A Step-by-Step Guide to Creating
Dynamic Websites

g (BTN
; '/‘115 '\\%(\

i
AN

O’REILLY" Robin Nixon

Web programming

Learning PHP, MySQL, JavaScript, and CSS

Learn how to build interactive, data-driven websites—even if you
don’t have any previous programming experience. If you know
how to build static sites with HTML, this popular guide will help
you tackle dynamic web programming. You'll get a thorough
grounding in today’s core open source technologies: PHP, MySQL,
JavaScript, and CSS.

Explore each technology separately, learn how to combine them,
and pick up valuable web programming concepts along the way,
including objects, XHTML, cookies, and session management. This
book provides review questions in each chapter to help you apply
what you've learned.

m Learn PHP essentials and the basics of object-oriented
programming

B Master MySQL, from database structure to complex queries

m Create web pages with PHP and MySQL by integrating forms
and other HTML features

B Learn JavaScript fundamentals, from functions and event
handling to accessing the Document Object Model

B Pick up CSS basics for formatting and styling your web pages

B Turn your website into a highly dynamic environment with
Ajax calls

m Upload and manipulate files and images, validate user input,
and secure your applications

m Explore a working example that brings all of the ingredients
together

Robin Nixon, an IT journalist who’s written hundreds of articles
and several books on computing, has developed numerous web-
sites using PHP, MySQL, JavaScript, and CSS. Robin has worked
with and written about computers since the early 1980s.

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

US $39.99 CAN $41.99
ISBN: 978-1-449-31926-7

NPV

7814491319267

Download from Wow! eBook <www.wowebook.com>

SECOND EDITION

Learning PHP, MySQL, JavaScript,
and (55

Robin Nixon

O’REILLY"

Beijing + Cambridge - Farnham - Kéln - Sebastopol + Tokyo

Learning PHP, MySQL, JavaScript, and CSS, Second Edition
by Robin Nixon

Copyright © 2012 Robin Nixon. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Ellen Troutman Zaig
Production Editor: 1Iris Febres Cover Designer: Karen Montgomery
Copyeditor: Rachel Head Interior Designer: David Futato
Proofreader: Kiel Van Horn lllustrator: Robert Romano

August 2012: Second Edition.

Revision History for the Second Edition:
2012-08-10 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319267 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning PHP, MySQL, JavaScript, and CSS, the image of sugar gliders, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31926-7
[LSI]
1344626556

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319267

For Julie

Table of Contents

Prefaceooiniiii Xvii
1. Introduction to DynamicWeb Contentcoviniiiiiiiiiiiiiininnns 1
HTTP and HTML: Berners-Lee’s Basics 2
The Request/Response Procedure 2

The Benefits of PHP, MySQL, JavaScript, and CSS 5
Using PHP 5

Using MySQL 6

Using JavaScript 7

Using CSS 9

The Apache Web Server 9
About Open Source 10
Bringing It All Together 10
Test Your Knowledge 12

2. SettingUp aDevelopmentServercoovviiiiiiiiiiiiiniininennnnenns 13
What Is a WAMP, MAMP, or LAMP? 13
Installing a WAMP on Windows 14
Testing the Installation 22
Alternative WAMPs 24
Installing a MAMP on OS X 24
Configuring MySQL 25
Testing the Installation 28
Installing a LAMP on Linux 31
Working Remotely 31
Logging In 32

Using FTP 32

Using a Program Editor 33
Using an IDE 34

Test Your Knowledge 36

3. IntroductiontoPHPcoooiiiiiiii
Incorporating PHP Within HTML
Calling the PHP Parser
This Book’s Examples
The Structure of PHP
Using Comments
Basic Syntax
Understanding Variables
Operators
Variable Assignment
Multiple-Line Commands
Variable Typing
Constants
The Difference Between the echo and print Commands
Functions
Variable Scope
Test Your Knowledge

4, Expressionsand Control FlowinPHPccoiiiiiiiiiiiiiiiiinnann

Expressions

Literals and Variables
Operators

Operator Precedence

Associativity

Relational Operators
Conditionals

The if Statement

The else Statement

The elseif Statement

The switch Statement

The ? Operator
Looping

while Loops

do...while Loops

for Loops

Breaking Out of a Loop

The continue Statement
Implicit and Explicit Casting
PHP Dynamic Linking

Dynamic Linking in Action
Test Your Knowledge

37
38
39
40
40
41
42
46
49
51
54
54
56
56
57
62

65
65
66
67
68
70
71
75
75
76
78
78
81
82
83
85
85
87
88
89
90
90
91

vi | Table of Contents

5. PHPFunctionsand Objectscccovviiiiiiiiiiiiiiiiiiiiinenannnns 93

PHP Functions 94
Defining a Function 95
Returning a Value 96
Returning an Array 97
Passing by Reference 98
Returning Global Variables 99
Recap of Variable Scope 100

Including and Requiring Files 100
The include Statement 100
Using include_once 101
Using require and require_once 101

PHP Version Compatibility 102

PHP Objects 102
Terminology 103
Declaring a Class 104
Creating an Object 105
Accessing Objects 105
Constructors 108
Writing Methods 109
Declaring Properties 110
Declaring Constants 111
Property and Method Scope in PHP 5 112
Inheritance 114

Test Your Knowledge 117

L o 1| 1) £ 119

Basic Access 119
Numerically Indexed Arrays 119
Associative Arrays 121
Assignment Using the array Keyword 122

The foreach...as Loop 122

Multidimensional Arrays 124

Using Array Functions 127
Is_array 127
count 127
sort 128
shuffle 128
explode 128
extract 129
compact 130
reset 131
end 131

Table of Contents | vii

Test Your Knowledge 132

7. Practical PHPoooiiiii 133
Using printf 133
Precision Setting 134
String Padding 136
Using sprintf 137
Date and Time Functions 137
Date Constants 140
Using checkdate 140
File Handling 141
Checking Whether a File Exists 141
Creating a File 141
Reading from Files 143
Copying Files 143
Moving a File 144
Deleting a File 144
Updating Files 145
Locking Files for Multiple Accesses 146
Reading an Entire File 147
Uploading Files 148
System Calls 153
XHTML 154
The Benefits of XHTML 155
XHTML Versions 155
What'’s Different? 155
HTML 4.01 Document Types 156
The HTMLS Document Type 157
XHTML 1.0 Document Types 157
XHTML Validation 158
Test Your Knowledge 159
8. IntroductiontoMySQLc.iiunirniiiiiiii i 161
MySQL Basics 161
Summary of Database Terms 162
Accessing MySQL via the Command Line 162
Starting the Command-Line Interface 163
Using the Command-Line Interface 166
MySQL Commands 168
Data Types 172
Indexes 181
Creating an Index 182
Querying a MySQL Database 187

viii | Table of Contents

10.

Joining Tables Together
Using Logical Operators
MySQL Functions
Accessing MySQL via phpMyAdmin
Windows Users
OS X Users
Linux Users
Using phpMyAdmin
Test Your Knowledge

MasteringMySQLcovvviiiiiiiiiiiiennens

Database Design

Primary Keys: The Keys to Relational Databases

Normalization
First Normal Form
Second Normal Form
Third Normal Form
When Not to Use Normalization
Relationships
One-to-One
One-to-Many
Many-to-Many
Databases and Anonymity
Transactions
Transaction Storage Engines
Using BEGIN
Using COMMIT
Using ROLLBACK
Using EXPLAIN
Backing Up and Restoring
Using mysqldump
Creating a Backup File
Restoring from a Backup File
Dumping Data in CSV Format
Planning Your Backups
Test Your Knowledge

Accessing MySQLUsingPHP

Querying a MySQL Database with PHP
The Process
Creating a Login File
Connecting to MySQL

A Practical Example

196
198
199
199
199
201
201
201
202

...................... 205

205
206
207
208
210
212
214
215
215
216
216
218
218
219
220
220
221
221
223
223
224
226
226
227
227

..................... 229

229
229
230
231
236

Table of Contents | ix

The $_POST Array

Deleting a Record

Displaying the Form

Querying the Database

Running the Program
Practical MySQL

Creating a Table

Describing a Table

Dropping a Table

Adding Data

Retrieving Data

Updating Data

Deleting Data

Using AUTO_INCREMENT

Performing Additional Queries

Preventing SQL Injection

Preventing HTML Injection
Test Your Knowledge

1. FormHandlingcoooiiiiiiiiiiiiiiiiiinnnn,

Building Forms
Retrieving Submitted Data

register_globals: An Old Solution Hangs On

Default Values

Input Types

Sanitizing Input
An Example Program
Test Your Knowledge

12. Cookies, Sessions, and Authentication

Using Cookies in PHP
Setting a Cookie
Accessing a Cookie
Destroying a Cookie

HTTP Authentication
Storing Usernames and Passwords
Salting

Using Sessions
Starting a Session
Ending a Session
Session Security

Test Your Knowledge

ooooooooooooooooo

ooooooooooooooooo

238
239
239
240
241
242
242
243
244
244
245
246
246
247
248
249
252
254

255
255
256
258
258
259
266
267
270

271
271
273
273
274
274
277
277
281
281
284
286
289

X | Table of Contents

13.

14.

Exploring JavaScriptcoiiiiiiiiiiiiiinn.,

JavaScript and HTML Text
Using Scripts Within a Document Head
Older and Nonstandard Browsers
Including JavaScript Files
Debugging JavaScript Errors

Using Comments

Semicolons

Variables
String Variables
Numeric Variables
Arrays

Operators
Arithmetic Operators
Assignment Operators
Comparison Operators
Logical Operators
Variable Incrementing and Decrementing
String Concatenation
Escaping Characters

Variable Typing

Functions

Global Variables
Local Variables

The Document Object Model (DOM)
But It’s Not That Simple
Using the DOM

Test Your Knowledge

Expressions and Control Flow in JavaScript

Expressions
Literals and Variables
Operators
Operator Precedence
Associativity
Relational Operators
The with Statement
Using onerror
Using try...catch
Conditionals
The if Statement
The switch statement
The ? Operator

291
293
293
294
295
297
297
298
298
298
299
299
300
300
301
301
301
302
302
303
303
304
304
305
307
308
309

.................... M

311
312
313
314
314
315
318
318
319
320
320
321
323

Table of Contents | xi

Looping 323

while Loops 323
do...while Loops 324
for Loops 324
Breaking Out of a Loop 325
The continue Statement 326
Explicit Casting 327
Test Your Knowledge 327
15. JavaScript Functions, Objects, and Arraysccovviiieniennennnnnss 329
JavaScript Functions 329
Defining a Function 329
Returning a Value 331
Returning an Array 333
JavaScript Objects 333
Declaring a Class 333
Creating an Object 335
Accessing Objects 335
The prototype Keyword 336
JavaScript Arrays 338
Numeric Arrays 338
Associative Arrays 339
Multidimensional Arrays 340
Using Array Methods 341
Test Your Knowledge 345
16. JavaScript and PHP Validation and ErrorHandling 347
Validating User Input with JavaScript 347
The validate.html Document (Part One) 348
The validate.html Document (Part Two) 350
Regular Expressions 353
Matching Through Metacharacters 353
Fuzzy Character Matching 354
Grouping Through Parentheses 355
Character Classes 355
Some More Complicated Examples 356
Summary of Metacharacters 359
General Modifiers 360
Using Regular Expressions in JavaScript 361
Using Regular Expressions in PHP 361
Redisplaying a Form After PHP Validation 362
Test Your Knowledge 367

xii | Table of Contents

17.

18.

USING AJAX +vovieeneiereneeniernenenencnenenensnnns

What Is Ajax?
Using XMLHttpRequest
Implementing Ajax via POST Requests
The readyState Property
The Server Half of the Ajax Process
Using GET Instead of POST
Sending XML Requests
About XML
Why Use XML?
Using Frameworks for Ajax
Test Your Knowledge

Introductionto €SS ..oovvvrviniii ittt

Importing a Style Sheet
Importing a Style Sheet from Within HTML

Embedded Style Settings
Using IDs
Using Classes

CSS Rules
Using Semicolons
Multiple Assignments
Using Comments

Style Types
Default Styles
User Styles
External Style Sheets
Internal Styles
Inline Styles

CSS Selectors
The Type Selector
The Descendant Selector
The Child Selector
The Adjacent Sibling Selector
The ID Selector
The Class Selector
The Attribute Selector
The Universal Selector
Selecting by Group

The CSS Cascade
Style Sheet Creators
Style Sheet Methods
Style Sheet Selectors

369
370
372
374
375
377
379
381
383
383
383

................... 385

386
386
387
387
387
388
388
388
389
390
390
390
390
391
391
392
392
392
393
394
395
395
396
396
397
398
398
398
399

Table of Contents | xiii

The Difference Between <div> and 401

Measurements 402
Fonts and Typography 404
font-family 404
font-style 405
font-size 406
font-weight 406
Managing Text Styles 407
Decoration 407
Spacing 407
Alignment 408
Transformation 408
Indenting 408
CSS Colors 408
Short Color Strings 409
Gradients 410
Positioning Elements 411
Absolute Positioning 411
Relative Positioning 412
Fixed Positioning 412
Comparing Positioning Types 412
Pseudoclasses 413
Pseudoelements 415
Shorthand Rules 416
The Box Model and Layout 416
Setting Margins 417
Applying Borders 418
Adjusting Padding 419
Object Contents 420
Test Your Knowledge 421
19. Advanced CSSwithCSS3iviii i i 423
Attribute Selectors 423
Matching Parts of Strings 424
The box-sizing Property 425
CSS3 Backgrounds 425
The background-clip Property 426
The background-origin Property 426
The background-size Property 428
Multiple Backgrounds 428
CSS3 Borders 430
The border-color Property 430
The border-radius Property 431

xiv | Table of Contents

20.

Box Shadows
Element Overflow
Multicolumn Layout
Colors and Opacity
HSL Colors
HSLA Colors
RGB Colors
RGBA Colors
The opacity Property
Text Effects
The text-shadow Property
The text-overtlow Property
The word-wrap Property
Web Fonts
Google Web Fonts
Transformations
Transitions
Properties to Transition
Transition Duration
Transition Delay
Transition Timing
Shorthand Syntax
Test Your Knowledge

Accessing CSS from JavaScriptcoovviiiiiiniinn..

Revisiting the getElementByld Function
The O Function
The S Function
The C Function
Including the Functions
Accessing CSS Properties from JavaScript
Some Common Properties
Other Properties
Inline JavaScript
The this Keyword
Attaching Events to Objects in a Script
Attaching to Other Events
Adding New Elements
Removing Elements
Alternatives to Adding and Removing Elements
Using Interrupts
Using setTimeout
Canceling a Timeout

434
435
435
436
437
437
438
438
438
439
439
439
440
440
441
441
444
444
444
444
445
445
447

................. 449

449
449
450
451
452
453
453
455
456
457
457
458
459
460
461
462
462
463

Table of Contents | xv

Using setInterval 463

Using Interrupts for Animation 465

Test Your Knowledge 467

21. BringingltAllTogetherccovviiiiiiii i, 469
Designing a Social Networking Site 469

On the Website 470
functions.php 470
The Functions 470
header.php 472
setup.php 474
index.php 475
signup.php 475
Checking for Username Availability 476
checkuser.php 478
login.php 479
profile.php 481
Adding the “About Me” Text 482
Adding a Profile Image 482
Processing the Image 482
Displaying the Current Profile 483
members.php 485
Viewing a User’s Profile 486
Adding and Dropping Friends 486
Listing All Members 486
friends.php 488
messages.php 491
logout.php 493
styles.css 495

A. Solutions to the ChapterQuestionsc.covviiiiiiiiiiinennnnnn. 499
B. OnlineResourcescoovviiiiiiiiiiiiiiiii i 513
C. MySQL'S FULLTEXT Stopwordsovuuvinvineensenneneennennennsnnss 517
D. MySQLFUNCLIONS ..\vveniinie ittt it i i i et eieneennnnss 521
INdeX ..o 533

xvi | Table of Contents

Download from Wow! eBook <www.wowebook.com>

Preface

The combination of PHP and MySQL is the most convenient approach to dynamic,
database-driven web design, holding its own in the face of challenges from integrated
frameworks—such as Ruby on Rails—that are harder to learn. Due to its open source
roots (unlike the competing Microsoft .NET framework), it is free to implement and is
therefore an extremely popular option for web development.

Any would-be developer on a Unix/Linux or even a Windows/Apache platform will
need to master these technologies. At the same time, JavaScript is important, as it pro-
vides in-browser dynamic functionality and, through Ajax, hidden communication
with the web server to create seamless interfaces. In conjunction with CSS, these tech-
nologies integrate to provide a formidable array of powerful web-development tools.

Audience

This book is for people who wish to learn how to create effective and dynamic websites.
This may include webmasters or graphic designers who are already creating static web-
sites but wish to take their skills to the next level, as well as high school and college
students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind the Web 2.0 technology known
as Ajax will obtain a thorough grounding in all of these core technologies: PHP, MySQL,
JavaScript, and CSS.

Assumptions This Book Makes

This book assumes that you have a basic understanding of HTML and can at least put
together a simple, static website, but it does not assume that you have any prior knowl-
edge of PHP, MySQL, JavaScript, or CSS. That said, if you do, your progress through
the book will be even quicker.

Xvii

Organization of This Book

The chapters in this book are written in a specific order, first introducing all of the core
technologies it covers and then walking you through their installation on a web devel-
opment server, so that you will be ready to work through the examples.

In the following section, you will gain a grounding in the PHP programming language,
covering the basics of syntax, arrays, functions, and object-oriented programming.

Then, with PHP under your belt, you will move on to an introduction to the MySQL
database system, where you will learn everything from how MySQL databases are
structured up to how to generate complex queries.

After that, you will learn how you can combine PHP and MySQL to start creating your
own dynamic web pages by integrating forms and other HTML features. You will then
spend some time looking at ways to speed up your web development using Smarty
templates.

In the next three chapters you will get down to the nitty-gritty practical aspects of PHP
and MySQL development, learning about a variety of useful functions, how to manage
cookies and sessions, and how to maintain a high level of security.

In the following four chapters you will gain a thorough grounding in JavaScript, from
simple functions and event handling to accessing the Document Object Model and in-
browser validation and error handling.

With an understanding of all three of these core technologies, you will then learn how
to make behind-the-scenes Ajax calls and turn your websites into highly dynamic
environments.

Finally, you’ll spend two chapters learning all about using CSS to style and lay out your
web pages, and then you’ll put together everything you’ve learned in a complete set of
programs that together constitute a fully working social networking website.

Along the way, you’ll also find plenty of pointers and advice on good programming
practices and tips that could help you find and solve hard-to-detect programming er-
rors. There are also plenty of links to websites containing further details on the topics
covered.

Supporting Books

Once you have learned to develop using PHP, MySQL, and JavaScript you will be ready
to take your skills to the next level using the following reference books:

* Dynamic HTML: The Definitive Reference (http://oreil.ly/dynamic_html) by Danny
Goodman (O’Reilly)

* PHP in a Nutshell (http://oreil.ly/PHP_nutshell) by Paul Hudson (O’Reilly)

* MySQL in a Nutshell (hitp://oreil.ly/MySQL_nutshell) by Russell Dyer (O’Reilly)

xviii | Preface

http://oreil.ly/dynamic_html
http://oreil.ly/PHP_nutshell
http://oreil.ly/MySQL_nutshell

* JavaScript: The Definitive Guide (http://oreil.ly/]S_Definitive) by David Flanagan
(O’Reilly)

* (CSS: The Definitive Guide (http://oreil.ly/CSS_Definitive) by Eric A. Myer (O’Reilly)

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

W

A)
.

This icon signifies a tip, suggestion, or general note.

LA
[N
MYR)

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning PHP, MySQL, JavaScript &

Preface | xix

http://oreil.ly/JS_Definitive
http://oreil.ly/CSS_Definitive

CSS, Second Edition, by Robin Nixon. Copyright 2012 Robin Nixon,
978-1-4493-1926-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

S f Safari Books Online (www.safaribooksonline.com) is an on-demand digital
atari library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/PHP_MySQL_JS_CSS2.

There is also a companion website to this book, where you can see all the examples
with color-highlighted syntax, available online at http:/lpmj.net.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

xx | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/PHP_MySQL_JS_CSS2
http://lpmj.net
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

A huge thank you goes to my editor, Andy Oram, who always has great ideas for better
explaining tricky subjects; Rachel Head for an excellent job of tidying up my manu-
script; Iris Febres and Rachel Steely, who oversaw production meticulously; Robert
Romano for the easy-to-follow illustrations in both editions; Ellen Troutman Zaig for
creating a thoroughly comprehensive index; Karen Montgomery for the great sugar
glider front cover; David Futato for the clear and easy-to-read interior design; and all
the other dedicated people at O’Reilly who worked so hard on this book, and without
whom it simply wouldn’t be the same.

I would also like to thank my technical reviewers from the first edition, Derek DeHart,
Christoph Dorn, Tomislav Dugandzic, Becka Morgan, Harry Nixon, Alan Solis, and
Demian Turner, and Albert Wiersch for his invaluable input and advice on the CSS
section new to this edition. Finally, thanks to the first edition readers who spotted typos
and sent in errata and suggestions for improving the book, all of whom have helped to
bring this revised, updated, and improved web development tutorial to fruition.

Preface | xxi

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1
Introduction to Dynamic Web Content

The World Wide Web is a constantly evolving network that has already traveled far
beyond its conception in the early 1990s, when it was created to solve a specific prob-
lem. State-of-the-art experiments at CERN (the European Laboratory for Particle Phys-
ics—now best known as the operator of the Large Hadron Collider) were producing
incredible amounts of data—so much that the data was proving unwieldy to distribute
to the participating scientists who were spread out across the world.

At this time, the Internet was already in place, with several hundred thousand com-
puters connected to it. Tim Berners-Lee (a CERN fellow) devised a method of navi-
gating between them using a hyperlinking framework, which came to be known as the
Hyper Text Transfer Protocol, or HTTP. He also created a markup language called
HTML, or Hyper Text Markup Language. To bring these together, he wrote the first
web browser and web server.

We now take these tools for granted, but back then, the concept was revolutionary.
The most connectivity so far experienced by at-home modem users was dialing up and
connecting to a bulletin board that was hosted by a single computer, where you could
communicate and swap data only with other users of that service. Consequently, you
needed to be a member of many bulletin board systems in order to effectively commu-
nicate electronically with your colleagues and friends.

But Berners-Lee changed all that in one fell swoop, and by the mid-1990s there were
three major graphical web browsers competing for the attention of five million users.
It soon became obvious, though, that something was missing. Yes, pages of text and
graphics with hyperlinks to take you to other pages was a brilliant concept, but the
results didn’t reflect the instantaneous potential of computers and the Internet to meet
the particular needs of each user with dynamically changing content. Using the Web

was a very dry and plain experience, even if we did now have scrolling text and animated
GIFs!

Shopping carts, search engines, and social networks have clearly altered how we use
the Web. In this chapter, we’ll take a brief look at the various components that make
up the Web, and the software that helps make it a rich and dynamic experience.

It is necessary to start using some acronyms more or less right away. [
have tried to clearly explain them before proceeding, but don’t worry
%" too much about what they stand for or what these names mean, because
the details will all become clear as you read on.

HTTP and HTML: Berners-Lee’s Basics

HTTP is a communication standard governing the requests and responses that take
place between the browser running on the end user’s computer and the web server.
The server’s job is to accept a request from the client and attempt to reply to it in a
meaningful way, usually by serving up a requested web page—that’s why the term
server is used. The natural counterpart to a server is a client, so that term is applied
both to the web browser and the computer on which it’s running.

Between the client and the server there can be several other devices, such as routers,
proxies, gateways, and so on. They serve different roles in ensuring that the requests
and responses are correctly transferred between the client and server. Typically, they
use the Internet to send this information.

A web server can usually handle multiple simultaneous connections and—when not
communicating with a client—spends its time listening for an incoming connection
request. When one arrives, the server sends back a response to confirm its receipt.

The Request/Response Procedure

At its most basic level, the request/response process consists of a web browser asking
the web server to send it a web page and the server sending back the page. The browser
then takes care of displaying the page (see Figure 1-1).

These are the steps in the request and response sequence:
1. You enter http://server.com into your browser’s address bar.
2. Your browser looks up the IP address for server.com.
3. Your browser issues a request for the home page at server.com.
4. The request crosses the Internet and arrives at the server.com web server.
5. The web server, having received the request, looks for the web page on its hard disk.
6. The server retrieves the web page and returns it to the browser.

7. Your browser displays the web page.

For an average web page, this process takes place once for each object within the page:
a graphic, an embedded video or Flash file, and even a CSS template.

In step 2, notice that the browser looked up the IP address of server.com. Every machine
attached to the Internet has an IP address—your computer included. But we generally
access web servers by name, such as google.com. As you probably know, the browser

2 | Chapter1: Introduction to Dynamic Web Content

http://server.com
http://google.com

Web The Web server Disk drive

browser Internet at server.com at server.com
1 User enters:
http://server.com i
Look up IP
2 PR— address of
server.com
Request
3 server.com main
page using [P
Receive
4 uest for
index page i
Fetch
: from hard disk
6 Retum the
/ index page
7 Receive and
display page

Figure 1-1. The basic client/server request/response sequence

consults an additional Internet service called the Domain Name Service (DNS) to find
the server’s associated IP address and then uses that to communicate with the com-
puter.

For dynamic web pages, the procedure is a little more involved, because it may bring
both PHP and MySQL into the mix (see Figure 1-2).

Here are the steps:

1.

. Your browser looks up the IP address for server.com.

G AW N

You enter http://server.com into your browser’s address bar.

. Your browser issues a request to that address for the web server’s home page.
. The request crosses the Internet and arrives at the server.com web server.

. The web server, having received the request, fetches the home page from its hard

disk.

. With the home page now in memory, the web server notices that it is a file incor-

porating PHP scripting and passes the page to the PHP interpreter.

. The PHP interpreter executes the PHP code.
. Some of the PHP contains MySQL statements, which the PHP interpreter now

passes to the MySQL database engine.

HTTP and HTML: Berners-Lee’s Basics | 3

http://server.com

10

1

Web The Web PHP Disk MysalL
browser Internet server processor drive database
Enter
URL
Look up
the IP
Request
main page
Receive
request
Fetch
page
Contains -
PHP
Process
PHP
Execute
sQL
. Receive
data
Return
page
Display
page

Figure 1-2. A dynamic client/server request/response sequence

9. The MySQL database returns the results of the statements back to the PHP inter-
preter.

10. The PHP interpreter returns the results of the executed PHP code, along with the
results from the MySQL database, to the web server.

11. The web server returns the page to the requesting client, which displays it.

Although it’s helpful to be aware of this process so that you know how the three ele-
ments work together, in practice you don’t really need to concern yourself with these
details, because it all happens automatically.

HTML pages returned to the browser in each example may well contain JavaScript,
which will be interpreted locally by the client, and which could initiate another

request—the same way embedded objects such as images would.

