
ptg6935296

ptg6935296

Peachpit Press

V I S U A L Q U I C K p r o G U I D E

PHP and MySQL
for Dynamic Web Sites

Fourth Edition

Larry ULLman

ptg6935296

Visual QuickPro Guide
PHP and MySQL for Dynamic Web Sites, Fourth Edition
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2012 by Larry Ullman

Editor: Rebecca Gulick
Copy Editor: Patricia Pane
Technical Reviewer: Anselm Bradford
Production Coordinator: Myrna Vladic
Compositor: Debbie Roberti
Proofreader: Bethany Stough
Indexer: Valerie Haynes-Perry
Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior Design: Peachpit Press
Logo Design: MINE™ www.minesf.com

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Visual QuickPro Guide is a registered trademark of Peachpit Press, a division of Pearson Education. MySQL is
a registered trademark of MySQL AB in the United States and in other countries. Macintosh and Mac OS X are
registered trademarks of Apple, Inc. Microsoft and Windows are registered trademarks of Microsoft Corp. Other
product names used in this book may be trademarks of their own respective owners. Images of Web sites in
this book are copyrighted by the original holders and are used with their kind permission. This book is not
officially endorsed by nor affiliated with any of the above companies, including MySQL AB.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN-13: 978-0-321-78407-0
ISBN-10: 0-321-78407-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com
www.minesf.com

ptg6935296

Dedication
Dedicated to the fine faculty at my alma mater, Northeast Missouri
State University. In particular, I would like to thank: Dr. Monica Barron,
Dr. Dennis Leavens, Dr. Ed Tyler, and Dr. Cole Woodcox, whom I also
have the pleasure of calling my friend. I would not be who I am as
a writer, as a student, as a teacher, or as a person if it were not for
the magnanimous, affecting, and brilliant instruction I received from
these educators.

Special Thanks to:
My heartfelt thanks to everyone at Peachpit Press, as always.

My gratitude to editor extraordinaire Rebecca Gulick, who makes my job
so much easier. And thanks to Patricia Pane for her hard work, helpful
suggestions, and impressive attention to detail. Thanks also to Valerie
Haynes-Perry for indexing and Myrna Vladic and Deb Roberti for laying
out the book, and thanks to Anselm Bradford for his technical review.

Kudos to the good people working on PHP, MySQL, Apache,
phpMyAdmin, MAMP, and XAMPP, among other great projects.
And a hearty “cheers” to the denizens of the various newsgroups,
mailing lists, support forums, etc., who offer assistance and advice
to those in need.

Thanks, as always, to the readers, whose support gives my job
relevance. An extra helping of thanks to those who provided the
translations in Chapter 17, “Example—Message Board,” and who
offered up recommendations as to what they’d like to see in
this edition.

Thanks to Karnesha and Sarah for entertaining and taking care of
the kids so that I could get some work done.

Finally, I would not be able to get through a single book if it weren’t
for the love and support of my wife, Jessica. And a special shout-out
to Zoe and Sam, who give me reasons to, and not to, write books!

ptg6935296

iv Table of Contents

Table of Contents

Introduction . ix

Chapter 1 Introduction to PHP. 1

Basic Syntax . 2
Sending Data to the Web Browser. 6
Writing Comments. 10
What Are Variables?. 14
Introducing Strings . 18
Concatenating Strings 21
Introducing Numbers . 23
Introducing Constants 26
Single vs. Double Quotation Marks 29
Basic Debugging Steps 32
Review and Pursue . 34

Chapter 2 Programming with PHP 35

Creating an HTML Form 36
Handling an HTML Form 41
Conditionals and Operators 45
Validating Form Data . 49
Introducing Arrays. . 54
For and While Loops . 69
Review and Pursue . 72

Chapter 3 Creating Dynamic Web Sites 75

Including Multiple Files 76
Handling HTML Forms, Revisited 85
Making Sticky Forms . 9 1
Creating Your Own Functions 95
Review and Pursue . 110

ptg6935296

Table of Contents v

Chapter 4 Introduction to MySQL 111

Naming Database Elements 1 1 2
Choosing Your Column Types 1 1 4
Choosing Other Column Properties 1 1 8
Accessing MySQL . 1 2 1
Review and Pursue . 128

Chapter 5 Introduction to SQL. 129

Creating Databases and Tables 130
Inserting Records . 133
Selecting Data . 138
Using Conditionals . 140
Using LIKE and NOT LIKE 143
Sorting Query Results. 145
Limiting Query Results 147
Updating Data . 149
Deleting Data . 1 51
Using Functions . 153
Review and Pursue . 164

Chapter 6 Database Design . 165

Normalization . 166
Creating Indexes . 179
Using Different Table Types 182
Languages and MySQL 184
Time Zones and MySQL 189
Foreign Key Constraints 195
Review and Pursue . 202

Chapter 7 Advanced SQL and MySQL 203

Performing Joins. 204
Grouping Selected Results 214
Advanced Selections 218
Performing FULLTEXT Searches 222
Optimizing Queries . 230
Performing Transactions 234
Database Encryption 237
Review and Pursue . 240

ptg6935296

vi Table of Contents

Chapter 8 Error Handling and Debugging 241

Error Types and Basic Debugging 242
Displaying PHP Errors. 248
Adjusting Error Reporting in PHP 250
Creating Custom Error Handlers. 253
PHP Debugging Techniques 258
SQL and MySQL Debugging Techniques 262
Review and Pursue . 264

Chapter 9 Using PHP with MySQL 265

Modifying the Template. 266
Connecting to MySQL. 268
Executing Simple Queries 273
Retrieving Query Results 281
Ensuring Secure SQL 285
Counting Returned Records 290
Updating Records with PHP 292
Review and Pursue . 298

Chapter 10 Common Programming Techniques 299

Sending Values to a Script 300
Using Hidden Form Inputs 304
Editing Existing Records 309
Paginating Query Results. 316
Making Sortable Displays 323
Review and Pursue . 328

Chapter 11 Web Application Development 329

Sending Email . 330
Handling File Uploads 336
PHP and JavaScript . 348
Understanding HTTP Headers. 355
Date and Time Functions 362
Review and Pursue . 366

ptg6935296

Table of Contents vii

Chapter 12 Cookies and Sessions 367

Making a Login Page 368
Making the Login Functions 37 1
Using Cookies . 376
Using Sessions. 388
Improving Session Security 396
Review and Pursue . 400

Chapter 13 Security Methods . 401

Preventing Spam . 402
Validating Data by Type. 409
Validating Files by Type. 4 1 4
Preventing XSS Attacks. 41 8
Using the Filter Extension 421
Preventing SQL Injection Attacks 425
Review and Pursue . 432

Chapter 14 Perl-Compatible Regular Expressions 433

Creating a Test Script 434
Defining Simple Patterns 438
Using Quantifiers . 4 41
Using Character Classes 443
Finding All Matches . 446
Using Modifiers . 450
Matching and Replacing Patterns 452
Review and Pursue . 456

Chapter 15 Introducing jQuery . 457

What is jQuery? . 458
Incorporating jQuery 460
Using jQuery . 463
Selecting Page Elements 466
Event Handling. 469
DOM Manipulation . 473
Using Ajax . 479
Review and Pursue . 492

ptg6935296

viii Table of Contents

Chapter 16 An OOP Primer . 493

Fundamentals and Syntax 494
Working with MySQL 497
The DateTime Class . 5 1 1
Review and Pursue . 518

Chapter 17 Example—Message Board 519

Making the Database 520
Creating the Index Page 537
Creating the Forum Page 538
Creating the Thread Page 543
Posting Messages . 548
Review and Pursue . 558

Chapter 18 Example —User Registration 559

Creating the Templates 560
Writing the Configuration Scripts 566
Creating the Home Page 574
Registration . 576
Activating an Account. 586
Logging In and Logging Out 589
Password Management. 594
Review and Pursue . 604

Chapter 19 Example —E-Commerce 605

Creating the Database 606
The Administrative Side 6 1 2
Creating the Public Template 629
The Product Catalog 633
The Shopping Cart . 645
Recording the Orders 654
Review and Pursue . 659

Index . 661

BonuS AppenDix
Appendix A Installation . A1

ptg6935296

Introduction ix

Introduction

Today’s Web users expect exciting pages
that are updated frequently and provide
a customized experience. For them, Web
sites are more like communities, to which
they’ll return time and again. At the same
time, Web-site administrators want sites
that are easier to update and maintain,
understanding that’s the only reasonable
way to keep up with visitors’ expecta-
tions. For these reasons and more, PHP
and MySQL have become the de facto
standards for creating dynamic, database-
driven Web sites.

This book represents the culmination of my
many years of Web development experi-
ence coupled with the value of having
written several previous books on the tech-
nologies discussed herein. The focus of
this book is on covering the most important
knowledge in the most efficient manner.
It will teach you how to begin developing
dynamic Web sites and give you plenty of
example code to get you started. All you
need to provide is an eagerness to learn.

Well, that and a computer.

What Are Dynamic
Web Sites?
Dynamic Web sites are flexible and potent
creatures, more accurately described as
applications than merely sites. Dynamic
Web sites

n	 Respond to different parameters (for
example, the time of day or the version
of the visitor’s Web browser)

n	 Have a “memory,” allowing for user
registration and login, e-commerce,
and similar processes

n	 Almost always integrate HTML forms,
allowing visitors to perform searches,
provide feedback, and so forth

n	 Often have interfaces where
administrators can manage the
site’s content

n	 Are easier to maintain, upgrade, and
build upon than statically made sites

ptg6935296

x Introduction

Starting at the end of that statement, to
say that PHP can be embedded into
HTML means that you can take a standard
HTML page, drop in some PHP wherever
you need it, and end up with a dynamic
result. This attribute makes PHP very
approachable for anyone that’s done even
a little bit of HTML work.

Also, PHP is a scripting language, as
opposed to a compiled language: PHP
was designed to write Web scripts, not
stand-alone applications (although, with
some extra effort, you can now create
applications in PHP). PHP scripts run only
after an event occurs—for example, when
a user submits a form or goes to a URL
(Uniform Resource Locator, the technical
term for a Web address).

I should add to this definition that PHP is
a server-side, cross-platform technology,
both descriptions being important. Server-
side refers to the fact that everything PHP
does occurs on the server. A Web server
application, like Apache or Microsoft’s IIS
(Internet Information Services), is required
and all PHP scripts must be accessed
through a URL (http://something). Its

There are many technologies available
for creating dynamic Web sites. The most
common are ASP.NET (Active Server
Pages, a Microsoft construct), JSP (Java
Server Pages), ColdFusion, Ruby on Rails (a
Web development framework for the Ruby
programming language), and PHP. Dynamic
Web sites don’t always rely on a database,
but more and more of them do, particularly
as excellent database applications like
MySQL are available at little to no cost.

What is pHp?
PHP originally stood for “Personal Home
Page” as it was created in 1994 by Rasmus
Lerdorf to track the visitors to his online
résumé. As its usefulness and capabilities
grew (and as it started being used in more
professional situations), it came to mean
“PHP: Hypertext Preprocessor.”

According to the official PHP Web site,
found at www.php.net A, PHP is a
“widely used general-purpose scripting
language that is especially suited for Web
development and can be embedded into
HTML.” It’s a long but descriptive definition,
whose meaning I’ll explain.

A The home page for PHP.

www.php.net

ptg6935296

Introduction xi

cross-platform nature means that PHP
runs on most operating systems, including
Windows, Unix (and its many variants), and
Macintosh. More important, the PHP scripts
written on one server will normally work on
another with little or no modification.

At the time this book was written, PHP was
at version 5.3.6 and this book does assume
you’re using at least version 5.0. Some func-
tions and features covered will require more
specific or current versions, like PHP 5.2 or
greater. In those cases, I will make it clear
when the functionality was added to PHP,
and provide alternative solutions if you have
a slightly older version of the language.

If you’re still using version 4 of PHP, you
really should upgrade. If that’s not in your
plans, then please grab the second edition
of this book instead.

More information about PHP can always be
found at PHP.net or at Zend (www.zend.com),
the minds behind the core of PHP.

Why use pHp?
Put simply, when it comes to developing
dynamic Web sites, PHP is better, faster,
and easier to learn than the alternatives.
What you get with PHP is excellent
performance, a tight integration with
nearly every database available, stability,
portability, and a nearly limitless feature
set due to its extendibility. All of this comes
at no cost (PHP is open source) and with
a very manageable learning curve. PHP is
one of the best marriages I’ve ever seen
between the ease with which beginning
programmers can start using it and the
ability for more advanced programmers to
do everything they require.

Finally, the proof is in the pudding: PHP
has seen an exponential growth in use
since its inception, and is the server-side

What Happened to pHp 6?
When I wrote the previous version of
this book, PHP 6 and MySQL 5 for
Dynamic Web Sites: Visual QuickPro
Guide, the next major release of PHP—
PHP 6—was approximately 50 percent
complete. Thinking that PHP 6 would
therefore be released sometime after
the book was published, I relied upon
a beta version of PHP 6 for a bit of that
edition’s material. And then…
PHP 6 died.

One of the key features planned for PHP
6 was support for Unicode, meaning that
PHP 6 would be able to work natively
with any language. This would be a
great addition to an already popular
programming tool. Unfortunately,
implementing Unicode support went
from being complicated to quite difficult,
and the developers behind the language
tabled development of PHP 6. Not all
was lost, however: Some of the other
features planned for PHP 6, such as
support for namespaces (an Object-
Oriented Programming concept), were
added to PHP 5.3.

At the time of this writing, it’s not clear
when Unicode support might be com-
pleted or what will happen with PHP 6.
My hunch is that PHP will be making
incremental developments along the
version 5 trunk for some time to come.

www.zend.com

ptg6935296

xii Introduction

technology of choice on over 76 percent
of all Web sites B. In terms of all pro-
gramming languages, PHP is the fifth
most popular C.

Of course, you might assume that I, as the
author of a book on PHP (several, actually),
have a biased opinion. Although not
nearly to the same extent as PHP, I’ve also
developed sites using Java Server Pages
(JSP), Ruby on Rails (RoR), and ASP.NET.
Each has its pluses and minuses, but PHP
is the technology I always return to. You
might hear that it doesn’t perform or scale
as well as other technologies, but Yahoo!,
Wikipedia, and Facebook all use PHP, and
you can’t find many sites more visited or
demanding than those.

You might also wonder how secure PHP
is. But security isn’t in the language; it’s in
how that language is used. Rest assured
that a complete and up-to-date discussion
of all the relevant security concerns is
provided by this book.

B The Web Technology Surveys site provides
this graphic regarding server-side technologies
(www.w3techs.com/technologies/overview/
programming_language/all).

C The Tiobe Index (http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html)
uses a combination of factors to rank the
popularity of programming languages.

How pHp works
As previously stated, PHP is a server-side
language. This means that the code you
write in PHP sits on a host computer called
a server. The server sends Web pages to
the requesting visitors (you, the client, with
your Web browser).

When a visitor goes to a Web site written
in PHP, the server reads the PHP code and
then processes it according to its scripted
directions. In the example shown in D,
the PHP code tells the server to send the
appropriate data—HTML code—to the Web
browser, which treats the received code as
it would a standard HTML page.

This differs from a static HTML site where,
when a request is made, the server merely
sends the HTML data to the Web browser
and there is no server-side interpretation

D How PHP fits into the
client/server model when a
user requests a Web page.

www.w3techs.com/technologies/overview/programming_language/all
www.w3techs.com/technologies/overview/programming_language/all
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

ptg6935296

Introduction xiii

MySQL is a database management system
(DBMS) for relational databases (therefore,
MySQL is an RDBMS). A database, in the
simplest terms, is a collection of data, be
it text, numbers, or binary files, stored and
kept organized by the DBMS.

There are many types of databases, from
the simple flat-file to relational and object-
oriented. A relational database uses mul-
tiple tables to store information in its most
discernible parts. While relational databases
may involve more thought in the design and
programming stages, they offer improved
reliability and data integrity that more than
makes up for the extra effort required. Fur-
ther, relational databases are more search-
able and allow for concurrent users.

occurring E. Because no server-side action
is required, you can run HTML pages in your
Web browser without using a server at all.

To the end user and the Web browser
there is no perceptible difference between
what home.html and home.php may look
like, but how that page’s content was
created will be significantly different.

What is MySQL?
MySQL (www.mysql.com) F is the world’s
most popular open-source database. In
fact, today MySQL is a viable competitor
to the pricey goliaths such as Oracle and
Microsoft’s SQL Server (and, ironically,
MySQL is owned by Oracle). Like PHP,
MySQL offers excellent performance,
portability, and reliability, with a moderate
learning curve and little to no cost.

E The client/server
process when a
request for a static
HTML page is made.

F The home page for the MySQL database application.

www.mysql.com

ptg6935296

xiv Introduction

more than 5 billion rows. MySQL can work
with tables as large as 8 million terabytes
on some operating systems, generally a
healthy 4 GB otherwise. MySQL is used
by NASA and the United States Census
Bureau, among many others.

At the time of this writing, MySQL is on
version 5.5.13, with versions 5.6 and 6.0 in
development. The version of MySQL you
have affects what features you can use, so
it’s important that you know what you’re
working with. For this book, MySQL 5.1.44
and 5.5.8 were used, although you should
be able to do everything in this book as
long as you’re using a version of MySQL
greater than 5.0.

By incorporating a database into a Web
application, some of the data generated by
PHP can be retrieved from MySQL G. This
further moves the site’s content from a static
(hard-coded) basis to a flexible one, flexibility
being the key to a dynamic Web site.

MySQL is an open-source application,
like PHP, meaning that it is free to use
or even modify (the source code itself is
downloadable). There are occasions in
which you should pay for a MySQL license,
especially if you are making money from
the sales or incorporation of the MySQL
product. Check MySQL’s licensing policy
for more information on this.

The MySQL software consists of several
pieces, including the MySQL server (mysqld,
which runs and manages the databases),
the MySQL client (mysql, which gives you
an interface to the server), and numerous
utilities for maintenance and other pur-
poses. PHP has always had good support
for MySQL, and that is even more true in the
most recent versions of the language.

MySQL has been known to handle data-
bases as large as 60,000 tables with

G How most of the dynamic Web applications in this book will work,
using both PHP and MySQL.

pronunciation Guide
Trivial as it may be, I should clarify
up front that MySQL is technically
pronounced “My Ess Que Ell,” just as
SQL should be said “Ess Que Ell.” This is
a question many people have when first
working with these technologies. While
not a critical issue, it’s always best to
pronounce acronyms correctly.

ptg6935296

Introduction xv

About This Book
This book teaches how to develop dynamic
Web sites with PHP and MySQL, cover-
ing the knowledge that most developers
might require. In keeping with the format
of the Visual QuickPro series, the infor-
mation is discussed using a step-by-step
approach with corresponding images. The
focus has been kept on real-world, practi-
cal examples, avoiding “here’s something
you could do but never would” scenarios.
As a practicing Web developer myself, I
wrote about the information that I use and
avoided those topics immaterial to the task
at hand. As a practicing writer, I made cer-
tain to include topics and techniques that I
know readers are asking about.

The structure of the book is linear, and
the intention is that you’ll read it in order.
It begins with three chapters covering
the fundamentals of PHP (by the second
chapter, you will have already developed
your first dynamic Web page). After
that, there are four chapters on SQL
(Structured Query Language, which is
used to interact with all databases) and
MySQL. Those chapters teach the basics
of SQL, database design, and the MySQL
application in particular. Then there’s
one chapter on debugging and error
management, information everyone needs.
This is followed by a chapter introducing
how to use PHP and MySQL together, a
remarkably easy thing to do.

The following five chapters teach more
application techniques to round out your
knowledge. Security, in particular, is repeat-
edly addressed in those pages. Two new
chapters, to be discussed momentarily,
expand your newfound knowledge. Finally,
I’ve included three example chapters, in
which the heart of different Web applications
are developed, with instructions.

What You’ll need
To follow the examples in this book, you’ll
need the following tools:

n	 A Web server application (for example,
Apache, Abyss, or IIS)

n	 PHP

n	 MySQL

n	 A Web browser (Microsoft’s Internet
Explorer, Mozilla’s Firefox, Apple’s
Safari, Google’s Chrome, etc.)

n	 A text editor, PHP-capable WYSIWYG
application (Adobe’s Dreamweaver
qualifies), or IDE (integrated
development environment)

n	 An FTP application, if using a remote
server

One of the great things about developing
dynamic Web sites with PHP and MySQL
is that all of the requirements can be
met at no cost whatsoever, regardless of
your operating system! Apache, PHP, and
MySQL are each free; Web browsers can
be had without cost; and many good text
editors are available for nothing.

The appendix, which you can download
from http://www.peachpit.com, discusses the
installation process on the Windows and Mac
OS X operating systems. If you have a com-
puter, you are only a couple of downloads
away from being able to create dynamic
Web sites (in that case, your computer would
represent both the client and the server in

D and E). Conversely, you could purchase
Web hosting for only dollars per month that
will provide you with a PHP- and MySQL-
enabled environment already online.

To download this book's appendix from
peachpit.com, create a free account at http://
peachpit.com, and then register this book
using ISBN number 0321784073. Once regis-
tered, you'll have access to the bonus content.

http://www.peachpit.com
http://peachpit.com
http://peachpit.com

ptg6935296

xvi Introduction

What’s new in this edition
The first three editions of this book have
been very popular, and I’ve received a lot
of positive feedback on them (thanks!).
In writing this new edition, I wanted to
do more than just update the material for
the latest versions of PHP and MySQL,
although that is an overriding consideration
throughout the book. Other new features
you’ll find are:

n	 New examples demonstrating
techniques frequently requested
by readers

n	 Even more advanced MySQL and SQL
instruction and examples

n	 A tutorial on using the jQuery
JavaScript framework

n	 An introduction to the fundamentals
and basic usage of Object-Oriented
Programming

n	 Even more information and examples
for improving the security of your
scripts and sites

n	 Expanded and updated installation and
configuration instructions

n	 Removal of outdated content (e.g.,
things used in older versions of PHP
or no longer applicable)

n	 A “Review and Pursue” section at
the end of each chapter, with review
questions and prompts for ways in
which you can further expand your
knowledge based upon the information
just covered

For those of you that also own a previous
edition (thanks, thanks, thanks!), I believe
that these new features will also make this
edition a required fixture on your desk or
bookshelf.

is this book for you?
This book was written for a wide range of
people within the beginner-to-intermediate
range. The book makes use of XHTML, so
solid experience with XHTML or HTML is
a must. Although this book covers many
things, it does not formally teach HTML or
Web-page design. Some CSS is sprinkled
about these pages but also not taught.

Second, this book expects that you have
one of the following:

n	 The drive and ability to learn without
much hand holding, or…

n	 Familiarity with another programming
language (even solid JavaScript skills
would qualify), or…

n	 A cursory knowledge of PHP

Make no mistake: This book covers
PHP and MySQL from A to Z, teaching
everything you’ll need to know to develop
real-world Web sites, but particularly the
early chapters cover PHP at a quick pace.
For this reason I recommend either some
programming experience or a curious
and independent spirit when it comes to
learning new things. If you find that the
material goes too quickly, you should
probably start off with the latest edition
of my book PHP for the World Wide Web:
Visual QuickStart Guide, which goes at
a much more tempered pace.

No database experience is required, since
SQL and MySQL are discussed starting at a
more basic level.

ptg6935296

Introduction xvii

book focuses almost exclusively on MySQL
(there are but two chapters that use PHP).

With that in mind, read the section “Is this
book for you?” and see if the requirements
apply. If you have no programming experi-
ence at all and would prefer to be taught
PHP more gingerly, my first book would
be better. If you are already very comfort-
able with PHP and want to learn more of its
advanced capabilities, pick up the second.
If you are most interested in MySQL and
are not concerned with learning much
about PHP, check out the third.

That being said, if you want to learn
everything you need to know to begin
developing dynamic Web sites with PHP
and MySQL today, then this is the book for
you! It references the most current versions
of both technologies, uses techniques not
previously discussed in other books, and
contains its own unique examples.

And whatever book you do choose, make
sure you’re getting the most recent edition
or, barring that, the edition that best
matches the versions of the technologies
you’ll be using.

How this book compares
to my other books
This is my fourth PHP and/or MySQL title,
after (in order)

n	 PHP for the World Wide Web: Visual
QuickStart Guide

n	 PHP 5 Advanced for the World Wide
Web: Visual QuickPro Guide

n	 MySQL: Visual QuickStart Guide

I hope this résumé implies a certain level of
qualification to write this book, but how do
you, as a reader standing in a bookstore,
decide which title is for you? Of course,
you are more than welcome to splurge
and buy the whole set, earning my eternal
gratitude, but…

The PHP for the World Wide Web: Visual
QuickStart Guide book is very much a
beginner’s guide to PHP. This title overlaps
it some, mostly in the first three chapters,
but uses new examples so as not to be
redundant. For novices, this book acts as a
follow-up to that one. The advanced book
is really a sequel to this one, as it assumes
a fair amount of knowledge and builds
upon many things taught here. The MySQL

ptg6935296

xviii Introduction

Companion Web Site
I have developed a companion Web site
specifically for this book, which you may
reach at www.LarryUllman.com. There you
will find every script from this book, a text
file containing lengthy SQL commands,
and a list of errata that occurred during
publication. (If you have problems with a
command or script, and you are following
the book exactly, check the errata to
ensure there is not a printing error before
driving yourself absolutely mad.) At this
Web site you will also find useful Web
links, a popular forum where readers can
ask and answer each other’s questions (I
answer many of them myself), and more!

Questions, comments,
or suggestions?
If you have any questions on PHP or
MySQL, you can turn to one of the many
Web sites, mailing lists, newsgroups, and
FAQ repositories already in existence. A
quick search online will turn up virtually
unlimited resources. For that matter, if you
need an immediate answer, those sources
or a quick Web search will most assuredly
serve your needs (in all likelihood, some-
one else has already seen and solved your
exact problem).

You can also direct your questions,
comments, and suggestions to me. You’ll
get the fastest reply using the book’s
corresponding forum (I always answer
those questions first). If you’d rather email
me, my contact information is available on
the Web site. I do try to answer every email
I receive, although I cannot guarantee a
quick reply.

publisher’s Tip: Check out the
Accompanying Video Training
from Author Larry ullman!
Visual QuickStart Guides are now even
more visual: Building on the success of
the top-selling Visual QuickStart Guide
books, Peachpit now offers Video
QuickStarts. As a companion to this
book, Peachpit offers more than an hour
of short, task-based videos that will help
you master key features and techniques;
instead of just reading about how to write
PHP and MySQL scripts, you can watch it
in action. It’s a great way to learn all the
basics and some of the newer or more
complex features of the languages. Log
on to the Peachpit site at www.peachpit.
com/register to register your book, and
you’ll find a free streaming sample;
purchasing the rest of the material is
quick and easy.

www.LarryUllman.com
www.peachpit.com/register
www.peachpit.com/register

ptg6935296

Although this book focuses on using MySQL
and PHP in combination, you’ll do a vast
majority of your legwork using PHP alone.
In this and the following chapter, you’ll learn
its basics, from syntax to variables, opera-
tors, and language constructs (conditionals,
loops, and whatnot). At the same time you
are picking up these fundamentals, you’ll
also begin developing usable code that
you’ll integrate into larger applications later
in the book.

This introductory chapter will cruise through
most of the basics of the PHP language.
You’ll learn the syntax for coding PHP,
how to send data to the Web browser, and
how to use two kinds of variables (strings
and numbers) plus constants. Some of the
examples may seem inconsequential, but
they’ll demonstrate ideas you’ll have to
master in order to write more advanced
scripts further down the line. The chapter
concludes with some quick debugging
tips…you know…just in case!

1
Introduction

to PHP

in This Chapter
	 2

Sending Data to the Web Browser 6

Writing Comments 10

What Are Variables? 14

Introducing Strings 18

Concatenating Strings 21

Introducing Numbers 23

Introducing Constants 26

Single vs. Double Quotation Marks 29

Basic Debugging Steps 33

Review and Pursue 34

ptg6935296

2 Chapter 1

Basic Syntax
As stated in the book’s introduction, PHP
is an HTML-embedded scripting language,
meaning that you can intermingle PHP
and HTML code within the same file. So
to begin programming with PHP, start
with a simple Web page. Script 1.1 is an
example of a no-frills, no-content XHTML
Transitional document, which will be used
as the foundation for most Web pages
in the book (this book does not formally
discuss [X]HTML; see a resource dedicated
to the topic for more information). Please
also note that the template uses UTF-8
encoding, a topic discussed in the sidebar.

To add PHP code to a page, place it within
PHP tags:

<?php
?>

understanding encoding
Encoding is a huge subject, but what you most need to understand is this: the encoding you
use in a file dictates what characters can be represented (and therefore, what languages
can be used). To select an encoding, you must first confirm that your text editor or Integrated
Development Environment (IDE)—whatever application you’re using to create the HTML and PHP
scripts—can save documents using that encoding. Some applications let you set the encoding in
the preferences or options area; others set the encoding when you save the file.

To indicate the encoding to the Web browser, there’s the corresponding meta tag:

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

The charset=utf-8 part says that UTF-8 encoding is being used, short for 8-bit Unicode
Transformation Format. Unicode is a way of reliably representing every symbol in every
alphabet. Version 6 of Unicode—the current version at the time of this writing—supports
over 99,000 characters!

If you want to create a multilingual Web page, UTF-8 is the way to go, and I’ll be using it in this
book’s examples. You don’t have to, of course. But whatever encoding you do use, make sure that
the encoding indicated by the XHTML page matches the actual encoding set in your text editor or
IDE. If you don’t, you’ll likely see odd characters when you view the page in a Web browser.

Script 1.1 A basic XHTML 1.0 Transitional Web page.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Page	Title</title>
6	 </head>
7	 <body>
8	 	 <!--	Script	1.1	-	template.html	-->
9	 </body>
10	 </html>

ptg6935296

Introduction to PHP 3

Anything written within these tags will
be treated by the Web server as PHP,
meaning the PHP interpreter will process
the code. Any text outside of the PHP tags
is immediately sent to the Web browser as
regular HTML. (Because PHP is most often
used to create content displayed in the
Web browser, the PHP tags are normally
put somewhere within the page’s body.)

Along with placing PHP code within PHP
tags, your PHP files must have a proper
extension. The extension tells the server
to treat the script in a special way, namely,
as a PHP page. Most Web servers use
.html for standard HTML pages and .php
for PHP files.

Before getting into the steps, understand
that you must already have a working PHP
installation! This could be on a hosted site
or your own computer, after following the
instructions in Appendix A, “Installation,”
which is a free download from peachpit.com.

To make a basic pHp script:
1. Create a new document in your text

editor or IDE, to be named first.php
(Script 1.2).

It generally does not matter what
application you use, be it Adobe
Dreamweaver (a fancy IDE), TextMate
(a great and popular Macintosh plain-
text editor), or vi (a plain-text Unix
editor, lacking a graphical interface).
Still, some text editors and IDEs make
typing and debugging HTML and
PHP easier (conversely, Notepad on
Windows does some things that makes
coding harder: don’t use Notepad!). If
you don’t already have an application
you’re attached to, search the Web or
use the book’s corresponding forum
(www.LarryUllman.com/forums/) to
find one.

continues on next page

HTML5
At the time of this writing, the next major
release of HTML—HTML5—is being
actively developed and discussed, but
is not production ready, which is why I
chose not to use it in the book. In fact,
I wouldn’t be surprised if HTML5 is still
not released by the time I start the fifth
edition of this book, and it will take even
longer for broad browser adoption of the
language. Still, as HTML5 is an excit-
ing future development, this book will
occasionally mention features you can
expect to see introduced and supported
over time.

