/errors.php on line 41

Figure 7.18 The parse error prevents a script from
running because of invalid PHP syntax. This one
was caused by failing to enclose $array['key']
within curly braces when printing its value.

Table 7.2 These are some of the most common errors you’ll see in PHP, along with their most probable causes.

Common PHP Errors

ERROR LiKELY CAUSE
Blank Page
Parse error

Empty variable value
scope (with functions).

Undefined variable
potential causes).

Call to undefined function

Cannot redeclare function
Headers already sent

has been included.

HTML problem, or PHP error and display_errors or error_reporting is off.

Missing semicolon; unbalanced curly braces, parentheses, or quotation marks; or use of an
unescaped quotation mark in a string.

Forgot the initial $, misspelled or miscapitalized the variable name, or inappropriate variable
Reference made to a variable before it is given a value or an empty variable value (see those

Misspelled function name, PHP is not configured to use that function (like a MySQL function),
or document that contains the function definition was not included.

Two definitions of your own function exist; check within included files.
White space exists in the script before the PHP tags, data has already been printed, or a file

216



Error Handling and Debugging

a difference between what PHP thinks is
line 12 and what your text editor indicates
is line 12. So while PHP’s direction is useful
in tracking down a problem, treat the line
number referenced as more of a starting
point than an absolute.

If PHP reports an error on the last line of
your document, this is almost always
because a mismatched parenthesis, curly
brace, or quotation mark was not caught
until that moment.

The second type of error you'll encounter

results from misusing a function. This error

occurs, for example, when a function is
called without the proper arguments. This

error is discovered by PHP when attempting

to execute the code. In later chapters you'll
probably see such errors when using the
header() function, cookies, or sessions.

To fix errors, you'll need to do a little detec-

tive work to see what mistakes were made

and where. For starters, though, always thor-

oughly read and trust the error message
PHP offers. Although the referenced line
number may not always be correct, a PHP
error is very descriptive, normally helpful,
and almost always 100 percent correct.

To debug your scripts:

¢ Turn on display_errors.

Use the earlier steps to enable display_
errors for a script, or, if possible, the
entire server, as you develop your
applications.

Use comments.

Just as you can use comments to docu-
ment your scripts, you can also use them
to rule out problematic lines. If PHP is
giving you an error on line 12, then com-
menting out that line should get rid of
the error. If not, then you know the error
is elsewhere. Just be careful that you
don’t introduce more errors by improper-
ly commenting out only a portion of a
code block: the syntax of your scripts
must be maintained.

Use the print() and echo() functions.

In more complicated scripts, I frequently
use echo() statements to leave me notes
as to what is happening as the script is
executed (Figure 7.19). When a script
has several steps, it may not be easy to
know if the problem is occurring in step 2
or step 5. By using an echo() statement,
you can narrow the problem down to the
specific juncture.

continues on next page

The farm has heen submitted.

The validation routines have heen passed.

Total Cost

Inthe calculate_total() function.
Calculating the total as (foty * $cosi.
Calculating the taxrate as (btax =7 100).

Calculating the total as $total += ($total = $taxrate)

The tatal cast of purchaszing 10 widget{s) at $2.95 each, including a tax rate of 8% iz $30.98)

Figure 7.19 More complex debugging can be accomplished by leaving
yourself notes as to what the script is doing.

217

SINDINHD3A] 9NI99N93qQ dHd



PHP DEBUGGING TECHNIQUES

Chapter 7

¢ Check what quotation marks are being The form e been suoriced
used for printing variables. The validation roulines have been passed
It's not uncommon for programmers to LACEIE T
mistakenly use single quotation marks L S
and then wonder why their variables are TotaliCostiiel 0
not printed properly. Remember that sin- In the calculate_tofalg unction
gle quotation marks treat text literally say =10
and that you must use double quotation Seos= 205
marks to print out the values of variables. Shax=5

Calculating the total as (Baty * $rosh.

¢ Track variables (Figure 7.20).

$lotal = 20.5
It is pretty easy for a script not to work A e
because you referred to the wrong vari- e
able or the right variable by the wrong Calutng the otz a¢ tota += (gt stasrete)
name or because the variable does not otal = 30 975
have the Value yOU WOU.]d €Xp€Ct. To The tatal cost of purchasing 10 widget(s) at $2.85 sach, including a ta rate of 6%, is $30 58
check for these possibilities, use the Figure 7.20 Printing the names and values of
print() or echo() statements to print variables is the easiest way to track them over the
out the values of variables at important course of a script.
points in your scripts. This is simply a
matter of
echo "<p>\$var = $var</p>\n";

The first dollar sign is escaped so that
the variable’s name is printed. The sec-
ond reference of the variable will print
its value.

¢ Print array values.

For more complicated variable types
(arrays and objects), the print_r() and
var_dump() functions will print out their
values without the need for loops. Both
functions accomplish the same task,
although var_dump() is more detailed in
its reporting than print_r(.

218



Error Handling and Debugging

Using die() and exit()

Two functions that are often used with
error management are die() and exit(Q),
(they're technically language constructs,
not functions, but who cares?). When a
die() or exit() is called in your script,
the entire script is terminated. Both are
useful for stopping a script from continu-
ing should something important—like
establishing a database connection—
fail to happen. You can also pass die()
and exit() a string that will be printed
out in the browser.

You'll commonly see die() or exit()
used in an OR conditional. For example:

include('config.inc.php') OR die
— ('Could not open the file. ");

With a line like that, if PHP could not
include the configuration file, the die()
statement will be executed and the
“Could not open the file.” message will be
printed. You'll see variations on this
throughout this book and in the PHP
manual, as it’s a quick (but potentially
excessive) way to handle errors without
using a custom error handler.

v Tips

Many text editors include utilities to
check for balanced parentheses, brackets,
and quotation marks.

If you cannot find the parse error in a
complex script, begin by using the /* */
comments to render the entire PHP code
inert. Then continue to uncomment sec-
tions at a time (by moving the opening
or closing comment characters) and
rerun the script until you deduce what
lines are causing the error. Watch how
you comment out control structures,
though, as the curly braces must contin-
ue to be matched in order to avoid parse
errors. For example:

if (condition) {
/* Start comment.
Inert code.
End comment. */

}

To make the results of print_r() more
readable in the Web browser, wrap it
within HTML <pre> (preformatted) tags.
This one line is my absolute favorite
debugging tool:

echo '<pre>' . print_r ($var, 1) .

» '</pre>"';

219

SINDINHD3A] 9NI99N93qQ dHd



SQL AND MYSQL DEBUGGING TECHNIQUES

Chapter 7

SQL and MySQL
Debugging Techniques

The most common SQL errors are caused by
the following issues:

¢ Unbalanced use of quotation marks or
parentheses

¢ Unescaped apostrophes in column values

¢ Misspelling a column name, table name,
or function

¢ Ambiguously referring to a column in a
join

¢ Placing a query’s clauses (WHERE, GROUP
BY, ORDER BY, LIMIT) in the wrong order

Furthermore, when using MySQL you can
also run across the following:

¢ Unpredictable or inappropriate query
results

¢ Inability to access the database

Since you'll be running the queries for your
dynamic Web sites from PHP, you need a
methodology for debugging SQL and MySQL
errors within that context (PHP will not
report a problem with your SQL).

Debugging SQL problems

To decide if you are experiencing a MySQL
(or SQL) problem rather than a PHP one,
you need a system for finding and fixing the
issue. Fortunately, the steps you should take
to debug MySQL and SQL problems are easy
to define and should be followed without
thinking. If you ever have any MySQL or
SQL errors to debug, just abide by this
sequence of steps.

To hammer the point home, this next sequence
of steps is probably the most useful debugging
technique in this chapter and the entire book.
You'll likely need to follow these steps in any
PHP-MySQL Web application when you're not
getting the results you expected.

To debug your SQL queries:

1. Print out any applicable queries in your
PHP script (Figure 7.21).
As you'll see in the next chapter, SQL
queries will often be assigned to a vari-
able, particularly when you use PHP to
dynamically write them. Using the code
echo $query (or whatever the query vari-
able is called) in your PHP scripts, you
can send to the browser the exact query
being run. Sometimes this step alone will
help you see what the real problem is.

INSERT INTO users (first_name, last_name, email,
passwiord, registration_date) VaLUES ('Larry', ‘Ullman’, Menu
‘ermnail7@example.com’, SHA'pass'), MOW() )

Horne

System Error Regster

Wiew Users

Figure 7.21 Knowing exactly what query a PHP script
is attempting to execute is the most useful first step
for solving SQL and MySQL problems.

220




Error Handling and Debugging

2. Run the query in the mysql client or

other tool (Figure 7.22).

The most foolproof method of debugging
an SQL or MySQL problem is to run the
query used in your PHP scripts through
an independent application: the mysql
client, phpMyAdmin, or the like. Doing
so will give you the same result as the
original PHP script receives but without
the overhead and hassle.

If the independent application returns

3. If the problem still isn't evident, rewrite

the query in its most basic form, and
then keep adding dimensions back in
until you discover which clause is caus-
ing the problem.

Sometimes it’s difficult to debug a query
because there’s too much going on. Like
commenting out most of a PHP script,
taking a query down to its bare mini-
mum structure and slowly building it
back up can be the easiest way to debug

the expected result but you are still not complex SQL commands.

getting the proper behavior in your PHP v Tips
script, then you will know that the prob-
lem lies within the script itself, not your
SQL or MySQL database.

B Another common MySQL problem is try-
ing to run queries or connect using the
mysql client when the MySQL server isn't
even running. Be sure that MySQL is
available for querying!

B As an alternative to printing out the
query to the browser, you could print it
out as an HTML comment (viewable
only in the HTML source), using

echo "<!-- $query -->";

w. MySOL Command Line Client

ysgl> INSERT INMTO users (first_name, last_name. email.,
—»> password,. registration_date> VALUES ¢’Larry’,. ‘Ullman’. =
—=» ‘email?Pexample.com’,. SHA<C' pass’>,. NOUW(>» ;

RROR 1854 (42522>: Unknown column ‘password’ in ‘field list’

[« | tl 4

Figure 7.22 To understand what result a PHP script is receiving, run the same
query through a separate interface. In this case the problem is the reference
to the password column, when the table’s column is actually called just pass.

221

SANVINHD3] 9NI99n83Q TOSAW ANV T0S



SQL AND MYSQL DEBUGGING TECHNIQUES

Chapter 7

Debugging access problems

Access denied error messages are the most
common problem beginning developers
encounter when using PHP to interact with
MySQL. These are among the common
solutions:

*

Reload MySQL after altering the privi-
leges so that the changes take effect.
Either use the mysgladmin tool or run
FLUSH PRIVILEGES in the mysql client.
You must be logged in as a user with
the appropriate permissions to do this
(see Appendix A for more).

Double-check the password used. The
error message Access denied for user:
user@localhost’ (Using password: YES)
frequently indicates that the password is
wrong or mistyped. (This is not always
the cause but is the first thing to check.)

The error message Can't connect to...
(error number 2002) indicates that
MySQL either is not running or is not
running on the socket or TCP/IP port
tried by the client.

v Tips
B MySQL keeps its own error logs, which

are very useful in solving MySQL prob-
lems (like why MySQL won't even start).
MySQL: error log will be located in the
data directory and titled hostname.err.

The MySQL manual is very detailed,
containing SQL examples, function
references, and the meanings of error
codes. Make the manual your friend and
turn to it when confusing errors pop up.

222



UsSING PHP
WITH MyYSQL

Now that you have a sufficient amount of PHP, SQL, and MySQL experience under
your belt, it's time to put all of the technologies together. PHP's strong integration with
MySQL is just one reason so many programmers have embraced it; it's impressive

how easily you can use the two together.

This chapter will use the existing sitename database—created in Chapter 5, “Introduction
to SQL"—to build a PHP interface for interacting with the users table. The knowledge
taught and the examples used here will be the basis for all of your PHP-MySQL Web

applications, as the principles involved are the same for any PHP-MySQL interaction.

Before heading into this chapter, you should be comfortable with everything covered in
the first six chapters. Also, understanding the error debugging and handling techniques
covered in Chapter 7 will make the learning process less frustrating, should you
encounter snags. Finally, remember that you need a PHP-enabled Web server and access
to a running MySQL server in order to test the following examples.

223

TOSAW HLIM dHd ONISq



MODIFYING THE TEMPLATE

Chapter 8

Modifying the Template

Since all of the pages in this chapter and the
next will be part of the same Web applica-
tion, it'll be worthwhile to use a common
template system. Instead of creating a new
template from scratch, the layout from
Chapter 3, “Creating Dynamic Web Sites,”
will be used again, with only a minor modifi-
cation to the header file’s navigation links.

To make the header file:

1.

2.

Open header.html (Script 3.2) in your
text editor.

Change the list of links to read (Script 8.1)

<li><a href="1index.php">Home
» Page</a></11i>

<li><a
— href="register.php">Register</a></1i>

<li><a href="view_users.php">View
— Users</a></1i>

<li><a href="password.php">Change
» Password</a></11i>

<li><a href="#">link five</a></1i>

All of the examples in this chapter will
involve the registration, view users, and
change password pages. The date form
and calculator links from Chapter 3 can
be deleted.

Save the file as header.html.

Place the new header file in your Web
directory, within the includes folder
along with footer.html (Script 3.3) and
style.css (available for download from
the book’s supporting Web site,

waww . DMCInsights. com/phpmysql3/).

Script 8.1 The site’s header file, used for the pages’
template, modified with new navigation links.

eoce

= Script

1

7

10
11
12
13
14
15

16

17

18

19
20
21
22

23

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Strict//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-
strict.dtd">

<html
xmlns="http://www.w3.0rg/1999/xhtml">

<head">

<title><?php echo $page_title;
7></title>

<link rel="stylesheet"
href="includes/style.css"
type="text/css" media="screen" />

<meta http-equiv="content-type"
content="text/html; charset=utf-8" />

</head>

<body>
<div id="header">
<hl>Your Website</hl>
<h2>catchy slogan...</h2>
</div>
<div id="navigation">
<ul>

<li><a href="index.php">Home
Page</a></1i>

<li><a
href="register.php">Register</a></1i>

<li><a href="view_users.php">View
Users</a></1i>

<li><a href="password.php">Change
Password</a></1i>

<li><a href="#">link five</a></1i>
</ul>
</div>

<div id="content"><!-- Start of the
page-specific content. -->

<!-- Script 8.1 - header.html -->

224



Using PHP with MySQL

5. Test the new header file by running B Remember that you can use any file exten-
index.php in your Web browser sion for your template files, including
(Figure 8.1). .inc or .php.

v Tips B To refresh your memory on the template-

creation process or the specifics of this

B For a preview of this site’s structure, see the layout, see the first few pages of Chapter 3

sidebar “Organizing Your Documents” in
the next section.

ene Welcome to this Site! =)

Your Website

Home Page Reqgister View Users ‘ Change Password ‘ link five ‘

Content Header

This is where the page-specific content goes. This section, and the corresponding header, will change frorm one page to the next.

Volutpat at varius sed sollicitudin et, arcu. Vivamus viverra. Mullam turpis. Yestibulum sed etiam. Laremipsum sit amet dolore. Mulla
faciligi. Sed tortar. Aenean felis. Quisgue eros. Cras lobortis cormodo metus. Vestibulurm vel purus. In eget odio in sapien
adipisting blandit. Quisgue augue tortor, facilisis sit armet, aliquarn, suscipitvitae, cursus sed, arcu lorern ipsurn dolor sit amet

Copytight @ Plain and Sirmple 2007 | Designed by edg3.co.uk| Sponsared by Open Designs | Valid C55 & XHTML

Figure 8.1 The dynamically generated home page with new navigation links.

WARNING: READ THIS!

PHP and MySQL have gone through many changes over the past decade. Of these, the most
important for this chapter and one of the most important for the rest of the book involves
what PHP functions you use to communicate with MySQL. For years, PHP developers used
the standard MySQL functions (called the mysql extension). As of PHP 5 and MySQL 4.1, you
can use the newer Improved MySQL functions (called the mysqli extension). These functions
provide improved performance and take advantage of added features (among other benefits).

As this book assumes you're using at least PHP 6 and MySQL 5, all of the examples will only
use the Improved MySQL functions. If your server does not support this extension, you will not
be able to run these examples as they are written! Most of the examples in the rest of the book
will also not work for you.

If the server or home computer you're using does not support the Improved MySQL func-
tions, you have three options: upgrade PHP and MySQL, read the second edition of this book
(which teaches and primarily uses the older functions), or learn how to use the older func-
tions and modify all the examples accordingly. For questions or problems, see the book’s cor-
responding forum (www.DMCInsights.com/phorum/).

225

J1VI1dW3] 3HL1 ONIAdIAOW



CONNECTING TO MYSQL

Chapter 8

Connecting to MySQL

The first step for interacting with MySQL—
connecting to the server—requires the
appropriately named mysqli_connect()
function:

$dbc = mysqli_connect Chostname,
» username, password, db_name);

The first three arguments sent to the func-
tion (host, username, and password) are
based upon the users and privileges set up
within MySQL (see Appendix A, “Installation,”
for more information). Commonly (but not
always), the host value will be localhost.

The fourth argument is the name of the data-
base to use. This is the equivalent of saying
USE databasename within the mysql client.

If the connection was made, the $dbc variable,
short for database connection, will become

a reference point for all of your subsequent
database interactions. Most of the PHP func-
tions for working with MySQL will take this
variable as its first argument.

Before putting this knowledge to the test,
there’s one more function to learn about. If a
connection problem occurred, you can call
mysqli_connect_error(), which returns the
connection error message. It takes no argu-
ments, so would be called using just

mysqli_connect_error();
To start using PHP with MySQL, let’s create
a special script that makes the connection.

Other PHP scripts that require a MySQL
connection can then include this file.

To connect to and select a database:

1. Create a new PHP document in your text
editor or IDE (Script 8.2).

<?php # Script 8.2 -
— mysqli_connect.php
This file will be included by other PHP

scripts, so it doesn't need to contain any
HTML.

Script 8.2 The mysqli_connect.php script will be used
by every other script in this chapter. It establishes a
connection to MySQL and selects the database.

8086 =) Script
1 <?php # Script 8.2 - mysqli_connect.php

2

3 // This file contains the database access
information.

4 // This file also establishes a connection
to MySQL

5 // and selects the database.

7 // Set the database access information as
constants:

8 DEFINE ('DB_USER', 'username');

9 DEFINE ('DB_PASSWORD', 'password');
10 DEFINE ('DB_HOST', 'localhost');

11 DEFINE ('DB_NAME', 'sitename');

12

13 // Make the connection:

14  $dbc = @mysqli_connect (DB_HOST, DB_USER,
DB_PASSWORD, DB_NAME) OR die ('Could not
connect to MySQL: '
mysqli_connect_error() );

15

16 7>

226



Using PHP with MySQL

2.

Set the MySQL host, username, pass-
word, and database name as constants.

DEFINE ('DB_USER', 'username');
DEFINE ('DB_PASSWORD', 'password');
DEFINE ('DB_HOST', 'localhost');
DEFINE ('DB_NAME', 'sitename');

I prefer to establish these values as con-
stants for security reasons (they cannot be
changed this way), but that isn't required.
In general, setting these values as some
sort of variable or constant makes sense
so that you can separate the configuration
parameters from the functions that use
them, but again, this is not obligatory.

When writing your script, change these
values to ones that will work on your
setup. If you have been provided with

a MySQL username/password combina-
tion and a database (like for a hosted
site), use that information here. Or, if
possible, follow the steps in Appendix A
to create a user that has access to the
sitename database, and insert those val-
ues here. Whatever you do, don't just use
these values unless you know for certain
they will work on your server.

©) Mozilla Firefox

File

Edit  Wiew History Bookmarks Tools  Help

us

Could not connect to WMy3QL: Access demied for uzer

ername' (@ localhost’ (using password: TES)

Figure 8.2 If there were problems connecting to
MySQL, an informative message is displayed and the
script is halted.

3. Connect to MySQL.

$dbc = @mysqli_connect (DB_HOST,

— DB_USER, DB_PASSWORD, DB_NAME) OR
— die ('Could not connect to MySQL: ' .
— mysqli_connect_error() );

The mysqli_connect() function, if it suc-
cessfully connects to MySQL, will return
a resource link that corresponds to the
open connection. This link will be assigned
to the $dbc variable, so that other func-
tions can make use of this connection.

The function call is preceded by the error
suppression operator (@). This prevents
the PHP error from being displayed in the
Web browser. This is preferable, as the error
will be handled by the OR die() clause.

If the mysqli_connect() function cannot
return a valid resource link, then the OR
die(Q) part of the statement is executed
(because the first part of the OR will be
false, so the second part must be true).
As discussed in the preceding chapter,
the die() function terminates the execu-
tion of the script. The function can also
take as an argument a string that will be
printed to the Web browser. In this case,
the string is a combination of Could not
connect to MySQL: and the specific MySQL
error (Figure 8.2). Using this blunt error
management system makes debugging
much easier as you develop your sites.

continues on next page

227

TOSAW OL ONILDINNO)



CONNECTING TO MYSQL

Chapter 8

4. Save the file as mysqli_connect.php.

Since this file contains information—the
database access data—that must be kept
private, it will use a .php extension. With
a .php extension, even if malicious users
ran this script in their Web browser, they
would not see the pages actual content.

. Place the file outside of the Web docu-

ment directory (Figure 8.3).

Because the file contains sensitive MySQL
access information, it ought to be stored
securely. If you can, place it in the direc-
tory immediately above or otherwise out-
side of the Web directory. This way the file
will not be accessible from a Web browser.
See the “Organizing Your Documents”
sidebar for more.

. Temporarily place a copy of the script

within the Web directory and run it in
your Web browser (Figure 8.4).

In order to test the script, you'll want to
place a copy on the server so that it’s
accessible from the Web browser (which
means it must be in the Web directory).
If the script works properly, the result
should be a blank page (see Figure 8.4).
If you see an Access denied... or similar
message (see Figure 8.2), it means that
the combination of username, password,
and host does not have permission to
access the particular database.

. Remove the temporary copy from the

Web directory.

Organizing Your Documents

I introduced the concept of site structure
back in Chapter 3 when developing the first
Web application. Now that pages will begin
using a database connection script, the
topic is more important.

Should the database connectivity informa-
tion (username, password, host, and data-
base) fall into malicious hands, it could
be used to steal your information or wreak
havoc upon the database as a whole.
Therefore, you cannot keep a script like
mysqli_connect.php too secure.

The best recommendation for securing
such a file is to store it outside of the
Web documents directory. If, for example,
the htdocs folder in Figure 8.3 is the root
of the Web directory (in other words, the
URL www. example. com leads there), then
not storing mysqli_connect.php anywhere
within the Atml directory means it will
never be accessible via the Web browser.
Granted, the source code of PHP scripts
is not viewable from the Web browser
(only the data sent to the browser by the
script is), but you can never be too careful.
If you aren’t allowed to place documents
outside of the Web directory, placing
mysqli_connect.php in the Web directory is
less secure, but not the end of the world.

Secondarily, I would recommend using

a .php extension for your connection
scripts. A properly configured and work-
ing server will execute rather than display
code in such a file. Conversely, if you use
just .1inc as your extension, that page’s
contents would be displayed in the Web
browser if accessed directly.

228



Using PHP with MySQL

some folder
s

E--

hitp:iwww.example.com
points here

register,php
_e header htm

footer.hitml

style.css

Figure 8.3 A visual representation of a server’s Web
documents, where mysqli_connect.php is not stored
within the main directory (htdocs).

©) Mozilla Firefox

File Edit ‘“ew History Bookmarks Tools  Help

Figure 8.4 If the MySQL connection script works
properly, the end result will be a blank page (no HTML
is generated by the script).

806 Mozilla Firefox [=]

Could not connect to MySQL.: Can't connect to local MySQL server
through socket '/tmp/mysgl.sock’ (2)

Figure 8.5 Another reason why PHP might not be able
to connect to MySQL (besides using invalid username/
password/hostname/database information) is if
MySQL isn’t currently running.

ensn Mozilla Firefox =

‘Warning: mysqli_connect() [function. mysqli-connect]: (28000/1043): Access
denied for user "username'@'localhost' (using password: YES) in

/A pplications/Abyss Web Server/htdocs/mysqli_connect.php on line 14
Could not connect to MySQL: Access denied for user 'username'@'localhost'

(using password: YES)

Figure 8.6 If you don’t use the error suppression
operator (@), you’ll see both the PHP error and the
custom OR die() error.

v Tips

B The same values used in Chapter 5 to log
in to the mysq]l client should work from
your PHP scripts.

B If you receive an error that claims
mysqli_connect() is an undefined func-
tion, it means that PHP has not been
compiled with support for the Improved
MySQL Extension. See the appendix for
installation information.

B Ifyou see a Can't connect... error message
when running the script (see Figure 8.5),
it likely means that MySQL isn't running.

B In case you are curious, Figure 8.6 shows
what would happen if you didn't use @
before mysqli_connect() and an error
occurred.

B If you don't need to select the database
when establishing a connection to
MySQL, omit that argument from the
mysqli_connect() function:

$dbc = mysqli_connect Chostname,
— username, password);

Then, when appropriate, you can select
the database using

mysqli_select_db($dbc, db_name);

229

TOSAW OL ONILDINNO)



EXECUTING SIMPLE QUERIES

Chapter 8

Executing Simple Queries

Once you have successfully connected to
and selected a database, you can start per-
forming queries. These queries can be as
basic as inserts, updates, and deletions or as
involved as complex joins returning numer-
ous rows. In any case, the PHP function for
executing a query is mysqli_query(:

result = mysqli_query(dbc, query);

The function takes the database connection
as its first argument and the query itself as
the second. I normally assign the query to
another variable, called $query or just $g. So
running a query might look like

$r = mysqli_query($dbc, $q);

For simple queries like INSERT, UPDATE, DELETE,
etc. (which do not return records), the $r
variable—short for result—will be either
TRUE or FALSE, depending upon whether the
query executed successfully. Keep in mind
that “executed successfully” means that it
ran without error; it doesn't mean it neces-
sarily had the desired result; you'll need to
test for that.

For complex queries that return records
(SELECT, SHOW, DESCRIBE, and EXPLAIN), $r will
be a resource link to the results of the query

& Register - Mozilla Firefox
Ghe  [de  Wew Mgty [ockmarks  Took e

Home Bage Hewster Vitw Users

Register
Firgt Name: Bob

ampbell

wvs. be@example com

Cenfirm Password: ™=

Bogistor

Copyright © Plain and

Change Passward

Your Webs'rte.

Simiple 2007 | Designed by edgd co.uk | Sponsared by Open Designs | Valid C55 &

if it worked or be FALSE if it did not. Thus,
you can use this line of code in a conditional
to test if the query successfully ran:

$r = mysqli_query ($dbc, $q);
if ($r) { // Worked!

If the query did not successfully run, some
sort of MySQL error must have occurred.
To find out what that error was, call the
mysqli_error() function:

echo mysqli_error($dbc);

One final, albeit optional, step in your script
would be to close the existing MySQL con-
nection once you're finished with it:

mysqli_close($dbc);

This function is not required, because PHP
will automatically close the connection at
the end of a script, but it does make for
good programming form to incorporate it.

To demonstrate this process, let’s create

a registration script. It will show the form
when first accessed (Figure 8.7), handle the
form submission, and, after validating all the
data, insert the registration information into
the users table of the sitename database.

=B

Figure 8.7 The registration form.

230



Using PHP with MySQL

Script 8.3 The registration script adds a record to the
database by running an INSERT query.

8oeé = Script

=

O 00 N O U1 » W N

11
12
13

14
15
16
17
18
19
20

21
22
23
24
25
26
27

28
29
30
31
32

33

<?php # Script 8.3 - register.php

$page_title = 'Register’';
include ('includes/header.html');

// Check if the form has been submitted:
if (isset($_POST['submitted'])) {

$errors = array(); // Initialize an
error array.

// Check for a first name:
if (empty($_POST['first_name'])) {

$errors[] = 'You forgot to enter your
first name.';

} else {
$fn = trim($_POST['first_name']);

// Check for a last name:
if (empty($_POST['last_name'])) {

$errors[] = 'You forgot to enter your
last name.';

} else {
$1ln = trim($_POST['last_name']);

// Check for an email address:
if (empty($_POST['email'])) {

$errors[] = 'You forgot to enter your
email address.';

} else {
$e = trim($_POST['email']);

// Check for a password and match
against the confirmed password:

if (lempty($_POST['passl'])) {
if ($_POST['passl'] !=
$_POST['pass2']) {

(script continues on next page)

To execute simple queries:

1. Create a new PHP script in your text edi-

tor or IDE (Script 8.3).

<?php # Script 8.3 - register.php
$page_title = 'Register’;

include ('includes/header.html');

The fundamentals of this script—using
included files, having the same page both
display and handle a form, and creating
a sticky form—come from Chapter 3. See

that chapter if you're confused about any
of these concepts.

. Create the submission conditional and

initialize the $errors array.
if (isset($_POST['submitted'])) {
$errors = array(Q);

This script will both display and handle
the HTML form. This conditional will
check for the presence of a hidden form
element to determine whether or not to
process the form. The $errors variable
will be used to store every error message
(one for each form input not properly
filled out).

continues on next page

231

S3NIANY I1dWIS ONILNDIXT



EXECUTING SIMPLE QUERIES

Chapter 8

3. Validate the first name.

if Cempty($_POST['first_name'])) {

$errors[] = 'You forgot to enter
— your first name.';

} else {

$fn =
— trim($_POST['first_name']);

}

As discussed in Chapter 3, the empty()
function provides a minimal way of ensur-
ing that a text field was filled out. If the
first name field was not filled out, an error
message is added to the $errors array.
Otherwise, $fn is set to the submitted value,
after trimming off any extraneous spaces.
By using this new variable—which is obvi-
ously short for first_name—I make it syn-
tactically easier to write the query later.

4, Validate the last name and email address.

if (empty($_POST['last_name'])) {

$errors[] = '"You forgot to enter
— your last name.';

} else {
$1ln = trim($_POST['last_name']);

}

if (empty($_POST['email'])) {
$errors[] = 'You forgot to enter
— your email address.';

} else {
$e = trim($_POST['email']);

}

These lines are syntactically the same as
those validating the first name field. In
both cases a new variable will be created,
assuming that the minimal validation
was passed.

Script 8.3 continued

eoce = Script

35 $errors[] = 'Your password did not

match the confirmed password.';

36 } else {

37 $p = trim($_POST['passl']);

38 }

39 } else {

40 $errors[] = 'You forgot to enter your
password.";

41 }

42

43 if (empty($errors)) { // If everything's

OK.

44

45 // Register the user in the
database. ..

46

47 require_once
("../mysqli_connect.php'); // Connect
to the db.

48

49 // Make the query:

50 $gq = "INSERT INTO users (first_name,
last_name, email, pass,
registration_date) VALUES ('$fn',
'$in', '$e', SHAL('$p'), NOWQ) D";

51 $r = @mysqli_query ($dbc, $q); // Run
the query.

52 if ($r) { // If it ran OK.

53

54 // Print a message:

55 echo '<h1>Thank you!</hl>

56 <p>You are now registered. In Chapter
11 you will actually be able to log
inl</p><p><br /></p>';

57

58 } else { // If it did not run OK.

59

60 // Public message:

61 echo '<hl>System Error</hl>

62 <p class="error">You could not be

registered due to a system error.
We apologize for any
inconvenience.</p>";

63

(script continues on next page)

232



Using PHP with MySQL

Script 8.3 continued
8oeé = Script
64 // Debugging message:
65 echo '<p>' . mysqli_error($dbc) .
'<br /><br />Query: ' . $q .
'</p>";
66
67 } // End of if (§r) IF.
68
69 mysqli_close($dbc); // Close the
database connection.
70
71 // Include the footer and quit the
script:
72 include ('includes/footer.html');
73 exitQ);
74
75 } else { // Report the errors.
76
7 echo '<hl>Error!</hl>
78 <p class="error">The following
error(s) occurred:<br />';
79 foreach ($errors as $msg) { // Print
each error.
80 echo " - $msg<br />\n";
81 }
82 echo '</p><p>Please try
again.</p><p><br /></p>";
83
84 } // End of if (empty($errors)) IF.
85
86 } // End of the main Submit conditional.
87 7>
88 <hl>Register</hl>
89 <form action="register.php" method="post">
920 <p>First Name: <input type="text"
name="first_name" size="15"
maxlength="20" value="<?php if
(isset($_POST['first_name'])) echo
$_POST['first_name']; ?>" /></p>
91 <p>Last Name: <input type="text"

name="last_name" size="15"
maxlength="40" value="<?php if
(isset($_POST['last_name'])) echo
$_POST['last_name']; ?>" /></p>

(script continues on next page)

5. Validate the password.
if (lempty($_POST['passl'])) {

if ($_POST['passl'] !=
— $_POST['pass2']) {
$errors[] = 'Your password

— did not match the
— confirmed password.';

} else {
$p = trim($_POST['pass1']);
}
} else {

$errors[] = 'You forgot to enter
— your password.';

}

To validate the password, the script needs
to check the passI input for a value and
then confirm that the passI value matches
the pass2 value (so the password and
confirmed password are the same).

6. Check if it's OK to register the user.
if Cempty($errors)) {

If the submitted data passed all of the
conditions, the $errors array will have
no values in it (it will be empty), so this
condition will be TRUE and it’s safe to add
the record to the database. If the $errors
array is not empty, then the appropriate
error messages should be printed (see
Step 10) and the user given another
opportunity to register.

continues on next page

233

S3NIANY I1dWIS ONILNDIXT



EXECUTING SIMPLE QUERIES

Chapter 8

7. Add the user to the database. Script 8.3 continued
require_once 8006 =) Seript
— ('../mysqgli_connect.php'); 92 <p>Email Address: <input type="text"
name="email" size="20" maxlength="80"

$gq = "INSERT INTO users (first_name, value="<?php if (isset($_POST['email']))
— last_name, email, pass, echo $_POST['email']; ?>" /> </p>
— registration_date) VALUES ('$fn", 923 <p>Password: <input type="password"

) Vorgat Ty w. name="pass1l" size="10" maxlength="20"
— '$1n', "$e', SHAI('$p'), NOWQO D", ></p>
$r = @mysqli_query ($dbc, $q); 94 <p>Confirm Password: <input

X . type="password" name="pass2" size="10"

The first line of code will insert the con- maxlength="20" /></p>
tents of the mysqli_connect.php file into o5 <p><input type="submit" name="submit"
this script, thereby creating a connection value="Register" /></p>
to MySQL and selecting the database. 9 <input type="hidden" name="submitted"
You may need to change the reference to value="TRUE" />
the location of the file as it is on your 97 </form>
server (as written, this line assumes that 98  <?php
mysqli_connect.php is in the parent fold- 99 include ('includes/footer.html');
er of the current folder). 100 7>

The query itself is similar to those demon-
strated in Chapter 5. The SHA1() function
is used to encrypt the password, and
NOWQ) is used to set the registration date
as this moment.

After assigning the query to a variable, it is
run through the mysqli_qguery() function,
which sends the SQL command to the
MySQL database. As in the mysqli_
connect.php script, the mysqli_query()
call is preceded by @ in order to suppress
any ugly errors. If a problem occurs, the
error will be handled more directly in the
next step.

234



Using PHP with MySQL

8. Report on the success of the registration.

if ($r) {
echo '<hl>Thank you!</hl>
<p>You are now registered. In
— Chapter 11 you will actually be

— able to log in!</p><p><br
- /></p>";

} else {
echo '<hl>System Error</hl>

<p class="error">You could not be
— registered due to a system

— error. We apologize for any

— inconvenience.</p>"';

. mysqli_error($dbc) .
'.$%q .

echo '<p>'
— "<br /><br />Query:
= '</p>";

J Register - Mozilla Finefox
Gl [de  ew  Mgtory [ockmarks  Jook e

Home Bags Hegster View Users hange Passward aik frer
Thank you!
You are now registered. In Chapter 11 you wil actually be able to log in!

Copyright & Plain and Simple 2007 | Designed by edgd co.uk | Spansored by Open D

Your Website

signs | Valid CES & WHTM

The $r variable, which is assigned the
value returned by mysqli_query(), can be
used in a conditional to indicate the suc-
cessful operation of the query.

If $r is TRUE, then a Thank you! message
is displayed (Figure 8.8). If $r is FALSE,
error messages are printed. For debug-
ging purposes, the error messages will
include both the error spit out by MySQL
(thanks to the mysqli_error() function)
and the query that was run (Figure 8.9).
This information is critical to debugging
the problem.

continues on next page

EEE

Figure 8.8 If the user could be
registered in the database, this
message is displayed.

&) Rogistier - Mozilla Firefox
Bl [de  wew Mgy [ockmads  Jook e

Heme Page Hewster Viw Users Change Password eik fo

System Error

You could nat ba registarad dus 1 a system arror. Wa apologize for any inconvanisnce.

(frst_name, last_name, emai, password, registration_date) VALUES (Bob’, ‘Campbell’
(raven’), ROWH) )

Copyright © Plain and Simgle 2007 | Designad by adgd ca

Your Website

k | Spangored by Cipen Designe | Valid C55 & 1HTML

EEE

Figure 8.9 Any MySQL errors
caused by the query will be
printed, as will the query that

was being run.

235

S3NIANY I1dWIS ONILNDIXT



EXECUTING SIMPLE QUERIES

Chapter 8

9.

10.

Close the database connection and
complete the HTML template.

mysqli_close();
include ('includes/footer.html');
exit(Q);

Closing the connection isn't required
but is a good policy. Then the footer is
included and the script terminated
(thanks to the exit() function). If those
two lines weren't here, then the registra-
tion form would be displayed again
(which isn't necessary after a successful
registration).

Print out any error messages and close
the submit conditional.
} else {
echo '<hl>Error!</hl>

<p class="error">The
— following >»>error(s)
— occurred:<br />'";

foreach ($errors as

$msg) {
echo " - $msg<br
/>\n";
}
echo '</p><p>Please try
— >again.</p><p><br
/></p>";
}
3

The else clause is invoked if there were
any errors. In that case, all of the errors
are displayed using a foreach loop
(Figure 8.10).

The final closing curly brace closes the
main submit conditional. The main con-
ditional is a simple IF, not an if-else, so
that the form can be made sticky (again,
see Chapter 3).

The following error{s) occurred:

- You forgot to enter your last name.

- You forgot to enter your email address.

-Your password did not match the confirmed password.

Fleasze try again.

Register

First Mame: Larry

Figure 8.10 Each form validation error is reported to
the user so that they may try registering again.

236



Using PHP with MySQL

11. Close the PHP section and begin the
HTML form.

7>
<h1l>Register</hl>

<form action="register.php"
— method="post">

<p>First Name: <input

— type="text" name="first_name"
— size="15" maxlength="20"

— value="<?php if

— (isset($_POST['first_name']))
— echo $_POST['first_name']; ?>"
- /></p>

<p>Last Name: <input type="text"
— name="last_name" size="15"

— maxlength="40" value="<?php if
— (isset($_POST['last_name']))
— echo $_POST['last_name']; ?>"
— /></p>

The form is really simple, with one text
input for each field in the users table
(except for the user_id column, which
will automatically be populated). Each
input is made sticky, using the code

value="<?php if

— (isset($_POST['first_name']))
echo

— $_POST['first_name']; ?>"

Also, I would strongly recommend that
you use the same name for your form
inputs as the corresponding column in
the database where that value will be
stored. Further, you should set the max-
imum input length in the form equal to
the maximum column length in the
database. Both of these habits help to
minimize errors.

Complete the HTML form.

<p>Email Address: <input

— type="text" name="email"

— size="20" maxlength="80"

— value="<?php if

— (isset($_POST['email'])) echo
— $_POST['email']; ?>" /> </p>

<p>Password: <input
— type="password" name="passl"
— size="10" maxlength="20" /></p>

<p>Confirm Password: <input
— type="password" name="pass2"
— size="10" maxlength="20" /></p>

<p><input type="submit"
— name="submit" value="Register"
- /></p>

<input type="hidden"
— name="submitted" value="TRUE"
/>

</form>

This is all much like that in Step 11. A
submit button and a hidden input are
in the form as well. The hidden input
trick is discussed in (you guessed
it...Chapter 3).

As a side note, I don't need to follow my
maxlength recommendation (from Step 11)
with the password inputs, because they
will be encrypted with SHA1(), which
always creates a string 40 characters
long. And since there are two of them,
they can't both use the same name as
the column in the database.

Complete the template.

<?php

include ('includes/footer.html');
7>

continues on next page

237

S3NIANY I1dWIS ONILNDIXT



EXECUTING SIMPLE QUERIES

Chapter 8

14. Save the file as register.php, place it in

your Web directory, and test it in your
Web browser.

Note that if you use an apostrophe in
one of the form values, it will likely break
the query (Figure 8.11). The section
“Ensuring Secure SQL” later in this
chapter will show how to protect
against this.

v Tips

After running the script, you can always
ensure that it worked by using the mysql
client or phpMyAdmin to view the values
in the users table.

You should not end your queries with a
semicolon in PHP, as you did when using
the mysql client. When working with
MySQL, this is a common, albeit harm-
less, mistake to make. When working
with other database applications (Oracle,
for one), doing so will make your queries
unusable.

As a reminder, the mysqli_query() func-
tion returns TRUE if the query could be
executed on the database without error.
This does not necessarily mean that the
result of the query is what you were
expecting. Later scripts will demonstrate
how to more accurately gauge the suc-
cess of a query.

B You are not obligated to create a $q variable

as I tend to do (you could directly insert
your query text into mysqli_query(Q)).
However, as the construction of your
queries becomes more complex, using

a variable will be the only option.

Practically any query you would run in
the mysql client can also be executed
using mysqli_query(Q).

Another benefit of the Improved MySQL
Extension over the standard extension is
that the mysqli_multi_query() function
lets you execute multiple queries at one
time. The syntax for doing so, particularly
if the queries return results, is a bit more
complicated, so see the PHP manual if
you have this need.

System Error

‘netei@example.com’, SHAT venush, NOWE )

You could not be registered due to a system error. We apologize for any inconvenience.

Youhave an errarin your SGL syntax; check the manual that corresponds to your MyS0L server version for the right syntax to use
near Toole', ‘pete@example.com’, SHATvenus), MOWE ) at line 1

Query: INSERT INTO users (first_name, last_narme, email, password, registration_date) WALLUES {Peter, "0 Toole',

Figure 8.11 Apostrophes in form values (like the last name here) will conflict with the apostrophes used to

delineate values in the query.

238



Using PHP with MySQL

Retrieving Query Results

The preceding section of this chapter demon-
strates how to execute simple queries on a
MySQL database. A simple query, as I'm call-
ing it, could be defined as one that begins
with INSERT, UPDATE, DELETE, or ALTER. What
all four of these have in common is that they
return no data, just an indication of their
success. Conversely, a SELECT query generates
information (i.e., it will return rows of
records) that has to be handled by other
PHP functions.

The primary tool for handling SELECT query
results is mysqli_fetch_array(), which uses
the query result variable (that I've been call-
ing $r) and returns one row of data at a time,
in an array format. You'll want to use this
function within a loop that will continue to
access every returned row as long as there
are more to be read. The basic construction
for reading every record from a query is

while ($row = mysqli_fetch_array($r)) {
// Do something with $row.

Table 8.1 Adding one of these constants as an
optional parameter to the mysqli_fetch_array()
function dictates how you can access the values
returned. The default setting of the function is
MYSQLI_BOTH.

mysqli_fetch_array() Constants

CONSTANT EXAMPLE

MYSQLI_ASSOC $row['column']
MYSQLI_NUM $row[0]

MYSQLI_BOTH $row[@] or $row['column']

You will almost always want to use a while loop
to fetch the results from a SELECT query.

The mysqli_fetch_array() function takes
an optional second parameter specifying
what type of array is returned: associative,
indexed, or both. An associative array allows
you to refer to column values by name,
whereas an indexed array requires you to use
only numbers (starting at 0 for the first col-
umn returned). Each parameter is defined by
a constant listed in Table 8.1. The MYSQLI_NUM
setting is marginally faster (and uses less
memory) than the other options. Conversely,
MYSQLI_ASSOC is more overt ($row['column']
rather than $row[3]) and may continue to
work even if the query changes.

An optional step you can take when using
mysqli_fetch_array() would be to free up
the query result resources once you are done
using them:

mysqli_free_result ($r);

This line removes the overhead (memory)
taken by $r. It's an optional step, since

PHP will automatically free up the resources
at the end of a script, but—Ilike using
mysqli_close()—it does make for good pro-
gramming form.

To demonstrate how to handle results
returned by a query, let’s create a script for
viewing all of the currently registered users.

239

S1TINSIY AYINY ONIATIYLIY



RETRIEVING QUERY RESULTS

Chapter 8

To retrieve query results:

1.

Create a new PHP document in your text
editor or IDE (Script 8.4).

<?php # Script 8.4 - view_users.php
$page_title = "View the Current Users';
include ('includes/header.html');

echo '<hl>Registered Users</hl>";

Connect to and query the database.

require_once
— ("../mysqli_connect.php');

$q = "SELECT CONCAT(last_name, ', ',
— first_name) AS name,

— DATE_FORMAT(registration_date, '%M
— %d, %Y') AS dr FROM users ORDER BY
— registration_date ASC";

$r = @mysqli_query ($dbc, $q);

The query here will return two columns
(Figure 8.12): the users names (format-
ted as Last Name, First Name) and the
date they registered (formatted as Month
DD, YYYY). Because both columns are
formatted using MySQL functions, aliases
are given to the returned results (name
and dr, accordingly). See Chapter 5 if you
are confused by any of this syntax.

Display the query results.
if 8r) {

echo '<table align="center"
» cellspacing="3"
cellpadding="3"
» width="75%">
<tr><td
— align="Tleft"><b>Name</b></td><
td
— align="1left"><b>Date
— Registered</b></td></tr>

Script 8.4 The view_users.php script runs a static query
on the database and prints all of the returned rows.

eo0e =] Seript

1 <?php # Script 8.4 - view_users.php

2 // This script retrieves all the records
from the users table.

3

4 $page_title = 'View the Current Users';

5 include ('includes/header.html');

6

7 // Page header:

8 echo '<hl>Registered Users</hl>';

9

10 require_once ('../mysqli_connect.php'); //
Connect to the db.

11

12 // Make the query:

13 $q = "SELECT CONCAT(last_name, ', ',
first_name) AS name,
DATE_FORMAT(registration_date, '%M %d,
%Y') AS dr FROM users ORDER BY
registration_date ASC";

14  $r = @mysqli_query ($dbc, $q); // Run the
query.

15

16 if ($r) { // If it ran OK, display the
records.

17

18 // Table header.

19 echo '<table align="center"
cellspacing="3" cellpadding="3"
width="75%">

20 <tr><td align="1left"><b>Name</b></td><td
align="1left"><b>Date
Registered</b></td></tr>

21

22

23 // Fetch and print all the records:

24 while ($row = mysqli_fetch_array($r,

MYSQLI_ASSOC)) {

(script continues on next page)

240



Using PHP with MySQL

Script 8.4 continued
eece = Script
25 echo '<tr><td align="left">"'

26
27
28
29
30
31

32
33
34
35
36

37
38
39

40

42
43

44
45
46

—

}

$row['name'] . '</td><td align="left">'
. $row['dr'] . '</td></tr>

echo '</table>'; // Close the table.

mysqli_free_result ($r); // Free up the
resources.

else { // If it did not run OK.

// Public message:

echo '<p class="error">The current users
could not be retrieved. We apologize for
any inconvenience.</p>";

// Debugging message:

echo '<p>' . mysqli_error($dbc) . '<br
/><br />Query: ' . $q . '</p>';

// End of if ($r) IF.

mysqli_close($dbc); // Close the database
connection.

include ('includes/footer.html');

7>

while ($row =
— mysqli_fetch_array($r,
— MYSQLI_ASSOC)) {

echo '<tr><td align="left">"'

» $row['name'] . "</td><td

» align="left">"' . $row['dr'] .
» '</td></tr>

.
>

1
echo '</table>';

To display the results, make a table and

a header row in HTML. Then loop through
the results using mysqli_fetch_array()
and print each fetched row. Finally, close
the table.

Notice that within the while loop, the
code refers to each returned value using
the proper alias: $row[ 'name'] and
$row['dr']. The script could not refer
to $row['first_name'] or $row['date_
registered'] because no such field
name was returned (see Figure 8.12).

continues on next page

®eoe Terminal é
nusql> SELECT CONCAT(last_name, ', ', first_name) AS
name, DATE_FORMAT(registration_date, ‘%M %d, %Y') AS
dr FROM users ORDER BY registration_date RSC;
| name | dr |

Ullman, Larry September 22, 2087

Isabella, Zoe September 22, 2887

Starr, Rings September 22, 2087

Harrison, George September 22, 2007

MeCartney, Paul September 22, 2087

Lennon, John September 22, 2087

Braut igan, Richard | September 22, 2887

Banks, Russell September 22, 2087

Simpson, Homer September 22, 2007

Simpson, Marge September 22, 2087

Simpson, Bart September 22, 2087

Simpson, Lisa September 22, 2887

Simpsan, Maggie September 22, 2807

Simpsan, Abe September 22, 2007

Chabon, Nichael September 22, 2087

Greene, Graham September 22, 2087

Delilla, Don September 22, 2887

Jones, David September 22, 2087

Dolenz, Micky September 22, 2887

Hesmith, Mike September 22, 2087

Sedaris, David September 22, 2087

Hornby, Hick September 22, 2887

Bark, Melissa September 22, 2087

Horrison, Toni September 22, 2887

Franzen, Jonathan | September 22, 2687

Campbell, Bob September 38, 2087
26 rows in set (8.88 sec) N

|

nysal> |

Figure 8.12 The query results as run
within the mysql client.

241

S1TINSIY AYINY ONIATIYLIY



RETRIEVING QUERY RESULTS

Chapter 8

4.

Free up the query resources.
mysqli_free_result ($r);

Again, this is an optional step but a good
one to take.

Complete the main conditional.
} else {

echo '<p class="error">The

— current users could not be
— retrieved. We apologize for
any

— inconvenience.</p>";

echo '<p>' . mysqli_error($dbc)
— "<br /><br />Query: ' . $q .
= '</p>";

}

As in the register.php example, there
are two kinds of error messages here. The
first is a generic message, the type youd
show in a live site. The second is much
more detailed, printing both the MySQL
error and the query, both being critical
for debugging purposes.