4 | Chapter1: Introduction to Dynamic Web Content

The Benefits of PHP, MySQL, JavaScript, and CSS

At the start of this chapter, L introduced the world of Web 1.0, but it wasn’t long before
the rush was on to create Web 1.1, with the development of such browser enhance-
ments as Java, JavaScript, JScript (Microsoft’s slight variant of JavaScript), and ActiveX.
On the server side, progress was being made on the Common Gateway Interface (CGI)
using scripting languages such as Perl (an alternative to the PHP language) and server-
side scripting (dynamically inserting the contents of one file—or the output of a system
call—into another one).

Once the dust had settled, three main technologies stood head and shoulders above
the others. Although Perl was still a popular scripting language with a strong following,
PHP’s simplicity and built-in links to the MySQL database program had earned it more
than double the number of users. And JavaScript, which had become an essential part
of the equation for dynamically manipulating CSS (Cascading Style Sheets), now took
on the even more muscular task of handling the client side of the Ajax process. Under
Ajax (described in “Using JavaScript” on page 7), web pages perform data handling
and send requests to web servers in the background—without the web user being aware
that this is going on.

No doubt the symbiotic nature of PHP and MySQL helped propel them both forward,
but what attracted developers to them in the first place? The simple answer has to be
the ease with which you can use these technologies to quickly create dynamic elements
on websites. MySQL is a fast and powerful yet easy-to-use database system that offers
just about anything a website might need in order to find and serve up data to browsers.
When PHP allies with MySQL to store and retrieve this data, you have the fundamental
parts required for the development of social networking sites and the beginnings of
Web 2.0.

And when you bring JavaScript and CSS into the mix too, you have a recipe for building
highly dynamic and interactive websites.

Using PHP

With PHP, it’s a simple matter to embed dynamic activity in web pages. When you give
pages the .php extension, they have instant access to the scripting language. From a
developer’s point of view, all you have to do is write code such as the following:

<?php

echo "Hello World. Today is ".date("1").". ";
?>

How are you?

The opening <?php tells the web server to allow the PHP program to interpret all the
following code up to the ?> command. Outside of this construct, everything is sent to
the client as direct HTML. So, the text “How are you?” is simply output to the browser;

The Benefits of PHP, MySQL, JavaScript, and ¢SS | 5

within the PHP tags, the built-in date function displays the current day of the week
according to the server’s system time.

The final output of the two parts looks like this:

Hello World. Today is Wednesday. How are you?

PHP is a flexible language, and some people prefer to place the PHP construct directly
next to PHP code, like this:

Hello World. Today is <?php echo date("1"); ?>. How are you?
There are also other ways of formatting and outputting information, which I'll explain
in the chapters on PHP. The point is that with PHP, web developers have a scripting

language that, although not as fast as compiling your code in C or a similar language,
is incredibly speedy and that also integrates seamlessly with HTML code.

W N

If you intend to type in the PHP examples in this book to work along
with me, you must remember to add <?php in front and ?> after them to
* Qi ensure that the PHP interpreter processes them. To facilitate this, you
" may wish to prepare a file called example.php with those tags in place.

Using PHP, you have unlimited control over your web server. Whether you need to
modify HTML on the fly, process a credit card, add user details to a database, or fetch
information from a third-party website, you can do it all from within the same PHP
files in which the HTML itself resides.

Using MySQL

Of course, there’s not a lot of point to being able to change HTML output dynamically
unless you also have a means to track the changes that users make as they use your
website. In the early days of the Web, many sites used “flat” text files to store data such
as usernames and passwords. But this approach could cause problems if the file wasn’t
correctly locked against corruption from multiple simultaneous accesses. Also, a flat
file can get only so big before it becomes unwieldy to manage—not to mention the
difficulty of trying to merge files and perform complex searches in any kind of reason-
able time.

That’s where relational databases with structured querying become essential. And
MySQL, being free to use and installed on vast numbers of Internet web servers, rises
superbly to the occasion. It is a robust and exceptionally fast database management
system that uses English-like commands.

The highest level of MySQL structure is a database, within which you can have one or
more tables that contain your data. For example, let’s suppose you are working on a
table called users, within which you have created columns for surname, firstname, and

6 | Chapter1: Introduction to Dynamic Web Content

email, and you now wish to add another user. One command that you might use to do
this is:
INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

Of course, as mentioned earlier, you will have issued other commands to create the
database and table and to set up all the correct fields, but the INSERT command here
shows how simple it can be to add new data to a database. The INSERT command is an
example of SQL (which stands for Structured Query Language), a language designed
in the early 1970s and reminiscent of one of the oldest programming languages, CO-
BOL. It is well suited, however, to database queries, which is why it is still in use after
all this time.

It’s equally easy to look up data. Let’s assume that you have an email address for a user
and you need to look up that person’s name. To do this, you could issue a MySQL
query such as:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of names that may be associated
with that email address in the database.

As you’d expect, there’s quite a bit more that you can do with MySQL than just simple
INSERT and SELECT commands. For example, you can join multiple tables according to
various criteria, ask for results in a variety of different orders, make partial matches
when you know only part of the string that you are searching for, return only the nth
result, and a lot more.

Using PHP, you can make all these calls directly to MySQL without having to run the
MySQL program yourself or use its command-line interface. This means you can save
the results in arrays for processing and perform multiple lookups, each dependent on
the results returned from earlier ones, to drill right down to the item of data you need.

For even more power, as you’ll see later, there are additional functions built right into
MySQL that you can call up for common operations and extra speed.

Using JavaScript

The oldest of the core technologies described in this book, JavaScript, was created to
enable scripting access to all the elements of an HTML document. In other words, it
provides a means for dynamic user interaction such as checking email address validity
in input forms, displaying prompts such as “Did you really mean that?” and so on
(although it cannot be relied upon for security, which should always be performed on
the web server).

Combined with CSS (see the following section), JavaScript is the power behind dynamic
web pages that change in front of your eyes rather than when the server returns a new

page.

The Benefits of PHP, MySQL, JavaScript, and ¢SS | 7

However, JavaScript can also be tricky to use, due to some major differences between
the ways different browser designers have chosen to implement it. This mainly came
about when some manufacturers tried to put additional functionality into their brows-
ers at the expense of compatibility with their rivals.

Thankfully, the developers have mostly now come to their senses and have realized the
need for full compatibility between their products, so web developers don’t have to
write multiexception code. But there remain millions of legacy browsers that will be in
use for a good many years to come. Luckily, there are solutions for the incompatibility
problems, and later in this book we’ll look at techniques that enable you to safely ignore
these differences.

For now, let’s take a quick look at how you can use basic JavaScript, accepted by all
browsers:
<script type="text/javascript">

document.write("Hello World. Today is " + Date());
</script>

This code snippet tells the web browser to interpret everything within the script tags
as JavaScript, which the browser then interprets by writing the text “Hello World.
Today is ” to the current document, along with the date, by using the JavaScript func-
tion Date. The result will look something like this:

Hello World. Today is Thu Jan 01 2015 01:23:45

W

It’s worth knowing that unless you need to specify an exact version of
JavaScript, you can normally omit the type="text/javascript" and just
98y use <script> to start the interpretation of the JavaScript.

As previously mentioned, JavaScript was originally developed to offer dynamic control
over the various elements within an HTML document, and that is still its main use. But
more and more, JavaScript is being used for Ajax. This is a term for the process of
accessing the web server in the background. (It originally meant “Asynchronous Java-
Script and XML,” but that phrase is already a bit outdated.)

Ajax is the main process behind what is now known as Web 2.0 (a term popularized
by Tim O’Reilly, the founder and CEO of this book’s publishing company), in which
web pages have started to resemble standalone programs, because they don’t have to
be reloaded in their entirety. Instead, a quick Ajax call can pull in and update a single
element on a web page, such as changing your photograph on a social networking site
or replacing a button that you click with the answer to a question. This subject is fully
covered in Chapter 17.

8 | Chapter1: Introduction to Dynamic Web Content

Using CSS

With the emergence of the CSS3 standard in recent years, CSS now offers a level of
dynamic interactivity previously supported only by JavaScript. For example, not only
can you style any HTML element to change its dimensions, colors, borders, spacing,
and so on, but now you can also add animated transitions and transformations to your
web pages, using only a few lines of CSS.

Using CSS can be as simple as inserting a few rules between <style> and </style> tags
in the head of a web page, like this:

<style>

P
{

text-align:justify;
font-family:Helvetica;

</style>

These rules will change the default justification of the <p> tag so that paragraphs con-
tained in it will be fully justified and will use the Helvetica font.

As you’ll learn in Chapter 18, there are many different ways you can lay out CSS rules,
and you can also include them directly within tags or save a set of rules to an external
file to be loaded in separately. This flexibility lets you do more than style your HTML
precisely; you will also see how it can (for example) provide built-in hover functionality
to animate objects as the mouse pointer passes over them. You will also learn how to
access all of an element’s CSS properties from JavaScript as well as HTML.

The Apache Web Server

In addition to PHP, MySQL, JavaScript, and CSS, there’s actually a fifth hero in the
dynamic Web: the web server. In the case of this book, that means the Apache web
server. We’ve discussed a little of what a web server does during the HTTP server/client
exchange, but it actually does much more behind the scenes.

For example, Apache doesn’t serve up just HTML files—it handles a wide range of
files, from images and Flash files to MP3 audio files, RSS (Really Simple Syndication)
feeds, and more. Each element a web client encounters in an HTML page is also re-
quested from the server, which then serves it up.

But these objects don’t have to be static files, such as GIF images. They can all be
generated by programs such as PHP scripts. That’s right: PHP can even create images
and other files for you, either on the fly or in advance to serve up later.

To do this, you normally have modules either precompiled into Apache or PHP or called
up at runtime. One such module is the GD library (short for Graphics Draw), which
PHP uses to create and handle graphics.

The Apache Web Server | 9

Apache also supports a huge range of modules of its own. In addition to the PHP
module, the most important for your purposes as a web programmer are the modules
that handle security. Other examples are the Rewrite module, which enables the web
server to handle a varying range of URL types and rewrite them to its own internal
requirements, and the Proxy module, which you can use to serve up often-requested
pages from a cache to ease the load on the server.

Later in the book, you’ll see how to actually use some of these modules to enhance the
features provided by the core technologies we cover.

About Open Source

Whether or not being open source is the reason these technologies are so popular has
often been debated, but PHP, MySQL, and Apache are the three most commonly used
tools in their categories.

What can be said, though, is that being open source means that they have been devel-
oped in the community by teams of programmers writing the features they themselves
want and need, with the original code available for all to see and change. Bugs can be
found and security breaches can be prevented before they happen.

There’s another benefit: all these programs are free to use. There’s no worrying about
having to purchase additional licenses if you have to scale up your website and add
more servers. And you don’t need to check the budget before deciding whether to
upgrade to the latest versions of these products.

Bringing It All Together

The real beauty of PHP, MySQL, JavaScript, and CSS is the wonderful way in which
they all work together to produce dynamic web content: PHP handles all the main work
on the web server, MySQL manages all the data, and the combination of CSS and
JavaScript looks after web page presentation. JavaScript can also talk with your PHP
code on the web server whenever it needs to update something (either on the server or
on the web page).

Without using program code, it’s a good idea at this point to summarize the contents
of this chapter by looking at the process of combining our core technologies into an
everyday Ajax feature that many websites use: checking whether a desired username
already exists on the site when a user is signing up for a new account. A good example
of this can be seen with Gmail (see Figure 1-3).

The steps involved in this Ajax process would be similar to the following:

10 | Chapter1: Introduction to Dynamic Web Content

Download from Wow! eBook <www.wowebook.com>

-‘l https://accounts.go.. O ~ @ & X

-‘l Google Accounts | |

File Edit View Favorites Tools Help

Your Google Account is
more than just Gmail. Name
Samuel Smith

m

Choose your username

samsmith |

Someone already has that username. Try another?
Available: smithsamuel169 ss1676073

Create a password

®100% ~

Figure 1-3. Gmail uses Ajax to check the availability of usernames

1.

The server outputs the HTML to create the web form, which asks for the necessary
details, such as username, first name, last name, and email address.

. At the same time, the server attaches some JavaScript to the HTML to monitor the

username input box and check for two things: whether some text has been typed
into it, and whether the input has been deselected because the user has clicked on
another input box.

. Once the text has been entered and the field deselected, in the background the

JavaScript code passes the username that was typed in back to a PHP script on the
web server and awaits a response.

. The web server looks up the username and replies back to the JavaScript regarding

whether that name has already been taken.

. The JavaScript then places an indication next to the username input box to show

whether the name is one available to the user—perhaps a green check mark or a
red cross graphic, along with some text.

. If the username is not available and the user still submits the form, the JavaScript

interrupts the submission and reemphasizes (perhaps with a larger graphic and/or
an alert box) that the user needs to choose another username.

. Optionally, an improved version of this process could even look at the username

requested by the user and suggest an alternative that is currently available.

All of this takes place quietly in the background and makes for a comfortable and

seamless user experience. Without using Ajax, the entire form would have to be sub-
mitted to the server, which would then send back HTML, highlighting any mistakes.

Bringing It All Together | 11

It would be a workable solution, but nowhere near as tidy or pleasurable as on-the-fly
form field processing.

Ajax can be used for a lot more than simple input verification and processing, though;
we’ll explore many additional things that you can do with it in the Ajax chapters later
in this book.

In this chapter, you have read a good introduction to the core technologies of PHP,
MySQL, JavaScript, and CSS (as well as Apache), and have learned how they work
together with each other. In Chapter 2, we’ll look at how you can install your own web
development server on which to practice everything that you will be learning. First,
though, consider these questions.

Test Your Knowledge

1. What four components are needed to create a fully dynamic web page?

2. What does HTML stand for?

3. Why does the name MySQL contain the letters SQL?

4. PHP and JavaScript are both programming languages that generate dynamic results
for web pages. What s their main difference, and why would you use both of them?

. What does CSS stand for?

. If you encounter a bug (which is rare) in one of the open source tools, how do you
think you could get it fixed?

N

See “Chapter 1 Answers” on page 499 in Appendix A for the answers to these
questions.

12 | Chapter1: Introduction to Dynamic Web Content

CHAPTER 2
Setting Up a Development Server

If you wish to develop Internet applications but don’t have your own development
server, you will have to upload every modification you make to a server somewhere else
on the Web before you can test it.

Even on a fast broadband connection, this can still represent a significant slowdown in
development time. On a local computer, however, testing can be as easy as saving an
update (usually just a matter of clicking once on an icon) and then hitting the Refresh
button in your browser.

Another advantage of a development server is that you don’t have to worry about em-
barrassing errors or security problems while you’re writing and testing, whereas you
need to be aware of what people may see or do with your application when it’s on a
public website. It’s best to iron everything out while you’re still on a home or small
office system, presumably protected by firewalls and other safeguards.

Once you have your own development server, you’ll wonder how you ever managed
without one, and it’s easy to set one up. Just follow the steps in the following sections,
using the appropriate instructions for a PC, a Mac, or a Linux system.

In this chapter, we cover just the server side of the web experience, as described in
Chapter 1. But to test the results of your work—particularly when we start using Java-
Script and CSS later in this book—you should also have an instance of every major web
browser running on some system convenient to you. Whenever possible, the list of
browsers should include at least Internet Explorer, Mozilla Firefox, Opera, Safari, and
Google Chrome.

If you plan to ensure your sites look good on mobile devices too, you should also try
to arrange access to a wide range of Apple i0S and Google Android phones and tablets.

What Is a WAMP, MAMP, or LAMP?

WAMP, MAMP, and LAMP are abbreviations for “Windows, Apache, MySQL, and
PHP,” “Mac, Apache, MySQL, and PHP,” and “Linux, Apache, MySQL, and PHP,”

13

respectively. These abbreviations describe a fully functioning setup used for developing
dynamic Internet web pages.

WAMPs, MAMPs, and LAMPs come in the form of a package that binds the bundled
programs together so that you don’t have to install and set them up separately. This
means you can simply download and install a single program and follow a few easy
prompts to get your web development server up and running in the quickest time with
the minimum hassle.

During installation, several default settings are created for you. The security configu-
rations of such an installation will not be as tight as on a production web server, because
it is optimized for local use. For these reasons, you should never install such a setup as
a production server.

However, for developing and testing websites and applications, one of these installa-
tions should be entirely sufficient.

,—_ If you choose not to go the W/L/MAMP route for building your own
"*’@ development system, you should know that downloading and integrat-
ing the various parts yourself can be very time-consuming and that a lot
of research may be required in order to configure everything fully. But
if you already have all the components installed and integrated with each

other, they should work with the examples in this book.

Installing a WAMP on Windows

There are several available WAMP servers, each offering slightly different configura-
tions, but probably the best is Zend Server CE (where CE stands for Community Edi-
tion), because it’s free and is from the developers of PHP itself. You can download it
from http://tinyurl.com/zendce (see the bottom of Figure 2-1).

I recommend you always download the latest stable release (in this instance it’s 5.6.0
SP1 for Windows), which will be listed first in the download section of the web page.
The page should display the correct installer for your computer: Linux, Windows, or
OS X. You will be asked to log in before you download. You can click a link to get the
file without logging in or registering, but you’ll miss out on product update emails and
other news.

14 | Chapter2: Setting Up a Development Server

http://tinyurl.com/zendce

a':._ .:'| http://www.zend.com/en/pre O + B & X ” Zend Server CE Downloads ... *

File Edit Miew Favorites Tools Help

Zend Server CE Downloads

Zend Server Community Edition (CE) is the free edition of Zend Server,
our production-ready Web Application Server.
Server Server CE
Complete PHP stack that includes ZF Yes Yes
Opcode acceleration (Zend Optimizer+) Yes Yes
PHP application deployment Yes
Page caching and job queue support Yes
PHP menitoring and code tracing Yes

mn

Zend Server Cluster Manager support Yes

Technical support, updates and hotfixes Yes IBM only,
for 1 year

TRY ZEND SERVER INSTEAD

’Sewice Pack/Hotfixes Available [

Use the latest patches to ensure a fully secure environment!

A Linux &Y windows | M MacOS X @ IBMi
Product Version Format/Size Notes
Zend Server CE (PHP 5.3) 5.6.05P1 (EXE) 58.23 MB Release Motes
] [[| *

#100% -

Figure 2-1. You can download Zend Server CE for Windows from the Zend website

It’s possible that during the lifetime of this edition some of the screens
and options shown in the following walkthrough may change. If so, just
%ls use your common sense to proceed in a similar manner to the sequence
" of actions described.

Once downloaded, run the installer to bring up the window in Figure 2-2.

Click Next and accept the license agreement that follows to move on to the “Setup
Type” screen (see Figure 2-3). Select the “Custom” option so that the MySQL server
can also be installed.

Installing a WAMP on Windows | 15

'Zend Server Community Edition Installer M

server

welcome to the Zend Server Community Edition 5.6 Installer

The Installation wizard will install Zend Server Community Edition on your computer.
Tocontinue, click Mext.

Figure 2-2. The main installation window of the Zend Server CE installer

Zend Server Community Edition Installer ﬂ

server

Setup Type
Select an installation method

Click the type of setup pou prefer, then click Mest.

7 Typical Program will be installed with the most comman options.
Fiecommended for most users,

All program features will be installed
Requires an Intermet connection in order to download third-party
companents.

*t'ou may select the options you want to install. Recommendsed for
advanced users,

Requires an ntemet connection in order to download third-party
companents.

Figure 2-3. Choose the “Custom” install option

16 | Chapter2: Setting Up a Development Server

When the Custom Setup window appears, scroll down the list of options to the bottom
and ensure that both “phpMyAdmin” and “MySQL Server” are checked, as shown in
Figure 2-4. Then click Next.

===

Zend Server Community Edition Installer

server

Custom Setup
Select components to install

Only components with & marked checkbox will be installed. After installation rn the Installer again
to add components not selected thiz time.

r—Descriptior
[[1Zend Java Bridge EsCiiptio

¥ Zend Deployment Installs the MySOL

dF " Eszential D atabaze Server
one Tramewor [wersion 5.1.50)

[[1Extras [separate download)
[[1Dajo [separate download)
[Informis
COracle OCI Drriver
[w] phptdyddmin [zeparate download)

149,40 B of space required on the C drive
240499.74 ME of space available on the C drive

Figure 2-4. Check the boxes for phpMyAdmin and MySQL Server

On the following screen (see Figure 2-5), even if you already have an IIS web server
installed, I recommend that you choose to install the Apache web server because the
examples in this book are for Apache. Then click Next.

Accept the default values of 80 for the web server port and 10081 for the Zend server
interface port (see Figure 2-6), and click Next.

Once the ports have been assigned you will reach the screen in Figure 2-7, and you
should click Install to start the installation.

Installing a WAMP on Windows | 17

'Zend Server Community Edition Installer

server

Web Server
Select the type of Web Server to use and define where to install Zend Server,

Select alifeh Server

@ firstall an Apache 2227 Web Server

€ Configure existing 115 web Server
Mate: Microzoft 15 iz currently nat installed.
IF you want to use 15, please installit and restart the Zend Server installation

Defing where to Install Zend Server
Click Nest to approve or Browse to change the location.

Destination Folder
’7 C:A\Program Files [#86]'Zend’, Browse...

Figure 2-5. Install the Apache web server

"Zend Server Community Edition Installer

server

Apache Port Number

Click Mext to use the default settings or change the port values that vour webserver wil listen
to and that the Administration Interface uses respectively

“web Server Port:

Zend Server Interface Part: |10081

Figure 2-6. Accept the default values offered for the ports

18 | Chapter2: Setting Up a Development Server

Zend Server Community Edition Installer M

server

Installation Settings
Fieview pour zettings before instaling Zend Server Community Edition.

Click Mext to begin instaling Zend Server Community Edition with the following components:

-PHP 5.3.9

- Comman Extensions

- Additional Extensions

-- Zend O ptimizer+

-- Zend Debugger

- Zend Data Cache

-- Zend Page Cache

- Zend Monitar

- Zend Job Gueue

-- Zend Session Clustering
-- Zend Code Tracing

-- Zend Deployment

- Zend Framework 1.11.11
- Zend Framewaork Base

]

Cancel

Figure 2-7. Now you are ready to click Install to proceed

During installation some extra files may be downloaded, so it may take a few minutes
for the programs to get set up. When they are ready you will be notified that you can
start using the software by clicking Finish. When you do so your default browser will
be opened up with the page shown in Figure 2-8, where, to continue, you must check
the box to agree with the terms.

Now you are ready to set a password (see Figure 2-9). Make sure you choose one you
will remember, and click Next to proceed to the screen shown in Figure 2-10, where
you can now click Finish.

If either of the ports offered states that it is occupied (generally this will
be because you have another web server running) and you can’t use the
st default, try a value of 8080 (or 8000) for the web server port and 10082
for the Zend server interface port. Remember to use these values later
when accessing either web pages or the Zend server. For example, in-
stead of visiting http://localhost/index.htm in your web browser, you
would use http://localhost:8080/index.htm.

Installing a WAMP on Windows | 19

http://localhost/index.htm
http://localhost:8080/index.htm

tip://localhost 10081/ ZendServer/Login®13: 0 = € X H.ZE”" Server Community Ed... % ke

Eile Edit View Favorites Tools Help

Step 1 of 3 : End User License Agreement

Please read and accept the following terms before using Zend Server Community Edition:

Zend Technologies Ltd

End-User License Agreement

This End-User License Agreement (this "Agreement”) is a legal contract between
you, as either an individual or a single business entity, and Zend Technologies
Ltd. and its affiliates ("Zend").

READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY
BEFORE DOWNLOADING OR INSTALLING ZEND'S PROPRIETARY
SOFTWARE (THE "SOFTWARE") OR OBTAINING A LICENSE KEY TO THE
SOFTWARE OR USING THE SOFTWARE. THE SOFTWARE IS FURTHER
DEFINED IN AN ORDER DOCUMENT (AN "ORDER”), ENTERED INTO
BETWEEN YOU AND ZEND OR YOU AND A ZEND RESELLER, WHICH SETS
FORTH COMMERCIAL TERMS APPLICABLE TO YOUR PURCHASE OF THE

ACTIDE

[~ I have read and agree to the end user license agreementterms

#®100% -

Figure 2-8. You must agree to the terms in order to use Zend Server CE

e http://localhost: 10081/ ZendServer/Login®13: 0 + €& X H.ZE”" Server Community Ed...

File Edit View Favorites Tools Help

Step 2 of 3 : Set Password

This password is required in order to access the Zend Server Administration Interface. To further secure Zend Server, please refer to the User Guide section on
Securing the Adminisiration Interface

#®100% -

Figure 2-9. Choose your password and enter it twice

20 | Chapter2: Setting Up a Development Server

%

\E http://localhost 10081 ZendServer/LoginZ132 © ~ & X |[[ll Zend Server Community Ed... X

en Fa

)]

ools Help

Step 3 of 3 : Notification Registration

Welcome to
Zend Server Community Edition!

Thank you for installing Zend Server Community Edition — you've made a great choice!

If you ever want to enhance your PHP environment with:

- Automated deployment - Performanc optimization
- Application monitoring - Advanced debugging and analysis tools
- Clustering and sealability - 24xT technical support

You can try the advanced features of Zend Server free for 30 days at any timel

I~ fifty Mg of nely Zend Server Communiy EdifionTaleas e and ofhisr imparian
updates

Emaladgess []

H100% -

Figure 2-10. Click Finish to complete setup

Finally your browser will show the Dashboard screen in Figure 2-11, which is the place
where you can administer the server.

GOE http://localhost10081/ZendServer/IndexInd: O ~ & X H [l Zend server Community Ed.. %

File Edit View Fa

ites Tools Help

About | Logout

oIt Monitor & appiications [El Rule Management A, server Setup A pdministration

Dashboard | Events | Jobs | CodeTracing | Sewerinfo | PHPInfo | Logs

Tasks System Overview

View PHPinfo page PHP Version

53.9Z556.0

Load or Unload PHP Extensions Zend Framework Version 1.11.14

Configure Zend Server Components more »
Change PHP directive Values
Open phpMyAdmin

lm,m\

Zend Server Community Edition

Zend Data Cache []
Leam how to start with Zend Server and PHP Zend Debugger E3

Zend Guard Loader

Zend Java Bridge

Zend Optimizer+ [o]

Z]

e

O Restart PHP

Figure 2-11. The Zend Server CE administration screen

You can return to this screen at any time by entering http://localhost:10081 into your
browser (or, if you entered a value other than 10081 for the Zend server interface port,
you can get to this screen by using that value after the colon instead).