Script 1.2 This first PHP script doesn’t do anything,
but does demonstrate how a PHP script is written.
It’ll also be used as a test script, prior to getting
into elaborate PHP code.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Basic	PHP	Page</title>
6	 </head>
7	 <body>
8	 	 <!--	Script	1.2	-	first.php	-->
9	 	 <p>This	is	standard	HTML.</p>
10 <?php
11 ?>
12	 </body>
13	 </html>

www.LarryUllman.com/forums/

ptg6935296

4 Chapter 1

2. Create a basic HTML document:

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Basic PHP Page</title>
</head>
<body>
 <!-- Script 1.2 - first.php -->
<p>This is standard HTML.</p>
</body>
</html>

Although this is the syntax being used
throughout the book, you can change
the HTML to match whichever standard
you intend to use (e.g., HTML 4.0
Strict). Again, see a dedicated (X)HTML
resource if you’re unfamiliar with any of
this HTML code.

3. Before the closing body tag, insert the
PHP tags:

<?php
?>

These are the formal PHP tags, also
known as XML-style tags. Although PHP
supports other tag types, I recommend
that you use the formal type, and I will
do so throughout this book.

A While it seems like any other (simple)
HTML page, this is in fact a PHP script
and the basis for the rest of the examples
in the book.

4. Save the file as first.php.

Remember that if you don’t save the file
using an appropriate PHP extension,
the script will not execute properly.
(Just one of the reasons not to use
Notepad is that it will secretly add the
.txt extension to PHP files, thereby
causing many headaches.)

5. Place the file in the proper directory of
your Web server.

If you are running PHP on your own
computer (presumably after following
the installation directions in Appendix A),
you just need to move, copy, or save the
file to a specific folder on your computer.
Check Appendix A or the documentation
for your particular Web server to identify
the correct directory, if you don’t already
know what it is.

If you are running PHP on a hosted
server (i.e., on a remote computer),
you’ll need to use a File Transfer
Protocol (FTP) application to upload the
file to the proper directory. Your hosting
company will provide you with access
and the other necessary information.

6. Run first.php in your Web browser A.

Because PHP scripts need to be parsed
by the server, you absolutely must
access them via a URL (i.e., the address
in the browser must begin with http://).
You cannot simply open them in your
Web browser as you would a file in other
applications (in which case the address
would start with file:// or C:\ or the like).

ptg6935296

Introduction to PHP 5

3. If you get a file not found (or similar)
error, you’ve likely put the file in the
wrong directory or mistyped the file’s
name (either when saving it or in your
Web browser).

If you’ve gone through all this and
are still having problems, turn to
the book’s corresponding forum
(www.LarryUllman.com/forums/).

To find more information about HTML
and XHTML, check out Elizabeth Castro’s
excellent book HTML, XHTML, and CSS, Sixth
Edition: Visual QuickStart Guide, (Peachpit
Press, 2006) or search the Web.

You can embed multiple sections of PHP
code within a single HTML document (i.e., you
can go in and out of the two languages). You’ll
see examples of this throughout the book.

Prior to UTF-8, ISO-8859-1 was one of
the more commonly used encodings. It repre-
sents most Western European languages. It’s
still the default encoding for many Web brows-
ers and other applications.

You can declare the encoding of an exter-
nal CSS file by adding @charset "utf-8"; as
the first line in the file. If you’re not using UTF-8,
change the line accordingly.

B PHP code will only be executed when run through http: / /
(not that this particular script is affected either way).

If you are running PHP on your own
computer, you’ll need to use a URL
like http://localhost/first.php,
http://127.0.0.1/first.php, or http://
localhost/~<user>/first.php (on Mac
OS X, using your actual username for
<user>). If you are using a Web host, you’ll
need to use http://your-domain-name/
first.php (e. g., http://www.example.
com/first.php).

7. If you don’t see results like those in A,
start debugging!

Part of learning any programming
language is mastering debugging.
It’s a sometimes-painful but absolutely
necessary process. With this first
example, if you don’t see a simple,
but perfectly valid, Web page, follow
these steps:

1. Confirm that you have a working
PHP installation (see Appendix A for
testing instructions).

2. Make sure that you are running the
script through a URL. The address in the
Web browser must begin with http://. If
it starts with file://, that’s a problem B.

www.LarryUllman.com/forums/
http://localhost/first.php
http://127.0.0.1/first.php
http://your-domain-name/first.php
http://your-domain-name/first.php
http://www.example.com/first.php
http://www.example.com/first.php
http://localhost/~<user>/first.php
http://localhost/~<user>/first.php

ptg6935296

6 Chapter 1

Sending Data to
the Web Browser
To create dynamic Web sites with PHP,
you must know how to send data to the
Web browser. PHP has a number of built-in
functions for this purpose, the most common
being echo and print. I personally tend to
favor echo:

echo 'Hello, world!';
echo "What's new?";

You could use print instead, if you prefer
(the name more obviously indicates what
it does):

print 'Hello, world!';
print "What's new?";

As you can see from these examples, you
can use either single or double quotation
marks (but there is a distinction between
the two types of quotation marks, which
will be made clear by the chapter’s end).
The first quotation mark after the function
name indicates the start of the message to
be printed. The next matching quotation
mark (i.e., the next quotation mark of the
same kind as the opening mark) indicates
the end of the message to be printed.

Along with learning how to send data to
the Web browser, you should also notice
that in PHP all statements—a line of
executed code, in layman’s terms—must
end with a semicolon. Also, PHP is case-
insensitive when it comes to function
names, so ECHO, echo, eCHo, and so forth
will all work. The all-lowercase version is
easiest to type, of course.

needing an escape
As you might discover, one of the
complications with sending data to the
Web involves printing single and double
quotation marks. Either of the following
will cause errors:

echo "She said, "How are you?"";
echo 'I'm just ducky.';

There are two solutions to this problem.
First, use single quotation marks when
printing a double quotation mark and
vice versa:

echo 'She said, "How are you?"';
echo "I'm just ducky.";

Or, you can escape the problematic
character by preceding it with a
backslash:

echo "She said, \"How are you?\"";
echo 'I\'m just ducky.';

An escaped quotation mark will merely
be printed like any other character.
Understanding how to use the backslash
to escape a character is an important
concept, and one that will be covered in
more depth at the end of the chapter.

ptg6935296

Introduction to PHP 7

To send data to the Web browser:
1. Open first.php (refer to Script 1.2) in

your text editor or IDE.

2. Between the PHP tags (lines 10 and 11),
add a simple message (Script 1.3):

echo 'This was generated using
➝ PHP!';

It truly doesn’t matter what message
you type here, which function you use
(echo or print), or which quotation
marks, for that matter—just be careful
if you are printing a single or double
quotation mark as part of your message
(see the sidebar “Needing an Escape”).

3. If you want, change the page title to
better describe this script (line 5):

<title>Using Echo</title>

This change only affects the browser
window’s title bar.

4. Save the file as second.php, place it in
your Web directory, and test it in your
Web browser A.

Remember that all PHP scripts must be
run through a URL (http://something)!

continues on next page

A The results still aren’t glamorous,
but this page was in part dynamically
generated by PHP.

Script 1.3 Using print or echo, PHP can send data
to the Web browser.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Using	Echo</title>
6	 </head>
7	 <body>
8	 	 <!--	Script	1.3	-	second.php	-->
9	 	 <p>This	is	standard	HTML.</p>
10	 <?php
11 echo 'This was generated using PHP!';
12	 ?>
13	 </body>
14	 </html>

ptg6935296

8 Chapter 1

5. If necessary, debug the script.

If you see a parse error instead of your
message B, check that you have both
opened and closed your quotation
marks and escaped any problematic
characters (see the sidebar). Also be
certain to conclude each statement
with a semicolon.

If you see an entirely blank page, this is
probably for one of two reasons:

>	 There is a problem with your HTML.
Test this by viewing the source of
your page and looking for HTML
problems there C.

>	 An error occurred, but display_errors
is turned off in your PHP configura-
tion, so nothing is shown. In this case,
see the section in Appendix A on
how to configure PHP so that you
can turn display_errors back on.

Technically, echo and print are
language constructs, not functions. That being
said, don’t be flummoxed as I continue to
call them “functions” for convenience. Also,
as you’ll see later in the book, I include the
parentheses when referring to functions—
say number_format(), not just number_
format—to help distinguish them from
variables and other parts of PHP. This is
just my own little convention.

You can, and often will, use echo
and print to send HTML code to the
Web browser, like so D:

echo '<p>Hello, world!</p>';

B This may be the first of many parse errors you
see as a PHP programmer (this one is caused by
the omission of the terminating quotation mark).

D PHP can send HTML code (like
the formatting here) as well as simple
text A to the Web browser.

C One possible cause of a blank PHP page is a
simple HTML error, like the closing title tag here
(it’s missing the slash).

ptg6935296

Introduction to PHP 9

Echo and print can both be used over
multiple lines:

echo 'This sentence is
printed over two lines.';

What happens in this case is that the
return (created by pressing Enter or Return)
becomes part of the printed message, which
isn’t terminated until the closing quotation
mark. The net result will be the “printing”
of the return in the HTML source code E.
This will not have an effect on the generated
page F. For more on this, see the sidebar
“Understanding White Space.”

understanding White Space
With PHP you send data (like HTML tags and text) to the Web browser, which will, in turn, render that
data as the Web page the end user sees. Thus, what you are often doing with PHP is creating the
HTML source of a Web page. With this in mind, there are three areas of notable white space (extra
spaces, tabs, and blank lines): in your PHP scripts, in your HTML source, and in the rendered Web page.

PHP is generally white space insensitive, meaning that you can space out your code however you
want to make your scripts more legible. HTML is also generally white space insensitive. Specifi-
cally, the only white space in HTML that affects the rendered page is a single space (multiple
spaces still get rendered as one). If your HTML source has text on multiple lines, that doesn’t mean
it’ll appear on multiple lines in the rendered page (E and F).

To alter the spacing in a rendered Web page, use the HTML tags
 (line break,
 in older HTML
standards) and <p></p> (paragraph). To alter the spacing of the HTML source created with PHP, you can

. 	Use echo or print over the course of several lines.

or

. 	Print the newline character (\n) within double quotation marks, which is equivalent to Enter
or Return.

F The return in the HTML source E has
no effect on the rendered result. The only
way to alter the spacing of a displayed Web
page is to use HTML tags (like

and <p></p>).

E Printing text and HTML over multiple PHP lines
will generate HTML source code that also extends
over multiple lines. Note that extraneous white
spacing in the HTML source will not affect the look of
a page F but can make the source easier to review.

ptg6935296

10 Chapter 1

Writing Comments
Creating executable PHP code is only
a part of the programming process
(admittedly, it’s the most important part).
A secondary but still crucial aspect to
any programming endeavor involves
documenting your code. In fact, when
I’m asked what qualities distinguish the
beginning programmer from the more
experienced one, a good and thorough use
of comments is my unwavering response.

In HTML you can add comments using
special tags:

<!-- Comment goes here. -->

HTML comments are viewable in the source
but do not appear in the rendered page
(see E and F in the previous section).

PHP comments are different in that they
aren’t sent to the Web browser at all,
meaning they won’t be viewable to the end
user, even when looking at the HTML source.

PHP supports three comment syntaxes. The
first uses the pound or number symbol (#):

This is a comment.

The second uses two slashes:

// This is also a comment.

Both of these cause PHP to ignore
everything that follows until the end of
the line (when you press Return or Enter).
Thus, these two comments are for single
lines only. They are also often used to
place a comment on the same line as
some PHP code:

print 'Hello!'; // Say hello.

A third style allows comments to run over
multiple lines:

/* This is a longer comment
that spans two lines. */

ptg6935296

Introduction to PHP 11

To comment your scripts:
1. Begin a new PHP document in

your text editor or IDE, to be named
comments.php, starting with the initial
HTML (Script 1.4):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Comments</title>
</head>
<body>

2. Add the initial PHP tag and write your
first comments:

<?php
Script 1.4 - comments.php
Created March 16, 2011
Created by Larry E. Ullman
This script does nothing much.

One of the first comments each script
should contain is an introductory block
that lists creation date, modification
date, creator, creator’s contact informa-
tion, purpose of the script, and so on.
Some people suggest that the shell-
style comments (#) stand out more in
a script and are therefore best for this
kind of notation.

continues on next page

Script 1.4 These basic comments demonstrate the
three comment syntaxes you can use in PHP.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Comments</title>
6	 </head>
7	 <body>
8	 <?php
9	
10 # Script 1.4 - comments.php
11 # Created March 16, 2011
12 # Created by Larry E. Ullman
13 # This script does nothing much.
14	
15	 	echo	'<p>This	is	a	line	of	text.
	

This	is	another	line	of	text.</p>';
16	
17 /*
18 echo 'This line will not be
 executed.';
19 */
20	
21 echo "<p>Now I'm done.</p>";
 // End of PHP code.
22	
23	 ?>
24	 </body>
25	 </html>

ptg6935296

12 Chapter 1

3. Send some HTML to the Web browser:

echo '<p>This is a line of
➝ text.
This is another line
➝ of text.</p>';

It doesn’t matter what you do here, just
make something for the Web browser to
display. For the sake of variety, the echo
statement will print some HTML tags,
including a line break (
) to add some
spacing to the generated HTML page.

4. Use the multiline comments to com-
ment out a second echo statement:

/*
echo 'This line will not be
➝ executed.';
*/

By surrounding any block of PHP code
with /* and */, you can render that code
inert without having to delete it from your
script. By later removing the comment
tags, you can reactivate that section of
PHP code.

5. Add a final comment after a third echo
statement:

echo "<p>Now I'm done.</p>";
➝// End of PHP code.

This last (superfluous) comment shows
how to place a comment at the end of
a line, a common practice. Note that
double quotation marks surround this
message, as single quotation marks
would conflict with the apostrophe
(see the “Needing an Escape” sidebar,
earlier in the chapter).

6. Close the PHP section and complete
the HTML page:

?>
</body>
</html>

7. Save the file as comments.php, place it
in your Web directory, and test it in your
Web browser A.

A The PHP comments in Script 1.4
don’t appear in the Web page or
the HTML source B.

ptg6935296

Introduction to PHP 13

8. If you’re the curious type, check the
source code in your Web browser to
confirm that the PHP comments do not
appear there B.

You shouldn’t nest (place one inside
another) multiline comments (/* */). Doing
so will cause problems.

Any of the PHP comments can be used
at the end of a line (say, after a function call):

echo 'Howdy'; /* Say 'Howdy' */

Although this is allowed, it’s far less common.

It’s nearly impossible to over-comment
your scripts. Always err on the side of writing
too many comments as you code. That being
said, in the interest of saving space, the scripts
in this book will not be as well documented as
I would suggest they should be.

It’s also important that as you change a
script you keep the comments up-to-date and
accurate. There’s nothing more confusing than
a comment that says one thing when the code
really does something else.

B The PHP comments from Script 1.4 are nowhere to be seen in the client’s browser.

ptg6935296

14 Chapter 1

What Are Variables?
Variables are containers used to
temporarily store values. These values
can be numbers, text, or much more
complex data. PHP supports eight types
of variables. These include four scalar
(single-valued) types—Boolean (TRUE or
FALSE), integer, floating point (decimals),
and strings (characters); two nonscalar
(multivalued)—arrays and objects;
plus resources (which you’ll see when
interacting with databases) and NULL
(which is a special type that has no value).

Regardless of what type you are creating,
all variable names in PHP follow certain
syntactical rules:

n	 A variable’s name must start with a
dollar sign ($), for example, $name.

n	 The variable’s name can contain
a combination of letters, numbers,
and the underscore, for example,
$my_report1.

n	 The first character after the dollar sign
must be either a letter or an underscore
(it cannot be a number).

n	 Variable names in PHP are case-
sensitive! This is a very important rule.
It means that $name and $Name are
entirely different variables.

To begin working with variables, this next
script will print out the value of three
predefined variables. Whereas a standard
variable is assigned a value during the
execution of a script, a predefined variable
will already have a value when the script
begins its execution. Most of these
predefined variables reflect properties
of the server as a whole, such as the
operating system in use.

Before getting into this script, there are
two more things you should know. First,
variables can be assigned values using the
equals sign (=), also called the assignment
operator. Second, to display the value of a
variable, you can print the variable without
quotation marks:

print $some_var;

Or variables can be printed within double
quotation marks:

print "Hello, $name";

You cannot print variables within single
quotation marks:

print 'Hello, $name'; // Won't work!

ptg6935296

Introduction to PHP 15

To use variables:
1. Begin a new PHP document in

your text editor or IDE, to be named
predefined.php, starting with the
initial HTML (Script 1.5):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Predefined Variables
 ➝ </title>
</head>
<body>

2. Add the opening PHP tag and the
first comment:

<?php # Script 1.5 - predefined.php

From here on out, scripts will no longer
comment on the creator, creation date,
and so forth, although you should con-
tinue to document your scripts thoroughly.
Scripts will, however, make a comment
indicating the script’s number and
filename for ease of cross-referencing
(both in the book and when you download
them from the book’s supporting Web site,
www.LarryUllman.com).

continues on next page

Script 1.5 This script prints three of PHP’s many
predefined variables.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Predefined	Variables</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	1.5	-	predefined.php
9	
10	 	//	Create	a	shorthand	version	of	the	

variable	names:
11 $file = $_SERVER['SCRIPT_FILENAME'];
12 $user = $_SERVER['HTTP_USER_AGENT'];
13 $server = $_SERVER['SERVER_SOFTWARE'];
14	
15	 //	Print	the	name	of	this	script:
16 echo "<p>You are running the
 file:
$file.</p>\n";
17	
18	 //	Print	the	user's	information:
19 echo "<p>You are viewing this page
 using:
$user</p>\n";
20	
21	 //	Print	the	server's	information:
22 echo "<p>This server is running:

$server.</p>\n";
23	
24	 ?>
25	 </body>
26	 </html>

www.LarryUllman.com

ptg6935296

16 Chapter 1

3. Create a shorthand version of the first
variable to be used in this script:

$file = $_SERVER['SCRIPT_FILENAME'];

This script will use three variables,
each of which comes from the larger
predefined $_SERVER variable. $_SERVER
refers to a mass of server-related
information. The first variable the script
uses is $_SERVER['SCRIPT_FILENAME'].
This variable stores the full path and
name of the script being run (for
example, C:\Program Files\Apache\
htdocs\predefined.php).

The value stored in $_SERVER['SCRIPT_
FILENAME'] will be assigned to the new
variable $file. Creating new variables
with shorter names and then assigning
them values from $_SERVER will make
it easier to refer to the variables when
printing them. (It also gets around another
issue you’ll learn about in due time.)

4. Create a shorthand version of two
more variables:

$user = $_SERVER['HTTP_USER_AGENT'];
$server = $_SERVER
➝ ['SERVER_SOFTWARE'];

$_SERVER['HTTP_USER_AGENT'] represents
the Web browser and operating system
of the user accessing the script. This
value is assigned to $user.

$_SERVER['SERVER_SOFTWARE'] represents
the Web application on the server that’s
running PHP (e.g., Apache, Abyss, Xitami,
IIS). This is the program that must be
installed (see Appendix A) in order to run
PHP scripts on that computer.

5. Print out the name of the script being run:

echo "<p>You are running the
➝ file:
$file.</p>\n";

The first variable to be printed is $file.
Notice that this variable must be used
within double quotation marks and
that the statement also makes use of
the PHP newline character (\n), which
will add a line break in the generated
HTML source. Some basic HTML tags—
paragraph and bold—are added to give
the generated page a bit of flair.

6. Print out the information of the user
accessing the script:

echo "<p>You are viewing this page
➝ using:
$user</p>\n";

This line prints the second variable,
$user. To repeat what’s said in the
fourth step, $user correlates to $_
SERVER['HTTP_USER_AGENT'] and refers
to the operating system, browser type,
and browser version being used to
access the Web page.

7. Print out the server information:

echo "<p>This server is running:
➝
$server.</p>\n";

8. Complete the PHP block and the
HTML page:

?>
</body>
</html>

ptg6935296

Introduction to PHP 17

The most important consideration
when creating variables is to use a consistent
naming scheme. In this book you’ll see that
I use all-lowercase letters for my variable
names, with underscores separating words
($first_name). Some programmers prefer
to use capitalization instead: $FirstName
(known as “camel-case” style).

PHP is very casual in how it treats vari-
ables, meaning that you don’t need to initialize
them (set an immediate value) or declare them
(set a specific type), and you can convert a vari-
able among the many types without problem.

A The predefined.php script reports
back to the viewer information about the
script, the Web browser being used to
view it, and the server itself.

B This is the book’s first truly dynamic
script, in that the Web page changes
depending upon the server running it
and the Web browser viewing it (compare
with A).

9. Save the file as predefined.php, place
it in your Web directory, and test it in
your Web browser A.

If you have problems with this, or any
other script, turn to the book’s corresponding
Web forum (www.LarryUllman.com/
forums/) for assistance.

If possible, run this script using a differ-
ent Web browser and/or on another server B.

Variable names cannot contain spaces.
The underscore is commonly used in lieu of
a space.

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg6935296

18 Chapter 1

introducing Strings
Now that you’ve been introduced to the
general concept of variables, let’s look at
variables in detail. The first variable type to
delve into is the string. A string is merely
a quoted chunk of characters: letters,
numbers, spaces, punctuation, and so
forth. These are all strings:

n	 ‘Tobias’

n	 “In watermelon sugar”

n	 ‘100’

n	 ‘August 2, 2011’

To make a string variable, assign a string
value to a valid variable name:

$first_name = 'Tobias';
$today = 'August 2, 2011';

When creating strings, you can use either
single or double quotation marks to
encapsulate the characters, just as you
would when printing text. Likewise, you
must use the same type of quotation mark
for the beginning and the end of the string.
If that same mark appears within the string,
it must be escaped:

$var = "Define \"platitude\", please.";

Or you can also use the other quotation
mark type:

$var = 'Define "platitude", please.';

To print out the value of a string, use either
echo or print:

echo $first_name;

To print the value of string within a context,
you must use double quotation marks:

echo "Hello, $first_name";

You’ve already worked with strings once—
when using the predefined variables in
the preceding section (the values of those
variables happened to be strings). In this
next example, you’ll create and use your
own strings.

ptg6935296

Introduction to PHP 19

To use strings:
1. Begin a new PHP document in your text

editor or IDE, to be named strings.php,
starting with the initial HTML and includ-
ing the opening PHP tag (Script 1.6):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Strings</title>
</head>
<body>
<?php # Script 1.6 - strings.php

2. Within the PHP tags, create three
variables:

$first_name = 'Haruki';
$last_name = 'Murakami';
$book = 'Kafka on the Shore';

This rudimentary example creates
$first_name, $last_name, and $book
variables that will then be printed out in
a message.

continues on next page

Script 1.6 String variables are created and their
values are sent to the Web browser in this script.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Strings</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	1.6	-	strings.php
9	
10	 //	Create	the	variables:
11 $first_name = 'Haruki';
12 $last_name = 'Murakami';
13 $book = 'Kafka on the Shore';
14	
15	 //	Print	the	values:
16 echo "<p>The book $book
 was written by $first_name
 $last_name.</p>";
17	
18	 ?>
19	 </body>
20	 </html>

ptg6935296

20 Chapter 1

3. Add an echo statement:

echo "<p>The book $book
➝ was written by $first_name
➝ $last_name.</p>";

All this script does is print a statement
of authorship based upon three
established variables. A little HTML
formatting (the emphasis on the book’s
title) is thrown in to make it more
attractive. Remember to use double
quotation marks here for the variable
values to be printed out appropriately
(more on the importance of double
quotation marks at the chapter’s end).

4. Complete the PHP block and the HTML
page:

?>
</body>
</html>

5. Save the file as strings.php, place it in
your Web directory, and test it in your
Web browser A.

6. If desired, change the values of the
three variables, save the file, and run
the script again B.

If you assign another value to an existing
variable (say $book), the new value will
overwrite the old one. For example:

$book = 'High Fidelity';
$book = 'The Corrections';
/* $book now has a value of
'The Corrections'. */

PHP has no set limits on how big a string
can be. It’s theoretically possible that you’ll be
limited by the resources of the server, but it’s
doubtful that you’ll ever encounter such
a problem.

A The resulting Web page is based upon printing
out the values of three variables.

B The output of the script is changed by altering
the variables in it.

ptg6935296

Introduction to PHP 21

Concatenating Strings
Concatenation is like addition for strings,
whereby characters are added to the
end of the string. It is performed using
the concatenation operator, which is the
period (.):

$city= 'Seattle';
$state = 'Washington';
$address = $city . $state;

The $address variable now has the value
SeattleWashington, which almost achieves
the desired result (Seattle, Washington).
To improve upon this, you could write

$address = $city . ', ' . $state;

so that a comma and a space are
concatenated to the variables as well.

Because of how liberally PHP treats
variables, concatenation is possible with
strings and numbers. Either of these
statements will produce the same result
(Seattle, Washington 98101):

$address = $city . ', ' . $state .
 ' 98101';
$address = $city . ', ' . $state .
 ' ' . 98101;

Let’s modify strings.php to use this
new operator.

To use concatenation:
1. Open strings.php (refer to Script 1.6) in

your text editor or IDE.

2. After you’ve established the $first_
name and $last_name variables (lines 11
and 12), add this line (Script 1.7):

$author = $first_name . ' ' .
➝ $last_name;

As a demonstration of concatenation, a
new variable—$author—will be created
as the concatenation of two existing
strings and a space in between.

continues on next page

Script 1.7 Concatenation gives you the ability to
append more characters onto a string.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Concatenation</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	1.7	-	concat.php
9	
10	 //	Create	the	variables:
11	 $first_name	=	'Melissa';
12	 $last_name	=	'Bank';
13 $author = $first_name . ' ' .
 $last_name;
14	
15	 	$book	=	'The	Girls\'	Guide	to	Hunting	

and	Fishing';
16	
17	 //Print	the	values:
18 echo "<p>The book $book
 was written by $author.</p>";
19	
20	 ?>
21	 </body>
22	 </html>

ptg6935296

22 Chapter 1

3. Change the echo statement to use this
new variable:

echo "<p>The book $book
➝ was written by $author.</p>";

Since the two variables have been
turned into one, the echo statement
should be altered accordingly.

4. If desired, change the HTML page title
and the values of the first name, last
name, and book variables.

5. Save the file as concat.php, place it in
your Web directory, and test it in your
Web browser A.

PHP has a slew of useful string-specific
functions, which you’ll see over the course of
this book. For example, to calculate how long
a string is (how many characters it contains),
use strlen():

$num = strlen('some string'); // 11

You can have PHP convert the case of
strings with: strtolower(), which makes
it entirely lowercase; strtoupper(), which
makes it entirely uppercase; ucfirst(),
which capitalizes the first character; and
ucwords(), which capitalizes the first charac-
ter of every word.

If you are merely concatenating one
value to another, you can use the concatena-
tion assignment operator (.=). The following
are equivalent:

$title = $title . $subtitle;
$title .= $subtitle;

The initial example in this section could
be rewritten using either

$address = "$city, $state";

or

$address = $city;
$address .= ', ';
$address .= $state;

using the pHp Manual
The PHP manual—accessible online
at www.php.net/manual—lists every
function and feature of the language.
The manual is organized with general
concepts (installation, syntax, variables)
discussed first and ends with the
functions by topic (MySQL, string
functions, and so on).

To quickly look up any function in the
PHP manual, go to www.php.net/
functionname in your Web browser
(for example, www.php.net/print). For
each function, the manual indicates:

. 	The versions of PHP the function is
available in.

. 	How many and what types of
arguments the function takes
(optional arguments are wrapped
in square brackets).

. 	What type of value the function
returns.

The manual also contains a description
of the function.

You should be in the habit of check-
ing out the PHP manual whenever
you’re confused by a function, how it’s
properly used, or need to learn more
about any feature of the language. It’s
also critically important that you know
what version of PHP you’re running, as
functions and other particulars of PHP
do change over time.

A In this revised script, the end result of
concatenation is not apparent to the user.

www.php.net/manual
www.php.net/functionname
www.php.net/functionname
www.php.net/print

ptg6935296

Introduction to PHP 23

common ones are round() and number_
format(). The former rounds a decimal to
the nearest integer:

$n = 3.14;
$n = round ($n); // 3

It can also round to a specified number of
decimal places:

$n = 3.142857;
$n = round ($n, 3); // 3.143

The number_format() function turns a
number into the more commonly written
version, grouped into thousands using
commas:

$n = 20943;
$n = number_format ($n); // 20,943

This function can also set a specified
number of decimal points:

$n = 20943;
$n = number_format ($n, 2); //
20,943.00

To practice with numbers, let’s write
a mock-up script that performs the
calculations one might use in an
e-commerce shopping cart.

TABLe 1.1 Arithmetic Operators

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

+ + Increment

-- Decrement

introducing numbers
In introducing variables, I stated that
PHP has both integer and floating-point
(decimal) number types. In my experience,
though, these two types can be classified
under the generic title numbers without
losing any valuable distinction (for the most
part). Valid number-type variables in PHP
can be anything like

n	 8

n	 3.14

n	 10980843985

n	 -4.2398508

n	 4.4e2

Notice that these values are never
quoted—quoted numbers are strings
with numeric values—nor do they include
commas to indicate thousands. Also, a
number is assumed to be positive unless it
is preceded by the minus sign (-).

Along with the standard arithmetic operators
you can use on numbers (Table 1.1), there
are dozens of functions built into PHP. Two

ptg6935296

24 Chapter 1

To use numbers:
1. Begin a new PHP document in your text

editor or IDE, to be named numbers.php
(Script 1.8):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Numbers</title>
</head>
<body>
<?php # Script 1.8 - numbers.php

2. Establish the requisite variables:

$quantity = 30;
$price = 119.95;
$taxrate = .05;

This script will use three hard-coded
variables upon which calculations will
be made. Later in the book, you’ll see
how these values can be dynamically
determined (i.e., by user interaction with
an HTML form).

3. Perform the calculations:

$total = $quantity * $price;
$total = $total + ($total *
➝ $taxrate);

The first line establishes the order total
as the number of widgets purchased
multiplied by the price of each widget.
The second line then adds the amount
of tax to the total (calculated by
multiplying the tax rate by the total).

Script 1.8 The numbers.php script performs basic
mathematical calculations, like those used in an
e-commerce application.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Numbers</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	1.8	-	numbers.php
9	
10	 //	Set	the	variables:
11 $quantity = 30; // Buying 30 widgets.
12 $price = 119.95;
13 $taxrate = .05; // 5% sales tax.
14	
15	 //	Calculate	the	total:
16 $total = $quantity * $price;
17 $total = $total + ($total * $taxrate);
 // Calculate and add the tax.
18	
19	 //	Format	the	total:
20 $total = number_format ($total, 2);
21	
22	 //	Print	the	results:
23 echo '<p>You are purchasing ' .
 $quantity . ' widget(s) at a cost
 of $' . $price . ' each. With
 tax, the total comes to $' .
 $total . '.</p>';
24	
25	 ?>
26	 </body>
27	 </html>

ptg6935296

Introduction to PHP 25

PHP supports a maximum integer
of around two billion on most platforms.
With numbers larger than that, PHP will
automatically use a floating-point type.

When dealing with arithmetic, the issue
of precedence arises (the order in which com-
plex calculations are made). While the PHP
manual and other sources tend to list out the
hierarchy of precedence, I find programming
to be safer and more legible when I group
clauses in parentheses to force the execution
order (see line 17 of Script 1.8).