Close the database connection and finish
the page.

mysqli_close($dbc);

include ('includes/footer.html');
7>

Save the file as view_users.php, place it

in your Web directory, and test it in your
browser (Figure 8.13).

v Tips

The function mysqli_fetch_row()is the
equivalent of mysqli_fetch_array ($r,
MYSQLI_NUM);

The function mysqli_fetch_assoc() is
the equivalent of mysqli_fetch_array
($r, MYSQLI_ASS0C);

B As with any associative array, when you
retrieve records from the database, you
must refer to the columns exactly as they
are defined in the database. This is to say
that the keys are case-sensitive.

B Ifyou are in a situation where you need
to run a second query inside of your
while loop, be certain to use different
variable names for that query. For exam-
ple, the inner query would use $r2 and
$row2 instead of $r and $row. If you don't
do this, you'll encounter logical errors.

B [ frequently see beginning PHP develop-
ers muddle the process of fetching query
results. Remember that you must exe-
cute the query using mysqli_query(),
and then use mysqli_fetch_array() to
retrieve a single row of information. If
you have multiple rows to retrieve, use
awhile loop.

Registered Users

Name Date Registered

Ullman, Larry Septemper 22, 2007
Isabella, Zoe Septemper 22, 2007
Star, Ringo Septemper 22, 2007

Harrisan, George
McCartney, Paul
Lennan, John
Brautigan, Richard
Banks, Russell
Simpson, Homer
Simpson, Marge
Simpson, Bart
Simpson, Lisa
Simpsan, Maggie
Simpsan, Abe
Chabon, Michael
Greene, Graham
Delillo, Dan
Jones, David
Dolenz, Micky
Hesmith, Mike
Sedaris, David
Hormby, Nick
Bank, Melissa
Morrisan, Toni
Franzen, Janathan
Campbell, Bob

Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
Septernber 22, 2007
September 22, 2007
Septernber 22, 2007
Septernber 30, 2007

Figure 8.13 All of the user records are
retrieved from the database and displayed
in the Web browser.

242



Using PHP with MySQL

Ensuring Secure SQL

Database security with respect to PHP
comes down to three broad issues:

1. Protecting the MySQL access information
2. Not revealing too much about the database

3. Being cautious when running queries,
particularly those involving user-
submitted data

You can accomplish the first objective by
securing the MySQL connection script outside
of the Web directory so that it is never view-
able through a Web browser (see Figure 8.3).
I discuss this in some detail earlier in the
chapter. The second objective is attained by
not letting the user see PHP’s error messages
or your queries (in these scripts, that infor-
mation is printed out for your debugging
purposes; youd never want to do that on

a live site).

For the third objective, there are numerous
steps you can and should take, all based
upon the premise of never trusting user-
supplied data. First, validate that some value
has been submitted, or that it is of the prop-
er type (number, string, etc.). Second, use
regular expressions to make sure that sub-
mitted data matches what you would expect
it to be (this topic is covered in Chapter 13,
“Perl-Compatible Regular Expressions”).
Third, you can typecast some values to
guarantee that they’re numbers (discussed
in Chapter 12, “Security Methods”). A

fourth recommendation is to run user-
submitted data through the mysqli_real_
escape_string() function. This function
cleans data by escaping what could be prob-
lematic characters. It’s used like so:

$clean = mysqli_real_escape_string($dbc,
» data);

For security purposes, mysqli_real_escape_
string() should be used on every text input
in a form. To demonstrate this, let’s revamp

register.php (Script 8.3).

243

70S 3¥NJ3G ONIINSN]



ENSURING SECURE SQL

Chapter 8

To use mysqli_real_escape_string():

1. Open register.php (Script 8.3) in your
text editor or IDE.

2. Move the inclusion of the mysqli_
connect.php file (line 46 in Script 8.3)
to just after the main conditional
(Script 8.5).

Because the mysqli_real_escape_
string() function requires a database
connection, the mysqli_connect.php

script must be required earlier in the script.

Script 8.5 The register.php script now uses the
mysqli_real_escape_string() function to clean the
submitted data.

eoe =) Seript

1 <?php # Script 8.5 - register.php #2

2

3 $page_title = 'Register’;

4 include ('includes/header.html');

5

6 // Check if the form has been submitted:

7 if (isset($_POST['submitted'])) {

8

9 require_once ('../mysqli_connect.php');

// Connect to the db.
10
11 $errors = array(); // Initialize an
error array.

12

13 // Check for a first name:

14 if (empty($_POST['first_name'])) {

15 $errors[] = 'You forgot to enter your
first name.';

16 } else {

17 $fn = mysqli_real_escape_string($dbc,
trim($_POST['first_name']));

18 }

19

20 // Check for a last name:

21 if (empty($_POST['last_name'])) {

22 $errors[] = '"You forgot to enter your
last name.';

23 } else {

24 $1n = mysqli_real_escape_string($dbc,
trim($_POST['last_name']));

25 3

26

27 // Check for an email address:

28 if (empty($_POST['email'])) {

29 $errors[] = 'You forgot to enter your
email address.';

30 } else {

31 $e = mysqli_real_escape_string($dbc,

trim($_POST['email']));

(script continues on next page)

244



Using PHP with MySQL

Script 8.5 continued

000 2 Seript

32 3

33

34 // Check for a password and match

against the confirmed password:

35 if (lempty($_POST['passl'])) {

36 if ($_POST['passl'] !=
$_POST['pass2']) {

37 $errors[] = 'Your password did not

match the confirmed password.';

38 } else {

39 $p = mysqli_real_escape_string($dbc,

trim($_POST['pass1']));

40 }

41 } else {

42 $errors[] = 'You forgot to enter your
password. ";

43 }

44

45 if (empty($errors)) { // If everything's

OK.

46

47 // Register the user in the
database. ..

48

49 // Make the query:

50 $q = "INSERT INTO users (first_name,
last_name, email, pass,
registration_date) VALUES ('$fn',
'$1n', "$e', SHAL('$p'), NOWQ) D",

51 $r = @mysqli_query ($dbc, $q); // Run
the query.

52 if ($r) { // If it ran OK.

53

54 // Print a message:

55 echo '<h1>Thank you!</hl>

56 <p>You are now registered. In Chapter
11 you will actually be able to log
inl</p><p><br /></p>";

57

58 } else { // If it did not run OK.

59

60 // Public message:

(script continues on next page)

3. Change the validation routines to use the

mysqli_real_escape_string() function,
replacing each occurrence of $var =
trim($_POST['var']) with $var =
mysqli_real_escape_string($dbc,
trim($_POST['var'])).

$fn = mysqli_real_escape_string($dbc,
— trim($_POST['first_name']));

$1n = mysqli_real_escape_string($dbc,
— trim($_POST['last_name']));

$e = mysqli_real_escape_string($dbc,
— trim($_POST['email']));

$p = mysqli_real_escape_string($dbc,
— trim($_POST['passl']));

Instead of just assigning the submitted
value to each variable ($fn, $1n, etc.),
the values will be run through the
mysqli_real_escape_string() function
first. The trim() function is still used to
get rid of any unnecessary spaces.

continues on next page

245

70S 3¥NJ3G ONIINSN]



ENSURING SECURE SQL

Chapter 8

4. Add a second call to mysqli_close()
before the end of the main conditional.

mysqli_close($dbc);

To be consistent, since the database con-
nection is opened as the first step of the
main conditional, it should be closed as
the last step of this same conditional. It
still needs to be closed before including
the footer and terminating the script
(lines 72 and 73), though.

Script 8.5 continued

OB = Seript
61 echo '<hl>System Error</hl>
62 <p class="error">You could not be
registered due to a system error.
We apologize for any
inconvenience.</p>";
63
64 // Debugging message:
65 echo '<p>' . mysqli_error($dbc) .
'<br /><br />Query: ' . $q .
'</p>"
66
67 } // End of if ($r) IF.
68
69 mysqli_close($dbc); // Close the
database connection.
70
71 // Include the footer and quit the
script:
72 include ('includes/footer.html');
73 exit(Q);
74
75 } else { // Report the errors.
76
77 echo '<hl>Error!</hl>
78 <p class="error">The following
error(s) occurred:<br />';
79 foreach ($errors as $msg) { // Print
each error.
80 echo " - $msg<br />\n";
81 }
82 echo '</p><p>Please try
again.</p><p><br /></p>";
83
84 } // End of if (empty($errors)) IF.
85
86 mysqli_close($dbc); // Close the
database connection.
87
88 '} // End of the main Submit conditional.
89 7>

(script continues on next page)

246



Using PHP with MySQL

Script 8.5 continued
Qe = Seript
90 <hl>Register</hl>
91 <form action="register.php" method="post">
92 <p>First Name: <input type="text"
name="first_name" size="15"
maxlength="20" value="<?php if
(isset($_POST['first_name'])) echo
$_POST['first_name']; 7>" /></p>
93 <p>Last Name: <input type="text"
name="last_name" size="15"
maxlength="40" value="<?php if
(isset($_POST['last_name'])) echo
$_POST['last_name']; ?>" /></p>
94 <p>Email Address: <input type="text"
name="email" size="20" maxlength="80"
value="<?php if (isset($_POST['email']))
echo $_POST['email']; ?>" /> </p>
95 <p>Password: <input type="password"
name="pass1l" size="10" maxlength="20"
/></p>
96 <p>Confirm Password: <input
type="password" name="pass2" size="10"
maxlength="20" /></p>
97 <p><input type="submit" name="submit"
value="Register" /></p>
98 <input type="hidden" name="submitted"
value="TRUE" />
99 </form>
100 <?php
101 1include ('includes/footer.html');
102 2> e

5. Save the file as register.php, place it in

your Web directory, and test it in your
Web browser (Figures 8.14 and 8.15).

continues on next page

Register

First Mame: Peter

Last Mame: O'Toale

Email Address: pete@example.com
Pasgword: *****

Confirm Password: ***+*

Register

Figure 8.14 Values
with apostrophes in
them, like a person’s
last name, will no
longer break the
INSERT query,
thanks to the
mysqli_real_
escape_string()

function.

Thank you!

You are now registered. In Chagter 11 you will actually be able to login!

Figure 8.15 Now the registration process will handle
problematic characters and be more secure.

247

70S 3¥NJ3G ONIINSN]



ENSURING SECURE SQL

Chapter 8

v Tips

The mysqli_real_escape_string() func-
tion escapes a string in accordance with
the language being used, which is an added
advantage over alternative solutions.

If you see results like those in Figure 8.16,
it means that the mysqli_real_escape_
string() function cannot access the

database (because it has no connection,
like $dbc).

B If Magic Quotes is enabled on your server

(which means you're using a version of
PHP prior to 6), you'll need to remove
any slashes added by Magic Quotes, prior
to using the mysqli_real_escape_string()
function. The code (cumbersome as it is)
would look like:

$fn = mysqli_real_escape_string
» ($dbc, trim (stripslashes
» ($_POST[ ' first_name']1)));

If you don't use stripslashes() and
Magic Quotes is enabled, the form values
will be doubly escaped.

Serverhtdocsiregister.php on line 17

Motice: Undefined variahle: dbc in iipplicationsifbyss Web Serverhtdocs/register.php on line 17

Warning: rmysqgli_real_escape_string() expects parameter 1 to be rmysgli, null given in JApplications/Abyss Web!

Figure 8.16 Since the mysqli_real_escape_string() requires a database connection, using
it without that connection (e.g., before including the connection script) can lead to other errors.

Modifying register.php

The mysqli_num_rows() function could be applied to register.php to prevent someone from
registering with the same email address multiple times. Although the UNIQUE index on that
column in the database will prevent that from happening, such attempts will create a MySQL
error. To prevent this using PHP, run a SELECT query to confirm that the email address isn't

currently registered. That query would be simply
SELECT user_id FROM users WHERE email='$e'

You would run this query (using the mysqli_query() function) and then call mysqli_num_rowsQ).
If mysqli_num_rows() returns 0, you know that the email address hasn't already been regis-
tered and it’s safe to run the INSERT.

248



Using PHP with MySQL

Script 8.6 Now the view_users.php script will display
the total number of registered users, thanks to the
mysqli_num_rows() function.

000 = Script

1 <?php # Script 8.6 - view_users.php #2

2 // This script retrieves all the records
from the users table.

4 $page_title = 'View the Current Users';
5 include ('includes/header.html');

7 // Page header:

8 echo '<hl>Registered Users</hl>';

10 require_once ('../mysqli_connect.php'); //
Connect to the db.

11

12 // Make the query:

13 $q = "SELECT CONCAT(last_name, ', ',
first_name) AS name,
DATE_FORMAT(registration_date, '%M %d,
%Y') AS dr FROM users ORDER BY
registration_date ASC";

14 $r = @mysqli_query ($dbc, $q); // Run the
query.

15

16 // Count the number of returned rows:
17  $num = mysqli_num_rows($r);

18

19 if ($num > @) { // If it ran OK, display
the records.

20

21 // Print how many users there are:

22 echo "<p>There are currently $num
registered users.</p>\n";

23

24 // Table header.

25 echo '<table align="center"
cellspacing="3" cellpadding="3"
width="75%">

(script continues on next page)

Counting Returned Records

The next logical function to discuss is
mysqli_num_rows(). This function returns
the number of rows retrieved by a SELECT
query. It takes one argument, the query
result variable:

$num = mysqli_num_rows($r);

Although simple in purpose, this function is
very useful. It's necessary if you want to pag-
inate your query results (an example of this
can be found in the next chapter). It’s also a
good idea to use this function before you
attempt to fetch any results using a while
loop (because theres no need to fetch the
results if there aren't any, and attempting to
do so may cause errors). In this next sequence
of steps, let’'s modify view_users.php to list
the total number of registered users. For
another example of how you might use
mysqli_num_rows(), see the sidebar.

To modify view_users.php:

1. Open view_users.php (refer to Script 8.4)
in your text editor or IDE.

2. Before the if ($r) conditional, add this
line (Script 8.6)
$num = mysqli_num_rows ($r);
This line will assign the number of rows
returned by the query to the $num variable.
3. Change the original $r conditional to
if ($num > @) {

The conditional as it was written before
was based upon whether the query did or
did not successfully run, not whether or
not any records were returned. Now it
will be more accurate.

continues on next page

249

SAY0I3Y AINIYNLIY ONILNNO)



COUNTING RETURNED RECORDS

Chapter 8

4. Before creating the HTML table, print Script 8.6 continued
the number of registered users. 806 =) Script

26 <tr><td align="left"><b>Name</b></td><td
align="1left"><b>Date
Registered</b></td></tr>

echo "<p>There are currently $num
— registered users.</p>\n";

5. Change the else part of the main condi- vy
tional to read 28
echo "<p class="error">There are 29 // Fetch and print all the records:
— currently no registered users.</p>'; 30 while ($row = mysqli_fetch_array($r,

MYSQLI_ASSOC)) {
The original conditional was based upon

31 echo '<tr><td align="left">' .
whether or not the query worked. :

$row['name'] . '</td><td align="left">"' .

Hopefully you've successfully debugged $row['dr'] . '</td></tr>
the query so that it is working and the 32 r
original error messages are no longer 33
needed. Now the error message just indi- "
cates if no records were returned.
35 echo '</table>"; // Close the table.
6. Save the file as view_users.php, place it 36

in your Web directory, and test it in your

. 37 mysqli_free_result ($r); // Free up the
Web browser (Figure 8.17). yea S P

resources.
38

39 } else { // If no records were returned.

40
41 echo '<p class="error">There are
currently no registered users.</p>';
42
43 1}
44
45 mysqli_close($dbc); // Close the database
connection.
46
5 47 include ('includes/footer.html');
Registered Users
----------------------------------------------------------------- 48 7>
There are currently 27 registered users.
Name Date Registered
Ullrran, Larty Septernber 22, 2007
Igabella, Zoe Septernber 22, 2007
Starr, Ringo Septernper 22, 2007
Harrigon, George Septernper 22, 2007
Wi cCartney, Faul Septernber 22, 2007
Lennan, John Septernher 22, 2007
Chahon, Michael Septernher 22, 2007
Brautigan, Richard Septernher 22, 2007
Banks, Russell Septernber 22, 2007
Simpson, Homer Septernber 22, 2007

Figure 8.17 The number of registered users is now
displayed at the top of the page.

250



Using PHP with MySQL

Change Your Password

Email Address: email@example com
Current Pagsword; ===

Mew Password:; eeseess

Canfirm Mew Paggword; s

Change Fassword

Figure 8.18 The form for changing a user’s password.

Updating Records with PHP

The last technique in this chapter shows how
to update database records through a PHP
script. Doing so requires an UPDATE query, and
its successful execution can be verified with
PHP’s mysqli_affected_rows() function.

While the mysqli_num_rows() function will
return the number of rows generated by a
SELECT query, mysqli_affected_rows() returns
the number of rows affected by an INSERT,
UPDATE, or DELETE query. It's used like so:

$num = mysqli_affected_rows($dbc);

Unlike mysqli_num_rows(), the one argument
the function takes is the database connection
($dbc), not the results of the previous

query ($r).

The following example will be a script that
allows registered users to change their pass-
word. It demonstrates two important ideas:

¢ Checking a submitted username and
password against registered values (the
key to a login system as well)

¢ Updating database records using the pri-
mary key as a reference

As with the registration example, this one PHP
script will both display the form (Figure 8.18)
and handle it.

251

dHd HLIM SQJ0I3Y 9NILvad



UPDATING RECORDS WITH PHP

Chapter 8

To update records with PHP:

1. Create a new PHP script in your text edi-
tor or IDE (Script 8.7).

<?php # Script 8.7 - password.php
$page_title = 'Change Your Password';

include ('includes/header.html');

2. Start the main conditional.
if (isset($_POST['submitted'])) {

Since this page both displays and
handles the form, it’ll use the standard
conditional.

3. Include the database connection and
create an array for storing errors.

require_once ('../mysqli_connect.php');
$errors = array(Q);

The initial part of this script mimics the
registration form.

Script 8.7 The password. php script runs an UPDATE query
on the database and uses the mysqli_affected_rows()
function to confirm the change.

80e =] Seript

1 <?php # Script 8.7 - password.php

2 // This page lets a user change their

password.

3

4 $page_title = 'Change Your Password';

5 include ('includes/header.html');

6

7 // Check if the form has been submitted:

8 if (isset($_POST['submitted'])) {

9

10 require_once ('../mysqli_connect.php');

// Connect to the db.
11
12 $errors = array(); // Initialize an
error array.

13

14 // Check for an email address:

15 if (empty($_POST['email'])) {

16 $errors[] = 'You forgot to enter your
email address.';

17 } else {

18 = mysqli_real_escape_string($dbc,
trim($_POST['email']));

19 }

20

21 // Check for the current password:

22 if (empty($_POST['pass'1)) {

23 $errors[] = 'You forgot to enter your
current password.';

24 } else {

25 $p = mysqli_real_escape_string($dbc,
trim($_POST['pass']1));

26 1

27

28 // Check for a new password and match

29 // against the confirmed password:

(script continues on next page)

252



Using PHP with MySQL

Script 8.7 continued

0080 = Sript

30 if (lempty($_POST['passl'])) {

31 if ($_POST['passl'] !=

$_POST['pass2']) {

32 $errors[] = 'Your new password did
not match the confirmed password.';

33 } else {

34 $np =
mysqli_real_escape_string($dbc,
trim($_POST[ 'pass1']));

35 3

36 } else {

37 $errors[] = 'You forgot to enter your

new password.';

38 }

39

40 if (empty($errors)) { // If everything's

OK.
41
42 // Check that they've entered the
right email address/password
combination:
43 $q = "SELECT user_id FROM users WHERE
(email="$e' AND pass=SHA1('$p') D";

44 $r = @mysqli_query($dbc, $q);

45 $num = @mysqli_num_rows($r);

46 if ($num == 1) { // Match was made.

47

48 // Get the user_id:

49 $row = mysqli_fetch_array($r,
MYSQLI_NUM);

50

51 // Make the UPDATE query:

52 $q = "UPDATE users SET
pass=SHA1("$np') WHERE
user_id=$row[@]";

53 $r = @mysqli_query($dbc, $q);

54

55 if (mysqli_affected_rows($dbc) ==
1) { // If it ran OK.

56

(script continues on next page)

. Validate the email address and current

password fields.

if (empty($_POST['email'])) {
$errors[] = 'You forgot to enter
— your email address.';

} else {

$e =
— mysqli_real_escape_string($dbc

— trim($_POST['email']));
}
if (empty($_POST['pass'])) {

$errors[] = 'You forgot to enter
» your current password.';

} else {

$p =
— mysqli_real_escape_string($dbc

— trim($_POST['pass']1));
}

The form (Figure 8.18) has four inputs:
the email address, the current password,
and two for the new password. The process
for validating each of these is the same as
it is in register.php. Any data that passes
the validation test will be trimmed and
run through the mysqli_real_escape_
string() function, so that it is safe to use
in a query.

continues on next page

253

dHd HLIM SQJ0I3Y 9NILvad



UPDATING RECORDS WITH PHP

Chapter 8

5. Validate the new password.
if (lempty($_POST['passl'])) {
if ($_POST['passl'] !=
— $_POST['pass2']) {
$errors[] = 'Your new password

— did not match the confirmed
— password.';

} else {

$np =
— mysqli_real_escape_string($
— dbc, trim($_POST['passl']));

}
} else {

$errors[] = '"You forgot to enter
— your new password.';

}

This code is also exactly like that in the
registration script, except that a valid
new password is assigned to a variable
called $np (because $p represents the
current password).

Script 8.7 continued

8086 =) Script
57 // Print a message.
58 echo '<hl>Thank you!</hl>
59 <p>Your password has been
updated. In Chapter 11 you
will actually be able to log
inl</p><p><br /></p>";
60
6l } else { // If it did not run OK.
62
63 // Public message:
64 echo '<hl>System Error</hl>
65 <p class="error">Your
password could not be
changed due to a system
error. We apologize for any
inconvenience.</p>";
66
67 // Debugging message:
68 echo "<p>' .
mysqli_error($dbc) . '<br
/><br />Query: ' . $q .
'</p>';
69
70 }
71
72 // Include the footer and quit the
script (to not show the form).
73 include ('includes/footer.html');
74 exit(Q);
75
76 } else { // Invalid email
address/password combination.
77 echo '<hl>Error!</hl>
78 <p class="error">The email address
and password do not match those on
file.</p>";
79 }
80
81 } else { // Report the errors.

(script continues on next page)

254



Using PHP with MySQL

Script 8.7 continued
000 2 saript
82
83 echo '<hl>Error!</hl>
84 <p class="error">The following
error(s) occurred:<br />";
85 foreach ($errors as $msg) { // Print
each error.
86 echo " - $msg<br />\n";
87 }
88 echo '</p><p>Please try
again.</p><p><br /></p>";
89
920 } // End of if (empty($errors)) IF.
91
92 mysqli_close($dbc); // Close the
database connection.
93
94 } // End of the main Submit conditional.
95 7>
96 <hl>Change Your Password</hl>
97  <form action="password.php" method="post">
98 <p>Email Address: <input type="text"
name="email" size="20" maxlength="80"
value="<?php if (isset($_POST['email']))
echo $_POST['email']; ?>" /> </p>
99 <p>Current Password: <input
type="password" name="pass" size="10"
maxlength="20" /></p>
100 <p>New Password: <input type="password"
name="passl" size="10" maxlength="20"
/></p>
101 <p>Confirm New Password: <input
type="password" name="pass2" size="10"
maxlength="20" /></p>
102 <p><input type="submit" name="submit"
value="Change Password" /></p>
103 <input type="hidden" name="submitted"
value="TRUE" />
104 </form>
105 <?php
106 include ('includes/footer.html');
107 7>

6. If all the tests are passed, retrieve the
user’s ID.

if (empty($errors)) {

$q = "SELECT user_id FROM users
— WHERE (email="$e' AND
— pass=SHA1("$p') D";

$r = @mysqli_query($dbc, $q);
$num = @mysqli_num_rows($r);
if ($num == 1) {

$row = mysqli_fetch_array($r,
— MYSQLI_NUM);

This first query will return just the
user_id field for the record that matches
the submitted email address and pass-
word (Figure 8.19). To compare the sub-
mitted password against the stored one,
encrypt it again with the SHA1() function.
If the user is registered and has correctly
entered both the email address and pass-
word, exactly one row will be selected
(since the email value must be unique
across all rows). Finally, this one record is
assigned as an array (of one element) to
the $row variable.

continues on next page

® 060 Terminal

mysgl> SELECT user_id FROM users =l

HHERE {email='email@example.com’
AND pass=SHAL('mypass') J;
o +

| user_id |

B +

1 row in set (B.82 sec)

T * m
'y
v

mysgl> ]

Figure 8.19 The result when running
the SELECT query from the script (the
first of two queries it has) within the
mysql client.

255

dHd HLIM SQJ0I3Y 9NILvad



UPDATING RECORDS WITH PHP

Chapter 8

If this part of the script doesn't work for
you, apply the standard debugging meth-
ods: remove the error suppression opera-
tors (@) so that you can see what errors, if
any, occur; use the mysqli_error() func-
tion to report any MySQL errors; and
print, then run the query using another
interface (as in Figure 8.19).

Update the database.
$q = "UPDATE users SET
» pass=SHA1("$np') WHERE
» user_id=$row[0]";
$r = @mysqli_query($dbc, $q);

This query will change the password—
using the new submitted value—where
the user_id column is equal to the num-
ber retrieved from the previous query.

Check the results of the query.

if (mysqli_affected_rows($dbc) == 1) {
echo '<h1>Thank you!</hl>
<p>Your password has been
— updated. In Chapter 11 you
will
— actually be able to log
— inl</p><p><br /></p>';

} else {
echo '<hl>System Error</hl>

<p class="error">Your password
— could not be changed due to a
— system error. We apologize for
— any inconvenience.</p>"';

echo '<p>' . mysqli_error($dbc)
» "<br /><br />Query: ' . $q .
» '</p>'

10.

This part of the script again works simi-
lar to register.php. In this case, if
mysqli_affected_rows() returns the
number 1, the record has been updated,
and a success message will be printed.
If not, both a public, generic message
and a more useful debugging message
will be printed.

. Include the footer and terminate the

script.

include ('includes/footer.html');
exit();

At this point in the script, the UPDATE
query has been run. It either worked or
it did not (because of a system error). In
both cases, there’s no need to show the
form again, so the footer is included (to

complete the page) and the script is ter-
minated, using the exit() function.

Complete the if ($num == 1) conditional.
} else {
echo '<hl>Error!</hl>

<p class="error">The email
— address and password do not
— match those on file.</p>";

}

If mysqli_num_rows() does not return a
value of 1, then the submitted email
address and password do not match
those on file and this error is printed.
In this case, the form will be displayed
again so that the user can enter the
correct information.

256



Using PHP with MySQL

11.

12.

Print any validation error messages.
} else {
echo '<hl>Error!</hl>

<p class="error">The following
— error(s) occurred:<br />';

foreach ($errors as $msg) {

echo " - $msg<br />\n";

}

echo '</p><p>Please try
— again.</p><p><br /></p>";

}

This else clause applies if the $errors
array is not empty (which means that
the form data did not pass all the vali-
dation tests). As in the registration
page, the errors will be printed.

Close the database connection and
complete the PHP code.

mysqli_close($dbc);

7>

13. Display the form.
<h1>Change Your Password</hl>

<form action="password.php"
— method="post">

<p>Email Address: <input
— type="text" name="email"
— size="20" maxlength="80"
— value="<?php if

— (isset($_POST['email'])) echo
— $_POST['email']; 7>" /> </p>

<p>Current Password: <input

— type="password" name="pass"
— size="10" maxlength="20" /></p>

<p>New Password: <input

— type="password" name="passl"
— size="10" maxlength="20" /></p>

<p>Confirm New Password: <input
— type="password" name="pass2"
— size="10" maxlength="20" /></p>

<p><input type="submit"

— name="submit" value="Change

— Password" /></p>

<input type="hidden"

— name="submitted" value="TRUE"

- />

</form>

The form takes three different inputs of
type password—the current password, the
new one, and a confirmation of the new

password—and one text input for the
email address. The email address input
is sticky (password inputs cannot be).

continues on next page

257

dHd HLIM SQJ0I3Y 9NILvad



UPDATING RECORDS WITH PHP

Chapter 8

14. Include the footer file.
<?php
include ('includes/footer.html');

7>

15. Save the file as password.php, place it in
your Web directory, and test it in your
Web browser (Figures 8.20 and 8.21).

v Tips

B If you delete every record from a table
using the command TRUNCATE tablename,
mysqli_affected_rows() will return 0, even
if the query was successful and every row
was removed. This is just a quirk.

W If an UPDATE query runs but does not actu-
ally change the value of any column (for
example, a password is replaced with the
same password), mysqli_affected_rows()
will return 0.

B The mysqli_affected_rows() conditional
used here could (and maybe should) also
be applied to the register.php script to
confirm that one record was added. That
would be a more exacting condition to
check than if ($r).

Thank you!

Your password has been updated. In Chapter 17 you will actually be able to log in!

Figure 8.20 The password was changed in the database.

The email address and password do not match those on file.

Change Your Password

Email Address: email@example.com
Current Passward
e Passward

Confirm New Password

Change Password

Figure 8.21 If the entered email address and
password don’t match those on file, the
password will not be updated.

258




COMMON
PROGRAMMING
TECHNIQUES

Now that you have a little PHP and MySQL interaction under your belt, it’s time to
take things up a notch. This chapter is similar to Chapter 3, “Creating Dynamic Web
Sites,” in that it covers myriad independent topics. But what all of these have in
common is that they demonstrate common PHP-MySQL programming techniques.

You won't learn new functions here; instead, you'll see how to use the knowledge
you already possess to create standard Web functionality.

The examples themselves will broaden the Web application started in the preceding
chapter by adding new, popular features. You'll see several tricks for managing data-
base information, in particular editing and deleting records using PHP. At that same
time a couple new ways of passing data to your PHP pages will be introduced. The
final sections of the chapter add features to the view_users.php page.

259

SINDINHI3] ONIWWVYIDOAId NOWWO)



SENDING VALUES TO A SCRIPT

Chapter 9

Sending Values to a Script

In the examples so far, all of the data received
in the PHP script came from what the user
entered in a form. There are, however, two
different ways you can pass variables and
values to a PHP script, both worth knowing.

The first method is to make use of HTMLs
hidden input type:

<input type="hidden" name="do"
value="this" />

As long as this code is anywhere between
the form tags, the variable $_POST['do"'] will
have a value of this in the handling PHP
script (assuming that the form uses the POST
method). You've already been using this
technique in the book with a hidden input
named submitted, used to test when a form
should be handled.

The second method for sending values to a
PHP script is to append it to the URL:

www. example.com/page.php?do=this

This technique emulates the GET method
of an HTML form. With this specific exam-
ple, page.php receives a variable called
$_GET["do'] with a value of this.

To demonstrate this GET method trick, a
new version of the view_users.php script,
first created in the last chapter, will be writ-
ten. This one will provide links to pages that
will allow you to edit or delete an existing
user’s record. The links will pass the user’s ID
to the handling pages, both of which will
also be written in this chapter.

To manually send values to a PHP
script:

1. Open view_users.php (Script 8.6) in your
text editor or IDE.

Script 9.1 The view_users.php script, started in
Chapter 8, “Using PHP with MySQL,” now modified
so that it presents Edit and Delete links, passing the
user’s ID number along in each URL.

0060 2 Seript

1 <?php # Script 9.1 - view_users.php #3

2

3 // This script retrieves all the records
from the users table.

4 // This new version links to edit and
delete pages.

5

6 $page_title = 'View the Current Users';

7 include ('includes/header.html');

8

9 echo '<hl>Registered Users</hl>';

10

11  require_once ('../mysqli_connect.php');

12

13 // Make the query:

14 $q = "SELECT last_name, first_name,
DATE_FORMAT(registration_date, '¥M %d,
%Y') AS dr, user_id FROM users ORDER BY
registration_date ASC";

15  $r = @mysqli_query ($dbc, $q);

16

17 // Count the number of returned rows:

18  $num = mysqli_num_rows($r);

19

20 if ($num > @) { // If it ran OK, display
the records.

21

22 // Print how many users there are:

23 echo "<p>There are currently $num

registered users.</p>\n";

24

25 // Table header.

26 echo '<table align="center" cellspacing=

"3" cellpadding="3" width="75%">

27 <tr>

28 <td align="left"><b>Edit</b></td>

29 <td align="left"><b>Delete</b></td>

(script continues on next page)

260



Common Programming Techniques

Script 9.1 continued

0o = Script
30 <td align="left"><b>Last Name</b></td>
31 <td align="left"><b>First Name</b></td>
32 <td align="left"><b>Date Registered</b>
</td>
33 </tr>
34
35
36 // Fetch and print all the records:
37 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {
38 echo '<tr>
39 <td align="left"><a href="edit_user.
php?id=" . $row['user_id'] . '">Edit
</a></td>
40 <td align="left"><a href="delete_user.
php?id=" . $row['user_id'] . '">Delete
</a></td>
41 <td align="left">' . $row['last_name']
. '</td>
42 <td align="left">"' . $row['first_
name'] . '</td>
43 <td align="left">' . $row['dr'] .
'</td>
44 </tr>
45 '
46 }
47
48 echo '</table>";
49 mysqli_free_result ($r);
50
51 } else { // If no records were returned.
52 echo '<p class="error">There are
currently no registered users.</p>";
53
54
55 mysqli_close($dbc);
56
57 include ('includes/footer.html');
58 7>

2. Change the SQL query to read (Script 9.1).

$q = "SELECT last_name, first_name,
— DATE_FORMAT(registration_date, '%M
— %d, %Y') AS dr, user_id FROM users
— ORDER BY registration_date ASC";

The query has been changed in a couple
of ways. First, the first and last names are
selected separately, not concatenated
together. Second, the user_id is also now
being selected, as that value will be nec-
essary in creating the links.

. Add three more columns to the main table.

echo '<table align="center"
— cellspacing="3" cellpadding="3"
— width="75%">

<tr>

<td align="left"><b>Edit</b>
— </td>

<td align="left"><b>Delete</b>
- </td>

<td align="left"><b>Last Name
— </b></td>

<td align="left"><b>First Name
- </b></td>

<td align="left"><b>Date
— Registered</b></td>

</tr>

In the previous version of the script,
there were only two columns: one for the
name and another for the date the user
registered. The name column has been
separated into its two parts and two new
columns added: one for the Edit link and
another for the Delete link.

continues on next page

261

1d1¥DS V O1 SANTVA ONIAN3S



SENDING VALUES TO A SCRIPT

Chapter 9

4. Change the echo statement within the
while loop to match the table's new
structure.

echo '<tr>

<td align="1left"><a href=
— "edit_user.php?id=" . $row

— ['user_id'] . "">Edit</a></td>

<td align="left"><a href=

— "delete_user.php?id="'

— $row['user_id'] . "">Delete
— </a></td>

<td align="1left">"' . $row
» ["last_name'] . '</td>

<td align="left">"' . $row
— ["first_name'] . '</td>

<td align="left">"' . $row['dr']
— . '</td>

</tr>

For each record returned from the data-
base, this line will print out a row with
five columns. The last three columns are
obvious and easy to create: just refer to
the returned column name.

For the first two columns, which provide
links to edit or delete the user, the syntax
is slightly more complicated. The desired
end result is HTML code like <a href=
"edit_user.php?id=X">Edit</a>, where X
is the user’s ID. Knowing this, all the PHP
code has to do is print $row['user_id"']
for X, being mindful of the quotation
marks to avoid parse errors.

Because the HTML attributes use a lot of
double quotation marks and this echo()
statement requires a lot of variables to be
printed, I find it easiest to use single
quotes for the HTML and then to con-
catenate the variables to the printed text.

" 5. Save the file as view_users.php, place it

in your Web directory, and run it in your
Web browser (Figure 9.1).

Registered Users

There are currently 27 registered users.

Edit Delete Last Hame First Name Date Registered

Edit Delete Ullman Larny Septernber 22, 2007

Edit Delete lsahella Zoe Septernber 22, 2007

Edit Delete Starr Ringo Septernber 22, 2007

Edit Celete Hatrison George Septernber 22, 2007

Edit Delete Mo Cartney Faul Septernber 22, 2007

Edit Celete Lennon John Septernber 22, 2007

Edit Delete Chabon Michael Septernber 22, 2007

Edit Delete Erautigan Richard Septermber 22, 2007

Edit Delete Banks Fussell Septernber 22, 2007

Edit Delete Simpson Hormer September 22, 2007

Figure 9.1 The revised version of the view_users.php page, with new

columns and links.

262



Common Programming Techniques

6. If you want, view the HTML source of

the page to see each dynamically gener-
ated link (Figure 9.2).

v Tips

B To append multiple variables to a URL,

use this syntax: page.php?namel=valuel
&name2=value2&name3=value3. It’s simply
a matter of using the ampersand, plus
another name=val ue pair.

One trick to adding variables to URLs is
that strings should be encoded to ensure
that the value is handled properly. For
example, the space in the string Elliott
Smith would be problematic. The solution
then is to use the urlencode() function:

$url = 'page.php?name=" . urlencode
— ("Elliott Smith');

You only need to do this when program-
matically adding values to a URL. When
a form uses the GET method, it automati-
cally encodes the data.

<trx

</tr>
<tr>

</tr>
<tr:>

</tr>

<td
<td
<td
<td
<td

<td
<td
<td
<td
<td

<td
<td
<td
<td
<td

"left"s><a href="edit_ user.php?id=2">Edit</a></td>
"left"s><a href="delete user.php?id=i":Delete</a></td>
"lefr">Isabella<c/td>

Tlefr">Zoed/ td>

"left"r3eptember 22, 2007</tdr

"left"s><a href="edit user.php?id=6">Edit</a></td>
"left"s><a href="delete user.php?id=c":>Delete</a></td>
"left">Starr</td>

mleft">Ringo</ td>

mleft">Feptenmber 22, 2007</td>

align="left"><a href="edit_user.php?id=5">Edit<Ka><th>
align="left"><a href="delete user.php?id=5">Delete</ar</td>
align="lefr">Harrison</td>

align="left">George</td>

align="left">3eptember 22, 2007</td>

Figure 9.2 Part of the HTML source of the page (see Figure 9.1) shows how the user’s
ID is added to each link’s URL.

263

1d1¥DS V O1 SANTVA ONIAN3S



UsING HIDDEN FORM INPUTS

Chapter 9

Using Hidden Form Inputs

In the preceding example, a new version of
the view_users.php script was written. This
one now includes links to the edit_user.php
and delete_user.php pages, passing each a
user’s ID through the URL. This next example,
delete_user.php, will take the passed user
ID and allow the administrator to delete
that user. Although you could have this page
simply execute a DELETE query as soon as
the page is accessed, for security purposes
(and to prevent an inadvertent deletion),
there should be multiple steps:

1. The page must check that it received a
numeric user ID.

2. A message will confirm that this user
should be deleted.

3. The user ID will be stored in a hidden
form input.

4. Upon submission of this form, the user
will actually be deleted.

To use hidden form inputs:

1. Create a new PHP document in your text
editor or IDE (Script 9.2).

<?php # Script 9.2 - delete_user.php
2. Include the page header.

$page_title = 'Delete a User';

include ('includes/header.html');

echo '<hl>Delete a User</hl>"';

This document will use the same tem-
plate system as the other pages in the
application.

continues on page 266

Script 9.2 This script expects a user ID to be passed
to it through the URL. It then presents a confirmation
form and deletes the user upon submission.

80e =] Seript
1 <?php # Script 9.2 - delete_user.php

2

3 // This page is for deleting a user
record.

4 // This page is accessed through view_
users.php.

6 $page_title = 'Delete a User';
7 include ('includes/header.html');

8 echo '<hl>Delete a User</hl>";

10 // Check for a valid user ID, through GET
or POST:

11 if ( (isset($_GET['id'1)) && (is_numeric
($_GET['id'1)) ) { // From view_users.php

12 $id = $_GET['id'];

13} elseif ( (isset($_POST['id'])) &&
(is_numeric($_POST['id'1)) ) { // Form
submission.

14 $id = $_POST['id'];
15

-

else { // No valid ID, kill the script.

16 echo '<p class="error">This page has
been accessed in error.</p>";

17 include ('includes/footer.html');

18 exit(Q);

19 13

20

21  require_once ('../mysqli_connect.php');
22

23 // Check if the form has been submitted:
24 if (isset($_POST['submitted'])) {

25

26 if ($_POST['sure'] == 'Yes') { // Delete
the record.

27
28 // Make the query:

(script continues on next page)

264



Common Programming Techniques

Script 9.2 continued

Script 9.2 continued

006 = Script 0086 2 Saript
29 $q = "DELETE FROM users WHERE 56 // Create the form:
user_id=$id LIMIT 1"; .
57 echo '<form action="delete_user.php"
30 $r = @mysqli_query ($dbc, $q); method="post">
31 if (mysqli_affected_rows($dbc) == 1) { 58 <h3>Name: ' . $row[@] . '</h3>
// If it ran OK. .
59 <p>Are you sure you want to delete this
32 user?<br />
33 // Print a message: 60 <input type="radio" name="sure"
value="Yes" /> Yes
34 echo '<p>The user has been
deleted.</p>"; 6l <input type="radio" name="sure" value=
35 "No" checked="checked" /> No</p>
. 62 <p><input type="submit" name="submit"
36 } else { // If the query did not run OK. value="Submit" /></p>
37 echo '<p class="error">The user could 63 <input type="hidden" name="submitted"
not be deleted due to a system error. value="TRUE" />
</p>"; // Public message.
. 64 <input type="hidden" name="id" value=""'
38 echo '<p>' . mysqli_error($dbc) . '<br C%id .t
/>Query: ' . $q . '</p>"; // Debugging
message. 65 </form>";
39 } 66
40 67 } else { // Not a valid user ID.
41 } else { // No confirmation of deletion. 68 echo '<p class="error">This page has
been accessed in error.</p>';
42 echo '<p>The user has NOT been
deleted.</p>"'; 69 }
43 } 70
44 71 '} // End of the main submission
conditional.
45 } else { // Show the form.
72
46
) . ) 73 mysqli_close($dbc);
47 // Retrieve the user's information:
74
48 $gq = "SELECT CONCAT(last_name, ', ',
first_name) FROM users WHERE 75 include ('includes/footer.html');
user_id=$id";
7% 7>
49 $r = @mysqli_query ($dbc, $q);
50
51 if (mysqli_num_rows($r) == 1) { // Valid
user ID, show the form.
52
53 // Get the user's information:
54 $row = mysqli_fetch_array ($r,
MYSQLI_NUM) ;
55

(script continues)

265

SLNdN| W04 N3adiH ONIS()



UsING HIDDEN FORM INPUTS

Chapter 9

3. Check for a valid user ID value. this same page), the page will receive the
if ( (isset($_GET['id'])) && (is. Ii thkrou}%h $_ZOST. The ;ecor}lld (I:]gndlltlon
s numeric($_GET['id'1)) ) { checks this and, again, that the ID value

) ] is numeric.
$id = $_GET['id"]; If neither of these conditions are TRUE,

} elseif ( (isset($_POST['id'])) 8&& then the page cannot proceed, so
— (is_numeric($_POST['id'])) ) { an error message is displayed and the
$id = $_POST['id']; script’s execution is terminated
(Figure 9.3).
} else {

echo '<p class="error"sThis page 4. Include the MySQL connection script.

— has been accessed in error. r'equir‘e_once . ./mysqli_connect.
- </p>'; - php');
include ('includes/footer. Both of this script’s processes—showing
— html'); the form and handling the form—require
exit(); a database connection, so this line is
’ outside of the main submit conditional
¥ (Step 5).
This script relies upon having a valid 5. Begin the main submit conditional.

user ID, which will be used in a DELETE
query’s WHERE clause. The first time this

page is accessed, the user ID should be 6. Delete the user, if appropriate.
passed in the URL (the pages URL will

end with delete_user.php?id=X), after

if (isset($_POST['submitted'])) {

if ($_POST['sure'] == "Yes') {

clicking the Delete link in the view_ $q = "DELETE FROM users WHERE
users.php page. The first if condition » user_id=$id LIMIT 1";
checks for such a value and that the $r = @mysqli_query ($dbc, $q);

lue i ic.
vaiue s numetic The form (Figure 9.4) will make the

user click a radio button to confirm the
deletion. This little step prevents any
accidents. Thus, the handling process

As you will see, the script will then store
the user ID value in a hidden form input.
When the form is submitted (back to

Edit a User Delete a User

MName: Dolenz, Micky

This page has been accessed in error.

Are you sure you want to delete this user?
Figure 9.3 If the page does not receive O ez @ Nao

a number ID value, this error is shown. i
Subrmit

Figure 9.4 The page confirms the
user deletion using this simple form.

266



Common Programming Techniques

first checks that the right radio button
was selected. If so, a basic DELETE query
is defined, using the user’s ID in the
WHERE clause. A LIMIT clause is added to
the query as an extra precaution.

7. Check if the deletion worked and
respond accordingly.

if (mysqli_affected_rows($dbc) == 1)
» {

echo '<p>The user has been

— deleted.</p>";

} else {

echo '<p class="error">The user
» could not be deleted due to a
» system error.</p>";

echo '<p>' . mysqli_error($dbc)
— . '<br />Query: ' . $q .
= '</p>";

}

The mysqli_affected_rows() function
checks that exactly one row was affected
by the DELETE query. If so, a happy mes-
sage is displayed (Figure 9.5). If not, an
error message is sent out.

Keep in mind that it's possible that no
rows were affected without a MySQL

Delete a User

The user has been deleted.

Figure 9.5 If you select Yes
in the form (see Figure 9.4)
and click Submit, this
should be the result.

error occurring. For example, if the query
tries to delete the record where the user
ID is equal to 42000 (and if that doesn’t
exist), no rows will be deleted but no
MySQL error will occur. Still, because of
the checks made when the form is first
loaded, it would take a fair amount of
hacking by the user to get to that point.

. Complete the $_POST['sure'] conditional.

} else {

echo '<p>The user has NOT been
deleted.</p>";

}

If the user did not explicitly check the
Yes box, the user will not be deleted and
this message is displayed (Figure 9.6).

. Begin the else clause of the main submit

conditional.
} else {

The page will either handle the form or
display it. Most of the code prior to this
takes effect if the form has been submit-
ted (if $_POST['submitted'] is set). The
code from here on takes effect if the
form has not yet been submitted, in
which case the form should be displayed.

continues on next page

Delete a User

The user has NOT been deleted

Figure 9.6 If you do not select
Yes in the form, no database
changes are made.

267

SLNdN| W04 N3adiH ONIS()



UsING HIDDEN FORM INPUTS

Chapter 9

10.

11.

Retrieve the information for the user
being deleted.

$q = "SELECT CONCAT(last_name, ', ',
— first_name) FROM users WHERE

— user_id=$id";

$r = @mysqli_query ($dbc, $q);

if (mysqli_num_rows($r) == 1) {

To confirm that the script received a
valid user ID and to state exactly who is
being deleted (refer back to Figure 9.4),

the to-be-deleted user’s name is retrieved
from the database (Figure 9.7).

The conditional—checking that a single
row was returned—ensures that a valid
user ID was provided.

Display the form.

$row = mysqli_fetch_array ($r,
— MYSQLI_NUM);

echo '<form action="delete_user.php"
— method="post">

<h3>Name: ' . $row[@] . '</h3>

<p>Are you sure you want to delete
— this user?<br />

<input type="radio" name="sure"
— value="Yes" /> Yes

<input type="radio" name="sure"

— value="No" checked="checked" />
— No</p>

<p><input type="submit" name=

— "submit" value="Submit" /></p>
<input type="hidden" name=

— "submitted" value="TRUE" />
<input type="hidden" name="1id"

— value="" . $id . '" />

</form>";

®en0e6 Terminal

mysql> SELECT CONCAT{last_name, ', ', first_name) FRON 5
users WHERE user_id=12; a
| CONCAT(last_name, ', ', first_name)

| Hornby, Nick

1 row in set (8.81 sec)

mysql> I

« 5

Figure 9.7 Running the same SELECT query in the
mysql client.

268



Common Programming Techniques

12.

13.

First, the database record returned by
the SELECT query is retrieved using the
mysqli_fetch_array() function. Then
the form is printed, showing the name
value retrieved from the database at the
top. An important step here is that the
user ID ($id) is stored as a hidden form
input so that the handling process can
also access this value (Figure 9.8).

Complete the mysqli_num_rows()
conditional.

} else {

echo '<p class="error">This
— page has been accessed in
— error.</p>";

}

If no record was returned by the SELECT
query (because an invalid user ID was
submitted), this message is displayed.

If you see this message when you test
this script but don’'t understand why,
apply the standard debugging steps
outlined at the end of Chapter 7,
“Error Handling and Debugging”

Complete the PHP page.

}

mysqli_close($dbc);

include ('includes/footer.html');

7>

15.

v

The closing brace finishes the main
submission conditional. Then the
MySQL connection is closed and the
footer is included.

. Save the file as delete_user.php and

place it in your Web directory (it
should be in the same directory as
view_users.php).

Run the page by first clicking a Delete
link in the view_users.php page.

Tips

Another way of writing this script would
be to have the form use the GET method.
Then the validation conditional (lines
10-19) would only have to validate
$_GET['id'], as the ID would be passed
in the URL whether the page was first
being accessed or the form had been
submitted.

Hidden form elements don't display in
the Web browser but are still present in
the HTML source code (Figure 9.8). For
this reason, never store anything there
that must be kept truly secure.

Using hidden form inputs and appending
values to a URL are just two ways to
make data available to other PHP pages.
Two more methods—cookies and ses-
sions—are thoroughly covered in
Chapter 11, “Cookies and Sessions.”

<h3>Name: Hornby, Nick</h3ix>

<hlxDelete a User</hlr<form action="delete_user.php" method="posc">

<prire you sure you want to delete this user?<br f>

<input type="radioc” name="sure" vralue="Tez" f> Yes

<input type="radio”™ name="sure” value="Ilo" checked="checked"™ f> No</p>
<pr<input type="submit"™ name="submit" value="Iubmit"™ fr</p>

<input type="hidden” name="submitted” wvalue="TRUE" f>

<input type="hidden" name="id" value="1z" [>

Figure 9.8 The user ID is stored as a hidden input so that it’s available when the form is submitted.