Installing a WAMP on Windows | 21

http://localhost:10081

Testing the Installation

The first thing to do at this point is verify that everything is working correctly. To do
this, you are going to try to display the default web page, which will have been saved
in the server’s document root folder (see Figure 2-12). Enter either of the following two
URLs into the address bar of your browser:

http://localhost
http://127.0.0.1
S
e®|. hitp:/127.0.0.1/ pP-BEX H.Zend Server Test Page x u {nf oy 00

Eile Edit View Favorites Tools Help

" The PHP Company

zend

Zend Server Test Page

Zend Server is now up and running on this server. Once content is added this message will no lenger be displayed

If you are this server's administrator:

‘You can now add content to your Web server's document root. You can configure and control your Zend Server
installation through the Zend Server Administration Interface. Please refer to the documentation or to your
installation’s README file for more information.

If you need help getfing started with Zend Server, please visit the on-line resources page.

For more information about Zend Server you are welcome to visit us at www.zend.com.

#100% -

Figure 2-12. How the home page should look by default

The word localhost is used in URLSs to specify the local computer, which will also re-
spond to the IP address of 127.0.0.1, so you can use either method of calling up the
document root of your web server.

If you chose a server port other than 80 during installation (such as
8080), you must place a colon followed by that value after either of the
Qs preceding URLs. For example: hitp://localhost:8080. You will also have
" todo the same for all the example files in this book. For example, instead
of the URL http://localhost/example.php, you should enter this one:
http://localhost:8080/example.php (or whatever value you chose).

22 | Chapter2: Setting Up a Development Server

http://localhost:8080
http://localhost/example.php
http://localhost:8080/example.php

The documentrootis the directory that contains the main web documents for adomain.
This is the one that is entered when a basic URL without a path is typed into a browser,
such as http://yahoo.com, or, for your local server, http://localhost.

By default, Zend Server CE uses one of the following locations for this directory (the
former for 32-bit computers and the latter for 64-bit):

C:/Program Files/Zend/Apache2/htdocs
C:/Program Files (x86)/Zend/Apache2/htdocs

L)
)

If you are not sure whether your computer is 32-bit or 64-bit, try to
navigate to the first directory. If it exists, you have a 32-bit machine. If
%" not, open up the second directory because you have a 64-bit computer.

To ensure that you have everything correctly configured, you should now create the
obligatory “Hello World” file. Create a small HTML file along the following lines using
Windows Notepad or any other program or text editor (don’t use a rich word processor
such as Microsoft Word, unless you save as plain text):
<html>
<head>
<title>A quick test</title>
</head>
<body>
Hello World!
</body>
</html>

Once you have typed this in, save the file into the document root directory previously
discussed, using the filename test.htm—if you are using Notepad, make sure that the
“Save as type” box is changed from “Text Documents (*.txt)” to “All Files (*.*)”.

You can now call up this page in your browser by entering the following URL in its
address bar (see Figure 2-13):

http://localhost/test.htm

a' : |. http://localhost/test.htm L~BoxX || .Aquicktest |

File Edit View Favorites Tools Help

Hello World!

®100% ~

Figure 2-13. Your first web page

Installinga WAMP on Windows | 23

http://yahoo.com
http://localhost

You should now have had a trouble-free installation, resulting in a fully working
WAMP. But if you encountered any difficulties, check out the comprehensive docu-
mentation at http://tinyurl.com/zendcedocs, which should sort out your problem.

Alternative WAMPs

When software is updated, it sometimes works differently than you’d expected, and
bugs can even be introduced. If you encounter difficulties with Zend Server CE that
you cannot resolve, you may prefer to choose one of the various other solutions avail-
able on the Web instead.

You will still be able to make use of all the examples in this book, but you’ll have to
follow the instructions supplied with each WAMP, which may not be as easy to follow
as the preceding guide.

Here’s a selection of the best, in my opinion:

* FEasyPHP: http://www.easyphp.org

* XAMPP: http://apachefriends.orglen/xampp.html

* WAMPServer: hitp://wampserver.com/en/

* Glossword WAMP: http://glossword.biz/glosswordwamp/

Installing a MAMP on 0S X

Zend Server CE is also available for OS X, and you can download it from http://tinyurl
.com/zendce as shown in Figure 2-14.

I recommend you always download the latest stable release (in this instance it’s 5.6.0
SP1 for OS X), which will be listed first in the download section of the web page. The
page should display the correct installer for your computer: Linux, Windows, or
OS X. You will be asked to log in before you download. You can click a link to get the
file without logging in or registering, but you’ll miss out on product update emails and
other news.

When the download is complete, double-click the .dmg file. Wait for the download to
verify, and then the window in Figure 2-15 will appear. Here you can double-click the
READ ME file for instructions, or drag and drop Zend Server and Zend Controller into
your Applications folder (available under the Go menu of the Finder) to install them.

To get started, locate Zend Server in your Applications folder and double-click it to
open up the installation window shown in Figure 2-16.

Click Continue, read the instructions that are then displayed, and then click Continue
again to reach the screen shown in Figure 2-17, where you can decide where to put the
installed software. The default is Macintosh HD. Click Install when you are ready, and
enter your password if prompted for it.

24 | Chapter2: Setting Up a Development Server

http://tinyurl.com/zendcedocs
http://www.easyphp.org
http://apachefriends.org/en/xampp.html
http://wampserver.com/en/
http://glossword.biz/glosswordwamp/
http://tinyurl.com/zendce
http://tinyurl.com/zendce

e 00 Zend Server CE Downloads - Zend.com o
|« p | [] [rer| [=] [+ Znep:/www.zend.com/en/products/server-ce/downloa o) & | (O zend server ce @) [@ |
s == Complete PHP stack that includes Yes Yes

ZF

Opcede acceleration (Zend Yes Yes

Optimizer+)

PHP application deployment Yes

Page caching and job queue Yes

support

PHP monitoring and code tracing Yes

Zend Server Cluster Manager Yes

support

Technical support, updates and Yes IBM only,
hotfixes for 1 year

Service Pack/Hotfixes Available
Use the latest patches to ensure a fully secure environment!

A Linux & windows | g MacOSX @ IBM i

Note: Zend Server CE for the Mac OS X platform is meant for development use only, not production use.

Product Version Format/Size MNotes
Zend Server CE (PHP 5.3) 5.6.0 DMG) 152.90 MB Release Notes

Figure 2-14. You can download Zend Server CE for OS X from the Zend website

During installation you may be asked whether you wish to install additional software.
If so, I recommend accepting everything offered to you by clicking the Install button.
Upon completion you can click Close to close the installer.

Once installed, to complete setup locate the Zend Server program in your Applica-
tions folder and double-click it. This will bring up a page in your default web browser
similar to that shown in Figure 2-8. Now follow the prompts shown in Figure 2-8
through Figure 2-10, in which you must accept the license agreement, choose a pass-
word, and finish the installation. You will then be taken to the main dashboard.

Configuring MySQL

Unfortunately, the Zend Server CE installer doesn’t set up the commands needed to be
able to start, stop, and restart the MySQL server, so you’re going to have to do this
manually by opening a Terminal window and entering the following command:

sudo nano /usr/local/zend/bin/zendctl.sh

Installinga MAMP on 0SX | 25

8 00 . Zend Server

zendserver

Community Edition

Double click to install Zend Server

Zend Server

Zend Controller

RTF
To Install Zend Controller, drag the
README icon to your Applications folder

Figure 2-15. Drag the applications to your Applications folder

After entering your password you will now be in the Nano text editor, so move the
cursor down a few lines using the down arrow key and, where you see the line that
reads MySQL_EN="false", change the word false to true.

Now scroll down some more until you find these two lines:

case $1 in
"start")

Below them you’ll see an indented line that reads:
$0 start-apache
Just after this line, insert a new one that reads as follows:

$0 start-MysQL

This will allow MySQL to start. Now scroll down a little more until you get to the
section that starts:

"restart")

Below it you’ll see an indented line that reads:

$0 restart-apache

26 | Chapter2: Setting Up a Development Server

800 ® Install ZendServer

Welcome to the ZendServer Installer !ﬂ
The Installation “Wizard will install Zend Server on your compber.
@ Introduction To start installing, click Continue.
Read Me
Destination Select
nstallation Type
nstallation
Summary
zendserver r

;0 Back | Continue |
Community Edition il s

Figure 2-16. The Zend Server CE installer

Just after this line, insert a new one that reads as follows:
$0 restart-MySQL
You have now made it possible for MySQL to be restarted, but there’s one more thing

to do. To allow MySQL to be stopped, scroll down several more lines until you find
the section that starts with:

"stop")
Below it you’ll see an indented line that reads:
$0 stop-apache %
Just after this line, insert a new one that reads as follows:
$0 stop-MySQL

Now you can press Ctrl-X to exit from edit mode, press the Y key when prompted to
save the changes, and then press Return to save the edited file.

Ensuring MySQL starts on booting

To make it so that MySQL will start when your Mac does, you’ll need to issue the
following commands from the Terminal:
cd /Library/StartupItems/ZendServer init/

sudo rm zendctl.sh
sudo 1n -s /usr/local/zend/bin/zendctl.sh ./

Installinga MAMPon 0SX | 27

800 ® Install ZendServer

Standard Install on “Macintosh HD" m
& Introduction
& Read Me This will take 485.5 ME of space on your
computer.
© Destination Select
© Installation Type Click Install to perform a standard installation of
this software on the disk "Macintosh HD".
nstallation
Summary
Change Install Location...
zendserver

|
Community Edition | GoBack | | Install l

Figure 2-17. Choosing the destination for installation

Your Mac is now configured, but MySQL has not yet been started. Issue the following
command and you should be all set to go:

sudo /Library/StartupItems/ZendServer init/zendctl.sh restart

Testing the Installation

You can now test the installation by entering either of the following URLs into your
web browser to call up the screen shown in Figure 2-18:

http://localhost:10088
http://127.0.0.1:10088

The word localhost specifies the local computer, which will also respond to the IP
address 127.0.0.1. The reason for entering : 10088 is because many Mac computers will
already have a web server running: adding this avoids any clashes. You must therefore
remember to place :10088 after every http://localhost for all examples in this book. So,
for example, if the filename test.php is being used, you would call it up from the browser
using the URL http://localhost:10088/test.php.

28 | Chapter2: Setting Up a Development Server

http://localhost:10088/test.php

800 Zend Server Test Page "
3| |+ @ htp://localhost: 10088/ ¢ |(Q- Google

u The PHP Company

zend

Zend Server Test Page

Zend Serveris now up and running on this server. Once contentis added this message will

no longer be displayed.

If you are this server's administrator:

¥ou can now add content to yourVWeb server's document rool. You can configure and contral
your Zend Server installation through the Zend Server Administration Interface. Please refer

o the documentation or to your installation's README file for more information
Ifyou need help getting started with Zend Server, please visitthe on-line resources page.

For more information about Zend Server vou are welcome to visit us at www.zend.com.

Figure 2-18. The web server is up and running

If you are sure that there isn’t another web server running on your Mac
you can edit the configuration file at the following location (ensuring

4" you have permission to do so), changing the command (at about line
40) that reads Listen 10088 to Listen 80:

/usr/local/zend/apache2/conf/httpd.conf

You will then need to restart the server by opening the Terminal utility
and issuing the following command:

sudo /usr/local/zend/bin/zendctl.sh restart

Now you will no longer need to add the :10088 to local URLs.

The page that gets displayed in the browser when you go to http://localhost or http://
localhost:10088 is the file index.html in the server’s document root, which is the direc-
tory that contains the main web documents for a domain. This is the one that is entered

Installinga MAMPon 0SX | 29

http://localhost
http://localhost:10088
http://localhost:10088

when a basic URL without a path is typed into a browser, such as http://yahoo.com, or,
in the case of your local web server, http://localhost.

By default, Zend Server CE uses the following as its document root folder:
/usr/local/zend/apache2/htdocs

To ensure that you have everything correctly configured, you should now load a test
file. Create a small HTML file along the following lines, using TextEdit or any other
program or text editor (do not use a rich word processor such as Microsoft Word, unless
you save as plain text):
<html>
<head>
<title>A quick test</title>
</head>
<body>
Hello World!
</body>
</html>

Once you have typed this in, save the file into the document root directory using the
filename test.htm. You can now call up this page in your browser by entering the fol-
lowing URL in its address bar (see Figure 2-19):

http://localhost:10088/test.htm

800 A quick test "
| <>] [ﬁj | + | @ http://localhost:10088/testhtm & | (Q Google [2| »

Hello World!

Figure 2-19. If you see this, everything’s working

You should now have had a trouble-free installation, resulting in a fully working
MAMP. But if you encountered any difficulties, check out the comprehensive docu-
mentation at http://tinyurl.com/zendcedocs, which should sort out your problem.

30 | Chapter2: Setting Up a Development Server

http://yahoo.com
http://localhost
http://tinyurl.com/zendcedocs

W
o For your convenience, throughout this book whenever a URL seems
"‘:‘ excessively long to easily type in, I use the tinyurl.com web address
T Q8 shortening service. For example, hitp://tinyurl.com/zendcedocs is much
" shorter than the URL it leads to: http://files.zend.com/help/Zend-Server
-Community-Edition/zend-server-community-edition.htm.

Installing a LAMP on Linux

The instructions and examples in this book will work equally well on a Linux computer.
However, there are dozens of popular flavors of Linux, each of which may require
installing a LAMP in a slightly different way, and I can’t cover them all in this book.

Also, many Linux versions come preinstalled with a web server and MySQL, so the
chances are that you may already be all set to go. To find out, try entering the following
into a browser and see whether you get a default document root web page:

http://localhost

If this works, you probably have the Apache server installed and may well also have
MySQL up and running—check with your system administrator to be sure, though.

If you don’t yet have a web server installed, there’s also a version of Zend Server CE
available for you, which you can download from the following URL:

http://tinyurl.com/zendce

All the instructions and help you need are detailed on the download page. Follow them
closely or use the provided scripts and you should be able to work through all the
examples in this book.

Working Remotely

If you have access to a web server already configured with PHP and MySQL, you can
always use that for your web development. But unless you have a high-speed connec-
tion, it is not always your best option. Developing locally allows you to test modifica-
tions with little or no upload delay.

Accessing MySQL remotely may not be easy either. You may have to telnet or SSH into
your server to manually create databases and set permissions from the command line.
Your web hosting company will advise you on how best to do this and provide you
with any password they have set for your MySQL access (as well as, of course, for getting
into the server in the first place).

Working Remotely | 31

http://tinyurl.com
http://tinyurl.com/zendcedocs
http://files.zend.com/help/Zend-Server-Community-Edition/zend-server-community-edition.htm
http://files.zend.com/help/Zend-Server-Community-Edition/zend-server-community-edition.htm
http://tinyurl.com/zendce

Logging In
[recommend that, at minimum, Windows users should install a program such as

PuTTY, available at http://putty.org, for Telnet and SSH access (remember that SSH is
much more secure than Telnet).

On a Mac, you already have SSH available. Just select the Applications folder, followed
by Utilities, and then launch Terminal. In the Terminal window, log in to a server using
SSH as follows:

ssh mylogin@server.com
where server. com is the name of the server you wish to log in to and mylogin is the

username you will log in under. You will then be prompted for the correct password
for that username and, if you enter it correctly, you will be logged in.

Using FTP

To transfer files to and from your web server, you will need an FTP program. If you go
searching the Web for a good one, you’ll find so many that it could take you quite a
while to locate one with all the right features for you.

Nowadays, I always recommend FireFTP, because of these advantages:

* Itisanadd-on for the Firefox web browser, and will therefore work on any platform

on which Firefox runs.

* (Calling it up can be as simple as selecting a bookmark.

* Tt is one of the fastest and easiest to use FTP programs that [have encountered.
N

- You may say, “But I only use Microsoft Internet Explorer and FireFTP

as isn’tavailable for it,” but I would counter thatif you are going to develop

O F ; ;
98 web pages, you need a copy of each of the main browsers installed on
* your PC anyway, as suggested at the start of this chapter.

To install FireFTP, visit http://fireftp.mozdev.org using Firefox and click on the “Down-
load FireFTP” link. It’s about half a megabyte in size and installs very quickly. Once
it’s installed, restart Firefox; you can then access FireFTP from the Tools menu (see
Figure 2-20).

32 | Chapter2: Setting Up a Development Server

http://putty.org
http://fireftp.mozdev.org

@ robinnixon.com - FireFTP - Moxzilla Firefox = | B i)
File Edit View History Bookmarks Iools Help
@ 1 B S| & chromes/ireftp/contentfireftpaxul 23 - Google P
Disconnect Edit Abort Tools Help
5 @ [wilpmjnet +| Browse 05 @ I fwwwAlpmjnet +] Change
4= Ipmj.net “| | Name + Size Date] 4= Ipmj.net * | Name # Size . Date]
r510 _1.php 2KB .. Mar19 2011 - ro10 _|1.php 2KB .. Mar192011 -
ron _10.php 4KB .. Mar19 2011 ron _|10.php 4KB .. Mar19 2011
r12 _1l.php 2KB .. Mar192011 r12 _|1l.php 2KB .. Mar192011
rOLB 1z.php 2KB ... Mar192011 rO13 [J12.php 2KB .. Marl9 2011
roe [J13.php 2KB ... Mar192011 PO [J13.php 2KB .. Marl9 2011
ro1s _14.php 2KB .. Mar19 2011 . y v15 _[14.php 2KB .. Mar19 2011
116 2|4 _|15.php 3KE .. Mar19 2011 = = Y| _|15php 3KB .. Mer192011
ro _16.php 3KB .. Mar19 2011 vz _|16.php 3KB .. Mar192011
r18 _17.php 2KB .. Mar192011 r18 _|17.php 2KB .. Mar192011
vi18 18.php 2KB .. Mar102011 P19 _|18.php 2KB .. Marld 2011
rE20 [)19.php 2KB ... Mar192011 E rO® |19.php 2KB .. Marlo201l =
rE3 _2.php 2KB .. Mar19 2011 : : r03 _|2.php 2KB .. Mar19 2011
rioe | 2 20.6hp 3KB .. Mar19 2011 v ‘| Cl20.php 3KB .. Mar192011
ras _3.php 3KB .. Mar19 2011 ras _|3.php 3KB .. Mar192011
r6 J4.php 4KB .. Mar192011 rJ6 J4php 4KB .. Mar192011
ra7 [)5.0hp 4KB .. Mar102011 4= [|5.php 4KB .. Marld 2011
= [6.ohp IKB .. Mar102011 = [|6.php IKE .. Marld 2011
res _7.php 4KB .. Dec3 2010 ros _|7.php 4KB .. Mar19 2011
P 7| 8.php 4KB .. Mar19 2011 be T | Japhp 4KB .. Mar19 2011
g il 4 Ol 2w Bdar 103011 - s 14 = il > O b 2w Afar10 2011 S
‘ 220 robinixon.com FTP server (Version 6.00L5) ready.
Log ‘ Queua‘
Local Listing: 62 object(s), 5.21 MB, Disk Space Available: 8.1 GB Binary
O x

Figure 2-20. FireFTP offers full FTP access from within Firefox

Another excellent FTP program is the open source FileZilla, available from http:/file
zilla-project.org for Windows, Linux, and OS X 10.5 or newer.

Of course, if you already have an FTP program, all the better—stick with what you
know.

Using a Program Editor

Although a plain text editor works for editing HTML, PHP, JavaScript, and CSS, there
have been some tremendous improvements in dedicated program editors, which now
incorporate very handy features such as colored syntax highlighting. Today’s program
editors are smart and can show you where you have syntax errors before you even run
a program. Once you’ve used a modern editor, you’ll wonder how you ever managed
without one.

There are a number of good programs available, but I have settled on Editra, because
it’s free and available for OS X, Windows, and Linux/Unix. You can download a copy
by visiting http://editra.org and selecting the Download link toward the top left of the
page, where you can also find the documentation for it.

Using a Program Editor | 33

http://filezilla-project.org
http://filezilla-project.org
http://editra.org

Download from Wow! eBook <www.wowebook.com>

Asyou can see from Figure 2-21, Editra highlights the syntax appropriately using colors
to help clarify what’s going on. What’s more, you can place the cursor next to brackets
or braces and Editra will highlight the matching pair so that you can check whether
you have too many or too few. Editra offers many other features too, which you will
discover and enjoy as you use it.

B3 *examples.php - filey/fC:\Users\Robin'\Desktop\examples.php - Editra +0.6.99 S S
File Edit View Format Settings Tools Help
CEBEE ¢ B0 L&

@*mmpluphp x =

1753 §contents = @file_get_contents($page); =

1754 if (!'Scontents) return FALSE;

1755

1756 Schecksum = md5 (§contents) ;

1757

1758 if (file exists (5datafile))

1758 B {

1760 Srawfile = file get_contents($datafile);

1761 Sdata = explode ("\n", rtrim($rawfile)):

1762 Sleft = array_map("PU_F1", $data); 4

1763 Sright = array_map("PU_F2", $data):

1764 Sexists = -1;

1765

1766 for (53 = 0 ; §3 < count(5left) ; ++§3)

1767 & {

1768 if (§left[$3]1 = Spage)

1763 B {

1770 Sexists = §3;

1771 if (Sright[$J] = §checksum) return 0O;

1772 }

1773 i
4 | i 3

PHP ¢pl252 CRLF Line:1569 Column: 33

Figure 2-21. Program editors are superior to plain text editors

Again, if you have a different preferred program editor, use that—it’s always a good
idea to use programs you’re already familiar with.

Using an IDE

As good as dedicated program editors can be for your programming productivity, their
utility pales into insignificance when compared to Integrated Developing Environ-
ments (IDEs), which offer many additional features such as in-editor debugging and
program testing, as well as function descriptions and much more.

Figure 2-22 shows the popular phpDesigner IDE with a PHP program loaded into the
main frame. On the right is the Code Explorer, listing the various classes, functions,
and variables that it uses.

34 | Chapter2: Setting Up a Development Server

& phpDesigner 8 - \\MAIN\Documents\Documeants\Websites\webdevelopmentcookbook.com\WDC.php] =NAC X

‘4 File Edit Find Goto Insert Format CSS JavaScript PHP Debug Project Tools Svn Git Highlighters View Window Help Trial expires in 21 days -8 X
i0-e3- c YR -m- e Tfer ik 2@ i
: > =0 A ' oo @ @iz P -
Debug + Run v [3) Locahost + [pHp + xeTML + CSS + Javascrpt - x | CodeExplorer x
(steolor) i = |47 Funcuons (104)
if ($tsize) $tail .= "achts—§Ecolor,§tsizen; & AddUserToDB(Stable, Snmax, shmax, Ssaltt, Ssa
(Slabels) Stail . labels": &1 AnagramFinder($word, $filename)
($legends) S$tail . $legends"; & AutoBacklinks{sflename)
($colors) $tail . c=§aolors"; 4 BBCode(sstring)
($bgfill) $tail .= "&chi-bg, s, GBGEIEN": & BlockUserByCookie(Saction, shandle, $expire)
2855 Surl = "htep://chart.apis.google.com/chart?§EAEl; 4] BypassCaptcha)
— & capsControl(Stext, Stype)
2857 & checkCaptcha($captcha, $token, Ssalt1, $salt2)
7858 & CheckLinks(Spage, Stimeout, Sruntime)
2853 &] CloseSession()
z860 $¢image = imagecreatefrompng (Surl): &1 convertCurrency($amount, $from, $to)
2a61 | & CornerGifiscorner, Sborder, $haround)
2862 fw = Jmagasx(fnrage); ..;] CountTail(§number)
863 £n = imagesy(fimage):) . . &) CreateCaptcha(gsize, Sength, Sfant, Sfolder, S5
2864 $image2 = imagecreatetruecolor($w + Sborder * 2, :))
o S$h + Shorder * 2): &] CreateGoogleChart(Stitle, Stcolor, Stsize, $type,
2866 Sclr = imagecolorallocate($image, &] Createlist(Siteme, Sstart, Stype, shulet)
2867 hexdec (substr (Sbcolor, 0, 2)), m & createSession($handle, $pass, Sname, Semai)
z868 hexdec (substr (Sbcoloz, 2, 2)), T 4] createshortURL(Surl, Sredirect, Slen, $file)
2869 hexdec (substr ($bcolor, 4, 2))); & CurlGetContents(Surl, Sagent)
2870 imagefilledrectangle ($image2, 0, 0, $w + Sborder * 2, 4] Directorylist(spati)
2871 $h + Sborder * 2, Sclz): & DisplayBingMan(slat, Siong, $zo0m, Sstyle, Swict|
2872 imagecopy ($image2, Simage, Sborder, Sborder, O, O, Sw, $h); 5] EmbedvouTubeVideo(s, Swidth, sheight, shigh,
2873 imagedestroy ($image) ; -
- return Simage2; & EvaluateExpression(Sexpr)
2875 } & FT_FNACST, $t, 35, $e)
2876 & FetchFlickrStream(gaccount)
2877 function CurlGetContents(Surl, Sagent) il & Fetchiikipage (sentry)
P p— i v Ic|Bcaor Be @F 21 ac
Windows | Ansi Ln 2861:Col 1 No project loaded WMAIN\Documents\Documents\Websites \nebdey

Figure 2-22. When using an IDE such as phpDesigner, PHP development becomes much quicker and
easier

When developing with an IDE, you can set breakpoints and then run all (or portions)
of your code, which will stop at the breakpoints and provide you with information
about the program’s current state.

As an aid to learning programming, the examples in this book can be entered into an
IDE and run there and then, without the need to call up your web browser.

There are several IDEs available for different platforms, most of which are commercial,
but there are some free ones too. Table 2-1 lists some of the most popular PHP IDEs,
along with their download URLs. Choosing an IDE can be a very personal thing, so if
you intend to use one, I advise you to download a couple or more and try them out
first—they all either have trial versions or are free to use, so it won’t cost you anything.

Table 2-1. A selection of PHP IDEs

IDE Download URL Pricefrom Win Mac Lin
Eclipse PDT http://eclipse.org/pdt/downloads/ Free 4
Komodo IDE http://activestate.com/Products/komodo_ide ~ $245 v v 4
NetBeans http://www.netbeans.org Free v

v

phpDesigner http://mpsoftware.dk $39

UsinganIDE | 35

http://eclipse.org/pdt/downloads/
http://activestate.com/Products/komodo_ide
http://www.netbeans.org
http://mpsoftware.dk

IDE Download URL Pricefrom Win Mac Lin

PHPEclipse http://phpeclipse.de Free v 4 4
PhpED http://nusphere.com $119 v v
PHPEdit http://phpedit.com $119 v

Zend Studio http://zend.com/en/downloads $395 4 4 4

You should take the time to install a program editor or IDE you are comfortable with.
You’ll then be ready to type in and try out the examples in the coming chapters.

Armed with these tools, you are now ready to move on to Chapter 3, where we’ll start
exploring PHP in further depth and find out how to get HTML and PHP to work
together, as well as how the PHP language itself is structured. But before moving on, I
suggest you test your new knowledge with the following questions.

Test Your Knowledge

1. What is the difference between a WAMP, a MAMP, and a LAMP?

2. What do the IP address 127.0.0.1 and the URL http://localhost have in common?
3. What is the purpose of an FTP program?

4. Name the main disadvantage of working on a remote web server.

5. Why is it better to use a program editor instead of a plain text editor?

See “Chapter 2 Answers” on page 499 in Appendix A for the answers to these
questions.