Computers are notoriously poor at
dealing with decimals. For example, the num-
ber 2.0 may actually be stored as 1.99999.
Most of the time this won’t be a problem,
but in cases where mathematical precision is
paramount, rely on integers, not decimals. The
PHP manual has information on this subject,
as well as alternative functions for improving
computational accuracy.

Many of the mathematical operators also
have a corresponding assignment operator,
letting you create a shorthand for assigning
values. This line,

$total = $total + ($total * $taxrate);

could be rewritten as

$total += ($total * $taxrate);

If you set a $price value without using
two decimals (e.g., 119.9 or 34), you would
want to apply number_format() to $price
before printing it.

4. Format the total:

$total = number_format ($total, 2);

The number_format() function will
group the total into thousands and
round it to two decimal places. Applying
this function will properly format the
calculated value.

5. Print the results:

echo '<p>You are purchasing ' .
➝ $quantity . ' widget(s) at
➝ a cost of $' . $price . '
➝ each. With tax, the total comes
➝ to $' . $total . '.</p>';

The last step in the script is to print out
the results. The echo statement uses
both single-quoted text and concat-
enated variables in order to print out the
full combination of HTML, dollar signs,
and variable values. You’ll see an alter-
native approach in the last example of
this chapter.

6. Complete the PHP code and the
HTML page:

?>
</body>
</html>

7. Save the file as numbers.php, place it in
your Web directory, and test it in your
Web browser A.

8. If desired, change the initial three
variables and rerun the script B.

A The numbers PHP page (Script 1.8) performs
calculations based upon set values.

B To change the generated Web page, alter any
or all of the three variables (compare with A).

ptg6935296

26 Chapter 1

introducing Constants
Constants, like variables, are used to
temporarily store a value, but otherwise,
constants and variables differ in many
ways. For starters, to create a constant,
you use the define() function instead
of the assignment operator (=):

define ('NAME', value);

Notice that, as a rule of thumb, constants
are named using all capitals, although this
is not required. Most importantly, constants
do not use the initial dollar sign as variables
do (because constants are not variables).

A constant can only be assigned a scalar
value, like a string or a number:

define ('USERNAME', 'troutocity');
define ('PI', 3.14);

And unlike variables, a constant’s value
cannot be changed.

To access a constant’s value, like when you
want to print it, you cannot put the constant
within quotation marks:

echo "Hello, USERNAME"; // Won't work!

With that code, PHP literally prints Hello,
USERNAME A and not the value of the
USERNAME constant (because there’s no
indication that USERNAME is anything other
than literal text). Instead, either print the
constant by itself:

echo 'Hello, ';
echo USERNAME;

or use the concatenation operator:

echo 'Hello, ' . USERNAME;

PHP runs with several predefined
constants, much like the predefined
variables used earlier in the chapter. These
include PHP_VERSION (the version of PHP
running) and PHP_OS (the operating system
of the server). This next script will print
those two values, along with the value of
a user-defined constant.

A Constants cannot be placed
within quoted strings.

ptg6935296

Introduction to PHP 27

To use constants:
1. Begin a new PHP document in

your text editor or IDE, to be named
constants.php (Script 1.9).

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Constants</title>
</head>
<body>
<?php # Script 1.9 - constants.php

2. Create a new date constant:

define ('TODAY', 'March 16, 2011');

An admittedly trivial use of constants,
but this example will illustrate the point.
In Chapter 9, “Using PHP with MySQL,”
you’ll see how to use constants to store
your database access information.

3. Print out the date, the PHP version, and
operating system information:

echo '<p>Today is ' . TODAY .
➝'.
This server is running
➝ version ' . PHP_VERSION .
➝' of PHP on the ' . PHP_OS .
➝' operating system.</p>';

Since constants cannot be printed within
quotation marks, use the concatenation
operator in the echo statement.

continues on next page

Script 1.9 Constants are another temporary
storage tool you can use in PHP, distinct
from variables.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Constants</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	1.9	-	constants.php
9	
10	 //	Set	today's	date	as	a	constant:
11 define ('TODAY', 'March 16, 2011');
12	
13	 	//	Print	a	message,	using	predefined	

constants	and	the	TODAY	constant:
14 echo '<p>Today is ' . TODAY . '.

 This server is running version ' .
 PHP_VERSION . ' of PHP on the ' .
 PHP_OS . ' operating system.</p>';
15	
16	 ?>
17	 </body>
18	 </html>

ptg6935296

28 Chapter 1

4. Complete the PHP code and the
HTML page:

?>
</body>
</html>

5. Save the file as constants.php, place it
in your Web directory, and test it in your
Web browser B.

If possible, run this script on another
PHP-enabled server C.

The operating system called Darwin B
is the technical term for Mac OS X.

In Chapter 12, “Cookies and Sessions,”
you’ll learn about another constant, SID
(which stands for session ID).

B By making use of PHP’s constants, you can
learn more about your PHP setup.

C Running the same script (refer to
Script 1.9) on different servers garners
different results.

ptg6935296

Introduction to PHP 29

The code echo "var is equal to $var";
will print out var is equal to test, but the
code echo 'var is equal to $var'; will
print out var is equal to $var. Using an
escaped dollar sign, the code echo "\$var
is equal to $var"; will print out $var
is equal to test, whereas the code echo
'\$var is equal to $var'; will print out
\$var is equal to $var A.

As these examples should illustrate,
double quotation marks will replace a
variable’s name ($var) with its value (test)
and a special character’s code (\$) with
its represented value ($). Single quotes
will always display exactly what you type,
except for the escaped single quote (\')
and the escaped backslash (\\), which are
printed as a single quotation mark and a
single backslash, respectively.

As another example of how the two
quotation marks differ, let’s modify the
numbers.php script as an experiment.

TABLe 1.2 Escape Sequences

Code Meaning

\" Double quotation mark

\' Single quotation mark

\\ Backslash

\n Newline

\r Carriage return

\t Tab

\$ Dollar sign

Single vs. Double
Quotation Marks
In PHP it’s important to understand how
single quotation marks differ from double
quotation marks. With echo and print, or
when assigning values to strings, you can
use either, as in the examples used so far.
But there is a key difference between the
two types of quotation marks and when
you should use which. You’ve seen this
difference already, but it’s an important
enough concept to merit more discussion.

In PHP, values enclosed within single
quotation marks will be treated literally,
whereas those within double quotation
marks will be interpreted. In other words,
placing variables and special characters
(Table 1.2) within double quotes will result
in their represented values printed, not
their literal values. For example, assume
that you have

$var = 'test';

A How single and double quotation marks affect
what gets printed by PHP.

ptg6935296

30 Chapter 1

To use single and double
quotation marks:
1. Open numbers.php (refer to Script 1.8)

in your text editor or IDE.

2. Delete the existing echo statement
(Script 1.10).

3. Print a caption and then rewrite the
original echo statement using double
quotation marks:

echo "<h3>Using double quotation
➝ marks:</h3>";
echo "<p>You are purchasing
➝ $quantity widget(s) at
➝ a cost of \$$price each.
➝ With tax, the total comes to
➝ \$$total.</p>\n";

In the original script, the results were
printed using single quotation marks
and concatenation. The same result can
be achieved using double quotation
marks. When using double quotation
marks, the variables can be placed
within the string.

There is one catch, though: trying to
print a dollar amount as $12.34 (where
12.34 comes from a variable) would
suggest that you would code $$var.
That will not work (for complicated
reasons). Instead, escape the initial
dollar sign, resulting in \$$var, as you
see twice in this code. The first dollar
sign will be printed, and the second
becomes the start of the variable name.

Script 1.10 This, the final script in the chapter,
demonstrates the differences between using
single and double quotation marks.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	
1.0	Transitional//EN"	"http://www.w3.org/
TR/xhtml1/DTD/xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Quotation	Marks</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	1.10	-	quotes.php
9	
10	 //	Set	the	variables:
11	 $quantity	=	30;	//	Buying	30	widgets.
12	 $price	=	119.95;
13	 $taxrate	=	.05;	//	5%	sales	tax.
14	
15	 //	Calculate	the	total.
16	 $total	=	$quantity	*	$price;
17	 	$total	=	$total	+	($total	*	$taxrate);		

//	Calculate	and	add	the	tax.
18	
19	 //	Format	the	total:
20	 $total	=	number_format	($total,	2);
21	
22	 	//	Print	the	results	using	double		

quotation	marks:
23 echo "<h3>Using double quotation
 marks:</h3>";
24 echo "<p>You are purchasing
 $quantity widget(s) at a cost
 of \$$price each. With tax,
 the total comes to \$$total.
 </p>\n";
25	
26	 	//	Print	the	results	using	single		

quotation	marks:
27 echo '<h3>Using single quotation
 marks:</h3>';
28 echo '<p>You are purchasing
 $quantity widget(s) at a cost
 of \$$price each. With tax,
 the total comes to \$$total.
 </p>\n';
29	
30	 ?>
31	 </body>
32	 </html>

ptg6935296

Introduction to PHP 31

4. Repeat the echo statements, this time
using single quotation marks:

echo '<h3>Using single quotation
➝ marks:</h3>';
echo '<p>You are purchasing
➝ $quantity widget(s) at
➝ a cost of \$$price each.
➝ With tax, the total comes to
➝ \$$total.</p>\n';

This echo statement is used to highlight
the difference between using single or
double quotation marks. It will not work
as desired, and the resulting page will
show you exactly what does happen
instead.

5. If you want, change the page’s title.

6. Save the file as quotes.php, place it in
your Web directory, and test it in your
Web browser B.

7. View the source of the Web page to
see how using the newline character
(\n) within each quotation mark type
also differs.

You should see that when you place
the newline character within double
quotation marks it creates a newline
in the HTML source. When placed
within single quotation marks, the literal
characters \ and n are printed instead.

B These results demonstrate
when and how you’d use one
type of quotation mark as
opposed to the other.

Because PHP will attempt to find
variables within double quotation marks, using
single quotation marks is theoretically faster.
If you need to print the value of a variable,
though, you must use double quotation marks.

As valid HTML often includes a lot of
double-quoted attributes, it’s often easiest
to use single quotation marks when printing
HTML with PHP:

echo '<table width="80%" border="0"
➝ cellspacing="2" cellpadding="3"
➝ align="center">';

If you were to print out this HTML using
double quotation marks, you would have to
escape all of the double quotation marks in
the string:

echo "<table width=\"80%\" border=
➝\"0\" cellspacing=\"2\" cellpadding=
➝\"3\" align=\"center\">";

In newer versions of PHP, you can actu-
ally use $$price and $$total without pre-
ceding them with a backslash (thanks to some
internal magic). In older versions of PHP, you
cannot. To guarantee reliable results, regard-
less of PHP version, I recommend using the
\$$var syntax when you need to print a dollar
sign immediately
followed by the value of a variable.

If you’re still unclear as to the difference
between the types, use double quotation
marks and you’re less likely to have problems.

ptg6935296

32 Chapter 1

Basic Debugging Steps
Debugging is by no means a simple
concept to grasp, and unfortunately, it’s
one that is only truly mastered by doing.
The next 50 pages could be dedicated to
the subject and you’d still only be able to
pick up a fraction of the debugging skills
that you’ll eventually acquire and need.

The reason I introduce debugging in
this somewhat harrowing way is that it’s
important not to enter into programming
with delusions. Sometimes code won’t
work as expected, you’ll inevitably create
careless errors, and some days you’ll want
to pull your hair out, even when using a
comparatively user-friendly language such
as PHP. In short, prepare to be perplexed
and frustrated at times. I’ve been coding
in PHP since 1999, and occasionally I still
get stuck in the programming muck. But
debugging is a very important skill to have,
and one that you will eventually pick up
out of necessity and experience. As you
begin your PHP programming adventure, I
can offer the following basic but concrete
debugging tips.

Note that these are just some general
debugging techniques, specifically
tailored to the beginning PHP program-
mer. Chapter 8, “Error Handling and
Debugging,” goes into other techniques
in more detail.

ptg6935296

Introduction to PHP 33

n	 Check the HTML source code.

Sometimes the problem is hidden in
the HTML source of the page. In fact,
sometimes the PHP error message can
be hidden there!

n	 Trust the error message.

Another very common beginner’s
mistake is to not fully read or trust the
error that PHP reports. Although an error
message can often be cryptic and may
seem meaningless, it can’t be ignored.
At the very least, PHP is normally correct
as to the line on which the problem can
be found. And if you need to relay that
error message to someone else (like
when you’re asking me for help), do
include the entire error message!

n	 Take a break!

So many of the programming problems
I’ve encountered over the years, and the
vast majority of the toughest ones, have
been solved by stepping away from the
computer for a while. It’s easy to get
frustrated and confused, and in such
situations, any further steps you take are
likely to only make matters worse.

To debug a pHp script:
n	 Make sure you’re always running PHP

scripts through a URL!

This is perhaps the most common
beginner’s mistake. PHP code must be
run through the Web server application,
which means it must be requested via
http://something. When you see actual
PHP code instead of the result of that
code’s execution, most likely you’re not
running the PHP script through a URL.

n	 Know what version of PHP you’re
running.

Some problems will arise from the
version of PHP in use. Before you ever
use any PHP-enabled server, run a
phpinfo.php script (see Appendix A) or
reference the PHP_VERSION constant to
confirm the version of PHP in use.

n	 Make sure display_errors is on.

This is a basic PHP configuration setting
(also discussed in Appendix A). You
can confirm this setting by executing
the phpinfo() function (just use your
browser to search for display_errors
in the resulting page). For security
reasons, PHP may not be set to display
the errors that occur. If that’s the case,
you’ll end up seeing blank pages
when problems occur. To debug most
problems, you’ll need to see the errors,
so turn this setting on while you’re
learning. You’ll find instructions for
doing so in Appendix A.

ptg6935296

34 Chapter 1

Review and pursue
New in this edition of the book, each
chapter ends with a “Review and
Pursue” section. In these sections you’ll
find questions regarding the material
just covered and prompts for ways to
expand your knowledge and experience
on your own. If you have any problems
with these sections, either in answering
the questions or pursuing your own
endeavors, turn to the book’s supporting
forum (www.LarryUllman.com/forums/).

Review
n	 What tags are used to surround

PHP code?

n	 What extension should a PHP file have?

n	 What does a page’s encoding refer to?
What impact does the encoding have
on the page?

n	 What PHP functions, or language
constructs, can you use to send data to
the Web browser?

n	 How does using single versus double
quotation marks differ in creating or
printing strings?

n	 What does it mean to escape a
character in a string?

n	 What are the three comment syntaxes
in PHP? Which one can be used over
multiple lines?

n	 What character do all variable names
begin with? What characters can come
next? What other characters can be
used in a variable’s name?

n	 Are variable names case-sensitive or
case-insensitive?

n	 What is the assignment operator?

n	 How do you create a string variable?

n	 What is the concatenation operator?
What is the concatenation assignment
operator?

n	 How are constants defined and used?

pursue
n	 If you don’t already know—for certain—

what version of PHP you’re running,
check now.

n	 Look up one of the mentioned string
functions in the PHP manual. Then
check out some of the other available
string functions listed therein.

n	 Look up one of the mentioned number
functions in the PHP manual. Then
check out some of the other available
number functions listed therein.

n	 Search the PHP manual for the
$_SERVER variable to see what other
information it contains.

n	 Create a new script, from scratch,
that defines and displays the values
of some string variables. Use double
quotation marks in the echo or print
statement that outputs the values. For
added complexity include some HTML
in the output. Then rewrite the script
so that it uses single quotation marks
and concatenation instead of double
quotation marks.

n	 Create a new script, from scratch, that
defines, manipulates, and displays the
values of some numeric variables.

www.LarryUllman.com/forums/

ptg6935296

Now that you have the fundamentals of
the PHP scripting language down, it’s time
to build on those basics and start truly
programming. In this chapter you’ll begin
creating more elaborate scripts while still
learning some of the standard constructs,
functions, and syntax of the language.

You’ll start by creating an HTML form,
and then learn how you can use PHP to
handle the submitted values. From there,
the chapter covers conditionals and the
remaining operators (Chapter 1, “Introduc-
tion to PHP,” presented the assignment,
concatenation, and mathematical opera-
tors), arrays (another variable type), and
one last language construct, loops.

2
Programming

with PHP

in This Chapter
	 36

	 41

	 45

	 49

	 54

	 69

	 72

ptg6935296

36 Chapter 2

Creating an
HTML Form
Handling an HTML form with PHP is
perhaps the most important process in any
dynamic Web site. Two steps are involved:
first you create the HTML form itself, and
then you create the corresponding PHP
script that will receive and process the
form data.

It is outside the realm of this book to go
into HTML forms in any detail, but I will
lead you through one quick example so
that it may be used throughout the chapter.
If you’re unfamiliar with the basics of an
HTML form, including the various types of
elements, see an HTML resource for more
information.

An HTML form is created using the form
tags and various elements for taking input.
The form tags look like

<form action="script.php"
➝ method="post">
</form>

In terms of PHP, the most important
attribute of your form tag is action, which
dictates to which page the form data will
be sent. The second attribute—method—
has its own issues (see the “Choosing a
Method” sidebar), but post is the value
you’ll use most frequently.

The different inputs—be they text boxes,
radio buttons, select menus, check boxes,
etc.—are placed within the opening and
closing form tags. As you’ll see in the next
section, what kinds of inputs your form has
makes little difference to the PHP script
handling it. You should, however, pay
attention to the names you give your form
inputs, as they’ll be of critical importance
when it comes to your PHP code.

Choosing a Method
The method attribute of a form dictates
how the data is sent to the handling
page. The two options—get and post—
refer to the HTTP (HyperText Transfer
Protocol) method to be used. The GET
method sends the submitted data to the
receiving page as a series of name-value
pairs appended to the URL. For example,

http://www.example.com/script.php?
➝ name=Homer&gender=M&age=35

The benefit of using the GET method
is that the resulting page can be
bookmarked in the user’s Web browser
(since it’s a complete URL). For that
matter, you can also click Back in your
Web browser to return to a GET page,
or reload it without problems (none of
which is true for POST). But there is a limit
in how much data can be transmitted via
GET, and this method is less secure (since
the data is visible).

Generally speaking, GET is used for
requesting information, like a particular
record from a database or the results of
a search (searches almost always use
GET). The POST method is used when
an action is expected: the updating of
a database record or the sending of an
email. For these reasons I will primarily
use POST throughout this book, with
noted exceptions.

http://www.example.com/script.php?name=Homer&gender=M&age=35
http://www.example.com/script.php?name=Homer&gender=M&age=35

ptg6935296

Programming with PHP 37

To create an HTML form:
1. Begin a new HTML document in

your text editor or IDE, to be named
form.html (Script 2.1):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Simple HTML Form</title>
 <style type="text/css"
 ➝ title="text/css" media="all">
 label {
 font-weight: bold;
 color: #300ACC;
 }
 </style>
</head>
<body>
<!-- Script 2.1 - form.html -->

The document uses the same basic
syntax for an HTML page as in the
previous chapter. I have added some
inline CSS (Cascading Style Sheets)
in order to style the form slightly
(specifically, making label elements
bold and blue).

CSS is the preferred way to handle
many formatting and layout issues in an
HTML page. You’ll see a little bit of CSS
here and there in this book; if you’re not
familiar with the subject, check out a
dedicated CSS reference.

Finally, an HTML comment indicates the
file’s name and number.

continues on next page

Script 2.1 This simple HTML form will be used for
several of the examples in this chapter.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	
XHTML	1.0	Transitional//EN"		
"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Simple	HTML	Form</title>
6	 	 	<style	type="text/css"	title="text/

css"	media="all">
7	 	 label	{
8	 	 	 font-weight:	bold;
9	 	 	 color:	#300ACC;
10	 	 }
11	 	 </style>
12	 </head>
13	 <body>
14	 <!--	Script	2.1	-	form.html	-->
15	
16	 	<form	action="handle_form.php"	

method="post">
17	
18	 	 	<fieldset><legend>Enter	your	

information	in	the	form	below:	
</legend>

19	 	
20	 	 	<p><label>Name:	<input	type="text"	

name="name"	size="20"	maxlength=	
"40"	/></label></p>

21	 	
22	 	 	<p><label>Email	Address:	<input	

type="text"	name="email"	size="40"	
maxlength="60"	/></label></p>

23	 	
24	 	 	<p><label	for="gender">Gender:	

</label><input	type="radio"	
name="gender"	value="M"	/>	Male	
<input	type="radio"	name="gender"	
value="F"	/>	Female</p>

25	 	
26	 	 <p><label>Age:
27	 	 <select	name="age">
28	 	 	 	<option	value="0-29">Under	30	

</option>
29	 	 	 	<option	value="30-60">Between	30	

and	60</option>

code continues on next page

ptg6935296

38 Chapter 2

2. Add the initial form tag:

<form action="handle_form.php"
➝ method="post">

Since the action attribute dictates
to which script the form data will go,
you should give it an appropriate
name (handle_form to correspond
with this page: form.html) and the
.php extension (since a PHP script
will handle this form’s data).

3. Begin the HTML form:

<fieldset><legend>Enter your
➝ information in the form below:
➝ </legend>

I’m using the fieldset and legend
HTML tags because I like the way they
make the HTML form look (they add a
box around the form with a title at the
top). This isn’t pertinent to the form
itself, though.

4. Add two text inputs:

<p><label>Name: <input type=
➝"text" name="name" size="20"
➝ maxlength="40" /></label></p>
<p><label>Email Address: <input
➝ type="text" name="email"
➝ size="40" maxlength="60" />
➝ </label></p>

These are just simple text inputs,
allowing the user to enter their name
and email address A. In case you
are wondering, the extra space and
slash at the end of each input’s tag are
required for valid XHTML. With standard
HTML, these tags would conclude with
maxlength="40"> instead. The label
tags just tie each textual label to the
associated element.

Script 2.1 continued

30	 	 	 	<option	value="60+">Over	60	
</option>

31	 	 </select></label></p>
32	 	
33	 	 	<p><label>Comments:	<textarea	

name="comments"	rows="3"	cols="40"></
textarea></label></p>

34	 	
35	 	 </fieldset>
36	 	
37	 	 	<p	align="center"><input	type=	

"submit"	name="submit"	value=	
"Submit	My	Information"	/></p>

38	
39	 </form>
40	
41	 </body>
42	 </html>

A Two text inputs.

ptg6935296

Programming with PHP 39

5. Add a pair of radio buttons:
<p><label for="gender">Gender:
➝ </label><input type="radio"
➝ name="gender" value="M" /> Male
➝ <input type="radio" name=
➝"gender" value="F" /> Female</p>

The radio buttons B both have the
same name, meaning that only one of
the two can be selected. They have
different values, though.

6. Add a pull-down menu:

<p><label>Age:
<select name="age">
 <option value="0-29">Under 30
 ➝ </option>
 <option value="30-60">Between
 ➝ 30 and 60</option>
 <option value="60+">Over 60
 ➝ </option>
</select></label></p>

The select tag starts the pull-down
menu, and then each option tag
will create another line in the list of
choices C.

7. Add a text box for comments:
<p><label>Comments: <textarea
➝ name="comments" rows="3"
➝ cols="40"></textarea></label></p>

Textareas are different from text inputs;
they are presented as a box D, not as
a single line. They allow for much more
information to be typed and are useful
for taking user comments.

continues on next page

B If multiple radio buttons
have the same name value,
only one can be selected
by the user.

C The pull-down menu
offers three options, of
which only one can be
selected (in this example).

D The textarea form element type allows for lots
and lots of text.

ptg6935296

40 Chapter 2

8. Complete the form:

 </fieldset>
 <p align="center"><input type=
 ➝"submit" name="submit" value=
 ➝"Submit My Information" /></p>
</form>

The first tag closes the fieldset that
was opened in Step 3. Then a submit
button is created and centered using
a p tag. Finally, the form is closed.

9. Complete the HTML page:

</body>
</html>

10. Save the file as form.html, place it in
your Web directory, and view it in your
Web browser E.

Since this page contains just HTML, it
uses an .html extension. It could instead use
a .php extension without harm (since code
outside of the PHP tags is treated as HTML).

You can specify the encoding to accept
in an HTML form tag, too:

<form accept-charset="utf-8">

By default, a Web page will use the same
encoding as the page itself for any submitted
data.

E The complete form, which requests some basic
information from the user.

ptg6935296

Programming with PHP 41

Handling an
HTML Form
Now that the HTML form has been created,
it’s time to write a bare-bones PHP script
to handle it. To say that this script will be
handling the form means that the PHP
page will do something with the data
it receives (which is the data the user
entered into the form). In this chapter, the
scripts will simply print the data back to
the Web browser. In later examples, form
data will be stored in a MySQL database,
compared against previously stored
values, sent in emails, and more.

The beauty of PHP—and what makes it
so easy to learn and use—is how well it
interacts with HTML forms. PHP scripts
store the received information in special
variables. For example, say you have a
form with an input defined like so:

<input type="text" name="city" />

Whatever the user types into that input will
be accessible via a PHP variable named
$_REQUEST['city']. It is very important
that the spelling and capitalization
match exactly! PHP is case-sensitive
when it comes to variable names, so
$_REQUEST['city'] will work, but $_
Request['city'] and $_REQUEST['City']
will have no value.

This next example will be a PHP script
that handles the already-created HTML
form (Script 2.1). This script will assign
the form data to new variables (to be
used as shorthand, just like in Script 1.5,
predefined.php). The script will then print
the received values.

ptg6935296

42 Chapter 2

To handle an HTML form:
1. Begin a new PHP document in your

text editor or IDE, to be named
handle_form.php starting with the
HTML (Script 2.2):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Form Feedback</title>
</head>
<body>

2. Add the opening PHP tag and create
a shorthand version of the form data
variables:

<?php # Script 2.2 -
➝ handle_form.php
$name = $_REQUEST['name'];
$email = $_REQUEST['email'];
$comments = $_REQUEST['comments'];

Following the rules outlined before, the
data entered into the first form input,
which is called name, will be accessible
through the variable $_REQUEST['name']
(Table 2.1). The data entered into the
email form input, which has a name value
of email, will be accessible through $_
REQUEST['email']. The same applies to
the comments data. Again, the spelling
and capitalization of your variables here
must exactly match the corresponding
name values in the HTML form.

Script 2.2 This script receives and prints out the
information entered into an HTML form (Script 2.1).

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	
XHTML	1.0	Transitional//EN"		
"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Form	Feedback</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	2.2	-	handle_form.php
9	
10	 	//	Create	a	shorthand	for	the	form	data:
11 $name = $_REQUEST['name'];
12 $email = $_REQUEST['email'];
13 $comments = $_REQUEST['comments'];
14	 /*	Not	used:	
15	 $_REQUEST['age']
16	 $_REQUEST['gender']
17	 $_REQUEST['submit']
18	 */
19	
20	 //	Print	the	submitted	information:
21 echo "<p>Thank you, $name,
 for the following comments:

22 <tt>$comments</tt></p>
23 <p>We will reply to you at
 <i>$email</i>.</p>\n";
24	
25	 ?>
26	 </body>
27	 </html>

TABLe 2.1 Form Elements to PHP Variables

Element Name Variable Name

name $_REQUEST['name']

email $_REQUEST['email']

comments $_REQUEST['comments']

age $_REQUEST['age']

gender $_REQUEST['gender']

submit $_REQUEST['submit']

ptg6935296

Programming with PHP 43

At this point, you won’t make use of the
age, gender, and submit form elements.

3. Print out the received name, email, and
comments values:

echo "<p>Thank you, $name,
➝ for the following comments:

<tt>$comments</tt></p>
<p>We will reply to you at
➝ <i>$email</i>.</p>\n";

The submitted values are simply printed
out using the echo statement, double
quotation marks, and a wee bit of HTML
formatting.

4. Complete the page:

?>
</body>
</html>

5. Save the file as handle_form.php and
place it in the same Web directory as
form.html.

6. Test both documents in your Web
browser by loading form.html through
a URL (http://something) and then fill-
ing out A and submitting the form B.

Because the PHP script must be run
through a URL (see Chapter 1), the
form must also be run through a URL.
Otherwise, when you go to submit the
form, you’ll see PHP code C instead
of the proper result B.

A To test handle_form.php, you must load the
form through a URL, then fill it out and submit it.

B The script should display results like this.

C If you see the PHP code after submitting the
form, the problem is likely that you did not access
the form through a URL.

ptg6935296

44 Chapter 2

$_REQUEST is a special variable type,
known as a superglobal. It stores all of the
data sent to a PHP page through either
the GET or POST method, as well as data
accessible in cookies. Superglobals will be
discussed later in the chapter.

If you have any problems with this script,
apply the debugging techniques suggested in
Chapter 1. If you still can’t solve the problem,
check out the extended debugging techniques
listed in Chapter 8, “Error Handling and
Debugging.” If you’re still stymied, turn to
the book’s supporting forum for assistance
(www.LarryUllman.com/forums/).

If the PHP script shows blank spaces
where a variable’s value should have been
printed, it means that the variable has no
value. The two most likely causes are: you
failed to enter a value in the form; or you mis-
spelled or mis-capitalized the variable’s name.

If you see any Undefined variable: vari-
ablename errors, this is because the variables
you refer to have no value and PHP is set
on the highest level of error reporting. The
previous tip provides suggestions as to why
a variable wouldn’t have a value. Chapter 8
discusses error reporting in detail.

To see how PHP handles the different form
input types, print out the $_REQUEST['age']
and $_REQUEST['gender'] values D.

D The values of gender and age correspond to
those defined in the form’s HTML.

Magic Quotes
Earlier versions of PHP had a feature
called Magic Quotes, which has since
been deprecated and will eventually be
removed entirely. Magic Quotes—when
enabled—automatically escapes single
and double quotation marks found in
submitted form data (there were actually
three kinds of Magic Quotes, but this
one kind is most important here). As an
example, Magic Quotes would turn the
string I’m going out into I\’m going out.

The escaping of potentially problematic
characters can be useful and even nec-
essary in some situations. But if Magic
Quotes are enabled on your PHP instal-
lation, you’ll see these backslashes when
the PHP script prints out the form data.
You can undo the effect of Magic Quotes
using the stripslashes() function:

$var = stripslashes($var);

This function will remove any backslashes
found in $var. This will have the result of
turning an escaped submitted string back
to its original, non-escaped value.

To use this in handle_form.php
(Script 2.2), you would write:

$name = stripslashes($_REQUEST
➝ ['name']);

If you’re not seeing backslashes added
to your form data, then you don’t need to
worry about Magic Quotes.

www.LarryUllman.com/forums/

ptg6935296

Programming with PHP 45

An elseif clause allows you to add more
conditions:

if (condition1) {
 // Do something!
} elseif (condition2) {
 // Do something else!
} else {
 // Do something different!
}

If a condition is true, the code in the
following curly braces ({}) will be
executed. If not, PHP will continue on.
If there is a second condition (after an
elseif), that will be checked for truth.
The process will continue—you can use
as many elseif clauses as you want—
until PHP hits an else, which will be
automatically executed at that point, or
until the conditional terminates without an
else. For this reason, it’s important that the
else always come last and be treated as
the default action unless specific criteria—
the conditions—are met.

A condition can be true in PHP for any
number of reasons. To start, these are
true conditions:

n	 $var, if $var has a value other than 0,
an empty string, FALSE, or NULL

n	 isset($var), if $var has any value
other than NULL, including 0, FALSE,
or an empty string

n	 TRUE, true, True, etc.

In the second example, a new function,
isset(), is introduced. This function
checks if a variable is “set,” meaning that
it has a value other than NULL (as a
reminder, NULL is a special type in PHP,
representing no set value). You can also
use the comparative and logical operators
(Table 2.2) in conjunction with parentheses
to make more complicated expressions.