269

SLNdN| W04 N3adiH ONIS()



EDITING EXISTING RECORDS

Chapter 9

Editing Existing Records

A common practice with database-driven
Web sites is having a system in place so that
you can easily edit existing records. This
concept seems daunting to many beginning
programmers, but the process is surprisingly
straightforward. For the following example—
editing registered user records—the process
combines skills the book has already taught:

¢ Making sticky forms

¢ Using hidden inputs

¢ Validating registration data
¢ Running simple queries

This next example is generally very similar
to delete_user.php and will also be linked
from the view_users.php script (when a per-
son clicks Edit). A form will be displayed
with the user’s current information, allowing
for those values to be changed (Figure 9.9).
Upon submitting the form, if the data passes
all of the validation routines, an UPDATE
query will be run to update the database.

Edit a User

First Mame: Lisa
Last Marne: Simpson
Ermail Address: lisa@simpson.com

Submit

Figure 9.9 The form for editing a
user’s record.

To edit an existing database record:

1. Create a new PHP document in your text
editor or IDE (Script 9.3).

<?php # Script 9.3 - edit_user.php
$page_title = '"Edit a User';
include ('includes/header.html');
echo '<hl>Edit a User</hl>';

2. Check for a valid user ID value.

if ( (isset($_GET['id'])) &&

— (is_numeric($_GET['id'1])) ) {
$id = $_GET['id'];

} elseif ( (isset($_POST['id'])) &&

— (is_numeric($_POST['id'1)) ) {
$id = $_POST['id'];

} else {

echo '<p class="error">This
— page has been accessed in
— error.</p>";

include ('includes/
— footer.html');

exitQ);
}

This validation routine is exactly the
same as that in delete_user.php, con-
firming that a numeric user ID has been
received, whether the page has first been
accessed from view_users.php (the first
condition) or upon submission of the
form (the second condition).

continues on page 273

270



Common Programming Techniques

Script 9.3 The edit_user.php page first displays the
user’s current information in a form. Upon submission
of the form, the record will be updated in the database.

000 = Script

1 <?php # Script 9.3 - edit_user.php

2

3 // This page is for editing a user record.

4 // This page is accessed through
view_users.php.

5

6 $page_title = 'Edit a User';

7 include ('includes/header.html');

8

9 echo '<hl>Edit a User</hl>';

10

11 // Check for a valid user ID, through GET
or POST:

12 if ( (isset($_GET['id'])) && (is_numeric
($_GET['id'1)) ) { // From view_users.php

13 $id = $_GET['id'];

14} elseif ( (isset($_POST['id'])) &&
(is_numeric($_POST['id'1)) ) { // Form
submission.

15 $id = $_POST['id'];

16 } else { // No valid ID, kill the script.

17 echo '<p class="error">This page has

been accessed in error.</p>";

18 include ('includes/footer.html');

19 exit();

20 %

21

22  require_once ('../mysqli_connect.php');

23

24 // Check if the form has been submitted:

25 if (isset($_POST['submitted'])) {

26

27 $errors = array(Q);

28

29 // Check for a first name:

30 if (empty($_POST['first_name'])) {

31 $errors[] = 'You forgot to enter

your first name.'; R X
(script continues)

Script 9.3 continued
eoce

=| Script

32 } else {

33 $fn = mysqli_real_escape_string($dbc,
trim($_POST[' first_name']));

34 }

35

36 // Check for a last name:

37 if (empty($_POST['last_name'])) {

38 $errors[] = 'You forgot to enter your
last name.';

39 } else {

40 $1n = mysqli_real_escape_string($dbc,
trim($_POST['last_name']));

41 3
42

43 // Check for an email address:
44 if (empty($_POST['email'])) {

45 $errors[] = 'You forgot to enter your
email address.';

46 } else {

47 $e = mysqli_real_escape_string($dbc,
trim($_POST['email']));

48 }

49

50 if (empty($errors)) { // If everything's
OK.

51
52 // Test for unique email address:

53 $q = "SELECT user_id FROM users WHERE
email="$e' AND user_id != $id";

54 $r = @mysqli_query($dbc, $q);
55 if (mysqli_num_rows($r) == @) {

56

57 // Make the query:

58 $q = "UPDATE users SET first_name=
'$fn', last_name="$1ln', email="$e'
WHERE user_id=$id LIMIT 1";

59 $r = @mysqli_query ($dbc, $q);

60 if (mysqli_affected_rows($dbc) == 1)
{ // If it ran OK.

61

(script continues on next page)

271

SAY0ID3IY SNILSIXT ONILIA]



EDITING EXISTING RECORDS

Chapter 9

Script 9.3 continued Script 9.3 continued
0o = Script 800 2 Seript
62 // Print a message: 90  $r = @mysqli_query ($dbc, $q);
63 echo '<p>The user has been edited. 91
</p>";
P 92  if (mysqgli_num_rows($r) == 1) { // Valid
64 user ID, show the form.
65 } else { // If it did not run OK. 93
66 echo '<p class="error">The user could 94 // Get the user's information:
not be edited due to a system error. .
We apologize for any inconvenience. 95 $row = mysqlll_fetch_arr'ay Gr,
</p>"; // Public message. MYSQLI_NUM;
67 echo '<p>' . mysqli_error($dbc) . '<br 9%
/>Query: ' . $q . '</p>'; // Debugging 97 // Create the form:
message.
98 echo '<form action="edit_user.php"
68 } method="post">
69 99 <p>First Name: <input type="text"
70 1 else { // Already registered. name="first_name" size="15" maxlength="15"
value=""' . $row[@] . '" /></p>
71 echo '<p class="error">The email . \ .\
address has already been registered. 100 <p>La§t Name : <tnpgt t)‘(pe: text .
</p>'; name="last_name" size="15" maxlength="30
value=""' . $row[1] . "" /></p>
72 } . .
101 <p>Email Address: <input type="text"
73 name="email" size="20" maxlength="40"
value=""' . $row[2] . '" /> </p>
74 } else { // Report the errors.
102 <p><input type="submit" name="submit"
& value="Submit" /></p>
76 echo '<p class="error">The following 103 <input type="hidden" name="submitted"
error(s) occurred:<br />'; value="TRUE" />
v foreach (Serrors as $msg) { // Print 104 <input type="hidden" name="id" value=""' .
each error. $id . " />
78 echo " - $msg<br />\n"; 105 </forms':
79 } 106
80 echo '</p><p>Please try again.</p>'; 107 ¥ else { // Not a valid user ID.
81 108 echo '<p class="error">This page has
82} // End of if (empty(Serrors)) IF. been accessed in error.</p>';
83 109 }
84 } // End of submit conditional. 110
85 111 mysqli_close($dbc);
86 // Always show the form... 112
87 113 include ('includes/footer.html');
88 // Retrieve the user's information: 114 7>
89 $q = "SELECT first_name, last_name, email

FROM users WHERE user_id=$id";

(script continues)

272



Common Programming Techniques

3.

Include the MySQL connection script
and begin the main submit conditional.

require_once

('../mysqli_connect.php');

if (isset($_POST['submitted'])) {
$errors = array(Q);

Like the registration examples you have

already done, this script makes use of an
array to track errors.

Validate the first name.
if Cempty($_POST['first_name'])) {

$errors[] = "You forgot to
— enter your first name.';

} else {

$fn = mysqli_real_escape_
— string($dbc, trim($_POST
— ["first_name']));

}

The form (Figure 9.9) is like a registration
page but without the password fields. The
form data can therefore be validated
using the same methods used in the reg-
istration scripts. As with the registration
examples, the validated data is trimmed
and then run through mysqli_real_
escape_string() for security.

Validate the last name and email address.
if Cempty($_POST['last_name'])) {

$errors[] = 'You forgot to
|- enter your last name.';

} else {

$1n = mysqli_real_escape_
— string($dbc, trim($_POST
— ["last_name']));

if (empty($_POST['email'1])) {

$errors[] = 'You forgot to
» enter your email address.';

} else {

$e = mysqli_real_escape_
— string($dbc, trim($_POST
- [email']));

}

. If there were no errors, check that the

submitted email address is not already
in use.

if (empty($errors)) {

$q = "SELECT user_id FROM users
— WHERE email="$e' AND user_id
— 1= $id";

$r = @mysqli_query($dbc, $q);
if (mysqli_num_rows($r) == @) {

The integrity of the database and of the
application as a whole partially depends
upon having unique email address values
in the users table. That requirement
guarantees that the login system, which
uses a combination of the email address
and password (to be developed in
Chapter 11), works. Because the form
allows for altering the user’s email
address (see Figure 9.9), special steps
have to be taken to ensure uniqueness.
To understand this query, consider two
possibilities....

In the first, the user’s email address is
being changed. In this case you just need
to run a query making sure that that
particular email address isn't already reg-
istered (i.e., SELECT user_id FROM users
WHERE email='$e").

continues on next page

273

SAY0ID3IY SNILSIXT ONILIA]



EDITING EXISTING RECORDS

Chapter 9

In the second possibility, the user’s
email address will remain the same. In
this case, it’s okay if the email address
is already in use, because it’s already in
use for this user.

To write one query that will work for
both possibilities, don't check to see if
the email address is being used, but
rather see if it’s being used by anyone
else, hence:

SELECT user_id FROM users WHERE

email="%$e"' AND user_id != $id

. Update the database.

$q = "UPDATE users SET first_name=
— '$fn', last_name='$1ln', email="%e’'
— WHERE user_id=$id LIMIT 1";

$r = @mysqgli_query ($dbc, $q);

The UPDATE query is similar to examples
you may have seen in Chapter 5, “Intro-
duction to SQL” The query updates all
three fields—first name, last name, and
email address—using the values submit-
ted by the form. This system works
because the form is preset with the exist-
ing values. So, if you edit the first name
in the form but nothing else, the first
name value in the database is updated
using this new value, but the last name
and email address values are “updated”
using their current values. This system is
much easier than trying to determine
which form values have changed and
updating just those in the database.

. Report on the results of the update.

if (mysqli_affected_rows($dbc) == 1)
- {

echo '<p>The user has been
edited.</p>";

} else {

echo '<p class="error">The user
— could not be edited due to a
— system error. We apologize for
— any inconvenience.</p>";

echo '<p>' . mysqli_error($dbc)
» . "<br />Query: ' . $q .
» '</p>'y

}

The mysqli_affected_rows() function
will return the number of rows in the
database affected by the most recent
query. If any of the three form values was
altered, then this function should return
the value 1. This conditional tests for
that and prints a message indicating
success or failure.

Keep in mind that the mysqli_affected_
rows() function will return a value of 0 if
an UPDATE command successfully ran but
didn’t actually affect any records. So if
you submit this form without changing
any of the form values, a system error

is displayed, which may not technically
be correct. Once you have this script
effectively working, you could change
the error message to indicate that

no alterations were made if mysqli_
affected_rows() returns 0.

. Complete the email conditional.

} else {

echo '<p class="error">The email
» address has already been
» registered.</p>";

}

This else completes the conditional that
checked if an email address was already
being used by another user. If so, that
message is printed.

274



Common Programming Techniques

10. Complete the $errors and submission

11.

conditionals.
} else { // Report the errors.

echo '<p class=
— "error">The following
— error(s) occurred:<br

- />"

foreach ($errors as

— $msg) {
echo " - $msg<br
> />\n";

}

echo '</p><p>Please try
— again.</p>";

} // End of if (empty($errors))
» IF.

} // End of submit conditional.

The first else is used to report any
errors in the form (namely, a lack of a

first name, last name, or email address).

The final closing brace completes the
main submit conditional.

In this example, the form will be dis-
played whenever the page is accessed.
So after submitting the form, the data-
base will be updated, and the form will
be shown again, now displaying the lat-
est information.

Retrieve the information for the user
being edited.

$q = "SELECT first_name, last_name,
— email FROM users WHERE user_

— id=$id";

$r = @mysqli_query ($dbc, $q);

if (mysqli_num_rows($r) == 1) {

12.

In order to pre-populate the form ele-
ments, the current information for the
user must be retrieved from the data-
base. This query is similar to the one in
delete_user.php. The conditional—
checking that a single row was
returned—ensures that a valid user ID
was provided.

Display the form.

$row = mysqli_fetch_array ($r,
» mysqLli_NUM);

echo '<form action="edit_user.php"
— method="post">

<p>First Name: <input type="text"
— name="first_name" size="15"

— maxlength="15" value="" . $row[@]
=" ></p>

<p>Last Name: <input type="text"

» name="last_name" size="15"

» maxlength="30" value="" . $row[1]
L " ></p>

<p>Email Address: <input type="text"
— name="email" size="20" maxlength=
— "4Q" value="' . $row[2] . '" />
- </p>

<p><input type="submit" name=
— "submit" value="Submit" /></p>

<input type="hidden" name=
» "submitted" value="TRUE" />

<input type="hidden" name="1id"
—value=""' . $id . '" />

</form>";

The form has but three text inputs,
each of which is made sticky using the
data retrieved from the database. Again,
the user ID ($id) is stored as a hidden
form input so that the handling process
can also access this value.

continues on next page

275

SAY0ID3IY SNILSIXT ONILIA]



EDITING EXISTING RECORDS

Chapter 9

13.

14.

15.

16.

v

Complete the mysqli_num_rows() condi-
tional.

} else {

echo '<p class="error">This
— page has been accessed in
— error.</p>";

}

If no record was returned from the data-
base, because an invalid user ID was sub-
mitted, this message is displayed.

Complete the PHP page.
mysqli_close($dbc);
include ('includes/footer.html');

7>

Save the file as edit_user.php and place
it in your Web directory (in the same
folder as view_users.php).

Run the page by first clicking an Edit
link in the view_users.php page
(Figures 9.10 and 9.11).

Tips

As written, the sticky form always shows
the values retrieved from the database.
This means that if an error occurs, the
database values will be used, not the
ones the user just entered (if those are
different). To change this behavior, the
sticky form would have to check for the
presence of $_POST variables, using those
if they exist, or the database values if not.

Edit a User

The user has heen adited.

First Mame: Lisa

Last Marme: Van Houten

Email Address: lisa@simpson.com

Submit

Figure 9.10 The new values are
displayed in the form after successfully
updating the database (compare with
the form values in Figure 9.9).

Edit a User

The email address has already been registered.
First Mame: Lisa

Last Mame: Van Houten

Ermail Address: lisa@simpson.com

Submit

Figure 9.11 If you try to change a record to an
existing email address or if you omit an input,
errors are reported.

B This edit page does not include the func-
tionality to change the password. That
concept was already demonstrated in
password.php (Script 8.7). If you would
like to incorporate that functionality
here, keep in mind that you cannot dis-
play the current password, as it is
encrypted. Instead, just present two
boxes for changing the password (the
new password input and a confirmation).
If these values are submitted, update the
password in the database as well. If these
inputs are left blank, do not update the
password in the database.

276



Common Programming Techniques

Paginating Query Results

Pagination is a concept you're familiar with
even if you don't know the term. When you
use a search engine like Google, it displays
the results as a series of pages and not as one
long list. The view_users.php script could
benefit from this same feature.

Paginating query results makes extensive
use of the LIMIT SQL clause introduced in
Chapter 5. LIMIT restricts which subset of
the matched records are actually returned.
To paginate the returned results of a query,
each page will run the same query using
different LIMIT parameters. So the first page
will request the first X records; the second
page, the second group of X records; and so
forth. To make this work, an indicator of

@

£ View the Current Users - Mozilla Firefox

File Edit View History Bookmarks Tools  Help

which records the page should display needs
to be passed from page to page in the URL,
like the user IDs passed from the
view_users.php page.

Another, more cosmetic technique will be
demonstrated here: displaying each row of
the table—each returned record—using an
alternating background color (Figure 9.12).
This effect will be achieved with ease, using
the ternary operator (see the sidebar “The
Ternary Operator”).

Theres a lot of good, new information here,
so0 be careful as you go through the steps
and make sure that your script matches this
one exactly. To make it easier to follow
along, let’s write this version from scratch
instead of trying to modify Script 9.1.

Your Website

Home Page Register
Registered Users
Edit Delete Last Name First Name
Edit  Delste Ullman Larry
Edit  Delete Isabella Zoe
Edit  Delete Starr Ringo
Edit  Delste Harrigon George
Edit  Delste McCartney Paul
Edit  Delete Lennaon John
Edit  Delste Brautigan Richard
Edit  Delete Banks Russell
Edit  Delete Simpson Homer
Edit  Delete Sirnpson harge

123 Mext

Wiew Users

Date Registered

Septemb
Septermnb
Septernb
Septemb
Septernb
Septemb
Septemb
Septernb
Septemnb
Septermnb

‘ Change Password ‘ link five ‘

or 22, 2007
er 22, 2007
er 22, 2007
er 22, 2007
er 22, 2007
er 22, 2007
er 22, 2007
er 22, 2007
er 22, 2007
er 22, 2007

Copyright @ Plain and Sirmple 2007 | Designed by edy3.co.uk | Sponsored by Open Designs | Yalid C55 & XHTML

Figure 9.12 Alternating the table row colors makes this list of users more legible (every other row

has a light gray background).

277

S11nSIY A¥INY ONILYNIOV]



PAGINATING QUERY RESULTS

Chapter 9

To paginate view_users.php:

1.

Begin a new PHP document in your text
editor or IDE (Script 9.4).

<?php # Script 9.4 - #4

$page_title = 'View the Current
— Users';

include ('includes/header.html');
echo '<hl>Registered Users</hl>";

require_once ('../mysqli_
— connect.php');

Set the number of records to display
per page.
$display = 10;

By establishing this value as a variable
here, you'll make it easy to change the
number of records displayed on each
page at a later date. Also, this value will
be used multiple times in this script, so
it’s best represented as a single variable.

Check if the number of required pages
has been determined.

if (isset($_GET['p']) && is_numeric
— ($_GET['p"1)) {

$pages = $_GET['p'];
} else {

For this script to display the users over
several pages, it will need to determine
how many total pages of results will be
required. The first time the script is run,
this number has to be calculated. For
every subsequent call to this page, the
total number of pages will be passed
to the script in the URL, so it will be
available in $_GET['p']. If this variable
is set and is numeric, its value will be
assigned to the $pages variable. If not,
then the number of pages will need to
be calculated.

continues on page 280

Script 9.4 This new version of view_users.php
incorporates pagination so that the users are listed

over multiple Web browser pages.

eo0e =) Seript

1 <?php # Script 9.4 - #4

2

3 // This script retrieves all the records
from the users table.

4 // This version paginates the query
results.

5

6 $page_title = 'View the Current Users';

7 include ('includes/header.html');

8 echo '<hl>Registered Users</hl>';

9

10 require_once ('../mysqli_connect.php');

11

12 // Number of records to show per page:

13 $display = 10;

14

15 // Determine how many pages there are...

16 1if (isset($_GET['p']) && is_numeric($_GET
['p'1)) { // Already been determined.

17

18 $pages = $_GET['p'];

19

20 } else { // Need to determine.

21

22 // Count the number of records:

23 $q = "SELECT COUNT(user_id) FROM users";

24 $r = @mysqli_query ($dbc, $q);

25 $row = @mysqli_fetch_array ($r,

MYSQLI_NUM);

26 $records = $row[0];

27

28 // Calculate the number of pages...

29 if ($records > $display) { // More than

1 page.
30 $pages = ceil ($records/$display);
31 } else {

(script continues)

278



Common Programming Techniques

Script 9.4 continued

Script 9.4 continued

8e6B = Script OB = Seript
32 $pages = 1; 62
33 } 63 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {
34
64
35 } // End of p IF.
65 $bg = ($bg=="#eeeeee' ? '#ffffff' :
36 '#eeeeee'); // Switch the background
37 // Determine where in the database to color.
start returning results... 66
38 if (isset($_GET['s']) && is_numeric 67 echo '<tr bgcolor="" . $bg . '">
($_GET['s'1)) {
' 68 <td align="left"><a
39 $start = $_GET['s']; href="edit_user.php?id=" .
40 7} else { $row['user_id'] . '">Edit</a></td>
69 <td align="left"><a href="delete_user.
41 tart = 0; - ;
$star ’ php?id=" . $row['user_id'] . '">Delete
42 3} </a></td>
43 70 <td align="left">"' . $row['last_name'] .
'</td>
44 // Make the query:
71 <td align="1left">"' . $row['first_name']
45 $q = "SELECT last_name, first_name, DATE_ L '</td>
FORMAT(registration_date, '#M %d, %Y')
AS dr, user_id FROM users ORDER BY 72 <td align="left">"' . $row['dr'] . '</td>
registration_date ASC LIMIT $start, 73 ,
$display”; </tr>
46 $r = @mysqli_query ($dbc, $q); 74 5
47 »
48 // Table header: 76 '} // End of WHILE loop.
49 echo '<table align="center" cellspacing= 7
"0" cellpadding="5" width="75%"> 78 echo '</tables';
50  <tr> 79  mysqli_free_result ($r);
51 <td align="left"><b>Edit</b></td> 80 mysqli_close($dbc);
52 <td align="left"><b>Delete</b></td> 81
53 <td align:"left"><b>Last Name</b></td> 82 // Make the 1links to other pages, if
54 <td align="left"><b>First Name</b></td> necessary.
55  <td align="left"><b>Date 83 if (Spages > 1) {
Registered</b></td> 84
56 </tr> 85 // Add some spacing and start a
57 ' paragraph:
58 86 echo '<br /><p>';
59 // Fetch and print all the records.... 87
60 88 // Determine what page the script is on:
61 $bg = '#eeeeee'; // Set the initial 89 $current_page = ($start/$display) + 1;
background color. 99

(script continues)

(script continues on next page)

279

S11NS3IY A¥INY ONILVNIOV]



PAGINATING QUERY RESULTS

Chapter 9

4. Count the number of records in the data- Script 9.4 continued
base. 8086 =] Seript
$q = "SELECT COUNT(user_id) FROM 91 // If it's not the first page, make a

" Previous button:
—users

92 if ($current_page != 1) {
$r = @mysqli_query ($dbc, $q);

93 echo "<a href="view_users.php?s=" .
$row = @mysqli_fetch_array ($r, ($start - $display) . '&p=' . $pages .
5 MYSQLI_NUM); '">Previous</a> ';
- )
$records = $row[0]; o ¥
95
Using the COUNTQ) function, introduced in
Chapter 6, “Advanced SQL and MySQL” 9% // Make all the numbered pages:
you can easily see the number of records 97 for ($i = 1; $i <= Spages; $i++) {
in the users table. This query will return 98 if ($i != $current_page) {
a single row with a single column: the 99 echo '<a href="view_users.php?s=" .
number of records (Figure 9.13). (($display * ($i - 1))) . '&p=" .
$pages . '">' . $i . '</a> ';
5. Mathematlcally c;lculate how many 100 3 else {
ages are required.
pag ) 4 ) 101 echo $i . ' ';
if ($records > $display) { 02 3}

$pages = ceil ($records/
— $display);

103 } // End of FOR loop.

104
belse { 105  // If it's not the last page, make a
$pages = 1; Next button:
1 106  if ($current_page != $pages) {

107 echo '<a href="view_users.php?s=" .
($start + $display) . '&p=' . $pages .
"">Next</a>";

} // End of np IF.
The number of pages required to display

all of the records is based upon the total 108}
number of records to be shown and the 109
number to display per page (as assigned 110 echo '</ps'; // Close the paragraph.

111
112 } // End of links section.

113

Terminal
eo0o6 114 include ('includes/footer.html');
mysql> SELECT COUNT{user_id} FROM users; 5
Fmm e m e + - 115 7>
| COUNT(user_id) |
o +
I 25 |

1 row in set (B.BA sec)

S + m
r
v

my=g L * I

Figure 9.13 The result of running the counting query
in the mysql client.

280



Common Programming Techniques

to the $display variable). If there are
more rows than there are records to be
displayed per page, multiple pages will be
required. To calculate exactly how many
pages, take the next highest integer from
the division of the two (the ceil() func-
tion returns the next highest integer).
For example, if there are 25 records
returned and 10 are being displayed per
page, then 3 pages are required (the first
page will display 10, the second page 10,
and the third page 5). If $records is not
greater than $display, only one page is
necessary.

. Determine the starting point in the
database.

if (isset($_GET['s']) && is_numeric
» ($_GET['s'1)) {
$start = $_GET['s'];
} else {
$start = 0;
}

The second parameter the script will
receive—on subsequent viewings of the
page—will be the starting record. This
corresponds to the first number in a
LIMIT x, y clause. Upon initially calling
the script, the first ten records should
be retrieved (because $display has a
value of 10). The second page would
show records 10 through 20; the third,
20 through 30; and so forth.

The first time this page is accessed, the
$_GET['s'] variable will not be set, and so
$start should be 0 (the first record in a
LIMIT clause is indexed at 0). Subsequent
pages will receive the $_GET['s'] variable
from the URL, and it will be assigned to
$start.

7. Write the query with a LIMIT clause.

$q = "SELECT last_name, first_name,

» DATE_FORMAT(registration_date, '%M
»%d, %Y') AS dr, user_id FROM users
» ORDER BY registration_date ASC

» LIMIT $start, $display";

$r = @mysqli_query ($dbc, $q);

The LIMIT clause dictates which record
to begin retrieving ($start) and how
many to return ($display) from that
point. The first time the page is run, the
query will be SELECT last_name, first_
name .. LIMIT @, 10. Clicking to the next
page will result in SELECT last_name,
first_name .. LIMIT 10, 10.

. Create the HTML table header.

echo '<table align="center"
» cellspacing="0" cellpadding="5"
» width="75%">

<tr>

<td align="left"><b>Edit
— </b></td>

<td align="left"><b>Delete
» </b></td>

<td align="1left"><b>Last Name
— </b></td>

<td align="left"><b>First Name
— </b></td>

<td align="left"><b>Date
» Registered</b></td>

</tr>

In order to simplify this script a little bit,
I'm assuming that there are records to be
displayed. To be more formal, this script,
prior to creating the table, would invoke
the mysqli_num_rows() function and
have a conditional that confirms that
some records were returned.

continues on next page

281

S11NS3IY A¥INY ONILVNIOV]



PAGINATING QUERY RESULTS

Chapter 9

9.

10.

11.

Initialize the background color variable.
$bg = '#eeeeee';

To make each row have its own back-
ground color, a variable will be used to
store that color. To start, the $bg vari-
able is assigned a value of #eeeeee, a
light gray. This color will alternate with

white (%fffff).

Begin the while loop that retrieves
every record.

while ($row = mysqli_fetch_array($r,
— MYSQLI_ASSOC)) {

$bg = ($bg=="#eeeeee' ?
— "#ffffff' . '#eeeeee');

The background color used by each
row in the table is assigned to the $bg
variable. Because I want this color to
alternate, I use this line of code to
assign the opposite color to $bg. If it’s
equal to #eeeeee, then it will be assigned
the value of #ffffff and vice versa (again,
see the sidebar for the syntax and
explanation of the ternary operator).
For the first row, $bg is equal to #eeeeee
and will therefore be assigned #ff{fff.
making a white background. For the
second row, $bg is not equal to #eeeeee,
so it will be assigned that value, making
a gray background.

Print the records in a table row.

echo '<tr bgcolor="' . $bg . '">

<td align="1left"><a href="edit_

— user.php?id=" . $row['user_id'] .
— "">Edit</a></td>

<td align="left"><a href="delete_
— user.php?id=" . $row['user_id'] .
— "">Delete</a></td>

<td align="1left">" . $row['last_

— name'] . '</td>

12,

13.

<td align="1left">" . $row['first_
— name'] . '</td>

<td align="1left">"' . $row['dr'] .
» '</td>

</tr>

L
’

This code only differs in one way from
that in the previous version of this
script. The initial TR tag now includes
the bgcolor attribute, whose value will
be the $bg variable (so #eeeeee and

#Ifff, alternating).

Complete the while loop and the table,
free up the query result resources, and
close the database connection.

}
echo '</table>"';
mysqli_free_result ($r);
mysqli_close($dbc);
Begin a section for displaying links to
other pages, if necessary.
if ($pages > 1) {

echo '<br /><p>';

$current_page = ($start/
— $display) + 1;

if ($current_page !'= 1) {

echo '<a href="view_users.
» php?s=" . ($start -
» $display) . '&p=" .
» $pages . '">Previous

»</a> '

282



Common Programming Techniques

If the script requires multiple pages to
display all of the records, it needs the
appropriate links at the bottom of the
page (Figure 9.14). To make these
links, first determine the current page.
This can be calculated as the start
number divided by the display number,
plus 1. For example, on the second
instance of this script, $start will be
10 (because on the first instance,
$start is 0), so the current page is
2(10/10 + 1 =2).

If the current page is not the first page,
it also needs a Previous link to the earli-
er result set (Figure 9.15). This isn't
strictly necessary, but is nice.

Each link will be made up of the script
name, plus the starting point and the
number of pages. The starting point for
the previous page will be the current
starting point minus the number being
displayed. These values must be passed
in every link, or else the pagination

will fail.

E dit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit
Edit

Registered Users

Delete Last Name First Name Date Registered

Delete Ullrman Larry Septerber 22, 2007
Delete |zahella Zoe Septernber 22, 2007
Delete Starr Ringo Septernber 22, 2007
Delete Harrison Genrge September 22, 2007
Delete mcCartney Faul Septermber 22, 2007
Delete Lennon John September 22, 2007
Delete Brautigan Richard Septernber 22, 2007
Delete Banks Russell Septermber 22, 2007
Delete Simpson Homer Septernber 22, 2007
Delete Sirmpson Marge Septernber 22, 2007

123 next

E dit
Edit
Ediit
Edit
Ediit
Edit
Edit
Edit
Edit
Ediit
Edit

Registered Users

Delete Last Hame First Name Date Registered

Delete Simpson Bart Septernber 22, 2007
Delete “an Houten Lisa Septernber 22, 2007
Dilete Sirnpson Maggie September 22, 2007
Delete Simpson Abe Septernber 22, 2007
Delete Chabon Michael September 22, 2007
Delete Greene Graham Septermber 22, 2007
Delete Mesrmith ke September 22, 2007
Delete Sedaris David Septermber 22, 2007
Delete Harnby Mick Septerber 22, 2007
Delete Bank Melissa Septermber 22, 2007

Previous1 2 3 Next

Figure 9.14 After all of the returned records, links are
generated to the other result pages.

Figure 9.15 The Previous link will appear only if the
current page is not the first one.

The Ternary Operator

This example uses an operator not introduced before, called the ternary operator. Its structure is

(condition) ? valueT : valueF

The condition in parentheses will be evaluated; if it is TRUE, the first value will be returned
(valueT). If the condition is FALSE, the second value (valueF) will be returned.

Because the ternary operator returns a value, the entire structure is often used to assign a
value to a variable or used as an argument for a function. For example, the line

echo (isset($var)) ? 'SET'

"NOT SET';

will print out SET or NOT SET, depending upon the status of the variable $var.

In this version of the view_users.php script, the ternary operator assigns a different value to
a variable than its current value. The variable itself will then be used to dictate the back-

ground color of each record in the table. There are certainly other ways to set this value, but
the ternary operator is the most concise.

283

S11NS3IY A¥INY ONILVNIOV]



PAGINATING QUERY RESULTS

Chapter 9

14.

15.

16.

17.

Make the numeric links.
for ($i = 1; $i <= $pages; $i++) {
if ($1i !'= $current_page) {
echo '<a href="view_users.
— php?s="' . (($display *
= (%1 - 1)) . "&p=" .
— $pages . "">"' . $i .

- '</a> ',
} else {

echo $i . ;

}

The bulk of the links will be created by
looping from 1 to the total number of
pages. Each page will be linked except
for the current one.

Create a Next link.
if ($current_page !'= $pages) {

echo '<a href="view_users.

— php?s=" . ($start + $display)
— . '&=" . $pages . '">Next
- </a>";

1
Finally, a Next page link will be dis-
played, assuming that this is not the
final page (Figure 9.16).
Complete the page.

echo '</p>';
}
include ('includes/footer.html');
7>
Save the file as view_users.php, place

it in your Web directory, and test it in
your Web browser.

Registered Users

Edit Delete
Edit  Delete
Edit  Delete Franzen
Edit  Delete DelLillo Don
Edit  Delete
Edit  Delete OToole Fetar

First Mame Date Registered

M orrison Tani September 22, 2007)
Jonathan September 22, 2007,
September 22, 2007
September 30, 2007,
September 30, 2007

Campbell Boh

Prewious 123

Figure 9.16 The final results page will not display a
Next link.

v Tips

B This example paginates a simple query,

but if you want to paginate a more com-
plex query, like the results of a search, it’s
not that much more complicated. The
main difference is that whatever terms
are used in the query must be passed
from page to page in the links. If the
main query is not exactly the same from
one viewing of the page to the next, the
pagination will fail.

If you run this example and the pagina-
tion doesn’t match the number of results
that should be returned (for example,
the counting query indicates there are
150 records but the pagination only
creates 3 pages, with 10 records on each),
it's most likely because the main query
and the COUNT() query are too different.
These two queries will never be the same,
but they must perform the same join

(if applicable) and have the same WHERE
and/or GROUP BY clauses to be accurate.

No error handling has been included in
this script, as I know the queries func-
tion as written. If you have problems,
remember your MySQL/SQL debugging
steps: print the query, run it using

the mysql client or phpMyAdmin to
confirm the results, and invoke the
mysqli_error() function as needed.

284



Common Programming Techniques

Script 9.5 This latest version of the view_users.php
script creates clickable links out of the table’s column
headings.

006 = Seript
1 <?php # Script 9.5 - #5
2

3 // This script retrieves all the records
from the users table.

4 // This new version allows the results to
be sorted in different ways.

$page_title = 'View the Current Users';
include ('includes/header.html');

echo '<hl>Registered Users</hl>";

© oo N o u

10 require_once ('../mysqli_connect.php');
11

12 // Number of records to show per page:
13 $display = 10;

14

15 // Determine how many pages there are...

16 if (isset($_GET['p']) &&
is_numeric($_GET['p'1)) { // Already been

determined.
17 $pages = $_GET['p'];
18 } else { // Need to determine.
19 // Count the number of records:

20 $q = "SELECT COUNT(user_id) FROM users";
21 $r = @mysqli_query ($dbc, $);

22 $row = @mysqli_fetch_array (§r,
MYSQLI_NUM) ;

23 $records = $row[Q];
24 // Calculate the number of pages...

25 if ($records > $display) { // More than
1 page.

26 $pages = ceil ($records/$display);
27 } else {

28 $pages = 1;

29 }

30} // End of p IF.

(script continues on next page)

Making Sortable Displays

To wrap up this chapter, there’s one final fea-
ture that could be added to view_users.php.
In its current state the list of users is dis-
played in order by the date they registered.
It would be nice to be able to view them by
name as well.

From a MySQL perspective, accomplishing
this task is easy: just change the ORDER BY
clause. Therefore, all that needs to be done is
to add some functionality in PHP that will
change the ORDER BY clause. The logical way
to do this is to link the column headings so
that clicking them changes the display order.
As you hopefully can guess, this involves
using the GET method to pass a parameter
back to this page indicating the preferred
sort order.

To make sortable links:

1. Open view_users.php (Script 9.4) in your
text editor or IDE.

2. After determining the starting point,
define a $sort variable (Script 9.5).

$sort = (isset($_GET['sort'])) ?
»$_GET['sort'] : 'rd';

The $sort variable will be used to deter-
mine how the query results are to be
ordered. This line uses the ternary
operator (see the sidebar earlier in the
chapter) to assign a value to $sort. If
$_GET['sort'] is set, which will be the
case after the user clicks any link, then
$sort should be assigned that value. If
$_GET['sort'] is not set, then $sort is
assigned a default value of rd (short for
registration date).

continues on page 287

285

SAV1dSI[ 379VLI0S ONDIVIN



MAKING SORTABLE DISPLAYS

Chapter 9

Script 9.5 continued Script 9.5 continued
800 =) Seript 8ee 2 Seript
32 // Determine where in the database to 64 // Table header:
start returning results... . X
65 echo '<table align="center" cellspacing=
33 if (isset($_GET['s']) && is_numeric "@" cellpadding="5" width="75%">
$_GET['s'
¢ s 1 66 <tr>
34 $start = $_GET['s']; . .
67 <td align="left"><b>Edit</b></td>
35 } else { .
68 <td align="left"><b>Delete</b></td>
36 $start = 0; . .
69 <td align="left"><b><a href="view_users.
37 3% php?sort=1n">Last Name</a></b></td>
38 70 <td align="left"><b><a href="view_users.
php?sort=fn">First Name</a></b></td>
39 // Determine the sort...
) ) ) 71 <td align="left"><b><a href="view_users.
40 // Default is by registration date. php?sort=rd">Date Registered</a></b>
41 $sort = (isset($_GET['sort'])) ? $_GET </td>
['sort'] : 'rd’; 72 </tr>
42 73
43 // Determine the sorting order: 74
44 switch ($sort) { 75 // Fetch and print all the records....
45 case 'ln': 76  $bg = '#eeeeee';
46 $order_by = 'last_name ASC'; 77 while ($row = mysqli_fetch_array($r,
MYSQLI_ASSOC)) {
47 break;
78 $bg = ($bg=="#eeeeee' ? "#ffffff' :
48 case 'fn': '#eeeeee');
49 $order_by = 'first_name ASC'; 79 echo '<tr bgcolor="" . $bg . '">
50 break; 80 <td align="left"><a href="edit_user.
PV f P VU A
51 case 'rd': php?id=" . $row['user_id'] . '"">Edit</a>
</td>
52 $order_by = 'registration_date ASC'; 81 <td align="left"><a href="delete_user.
53 break: php?id=" . $row['user_id'] . '">Delete
’ </a></td>
54 default: .
82 <td align="left">"' . $row['last_name'] .
55 $order_by = 'registration_date ASC'; '</td>
56 $sort = 'rd'; 83 <td align="1left">"' . $row['first_name']
. '</td>
57 break;
8 3 84 <td align="left">" . $row['dr'] . '</td>
85 </tr>
59
86 i
60 // Make the query:
87 '} // End of WHILE loop.
61 $q = "SELECT last_name, first_name, DATE_
FORMAT(registration_date, '¥M %d, %Y') AS 88
dr, user_id FROM users ORDER BY $order_by , ..
LIMIT $start, $display"; 89 echo "</table>";
62  $r = @mysqli_query ($dbc, $q); // Run the 9 mysqli_free_result ($r);
query. 91 mysqli_close($dbc);
63 92

(script continues)

(script continues on next page)

286



Common Programming Techniques

Script 9.5 continued

606 = Script

93  // Make the links to other pages, if
necessary.

94  if ($pages > 1) {

95

96 echo '<br /><p>';
97 $current_page = ($start/$display) + 1;
98

99 // If it's not the first page, make a
Previous button:

100 if ($current_page '= 1) {
101 echo '<a href="view_users.php?s=" .

($start - $display) . '&p=" . $pages .
'&sort=" . $sort . '" !

>Previous</a> ';
102 }
103
104 // Make all the numbered pages:
105 for ($i = 1; $i <= $pages; $i++) {
106 if ($i !'= $current_page) {
107 echo '<a href="view_users.php?s=" .

(($display * ($1 - 1))) . '"&p=" .
$pages . '&sort="' . $sort . '">' . $i

. '<a>
108 } else {
109 echo $i . ' ';
10 3
111 } // End of FOR loop.
112

113 // If it's not the last page, make a
Next button:

114 if ($current_page !'= $pages) {

115 echo '<a href="view_users.php?s=" .
($start + $display) . '&p=" . $pages .
'&sort=" . $sort . '">Next</a>';

116 }

117

118 echo '</p>"; // Close the paragraph.

119

120 } // End of links section.

121

122 include ('includes/footer.html');

123 7>

3. Determine how the results should be

ordered.
switch ($sort) {
case 'ln':

$order_by

"last_name ASC';
break;

case 'fn':

$order_by = 'first_name
— ASC';

break;
case 'rd':

$order_by = 'registration_
— date ASC';

break;
default:

$order_by = 'registration_
— date ASC';

$sort = 'rd’;
break;

}

The switch checks $sort against several
expected values. If, for example, it is
equal to [n, then the results should be
ordered by the last name in ascending
order. The assigned $order_by variable
will be used in the SQL query.

If $sort has a value of fi, then the results
should be in ascending order by first
name. If the value is rd, then the results
will be in ascending order of registration
date. This is also the default case. Having
this default case here protects against a
malicious user changing the value of
$_GET['sort'] to something that could
break the query.

continues on next page

287

SAV1dSI[ 379VLI0S ONDIVIN



MAKING SORTABLE DISPLAYS

Chapter 9

4.

Modify the query to use the new
$order_by variable.

$q = "SELECT last_name, first_name,
— DATE_FORMAT(registration_date, '%M
— %d, %Y') AS dr, user_id FROM users
— ORDER BY $order_by LIMIT $start,
— $display";

By this point, the $order_by variable has
a value indicating how the returned
results should be ordered (for example,
registration_date ASC), so it can be easily
added to the query. Remember that the
ORDER BY clause comes before the LIMIT
clause. If the resulting query doesn’t run
propetly for you, print it out and inspect
its syntax.

Modify the table header echo() state-
ment to create links out of the column
headings.

echo '<table align="center"
cellspacing="0" cellpadding="5"
width="75%">

<tr>

<td align="left"><b>Edit
— </b></td>

<td align="left"><b>Delete
— </b></td>

<td align="left"><b><a href=
— "view_users.php?sort=ln">
— Last Name</a></b></td>

<td align="left"><b><a href=
— "view_users.php?sort=fn">
— First Name</a></b></td>

<td align="left"><b><a href=

— "view_users.php?sort=rd">Date
— Registered</a></b></td>

</tr>

288



Common Programming Techniques

Registered Users

Edit Delete Last Name First Name Date Registered

Edit  Delete Simpson Abe September 22, 2007
Edit  Delete Simpson Bart September 22, 2007
Edit  Delete Campbell Eoh September 30, 2007
Edit  Delete Sedaris Dawid September 22, 2007
Edit  Delete DeLilla Dan September 22, 2007
Edit  Delete Harrison George September 22, 2007
Edit  Delete Greene Graharn September 22, 2007
Edit  Delete Simpson Homer September 22, 2007
Edit  Delete Lennon John September 22, 2007
Edit  Delete Franzen Jonathan September 22, 2007

123 Mext

Figure 9.17 The first time viewing the page, the
results are shown in ascending order of registration

date. After clicking the first name column, the results

are shown in ascending order by first name (as
seen here).

istered Users

Edit Delete Last Name First Name Date Registered

Edit  Delete Bank Melissa September 22, 2007
Edit  Delste Banks Russell September 22, 2007
Edit  Delete Brautigan Richard September 22, 2007
Edit  Delete Carmpbell Bob September 30, 2007
Edit  Delete Chabon Michael September 22, 2007
Edit  Delete Delillo Don September 22, 2007
Edit  Delete Franzen Jonathan September 22, 2007
Edit  Delete Greenge Graham September 22, 2007
Edit  Delste Harrizon George September 22, 2007
Edit  Delete Hornby Mick September 22, 2007

123 Mext

Figure 9.18 Clicking the Last Name column displays
the results in order by last name ascending.

v Tip

W A very important security concept was

also demonstrated in this example. Instead

of using the value of $_GET['sort"']

directly in the query, it's checked against

assumed values in a switch. If, for some
reason, $_GET['sort'] has a value other

than would be expected, the query uses a

default sorting order. The point is this:
don’t make assumptions about received
data, and don't use unvalidated data in
an SQL query.

To make the column headings clickable
links, just surround them with the <a>
tags. The value of the href attribute for
each link corresponds to the acceptable
values for $_GET['sort'] (see the switch
in Step 3).

Modify the echo() statement that creates
the Previous link so that the sort value is
also passed.

echo '<a href="view_users.php?s="'
» ($start - $display) . '&p='
» $pages . '&sort=' . $sort .

» "">Previous</a> ';

Add another name=value pair to the
Previous link so that the sort order is
also sent to each page of results. If you
don't, then the pagination will fail, as the
ORDER BY clause will differ from one page
to the next.

Repeat Step 6 for the numbered pages
and the Next link.

echo '<a href="view_users.php?s="'
— (($display * ($i - 1)) . "&p='

— $pages . '&sort=" . $sort . '">'
—-%1 . '<a> '

echo '<a href="view_users.php?s="
» ($start + $display) . '&p='
» $pages . '&sort=' . $sort .

» "">Next</a>";

Save the file as view_users.php, place it
in your Web directory, and run it in your
Web browser (Figures 9.17 and 9.18).

289

SAV1dSI[ 379VLI0S ONDIVIN



This page intentionally left blank



WEB
APPLICATION
DEVELOPMENT

The preceding two chapters focus on using PHP and MySQL together (which is, after
all, the primary point of this book). But theress still a lot of PHP-centric material to be
covered. Taking a quick break from using PHP with MySQL, this chapter covers a
handful of techniques that are often used in more complex Web applications.

The first topic covered in this chapter is sending email using PHP. It’s a very common
thing to do and is surprisingly simple (assuming that the server is properly set up).
After that, the chapter touches upon some of the date and time functions present in
PHP. The third subject demonstrates how to handle file uploads in an HTML form. This
in turn leads to a discussion of using PHP and JavaScript together, then how to use
the header() function to manipulate the Web browser.

291

1INIWdOT3IAIQ NOLLYIITddY 93



SENDING EmMAIL

Chapter 10

Sending Email

One of my absolute favorite things about
PHP is how easy it is to send an email. On
a properly configured server, the process is
as simple as using the mail() function:

mail (to, subject, body, [headers]);

The to value should be an email address or
a series of addresses, separated by commas.
Any of these are allowed:

¢ email@example.com

¢ emaill@example.com,
email2@example.com

¢ Actual Name <email@example.com>

¢ Actual Name <email@example.com>,
This Name <email2@example.com>

The subject value will create the email’s
subject line, and body is where you put the
contents of the email. To make things more
legible, variables are often assigned values
and then used in the mail() function call:

$to = 'email@example.com';

$subject = 'This is the subject';

$body = 'This is the body.

It goes over multiple lines.';

mail ($to, $subject, $body);

As you can see in the assignment to the $body
variable, you can create an email message
that goes over multiple lines by having the
text do exactly that within the quotation
marks. You can also use the newline charac-

ter (\n) within double quotation marks to
accomplish this:

$body = "This is the body.\nIt goes over
»multiple lines.";

This is all very straightforward, and there are
only a couple of caveats. First, the subject line
cannot contain the newline character (\n).
Second, each line of the body should be no
longer than 70 characters in length. You can
accomplish this using the wordwrap() function.
It will insert a newline into a string every X
number of characters. To wrap text to 70
characters, use

$body = wordwrap($body, 70);

The mail() function takes a fourth, optional
parameter for additional headers. This is
where you could set the From, Reply-To, Cc,
Bcc, and similar settings. For example,

mail ($to, $subject, $body, 'From:
— reader@example.com');

To use multiple headers of different types in
your email, separate each with \r\n:

$headers = "From: John@example.com\r\n";

$headers .= "Cc: Jane@example.com,
— Joe@example.com\r\n";

mail ($to, $subject, $body, $headers);

Although this fourth argument is optional,
it is advised that you always include a From
value (although that can also be established
in PHP’s configuration file).

To demonstrate this, let’s create a page that
shows a contact form (Figure 10.1) and then
handles the form submission, validating the
data and sending it along in an email. This
example will also contain a nice variation on
the sticky form technique used in this book.

) Comtet Mo - Mozl Firetie [ =1
Ble LR Yo Hgoy Qockmwks ook bep 3

Contact Me
Please &1 cot that foam to contact me
Hame Lamy iman

‘Email Address: LamB0MCinigh

Figure 10.1 A
standard (but not
very attractive)
contact form.

292



Web Application Development

Script 10.1 This page displays a contact form that,
upon submission, will send an email with the form
data to an email address.

8oe = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/
xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=iso-8859-1"
/>

6 <title>Contact Me</title>

7 </head>

8 <body>

9 <h1>Contact Me</hl>

10 <?php # Script 10.1 - email.php
11

12 // Check for form submission:

13 if (isset($_POST['submitted'])) {
14

15 // Minimal form validation:

16 if (lempty($_POST['name']) &&
lempty($_POST['email']) &&
lempty($_POST['comments']) ) {

17

18 // Create the body:

19 $body = "Name:
{$_POST["name "]} \n\nComments:
{$_POST[' comments']}";

20

21 // Make it no longer than 70
characters long:

22 $body = wordwrap($body, 70);

23

24 // Send the email:

25 mail('your_email@example.com',

'Contact Form Submission', $body,
"From: {$_POST['email']}");

(script continues on next page)

Note two things before running this script:
First, for this example to work, the computer
on which PHP is running must have a work-
ing mail server. If you're using a hosted site,
this shouldn't be an issue; on your own com-
puter, you'll likely need to take preparatory
steps (see the sidebar). Second, this example,
while functional, could be manipulated by
bad people, allowing them to send spam
through your contact form (not just to you
but to anyone). The steps for preventing such
attacks are provided in Chapter 12, “Security
Methods.” Following along and testing this
example is just fine; relying upon it as your
long-term contact form solution is a bad idea.

To send email:

1. Begin a new PHP script in your text editor
or IDE (Script 10.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
» XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm
— 11-transitional.dtd">

<html
— xmlns="http://ww.w3.0rg/1999/xhtml"
— xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
— content="text/html;
— charset=1s0-8859-1" />

<title>Contact Me</title>
</head>
<body>
<h1l>Contact Me</hl>
<?php # Script 10.1 - email.php

None of the examples in this chapter will
use a template, like those in the past two
chapters, so it starts with the standard
HTML.

continues on next page

293

T1IVN3 ONIAN3S



SENDING EmMAIL

Chapter 10

2.

Create the conditional for checking if the
form has been submitted and validate
the form data.

if (isset($_POST['submitted'])) {

if (lempty($_POST['name']) &&
— lempty($_POST['email']) &&
— lempty($_POST['comments']) ) {

The form contains three text inputs (tech-
nically one is a textarea). The empty()
function will confirm that something
was entered into each. In Chapter 13,
you'll learn how to use regular expressions
to confirm that the supplied email
address has a valid format.