36 | Chapter2: Setting Up a Development Server

http://phpeclipse.de
http://nusphere.com
http://phpedit.com
http://zend.com/en/downloads
http://localhost

CHAPTER 3
Introduction to PHP

In Chapter 1, I explained that PHP is the language that you use to make the server
generate dynamic output—output that is potentially different each time a browser re-
quests a page. In this chapter, you’ll start learning this simple but powerful language;
it will be the topic of the following chapters up through Chapter 6.

I encourage you to develop your PHP code in one of the IDEs listed in Chapter 2. It
will help you catch typos and speed up learning tremendously in comparison to less
feature-rich editors.

Many of these development environments let you run the PHP code and see the output
discussed in this chapter. I'll also show you how to embed the PHP in an HTML file
so that you can see what the output looks like in a web page (the way your users will
ultimately see it). But that step, as thrilling as it may be at first, isn’t really important
at this stage.

In production, your web pages will be a combination of PHP, HTML, and JavaScript,
and some MySQL statements laid out using CSS. Furthermore, each page can lead to
other pages to provide users with ways to click through links and fill out forms. We
can avoid all that complexity while learning each language, though. Focus for now on
just writing PHP code and making sure that you get the output you expect—or at least,
that you understand the output you actually get!

Incorporating PHP Within HTML

By default, PHP documents end with the extension .php. When a web server encounters
this extension in a requested file, it automatically passes it to the PHP processor. Of
course, web servers are highly configurable, and some web developers choose to force
files ending with .htm or .html to also get parsed by the PHP processor, usually because
they want to hide the fact that they are using PHP.

Your PHP program is responsible for passing back a clean file suitable for display in a
web browser. At its very simplest, a PHP document will output only HTML. To prove

37

this, you can take any normal HTML document, such as an index.html file, and save it
as index.php; it will display identically to the original.

Calling the PHP Parser

To trigger the PHP commands, you need to learn a new tag. The first part is:
<?php

The first thing you may notice is that the tag has not been closed. This is because entire
sections of PHP can be placed inside this tag, and they finish only when the closing
part, which looks like this, is encountered:

>
A small PHP “Hello World” program might look like Example 3-1.

Example 3-1. Invoking PHP

<?php
echo "Hello world";
?>

The way you use this tag is quite flexible. Some programmers open the tag at the start
of a document and close it right at the end, outputting any HTML directly from PHP
commands.

Others, however, choose to insert only the smallest possible fragments of PHP within
these tags wherever dynamic scripting is required, leaving the rest of the document in
standard HTML.

The latter type of programmer generally argues that their style of coding results in faster
code, while the former say that the speed increase is so minimal that it doesn’t justify
the additional complexity of dropping in and out of PHP many times in a single
document.

As you learn more, you will surely discover your preferred style of PHP development,
but for the sake of making the examples in this book easier to follow, I have adopted
the approach of keeping the number of transfers between PHP and HTML to a mini-
mum—_generally only once or twice in a document.

By the way, a slight variation to the PHP syntax exists. If you browse the Internet for
PHP examples, you may also encounter code where the opening and closing syntax
used is like this:

<?

echo "Hello world";
?>

Although it’s not as obvious that the PHP parser is being called, this is a valid, alternative
syntax that also usually works. However, it should be discouraged, as it is incompatible

38 | Chapter3: Introduction to PHP

with XML and its use is now deprecated (meaning that it is no longer recommended
and that support could be removed in future versions).

If you have only PHP code in a file, you may omit the closing ?>. This
can be a good practice, as it will ensure you have no excess whitespace
%" leaking from your PHP files (especially important when writing object-
* oriented code).

This Book’s Examples

To save you the time it would take to type them in, all the examples from this book
have been archived onto the website at http:/l[pmj.net, from where you can download
the file 2nd_edition_examples.zip by clicking the “Download Examples” link in the
heading section (see Figure 3-1).

e\.'__ ‘|L_| hittp://lpmj.net/ L-BCEX HL__l Learning PHP, MySQL & Ja... 3 57 fes

Fle Edit View Favorites Tools Help

Learning PHP, MySQL & JavaScript
O REILLY® By Robin Nixon (o'Reilly 2008, ISBN 978-0596157135)

Home | Wiew 1st Edition | Buy Paperback / Kindle | Download Examples

Find out for yourself why Learning PHP, MySQL & JavaScript is the number-one best-selling blockbuster
that has been at the top of the charts for over two years worldwide, is the first result returned on PHP by
Amazon US, UK and Canada, the first foreign language title on PHP returned on European Amazon websites,
and in the top 10 foreign books on PHP en Amazon Japan and China!

Learning PHP, MySQL & JavaScript will teach you how to create responsive, data-driven websites with
the three central technologies of PHP, MySQL and JavaScript - whether or not you know how to program. This
simple, streamlined guide explains how the powerful combination of PHP and MySQL provides a painless way
to build modern websites with dynamic data and user interaction. You'll also learn how to add JavaScript to
create rich Internet websites and applications, and how to use Ajax to handle background communication with
a web server.

m

Contents of 2nd Edition

Introduction to Dynamic Web Content
Setting Up a Development Server
Introduction to PHP

Expressions and Control Flow in PHP
PHP Functions and Objects

PHP Arrays

. Practical PHP

. Introduction to MySQL

. Mastering MySQL

. Accessing MySQL Using PHP

. Form Handling

. Cookies, Sessions and Authentication
. Exploring JavaScript

BN ApNE

w0

e
WO

H100% -

Figure 3-1. Viewing examples from this book at http://lpmj.net

As well as having all the examples saved by chapter and example number (such as
example3-1.php), the provided examples.zip archive also contains an extra folder called

This Book's Examples | 39

http://lpmj.net
http://lpmj.net

named_examples, in which you’ll find all the examples I suggest saving using a specific
filename (such as the upcoming Example 3-4, which should be saved as test1.php).

The Structure of PHP

We’re going to cover quite a lot of ground in this section. It’s not too difficult, but I
recommend that you work your way through it carefully, as it sets the foundation for
everything else in this book. As always, there are some useful questions at the end of
the chapter that you can use to test how much you’ve learned.

Using Comments

There are two ways in which you can add comments to your PHP code. The first turns
a single line into a comment by preceding it with a pair of forward slashes, like this:

// This is a comment

This version of the comment feature is a great way to temporarily remove a line of code
from a program that is giving you errors. For example, you could use such a comment
to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of code to describe its action,
like this:

$x += 10; // Increment $x by 10

When you need multiple-line comments, there’s a second type of comment, which
looks like Example 3-2.

Example 3-2. A multiline comment

<?php

/* This is a section
of multiline comments
that will not be
interpreted */

>

You can use the /* and */ pairs of characters to open and close comments almost
anywhere you like inside your code. Most, if not all, programmers use this construct
to temporarily comment out entire sections of code that do not work or that, for one
reason or another, they do not wish to be interpreted.

40 | Chapter3: Introduction to PHP

A common error is to use /* and */ to comment out a large section of
% code that already contains a commented-out section that uses those
characters. You can’t nest comments this way; the PHP interpreter
won’t know where a comment ends and will display an error message.

However, if you use a program editor or IDE with syntax highlighting,
this type of error is easier to spot.

Basic Syntax

PHP is quite a simple language with roots in C and Perl, yet it looks more like Java. It
is also very flexible, but there are a few rules that you need to learn about its syntax and
structure.

Semicolons

You may have noticed in the previous examples that the PHP commands ended with
a semicolon, like this:

$x += 10;

Probably the most common cause of errors you will encounter with PHP is forgetting
this semicolon, which causes PHP to treat multiple statements like one statement,
which it is unable to understand. This leads to a “Parse error” message.

The $ symbol

The $ symbol has come to be used in many different ways by different programming
languages. For example, if you have ever written in the BASIC language, you will have
used the $ to terminate variable names to denote them as strings.

In PHP, however, you must place a $ in front of all variables. This is required to make
the PHP parser faster, as it instantly knows whenever it comes across a variable.
Whether your variables are numbers, strings, or arrays, they should all look something
like those in Example 3-3.

Example 3-3. Three different types of variable assignment

<?php

$mycounter = 1;

$mystring = "Hello";

$myarray = array("One", "Two", "Three");
>

And really, that’s pretty much all the syntax that you have to remember. Unlike lan-
guages such as Python, which is very strict about how you indent and lay out our code,
PHP leaves you completely free to use (or not use) all the indenting and spacing you
like. In fact, sensible use of what is called whitespace is generally encouraged (along
with comprehensive commenting) to help you understand your code when you come
back to it. It also helps other programmers when they have to maintain your code.

The Structure of PHP | 41

Understanding Variables

There’s a simple metaphor that will help you understand what PHP variables are all
about. Just think of them as little (or big) matchboxes! That’s right, matchboxes that
you’ve painted over and written names on.

String variables

Imagine you have a matchbox on which you have written the word username. You then
write Fred Smith on a piece of paper and place it into the box (see Figure 3-2). Well,
that’s the same process as assigning a string value to a variable, like this:

$username = "Fred Smith";

Figure 3-2. You can think of variables as matchboxes containing items

The quotation marks indicate that “Fred Smith” is a string of characters. You must
enclose each string in either quotation marks or apostrophes (single quotes), although
there is a subtle difference between the two types of quote, which is explained later.
When you want to see what’s in the box, you open it, take out the piece of paper, and
read it. In PHP, doing so looks like this:

echo $username;
Or you can assign it to another variable (i.e., photocopy the paper and place the copy
in another matchbox), like this:

$current_user = $username;
If you are keen to start trying out PHP for yourself, you could try entering the examples
in this chapter into an IDE (as recommended at the end of Chapter 2), to see instant

results, or you could enter the code in Example 3-4 into a program editor and save it
to your server’s document root directory (also discussed in Chapter 2) as test1.php.

42 | Chapter3: Introduction to PHP

Example 3-4. Your first PHP program

<?php // testi.php
$username = "Fred Smith";
echo $username;

echo "
";
$current_user = $username;
echo $current_user;

?>

Now you can call it up by entering the following into your browser’s address bar:
http://localhost/test1.php

N

If during installation of your web server (as detailed in Chapter 2) you
changed the port assigned to the server to anything other than 80, you
& must place that port number within the URL in this and all other ex-
amples in this book. So, for example, if you changed the port to 8080,
the preceding URL becomes:

http://localhost:8080/test1.php

I will not mention this again, so just remember to use the port number
if required when trying out any examples or writing your own code.

The result of running this code should be two occurrences of the name “Fred Smith,”
the first of which is the result of the echo $username command and the second of the
echo $current_user command.

Numeric variables

Variables don’t contain just strings—they can contain numbers, too. Using the match-
box analogy, to store the number 17 in the variable $count, the equivalent would be
placing, say, 17 beads in a matchbox on which you have written the word count:

$count = 17;
You could also use a floating-point number (containing a decimal point); the syntax is
the same:

$count = 17.5;
To examine the contents of the matchbox, you would simply open it and count the

beads. In PHP, you would assign the value of $count to another variable or perhaps just
echo it to the web browser.

Arrays

So what are arrays? Well, you can think of them as several matchboxes glued together.
For example, let’s say we want to store the player names for a five-person soccer team
in an array called $team. To do this, we could glue five matchboxes side by side and

The Structure of PHP | 43

write down the names of all the players on separate pieces of paper, placing one in each
matchbox.

Across the top of the matchbox assembly, we would write the word team (see
Figure 3-3). The equivalent of this in PHP would be:

$team = array('Bill', 'Joe', 'Mike', 'Chris', 'Jim');

<5

Figure 3-3. An array is like several matchboxes glued together

This syntax is more complicated than the instructions I’ve explained so far. The array-
building code consists of the following construct:

array();
with five strings inside the parentheses. Each string is enclosed in single quotes.
If we then wanted to know who player 4 is, we could use this command:

echo $team[3]; // Displays the name Chris

The reason the previous statement has the number 3 and not a 4 is because the first

element of a PHP array is actually the zeroth element, so the player numbers will there-
fore be 0 through 4.

Two-dimensional arrays

There’s a lot more you can do with arrays. For example, instead of being single-di-
mensional lines of matchboxes, they can be two-dimensional matrixes or can even have
three or more dimensions.

As an example of a two-dimensional array, let’s say we want to keep track of a game
of tic-tac-toe, which requires a data structure of nine cells arranged in a 3x3 square. To

44 | Chapter3: Introduction to PHP

represent this with matchboxes, imagine nine of them glued to each other in a matrix
of three rows by three columns (see Figure 3-4).

Figure 3-4. A multidimensional array simulated with matchboxes

[{3)

You can now place a piece of paper with either an “x” or an “0” in the correct matchbox
for each move played. To do this in PHP code, you have to set up an array containing
three more arrays, as in Example 3-5, in which the array is set up with a game already
In progress.

Example 3-5. Defining a two-dimensional array

<?php

$oxo = array(array('x', '', 'o'),
array('o', 'o', 'x'),
array('x', 'o', "'));

>

Once again, we’ve moved up a step in complexity, but it’s easy to understand if you
grasp the basic array syntax. There are three array() constructs nested inside the outer
array() construct.

To then return the third element in the second row of this array, you would use the
following PHP command, which will display an “x”:

echo $oxo[1][2];

The Structure of PHP | 45

Remember that array indexes (pointers at elements within an array) start
from zero, not one, so the [1] in the previous command refers to the
s second of the three arrays, and the [2] references the third position
within that array. It will return the contents of the matchbox three along
and two down from the top left.

As mentioned, arrays with even more dimensions are supported by simply creating
more arrays within arrays. However, we will not be covering arrays of more than two
dimensions in this book.

Don’t worry if you’re still having difficulty getting to grips with using arrays, as the
subject is explained in detail in Chapter 6.

Variable naming rules
When creating PHP variables, you must follow these four rules:
* Variable names must start with a letter of the alphabet or the _ (underscore)
character.
* Variable names can contain only the characters a-z, A-Z, 0-9, and _ (underscore).

* Variable names may not contain spaces. If a variable must comprise more than one
word, the words should be separated with the (underscore) character (e.g.,
$user_name).

* Variable names are case-sensitive. The variable $High Score is not the same as the
variable $high score.

Operators

Operators are the mathematical, string, comparison, and logical commands such as
plus, minus, times, and divide, which in PHP looks a lot like plain arithmetic; for in-
stance, the following statement outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, take a moment to learn about the
various operators it provides.

Arithmetic operators

Arithmetic operators do what you would expect. They are used to perform mathemat-
ics. You can use them for the main four operations (plus, minus, times, and divide), as
well as to find a modulus (the remainder after a division) and to increment or decrement
a value (see Table 3-1).

46 | Chapter3: Introduction to PHP

Table 3-1. Arithmetic operators

Operator Description Example
+ Addition $j+1

- Subtraction $j-6

* Multiplication $j*11
/ Division $i/4

% Modulus (division remainder) $j%9
++ Increment ++$3

-- Decrement --$j

Assignment operators

These operators are used to assign values to variables. They start with the very simple
= and move on to +=, -=, and so on (see Table 3-2). The operator += adds the value on
the right side to the variable on the left, instead of totally replacing the value on the
left. Thus, if $count starts with the value 5, the statement:

$count += 1;

sets $count to 6, just like the more familiar assignment statement:
$count = $count + 1;

Table 3-2. Assignment operators

Operator Example Equivalentto

= $j=15 $j =15

+= $j4=5 $j =95+ 5
$5-=3 $j=9j -3
*= $3%=8 $j =93 * 8
/= $5/=16 $j = $j / 16
$5.=%k $3 = 95 . 9k
%= $3%4 S5 =93 %4

Strings have their own operator, the period (.), detailed in the section “String concat-
enation” on page 50 a little later in this chapter.

Comparison operators

Comparison operators are generally used inside a construct such as an if statement in
which you need to compare two items. For example, you may wish to know whether
avariable you have been incrementing has reached a specific value, or whether another
variable is less than a set value, and so on (see Table 3-3).

The Structure of PHP | 47

Table 3-3. Comparison operators

Operator Description Example
== Is equal to $j==

1= Is not equal to $j1=21
> Is greater than $3>3

< Is less than $j <100
>= Isgreaterthanorequalto $j>=15
<= Is less than or equal to $j<=8

Note the difference between = and ==. The first is an assignment operator, and the

second is a comparison operator. Even more advanced programmers can sometimes
transpose the two when coding hurriedly, so be careful.

Logical operators

If you haven’t used them before, logical operators may at first seem a little daunting.
But just think of them the way you would use logic in English. For example, you might
say to yourself, “If the time is later than 12 PM and earlier than 2 PM, then have lunch.”
In PHP, the code for this might look something like the following (using military
timing):

if ($hour > 12 && $hour < 14) dolunch();

Here we have moved the set of instructions for actually going to lunch into a function
that we will have to create later called dolunch. The then of the statement is left out,
because it is implied and therefore unnecessary.

As the previous example shows, you generally use a logical operator to combine the
results of two of the comparison operators shown in the previous section. A logical
operator can also be input to another logical operator (“If the time is later than 12 PM
and earlier than 2 PM, or if the smell of a roast is permeating the hallway and there are
plates on the table...”). As a rule, if something has a TRUE or FALSE value, it can be input
to a logical operator. A logical operator takes two true-or-false inputs and produces a
true-or-false result.

Table 3-4 shows the logical operators.

Table 3-4. Logical operators

Operator Description Example

8& And $j == 3&&Sk==
and Low-precedenceand $j == 3and Sk==
I or $3 < 5]l$j>10
or Low-precedence or $3 < 50r$>10

48 | Chapter3: Introduction to PHP

Operator Description Example
! Not I ($5==%K

xor Exclusive or $3 xor Sk

Note that 8& is usually interchangeable with and; the same is true for || and or. But
and and or have a lower precedence, so in some cases, you may need extra parentheses
to force the required precedence. On the other hand, there are times when only and or
or is acceptable, as in the following statement, which uses an or operator (to be ex-
plained in Chapter 10):
mysql select db($database) or die("Unable to select database");

The most unusual of these operators is xor, which stands for exclusive or and returns
a TRUE value if either value is TRUE, but a FALSE value if both inputs are TRUE or both
inputs are FALSE. To understand this, imagine that you want to concoct your own
cleaner for household items. Ammonia makes a good cleaner, and so does bleach, so

you want your cleaner to contain one of these. But the cleaner must not contain both,
because the combination is hazardous. In PHP, you could represent this as:

$ingredient = $ammonia xor $bleach;

In the example snippet, if either $ammonia or $bleach is TRUE, $ingredient will also be
set to TRUE. But if both are TRUE or both are FALSE, $ingredient will be set to FALSE.

Variable Assignment

The syntax to assign a value to a variable is always variable = value. Or, to reassign the
value to another variable, it is other_variable = variable.

There are also a couple of other assignment operators that you will find useful. For
example, we’ve already seen:

$x += 10;
which tells the PHP parser to add the value on the right (in this instance, the value 10)
to the variable $x. Likewise, we could subtract as follows:

$y -= 10;

Variable incrementing and decrementing

Adding or subtracting 1 is such a common operation that PHP provides special oper-
ators for these tasks. You can use one of the following in place of the += and -= operators:

++$x;

--%y;
In conjunction with a test (an if statement), you could use the following code:
if (++$x == 10) echo $x;

The Structure of PHP | 49

This tells PHP to first increment the value of $x and then test whether it has the value
10 and, if so, output its value. You can also require PHP to increment (or, in the fol-
lowing example, decrement) a variable after it has tested the value, like this:

if ($y-- == 0) echo $y;

which gives a subtly different result. Suppose $y starts out as 0 before the statement is
executed. The comparison will return a TRUE result, but $y will be set to -1 after the
comparison is made. So what will the echo statement display: 0 or -1? Try to guess, and
then try out the statement in a PHP processor to confirm. Because this combination of
statements is confusing, it should be taken as just an educational example and not as
a guide to good programming style.

In short, whether a variable is incremented or decremented before or after testing de-
pends on whether the increment or decrement operator is placed before or after the
variable.

By the way, the correct answer to the previous question is that the echo statement will
display the result -1, because $y was decremented right after it was accessed in the if
statement, and before the echo statement.

String concatenation

String concatenation uses the period (.) operator to append one string of characters to
another. The simplest way to do this is as follows:

" "

echo "You have " . $msgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the output from this line of code

will be:
You have 5 messages.
Just as you can add a value to a numeric variable with the += operator, you can append
one string to another using .= like this:
$bulletin .= $newsflash;
In this case, if $bulletin contains a news bulletin and $newsflash has a news flash, the

command appends the news flash to the news bulletin so that $bulletin now comprises
both strings of text.

String types

PHP supports two types of strings that are denoted by the type of quotation mark that
you use. If you wish to assign a literal string, preserving the exact contents, you should
use the single quotation mark (apostrophe), like this:

$info = 'Preface variables with a $ like this: $variable’;

In this case, every character within the single-quoted string is assigned to $info. If you
had used double quotes, PHP would have attempted to evaluate $variable as a variable.

50 | Chapter3: Introduction to PHP

On the other hand, when you want to include the value of a variable inside a string,
you do so by using a double-quoted string:

echo "There have been $count presidents of the US";

As you will realize, this syntax also offers a simpler form of concatenation in which you
don’t need to use a period, or close and reopen quotes, to append one string to another.
This is called variable substitution. You will notice some applications using it exten-
sively and others not using it at all.

Escaping characters

Sometimes a string needs to contain characters with special meanings that might be
interpreted incorrectly. For example, the following line of code will not work, because
the second quotation mark (apostrophe) encountered in the word sister’s will tell the
PHP parser that the end of the string has been reached. Consequently, the rest of the
line will be rejected as an error:

$text = 'My sister's car is a Ford'; // Erroneous syntax

To correct this, you can add a backslash directly before the offending quotation mark
to tell PHP to treat the character literally and not to interpret it:

$text = 'My sister\'s car is a Ford';

You can perform this trick in almost all situations in which PHP would otherwise return
an error by trying to interpret a special character. For example, the following double-
quoted string will be correctly assigned:

non

$text = "My Mother always said \"Eat your greens\".";

Additionally, you can use escape characters to insert various special characters into
strings, such as tabs, newlines, and carriage returns. These are represented, as you might
guess, by \t, \n, and \r. Here is an example using tabs to lay out a heading; it is included
here merely to illustrate escapes, because in web pages there are always better ways to
do layout:

$heading = "Date\tName\tPayment";

These special backslash-preceded characters work only in double-quoted strings. In
single-quoted strings, the preceding string would be displayed with the ugly \t se-
quences instead of tabs. Within single-quoted strings, only the escaped apostrophe
(\") and the escaped backslash itself (\\) are recognized as escaped characters.

Multiple-Line Commands

There are times when you need to output quite a lot of text from PHP, and using several
echo (or print) statements would be time-consuming and messy. To overcome this,
PHP offers two conveniences. The first is just to put multiple lines between quotes, as
in Example 3-6. Variables can also be assigned, as in Example 3-7.

The Structure of PHP | 51

Example 3-6. A multiline string echo statement

<?php
$author = "Alfred E Newman";

echo "This is a Headline

This is the first line.
This is the second.
Written by $author.";
>

Example 3-7. A multiline string assignment

<?php
$author = "Alfred E Newman";

$text = "This is a Headline

This is the first line.
This is the second.
Written by $author.";
>

PHP also offers a multiline sequence using the <<< operator, commonly referred to as
here-document or heredoc for short. This is a way of specifying a string literal, preserving
the line breaks and other whitespace (including indentation) in the text. Its use can be
seen in Example 3-8.

Example 3-8. Alternative multiline echo statement

<?php
$author = "Alfred E Newman";

echo <<<_END
This is a Headline

This is the first line.
This is the second.

- Written by $author.
_END;

>

What this code does is tell PHP to output everything between the two _END tags as if it
were a double-quoted string. This means it’s possible, for example, for a developer to
write entire sections of HTML directly into PHP code and then just replace specific
dynamic parts with PHP variables.

It is important to remember that the closing END; tag must appear right at the start of
a new line and must be the only thing on that line—not even a comment is allowed to
be added after it (nor even a single space). Once you have closed a multiline block, you
are free to use the same tag name again.

52 | Chapter3: Introduction to PHP

Remember: using the <<<_END... END; heredoc construct, you don’t
have to add \n line-feed characters to send a line feed—just press Return
%is and start a new line. Also, unlike either a double-quote- or single-quote-
delimited string, you are free to use all the single and double quotes you
like within a heredoc, without escaping them by preceding them with a

backslash (\).

Example 3-9 shows how to use the same syntax to assign multiple lines to a variable.

Example 3-9. A multiline string variable assignment

<?php
$author = "Alfred E Newman";

$out = <<<_END
This is a Headline

This is the first line.
This is the second.

- Written by $author.
_END;

>

The variable $out will then be populated with the contents between the two tags. If you
were appending rather than assigning, you also could have used .= in place of = to
append the string to $out.

Be careful not to place a semicolon directly after the first occurrence of END, as that
would terminate the multiline block before it had even started and cause a “Parse error”
message. The only place for the semicolon is after the terminating END tag, although
it is safe to use semicolons within the block as normal text characters.

By the way, the END tag is simply one I chose for these examples because it is unlikely
to be used anywhere else in PHP code. You can use any tag you like, such as SEC
TION1, OUTPUT, and so on. Also, to help differentiate tags such as this from variables or
functions, the general practice is to preface them with an underscore, but you don’t
have to use one if you choose not to.

Laying out text over multiple lines is usually just a convenience to make
your PHP code easier to read, because once it is displayed in a web page,
HTML formatting rules take over and whitespace is suppressed (but
$author is still replaced with the variable’s value).

So, for example, if you load these multiline output examples into a
browser they will not display over several lines, because all browsers
treat newlines just like spaces. However, if you use the browser’s view
source feature, you will find that the newlines are correctly placed, and
the output does appear over several lines.

The Structure of PHP | 53

Download from Wow! eBook <www.wowebook.com>

Variable Typing

PHP is a very loosely typed language. This means that variables do not have to be
declared before they are used, and that PHP always converts variables to the type re-
quired by their context when they are accessed.

For example, you can create a multiple-digit number and extract the nth digit from it,
simply by assuming it to be a string. In the following snippet of code (Example 3-10),
the numbers 12345 and 67890 are multiplied together, returning a result of 838102050,
which is then placed in the variable $number.

Example 3-10. Automatic conversion from a number to a string

<?php

$number = 12345 * 67890;
echo substr($number, 3, 1);
?>

At the point of the assignment, $number is a numeric variable. But on the second line,
a call is placed to the PHP function substr, which asks for one character to be returned
from $number, starting at the fourth position (remembering that PHP offsets start from
zero). To do this, PHP turns $number into a nine-character string, so that substr can
access it and return the character, which in this case is 1.

The same goes for turning a string into a number, and so on. In Example 3-11, the
variable $pi is set to a string value, which is then automatically turned into a floating-
point number in the third line by the equation for calculating a circle’s area, which
outputs the value 78.5398175.