TABLe 2.2 Comparative and Logical Operators

Symbol Meaning Type Example

= = is equal to comparison $x = = $y

!= is not
equal to

comparison $x != $y

< less than comparison $x < $y

> greater
than

comparison $x > $y

< = less than
or equal to

comparison $x <= $y

> = greater
than or
equal to

comparison $x >= $y

! not logical !$x

&& and logical $x && $y

AND and logical $x and $y

|| or logical $x || $y

OR or logical $x or $y

XOR and not logical $x XOR $y

Conditionals and
operators
PHP’s three primary terms for creating
conditionals are if, else, and elseif (which
can also be written as two words, else if).

Every conditional begins with an if clause:

if (condition) {
 // Do something!
}

An if can also have an else clause:

if (condition) {
 // Do something!
} else {
 // Do something else!
}

ptg6935296

46 Chapter 2

To use conditionals:
1. Open handle_form.php (refer to

Script 2.2) in your text editor or IDE,
if it is not already.

2. Before the echo statement, add a con-
ditional that creates a $gender variable
(Script 2.3):

if (isset($_REQUEST['gender'])) {
 $gender = $_REQUEST['gender'];
} else {
 $gender = NULL;
}

This is a simple and effective way to
validate a form input (particularly a radio
button, check box, or select). If the user
checks either gender radio button,
then $_REQUEST['gender'] will have
a value, meaning that the condition
isset($_REQUEST['gender']) is true.
In such a case, the shorthand version
of this variable—$gender—is assigned
the value of $_REQUEST['gender'],
repeating the technique used with
$name, $email, and $comments. If the
user does not click one of the radio
buttons, then this condition is not true,
and $gender is assigned the value of
NULL, indicating that it has no value.
Notice that NULL is not in quotes.

Script 2.3 In this remade version of handle_form.
php, two conditionals are used to validate the
gender radio buttons.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	
XHTML	1.0	Transitional//EN"

	 	 	 	"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"		

content="text/html;	charset=utf-8"	/>
5	 	 <title>Form	Feedback</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	2.3	-	handle_form.php	#2
9	
10	 //	Create	a	shorthand	for	the	form	data:
11	 $name	=	$_REQUEST['name'];
12	 $email	=	$_REQUEST['email'];
13	 $comments	=	$_REQUEST['comments'];
14	
15	 //	Create	the	$gender	variable:
16 if (isset($_REQUEST['gender'])) {
17 $gender = $_REQUEST['gender'];
18 } else {
19 $gender = NULL;
20 }
21	
22	 //	Print	the	submitted	information:
23	 echo	"<p>Thank	you,	$name,		
	 for	the	following	comments:

24	 <tt>$comments</tt></p>
25	 <p>We	will	reply	to	you	at		
	 <i>$email</i>.</p>\n";
26	
27	 //	Print	a	message	based	upon	the		
	 gender	value:
28 if ($gender = = 'M') {
29 echo '<p>Good day, Sir!
 </p>';
30 } elseif ($gender = = 'F') {
31 echo '<p>Good day, Madam!
 </p>';
32 } else { // No gender selected.
33 echo '<p>You forgot to enter
 your gender!</p>';
34 }
35	
36	 ?>
37	 </body>
38	 </html>

ptg6935296

Programming with PHP 47

3. After the echo statement, add another
conditional that prints a message based
upon $gender’s value:

if ($gender = = 'M') {
 echo '<p>Good day, Sir!
 ➝ </p>';
} elseif ($gender = = 'F') {
 echo '<p>Good day, Madam!
 ➝ </p>';
} else {
 echo '<p>You forgot to enter
 ➝ your gender!</p>';
}

This if-elseif-else conditional looks
at the value of the $gender variable
and prints a different message for
each possibility. It’s very important to
remember that the double equals sign
(= =) means equals, whereas a single
equals sign (=) assigns a value. The
distinction is important because the
condition $gender = = 'M' may or may
not be true, but $gender = 'M' will
always be true.

Also, the values used here—M and
F—must be exactly the same as those
in the HTML form (the values for
each radio button). Equality is a case-
sensitive comparison with strings,
so m will not equal M.

4. Save the file, place it in your Web direc-
tory, and test it in your Web browser A,
B, and C.

A The gender-based conditional prints a different
message for each choice in the form.

B The same script will produce different salutations
(compare with A) when the gender value changes.

C If no gender was selected, a message is
printed indicating the oversight to the user.

ptg6935296

48 Chapter 2

Although PHP has no strict formatting
rules, it’s standard procedure and good
programming form to make it clear when one
block of code is a subset of a conditional.
Indenting the block is the norm.

You can—and frequently will—nest
conditionals (place one inside another).

The first conditional in this script (the
isset()) is a perfect example of how to use
a default value. The assumption (the else) is
that $gender has a NULL value unless the one
condition is met: that $_REQUEST['gender']
is set.

The curly braces used to indicate the
beginning and end of a conditional are not
required if you are executing only one state-
ment. I would recommend that you almost
always use them, though, as a matter of
clarity.

Both and and or have two representative
operators, with slight, technical differences
between them. For no particular reason, I tend
to use && and || instead of AND and OR.

XOR is called the exclusive or operator.
The conditional $x XOR $y is true if $x is true
or if $y is true, but not both.

Switch
PHP has another type of conditional,
called the switch, best used in place of
a long if-elseif-else conditional. The
syntax of switch is

switch ($variable) {
 case 'value1':
 // Do this.
 break;
 case 'value2':
 // Do this instead.
 break;
default:
 // Do this then.
 break;
}

The switch conditional compares the
value of $variable to the different
cases. When it finds a match, the follow-
ing code is executed, up until the break.
If no match is found, the default is exe-
cuted, assuming it exists (it’s optional).
The switch conditional is limited in its
usage in that it can only check a vari-
able’s value for equality against certain
cases; more complex conditions cannot
be easily checked.

ptg6935296

Programming with PHP 49

The first aim of form validation is seeing if
something was entered or selected in form
elements. The second goal is to ensure that
submitted data is of the right type (numeric,
string, etc.), of the right format (like an email
address), or a specific acceptable value (like
$gender being equal to either M or F).
As handling forms is a main use of PHP,
validating form data is a point that will be
re-emphasized time and again in subsequent
chapters. But first, let’s create a new handle_
form.php to make sure variables have values
before they’re referenced (there will be
enough changes in this version that simply
updating Script 2.3 doesn’t make sense).

To validate your forms:
1. Begin a new PHP script in your

text editor or IDE, to be named
handle_form.php starting with
the initial HTML (Script 2.4):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

continues on page 50

Validating Form Data
A critical concept related to handling
HTML forms is that of validating form data.
In terms of both error management and
security, you should absolutely never trust
the data being submitted by an HTML form.
Whether erroneous data is purposefully
malicious or just unintentionally inappro-
priate, it’s up to you—the Web architect—
to test it against expectations.

Validating form data requires the use of
conditionals and any number of functions,
operators, and expressions. One standard
function to be used is isset(), which tests
if a variable has a value (including 0, FALSE,
or an empty string, but not NULL). You saw
an example of this in the preceding script.

One issue with the isset() function is that
an empty string tests as true, meaning that
isset() is not an effective way to validate
text inputs and text boxes from an HTML form.
To check that a user typed something into
textual elements, you can use the empty()
function. It checks if a variable has an empty
value: an empty string, 0, NULL, or FALSE.

Script 2.4 Validating HTML form data before you use it is critical to Web security and achieving professional
results. Here, conditionals check that every referenced form element has a value.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	"http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd">

2	 <html	xmlns="http://www.w3.org/1999/xhtml"	xml:lang="en"	lang="en">
3	 <head>
4	 	 <meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8"	/>
5	 	 <title>Form	Feedback</title>
6	 	 <style	type="text/css"	title="text/css"	media="all">
7	 	 .error	{
8	 	 	 font-weight:	bold;
9	 	 	 color:	#C00;
10	 	 }
11	 	 </style>
12	 </head>
13	 <body>
14	 <?php	#	Script	2.4	-	handle_form.php	#3
15	

code continues on next page

ptg6935296

50 Chapter 2

Script 2.4 continued

16	 //	Validate	the	name:
17	 if	(!empty($_REQUEST['name']))	{
18	 	 $name	=	$_REQUEST['name'];
19	 }	else	{
20	 	 $name	=	NULL;
21	 	 echo	'<p	class="error">You	forgot	to	enter	your	name!</p>';
22	 }
23	
24	 //	Validate	the	email:
25	 if	(!empty($_REQUEST['email']))	{
26	 	 $email	=	$_REQUEST['email'];
27	 }	else	{
28	 	 $email	=	NULL;
29	 	 echo	'<p	class="error">You	forgot	to	enter	your	email	address!</p>';
30	 }
31	
32	 //	Validate	the	comments:
33	 if	(!empty($_REQUEST['comments']))	{
34	 	 $comments	=	$_REQUEST['comments'];
35	 }	else	{
36	 	 $comments	=	NULL;
37	 	 echo	'<p	class="error">You	forgot	to	enter	your	comments!</p>';
38	 }
39	
40	 //	Validate	the	gender:
41	 if	(isset($_REQUEST['gender']))	{
42	
43	 	 $gender	=	$_REQUEST['gender'];
44	 	
45	 	 if	($gender	=	=	'M')	{
46	 	 	 echo	'<p>Good	day,	Sir!</p>';
47	 	 }	elseif	($gender	=	=	'F')	{
48	 	 	 echo	'<p>Good	day,	Madam!</p>';
49	 	 }	else	{	//	Unacceptable	value.
50	 	 	 $gender	=	NULL;
51	 	 	 echo	'<p	class="error">Gender	should	be	either	"M"	or	"F"!</p>';
52	 	 }
53	 	
54	 }	else	{	//	$_REQUEST['gender']	is	not	set.
55	 	 $gender	=	NULL;
56	 	 echo	'<p	class="error">You	forgot	to	select	your	gender!</p>';
57	 }
58	
59	 //	If	everything	is	OK,	print	the	message:
60	 if	($name	&&	$email	&&	$gender	&&	$comments)	{
61	
62	 	 echo	"<p>Thank	you,	$name,	for	the	following	comments:

63	 	 <tt>$comments</tt></p>
64	 	 <p>We	will	reply	to	you	at	<i>$email</i>.</p>\n";
65	 	
66	 }	else	{	//	Missing	form	value.
67	 	 echo	'<p	class="error">Please	go	back	and	fill	out	the	form	again.</p>';
68	 }
69	
70	 ?>
71	 </body>
72	 </html>

ptg6935296

Programming with PHP 51

<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
	 ➝ charset=utf-8" />
 <title>Form Feedback</title>
</head>
<body>

2. Within the HTML head, add some
CSS code:

<style type="text/css"
➝ title="text/css" media="all">
.error {
 font-weight: bold;
 color: #C00;
}
</style>

This code defines one CSS class, called
error. Any HTML element that has this
class name will be formatted in a bold,
red color (which will be more apparent
in your Web browser than in this black-
and-white book).

3. In PHP block, check if the name was
entered:

if (!empty($_REQUEST['name'])) {
 $name = $_REQUEST['name'];
} else {
 $name = NULL;
 echo '<p class="error">You
 ➝ forgot to enter your name!</p>';
}

A simple way to check that a form text
input was filled out is to use the empty()
function. If $_REQUEST['name'] has a

value other than an empty string, 0,
NULL, or FALSE, assume that their name
was entered and a shorthand variable is
assigned that value. If $_REQUEST['name']
is empty, the $name variable is set to NULL
and an error message is printed. This
error message uses the CSS class.

4. Repeat the same process for the email
address and comments:

if (!empty($_REQUEST['email'])) {
 $email = $_REQUEST['email'];
} else {
 $email = NULL;
 echo '<p class="error">You
 ➝ forgot to enter your email
 ➝ address!</p>';
}
if (!empty($_REQUEST['comments'])) {
 $comments = $_REQUEST['comments'];
} else {
 $comments = NULL;
 echo '<p class="error">You
 ➝ forgot to enter your
 ➝ comments!</p>';
}

Both variables receive the same
treatment as $_REQUEST['name'] in
Step 3.

5. Begin validating the gender variable:

if (isset($_REQUEST['gender'])) {
 $gender = $_REQUEST['gender'];

The validation of the gender is a two-
step process. First, check if it has a
value or not, using isset(). This starts
the main if-else conditional, which
otherwise behaves like those for the
name, email address, and comments.

continues on next page

ptg6935296

52 Chapter 2

6. Check $gender against specific values:

if ($gender = = 'M') {
 $greeting = '<p>Good day,
 ➝ Sir!</p>';
} elseif ($gender = = 'F') {
 $greeting = '<p>Good day,
 ➝ Madam!</p>';
} else {
 $gender = NULL;
 echo '<p class="error">Gender
 ➝ should be either "M" or
 ➝"F"!</p>';
}

Within the gender if clause is a nested
if-elseif-else conditional that tests
the variable’s value against what’s
acceptable. This is the second part of
the two-step gender validation.

The conditions themselves are the
same as those in the last script. If
gender does not end up being equal
to either M or F, a problem occurred
and an error message is printed. The
$gender variable is also set to NULL
in such cases, because it has an
unacceptable value.

If $gender does have a valid value, a
gender-specific message is assigned to
a new variable, so that the message can
be printed later in the script.

7. Complete the main gender if-else
conditional:

} else {
 $gender = NULL;
 echo '<p class="error">You
 forgot to select your
 ➝ gender!</p>';
}

This else clause applies if $_REQUEST
['gender'] is not set. The complete,
nested conditionals (see lines 41–57
of Script 2.4) successfully check
every possibility:

>	 $_REQUEST['gender'] is not set

>	 $_REQUEST['gender'] has a value
of M

>	 $_REQUEST['gender'] has a value
of F

>	 $_REQUEST['gender'] has some
other value

You may wonder how this last case may
be possible, considering the values
are set in the HTML form. If a malicious
user creates their own form that gets
submitted to your handle_form.php
script (which is very easy to do), they
could give $_REQUEST['gender'] any
value they want.

8. Print messages indicating the validation
results:
if ($name && $email && $gender
➝ && $comments) {
 echo "<p>Thank you, $name
 ➝ , for the following
 ➝ comments:

 <tt>$comments</tt></p>
 <p>We will reply to you at
 ➝ <i>$email</i>.</p>\n";
 echo $greeting;
} else {
 echo '<p class="error">Please
 ➝ go back and fill out the form
 ➝ again.</p>';
}

ptg6935296

Programming with PHP 53

The main condition is true if every listed
variable has a true value. Each variable
will have a value if it passed its test
but have a value of NULL if it didn’t. If
every variable has a value, the form was
completed, so the Thank you message
will be printed, as will the gender-
specific greeting. If any of the variables
are NULL, the second message will be
printed (A and B).

9. Close the PHP section and complete
the HTML page:

?>
</body>
</html>

10. Save the file as handle_form.php, place
it in the same Web directory as form.
html, and test it in your Web browser.

Fill out the form to different levels of
completeness to test the new script C.

To test if a submitted value is a number,
use the is_numeric() function.

In Chapter 14, “Perl-Compatible Regular
Expressions,” you’ll see how to validate form
data using regular expressions.

It’s considered good form (pun intended)
to let a user know which fields are required
when they’re filling out the form, and where
applicable, the format of that field (like a date
or a phone number).

A The script now checks that every form element
was filled out (except the age) and reports on
those that weren’t.

B If even one or two fields were
skipped, the Thank you message is
not printed.

C If the form was completed properly, the script behaves as it
previously had.

ptg6935296

54 Chapter 2

introducing Arrays
Chapter 1 introduced two scalar (single
valued) variable types: strings and numbers.
Now it’s time to learn about another type,
the array. Unlike strings and numbers, an
array can hold multiple, separate pieces
of information. An array is therefore like
a list of values, each value being a string
or a number or even another array.

Arrays are structured as a series of key-
value pairs, where one pair is an item or
element of that array. For each item in the
list, there is a key (or index) associated
with it (Table 2.3).

PHP supports two kinds of arrays: indexed,
which use numbers as the keys (as in
Table 2.3), and associative, which use
strings as keys (Table 2.4). As in most
programming languages, with indexed
arrays, arrays will begin with the first index
at 0, unless you specify the keys explicitly.

An array follows the same naming rules
as any other variable. This means that,
offhand, you might not be able to tell that
$var is an array as opposed to a string
or number. The important syntactical
difference arises when accessing individual
array elements.

To refer to a specific value in an array, start
with the array variable name, followed by
the key within square brackets:

$band = $artists[0]; // The Mynabirds
echo $states['MD']; // Maryland

You can see that the array keys are used
like other values in PHP: numbers (e.g., 0)
are never quoted, whereas strings (MD)
must be.

TABLe 2.3 Array Example 1: $artists

Key Value

0 The Mynabirds

1 Jeremy Messersmith

2 The Shins

3 Iron and Wine

4 Alexi Murdoch

TABLe 2.4 Array Example 2: $states

Key Value

MD Maryland

PA Pennsylvania

IL Illinois

MO Missouri

IA Iowa

ptg6935296

Programming with PHP 55

Because arrays use a different syntax than
other variables, and can contain multiple
values, printing them can be trickier. This
will not work A:

echo "My list of states: $states";

However, printing an individual element’s
value is simple if it uses indexed (numeric)
keys:

echo "The first artist is
➝ $artists[0].";

But if the array uses strings for the keys,
the quotes used to surround the key will
muddle the syntax. The following code will
cause a parse error B:

echo "IL is $states['IL']."; // BAD!

To fix this, wrap the array name and key in
curly braces when an array uses strings for
its keys C:

echo "IL is {$states['IL']}.";

If arrays seem slightly familiar to you
already, that’s because you’ve already
worked with two: $_SERVER (in Chapter
1) and $_REQUEST (in this chapter). To
acquaint you with another array and to
practice printing array values directly, one
final, but basic, version of the handle_
form.php page will be created using
the more specific $_POST array (see the
sidebar on “Superglobal Arrays”).

A Attempting to print an array using only the variable’s
name results in the word Array being printed.

B Attempting to print an element in an associative array without using curly braces results
in a parse error.

C Attempting to print an element in an associative
array while using curly braces works as desired.

Superglobal Arrays
PHP includes several predefined arrays
called the superglobal variables. They
are: $_GET, $_POST, $_REQUEST, $_SERVER,
$_ENV, $_SESSION, and $_COOKIE.

The $_GET variable is where PHP stores
all of the values sent to a PHP script
via the GET method (possibly but not
necessarily from an HTML form). $_POST
stores all of the data sent to a PHP script
from an HTML form that uses the POST
method. Both of these—along with
$_COOKIE—are subsets of $_REQUEST,
which you’ve been using.

$_SERVER, which was used in Chapter 1,
stores information about the server PHP
is running on, as does $_ENV. $_SESSION
and $_COOKIE will both be discussed in
Chapter 12, “Cookies and Sessions.”

One aspect of good security and pro-
gramming is to be precise when referring
to a variable. This means that, although
you can use $_REQUEST to access
form data submitted through the POST
method, $_POST would be more accurate.

ptg6935296

56 Chapter 2

To use arrays:
1. Begin a new PHP script in your text editor

or IDE, to be named handle_form.php
starting with the initial HTML (Script 2.5):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Form Feedback</title>
</head>
<body>
<?php # Script 2.5 -
➝ handle_form.php #4

2. Perform some basic form validation:

if (!empty($_POST['name']) &&
➝!empty($_POST['comments']) &&
➝!empty($_POST['email'])) {

Script 2.5 The superglobal variables, like $_POST here, are just one type of array you’ll use in PHP.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	"http://www.w3.org/TR/xhtml1/
DTD/xhtml1-transitional.dtd">

2	 <html	xmlns="http://www.w3.org/1999/xhtml"	xml:lang="en"	lang="en">
3	 <head>
4	 	 <meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8"	/>
5	 	 <title>Form	Feedback</title>
6	 </head>
7	 <body>
8	 <?php	#	Script	2.5	-	handle_form.php	#4
9	
10	 //	Print	the	submitted	information:
11 if (!empty($_POST['name']) && !empty($_POST['comments']) && !empty($_POST['email'])) {
12 echo "<p>Thank you, {$_POST['name']}, for the following comments:

13 <tt>{$_POST['comments']}</tt></p>
14 <p>We will reply to you at <i>{$_POST['email']}</i>.</p>\n";
15	 }	else	{	//	Missing	form	value.
16	 	 echo	'<p>Please	go	back	and	fill	out	the	form	again.</p>';
17	 }
18	 ?>
19	 </body>
20	 </html>

In the previous version of this script,
the values are accessed by referring
to the $_REQUEST array. But since these
variables come from a form that uses
the POST method (see Script 2.1),
$_POST would be a more exact, and
therefore more secure, reference.

This conditional checks that these
three text inputs are all not empty.
Using the and operator (&&), the entire
conditional is only true if each of the
three subconditionals is true.

3. Print the message:

echo "<p>Thank you, {$_POST
➝ ['name']}, for the following
➝ comments:

<tt>{$_POST['comments']}</tt></p>
<p>We will reply to you at
➝ <i>{$_POST['email']}</i>.</p>\n";

After you comprehend the concept of
an array, you still need to master the
syntax involved in printing one. When
printing an array element that uses a

ptg6935296

Programming with PHP 57

Because PHP is lax with its variable
structures, an array can even use a combina-
tion of numbers and strings as its keys. The
only important rule is that the keys of an array
must each be unique.

If you find the syntax of accessing super-
global arrays directly to be confusing (e.g.,
$_POST['name']), you can continue to use the
shorthand technique at the top of your scripts
as you have been:

$name = $_POST['name'];

In this script, you would then need to change
the conditional and the echo statement to
refer to $name et al.

You only need to use the curly brackets
to surround an associated array used within
quotation marks. All of these array references
are fine:

echo $_POST['name'];
echo "The first item is $item[0].";
$total = number_format($cart['total']);

string for its key, use the curly braces
(as in {$_POST['name']} here) to avoid
parse errors.

4. Complete the conditional begun in
Step 2:

} else {
 echo '<p>Please go back and
 ➝ fill out the form again.</p>';
}

If any of the three subconditionals in
Step 2 is not true (which is to say, if any
of the variables has an empty value),
then this else clause applies and an
error message is printed D.

5. Complete the PHP and HTML code:

?>
</body>
</html>

6. Save the file as handle_form.php,
place it in the same Web directory
as form.html, and test it in your
Web browser E.

D If any of the three
tested form inputs is
empty, this generic error
message is printed.

E The fact that the script now uses the $_POST array has no
effect on the visible result.

ptg6935296

58 Chapter 2

Creating arrays
The preceding example uses a PHP-
generated array, but there will frequently
be times when you want to create your
own. There are two primary ways to define
your own array. First, you could add an
element at a time to build one:

$band[] = 'Jemaine';
$band[] = 'Bret';
$band[] = 'Murray';

As arrays are indexed starting at 0, $band[0]
has a value of Jemaine; $band[1], Bret,
and $band[2], Murray.

Alternatively, you can specify the key when
adding an element. But it’s important to
understand that if you specify a key and
a value already exists indexed with that
same key, the new value will overwrite the
existing one:

$band['fan'] = 'Mel';
$band['fan'] = 'Dave'; // New value
$fruit[2] = 'apple';
$fruit[2] = 'orange'; // New value

Instead of adding one element at a time,
you can use the array() function to build
an entire array in one step:

$states = array (
'IA' => 'Iowa',
'MD' => 'Maryland'
);

(As PHP is generally insensitive to white
space, you can use this function over
multiple lines for added clarity.)

The array() function can be used whether
or not you explicitly set the key:

$artists = array ('Clem Snide',
➝'Shins', 'Eels');

Or, if you set the first numeric key
value, the added values will be keyed
incrementally thereafter:

$days = array (1 => 'Sun', 'Mon',
➝'Tue');
echo $days[3]; // Tue

The array() function is also used to
initialize an array, prior to referencing it:

$tv = array();
$tv[] = 'Flight of the Conchords';

Initializing an array (or any variable) in PHP
isn’t required, but it makes for clearer code
and can help avoid errors.

Finally, if you want to create an array of
sequential numbers, you can use the
range() function:

$ten = range (1, 10);

Accessing entire arrays
You’ve already seen how to access
individual array elements using its keys
(e.g., $_POST['email']). This works when
you know exactly what the keys are or if
you want to refer to only a single element.
To access every array element, use the
foreach loop:

foreach ($array as $value) {
 // Do something with $value.
}

The foreach loop will iterate through
every element in $array, assigning each
element’s value to the $value variable. To
access both the keys and values, use

foreach ($array as $key => $value) {
 echo "The value at $key is
 ➝ $value.";
}

ptg6935296

Programming with PHP 59

(You can use any valid variable name in
place of $key and $value, like just $k and
$v, if you’d prefer.)

Using arrays, this next script will demonstrate
how easy it is to make a set of form pull-
down menus for selecting a date F.

To create and access arrays:
1. Begin a new PHP document in

your text editor or IDE, to be named
calendar.php starting with the initial
HTML (Script 2.6):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Calendar</title>
</head>
<body>
<form action="calendar.php"
➝ method="post">
<?php # Script 2.6 - calendar.php

One thing to note here is that even
though the page won’t contain a
complete HTML form, the form tags
are still required to create the pull-
down menus.

continues on next page

F These pull-down menus will be created using
arrays and the foreach loop.

Script 2.6 This form uses arrays to dynamically
create three pull-down menus.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	
XHTML	1.0	Transitional//EN"		
"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"	

content="text/html;	charset=utf-8"	/>
5	 	 <title>Calendar</title>
6	 </head>
7	 <body>
8	 	<form	action="calendar.php"	

method="post">
9	 <?php	#	Script	2.6	-	calendar.php
10	
11	 	//	This	script	makes	three	pull-down	

menus
12	 	//	for	an	HTML	form:	months,	days,	

years.
13	
14	 //	Make	the	months	array:
15 $months = array (1 => 'January',
 'February', 'March', 'April', 'May',
 'June', 'July', 'August', 'September',
 'October', 'November', 'December');
16	
17	 //	Make	the	days	and	years	arrays:
18 $days = range (1, 31);
19 $years = range (2011, 2021);

code continues on next page

ptg6935296

60 Chapter 2

2. Create an array for the months:

$months = array (1 => 'January',
➝'February', 'March', 'April',
➝'May', 'June', 'July', 'August',
➝'September', 'October',
➝'November', 'December');

This first array will use numbers for the
keys, from 1 to 12. Since the value of
the first key is specified, the following
values will be indexed incrementally (in
other words, the 1 => code creates an
array indexed from 1 to 12, instead of
from 0 to 11).

3. Create the arrays for the days of the
month and the years:

$days = range (1, 31);
$years = range (2011, 2021);

Using the range() function, you can
easily make an array of numbers.

4. Generate the month pull-down menu:

echo '<select name="month">';
foreach ($months as $key =>
➝ $value) {
 echo "<option value=\"$key\">
 ➝ $value</option>\n";
}
echo '</select>';

The foreach loop can quickly generate
all of the HTML code for the month pull-
down menu. Each execution of the loop
will create a line of code like <option
value="1">January</option> G.

5. Generate the day and year pull-down
menus:

echo '<select name="day">';
foreach ($days as $value) {
 echo "<option value=\"$value\">
 ➝ $value</option>\n";
}

Script 2.6 continued

20	
21	 //	Make	the	months	pull-down	menu:
22	 echo	'<select	name="month">';
23 foreach ($months as $key =>
 $value) {
24 echo "<option value=\"$key\">
 $value</option>\n";
25 }
26	 echo	'</select>';
27	
28	 //	Make	the	days	pull-down	menu:
29	 echo	'<select	name="day">';
30 foreach ($days as $value) {
31 echo "<option value=\"$value\">
 $value</option>\n";
32 }
33	 echo	'</select>';
34	
35	 //	Make	the	years	pull-down	menu:
36	 echo	'<select	name="year">';
37 foreach ($years as $value) {
38 echo "<option value=\"$value\">
 $value</option>\n";
39 }
40	 echo	'</select>';
41	
42	 ?>
43	 </form>
44	 </body>
45	 </html>

G Most of the HTML source was generated by
just a few lines of PHP.

ptg6935296

Programming with PHP 61

Multidimensional arrays
When introducing arrays, I mentioned that
an array’s values could be any combination
of numbers, strings, and even other arrays.
This last option—an array consisting of other
arrays—creates a multidimensional array.

Multidimensional arrays are much more
common than you might expect but remark-
ably easy to work with. As an example,
start with an array of prime numbers:

$primes = array(2, 3, 5, 7, …);

Then create an array of sphenic numbers
(don’t worry: I had no idea what a sphenic
number was either; I had to look it up):

$sphenic = array(30, 42, 66, 70, …);

These two arrays could be combined into
one multidimensional array like so:

$numbers = array ('Primes' =>
➝ $primes, 'Sphenic' => $sphenic);

Now, $numbers is a multidimensional array.
To access the prime numbers sub-array,
refer to $numbers['Primes']. To access the
prime number 5, use $numbers['Primes'][2]
(it’s the third element in the array, but the
array starts indexing at 0). To print out
one of these values, surround the whole
construct in curly braces:

echo "The first sphenic number is
➝ {$numbers['Sphenic'][0]}.";

Of course, you can also access multi-
dimensional arrays using the foreach loop,
nesting one inside another if necessary.
This next example will do just that.

echo '</select>';
echo '<select name="year">';
foreach ($years as $value) {
 echo "<option value=\"$value\">
 ➝ $value</option>\n";
}
echo '</select>';

Unlike the month example, both the day
and year pull-down menus will use the
same data for the option’s value and
label (a number, G). For that reason,
there’s no need to also fetch the array’s
key with each loop iteration.

6. Close the PHP, the form tag, and the
HTML page:

?>
</form>
</body>
</html>

7. Save the file as calendar.php, place it
in your Web directory, and test it in your
Web browser.

To determine the number of elements in
an array, use count():

$num = count($array);

The range() function can also create an
array of sequential letters:

$alphabet = range ('a', 'z');

An array’s key can be multiple-worded
strings, such as first name or phone number.

The is_array() function confirms that
a variable is of the array type.

If you see an Invalid argument supplied
for foreach() error message, that means you
are trying to use a foreach loop on a variable
that is not an array.

ptg6935296

62 Chapter 2

To use multidimensional arrays:
1. Begin a new PHP document in your text

editor or IDE, to be named multi.php
beginning with the initial HTML
(Script 2.7):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Multidimensional
 ➝ Arrays</title>
</head>
<body>
<p>Some North American States,
➝ Provinces, and Territories:</p>
<?php # Script 2.7 - multi.php

This PHP page will print out some of
the states, provinces, and territories
found in the three North American
countries (Mexico, the United States,
and Canada H).

2. Create an array of Mexican states:

$mexico = array(
'YU' => 'Yucatan',
'BC' => 'Baja California',
'OA' => 'Oaxaca'
);

This is an associative array, using the
state’s postal abbreviation as its key. The
state’s full name is the element’s value.
This is obviously an incomplete list, just
used to demonstrate the concept.