Create the body of the email.

$body = "Name:
— {$_POST['name"'J}\n\nComments:
— {$_POST['comments']}";

$body = wordwrap($body, 70);

The email's body will start with the prompt
Name:, followed by the name entered
into the form. Then the same treatment
is given to the comments. The wordwrap()
function then formats the whole body so
that each line is only 70 characters long.

Script 10.1 continued

eoce = Script

26

27 // Print a message:

28 echo '<p><em>Thank you for
contacting me. I will reply some
day.</em></p>";

29

30 // Clear $_POST (so that the form's
not sticky):

31 $_POST = arrayQ);

32

33 } else {

34 echo '<p style="font-weight: bold;
color: #(C00">Please fill out the
form completely.</p>";

35 }

36

37 } // End of main isset() IF.

38

39 // Create the HTML form:

40 7>

41 <p>Please fill out this form to contact

me.</p>

42 <form action="email.php" method="post">

43 <p>Name: <input type="text" name="name"

size="30" maxlength="60" value="<?php if
(isset($_POST['name'])) echo
$_POST['name']; 7>" /></p>

44 <p>Email Address: <input type="text"

name="email" size="30" maxlength="80"
value="<?php if (isset($_POST['email']))
echo $_POST['email']; ?>" /></p>

45 <p>Comments: <textarea name="comments"

rows="5" cols="30"><?php if
(isset($_POST['comments'])) echo
$_POST['comments']; ?></textarea></p>

46 <p><input type="submit" name="submit"

value="Send!" /></p>

47 <input type="hidden" name="submitted"

value="TRUE" />

48  </form>

49  </body>

50 </html>

294



Web Application Development

4.

) Civwrtanct M - Moilla Firefoo
B [® e Mgy [okmais ook i

Contact Me

Flease fill out the ferm complitely,

Send the email and print a message in
the Web browser.

mail('your_email@example.com',
— 'Contact Form Submission', $body,
— "From: {$_POST['email']}");

echo '<p><em>Thank you for contacting
—me. I will reply some day.</em></p>';

Assuming the server is properly config-
ured, this one line will send the email.
You will need to change the to value to
your actual email address. The From
value will be the email address from the
form. The subject will be a literal string.

There’s no way of confirming that the
email was successfully sent, let alone
received, but a generic message is printed.

Clear the $_POST array.
$_POST = array();

In this example, the form will always be
shown, even upon successful submission.
The form will be sticky in case the user
omitted something (Figure 10.2). However,
if the mail was sent, there’s no need to
show the values in the form again. To avoid
that, the $_POST array can be cleared of
its values using the array() function.

Figure 10.2 The
contact form will
remember the user-
supplied values in
case it is not
completely filled out.

6.

Complete the conditionals.
} else {

echo '<p style="font-weight:
— bold; color: #(00">Please
— fill out the form
— completely.</p>";

1
} // End of main isset() IF.
7>

The error message contains some inline
CSS, so that it’s in red and made bold.

Begin the form.

<p>Please fill out this form to
— contact me.</p>

<form action="email.php"
— method="post">

<p>Name: <input type="text"

— name="name" size="30"

— maxlength="60" value="<?php if
— (isset($_POST['name'])) echo
— $_POST['name']; ?>" /></p>

<p>Email Address: <input

— type="text" name="email"

— size="30" maxlength="80"

— value="<?php if

— (isset($_POST['email'])) echo
— $_POST['email']; ?>" /></p>

The form will submit back to this same
page using the POST method. The first
two inputs are of type text; both are made
sticky by checking if the corresponding
$_POST variable has a value. If so, that
value is printed as the current value for
that input.

continues on next page

295

T1IVN3 ONIAN3S



SENDING EmMAIL

Chapter 10

8.

10

.

11.

Complete the form.

<p>Comments: <textarea

— name="comments" rows="5"

— cols="30"><?php if

— (isset($_POST['comments']))
— echo $_POST['comments'];

— 7></textarea></p>

<p><input type="submit"
— name="submit" value="Send!"
— /></p>

<input type="hidden"
— name="submitted" value="TRUE" />

</form>

The comments input is a textarea,
which does not use a value attribute.
Instead, to be made sticky, the value is
printed between the opening and clos-
ing textarea tags.

. Complete the HTML page.

</body>
</html>

Save the file as email.php, place it in
your Web directory, and test it in your
Web browser (Figure 10.3).

Check your email to confirm that you
received the message (Figure 10.4).

If you don't actually get the email, you'll
need to do some debugging work. With
this example, you should confirm with
your host (if using a hosted site) or your-
self (if running PHP on your server), that
there’s a working mail server installed.
You should also test this using different
email addresses (for both the to and
from values). Also watch that your spam
filter isn't eating up the message.

eoco

Contact Me =

Contact Me

Thank you for contacting me. I will reply some day.

Please fill out this form to contact me.

Name: |

Email Address: |

Comments:

Send! I

Figure 10.3 Successful completion and
submission of the form.

® O O Contact Form Submission — Inbox =

From: Larry Ullman «<Lamy@DMCinsights coms
Subject: Contact Form Submission
Date: Cclober 7, 2007 7:5712 PM EDT
To: Lamy Ullman <larmyullman@mac.coms

s
L

Marmne: Larry Ulman

Cormments: Your book isn't just the greatest computer book ever
written, its the greatest book ever written, period! Ittotally
brlows "One Hundred Years of Solitude” out of the water.

)

Figure 10.4 The resulting email (from the data
in Figure 10.1).

296




Web Application Development

PHP mail() Dependencies

PHP’s mail() function doesn't actually
send the email itself. Instead, it tells the
mail server running on the computer to
do so. What this means is that the com-
puter on which PHP is running must
have a working mail server in order for
this function to work.

If you have a computer running a Unix
variant or if you are running your Web
site through a professional host, this should
not be a problem. But if you are running
PHP on your own desktop or laptop com-
puter, you'll probably need to make
adjustments.

If you are running Windows and have an
Internet service provider (ISP) that pro-
vides you with an SMTP server (like
smip.comcast.net), this information can
be set in the php.ini file (see Appendix A,
“Installation,” for how to edit this file).
Unfortunately, this will only work if your
ISP does not require authentication—a
username and password combination—
to use the SMTP server. Otherwise, you'll
need to install an SMTP server on your
computer. There are plenty available, and
they're not that hard to install and use:
just search the Internet for free windows
smtp server and you'll see some options.
There are also threads on this subject

in the book’s corresponding forum
(www.DMCInsights. com/phorum/).

If you are running Mac OS X, you'll need
to enable the built-in SMTP server (either
sendmail or postfix, depending upon the
specific version of Mac OS X you are run-
ning). You can find instructions online
for doing so (search with enable sendmail
“‘Mac OS X7).

v Tips

On some—primarily Unix—systems, the
\r\n characters aren't handled properly.
If you have problems with them, use just
\n instead.

The mail() function returns a 1 or a 0
indicating the success of the function call.
This is not the same thing as the email
successfully being sent or received. You
cannot easily test for either using PHP.

While it’s easy to send a simple message
with the mail() function, sending HTML
emails or emails with attachments involves
more work. I discuss how you can do both
in my book PHP 5 Advanced: Visual
QuickPro Guide (Peachpit Press, 2007).

Using a contact form that has PHP send
an email is a great way to minimize the
spam you receive. With this system, your
actual email address is not visible in the
Web browser, meaning it can’t be har-
vested by spambots.

297

T1IVN3 ONIAN3S



DATE AND TIME FUNCTIONS

Chapter 10

Date and Time Functions

Chapter 5, “Introduction to SQL.” demonstrates
a handful of great date and time functions
that MySQL supports. Naturally, PHP has its
own date and time functions. To start, theres
date_default_timezone_set(). This function
is used to establish the default time zone
(which can also be set in PHP’s configura-
tion file).

date_default_timezone_set(tz);

The tz value is a string like America/New_York
or Pacific/Auckland. There are too many to
list here (Africa alone has over 50), but see
the PHP manual for them all. Note that as of
PHP 5.1, the default time zone must be set
prior to calling any of the date and time func-
tions, or else you'll see an error (Figure 10.5).

Next up, the checkdate() function takes

a month, a day, and a year and returns a
Boolean value indicating whether that date
actually exists (or existed). It even takes into
account leap years. This function can be
used to ensure that a user supplied a valid
date (birth date or other):

if (checkdate(month, day, year)) { // OK!

Perhaps the most frequently used function is
the aptly named date(Q). It returns the date
and/or time as a formatted string. It takes
two arguments:

date (format, [timestamp]);

The timestamp is an optional argument rep-
resenting the number of seconds since the
Unix Epoch (midnight on January 1, 1970)
for the date in question. It allows you to get

information, like the day of the week, for a
particular date. If a timestamp is not speci-
fied, PHP will just use the current time on
the server.

There are myriad formatting parameters
available (Table 10.1), and these can be
used in conjunction with literal text. For
example,

echo date('F j, Y'); // January 26, 2008
echo date('H:1i"); // 23:14
echo date('D"); // Sat

You can find the timestamp for a particular
date using the mktime() function.

$stamp = mktime Chour, minute, second,
» month, day, year);

If called with no arguments, mktime() returns
the current timestamp, which is the same as
calling the time() function.

Finally, the getdate() function can be used
to return an array of values (Table 10.2) for
a date and time. For example,

$today = getdate(Q);
echo $today['month']; // October

This function also takes an optional time-
stamp argument. If that argument is not
used, getdate() returns information for the
current date and time.

These are just a handful of the many date and
time functions PHP has. For more, see the
PHP manual. To practice working with these
functions, let’s modify email.php (Script 10.1)
in an admittedly superfluous way.

Strict Standards: date() [function. date]: It is not safe to rely on the systern's timezone settings. Please
use the date tmezone setting, the TZ environment vanable or the date_default_tmezone_set() function.
In case you used any of those methods and wou are stll getting this warning, vou most likely musspelled
the timezone identifier. We selected 'America®ew_York' for EDT/-4. 0D3T" nstead in
{Applications/Abyss Web Serverhtdocs/datetime.php on line 29

Figure 10.5 If running PHP 5.1 and later and error_reporting is set on its highest
level, PHP will generate a notice when a date or time function is used without the

time zone being set.

298



Web Application Development

Table 10.1 The date() function can take any combination
of these parameters to format its returned results. A
couple more parameters are listed in the PHP manual.

Date Function Formatting

CHARACTER MEANING EXAMPLE
Y year as 4 digits 2008

y year as 2 digits 05

n month as 1 or 2 digits 2

m month as 2 digits 02

F month February
M month as 3 letters Feb

j day of the month as 1 or 2 digits 8

d day of the month as 2 digits 08

[

(lowercase

L) day of the week Monday
D day of the week as 3 letters Mon

g hour, 12-hour format as 1 or 2 digits |6

G hour, 24-hour format as 1 or 2 digits 18

h hour, 12-hour format as 2 digits 06

H hour, 24-hour format as 2 digits 18

i minutes 45

] seconds 18

a am or pm am

A AM or PM PM

Table 10.2 The getdate() function returns this
associative array.

The getdate() Array

Key VALUE EXAMPLE
year year 2007
mon month 12

month month name December
mday day of the month 25
weekday day of the week Tuesday
hours hours 1
minutes minutes 56
seconds seconds 47

To use the date and time functions:

1. Open email.php (Script 10.1) in your text
editor or IDE.

2. As the first line of code after the open-
ing PHP tag, establish the time zone
(Script 10.2).

date_default_timezone_set
— ("America/New_York');

Before calling any of the date and time
functions (and this script will call two
different ones, twice each), the time zone
has to be established. To find your time
zone, see www . php.net/timezones.

continues on next page

Script 10.2 This modified version of email.php (Script
10.1) invokes three of PHP’s date and time functions in
order to report some information (both useful and
useless) to the user.

eceé

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtml1l-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

=] Seript

5 <meta http-equiv="content-type"
content="text/html; charset=iso-8859-1" />

6 <title>Contact Me</title>

7 </head>

8 <body>

9 <h1l>Contact Me</hl>

10 <?php # Script 10.2 - datetime.php

12 // Set the default timezone:

13  date_default_timezone_set
(' America/New_York');

14
15 // Check for form submission:
16 if (isset($_POST['submitted'])) {

(script continues on next page)

299

SNOILONN4 IWI] ANV 31vQ



DATE AND TIME FUNCTIONS

Chapter 10

3.

In the HTML form, add another hidden
input.

<input type="hidden" name="start"

— value="<?php echo time(); 7>" />

Just to try something interesting, this
script will time how long it takes for the
user to receive, fill out, and submit the
form. Timing this is just a matter of sub-
tracting the time the form was sent to
the Web browser from the time it was
submitted back to the server. The time()
function will return a timestamp (the
number of seconds since the epoch). This
value will be stored in the HTML form so
that it can be used in the calculation
upon submission (Figure 10.6).

Change the form’s action attribute so
that it points to this new script.

<form action="datetime.php"
— method="post">

This file will be named datetime.php, so
the action has to be changed as well.

Going back up a few lines in the script to
where the form is submitted, change the
message so that it includes the current
date and time.

echo '<p><em>Thank you for contacting
—meat ' . date('g:ia(M') . "on' .
— date('l F j, Y') .". I will reply
— some day.</em></p>";

Two invocations of the date() function
are added to this message. The first will
return the current time formatted as
HH:MM am/pm (XXX), where XXX rep-
resents the time zone identifier. The sec-
ond call to date() will return the day of
the week, month, day, and year, in the
format Day Month D, YYYY.

Script 10.2 continued

006 = Seript

17

18 // Minimal form validation:

19 if (lempty($_POST['name']) &&
lempty($_POST['email']) &&
lempty($_POST['comments']) ) {

20

21 // Create the body:

22 $body = "Name:
{$_POST['name'J}\n\nComments:
{$_POST['comments']}";

23 $body = wordwrap($body, 70);

24

25 // Send the email:

26 mail('your_email_address@example.com',
'Contact Form Submission', $body,
"From: {$_POST['email']}");

27

28 // Print a message:

29 echo '<p><em>Thank you for contacting
me at ' . date('g:ia(M') . "on' .
date('l F j, Y') .". I will reply
some day.</em></p>';

30

31 // How long did it all take?

32 echo '<p><strong>It took ' .
(time() - $_POST['start']) . '
seconds for you to complete and
submit the form.</strong></p>';

33

34 // Clear $_POST (so that the form's
not sticky):

35 $_POST = array();

36

37 } else {

38 echo '<p style="font-weight: bold;
color: #(C00">Please fill out the
form completely.</p>";

39 }

40

41 } // End of main isset() IF.

42

43 // Create the HTML form:

44 7>

(script continues on next page)

300



Web Application Development

Script 10.2 continued

ece

= Script

45

46
47

<p>Please fill out this form to contact
me.</p>

<form action="datetime.php" method="post">

<p>Name: <input type="text" name="name"
size="30" maxlength="60" value="<?php if

6. Add another message indicating how
long the whole process took.

echo '<p><strong>It took ' . (time()

— - $_POST['start']) . ' seconds for

— you to complete and submit the
— form.</strong></p>";

(isset($_POST['name'])) echo
$_POST['name']; ?>" /></p>

48 <p>Email Address: <input type="text"
name="email" size="30" maxlength="80"

value="<?php if (isset($_POST['email']))

echo $_POST['email']; ?>" /></p>

49 <p>Comments: <textarea name="comments"
rows="5" cols="30"><?php if
(isset($_POST['comments'])) echo
$_POST['comments']; ?></textarea></p>

50 <p><input type="submit" name="submit"
value="Send!" /></p>

51 <input type="hidden" name="start"
value="<?php echo time(Q); ?>" />

52 <input type="hidden" name="submitted"
value="TRUE" />

53  </form>
54  </body>
55  </html>

<form action="datetime,php” method="post">

This message includes the calculation of
the current timestamp (returned by
time()) minus the timestamp stored in
the HTML form.

Save the file as datetime.php, place it in
your Web directory, and test it in your
Web browser (Figures 10.7 and 10.8).

v Tips

The date() function has some parameters
that are used for informative purposes,
not formatting. For example, date('L")
returns I or 0 indicating if it's a leap year;
date('t") returns the number of days in
the current month; and date('I") returns
a I ifit’s currently daylight saving time.

PHP’s date functions reflect the time on
the server (because PHP runs on the

</form:>

<p>Name: <input type="text” name="nsms" size="30" maxlength
<prEmail Address: <input type="r=xt” name="email” size="30"
<prConmwents: <textarea name="ComuSnts" rows="5" cols="30"><
<pr<input typ mic” it val A frefpr
<input type="hidden” name="start" value="1131801778" />
<input type="hidden” name='"submitted" value="TRUE" />

Figure 10.6 The HTML source code of the page reveals
the timestamp stored in a hidden input called start.

8ene Contact Me =)

Contact Me

Please fill out this form to contact me.

Name: |Gabrie| Garcia-Marquez

Email Address: Igabi@example.(um

Comments:

Send!

T know pecple think yours is the
est book of all time and I just
have to agree. It's so totally,
totally awesome.

server); you'll need to use JavaScript if

you want to determine the date and time

on the user’s computer.

eoe Contact Me =)

Contact Me

Thank you for contacting me ar 8:11 pm (EDT) on Sunday
October 7, 2007. I will reply some day.

It took 67 seconds for you to complete and submit the
form.

Please fill out this form to contact me.

Nalnc:|

Email Address: |

Comments:

Send!

Figure 10.7 The form itself does not
seem to be that much different from the
original in email.php (see Figure 10.1).

Figure 10.8 The response message now
uses two date and time functions for a
more customized reply.

301

SNOILONN4 IWI] ANV 31vQ



HANDLING FILE UPLOADS

Chapter 10

Handling File Uploads

Chapters 2, “Programming with PHP and 3,
“Creating Dynamic Web Sites,” go over the
basics of handling HTML forms with PHP.
For the most part, every type of form element
can be handled the same in PHP, with one
exception: file uploads. The process of upload-
ing a file has two dimensions. First the HTML
form must be displayed, with the proper code
to allow for file uploads. Then upon submis-
sion of the form, the PHP script must copy
the uploaded file to its final destination.

However, for this process to work, several
things must be in place:

¢ PHP must run with the right settings.

¢ A temporary storage directory must exist
with the correct permissions.

¢ The final storage directory must exist with
the correct permissions.

With this in mind, this next section will cover
the server setup to allow for file uploads;
then a PHP script will be created that actually
does the uploading.

Allowing for file uploads

As I said, certain settings must be established
in order for PHP to be able to handle file
uploads. I'll first discuss why or when youd
need to make these adjustments before
walking you through the steps.

The first issue is PHP itself. There are several
settings in PHP’s configuration file (php.ini)
that dictate how PHP handles uploads, spe-
cifically stating how large of a file can be
uploaded and where the upload should tem-
porarily be stored (Table 10.3). Generally
speaking, you'll need to edit this file if any of
these conditions apply:

* file uploads is disabled.
¢ PHP has no temporary directory to use.

¢ You will be uploading very large files
(larger than 2 MB).

If you don't have access to your php.ini file—
like if you're using a hosted site, presumably
the host has already configured PHP to allow
for file uploads. If you installed PHP on Mac
OS X or Unix, you should also be good to go
(assuming reasonable-sized files).

The second issue is the location of, and per-
missions on, the temporary directory. This is
where PHP will store the uploaded file until
your PHP script moves it to its final destina-
tion. If you installed PHP on your own
Windows computer, you might need to take
steps here (I had no problems with the default
PHP 6 installation on Windows XP, but I
don’'t want to assume that’ll be the same for
everyone). Mac OS X and Unix users need
not worry about this, as a temporary direc-
tory already exists for such purposes.

Table 10.3 These PHP configuration settings each
impact file upload capabilities.

File Upload Configurations

SETTING VALUE TYPE [IMPORTANCE

file_uploads Boolean |Enables PHP support
for file uploads

max_input_time integer  |Indicates how long, in
seconds, a PHP script is
allowed to run

post_max_size integer  |[Size, in bytes, of the

total allowed POST data

Size, in bytes, of the
largest possible file
upload allowed

string Indicates where
uploaded files should

upload_max_filesize |integer

upload_tmp_dir

be temporarily stored

302



Web Application Development

Finally, the destination folder must be created
and have the proper permissions established
on it. This is a step that everyone must take
for every application that handles file uploads.
Because there are important security issues
involved in this step, please also make sure
that you read and understand the sidebar,
“Secure Folder Permissions.”

With all of this in mind, let’s go through
the steps.

©3 phpinfo() - Mozilla Firefox

Fle Edit View History Bookmarks Tools Help

To prepare the server:

1. Run the phpinfo() function to confirm

your server settings (Figure 10.9).

The phpinfo() function prints out a slew
of information about your PHP setup. It’s
one of the most important functions in
PHP, if not the most (in my opinion). Search
for the settings listed in Table 10.3 and
confirm their values. Make sure that
file_uploads has a value of On and that
the limit for upload_max_filesize (2MB, by
default) and post_max_size (3MB) won't
be a restriction for you. If running PHP
on Windows, see if upload_tmp_dir has

a value. If it doesn't, that might be a prob-
lem (you'll know for certain after running
the PHP script that handles the file upload).
For non-Windows users, if this value says
no value, that's perfectly fine.

continues on next page

(= L) |£|

System Windows MT WINPARALLELS 5.1 huild 2600

Build Date Sep 29 2007 10:04:01

Configure Command cseript /nologo configure js "--enahble-snapshotbuild" "--with-gd=shared"
Server API CGUFastCGl

Virtual Directory Support | enabled

Configuration File {php.ini) [ C:WWINDOWS

Path

Loaded Configuration File | CAWWINDOWS\phpiini
PHP APl 20070116

PHP Extension 20070729

Zend Extension 320070729

Debug Build ho

Thread Safety enabled

Zend Memory Manager | enabled

Unicode Support Based on Copyright () 20058, International Business Machines Corporation and
others. All Rights Reserved. . ICU Yersion 3.4,

IPv6 Support enabled

v

£ Al

| >|

Figure 10.9 A phpinfo() script returns all the information regarding your PHP
setup, including all the file upload handling stuff.

303

sSavolidM 3114 ONITANVH



HANDLING FILE UPLOADS

Chapter 10

2. If necessary, open php.ini in your text
editor.

If there’s anything you saw in Step 1 that

needs to be changed, or if something

happens when you actually go to handle

a file upload using PHP, you'll need to

edit the php.ini file. To find this file, see
the Configuration File (php.ini) path value

in the phpinfo() output. This indicates

exactly where this file is on your comput-

er (also see Appendix A for more).

If you are not allowed to edit your php.ini
file (if, for instance, you're using a hosted

server), then presumably any necessary
edits would have already been made to
allow for file uploads. If not, you'll need

to request these changes from your host-
ing company (who may or may not agree

to make them).

3. Search the php.1ini file for the configura-

tion to be changed and make any edits
(Figure 10.10).

For example, in the File Uploads section,

you'll see these three lines:
file_uploads = On
supload_tmp_dir =
upload_max_filesize = 2M

The first line dictates whether or not
uploads are allowed. The second states

where the uploaded files should be tem-
porarily stored. On most operating systems,

including Mac OS X and Unix, this set-

ting can be left commented out (preceded

by a semicolon) without any problem.

If you are running Windows and need to
create a temporary directory, set this value

to C:\tmp, making sure that the line is

not preceded by a semicolon. Again, using

the most recent version of PHP on
Windows XP, I did not need to create a

temporary directory, so you may be able

to get away without one too.

Finally, a maximum upload file size is set
(the M is shorthand for megabytes in con-

figuration settings).

4, Save the php.ini file and restart your
Web server.

How you restart your Web server depends
upon the operating system and Web serv-
ing application being used. See Appendix

A for instructions.

; Whether to allow HTTP file uploads.
file uploads = On

default if not
; specified).
jupload_tmp_dir =

; Maximum allowed size for uploaded files.
upload max filesize = 2M

; Temporary directory for HTTP uploaded files (will use system

Figure 10.10 The File Uploads subsection of the
php.ini file.

tmp Properties

General‘ Sharing |Cuslumize‘

Local sharing and security

@ Toshare this foldey
only, drag it to the £

To make this folder and its subfolders private so that
only you have access, select the following check box.

af this computer

Make this folder private

Metwork sharing and security
Ta share this folder with both network users and other
users of thiz computer, select the first check box below
and type a share name.,

[[] Share this folder on the network

Share name: ‘

Allow network, uzers o change my files

Learn more about sharing and security.

Hi(a Windows Firewall iz configured to allow this folder to be shared
with ather computers on the network.

Wigw your Windows Firewal settings

et

Figure 10.11 Windows users need to make
sure that the C:\tmp (or whatever directory is
used) is writable by PHP. On my Windows XP
installation, this just meant that it couldn’t
be marked private (see the top portion of
this image).

304



Web Application Development

5. Confirm the changes by rerunning the
phpinfo() script.
Before going any further, confirm that
the necessary changes have been enacted
by repeating Step 1.

some folder
e ——

htdoos_ #” . uploads.

L\

s

index.php more.php
. '

http:/fwww.example.com

Figure 10.12 Assuming that htdocs is the Web root
directory (www.example.com or http://localhost
points there), then the uploads directory needs to be
placed outside of it.

6.

If you are running Windows and need
to create a temporary directory, add

a tmp folder within C:\ and make sure
that everyone can write to that direc-
tory (Figure 10.11).

PHP, through your Web server, will tem-
porarily store the uploaded file in the
upload_tmp_dir. For this to work, the
Web user (if your Web server runs as a
particular user) must have permission
to write to the folder.

In all likelihood, you may not actually
have to change the permissions, but to
do so, depending upon what version of
Windows you are running, you can nor-
mally adjust the permissions by right-
clicking the folder and selecting Properties.
With the Properties window, there should
be a Security tab where permissions are set.
It may also be under Sharing. Windows
uses a more lax permissions system, so
you probably won't have to change any-
thing unless the folder is deliberately
restricted. (Note: [ haven't tested this on
Windows Vista, so I'm unsure what, if
anything, might have changed in it.)
Mac OS X and Unix users can skip this
step as the temporary directory—/tmp—
has open permissions already.

Create a new directory, called uploads,
in a directory outside of the Web root
directory.

All of the uploaded files will be perma-
nently stored in the uploads directory. If
you'll be placing your PHP script in the
C:\inetpub\wwwroot\ch10 directory, then
create a C:\inetpub\uploads directory. Or
if the files are going in /Users/~<username>/
Sites/ch10, make a /Users/~<username>/
uploads folder. Figure 10.12 shows the
structure you should establish, and the side-
bar discusses why this step is necessary.

continues on next page

305

sSavolidM 3114 ONITANVH



HANDLING FILE UPLOADS

Chapter 10

8. Set the permissions on the uploads direc-

tory so that the Web server can write to it.

Again, Windows users can use the
Properties window to make these changes,
although it may not be necessary. Mac
OS X users can...

A) Select the folder in the Finder.
B) Press Command-+1.

C) Allow everyone to Read & Write,
under the Ownership & Permissions
panel (Figure 10.13).

If you're using a hosted site, the host likely

provides a control panel through which

you can tweak a folder’s settings or you
might be able to do this within your FTP
application.

Depending upon your operating system,

you may be able to upload files without

first taking this step. You can try the fol-
lowing script before altering the permis-
sions, just to see. If you see messages like
those in Figure 10.14, then you will
need to make some adjustments.

v Tips

B Unix users can use the chmod command
to adjust a folder’s permissions. The
proper permissions in Unix terms will be
either 755 or 777.

B Because of the time it may take to
upload a large file, you may also need to
change the max_input_time value in the
php.ini file or temporarily bypass it
using the set_time_limit() function in
your script.

B File and directory permissions can be
complicated stuff, particularly if you've
never dealt with them before. If you have
problems with these steps or the next
script, search the Web or turn to the book’s
corresponding forum (www.DMCInsights.
com/phorum/).

eoe uploads Info

= uploads 752 KB
& Modified: Yesterday at 3:00 PM

P Spotlight Cormments:
» General:
P More Info:

P Name & Extension:

P Preview:

W Ownership & Permissions

You can | Read & Write 9‘

¥ Details:

Owner: | larryullman &

Access: | Read & Write B‘

Group: admin

Access: | Read & Write B‘
Others: | Read & Write B‘

Apply to enclosed items._..
A

Figure 10.13 Adjusting the
properties on the uploads
folder in Mac OS X.

‘Warning: move_uploaded_file(../uploads/trout JPG) [function move-uploaded-file]: failed to open stream: Permission
denied in /A pplications/Abyss Web Server/htdocs/upload_image.php on line 28

'Warning: move_uploaded_file() [function.move-uploaded-file]: Unable to move '/private/var/imp/phpjhcad9' to
'..Juploads/trout.JPG' in /A pplications/Abyss Web Server/htdocs/upload_image.php on line 28

Figure 10.14 If PHP could not move the uploaded image over to the uploads
folder because of a permissions issue, you’ll see an error message like this one.
Fix the permissions on uploads to correct this.

306



Web Application Development

Secure Folder Permissions

There’s normally a trade-off between security and convenience. With this example, itd be
more convenient to place the uploads folder within the Web document directory (the con-
venience arises with respect to how easily the uploaded images can be viewed in the Web
browser), but doing that is less secure.

For PHP to be able to place files in the uploads folder, it needs to have write permissions on
that directory. On most servers, PHP is running as the same user as the Web server itself. On
a hosted server, this means that all X number of sites being hosted are running as the same
user. Creating a folder that PHP can write to means creating a folder that everyone can write
to. Literally anyone on the server can now move, copy, or write files to the uploads folder
(assuming that they know it exists). This even means that a malicious user could write a PHP
script to your uploads directory. However, since the uploads directory in this example is not
within the Web directory, such a PHP script cannot be run in a Web browser. It’s less conven-
ient to do things this way, but more secure.

If you must keep the uploads folder publicly accessible, the permissions could be tweaked.
For security purposes, you ideally want to allow only the Web server user to read, write, and
browse this directory. This means knowing what user the Web server runs as and making
that user—and no one else—ruler of the uploads. This isn't a perfect solution, but it does
help a bit. This change also limits your access to that folder, though, as its contents would
belong to only the Web server.

Finally, if you're using Apache, you could limit access to the uploads folder using an .htaccess
file. Basically, you would state that only image files in the folder be publicly viewable, mean-
ing that even if a PHP script were to be placed there, it could not be executed. Information
on how to use .htaccess files can be found online (search on .htaccess tutorial).

Sometimes even the most conservative programmer will make security concessions. The
important point is that you're aware of the potential concerns and that you do the most you
can to minimize the danger.

307

SAvoldM) 3114 SNITANVH



HANDLING FILE UPLOADS

Chapter 10

Uploading files with PHP

Now that the server has (hopefully) been set
up to properly allow for file uploads, you can
create the PHP script that does the actual
file handling. There are two parts to such a
script: the HTML form and the PHP code.

The required syntax for a form to handle
a file upload has three parts:

<form enctype="multipart/form-data"
» action="script.php" method="post">

<input type="hidden"
— name="MAX_FILE_SIZE" value="30000" />

File <input type="file" name="upload" />

The enctype part of the initial form tag indi-
cates that the form should be able to handle
multiple types of data, including files. If you
want to accept file uploads, you must include
this enctype! Also note that the form must
use the POST method. The MAX_FILE_SIZE
hidden input is a form restriction on how
large the chosen file can be, in bytes, and
must come before the file input. While it’s
easy for a user to circumvent this restriction,
it should still be used. Finally, the file input
type will create the proper button in the
form (Figures 10.15 and 10.16).

Upon form submission, the uploaded file
can be accessed using the $_FILES super-
global. The variable will be an array of val-
ues, listed in Table 10.4.

Once the file has been received by the PHP
script, the move_uploaded_file() function
can transfer it from the temporary directory
to its permanent location.
move_uploaded_file (temporary_filename,

/path/to/destination/filename);

This next script will let the user select a file
on their computer and will then store it in
the uploads directory. The script will check
that the file is of an image type. In the next
section of this chapter, another script will
list, and create links to, the uploaded images.

File: | | Browse__]

Figure 10.15 The file input as it appears in IE 7
on Windows.

File: Browse... |

Figure 10.16 The file input as it appears in Firefox
on Mac OS X.

Table 10.4 The data for an uploaded file will be
available through these array elements.

The $_FILES Array

INDEX MEANING

name The original name of the file (as it was on the
user’s computer).

type The MIME type of the file, as provided by the
browser.

size The size of the uploaded file in bytes.

tmp_name | The temporary filename of the uploaded file
as it was stored on the server.

error The error code associated with any problem.

308



Web Application Development

Script 10.3 This script allows the user to upload an
image file from their computer to the server.

8oeé = Script
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0org/TR/xhtml1/DTD/

xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"

xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"

content="text/html; charset=iso-8859-1" />

6 <title>Upload an Image</title>

7 <style type="text/css" title="text/css"

media="all">

8 .error {

9 font-weight: bold;

10 color: #C00

11 }

12 </style>

13 </head>

14 <body>

15 <?php # Script 10.3 - upload_image.php

16

17 // Check if the form has been submitted:

18 if (isset($_POST['submitted'])) {

19

20 // Check for an uploaded file:

21 if (isset($_FILES['upload'])) {

22

23 // Validate the type. Should be
JPEG or PNG.

24 $allowed = array ('image/pjpeg’,
'image/jpeg', 'image/jpeg',
'image/JPG', 'image/X-PNG',
'image/PNG', 'image/png’,
'image/x-png');

25 if (in_array($_FILES['upload']
["type'], $allowed)) {

26

(script continues on next page)

To handle file uploads in PHP:

1. Create a new PHP document in your text

editor or IDE (Script 10.3).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/
— xhtml1l-transitional.dtd">

<html
» xmlns="http://www.w3.0rg/1999/xhtml"
» xmL:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
— content="text/html;
— charset=1s0-8859-1" />

<title>Upload an Image</title>

<style type="text/css"
— title="text/css" media="all">

.error {
font-weight: bold;
color: #(C00
}
</style>
</head>
<body>
<?php # Script 10.3 - upload_image.php

This script will make use of one CSS
class to format any errors.

continues on next page

309

sSavolidM 3114 ONITANVH



HANDLING FILE UPLOADS

Chapter 10

2. Check if the form has been submitted
and that a file was selected.

if (isset($_POST['submitted'])) {
if (isset($_FILES['upload'])) {

Since this form will have no other fields
to be validated (Figure 10.17), this is
the only conditional required. You could
also validate the size of the uploaded file
to determine if it fits within the accept-
able range (refer to the $_FILES['upload']
['size'] value).

3. Check that the uploaded file is of the
proper type.
$allowed = array ('image/pjpeg’,
— 'image/jpeg', 'image/jpeg’,
— "image/JPG', 'image/X-PNG',
— "image/PNG', 'image/png’',
— "image/x-png');
if
— (in_array($_FILES['upload']["type'],
— $allowed)) {

The file’s type is its MIME type, indicat-
ing what kind of file it is. The browser
can determine and may provide this
information, depending upon the proper-
ties of the selected file. To validate the
file’s type, first create an array of allowed
options. The list of allowed types is based
upon accepting JPEGs and PNGs. Some
browsers have variations on the MIME
types, so those are included here as well.
If the uploaded file's type is in this array,
the file is valid and should be handled.

©) Upload an Image - Mozilla Firefox

File Edt Vew Hitory Dookmarks Tools  Help

File: | [[Erowse.. |

’7551&:'1 a JPEG or PNG image of 512KB or smaller to be uploaded —

Submit

Figure 10.17 This very basic HTML form only
takes one input: a file.

Script 10.3 continued

eoce = Script

27 // Move the file over.

28 if (move_uploaded_file
($_FILES['upload']['tmp_name'],
"../uploads/{$_FILES['upload']['name']
) Ao

29 echo '<p><em>The file has been

uploaded!</em></p>";

30 } // End of move... IF.

31

32 } else { // Invalid type.

33 echo '<p class="error">Please upload a
JPEG or PNG image.</p>";

34 }

35

36 } // End of isset($_FILES['upload']) IF.

37

38 // Check for an error:

39

40 if ($_FILES['upload']['error'] > 0) {

41 echo '<p class="error">The file could

not be uploaded because: <strong>';

42

43 // Print a message based upon the

error.

44 switch ($_FILES['upload']['error']) {

45 case 1:

46 print 'The file exceeds the
upload_max_filesize setting in
php.ini.";

47 break;

48 case 2:

49 print 'The file exceeds the
MAX_FILE_SIZE setting in the
HTML form.';

50 break;

51 case 3:

52 print 'The file was only

partially uploaded.';

(script continues on next page)

310



Web Application Development

Script 10.3 continued

8oeé = Script
53 break;
54 case 4:
55 print 'No file was uploaded.';
56 break;
57 case 6:
58 print 'No temporary folder was
available.';
59 break;
60 case 7:
61 print 'Unable to write to the
disk.';
62 break;
63 case 8:
64 print 'File upload stopped.';
65 break;
66 default:
67 print 'A system error
occurred.';
68 break;
69 } // End of switch.
70
71 print '</strong></p>';
72
73 } // End of error IF.
74
75 // Delete the file if it still exists:
76 if (file_exists
($_FILES['upload']["tmp_name']) &&
is_file($_FILES['upload']["tmp_name’'
DHH{
7 unlink
($_FILES['upload']['tmp_name']);
78 }
79
80 } // End of the submitted conditional.

(script continues on next page)

4. Copy the file to its new location on the

server.

if (move_uploaded_file

— ($_FILES['upload']['tmp_name'],
— "../uploads/{$_FILES['upload']
- ['name'1}")) {

echo '<p><em>The file has been
— uploaded!</em></p>";

}

The move_uploaded_file() function will
move the file from its temporary to its
permanent location (in the uploads fold-
er). The file will retain its original name.
In Chapter 17, “Example—E-Commerce,”
you'll see how to give the file a new
name, which is generally a good idea.

As a rule, you should always use a condi-
tional to confirm that a file was success-
fully moved, instead of just assuming
that the move worked.

. Complete the image type and

isset($_FILES['upload']) conditionals.
} else { // Invalid type.
echo '<p class="error">Please
— upload a JPEG, GIF, or PNG
— GIF image.</p>';
}
} // End of isset($_FILES['upload'])
— IF.

The first else clause completes the if
begun in Step 3. It applies if a file was
uploaded but it wasn't of the right MIME
type (Figure 10.18).

continues on next page

ane Upload an Image =)

Please upload a JPEG or PNG image.

Fies[_ Browse..

Selbect a JPEG of PNG image of S12KB or smaller to be uploaded:

Submit

Figure 10.18 If the user uploads a file
that’s not a JPEG or PNG, this is the result.

311

sSavolidM 3114 ONITANVH



HANDLING FILE UPLOADS

Chapter 10

6.

Check for, and report on, any errors.
if ($_FILES['upload']['error'] > @) {

echo '<p class="error">The file
— could not be uploaded because:
— <strong>";

If an error occurred, then
$_FILES['upload']['error'] will have a
value greater than 0. In such cases, this
script will report what the error was.

Create a switch that prints a more
detailed error.

switch ($_FILES['upload']['error']) {
case 1:

print 'The file exceeds the
— upload_max_filesize setting
— in php.ini.';

break;
case 2:

print 'The file exceeds the
— MAX_FILE_SIZE setting in
— the HTML form.';

break;
case 3:

print 'The file was only
— partially uploaded.';

break;

case 4:
print 'No file was uploaded.';
break;

case 6:

print 'No temporary folder was
— available.';

break;

Script 10.3 continued

eoce = Script

81 7>

82

83 <form enctype="multipart/form-data"

action="upload_image.php" method="post">

84

85 <input type="hidden"
name="MAX_FILE_SIZE" value="524288">

86

87 <fieldset><legend>Select a JPEG or PNG
image of 512KB or smaller to be
uploaded: </legend>

88

89 <p><b>File:</b> <input type="file"
name="upload" /></p>

90

91 </fieldset>

92 <div align="center"><input type="submit"
name="submit" value="Submit" /></div>

93 <input type="hidden" name="submitted"
value="TRUE" />

94 </form>

95  </body>

9% </html>

312



Web Application Development

case 7:

print 'Unable to write to the
» disk.';

break;

case 8:
print 'File upload stopped.';
break;

default:

print 'A system error
» occurred.';

break;
} // End of switch.

There are several possible reasons a file
could not be uploaded and moved. The
first and most obvious one is if the per-
missions are not set properly on the des-
tination directory. In such a case, you'll
see an appropriate error message (refer
back to Figure 10.14). PHP will often
also store an error number in the
$_FILES['upload']['error'] variable.
The numbers correspond to specific
problems, from 0 to 4, plus 6 through 8
(oddly enough, there is no 5). The switch
conditional here prints out the problem
according to the error number. The
default case is added for future support
(if different numbers are added in later
versions of PHP).

For the most part, these errors are useful
to you, the developer, and not things
youd indicate to the average user.

8. Complete the error if conditional.

print '</strong></p>"';

} // End of error IF.

. Delete the temporary file if it still exists

and complete the PHP section.

if (file_exists

— ($_FILES["upload']["'tmp_name'])
— &&

— is_file($_FILES['upload']["tmp_
—name']) ) {

unlink
— ($_FILES['upload']["tmp_
— name']);

}
} // End of the submitted conditional.
7>

If the file was uploaded but it could not
be moved to its final destination or some
other error occurred, then that file is still
sitting on the server in its temporary
location. To remove it, use the unlink()
function. Just to be safe, prior to applying
unlink(), a conditional checks that the
file exists and that it is a file (because the
file_exists() function will return TRUE
if the named item is a directory).

continues on next page

313

sSavolidM 3114 ONITANVH



HANDLING FILE UPLOADS

Chapter 10

10.

11.

12.

Create the HTML form.

<form enctype="multipart/form-data"
— action="upload_image.php"
— method="post">

<input type="hidden"
— name="MAX_FILE_SIZE"
— value="524288">

<fieldset><legend>Select a JPEG
— or PNG image of 512KB or
— smaller to be uploaded:</legend>

<p><b>File:</b> <input
— type="file" name="upload" /></p>

</fieldset>

<div align="center"><input
— type="submit" name="submit"
— value="Submit" /></div>

<input type="hidden"
— name="submitted" value="TRUE" />

</form>

This form is very simple (Figure 10.17),
but it contains the three necessary
parts for file uploads: the form's enctype
attribute, the MAX_FILE_SIZE hidden
input, and the file input.

Complete the HTML page.
</body>
</html>

Save the file as upload_image.php, place
it in your Web directory, and test it in
your Web browser (Figures 10.19 and
10.20).

If you want, you can confirm that the
script works by checking the contents
of the uploads directory.

v Tips

Omitting the enctype form attribute is a
common reason for file uploads to mys-
teriously fail.

The existence of an uploaded file
can also be validated with the
is_uploaded_file() function.

Windows users must use forward slashes
or double backslashes to refer to directo-
ries (so C:\\ or C:/ but not C:\). This is
because the backslash is the escape char-
acter in PHP.

The move_uploaded_file() function will
overwrite an existing file without warn-
ing if the new and existing files both
have the same name.

The MAX_FILE_SIZE is a restriction in the
browser as to how large a file can be,
although not all browsers abide by this
restriction. The PHP configuration file
has its own restrictions. You can also val-
idate the uploaded file size within the
receiving PHP script.

8eo0e6

Upload an Image (=)

The file has been uploaded!

(

Select a JPEG or PNG image of 512KB or smaller to be uploaded: —

File: I Browse...

Submit

Figure 10.19 The result upon successfully
uploading and moving a file.

(@606

Upload an Image =

Please upload a JPEG or PNG image.

The file could not be uploaded because: The file exceeds the
MAX_FILE_SIZE setting in the HTML form.

File: Browse...
Submit

lfsdccl a JPEG or PNG image of 512KB or smaller to be uploaded: —

Figure 10.20 The result upon attempting to
upload a file that is too large.

314



Web Application Development

Table 10.5 The getimagesize() function returns this
array of data.

The getimagesize() Array

ELEMENT [ VALUE EXAMPLE

o image’s width in pixels 423

1 image’s height in pixels 368

2 image’s type 2 (representing
|PG)

3 appropriate HTML img tag data | height="368"
width="423"

mime |image’s MIME type image/png

PHP and JavaScript

Although PHP and JavaScript are fundamen-
tally different technologies, they can be used
together to make better Web sites. The most
significant difference between the two lan-
guages is that JavaScript is client-side
(meaning it runs in the Web browser) and
PHP is server-side. Therefore, JavaScript can
do such things as detect the size of the
browser window;, create pop-up windows,
and make image mouseovers, whereas PHP
can do nothing like these things.

But while PHP cannot do certain things that
JavaScript can, PHP can be used to create or
work with JavaScript (just as PHP can create
HTML). In this example, PHP will list all the
images uploaded by the upload_image.php
script and make clickable links using their
names. The links themselves will call a
JavaScript function that creates a pop-up
window. This example will in no way be a
thorough discussion of JavaScript, but it
does adequately demonstrate how the two
technologies—PHP and JavaScript—can be
used together.

Along with the JavaScript, three new PHP
functions are used in this example. The first,
getimagesize(), returns an array of informa-
tion for a given image (Table 10.5). The sec-
ond, scandir(), returns an array listing the
files in a given directory (it was added in
PHP 5). The third, filesize(), returns the
size of a file in bytes.

315

1dI¥DSVAV[ ANV dHd



PHP AND JAVASCRIPT

Chapter 10

To create javaScript with PHP: Script 10.4 The images . php script uses JavaScript and
PHP to create links to images stored on the server.
1. Begin a new PHP document in your text The images will be viewable through show_image . php
editor or IDE (Seript 10.4). (Script 10.5).
eo0e 2 Script
<!DOCTYPE html PUBLIC *-//WSC//DTD 1 IDOCTYPE html PU;LIECnFj' //W3C//DTD XHTML
- " «<! m -
— XHTML 1.0 Transitional//EN 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/ 2 "http: //waw.w3.0rg/TR/
— xhtmll-transitional.dtd"> xhtm11/DTD/

xhtmll-transitional.dtd">
<html

» xmlns="http://www.w3.0rg/1999/xhtml"
» xmlL:lang="en" lang="en">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>
<head>
5 <meta http-equiv="content-type"
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1"
— content="text/html; >
— charset=1s0-8859-1" /> 6 <title>Images</title>
<title>Images</title> 7 <script language="JavaScript">
<script language="JavaScript"> 8 <!--// Hide from old browsers.
This script will display a list of images, 2
along with their file sizes, and create a 10 // Make a pop-up window function:
link to view the actual image itselfin a 11 function create_window (image, width,
pop-up window. The pop-up window will height) {
be created by JavaScript, although PHP 12
will be used to set certain parameters. ) )
13 // Add some pixels to the width and
height:
14 width = width + 10;
15 height = height + 10;
16
17 // If the window is already open,
18 // resize it to the new dimensions:
19 if (window.popup &&
Iwindow.popup.closed) {
20 window.popup.resizeTo(width,
height);
21 3
22
23 // Set the window properties:

(script continues on next page)

316



Web Application Development

Script 10.4 continued

8oeé = Script
24 var specs = "location=no,
scrollbars=no, menubars=no,
toolbars=no, resizable=yes, left=0,
top=0, width=" + width + ", height="
+ height;
25
26 // Set the URL:
27 var url = "show_image.php?image=" +
image;
28
29 // Create the pop-up window:
30 popup = window.open(url,
"ImageWindow", specs);
31 popup.focus();
32
33 } // End of function.
34 //--></script>
35 </head>
36  <body>
37 <p>Click on an image to view it in a
separate window.</p>
38 <table align="center" cellspacing="5"
cellpadding="5" border="1">
39 <tr>
40 <td align="center"><b>Image
Name</b></td>
41 <td align="center"><b>Image
Size</b></td>
42 </tr>
43 <?php # Script 10.4 - images.php
44 // This script lists the images in the
uploads directory.
45
46  $dir = '../uploads'; // Define the
directory to view.
47
48 $files = scandir($dir); // Read all the

images into an array.

(script continues on next page)

2.

Begin the JavaScript function.
<script language="JavaScript">
<!-- // Hide from old browsers.

function create_window (image, width,
— height) {

width = width + 10;
height = height + 10;

The JavaScript create_window() function
will accept three parameters: the image
name, its width, and its height. Each of
these will be passed to this function
when the user clicks a link. The exact
values of the image name, width, and
height will be determined by PHP.

Some pixels will be added to the width
and height values to create a window
slightly larger than the image itself.

Resize the pop-up window if it is already
open.

if (window.popup &&
— lwindow.popup.closed) {

window.popup.resizeTo(width,
— height);

}

This code first checks if the pop-up win-
dow exists and if it is not closed (popup is
a user-defined JavaScript variable repre-
senting the pop-up window). If it passes
both tests (which is to say it’s already
open), the window will be resized accord-
ing to the new image dimensions. The
purpose of this code is to resize the
existing window from one image to
another if it was left open.

continues on next page

317

1dI¥DSVAV[ ANV dHd



PHP AND JAVASCRIPT

Chapter 10

4, Determine the properties of the pop-up

window and the URL, and then create
the window.

var specs = "location=no,

— scrollbars=no, menubars=no,

— toolbars=no, resizable=yes, left=0,
— top=0, width=" + width + ",

— height=" + height;

var url = "show_image.php?image=" +
— image;

popup = window.open(url,

— "ImageWindow", specs);

popup . focus(Q);

The first line sets the properties of the
pop-up window (the window will have no
location bar, scroll bars, menus, or tool-
bars; it should be resizable; it will be
located in the upper-left corner of the
screen; and it will have a width of width
and a height of height). The plus sign is
used to perform concatenation in
JavaScript, thereby adding the variable’s
value to a string.

The second line sets the URL of the
popup window, which is show_image.
php?image= plus the name of the image.
Finally, the pop-up window is created
using the defined properties and URL,
and focus is given to it, meaning it
should appear above the current window.