Example 3-11. Automatically converting a string to a number

<?php

$pi = "3.1415927";

$radius = 5;

echo $pi * ($radius * $radius);
?>

In practice, what this all means is that you don’t have to worry too much about your
variable types. Just assign them values that make sense to you, and PHP will convert
them if necessary. Then, when you want to retrieve values, just ask for them—for ex-
ample, with an echo statement.

Constants

Constants are similar to variables, holding information to be accessed later, except that
they are what they sound like—constant. In other words, once you have defined one,
its value is set for the remainder of the program and cannot be altered.

54 | Chapter3: Introduction to PHP

One example of a use for a constant might be to hold the location of your server root
(the folder containing the main files of your website). You would define such a constant

like this:
define("ROOT_LOCATION", "/usr/local/www/");

Then, to read the contents of the variable, you just refer to it like a regular variable (but
it isn’t preceded by a dollar sign):

$directory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different server with a different
folder configuration, you have only a single line of code to change.

L)
)

The main two things you have to remember about constants are that
they must not be prefaced with a $ (as with regular variables), and that
%5 you can define them only using the define function.

It is generally agreed to be good practice to use only uppercase for constant variable
names, especially if other people will also read your code.

Predefined constants

PHP comes ready-made with dozens of predefined constants that you generally will be
unlikely to use as a beginner. However, there are a few, known as the magic con-
stants, that you will find useful right from the start. The names of the magic constants
always have two underscores at the beginning and two at the end, so that you won’t
accidentally try to name one of your own constants with a name that is already taken.
They are detailed in Table 3-5. The concepts referred to in the table will be introduced
in future chapters.

Table 3-5. PHP’s magic constants

Magic constant Description
__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include, the name of the included file is returned.
InPHP4.0.2, FILE__always contains an absolute path with symbolic links resolved, whereas in older
versions it might contain a relative path under some circumstances.

_DIR__ The directory of the file. If used inside an include, the directory of the included file is returned. This is
equivalent to dirname(__FILE_).Thisdirectory name does not have a trailing slash unless it is the
root directory. (Added in PHP 5.3.0.)

__FUNCTION__ Thefunction name. (Added in PHP 4.3.0.) As of PHP 5, returns the function name as it was declared (case-
sensitive). In PHP 4, its value is always lowercase.

__CLASS The classname. (Added in PHP4.3.0.) Asof PHP 5, returns the class name as it was declared (case-sensitive).
In PHP 4, its value is always lowercase.

The Structure of PHP | 55

Magic constant Description

__METHOD The class method name. (Added in PHP 5.0.0.) The method name is returned as it was declared (case-
sensitive).

__NAME The name of the current namespace (case-sensitive). This constant is defined at compile time. (Added in

SPACE__ PHP5.3.0.)

One handy use of these constants is for debugging purposes, when you need to insert
a line of code to see whether the program flow reaches it:

echo "This is line " . LINE_ . " of file " . _FILE ;

This causes the current program line in the current file (including the path) being ex-
ecuted to be output to the web browser.

The Difference Between the echo and print Commands

So far, you have seen the echo command used in a number of different ways to output
text from the server to your browser. In some cases, a string literal has been output. In
others, strings have first been concatenated or variables have been evaluated. I've also
shown output spread over multiple lines.

But there is also an alternative to echo that you can use: print. The two commands are
quite similar to each other, but print is an actual function that takes a single parameter,
whereas echo is a PHP language construct.

By and large, the echo command will be a tad faster than print in general text output,
because—not being a function—it doesn’t set a return value.

On the other hand, because it isn’t a function, echo cannot be used as part of a more
complex expression, whereas print can. Here’s an example to output whether the value
of a variable is TRUE or FALSE using print—something you could not perform in the
same manner with echo, because it would display a “Parse error” message:

$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether variable $b is TRUE or
FALSE. Whichever command is on the left of the following colon is executed if $b is
TRUE, whereas the command to the right is executed if $b is FALSE.

Generally, though, the examples in this book use echo, and I recommend that you do
so as well until you reach such a point in your PHP development that you discover the
need for using print.

Functions

Functions are used to separate out sections of code that perform a particular task. For
example, maybe you often need to look up a date and return it in a certain format. That
would be a good example to turn into a function. The code doing it might be only three

56 | Chapter3: Introduction to PHP

lines long, but if you have to paste it into your program a dozen times, you’re making
your program unnecessarily large and complex, unless you use a function. And if you
decide to change the data format later, putting it in a function means you’ll have to
change it in only one place.

Placing such code into a function not only shortens your source code and makes it more
readable, it also adds extra functionality (pun intended), because functions can be
passed parameters to make them perform differently. They can also return values to
the calling code.

To create a function, declare it in the manner shown in Example 3-12.

Example 3-12. A simple function declaration

<?php
function longdate($timestamp)

return date("l F jS Y", $timestamp);

}

>

This function takes a Unix timestamp (an integer number representing a date and time
based on the number of seconds since 00:00 AM on January 1, 1970) as its input and
then calls the PHP date function with the correct format string to return a date in the
format Monday August 1st 2016. Any number of parameters can be passed between the
initial parentheses; we have chosen to accept just one. The curly braces enclose all the
code that is executed when you later call the function.

To output today’s date using this function, place the following call in your code:

echo longdate(time());
This call uses the built-in PHP time function to fetch the current Unix timestamp and
passes it to the new longdate function, which then returns the appropriate string to the

echo command for display. If you need to print out the date 17 days ago, you now just
have to issue the following call:

echo longdate(time() - 17 * 24 * 60 * 60);
which passes to longdate the current Unix timestamp less the number of seconds since

17 days ago (17 days x 24 hours x 60 minutes x 60 seconds).

Functions can also accept multiple parameters and return multiple results, using tech-
niques that I'll introduce over the following chapters.

Variable Scope

If you have a very long program, it’s quite possible that you could start to run out of
good variable names, but with PHP you can decide the scope of a variable. In other
words, you can, for example, tell it that you want the variable $temp to be used only

The Structure of PHP | 57

inside a particular function and to forget it was ever used when the function returns.
In fact, this is the default scope for PHP variables.

Alternatively, you could inform PHP that a variable is global in scope and thus can be
accessed by every other part of your program.

Local variables

Local variables are variables that are created within, and can be accessed only by, a
function. They are generally temporary variables that are used to store partially pro-
cessed results prior to the function’s return.

One set of local variables is the list of arguments to a function. In the previous section,
we defined a function that accepted a parameter named $timestamp. This is meaningful
only in the body of the function; you can’t get or set its value outside the function.

For another example of a local variable, take another look at the longdate function,
which is modified slightly in Example 3-13.

Example 3-13. An expanded version of the longdate function

<?php
function longdate($timestamp)

{
$temp = date("1 F jS Y", $timestamp);
return "The date is $temp";

}

>

Here we have assigned the value returned by the date function to the temporary variable
$temp, which is then inserted into the string returned by the function. As soon as the
function returns, the value of $temp is cleared, as if it had never been used at all.

Now, to see the effects of variable scope, let’s look at some similar code in Exam-
ple 3-14. Here, $temp has been created before calling the longdate function.

Example 3-14. This attempt to access $temp in the function longdate will fail

<?php
$temp = "The date is ";
echo longdate(time());

function longdate($timestamp)
{

}

>

return $temp . date("l F jS Y", $timestamp);

Because $temp was neither created within the longdate function nor passed to it as a
parameter, longdate cannot access it. Therefore, this code snippet only outputs the date
and not the preceding text. In fact, it will first display the error message “Notice: Un-
defined variable: temp.”

58 | Chapter3: Introduction to PHP

The reason for this is that, by default, variables created within a function are local to
that function and variables created outside of any functions can be accessed only by
nonfunction code.

Some ways to repair Example 3-14 appear in Example 3-15 and Example 3-16.

Example 3-15. Rewriting to refer to $temp within its local scope fixes the problem

<?php
$temp = "The date is ";
echo $temp . longdate(time());

function longdate($timestamp)
{

}

>

return date("l F jS Y", $timestamp);

Example 3-15 moves the reference to $temp out of the function. The reference appears
in the same scope where the variable was defined.

Example 3-16. An alternative solution: passing $temp as an argument

<?php
$temp = "The date is ";
echo longdate($temp, time());

function longdate($text, $timestamp)

{
}

>

return $text . date("l F jS Y", $timestamp);

The solution in Example 3-16 passes $temp to the longdate function as an extra argu-
ment. longdate reads it into a temporary variable that it creates called $text and outputs
the desired result.

Forgetting the scope of a variable is a common programming error, so
remembering how variable scope works will help you debug some quite
%" obscure problems. Suffice it to say that unless you have declared a vari-
able otherwise, its scope is limited to being local: either to the current
function or to the code outside of any functions, depending on whether
it was first created or accessed inside or outside a function.

Global variables

There are cases when you need a variable to have global scope, because you want all
your code to be able to access it. Also, some data may be large and complex, and you
don’t want to keep passing it as arguments to functions.

The Structure of PHP | 59

To declare a variable as having global scope, use the keyword global. Let’s assume that
you have a way of logging your users into your website and you want all your code to
know whether it is interacting with a logged-in user or a guest. One way to do this is
to create a global variable such as $is_logged in:

global $is_logged in;

Now your login function simply has to set that variable to 1 upon success of a login
attempt, or 0 upon its failure. Because the scope of the variable is global, every line of
code in your program can access it.

You should use global variables with caution, though. I recommend that you create
them only when you absolutely cannot find another way of achieving the result you
desire. In general, programs that are broken into small parts and segregated data are
less buggy and easier to maintain. If you have a thousand-line program (and some day
you will) in which you discover that a global variable has the wrong value at some point,
how long will it take you to find the code that set it incorrectly?

Also, if you have too many global variables, you run the risk of using one of those names
again locally, or at least thinking you have used it locally, when in fact it has already
been declared as global. All manner of strange bugs can arise from such situations.

Sometimes I adopt the convention of making all global variable names
uppercase (just as it’s recommended that the names of constants should
918 be uppercase) so that I can see at a glance the scope of a variable.

Static variables

In the section “Local variables” on page 58, I mentioned that the value of the variable
is wiped out when the function ends. If a function runs many times, it starts with a
fresh copy of the variable each time and the previous setting has no effect.

Here’s an interesting case. What if you have a local variable inside a function that you
don’t want any other parts of your code to have access to, but that you would also like
to keep its value for the next time the function is called? Why? Perhaps because you
want a counter to track how many times a function is called. The solution is to declare
a static variable, as shown in Example 3-17.

Example 3-17. A function using a static variable

<?php
function test()

static $count = 0;
echo $count;
$count++;

60 | Chapter3: Introduction to PHP

Here, the very first line of function test creates a static variable called $count and ini-
tializes it to a value of 0. The next line outputs the variable’s value; the final one incre-
ments it.

The next time the function is called, because $count has already been declared, the first
line of the function is skipped. Then the previously incremented value of $count is
displayed before the variable is again incremented.

If you plan to use static variables, you should note that you cannot assign the result of
an expression in their definitions. They can be initialized only with predetermined
values (see Example 3-18).

Example 3-18. Allowed and disallowed static variable declarations

<?php

static $int = o; // Allowed

static $int = 1+2; // Disallowed (will produce a Parse error)
static $int = sqrt(144); // Disallowed

>

Superglobal variables

Starting with PHP 4.1.0, several predefined variables are available. These are known as
superglobal variables, which means that they are provided by the PHP environment but
are global within the program, accessible absolutely everywhere.

These superglobals contain lots of useful information about the currently running pro-
gram and its environment (see Table 3-6). They are structured as associative arrays, a
topic discussed in Chapter 6.

Table 3-6. PHP’s superglobal variables

Superglobal name Contents

$GLOBALS All variables that are currently defined in the global scope of the script. The variable names are the keys
of the array.

$_SERVER Information such as headers, paths, and script locations. The web server creates the entries in this array,
and there is no quarantee that every web server will provide any or all of these.

$_GET Variables passed to the current script via the HTTP GET method.

$_POST Variables passed to the current script via the HTTP POST method.

$ _FILES Items uploaded to the current script via the HTTP POST method.

$_COOKIE Variables passed to the current script via HTTP cookies.

$ SESSION Session variables available to the current script.

$ REQUEST Contents of information passed from the browser; by default, $ GET,$ POST,and $_COOKIE.

$_ENV Variables passed to the current script via the environment method.

The Structure of PHP | 61

All of the superglobals are named with a single initial underscore and only capital let-
ters; therefore, you should avoid naming your own variables in this manner to avoid
potential confusion.

Toillustrate how you use them, let’s look at a bit of information that many sites employ.
Among the many nuggets of information supplied by superglobal variables is the URL
of the page that referred the user to the current web page. This referring page infor-
mation can be accessed like this:

$came_from = $ SERVER['HTTP_REFERER'];

It’s that simple. Oh, and if the user came straight to your web page, such as by typing
its URL directly into a browser, $came_from will be set to an empty string.

Superglobals and security

A word of caution is in order before you start using superglobal variables, because they
are often used by hackers trying to find exploits to break into your website. What they
do is load up $_POST, $ GET, or other superglobals with malicious code, such as Unix
or MySQL commands that can damage or display sensitive data if you naively access
them.

Therefore, you should always sanitize superglobals before using them. One way to do
this is via the PHP htmlentities function. It converts all characters into HTML entities.
For example, less-than and greater-than characters (< and >) are transformed into the
strings 81t; and 8gt; so that they are rendered harmless, as are all quotes and back-
slashes, and so on.

Therefore, a much better way to access $_SERVER (and other superglobals) is:

$came_from = htmlentities($_SERVER['HTTP_REFERER']);
This chapter has provided you with a solid background in using PHP. In Chapter 4,

we’ll start using what you’ve learned to build expressions and control program flow—
in other words, some actual programming.

But before moving on, I recommend that you test yourself with some (if not all) of the
following questions to ensure that you have fully digested the contents of this chapter.

Test Your Knowledge

1. What tag is used to cause PHP to start interpreting program code? And what is the
short form of the tag?

. What are the two types of comment tags?
. Which character must be placed at the end of every PHP statement?
. Which symbol is used to preface all PHP variable names?

g W N

. What can a variable store?

62 | Chapter3: Introduction to PHP

. What is the difference between $variable = 1 and $variable == 1?

. Why do you suppose that an underscore is allowed in variable names

($current_user), whereas hyphens are not ($current-user)?

8. Are variable names case-sensitive?

9. Can you use spaces in variable names?

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

See

How do you convert one variable type to another (say, a string to a number)?
What is the difference between ++$j and $j++?

Are the operators 8& and and interchangeable?

How can you create a multiline echo or assignment?

Can you redefine a constant?

How do you escape a quotation mark?

What is the difference between the echo and print commands?

What is the purpose of functions?

How can you make a variable accessible to all parts of a PHP program?

If you generate data within a function, what are a couple of ways to convey the
data to the rest of the program?

What is the result of combining a string with a number?

“Chapter 3 Answers” on page 500 in Appendix A for the answers to these

questions.

Test Your Knowledge | 63

CHAPTER 4
Expressions and Control Flow in PHP

The previous chapter introduced several topics in passing that this chapter covers more
fully, such as making choices (branching) and creating complex expressions. In the
previous chapter, [wanted to focus on the most basic syntax and operations in PHP,
but I couldn’t avoid touching on some more advanced topics. Now I can fill in the
background that you need to use these powerful PHP features properly.

In this chapter, you will get a thorough grounding in how PHP programming works in
practice and in how to control the flow of the program.

Expressions

Let’s start with the most fundamental part of any programming language: expressions.

An expression is a combination of values, variables, operators, and functions that re-
sults in a value. Anyone who has taken an algebra class should recognize this sort of
expression:

y = 3(abs(2x) + 4)
which in PHP would be written as:

$y = 3 * (abs(2*$x) + 4);
The value returned (y or $y in this case) can be a number, a string, or a Boolean value
(named after George Boole, a nineteenth-century English mathematician and philoso-

pher). By now, you should be familiar with the first two value types, but I'll explain the
third.

A basic Boolean value can be either TRUE or FALSE. For example, the expression 20 >
9 (20 is greater than 9) is TRUE, and the expression 5 == 6 (5 is equal to 6) is FALSE.
(Boolean operations can be combined using operators such as AND, OR, and XOR, which
are covered later in this chapter.)

Note that I am using uppercase letters for the names TRUE and FALSE. This is because
they are predefined constants in PHP. You can also use the lowercase versions, if you

65

prefer, as they are also predefined. In fact, the lowercase versions are more stable, be-
cause PHP does not allow you to redefine them; the uppercase ones may be redefined,
which is something you should bear in mind if you import third-party code.

Example 4-1 shows some simple expressions: the two I just mentioned, plus a couple
more. For each line, it prints out a letter between a and d, followed by a colon and the
result of the expression (the
 tag is there to create a line break and thus separate
the output into four lines in HTML).

Example 4-1. Four simple Boolean expressions

<?php

echo "a: [" . (20 > 9) . "I
";
echo "b: [" . (5 ==6) . "I
";
echo "c: [" . (1 ==0) . "Ikbr />";
echo "d: [" . (1 ==1) . "Ikbr />";
>

The output from this code is as follows:
a: [1]

b: []

c: []

d: [1]

Notice that both expressions a: and d: evaluate to TRUE, which has a value of 1. But
b: and c:, which evaluate to FALSE, do not show any value, because in PHP the constant
FALSE is defined as NULL, or nothing. To verify this for yourself, you could enter the code
in Example 4-2.

Example 4-2. Outputting the values of TRUE and FALSE

<?php // test2.php

echo "a: [" . TRUE . "]
";
echo "b: [" . FALSE . "]
";
?>

This code outputs the following;:
a: [1]
b: []

By the way, in some languages FALSE may be defined as 0 or even -1, so it’s worth
checking on its definition in each language.

Literals and Variables

The simplest form of an expression is a literal, which simply means something that
evaluates to itself, such as the number 73 or the string “Hello”. An expression could
also simply be a variable, which evaluates to the value that has been assigned to it.
These are both types of expressions because they return a value.

66 | Chapter4: Expressionsand Control Flow in PHP

Example 4-3 shows five different literals, all of which return values, albeit of different
types.

Example 4-3. Five types of literals

<?php

$myname = "Brian";

$myage = 37;

echo "a: " . 73 . "
"; // Numeric literal

echo "b: " . "Hello" . "
"; // String literal

echo "c: " . FALSE . "
"; // Constant literal

echo "d: " . $myname . "
"; // Variable string literal
echo "e: " . $myage . "
"; // Variable numeric literal
>

As you’d expect, you’ll see a return value from all of these with the exception of c:,
which evaluates to FALSE, returning nothing in the following output:

73
Hello

Brian
37

T QanNn o v

In conjunction with operators, it’s possible to create more complex expressions that
evaluate to useful results.

When you combine assignment or control-flow constructs with expressions, the result
is a statement. Example 4-4 shows one of each. The first assigns the result of the ex-
pression 366 - $day_number to the variable $days_to_new_year, and the second outputs
a friendly message only if the expression $days_to_new_year < 30 evaluates to TRUE.
Example 4-4. An expression and a statement

<?php
$days_to_new year = 366 - $day_number; // Expression
if ($days_to_new_year < 30)

echo "Not long now till new year"; // Statement

Operators

PHP offers a lot of powerful operators, ranging from arithmetic, string, and logical
operators to operators for assignment, comparison, and more (see Table 4-1).

Table 4-1. PHP operator types

Operator Used for Example
Arithmetic Basic mathematics $a + $b
Array Array union $a + $b

Operators | 67

Operator Used for Example

Assignment Assigning values $a = $b + 23
Bitwise Manipulating bits withinbytes 12 ~ 9
Comparison Comparing two values $a < $b
Execution Executing contents of backticks ~ “1s -al®
Increment/Decrement Adding or subtracting 1 $a++

Logical Boolean comparisons $a and $b
String Concatenation $a . $b

Different types of operators take a different number of operands:

* Unary operators, such as incrementing ($a++) or negation (-$a), take a single
operand.

* Binary operators, which represent the bulk of PHP operators (including addition,
subtraction, multiplication, and division), take two operands.

* There is one ternary operator, which takes the form x ? y : z.It’s a terse, single-
line if statement that chooses between two expressions, depending on the result
of a third one. This conditional operator takes three operands.

Operator Precedence

If all operators had the same precedence, they would be processed in the order in which
they are encountered. In fact, many operators do have the same precedence—Exam-
ple 4-5 illustrates one such case.

Example 4-5. Three equivalent expressions

1+2+3-4+5
2-4+5+3+1
5+2-4+1+3

Here you will see that although the numbers (and their preceding operators) have been
moved around, the result of each expression is the value 7, because the plus and minus
operators have the same precedence. We can try the same thing with multiplication
and division (see Example 4-6).

Example 4-6. Three expressions that are also equivalent

Here the resulting value is always 7.5. But things change when we mix operators with
different precedences in an expression, as in Example 4-7.

68 | Chapter4: Expressionsand Control Flow in PHP

Example 4-7. Three expressions using operators of mixed precedence
1+2%3-4%5
2-4%5%3+1
5+2-4+1%*3

If there were no operator precedence, these three expressions would evaluate to 25,
-29, and 12, respectively. But because multiplication and division take precedence over
addition and subtraction, there are implied parentheses around these parts of the ex-
pressions, which would look like Example 4-8 if they were visible.

Example 4-8. Three expressions showing implied parentheses

1+ (2%3)-(4%*5)
2 - (4%5%3)+1
5+ 2 -4+ (1%*3)

Clearly, PHP must evaluate the subexpressions within parentheses first to derive the
semi-completed expressions in Example 4-9.

Example 4-9. After evaluating the subexpressions in parentheses

1+ (6) - (20)
2 - (60) +1
5+2-4+(3)

The final results of these expressions are -13, -57, and 6, respectively (quite different
from the results of 25, -29, and 12 that we would have seen had there been no operator
precedence).

Of course, you can override the default operator precedence by inserting your own
parentheses and force the original results that we would have seen, had there been no
operator precedence (see Example 4-10).

Example 4-10. Forcing left-to-right evaluation

((1+2)*3-4)*s5

(2-4)*5%3+1

(5+2-4+1)*3

With parentheses correctly inserted, we now see the values 25, -29, and 12, respectively.

Table 4-2 lists PHP’s operators in order of precedence from high to low.

Table 4-2. The precedence of PHP operators (high to low)

Operator(s) Type

0O Parentheses

- Increment/Decrement
! Logical

* /% Arithmetic

Operators | 69

Operator(s) Type

+- . Arithmetic and string

<< > Bitwise

< <=> 5= < Comparison

== |z === |== Comparison

& Bitwise (and references)

" Bitwise

| Bitwise

&& Logical

[Logical

? Ternary

= 4= -= *¥= [= = %= &= l= "= <<= >>= Assignment

and Logical

X0r Logical

or Logical
Associativity

We’ve been looking at processing expressions from left to right, except where operator
precedence is in effect. But some operators can also require processing from right to
left. The direction of processing is called the operator’s associativity.

This associativity becomes important in cases in which you do not explicitly force
precedence. Table 4-3 lists all the operators that have right-to-left associativity.

Table 4-3. Operators with right-to-left associativity

Operator Description

NEW Create a new object

! Logical NOT

~ Bitwise NOT

++ - Increment and decrement
+ - Unary plus and negation
(int) (ast to an integer

(double) Casttoa float
(string) (Casttoastring
(array) Cast to an array
(object) Casttoan object

@ Inhibit error reporting

70 | Chapter4: Expressionsand Control Flow in PHP

Operator Description

= Assignment

For example, let’s take a look at the assignment operator in Example 4-11, where three
variables are all set to the value 0.

Example 4-11. A multiple-assignment statement

<?php

$level = $score = $time = 0;
?>

This multiple assignment is possible only if the rightmost part of the expression is
evaluated first and then processing continues in a right-to-left direction.

N

As a PHP beginner, you should learn to avoid the potential pitfalls of
operator associativity by always nesting your subexpressions within
* 9lse parentheses to force the order of evaluation. This will also help other
" programmers who may have to maintain your code to understand what
is happening.

Relational Operators

Relational operators test two operands and return a Boolean result of either TRUE or
FALSE. There are three types of relational operators: equality, comparison, and logical
operators.

Equality operators

The equality operator, which we’ve already encountered a few times in this chapter, is
== (two equals signs). It is important not to confuse it with the = (single equals sign)
assignment operator. In Example 4-12, the first statement assigns a value and the sec-
ond tests it for equality.

Example 4-12. Assigning a value and testing for equality

<?php

$month = "March";

if ($month == "March") echo "It's springtime";
?>

As you see, returning either TRUE or FALSE, the equality operator enables you to test for
conditions using, for example, an if statement. But that’s not the whole story, because
PHP is a loosely typed language. If the two operands of an equality expression are of
different types, PHP will convert them to whatever type makes best sense to it.

Operators | 71

For example, any strings composed entirely of numbers will be converted to numbers
whenever compared with a number. In Example 4-13, $a and $b are two different strings
and we would therefore expect neither of the if statements to output a result.

Example 4-13. The equality and identity operators

<?php
$a = "1000";
$b = "+1000";

if ($a == $b) echo "1";
if ($a === $b) echo "2";
?>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to TRUE. This is because both strings were
first converted to numbers, and 1000 is the same numerical value as +1000.

In contrast, the second if statement uses the identity operator—three equals signs in
a row—which prevents PHP from automatically converting types. $a and $b are there-
fore compared as strings and are now found to be different, so nothing is output.

As with forcing operator precedence, whenever you feel there may be doubt about how
PHP will convert operand types, you can use the identity operator to turn off this
behavior.

In the same way that you can use the equality operator to test for operands being equal,
you can test for them not being equal using !=, the inequality operator. Take a look at
Example 4-14, which is a rewrite of Example 4-13 in which the equality and identity
operators have been replaced with their inverses.

Example 4-14. The inequality and not identical operators

<?php
$a = "1000";
$b = "+1000";

if ($a != $b) echo "1";
if ($a !== $b) echo "2";
?>

As you might expect, the first if statement does not output the number 1, because the
code is asking whether $a and $b are not equal to each other numerically.

Instead, it outputs the number 2, because the second if statement is asking whether
$a and $b are not identical to each other in their present operand types, and the answer
is TRUE; they are not the same.

Comparison operators

Using comparison operators, you can test for more than just equality and inequality.
PHP also gives you > (is greater than), < (is less than), >= (is greater than or equal to),
and <= (is less than or equal to) to play with. Example 4-15 shows these operators in use.

72 | Chapter4: Expressionsand Control Flow in PHP

Example 4-15. The four comparison operators

<?php

$a = 2; $b = 3;

if ($a > $b) echo "$a is greater than $b
";

if ($a < $b) echo "$a is less than $b
";

if ($a >= $b) echo "$a is greater than or equal to $b
";
if ($a <= $b) echo "$a is less than or equal to $b
";

?>

In this example, where $a is 2 and $b is 3, the following is output:

2 is less than 3
2 is less than or equal to 3

Try this example yourself, altering the values of $a and $b, to see the results. Try setting
them to the same value and see what happens.