Script 2.7 The multidimensional array is created
by using other arrays for its values. Two foreach
loops, one nested inside of the other, can access
every array element.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	
XHTML	1.0	Transitional//EN"		
"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"	

content="text/html;	charset=utf-8"	/>
5	 	 	<title>Multidimensional	Arrays</

title>
6	 </head>
7	 <body>
8	 	<p>Some	North	American	States,	

Provinces,	and	Territories:</p>
9	 <?php	#	Script	2.7	-	multi.php
10	

code continues on next page

H The end result of running this PHP page
(Script 2.7), where each country is printed,
followed by an abbreviated list of its states,
provinces, and territories.

ptg6935296

Programming with PHP 63

3. Create the second and third arrays:

$us = array (
'MD' => 'Maryland',
'IL' => 'Illinois',
'PA' => 'Pennsylvania',
'IA' => 'Iowa'
);
$canada = array (
'QC' => 'Quebec',
'AB' => 'Alberta',
'NT' => 'Northwest Territories',
'YT' => 'Yukon',
'PE' => 'Prince Edward Island'
);

4. Combine all of the arrays into one:

$n_america = array(
'Mexico' => $mexico,
'United States' => $us,
'Canada' => $canada
);

You don’t have to create three
arrays and then assign them to a
fourth in order to make the desired
multidimensional array, but I think it’s
easier to read and understand this way
(defining a multidimensional array in
one step makes for some ugly code).

The $n_america array now contains
three elements. The key for each
element is a string, which is the country’s
name. The value for each element is the
array of states, provinces, and territories
found within that country.

5. Begin the primary foreach loop:

foreach ($n_america as $country
➝ => $list) {
 echo "<h2>$country</h2>";

continues on next page

Script 2.7 continued

11	 //	Create	one	array:
12	 $mexico	=	array(
13	 'YU'	=>	'Yucatan',	
14	 'BC'	=>	'Baja	California',
15	 'OA'	=>	'Oaxaca'
16);
17	
18	 //	Create	another	array:
19	 $us	=	array	(
20	 'MD'	=>	'Maryland',
21	 'IL'	=>	'Illinois',
22	 'PA'	=>	'Pennsylvania',
23	 'IA'	=>	'Iowa'
24);
25	
26	 //	Create	a	third	array:
27	 $canada	=	array	(
28	 'QC'	=>	'Quebec',	
29	 'AB'	=>	'Alberta',
30	 'NT'	=>	'Northwest	Territories',
31	 'YT'	=>	'Yukon',
32	 'PE'	=>	'Prince	Edward	Island'
33);
34	
35	 //	Combine	the	arrays:
36	 $n_america	=	array(
37	 'Mexico'	=>	$mexico,
38	 'United	States'	=>	$us,
39	 'Canada'	=>	$canada
40);
41	
42	 //	Loop	through	the	countries:
43	 	foreach	($n_america	as	$country	=>	

$list)	{
44	
45	 	 //	Print	a	heading:
46	 	 echo	"<h2>$country</h2>";
47	 	
48	 	 	//	Print	each	state,	province,	or	

territory:
49	 	 foreach	($list	as	$k	=>	$v)	{
50	 	 	 echo	"$k	-	$v\n";
51	 	 }
52	 	
53	 	 //	Close	the	list:
54	 	 echo	'';
55	
56	 }	//	End	of	main	FOREACH.
57	
58	 ?>
59	 </body>
60	 </html>

ptg6935296

64 Chapter 2

Following the syntax outlined earlier,
this loop will access every element
of $n_america. This means that this
loop will run three times. Within each
iteration of the loop, the $country
variable will store the $n_america
array’s key (Mexico, Canada, or United
States). Also within each iteration of
the loop, the $list variable will store
the element’s value (the equivalent of
$mexico, $us, and $canada).

To print out the results, the loop begins
by printing the country’s name within H2
tags. Because the states and so forth
should be displayed as an HTML list,
the initial unordered list tag () is
printed as well.

6. Create a second foreach loop:

foreach ($list as $k => $v) {
 echo "$k - $v\n";
}

This loop will run through each sub-
array (first $mexico, then $us, and then
$canada). With each iteration of this
loop, $k will store the abbreviation
and $v the full name. Both are printed
out within HTML list tags. The newline
character is also used, to better format
the HTML source code.

7. Complete the outer foreach loop:

 echo '';
} // End of main FOREACH.

After the inner foreach loop is done,
the outer foreach loop has to close the
unordered list begun in Step 5.

8. Complete the PHP and HTML:

?>
</body>
</html>

9. Save the file as multi.php, place it in
your Web directory, and test it in your
Web browser H.

10. If you want, check out the HTML source
code to see what PHP created.

Multidimensional arrays can also come
from an HTML form. For example, if a form
has a series of checkboxes with the name
interests[] —

<input type="checkbox" name=
➝"interests[]" value="Music" /> Music
<input type="checkbox" name=
➝"interests[]" value="Movies" /> Movies
<input type="checkbox" name=
➝"interests[]" value="Books" /> Books

—the $_POST variable in the receiving
PHP page will be multidimensional.
$_POST['interests'] will be an array,
with $_POST['interests'][0] storing the
value of the first checked box (e.g., Movies),
$_POST['interests'][1] storing the second
(Books), etc. Note that only the checked boxes
will get passed to the PHP page.

You can also end up with a multidimen-
sional array if an HTML form’s select menu
allows for multiple selections:

<select name="interests[]"
➝ multiple="multiple">
 <option value="Music">Music
 ➝ </option>
 <option value="Movies">Movies
 ➝ </option>
 <option value="Books">Books
 ➝ </option>
 <option value="Napping">Napping
 ➝ </option>
</select>

Again, only the selected values will be passed
to the PHP page.

ptg6935296

Programming with PHP 65

Sorting arrays
One of the many advantages arrays
have over the other variable types is the
ability to sort them. PHP includes several
functions you can use for sorting arrays,
all simple in syntax:

$names = array ('Moe', 'Larry',
➝'Curly');
sort($names);

The sorting functions perform three kinds of
sorts. First, you can sort an array by value,
discarding the original keys, using sort().
It’s important to understand that the array’s
keys will be reset after the sorting process,
so if the key-value relationship is impor-
tant, you should not use sort().

Second, you can sort an array by value
while maintaining the keys, using asort().
Third, you can sort an array by key, using
ksort(). Each of these can sort in reverse
order if you change them to rsort(),
arsort(), and krsort() respectively.

To demonstrate the effect sorting arrays
will have, this next script will create an
array of movie titles and ratings (how much
I liked them on a scale of 1 to 10) and then
display this list in different ways.

Arrays and Strings
Because arrays and strings are so
commonly used together, PHP has two
functions for converting between them:

$array = explode (separator,
➝ $string);
$string = implode (glue, $array);

The key to using and understanding
these two functions is the separator and
glue relationships. When turning an array
into a string, you establish the glue—the
characters or code that will be inserted
between the array values in the gener-
ated string. Conversely, when turning a
string into an array, you specify the sepa-
rator, which is the token that marks what
should become separate array elements.
For example, start with a string:

$s1 = 'Mon-Tue-Wed-Thu-Fri';
$days_array = explode ('-', $s1);

The $days_array variable is now a five-
element array, with Mon indexed at 0,
Tue indexed at 1, etc.

$s2 = implode (', ', $days_array);

The $s2 variable is now a comma-
separated list of days: Mon, Tue, Wed,
Thu, Fri.

ptg6935296

66 Chapter 2

To sort arrays:
1. Begin a new PHP document in your text

editor or IDE, to be named sorting.php
starting with the initial HTML (Script 2.8):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Transitional//EN"
➝"http://www.w3.org/TR/xhtml1/DTD/
➝ xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml" xml:lang="en"
➝ lang="en">
<head>
 <meta http-equiv="Content-Type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
 <title>Sorting Arrays</title>
</head>
<body>

2. Create an HTML table:

<table border="0" cellspacing="3"
➝ cellpadding="3" align="center">
 <tr>
 <td><h2>Rating</h2></td>
 <td><h2>Title</h2></td>
 </tr>

To make the ordered list easier to read,
it’ll be printed within an HTML table.
The table is begun here.

3. Add the opening PHP tag and create
a new array:

<?php # Script 2.8 - sorting.php
$movies = array (
'Casablanca' => 10,
'To Kill a Mockingbird' => 10,
'The English Patient' => 2,
'Stranger Than Fiction' => 9,
'Story of the Weeping Camel' => 5,
'Donnie Darko' => 7
);

Script 2.8 An array is defined, then sorted in
two different ways: first by key, then by value
(in reverse order).

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	
XHTML	1.0	Transitional//EN"		
"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"	

content="text/html;	charset=utf-8"	/>
5	 	 <title>Sorting	Arrays</title>
6	 </head>
7	 <body>
8	 	<table	border="0"	cellspacing="3"	

cellpadding="3"	align="center">
9	 	 <tr>
10	 	 	 <td><h2>Rating</h2></td>
11	 	 	 <td><h2>Title</h2></td>
12	 	 </tr>
13	 <?php	#	Script	2.8	-	sorting.php
14	
15	 //	Create	the	array:
16 $movies = array (
17 'Casablanca' => 10,
18 'To Kill a Mockingbird' => 10,
19 'The English Patient' => 2,
20 'Stranger Than Fiction' => 9,
21 'Story of the Weeping Camel' => 5,
22 'Donnie Darko' => 7
23);
24	
25	 //	Display	the	movies	in	their		
	 original	order:
26	 echo	'<tr><td	colspan="2">In		
	 their	original	order:</td></tr>';
27 foreach ($movies as $title =>

$rating) {
28 echo "<tr><td>$rating</td>
29 <td>$title</td></tr>\n";
30 }
31	
32	 	//	Display	the	movies	sorted	by	title:
33 ksort($movies);
34	 	echo	'<tr><td	colspan="2">Sorted	by	

title:</td></tr>';

code continues on next page

ptg6935296

Programming with PHP 67

This array uses movie titles as the keys
and their respective ratings as their val-
ues. This structure will open up several
possibilities for sorting the whole list.
Feel free to change the movie listings
and rankings as you see fit (just don’t
chastise me for my taste in films).

4. Print out the array as is:

echo '<tr><td colspan="2">In
➝ their original order:
➝ </td></tr>';
foreach ($movies as $title =>
➝ $rating) {
 echo "<tr><td>$rating</td>
 <td>$title</td></tr>\n";
}

At this point in the script, the array is
in the same order as it was defined.
To verify this, print it out. A caption is
first printed across both table columns.
Then, within the foreach loop, the key
is printed in the first column and the
value in the second. A newline is also
printed to improve the readability of the
HTML source code.

5. Sort the array alphabetically by title and
print it again:

ksort($movies);
echo '<tr><td colspan="2">
➝ Sorted by title:</td></tr>';
foreach ($movies as $title =>
➝ $rating) {
 echo "<tr><td>$rating</td>
 <td>$title</td></tr>\n";
}

The ksort() function will sort an
array by key, in ascending order, while
maintaining the key-value relationship.
The rest of the code is a repetition of
Step 4.

continues on next page

Script 2.8 continued

35 foreach ($movies as $title =>
$rating) {

36 echo "<tr><td>$rating</td>
37 <td>$title</td></tr>\n";
38 }
39	
40	 	//	Display	the	movies	sorted	by	

rating:
41 arsort($movies);
42	 	echo	'<tr><td	colspan="2">Sorted	by	

rating:</td></tr>';
43 foreach ($movies as $title =>

$rating) {
44 echo "<tr><td>$rating</td>
45 <td>$title</td></tr>\n";
46 }
47	
48	 ?>
49	 </table>
50	 </body>
51	 </html>

ptg6935296

68 Chapter 2

6. Sort the array numerically by descend-
ing rating and print again:

arsort($movies);
echo '<tr><td colspan="2">
➝ Sorted by rating:</td></tr>';
foreach ($movies as $title =>
➝ $rating) {
 echo "<tr><td>$rating</td>
 <td>$title</td></tr>\n";
}

To sort by values (the ratings), while
maintaining the keys, one would use
the asort() function. But since the
highest-ranking films should be listed
first, the order must be reversed,
using arsort().

7. Complete the PHP, the table, and the
HTML:

?>
</table>
</body>
</html>

8. Save the file as sorting.php, place it in
your Web directory, and test it in your
Web browser I.

To randomize the order of an array,
use shuffle().

PHP’s natsort() function can be used
to sort arrays in a more natural order (primarily
handling numbers in strings better).

Multidimensional arrays can be sorted in
PHP with a little effort. See the PHP manual
for more information on the usort() func-
tion or check out my PHP 5 Advanced: Visual
QuickPro Guide book.

I This page demonstrates different ways arrays
can be sorted.

ptg6935296

Programming with PHP 69

For and While Loops
The last language construct to discuss in
this chapter is the loop. You’ve already
used one, foreach, to access every
element in an array. The other two types
of loops you’ll use are for and while.

The while loop looks like this:

while (condition) {
 // Do something.
}

As long as the condition part of the loop
is true, the loop will be executed. Once it
becomes false, the loop is stopped A. If
the condition is never true, the loop will
never be executed. The while loop will
most frequently be used when retrieving
results from a database, as you’ll see in
Chapter 9, “Using PHP with MySQL.”

The for loop has a more complicated syntax:

for (initial expression; condition;
closing expression) {
 // Do something.
}

Upon first executing the loop, the initial
expression is run. Then the condition is
checked and, if true, the contents of the loop
are executed. After execution, the closing
expression is run and the condition is
checked again. This process continues until
the condition is false B. As an example,

for ($i = 1; $i <= 10; $i+ +) {
 echo $i;
}

The first time this loop is run, the $i
variable is set to the value of 1. Then the
condition is checked (is 1 less than or
equal to 10?). Since this is true, 1 is printed
out (echo $i). Then, $i is incremented to
2 ($i+ +), the condition is checked, and so
forth. The result of this script will be the
numbers 1 through 10 printed out.

continues on next page

A A flowchart representation of how PHP
handles a while loop.

B A flowchart representation of how PHP handles
the more complex for loop.

ptg6935296

70 Chapter 2

The functionality of both loops is similar
enough that for and while can often be
used interchangeably. Still, experience will
reveal that the for loop is a better choice for
doing something a known number of times,
whereas while is used when a condition will
be true an unknown number of times.

In this chapter’s last example, the calendar
script created earlier will be rewritten
using for loops in place of two of the
foreach loops.

To use loops:
1. Open calendar.php (refer to Script 2.6)

in your text editor or IDE.

2. Delete the creation of the $days and
$years arrays (lines 18–19).

Using loops, the same result of the
two pull-down menus can be achieved
without the extra code and memory
overhead involved with creating actual
arrays. So these two arrays should
be deleted, while still keeping the
$months array.

3. Rewrite the $days foreach loop as a
for loop (Script 2.9):

for ($day = 1; $day <= 31;
➝ $day+ +) {
 echo "<option value=\"$day\">$day
 ➝ </option>\n";
}

This standard for loop begins by
initializing the $day variable as 1. It will
continue the loop until $day is greater
than 31, and upon each iteration, $day
will be incremented by 1. The content
of the loop itself (which is executed 31
times) is an echo statement.

Script 2.9 Loops are often used in conjunction
with or in lieu of an array. Here, two for loops
replace the arrays and foreach loops used in
the script previously.

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	
XHTML	1.0	Transitional//EN"

	 	 	 	"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd">

2	 	<html	xmlns="http://www.w3.org/1999/
xhtml"	xml:lang="en"	lang="en">

3	 <head>
4	 	 	<meta	http-equiv="Content-Type"	

content="text/html;	charset=utf-8"	/>
5	 	 <title>Calendar</title>
6	 </head>
7	 <body>
8	 	<form	action="calendar.php"	

method="post">
9	 <?php	#	Script	2.9	-	calendar.php	#2
10	
11	 	//	This	script	makes	three	pull-down	

menus
12	 //	for	an	HTML	form:	months,	days,	years.
13	
14	 //	Make	the	months	array:
15	 	$months	=	array	(1	=>	'January',	

'February',	'March',	'April',	'May',	
'June',	'July',	'August',	'September',	
'October',	'November',	'December');

16	
17	 //	Make	the	months	pull-down	menu:
18	 echo	'<select	name="month">';
19	 foreach	($months	as	$key	=>	$value)	{
20	 	 	echo	"<option	value=\"$key\">$value	

</option>\n";
21	 }
22	 echo	'</select>';
23	
24	 //	Make	the	days	pull-down	menu:
25	 echo	'<select	name="day">';
26 for ($day = 1; $day <= 31; $day+ +) {
27 echo "<option value=\"$day\">
 $day</option>\n";
28 }
29	 echo	'</select>';
30	

code continues on next page

ptg6935296

Programming with PHP 71

4. Rewrite the $years foreach loop as a
for loop:

for ($year = 2011; $year <= 2021;
➝ $year+ +) {
 echo "<option value=\"$year\">
 ➝ $year</option>\n";
}

The structure of this loop is
fundamentally the same as the $day
for loop, but the $year variable is
initially set to 2011 instead of 1. As long
as $year is less than or equal to 2021,
the loop will be executed. Within the
loop, the echo statement is run.

5. Save the file, place it in your Web direc-
tory, and test it in your Web browser C.

PHP also has a do…while loop with a
slightly different syntax (check the manual).
This loop will always be executed at least
once.

When using loops, watch your param-
eters and conditions to avoid the dreaded
infinite loop, which occurs when a loop’s
condition is never going to be false.

Script 2.9 continued

31	 //	Make	the	years	pull-down	menu:
32	 echo	'<select	name="year">';
33 for ($year = 2011; $year <= 2021;
 $year+ +) {
34 echo "<option value=\"$year\">
 $year</option>\n";
35 }
36	 echo	'</select>';
37	
38	 ?>
39	 </form>
40	 </body>
41	 </html>

C This calendar form looks the same as it had
previously but was created with two fewer arrays
(compare Script 2.9 with Script 2.6).

ptg6935296

72 Chapter 2

Review and pursue
If you have any problems with the review
questions or the pursue prompts, turn
to the book’s supporting forum (www.
LarryUllman.com/forums/).

Note: Some of these questions and prompts
rehash information covered in Chapter 1, in
order to reinforce some of the most impor-
tant points.

Review
n	 What is the significance of a form’s

method attribute? Of its action attribute?

n	 Why must an HTML form that gets
submitted to a PHP script be loaded
through a URL? What would happen
upon submitting the form if it were not
loaded through a URL?

n	 What are the differences between using
single and double quotation marks to
delineate strings?

n	 What control structures were
introduced in this chapter?

n	 What new variable type was introduced
in this chapter?

n	 What operator tests for equality? What
is the assignment operator?

n	 Why are textual form elements
validated using empty() but other form
elements are validated using isset()?

n	 What is the difference between an
indexed array and an associative array?

n	 With what value do indexed arrays
begin (by default)? If an indexed array
has ten elements in it, what would the
expected index be of the last element
in the array?

n	 What are the superglobal arrays? From
where do the following superglobals
get their values?

>	 $_GET

>	 $_POST

>	 $_COOKIE

>	 $_REQUEST

>	 $_SESSION

>	 $_SERVER

>	 $_ENV

n	 How can you print an individual
indexed array item? How can you print
an individual associative array item?
Note: there is more than one answer to
both questions.

n	 What does the count() function do?

n	 What impact does printing \n have on
the Web browser?

n	 Generally speaking, when would you
use a while loop? When would you
use a for loop? When would you use
a foreach loop? What is the syntax of
each loop type?

n	 What is the + + operator? What does it do?

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg6935296

Programming with PHP 73

n	 Look up in the PHP manual one of
the array functions introduced in this
book. Then check out some of the
other array-related functions built
into the language.

n	 Create a new array and then display
its elements. Sort the array in different
ways and then display the array’s con-
tents again.

n	 Create a form that contains a select
menu or series of check boxes that
allow for multiple sections. Then, in
the handling PHP script, display the
selected items along with a count of
how many the user selected.

n	 For added complexity, take the sug-
gested PHP script you just created
(that handles multiple selections), and
have it display the selections in alpha-
betical order.

pursue
n	 What version of PHP are you using? If

you don’t know, find out now!

n	 Create a new form that takes some
input from the user (perhaps base it on
a form you know you’ll need for one
of your projects). Then create the PHP
script that validates the form data and
reports upon the results.

n	 Rewrite the gender conditional in
handle_form.php (Script 2.4) as one
conditional instead of two nested ones.
Hint: You’ll need to use the
AND operator.

n	 Rewrite handle_form.php (Script 2.4) to
use $_POST instead of $_REQUEST.

n	 Rewrite handle_form.php (Script 2.4)
so that it validates the age element.
Hint: Use the $gender validation as a
template, this time checking against the
corresponding pull-down option values
(0-29, 30-60, 60+).

n	 Rewrite the echo statement in the final
version of handle_form.php (Script 2.5)
so that it uses single quotation marks
and concatenation instead of double
quotation marks.

ptg6935296

This page intentionally left blank

ptg6935296

With the fundamentals of PHP under your
belt, it’s time to begin building truly dynamic
Web sites. Dynamic Web sites, as opposed
to the static ones on which the Web was
first built, are easier to maintain, are more
responsive to users, and can alter their
content in response to differing situations.
This chapter introduces three new ideas,
all commonly used to create more sophis-
ticated Web applications (Chapter 11, “Web
Application Development,” covers another
handful of topics along these same lines).

The first subject involves using external
files. This is an important concept, as more
complex sites often demand compartmen-
talizing some HTML or PHP code. Then the
chapter returns to the subject of handling
HTML forms. You’ll learn some new varia-
tions on this important and standard feature
of dynamic Web sites. Finally, you’ll learn
how to define and use your own functions.

3
Creating Dynamic

Web Sites

in This Chapter
	 76

Handling HTML Forms, Revisited 85

Making Sticky Forms 91

Creating Your Own Functions 95

Review and Pursue 110

ptg6935296

76 Chapter 3

including
Multiple Files
To this point, every script in the book has
consisted of a single file that contains all
of the required HTML and PHP code. But
as you develop more complex Web sites,
you’ll see that this approach is not often
practical. A better way to create dynamic
Web applications is to divide your scripts
and Web sites into distinct parts, each part
being stored in its own file. Frequently, you
will use multiple files to extract the HTML
from the PHP or to separate out commonly
used processes.

PHP has four functions for incorporating
external files: include(), include_once(),
require(), and require_once(). To use
them, your PHP script would have a line like

include_once('filename.php');
require('/path/to/filename.html');

Using any one of these functions has the
end result of taking all the content of the
included file and dropping it in the parent
script (the one calling the function) at that
juncture. An important consideration with
included files is that PHP will treat the
included code as HTML (i.e., send it directly
to the browser) unless the file contains
code within the PHP tags.

In terms of functionality, it also doesn’t
matter what extension the included file
uses, be it .php or .html. However, giving
the file a symbolic name and extension
helps to convey its purpose (e.g., an
included file of HTML might use .inc.html).
Also note that you can use either absolute
or relative paths to the included file (see
the sidebar for more).

Absolute vs. Relative paths
When referencing any external item,
be it an included file in PHP, a CSS
document in HTML, or an image, you
have the choice of using either an
absolute or a relative path. An absolute
path references a file starting from the
root directory of the computer:

include ('C:/php/includes/
➝ file.php');
include('/usr/xyz/includes/
➝ file.php');

Assuming file.php exists in the named
location, the inclusion will work, no
matter the location of the referencing
(parent) file (barring any permissions
issues). The second example, in case
you’re not familiar with the syntax,
would be a Unix (and Mac OS X)
absolute path. Absolute paths always
start with something like C:/ or /.

A relative path uses the referencing
(parent) file as the starting point. To
move up one folder, use two periods
together. To move into a folder, use its
name followed by a slash. So assuming
the current script is in the www/ex1 folder
and you want to include something in
www/ex2, the code would be:

include('../ex2/file.php');

A relative path will remain accurate,
even if the site is moved to another
server, as long as the files maintain
their current relationship to each other.

ptg6935296

Creating Dynamic Web Sites 77

not to use these two functions unless a
redundant include is likely to occur (which
can happen on complex sites).

In this next example, included files will
separate the primary HTML formatting
from any PHP code. Then, the rest of the
examples in this chapter will be able to
have the same appearance—as if they are
all part of the same Web site—without the
need to rewrite the common HTML every
time. This technique creates a template
system, an easy way to make large
applications consistent and manageable.
The focus in these examples is on the PHP
code itself; you should also read the “Site
Structure” sidebar so that you understand
the organizational scheme on the server.
If you have any questions about the CSS
(Cascading Style Sheets) or (X)HTML used
in the example, see a dedicated resource
on those topics.

A One failed
include() call
generates these
two error messages
(assuming that PHP
is configured to
display errors), but
the rest of the page
continues to execute.

B The failure of a require() function call will print an error and terminate
the execution of the script. If PHP is not configured to display errors, then the
script will terminate without printing the problem first (i.e., it’d be a blank page).

The include() and require() functions
are exactly the same when working
properly but behave differently when they
fail. If an include() function doesn’t work
(it cannot include the file for some reason),
a warning will be printed to the Web
browser A, but the script will continue to
run. If require() fails, an error is printed
and the script is halted B.

Both functions also have a *_once()
version, which guarantees that the file in
question is included only once regardless of
how many times a script may (presumably
inadvertently) attempt to include it.

require_once('filename.php');
include_once('filename.php');

Because require_once() and include_
once() require extra work from the PHP
module (i.e., PHP must first check that the
file has not already been included), it’s best

ptg6935296

78 Chapter 3

To include multiple files:
1. Design an HTML page in your text or

WYSIWYG editor (Script 3.1 and C).

To start creating a template for a Web
site, design the layout like a standard
HTML page, independent of any PHP
code. For this chapter’s example, I’m
using a slightly modified version of the
“Plain and Simple” template created by
Christopher Robinson (www.edg3.co.uk)
and used with his kind permission.

2. Mark where any page-specific
content goes.

Almost every Web site has several
common elements on each page—
header, navigation, advertising, footer,
etc.—and one or more page-specific
sections. In the HTML page (Script 3.1),
enclose the section of the layout that
will change from page to page within
HTML comments to indicate its status.

C The HTML and
CSS design as it
appears in the Web
browser (without
using any PHP).

Site Structure
When you begin using multiple files in
your Web applications, the overall site
structure becomes more important.
When laying out your site, there are two
primary considerations:

. 	Ease of maintenance

. 	Security

Using external files for holding standard
procedures (i.e., PHP code), CSS,
JavaScript, and the HTML design will
greatly improve the ease of maintaining
your site because commonly edited
code is placed in one central location.
I’ll frequently make an includes or
templates directory to store these files
apart from the main scripts (the ones that
are accessed directly in the Web browser).

I recommend using the .inc or .html file
extension for documents where security
is not an issue (such as HTML templates)
and .php for files that contain more
sensitive data (such as database access
information). You can also use both .inc
and .html or .php so that a file is clearly
indicated as an include of a certain type:
db.inc.php or header.inc.html.

www.edg3.co.uk

ptg6935296

Creating Dynamic Web Sites 79

Script 3.1 The HTML template for this chapter’s Web pages. Download the style.css file it uses from the
book’s supporting Web site (www.LarryUllman.com).

1	 	<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Strict//EN"	"http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">

2	 <html	xmlns="http://www.w3.org/1999/xhtml">
3	 <head>
4	 	 <title>Page	Title</title>	
5	 	 <link	rel="stylesheet"	href="includes/style.css"	type="text/css"	media="screen"	/>
6	 	 <meta	http-equiv="content-type"	content="text/html;	charset=utf-8"	/>
7	 </head>
8	 <body>
9	 	 <div	id="header">
10	 	 	 <h1>Your	Website</h1>
11	 	 	 <h2>catchy	slogan...</h2>
12	 	 </div>
13	 	 <div	id="navigation">
14	 	 	
15	 	 	 	 Home	Page
16	 	 	 	 Calculator
17	 	 	 	 link	three
18	 	 	 	 link	four
19	 	 	 	 link	five
20	 	 	
21	 	 </div>
22	 	 <div	id="content"><!--	Start	of	the	page-specific	content.	-->
23	 	 	 <h1>Content	Header</h1>
24	 	 	 	
25	 	 	 	 	<p>This	is	where	the	page-specific	content	goes.	This	section,	and	the	

corresponding	header,	will	change	from	one	page	to	the	next.</p>
26	
27	 	 	 	 	<p>Volutpat	at	varius	sed	sollicitudin	et,	arcu.	Vivamus	viverra.	Nullam	turpis.	

Vestibulum	sed	etiam.	Lorem	ipsum	sit	amet	dolore.	Nulla	facilisi.	Sed	tortor.	Aenean	felis.	
Quisque	eros.	Cras	lobortis	commodo	metus.	Vestibulum	vel	purus.	In	eget	odio	in	sapien	
adipiscing	blandit.	Quisque	augue	tortor,	facilisis	sit	amet,	aliquam,	suscipit	vitae,	cursus	
sed,	arcu	lorem	ipsum	dolor	sit	amet.</p>

28	 	 	 	 	
29	 	 <!--	End	of	the	page-specific	content.	--></div>
30	 	
31	 	 <div	id="footer">
32	 	 	 	<p>Copyright	©	Plain	and	Simple	2007	|	Designed	by		

edg3.co.uk	|	Sponsored	by	<a	href="http://	
www.opendesigns.org/">Open	Designs	|	Valid	<a	href="http://jigsaw.w3.org/	
css-validator/">CSS	&	XHTML</p>

33	 	 </div>
34	 </body>
35	 </html>

www.LarryUllman.com

ptg6935296

80 Chapter 3

3. Copy everything from the first line of
the layout’s HTML source to just before
the page-specific content and paste
it in a new document, to be named
header.html (Script 3.2):

<!DOCTYPE html PUBLIC "-//W3C//
➝ DTD XHTML 1.0 Strict//EN"
➝"http://www.w3.org/TR/xhtml1/
➝ DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/
➝ 1999/xhtml">
<head>
 <title>Page Title</title>
 <link rel="stylesheet" href=
 ➝"includes/style.css" type=
 ➝"text/css" media="screen" />
 <meta http-equiv="content-type"
 ➝ content="text/html;
 ➝ charset=utf-8" />
</head>
<body>

Script 3.2 The initial HTML for each Web page is stored in a header file.

	

5	 	 <link	rel="stylesheet"	href="includes/style.css"	type="text/css"	media="screen"	/>
6	 	 <meta	http-equiv="content-type"	content="text/html;	charset=utf-8"	/>
7	 </head>
8	 <body>
9	 	 <div	id="header">
10	 	 	 <h1>Your	Website</h1>
11	 	 	 <h2>catchy	slogan...</h2>
12	 	 </div>
13	 	 <div	id="navigation">
14	 	 	
15	 	 	 	 Home	Page
16	 	 	 	 Calculator
17	 	 	 	 link	three
18	 	 	 	 link	four
19	 	 	 	 link	five
20	 	 	
21	 	 </div>
22	 	 <div	id="content"><!--	Start	of	the	page-specific	content.	-->
23	 <!--	Script	3.2	-	header.html	-->

 <div id="header">
 <h1>Your Website</h1>
 <h2>catchy slogan...</h2>
 </div>
 <div id="navigation">

 ➝ Home Page
 <a href="calculator.
 ➝ php">Calculator
 link three
 ➝
 link four
 ➝
 link five
 ➝

 </div>
 <div id="content"><!-- Start of
 ➝ the page-specific content. -->
<!-- Script 3.2 - header.html -->

ptg6935296

Creating Dynamic Web Sites 81

in a new file, to be named footer.html
(Script 3.3):

<!-- Script 3.3 - footer.html -->
 <!-- End of the page-specific
 ➝ content. --></div>
 <div id="footer">
 <p>Copyright © <a
 ➝ href="#">Plain and Simple
 ➝ 2007 | Designed
 ➝ by <a href="http://www.edg3.
 ➝ co.uk/">edg3.co.uk |
 ➝ Sponsored by <a href=
 ➝"http://www.opendesigns.
 ➝ org/">Open Designs |
 ➝ Valid <a href="http://
 ➝ jigsaw.w3.org/css-validator/">
 ➝ CSS & <a href=
 ➝"http://validator.w3.org/">
 ➝ XHTML</p>
 </div>
</body>
</html>

The footer file starts by closing the
content DIV opened in the header file
(see Step 3). Then the footer is added,
which will be the same for every page
on the site, and the HTML document
itself is completed.

continues on next page

Script 3.3 The concluding HTML for each Web page is stored in this footer file.