Script 10.4 continued

eoce = Script
49
50 // Display each image caption as a link to
the JavaScript function:
51 foreach ($files as $image) {
52
53 if (substr($image, 0, 1) != '.") { //
Ignore anything starting with a period.
54
55 // Get the image's size in pixels:
56 $image_size = getimagesize
("$dir/$image");
57
58 // Calculate the image's size in
kilobytes:
59 $file_size = round ( (filesize
("$dir/$image™)) / 1024) . "kb";
60
61 // Make the image's name URL-safe:
62 $image = urlencode($image);
63
64 // Print the information:
65 echo "\t<tr>
66 \t\t<td><a href=\"javascript:create_window
('$image',$image_size[0],$image_size[1]D\"
>$image</a></td>
67 \t\t<td>$file_size</td>
68 \t</tr>\n";
69
70 } // End of the IF.
71
72 '} // End of the foreach loop.
73 7>
74 </table>
75  </body>
76 </html>

318



Web Application Development

5.

Conclude the JavaScript function and the
HTML head.

} // End of function.
//--></script>
</head>
Create the introductory text and begin
the table.
<body>

<p>Click on an image to view it in a
— separate window.</p>

<table align="center"
— cellspacing="5" cellpadding="5"
— border="1">

<tr>

<td align="center"><b>Image
— Name</b></td>

<td align="center"><b>Image
— Size</b></td>

</tr>

Not a lot of effort is being put into the
appearance of the page. It will be just one
table with a caption (Figure 10.21).

©) Images - Mozilla Firefox

File Edit Yew History Bookmarks Tools Help

Chck on an mmage to wiew it m a separate window.,

‘ Image Name |Image Size

‘ BithOfVenus jpeg | 25k

‘ Galway+Bay jpeg | B4

eiffel tower. pg | A2khb
‘ nthecar.ipg | 220ks
‘ rizie. ipg | 412k

Figure 10.21 This PHP page has a caption
and a table that lists all the images, along
with their file sizes.

7. Start the PHP code and create an array

of images by referring to the uploads
directory.

<?php # Script 10.4 - images.php
$dir = '../uploads’;
$files = scandir($dir);

This script will automatically list and
link all of the images stored in the
uploads folder (presumably put there by
upload_image.php, Script 10.3). The code
begins by defining the directory as a vari-
able, so that it’s easier to refer to. Then
the scandir() function, which returns an
array of files and directories found within
a folder, assigns that information to an
array called $files.

. Begin looping through the $files array.

foreach ($files as $image) {
if (substr($image, @, 1) != '.") {

This loop will go through every image in
the array and create a row in the table for
it. Within the loop, there is one condi-
tional that checks if the first character

in the file's name is a period. On non-
Windows systems, hidden files start with
a period, the current directory is referred
to using just a single period, and two
periods refers to the parent directory.
Since all of these might be includes in
$files, they need to be weeded out.

continues on next page

319

1dI¥DSVAV[ ANV dHd



PHP AND JAVASCRIPT

Chapter 10

9. Get the image information and encode

its name.

$image_size = getimagesize

— ("$dir/$image");

$file_size = round ( (filesize

— ("$dir/$image")) / 1024) . "kb";

$image = urlencode($image);

Three PHP functions are used here that
haven't been used before (for more infor-
mation, check the PHP manual). The
getimagesize() function returns an array
of information about an image (Table
10.5). The values returned by this func-
tion will be used to set the width and
height sent to the create_window()
JavaScript function.

The filesize() function returns the size
of a file in bytes. To calculate the kilo-
bytes of a file, divide this number by
1,024 (there are that many bytes in a
kilobyte) and round it off.

Lastly, the urlencode() function makes a
string safe to pass in a URL. Because the
image name may contain characters not
allowed in a URL (and it will be passed in
the URL when invoking show_image . php),
the name should be encoded.

10.

11.

Print the table row.
echo "\t<tr>

\t\t<td><a

— href=\"javascript:create_window

— ("$image', $image_size[@], $image_
— size[1])\">$image</a></td>
\t\t<td>$file_size</td>

\t</tr>\n";

Finally, the loop creates the HTML table
row, consisting of the linked image
name and the image size. The caption
is linked as a call to the JavaScript
create_window() function so that when
the link is clicked, that function is exe-
cuted. To make the HTML source more
legible, tabs (\t) and newline characters
(\n) are printed as well.

Complete the PHP code and the HTML
page.

} // End of the IF.

} // End of the foreach loop.

7>

</table>

</body>

</html>

320



Web Application Development

12. Save the file as images.php, place it in
your Web directory (in the same direc-
tory as upload_image.php), and test it in
your Web browser (Figure 10.21).

13. View the source code to see the dynam-
ically generated links (Figure 10.22).
Notice how the parameters to each
function call are appropriate to the
specific image.

v Tips

Some versions of Windows create a
Thumbs . db file in a folder of images. You
might want to check for this value in the
conditional in Step 8 that weeds out some
returned items. That code would be

if ( (substr($image, 0, 1) != '.") &
— ($image != 'Thumbs.db') ) {

Not to belabor the point, but most every-
thing Web developers do with JavaScript
(for example, resize or move the browser
window) cannot be done using the server-
side PHP.

There is a little overlap between the PHP
and JavaScript. Both can set and read
cookies, create HTML, and do some
browser detection.

<trs

<tdr42kh</tdx
</ trx
<tr>

<td>2Z0kb</ td>
</ trx
<tr>

<tdr412kb</td>
</ tr>

<td><a href="javascript:create_mindnmt'eiffel_tnmer.]pg',822,537]">eiffel_tomer.jpg{fa}(ftd}

<td-<a href="javascript:create_windawt'inthecar.jpg',lDDQ,BQl]">inthecar.jpg<fa><ftd>

<tdr<a href="javascript:create_window('trixie.jpg',1280,1024) ">trixie. jpg</ar</td>

Figure 10.22 Each image’s name is linked as a call to a JavaScript function. The function call’s parameters were

created by PHP.

321

1dI¥DSVAV[ ANV dHd



UNDERSTANDING HTTP HEADERS

Chapter 10

Understanding
HTTP Headers

This chapter will conclude by discussing how
you can use HTTP headers with your PHP
scripts. HTTP (Hypertext Transfer Protocol)
is the technology at the heart of the World
Wide Web and defines the way clients and
servers communicate (in layman’s terms).
When a browser requests a Web page, it
receives a series of HTTP headers in return.
This happens behind the scenes, of course;
most users aren't aware of this at all.

PHP’s built-in header() function can be used
to take advantage of this protocol. The most
common example of this will be demonstrated
in the next chapter, when the header() func-
tion will be used to redirect the Web browser

from the current page to another. Here, you'll

use it to send files to the Web browser.

In theory, the header() function is easy to
use. Its syntax is

header(header string);

The list of possible header strings is quite long,
as headers are used for everything from redi-
recting the Web browser to sending files to
sending cookies to controlling page caching
and much, much more. Starting with some-
thing simple, to use header() to redirect the
Web browser, type

header ('Location:
— http://www.example.com/page.php');

That line will send the Web browser from
the page it’s on over to that URL.

In this next example, which will send a file
to the Web browser, three header calls are
used. The first is Content-Type. This is an
indication to the Web browser of what kind
of data is about to follow. The Content-Type
value matches the data’s MIME type. This
line lets the browser know it’s about to
receive a PDF file:

header("Content-
» Type:application/pdf\n");

Next, you can use Content-Disposition, which
tells the browser how to treat the data:

header ("Content-Disposition: attachment;
— filename=\"somefile.pdf\"\n");

The attachment value will prompt the browser
to download the file (Figure 10.23). An alter-
native is to use inline, which tells the browser
to display the data, assuming that the brows-
er can. The filename attribute is just that: it
tells the browser the name associated with
the data.

8eeo Opening somefile.pdf

You have chosen to open
|# somefile.pdf

which is a: Portable Document Format
from: http://127.0.0.1:8000

What should Firefox do with this file?

%) Open with | Preview (default) L.:_l

() Save to Disk

[T Do this automatically for files like this from now on.

Cana ) @06

Figure 10.23 Firefox prompts the user to
download the file because of the attachment
Content-Disposition value.

Warning: Cannot modify header information - headers already sent by {output started at fApplicationsfd by sz Wek
Servermysgli_connect.php: 200 in /A pplications/Abyss Web Serverhtdocsheader.php on line 12

Figure 10.24 The headers already sent error means that the Web browser was sent something—HTML, plain text,

even a space—prior to using the header() function.

322



Web Application Development

Script 10.5 This script retrieves an image from the
server and sends it to the browser.

8oeé = Script

1 <?php # Script 10.5 - show_image.php

2 // This page displays an image.

4 $name = FALSE; // Flag variable:

6 // Check for an image name in the URL:
7 if (isset($_GET['image'])) {

8

9 // Full image path:

10 $image = "../uploads/{$_GET['image']}";
11

12 // Check that the image exists and is a
file:

13 if (file_exists ($image) &&
(is_file($image))) {

14

15 // Make sure it has an image's
extension:

16 $ext = strtolower ( substr
($_GET['image'], -4));

17

18 if (($ext == '.jpg") OR ($ext ==
"jpeg’) OR ($ext == '.png")) {

19 // Set the name as this image:

20 $name = $_GET['image'];

21 } // End of $ext IF.

22

23 } // End of file_exists() IF.

24

25 3} // End of isset($_GET['image']) IF.
26

27 // If there was a problem, use the default
image:

28 if (!$name) {

29 $image = 'images/unavailable.png';

(script continues on next page)

A third header to use for downloading files is
Content-Length. This is a value, in bytes, cor-
responding to the amount of data to be sent.

header ("Content-Length: 4096\n");

That’s the basics with respect to using the
header() function. Before getting to the exam-
ple, note that if a script uses multiple header()
calls, each should be terminated by a new-
line (\n) as in the preceding code snippets.
More importantly, the absolutely critical
thing to remember about the header() func-
tion is that it must be called before anything
is sent to the Web browser. This includes
HTML or even blank spaces. If your code has
any echo() or print() statements, has blank
lines outside of PHP tags, or includes files that
do any of these things before calling header(),
you'll see an error message like that in
Figure 10.24.

To use the header() function:

1. Begin a new PHP document in your text
editor or IDE (Script 10.5).

<?php # Script 10.5 - show_image.php
$name = FALSE;

Because this script will use the header()
function, nothing, absolutely nothing,
can be sent to the Web browser. No
HTML, not even a blank line, tab, or
space before the opening PHP tag.

The $name variable will be used as a flag,
indicating if all of the validation routines
have been passed.

2. Check for an image name.
if (isset($_GET['image'])) {
The script needs to receive a valid image
name in the URL. This should be
appended to the URL in the JavaScript

function that calls this page (see
images.php, Script 10.4).

continues on next page

323

S¥3aViIH dLLH ONIGNVLS¥IAN()



UNDERSTANDING HTTP HEADERS

Chapter 10

3. Check that the image is a file on the server.

$image =
— "../uploads/{$_GET['image']}";

if (file_exists ($image) &&
— (is_file($image))) {

Before attempting to send the image to
the Web browser, make sure that it exists
and that it is a file (as opposed to a direc-
tory). As a security measure, I hard-code
the image’s full path as a combination of
./uploads and the received image name.
Even if someone were to attempt to use
this page to see /path/to/secret/file, this
script would look for ../uploads//path/
to/secret/file (including the double-slash),
which is safe.

. Validate the image’s extension.

$ext = strtolower ( substr
— ($_GET['image'], -4));

if (($ext == '.jpg') OR ($ext ==

— 'jpeg') OR ($ext == ".png')) {
$name = $_GET['image'];

} /7 End of $ext IF.

The final check is that the file to be sent
to the Web browser has a . jpeg, . jpg, or
.png extension. This way the script won't
try to send something bad to the user.
Even though the upload_image.php script
also validates the file by type, you can
never be too careful.

To validate the extension, the substr()
function returns the last four characters
from the image’s name (the -4 accom-
plishes this). The extension is also run
through the strtolower() function so
that .PNG and .png are treated the same.
Then a conditional checks to see if $ext
is equal to any of the three allowed values.
Once the image has passed all of these
tests, the $name function is assigned the
value of the image.

Script 10.5 continued

eoce = Script

30 $name = 'unavailable.png';
31 %}

32

33  // Get the image information:

34  $info = getimagesize($image);
35 $fs = filesize($image);

36

37 // Send the content information:

38 header ("Content-Type:
{$info['mime'IF\n");

39  header ("Content-Disposition: inline;
filename=\"$name\"\n");

40  header ("Content-Length: $fs\n");
41

42 // Send the file:

43 readfile ($image);

44

45 7>

324



Web Application Development

5.

Complete the conditionals begun in
Steps 2 and 3.

} // End of file_exists() IF.
} // End of isset($_GET['image']) IF.

If no valid image was received by this
page, use a default image.

if (1$name) {
$image = 'images/unavailable.png';
$name = 'unavailable.png';

}

If the image doesn't exist, if it isn't a file,
or if it doesn’t have the proper extension,
then the $name variable will still have a
value of FALSE. In such cases, a default
image will be used instead (Figure 10.25).
The image itself can be downloaded from
the book’s corresponding Web site (www.
DMCInsights.com/phpmysql3/, see the
Extras page) and should be placed in an
images folder. The images folder should be
in the same directory as this script, not in
the same directory as the uploads folder.

® O O show_image.php (PNG Image, 200x200 pixels) O

http: ff127.0.0. 18000 /show_image. php?image=trdfa ¥  |>

The requested
image is
not available.

Figure 10.25 This image will be shown any time there’s
a problem with showing the requested image.

7. Retrieve the image information.

$info = getimagesize($image);
$fs = filesize($image);

To send the file to the Web browser, the
script needs to know the file's type and
size. The file’s type can be found using
getimagesize(). The files size, in bytes, is
found using filesize(). Because the $image
variable represents either ../uploads/
{$_GET[image’|} or images/unavailable.
png, these lines will work on both the
correct and the unavailable image.

Send the file.

header ("Content-Type:

— {$info['mime'1}\n");

header ("Content-Disposition: inline;
— filename=\"$name\"\n");

header ("Content-Length: $fs\n");
readfile ($image);

These header() calls will send the file
data to the Web browser. The first line
uses the image’s MIME type for the
Content-Type. The second line tells the
browser the name of the file and that it
should be displayed in the browser (inline).
The last header() function indicates how
much data is to be expected. The file
data itself is sent using the readfile()
function, which reads in a file and imme-
diately sends the content to the Web
browser.

. Complete the page.

7>

Notice that this page contains no HTML.
It only sends an image file to the Web
browser.

continues on next page

325

S¥3aViIH dLLH ONIGNVLS¥IAN()



UNDERSTANDING HTTP HEADERS

Chapter 10

10. Save the file as show_image.php, place it
in your Web directory, in the same fold-
er as images.php, and test it in your
Web browser by clicking a link in
images.php (Figure 10.26).

v Tips

B [ cannot stress strongly enough that
nothing can be sent to the Web browser
before using the header() function. Even
an included file that has a blank line
after the closing PHP tag will make the
header() function unusable.

® To avoid problems when using header(),
you can call the headers_sent() function
first. It returns a Boolean value indicating
if something has already been sent to the
Web browser:

if ('headers_sent()) {
// Use the header() function.
1 else {

// Do something else.

}

Output buffering, demonstrated in
Chapter 16, “Example—User Registration,”
can also prevent problems when using
header().

B Debugging scripts like this, where PHP
sends data, not text, to the Web browser,
can be challenging. For help, use the Live
HTTP Headers plug-in for Firefox
(Figure 10.27).

® O O http://127.0.0.1:8000 - show_image.php (PEG Image, 128... (O

Figure 10.26 This image is displayed by having PHP

send the file to the Web browser.

ana Live HTTF headers =)
[Heagers | Generator | contig | About |

TP e =
et /137 0U0.3- 000/ show_imaps phedimagestrisie ipg '
CET [ihom_image phpdimagesseiie og HTTRL 1
e 137 0010000
User=Agent Masimn/S.0 Mucintosh, U, sl Mut O3 3, eaeUS, el 81 71 Cotkn /20070914 frefan /2007
Agcapt 1 feml ety Lmagtipng /" q=0%
[ e——
Fatg-Alve timeow=150000, max=10
Dite: Mon, 08 Ger 20T 0203 1 CWT :
Sarver AEYERIE 5 00X -MaSC X ADYEELBE 500 5

Fewnr (@S]

Figure 10.27 The Live HTTP Headers extension for Firefox

shows what headers were sent by a page and/or
server. This can be useful debugging information.

326



COOKIES AND
SESSIONS

The Hypertext Transfer Protocol (HTTP) is a stateless technology, meaning that each
individual HTML page is an unrelated entity. HT'TP has no method for tracking users
or retaining variables as a person traverses a site. Although your browser tracks the
pages you visit, the server keeps no record of who had seen what. Without the server
being able to track a user, there can be no shopping carts or custom Web site person-

alization. Using a server-side technology like PHP, you can overcome the stateless-
ness of the Web. The two best PHP tools for this purpose are cookies and sessions.

As you probably already know, cookies store data in the user's Web browser. When
the user accesses a page on the site from which the cookie came, the server can
read the data from that cookie. Sessions store data on the server itself. Sessions are
generally more secure than cookies and can store much more information. Both
technologies are easy to use with PHP and are worth knowing.

In this chapter you'll see uses of both cookies and sessions. The examples for
demonstrating this information will be a login system, based upon the existing
users database.

327

SNOISS3S ANV SIDI00)



MAKING A LOGIN PAGE

Chapter 11

Making a Login Page

Alogin process involves just a few
components:

¢ A form for submitting the login
information

¢ A validation routine that confirms the
necessary information was submitted

¢ A database query that compares the
submitted information against the
stored information

@ Cookies or sessions to store data that
reflects a successful login

Subsequent pages will then contain checks
to confirm that the user is logged in (to limit
access to that page). There is also, of course,
a logging out process, which involves clearing
out the cookies or session data representing
a logged-in status.

To start all this, let’s take some of these
common elements and place them into sep-
arate files. Then, the pages that require this
functionality can include the necessary files.
Breaking up the logic this way will make
some of the following scripts easier to read
and write, plus cut down on their redundan-
cies. I've designed two includable files. This
first one will contain the bulk of a login page,
including the header, the error reporting, the
form, and the footer (Figure 11.1).

ana Logn =

Your Website

Login

Figure 11.1 The login form and page.

Script 11.1 The login_page.inc.php script creates the
complete login page, including the form, and reports
any errors. It will be included by other pages that
need to show the login page.

8086 =) Script
1 <?php # Script 11.1 - login_page.inc.php

2

3 // This page prints any errors associated
with logging in

4 // and it creates the entire login page,
including the form.

6 // Include the header:
7 $page_title = 'Login';

8 include ('includes/header.html');

10 // Print any error messages, if they
exist:

11 if (lempty($errors)) {
12 echo '<hl>Error!</hl>

13 <p class="error">The following error(s)
occurred:<br />';

14 foreach ($errors as $msg) {

15 echo " - $msg<br />\n";

16 }

17 echo '</p><p>Please try again.</p>";
18 %

19

20 // Display the form:

21 7>

22 <hl>Login</hl>

23 <form action="login.php" method="post">

24 <p>Email Address: <input type="text"
name="email" size="20" maxlength="80" />

</p>

25 <p>Password: <input type="password"
name="pass" size="20" maxlength="20"
/></p>

26 <p><input type="submit" name="submit"

value="Login" /></p>

(script continues on next page)

328



Cookies and Sessions

Script 11.1 continued
806 = Seript

27 <input type="hidden" name="submitted"
value="TRUE" />

28 </form>

29

30 <?php // Include the footer:

31 include ('includes/footer.html');
32 >

Error!

Login

Your Website

[=]

Figure 11.2 The login form and page, with error
reporting.

To make a login page:

1. Create a new PHP page in your text

editor or IDE (Script 11.1).

<?php # Script 11.1 - login_
— page.inc.php

. Include the header.

$page_title = 'Login';
include ('includes/header.html');

This chapter will make use of the same
template system first created in Chapter
3, “Creating Dynamic Web Sites,” then
modified in Chapter 8, “Using PHP with
MySQL”

. Print any error messages, if they exist.

if (lempty($errors)) {
echo '<hl>Error!</hl>

<p class="error">The following
— error(s) occurred:<br />';

foreach ($errors as $msg) {

echo " - $msg<br />\n";
}
echo '</p><p>Please try again.
- </p>";

}

This code was also developed back in
Chapter 8. If any errors exist (in the
$errors array variable), they’ll be printed
as an unordered list (Figure 11.2).

continues on next page

329

39Vd NI907 V ONDIVW



MAKING A LOGIN PAGE

Chapter 11

4. Display the form.

7>

<hl>Login</hl>

<form action="login.php" method=

— "post">
<p>Email Address: <input type=
— "text" name="email" size="20"
— maxlength="80" /> </p>
<p>Password: <input type=
— "password" name="pass" size=
— "20" maxlength="20" /></p>
<p><input type="submit" name=
— "submit" value="Login" /></p>
<input type="hidden" name=
— "submitted" value="TRUE" />

</form>

The HTML form only needs two text
inputs: one for an email address and a
second for the password. The names of

the inputs match those in the users table

of the sitename database (which this
login system is based upon).
To make it easier to create the HTML

form, the PHP section is closed first. The

form is not sticky, but you could easily
add code to accomplish that (but only

for the email address, as passwords can't

be sticky).

5.

Complete the page.

<?php

include ('includes/footer.html');

7>

Save the file as login_page.inc.php and

place it in your Web directory (in the
includes folder, along with the files from
Chapter 8: header.html, footer.html, and
style.css).

The page will use a .inc.php extension
to indicate both that it’s an includable
file and that it contains PHP code.

v Tip

It may seem illogical that this script
includes the header and footer file from
within the includes directory when this
script will also be within that same direc-
tory. This code works because this script
will be included by pages within the
main directory; thus the include refer-
ences are with respect to the parent file,
not this one.

330



Cookies and Sessions

Making the Login Functions

Along with the login page that was stored in
login_page.inc.php, theres a little bit of
functionality that will be common to several
scripts in this chapter. In this next script,
also to be included by other pages in the
login/logout system, two functions will be
defined.

Many pages will end up redirecting the user
from one page to another. For example,
upon successfully logging in, the user will be
taken to loggedin.php. If a user accesses
loggedin.php and they aren't logged in, they
should be taken to index.php. Redirection
uses the header() function, introduced in
Chapter 10, “Web Application Development.”
The syntax for redirection is

header ('Location: http://www.example.
» com/page.php');

Script 11.2 The login_functions.inc.php script
defines two functions that will be used by different
scripts in the login/logout process.

606 = Script

1 <?php # Script 11.2 - login_functions.
inc.php

2

3 // This page defines two functions used by
the login/logout process.

5 /* This function determines and returns an
absolute URL.

6 * It takes one argument: the page that
concludes the URL.

7 * The argument defaults to index.php.
8 */

9 function absolute_url ($page = 'index.
php') {

10
11 // Start defining the URL...

12 // URL is http:// plus the host name
plus the current directory:

(script continues on next page)

Because this function will send the browser
to page . php, the current script should be ter-
minated using exit() immediately after this:

header ('Location: http://www.example.
» com/page.php');

exit();

If you don’t do this, the current script will
continue to run (just not in the Web browser).

The location value in the header() call
should be an absolute URL (www.example.
com/page . php instead of just page.php).

You can hard-code this value or, better yet,
dynamically determine it. The first function
in this next script will do just that.

The other bit of code that will be used by
multiple scripts in this chapter validates
the login form. This is a three-step process:

1. Confirm that an email address was
provided.

2. Confirm that a password was provided.

3. Confirm that the provided email address
and password match those stored in the
database (during the registration
process).

So this next script will define two different
functions. The details of how each function
works will be explained in the steps that
follow.

To create the login functions:

1. Create a new PHP document in your text
editor or IDE (Script 11.2).

<?php # Script 11.2 - login_
— functions.inc.php

As this file will be included by other files,
it does not need to contain any HTML.

continues on page 333

331

SNOILDNN{ NIDOT IHL ONDIV



MAKING THE LOGIN FUNCTIONS

Chapter 11

Script 11.2 continued

Script 11.2 continued

8e6B = Script OB = Seript
13 $url = 'http://' . $_SERVER['HTTP_HOST'] 42 $e = mysqli_real_escape_string($dbc,
. dirname($_SERVER['PHP_SELF']); trim($email));
14 43 }
15 // Remove any trailing slashes: 44
16 $url = rtrimCSurl, '/\\"); 45 // Validate the password:
17 46 if (empty($pass)) {
18 // Add the page: 47 $errors[] = 'You forgot to enter your
password."';
19 $url .= '/' . $page;
48 else
20 } {
49 $p = mysqli_real_escape_string($dbc,
21 // Return the URL: tEim(SB);;ags)); P 9
22 return $url; 50 1
24 '} // End of absolute_url() function. 52 if (empty($errors)) { // If everything's
25 OK.
26 53
27 /* This function validates the form data >4 ;/ Riﬁr‘ieve tl{'i user‘_ig andbfir‘?_m?me
(the email address and password). or that ematil/password comoination:
. 55 $q = "SELECT user_id, first_name FROM
2 * If both t, the datab 4
8 quer‘iez are present, the database 1s users WHERE email="$e' AND
’ pass=SHAL1('$p')";
29 * The function requires a database .
connection. q 56 $r = @mysqli_query ($dbc, $q); // Run
the query.
30 * The function returns an array of 57
information, including:
31 * - a TRUE/FALSE variable indicating 58 /7 Check the result:
success 59 if (mysqli_num_rows($r) == 1) {
32 * - an array of either errors or the 60
database result
61 // Fetch the record:
33 */
) ) ) 62 $row = mysqli_fetch_array ($r,
34 function check_logln($dbC, $email = "' N MYSQLI ASS0C);
$pass = '") { - ’
63
35
L 64 // Return true and the record:
36 $errors = array(); // Initialize error
array. 65 return array(true, $row);
37 66
38 // Validate the email address: 67 } else { // Not a match!
39 if (empty($email)) { 68 $errors[] = 'The email address and
password entered do not match those on
40 $errors[] = 'You forgot to enter your file.':
email address.'; ’
69 3
41 } else {

(script continues)

(script continues on next page)

332



Cookies and Sessions

2.

Begin defining a new function.

function absolute_url ($page =
— "index.php') {

The absolute_url() function will return
an absolute URL that’s correct for the
site running these scripts. The benefit of
doing this dynamically (as opposed to
just hard-coding http://www.example.
com/page . php) is that you can develop
your code on one server (like your own
computer) and then move it to another
server without ever needing to change
this code.

The function takes one optional argu-
ment: the final destination page name.
The default value is index.php.

Start defining the URL.

$url = "http://" . $_SERVER
— ["HTTP_HOST'] . dirname($_
» SERVER['PHP_SELF']);

To start, $url is assigned the value of
http:// plus the host name (which could
be either localhost or www.example.com).
To this is added the name of the current
directory using the dirname() function, in
case the redirection is taking place within

Script 11.2 continued

8ee = Script

70

71 } // End of empty($errors) IF.

72

73 // Return false and the errors:
74 return array(false, $errors);

75

76 } // End of check_login() function.
77

8 7>

a subfolder. $_SERVER[ 'PHP_SELF'] refers
to the current script (which will be the
one calling this function), including the
directory name. That whole value might
be /somedir/page.php. The dirname()
function will return just the directory
part from that value (i.e., /somedir/).

. Remove any ending slashes from the URL.

$url = rtrimCSurl, '/A\\");

Because the existence of a subfolder
might add an extra slash (/) or backslash
(\, for Windows), the function needs to
remove that. To do so, use the rtrim()
function. By default, this function
removes spaces from the right side of a
string. If provided with a list of charac-
ters to remove as the second argument,
it'll chop those off instead. With this line
of code, the characters to be removed
should be either / or \. But since the
backslash is the escape character in PHP,
you need to use \\ to refer to a single
backslash. So, in short, if $url concludes
with either of these characters, the
rtrim() function will remove them.

. Add the specific page to the URL and

complete the function.
$url .= '/' . $page;
return $url;
} // End of absolute_url() function.

Finally, the specific page name is append-
ed to the $url. It’s preceded by a slash
because any trailing slashes were
removed in Step 4 and you can't have
www . example. compage. php as the URL.
The URL is then returned.

This may all seem to be quite complicat-
ed, but it’s a very effective way to ensure
that the redirection works no matter on
what server, or from what directory, the

continues on next page

333

SNOILDNN{ NIDOT IHL ONDIV



MAKING THE LOGIN FUNCTIONS

Chapter 11

script is being run (as long as the redirec- 8. If no errors occurred, run the database
tion is taking place within that directory). query.
6. Begin a new function. if (empty($errors)) {
function check_login($dbc, $email = $q = "SELECT user_id, first_name
» "', $pass = ') { — FROM users WHERE email='$e’

This function will validate the login infor- ~* AND pass=SHAL("$p")";

mation. It takes three arguments: the $r = @mysqli_query ($dbc, $q);
database connection, which is required; The query selects the user_id and first_
the email address, which is optional; and name values from the database where
the password, which is also optional. the submitted email address (from the
Although this function could access form) matches the stored email address
$_POST['email'] and $_POST['pass'] and the SHA1() version of the submitted
directly, it’s better if the function is password matches the stored password
passed these values, making the function (Figure 11.3).

more independent.
9. Check the results of the query.

7. Validate the email address and password. if (mysqli_num_rows($r) == 1) {

Serrors = array(); $row = mysqli_fetch_array ($r,

if (empty($email)) { — MYSQLI_ASS0Q);
$errors[] = 'You forgot to enter return array(true, $row);
» your email address.'; 1 else {

}else { $errors[] = 'The email address
$e = mysqli_real_escape_string — and password entered do not
— ($dbc, trim($email)); — match those on file.';

} }

if Cempty($pass)) { If the query returned one row, then the

login information was correct. The results
are then fetched into $row. The final step
in a successful login is to return two pieces

$errors[] = 'You forgot to enter
— your password."';

}else { of information back to the requesting
$p = mysqli_real_escape_ script: the value true, indicating that the
— string($dbc, trim($pass)); login was a success; and the data fetched
1 from MySQL. Using the array() function,

both the Boolean value and the $row

This validation routine is similar to that array can be returned by this function.

used in the registration page. If any prob-
lems occur, they’ll be added to the
$errors array, which will eventually be
used on the login page (see Figure 11.2).

If the query did not return one row, then
an error message is added to the array. It
will end up being displayed on the login

page (Figure 11.4).

334



Cookies and Sessions

10. Complete the conditional begun in Step

11.

8 and complete the function.
} /7 End of empty($errors) IF.
return array(false, $errors);
} // End of check_login() function.

The final step is for the function to
return a value of false, indicating that
login failed, and to return the $errors
array, which stores the reason(s) for
failure. This return statement can be
placed here—at the end of the function
instead of within a conditional—
because the function will only get to
this point if the login failed. If the login
succeeded, the return line in Step 9 will

12.

v

Save the file as login_functions.inc.
php and place it in your Web directory
(in the includes folder, along with head-
er.html, footer.html, and style.css).

This page will also use a .inc.php exten-
sion to indicate both that it’s an includ-
able file and that it contains PHP code.

Tips

The scripts in this chapter include no
debugging code (like the MySQL error or
query). If you have problems with these
scripts, apply the debugging techniques
outlined in Chapter 7, “Error Handling
and Debugging’”

ton the function tinuing ( B You can add name=value pairs to the
sto e function from continuing (a .
P : . g URL in a header() call to pass values to
function stops as soon as it executes a
the target page:
return).
$url .= '"?name=" . urlencode(value);
Complete the page.
7>
®@00 Terminal
mysqgl> SELECT wser—id, first_name FROM users WHERE =i
-> email="email®example.com' AMD pass=SHAL({'password'}; ™

| user_id | first_name |

| 1 | Larry |

1 row in set (B.17 sec)

mysql > I

Figure 11.3 The results of
w the login query if the user
submitted the proper
v| email address/password

4 combination.

Error!

The following error{s) occurred:

Flease try again.

Ernail Addrass:
Pasgwoard:

Login

- The email address and password entered do not match those on file.

Figure 11.4 If the user
entered an email address
and password, but they
don’t match the values
stored in the database,
this is the result.

335

SNOILINNZ NIDOT FHL OSNDIV



UsiNG COOKIES

Chapter 11

Using Cookies

Cookies are a way for a server to store infor-
mation on the user’s machine. This is one
way that a site can remember or track a user
over the course of a visit. Think of a cookie
as being like a name tag: you tell the server
your name and it gives you a sticker to wear.
Then it can know who you are by referring
back to that name tag.

Some people are suspicious of cookies
because they believe that cookies allow a
server to know too much about them. How-
ever, a cookie can only be used to store infor-
mation that the server is given, so it’s no less
secure than most anything else online (that
saying what it does). Unfortunately, many
people still have misconceptions about the
technology, which is a problem, as those
misconceptions can undermine the func-
tionality of your Web application.

In this section you will learn how to set a
cookie, retrieve information from a stored
cookie, alter a cookie’s settings, and then
delete a cookie.

Setting cookies

The most important thing to understand
about cookies is that they must be sent from
the server to the client prior to any other
information. Should the server attempt to
send a cookie after the Web browser has
already received HTML—even an extraneous
white space—an error message will result
and the cookie will not be sent (Figure 11.5).
This is by far the most common cookie-
related error but is easily fixed.

Testing for Cookies

To effectively program using cookies, you
need to be able to accurately test for their
presence. The best way to do so is to have
your Web browser ask what to do when
receiving a cookie. In such a case, the
browser will prompt you with the cookie
information each time PHP attempts to
send a cookie.

Different versions of different browsers
on different platforms all define their
cookie handling policies in different
places. I'll quickly run through a couple
of options for popular Web browsers.

To set this up using Internet Explorer on
Windows XP, choose Tools > Internet
Options. Then click the Privacy tab,
followed by the Advanced button under
Settings. Click “Override automatic cookie
handling” and then choose “Prompt” for
both First- and Third-party Cookies.

Using Firefox on Windows, choose Tools >
Options > Privacy. In the Cookies section,
select “ask me every time” in the “Keep
until” drop-down menu. If you are using
Firefox on Mac OS X, the steps are the
same, but you start by choosing Firefox >
Preferences.

Unfortunately, Safari on Mac OS X does
not have a cookie prompting option, but
it will allow you to view existing cookies,
which is still a useful debugging tool. This
option can be found under the Security
pane of Safari’s Preferences panel.

Warning: Cannot modify header information - headers already sent by {output started at fApplications/Abyss YWeb
Semerhtdocsiincludes/header html:d) in fApplications/Abyss Web Server‘htdocstheader.php on line 8

Figure 11.5 The headers already sent... error message is all too common when creating cookies. Pay attention to
what the error message says in order to find and fix the problem.

336




Cookies and Sessions

E

Confirm setting cookie

" The site 192.168.0.102;8000 wants to set a cookie.
u [[] Use my choice for all cookies from this site

[Hlde DEL&“S] [ Allow l [Allow Far §ess\on| [ Deny l
Mame: name
Content: Micole
Host: 192.168.0,102
Path: |
Send For: Any bype of connection
Expires: at end of session

Figure 11.6 If the browser is set to ask for
permission when receiving cookies, you’ll
see a message like this when a site attempts
to send one (this is Firefox’s version of the
prompt).

Script 11.3 The login.php script creates two cookies
upon a successful login.

806 = Script

1 <?php # Script 11.3 - login.php
2

3 // This page processes the login form
submission.

4 // Upon successful login, the user is
redirected.

5 // Two included files are necessary.

6 // Send NOTHING to the Web browser prior
to the setcookie() lines!

8 // Check if the form has been submitted:
9 if (isset($_POST['submitted'])) {
10

11 // For processing the login:

12 require_once ('includes/login_functions.

inc.php');
13
14 // Need the database connection:
15 require_once ('../mysqli_connect.php');
16

17 // Check the login:

18 list ($check, $data) = check_login($dbc,

$_POST['email'], $_POST['pass']);
19

(script continues on next page)

Cookies are sent via the setcookie()
function:

setcookie (name, value);
setcookie ('name', 'Nicole');
The second line of code will send a cookie to

the browser with a name of name and a
value of Nicole (Figure 11.6).

You can continue to send more cookies to
the browser with subsequent uses of the
setcookie() function:

setcookie ('ID', 263);
setcookie ('email', 'email@example.

»com');

As when using any variable in PHP, when
naming your cookies, do not use white
spaces or punctuation, but do pay attention
to the exact case used.

To send a cookie:

1. Create a new PHP document in your text
editor (Seript 11.3).
<?php # Script 11.3 - login.php

For this example, let’s make a login.php
script that works in conjunction with the
scripts from Chapter 8. This script will
also require the two files created at the
beginning of the chapter.

2. Validate the form.
if (isset($_POST['submitted'])) {

require_once ('includes/login_

— functions.inc.php');
require_once ('../mysqli_

— connect.php');

list ($check, $data) = check_
» login($dbc, $_POST['email'],
»$_POST['pass']);

continues on next page

337

S3INI00) ONIS(



UsiNG COOKIES

Chapter 11

This script will do two things: handle Script 11.3 continued
the form submission and display the 8Oe 2 Seript
form. This conditional checks for the 20 if ($check) { // OK!
submission. 21
Within the conditional, the script must )
X . . b 22 // Set the cookies:
include both login_functions.inc.php
23 setcookie ('user_id', $data

and mysqli_connect.php (which was cre-
ated in Chapter 8 and should still be in
the same location relative to this script).

After including both files, the check_

['user_id']);

24 setcookie ('first_name', $data
['first_name']);

. ; . 2
login() function can be called. It’s >
passed the database connection (which 26 // Redirect:
comes from mysqli_connect.php), along 27 $url = absolute_url ('loggedin.php');
with the email address and the password 28 header("Location: $url"):
(both of which come from the form).
. . 29 exit(); // Quit the script.
This function returns an array of two ele-
ments: the Boolean value and another 30
array (of user data or errors). To assign 31} else { // Unsuccessfull
those returned values to variables, use 32
the list() function. T.he first value 33 // Assign $data to $errors for error
returned by the function (the Boolean) reporting
will be assigned tp $check. The second " // in the Togin_page.inc.php file.
value returned (either the $row or
$errors array) will be assigned to $data. 35 Serrors = $data;
36
3. If the user entered the correct informa-
tion, log them in. S
38

if ($check) {

setcookie ('user_id', $data
— ['user_id']);

39 mysqli_close($dbc); // Close the database
connection.

40
setcookie ('first_name', $data

. 41 '} // End of the main submit conditional.
— ['first_name']);

42
The $check variable indicates the

. Lo 43 // Create th :
success of the login attempt. If it’s true, reae the page

then $data contains the user’s ID and 44 include ("includes/login_page.inc.php');
first name. These two values can be used 45 7>
in cookies.

338



Cookies and Sessions

4.

Redirect the user to another page.

$url = absolute_url ('loggedin.php');
header("Location: $url");

exit();

Using the steps outlined earlier in the
chapter, the redirection URL is first
dynamically generated and returned
by the absolute_url() function. The
specific page to be redirected to is
loggedin.php. The absolute URL is then
used in the header() function and the

script’s execution is terminated with
exit().

Complete the $check conditional (started
in Step 3) and then close the database
connection.

} else {
$errors = $data;

3
mysqli_close($dbc);

If $check has a false value, then the $data
variable is storing the errors generated
within the check_login() function. If so,
they should be assigned to the $errors
variable, because that’s what the code in
the script that displays the login page—
login_page.inc.php—is expecting.

Complete the main submit conditional

and include the login page.
}

include
("includes/login_page.inc.php');

7>

This login.php script primarily
validates the login form by calling
the check_login() function. The
login_page.inc.php file contains the
login page itself, so it just needs to be
included.

. Save the file as login.php, place it in

your Web directory (in the same folder
as the files from Chapter 8), and load
this page in your Web browser (see
Figure 11.2).

v Tips

Cookies are limited to about 4 KB of
total data, and each Web browser can
remember a limited number of cookies
from any one site. This limit is 50 cookies
for most of the current Web browsers
(but if you're sending out 50 different
cookies, you may want to rethink how
you do things).

The setcookie() function is one of the
few functions in PHP that could have dif-
ferent results in different browsers, since
each browser treats cookies in its own
way. Be sure to test your Web sites in
multiple browsers on different platforms
to ensure consistency.

If the first two included files sends any-
thing to the Web browser or even has
blank lines or spaces after the closing
PHP tag, you'll see a headers already sent
error. If you see such an error, go to the
document and line number referenced in
the error (after output started at) and fix
the problem.

339

S3INI00) ONIS(



UsiNG COOKIES

Chapter 11

Accessing cookies

To retrieve a value from a cookie, you only
need to refer to the $_COOKIE superglobal,
using the appropriate cookie name as the key
(as you would with any array). For example,
to retrieve the value of the cookie established
with the line

setcookie ('username', 'Trout');
you would refer to $_COOKIE['username"].

In the following example, the cookies set by
the login.php script will be accessed in two
ways. First a check will be made that the
user is logged in (otherwise, they shouldn't
be accessing this page). Second, the user will
be greeted by their first name, which was
stored in a cookie.

To access a cookie:

1. Create a new PHP document in your text
editor (Seript 11.4).

<?php # Script 11.4 - loggedin.php
The user will be redirected to this page
after successfully logging in. It will print
a user-specific greeting.

2. Check for the presence of a cookie.
if (lisset($_COOKIE['user_id'])) {

Since a user shouldn’t be able to access
this page unless they are logged in, check
for the cookie that should have been set
(in login.php).

3. Redirect the user if they are not logged in.

require_once ('includes/login_
— functions.inc.php');

$url = absolute_url();
header("Location: $url");

exit(Q);

Script 11.4 The loggedin.php script prints a greeting
to a user based upon a stored cookie.

eoce = Script

1 <?php # Script 11.4 - loggedin.php
2

3 // The user is redirected here from
login.php.

5 // If no cookie is present, redirect the
user:

6 if (lisset($_COOKIE['user_id']1)) {

8 // Need the functions to create an
absolute URL:

9 require_once ('includes/login_
functions.inc.php');

10 $url = absolute_url(Q);

11 header("Location: $url™);
12 exit(); // Quit the script.
13

14 3

15

16 // Set the page title and include the
HTML header:

17 $page_title = 'Logged In!';

18 include ('includes/header.html');
19

20 // Print a customized message:

21  echo "<hl>Logged In!</hl>

22  <p>You are now logged in, {$_COOKIE
['first_name']}!</p>

23 <p><a href=\"logout.php\">Logout</a></p>";
24

25 include ('includes/footer.html');

26 7>

340



Cookies and Sessions

3 Lagged Inl - Macrilla Firglox

Ble 0 e by fooimats [k pep

Your Website

Logged In!

Figure 11.7 If you used the correct email address and
password, you’ll be redirected here after logging in.

Confirm setting cookie

\ The site 192.168.0.102:8000 wants to set a cookie.

[ Use my choics For all conkies Fram this sits

[HideDe;aMs] I_ Allaw _I [AIIow Fur;essmn] [ Deny ]

Mame: user_id
Content: 1
Host: 192.168.0.102
Path: [
Send For: Any type of connection
Exzpires: at end of session

Figure 11.8 The user_id cookie with a
value of 1.

Confirm setting cookie

The site 192.168.0.102:3000 wants to set a second cookie.

A

[ Use my choice For all cankies Fram this site’

[HideDe;aMs] I_ Allow _I [Allow Furiessmn] [ Deny ]

Mame: First_name
Content: Larry
Host: 192.168.0.102
Path: |
Send For: Any type of connection
Expires: at end of session

Figure 11.9 The first_name cookie with a
value of Larry (yours might be different).

v Tips

B A cookie is not accessible until the
setting page (e.g., login.php) has been
reloaded or another page has been
accessed (in other words, you cannot set
and access a cookie in the same page).

B Ifusers decline a cookie or have their
Web browser set not to accept them,
they will automatically be redirected to
the home page in this example, even if
they successfully logged in. For this rea-
son you may want to let the user know
that cookies are required.

If the user is not logged in, they will be
automatically redirected to the main
page. This is a simple way to limit access
to content.

. Include the page header.

$page_title = 'Logged In!';
include ('includes/header.html');

. Welcome the user, using the cookie.

echo "<hl>Logged In!</hl>

<p>You are now logged in, {$_COOKIE
» ["first_name']}!</p>

<p><a href=\"logout.php\">
— Logout</a></p>";

To greet the user by name, refer to the
$_COOKIE['first_name'] variable
(enclosed within curly braces to avoid
parse errors). A link to the logout page
(to be written later in the chapter) is also
printed.

. Complete the HTML page.

include ('includes/footer.html');

7>

. Save the file as loggedin.php, place it in

your Web directory (in the same folder
as login.php), and test it in your Web
browser by logging in through login.php
(Figure 11.7).

Since these examples use the same data-
base as those in Chapter 8, you should
be able to log in using the registered
username and password submitted at
that time.

To see the cookies being set (Figures
11.8 and 11.9), change the cookie set-
tings for your browser and test again.

341

S3INI00) ONIS(



UsiNG COOKIES

Chapter 11

Setting cookie parameters

Although passing just the name and value
arguments to the setcookie() function will
suffice, you ought to be aware of the other
arguments available. The function can take
up to five more parameters, each of which
will alter the definition of the cookie.

setcookie (name, value, expiration,
» path, host, secure, httponly);

The expiration argument is used to set a
definitive length of time for a cookie to
exist, specified in seconds since the epoch
(the epoch is midnight on January 1, 1970).
If it is not set or if it’s set to a value of 0, the
cookie will continue to be functional until
the user closes their browser. These cookies
are said to last for the browser session (also
indicated in Figures 11.8 and 11.9).

To set a specific expiration time, add a
number of minutes or hours to the current
moment, retrieved using the time() func-
tion. The following line will set the expira-
tion time of the cookie to be 30 minutes
(60 seconds times 30 minutes) from the
current moment:

setcookie (name, value, time()+1800);

The path and host arguments are used to
limit a cookie to a specific folder within a
Web site (the path) or to a specific host
(www . example.com or 192.168.0.1). For exam-
ple, you could restrict a cookie to exist only
while a user is within the admin folder of a
domain (and the admin folder’s subfolders):

setcookie (name, value, expire,
— '/admin/"');

Setting the path to / will make the cookie
visible within an entire domain (Web site).
Setting the domain to .example.com

will make the cookie visible within an
entire domain and every subdomain
(www.example.com, admin.example.com,
pages.example.com, etc.).

The secure value dictates that a cookie
should only be sent over a secure HT'TPS
connection. A I indicates that a secure
connection must be used, and a 0 says
that a standard connection is fine.

setcookie (name, value, expire, path,
» host, 1);

If your site is using a secure connection,
restricting cookies to HT'TPS will be much
more secure than not doing so.

Finally, added in PHP 5.2 is the httponly
argument. A Boolean value is used to make
the cookie only accessible through HTTP
(and HTTPS). Enforcing this restriction will
make the cookie more secure (preventing
some hack attempts) but is not supported
by all browsers at the time of this writing,

setcookie (name, value, expire, path,
— host, secure, TRUE);

As with all functions that take arguments,
you must pass the setcookie() values in
order. To skip any parameter, use NULL, 0, or
an empty string (don't use FALSE). The expi-
ration and secure values are both integers
and are therefore not quoted.

To demonstrate this information, let’s add
an expiration setting to the login cookies so
that they last for only one hour.

342



Cookies and Sessions

Script 11.5 The login.php script now uses every
argument the setcookie() function can take.

8oeé = Script

1 <?php # Script 11.5 - login.php #2

2

3 if (isset($_POST['submitted'])) {

4

5 require_once ('includes/login_
functions.inc.php');

6 require_once ('../mysqli_connect.php');
7 list ($check, $data) = check_login($dbc,
$_POST['email'], $_POST['pass']);

8

9 if ($check) { // OK!

10

11 // Set the cookies:

12 setcookie ('user_id', $data['user_id'],
time()+3600, '/', '', 0, 0);

13 setcookie ('first_name', $data['first_
name'], time()+3600, '/', '', 0, 0);

14

15 // Redirect:

16 $url = absolute_url ('loggedin.php');

17 header("Location: $url");

18 exit();

19

20 } else { // Unsuccessful!

21 $errors = $data;

22 3

23

24 mysqli_close($dbc);

25

26 } // End of the main submit conditional.

27

28 include ('includes/login_page.inc.php');

29 7>

To set a cookie’s parameters:

1. Open login.php in your text editor (refer
to Script 11.3).

2. Change the two setcookie() lines to
include an expiration date that’s 60 min-
utes away (Script 11.5):

setcookie ('user_id', $data['user_
—1id'], time()+3600, '/', '', 0, 0);

setcookie ('first_name', $data
— ['first_name'], time()+3600, '/',
-'', 0, 0);

With the expiration date set to time() +
3600 (60 minutes times 60 seconds), the
cookie will continue to exist for an hour
after it is set. While making this change,
every other parameter is explicitly
addressed.

For the final parameter, which accepts a
Boolean value, you can also use 0 to rep-
resent false (PHP will handle the con-
version for you). Doing so is a good idea,
as using false in any of the cookie argu-
ments can cause problems.

continues on next page

343

S3INI00) ONIS(



UsiNG COOKIES

Chapter 11

3. Save the script, place it in your Web Confirm setting conkie
directory, and test it in your ‘Web . The site 152.168.0.102:3000 wants ko modify an existing cookle.
b byl gg g . (F.g 11 10) (2N [ wse my chokce For al cokies from s sce
rowser by logging in (rigure . .

[ Hide Detait | [__aow ] [alowfor session | [ peny |
v Tips i
Host: 192,165.0.102
B Some browsers have difficulties with L I
cookies that do not list every argument. Expires: Monday, October 08, 2007 9:55:53 PM
Explicitly stating every parameter—even Figure 11.10 Changes to the setcookie()
as an empty string—will achieve more parameters, like an expiration date and time,

will be reflected in the cookie sent to the Web
browser (compare with Figure 11.9).

reliable results across all browsers.

B Here are some general guidelines for
cookie expirations: If the cookie should
last as long as the session, do not set an
expiration time; if the cookie should con-
tinue to exist after the user has closed
and reopened his or her browser, set an
expiration time weeks or months ahead;
and if the cookie can constitute a securi-
ty risk, set an expiration time of an hour
or fraction thereof so that the cookie
does not continue to exist too long after
a user has left his or her browser.

B For security purposes, you could set a
five- or ten-minute expiration time on a
cookie and have the cookie resent with
every new page the user visits (assuming
that the cookie exists). This way, the
cookie will continue to persist as long as
the user is active but will automatically
die five or ten minutes after the user’s
last action.