Logical operators

Logical operators produce true-or-false results, and therefore are also known as Boolean
operators. There are four of them (see Table 4-4).

Table 4-4. The logical operators

Logical operator Description

AND TRUE if both operands are TRUE

OR TRUE if either operand is TRUE

XOR TRUE if one of the two operands is TRUE

NOT TRUE if the operand is FALSE or FALSE if the operand is TRUE

You can see these operators used in Example 4-16. Note that the ! symbol is required
by PHP in place of the word NOT. Furthermore, the operators can be lower- or uppercase.

Example 4-16. The logical operators in use
<?php

$a = 1; $b = 0;

echo ($a AND $b) . "
";

echo ($a or $b) . "
";

echo ($a XOR $b) . "
";

echo !$a . "
";

?>

This example outputs NULL, 1, 1, NULL, meaning that only the second and third echo
statements evaluate as TRUE. (Remember that NULL—or nothing—represents a value of
FALSE.) This is because the AND statement requires both operands to be TRUE if it is going
to return a value of TRUE, while the fourth statement performs a NOT on the value of
$a, turning it from TRUE (a value of 1) to FALSE. If you wish to experiment with this, try
out the code, giving $a and $b varying values of 1 and o.

Operators | 73

When coding, remember to bear in mind that AND and OR have lower
precedence than the other versions of the operators, 8% and | |. In com-
* Qla plex expressions, it may be safer to use && and || for this reason.

The OR operator can cause unintentional problems in if statements, because the second
operand will not be evaluated if the first is evaluated as TRUE. In Example 4-17, the
function getnext will never be called if $finished has a value of 1.

Example 4-17. A statement using the OR operator

<?php
if ($finished == 1 OR getnext() == 1) exit;
?>

If you need getnext to be called at each if statement, you could rewrite the code as has
been done in Example 4-18.

Example 4-18. The if... OR statement modified to ensure calling of getnext

<?php

$gn = getnext();

if ($finished == 1 OR $gn == 1) exit;
>

In this case, the code in function getnext will be executed and the value returned stored
in $gn before the if statement.

B
)

Another solution is to simply switch the two clauses to make sure that
getnext is executed, as it will then appear first in the expression.

Table 4-5 shows all the possible variations of using the logical operators. You should
also note that ! TRUE equals FALSE and !FALSE equals TRUE.

Table 4-5. All possible PHP logical expressions

Inputs Operators and results

a b AND OR XOR
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

74 | Chapter4: Expressionsand Control Flow in PHP

Conditionals

Conditionals alter program flow. They enable you to ask questions about certain things
and respond to the answers you get in different ways. Conditionals are central to dy-
namic web pages—the goal of using PHP in the first place—because they make it easy
to create different output each time a page is viewed.

There are three types of nonlooping conditionals: the if statement, the switch state-
ment, and the ? operator. By nonlooping, I mean that the actions initiated by the state-
ment take place and program flow then moves on, whereas looping conditionals (which
we’ll come to shortly) execute code over and over until a condition has been met.

The if Statement

One way of thinking about program flow is to imagine it as a single-lane highway that
you are driving along. It’s pretty much a straight line, but now and then you encounter
various signs telling you where to go.

In the case of an if statement, you could imagine coming across a detour sign that you
have to follow if a certain condition is TRUE. If so, you drive off and follow the detour
until you rejoin your original route; you then continue on your way in your original
direction. Or, if the condition isn’t TRUE, you ignore the detour and carry on driving
(see Figure 4-1).

Program flow

Figure 4-1. Program flow is like a single-lane highway

The contents of the if condition can be any valid PHP expression, including equality,
comparison, tests for zero and NULL, and even the values returned by functions (either
built-in functions or ones that you write).

The action to take when an if condition is TRUE are generally placed inside curly braces,
{}. You can omit the braces if you have only a single statement to execute, but if you

Conditionals | 75

Download from Wow! eBook <www.wowebook.com>

always use curly braces you’ll avoid potentially difficult-to-trace bugs, such as when
you add an extra line to a condition but forget to add the braces in, so it doesn’t get
evaluated. (Note that for reasons of layout and clarity, many of the examples in this
book ignore this suggestion and omit the braces for single statements.)

In Example 4-19, imagine that it is the end of the month and all your bills have been
paid, so you are performing some bank account maintenance.

Example 4-19. An if statement with curly braces

<?php
if ($bank_balance < 100)
{

$money = 1000;
$bank_balance += $money;

}

>

In this example, you are checking your balance to see whether it is less than 100 dollars
(or whatever your currency is). If so, you pay yourself 1000 dollars and then add it to
the balance. (If only making money were that simple!)

If the bank balance is 100 dollars or greater, the conditional statements are ignored and
program flow skips to the next line (not shown).

In this book, opening curly braces generally start on a new line. Some people like to
place the first curly brace to the right of the conditional expression instead. Either of
these approaches is fine, because PHP allows you to set out your whitespace characters
(spaces, newlines, and tabs) any way you choose. However, you will find your code
easier to read and debug if you indent each level of conditionals with a tab.

The else Statement

Sometimes when a conditional is not TRUE, you may not want to continue on to the
main program code immediately but might wish to do something else instead. This is
where the else statement comes in. With it, you can set up a second detour on your
highway, as in Figure 4-2.

What happens with an if...else statement is that the first conditional statement is
executed if the condition is TRUE, but if it’s FALSE, the second one is executed. One of
the two choices must be executed. Under no circumstances can both (or neither) be
executed. Example 4-20 shows the use of the if...else structure.

Example 4-20. An if...else statement with curly braces

<?php
if ($bank balance < 100)
{

$money = 1000;

$bank_balance += $money;

76 | Chapter4: Expressionsand Control Flow in PHP

else
statements

Program flow

if
statements

Figure 4-2. The highway now has an if detour and an else detour

else
{
$savings += 50;
$bank_balance -= 50;
}
>

In this example, having ascertained that you have over $100 in the bank, the else
statement is executed, by which you place some of this money into your savings
account.

As with if statements, if your else has only one conditional statement, you can opt to
leave out the curly braces. (Curly braces are always recommended, though: they make
the code easier to understand, and they let you easily add more statements to the branch
later.)

Conditionals | 77

The elseif Statement

There are also times when you want a number of different possibilities to occur, based
upon a sequence of conditions. You can achieve this using the elseif statement. As
you might imagine, it is like an else statement, except that you place a further condi-
tional expression prior to the conditional code. In Example 4-21, you can see a complete
if...elseif...else construct.

Example 4-21. An if.. .elseif...else statement with curly braces

<?php
if ($bank_balance < 100)
{

$money = 1000;

$bank_balance += $money;
elseif ($bank balance > 200)

$savings += 100;
$bank_balance -= 100;

}

else

{
$savings += 50;
$bank_balance -= 50;
}

>

In this example, an elseif statement has been inserted between the if and else state-
ments. It checks whether your bank balance exceeds $200 and, if so, decides that you
can afford to save $100 of it this month.

Although I'm starting to stretch the metaphor a bit too far, you can imagine this as a
multiway set of detours (see Figure 4-3).

An else statement closes one of the following: an if...else statement
oranif...elseif...else statement. You can leave out a final else if it
s is not required, but you cannot have one before an elseif; neither can
" you have an elseif before an if statement.

You may have as many elseif statements as you like, but as the number of elseif
statements increases it becomes advisable to consider a switch statement instead, if it
fits your needs. We’ll look at that next.

The switch Statement

The switch statement is useful in cases in which one variable or the result of an ex-
pression can have multiple values, which should each trigger a different function.

78 | Chapter4: Expressionsand Control Flow in PHP

elseif
statements

Program flow «--essessve

if
statements

Figure 4-3. The highway with if, elseif, and else detours

For example, consider a PHP-driven menu system that passes a single string to the main
menu code according to what the user requests. Let’s say the options are Home, About,
News, Login, and Links, and we set the variable $page to one of these, according to the
user’s input.

The code for this written using if...elseif...else might look like Example 4-22.

Example 4-22. A multiple-line if.. .elseif...statement

<?php

if ($page == "Home") echo "You selected Home";
elseif ($page == "About") echo "You selected About";
elseif ($page == "News") echo "You selected News";
elseif ($page == "Login") echo "You selected Login";
elseif ($page == "Links") echo "You selected Links";
>

Using a switch statement, the code might look like Example 4-23.

Conditionals | 79

Example 4-23. A switch statement

<?php
switch ($page)
{

case "Home":
echo "You selected Home";
break;

case "About":
echo "You selected About";
break;

case "News":
echo "You selected News";
break;

case "Login":
echo "You selected Login";
break;

case "Links":
echo "You selected Links";
break;

}

>

As you can see, $page is mentioned only once at the start of the switch statement.
Thereafter, the case command checks for matches. When one occurs, the matching
conditional statement is executed. Of course, in a real program you would have code
here to display or jump to a page, rather than simply telling the user what was selected.

N

One thing to note about switch statements is that you do not use curly
braces inside case commands. Instead, they commence with a colon and
%+ end with the break statement. The entire list of cases in the switch state-
" ment is enclosed in a set of curly braces, though.

Breaking out

If you wish to break out of the switch statement because a condition has been fulfilled,
use the break command. This command tells PHP to break out of the switch and jump
to the following statement.

If you were to leave out the break commands in Example 4-23 and the case of “Home”
evaluated to be TRUE, all five cases would then be executed. Or if $page had the value
“News,” all the case commands from then on would execute. This is deliberate and
allows for some advanced programming, but generally you should always remember
to issue a break command every time a set of case conditionals has finished executing.
In fact, leaving out the break statement is a common error.

Default action

A typical requirement in switch statements is to fall back on a default action if none of
the case conditions are met. For example, in the case of the menu code in

80 | Chapter4: Expressionsand Control Flow in PHP

Example 4-23, you could add the code in Example 4-24 immediately before the final
curly brace.

Example 4-24. A default statement to add to Example 4-23

default: echo "Unrecognized selection"”;
break;

Although a break command is not required here because the default is the final sub-
statement, and program flow will automatically continue to the closing curly brace,
should you decide to place the default statement higher up it would definitely need a
break command to prevent program flow from dropping into the following statements.
Generally, the safest practice is to always include the break command.

Alternative syntax

If you prefer, you may replace the first curly brace in a switch statement with a single
colon and the final curly brace with an endswitch command, as in Example 4-25. How-
ever, this approach is not commonly used and is mentioned here only in case you
encounter it in third-party code.

Example 4-25. Alternate switch statement syntax
<?php
switch ($page):
case "Home":
echo "You selected Home";
break;

// etc...

case "Links":
echo "You selected Links";
break;
endswitch;
7>

The ? Operator

One way of avoiding the verbosity of if and else statements is to use the more compact
ternary operator, ?, which is unusual in that it takes three operands rather than the
more usual two.

We briefly came across this in Chapter 3 in the discussion about the difference between
the print and echo statements, as an example of an operator type that works well with
print but not echo.

The ? operator is passed an expression that it must evaluate, along with two statements
to execute: one for when the expression evaluates to TRUE, the other for when it is FALSE.

Conditionals | 81

Example 4-26 shows code we might use for writing a warning about the fuel level of a
car to its digital dashboard.

Example 4-26. Using the ? operator

<?php
echo $fuel <= 1 ? "Fill tank now" : "There's enough fuel";
>

In this statement, if there is one gallon or less of fuel (in other words, if $fuel is set to
1 or less), the string “Fill tank now” is returned to the preceding echo statement. Other-
wise, the string “There’s enough fuel” is returned. You can also assign the value re-
turned in a ? statement to a variable (see Example 4-27).

Example 4-27. Assigning a ? conditional result to a variable

<?php
$enough = $fuel <= 1 ? FALSE : TRUE;
>

Here, $enough will be assigned the value TRUE only when there is more than a gallon of
fuel; otherwise, it is assigned the value FALSE.

If you find the ? operator confusing, you are free to stick to if statements, but you
should be familiar with it because you’ll see it in other people’s code. It can be hard to
read, because it often mixes multiple occurrences of the same variable. For instance,
code such as the following is quite popular:

$saved = $saved >= $new ? $saved : $new;

If you take it apart carefully, you can figure out what this code does:

$saved = // Set the value of $saved
$saved >= $new // Check $saved against $new
? // Yes, comparison is true ...
$saved // ... so assign the current value of $saved
// No, comparison is false ...
$new; // ... so assign the value of $new

It’s a concise way to keep track of the largest value that you’ve seen as a program
progresses. You save the largest value in $saved and compare it to $new each time you
get a new value. Programmers familiar with the ? operator find it more convenient than
if statements for such short comparisons. When not used for writing compact code,
itis typically used to make some decision inline, such as when testing whether a variable
is set before passing it to a function.

Looping

One of the great things about computers is that they can repeat calculating tasks quickly
and tirelessly. Often you may want a program to repeat the same sequence of code

82 | Chapter4: Expressionsand Control Flow in PHP

again and again until something happens, such as a user inputting a value or reaching
a natural end. PHP’s various loop structures provide the perfect way to do this.

To picture how this works, take a look at Figure 4-4. It is much the same as the highway
metaphor used to illustrate if statements, except that the detour also has a loop section
that—once a vehicle has entered—can be exited only under the right program
conditions.

Program flow

loop
statements

Figure 4-4. Imagining a loop as part of a program highway layout

while Loops

Let’s turn the digital car dashboard in Example 4-26 into a loop that continuously
checks the fuel level as you drive using a while loop (Example 4-28).

Example 4-28. A while loop

<?php
$fuel = 10;

while ($fuel > 1)

// Keep driving ...
echo "There's enough fuel";

}

>

Actually, you might prefer to keep a green light lit rather than output text, but the point
is that whatever positive indication you wish to make about the level of fuel is placed
inside the while loop. By the way, if you try this example for yourself, note that it will
keep printing the string until you click the Stop button in your browser.

Looping | 83

As with if statements, you will notice that curly braces are required to
hold the statements inside the while statements, unless there’s only one.

For another example of awhile loop that displays the 12 times table, see Example 4-29.

Example 4-29. A while loop to print the 12 times table

<?php
$count = 1;

while ($count <= 12)

echo "$count times 12 is " . $count * 12 . "
";
++$count;

}

>

Here the variable $count is initialized to a value of 1, then a while loop is started with
the comparative expression $count <= 12. This loop will continue executing until the
variable is greater than 12. The output from this code is as follows:

1 times 12 is 12

2 times 12 is 24

3 times 12 is 36
...and so on...

Inside the loop, a string is printed along with the value of $count multiplied by 12. For
neatness, this is also followed with a
 tag to force a new line. Then $count is
incremented, ready for the final curly brace that tells PHP to return to the start of the
loop.

At this point, $count is again tested to see whether it is greater than 12. It isn’t, but it
now has the value 2, and after another 11 times around the loop it will have the value
13. When that happens, the code within the while loop will be skipped and execution
will pass on to the code following the loop, which in this case is the end of the program.

If the ++$count statement (which could equally have been $count++) had not been there,
this loop would have been like the first one in this section. It would never end, and only
the result of 1 * 12 would be printed over and over.

There’s a much neater way that this loop can be written, though, which I think you
will like. Take a look at Example 4-30.

Example 4-30. A shortened version of Example 4-29

<?php
$count = 0;
while (++$count <= 12)
echo "$count times 12 is " . $count * 12 . "
";
>

84 | Chapter4: Expressionsand Control Flow in PHP

In this example, it was possible to remove the ++$count statement from inside the
while loop and place it directly into the conditional expression of the loop. What now
happens is that PHP encounters the variable $count at the start of each iteration of the
loop and, noticing that it is prefaced with the increment operator, first increments the
variable and only then compares it to the value 12. You can therefore see that $count
now has to be initialized to 0, not 1, because it is incremented as soon as the loop is
entered. If you keep the initialization at 1, only results between 2 and 12 will be output.

do...while Loops

A slight variation to the while loop is the do. . .while loop, used when you want a block
of code to be executed at least once and made conditional only after that. Exam-
ple 4-31 shows a modified version of our code for the 12 times table using such a loop.

Example 4-31. A do...while loop for printing the times table for 12

<?php
$count = 1;
do
echo "$count times 12 is " . $count * 12 . "
";
while (++$count <= 12);
>

Notice that we are back to initializing $count to 1 (rather than 0), because the code is
being executed immediately, without an opportunity to increment the variable. Other
than that, though, the code looks pretty similar to Example 4-29.

Of course, if you have more than a single statement inside a do. . .while loop, remember
to use curly braces, as in Example 4-32.

Example 4-32. Expanding Example 4-31 to use curly braces

<?php
$count = 1;
do {
echo "$count times 12 is " . $count * 12;

echo "
";
} while (++$count <= 12);
?>

for Loops

The final kind of loop statement, the for loop, is also the most powerful, as it combines
the abilities to set up variables as you enter the loop, test for conditions while iterating
loops, and modify variables after each iteration.

Example 4-33 shows how you could write the multiplication table program with a
for loop.

Looping | 85

Example 4-33. Outputting the 12 times table from a for loop

<?php
for ($count = 1 ; $count <= 12 ; ++$count)

echo "$count times 12 is " . $count * 12 . "
";
?>

See how the entire code has been reduced to a single for statement containing a single
conditional statement? Here’s what is going on. Each for statement takes three pa-
rameters:

* An initialization expression
* A condition expression

* A modification expression

These are separated by semicolons, like this: for (expr1 ; expr2 ; expr3). At the start
of the first iteration of the loop, the initialization expression is executed. In the case of
the times table code, $count is initialized to the value 1. Then, each time around the
loop, the condition expression (in this case, $count <= 12) is tested, and the loop is
entered only if the condition is TRUE. Finally, at the end of each iteration, the modifi-
cation expression is executed. In the case of the times table code, the variable $count
is incremented.

All this structure neatly removes any requirement to place the controls for a loop within
its body, freeing it up just for the statements you want the loop to perform.

Remember to use curly braces with a for loop if it will contain more than one statement,
as in Example 4-34.

Example 4-34. The for loop from Example 4-33 with added curly braces

<?php

for ($count = 1 ; $count <= 12 ; ++$count)

{
echo "$count times 12 is " . $count * 12;
echo "
";

}

?>

Let’s compare when to use for and while loops. The for loop is explicitly designed
around a single value that changes on a regular basis. Usually you have a value that
increments, as when you are passed a list of user choices and want to process each
choice in turn. But you can transform the variable any way you like. A more complex
form of the for statement even lets you perform multiple operations in each of the three
parameters:

for ($i =1, $j =1 ; $i + $j < 10 ; $i++ , $j++)

{
/...
}

86 | Chapter4: Expressionsand Control Flow in PHP

That’s complicated and not recommended for first-time users. The key is to distinguish
commas from semicolons. The three parameters must be separated by semicolons.
Within each parameter, multiple statements can be separated by commas. Thus, in the
previous example, the first and third parameters each contain two statements:

$i =1, $j =1 // Initialize $i and $j

$i+ $j < 10 // Terminating condition
$i++ , $j++ // Modify $i and $j at the end of each iteration

The main thing to take from this example is that you must separate the three parameter
sections with semicolons, not commas (which should be used only to separate state-
ments within a parameter section.)

So, when is a while statement more appropriate than a for statement? When your
condition doesn’t depend on a simple, regular change to a variable. For instance, if you
want to check for some special input or error and end the loop when it occurs, use a
while statement.

Breaking Out of a Loop

You can break out from a for loop using the same break command you use to break
out of a switch statement. This step can be necessary when, for example, one of your
statements returns an error and the loop cannot continue executing safely.

One case in which this might occur is when writing a file returns an error, possibly
because the disk is full (see Example 4-35).

Example 4-35. Writing a file using a for loop with error trapping

<?php
$fp = fopen("text.txt", 'wb');

for ($j = 0 ; $j < 100 ; ++$3)
{

$written = furite($fp, "data");
if ($written == FALSE) break;
}

fclose($fp);
?>

This is the most complicated piece of code that you have seen so far, but you’re ready
for it. We’ll look into the file handling commands in a later chapter; for now all you
need to know is that the first line opens the file text.txt for writing in binary mode and
then returns a pointer to the file in the variable $fp, which is used later to refer to the
open file.

The loop then iterates 100 times (from 0 to 99), writing the string data to the file. After
each write, the variable $written is assigned a value by the furite function representing

Looping | 87

the number of characters correctly written. But if there is an error, the fwrite function
assigns the value FALSE.

The behavior of furite makes it easy for the code to check the variable $written to see
whether it is set to FALSE and, if so, to break out of the loop to the following statement
closing the file.
If you are looking to improve the code, the line:

if ($written == FALSE) break;

can be simplified using the NOT operator, like this:
if (!$written) break;
In fact, the pair of inner loop statements can be shortened to the following single
statement:
if ('fwrite($fp, "data")) break;
The break command is even more powerful than you might think. If you have code

nested more than one layer deep that you need to break out of, you can follow the
break command with a number to indicate how many levels to break out of, like this:

break 2;

The continue Statement

The continue statement is a little like a break statement, except that it instructs PHP to
stop processing the current loop and to move right to its next iteration. So, instead of
breaking out of the whole loop, only the current iteration is exited.

This approach can be useful in cases where you know there is no point continuing
execution within the current loop and you want to save processor cycles, or prevent an
error from occurring, by moving right along to the next iteration of the loop. In Ex-
ample 4-36, a continue statement is used to prevent a division-by-zero error from being
issued when the variable $j has a value of 0.

Example 4-36. Trapping division-by-zero errors using continue

<?php
$j = 10;

while ($j > -10)

{

$3--5

if ($j == 0) continue;
echo (10 / $j) . "
";
}

>

88 | Chapter4: Expressionsand Control Flow in PHP

For all values of $j between 10 and -10, with the exception of 0, the result of calculating
10 divided by $j is displayed. But for the particular case of $j being 0, the continue
statement is issued and execution skips immediately to the next iteration of the loop.

Implicit and Explicit Casting

PHP is a loosely typed language that allows you to declare a variable and its type simply
by using it. It also automatically converts values from one type to another whenever
required. This is called implicit casting.

However, there may be times when PHP’s implicit casting is not what you want. In
Example 4-37, note that the inputs to the division are integers. By default, PHP converts
the output to floating-point so it can give the most precise value—4.66 recurring.

Example 4-37. This expression returns a floating-point number

<?php

$a = 56;

$b = 12;

$c = $a / $b;
echo $c;

>

But what if we had wanted $c to be an integer instead? There are various ways in which
this could be achieved. One way is to force the result of $a / $b to be cast to an integer
value using the integer cast type (int), like this:

$c = (int) ($a / $b);

This is called explicit casting. Note that in order to ensure that the value of the entire
expression is cast to an integer, the expression is placed within parentheses. Otherwise,
only the variable $a would have been cast to an integer—a pointless exercise, as the
division by $b would still have returned a floating-point number.

You can explicitly cast to the types shown in Table 4-6, but you can usually avoid having
to use a cast by calling one of PHP’s built-in functions. For example, to obtain an integer
value, you could use the intval function. As with some other sections in this book, this
one is mainly here to help you understand third-party code that you may encounter.

Table 4-6. PHP’s cast types

(ast type Description
(int) (integer) Cast to an integer by dropping the decimal portion
(bool) (boolean) (ast to a Boolean

(float) (double) (real) Casttoafloating-point number

(string) (ast to astring
(array) (ast to an array
(object) (ast to an object

Implicit and Explicit Casting | 89

PHP Dynamic Linking

Because PHP is a programming language, and the output from it can be completely
different for each user, it’s possible for an entire website to run from a single PHP web
page. Each time the user clicks on something, the details can be sent back to the same
web page, which decides what to do next according to the various cookies and/or other
session details it may have stored.

But although it is possible to build an entire website this way, it’s not recommended,
because your source code will grow and grow and start to become unwieldy, as it has
to take account of every possible action a user could take.

Instead, it’s much more sensible to split your website development into different parts.
For example, one distinct process is signing up for a website, along with all the checking
this entails to validate an email address, check whether a username is already taken,
and so on.

A second module might well be one for logging users in before handing them off to the
main part of your website. Then you might have a messaging module with the facility
for users to leave comments, a module containing links and useful information, another
to allow uploading of images, and so on.

As long as you have created a means of tracking your users through your website by
means of cookies or session variables (both of which we’ll look at more closely in later
chapters), you can split your website up into sensible sections of PHP code, each one
self-contained, and therefore treat yourself to a much easier future developing each new
feature and maintaining old ones.

Dynamic Linking in Action

One of the more popular PHP-driven applications on the Web today is the blogging
platform WordPress (see Figure 4-5). As a blogger or a blog reader, you might not realize
it, but every major section has been given its own main PHP file, and a whole raft of
generic, shared functions have been placed in separate files that are included by the
main PHP pages as necessary.

The whole platform is held together with behind-the-scenes session tracking, so that
you hardly know when you are transitioning from one subsection to another. So, as a
web developer, if you want to tweak WordPress, it’s easy to find the particular file you
need, make a modification, and test and debug it without messing around with un-
connected parts of the program.

Next time you use WordPress, keep an eye on your browser’s address bar, particularly
if you are managing a blog, and you’ll notice some of the different PHP files that it uses.

90 | Chapter4: Expressionsand Control Flow in PHP

e[= -‘L;_l http://robinnixon.com/thejourney/wp-ad 2 ~ B ¢ X || |lJ Dashboard « Yes, I Can! by ... L |

e

File Edit View Favorites Tools Help

= ~
po— Dashboard
Media Right Now QuickPress
 Links Content Discussion Title
[] Pages :
g 34 Posts 27 Comments Uploadiinsert (=] B A {3
] Comments 6 Pages 27 Approved Content -
Appearance 9 Categories D) FEIETE

O Tags O Spam

£ Plugins @

& Users Theme Twenty Ten with 6 Widgets

Tags

Save Draft Reset
3 *ou are using WordPress 3.2.1
Eﬂ ek Update to 3.3.1 m

Settings

. Recent Drafts
{o; Quick Cache Recent Comments
There are no drafts at the moment
From Gsbelusojr on Why you
should learn to lucid dream #
) WordPress Blog
| think our subconscious can go
PR W TS F I An error has occurred; the feed is probably down.
us, In some of my dreams, | was
Try again later.
able
] [| r

H100% -

Figure 4-5. The WordPress blogging platform is written in PHP

This chapter has covered quite a lot of ground, and by now you should be able to put
together your own small PHP programs. But before you do, and before proceeding with
the following chapter on functions and objects, you may wish to test your new knowl-
edge on the following questions.

Test Your Knowledge

L N O L AW N

. What actual underlying values are represented by TRUE and FALSE?

. What are the simplest two forms of expressions?

. What is the difference between unary, binary, and ternary operators?
. What is the best way to force your own operator precedence?

. What is meant by operator associativity?

. When would you use the === (identity) operator?

. Name the three conditional statement types.

. What command can you use to skip the current iteration of a loop and move on
to the next one?