1	 <!--	Script	3.3	-	footer.html	-->
2	 	 <!--	End	of	the	page-specific	content.	--></div>
3	 	
4	 	 <div	id="footer">
5	 	 	 	<p>Copyright	©	Plain	and	Simple	2007	|	Designed	by	<a	href=	

"http://www.edg3.co.uk/">edg3.co.uk	|	Sponsored	by	<a	href="http://www.opendesigns.
org/">Open	Designs	|	Valid	CSS	
&	XHTML</p>

6	 	 </div>
7	 </body>
8	 </html>

This first file will contain the initial HTML
tags (from DOCTYPE through the head
and into the beginning of the page
body). It also has the code that makes
the Web site name and slogan, plus the
horizontal bar of links across the top C.
Finally, as each page’s content goes
within a DIV whose id value is content,
this file includes that code as well.

4. Change the page’s title line to read:

<?php echo $page_title; ?>

The page title (which appears at the
top of the Web browser C) should be
changeable on a page-by-page basis.
For that to be possible, this value will be
based upon a PHP variable, which will
then be printed out. You’ll see how this
plays out shortly.

5. Save the file as header.html.

As stated already, included files can
use just about any extension for the
filename. This file is called header.
html, indicating that it is the template’s
header file and that it contains
(primarily) HTML.

6. Copy everything in the original template
from the end of the page-specific con-
tent to the end of the page and paste it

ptg6935296

82 Chapter 3

7. Save the file as footer.html.

8. Begin a new PHP document in your text
editor or IDE, to be named index.php
(Script 3.4):

<?php # Script 3.4 - index.php

Since this script will use the included
files for most of its HTML, it can begin
and end with the PHP tags.

9. Set the $page_title variable and
include the HTML header:

$page_title = 'Welcome to this
➝ Site!';
include ('includes/header.html');

The $page_title variable will store
the value that appears in the top of
the browser window (and therefore, is
also the default value when a person
bookmarks the page). This variable is
printed in header.html (see Script 3.2).
By defining the variable prior to including
the header file, the header file will have
access to that variable. Remember that
this include() line has the effect of
dropping the contents of the included
file into this page at this spot.

Script 3.4 This script generates a complete Web page by including a template stored in two external files.

1	 <?php	#	Script	3.4	-	index.php
2 $page_title = 'Welcome to this Site!';
3 include ('includes/header.html');
4	 ?>
5	
6	 <h1>Content	Header</h1>
7	
8	 	 <p>This	is	where	the	page-specific	content	goes.	This	section,	and	the		
	 	 corresponding	header,	will	change	from	one	page	to	the	next.</p>
9	 	
10	 	 <p>Volutpat	at	varius	sed	sollicitudin	et,	arcu.	Vivamus	viverra.	Nullam	turpis.		
	 	 Vestibulum	sed	etiam.	Lorem	ipsum	sit	amet	dolore.	Nulla	facilisi.	Sed	tortor.		
	 	 Aenean	felis.	Quisque	eros.	Cras	lobortis	commodo	metus.	Vestibulum	vel	purus.		
	 	 In	eget	odio	in	sapien	adipiscing	blandit.	Quisque	augue	tortor,	facilisis	sit		
	 	 amet,	aliquam,	suscipit	vitae,	cursus	sed,	arcu	lorem	ipsum	dolor	sit	amet.</p>
11	
12	 <?php
13 include ('includes/footer.html');
14	 ?>

The include() function call uses a
relative path to header.html (see the
sidebar, “Absolute vs. Relative Paths”).
The syntax states that in the same
folder as this file is a folder called
includes and in that folder is a file
named header.html.

10. Close the PHP tags and add the page-
specific content:

?>
<h1>Content Header</h1>
 <p>This is where the page-
 ➝ specific content goes. This
 ➝ section, and the corresponding
 ➝ header, will change from one
 ➝ page to the next.</p>

For most pages, PHP will generate this
content, instead of having static text.
This information could be sent to the
browser using echo, but since there’s
no dynamic content here, it’s easier
and more efficient to exit the PHP tags
temporarily. (The script and the images
have a bit of extra Latin than is shown
here, just to fatten up the page.)

ptg6935296

Creating Dynamic Web Sites 83

the layout) is not included in the book.
You can download the file through
the book’s supporting Web site or do
without it (the template will still work, it
just won’t look as nice).

14. Test the template system by going
to the index.php page in your Web
browser D.

The index.php page is the key script
in the template system. You do not
need to access any of the included files
directly, as index.php will take care of
incorporating their contents. As this is
a PHP page, you still need to access it
through a URL.

continues on next page

D Now the same layout C has been created using external files in PHP.

11. Create a final PHP section and include
the footer file:

<?php
include ('includes/footer.html');
?>

12. Save the file as index.php, and place it
in your Web directory.

13. Create an includes directory in
the same folder as index.php. Then
place header.html, footer.html, and
style.css (part of the downloadable
code at www.LarryUllman.com), into
this includes directory.

Note: In order to save space, the CSS
file for this example (which controls

www.LarryUllman.com

ptg6935296

84 Chapter 3

15. If desired, view the HTML source of
the page E.

In the php.ini configuration file, you
can adjust the include_path setting, which
dictates where PHP is and is not allowed to
retrieve included files.

As you’ll see in Chapter 9, “Using PHP
with MySQL,” any included file that contains
sensitive information (like database access)
should ideally be stored outside of the Web
directory so it can’t be viewed within a
Web browser.

E The generated HTML source of the Web page should replicate the code in the original
template (refer to Script 3.1).

Since require() has more impact on
a script when it fails, it’s recommended for
mission-critical includes (like those that con-
nect to a database). The include() function
would be used for less important inclusions.

If a block of PHP code contains only a
single executable, it’s common to place both
it and the PHP tags on a single line:

<?php include ('filename.html'); ?>

Because of the way CSS works, if you
don’t use the CSS file or if the browser doesn’t
read the CSS, the generated result is still func-
tional, just not aesthetically as pleasing.

ptg6935296

Creating Dynamic Web Sites 85

The question, then, is how to determine if
the form has been submitted. The answer
is simple, after a bit of explanation.

When you have a form that uses the POST
method and gets submitted back to the
same page, two different types of requests
will be made of that script A. The first
request, which loads the form, will be a
GET request. This is the standard request
made of most Web pages. When the form
is submitted, a second request of the script
will be made, this time a POST request (so
long as the form uses the POST method).
With this in mind, you can test for a form’s
submission by checking the request
method, found in the $_SERVER array:

if ($_SERVER['REQUEST_METHOD'] = =
➝'POST') {
 // Handle the form.
} else {
 // Display the form.
}

continues on next page

Handling HTML
Forms, Revisited
A good portion of Chapter 2, “Programming
with PHP,” involves handling HTML forms
with PHP (which makes sense, as a good
portion of Web programming with PHP is
exactly that). All of those examples use two
separate files: one that displays the form
and another that receives its submitted
data. While there’s certainly nothing wrong
with this approach, there are advantages to
putting the entire process into one script.

To have one page both display and handle
a form, a conditional must check which
action (display or handle) should be taken:

if (/* form has been submitted */) {
 // Handle the form.
} else {
 // Display the form.
}

A The interactions between the user and this PHP script on the server involves the
user making two requests of this script.

ptg6935296

86 Chapter 3

If you want a page to handle a form and
then display it again (e.g., to add a record
to a database and then give an option to
add another), drop the else clause:

if ($_SERVER['REQUEST_METHOD'] = =
➝'POST') {
 // Handle the form.
}
// Display the form.

Using that code, a script will handle a form
if it has been submitted and display the
form every time the page is loaded.

To demonstrate this important technique
(of having the same page both display and
handle a form), let’s create a calculator that
estimates the cost and time required to take
a car trip, based upon user-entered values B.

To handle HTML forms:
1. Begin a new PHP document in your

text editor or IDE, to be named
calculator.php (Script 3.5):

<?php # Script 3.5 - calculator.php
$page_title = 'Trip Cost Calculator';
include ('includes/header.html');

This, and all the remaining examples in
the chapter, will use the same template
system as index.php (Script 3.4). The
beginning syntax of each page will
therefore be the same, but the page
titles will differ.

2. Write the conditional that checks for a
form submission:

if ($_SERVER['REQUEST_METHOD'] = =
➝'POST') {

As suggested already, checking if
the page is being requested via the
POST method is a good test for a
form submission (so long as the
form uses POST).

continues on page 88

B The HTML form, completed by the user.

ptg6935296

Creating Dynamic Web Sites 87

Script 3.5 The calculator.php script both displays a simple form and handles the form data: performing
some calculations and reporting upon the results.

1	 <?php	#	Script	3.5	-	calculator.php
2	
3	 $page_title	=	'Trip	Cost	Calculator';
4	 include	('includes/header.html');
5	
6	 //	Check	for	form	submission:
7	 if	($_SERVER['REQUEST_METHOD']	=	=	'POST')	{
8	
9	 	 //	Minimal	form	validation:
10	 	 if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&
11	 	 	is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])		

&&	is_numeric($_POST['efficiency']))	{
12	 	
13	 	 	 //	Calculate	the	results:
14	 	 	 $gallons	=	$_POST['distance']	/	$_POST['efficiency'];
15	 	 	 $dollars	=	$gallons	*	$_POST['gallon_price'];
16	 	 	 $hours	=	$_POST['distance']/65;
17	 	 	
18	 	 	 //	Print	the	results:
19	 	 	 echo	'<h1>Total	Estimated	Cost</h1>
20	 	 	<p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging	'	.	$_POST	

['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.	$_POST['gallon_price']	.	'	
per	gallon,	is	$'	.	number_format	($dollars,	2)	.	'.	If	you	drive	at	an	average	of	65	miles	
per	hour,	the	trip	will	take	approximately	'	.	number_format($hours,	2)	.	'	hours.</p>';

21	 	
22	 	 }	else	{	//	Invalid	submitted	values.
23	 	 	 echo	'<h1>Error!</h1>
24	 	 	 <p	class="error">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel	efficiency.</p>';
25	 	 }
26	 	
27	 }	//	End	of	main	submission	IF.
28	
29	 //	Leave	the	PHP	section	and	create	the	HTML	form:
30	 ?>
31	
32	 <h1>Trip	Cost	Calculator</h1>
33	 <form	action="calculator.php"	method="post">
34	 	 <p>Distance	(in	miles):	<input	type="text"	name="distance"	/></p>
35	 	 <p>Ave.	Price	Per	Gallon:	
36	 	 	 <input	type="radio"	name="gallon_price"	value="3.00"	/>	3.00	
37	 	 	 <input	type="radio"	name="gallon_price"	value="3.50"	/>	3.50	
38	 	 	 <input	type="radio"	name="gallon_price"	value="4.00"	/>	4.00
39	 	 </p>
40	 	 <p>Fuel	Efficiency:	<select	name="efficiency">
41	 	 	 <option	value="10">Terrible</option>
42	 	 	 <option	value="20">Decent</option>
43	 	 	 <option	value="30">Very	Good</option>
44	 	 	 <option	value="50">Outstanding</option>
45	 	 </select></p>
46	 	 <p><input	type="submit"	name="submit"	value="Calculate!"	/></p>
47	 </form>
48	
49	 <?php	include	('includes/footer.html');	?>

ptg6935296

88 Chapter 3

3. Validate the form:

if (isset($_POST['distance'],
➝ $_POST['gallon_price'],
➝ $_POST['efficiency']) &&
 is_numeric($_POST['distance'])
 ➝ && is_numeric($_POST['gallon_
 ➝ price']) && is_numeric($_POST
 ➝ ['efficiency'])) {

The validation here is very simple: it
merely checks that three submitted
variables are set and are all numeric
types. You can certainly elaborate
on this, perhaps checking that all
values are positive (in fact, Chapter 13,
“Security Methods,” has a variation on
this script that does just that).

If the validation passes all of the tests,
the calculations will be made; otherwise,
the user will be asked to try again.

4. Perform the calculations:

$gallons = $_POST['distance'] /
➝ $_POST['efficiency'];
$dollars = $gallons *
➝ $_POST['gallon_price'];
$hours = $_POST['distance']/65;

The first line calculates the number of
gallons of gasoline the trip will take,
determined by dividing the distance
by the fuel efficiency. The second
line calculates the cost of the fuel for
the trip, determined by multiplying
the number of gallons times the
average price per gallon. The third line
calculates how long the trip will take,
determined by dividing the distance by
65 (representing 65 miles per hour).

5. Print the results:

echo '<h1>Total Estimated Cost</h1>
 <p>The total cost of driving '
 ➝. $_POST['distance'] . ' miles,
 ➝ averaging ' . $_POST
 ➝ ['efficiency'] . ' miles per
 ➝ gallon, and paying an average
 ➝ of $' . $_POST['gallon_price']
 ➝. ' per gallon, is $' .
 ➝ number_format ($dollars, 2) .
 ➝'. If you drive at an average
 ➝ of 65 miles per hour, the
 ➝ trip will take approximately
 ➝' . number_format($hours, 2)
 ➝. ' hours.</p>';

All of the values are printed out, while
formatting the cost and hours with the
number_format() function. Using the
concatenation operator (the period)
allows the formatted numeric values to
be appended to the printed message.

6. Complete the conditionals and close
the PHP tag:

 } else { // Invalid submitted
 ➝ values.
 echo '<h1>Error!</h1>
 <p class="error">Please enter
 ➝ a valid distance, price
 ➝ per gallon, and fuel
 ➝ efficiency.</p>';
 }
} // End of main submission IF.
?>

ptg6935296

Creating Dynamic Web Sites 89

8. Complete the form:

 <p>Ave. Price Per Gallon: <span
 ➝ class="input">
<input type="radio" name="gallon_
➝ price" value="3.00" /> 3.00
<input type="radio" name="gallon_
➝ price" value="3.50" /> 3.50
<input type="radio" name="gallon_
➝ price" value="4.00" /> 4.00
</p>
 <p>Fuel Efficiency: <select
 ➝ name="efficiency">
 <option value="10">Terrible
 ➝ </option>
 <option value="20">Decent
 ➝ </option>
 <option value="30">Very
 ➝ Good</option>
 <option value="50">
 ➝ Outstanding</option>
 </select></p>
 <p><input type="submit"
 ➝ name="submit" value=
 ➝"Calculate!" /></p>
</form>

continues on next page

C If any of the submitted values is not both set and numeric, an
error message is displayed.

The else clause completes the validation
conditional (Step 3), printing an error if the
three submitted values aren’t all set and
numeric C. The final closing curly brace
closes the isset($_SERVER['REQUEST_
METHOD'] = = 'POST') conditional. Finally,
the PHP section is closed so that the form
can be created without using echo (see
Step 7).

7. Begin the HTML form:

<h1>Trip Cost Calculator</h1>
<form action="calculator.php"
➝ method="post">
 <p>Distance (in miles): <input
 ➝ type="text" name="distance" />
 ➝ </p>

The form itself is fairly obvious,
containing only one new trick: the
action attribute uses this script’s name,
so that the form submits back to this
page instead of to another. The first
element within the form is a text input,
where the user can enter the distance
of the trip.

ptg6935296

90 Chapter 3

The form uses radio buttons as a way
to select the average price per gallon
(the buttons are wrapped within span
tags in order to format them similarly
to the other form elements). For the
fuel efficiency, the user can select from
a drop-down menu of four options. A
submit button completes the form.

9. Include the footer file:

<?php include ('includes/
➝ footer.html'); ?>

10. Save the file as calculator.php, place
it in your Web directory, and test it in
your Web browser D.

You can also have a form submit back
to itself by using no value for the action
attribute:

<form action="" method="post">

By doing so, the form will always submit back
to this same page, even if you later change the
name of the script.

D The page performs the calculations, reports on the results, and then redisplays the form.

ptg6935296

Creating Dynamic Web Sites 91

(As you can see, the syntax can quickly
get complicated; you may find it easiest to
create the form element and then add the
PHP code as a second step.)

To preset the value of a textarea, print the
value between the textarea tags:

<textarea name="comments" rows="10"
➝ cols="50"><?php echo $comments;
➝?></textarea>

Note that the textarea tag does not
have a value attribute like the standard
text input.

To preselect a pull-down menu, add
selected="selected" to the appropriate
option. This is really easy if you also use
PHP to generate the menu:

echo '<select name="year">';
for ($y = 2011; $y <= 2021; $y+ +) {
 echo "<option value=\"$y\"";
 if ($year = = $y) {
 echo ' selected=
 ➝"selected"';
 }
 echo ">$y</option>\n";
}
echo '</select>';

With this new information in mind, let’s
rewrite calculator.php so that it’s sticky.
Unlike the above examples, the existing
values will be present in $_POST variables.
Also, since it’s best not to refer to variables
unless they exist, conditionals will check that
a variable is set before printing its value.

Making Sticky Forms
A sticky form is simply a standard HTML
form that remembers how you filled it
out. This is a particularly nice feature for
end users, especially if you are requiring
them to resubmit a form after filling it out
incorrectly in the first place (as in C in the
previous section).

To preset what’s entered in a text input,
use its value attribute:

<input type="text" name="city"
➝ value="Innsbruck" />

To have PHP preset that value, print the
appropriate variable (this assumes that the
referenced variable exists):

<input type="text" name="city"
➝ value="<?php echo $city; ?>" />

(This is also a nice example of the benefit
of PHP’s HTML-embedded nature: you can
place PHP code anywhere, including within
HTML tags.)

To preset the status of radio buttons or
check boxes (i.e., to pre-check them),
add the code checked="checked" to their
input tags. Using PHP, you might write:

<input type="radio" name="gender"
➝ value="F" <?php if ($gender = = 'F') {
 echo 'checked="checked"';
} ?>/>

ptg6935296

92 Chapter 3

To make a sticky form:
1. Open calculator.php (refer to Script

3.5) in your text editor or IDE, if it is
not already.

2. Change the distance input to read
(Script 3.6):

<input type="text" name="distance"
➝ value="<?php if (isset($_POST
➝ ['distance'])) echo $_POST
➝ ['distance']; ?>" />

The first change is to add the value
attribute to the input. Then, print out the
value of the submitted distance variable
($_POST['distance']). Since the first time
the page is loaded, $_POST['distance']

Script 3.6 The calculator’s form now recalls the previously entered and selected values (creating a sticky form).

1	 <?php	#	Script	3.6	-	calculator.php	#2
2	
3	 $page_title	=	'Trip	Cost	Calculator';
4	 include	('includes/header.html');
5	
6	 //	Check	for	form	submission:
7	 if	($_SERVER['REQUEST_METHOD']	=	=	'POST')	{
8	
9	 	 //	Minimal	form	validation:
10	 	 if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&
11	 	 	is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])		

&&	is_numeric($_POST['efficiency']))	{
12	 	
13	 	 	 //	Calculate	the	results:
14	 	 	 $gallons	=	$_POST['distance']	/	$_POST['efficiency'];
15	 	 	 $dollars	=	$gallons	*	$_POST['gallon_price'];
16	 	 	 $hours	=	$_POST['distance']/65;
17	 	 	
18	 	 	 //	Print	the	results:
19	 	 	 echo	'<h1>Total	Estimated	Cost</h1>
20	 	 	<p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging	'	.	$_POST	

['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.	$_POST['gallon_price']	.	'	
per	gallon,	is	$'	.	number_format	($dollars,	2)	.	'.	If	you	drive	at	an	average	of	65	miles	
per	hour,	the	trip	will	take	approximately	'	.	number_format($hours,	2)	.	'	hours.</p>';

21	 	
22	 	 }	else	{	//	Invalid	submitted	values.
23	 	 	 echo	'<h1>Error!</h1>
24	 	 	 <p	class="error">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel	efficiency.</p>';
25	 	 }
26	 	
27	 }	//	End	of	main	submission	IF.

has no value, a conditional ensures that
the variable is set before attempting to
print it. The end result for setting the
input’s value is the PHP code

<?php
if (isset($_POST['distance'])) {
 echo $_POST['distance'];
}
?>

This can be condensed to the more
minimal form used in the script (you
can omit the curly braces if you have
only one statement within a conditional
block, although I very rarely recommend
that you do so).

code continues on next page

ptg6935296

Creating Dynamic Web Sites 93

3. Change the radio buttons to:

<input type="radio" name="gallon_
➝ price" value="3.00" <?php if
➝ (isset($_POST['gallon_price'])
➝ && ($_POST['gallon_price'] = =
➝'3.00')) echo 'checked="checked"
➝'; ?>/> 3.00 <input type="radio"
➝ name="gallon_price" value="3.50"
➝ <?php if (isset($_POST['gallon_
➝ price']) && ($_POST['gallon_
➝ price'] = = '3.50')) echo 'checked=
➝"checked" '; ?>/> 3.50 <input
➝ type="radio" name="gallon_price"
➝ value="4.00" <?php if (isset

Script 3.6 continued

28	
29	 //	Leave	the	PHP	section	and	create	the	HTML	form:
30	 ?>
31	
32	 <h1>Trip	Cost	Calculator</h1>
33	 <form	action="calculator.php"	method="post">
34 <p>Distance (in miles): <input type="text" name="distance" value="<?php if
 (isset($_POST['distance'])) echo $_POST['distance']; ?>" /></p>
35	 	 <p>Ave.	Price	Per	Gallon:	
36 <input type="radio" name="gallon_price" value="3.00" <?php if (isset($_POST
 ['gallon_price']) && ($_POST['gallon_price'] = = '3.00')) echo 'checked="checked"
 '; ?>/> 3.00
37 <input type="radio" name="gallon_price" value="3.50" <?php if (isset($_POST
 ['gallon_price']) && ($_POST['gallon_price'] = = '3.50')) echo 'checked="checked"
 '; ?>/> 3.50
38 <input type="radio" name="gallon_price" value="4.00" <?php if (isset($_POST
 ['gallon_price']) && ($_POST['gallon_price'] = = '4.00')) echo 'checked="checked"
 '; ?>/> 4.00
39	 	 </p>
40	 	 <p>Fuel	Efficiency:	<select	name="efficiency">
41 <option value="10"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 = = '10')) echo ' selected="selected"'; ?>>Terrible</option>
42 <option value="20"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 = = '20')) echo ' selected="selected"'; ?>>Decent</option>
43 <option value="30"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 = = '30')) echo ' selected="selected"'; ?>>Very Good</option>
44 <option value="50"<?php if (isset($_POST['efficiency']) && ($_POST['efficiency']
 = = '50')) echo ' selected="selected"'; ?>>Outstanding</option>
45	 	 </select></p>
46	 	 <p><input	type="submit"	name="submit"	value="Calculate!"	/></p>
47	 </form>
48	
49	 <?php	include	('includes/footer.html');	?>

➝ ($_POST['gallon_price']) &&
➝ ($_POST['gallon_price'] = =
➝'4.00')) echo 'checked="checked"
➝'; ?>/> 4.00

For each of the three radio buttons, the
following code must be added within
the input tag:

<?php if (isset($_POST['gallon_
➝ price']) && ($_POST['gallon_
➝ price'] = = 'XXX')) echo
➝'checked="checked" '; ?>

For each button, the comparison value
(XXX) gets changed accordingly.

continues on next page

ptg6935296

94 Chapter 3

4. Change the select menu options to:

<option value="10"<?php if
➝ (isset($_POST['efficiency']) &&
➝ ($_POST['efficiency'] = = '10'))
➝ echo ' selected="selected"';
➝?>>Terrible</option>
<option value="20"<?php if
➝ (isset($_POST['efficiency']) &&
➝ ($_POST['efficiency'] = = '20'))
➝ echo ' selected="selected"';
➝?>>Decent</option>
<option value="30"<?php if
➝ (isset($_POST['efficiency']) &&
➝ ($_POST['efficiency'] = = '30'))
➝ echo ' selected="selected"';
➝?>>Very Good</option>
<option value="50"<?php if
➝ (isset($_POST['efficiency']) &&
➝ ($_POST['efficiency'] = = '50'))
➝ echo ' selected="selected"';
➝?>>Outstanding</option>

For each option, within the opening
option tag, the following code is added:

<?php if (isset($_POST
➝ ['efficiency']) && ($_POST
➝ ['efficiency'] = = 'XX')) echo '
➝ selected="selected"'; ?>

A The form now
recalls the previously
submitted values…

B …whether
or not the form
was completely
filled out.

Again, just the specific comparison
value (XX) must be changed to match
each option.

5. Save the file as calculator.php, place
it in your Web directory, and test it in
your Web browser A and B.

Because the price per gallon and fuel
efficiency values are numeric, you can quote
or not quote the comparison values within
the added conditionals. I choose to quote
them, because they’re technically strings
with numeric values.

Because the added PHP code in this
example exists inside of the HTML form
element tags, error messages may not be
obvious. If problems occur, check the HTML
source of the page to see if PHP errors are
printed within the value attributes and the
tags themselves.

You should always double-quote HTML
attributes, particularly the value attribute of
a text input. If you don’t, multiword values like
Elliott Smith will appear as just Elliott in the
Web browser.

Some Web browsers will also remem-
ber values entered into forms for you; this is
a separate but potentially overlapping issue
from using PHP to accomplish this.

ptg6935296

Creating Dynamic Web Sites 95

(unlike variable names), so you could call
that function using do_Nothing() or DO_
NOTHING() or Do_Nothing(), etc., but not
donothing() or DoNothing().

The code within the function can do
nearly anything, from generating HTML
to performing calculations to calling other
functions.

The most common reasons to create your
own functions are:

n	 To associate repeated code with one
function call.

n	 To separate out sensitive or
complicated processes from other
code.

n	 To make common code bits easier
to reuse.

This chapter runs through a couple of
examples and you’ll see some others
throughout the rest of the book. For this
first example, a function will be defined
that outputs the HTML code for generating
theoretical ads. This function will then be
called twice on the home page A.

Creating Your
own Functions
PHP has a lot of built-in functions,
addressing almost every need you might
have. More importantly, though, PHP has
the capability for you to define and use
your own functions for whatever purpose.
The syntax for making your own function is

function function_name () {
 // Function code.
}

The name of your function can be any
combination of letters, numbers, and the
underscore, but it must begin with either
a letter or the underscore. You also cannot
use an existing function name for your
function (print, echo, isset, and so on).
One perfectly valid function definition is

function do_nothing() {
 // Do nothing.
}

In PHP, as mentioned in the first chapter,
function names are case-insensitive

A The two “ads” are generated by calling the same user-defined function.

ptg6935296

96 Chapter 3

To create your own function:
1. Open index.php (Script 3.4) in your text

editor or IDE.

2. After the opening PHP tag, begin defin-
ing a new function (Script 3.7):

function create_ad() {

The function to be written here would, in
theory, generate the HTML required to
add ads to a Web page. The function’s
name clearly states its purpose.

Script 3.7 This version of the home page has a user-defined function that outputs a theoretical ad. The function
is called twice in the script, creating two ads.

1	 <?php	#	Script	3.7	-	index.php	#2
2	
3	 //	This	function	outputs	theoretical	HTML
4	 //	for	adding	ads	to	a	Web	page.
5 function create_ad() {
6 echo '<p class="ad">This is an annoying ad! This is an annoying ad! This is an
 annoying ad! This is an annoying ad!</p>';
7 } // End of the function definition.
8	
9	 $page_title	=	'Welcome	to	this	Site!';
10	 include	('includes/header.html');
11	
12	 //	Call	the	function:
13 create_ad();
14	 ?>
15	
16	 <h1>Content	Header</h1>
17	
18	 	 <p>This	is	where	the	page-specific	content	goes.	This	section,	and	the		
	 	 corresponding	header,	will	change	from	one	page	to	the	next.</p>
19	 	
20	 	 <p>Volutpat	at	varius	sed	sollicitudin	et,	arcu.	Vivamus	viverra.	Nullam	turpis.		
	 	 Vestibulum	sed	etiam.	Lorem	ipsum	sit	amet	dolore.	Nulla	facilisi.	Sed	tortor.		
	 	 Aenean	felis.	Quisque	eros.	Cras	lobortis	commodo	metus.	Vestibulum	vel	purus.		
	 	 In	eget	odio	in	sapien	adipiscing	blandit.	Quisque	augue	tortor,	facilisis	sit		
	 	 amet,	aliquam,	suscipit	vitae,	cursus	sed,	arcu	lorem	ipsum	dolor	sit	amet.</p>
21	
22	 <?php
23	
24	 //	Call	the	function	again:
25 create_ad();
26	
27	 include	('includes/footer.html');
28	 ?>

Although not required, it’s conventional
to place a function definition near the
very top of a script or in a separate file.

3. Generate the HTML:

echo '<p class="ad">This is an
➝ annoying ad! This is an annoying
➝ ad! This is an annoying ad! This
➝ is an annoying ad!</p>';

In a real function, the code would output
actual HTML instead of a paragraph
of text. (The actual HTML would be

ptg6935296

Creating Dynamic Web Sites 97

Creating a function that
takes arguments
Just like PHP’s built-in functions, those
you write can take arguments (also called
parameters). For example, the strlen()
function takes as an argument the string
whose character length will be determined.

A function can take any number of
arguments, but the order in which you list
them is critical. To allow for arguments, add
variables to a function’s definition:

function print_hello ($first, $last) {
 // Function code.
}

The variable names you use for your
arguments are irrelevant to the rest of the
script (more on this in the “Variable Scope”
sidebar toward the end of this chapter), but
try to use valid, meaningful names.

Once the function is defined, you can then
call it as you would any other function in
PHP, sending literal values or variables
to it:

print_hello ('Jimmy', 'Stewart');
$surname = 'Stewart';
print_hello ('Jimmy', $surname);

As with any function in PHP, failure to send
the right number of arguments results in
an error B.

To demonstrate this concept, let’s rewrite
the calculator form so that a user-defined
function creates the price-per-gallon radio
buttons. Doing so will help to clean up the
messy form code.

provided by the service you’re using to
generate and tracks ads.)

4. Close the function definition:

} // End of the function
definition.

It’s helpful to place a comment at the
end of a function definition so that you
know where a definition starts and
stops (it’s helpful on longer function
definitions, at least).

5. After including the header and before
exiting the PHP block, call the function:

create_ad();

The call to the create_ad() function
will have the end result of inserting the
function’s output at this point in the script.

6. Just before including the footer, call the
function again:

create_ad();

7. Save the file and test it in your Web
browser A.

If you ever see a call to undefined
function function_name error, this means
that you are calling a function that hasn’t
been defined. This can happen if you misspell
the function’s name (either when defining or
calling it) or if you fail to include the file where
the function is defined.

Because a user-defined function takes
up some memory, you should be prudent
about when to use one. As a general rule,
functions are best used for chunks of code
that may be executed in several places in
a script or Web site.

B Failure to send a function the proper number (and sometimes type) of arguments creates an error.

ptg6935296

98 Chapter 3

To define functions that
take arguments:
1. Open calculator.php (Script 3.6) in

your text editor or IDE.

2. After the initial PHP tag, start defining
the create_gallon_radio() function
(Script 3.8):

function create_gallon_radio
➝ ($value) {

The function will create code like this:

<input type="radio" name=
➝"gallon_price" value="XXX"
➝ checked="checked" /> XXX

Script 3.8 The calculator.php form now uses a function to create the radio buttons. Unlike the create_ad()
user-defined function, this one takes an argument.