B E-commerce and other privacy-related
Web applications should use an SSL
(Secure Sockets Layer) connection for all
transactions, including the cookie.

B Be careful with cookies created by scripts
within a directory. If the path isn't speci-
fied, then that cookie will only be avail-
able to other scripts within that same
directory.

344



Cookies and Sessions

Script 11.6 The logout. php script deletes the
previously established cookies.

8oeé = Script

1 <?php # Script 11.6 - logout.php
2

3 // This page lets the user logout.

5 // If no cookie is present, redirect the
user:

6 if (lisset($_COOKIE['user_id'])) {

7

8 // Need the functions to create an
absolute URL:

9 require_once ('includes/login_

functions.inc.php');
10 $url = absolute_url(Q);
11 header("Location: $url™);

12 exit(); // Quit the script.

13

14 } else { // Delete the cookies.

15 setcookie ('user_id', '', time()-3600,
'/' bl " I 0) 0);

16 setcookie ('first_name', '', time()-
3600, '/', '', 0, 0);

17 3

18

19 // Set the page title and include the HTML
header:

20  $page_title = 'Logged Out!';

21  include ('includes/header.html');
22

23 // Print a customized message:

24  echo "<hl>Logged Out!</hl>

25 <p>You are now logged out,
{$_COOKIE['first_name']}!</p>";

26
27 include ('includes/footer.html');
28 7>

Deleting cookies

The final thing to understand about using
cookies is how to delete one. While a cookie
will automatically expire when the user’s
browser is closed or when the expiration
date/time is met, sometimes you'll want to
manually delete the cookie instead. For
example, in Web sites that have login capa-
bilities, you will want to delete any cookies
when the user logs out.

Although the setcookie() function can take
up to seven arguments, only one is actually
required—the cookie name. If you send a
cookie that consists of a name without a
value, it will have the same effect as deleting
the existing cookie of the same name. For
example, to create the cookie first_name,
you use this line:

setcookie('first_name', 'Tyler');

To delete the first_name cookie, you would
code:

setcookie('first_name');

As an added precaution, you can also set an
expiration date that’s in the past.

setcookie('first_name', , time

— ()-3600);

To demonstrate all of this, let’s add a logout
capability to the site. The link to the logout
page appears on loggedin.php. As an added
feature, the header file will be altered so
that a Logout link appears when the user is
logged in and a Login link appears when the
user is logged out.

To delete a cookie:

1. Create a new PHP document in your text
editor or IDE (Script 11.6).

<?php # Script 11.6 - logout.php

continues on next page

345

S3INI00) ONIS(



UsiNG COOKIES

Chapter 11

2. Check for the existence of a user_id
cookie; if it is not present, redirect the
user.

if (!isset($_COOKIE['user_id'])) {

require_once ('includes/login_
— functions.inc.php');

$url = absolute_url();
header("Location: $url");
exit();

As with loggedin.php, if the user is not
already logged in, this page should redi-
rect the user to the home page. There’s
no point in trying to log out a user that
isn't logged in!

3. Delete the cookies, if they exist.
} else {

vy

setcookie ('first_name', ,

— time()-3600, '/', '', 0, 0);
setcookie ('user_id', '',
- time()-3600, '/', '', 0, 0);

}

If the user is logged in, these two cookies

will effectively delete the existing ones.
Except for the value and the expiration,
the other arguments should have the

same values as they do when the cookies

were created.

4. Make the remainder of the PHP page.

$page_title = 'Logged Out!';
include ('includes/header.html');
echo "<hl>Logged Out!</h1>

<p>You are now logged out, {$_
— COOKIE['first_name']}!</p>";

include ('includes/footer.html');
7>

The page itself is also much like the
loggedin.php page. Although it may
seem odd that you can still refer to the
first_name cookie (that you just deleted
in this script), it makes perfect sense
considering the process:

A) This page is requested by the client.

B) The server reads the available cookies
from the client’s browser.

C) The page is run and does its thing
(including sending new cookies that
delete the existing ones).

So, in short, the original first_name

cookie data is available to this script

when it first runs. The set of cookies
sent by this page (the delete cookies)
aren't available to this page, so the
original values are still usable.

Save the file as logout.php and place it in
your Web directory (in the same folder as
login.php).

346



Cookies and Sessions

Script 11.7 The header . html file now displays either a
login or a logout link, depending upon the user’s
current status.

e0ce

= Script

1

10
11
12
13
14

15

16

17

18

19

20

21
22

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.org/
1999/xhtml">

<head">

<title><?php echo $page_title;
7></title>

<link rel="stylesheet" href="includes/
style.css" type="text/css" media=
"screen" />

<meta http-equiv="content-type"
content="text/html; charset=utf-8" />

</head>

<body>
<div id="header">
<hl>Your Website</hl>
<h2>catchy slogan...</h2>
</div>
<div id="navigation">
<ul>

<li><a href="1index.php">Home
Page</a></1i>

<li><a href="register.php">
Register</a></1i>

<li><a href="view_users.php">View
Users</a></1i>

<li><a href="password.php">Change
Password</a></11i>

<li><?php // Create a login/logout
link:

if ( (isset($_COOKIE['user_id'])) &&
(!strpos($_SERVER['PHP_SELF'],
"logout.php')) ) {

echo "<a href="logout.php">Logout</a>";
} else {

echo '<a href="login.php">Login</a>";

(script continues)

To
1.

2.

create the logout link:

Open header . html (refer to Script 8.1)
in your text editor or IDE.

Change the fifth and final link to
(Script 11.7)

<li><?php
if ( (isset($_COOKIE['user_id'])) &&
(!'strpos($_SERVER['PHP_SELF'],
'logout.php')) ) {

echo '<a
href="1logout.php">Logout</a>";

} else {

echo '<a
href="1login.php">Login</a>";

}

7></11>

Instead of having a permanent login link
in the navigation area, it should display a
Logout link if the user is logged in or a
Login link if the user is not. The preced-
ing conditional will accomplish just that,
depending upon the presence of a cookie.

continues on next page

Script 11.7 continued

e

e =) Seript

24
25
26
27
28

29

}

7></11i>
</ul>
</div>

<div id="content"><!-- Start of the
page-specific content. -->

<!-- Script 11.7 - header.html -->

347

S3INI00) ONIS(



UsiNG COOKIES

Chapter 11

Because the logout.php script would
ordinarily display a logout link (because
the cookie exists when the page is first
being viewed), the conditional has to
check that the current page is not the
logout . php script. The strpos() func-
tion, which checks if one string is found
within another string, is an easy way to
accomplish this.

3. Save the file, place it in your Web direc-
tory (within the includes folder), and test
the login/logout process in your Web
browser (Figures 11.11, 11.12, and
11.13).

v Tips

B To see the result of the setcookie() calls
in the logout.php script, turn on cookie
prompting in your browser (Figure 11.14).

B Due to a bug in how Internet Explorer on
Windows handles cookies, you may need
to set the host parameter to false (with-
out quotes) in order to get the logout
process to work when developing on your
own computer (i.e., through localhost).

B When deleting a cookie, you should
always use the same parameters that
were used to set the cookie. If you set
the host and path in the creation cookie,
use them again in the deletion cookie.

B To hammer the point home, remember
that the deletion of a cookie does not take
effect until the page has been reloaded or
another page has been accessed. In other
words, the cookie will still be available to
a page after that page has deleted it.

ano Welcome o tha el

Your Website

Content Header

Figure 11.11 The home page with a Login link.

ann Logged it =

Your Website

Logged In!

Figure 11.12 After the user logs in, the page now has
a Logout link.

CXaka) Toaged o

Your Website

Logged Out!

Figure 11.13 The result after logging out.

Confirm setting cookie

I The site 192.168.0.102:8000 wants to modify an existing cookie.

[] Use my cheice for all cookies from this sits

[ Hie Details | [_alow ] [llowforgession | [ peny |

Name: Ffirst_name
Conkent: deleted
Host: 192.168.0.102
Path: |
Send For: Any bype of conneckion
Expires: Sunday, October 08, 2006 9:09:34 PM

Figure 11.14 This is how the deletion cookie
appears in a Firefox prompt.

348



Cookies and Sessions

Using Sessions

Another method of making data available to

multiple pages of a Web site is to use sessions.

The premise of a session is that data is stored
on the server, not in the Web browser, and a
session identifier is used to locate a particu-
lar user’s record (the session data). This
session identifier is normally stored in the
user's Web browser via a cookie, but the sen-
sitive data itself—like the user’s ID, name,
and so on—always remains on the server.

The question may arise: why use sessions at
all when cookies work just fine? First of all,
sessions are likely more secure in that all

Sessions vs. Cookies

This chapter has examples accomplishing
the same tasks—logging in and logging
out—using both cookies and sessions.
Obviously, both are easy to use in PHP,
but the true question is when to use one
or the other.

Sessions have the following advantages
over cookies:

¢ They are generally more secure
(because the data is being retained
on the server).

¢ They allow for more data to be stored.
¢ They can be used without cookies.

Whereas cookies have the following
advantages over sessions:

¢ They are easier to program.
¢ They require less of the server.

In general, to store and retrieve just a
couple of small pieces of information,
use cookies. For most of your Web
applications, though, you'll use sessions.

of the recorded information is stored on the
server and not continually sent back and
forth between the server and the client.
Second, you can store more data in a session.
Third, some users reject cookies or turn them
off completely. Sessions, while designed to
work with a cookie, can function without
them, too.

To demonstrate sessions—and to compare
them with cookies—let’s rewrite the previ-
ous set of scripts.

Setting session variables

The most important rule with respect to
sessions is that each page that will use them
must begin by calling the session_start()
function. This function tells PHP to either
begin a new session or access an existing
one. This function must be called before
anything is sent to the Web browser!

The first time this function is used,
session_start() will attempt to send a
cookie with a name of PHPSESSID (the
session name) and a value of something
like a61f8670baa8e90a30c878df89a2074b
(32 hexadecimal letters, the session ID).
Because of this attempt to send a cookie,
session_start() must be called before
any data is sent to the Web browser, as is
the case when using the setcookie() and
header() functions.

Once the session has been started, values
can be registered to the session using the
normal array syntax:

$_SESSION['key'] = value;
$_SESSION['name'] = 'Roxanne';
§_SESSION['id'] = 48;

Let’s update the login.php script with this
in mind.

continues on next page

349

SNOISS3S 9NISN



USING SESSIONS

Chapter 11

To begin a session:

1.

Open login.php (refer to Script 11.5) in
your text editor or IDE.

Replace the setcookie() lines (12-14)
with these lines (Script 11.8):

session_start();

$_SESSION['user_id'] = $data['user_
o id'];
$_SESSION['first_name'] = $data

» ['first_name'];
The first step is to begin the session.
Since there are no echo() statements,
inclusions of HTML files, or even blank
spaces prior to this point in the script, it
will be safe to use session_start() now
(although it could be placed at the top of
the script as well). Then, two key-value
pairs are added to the $_SESSION super-
global array to register the userss first
name and user ID to the session.

Save the page as login.php, place it in
your Web directory, and test it in your
Web browser (Figure 11.15).

Although 1loggedin.php and the header
and script will need to be rewritten, you
can still test the login script and see the
resulting cookie (Figure 11.16). The
loggedin.php page should redirect you
back to the home page, though, as it’s
still checking for the presence of a
$_COOKIE variable.

Script 11.8 The login.php script now uses sessions
instead of cookies.

eoce = Script

1 <?php # Script 11.8 - login.php #3

2

3 if (isset($_POST['submitted'])) {

4

5 require_once ('includes/login_
functions.inc.php');

6 require_once ('../mysqli_connect.php');

7 list ($check, $data) = check_login($dbc,
$_POST['email'], $_POST['pass']);

8

9 if ($check) { // OK!

10

11 // Set the session data:.

12 session_start();

13 $_SESSION['user_id'] = $data

['user_id'];
14 $_SESSION['first_name'] = $data
['first_name'];

15

16 // Redirect:

17 $url = absolute_url ('loggedin.php');

18 header("Location: $url");

19 exit(Q);

20

21 } else { // Unsuccessful!

22 $errors = $data;

23 }

24

25 mysqli_close($dbc);

26

27 '} // End of the main submit conditional.

28

29 include ('includes/login_page.inc.php');

30 7>

350



Cookies and Sessions

3 Login - Mazills Firefo
th LB e g Geewss Dk oo

Figure 11.15 The login form remains unchanged to
the end user, but the underlying functionality now
uses sessions.

Confinm setting cookie

Y The site 192.168.0.102:3000 wants to set a cookie.

[ Use my choics For all cookies Fram this site

[Fide petals | [ alaw | [ allow for gession | [ peny |

Name: PHPSESZID
Content: plokdskbneod5tSliumzbbmeed
Host: 192.168.0.102
Path: |
Send For: Any type of connection
Expires: at end of session

Figure 11.16 This cookie, created by
PHP’s session_start() function, stores
the session ID.

v Tips

B Because sessions will normally send and
read cookies, you should always try to
begin them as early in the script as possi-
ble. Doing so will help you avoid the
problem of attempting to send a cookie
after the headers (HTML or white space)
have already been sent.

B If you want, you can set session.auto_
start in the php.ini file to I, making it
unnecessary to use session_start() on
each page. This does put a greater toll on
the server and, for that reason, shouldn't
be used without some consideration of
the circumstances.

B You can store arrays in sessions (making
$_SESSION a multidimensional array), just
as you can store strings or numbers.

Accessing session variables

Once a session has been started and vari-
ables have been registered to it, you can cre-
ate other scripts that will access those vari-
ables. To do so, each script must first enable
sessions, again using session_start().

This function will give the current script
access to the previously started session (if it
can read the PHPSESSID value stored in the
cookie) or create a new session if it cannot.
Understand that if the current session ID
cannot be found and a new session ID is
generated, none of the data stored under the
old session ID will be available. I mention
this here and now because if you're having
problems with sessions, checking the session
ID value to see if it changes from one page
to the next is the first debugging step.

Assuming that there was no problem access-
ing the current session, to then refer to a
session variable, use $_SESSION['var'], as
you would refer to any other array.

351

SNOISS3S DNISN



USING SESSIONS

Chapter 11

To access session variables: Script 11.9 The loggedin. php script is updated so that
it refers to $_SESSION and not $_COOKIE (changes are
1. Open loggedin.php (refer to Script 11.4) required on two lines).
in your text editor or IDE. 80e 2 Script

. 1 ?php # Script 11.9 - 1 din.php #2
2. Add a call to the session_start() <php # Scrip oggedin.php

function (Script 11.9). 2

session_start(); 3 {gg{:épt;;e'zr is redirected here from
Every PHP script that either sets or
accesses session variables must use the
session_start() function. This line must

4
5 session_start(); // Start the session.
be called before the header.html file is 6

included and before anything is sent to 7 7/ If no session value is present,
the Web browser. redirect the user:

3. Replace the references to $_COOKIE 8  if (!isset($_SESSION['user_id'])) {
with $_SESSION (lines 6 and 22 of the 9 require_once ('includes/login_

original file). functions.inc.php');

10 1 = absolut 10;
if (lisset($_SESSION['user_id'])) { Surl = absolute_urlQ)

11 header("Location: $url™);

and

12 exit(Q);
echo "<hl>Logged In!</hl> 53
<p>You are now logged in, {$_SESSION 1

» ['first_name']}!</p>
15 $page_title = 'Logged In!';
<p><a href=\"logout.php\">Logout

S </as</p>"; 16  include ('includes/header.html');

Switching a script from cookies to ses- 17
sions requires only that you change uses 18 /7 Print a customized message:
of $_COOKIE to $_SESSION (assuming that 19  echo "<hi>Logged In!</hi>

the same names were used). 20 <p>You are now logged in, {$_SESSION

4. Save the file as loggedin.php, place it in [*first_name']}!</p>

your Web directory, and test it in your 21 <p><a href=\"logout.php\">Logout</a></p>";
browser (Figure 11.17). 22
23 include ('includes/footer.html');
24 7>
CIaYG) Togged ] =
Your Website
Logged In!

Figure 11.17 After logging in, the user is redirected to
loggedin.php, which will welcome the user by name
using the stored session value.

352



Cookies and Sessions

Script 11.10 The header . html file now also references
$_SESSION instead of $_COOKIE

ece

= Script

1

7

©

10
11
12
13
14
15

16

17

18

19

20

21
22

24

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Strict//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.org/
1999/xhtml">

<head">

<title><?php echo $page_title;
?></title>

<link rel="stylesheet" href="includes/
style.css" type="text/css" media=
"screen" />

<meta http-equiv="content-type"
content="text/html; charset=utf-8" />

</head>

<body>
<div id="header">
<hl>Your Website</hl>
<h2>catchy slogan...</h2>
</div>
<div id="navigation">
<ul>

<li><a href="index.php">Home Page
</a></1i>

<li><a href="register.php">
Register</a></1i>

<li><a href="view_users.php">View
Users</a></1i>

<li><a href="password.php">Change
Password</a></11i>

<li><?php // Create a login/logout
link:

if ( (isset($_SESSION['user_id'])) &&
(!strpos($_SERVER['PHP_SELF'],
"logout.php')) ) {

echo '<a href="logout.php">Logout</a>";
} else {

echo '<a href="login.php">Login</a>";

(script continues)

5.

Replace the reference to $_COOKIE with
$_SESSION in header.html (from Script
11.7 to Seript 11.10).

if ( (isset($_SESSION['user_id']))

» && (!strpos($_SERVER['PHP_SELF'],

» "logout.php')) ) {
For the Login/Logout links to function
properly (notice the incorrect link in
Figure 11.17), the reference to the cookie
variable within the header file must be
switched over to sessions. The header file
does not need to call the session_start()
function, as it'll be included by pages
that do.

Save the header file, place it in your Web
directory (in the includes folder), and
test it in your browser (Figure 11.18).

continues on next page

ans Logged ! [=)

Logged In!

Your Website

Figure 11.18 With the header file altered for sessions,

the

proper Login/Logout links will be displayed

(compare with Figure 11.17).

Script 11.10 continued

8086 =) Script

25 7></1i>

26 </ul>

27 </div>

28 <div id="content"><!-- Start of the
page-specific content. -->

29 <!-- Script 11.10 - header.html -->

353

SNOISS3S 9NISN



USING SESSIONS

Chapter 11

v Tips

W For the Login/Logout links to work
on the other pages (register.php,
index.php, etc.), you'll need to add
the session_start() command to
each of those.

B As areminder of what I already said, if
you have an application where the ses-
sion data does not seem to be accessible
from one page to the next, it could be
because a new session is being created
on each page. To check for this, compare
the session ID (the last few characters
of the value will suffice) to see if it is the
same. You can see the session’s ID by
viewing the session cookie as it is sent or
by invoking the session_id() function:

echo session_id();

B Session variables are available as soon
as you've established them. So, unlike
when using cookies, you can assign
a value to $_SESSION['var'] and then
refer to $_SESSION[ 'var'] later in that
same script.

Garbage Collection

Garbage collection with respect to
sessions is the process of deleting the
session files (where the actual data is
stored). Creating a logout system that
destroys a session is ideal, but there's
no guarantee all users will formally
log out as they should. For this reason,
PHP includes a cleanup process.

Whenever the session_start() function
is called, PHP’s garbage collection kicks
in, checking the last modification date
of each session (a session is modified
whenever variables are set or retrieved).
Two settings dictate garbage collection:
session.gc_maxlifetime and session.gc_
probability. The first states after how
many seconds of inactivity a session is
considered idle and will therefore be
deleted. The second setting determines
the probability that garbage collection

is performed, on a scale of 1 to 100.
With the default settings, each call to
session_start() has a 1 percent chance
of invoking garbage collection. If PHP
does start the cleanup, any sessions

that have not been used in more than
1,440 seconds will be deleted.

You can change these settings using the
ini_set() function, although be careful
in doing so. Too frequent or too probable
garbage collection can bog down the
server and inadvertently end the sessions
of slower users.

354



Cookies and Sessions

Script 11.11 Destroying a session, as you would in a
logout page, requires special syntax to delete the
session cookie and the session data on the server, as
well as to clear out the $_SESSION array.

806 = Script

1 <?php # Script 11.11 - logout.php #2

2 // This page lets the user logout.

3

4 sess@on_star‘t(); // Access the existing
session.

5

6 // If no session variable exists, redirect
the user:

7 if (lisset($_SESSION['user_id'])) {

9 require_once ('includes/login_functions.
inc.php');

10 $url = absolute_url();
11 header("Location: $url™);

12 exit();

13

14 } else { // Cancel the session.

15

16 $_SESSION = array(); // Clear the

variables.

17 session_destroy(); // Destroy the
session itself.

18 setcookie ('PHPSESSID', '', time()-3600,
'/'y "', 0, 0); // Destroy the cookie.

19
20 3
21

22 // Set the page title and include the HTML
header:

23 $page_title = 'Logged Out!';

24 include ('includes/header.html');
25

26 // Print a customized message:

27 echo "<hl>Logged Out!</h1>

28 <p>You are now logged out!</p>";
29

30 include ('includes/footer.html');
31 7>

Deleting session variables

When using sessions, you ought to create a
method to delete the session data. In the
current example, this would be necessary
when the user logs out.

Whereas a cookie system only requires
that another cookie be sent to destroy the
existing cookie, sessions are slightly more
demanding, since there are both the cookie
on the client and the data on the server to
consider.

To delete an individual session variable, you
can use the unset() function (which works
with any variable in PHP):

unset($_SESSION['var']);

To delete every session variable, reset the
entire $_SESSION array:

$_SESSION = array();

Finally, to remove all of the session data
from the server, use session_destroy():

session_destroy();

Note that prior to using any of these meth-
ods, the page must begin with session_
start() so that the existing session is
accessed. Let’s update the logout . php script
to clean out the session data.

To delete a session:

1. Open logout.php (Script 11.6) in your
text editor or IDE.

2. Immediately after the opening PHP line,
start the session (Seript 11.11).

session_start();

Anytime you are using sessions, you
must use the session_start() function,
preferably at the very beginning of a
page. This is true even if you are deleting

a session.
continues on next page

355

SNOISS3S 9NISN



USING SESSIONS

Chapter 11

3.

Change the conditional so that it checks
for the presence of a session variable.

if (!isset($_SESSION['user_id'])) {

As with the logout.php script in the
cookie examples, if the user is not cur-
rently logged in, they will be redirected.

Replace the setcookie() lines (that
delete the cookies) with

$_SESSION = array(Q);
session_destroy();

setcookie ('PHPSESSID', '', time
- ()-3600, '/, "', 0, 0);

The first line here will reset the entire
$_SESSION variable as a new array, erasing
its existing values. The second line
removes the data from the server, and
the third sends a cookie to replace the
existing session cookie in the browser.

Remove the reference to $_COOKIE in the
message.

echo "<hl>Logged Out!</h1>

<p>You are now logged out!</p>";

Unlike when using the cookie version of
the logout. php script, you cannot refer to
the user by their first name anymore, as
all of that data has been deleted.

. Save the file as logout.php, place it in

your Web directory, and test it in your
browser (Figure 11.19).

v Tips

Never set $_SESSION equal to NULL and
never use unset($_SESSION). Either
could cause problems on some servers.

In case it’s not absolutely clear what's
going on, there exists three kinds of
information with a session: the session
identifier (which is stored in a cookie by
default), the session data (which is stored
in a text file on the server), and the
$_SESSION array (which is how a script
accesses the session data in the text file).
Just deleting the cookie doesn’t remove
the text file and vice versa. Clearing out
the $_SESSION array would erase the data
from the text file, but the file itself would
still exist, as would the cookie. The three
steps outlined in this logout script effec-
tively remove all traces of the session.

e 06

Logged Out!

=1

Your Website

Home Page Register

Logged Out!

You are now logged out!

‘ Change Password ‘ Login ‘

Copyright ® Plain and Sirmple 2007 | Designed by edg3.co.uk | Sponsored by Open Designs | Valid C85 & KHTML

Figure 11.19 The logout page (now featuring sessions).

356



Cookies and Sessions

Changing the Session Behavior

As part of PHP’s support for sessions, there are over 20 different configuration options you
can set for how PHP handles sessions. For the full list, see the PHP manual, but I'll highlight
a few of the most important ones here. Note two rules about changing the session settings:

1. All changes must be made before calling session_startQ).
2. The same changes must be made on every page that uses sessions.

Most of the settings can be set within a PHP script using the ini_set() function (discussed
in Chapter 7):

ini_set (parameter, new_setting);

For example, to require the use of a session cookie (as mentioned, sessions can work without
cookies but it’s less secure), use

ini_set ('session.use_only_cookies', 1);

Another change you can make is to the the name of the session (perhaps to use a more user-
friendly one). To do so, use the session_name() function.

session_name('YourSession');

The benefits of creating your own session name are twofold: it’s marginally more secure and
it may be better received by the end user (since the session name is the cookie name the end
user will see). The session_name() function can also be used when deleting the session cookie:

setcookie (session_name(), '', time()-3600);

Finally, theres also the session_set_cookie_params() function. It's used to tweak the settings
of the session cookie.

session_set_cookie_params(expire, path, host, secure, httponly);

Note that the expiration time of the cookie refers only to the longevity of the cookie in the
Web browser, not to how long the session data will be stored on the server.

357

SNOISS3S 9NISN



IMPROVING SESSION SECURITY

Chapter 11

Improving Session
Security

Because important information is normally
stored in a session (you should never store
sensitive data in a cookie), security becomes
more of an issue. With sessions there are
two things to pay attention to: the session
ID, which is a reference point to the session
data, and the session data itself, stored on
the server. A malicious person is far more
likely to hack into a session through the ses-
sion ID than the data on the server, so I'll
focus on that side of things here (in the tips
at the end of this section I mention two
ways to protect the session data).

The session ID is the key to the session data.
By default, PHP will store this in a cookie,
which is preferable from a security stand-
point. It is possible in PHP to use sessions
without cookies, but that leaves the applica-
tion vulnerable to session hijacking: If I can
learn another user’ session ID, I can easily
trick a server into thinking that their session
ID is my session ID. At that point I have
effectively taken over the original user’s
entire session and would have access to
their data. So storing the session ID in a
cookie makes it somewhat harder to steal.

One method of preventing hijacking is to
store some sort of user identifier in the ses-
sion, and then to repeatedly double-check
this value. The HTTP_USER_AGENT—a
combination of the browser and operating
system being used—is a likely candidate for
this purpose. This adds a layer of security in
that one person could only hijack another
user’s session if they are both running the
exact same browser and operating system.
As a demonstration of this, let's modify the
examples one last time.

Script 11.12 This final version of the login.php
script also stores an encrypted form of the user’s
HTTP_USER_AGENT (the browser and operating
system of the client) in a session.

8086 =) Script

1 <?php # Script 11.12 - login.php #4

2

3 if (isset($_POST['submitted'])) {

4

5 require_once ('includes/login_functions.
inc.php');

6 require_once ('../mysqli_connect.php');
7 list ($check, $data) = check_login($dbc,
$_POST['email'], $_POST['pass']);

8

9 if ($check) { // OK!

10

11 // Set the session data:.

12 session_start();

13 $_SESSION['user_id'] = $data['user_id'];

14 $_SESSION['first_name'] = $data
['first_name'];

15

16 // Store the HTTP_USER_AGENT:

17 $_SESSION['agent'] = md5($_SERVER
["HTTP_USER_AGENT']);

18

19 // Redirect:

20 $url = absolute_url ('loggedin.php');

21 header("Location: $url™);

22 exit();

23

24 } else { // Unsuccessful!

25 $errors = $data;

28 mysqli_close($dbc);

30} // End of the main submit conditional.

32  include ('includes/login_page.inc.php');
33 7>

358



Cookies and Sessions

Script 11.13 This loggedin.php script now confirms

that the user accessing this page has the same

HTTP_USER_AGENT as they did when they logged in.

000 2 Script

1 <?php # Script 11.13 - loggedin.php #3

2

3 // The user is redirected here from
login.php.

4

5 session_start(); // Start the session.

6

7 // If no session value is present,
redirect the user:

8 // Also validate the HTTP_USER_AGENT!

9 if (lisset($_SESSION['agent']) OR
($_SESSION['agent'] !'= md5($_SERVER
["HTTP_USER_AGENT']) ) {

10 require_once ('includes/login_

functions.inc.php');

11 $url = absolute_url();

12 header("Location: $url");

13 exit(Q);

14 3

15

16  $page_title = 'Logged In!';

17 include ('includes/header.html');

18

19 // Print a customized message:

20 echo "<hl>Logged In!</hl>

21 <p>You are now logged in,
{$_SESSION['first_name']}!</p>

22 <p><a href=\"logout.php\">Logout
</a></p>";

23

24 include ('includes/footer.html');

25 7>

To use sessions more securely:

1. Open login.php (refer to Script 11.8) in

your text editor or IDE.

. After assigning the other session variables,

also store the HTTP_USER_AGENT value
(Script 11.12).

$_SESSION['agent'] = md5($_SERVER
— ["HTTP_USER_AGENT']);

The HTTP_USER_AGENT is part of the
$_SERVER array (you may recall using it
way back in Chapter 1, “Introduction to
PHP”). It will have a value like Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.0;
NET CLR 1.1.4322).

Instead of storing this value in the ses-
sion as is, it'll be run through the md5()
function for added security. That func-
tion returns a 32-character hexadecimal
string (called a hash) based upon a value.
In theory, no two strings will have the
same md5() result.

. Save the file and place it in your Web

directory.

. Open loggedin.php (Script 11.9) in your

text editor or IDE.

. Change the !isset($_SESSION['user_

id']) conditional to (Seript 11.13)

if (!isset($_SESSION['agent']) OR
— ($_SESSION['agent'] !'= md5($_SERVER
— ["HTTP_USER_AGENT']) ) {

This conditional checks two things. First,
it sees if the $_SESSION[ 'agent'] variable
is not set (this part is just as it was before,
although agent is being used instead of
user_id). The second part of the condi-
tional checks if the md5() version of
$_SERVER["HTTP_USER_AGENT'] does not
equal the value stored in $_SESSION
['agent']. If either of these conditions
are true, the user will be redirected.

continues on next page

359

ALRIND3G NOISS3IS ONIAOUAW]



IMPROVING SESSION SECURITY

Chapter 11

6.

Save this file, place in your Web directory,
and test in your Web browser by logging in.

v Tips

For critical uses of sessions, require the
use of cookies and transmit them over a
secure connection, if at all possible. You
can even set PHP to only use cookies

by setting session.use_only_cookies to 1
(this is the default in PHP 6).

If you are using a server shared with
other domains, changing the session.
save_path from its default setting—
which is accessible by all users—will be
more secure.

The session data itself can be stored in
a database rather than a text file. This is
a more secure, but more programming-
intensive, option. I teach how to do this
in my book PHP 5 Advanced: Visual
QuickPro Guide.

The user’s IP address (the network
address from which the user is connect-
ing) is not a good unique identifier, for
two reasons. First, a user’s IP address can,
and normally does, change frequently
(ISPs dynamically assign them for short
periods of time). Second, many users
accessing a site from the same network
(like a home network or an office) could
all have the same IP address.

Preventing Session Fixation

Another specific kind of session attack is
known as session fixation. This is where
one malicious user specifies the session
ID that another user should use. This ses-
sion ID could be randomly generated or
legitimately created. In either case, the
real user will go into the site using the
fixed session ID and do whatever. Then
the malicious user can access that ses-
sion because they know what the session
ID is. You can help protect against these
types of attacks by changing the session
ID after a user logs in. The session_
regenerate_id() does just that, providing
a new session ID to refer to the current
session data. You can use this function
on sites for which security is paramount
(like e-commerce or online banking) or in
situations when itd be particularly bad if
certain users (i.e., administrators) had
their sessions manipulated.

360



SECURITY METHODS

The security of your Web applications is such an important topic that it really cannot

be overstressed. Although security-related issues have been mentioned throughout this
book, this chapter will help to fill in certain gaps and finalize other points.

The most important concept to understand about security is that it’s not a binary
state: don't think of a Web site or script as being either secure or not secure. Security
isn't a switch that you turn on and off; it’s a scale that you can move up and down.
When you program, think about what you can do to make your site more secure and
what you've done that makes it less secure. Also, keep in mind that improved security
normally comes at a cost of convenience (both to you, the programmer, and to the end
user) and performance. Increased security normally means more code, more checks,
and more required of the server. When developing Web applications, think about
these considerations and make the right decisions—for the particular situation—
from the outset.

The topics discussed here include: preventing spam; using typecasting; preventing
cross-site scripting (XSS) and SQL injection attacks; and database security. This
chapter will use several discrete examples to best demonstrate these concepts. Some
other common security issues and best practices will be mentioned in sidebars as well.

361

SAOHL3IW ALIIND3S



PREVENTING SPAM

Chapter 12

Preventing Spam

Spam is nothing short of a plague, cluttering
up the Internet and our inboxes. There are
steps you can take to avoid receiving spam
at your email accounts, but in this book the
focus is on preventing spam being sent
through your PHP scripts.

.

Chapter 10, “Web Application Development,
shows how easy it is to send email using PHP’s
mail() function. The example there, a con-
tact form, took some information from the
user (Figure 12.1) and sent it to an email
address. Although it may seem like there’s
no harm in this system, there’s actually a big
security hole. But first, some background on
what an email actually is.

Regardless of how an email is sent, how it’s
formatted, and what it looks like when it’s
received, an email contains two parts: a
header and a body. The header includes such
information as the to and from addresses, the
subject, the date, and more (Figure 12.2).
Each item in the header is on its own line,

in the format Name: value. The body of the
email is exactly what you think it is: the
body of the email.

In looking at PHP’s mail() function—
mail (to, subject, body, [headers]);

—you can see that one of the arguments
goes straight to the email’s body and the rest
appear in its header. To send spam to your
address (as in Chapter 10's example), all a
person would have to do is enter the spam
message into the comments section of the
form (Figure 12.1). That's bad enough, but to
send spam to anyone else at the same time,
all the user would have to do is add Bcec:
poorsap@example.org, followed by a some
sort of line terminator (like a newline or car-
riage return), to the email’s header. With the
example as is, this just means entering into
the from value of the contact form me@
example.com\nBcc:poorsap@example.org.

You might think that safeguarding every-
thing that goes into an email’s header would
be sufficiently safe, but as an email is just
one document, bad input in a body can
impact the header.

There are a couple of preventive techniques.
First, validate any email addresses using regu-
lar expressions. Chapter 13, “Perl-Compatible
Regular Expressions,” covers this subject.

8oe6

Contact Form Submission — Inbox (&=

©) Contact Me - Mozilla Firefox

Flle Edit View Hstory Bockmarks Tools Help

Contact Me

for
Please fill out this form to contact me

Mame: |Larry Ullman ‘

Email Address: [Lamy@DMClnsights com |

Vour book isn't just the
greatest computer hook ever
written, it's the greatest hook
ever written, period! It totally
blows "One Hundred Years of

Return-path: -ononymous@vps . lorryul lman .nets
Received: from mac.com ([10.156.63.56])
by msB42.mac.com {Sun Java System Messoging Server 6.2-8.84 (built Feb 28
2RA7YY with ESMTP id -AJPWARABHTMIRKSAEMSASZ .Mac . coliz Tor larryu | Lnan@nac . comn
Sun, 14 Oct 26087 B9:26:21 8708 (POT)
Received: from wps.larryullman.net {vps.lorryul lman.net [267.58.187.78])

by mac.com (Xserve/sntpin@Sa Mantshi 4.8% with ESMTP id [SEGPKYFAA1917

<larryul lman@mac .com=; Sun, 14 Oct 20887 @9:25:28 -6780 (PDT)

Received: {qmail 3373 irwoked by uid 48); Sun, 14 Oct 2087 12:25:19 -R480
Date: Sun, 14 Oct 2867 12:25:19 -B466

From: Larry@MCInsights.com

Subject: Contact Form Submission

To: larryul Lman@mac .com

Messoge-id: -ZPR71A14162519.3356 .gnai l@vps . larryul Iman . nets
Original-recipient: rfo822; larryul Iman@mac , com

Name: Larry ULLman

Comments; [F011tude” out of the water. Comments: Your book isn't just the grectest computer book ever
written, it's the greatest book ewver written, period! It totally
blows "One Hundred Years of Solitude" out of the water.

Figure 12.1 A simple, standard HTML
contact form.

Figure 12.2 The raw source version of the email sent by the contact
form (Figure 12.1).

362




Security Methods

Table 12.1 The presence of any of these character
strings in a form submission is a likely indicator that
someone is trying to send spam through your site. The
last four are all different ways of creating newlines.

Spam Tip-offs

CHARACTERS
content-type:
mime-version:
multipart-mixed:
content-transfer-encoding:
bec:

cc:

to:

\r

\n

%o0a

%od

Script 12.1 This version of the script can now safely
send emails without concern for spam. Any problem-
atic characters will be caught by the spam_scrubber()
function.

8ee = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Contact Me</title>

7 </head>

8 <body>

9 <hl>Contact Me</hl>

10  <?php # Script 12.1 - email.php #2

12 // Check for form submission:

13 if (isset($_POST['submitted'])) {

15 /* The function takes one argument: a
string.
16 * The function returns a clean version

of the string.
(script continues on next page)

Second, now that you know what an evildoer
must enter to send spam (Table 12.1),
watch for those characters in form values.

If a value contains anything from that list,
don’t use that value.

In this next example, a modification of the
email script from Chapter 10, I'll define a
function that scrubs all the potentially dan-
gerous characters from data. Two new PHP
functions will be used as well: str_replace()
and array_map(). Both will be explained in
detail in the steps that follow.

To prevent spam:

1. Open email.php (Script 10.1) in your text
editor or IDE.

To complete this spam-purification, the
email script needs to be modified.

2. After checking for the form submission,
begin defining a function (Script 12.1).

function spam_scrubber($value) {

This function will take one argument:
a string.

3. Create a list of really bad things that
wouldn't be in a legitimate contact
form submission.

$very_bad = array('to:', 'cc:',
— 'bcc:', 'content-type:', 'mime-
—version:', 'multipart-mixed:"',
— 'content-transfer-encoding:');

Any of these strings should not be present
in an honest contact form submission
(it’s possible someone might legitimately
use fo: in their comments, but unlikely).
If any of these strings are present, then
this is a spam attempt. To make it easier
to test for all these, they're placed in

an array, which will be looped through
(Step 4).

continues on page 365

363

WVdS 9NILN3IATYd



PREVENTING SPAM

Chapter 12

Script 12.1 continued

Script 12.1 continued

0080 = Script eo0e 2 Script
17 * The clean version may be either an 47 $body = wordwrap($body, 70);
empty string or
48
18 * just the removal of all newline .
characters. 49 // Send the email:

19 */ 50 mail('your_email@example.com',

'Contact Form Submission', $body,

20 function spam_scrubber($value) { "From: {$scrubbed['email’]}");

21 51

22 // List of very bad values: 52 // Print a message:

23 $very_bad = array('to:', 'cc:', 'becc:', 53 echo '<p><em>Thank you for contacting
'content-type:', 'mime-version:', me. I will reply some day.</em></p>";
'multipart-mixed:', 'content-
transfer-encoding:'); 54

24 55 // Clear $_POST (so that the form's

not sticky):

25 // If any of the very bad strings are in

56 $_POST = array(Q);

26 // the submitted value, return an empty
string: 57

27 foreach ($very_bad as $v) { 58 } else {

28 if (stripos($value, $v) !== false) 59 echo '<p style="font-weight: bold;

return ''; color: #(00">Please fill out the |form
completely.</p>";

29 }

60 }

30

61

31 // Replace any newline characters with o
spaces: 62 } // End of main isset() IF.

32 $value = str_replaceCarray( "\r", "\n", 63 7>
%a", "%0d"), » $value); 64 <p>Please fill out this form to contact

33 me.</p>

34 // Return the value: 65 <form action="email.php" method="post">

35 return trim($value); 66 <p>Name: <input type="text" name="name"

size="30" maxlength="60" value="<?php if

36 (isset($_POST["'name'])) echo

. $_POST["name']; ?>" /></p>

37 } // End of spam_scrubber() function.

67 <p>Email Address: <input type="text"

38 name="email" size="30" maxlength="80"

. value="<?php if (isset($_POST['email']))

39 // Clean the form data: echo $_POST['email']; 7>" /></p>

40 is;gtsj_tla_t))ed = array_map(’spam_scrubber’, 68 <p>Comments: <textarea name="comments"

- ’ rows="5" cols="30"><?php if (isset

41 ($_POST['comments'])) echo $_POST

['comments']; ?></textarea></p>
42 // Minimal form validation: X X R
69 <p><input type="submit" name="submit"
43 if (lempty($scrubbed['name']) && value="Send!" /></p>
lempty($scrubbed['email']) && . e . . . .
lempty($scrubbed[' comments']) ) { 70 <input type="hidden" name="submitted
value="TRUE" />

44

71 </form>

45 // Create the body:

72 </body>

4 = "N . v v

6 $body ame: {$scrubbed['name']} 23 </htnls

\n\nComments: {$scrubbed['comments']}";

(script continues)

364



Security Methods

4. Loop through the array. If a very bad

thing is found, return an empty string.
foreach ($very_bad as $v) {
if (stripos($value, $v) !==

— false) return '';

}

The foreach loop will access each item in
$very_bad one at a time. Within the loop,
the stripos() function will check if the
item is in the string provided to this
function as $value. The stripos() func-
tion performs a case-insensitive search
(so it would match bcc:, Bec:, bCC:, etc.).

The first time that any of these items is
found in the submitted value, the func-
tion will return an empty string and ter-
minate (functions automatically stop
executing once they hit a return).

. Replace any newline characters with
spaces.

$value = str_replaceCarray("\r",
— "\n", "%@a", "%0d"), ' ', $value);

Newline characters, which are represent-
ed by \r, \n, %0a, and %@d, may or may
not be problematic. A newline character
is required to send spam (or else you
can't create the proper header) but will
also appear if a user just hits Enter while
typing in a textarea box. For this reason,
any found newlines will just be replaced
by a space. This means that the submit-
ted value could lose some of its format-
ting, but that's a reasonable price to pay
to stop spam.

The str_replace() function looks
through the value in the third argument
and replaces any occurrences of the char-
acters in the first argument with the

character or characters in the second.
Or as the PHP manual puts it:

mixed str_replace (mixed $search,
» mixed $replace, mixed $subject)

This function is very flexible in that it can
take strings or arrays for its three argu-
ments (the mixed means it accepts a mix
of argument types). So this line of code
in the script assigns to the $value vari-
able its original value, with any newline
characters replaced by a single space.
There is a case-insensitive version of this
function, but it’s not necessary, as, for
example, \r is a carriage return but \R

is not.

. Return the value and complete the

function.
return trim($value);
} // End of spam_scrubber() function.

Finally, this function returns the value,
trimmed of any leading and ending
spaces. Keep in mind that the function
will only get to this point if none of the
very bad things was found.

. After the function definition, invoke the

spam_scrubber() function.

$scrubbed = array_map('spam_
— scrubber', $_POST);

I've demonstrated this technique in

the book’s supporting forum (www.
DMCInsights.com/phorum/), and I think
the simplicity of this line confuses many
people. The array_map() function has
two required arguments. The first is the
name of the function to call. In this case,
that's spam_scrubber (without the paren-
theses, because you're providing the
function’s name, not calling the func-
tion). The second argument is an array.

continues on next page

365

WVdS 9NILN3IATYd



PREVENTING SPAM

Chapter 12

What array_map() does is call the named
function, once for each array element,
sending each array element’s value to
that function. In this script, $_P0OST has
five elements: name, email, comments,
submit, and submitted. After this line of
code, the $scrubbed array will end up with
five elements: $scrubbed[ "'name'] will
have the value of $_POST[ 'name'] after
running it through spam_scrubber();
$scrubbed['email'] will have the same
value as $_POST['email'] after running it
through spam_scrubber(); and so forth.
This one line of code then takes an entire
array of potentially tainted data ($_POST),
cleans it using spam_scrubber(), and
assigns the result to a new variable.
Here's the most important thing: from
here on out, the script will use the
$scrubbed array, which is clean, not
$_POST, which is still potentially dirty.

8. Change the form validation to use this
new array.

if (lempty($scrubbed['name']) &&
— lempty($scrubbed['email']) &&
— lempty($scrubbed['comments']) ) {

Each of these elements could have an
empty value for two reasons. First, if the
user left them empty. Second, if the user
entered one of the bad strings in the field,
which would be turned into an empty
string by the spam_scrubber() function.

9. Change the creation of the $body variable
so that it uses the clean values.

$body = "Name: {$scrubbed['name']}
— \n\nComments: {$scrubbed
— ['comments']}";

ene Contact Me (=)

Contact Me

Please fill out this form to contact me.

Name: ILarry Uliman

Email Address: ILarw@DMCInsights.com\r\ncc:lullman-

his is spam!!!

Comments:

Send! |

Figure 12.3 The presence of cc: in the email
address field will prevent this submission
from being sent in an email (see Figure 12.4).

en6 Contact Me =

Contact Me

Please fill out the form completely.

Please fill out this form to contact me.

Name: ILarry Ullman

Email Address: ILarry@DMCInsights.com\r\ncc:lullman

his is spam!!!

Comments:

Send!

Figure 12.4 The email was not sent because of the very
bad characters used in the email address.

366




Security Methods

e Contact Me (=]

Contact Me

Please fill out this form to contact me.

Name: ILarr‘pr Ullman

Email Address: ILarw@DMCInsighls.com|

his is not spam.
But the comments area goes

ver multiple lines.
Comments:

Send! |

Figure 12.5 Although the comments field contains
newline characters (created by pressing Enter or
Return), the email will still be sent (Figure 12.6).

® O  Contact Form Submission — Inbox =)

From: Larry Ullman <Larry@DMCInsights.comz
Subject: Contact Form Submission
Date: October 14, 2007 3:28:13 PMEDT
To: Larry Ullman <larryullman@mac.com:

L

i

Name: Larry Uliman

Comments: This is not spam.  But the comments area goes  over
multiple lines.

Figure 12.6 The received email, with the newlines in
the comments (Figure 12.5) turned into spaces.

10. Change the invocation of the mail()
function to use the clean email address.

mail('your_email@example.com',
» '"Contact Form Submission', $body,
» "From: {$scrubbed['email']}");

11. Save the script as email.php, place it in
your Web directory, and test it in your
Web browser (Figures 12.3, 12.4, 12.5,
and 12.6).

v Tips

B Using the array_map() function as I have
in this example is convenient but not
without its downsides. First, it blindly
applies the spam_scrubber() function to
the entire $_POST array, even to the sub-
mit button and hidden form input. This
isn't harmful but is unnecessary. Second,
any multidimensional arrays within
$_POST will be lost. In this specific exam-
ple, that's not a problem but it is some-
thing to be aware of.

B To prevent automated submissions to
any form, you could use a CAPTCHA
test. These are prompts that can only
be understood by humans (in theory).
While this is commonly accomplished
using an image of random characters,
the same thing can be achieved using a
question like What is two plus two? or
On what continent is China?. Checking
for the correct answer to this question
would then be part of the validation
routine.

W If you wanted, you could change the sticky
form so that it refers to the $scrubbed
values, not the original $_POST ones.

367

WVdS 9NILN3IATYd



PREVENTING SPAM

Chapter 12

More Security Recommendations

This chapter covers many specific techniques for improving your Web security. Here are a
handful of other recommendations:

L 4

Make it your job to study, follow, and abide by security recommendations. Don't just rely
upon the advice of one chapter, one book, or one author.

Don't use user-supplied names for uploaded files. You'll see an alternative to doing that
in Chapter 17, “Example—E-Commerce.”

Watch how database references are used. For example, if a person’s user ID is their pri-
mary key from the database and this is stored in a cookie (as in Chapter 11, “Cookies
and Sessions”), a malicious user just needs to change that cookie value to access another
user’s account.

Don't show detailed error messages (this point was repeated in Chapter 7, “Error Handling
and Debugging”).

Use cryptography (this is discussed at the end of the chapter with respect to the database
and in my book PHP 5 Advanced: Visual QuickPro Guide (Peachpit Press, 2007) with
respect to the server).

Don't store credit card numbers, social security numbers, banking information, and the
like. The only exception to this would be if you have deep enough pockets to pay for the
best security and to cover the lawsuits that arise when this data is stolen from your site
(which will inevitably happen).

Use SSL, if appropriate. A secure connection is one of the best protections a server can
offer a user.

Reliably and consistently protect every page and directory that needs it. Never assume
that people won't find sensitive areas just because theres no link to them. If access to a
page or directory should be limited, make sure it is.

My final recommendation is to be aware of your own limitations. As the programmer, you
probably approach a script thinking how it should be used. This is not the same as to how
it will be used, either accidentally or on purpose. Try to break your site to see what happens.

Do

bad things, do the wrong thing. Have other people try to break it, too (it's normally easy

to find such volunteers). When you code, if you assume that no one will ever use a page
propetly, it'll be much more secure than if you assume people always will.

368



Security Methods

Validating Data by Type

For the most part, the form validation used
in this book thus far has been rather mini-
mal, often just checking if a variable has any
value at all. In many situations, this really is
the best you can do. For example, there’s no
perfect test for what a valid street address is
or what a user might enter into a comments
field. Still, much of the data you'll work with
can be validated in stricter ways. In the next
chapter, the sophisticated concept of regular

Two Validation Approaches

A large part of security is based upon val-
idation: if data comes from outside of the
script—from HTML forms, the URL,
cookies, sessions, or even form a data-
base, it can’t be trusted. There are two
types of validation: whitelist and blacklist.
In the calculator example, we know that
all values must be positive, that they
must all be numbers, and that the quanti-
ty must be an integer (the other two
numbers could be integers or floats, it
makes no difference). Typecasting forces
the inputs to be numbers, and a check
confirms that they are positive. At this
point, the assumption is that the input is
valid. This is a whitelist approach: these
values are good; anything else is bad.

The preventing spam example uses a
blacklist approach. That script knows
exactly which characters are bad and
invalidates input that contains them. All
other input is considered to be good.

Many security experts prefer the whitelist
approach, but it can’t always be used. The
example will dictate which approach will
work best, but it's important to use one
or the other. Don't just assume that data
is safe without some sort of validation.

expressions will demonstrate just that. But
here I'll cover the more approachable ways
you can validate some data by type.