Test Your Knowledge | 91

9. Why is a for loop more powerful than a while loop?
10. How do if and while statements interpret conditional expressions of different data
types?

See “Chapter 4 Answers” on page 501 in Appendix A for the answers to these
questions.

92 | Chapter4: Expressionsand Control Flow in PHP

CHAPTER 5
PHP Functions and Objects

The basic requirements of any programming language include somewhere to store data,
a means of directing program flow, and a few bits and pieces such as expression eval-
uation, file management, and text output. PHP has all these, plus tools like else and
elseif to make life easier. But even with all these in your toolkit, programming can be
clumsy and tedious, especially if you have to rewrite portions of very similar code each
time you need them.

That’s where functions and objects come in. As you might guess, a function is a set of
statements that performs a particular function and—optionally—returns a value. You
can pull out a section of code that you have used more than once, place itinto a function,
and call the function by name when you want the code.

Functions have many advantages over contiguous, inline code:

* Less typing is involved.
* Functions reduce syntax and other programming errors.
* They decrease the loading time of program files.

* They also decrease execution time, because each function is compiled only once,
no matter how often you call it.

* Functions accept arguments and can therefore be used for general as well as specific
cases.

Objects take this concept a step further. An object incorporates one or more functions,
and the data they use, into a single structure called a class.

In this chapter, you’ll learn all about using functions, from defining and calling them
to passing arguments back and forth. With that knowledge under your belt, you’ll start
creating functions and using them in your own objects (where they will be referred to
as methods).

93

PHP Functions

PHP comes with hundreds of ready-made, built-in functions, making it a very rich
language. To use a function, call it by name. For example, you can see the print function
in action here:

print("print is a function");
The parentheses tell PHP that you’re referring to a function. Otherwise, it thinks you’re
referring to a constant. You may see a warning such as this:

Notice: Use of undefined constant fname - assumed 'fname'
followed by the text string fname, under the assumption that you must have wanted to

put a literal string in your code. (Things are even more confusing if there is actually a
constant named fname, in which case PHP uses its value.)

W

Strictly speaking, print is a pseudofunction, commonly called a con-
struct. The difference is that you can omit the parentheses, as follows:

. print "print doesn't require parentheses"”;

You do have to put parentheses after any other function you call, even
ifit’s empty (that s, if you’re not passing any argument to the function).

Functions can take any number of arguments, including zero. For example, phpinfo,
as shown below, displays lots of information about the current installation of PHP and
requires no argument. The result of calling this function can be seen in Figure 5-1.

phpinfo();

The phpinfo function is extremely useful for obtaining information
about your current PHP installation, but that information could also be
Ws very useful to potential hackers. Therefore, never leave a call to this
" function in any web-ready code.

Some of the built-in functions that use one or more arguments appear in Example 5-1.

Example 5-1. Three string functions

<?php

echo strrev(" .dlrow olleH"); // Reverse string
echo str repeat("Hip ", 2); // Repeat string

echo strtoupper("hooray!"); // String to uppercase
?>

This example uses three string functions to output the following text:
Hello world. Hip Hip HOORAY!

94 | Chapter5: PHP Functions and Objects

GI_J . http://lecalhost/info.php P~-BeX ”. phpinfo() x

File Edit View Favorites Tools Help

System Vs\f'éréduws MNT ACER 6.1 build 7601 (Windows 7 Home Premium Edition Service Pack 1)
i
Build Date Feb 23 2012 11:10:18
Compiler MSVCO (Visual C++ 2008)
Architecture %86
Configure escript /nologo configure js "—disable-phar” "--disable-ipv6” "—-disable-zts” "—enable-cgi’ "—
Command disable-bcmath” "-disable-calendar” "—-disable-odbc” "—disable-tokenizer” "--disable-

xmireader” "—-disable-xmhwriter” "—-without-sglite” "—without-wddx" "—enable-debug-pack” "-
-enable-cli-win32" "--enable-pdo” "--with-openssl" "—with-php-build” "--with-lio=ml” "--with-
sqlite3” "—with-pdo-sglite”

Server APl CGliFastCGl

Virtual Directory | disabled

Support

Configuration File | C:\Windows

(php.ini) Path

Loaded C:\Program Files (x86)\ZendZendServer\eic\php.ini

Configuration File

Scan this dir for | (nong)
additional .ini
files -

4 1 2

#100% ~

Figure 5-1. The output of PHP’s built-in phpinfo function

As you can see, the strrev function reversed the order of the characters in the string,
str_repeat repeated the string “Hip ” twice (as required by a second argument), and
strtoupper converted “hooray!” to uppercase.

Defining a Function

The general syntax for a function is:

function function_name([parameter [, ...]])

// Statements
}

The first line of the syntax indicates that:

¢ A definition starts with the word function.

* Following that is a name, which must start with a letter or underscore, followed
by any number of letters, numbers, or underscores.

* The parentheses are required.

* One or more parameters, separated by commas, are optional (indicated by the
square brackets, which are not part of the function syntax).

PHP Functions | 95

Function names are case-insensitive, so all of the following strings can refer to the
print function: PRINT, Print, and PrInT.

The opening curly brace starts the statements that will execute when you call the func-
tion; a matching curly brace must close it. These statements may include one or more
return statements, which force the function to cease execution and return to the calling
code. If a value is attached to the return statement, the calling code can retrieve it, as
we’ll see next.

Returning a Value

Let’s take a look at a simple function to convert a person’s full name to lowercase and
then capitalize the first letter of each part of the name.

We've already seen an example of PHP’s built-in strtoupper function in Example 5-1.
For our current function, we’ll use its counterpart, strtolower:
$lowered = strtolower("aNY # of Letters and Punctuation you WANT");

echo $lowered;

The output of this experiment is:

any # of letters and punctuation you want
We don’t want names all lowercase, though; we want the first letter of each part of the
name capitalized. (We’re not going to deal with subtle cases such as Mary-Ann or Jo-

En-Lai, for this example.) Luckily, PHP also provides a ucfirst function that sets the
first character of a string to uppercase:

$ucfixed = ucfirst("any # of letters and punctuation you want");

echo $ucfixed;

The output is:

Any # of letters and punctuation you want
Now we can do our first bit of program design: to get a word with its initial letter
capitalized, we call strtolower on a string first, and then ucfirst. The way to do this
is to nest a call to strtolower within ucfirst. Let’s see why, because it’s important to
understand the order in which code is evaluated.
If you make a simple call to the print function:

print(5-8);
The expression 5-8 is evaluated first, and the output is -3. (As you saw in the previous

chapter, PHP converts the result to a string in order to display it.) If the expression
contains a function, that function is also evaluated at this point:

print(abs(5-8));

PHP is doing several things in executing that short statement:

96 | Chapter5: PHP Functions and Objects

Download from Wow! eBook <www.wowebook.com>

1. Evaluate 5-8 to produce -3.
2. Use the abs function to turn -3 into 3.
3. Convert the result to a string and output it using the print function.
In other words, PHP evaluates each element from the inside out. The same procedure
is in operation when we call the following:
ucfirst(strtolower("aNY # of Letters and Punctuation you WANT"))
PHP passes our string to strtolower and then to ucfirst, producing (as we’ve already
seen when we played with the functions separately):
Any # of letters and punctuation you want
Now let’s define a function (shown in Example 5-2) that takes three names and makes
each one lowercase with an initial capital letter.
Example 5-2. Cleaning up a full name
<?php
echo fix_names("WILLIAM", "henry", "gatES");

function fix_names($n1, $n2, $n3)

{
$n1 = ucfirst(strtolower($n1));
$n2 = ucfirst(strtolower($n2));
$n3 = ucfirst(strtolower($n3));
return $n12 . " " . $n2 . " " . $n3;
}
?>

You may well find yourself writing this type of code, because users often leave their
Caps Lock keys on, accidentally insert capital letters in the wrong places, or even forget
capitals altogether. The output from this example is:

William Henry Gates

Returning an Array

We just saw a function returning a single value. There are also ways of getting multiple
values from a function.

The first method is to return them within an array. As you saw in Chapter 3, an array
is like a bunch of variables stuck together in a row. Example 5-3 shows how you can
use an array to return function values.

Example 5-3. Returning multiple values in an array

<?php
$names = fix _names("WILLIAM", "henry", "gatES");
echo $names[0] . " " . $names[1] . " " . $names[2];

function fix_names($n1, $n2, $n3)

PHP Functions | 97

$n1 = ucfirst(strtolower($n1));
$n2 = ucfirst(strtolower($n2));
$n3 = ucfirst(strtolower($n3));
return array($ni, $n2, $n3);

}

?>

This method has the benefit of keeping all three names separate, rather than concate-
nating them into a single string, so you can refer to any user simply by first or last name,
without having to extract either name from the returned string.

Passing by Reference

In PHP, prefacing a variable name with the & symbol tells the parser to pass a reference
to the variable’s value, not the value itself. This concept can be hard to get your head
around, so let’s go back to the matchbox metaphor from Chapter 3.

Imagine that, instead of taking a piece of paper out of a matchbox, reading it, copying
it to another piece of paper, putting the original back, and passing the copy to a function
(phew!), you simply attach a piece of thread to the original piece of paper and pass one
end of it to the function (see Figure 5-2).

function(')

{
//Code..

Figure 5-2. Imagining a reference as a thread attached to a variable

Now the function can follow the thread to find the data to be accessed. This avoids all
the overhead of creating a copy of the variable just for the function’s use. What’s more,
the function can now modify the variable’s value.

This means you can rewrite Example 5-3 to pass references to all the parameters, and
then the function can modify these directly (see Example 5-4).

98 | Chapter5: PHP Functions and Objects

Example 5-4. Returning values from a function by reference

<?php

$a1 = "WILLIAM";

$a2 = "henry";

$a3 = "gatES";

echo $a1 . " " . %a2 . " " . $a3 . "
";
fix_names($a1, $a2, $a3);

echo $a1 . " " . $a2 . " " . %$a3;

function fix_names(&$n1, &$n2, &$n3)

{
$n1 = ucfirst(strtolower($n1));
$n2 = ucfirst(strtolower($n2));
$n3 = ucfirst(strtolower($n3));

}

?>

Rather than passing strings directly to the function, you first assign them to variables
and print them out to see their “before” values. Then you call the function as before,
but put an & symbol in front of each parameter, which tells PHP to pass the variables’
references only.

Now the variables $n1, $n2, and $n3 are attached to “threads” that lead to the values of
$a1, $a2, and $a3. In other words, there is one group of values, but two sets of variable
names are allowed to access them.

Therefore, the function fix_names only has to assign new values to $n1, $n2, and $n3 to
update the values of $a1, $a2, and $a3. The output from this code is:

WILLIAM henry gatES
William Henry Gates

As you see, both of the echo statements use only the values of $a1, $a2, and $a3.

Be careful when passing values by reference. If you need to keep the
: original values, make copies of your variables and then pass the copies

by reference.

Returning Global Variables

You can also give a function access to an externally created variable by declaring it a
global variable from within the function. The global keyword followed by the variable
name gives every part of your code full access to it (see Example 5-5).

Example 5-5. Returning values in global variables

<?php

$a1 = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";

PHP Functions | 99

echo $a1 . " " . %a2 . " " . %$a3 . "
";
fix_names();
echo $a1 . " " . $a2 . " " . %$a3;

function fix_names()
global $a1; $a1

global $a2; $a2
global $a3; $a3

ucfirst(strtolower($a1i));
ucfirst(strtolower($a2));
ucfirst(strtolower($a3));

}

>

Now you don’t have to pass parameters to the function, and it doesn’t have to accept
them. Once declared, these variables remain global and available to the rest of your
program, including its functions.

If at all possible, in order to retain as much local scope as possible, you should try
returning arrays or using variables by association. Otherwise, you will begin to lose
some of the benefits of functions.

Recap of Variable Scope
A quick reminder of what you know from Chapter 3:

* Local variables are accessible just from the part of code where you define them. If
they’re outside of a function, they can be accessed by all code outside of functions,
classes, and so on. If a variable is inside a function, only that function can access
the variable, and its value is lost when the function returns.

* Global variables are accessible from all parts of your code.

* Staticvariables are accessible only within the function that declared them but retain
their value over multiple calls.

Including and Requiring Files

As you progress in your use of PHP programming, you are likely to start building a
library of functions that you think you will need again. You’ll also probably start using
libraries created by other programmers.

There’s no need to copy and paste these functions into your code. You can save them
in separate files and use commands to pull them in. There are two types of commands
to perform this action: include and require.

The include Statement

Using include, you can tell PHP to fetch a particular file and load all its contents. It’s
as if you pasted the included file into the current file at the insertion point. Exam-
ple 5-6 shows how you would include a file called library.php.

100 | Chapter5: PHP Functionsand Objects

Example 5-6. Including a PHP file

<?php
include "library.php";

// Your code goes here
>

Using include_once

Each time you issue the include directive, it includes the requested file again, even if
you’ve already inserted it. For instance, suppose that library.php contains a lot of useful
functions, so you include it in your file. Now suppose you also include another library
that includes library.php. Through nesting, you’ve inadvertently included library.php
twice. This will produce error messages, because you’re trying to define the same con-
stant or function multiple times. To avoid this problem, use include_once instead (see
Example 5-7).

Example 5-7. Including a PHP file only once

<?php
include_once "library.php";

// Your code goes here
>

Then, if another include or include once for the same file is encountered, PHP will
verify that it has already been loaded and, if so, will ignore it. To determine whether
the file has already been executed, PHP resolves all relative paths and checks whether
the absolute file path is found in your include path.

W
«‘ In general, it’s probably best to stick with include_once and ignore the
"‘:\ basic include statement. That way you will never have the problem of
T Qlse files being included multiple times.

Using require and require_once

A potential problem with include and include_once is that PHP will only attempt to
include the requested file. Program execution continues even if the file is not found.

When it is absolutely essential to include a file, require it. For the same reasons I gave
for using include_once, I recommend that you generally stick with require_once when-
ever you need to require a file (see Example 5-8).

Including and Requiring Files | 101

Example 5-8. Requiring a PHP file only once
<?php
require_once "library.php";

// Your code goes here
>

PHP Version Compatibility

PHP is in an ongoing process of development, and there are multiple versions. If you
need to check whether a particular function is available to your code, you can use the
function_exists function, which checks all predefined and user-created functions.

Example 5-9 checks for the function array_combine, which is specific to PHP version 5.

Example 5-9. Checking for a function’s existence

<?php
if (function_exists("array_combine"))

{
}

else

{
}

2>

echo "Function exists";

echo "Function does not exist - better write our own";
)

Using code such as this, you can identify any features available in newer versions of
PHP that you will need to replicate if you want your code to still run on earlier versions.
Your functions may be slower than the built-in ones, but at least your code will be much
more portable.

You can also use the phpversion function to determine which version of PHP your code
is running on. The returned result will be similar to the following, depending on the
version:

5.2.8

PHP Objects

In much the same way that functions represent a huge increase in programming power
over the early days of computing, where sometimes the best program navigation avail-
able was a very basic GOTO or GOSUB statement, object-oriented programming (OOP)
takes the use of functions to a whole new level.

Once you get the hang of condensing reusable bits of code into functions, it’s not that
great a leap to consider bundling the functions and their data into objects.

102 | Chapter5: PHP Functions and Objects

Let’s consider a social networking site that has many parts. One handles all user func-
tions: code to enable new users to sign up and to enable existing users to modify their
details. In standard PHP, you might create a few functions to handle this and embed
some calls to the MySQL database to keep track of all the users.

Imagine how much easier it would be, though, to create an object to represent the
current user. To do this you could create a class, perhaps called User, which would
contain all the code required for handling users and all the variables needed for ma-
nipulating the data within the class. Then, whenever you needed to manipulate a user’s
data, you could simply create a new object with the User class.

You could treat this new object as if it were the actual user. For example, you could
pass the object a name, password, and email address; ask it whether such a user already
exists; and, if not, have it create a new user with those attributes. You could even have
an instant messaging object, or one for managing whether two users are friends.

Terminology

When creating a program to use objects, you need to design a composite of data and
code called a class. Each new object based on this class is called an instance (or occur-
rence) of that class.

The data associated with an object are called its properties; the functions it uses are
called methods. In defining a class, you supply the names of its properties and the code
for its methods. See Figure 5-3 for a jukebox metaphor for an object. Think of the CDs
that it holds in the carousel as its properties; the method of playing them is to press
buttons on the front panel. There is also the slot for inserting coins (the method used
to activate the object), and the laser disc reader (the method used to retrieve the music,
or properties, from the CDs).

When creating objects, it is best to use encapsulation, or writing a class in such a way
that only its methods can be used to manipulate its properties. In other words, you
deny outside code direct access to its data. The methods you supply are known as the
object’s interface.

This approach makes debugging easy: you have to fix faulty code only within a class.
Additionally, when you want to upgrade a program, if you have used proper encapsu-
lation and maintained the same interface, you can simply develop new replacement
classes, debug them fully, and then swap them in for the old ones. If they don’t work,
you can swap the old ones back in to immediately fix the problem before further de-
bugging the new classes.

Once you have created a class, you may find that you need another class that is similar
to it but not quite the same. The quick and easy thing to do is to define a new class
using inheritance. When you do this, your new class has all the properties of the one
from which it has inherited. The original class is now called the superclass, and the new
one is the subclass (or derived class).

PHP Objects | 103

Figure 5-3. A jukebox: a great example of a self-contained object

In our jukebox example, if you invent a new jukebox that can play a video along with
the music, you can inherit all the properties and methods from the original jukebox
superclass and add some new properties (videos) and new methods (a movie player).

An excellent benefit of this system is that if you improve the speed or any other aspect
of the superclass, its subclasses will receive the same benefit.

Declaring a Class

Before you can use an object, you must define a class with the class keyword. Class
definitions contain the class name (which is case-sensitive), its properties, and its
methods. Example 5-10 defines the class User with two properties: $name and $pass
word (indicated by the public keyword—see “Property and Method Scope in PHP
5” on page 112, later in this chapter). It also creates a new instance (called $object) of
this class.

Example 5-10. Declaring a class and examining an object

<?php
$object = new User;

104 | Chapter5: PHP Functions and Objects

print_r($object);
class User
public $name, $password;

function save_user()

{
}

echo "Save User code goes here";

}

>

Here I have also used an invaluable function called print_r. It asks PHP to display
information about a variable in human-readable form (the r stands for “in human-
readable format”). In the case of the new object $object, it prints the following:

User Object

(
[name] =>
[password] =>
)
However, a browser compresses all the whitespace, so the output in the browser is
slightly harder to read:

User Object ([name] => [password] =>)

In any case, the output says that $object is a user-defined object that has the properties
name and password.

Creating an Object
To create an object with a specified class, use the new keyword, like this: $object =
new Class. Here are a couple of ways in which we could do this:

$object
$temp

new User;
new User('name’, 'password');

On the first line, we simply assign an object to the User class. In the second, we pass
parameters to the call.

A class may require or prohibit arguments; it may also allow arguments, but not require
them.

Accessing Objects

Let’s add a more few lines to Example 5-10 and check the results. Example 5-11 extends
the previous code by setting object properties and calling a method.

PHP Objects | 105

Example 5-11. Creating and interacting with an object
<?php

$object = new User;

print_r($object); echo "
";

$object->name = "Joe";

$object->password = "mypass”;

print_r($object); echo "
";
$object->save_user();

class User

public $name, $password;

function save user()

{
}

echo "Save User code goes here";

}

>

As you can see, the syntax for accessing an object’s property is $object->property.
Likewise, you call a method like this: $object->method().

You should note that the property and method names do not have dollar signs ($) in
front of them. If you were to preface them with a $, the code would not work, as it
would try to reference the value inside a variable. For example, the expression
$object->$property would attempt to look up the value assigned to a variable named
$property (let’s say that value is the string “brown”) and then attempt to reference the
property $object->brown. If $property is undefined, an attempt to reference $object-
>NULL will occur and cause an error.

When looked at using a browser’s view source facility, the output from Example 5-11 is:

User Object

[name] =>
[password] =>

User Object
(

[name] => Joe
[password] => mypass

Save User code goes here

Again, print_r shows its utility by providing the contents of $object before and after
property assignment. From now on I'll omit print_r statements, but if you are working
along with this book on your development server, you can put some in to see exactly
what is happening.

106 | Chapter5: PHP Functionsand Objects

You can also see that the code in the method save_user was executed via the call to
that method. It printed the string reminding us to create some code.

W

You can place functions and class definitions anywhere in your code,

before or after statements that use them. Generally, though, it is con-
&8 . . .

oo sidered good practice to place them toward the end of a file.

Cloning objects

Once you have created an object, it is passed by reference when you pass it as a pa-
rameter. In the matchbox metaphor, this is like keeping several threads attached to an
object stored in a matchbox, so that you can follow any attached thread to access it.

In other words, making object assignments does not copy objects in their entirety.
You’ll see how this works in Example 5-12, where we define a very simple User class
with no methods and only the property name.

Example 5-12. Copying an object?

<?php

$object1 = new User();

$objecti->name = "Alice";

$object2 = $objecti;

$object2->name = "Amy";

echo "objectl name = " . $objecti->name . "
";
echo "object2 name = " . $object2->name;

class User

public $name;

}

>

We've created the object $object1 and assigned the value “Alice” to the name property.
Then we created $object2, assigning it the value of $object1, and assigned the value
“Amy” just to the name property of $object2—or so we might think. But this code
outputs the following:

object1l name = Amy
object2 name = Amy

What has happened? Both $object1 and $object2 refer to the same object, so changing
the name property of $object2 to “Amy” also sets that property for $object1.

To avoid this confusion, you can use the clone operator, which creates a new instance
of the class and copies the property values from the original instance to the new in-
stance. Example 5-13 illustrates this usage.

PHP Objects | 107

Example 5-13. Cloning an object

<?php

$object1 = new User();

$objecti->name = "Alice";

$object2 = clone $object1;

$object2->name = "Amy";

echo "objectl name = " . $objecti->name . "
";
echo "object2 name = " . $object2->name;

class User

public $name;

}

>

Voila! The output from this code is what we initially wanted:

object1l name = Alice
object2 name = Amy

Constructors

When creating a new object, you can pass a list of arguments to the class being called.
These are passed to a special method within the class, called the constructor, which
initializes various properties.

In the past, you would normally give this method the same name as the class, as in
Example 5-14.

Example 5-14. Creating a constructor method

<?php
class User

{

function User($parami, $param2)

// Constructor statements go here
public $username = "Guest";

}

>

However, PHP 5 provides a more logical approach to naming the constructor, which
is to use the function name _ construct (that is, construct preceded by two underscore
characters), as in Example 5-15.

Example 5-15. Creating a constructor method in PHP 5

<?php
class User

{

function _ construct($parami, $param2)

{

108 | Chapter5: PHP Functionsand Objects

// Constructor statements go here
public $username = "Guest";

}
?>
PHP 5 destructors

Alsonew in PHP 5 is the ability to create destructor methods. This ability is useful when
code has made the last reference to an object or when a script reaches the end. Exam-
ple 5-16 shows how to create a destructor method.

Example 5-16. Creating a destructor method in PHP 5

<?php
class User
{
function _ destruct()
{
// Destructor code goes here
}
}
>

Writing Methods

As you have seen, declaring a method is similar to declaring a function, but there are a
few differences. For example, method names beginning with a double underscore
(_) are reserved and you should not create any of this form

You also have access to a special variable called $this, which can be used to access the
current object’s properties. To see how this works, take a look at Example 5-17, which
contains a different method from the User class definition called get_password.

Example 5-17. Using the variable $this in a method

<?php
class User

public $name, $password;

function get password()

{
}

return $this->password;

}

7>

What get_password does is use the $this variable to access the current object and then
return the value of that object’s password property. Note how the $ is omitted from the
property $password when using the -> operator. Leaving the $ in place is a typical error
you may run into, particularly when you first use this feature.

PHP Objects | 109

Here’s how you would use the class defined in Example 5-17:

$object = new User;
$object->password = "secret”;
echo $object->get_password();

This code prints the password “secret”.

Static methods in PHP 5

If you are using PHP 5, you can also define a method as static, which means that it is
called on a class and not on an object. A static method has no access to any object
properties and is created and accessed as in Example 5-18.

Example 5-18. Creating and accessing a static method
<?php
User::pwd_string();

class User

{

static function pwd_string()
echo "Please enter your password";

}

>

Note how the class itself is called, along with the static method, using a double colon
(::, also known as the scope resolution operator) and not ->. Static functions are useful
for performing actions relating to the class itself, but not to specific instances of the
class. You can see another example of a static method in Example 5-21.

B
)

If you try to access $this->property, or other object properties from
within a static function, you will receive an error message.

Declaring Properties

[tis not necessary to explicitly declare properties within classes, as they can be implicitly
defined when first used. To illustrate this, in Example 5-19 the class User has no prop-
erties and no methods but is legal code.

Example 5-19. Defining a property implicitly

<?php

$object1 = new User();
$objecti->name = "Alice";
echo $objecti->name;

110 | Chapter5: PHP Functions and Objects

class User {}
?>

This code correctly outputs the string “Alice” without a problem, because PHP im-
plicitly declares the variable $object1->name for you. But this kind of programming can
lead to bugs that are infuriatingly difficult to discover, because name was declared from
outside the class.

To help yourself and anyone else who will maintain your code, I advise that you get
into the habit of always declaring your properties explicitly within classes. You’ll be
glad you did.

Also, when you declare a property within a class, you may assign a default value to it.
The value you use must be a constant and not the result of a function or expression.
Example 5-20 shows a few valid and invalid assignments.

Example 5-20. Valid and invalid property declarations

<?php
class Test

{

public $name = "Paul Smith"; // valid

public $age = 42; // Valid
public $time = time(); // Invalid - calls a function
public $score = $level * 2; // Invalid - uses an expression
}
>
Declaring Constants

In the same way that you can create a global constant with the define function, you
can define constants inside classes. The generally accepted practice is to use uppercase
letters to make them stand out, as in Example 5-21.

Example 5-21. Defining constants within a class

<?php

Translate::lookup();

class Translate

{
const ENGLISH = o;
const SPANISH = 1;
const FRENCH = 2;
const GERMAN = 3;
/] ...
static function lookup()

echo self::SPANISH;

}

}

?>

PHP Objects | 111

Constants can be referenced directly, using the self keyword and the double colon
operator. Note that this code calls the class directly, using the double colon operator
at line 1, without creating an instance of it first. As you would expect, the value printed
when you run this code is 1.

Remember that once you define a constant, you can’t change it.

Property and Method Scope in PHP 5
PHP 5 provides three keywords for controlling the scope of properties and methods:

public
These properties are the default when declaring a variable using the var or pub
lic keywords, or when a variable is implicitly declared the first time it is used. The
keywords var and public are interchangeable because, although deprecated, var is
retained for compatibility with previous versions of PHP. Methods are assumed to
be public by default.

protected
These properties and methods (members) can be referenced only by the object’s
class methods and those of any subclasses.

private
These members can be referenced only by methods within the same class—not by
subclasses.