1	 <?php	#	Script	3.8	-	calculator.php	#3
2	
3	 //	This	function	creates	a	radio	button.
4	 //	The	function	takes	one	argument:	the	value.
5	 //	The	function	also	makes	the	button	"sticky".
6 function create_gallon_radio($value) {
7	 	
8	 	 //	Start	the	element:
9 echo '<input type="radio" name="gallon_price" value="' . $value . '"';
10	 	
11	 	 //	Check	for	stickiness:
12 if (isset($_POST['gallon_price']) && ($_POST['gallon_price'] = = $value)) {
13 echo ' checked="checked"';
14 }
15	 	
16	 	 //	Complete	the	element:
17 echo " /> $value ";
18	
19 } // End of create_gallon_radio() function.
20	
21	 $page_title	=	'Trip	Cost	Calculator';
22	 include	('includes/header.html');
23	
24	 //	Check	for	form	submission:
25	 if	($_SERVER['REQUEST_METHOD']	=	=	'POST')	{
26	
27	 	 //	Minimal	form	validation:
28	 	 if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&

code continues on next page

or:

<input type="radio" name=
➝"gallon_price" value="XXX" /> XXX

In order to be able to dynamically set
the value of each radio button, that
value must be passed to the function
with each call. Therefore, that’s the one
argument the function takes.

Notice that the variable used as an
argument is not $_POST['gallon_price'].
The function’s argument variable is
particular to this function and has its
own name.

continues on page 100

ptg6935296

Creating Dynamic Web Sites 99

Script 3.8 continued

29	 	 is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])	&&		
	 	 is_numeric($_POST['efficiency']))	{
30	 	
31	 	 	 //	Calculate	the	results:
32	 	 	 $gallons	=	$_POST['distance']	/	$_POST['efficiency'];
33	 	 	 $dollars	=	$gallons	*	$_POST['gallon_price'];
34	 	 	 $hours	=	$_POST['distance']/65;
35	 	 	
36	 	 	 //	Print	the	results:
37	 	 	 echo	'<h1>Total	Estimated	Cost</h1>
38	 	 <p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging		
	 	 '	.	$_POST['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.		
	 	 $_POST['gallon_price']	.	'	per	gallon,	is	$'	.	number_format	($dollars,	2)	.	'.		
	 	 If	you	drive	at	an	average	of	65	miles	per	hour,	the	trip	will	take		
	 	 approximately	'	.	number_format($hours,	2)	.	'	hours.</p>';
39	 	
40	 	 }	else	{	//	Invalid	submitted	values.
41	 	 	 echo	'<h1>Error!</h1>
42	 	 	 <p	class="error">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel		
	 	 	 efficiency.</p>';
43	 	 }
44	 	
45	 }	//	End	of	main	submission	IF.
46	
47	 //	Leave	the	PHP	section	and	create	the	HTML	form:
48	 ?>
49	
50	 <h1>Trip	Cost	Calculator</h1>
51	 <form	action="calculator.php"	method="post">
52	 	 <p>Distance	(in	miles):	<input	type="text"	name="distance"	value="<?php	if		
	 	 (isset($_POST['distance']))	echo	$_POST['distance'];	?>"	/></p>
53	 	 <p>Ave.	Price	Per	Gallon:	
54 <?php
55 create_gallon_radio('3.00');
56 create_gallon_radio('3.50');
57 create_gallon_radio('4.00');
58 ?>
59	 	 </p>
60	 	 <p>Fuel	Efficiency:
61	 	 <select	name="efficiency">
62	 	 	 <option	value="10"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']		
	 	 	 =	=	'10'))	echo	'	selected="selected"';	?>>Terrible</option>
63	 	 	 <option	value="20"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']		
	 	 	 =	=	'20'))	echo	'	selected="selected"';	?>>Decent</option>
64	 	 	 <option	value="30"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']		
	 	 	 =	=	'30'))	echo	'	selected="selected"';	?>>Very	Good</option>
65	 	 	 <option	value="50"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']		
	 	 	 =	=	'50'))	echo	'	selected="selected"';	?>>Outstanding</option>
66	 	 </select></p>
67	 	 <p><input	type="submit"	name="submit"	value="Calculate!"	/></p>
68	 </form>
69	
70	 <?php	include	('includes/footer.html');	?>

ptg6935296

100 Chapter 3

3. Begin creating the radio button element:

echo '<input type="radio" name=
➝"gallon_price" value="' .
➝ $value . '"';

This code starts the HTML for the radio
button, including its value attribute, but
does not complete the radio button so
that “stickiness” can be addressed next.
The value for the input comes from the
function argument.

4. Make the input “sticky”, if appropriate:

if (isset($_POST['gallon_price'])
➝ && ($_POST['gallon_price'] = =
➝ $value)) {
 echo ' checked="checked"';
}

This code is similar to that in the original
form, except now the comparison value
comes from the function’s argument.

C Although a user-defined function is used to create the radio buttons (see Script 3.8), the
end result is no different to the user.

5. Complete the form element and
the function:

 echo " /> $value ";
} // End of create_gallon_radio()
➝ function.

Finally, the input tag is closed and the
value is displayed afterwards, with a
space on either side.

6. Replace the hard-coded radio buttons
in the form with three function calls:

<?php
create_gallon_radio('3.00');
create_gallon_radio('3.50');
create_gallon_radio('4.00');
?>

To create the three buttons, just call the
function three times, passing different
values for each. The numeric values are
quoted here or else PHP would drop
the trailing zeros.

7. Save the file as calculator.php, place
it in your Web directory, and test it in
your Web browser C.

ptg6935296

Creating Dynamic Web Sites 101

However, just greet() will not work.
Also, there’s no way to pass $msg a value
without passing one to $name as well
(argument values must be passed in order,
and you can’t skip a required argument).

To take advantage of default argument
values, let’s make a better version of the
create_gallon_radio() function. As
originally written, the function only creates
radio buttons with a name of gallon_price.
It’d be better if the function could be used
multiple times in a form, for multiple radio
button groupings (although the function
won’t be used like that in this script).

To set default argument values:
1. Open calculator.php (refer to Script

3.8) in your text editor or IDE, if it is
not already.

2. Change the function definition line
(line 6) so that it takes a second,
optional argument (Script 3.9):

function create_radio($value,
➝ $name = 'gallon_price') {

continues on page 103

Setting default argument values
Another variant on defining your own
functions is to preset an argument’s value.
To do so, assign the argument a value in
the function’s definition:

function greet ($name, $msg =
➝'Hello') {
 echo "$msg, $name!";
}

The end result of setting a default
argument value is that that particular
argument becomes optional when calling
the function. If a value is passed to it,
the passed value is used; otherwise, the
default value is used.

You can set default values for as many of
the arguments as you want, as long as
those arguments come last in the function
definition. In other words, the required
arguments must always be listed first.

With the example function just defined, any
of these will work:

greet ($surname, $message);
greet ('Zoe');
greet ('Sam', 'Good evening');

Script 3.9 The redefined function now assumes a set radio button name unless one is specified when the
function is called.

1	 <?php	#	Script	3.9	-	calculator.php	#4
2	
3	 //	This	function	creates	a	radio	button.
4	 //	The	function	takes	two	arguments:	the	value	and	the	name.
5	 //	The	function	also	makes	the	button	"sticky".
6 function create_radio($value, $name = 'gallon_price') {
7	 	
8	 	 //	Start	the	element:
9 echo '<input type="radio" name="' . $name .'" value="' . $value . '"';
10	 	
11	 	 //	Check	for	stickiness:
12 if (isset($_POST[$name]) && ($_POST[$name] = = $value)) {

code continues on next page

ptg6935296

102 Chapter 3

Script 3.9 continued

15	 	
16	 	 //	Complete	the	element:
17	 	 echo	"	/>	$value	";
18	
19	 }	//	End	of	create_radio()	function.
20	
21	 $page_title	=	'Trip	Cost	Calculator';
22	 include	('includes/header.html');
23	
24	 //	Check	for	form	submission:
25	 if	($_SERVER['REQUEST_METHOD']	=	=	'POST')	{
26	
27	 	 //	Minimal	form	validation:
28	 	 if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&
29	 	 	is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])		

&&	is_numeric($_POST['efficiency']))	{
30	 	
31	 	 	 //	Calculate	the	results:
32	 	 	 $gallons	=	$_POST['distance']	/	$_POST['efficiency'];
33	 	 	 $dollars	=	$gallons	*	$_POST['gallon_price'];
34	 	 	 $hours	=	$_POST['distance']/65;
35	 	 	
36	 	 	 //	Print	the	results:
37	 	 	 echo	'<h1>Total	Estimated	Cost</h1>
38	 	 	<p>The	total	cost	of	driving	'	.	$_POST['distance']	.	'	miles,	averaging	'	.	$_POST	

['efficiency']	.	'	miles	per	gallon,	and	paying	an	average	of	$'	.	$_POST['gallon_price']	
.	'	per	gallon,	is	$'	.	number_format	($dollars,	2)	.	'.	If	you	drive	at	an	average	of	
65	miles	per	hour,	the	trip	will	take	approximately	'	.	number_format($hours,	2)	.	'	
hours.</p>';

39	 	
40	 	 }	else	{	//	Invalid	submitted	values.
41	 	 	 echo	'<h1>Error!</h1>
42	 	 	 	<p	class="error">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel	

efficiency.</p>';
43	 	 }
44	 	
45	 }	//	End	of	main	submission	IF.
46	
47	 //	Leave	the	PHP	section	and	create	the	HTML	form:
48	 ?>
49	
50	 <h1>Trip	Cost	Calculator</h1>
51	 <form	action="calculator.php"	method="post">
52	 	 	<p>Distance	(in	miles):	<input	type="text"	name="distance"	value="<?php	if	(isset($_POST	

['distance']))	echo	$_POST['distance'];	?>"	/></p>
53	 	 <p>Ave.	Price	Per	Gallon:	
54	 	 <?php
55	 	 create_radio('3.00');
56	 	 create_radio('3.50');
57	 	 create_radio('4.00');

code continues on next page

ptg6935296

Creating Dynamic Web Sites 103

There are two changes here. First, the
name of the function is changed to be
reflective of its more generic nature.
Second, the function now takes a
second argument, $name, although that
argument has a default value, which
makes that argument optional when the
function is called.

3. Change the function definition so that
it uses the $name argument in lieu of
gallon_price:

echo '<input type="radio" name="'
. $name .'" value="' . $value .
'"';
if (isset($_POST[$name]) && ($_
POST[$name] = = $value)) {
 echo ' checked="checked"';
}

Three changes are necessary. First,
$name is used for the name attribute of
the element. Second, the conditional
that checks for “stickiness” now
uses $_POST[$name] twice instead of
$_POST['gallon_price'].

continues on next page

Script 3.9 continued

58	 	 ?>
59	 	 </p>
60	 	 <p>Fuel	Efficiency:	<select	name="efficiency">
61	 	 	 	<option	value="10"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	=	=	'10'))	

echo	'	selected="selected"';	?>>Terrible</option>
62	 	 	 	<option	value="20"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	=	=	'20'))	

echo	'	selected="selected"';	?>>Decent</option>
63	 	 	 	<option	value="30"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	=	=	'30'))	

echo	'	selected="selected"';	?>>Very	Good</option>
64	 	 	 	<option	value="50"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	=	=	'50'))	

echo	'	selected="selected"';	?>>Outstanding</option>
65	 	 </select></p>
66	 	 <p><input	type="submit"	name="submit"	value="Calculate!"	/></p>
67	 </form>
68	
69	 <?php	include	('includes/footer.html');	?>

ptg6935296

104 Chapter 3

4. Change the function call lines:

create_radio('3.00');
create_radio('3.50');
create_radio('4.00');

The function calls must be changed
to use the new function name. But
because the second argument has a
default value, it can be omitted in these
calls. The end result is the same as
executing this call—

create_radio('4.00', 'gallon_price');

—but now the function could be used to
create other radio buttons as well.

5. Save the file, place it in your Web direc-
tory, and test it in your Web browser D.

To pass a function no value for an
argument, use either an empty string (''),
NULL, or FALSE.

In the PHP manual, square brackets
([]) are used to indicate a function’s optional
parameters E.

D The addition of
the second, optional
argument, has not
affected the functionality
of the function.

E The PHP manual’s description
of the number_format() function
shows that only the first argument
is required.

ptg6935296

Creating Dynamic Web Sites 105

When calling a function that returns a
value, you can assign the function result
to a variable:

$my_sign = find_sign ('October', 23);

or use it as an argument when calling
another function:

echo find_sign ('October', 23);

Let’s update the calculator.php script so
that it uses a function to determine the cost
of the trip.

To have a function return a value:
1. Open calculator.php (refer to

Script 3.9) in your text editor or IDE,
if it is not already.

2. After the first function definition, begin
defining a second function (Script 3.10):

function calculate_trip_cost
➝ ($miles, $mpg, $ppg) {

The calculate_trip_cost() function
takes three arguments: the distance
to be travelled, the average miles per
gallon, and the average price per gallon.

continues on page 107

Returning values from a function
The final attribute of a user-defined
function to discuss is that of returning
values. Some, but not all, functions do this.
For example, print will return either a 1 or
a 0 indicating its success, whereas echo
will not. As another example, the number_
format() function returns a string, which is
the formatted version of a number (see E
in the previous section).

To have a function return a value, use the
return statement. This function might
return the astrological sign for a given birth
month and day:

function find_sign ($month, $day) {
 // Function code.
 return $sign;
}

A function can return a literal value (say
a string or a number) or the value of a
variable that has been determined within
the function.

Script 3.10 Another user-defined function is added to the script. It performs the main calculation and returns
the result.

code continues on next page

ptg6935296

106 Chapter 3

Script 3.10 continued

15	 	
16	 	 //	Complete	the	element:
17	 	 echo	"	/>	$value	";
18	
19	 }	//	End	of	create_radio()	function.
20	
21	 //	This	function	calculates	the	cost	of	the	trip.
22	 	//	The	function	takes	three	arguments:	the	distance,	the	fuel	efficiency,	and	the	price	

per	gallon.
23	 //	The	function	returns	the	total	cost.
24 function calculate_trip_cost($miles, $mpg, $ppg) {
25	 	
26	 	 //	Get	the	number	of	gallons:
27 $gallons = $miles/$mpg;
28	 	
29	 	 //	Get	the	cost	of	those	gallons:
30 $dollars = $gallons/$ppg;
31	 	
32	 	 //	Return	the	formatted	cost:
33 return number_format($dollars, 2);
34	 	
35 } // End of calculate_trip_cost() function.
36	
37	 $page_title	=	'Trip	Cost	Calculator';
38	 include	('includes/header.html');
39	
40	 //	Check	for	form	submission:
41	 if	($_SERVER['REQUEST_METHOD']	=	=	'POST')	{
42	
43	 	 //	Minimal	form	validation:
44	 	 if	(isset($_POST['distance'],	$_POST['gallon_price'],	$_POST['efficiency'])	&&
45	 	 	is_numeric($_POST['distance'])	&&	is_numeric($_POST['gallon_price'])		

&&	is_numeric($_POST['efficiency']))	{
46	 	
47	 	 	 //	Calculate	the	results:
48 $cost = calculate_trip_cost($_POST['distance'], $_POST['efficiency'],
 $_POST['gallon_price']);
49	 	 	 $hours	=	$_POST['distance']/65;
50	 	 	
51	 	 	 //	Print	the	results:
52 echo '<h1>Total Estimated Cost</h1>
53 <p>The total cost of driving ' . $_POST['distance'] . ' miles, averaging ' .
 $_POST['efficiency'] . ' miles per gallon, and paying an average of $' . $_POST
 ['gallon_price'] . ' per gallon, is $' . $cost . '. If you drive at an average of
 65 miles per hour, the trip will take approximately ' . number_format($hours, 2)
 . ' hours.</p>';
54	 	
55	 	 }	else	{	//	Invalid	submitted	values.
56	 	 	 echo	'<h1>Error!</h1>
57	 	 	 	<p	class="error">Please	enter	a	valid	distance,	price	per	gallon,	and	fuel	

efficiency.</p>';
58	 	 }

code continues on next page

ptg6935296

Creating Dynamic Web Sites 107

4. Replace the two lines that calculate the
cost (lines 32-33 of Script 3.9) with a
function call:

$cost = calculate_trip_cost
➝ ($_POST['distance'],
➝ $_POST['efficiency'],
➝ $_POST['gallon_price']);

Invoking the function, while passing
it the three required values, will perform
the calculation. Since the function
returns a value, the results of the
function call—the returned value—
can be assigned to a variable.

continues on next page

Script 3.10 continued

59	 	
60	 }	//	End	of	main	submission	IF.
61	
62	 //	Leave	the	PHP	section	and	create	the	HTML	form:
63	 ?>
64	
65	 <h1>Trip	Cost	Calculator</h1>
66	 <form	action="calculator.php"	method="post">
67	 	 	<p>Distance	(in	miles):	<input	type="text"	name="distance"	value="<?php	if	(isset($_POST	

['distance']))	echo	$_POST['distance'];	?>"	/></p>
68	 	 <p>Ave.	Price	Per	Gallon:	
69	 	 <?php
70	 	 create_radio('3.00');
71	 	 create_radio('3.50');
72	 	 create_radio('4.00');
73	 	 ?>
74	 	 </p>
75	 	 <p>Fuel	Efficiency:	<select	name="efficiency">
76	 	 	 	<option	value="10"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	=	=	

'10'))	echo	'	selected="selected"';	?>>Terrible</option>
77	 	 	 	<option	value="20"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	=	=	

'20'))	echo	'	selected="selected"';	?>>Decent</option>
78	 	 	 	<option	value="30"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	=	=	

'30'))	echo	'	selected="selected"';	?>>Very	Good</option>
79	 	 	 	<option	value="50"<?php	if	(isset($_POST['efficiency'])	&&	($_POST['efficiency']	=	=	

'50'))	echo	'	selected="selected"';	?>>Outstanding</option>
80	 	 </select></p>
81	 	 <p><input	type="submit"	name="submit"	value="Calculate!"	/></p>
82	 </form>
83	
84	 <?php	include	('includes/footer.html');	?>

3. Perform the calculations and return the
formatted cost:

 $gallons = $miles/$mpg;
 $dollars = $gallons/$ppg;
 return number_format($dollars, 2);
} // End of calculate_trip_cost()
➝ function.

The first two lines are the same
calculations as the script used before,
but now they use function variables.
The last thing the function does is
return a formatted version of the
calculated cost.

ptg6935296

108 Chapter 3

5. Change the echo statement to use the
new variable:

echo '<h1>Total Estimated Cost</h1>
 <p>The total cost of driving
 ➝' . $_POST['distance'] .
 ➝' miles, averaging ' .
 ➝ $_POST['efficiency'] . ' miles
 ➝ per gallon, and paying an
 ➝ average of $' . $_POST
 ➝ ['gallon_price'] . ' per
 ➝ gallon, is $' . $cost . '.
 ➝If you drive at an average of
 ➝ 65 miles per hour, the trip
 ➝ will take approximately '
 ➝. number_format($hours, 2) . '
 ➝ hours.</p>';

The echo statement uses the $cost
variable here, instead of $dollars (as in
the previous version of the script). Also,
since the $cost variable is formatted
within the function, the number_format()
function does not need to be applied
within the echo statement to this variable.

6. Save the file, place it in your Web direc-
tory, and test it in your Web browser F.

The return statement terminates the
code execution at that point, so any code
within a function after an executed return
will never run.

A function can have multiple return
statements (e.g., in a switch statement or
conditional) but only one, at most, will ever be
invoked. For example, functions commonly do
something like this:

function some_function () {
 if (/* condition */) {
 return TRUE;
 } else {
 return FALSE;
 }
}

To have a function return multiple values,
use the array() function to return an array
of values:

return array ($var1, $var2);

When calling a function that returns an
array, use the list() function to assign the
array elements to individual variables:

list($v1, $v2) = some_function();

F The calculator now uses a user-defined function to calculate and return the trip’s cost.
But this change has no impact on what the user sees.

ptg6935296

Creating Dynamic Web Sites 109

Variable Scope
Every variable in PHP has a scope to it, which is to say a realm in which the variable (and
therefore its value) can be accessed. For starters, variables have the scope of the page in which
they reside. If you define $var, the rest of the page can access $var, but other pages generally
cannot (unless you use special variables).

Since included files act as if they were part of the original (including) script, variables defined before
an include() line are available to the included file (as you’ve already seen with $page_title
and header.html). Further, variables defined within the included file are available to the parent
(including) script after the include() line.

User-defined functions have their own scope: variables defined within a function are not
available outside of it, and variables defined outside of a function are not available within it.
For this reason, a variable inside of a function can have the same name as one outside of it but
still be an entirely different variable with a different value. This is a confusing concept for many
beginning programmers.

To alter the variable scope within a function, you can use the global statement.

function function_name() {
 global $var;
}
$var = 20;
function_name(); // Function call.

In this example, $var inside of the function is now the same as $var outside of it. This means that
the function $var already has a value of 20, and if that value changes inside of the function, the
external $var’s value will also change.

Another option for circumventing variable scope is to make use of the superglobals: $_GET,
$_POST, $_REQUEST, etc. These variables are automatically accessible within your functions
(hence, they are superglobal). You can also add elements to the $GLOBALS array to make them
available within a function.

All of that being said, it’s almost always best not to use global variables within a function. Functions
should be designed so that they receive every value they need as arguments and return whatever
value (or values) need to be returned. Relying upon global variables within a function makes them
more context-dependent, and consequently less useful.

ptg6935296

110 Chapter 3

Review and pursue
If you have any problems with the
review questions or the pursue prompts,
turn to the book’s supporting forum
(www.LarryUllman.com/forums/).

Review
n	 What is an absolute path? What is a

relative path?

n	 What is the difference between
include() and require()?

n	 What is the difference between
include() and include_once()?
Which function should you generally
avoid using and why?

n	 Why does it not matter what extension
is used for an included file?

n	 What is the significance of the
$_SERVER['REQUEST_METHOD'] value?

n	 How do you make the following form
elements sticky?

>	 Text input

>	 Select menu

>	 Radio button

>	 Check box

>	 Textarea

n	 If you have a PHP error caused by code
placed within an HTML tag, where must
you look to find the error message?

n	 What is the syntax for defining your
own function?

n	 What is the syntax for defining a
function that takes arguments?

n	 What is the syntax for defining a
function that takes arguments with
default values? How do default values
impact how the function can be called?

n	 How do you define and call a function
that returns a value?

pursue
n	 Create a new HTML template for the

pages in this chapter. Use that new
template as the basis for new header
and footer files. By doing so, you should
be able to change the look of the entire
site without modifying any of the
PHP scripts.

n	 Create a new form and give it the ability
to be “sticky”. Have the form use a tex-
tarea and a check box (neither of which
is demonstrated in this chapter).

n	 Change calculator.php so that it uses
a constant in lieu of the hard-coded aver-
age speed of 65. (As written, the aver-
age speed is a “magic number”: a value
used in a script without explanation.)

n	 Better yet, modify calculator.php so
that the user can enter the average
speed or select it from a list of options.

n	 Update the output of calculator.php
so that it displays the number of days
and hours the trip will take, when the
number of hours is greater than 24.

n	 As a more advanced trick, rewrite
calculator.php so that the create_
radio() function call is only in the
script once, but still creates three radio
buttons. Hint: Use a loop.

www.LarryUllman.com/forums/

ptg6935296

Because this book discusses how to inte-
grate several technologies (primarily PHP,
SQL, and MySQL), a solid understanding
of each individually is important before
you begin writing PHP scripts that use SQL
to interact with MySQL. This chapter is a
departure from its predecessors in that it
temporarily leaves PHP behind to delve
into MySQL.

MySQL is the world’s most popular open-
source database application (according
to MySQL’s Web site, www.mysql.com) and
is commonly used with PHP. The MySQL
software comes with the database server
(which stores the actual data), different
client applications (for interacting with the
database server), and several utilities. In
this chapter you’ll see how to define a sim-
ple table using MySQL’s allowed data types
and other properties. Then you’ll learn how
to interact with the MySQL server using
two different client applications. All of this
information will be the foundation for the
SQL taught in the next chapter.

4
Introduction
to MySQL

in This Chapter
	 112

Choosing Your Column Types 114

Choosing Other Column Properties 118

Accessing MySQL 121

Review and Pursue 128

www.mysql.com

ptg6935296

112 Chapter 4

naming Database
elements
Before you start working with databases,
you have to identify your needs. The
purpose of the application (or Web site,
in this case) dictates how the database
should be designed. With that in mind,
the examples in this chapter and the next
will use a database that stores some user
registration information.

When creating databases and tables, you
should come up with names (formally called
identifiers) that are clear, meaningful, and
easy to type. Also, identifiers

n	 Should only contain letters, numbers,
and the underscore (no spaces)

n	 Should not be the same as an existing
keyword (like an SQL term or a function
name)

n	 Should be treated as case-sensitive

n	 Cannot be longer than 64 characters
(approximately)

n	 Must be unique within its realm

This last rule means that a table cannot
have two columns with the same name and
a database cannot have two tables with
the same name. You can, however, use the

same column name in two different tables
in the same database (in fact, you often will
do this). As for the first three rules, I use the
word should, as these are good policies
more than exact requirements. Exceptions
can be made to these rules, but the syntax
for doing so can be complicated. Abiding
by these suggestions is a reasonable
limitation and will help avoid complications.

To name a database’s elements:
1. Determine the database’s name.

This is the easiest and, arguably, least
important step. Just make sure that
the database name is unique for that
MySQL server. If you’re using a hosted
server, your Web host will likely provide
a database name that may or may not
include your account or domain name.

For this first example, the database will
be called sitename, as the information
and techniques could apply to any
generic site.

2. Determine the table names.

The table names just need to be unique
within this database, which shouldn’t
be a problem. For this example, which
stores user registration information, the
only table will be called users.

ptg6935296

Introduction to MySQL 113

3. Determine the column names for
each table.

The users table will have columns
to store a user ID, a first name, a last
name, an email address, a password,
and the registration date. Table 4.1
shows these columns, with sample data,
using proper identifiers. As MySQL
has a function called password, I’ve
changed the name of that column to
just pass. This isn’t strictly necessary
but is really a good idea.

Chapter 6, “Database Design,” discusses
database design in more detail, using more
complex examples.

To be precise, the length limit for the
names of databases, tables, and columns is
actually 64 bytes, not characters. While most
characters in many languages require 1 byte
apiece, it’s possible to use a multi byte char-
acter in an identifier. But 64 bytes is still a lot
of space, so this probably won’t be an issue
for you.

Whether or not an identifier in MySQL
is case-sensitive actually depends upon many
things (because each database is actually a
folder on the server and each table is actually
one or more files). On Windows and normally
on Mac OS X, database and table names are
generally case-insensitive. On Unix and some
Mac OS X setups, they are case-sensitive.
Column names are always case-insensitive.
It’s really best, in my opinion, to always use
all lowercase letters and work as if case-
sensitivity applied.

TABLe 4.1 users Table

Column Name Example

user_id 834

first_name Larry

last_name David

email ld@example.com

pass emily07

registration_date 2011-03-31 19:21:03

ptg6935296

114 Chapter 4

Choosing Your
Column Types
Once you have identified all of the tables
and columns that the database will need,
you should determine each column’s
data type. When creating a table, MySQL
requires that you explicitly state what sort
of information each column will contain.
There are three primary types, which is
true for almost every database application:

n	 Text (aka strings)

n	 Numbers

n	 Dates and times

Within each of these, there are many
variants—some of which are MySQL specific—
you can use. Choosing your column types
correctly not only dictates what information
can be stored and how but also affects the
database’s overall performance. Table 4.2
lists most of the available types for MySQL,
how much space they take up, and brief
descriptions of each type. Note that some
of these limits may change in different
versions of MySQL, and the character set
(to be discussed in Chapter 6) may also
impact the size of the text types.

Many of the types can take an optional
Length attribute, limiting their size. (The

square brackets, [], indicate an optional
parameter to be put in parentheses.) For
performance purposes, you should place
some restrictions on how much data can
be stored in any column. But understand
that attempting to insert a string five
characters long into a CHAR(2) column
will result in truncation of the final three
characters (only the first two characters
would be stored; the rest would be
lost forever). This is true for any field in
which the size is set (CHAR, VARCHAR, INT,
etc.). Thus, your length should always
correspond to the maximum possible value
(as a number) or longest possible string (as
text) that might be stored.

The various date types have all sorts of
unique behaviors, the most important of
which you’ll learn in this book (all of the
behaviors are documented in the MySQL
manual). You’ll use the DATE and TIME fields
primarily without modification, so you need
not worry too much about their intricacies.

There are also two special types—ENUM
and SET—that allow you to define a series
of acceptable values for that column. An
ENUM column can store only one value of a
possible several thousand, while SET allows
for several of up to 64 possible values.
These are available in MySQL but aren’t
present in every database application.

ptg6935296

Introduction to MySQL 115

TABLe 4.2 MySQL Data Types

Type Size Description

CHAR[Length] Length bytes A fixed-length field from 0 to 255
characters long

VARCHAR[Length] String length + 1 or 2 bytes A variable-length field from 0 to 65,535
characters long

TINYTEXT String length + 1 bytes A string with a maximum length of
255 characters

TEXT String length + 2 bytes A string with a maximum length of
65,535 characters

MEDIUMTEXT String length + 3 bytes A string with a maximum length of
16,777,215 characters

LONGTEXT String length + 4 bytes A string with a maximum length of
4,294,967,295 characters

TINYINT[Length] 1 byte Range of –128 to 127 or 0 to
255 unsigned

SMALLINT[Length] 2 bytes Range of –32,768 to 32,767 or 0 to
65,535 unsigned

MEDIUMINT[Length] 3 bytes Range of –8,388,608 to 8,388,607
or 0 to 16,777,215 unsigned

INT[Length] 4 bytes Range of –2,147,483,648 to 2,147,483,647
or 0 to 4,294,967,295

BIGINT[Length] 8 bytes Range of –9,223,372,036,854,775,808
to 9,223,372,036,854,775,807 or 0 to
18,446,744,073,709,551,615 unsigned

FLOAT[Length, Decimals] 4 bytes A small number with a floating
decimal point

DOUBLE[Length, Decimals] 8 bytes A large number with a floating
decimal point

DECIMAL[Length, Decimals] Length + 1 or 2 bytes A DOUBLE stored as a string, allowing for
a fixed decimal point

DATE 3 bytes In the format of YYYY-MM-DD

DATETIME 8 bytes In the format of YYYY-MM-DD HH:MM:SS

TIMESTAMP 4 bytes In the format of YYYYMMDDHHMMSS;
acceptable range starts in 1970 and
ends in the year 2038

TIME 3 bytes In the format of HH:MM:SS

ENUM 1 or 2 bytes Short for enumeration, which means that
each column can have one of several
possible values

SET 1, 2, 3, 4, or 8 bytes Like ENUM except that each column
can have more than one of several
possible values

ptg6935296

116 Chapter 4

To select the column types:
1. Identify whether a column should

be a text, number, or date/time type
(Table 4.3).

This is normally an easy and obvious
step, but you want to be as specific as
possible. For example, the date 2006-
08-02 (MySQL format) could be stored
as a string—August 2, 2006. But if you
use the proper date format, you’ll have
a more useful database (and, as you’ll
see, there are functions that can turn
2006-08-02 into August 2, 2006).

2. Choose the most appropriate subtype
for each column (Table 4.4).

For this example, the user_id is set as
a MEDIUMINT, allowing for up to nearly
17 million values (as an unsigned,
or non-negative, number). The
registration_date will be a DATETIME.
It can store both the date and the
specific time a user registered. When
deciding among the date types, con-
sider whether or not you’ll want to
access just the date, the time, or possibly
both. If unsure, err on the side of
storing too much information.