PHP supports many types of data: strings,
numbers (integers and floats), arrays, and so
on. For each of these, there’s a specific func-
tion that checks if a variable is of that type
(Table 12.2). You've probably already seen
the is_numeric() function in action in earli-
er chapters, and is_array() is great for con-
firming a variable’s type before attempting to
use it in a foreach loop.

In PHP, you can even change a variables type,
after it's been assigned a value. Doing so is
called typecasting and is accomplished by
preceding a variable’s name by the type in
parentheses:

$var = 20.2;
echo (int) $var; // 20

Depending upon the original and destina-
tion types, PHP will convert the variable's
value accordingly:

$var = 20;
echo (float) $var; // 20.0

continues on next page

Table 12.2 These functions return TRUE if the submitted
variable is of a certain type and FALSE otherwise.

Type Validation Functions

FuNncTioN CHECKS For

is_array() Arrays

is_bool() Booleans (TRUE, FALSE)

is_float() Floating-point numbers

is_intQ) Integers

is_nullQ) NULLS

is_numeric() Numeric values, even as a string
(e.g., '20")

is_resource() Resources, like a database
connection

is_scalar(Q) Scalar (single-valued) variables

is_string() Strings

369

idA] A9 VivV(Q SNILVAITVA



VALIDATING DATA BY TYPE

Chapter 12

With numeric values, the conversion is
straightforward, but with other variable
types, more complex rules apply:

$var = "trout';

echo (int) $var; // 0

In most circumstances you don't need to
cast a variable from one type to another, as
PHP will often automatically do so as needed.
But forcibly casting a variable’s type can be a
good security measure in your Web applica-
tions. To show how you might use this notion,
let’s create a calculator script for determining

the total purchase price of an item, similar
to that defined in earlier chapters.

To use typecasting:

1. Begin a new PHP document in your text
editor or IDE (Script 12.2).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/xhtm
» 11-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type"
» content="text/html; charset=
» 150-8859-1" />

<title>Widget Cost Calculator</
— title>

</head>

<body>

<?php # Script 12.2 - calculator.php
2. Check if the form has been submitted.

if (isset($_POST['submitted'])) {

Like many previous examples, this one
script will both display the HTML form

Script 12.2 By typecasting variables, this script more
definitively validates that data is of the correct format.

eoce = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=
is0-8859-1" />

6 <title>Widget Cost Calculator</title>
7 </head>
8 <body>

9 <?php # Script 12.2 - calculator.php

10

11 // Check if the form has been submitted.:
12 if (isset($_POST['submitted'])) {

13

14 // Cast all the variables to a specific
type:

15 $quantity = (int) $_POST['quantity'];
16 $price = (float) $_POST['price'];

17 $tax = (float) $_POST['tax'];

18

19 // All variables should be positive!

20 if ( ($quantity > @) && ($price > 0) &&
($tax > 0)) {

21

22 // Calculate the total:

23 $total = ($quantity * $price) *
(($tax/100) + 1);

24

25 // Print the result:

26 echo '<p>The total cost of purchasing

' . $quantity . ' widget(s) at $' .
number_format ($price, 2) . ' each,
plus tax, is $' . number_format
($total, 2) . '.</p>";

(script continues on next page)

370



Security Methods

Script 12.2 continued
Qe = Seript
27
28 } else { // Invalid submitted values.
29 echo '<p style="font-weight: bold;
color: #(C0Q0">Please enter a valid
quantity, price, and tax rate.</p>";
30 }
31
32 '} // End of main isset() IF.
33
34 // Leave the PHP section and create the
HTML form.
35 7>
36 <h2>Widget Cost Calculator</h2>
37  <form action="calculator.php"
method="post">
38 <p>Quantity: <input type="text" name=
"quantity" size="5" maxlength="10"
value="<?php if (isset($quantity))
echo $quantity; ?>" /></p>
39 <p>Price: <input type="text" name=
"price" size="5" maxlength="10"
value="<?php if (isset($price))
echo $price; 2>" /></p>
40 <p>Tax (%): <input type="text"
name="tax" size="5" maxlength="10"
value="<?php if (isset($tax)) echo
$tax; ?>" /></p>
41 <p><input type="submit" name="submit"
value="Calculate!" /></p>
42 <input type="hidden" name="submitted"
value="TRUE" />
43 </form>
44 </body>
45  </html>

and handle its submission. By checking
for the presence of a specific $_POST ele-
ment, you can know if the form has been

submitted.

3. Cast all the variables to a specific type.

$quantity = (int) $_POST['quantity'];
$price = (float) $_POST['price'];
$tax = (float) $_POST['tax'];

The form itself has three text boxes
(Figure 12.7), into which practically
anything could be typed (there’s no num-
ber type of input for HTML forms). But
the quantity must be an integer and both
price and tax should be floats (they will
contain decimal points). To force these
issues, cast each one to a specific type.

4. Check if the variables have proper values,
and then calculate and print the results.

if ( ($quantity > @) && ($price > @)

— && ($tax > 0) ) {

$total = ($quantity * $price) *

- (($tax/100) + 1);

continues on next page

3 Widget Cost Calculator, - Mozilla ...

File Edit ‘“ew History EBookmarks Tools

Widget Cost Calculator

Quentiy [15 |
Price
T (%)

Figure 12.7 The HTML form takes three
inputs: a quantity, a price, and a tax rate.

371

idA] A9 VivV(Q SNILVAITVA



VALIDATING DATA BY TYPE

Chapter 12

echo '<p>The total cost of

— purchasing ' . $quantity . '
— widget(s) at $' . number_

— format ($price, 2) . ' each,
— plus tax, is $' . number_

— format ($total, 2) . '.</p>';

For this calculator to work, the three vari-
ables must be specific types (see Step 3).
More importantly, they must all be posi-
tive numbers. This conditional checks for
that prior to performing the calculations.
Note that, per the rules of typecasting, if
the posted values are not numbers, they
will be cast to 0 and therefore not pass
this conditional.

The calculation itself is accomplished in
a single line of code, using parentheses to
ensure reliable results (thereby sparing
you concern for precedence issues). The
quantity is multiplied by the price. This
is then multiplied by the tax divided by
100 (so 8% becomes .08) plus 1 (1.08).
The number_format() function is used to
print both the price and total values in
the proper format.

Complete the conditionals.
} else {

echo '<p style="font-weight:
— bold; color: #(C00">Please
— enter a valid quantity,

— price, and tax rate.</p>';

3
} // End of main isset() IF.

A little CSS is used to create a bold, red
error message, should there be a problem
(Figure 12.8).

6. Begin the HTML form.
7>
<h2>Widget Cost Calculator</h2>

<form action="calculator.php" method=
) "post"s

<p>Quantity: <input type="text"
— name="quantity" size="5"

— maxlength="10" value="<?php
— if (isset($quantity)) echo
— $quantity; ?2>" /></p>

The HTML form is really simple and
posts back to this same page. The inputs
will have a sticky quality, so the user can
see what was previously entered. By
referring to $quantity etc. instead of
$_POST['quantity'] etc., the form will
reflect the value for each input as it was
typecast (see the tax value in Figure 12.8).

) Widget Cost Calculator - Mozilla ... ‘L\|E|B|
file Edit ¥ew Hstory Bookmarks Tools Help

Please enter a valid quantity, price, and tax
rate.

Widget Cost Calculator

Cpariity
Price:
Taz 6y |

Figure 12.8 An error message is
printed in bold, red text if any of
the three fields does not contain a
positive number.

372



Security Methods

7. Complete the HTML form.

<p>Price: <input type="text"
— name="price" size="5"

— maxlength="10" value="<?php if

— (isset($price)) echo $price;
= " /></p>

<p>Tax (%): <input type="text"

— name="tax" size="5" maxlength=

— "10" value="<?php if (isset

— ($tax)) echo $tax; ?>" /></p>

) Widget Cost Calculator - Mozilla ... |z”§||z‘
Fle Edt View Hstory Bookmarks Tools Help

Flease enter a valid quantity, price, and tax
rate.

Widget Cost Calculator

Cuantiy
Piice
Tax €%)

Figure 12.9 If invalid values are
entered, such as floats for the
quantity or strings for the tax...

) widget Cost Calculator - Mozilla ... I i i
Fle Edit Yiew History Bookmarks Tools  Help

Please enter a valid quantity, price, and tax
rate.

Widget Cost Calculator

Cuantity
Price
Tamfpfi

Figure 12.10 ...they’ll be cast into
more appropriate formats. The
negative price will also keep this
calculation from being made
(although the casting won’t
change that value).

<p><input type="submit" name=
— "submit" value="Calculate!"
- /></p>

<input type="hidden" name=
» "submitted" value="TRUE" />

</form>

Complete the HTML page.

</body>

</html>

Save the file as calculator.php, place it

in your Web directory, and test it in your
Web browser (Figures 12.9 and 12.10).

v Tips

You should definitely use typecasting
when working with numbers within SQL
queries. Numbers aren’t quoted in queries,
so if a string is somehow used in a num-
ber’s place, there will be an SQL syntax
error. If you typecast such variables to an
integer or float first, the query may not
work (in terms of returning a record) but
will still be syntactically valid. You'll fre-
quently see this in the book’s last three
chapters.

As I implied, regular expressions are a
more advanced method of data valida-
tion and are sometimes your best bet.
But using type-based validation, when
feasible, will certainly be faster (in terms
of processor speed) and less prone to
programmer error (did I mention that
regular expressions are complex?).

To repeat myself, the rules of how values
are converted from one data type to
another are somewhat complicated. If
you want to get into the details, see the
PHP manual.

If you wanted to allow for no tax rate,
then change that part of the validation
conditional to ... && ($tax >= @) ) {...

373

idA] A9 VivV(Q SNILVAITVA



PREVENTING XSS ATTACKS

Chapter 12

Preventing XSS Attacks

HTML is simply plain text, like <b>, which is
given special meaning by Web browsers (as
by making text bold). Because of this fact,
your Web site's user could easily put HTML
in their form data, like in the comments
field in the email example. What’s wrong
with that, you might ask?

Many dynamically driven Web applications
take the information submitted by a user,
store it in a database, and then redisplay
that information on another page. Think of
a forum, as just one example. At the very
least, if a user enters HTML code in their
data, such code could throw off the layout
and aesthetic of your site. Taking this a step
further, JavaScript is also just plain text, but
text that has special meaning—executable
meaning—within a Web browser. If malicious
code entered into a form were re-displayed
in a Web browser, it could create pop-up
windows (Figures 12.11 and 12.12), steal
cookies, or redirect the browser to other
sites. Such attacks are referred to as cross-
site scripting (XSS). As in the email example,
where you need to look for and nullify bad
strings found in data, prevention of XSS
attacks is accomplished by addressing any
potentially dangerous PHP, HTML, or
JavaScript.

PHP includes a handful of functions for han-
dling HTML and other code found within
strings. These include:

@ htmlspecialchars(), which turns &, ', ",
<, and > into an HTML entity format
(&amp;, &quot;, etc.)

¢ htmlentities(), which turns all applica-
ble characters into their HTML entity
format

¢ strip_tags(), which removes all HTML
and PHP tags

These three functions are roughly listed in
order from least disruptive to most. Which
you'll want to use depends upon the applica-
tion at hand. To demonstrate how these
functions work and differ, let’s just create a
simple PHP page that takes some text (see
Figure 12.11) and runs it through these func-
tions, printing the results (Figure 12.13).

3 %SS Attacks - Mozilla Firefox [=11E3]
File Edt View Hstory Bookmarks Tools Help

Do your worst!
Time to unleash the wrath of JavaScript!
<seript language="javascript"s

alert('Ha!');</script>

Figure 12.11 The malicious and savvy user
can enter HTML, CSS, and JavaScript into
text inputs.

Figure 12.12 The JavaScript entered
into the comments field (see Figure
12.11) would create this alert
window when the comments were
displayed in the Web browser.

racks - Mozills Firefox

L L e Wgory Geskamke ook el

Original

Tiene to ueieash the wrath of JavaSerptl

After himlentities()

Tene to unleach the wrath of TavaScript! <acript langaage="javascript™ alert(Hal') e/scrips
After strip_tags()

Tne to wieash the wrath of JavaSenpt) dent(Hal'),

D yosar wearst)

Submit

Figure 12.13 Thanks to the htmlentities() and
strip_tags() functions, malicious code entered
into the a form field (see Figure 12.11) can be
rendered inert.

374



Security Methods

Script 12.3 Applying the htmlentities() and
strip_tags() functions to submitted text can
prevent XSS attacks.

606 = Script
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-
transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="content-type" content=
"text/html; charset=iso0-8859-1" />
6 <title>XSS Attacks</title>
7 </head>
8 <body>
9 <?php # Script 12.3 - xss.php
10
11 if (isset($_POST['submitted'])) {
12
13 // Apply the different functions,
printing the results:
14 echo "<h2>0riginal</h2><p>{$_POST
["data']}</p>";
15 echo '<h2>After htmlentities(D</h2><p>'
. htmlentities($_POST['data']). '</p>';
16 echo '<h2>After strip_tags(Q</h2><p>' .
strip_tags($_POST['data']). "</p>';
17
18 3
19
20 // Display the form:
21 7>
22 <form action="xss.php" method="post">
23
24 <p>Do your worst! <textarea name="data"
rows="3" cols="40"></textarea></p>
25 <div align="center"><input type="submit"
name="submit" value="Submit" /></div>
26 <input type="hidden" name="submitted"
value="TRUE" />
27
28 </form>
29  </body>
30 </html>

To handle HTML:

1.

Create a new PHP document in your text
editor or IDE (Script 12.3).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/xhtm
— 11-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
» xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type"

— content="text/html; charset=
— 150-8859-1" />

<title>XSS Attacks</title>
</head>
<body>
<?php # Script 12.3 - xss.php

Check for the form submission and print
the received data in its original format.

if (isset($_POST['submitted'])) {

echo "<h2>0riginal</h2><p>{$_
— POST['data']}</p>";

To compare and contrast what was origi-
nally received with the result after apply-
ing the functions, the original value must
first be printed.

Apply the htmlentities() function,
printing the results.

echo '<h2>After htmlentities()
— </h2><p>" . htmlentities($_POST
— ['data']). '</p>'";

To keep submitted information from mess-
ing up a page or hacking the Web brows-
er, it’s run through the htmlentities(Q)
function. So, any HTML entity will be
translated; for instance, < and > will
become &it; and &gt; respectively.

continues on next page

375

SMIVLLY SSX ONILNIATdY



PREVENTING XSS ATTACKS

Chapter 12

4.

Apply the strip_tags() function, print-
ing the results.

echo '<h2>After strip_tags()</h2>

. strip_tags($_POST['data']).
» '</p>"

» <p>"

The strip_tags(Q) function completely
takes out any HTML, JavaScript, or PHP
tags. It's therefore the most foolproof
function to use on submitted data.

Complete the PHP section.

}

7>

Display the HTML form.

<form action="xss.php" method="post">

<p>Do your worst! <textarea
— name="data" rows="3"
— cols="40"></textarea></p>

<div align="center"><input
» type="submit" name="submit"
» value="Submit" /></div>

<input type="hidden" name=
— "submitted" value="TRUE" />

</form>

The form (see Figure 12.11) has only one
field for the user to complete: a textarea.

Complete the page.
</body>
</html>

8.

Save the page as xss.php, place it in your
Web directory, and test it in your Web
browser.

. View the source code of the page to

see the full effect of these functions
(Figure 12.14).

v Tips

Both htmlspecialchars() and
htmlentities() take an optional
parameter indicating how quotation
marks should be handled. See the
PHP manual for specifics.

The strip_tags() function takes an
optional parameter indicating what tags
should not be stripped.

$var = strip_tags ($var, '<p><br
/>

The strip_tags() function will remove
even invalid HTML tags, which may
cause problems. For example,
strip_tags() will yank out all of the
code it thinks is an HTML tag, even

if it's improperly formed, like

<b I forgot to close the tag.

Unrelated to security but quite useful is
the n12br() function. It turns every
return (such as those entered into a text
area) into an HTML <br /> tag.

<zoript language="jsvascript™:>

<h2rCriginal</h2><p>Time to unleash the wrath of JavaScript!

alert'Ha!'):</soript></p><h2>After htmlentities()</h2><p>Time to unleash the wrath of JavaScript!
Llt:script language=&cuot: javascriptégquot: &0t

alerti'Ha!');&lt;/script&gt:</p><h2rifter strip_tags()</h2><p>Time to unleash the wrath of JavaScript!
alert'Ha!');</pr<form action="xss.php" method="post">

Figure 12.14 This snippet of the page’s HTML source (see Figure 12.13) shows the original, submitted value, the
value after using html_entities(), and the value after using strip_tagsQ).

376



Security Methods

Preventing SQL Injection
Attacks

Another type of attack that malicious users
can attempt are SQL injection attacks. As the
name implies, these are endeavors to insert
bad code into a site’s SQL queries. One aim
of such attacks is that they would create a
syntactically invalid query, thereby revealing
something about the script or database in
the resulting error message (Figure 12.15).
An even bigger aspiration is that the injec-
tion attack could alter, destroy, or expose
the stored data.

Fortunately SQL injection attacks are rather
easy to prevent. Start by validating all data
to be used in queries (and perform typecast-
ing, whenever possible). Second, use a func-
tion like mysqli_real_escape_string(),
which makes data safe to use in queries.
This function was introduced in Chapter 8,
“Using PHP and MySQL."” Third, don't show
detailed errors on live sites.

An alternative to using mysqli_real_
escape_string() is to use prepared state-
ments. Prepared statements were added to
MySQL in version 4.1, and PHP can use them
as of version 5 (thanks to the Improved
MySQL extension). When not using pre-
pared statements, the entire query, including
the SQL syntax and the specific values, is

sent to MySQL as one long string. MySQL
then parses and executes it. With a prepared
query, the SQL syntax is sent to MySQL first,
where it is parsed, making sure it’s syntacti-
cally valid. Then the specific values are sent
separately; MySQL assembles the query using
those values, then executes it. The benefits
of prepared statements are important:
greater security and potentially better per-
formance. I'll focus on the security aspect
here, but see the sidebar for a discussion of
performance.

Prepared statements can be created out of
any INSERT, UPDATE, DELETE, or SELECT query.
Begin by defining your query, marking
placeholders using question marks. As an
example, take the SELECT query from edit_
user.php (Script 9.3):

$q = "SELECT first_name, last_name,
» email FROM users WHERE user_id=$id";

As a prepared statement, this query becomes

$q = "SELECT first_name, last_name,
— email FROM users WHERE user_id=?";

Next, prepare the statement in MySQL,
assigning the results to a PHP variable.

$stmt = mysqli_prepare($dbc, $q);

At this point, MySQL will parse the query,
but it won't execute it.

continues on next page

‘email@example.com’, SHA1('password’), NOW() )

You could not be registered due to a system error. We apologize for any inconvenience.

You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use
near ;DELETE TABLE test, ‘Uliman’, 'email@example.com’, SHA1('password’), NOW() )’ at line 1

Query: INSERT INTO users (first_name, last_name, email, pass, registration_date) VALUES (",DELETE TABLE test', "Uliman’,

Figure 12.15 If a site reveals a detailed error message and doesn’t properly handle problematic characters
in submitted values, hackers can learn a lot about your server.

377

SYIVLLIY NOILD3IN]| TOS ONILNIATY]



PREVENTING SQL INJECTION ATTACKS

Chapter 12

Next, you bind PHP variables to the query’s
placeholders. In other words, you state that
one variable should be used for one question
mark, another variable for the other ques-
tion mark, and so on. Continuing with the
same example, you would code

mysqli_stmt_bind_param($stmt, 'i', $id);

The i part of the command indicates what
kind of value should be expected, using the
characters listed in Table 12.3. In this case,
the query expects to receive one integer. As
another example, here’s how the login query
from Chapter 11, “Cookies and Sessions,’
would be handled:

$q = "SELECT user_id, first_name FROM
— users WHERE email=? AND pass=SHA1(?)";

$stmt = mysqli_prepare($dbc, $q);

mysqli_stmt_bind_param($stmt, 'ss', $e,
> $p);

In this example, something interesting is
also revealed: even though both the email
address and password values are strings,
they are not placed within quotes in the
query. This is another difference between a
prepared statement and a standard query.

Once the statement has been bound, you
can assign values to the PHP variables (if
that hasn't happened already) and then exe-
cute the statement. Using the login example,
thatd be:

$e
$p
mysqli_stmt_execute($stmt);

'email@example.com';

'mypass’;

The values of $e and $p will be used when
the prepared statement is executed.

Table 12.3 Use these characters to tell the
mysql_stmt_bind_param() function what
kinds of values to expect.

Bound Value Types

LETTER REPRESENTS

d Decimal

i Integer

b Blob (binary data)
s All other types

Prepared Statement
Performance

Prepared statements will always be more
secure than running queries in the old-
fashioned way, but they may also be faster.
If a PHP script sends the same query to
MySQL multiple times, using different
values each time, prepared statements
can really speed things up. In such cases,
the query itself is only sent to MySQL
and parsed once. Then, the values are
sent to MySQL separately.

As a trivial example, the following code
would run 100 queries in MySQL:

$q = "INSERT INTO counter (num)
5 VALUES (?)';

$stmt = mysqli_prepare($dbc, $q);

mysqli_stmt_bind_param($stmt, 'i',

» $n);
for ($n = 1; $n <= 100; $n++) {
mysqli_stmt_execute($stmt);
1

Even though the query is being run 100
times, the full text is only being trans-
ferred to, and parsed by, MySQL once.
MySQL versions 5.1.17 and later will
include a caching mechanism that may
also improve the performance of other
uses of prepared statements.

378



Security Methods

Script 12.4 This script, which represents a simplified
version of a message posting page, uses prepared
statements as a way of preventing SQL injection
attacks.

Qe = Seript

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Post a Message</title>

7 </head>

8 <body>

9 <?php # Script 12.4 - post_message.php

11 if (isset($_POST['submitted'])) {
13 // Validate the data (omitted)!

15 // Connect to the database:

16 $dbc = mysqli_connect ('localhost’,
'username', 'password', 'forum');

17
18 // Make the query:

19 $q = "INSERT INTO messages (forum_id,
parent_id, user_id, subject, body,
date_entered) VALUES (?, ?, ?, 7, 7,
NOWQODD';

20

21 // Prepare the statement:

22 $stmt = mysqli_prepare($dbc, $q);

23

24 // Bind the variables:

25 mysqli_stmt_bind_param($stmt, 'iiiss’,
$forum_id, $parent_id, $user_id,
$subject, $body);

26

27 // Assign the values to variables:

28 $forum_id = (int) $_POST['forum_id'];

(script continues on next page)

To see this process in action, let’s write a
script that adds a message to the messages
table in the forum database (created in
Chapter 6, “Advanced SQL and MySQL"). I'll
also use the opportunity to demonstrate a
couple of the other prepared statement-
related functions.

To use prepared statements:
1. Create a new PHP script in your text edi-
tor or IDE (Script 12.4).

<!DOCTYPE html PUBLIC "-//W3C//DTD
» XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm
— 11-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 150-8859-1" />
<title>Post a Message</title>
</head>
<body>

<?php # Script 12.4 - post_
— message . php

2. Check for form submission and connect
to the forum database.

if (isset($_POST['submitted'])) {

$dbc = mysqli_connect
— ('localhost', 'username',
— "password', 'forum');

Note that, for brevity's sake, I'm omitting
basic data validation and error reporting.
Although a real site (a more realized
version of this script can be found in
Chapter 15, “Example—Message Board”),
would check that the message subject

continues on next page

379

SYIVLLIY NOILD3IN]| TOS ONILNIATY]



PREVENTING SQL INJECTION ATTACKS

Chapter 12

and body aren't empty and that the vari- Script 12.4 continued

ous ID values are positive integers, this 806 =) Seript

script will still be relatively safe, thanks 29 $parent_id = (int) $_POST['parent_id'];
to the security offered by prepared 30 $user_id = 3; // The user_id value would
statements. normally come from the session.

This example will use the forum database, 31 $subject = strip_tags($_POST

['subject'D);
32 $body = strip_tags($_POST['body']1);
33
$q = "INSERT INTO messages (forum_id, 34
— parent_id, user_id, subject, body,
— date_entered) VALUES (?, 7, 7, ?,
— 7, NOWO)';

created in Chapter 6.
3. Define and prepare the query.
// Execute the query:
35 mysqli_stmt_execute($stmt);

36
37 // Print a message based upon the

$stmt = mysqli_prepare($dbc, $a); result:

This syntax has already been explained. 38 if (mysqli_stmt_affected_rows($stmt) ==
The query is defined, using placeholders 2

for values to be assigned later. Then the 39 echo '<p>Your message has been

posted.</p>";
40 } else {

mysqli_prepare() function sends this to
MySQL, assigning the result to $stmt.

. . 41 echo '<p style="font-weight: bold;
The query itself was first used in Chapter color: #C00"sYour message could not
6. It populates six fields in the messages be posted.</p>';
table. The value for the date_entered col- 2 echo '<p>' . mysqli_stmt_error($stmt) .
umn will be the result of the NOW() func- </p>';
tion, not a bound value. 43 }
4. Bind the appropriate variables and create o
a list of values to be inserted. 45 // Close the statement:
46 mysqli_stmt_close($stmt);

mysqli_stmt_bind_param($stmt,

— 'iiiss", $forum_id, $parent_id, 47

— $user_id, $subject, $body); 48 // Close the connection:

$forum_id = (int) $_POST['forum_id']; 49 mysqli_close($dbc);

$parent_id = (int) $_POST >0

» ['parent_id']; 51 '} // End of submission IF.
52

$user_id = 3;
. . 53 // Display the form:
$subject = strip_tags($_POST

— ["subject']); o

. , , 55 <form action="post_message.php"
$body = strip_tags($_POST['body']); method="post">
The first line says that three integers and 56
two strings will be used in the prepared 57 <fieldset><legend>Post a message:
statement. The values will be found in </legend>
the variables to follow. 58

(script continues on next page)

380



Security Methods

For those variables, the subject and body
values come straight from the form, after
running them through strip_tagsQ to
remove any potentially dangerous code.
The forum ID and parent ID (which indi-
cates if the message is a reply to an exist-
ing message or not) also come from the
form. They’ll be typecast to integers (for
added security, you would confirm that
they're positive numbers after typecast-
ing them).

The user ID value, in a real script, would
come from the session, where it would be
stored when the user logged in.

. Execute the query.

mysqli_stmt_execute($stmt);

Finally, the prepared statement is
executed.

Script 12.4 continued
606 = Script
59 <p><b>Subject</b>: <input name="subject"

60
61

62
63
64

65

66

67

type="text" size="30" maxlength="100"
/></p>

<p><b>Body</b>: <textarea name="body"
rows="3" cols="40"></textarea></p>

</fieldset>

<div align="center"><input type="submit"
name="submit" value="Submit" /></div>

<input type="hidden" name="submitted"
value="TRUE" />

<input type="hidden" name="forum_id"
value="1" />

<input type="hidden" name="parent_id"
value="0" />

</form>
</body>
</html>

6. Print the results of the execution and

complete the loop.

if (mysqgli_stmt_affected_rows
= ($stmt) == 1) {

echo '<p>Your message has been
— posted.</p>";

} else {

echo '<p style="font-weight:
— bold; color: #C00">Your
— message could not be

— posted.</p>";

echo "<p>' . mysqli_stmt_
— error($stmt) . '</p>';

}

The successful insertion of a record can
be confirmed using the mysqli_stmt_
affected_rows() function, which works
as you expect it would (returning the
number of affected rows). If a problem
occurred, the mysqli_stmt_error() func-
tion returns the specific MySQL error
message. This is for your debugging pur-
poses, not to be used in a live site.

. Close the statement and the database

connection.
mysqli_stmt_close($stmt);
mysqli_close($dbc);

The first function closes the prepared
statement, freeing up the resources. At
this point, $stmt no longer has a value.
The second function closes the database
connection.

. Complete the PHP section.

} // End of submission IF.

7>

continues on next page

381

SYIVLLIY NOILD3IN]| TOS ONILNIATY]



PREVENTING SQL INJECTION ATTACKS

Chapter 12

9. Create the form.

<form action="post_message.php"
— method="post">

<fieldset><legend>Post a message:
— </legend>

<p><b>Subject</b>: <input name=
— "subject" type="text" size="30"
— maxlength="100" /></p>

<p><b>Body</b>: <textarea name="body"
— rows="3" cols="40"></textarea></p>

</fieldset>

<div align="center"><input type=
— "submit" name="submit" value=
— "Submit" /></div>

<input type="hidden" name="submitted"
— value="TRUE" />

<input type="hidden" name="forum_id"
— value="1" />

<input type="hidden" name="parent_id"
— value="0" />

</form>

em6 Post a Message (=]

Post a message:

Subject: I'I'his is my subject.

his is the body. It'll have apostrophes,
"quotes”, and even <b>HTML</b>.
Body:

Submit

Figure 12.16 The simple HTML form.

The form contains two fields the user
would fill out and two hidden inputs that
store values the query needs. In a real
version of this script, it would determine
the forum_id and parent_id values auto-
matically.

10. Complete the page.
</body>
</html>

11. Save the file as post_message.php, place
it in your Web directory, and test it in
your Web browser (Figures 12.16,
12.17, and 12.18).

v Tip

B There are two kinds of prepared state-
ments. Here I have demonstrated bound
parameters, where PHP variables are
bound to a query. The other type is
bound results, where the results of a
query are bound to PHP variables.

806 Post a Message =3

Your message has been posted.

Post a message:

Subject: |

Submit

Figure 12.17 If one record in the database was
affected by the query, this will be the result.

®e06 Terminal

mysql> SELECT * FRON messoges MHERE message_id=23%G

1. row
message_id: 23
forum_id: 1
parent_id: @
user_id: 3
subject: This is my subject.

date_entered: 2BA7-18-14 17:36:27
1 row in set (B.85 sec)

nysql> ||

body: This is the body. [t'Ll have opostrophes, "guotes", and even HTHL.

Figure 12.18 Selecting the most recent
entry in the messages table confirms
that the prepared statement (Script
12.4) worked. Notice that the HTML
was stripped out of the post but the

I

quotes are still present.

382



Security Methods

Database Encryption

As a brief conclusion to this chapter, I'll go
over true encryption in a MySQL database.
Up to this point, pseudo-encryption has
been accomplished via the SHA1() function.
In the registration and login examples, the
user’s password has been stored after run-
ning it through SHA1(). Although using this
function in this way is perfectly fine (and
quite common), the function doesn’t provide
real encryption: the SHA1() function returns
a representation of a value. If you need to
store data in a protected way while still
being able to view the data is its original
form at some later point, other MySQL func-
tions are necessary.

Encryption

MySQL has several encryption and decryp-
tion functions built into the software. If you
require data to be stored in an encrypted
form that can be decrypted, you'll want to
use AES_ENCRYPT() and AES_DECRYPT(). These
functions take two arguments: the string
being encrypted or decrypted and a salt
argument. The salt argument is a string that
helps to randomize the encryption. The only
trick is that the exact same salt must be
used for both encryption and decryption.

To add a record to a table while encrypting
the data, the query might look like

INSERT INTO tablename (username, pass)
VALUES ('troutster',
AES_ENCRYPT('mypass', 'nacl'))

The encrypted data returned by the
AES_ENCRYPTQ) function will be in binary for-
mat. To store that data in a table, the col-

umn must be defined as one of the binary
types (e.g., BLOB).

To run a login query for the record just
inserted (matching a submitted username
and password against those in the data-
base), you would write

SELECT * FROM tablename WHERE

username = "troutster' AND
AES_DECRYPT(pass, 'nacl') = 'mypass'

The AES_ENCRYPT() function is considered to
be the most secure encryption option (it’s
available as of MySQL version 4.0.2). To
demonstrate how youd use it, let’s run some

queries on the test database using a MySQL
client.

To encrypt and decrypt data:

1. Access MySQL and select the test data-
base (Figure 12.19).

USE test;

continues on next page

v MySOL Command Line Client

Nter password: s
elcome to the MySQL monitor.
our MySQL connection id is

ysql> USE test;
atabase changed
ysgql> _

Commands end with ;
erver version: 5.8.45—community—nt MySQL Community Edition {(GPL)>

ype ‘help;’ or *~h’ for help. Type *~c’ to clear the huffepr.

oF “g.

Figure 12.19 The following

examples will all be run in
~i| the mysql client, on the

t1 7] test database.

383

NOILdAYIN]T 3Svaviv(g



DATABASE ENCRYPTION

Chapter 12

Follow the steps outlined in Chapter 4,
“Introduction to MySQL,” to connect to
the mysql client. Alternatively, you can
use phpMyAdmin or another interface to
run the queries in the following steps.

2. Create a new encode table (Figure 12.20).

CREATE TABLE encode (

id INT UNSIGNED NOT NULL
AUTO_INCREMENT,

card_number TINYBLOB,

PRIMARY KEY (id)

s

This table, encode, will contain fields for
just an id and a (credit) card_number. The
card_number will be encrypted using
AES_ENCRYPT() so that it can be decoded.
AES_ENCRYPT() returns a binary value

that ought to be stored in a BLOB (or
TINYBLOB here) column type.

. Insert a new record (Figure 12.21).

INSERT INTO encode (id, card_number)
VALUES (NULL,
AES_ENCRYPT(1234567890123456,
'eLL10tT"));

«-. MySOL Command Line Client

yzql> USE test;
atabaze changed

yzgql> CREATE TABLE encode ¢

—>» did INT UNSIGHED NOT HULL

—2> AUTOQ_INCREMENT .

—> card_number TINYBLOB.

—> PRIMARY KEY <id>

=> 3

nery OK, B rows affected {B.46 sec>

yeqly o

H 4

Figure 12.20 The encode table, consisting of
only two columns, is added to the database.

Here I am adding a new record to the
table, using the AES_ENCRYPT() function
with a salt of eLLI10tT to encrypt the
card number. Always try to use a unique
salt with your encryption functions. Also
remember that you cannot have spaces
between your function names and their
opening parentheses.

. Retrieve the record in an unencrypted

form (Figure 12.22).
SELECT id, AES_DECRYPT(card_number,

'eLL10tT"') AS cc FROM encode;

This query returns all of the records,
decrypting the credit card number in
the process. Any value stored using
AES_ENCRYPT() can be retrieved (and
matched) using AES_DECRYPT(), as long
as the same salt is used (here, eLL10tT).

. Check out the table’s contents without

using decryption (Figure 12.23).
SELECT * FROM encode;

As you can see in the figure, the encrypt-
ed version of the credit card number is
unreadable. This is exactly the kind of
security measure required by e-commerce
applications.

. MySOL Command Line Client
mysgl> INSERT INTQ encode {id, card_number) il
—> UALUES ¢NULL.
—» AES_ENCRYPT<1234567898123456.
=> *eLL1BtT*>>;
Query OK. 1 row affected (B.86 sec)
mysgl> 4
<] | vl 4

Figure 12.21 A record is inserted, using an encryption
function to protect the credit card number.

384



Security Methods

v Tips

B As a rule of thumb, use SHA1() for infor-
mation that will never need to be view-
able, such as passwords and perhaps
usernames. Use AES_ENCRYPT() for infor-
mation that needs to be protected but
may need to be viewable at a later date,
such as credit card information, Social
Security numbers, addresses (perhaps),
and so forth.

B As areminder, it's much more secure to
never store credit card numbers and
other high-risk data.

Secure salt storage

While the preceding sequence of steps
demonstrates how you can add a level of
security to your Web applications by
encrypting and decrypting sensitive data,
there’s still room for improvement. The main
issue is protecting the encryption salt,
which is key to the encryption process.

In order for a PHP script to use a salt in its
queries, PHP must have access to it. Most
likely, the salt might be placed in the same
script that establishes a database connec-
tion. But storing this value in a plain text for-
mat on the server makes it more vulnerable.

- M¥ySOL Command Line Client

nysql> SELECT id. AES_DECRYFPT (card_number.
—> ‘eLLiBtT’> AS cc FROM encode;

L Lol

id | cc i
1 1 123456789812345%6 |

i
H
1 row in set (B.68 sec>

nysgl> _
| —— H 4

Figure 12.22 The record has been retrieved,
decrypting the credit card number in the process.

As an alternative, you can store the salt in a
database table. Then, when a query needs to
use this value, it can be selected. This
process can be simplified thanks to user-
defined MySQL variables. I discuss this con-
cept in more detail in my book MySQL:
Visual QuickStart Guide, Second Edition
(Peachpit Press, 2006), but I'll provide a
quick rundown of that process here.

To just establish a user-defined variable, use
this SQL command:

SELECT @var:=value

So, you could write
SELECT @PI:=3.14
To define a variable based upon a value

stored in a table, the syntax is just an exten-
sion of this:

SELECT @var:=some_column FROM tablename
Once you've established @var, it can be used
in other queries:

SELECT * FROM tablename WHERE col=@var
This next sequence of steps will demon-
strate this approach in action, using the

mysql client. Doing the same thing in a PHP
script is described in the first tip.

. MySOL Command Line Client

mysgl> SELECT * FROM encode;

id | card_number i
1 1 TéEbRE_h4B/q2 p(ALylBE L s ABEGHtT=q

1 row in set <B.B8 sec>

mysgl> _

-

1] vl

Figure 12.23 Encrypted data is stored in an
unreadable format (here, as a binary string of data).

385

NOILdAYIN]T 3Svaviv(g



DATABASE ENCRYPTION

Chapter 12

To use a database-stored salt:

1. Log in to the mysql client and select the
test database, if you haven't already.

2. Empty the encode table (Figure 12.24).
TRUNCATE TABLE encode;

Because I'm going to be using a different
encryption function, I'll want to clear out
all the existing data before repopulating
it. The TRUNCATE command is the best
way to do so.

3. Create and populate an aes_salt table
(Figure 12.25).

CREATE TABLE aes_salt (

salt VARCHAR(12) NOT NULL
Js
INSERT INTO aes_salt (salt)
VALUES ('@bfuscate');

This table, aes_salt, will store the encryp-
tion salt value in its one column. The
INSERT query stores the salt, which will
be retrieved and assigned to a user-
defined variable as needed.

4, Retrieve the stored salt value and use it
to insert a new record into the encode
table (Figure 12.26).

SELECT @salt:=salt FROM aes_salt;
INSERT INTO encode (card_number)
VALUES (AES_ENCRYPT(1234567890123456,
@salt));

The first line retrieves the stored salt
value from the aes_salt table and assigns
this to @salt (the figure shows the results
of the SELECT statement). Then a stan-
dard INSERT query is run to add a record
to the encode table. In this case, @salt is
used in the query instead of a hard-
coded salt value.

®@0e Terminal

mysgl> TRUHCATE TRELE encode;
Query 0K, 8 rows affected (B.88 sec)

mysgl> I

Figure 12.24 Run a TRUNCATE query to empty
atable.

®06 Terminal

mysql> CREATE TABLE aes_salt f
= salt WARCHAR{12) HOT HNULL
=> 1

Query 0K, 8 rows affected (B.81 sec)

)M

mysqgl> INSERT INTO aes_salt (salt)
-» VALUES ({'Bbfuscate’);
Query 0K, 1 row affected (B.81 sec) |4

mysgl> I

Figure 12.25 The ges_salt table has one
column and should only ever have one
row of data. The INSERT query stores the
salt value in this table.

®06 Terminal
mysqgl> SELECT @salt:=salt FROM aes_salt; 5
Fmmm e +
| Bzalt:=salt |
o +
| Bbfuscate |
B +
1 row in set (B.83 sec)
mysgl> IHSERT INTO encode {card_number)
-» WALUES (AES_EMCRYPT(1234567890123456,
-» @salt));
Query 0K, 1 row affected (B.81 sec) 1
v
mysgl> I -

Figure 12.26 These two queries show how you can
retrieve a salt value using one query, assigning
the value to a variable, then use that variable in a
second query.

386



Security Methods

®@06 Terminal

mysql> SELECT @salt:=salt FROM ces_salt

)|

1 row in set (B.B5 sec)

mysql> SELECT id, AES_DECRYPT{card_number,
-» @salt) AS cc FROM encode;

B +
| id | e |
B +
| 1| 1234567898123456 |
e et L L b e T +

1 row in set (B.B5 sec)

>

mysql> |

Figure 12.27 A similar query (see Figure 12.22) is
used to decrypt stored information using a
database-stored salt.

W Prior to version 5.0 of MySQL, user vari-

able names are case-sensitive.

B Never establish and use a user-defined

variable within the same SQL statement.

B Storing the salt in the database, as
demonstrated in these steps, adds
improved security over storing it in a
PHP script. Even better security can be
had by using unique and random salts
for each stored record.

5. Decrypt the stored credit card number

(Figure 12.27).

SELECT @salt:=salt FROM aes_salt;
SELECT id, AES_DECRYPT(card_number,
@salt) AS cc FROM encode;

The first step retrieves the salt value
so that it can be used for decryption
purposes. (If you followed these steps
without closing the MySQL session, this
step wouldn't actually be necessary, as
@salt would already be established.)
The @salt variable is then used with
he AES_DECRYPT() function.

v Tips

B The code in these steps (for retrieving

and using a salt stored in a table) can
easily be used in a PHP script. Run the
first query, then run the second query,
and then fetch the results:

$r = mysqli_query($dbc, 'SELECT
— @salt:=salt FROM aes_salt');

$r = mysqli_query($dbc, 'SELECT id,
» AES_DECRYPT(card_number, @salt)
» AS cc FROM encode');

$row = mysqli_fetch_array($r,
— MYSQLI_ASSO0C);

You can make this more professional by
calling the mysqli_num_rows() function
prior to running the second query or
fetching the results, of course. But notice
that you don't have to fetch the results of
the first query into the PHP script. The
results of that query will be assigned to
the @salt variable, residing in MySQL,
associated with this connection.

User variables are particular to each con-
nection. When one script or one mysql
client session connects to MySQL and
establishes a variable, only that one script
or session has access to that variable.

387

NOILdAYIN]T 3Svaviv(g



DATABASE ENCRYPTION

Chapter 12

Preventing Brute Force Attacks

A brute force attack is an attempt to log into a secure system by making lots of attempts in
the hopes of eventual success. It's not a sophisticated type of attack, hence the name “brute
force.” For example, if you have a login process that requires a username and password, there
is a limit as to the possible number of username/password combinations. That limit may be
in the billions or trillions, but still, it’s a finite number. Using algorithms and automated
processes, a brute force attack repeatedly tries combinations until they succeed.

The best way to prevent brute force attacks from succeeding is requiring users to register
with good, hard-to-guess passwords: containing letters, numbers, and punctuation; both
upper and lowercase; words not in the dictionary; at least eight characters long, etc. Also,
don't give indications as to why a login failed: saying that a username and password combi-
nation isn't correct gives away nothing, but saying that a username isn't right or that the
password isn't right for that username says too much.

To stop a brute force attack in its tracks, you could also limit the number of incorrect login
attempts by a given IP address. IP addresses do change frequently, but in a brute force attack,
the same IP address would be trying to login multiple times in a matter of minutes. You would
have to track incorrect logins by IP address, and then, after X number of invalid attempts,
block that IP address for 24 hours (or something). Oy, if you didn’t want to go that far, you
could use an “incremental delay” defense: each incorrect login from the same IP address cre-
ates an added delay in the response (use PHP’s sleep() function to create the delay). Humans
might not notice or be bothered by such delays, but automated attacks most certainly would.

388



PERL-
COMPATIBLE

REGULAR EXPRESSIONS

Regular expressions are an amazingly powerful (but tedious) tool available in most of
today’s programming languages and even in many applications. Think of regular
expressions as an elaborate system of matching patterns. You first write the pattern
and then use one of PHP’s built-in functions to apply the pattern to a value (regular
expressions are applied to strings, even if that means a string with a numeric value).
Whereas a string function could see if the name John is in some text, a regular expres-
sion could just as easily find John, Jon, and Jonathon.

PHP supports several types of regular expressions, the two most popular being POSIX
Extended and Perl-Compatible (PCRE). In previous editions of this book (and in
other books), I exclusively use the POSIX version. They are somewhat less powerful
and potentially slower than PCRE but are far easier to learn. But PCRE is becoming
the preferred type to use in PHP, so I'll provide an introduction to it here instead.

Because the regular expression syntax is so complex, while the functions that use
them are simple, the focus in this chapter will be on mastering the syntax in little
bites. The PHP code will be very simple; later chapters will better incorporate regular
expressions into real-world scripts.

389

SNOISSIUAXT AVINOIY 3191LVdWO)-Ti3d



CREATING A TEST SCRIPT

Chapter 13

Creating a Test Script

As already stated, regular expressions are a
matter of applying patterns to values. The
application of the pattern to a value is
accomplished using one of a handful of
functions, the most important being
preg_match(). This function returns a 0

or 1, indicating whether or not the pattern
matched the string. Its basic syntax is

preg_match(pattern, subject);

The preg_match() function will stop once it
finds a single match. If you need to find all
the matches, use preg_match_all(). That
function will be discussed toward the end
of the chapter.

When providing the pattern to preg_match(Q),
it needs to be placed within quotation marks,
as it'll be a string. Because many escaped
characters within double quotation marks
have special meaning (like \n), I advocate
using single quotation marks to define your
patterns.

Secondarily, within the quotation marks, the
pattern needs to be encased within delimiters.
The delimiter can be any character that’s not
alphanumeric or the backslash, and the same
character must be used to mark the begin-
ning and end of the pattern. Commonly
you'll see forward slashes used. So, to see if
the word cat contains the letter a, you
would code:

if (preg_match('/a/', 'cat')) { ..

If you need to match a forward slash in the
pattern, use a different delimiter, like the
pipe (1) or an exclamation mark (!).

The bulk of this chapter covers all the rules
for defining patterns. In order to best learn
by example, let’s start by creating a simple
PHP script that takes a pattern and a string
(Figure 13.1) and returns the regular
expression result (Figure 13.2).

) Testing PCRE - Mozilla Firefox

File Edit Wiew History EBookmarks Tools  Help

Eegular Expression Pattern: ‘f’pm:’ |
(inchude the delimiters)

Test Subject |VIsua\ quickpro guide

Figure 13.1 The HTML form, which will be used
for practicing regular expressions.

) Testing PCRE - Mozilla Firefox

File Edit View History Bookmarks Tools Help

The result of checking
Iprof

against

visual quickpro guide
18 TRUE!

Eegular Expression Pattern |.i'pr0.-’
(include the delimiters)

Test Subject |visua| guickpro guide

Figure 13.2 The script will print what values were
used in the regular expression and what the
result was. The form will also be made sticky to
remember previously submitted values.

390



Perl-Compatible Regular Expressions

Script 13.1 The complex regular expression syntax will
be best taught and demonstrated using this PHP script.

8oeé = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/

xhtml">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Testing PCRE</title>

7 </head>

8 <body>

9 <?php // Script 13.1 - pcre.php

10

11 // This script takes a submitted string

and checks it against a submitted pattern.

12

13 if (isset($_POST['submitted'])) {

14

15 // Trim the strings:

16 $pattern = trim($_POST['pattern']);

17 $subject = trim($_POST['subject']);

18

19 // Print a caption:

20 echo "<p>The result of checking<br
/><b>$pattern</b><br />against<br
/>$subject<br />is ";

21

22 // Test:

23 if (preg_match ($pattern, $subject) ) {

24 echo '"TRUE!</p>";

25 } else {

26 echo 'FALSE!</p>";

27 }

28

29 } // End of submission IF.

(script continues)

To match a pattern:

1.

Create a new PHP document in your text
editor or IDE (Script 13.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN"

"http://www.w3.0org/TR/xhtml1/DTD/xhtm
— 11-transitional.dtd">

<html xmlns="http://www.w3.org/
» 1999/xhtml">

<head>

<meta http-equiv="content-type"
— content="text/html; charset=
— 150-8859-1" />

<title>Testing PCRE</title>
</head>
<body>
<?php // Script 13.1 - pcre.php

continues on next page

Script 13.1 continued

80e =] Seript

30 // Display the HTML form.

31 7>

32 <form action="pcre.php" method="post">

33 <p>Regular Expression Pattern: <input
type="text" name="pattern" value="<?php
if (isset($pattern)) echo $pattern; 7>"
size="30" /> (include the
delimiters)</p>

34 <p>Test Subject: <input type="text"
name="subject" value="<?php if
(isset($subject)) echo $subject; ?>"
size="30" /></p>

35 <input type="submit" name="submit"
value="Test!" />

36 <input type="hidden" name="submitted"
value="TRUE" />

37 </form>

38  </body>

39  </html>

391

1dIDG 1S3] V ONILVIY)



CREATING A TEST SCRIPT

Chapter 13

2.

Check for the form submission.

if (isset($_POST['submitted'])) {

Treat the incoming values.
$pattern = trim($_POST['pattern']);
$subject = trim($_POST['subject']);

The form will submit two values to this
same script. Both should be trimmed,
just to make sure the presence of any
extraneous spaces doesn't skew the
results. I've omitted a check that each
input isn't empty, but you could include
that if you wanted.

Print a caption.

echo "<p>The result of checking<br
— /><b>$pattern</b><br />against<br

— />$subject<br />is ";

As you can see in Figure 13.2, the form
handling part of this script will start by
printing the values used.

Run the regular expression.

if (preg_match ($pattern, $subject) )
{

print 'TRUE!</p>";
} else {

print 'FALSE!</p>';
}

To test the pattern against the string,
feed both to the preg_match() function.
If this function returns 1, that means a
match was made, this condition will be
true, and the word TRUE will be printed.
If no match was made, the condition
will be false and that will be stated
(Figure 13.3).

) Testing PCRE - Mozilla Firefox

File Edit “iew History Bookmarks Tools  Help

The result of checking
PRO/

agamst

visual quickpro guide
is FALSE!

Regular Expression Pattern: |;"PRO,I
(include the delimniters)

Test Subject: |visua| quickpro guide

Figure 13.3 If the pattern does not match the
string, this will be the result. This image also
shows that regular expressions are case-
sensitive by default.

392



Perl-Compatible Regular Expressions

©) Testing PCRE - Mozilla Firefox

File Edit ‘ew History Bookmarks Tools  Help

The result of checking

pro

againist

wisual quickpro muide

15

Warning: preg_ratch() [function preg-match]: Delirniter must
not be alphanumeric or backslash in C:'Program FilesiAbyss
Web Serverthtdocs'pere.php on line 23

FALSE!

Fegular Expression Pattern: |pr0
(mclude the delumters)

Figure 13.4 If you fail to wrap the patternin
matching delimiters, you’ll see an error message.

v Tips

B Some text editors, such as BBEdit and
emacs, allow you to use regular expres-

sions to match and replace patterns with-

in and throughout several documents.

B Another difference between POSIX and
PCRE regular expressions is that the
latter can be used on binary data while
the former cannot.

B The PCRE functions all use the estab-
lished locale. A locale, discussed more
in Chapter 14, “Making Universal Sites,”

reflects a computer’s designated country

and language, among other settings.

. Complete the PHP code and create the

HTML form.
7>

<form action="pcre.php" method=
s "post"s

<p>Regular Expression Pattern:
— <input type="text" name=

— "pattern" value="<?php if

— (isset($pattern)) echo

— $pattern; ?>" size="30" />
— (include the delimiters)</p>

<p>Test Subject: <input type=

— "text" name="subject" value=
— "<?php if (isset($subject))

— echo $subject; ?>" size="30"
- /></p>

<input type="submit" name=
— "submit" value="Test!" />
<input type="hidden" name=
— "submitted" value="TRUE" />

</form>

The form contains two text boxes, both
of which are sticky (using the trimmed
version of the values).

. Complete the HTML page.

</body>
</html>

. Save the file as pcre.php, place it in your

Web directory, and test it in your Web
browser (Figures 13.1, 13.2, and 13.3).

Although you don't know the rules for
creating patterns yet, you could use the
literal a test (see Figures 13.1 and 13.2) or
check any other literal value. Remember
to use delimiters around the pattern

or else you'll see an error message
(Figure 13.4).

393

1dIDG 1S3] V ONILVIY)



DEFINING SIMPLE PATTERNS

Chapter 13

Defining Simple Patterns

Using one of PHP’s regular expression func-
tions is really easy, defining patterns to use
is hard. There are lots of rules for creating a
pattern. You can use these rules separately
or in combination, making your pattern
either quite simple or very complex. To start,
then, you'll see what characters are used to
define a simple pattern. As a formatting rule,
I'll define patterns in bold and will indicate
what the pattern matches in italics. The pat-
terns in these explanations won't be placed
within delimiters or quotes (both being
needed when used within preg_match()),
just to keep things cleaner.

The first type of character you will use for
defining patterns is a literal. A literal is a
value that is written exactly as it is inter-
preted. For example, the pattern a will match
the letter a, ab will match ab, and so forth.
Therefore, assuming a case-insensitive search
is performed, rom will match any of the fol-
lowing strings, since they all contain rom:

¢ CD-ROM
¢ Rommel crossed the desert.
¢ I'm writing a roman a clef.

Along with literals, your patterns will use
meta-characters. These are special symbols
that have a meaning beyond their literal
value (Table 13.1). While a simply means a,
the period (.) will match any single character
except for a newline (. matches a, b, ¢, the
underscore, a space, etc., just not \n). To
match any meta-character, you will need to
escape it, much as you escape a quotation
mark to print it. Hence \. will match the
period itself. So 1.99 matches 1.99 or 1899
or 1299 (a 1 followed by any character
followed by 99) but 1\.99 only matches 1.99.

Table 13.1 The meta-characters have unique
meanings inside of regular expressions.

Meta-Characters

CHARACTER

\
A

$

— — — — —

MEANING

Escape character

Indicates the beginning of a string
Indicates the end of a string

Any single character except newline
Alternatives (or)

Start of a class

End of a class

Start of a subpattern

End of a subpattern

Start of a quantifier

End of a quantifier

394



Perl-Compatible Regular Expressions

Two meta-characters specify where certain
characters must be found. There is the caret
(7), which will match a string that begins with
whatever follows the caret. There is also the
dollar sign ($), which marks the conclusion
of a pattern. Accordingly, Aa will match any
string beginning with an a, while a$ will
correspond to any string ending with an a.
Therefore, ~a$ will only match a (a string
that both begins and ends with a).

These two meta-characters—the caret and
the dollar sign—are crucial to validation, as
validation normally requires checking the
value of an entire string, not just the presence
of one string in another. For example, using
an email matching pattern without those two
characters will match any string containing
an email address. Using an email matching
pattern that begins with a caret and ends
with a dollar sign will match a string that
contains only a valid email address.

Regular expressions also make use of the
pipe (1) as the equivalent of or. Therefore,
a|b will match strings containing either a or
b. (Using the pipe within patterns is called
alternation or branching). So yes|no accepts
either of those two words in their entirety
(the alternation is not just between the two
letters surrounding it: s and n).

ene Testing PCRE =]

The result of checking
Jeat/

against

ilike catamarans

is TRUE!

Regular Expression Pattern: |fcatf
(include the delimiters)

Test Subject: Ii like catamarans
Test!

Figure 13.5 Looking for a cat in a string.

Once you comprehend the basic symbols,
then you can begin to use parentheses to
group characters into more involved pat-
terns. Grouping works as you might expect:
(abc) will match abc, (trout) will match
trout. Think of parentheses as being used to
establish a new literal of a larger size.
Because of precedence rules in PCRE,
yes|no and (yes)|(no) are equivalent. But
(even|heavy) handed will match either
even handed or heavy handed.

To use simple patterns:

1. Load pcre.php in your Web browser, if it
is not already.

2. Check if a string contains the letters cat
(Figure 13.5).
To do so, use the literal cat as the pat-
tern and any number of strings as the
subject. Any of the following would be
a match: catalog, catastrophe, my cat
left, etc. For the time being, use all lower-
case letters, as cat will not match Cat
(Figure 13.6).
Remember to use delimiters around the
pattern, as well (see the figures).

continues on next page

en6 Testing PCRE =

The result of checking
feat/

against

Cat

is FALSE!

Regular Expression Pattern: |,f(a1,f
(include the delimiters)

Test Subject: |Cat

Test!

Figure 13.6 Don’t forget that PCRE performs a case-
sensitive comparison by default.

395

SNY31lvd 31dWIS SNINI4d3Q



DEFINING SIMPLE PATTERNS

Chapter 13

3.

Check if a string starts with cat
(Figure 13.7).

To have a pattern apply to the start
of a string, use the caret as the first
character (*cat). The sentence my
cat left will not be a match now.

Check if a string contains the word
color or colour (Figure 13.8).

The pattern to look for the American
or British spelling of this word is
col(o|ou)r. The first three letters
—col—must be present. This needs
to be followed by either an o or ou.
Finally, an r is required.

v Tips

If you are looking to match an exact
string within another string, use the
strstr() function, which is faster than
regular expressions. In fact, as a rule of
thumb, you should use regular expres-
sions only if the task at hand cannot be
accomplished using any other function
or technique.

You can escape a bunch of characters in
a pattern using \Q and \E. Every charac-
ter within those will be treated literally
(s0 \Q$2.99?\E matches $2.99?).

To match a single backslash, you have

to use \\\\. The reason is that matching
a backslash in a regular expression
requires you to escape the backslash,
resulting in \\. Then to use a backslash
in a PHP string, it also has to be escaped,
so escaping both backslashes means a
total of four.

8ene Testing PCRE

The result of checking
[heat/

against

catamarans like me

is TRUE!

Regular Expression Pattern: |.Mcatf
(include the delimiters)

Test Subject: jcatamarans like me

Test!

Figure 13.7 The caret in a pattern means that the
match has to be found at the start of the string.

8ene Testing PCRE

The result of checking
feol(olou)r/

against

Zoe's eyes are the color of the sea
is TRUE!

Regular Expression Pattern: |{[ul(u\uu)r,f
(include the delimiters)

Test Subject: IZuE‘s eyes are the color of the sea

Test!

Figure 13.8 By using the pipe meta-character, the
performed search can be more flexible.

396




Perl-Compatible Regular Expressions

Table 13.2 The quantifiers allow you to dictate how
many times something can or must appear.

Quantifiers

CHARACTER MEANING

? oor1

* 0 or more

+ 1.0r more

{x} Exactly x occurrences

{x, y} Between x and y (inclusive)
{x,} At least x occurrences

Using Quantifiers

You've just seen and practiced with a couple
of the meta-characters, the most important
of which are the caret and the dollar sign.
Next, there are three meta-characters that
allow for multiple occurrences: a* will
match zero or more a’s (no a’s, a, aa, aaa,
etc.); a+ matches one or more a’s (a, aa, aaa,
etc., but there must be at least one); and a?
will match up to one a (a or no a’s match).
These meta-characters all act as quantifiers
in your patterns, as do the curly braces.
Table 13.2 lists all of the quantifiers.

To match a certain quantity of a thing, put
the quantity between curly braces ({}), stat-
ing a specific number, just a minimum, or
both a minimum and a maximum. Thus,
a{3} will match aaa; a{3,} will match aaa,
aaaa, etc. (three or more a’s); and a{3,5} will
match just aaa, aaaa, and aaaaa (between
three and five).

Note that quantifiers apply to the thing that
came before it, so a? matches zero or one
a’s, ab? matches an a followed by zero or
one b’s, but (ab)? matches zero or one ab’s.
Therefore, to match color or colour (see
Figure 13.8), you could also use colou?r as
the pattern.

397

SYIILNVND ONISN



USING QUANTIFIERS

Chapter 13

To use quantifiers:

1. Load pcre.php in your Web browser, if it
is not already.

2. Check if a string contains the letters ¢
and ¢, with one or more letters in
between (Figure 13.9).

To do so, use c.+t as the pattern and any
number of strings as the subject.
Remember that the period matches any
character (except for the newline). Each
of the following would be a match: cat,
count, coefficient, etc. The word doctor
would not match, as there are no letters
between the ¢ and the ¢ (although doctor
would match ¢.*t).

3. Check if a string matches either cat or
cats (Figure 13.10).
To start, if you want to make an exact
match, use both the caret and the dollar
sign. Then youd have the literal text cat,
followed by an s, followed by a question
mark (representing 0 or 1 §%s). The final
pattern—Acats?$—matches cat or cats
but not my cat left or I like cats.

4. Checkif a string ends with .33, .333, or
.3333 (Figure 13.11).

To find a period, escape it with a back-
slash: \.. To find a three, use a literal 3. To
find a range of 3’s, use the curly brackets
({3). Putting this together, the pattern is
\.3{2,4}. Because the string should end
with this (nothing else can follow), con-
clude the pattern with a dollar sign:
\.3{2,4}$.

Admittedly, this is kind of a stupid exam-
ple (not sure when youd need to do
exactly this), but it does demonstrate
several things. This pattern will match
lots of things—12.333, varmit.3333, .33,
look .33—but not 12.3 or 12.334.

3 Testing PCRE - Mozilla Firefox

Fle Edt Wiew Hstory Bookmarks Tools Help

The result of checking
fettf

against

cool, thanks!

is TRUE!

Eegular Expression Pattern: o+
(nchude the delumiters)

Test Subject: ‘Cnn\, thanks!

Figure 13.9 The plus sign, when used as a
quantifier, requires that one or more of a
thing be present.

¥ Testing PCRE - Mozilla Firefox ™ [=1/E3]
File Edt Wew Hstory Bookmarks Tools  Help

The result of checking
*cats?$/

agamnst

cat

is TRUE!

Eegular Expression Pattern: ‘ﬂ'“cﬁls%;‘
(mclude the delimiters)

Test Subject: [cat

Figure 13.10 You can check for the plural form
of many words by adding s?to the pattern.

8m6 Testing PCRE =

The result of checking
A324)8/

against
alkdfijdlksj:knd.333

is TRUE!

Regular Expression Partern: |j\.3{2,4)5,'
(include the delimiters)

Test Subject: [alkdfjdlksjknd.333

Test! I

Figure 13.11 The curly braces let you dictate the
acceptable range of quantities present.

398




Perl-Compatible Regular Expressions

[SNGN&] Testing PCRE =

The result of checkin,
FAOI1213141516171819)(5)$/
against

12345

is TRUE!

Regular Expression Pattern: |,'f\(0|1\2|3\4|5|6\7|8\9){5}31
(include the delimiters)

Test Subject: |12345

Test!

Figure 13.12 The proper test for confirming that a
number contains five digits.

5. Match a five-digit number (Figure 13.12).

A number can be any one of the num-
bers 0 through 9, so the heart of the pat-
tern is (0]1]2|3[4]5]6|7|8]9). Plainly said,
this means: a numberisaOoralora?2
or a 3.... To make it a five-digit number,
follow this with a quantifier:
(0]1]2]3]4|5]6|7|8|9){5}. Finally, to
match this exactly (as opposed to match-
ing a five-digit number within a string),
use the caret and the dollar sign:
AO[1123]4156|7]8]9){5}5.

This, of course, is one way to match a
United States zip code, a very useful
pattern.

v Tips

B When using curly braces to specify a

number of characters, you must always
include the minimum number. The maxi-
mum is optional: a{3} and a{3,} are
acceptable, but a{,3} is not.

Although it demonstrates good dedica-
tion to programming to learn how to
write and execute your own regular
expressions, numerous working exam-
ples are available already by searching
the Internet.

399

SYIILNVND ONISN



USING CHARACTER CLASSES

Chapter 13

Using Character Classes

As the last example demonstrated (Figure
13.12), relying solely upon literals in a pat-
tern can be tiresome. Having to write out
all those digits to match any number is silly.
Imagine if you wanted to match any four-
letter word: A(a|b|c|d...){4}$ (and that
doesn’'t even take into account uppercase
letters)! To make these common references
easier, you can use character classes.

Classes are created by placing characters
within square brackets ([]). For example,
you can match any one vowel with [aeiou].
This is equivalent to (ae|ilo|u). Or you can
use the hyphen to indicate a range of char-
acters: [a-z] is any single lowercase letter
and [A-Z] is any uppercase, [A-Za-z] is any
letter in general, and [0-9] matches any
digit. As an example, [a-z]{3} would match
abce, def, oiw, etc.

Within classes, most of the meta-characters
are treated literally, except for four. The
backslash is still the escape, but the caret (A)
is a negation operator when used as the first
character in the class. So [*aeiou] will
match any non-vowel. The only other meta-
character within a class is the dash, which
indicates a range. (If the dash is used as the
last character in a class, it’s a literal dash.)
And, of course, the closing bracket (J) still
has meaning as the terminator of the class.

Naturally a class can have both ranges and
literal characters. A person’s first name,
which can contain letters, spaces, apostro-
phes, and periods, could be represented by
[A-z'.] (again, the period doesn't need to be
escaped within the class, as it loses its meta-
meaning there).

Along with creating your own classes, there
are six already-defined classes that have
their own shortcuts (Table 13.3). The digit
and space classes are easy to understand.

Table 13.3 These character classes are commonly
used in regular expressions.

Character Classes

CLASS SHORTCUT MEANING

[0-9] \d Any digit
D\A\r\t\n\v] \s Any white space
[A-Za-z0-9_] \w Any word character
[70-9] \D Not a digit
[ANAAP\t\n\v] \S Not white space
[AA-Za-z0-9_] \W Not a word character

400



Perl-Compatible Regular Expressions

3 Testing PCRE - Mozilla Firefox

Fle Edt Wiew Hatory Bookmarks Tooks Help

The result of checling
OASEN AN 8/
against

12345-0003

1¢ TRUE!

Regular Expression Pattern |fﬁ(\d{5}) (Aa{an7s/
(include the delimiters)

Test Subject: |123457DDD3 ‘

Figure 13.13 The pattern to match a United
States zip code, in either the five-digit or five
plus four format.

3 Testing PCRE - Mozilla Firefox (=113
File Edt View History Bookmarks Tools Help

The result of checking
S$

agamst

1 don't think this will pass
is FATLSEI

Regular Expression Pattern: [\S8/
(include the delmiters)

Test Subject |\ dlon't think this will pass

Figure 13.14 The no-white-space shortcut
can be used to ensure that a submitting
string is contiguous.

e Testing PCRE =)

The result of checking

[ADW -]+ @ [ -\ JA-Za-z}{ 2,615/
against

larry .ullman89 @ example .com.tz

is TRUE!

Regular Expression Pattern: |,'A[\w.—]+@[\w.—]+\.[A—Za—z](Z,E}S,i
(include the delimiters)

Test Subject: |Iarry.u||man59@example.ccm.lz

Test!

Figure 13.15 A pretty good and reliable validation
for email addresses.

The word character class doesn't mean
“word” in the language sense but rather as in
a string unbroken by spaces or punctuation.

Using this information, the five-digit number
(aka, zip code) pattern could more easily be
written as A[0-9]{5}$ or A\d{5}$. As anoth-
er example, can\s?not will match both can
not and cannot (the word can, followed by
zero or one space characters, followed by rot).

To use character classes:

1.

Load pcre.php in your Web browser, if it
is not already.

. Check if a string is formatted as a valid

United States zip code (Figure 13.13).

A United States zip code always starts
with five digits (A\d{5}). But a valid zip
code could also have a dash followed by
another four digits (-\d{4}$). To make
this last part optional, use the question
mark (the 0 or 1 quantifier). This com-
plete pattern is then A(\d{5})(-\d{4})?$.
To make it all clearer, the first part of the
pattern (matching the five digits) is also
grouped in parentheses, although this
isn't required in this case.

Check if a string contains no spaces
(Figure 13.14).

The \S character class shortcut will match
non-space characters. To make sure that
the entire string contains no spaces, use
the caret and the dollar sign: M\S$. If you
don't use those, then all the pattern is
confirming is that the subject contains
at least one non-space character.

. Validate an email address (Figure 13.15).

The pattern A\w.-]+@[\w.-]+\.[A-Za-
z]{2,6}$ provides for reasonably good
email validation. It's wrapped in the caret
and the dollar sign, so the string must be
a valid email address and nothing more.

continues on next page

401

S3ISSV1) ¥ILDOVAIVH) ONISN



USING CHARACTER CLASSES

Chapter 13

An email address starts with letters,
numbers, and the underscore (represent-
ed by \w), plus a period (.) and a dash.
This first block will match larryullman,
larry77, larry.ullman, larry-ullman, and
so on. Next, all email addresses include
one and only one @. After that, there can
be any number of letters, numbers, peri-
ods, and dashes. This is the domain
name: dmcinsights, smith-jones,
amazon.co (as in amazon.co.uk), etc.
Finally, all email addresses conclude with
one period and between two and six let-
ters. This accounts for .com, .edu, .info,
.travel, etc.

v Tips

B I think that the zip code example is a

great demonstration as to how complex
and useful regular expressions are. One
pattern accurately tests for both formats
of the zip code, which is fantastic. But
when you put this into your PHP code,
with quotes and delimiters, it's not easily
understood:

if (preg_match ('/AQ\d{5})(-\d{4})?$/
-, $zip)) {.
That certainly looks like gibberish, right?

This email address validation pattern is
pretty good, although not perfect. It will
allow some invalid addresses to pass
through (like ones starting with a period
or containing multiple periods together).
However, a 100 percent foolproof valida-
tion pattern is ridiculously long, and fre-
quently using regular expressions is real-
ly a matter of trying to exclude the bulk
of invalid entries without inadvertently
excluding any valid ones.

Regular expressions, particularly PCRE
ones, can be extremely complex. When
starting out, it’s just as likely that your
use of them will break the validation rou-
tines instead of improving them. That'’s
why practicing like this is important.

Using Boundaries

Boundaries are shortcuts for helping to find, um, boundaries. In a way, you've already seen
this: using the caret and the dollar sign to match the beginning or end of a value. But what

if you wanted to match boundaries within a value?

The clearest boundary is between a word and a non-word. A “word” in this case is not cat,
month, or zeitgeist, but in the \w shortcut sense: the letters A through Z (both upper- and
lowercase), plus the numbers 0 through 9, and the underscore. To use words as boundaries,
theres the \b shortcut. To use non-word characters as boundaries, there’s \B. So the pattern
\bfor\b matches theyve come for you but doesn’t match force or forebode. Therefore \bfor\B
would match force but not theyve come for you or informal.

402



Perl-Compatible Regular Expressions

Script 13.2 To reveal exactly what values in a string
match which patterns, this revised version of the
script will print out each match. You can retrieve the
matches by naming a variable as the third argument
in preg_match() or preg_match_all(Q).

8ee = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtmll-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/

xhtml">
4 <head>
5 <meta http-equiv="content-type" content=

"text/html; charset=iso-8859-1" />

6 <title>Testing PCRE</title>
7 </head>
8 <body>

9 <?php // Script 13.2 - matches.php
10

11  // This script takes a submitted string
and checks it against a submitted pattern.

12 // This version prints every match made.
13

14 if (isset($_POST['submitted'])) {

15

16 // Trim the strings:

17 $pattern = trim($_POST['pattern']);

18 $subject = trim($_POST['subject']);

19

20 // Print a caption:

21 echo "<p>The result of checking<br />

<b>$pattern</b><br />against<br />

$subject<br />is ";
22
23 // Test:

24 if (preg_match_all ($pattern, $subject,
$matches) ) {

25 echo '"TRUE!</p>";
26

(script continues on next page)

Finding All Matches

Going back to the PHP functions used

with Perl-Compatible regular expressions,
preg_match() has been used just to see if

a pattern matches a value or not. But the
script hasn't been reporting what, exactly,
in the value did match the pattern. You can
find out this information by using a variable
as a third argument to the function:

preg_match(pattern, subject, $match)

The $match variable will contain the first
match found (because this function only
returns the first match in a value). To find
every match, use preg_match_allQ). Its
syntax is the same:

preg_match_all(pattern, subject,
— $matches)

This function will return the number of
matches made, or FALSE if none were found.
It will also assign to $matches every match
made. Let’s update the PHP script to print
the returned matches, and then run a couple
more tests.

To report all matches:

1. Open pcre.php (Script 13.1) in your text
editor or IDE.

2. Change the invocation of preg_match()
to (Script 13.2)

if (preg_match_all ($pattern,
$subject, $matches) ) {

There are two changes here. First, the
actual function being called is different.
Second, the third argument is provided
a variable name that will be assigned
every match.

continues on next page

403

SIHILVIN 11V SNIANI]



FINDING ALL MATCHES

Chapter 13

3.

After printing the value TRUE, print the
contents of $matches.

echo '<pre>' . print_r($matches, 1) .
— '</pre>";

Even though the PRE tags are not
XHTML compliant, this is the easiest
way to know what’s in $matches. As you'll
see when you run this script, this vari-
able will be an array whose first element
is an array of matches made.

Change the form’s action attribute to
matches.php.

<form action="matches.php" method=
— "post">

This script will be renamed, so the
action attribute must be changed, too.

Change the subject input to be a
textarea.

<p>Test Subject: <textarea name=

— "subject" rows="5" cols="30"><?php
— 1f (isset($subject)) echo $subject;
— 7></textarea></p>

In order to be able to enter in more text
for the subject, this element will become
a textarea.

Script 13.2 continued

eo0e =] Seript

27 // Print the matches:

28 echo "<pre>' . print_r($matches, 1) .

'</pre>';

29

30 } else {

31 echo '"FALSE!</p>";

32 }

33

34 } // End of submission IF.

35 // Display the HTML form.

36 7>

37 <form action="matches.php" method="post">

38 <p>Regular Expression Pattern: <input
type="text" name="pattern" value="
<?php if (isset($pattern)) echo
$pattern; ?>" size="30" /> (include
the delimiters)</p>

39 <p>Test Subject: <textarea name=
"subject" rows="5" cols="30"><?php
if (isset($subject)) echo $subject;
7></textarea></p>

40 <input type="submit" name="submit"
value="Test!" />

41 <input type="hidden" name="submitted"
value="TRUE" />

42 </form>

43 </body>

44 </html>

404



Perl-Compatible Regular Expressions

6. Save the file as matches.php, place it in
your Web directory, and test it in your
Web browser (Figures 13.16, 13.17,
13.18, and 13.19).

For the first test, use for as the pattern
and This is a formulaic test for informal
matches. as the subject (Figure 13.16). It
may not be proper English, but it’s a
good test subject.

2 Testing PCRE - Mozilla Firefox

Fle Edt View History Bookmarks Tooks Help

-
The result of checking B
ffor/

agamst

This is a formulaic test for mformal matches

is TRUE!

irray
(
[0] = Array
{
[0] =» for
[1] => for
[2] => for
! -

Figure 13.16 This first test returns
three matches, as the literal text
forwas found three times.

3 Testing PCRE - Mozilla Firefox = X
Fle Edt Miew Hitory Bookmarks Tooks  Help

~
The result of checking |
for[\S]*/
against
This 15 a formulanc test for mformal matches
1s TRUE!

irray
{
[0] => Array
{
[0] =» formulaic
[1] => for
[2] =» formal

v

Figure 13.18 This revised pattern
matches strings that begin with
forand end on a word.

For the second test, change the pattern
to for.* (Figure 13.17). The result may
surprise you, the cause of which is dis-
cussed in the sidebar, “Being Less
Greedy.” To make this search less greedy,
the pattern could be changed to for.*?,
whose results would be the same as
those in Figure 13.16.

o Testing PCRE - Mozilla Firefox

Fle Edt Wew History Bookmarks Tools Hslp

[E3

The result of checking

Hor.*/

agamnst

Thiz 13 a formulaic test for mformal matches
18 TRUE!

Array
{
[0] => Array
{
[0] => formulaic test for informal matches.

'

!

Regular Expression Pattern ‘ﬂDI’.*ﬂ' | (inchude the
delimiters) v

Figure 13.17 Because regular expressions are greedy
by default (see the sidebar), this pattern only finds
one match in the string. That match happens to start
with the first instance of for and continue until the
end of the string.

3 Testing PCRE - Mozilla Firefox:

Fle Edt View Hstory Bookmarks Tools Help

~

The result of checking
Nb[a-z]*for[a-z]*\b/

against

This 15 a formulaic test for mformal matches.
is TRUE!

Array
{
)

=» Array

t
[0] => formulaic
[1] == for
[2] = informal

Figure 13.19 Unlike the pattern
in Figure 13.18, this one matches
entire words that contain for
(informal here, formal in Figure
13.18).

405

SIHILVIN 11V SNIANI]



FINDING ALL MATCHES

Chapter 13

For the third test, use for[\S]*, or, more
simply for\S* (Figure 13.18). This has the
effect of making the match stop as soon
as a white space character is found
(because the pattern wants to match for
followed by any number of non-white
space characters).

For the final test, use \b[a-z]*for[a-z]
*\b as the pattern (Figure 13.19). This
pattern makes use of boundaries, dis-
cussed in the sidebar “Using Boundaries,”
earlier in the chapter.

v Tip

B The preg_split() function will take a

string and break it into an array using a
regular expression pattern.

Being Less Greedy

A key component to Perl-Compatible reg-
ular expressions, which isn't present in
POSIX, is the concept of greediness. By
default, PCRE will attempt to match as
much as possible. For example, the pattern
<.+> matches any HTML tag. When test-
ed on a string like <a href="page.php”>
Link</a>, it will actually match that
entire string, from the opening < to the
closing one. This string contains three
possible matches, though: the entire
string, the opening tag (from <a to ">),
and the closing tag (</a>).

To overrule greediness, make the match
lazy. A lazy match will contain as little
data as possible. Any quantifier can be
made lazy by following it with the ques-
tion mark. For example, the pattern
<.+?> would return two matches in the
preceding string: the opening tag and the
closing tag. It would not return the whole
string as a match. (This is one of the con-
fusing aspects of the regular expression
syntax: the same character—here, the
question mark—can have different mean-
ings depending on its context.)

Another way to make patterns less greedy
is to use negative classes. The pattern
<[~>]+> matches everything between
the opening and closing <> except for a
closing >. So using this pattern would
have the same result as using <.+?>. This
pattern would also match strings that
contain newline characters, which the
period excludes.

406



Perl-Compatible Regular Expressions

Table 13.4 These characters, when placed after the
closing delimiter, alter the behavior of a regular
expression.

Pattern Modifiers

CHARACTER REsuLT

A Anchors the pattern to the beginning of
the string

i Enables case-insensitive mode

m Enables multiline matching

s Has the period match every character,
including newline

X Ignores most white space

U Performs a non-greedy match

Using Modifiers

The majority of the special characters you
can use in regular expression patterns are
introduced in this chapter. One final type of
special character is the pattern modifier.
Table 13.4 lists these. Pattern modifiers

are different than the other meta-characters
in that they are placed after the closing
delimiter.

Of these delimiters, the most important is i,
which enables case-insensitive searches. All
of the examples using variations on for (in the
previous sequence of steps) would not match
the word For. However, /for.*/i would be a
match. Note that [ am including the delim-
iters in that pattern, as the modifier goes
after the closing one. Similarly, the last step
in that sequence referenced the sidebar “Begin
Less Greedy” and stated how for.*? would
perform a lazy search. So would /for.*/U.

The multiline mode is also interesting in that
you can make the caret and the dollar sign
behave differently. By default, each applies to
the entire value. In multiline mode, the caret
matches the beginning of any line and the
dollar sign matches the end of any line.

407

SY¥3141A0W ONIS()



UsSING MODIFIERS

Chapter 13

To use modifiers:

1. Load matches.php in your Web browser,
if it is not already.

2. Validate a list of email addresses
(Figure 13.20).
To do so, use /A [\w.-]+@[\w.-]+\.[A-
Za-z]{2,6}\r?$/m as the pattern. You'll
see that I've added an optional carriage
return (\r?) before the dollar sign. This is
necessary because some of the lines will
contain returns and others won't. And in
multiline mode, the dollar sign matches
the end of a line. (To be more flexible,
you could use \s? instead.)

3. Validate a list of United States zip codes
(Figure 13.21).

Very similar to the example in Step 2,
the pattern is now /A(\d{5})(-\d{4})?\
s?$/m. You'll see that I'm using the more
flexible \s? instead of \r?.

You'll also notice when you try this your-
self (or in Figure 13.21) that the $matches
variable contains a lot more information
now. This will be explained in the next
section of the chapter.

v Tip

B To always match the start or end of a
pattern, regardless of the multiline set-
ting, there are shortcuts you can use.
Within the pattern, the shortcut \A
will match only the very beginning of
the value, \z matches the very end, and
\Z matches any line end, like $ in single-
line mode.

enoe Testing PCRE (=)

The result of checking

IAW -+ @ D - HAA-Za-z {2,607 $/m
against

email@ example.com trout this@ example.co.uk
larry ullman7 @ example.info

is TRUE!

hrray
[0) => Array
[0] => email@example.com
[1] => this@example.co.uk
[2] => larry.ullmaniéexample.info
)

Regular Expression Pattern: |/ Al\w.-1+@[\w.-1+\.[A-Za-2{2,6\r73 /
(include the delimiters)

emailéexample.com

trou

this@example.co.uk
larry.ullman7@example.info

Test Subject:

Test!

Figure 13.20 A list of email addresses, one per line,
can be validated using the multiline mode. Each valid
address is stored in $matches.

enn Testing PCRE (=)

The result of checking

ANA{SH(A{4]) 7\ ?$/m

against

12345 trout 12345-0001 45678-002 89765 b 78944
is TRUE!

Array
{
[0] => Array
{

(0) => 12345
(1) => 12345-0001
(2] => 78944

(Rt

n
v
=
&
Al
]

=

(0) => 12345
(1) => 12345
(2] => 78944

(2

=> Array

(0] =
(1] => -0001
(2] =

)

)

Regular Expression Pattern: |M(\d{S]}(—\dfd})?\s?S,’m
(include the delimiters)

12345
itrout
12345=0001
45678-002
B9765 b

Test Subject: |78944

Test!

Figure 13.21 Validating a list of zip codes, one
per line.

408




Perl-Compatible Regular Expressions

Matching and Replacing
Patterns

The last subject to discuss in this chapter is

how to match and replace patterns in a value.

While preg_match() and preg_match_all()
will find things for you, if you want to do a
search and replace, you'll need to use preg_
replace(). Its syntax is

preg_replace(pattern, replacement,
» subject)

This function takes an optional fourth argu-
ment limiting the number of replacements
made.

=
© Testing PCRE Replace - Mozilla Firefox
Fle Edit Wiew History Bookmarks Tools  Help

Regular Expression Pattern: |.-"(b|eep)(s|ed|er|mg)?,f ‘
{mclude the delrmters)

Replacement |"“'“‘“‘““ |

Oh, hleep! This text contains a
really bleeping bad word.

Test Subject:

Figure 13.22 One use of preg_replace() would be to
replace variations on inappropriate words with
symbols representing their omission.

To replace all instances of cat with dog, you
would use

$str = preg_replace('/cat/', 'dog', 'I
» like my cat.');

This function returns the altered value (or
unaltered value if no matches were made),
so you'll likely want to assign it to a variable
or use it as an argument to another function
(like printing it by calling echo()). Also, as

a reminder, this is just an example: youd
never want to replace one literal string with
another using regular expressions, use
str_replace() instead.

There is a related concept to discuss that is
involved with this function: back referencing.
In a zip code matching pattern—A(\d{5})(-
\d{4})?$—there are two groups within
parentheses: the first five digits and the
optional dash plus four-digit extension.
Within a regular expression pattern, PHP
will automatically number parenthetical
groupings beginning at 1. Back referencing
allows you to refer to each individual section
by using $ plus the corresponding number.
For example, if you match the zip code
94710-0001 with this pattern, referring back
to $2 will give you -0001. The code $0 refers
to the whole initial string. This is why Figure
13.21 shows entire zip code matches in
$matches[@], the matching first five digits in
$matches[1], and any matching dash plus
four digits in $matches[2].

To practice with this, let's modify Script 13.2 to
also take a replacement input (Figure 13.22).

409

SNY3LLVd DONIDVIdIY ANV ONIHIOLVIN



MATCHING AND REPLACING PATTERNS

Chapter 13

To match and replace patterns:

1.

2.

Open matches.php (Script 13.2) in your
text editor or IDE.

Add a reference to a third incoming vari-
able (Script 13.3).

$replace = trim($_POST['replace']);
As you can see in Figure 13.22, the third
form input (added between the existing
two) takes the replacement value. That
value is also trimmed to get rid of any
extraneous spaces.

Change the caption.

echo "<p>The result of replacing<br
— /><b>$pattern</b><br />with<br
— />$replace<br />in<br />$subject

— <br /><br />";

The caption will print out all of the
incoming values, prior to applying
preg_replace().

Script 13.3 To test the preg_replace() function,
which replaces a matched pattern in a string with
another value, you can use this third version of the

PCRE test script.

0080 2 Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/

xhtml">

4 <head>

5 <meta http-equiv="content-type" content=
"text/html; charset=iso-8859-1" />

6 <title>Testing PCRE Replace</title>

7 </head>

8 <body>

9 <?php // Script 13.3 - replace.php

10

11  // This script takes a submitted string

and checks it against a submitted pattern.

12 // This version replaces one value with

another.

13

14 if (isset($_POST['submitted'])) {

15

16 // Trim the strings:

17 $pattern = trim($_POST['pattern']);

18 $subject = trim($_POST['subject']);

19 $replace = trim($_POST['replace']);

20

21 // Print a caption:

22 echo "<p>The result of replacing<br
/><b>$pattern</b><br />with<br />
$replace<br />in<br />$subject<br />
<br />";

23

24 // Check for a match:

25 if (preg_match ($pattern, $subject) ) {

26 echo preg_replace($pattern, $replace,

$subject) . "</p>';

27 } else {

(script continues on next page)

410



Perl-Compatible Regular Expressions

Script 13.3 continued

806 = Script

28 echo 'The pattern was not found!</p>';
29 }

30

31 } // End of submission IF.
32 // Display the HTML form.
33 7>

34 <form action="replace.php" method="post">

35 <p>Regular Expression Pattern: <input

type="text" name="pattern" value="<?php
if (isset($pattern)) echo $pattern; ?>"

size="30" /> (include the delimiters)
</p>

36 <p>Replacement: <input type="text"
name="replace" value="<?php if
(isset($replace)) echo $replace; 7>"
size="30" /></p>

37 <p>Test Subject: <textarea name=
"subject" rows="5" cols="30"><?php
if (isset($subject)) echo $subject;
?></textarea></p>

38 <input type="submit" name="submit"
value="Test!" />

39 <input type="hidden" name="submitted"
value="TRUE" />

40  </form>
41  </body>
42 </html>

) Testing PCRE Replace - Mozilla Firefox

Fle Edt View History Bookmarks Tooks Help

The result of replacing
f(bleep)(s|ed|er|ing)?’
with

Aokt

in
Oh, bleep! This text contains a really bleeping bad word.

Oh, #*+**| This text contains a really ***** bad word. |

Regular Expression Pattern |/(b|eep)(s|ed|er|mg)7/
(include the delimiters)

Replacement: |”°"”‘ ‘

Figure 13.23 The resulting text has uses of
bleep, bleeps, bleeped, bleeper, and bleeping
replaced with *****,

4. Change the regular expression condition-
al so that it only calls preg_replace() if a
match is made.

if (preg_match ($pattern, $subject)
=) {

echo preg_replace($pattern,
— $replace, $subject) . '</p>’';

} else {

echo 'The pattern was not
— found!</p>";

}

You can call preg_replace() without
running preg_match() first. If no match
was made, then no replacement will
occur. But to make it clear when a match
is or is not being made (which is always
good to confirm, considering how tricky
regular expressions are), the preg_match()
function will be applied first. If it returns
a true value, then preg_replace() is
called, printing the results (Figure
13.23). Otherwise, a message is printed
indicating that no match was made
(Figure 13.24).

©) Testing PCRE Replace - Mozilla Firefox

fle Edt Wew Hstory Bookmarks Tools  Help

2

The result of replacing
{ \h[a-z]*(bleep)[a-z] B/

Nothing really bad here.

The pattern was not found! 4

Regular Expression Pattern: ‘ﬂ' \b[a-z]*(bleep)[a-2hB/
(mclude the delimiters)

Replacement: "“’”“"‘" |

w

Figure 13.24 If the pattern is not found within
the subject, the subject will not be changed.
The replacement value is hidden here
because it uses HTML tags; see the source
code for the full effect.

411

SNY3LLVd DONIDVIdIY ANV ONIHIOLVIN



MATCHING AND REPLACING PATTERNS

Chapter 13

5.

Change the form’s action attribute to
replace.php.

<form action="replace.php" method=
, "post"s

This file will be renamed, so this value
needs to be changed accordingly.

Add a text input for the replacement
string.

<p>Replacement: <input type="text"
— name="replace" value="<?php if
— (isset($replace)) echo $replace;
— ?>" size="30" /></p>

Save the file as replace.php, place it in
your Web directory, and test it in your
Web browser (Figure 13.25).

As a good example, you can turn an
email address found within some text
into its HTML link equivalent: <a
href="mailto:email@example.com">
email@example.com</a>. The pattern for
matching an email address should be
familiar by now: A[\w.-]+@[\w.-]+\.[A-
Za-z]{2,6}$. However, because the email
address could be found within some text,
the caret and dollar sign need to be

replaced by the word boundaries short-
cut: \b. The final pattern is therefore
/\b[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}\b/.
To refer to this matched email address,
you can refer to $@ (because $0 refers to
the entire match, whether or not paren-
theses are used). So the replacement
value would be <a href="mailto:$0">$0
</a>. Because HTML is involved here,
look at the HTML source code of the
resulting page for the best idea of what
happened.

v Tips

B Back references can even be used within

the pattern. For example, if a pattern
included a grouping (i.e., a subpattern)
that would be repeated.

I've introduced, somewhat quickly, the
bulk of the PCRE syntax here, but theres
much more to it. Once you've mastered
all this, you can consider moving on to
anchors, named subpatterns, comments,
lookarounds, possessive quantifiers,

and more.

806 Testing PCRE Replace

The result of replacing

Ab[\W .- [+ @ [\w -\ [A-Za-z]{2 6 \b/

with

50

in

Contact me at email@example com. Thanks!

Contact me at email@example com. Thanks!

(include the delimiters)

Replacement: |<a href=

Regular Expression Pattern: |,f\b[\w.—]+@[\w.—]+\.[A—Za—z]{2,ﬁ}\b,‘

50" size="30" />

hanks!

Test Subject:

Test!

ontact me at emaillexample.com.

Figure 13.25 Another use of
preg_replace()is
dynamically turning email
addresses into clickable links.

412



MAKING
UNIVERSAL SITES

The biggest change in version 6 of PHP is support for Unicode. But what is Unicode
and why should you care? In this chapter, I'll answer those questions, and show you
how you might change your Web sites using this new information. But as a preview, if
youd like your Web sites to be usable by people that don't speak the same language

as you, or if you don't feel like always programming in your non-native language,

keep reading!

This chapter goes over several subjects, all with the goal of making a more global
Web site. The bulk of these topics involve text: character sets, encodings, collation,
transliteration, and Unicode. These topics apply to PHP, MySQL, HTML, and even the
application you create your PHP scripts in. I'll be presenting a book’s worth of infor-
mation in just a few pages, but it’ll certainly be enough for you to use in real sites.

The other subjects covered here are time zones and locales. Like the language a user
reads and writes, these two ideas reflect the different cultures and regions in the
world, and therefore ought to be considered in your Web applications. Understanding
all of these subjects, and being able to apply the techniques taught herein, will make
your Web sites more reliable, more impressive, and accessible to a larger audience.

413

S3LIS TVSYIAINN ONDIVIN



CHARACTER SETS AND ENCODING

Chapter 14

Character Sets and
Encoding

To understand the concepts of character sets
and encoding, you have to first realize that,
in your computer, there is no such thing as
the letter A. The letter A is part of a charac-
ter set: the symbols used by a language (also
called a character repertoire). But the A on
my screen as I write this, the A in the text
document itself: these aren't really A’s. At
their foundation, computers understand num-
bers, not letters. This works well for com-
puters, but humans like to see letters. The
solution is to have numbers represent letters.

ASCIIL, which you've certainly heard of and
is short for American Standard Code for
Information Interchange, is a representation
of all the letters in the English alphabet—A
through Z, both upper- and lowercase—plus
the digits 0 through 9, plus all English punc-
tuation. That’s a total of 95 characters. Add
to this 33 non-printing characters such as
the newline (\n) and a tab (\t), and you have
128 characters, associated with the integers 0
through 127 (Table 14.1). This is a coded
character set: each character is represented
by a number (the number is also called a
code point).

When computers store data or transfer it
from one computer to another, they don't do
so in numbers, they do so in bytes. Encoding
is how a coded character set is mapped from
integers to bytes. Working backward then,
by identifying how text is encoded, a com-
puter can recognize its coded character set,
and therefore know what characters should
be displayed.

Although ASCII represents the entire English
character set, it doesn't include all the accented
characters in related languages, like French
and Spanish. Nor does it include non-Latin
characters, like those present in German,

Greek, or Korean. It doesn't even include things
like curly quotes. Other encodings have since
been defined, lots and lots of them: different
encodings for different languages, even differ-
ent encodings for different computers (e.g.,
Windows vs. Mac). Making communication
difficult, two encodings would commonly use
the same number to represent different
characters. From this mess, Unicode was born.

Unicode provides a unique number represent-
ing every symbol in every alphabet for any
operating system and program. It's a huge goal
and Unicode succeeds rather well. Version 5
of Unicode—the current version at the time
of this writing—supports over 99,000 char-
acters, but the upper limit is well over a mil-
lion. Table 14.2 lists just a sampling of the
scripts supported (a script being the collection
of symbols used by one or more languages).

Table 14.1 These twelve items are a sampling of the
128 characters defined by the ASCII standard.

Some ASCII Characters

INTEGER KEY/CHARACTER
0 NULL
9 \t

10 \n

27 Escape
32 Space
43 +

54 6

64 @

65 A

97 a

126 ~

127 Delete

414



Making Universal Sites

When using Unicode, you still have to choose
which encoding to go with. UTF-8 is perhaps
the most common, in part because ASCII,
used so commonly for years, is a nice little
subset of UTF-8. In fact, any ASCII text is
also valid UTF-8. There’s also UTF-16 and
UTEF-32, each with larger character sets.

@ O O =++SPAM=**** 3% Aatt@¢ — Junk =)

From: Furuichi Setsuko <zuktitkc@excie cojp
Subject: *SPAM™ % AdesOg
Date: October 26, 2007 6:13:30 AM EDT
To: phpmysql2@dmeinsights.com ,
Lamy E. Ullman <phpmysgl@dmeingights come
Reply-To: lida Miku <zuktitic @excite cojp=

[zeii@

vtB[iwéayakaéxEﬁKEl

Figure 14.1 This friendly little piece of spam I received
didn’t use the right encoding, so junk characters
appeared instead (thereby denying me the full joy of
the message).

Table 14.2 A handful of the scripts represented in
Unicode. Some scripts, like Latin, are used in many
languages (English, Italian, Portuguese, etc); others,
like Hangul, are only used in one (Korean, in this case).

Unicode Supported Scripts

SCRIPT
Arabic
Cherokee
Cyrillic
Greek
Han
Hebrew
Latin
N’Ko
Runic
Tibetan

In these paragraphs I've introduced the key
concepts that will help you comprehend the
information in the rest of the chapter. Doing
so required the distillation of oodles of tech-
nical information, the glossing over of many
details, and the abbreviation of decades of
computer history. If you want to learn more
about these subjects, a search online will
turn up volumes, but what you most need to
understand is this: the encoding you use dic-
tates what characters can be represented
(and therefore, what languages can be used).

v Tips

B Unfortunately, many resources, including
HTML and MySQL, use the term charset
or character set to refer to the encoding.
The two things are technically different,
but the terms are used synonymously.

W Prior to UTF-8, ISO-8859-1 was one of
the more commonly used encodings. It
represents most Western European lan-
guages. It’s still the default encoding for
many Web browsers and other applications.

B Email messages should (but don't always)
indicate the encoding. You can normally
see this by viewing the raw source of a
message, which will contain a line like

Content-Type: text/plain;
» charset="UTF-8"

B Any document—email, Web page, or text
file—that contains some junk characters
probably wasn't encoding properly
(Figure 14.1).

415

9NIAODN3 ANV S13G ¥31DVIVH)



CREATING MULTILINGUAL WEB PAGES

Chapter 14

Creating Multilingual
Web Pages

Eventually this chapter will go over how to
use multiple languages (i.e., multiple charac-
ters) in PHP and MySQL, but doing so man-
dates that you know how to make an HTML
page that can display characters from many
languages. Of course, what characters you
can display is determined by the encoding,
but even that topic comes into play more
than once in this process.

Say you want to create a Web page that con-
tains text in both English and Japanese. For
starters, your computer must be able to enter
characters in both languages (it must have
the necessary fonts). Normally you can type
in one (native) language, but most operating
systems offer tools for inserting characters
from other languages, too. If your computer
supports both languages, then you need to
use an encoding for the Web page that sup-
ports both, too. That would be UTFE-8, in all
likelihood. Therefore, the HTML file needs
to be written in an application that supports
UTF-8 encoding; not all do.

If you have all that, you can now create a
document with both English and Japanese
characters. This HTML page will be viewable
by others in their Web browsers. The Web
browsers, then, need to know what encoding
the HTML page uses. One way to convey
this information is to use a META tag:

<meta http-equiv="Content-Type"
» content="text/html; charset=utf-8">

(To repeat what’s said on a previous page,
unfortunately the term charset is used to
mean encoding, not character set.)

The last requirement is that the end user’s
computer also support both character sets
(i.e., they have the necessary fonts). If so,
then you've successfully created and shared
a multilingual Web page. Before writing
another opening PHP tag, let's make sure
you can get all this working.

To create a multilingual Web page:

1. Confirm that your text editor or IDE sup-
ports UTF-8 encoding (Figure 14.2).

You'll need to check the Web site, help
files, or other documentation for your
application. Getting this step right is
necessary, though, as you can't create a
UTF-8-encoded document if your editor
doesn’'t support UTE-8.

Some applications let you set this in their
preferences (as in Figure 14.2). Others set
the encoding when you save the file
(Figure 14.3).

BAEGA Preferences

R Pep B —

(_Enamiean )
e

(Restore Defauins )

BliLink file’s emcoding 1o HTMLIXML character set

If fle's encoding can't be guessed, use

Western Mac 08 Bomand =
Defush text ancoding for mew documens

Unicode™ (UTF-8, no BOM) I
9 Use LT e unix seript 120

Figure 14.2 My favorite text editor, BBEdit (which
sadly only runs on a Mac), has a preferences area
where you can set the default encoding for documents.

416




Making Universal Sites

Script 14.1 This script will be a test to confirm that a
UTF-8 Web page can be successfully created and viewed.

8oeé = Script

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://waw.w3.org/TR/xhtml1/DTD/
xhtmll-transitional.dtd™>

3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

<meta http-equiv="content-type"
content="text/html; charset=utf-8" />

<title>Testing UTF-8</title>
</head>
<body style="font-size: 18pt;">
<!-- Script 14.1 - utf8.html -->

10  <p>Testing UTF-8 encoding. Here are some
random words and characters:

11 <ul>

12 <li>IfAtérndtionalizetisn</1i>
13 <li>€</Ti>

14 <liz9</1i>

15 <li>m</1i>

16 <li>H</11i>

17 <lixg</1i>

w

w e N ;M

18 <li>¥W</11>
19 <li>Ml</Ti>
20 </ul>

21 </p>

22 </body>

23 </html>

2. Begin a new HTML document
(Script 14.1).

<!DOCTYPE html PUBLIC "-//W3C//DTD
— XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/
— xhtmll-transitional.dtd">

<html
— xmlns="http://www.w3.0rg/1999/
— xhtml" xml:lang="en" lang="en">

<head>

<title>Testing UTF-8</title>
</head>
<body style="font-size: 18pt;">
<!-- Script 14.1 - utf8.html -->
</body>
</html>

This is mostly standard HTML. To make
the resulting page easier to view, an inline
CSS style increases the base font size to
18 points.

Note that the language declarations in
the opening html tag (the two uses of
lang="en") are indications of the document’s
main language. This is a separate issue
from the encoding and the character set.

continues on next page

Sevein | 3 hdocs 4 oo
irchudes
5 D Cpma
My Rerert
Documents
Deskice
My Documents
My Comnrten
' Fie e i) el -
My Mehwosk | Save a5 lype. Test Dacuments [* be] v Larnel
Py |

Figure 14.3 Notepad on Windows, which isn’t a great
text editor but is usable, lets you define a file’s
encoding when you save it.

41