The other fields will be mostly VARCHAR,
since their lengths will differ from
record to record. The only exception is
the password column, which will be a
fixed-length CHAR (you’ll see why when
inserting records in the next chapter).
See the sidebar “CHAR vs. VARCHAR” for
more information on these two types.

TABLe 4.3 users Table

Column Name Type

user_id number

first_name text

last_name text

email text

pass text

registration_date date/time

TABLe 4.4 users Table

Column Name Type

user_id MEDIUMINT

first_name VARCHAR

last_name VARCHAR

email VARCHAR

pass CHAR

registration_date DATETIME

TABLe 4.5 users Table

Column Name Type

user_id MEDIUMINT

first_name VARCHAR(20)

last_name VARCHAR(40)

email VARCHAR(60)

pass CHAR(40)

registration_date DATETIME

ptg6935296

Introduction to MySQL 117

3. Set the maximum length for text
columns (Table 4.5).

The size of any field should be
restricted to the smallest possible value,
based upon the largest possible input.
For example, if a column stores a state
abbreviation, it would be defined as a
CHAR(2). Other times you might have
to guess somewhat: I can’t think of
any first names longer than about 10
characters, but just to be safe I’ll allow
for up to 20.

The length attribute for numeric types
does not affect the range of values that can
be stored in the column. Columns defined as
TINYINT(1) or TINYINT(20) can store the
exact same values. Instead, for integers, the
length dictates the display width; for decimals,
the length is the total number of digits that
can be stored.

If you need absolute precision when
using non-integers, DECIMAL is preferred
over FLOAT or DOUBLE.

MySQL has a BOOLEAN type, which is
just a TINYINT(1), with 0 meaning FALSE
and 1 meaning TRUE.

Many of the data types have syn-
onymous names: INT and INTEGER, DEC
and DECIMAL, etc.

Depending upon the version of MySQL
in use, the TIMESTAMP field type is automati-
cally set as the current date and time when an
INSERT or UPDATE occurs, even if no value is
specified for that particular field. If a table has
multiple TIMESTAMP columns, only the first one
will be updated when an INSERT or UPDATE
is performed.

MySQL also has several variants on
the text types that allow for storing binary
data. These types are BINARY, VARBINARY,
TINYBLOB, MEDIUMBLOB, and LONGBLOB.
Such types can be used for storing files or
encrypted data.

CHAR vs. VARCHAR
Both of these types store strings and
can be set with a maximum length. The
primary difference between the two
is that anything stored as a CHAR will
always be stored as a string the length
of the column (using spaces to pad it;
these spaces will be removed when
you retrieve the stored value from the
database). Conversely, strings stored
in a VARCHAR column will require only
as much space as the string itself. So
the word cat in a VARCHAR(10) column
requires 4 bytes of space (the length
of the string plus 1), but in a CHAR(10)
column, that same word requires 10 bytes
of space. Hence, generally speaking,
VARCHAR columns tend to require less
disk space than CHAR columns.

However, databases are normally faster
when working with fixed-size columns,
which is an argument in favor of CHAR.
And that same three-letter word—cat—
in a CHAR(3) only uses 3 bytes but in a
VARCHAR(10) requires 4. So how do you
decide which to use?

If a string field will always be of a
set length (e.g., a state abbreviation),
use CHAR; otherwise, use VARCHAR.
You may notice, though, that in some
cases MySQL defines a column as the
one type (like CHAR) even though you
created it as the other (VARCHAR). This is
perfectly normal and is MySQL’s way of
improving performance.

ptg6935296

118 Chapter 4

Choosing other
Column properties
Besides deciding what data types and sizes
you should use for your columns, you should
consider a handful of other properties.

First, every column, regardless of type, can
be defined as NOT NULL. The NULL value, in
databases and programming, is equivalent
to saying that the field has no known value.
Ideally, in a properly designed database,
every column of every row in every table
should have a value, but that isn’t always
the case. To force a field to have a value,
add the NOT NULL description to its column
type. For example, a required dollar
amount can be described as

cost DECIMAL(5,2) NOT NULL

indexes, Keys, and AuTo_inCReMenT
Two concepts closely related to database design are indexes and keys. An index in a database is
a way of requesting that the database keep an eye on the values of a specific column or combina-
tion of columns (loosely stated). The end result of this is improved performance when retrieving
records but marginally hindered performance when inserting records or updating them.

A key in a database table is integral to the “normalization” process used for designing more
complicated databases (see Chapter 6). There are two types of keys: primary and foreign. Each
table should have exactly one primary key, and the primary key in one table is often linked as a
foreign key in another.

A table’s primary key is an artificial way to refer to a record and has to abide by three rules:

1. It must always have a value.

2. That value must never change.

3. That value must be unique for each record in the table.

In the users table, the user_id will be designated as a PRIMARY KEY, which is both a description
of the column and a directive to MySQL to index it. Since the user_id is a number (which primary
keys almost always will be), the AUTO_INCREMENT description is also added to the column, which
tells MySQL to use the next-highest number as the user_id value for each added record. You’ll
see what this means in practice when you begin inserting records.

ptg6935296

Introduction to MySQL 119

Finally, when designing a database, you’ll
need to consider creating indexes, adding
keys, and using the AUTO_INCREMENT prop-
erty. Chapter 6 discusses these concepts
in greater detail, but in the meantime,
check out the sidebar “Indexes, Keys, and
AUTO_INCREMENT” to learn how they affect
the users table.

To finish defining your columns:
1. Identify your primary key.

The primary key is quixotically both
arbitrary and critically important. Almost
always a number value, the primary key
is a unique way to refer to a particular
record. For example, your phone number
has no inherent value but is unique to
you (your home or mobile phone).

In the users table, the user_id will be
the primary key: an arbitrary number
used to refer to a row of data. Again,
Chapter 6 will go into the concept of
primary keys in more detail.

2. Identify which columns cannot have
a NULL value.

In this example, every field is required
(cannot be NULL). As an example of a
column that could have NULL values,
if you stored peoples’ addresses,
you might have address_line1 and
address_line2, with the latter one
being optional. In general, tables that
have a lot of NULL values suggest
a poor design (more on this in…you
guessed it…Chapter 6).

continues on next page

When creating a table, you can also specify
a default value for any column, regardless
of type. In cases where a majority of the
records will have the same value for a
column, presetting a default will save
you from having to specify a value when
inserting new rows (unless that row’s value
for that column is different from the norm).

gender ENUM('M', 'F') default 'F'

With the gender column, if no value is
specified when adding a record, the
default will be used.

If a column does not have a default value
and one is not specified for a new record,
that field will be given a default value
based upon its type. For numeric types,
the default value is 0. For most date and
time types, the type’s version of “zero”
will be the default (e.g., 0000-00-00).
The first TIMESTAMP column in a table will
have a default value of the current date
and time. String types use an empty string
('') as the default value, except for ENUM,
whose default value (again, if not otherwise
specified) is the first possible enumerated
value (M in the above example).

The number types can be marked as
UNSIGNED, which limits the stored data
to positive numbers and zero. This also
effectively doubles the range of positive
numbers that can be stored (because no
negative numbers will be kept, see Table 4.2).
You can also flag the number types as
ZEROFILL, which means that any extra room
will be padded with zeros (ZEROFILLs are
also automatically UNSIGNED).

ptg6935296

120 Chapter 4

3. Make any numeric type UNSIGNED if it
won’t ever store negative numbers.

The user_id, which will be a number,
should be UNSIGNED so that it’s always
positive (primary keys should be
unsigned). Other examples of UNSIGNED
numbers would be the price of items in
an e-commerce example, a telephone
extension for a business, or a zip code.

4. Establish the default value for any column.

None of the columns here logically
implies a default value.

5. Confirm the final column definitions
(Table 4.6).

Before creating the tables, you should
revisit the type and range of data you’ll
store to make sure that your database
effectively accounts for everything.

Text columns can also have defined
character sets and collations. This will mean
more…in Chapter 6.

Default values must always be a static
value, not the result of executing a func-
tion, with one exception: the default value
for a TIMESTAMP column can be assigned as
CURRENT_TIMESTAMP.

TEXT columns cannot be assigned
default values.

TABLe 4.6 users Table

Column Name Type

user_id MEDIUMINT UNSIGNED
NOT NULL

first_name VARCHAR(20) NOT NULL

last_name VARCHAR(40) NOT NULL

email VARCHAR(60) NOT NULL

pass CHAR(40) NOT NULL

registration_date DATETIME NOT NULL

ptg6935296

Introduction to MySQL 121

using the mysql Client
The mysql client is normally installed with the
rest of the MySQL software. Although the
mysql client does not have a pretty graphical
interface, it’s a reliable, standard tool that’s
easy to use and behaves consistently on
many different operating systems.

The mysql client is accessed from a
command-line interface, be it the Terminal
application in Linux or Mac OS X A, or
a DOS prompt in Windows B. If you’re
not comfortable with command-line inter-
actions, you might find this interface to be
challenging, but it becomes easy to use in
no time.

To start the application from the command
line, type its name and press Return or Enter:

mysql

Depending upon the server (or your
computer), you may need to enter the full path
in order to start the application. For example:

/Applications/MAMP/Library/bin/mysql
(Mac OS X, using MAMP)

C:\xampp\mysql\bin\mysql (Windows,
using XAMPP)

When invoking this application, you can add
arguments to affect how it runs. The most
common arguments are the username,

continues on next page

Accessing MySQL
In order to create tables, add records, and
request information from a database, some
sort of client is necessary to communicate
with the MySQL server. Later in the
book, PHP scripts will act in this role, but
being able to use another interface is
necessary. Although there are oodles of
client applications available, I’ll focus on
two: the mysql client and the Web-based
phpMyAdmin. A third option, the MySQL
Query Browser, is not discussed in this
book but can be found at the MySQL Web
site (www.mysql.com), should you not be
satisfied with these two choices.

The rest of this chapter assumes you have
access to a running MySQL server. If you
are working on your own computer, see
Appendix A, “Installation,” for instructions
on installing MySQL, starting MySQL, and
creating MySQL users (all of which must
already be done in order to finish this
chapter). If you are using a hosted server,
your Web host should provide you with
the database access. Depending upon
the hosting, you may be provided with
phpMyAdmin, but not be able to use the
command-line mysql client.

A A Terminal
window in
Mac OS X.

B A Windows
DOS prompt or
console (although
the default is for
white text on a
black background).

www.mysql.com

ptg6935296

122 Chapter 4

password, and hostname (computer name,
URL, or IP address) you want to connect
using. You establish these arguments like so:

mysql -u username -h hostname –p

The -p option will cause the client to prompt
you for the password. You can also specify
the password on this line if you prefer—
by typing it directly after the -p prompt—
but it will be visible, which is insecure. The
-h hostname argument is optional, and
you can leave it off unless you cannot con-
nect to the MySQL server without it.

Within the mysql client, every statement
(SQL command) needs to be terminated
by a semicolon. These semicolons are an
indication to the client that the query is
complete and should be run. The semicolons
are not part of the SQL itself (this is a
common point of confusion). What this also
means is that you can continue the same
SQL statement over several lines within the
mysql client, which makes it easier to read
and to edit, should that be necessary.

As a quick demonstration of accessing and
using the mysql client, these next steps
will show you how to start the mysql client,
select a database to use, and quit the
client. Before following these steps,

n	 The MySQL server must be running.

n	 You must have a username and
password with proper access.

C Executing cmd within the Run prompt in Windows
is one way to access a DOS prompt interface.

Both of these ideas are explained in
Appendix A.

As a side note, in the following steps and
throughout the rest of the book, I will
continue to provide images using the mysql
client on both Windows and Mac OS X.
While the appearance differs, the steps and
results will be identical. So in short, don’t be
concerned about why one image shows the
DOS prompt and the next a Terminal.

To use the mysql client:
1. Access your system from a command-

line interface.

On Unix systems and Mac OS X, this is
just a matter of bringing up the Terminal
or a similar application.

If you are using Windows and installed
MySQL on your computer, choose Run
from the Start menu (or press Windows
Key+R), type cmd in the window C, and
press Enter (or click OK) to bring up a
DOS prompt.

2. Invoke the mysql client, using the
appropriate command D.

/path/to/mysql/bin/mysql -u
➝ username -p

The /path/to/mysql part of this step
will be largely dictated by the operating
system you are running and where
MySQL was installed. I’ve already

D Access the mysql client by entering the full
path to the utility, along with the proper arguments.

ptg6935296

Introduction to MySQL 123

preceding step. If you used the proper
username/password combination (i.e.,
someone with valid access), you should
be greeted as shown in E. If access
is denied, you’re probably not using
the correct values (see Appendix A for
instructions on creating users).

4. Select the database you want to use F.

USE test;

The USE command selects the database
to be used for every subsequent
command. The test database is
one that MySQL installs by default.
Assuming it exists on your server, all
users should be able to access it.

continues on next page

E If you are successfully able to log in, you’ll see a welcome message like this.

provided two options, based upon
installations of MAMP on Mac OS X or
XAMPP on Windows (both are installed
in Appendix A).

The basic premise is that you are
running the mysql client, connecting
as username, and requesting to be
prompted for the password. Not to
overstate the point, but the username
and password values that you use must
already be established in MySQL as a
valid user (see Appendix A).

3. Enter the password at the prompt and
press Return/Enter.

The password you use here should
be for the user you specified in the

F After getting into the mysql client, run a USE command to choose the
database with which you want to work.

ptg6935296

124 Chapter 4

5. Quit out of mysql G.

exit

You can also use the command quit to
leave the client. This step—unlike most
other commands you enter in the mysql
client—does not require a semicolon at
the end.

6. Quit the Terminal or DOS console session.

exit

The command exit will terminate the
current session. On Windows, it will also
close the DOS prompt window.

If you know in advance which database
you will want to use, you can simplify matters
by starting mysql with

/path/to/mysql/bin/mysql -u username
-p databasename

To see what else you can do with the
mysql client, type

/path/to/mysql/bin/mysql --help

The mysql client on most systems allows
you to use the up and down arrows to scroll
through previously entered commands. If you
make a mistake in typing a query, you can
scroll up to find it, and then correct the error.

In the mysql client, you can also termi-
nate SQL commands using \G instead of the
semicolon. For queries that return results,

using \G displays those results as a vertical
list, as opposed to a horizontal table, which is
sometimes easier to peruse.

If you are in a long statement and make
a mistake, cancel the current operation by
typing c and pressing Return or Enter. If mysql
thinks a closing single or double quotation
mark is missing (as indicated by the '> and ">
prompts), you’ll need to enter the appropriate
quotation mark first.

using phpMyAdmin
phpMyAdmin (www.phpmyadmin.net) is one
of the best and most popular applications
written in PHP. Its sole purpose is to
provide an interface to a MySQL server. It’s
somewhat easier and more natural to use
than the mysql client but requires a PHP
installation and must be accessed through
a Web browser. If you’re running MySQL
on your own computer, you might find that
using the mysql client makes more sense,
as installing and configuring phpMyAdmin
constitutes unnecessary extra work
(although all-in-one PHP and MySQL
installers may do this for you). If using a
hosted server, your Web host is virtually
guaranteed to provide phpMyAdmin as the
primary way to work with MySQL and the
mysql client may not be an option.

Using phpMyAdmin isn’t hard, but the next
steps run through the basics so that you’ll
know what to do in the following chapters.

G Type either exit or quit to terminate your MySQL session and
leave the mysql client.

www.phpmyadmin.net

ptg6935296

Introduction to MySQL 125

available through the site’s control
panel (should one exist).

Note that phpMyAdmin will only work if
it’s been properly configured to connect
to MySQL with a valid username/
password/hostname combination. If
you see a message like the one in I,
you’re probably not using the correct
values (see Appendix A for instructions
on creating users).

continues on next page

To use phpMyAdmin:
1. Access phpMyAdmin through your

Web browser H.

The URL you use will depend upon
your situation. If running on your
own computer, this might be http://
localhost/phpMyAdmin/. If running
on a hosted site, your Web host will
provide you with the proper URL. In
all likelihood, phpMyAdmin would be

H The first phpMyAdmin page (when connected as a MySQL user that can access
multiple databases).

I Every client application
requires a proper username/
password/hostname combina-
tion in order to interact with the
MySQL server.

http://localhost/phpMyAdmin/
http://localhost/phpMyAdmin/

ptg6935296

126 Chapter 4

2. If possible and necessary, use the list on
the left to select a database to use J.

What options you have here will
vary depending upon what MySQL
user phpMyAdmin is connecting as.
That user might have access to one
database, several databases, or every
database. On a hosted site where you
have just one database, that database
will probably already be selected
for you. On your own computer, with
phpMyAdmin connecting as the MySQL
root user, you would see a pull-down
menu or a simple list of available
databases J.

3. Click on a table name in the left column
to select that table K.

You don’t always have to select a
table—in fact you never will if you just
use the SQL commands in this book, but
doing so can often simplify some tasks.

4. Use the tabs and links (on the right side
of the page) to perform common tasks.

For the most part, the tabs and links are
shortcuts to common SQL commands.
For example, the Browse tab performs a
SELECT query and the Insert tab creates
a form for adding new records.

J Use the list
of databases on
the left side of
the window to
choose with which
database you
want to work. This
is the equivalent
of running a USE
databasename
query within the
mysql client.

K Selecting a table
from the left column
changes the options
on the right side of
the page.

ptg6935296

Introduction to MySQL 127

There’s a lot more that can be done with
phpMyAdmin, but full coverage would require
a chapter in its own right (and a long chapter
at that). The information presented here will be
enough for you to follow any of the examples
in the book, should you not want to use the
mysql client.

phpMyAdmin can be configured to use a
special database that will record your query his-
tory, allow you to bookmark queries, and more.
See the phpMyAdmin documentation for details.

One of the best reasons to use php-
MyAdmin is to transfer a database from one
computer to another. Use the Export tab
in phpMyAdmin connected to the source
computer to create a file of data. Then, on
the destination computer, use the Import tab
in phpMyAdmin (connected to that MySQL
server) to complete the transfer.

L The SQL tab, in the
main part of the window,
can be used to run any
SQL command.

M The SQL window can also be
used to run commands. It pops
up after clicking the SQL icon
at the top of the left side of the
browser (see the second icon
from the left in K).

5. Use the SQL tab L or the SQL query
window M to enter SQL commands.

The next three chapters, and a couple
more later in the book, will provide SQL
commands that must be run to create,
populate, and manipulate tables. These
might look like

INSERT INTO tablename (col1, col2)
➝ VALUES (x, y)

These commands can be run using
the mysql client, phpMyAdmin, or any
other interface. To run them within
phpMyAdmin, just enter them into one
of the SQL prompts and click Go.

ptg6935296

128 Chapter 4

Review and pursue
If you have any problems with the
review questions or the pursue prompts,
turn to the book’s supporting forum
(www.LarryUllman.com/forums/).

Review
n	 What version of MySQL are you using?

If you don’t know, find out now!

n	 What characters can be used in
database, table, and column names?

n	 Should you treat database, table, and
column names as case-sensitive or
case-insensitive?

n	 What are the three general column
types?

n	 What are the differences between
CHAR and VARCHAR?

n	 How do you determine what size (in
terms of subtype or length) a column
should be?

n	 What are some of the other properties
that can be assigned to columns?

n	 What is a primary key?

n	 If you’re using the command-line mysql
client to connect to MySQL, what
username and password combination
is required?

pursue
n	 Find the online MySQL manual for your

version of MySQL. Bookmark it!

n	 Start thinking about what databases
you may need for your projects.

n	 If you haven’t yet changed the MySQL
root user password (assuming you’ve
installed MySQL on your own com-
puter), use the instructions in
Appendix A to do so now.

www.LarryUllman.com/forums/

ptg6935296

The preceding chapter provides a quick
introduction to MySQL. The focus there
is on two topics: using MySQL’s rules and
data types to define a database, and how
to interact with the MySQL server. This
chapter moves on to the lingua franca of
databases: SQL.

SQL, short for Structured Query Language,
is a group of special words used exclu-
sively for interacting with databases. SQL is
surprisingly easy to learn and use, and yet,
amazingly powerful. In fact, the hardest thing
to do in SQL is use it to its full potential!

In this chapter you’ll learn all the SQL you
need to know to create tables, populate
them, and run other basic queries. The
examples will all use the users table
discussed in the preceding chapter. Also,
as with that other chapter, this chapter
assumes you have access to a running
MySQL server and know how to use a
client application to interact with it.

5
Introduction

to SQL

in This Chapter
Creating Databases and Tables 130

Inserting Records 133

Selecting Data 138

Using Conditionals 140

Using LIKE and NOT LIKE 143

Sorting Query Results 145

Limiting Query Results 147

Updating Data 149

Deleting Data 151

Using Functions 153

Review and Pursue 164

ptg6935296

130 Chapter 5

Creating Databases
and Tables
The first logical use of SQL will be to create
a database. The syntax for creating a new
database is simply

CREATE DATABASE databasename

That’s all there is to it (as I said, SQL is easy
to learn)!

The CREATE term is also used for making
tables:

CREATE TABLE tablename (
column1name description,
column2name description
…)

As you can see from this syntax, after naming
the table, you define each column within
parentheses. Each column-description
pair should be separated from the next by
a comma. Should you choose to create
indexes at this time, you can add those at
the end of the creation statement, but you
can add indexes at a later time as well.
(Indexes are more formally discussed in
Chapter 6, “Database Design,” but Chapter 4,
“Introduction to MySQL,” introduced the topic.)

In case you were wondering, SQL is case-
insensitive. However, I make it a habit
to capitalize the SQL keywords as in the
preceding example syntax and the follow-
ing steps. Doing so helps to contrast the
SQL terms from the database, table, and
column names.

To create databases and tables:
1. Access MySQL using whichever client

you prefer.

Chapter 4 shows how to use two of
the most common interfaces—the
mysql command-line client and
phpMyAdmin—to communicate with a
MySQL server. Using the steps in the
last chapter, you should now connect
to MySQL.

Throughout the rest of this chapter,
most of the SQL examples will be
entered using the mysql client, but they
will work just the same in phpMyAdmin
or most other client tools.

2. Create and select the new database A:

CREATE DATABASE sitename;
USE sitename;

This first line creates the database
(assuming that you are connected to
MySQL as a user with permission to
create new databases). The second
line tells MySQL that you want to work
within this database from here on
out. Remember that within the mysql
client, you must terminate every SQL
command with a semicolon, although
these semicolons aren’t technically
part of SQL itself. If executing multiple
queries at once within phpMyAdmin,
they should also be separated by
semicolons B. If running only a
single query within phpMyAdmin,
no semicolons are necessary.

A A new database,
called sitename, is
created in MySQL.
 It is then selected
for future queries.

ptg6935296

Introduction to SQL 131

names, types, and attributes of each
column in the table are determined
based upon a number of criteria (see
that chapter for more information).
Here, that information is placed within
the CREATE table syntax to actually
make the table in the database.

Because the mysql client will not run a
query until it encounters a semicolon
(or \G or \g), you can enter statements
over multiple lines as in C (by pressing
Return or Enter at the end of each line).
This often makes a query easier to read
and debug. In phpMyAdmin, you can
also run queries over multiple lines,
although they will not be executed until
you click Go.

continues on next page

B The same commands
for creating and selecting
a database can be run
within phpMyAdmin’s
SQL window.

C This CREATE SQL
command will make
the users table.

If you are using a hosting company’s
MySQL, they will probably create the
database for you. In that case, just con-
nect to MySQL and select the database.

3. Create the users table C:

CREATE TABLE users (
user_id MEDIUMINT UNSIGNED NOT NULL
AUTO_INCREMENT,
first_name VARCHAR(20) NOT NULL,
last_name VARCHAR(40) NOT NULL,
email VARCHAR(60) NOT NULL,
pass CHAR(40) NOT NULL,
registration_date DATETIME NOT NULL,
PRIMARY KEY (user_id)
);

The design for the users table was
developed in Chapter 4. There, the

www.LarryUllman.com

www.LarryUllman.com/forums/

http://wb.mysql.com

www.LarryUllman.com/forums/

www.LarryUllman.com/forums/

www.LarryUllman.com/forums/
www.adobe.com/go/dreamweaver
www.adobe.com/go/dreamweaver
www.macromates.com
www.macromates.com
http://www.example.com/page.php
http://localhost/page.php

http://validator.w3.org
http://validator.w3.org
www.mozilla.com
www.mozilla.com

www.LarryUllman.com

www.LarryUllman.com/forums/

www.LarryUllman.com

www.LarryUllman.com/forums/

www.example.com

www.LarryUllman.com/forums/

www.example.com/page.php?do=this

www.LarryUllman.com/forums/

http://www.example.com

www.LarryUllman.com/forums/

http://www.example.com/proxy.php?image=image.png
http://www.example.com/proxy.php?image=image.png
http://www.example.com/uploads/image.png
http://www.example.com/uploads/image.png

http://www.example.com/show_image.php?image=image.png
http://www.example.com/show_image.php?image=image.png
http://www.example.com/show_image.php?image=../../../path/to/something/important
http://www.example.com/show_image.php?image=../../../path/to/something/important
http://www.example.com/show_image.php?image=../../../path/to/something/important
http://www.example.com/show_image.php?image=image.png

www.LarryUllman.com

www.php.net/timezones

www.LarryUllman.com/forums/

www.example.com/page.php
www.example.com/page.php

http://www.example.com/page.php
http://www.example.com/page.php
www.example.com
www.example.com

www.example.compage.php

www.example.com
www.example.com
www.example.com
www.example.com

www.LarryUllman.com/forums/

http://pecl.php.net

www.php.net/filter

www.LarryUllman.com/forums/

www.LarryUllman.com/forums/

www.jquery.com

www.nodejs.org
www.jaxer.org
www.LarryUllman.com
www.mozilla.com
www.opera.com
www.google.com/chrome/
www.google.com/chrome/
www.jqueryui.com

www.jquery.com
http://code.google.com/apis/libraries/

www.LarryUllman.com

www.LarryUllman.com/forums/

www.php.net/intl

www.LarryUllman.com/forums/
www.php.net/oop
www.php.net/datetime
www.php.net/strtotime

www.LarryUllman.com

www.LarryUllman.com
www.LarryUllman.com

www.LarryUllman.com/forums/
http://babelfish.yahoo.com
http://babelfish.yahoo.com

www.bluerobot.com

www.LarryUllman.com

www.example.com

http://www.example.com/
http://www.example.com/

http://www.example.com/activate.php?x=email%40example.com&y=901e09ef25bf6e3ef95c93088450b008
http://www.example.com/activate.php?x=email%40example.com&y=901e09ef25bf6e3ef95c93088450b008
http://www.example.com/activate.php?x=email%40example.com&y=901e09ef25bf6e3ef95c93088450b008

www.LarryUllman.com/forums/

www.LarryUllman.com
www.LarryUllman.com

http://www.example.com/show_image.php?image=23&name=BirthOfVenus.jpeg
www.imdb.com
http://www.example.com/show_image.php?image=23&name=BirthOfVenus.jpeg

www.LarryUllman.com/forums/

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

www.query.com

www.apachefriends.org
www.wampserver.com

www.LarryUllman.com/forums/
www.apachefriends.org

www.LarryUllman.com/forums/
www.mamp.info
www.mamp.info
www.mamp.info
www.mamp.info

http://your.url.here/phpinfo.php
http://your.url.here/phpinfo.php

www.php.net

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

	Table of Contents
	Introduction
	Chapter 1 Introduction to PHP
	Basic Syntax
	Sending Data to the Web Browser
	Writing Comments
	What Are Variables?
	Introducing Strings
	Concatenating Strings
	Introducing Numbers
	Introducing Constants
	Single vs. Double Quotation Marks
	Basic Debugging Steps
	Review and Pursue

	Chapter 2 Programming with PHP
	Creating an HTML Form
	Handling an HTML Form
	Conditionals and Operators
	Validating Form Data
	Introducing Arrays
	For and While Loops
	Review and Pursue

	Chapter 3 Creating Dynamic Web Sites
	Including Multiple Files
	Handling HTML Forms, Revisited
	Making Sticky Forms
	Creating Your Own Functions
	Review and Pursue

	Chapter 4 Introduction to MySQL
	Naming Database Elements
	Choosing Your Column Types
	Choosing Other Column Properties
	Accessing MySQL
	Review and Pursue

	Chapter 5 Introduction to SQL
	Creating Databases and Tables
	Inserting Records
	Selecting Data
	Using Conditionals
	Using LIKE and NOT LIKE
	Sorting Query Results
	Limiting Query Results
	Updating Data
	Deleting Data
	Using Functions
	Review and Pursue

	Chapter 6 Database Design
	Normalization
	Creating Indexes
	Using Different Table Types
	Languages and MySQL
	Time Zones and MySQL
	Foreign Key Constraints
	Review and Pursue

	Chapter 7 Advanced SQL and MySQL
	Performing Joins
	Grouping Selected Results
	Advanced Selections
	Performing FULLTEXT Searches
	Optimizing Queries
	Performing Transactions
	Database Encryption
	Review and Pursue

	Chapter 8 Error Handling and Debugging
	Error Types and Basic Debugging
	Displaying PHP Errors
	Adjusting Error Reporting in PHP
	Creating Custom Error Handlers
	PHP Debugging Techniques
	SQL and MySQL Debugging Techniques
	Review and Pursue

	Chapter 9 Using PHP with MySQL
	Modifying the Template
	Connecting to MySQL
	Executing Simple Queries
	Retrieving Query Results
	Ensuring Secure SQL
	Counting Returned Records
	Updating Records with PHP
	Review and Pursue

	Chapter 10 Common Programming Techniques
	Sending Values to a Script
	Using Hidden Form Inputs
	Editing Existing Records
	Paginating Query Results
	Making Sortable Displays
	Review and Pursue

	Chapter 11 Web Application Development
	Sending Email
	Handling File Uploads
	PHP and JavaScript
	Understanding HTTP Headers
	Date and Time Functions
	Review and Pursue

	Chapter 12 Cookies and Sessions
	Making a Login Page
	Making the Login Functions
	Using Cookies
	Using Sessions
	Improving Session Security
	Review and Pursue

	Chapter 13 Security Methods
	Preventing Spam
	Validating Data by Type
	Validating Files by Type
	Preventing XSS Attacks
	Using the Filter Extension
	Preventing SQL Injection Attacks
	Review and Pursue

	Chapter 14 Perl-Compatible Regular Expressions
	Creating a Test Script
	Defining Simple Patterns
	Using Quantifiers
	Using Character Classes
	Finding All Matches
	Using Modifiers
	Matching and Replacing Patterns
	Review and Pursue

	Chapter 15 Introducing jQuery
	What is jQuery?
	Incorporating jQuery
	Using jQuery
	Selecting Page Elements
	Event Handling
	DOM Manipulation
	Using Ajax
	Review and Pursue

	Chapter 16 An OOP Primer
	Fundamentals and Syntax
	Working with MySQL
	The DateTime Class
	Review and Pursue

	Chapter 17 Example—Message Board
	Making the Database
	Creating the Index Page
	Creating the Forum Page
	Creating the Thread Page
	Posting Messages
	Review and Pursue

	Chapter 18 Example—User Registration
	Creating the Templates
	Writing the Configuration Scripts
	Creating the Home Page
	Registration
	Activating an Account
	Logging In and Logging Out
	Password Management
	Review and Pursue

	Chapter 19 Example—E-Commerce
	Creating the Database
	The Administrative Side
	Creating the Public Template
	The Product Catalog
	The Shopping Cart
	Recording the Orders
	Review and Pursue

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	BONUS APPENDIX: Appendix A: Installation