Here’s how to decide which you need to use:

* Use public when outside code should access this member and extending classes
should also inherit it.

* Use protected when outside code should not access this member but extending
classes should inherit it.

* Use private when outside code should not access this member and extending
classes also should not inherit it.

Example 5-22 illustrates the use of these keywords.

Example 5-22. Changing property and method scope

<?php

class Example

{
var $name "Michael"; // Same as public but deprecated
public $age = 23; // Public property
protected $usercount; // Protected property

private function admin() // Private method

{
}

// Admin code goes here

112 | Chapter5: PHP Functions and Objects

}

>

Static properties and methods

Most data and methods apply to instances of a class. For example, in a User class, you
want to do such things as set a particular user’s password or check when the user has
been registered. These facts and operations apply separately to each user and therefore
use instance-specific properties and methods.

But occasionally you’ll want to maintain data about a whole class. For instance, to
report how many users are registered, you will store a variable that applies to the whole
User class. PHP provides static properties and methods for such data.

As shown briefly in Example 5-18, declaring members of a class static makes them
accessible without an instantiation of the class. A property declared static cannot be
directly accessed within an instance of a class, but a static method can.

Example 5-23 defines a class called Test with a static property and a public method.

Example 5-23. Defining a class with a static property

<?php

$temp = new Test();

echo "Test A: " . Test::$static_property . "
";
echo "Test B: " . $temp->get_sp() . "
";
echo "Test C: " . $temp->static_property . "
";

class Test

{

static $static_property = "I'm static”;
function get_sp()

return self::$static_property;

}

>

When you run this code, it returns the following output:

Test A: I'm static
Test B: I'm static

Notice: Undefined property: Test::$static_property
Test C:

This example shows that the property $static_property could be directly referenced
from the class itself using the double colon operator in Test A. Also, Test B could obtain
its value by calling the get_sp method of the object $temp, created from class Test. But
Test C failed, because the static property $static_property was not accessible to the
object $temp.

PHP Objects | 113

Note how the method get_sp accesses $static_property using the keyword self. This
is the way in which a static property or constant can be directly accessed within a class.

Inheritance

Once you have written a class, you can derive subclasses from it. This can save lots of
painstaking code rewriting: you can take a class similar to the one you need to write,
extend it to a subclass, and just modify the parts that are different. This is achieved
using the extends operator.

In Example 5-24, the class Subscriber is declared a subclass of User by means of the
extends operator.

Example 5-24. Inheriting and extending a class

<?php

$object = new Subscriber;
$object->name = "Fred";
$object->password = "pword";
$object->phone = "012 345 6789";
$object->email = "fred@loggs.com";

$object->display();
class User
public $name, $password;

function save_user()

{
}

echo "Save User code goes here";
}
class Subscriber extends User
public $phone, $email;

function display()

{
echo "Name: " . $this->name . "
";
echo "Pass: " . $this->password . "
";
echo "Phone: " . $this->phone . "
";
echo "Email: " . $this->email;
}
}
?>

The original User class has two properties, $name and $password, and a method to save
the current user to the database. Subscriber extends this class by adding an additional
two properties, $phone and $email, and includes a method of displaying the properties
of the current object using the variable $this, which refers to the current values of the
object being accessed. The output from this code is:

114 | Chapter5: PHP Functions and Objects

Name: Fred

Pass: pword

Phone: 012 345 6789
Email: fred@bloggs.com

The parent operator

If you write a method in a subclass with the same name as one in its parent class, its
statements will override those of the parent class. Sometimes this is not the behavior
you want, and you need to access the parent’s method. To do this, you can use the
parent operator, as in Example 5-25.

Example 5-25. Overriding a method and using the parent operator

<?php

$object = new Son;
$object->test();
$object->test2();

class Dad
{
function test()
{
echo "[Class Dad] I am your Father
";
}
}
class Son extends Dad
{
function test()
echo "[Class Son] I am Luke
";
}
function test2()
{
parent::test();
}
?>

This code creates a class called Dad and a subclass called Son that inherits its properties
and methods, then overrides the method test. Therefore, when line 2 calls the method
test, the new method is executed. The only way to execute the overridden test method
in the Dad class is to use the parent operator, as shown in function test2 of class Son.
The code outputs the following;:

[Class Son] I am Luke
[Class Dad] I am your Father

If you wish to ensure that your code calls a method from the current class, you can use
the self keyword, like this:

self::method();

PHP Objects | 115

Subclass constructors

When you extend a class and declare your own constructor, you should be aware that
PHP will not automatically call the constructor method of the parent class. To be certain
that all initialization code is executed, subclasses should always call the parent con-
structors, as in Example 5-26.

Example 5-26. Calling the parent class constructor
<?php

$object = new Tiger();

echo "Tigers have...
";

echo "Fur: " . $object->fur . "
";

echo "Stripes: " . $object->stripes;

class Wildcat
public $fur; // Wildcats have fur
function _ construct()

$this->fur = "TRUE";

}
}
class Tiger extends Wildcat
{
public $stripes; // Tigers have stripes
function _ construct()
{
parent::__construct(); // Call parent constructor first
$this->stripes = "TRUE";
}
}
?>

This example takes advantage of inheritance in the typical manner. The Wildcat class
has created the property $fur, which we’d like to reuse, so we create the Tiger class to
inherit $fur and additionally create another property, $stripes. To verify that both
constructors have been called, the program outputs the following:

Tigers have...

Fur: TRUE
Stripes: TRUE

Final methods

In cases in which you wish to prevent a subclass from overriding a superclass method,
you can use the final keyword. Example 5-27 shows how.

116 | Chapter5: PHP Functions and Objects

Download from Wow! eBook <www.wowebook.com>

Example 5-27. Creating a final method
<?php
class User

final function copyright()

echo "This class was written by Joe Smith";

}
}

>

Once you have digested the contents of this chapter, you should have a strong feel for
what PHP can do for you. You should be able to use functions with ease and, if you
wish, write object-oriented code. In Chapter 6, we’ll finish off our initial exploration
of PHP by looking at the workings of PHP arrays.

Test Your Knowledge

. What is the main benefit of using a function?

. How many values can a function return?

. What is the difference between accessing a variable by name and by reference?
. What is the meaning of scope in PHP?

. How can you incorporate one PHP file within another?

. How is an object different from a function?

. How do you create a new object in PHP?

. What syntax would you use to create a subclass from an existing one?

O 0 NI & L »h W N =

. How can you call an initializing piece of code when an object is created?

—_
o

. Why is it a good idea to explicitly declare properties within a class?

See “Chapter 5 Answers” on page 502 in Appendix A for the answers to these
questions.

Test Your Knowledge | 117

CHAPTER 6
PHP Arrays

In Chapter 3, I gave a very brief introduction to PHP’s arrays—just enough for a little
taste of their power. In this chapter, I'll show you many more things that you can do
with arrays, some of which—if you are have ever used a strongly typed language such
as C—may surprise you with their elegance and simplicity.

Arrays are an example of what has made PHP so popular. Not only do they remove the
tedium of writing code to deal with complicated data structures, but they also provide
numerous ways to access data while remaining amazingly fast.

Basic Access

We've already looked at arrays as if they were clusters of matchboxes glued together.
Another way to think of an array is like a string of beads, with the beads representing
variables that can be numbers, strings, or even other arrays. They are like bead strings,
because each element has its own location and (with the exception of the first and last
ones) each has other elements on either side.

Some arrays are referenced by numeric indexes; others allow alphanumeric identifiers.
Built-in functions let you sort them, add or remove sections, and walk through them
to handle each item through a special kind of loop. And by placing one or more arrays
inside another, you can create arrays of two, three, or any number of dimensions.

Numerically Indexed Arrays

Let’s assume that you’ve been tasked with creating a simple website for a local office
supplies company and you’re currently working on the section devoted to paper. One
way to manage the various items of stock in this category would be to place them in a
numeric array. You can see the simplest way of doing so in Example 6-1.

Example 6-1. Adding items to an array

<?php
$paper[] = "Copier";

119

$paper[] = "Inkjet";
$paper[] = "Laser";
$paper[] = "Photo";

print_r($paper);
>

In this example, each time you assign a value to the array $paper, the first empty location
within that array is used to store the value and a pointer internal to PHP is incremented
to point to the next free location, ready for future insertions. The familiar print_r
function (which prints out the contents of a variable, array, or object) is used to verify
that the array has been correctly populated. It prints out the following:

Array

(
[0] => Copier
[1] => Inkjet
[2] => Laser
[3] => Photo

)

The previous code could equally have been written as in Example 6-2, where the exact
location of each item within the array is specified. But, as you can see, that approach
requires extra typing and makes your code harder to maintain if you want to insert
supplies or remove supplies from the array. So, unless you wish to specify a different
order, it’s usually better to simply let PHP handle the actual location numbers.

Example 6-2. Adding items to an array using explicit locations

<?php

$paper[0] = "Copier";
$paper[1] = "Inkjet";
$paper[2] = "Laser";
$paper[3] = "Photo";

print_r($paper);
>

The output from these examples is identical, but you are not likely to use print rina
developed website, so Example 6-3 shows how you might print out the various types
of paper the website offers using a for loop.

Example 6-3. Adding items to an array and retrieving them

<?php

$paper[] = "Copier";
$paper[] = "Inkjet";
$paper[] = "Laser";
$paper[] = "Photo";

for ($j =0 ; $j < 4 ; ++$J)
echo "$j: $paper[$jl
";
»

120 | Chapter6: PHP Arrays

This example prints out the following:

Copier
Inkjet
Laser
Photo

w N B O

So far, you’ve seen a couple of ways in which you can add items to an array and one
way of referencing them, but PHP offers many more. We’ll get to those shortly, but
first, let’s look at another type of array.

Associative Arrays

Keeping track of array elements by index works just fine, but it can require extra work
in terms of remembering which number refers to which product. It can also make code
hard for other programmers to follow.

This is where associative arrays come into their own. Using them, you can reference
the items in an array by name rather than by number. Example 6-4 expands on the
previous code by giving each element in the array an identifying name and a longer,
more explanatory string value.

Example 6-4. Adding items to an associative array and retrieving them

<?php

$paper['copier'] = "Copier & Multipurpose";
$paper['inkjet'] = "Inkjet Printer";
$paper['laser'] = "Laser Printer";
$paper['photo'] = "Photographic Paper";

echo $paper['laser'];
>

In place of a number (which doesn’t convey any useful information, aside from the
position of the item in the array), each item now has a unique name that you can use
to reference it elsewhere, as with the echo statement—which simply prints out Laser
Printer. The names (copier, inkjet, and so on) are called indexes or keys and the items
assigned to them (such as “Laser Printer”) are called values.

This very powerful feature of PHP is often used when extracting information from XML
and HTML. For example, an HTML parser such as those used by a search engine could
place all the elements of a web page into an associative array whose names reflect the
page’s structure:

$html['title'] = "My web page";

$html['body'] = "... body of web page ...";
The program would also probably break out all the links found within a page into
another array, and all the headings and subheadings into another. When you use as-
sociative rather than numeric arrays, the code to refer to all of these items is easy to
write and debug.

BasicAccess | 121

Assignment Using the array Keyword

So far, you’ve seen how to assign values to arrays by just adding new items one at a
time. Whether you specify keys, specify numeric identifiers, or let PHP assign numeric
identifiers implicitly, this is a long-winded approach. A more compact and faster as-
signment method uses the array keyword. Example 6-5 shows both a numeric and an
associative array assigned using this method.

Example 6-5. Adding items to an array using the array keyword

<?php
$p1 = array("Copier", "Inkjet", "Laser", "Photo");

echo "p1 element: " . $p1[2] . "
";

$p2 = array('copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",
'photo’ => "Photographic Paper");

echo "p2 element: " . $p2['inkjet'] . "
";
>

The first half of this snippet assigns the old, shortened product descriptions to the array
$p1. There are four items, so they will occupy slots 0 through 3. Therefore, the echo
statement prints out the following;:

pl element: Laser

The second half assigns associative identifiers and accompanying longer product de-
scriptions to the array $p2 using the format index => value. The use of => is similar to
the regular = assignment operator, except that you are assigning a value to an index and
not to a variable. The index is then inextricably linked with that value, unless it is
reassigned a new value. The echo command therefore prints out:

p2 element: Inkjet Printer

You can verify that $p1 and $p2 are different types of array, because both of the following
commands, when appended to the code, will cause an “undefined index” or “undefined
offset” error, as the array identifier for each is incorrect:

echo $p1['inkjet']; // Undefined index
echo $p2[3]; // Undefined offset

The foreach...as Loop

The creators of PHP have gone to great lengths to make the language easy to use. So,
not content with the loop structures already provided, they added another one espe-
cially for arrays: the foreach...as loop. Using it, you can step through all the items in
an array, one at a time, and do something with them.

122 | Chapter6: PHP Arrays

The process starts with the first item and ends with the last one, so you don’t even have
to know how many items there are in an array. Example 6-6 shows how foreach can
be used to rewrite Example 6-3.

Example 6-6. Walking through a numeric array using foreach...as
<?php

$paper = array("Copier", "Inkjet", "Laser", "Photo");

$j = 0;

foreach ($paper as $item)

echo "$j: $item
";
++$3;
}

>

When PHP encounters a foreach statement, it takes the first item of the array and places
it in the variable following the as keyword, and each time control flow returns to the
foreach the next array element is placed in the as keyword. In this case, the variable
$item is set to each of the four values in turn in the array $paper. Once all values have
been used, execution of the loop ends. The output from this code is exactly the same
as for Example 6-3.

Now let’s see how foreach works with an associative array by taking a look at Exam-
ple 6-7, which is a rewrite of the second half of Example 6-5.

Example 6-7. Walking through an associative array using foreach...as
<?php
$paper = array('copier' => "Copier & Multipurpose",

'inkjet' => "Inkjet Printer",

'laser' => "Laser Printer",

'photo’ => "Photographic Paper");

foreach ($paper as $item => $description)
echo "$item: $description
";
>

Remember that associative arrays do not require numeric indexes, so the variable $j is
not used in this example. Instead, each item of the array $paper is fed into the key/value
pair of variables $item and $description, from where they are printed out. The result
of this code is as follows:

copier: Copier & Multipurpose

inkjet: Inkjet Printer

laser: Laser Printer

photo: Photographic Paper

As an alternative syntax to foreach. . .as, you can use the list function in conjunction
with the each function, as in Example 6-8.

The foreach...asLoop | 123

Example 6-8. Walking through an associative array using each and list
<?php
$paper = array('copier' => "Copier & Multipurpose",

'inkjet' => "Inkjet Printer",

'laser' => "Laser Printer",

'photo’ => "Photographic Paper");

while (list($item, $description) = each($paper))
echo "$item: $description
";
?>

In this example, awhile loop is set up and will continue looping until the each function
returns a value of FALSE. The each function acts like foreach: it returns an array con-
taining a key/value pair from the array $paper and then moves its built-in pointer to the
next pair in that array. When there are no more pairs to return, each returns FALSE.

The list function takes an array as its argument (in this case, the key/value pair re-
turned by function each) and then assigns the values of the array to the variables listed
within parentheses.

You can see how list works a little more clearly in Example 6-9, where an array is created
out of the two strings “Alice” and “Bob” and then passed to the 1ist function, which
assigns those strings as values to the variables $a and $b.

Example 6-9. Using the list function

<?php

list($a, $b) = array('Alice', 'Bob');
echo "a=$a b=$b";

?>

The output from this code is:
a=Alice b=Bob
You can take your pick when walking through arrays. Use foreach. . .as to create a loop

that extracts values to the variable following the as, or use the each function and create
your own looping system.

Multidimensional Arrays

A simple design feature in PHP’s array syntax makes it possible to create arrays of more
than one dimension. In fact, they can be as many dimensions as you like (although it’s
a rare application that goes further than three).

That feature is the ability to include an entire array as a part of another one, and to be
able to keep on doing so, just like the old rhyme: “Big fleas have little fleas upon their
backs to bite ’em. Little fleas have lesser fleas, add flea, ad infinitum.”

124 | Chapter6: PHP Arrays

Let’s look at how this works by taking the associative array in the previous example
and extending it—see Example 6-10.

Example 6-10. Creating a multidimensional associative array

<?php
$products = array(
"paper' => array(
"copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
‘laser’ => "Laser Printer",
'photo’ => "Photographic Paper"),

"pens’ => array(
'ball' => "Ball Point",
'hilite' => "Highlighters",
"marker' => "Markers"),

‘misc' => array(
"tape’ => "Sticky Tape",
‘glue’ => "Adhesives",
"clips' => "Paperclips"));

echo "<pre>";
foreach ($products as $section => $items)
foreach ($items as $key => $value)
echo "$section:\t$key\t($value)
";
echo "</pre>";
?>

To make things clearer now that the code is starting to grow, I've renamed some of the
elements. For example, seeing as the previous array $paper is now just a subsection of
a larger array, the main array is now called $products. Within this array there are three
items, paper, pens, and misc, and each of these contains another array with key/value
pairs.

If necessary, these subarrays could have contained even further arrays. For example,
under ball there might be an array containing all the different types and colors of
ballpoint pens available in the online store. But for now, I've restricted the code to just
a depth of two.

Once the array data has been assigned, I use a pair of nested foreach. . .as loops to print
out the various values. The outer loop extracts the main sections from the top level of
the array, and the inner loop extracts the key/value pairs for the categories within each
section.

As long as you remember that each level of the array works the same way (it’s a key/
value pair), you can easily write code to access any element at any level.

The echo statement makes use of the PHP escape character \t, which outputs a tab.
Although tabs are not normally significant to the web browser, I let them be used for
layout by using the <pre>...</pre> tags, which tell the web browser to format the text

Multidimensional Arrays | 125

as preformatted and monospaced, and not to ignore whitespace characters such as tabs
and line feeds. The output from this code looks like the following:

paper: copier (Copier & Multipurpose)
paper: inkjet (Inkjet Printer)

paper: laser (Laser Printer)

paper: photo (Photographic Paper)
pens: ball (Ball Point)

pens: hilite (Highlighters)

pens: marker (Markers)

misc: tape (Sticky Tape)

misc: glue (Adhesives)

misc: clips (Paperclips)

You can directly access a particular element of the array using square brackets, like this:

echo $products['misc']['glue'];
which outputs the value “Adhesives”.

You can also create numeric multidimensional arrays that are accessed directly by in-
dexes rather than by alphanumeric identifiers. Example 6-11 creates the board for a
chess game with the pieces in their starting positions.

Example 6-11. Creating a multidimensional numeric array

<?php

$chessboard = array(
array('r', 'n',
array('p', 'p',
array(' ', "'
array(' '
array(' '
array(' '
array(' '
array(' '
array('P'
array('R'

)
)
)
)
[
)
)
)
)

echo "<pre>";
foreach ($chessboard as $row)

foreach ($row as $piece)

echo "$piece ";
echo "
";

echo "</pre>";
>

In this example, the lowercase letters represent black pieces and the uppercase white.
The key is r=rook, n=knight, b=bishop, k=king, g=queen, and p=pawn. Again, a pair of
nested foreach...as loops walk through the array and display its contents. The outer
loop processes each row into the variable $row, which itself is an array, because the

126 | Chapter6: PHP Arrays

$chessboard array uses a subarray for each row. This loop has two statements within
it, so curly braces enclose them.

The inner loop then processes each square in a row, outputting the character ($piece)
stored in it, followed by a space (to square up the printout). This loop has a single
statement, so curly braces are not required to enclose it. The <pre> and </pre> tags
ensure that the output displays correctly, like this:

rnbqgkbnr
ppppPPPPP

PPPPPPP
RNBQKBN

PPPPP
QKBNR
You can also directly access any element within this array using square brackets, like
this:
echo $chessboard[7][3];

This statement outputs the uppercase letter Q, the eighth element down and the fifth
along (remembering that array indexes start at 0, not 1).

Using Array Functions

You’ve already seen the list and each functions, but PHP comes with numerous other
functions for handling arrays. The full list is at http://tinyurl.com/phparrayfuncs. How-
ever, some of these functions are so fundamental that it’s worth taking the time to look
at them here.

is_array

Arrays and variables share the same namespace. This means that you cannot have a
string variable called $fred and an array also called $fred. If you’re in doubt and your
code needs to check whether a variable is an array, you can use the is_array function

like this:

echo (is_array($fred)) ? "Is an array" : "Is not an array";

Note that if $fred has not yet been assigned a value, an “Undefined variable” message
will be generated.

count

Although the each function and the foreach...as loop structure are excellent ways to
walk through an array’s contents, sometimes you need to know exactly how many
elements there are in your array, particularly if you will be referencing them directly.

Using Array Functions | 127

http://tinyurl.com/phparrayfuncs

To count all the elements in the top level of an array, use a command such as the
following;:

echo count($fred);
Should you wish to know how many elements there are altogether in a multidimen-
sional array, you can use a statement such as:

echo count($fred, 1);

The second parameter is optional and sets the mode to use. It should be either 0 to limit
counting to only the top level, or 1 to force recursive counting of all subarray elements
too.

sort

Sorting is so common that PHP provides a built-in function for this purpose. In its
simplest form, you would use it like this:

sort($fred);

Unlike some other functions, sort will act directly on the supplied array rather than
returning a new array of sorted elements. It returns TRUE on success and FALSE on error
and also supports a few flags. The main two methods that you might wish to use force
sorting either numerically or as strings, like this:

sort($fred, SORT_NUMERIC);
sort($fred, SORT_STRING);

You can also sort an array in reverse order using the rsort function, like this:

rsort($fred, SORT_NUMERIC);
rsort($fred, SORT_STRING);

shuffle

There may be times when you need the elements of an array to be put in random order,
such as when creating a game of playing cards:

shuffle($cards);

Like sort, shuffle acts directly on the supplied array and returns TRUE on success or
FALSE on error.

explode

explode is a very useful function that allows you to take a string containing several items
separated by a single character (or string of characters) and place each of these items
into an array. One handy example is to split up a sentence into an array containing all
its words, as in Example 6-12.

128 | Chapter6: PHP Arrays

Example 6-12. Exploding a string into an array using spaces

<?php

$temp = explode(' ', "This is a sentence with seven words");
print_r($temp);

>

This example prints out the following (on a single line when viewed in a browser):

Array
[0] => This
[1] => is
[2] => a
[3] => sentence
[4] => with
[5] => seven
[6] => words
)

The first parameter, the delimiter, need not be a space or even a single character.
Example 6-13 shows a slight variation.

Example 6-13. Exploding a string delimited with ***into an array

<?php

$temp = explode('***', "A*k*sentence***with***asterisks");
print_r($temp);

>

The code in Example 6-13 prints out the following:

Array
(
[0] => A
[1] => sentence
[2] => with
[3] => asterisks
)
extract

Sometimes it can be convenient to turn the key/value pairs from an array into PHP
variables. One such time might be when processing the $ GET or $_POST variables sent
to a PHP script by a form.

When a form is submitted over the Web, the web server unpacks the variables into a
global array for the PHP script. If the variables were sent using the GET method, they
will be placed in an associative array called $_GET, and if they were sent using POST, they
will be placed in an associative array called $ POST.

You could, of course, walk through such associative arrays in the manner shown in the
examples so far. However, sometimes you just want to store the values sent into vari-
ables for later use. In this case, you can have PHP do the job automatically for you:

Using Array Functions | 129

extract($_GET);

So, for example, if the query string parameter q is sent to a PHP script along with the
associated value “Hi there”, a new variable called $q will be created and assigned that
value.

Be careful with this approach, though, because if any extracted variables conflict with
ones that you have already defined, your existing values will be overwritten. To avoid
this possibility, you can use one of the many additional parameters available to this
function, like this:

extract($ GET, EXTR_PREFIX ALL, 'fromget');

In this case, all the new variables will begin with the given prefix string followed by an
underscore, so $q will become $fromget g. I strongly recommend that you use this
version of the function when handling$ GETand $ POST arrays, or any other array whose
keys could be controlled by the user, because malicious users could submit keys chosen
deliberately to overwrite commonly used variable names and compromise your
website.

compact

There may also be times when you’ll want to use compact, the inverse of extract, to
create an array from variables and their values. Example 6-14 shows how you might
use this function.

Example 6-14. Using the compact function

<?php

$fname = "Elizabeth";

$sname = "Windsor";

$address = "Buckingham Palace";
$city = "London";

$country = "United Kingdom";

$contact = compact('fname', 'sname', 'address', 'city', 'country');
print_r($contact);
?>

The result of running Example 6-14 is:

Array
(
[fname] => Elizabeth
[sname] => Windsor
[address] => Buckingham Palace
[city] => London
[country] => United Kingdom

130 | Chapter6: PHP Arrays

Note that compact requires the variable names to be supplied in quotes and not as
variables preceded with a $ symbol. This is because compact is looking for an array of
variable names.

Another use of this function is for debugging, when you wish to quickly view several
variables and their values, as in Example 6-15.

Example 6-15. Using compact to help with debugging

<?php

$j = 23;

$temp = "Hello";
$address = "1 0ld Street";
$age = 61;

print_r(compact(explode(' ', 'j temp address age')));
>

This works by using the explode function to extract all the words from the string into
an array, which is then passed to the compact function. This function in turn returns an
array to print_r, which shows its contents.

If you copy and paste the print_r line of code, you only need to alter the variables
named there for a quick printout of a group of variables’ values. In this example, the
output is:

Array

(
[3] => 23
[temp] => Hello
[address] => 1 0ld Street
[age] => 61

)

reset

When the foreach. . .as construct or the each function walks through an array, it keeps
an internal PHP pointer that makes a note of which element of the array it should return
next. If your code ever needs to return to the start of an array, you can issue reset,
which also returns the value of the first element. Examples of how to use this function
are:

reset($fred); // Throw away return value
$item = reset($fred); // Keep first element of the array in $item

end

Similarly, you can move PHP’s internal array pointer to the final element in an array
using the end function, which also returns the value of that element and can be used as
in these examples:

Using Array Functions | 131

end($fred);
$item = end($fred);

This chapter concludes your basic introduction to PHP, and you should now be able
to write quite complex programs using the skills you have learned. In the next chapter,
we’ll look at using PHP for common, practical tasks.

Test Your Knowledge

. What is the difference between a numeric and an associative array?
. What is the main benefit of the array keyword?

. What is the difference between foreach and each?

. How can you create a multidimensional array?

. How can you determine the number of elements in an array?

. What is the purpose of the explode function?

~N O U AW N

. How can you set PHP’s internal pointer into an array back to the first element of
the array?

See “Chapter 6 Answers” on page 502 in Appendix A for the answers to these
questions.

132 | Chapter6: PHP Arrays

CHAPTER 7
Practical PHP

Previous chapters went over the elements of the PHP language. This chapter builds on
your new programming skills to teach you how to perform some common but impor-
tant practical tasks. You will learn the best ways to manage string handling to achieve
clear and concise code that displays in web browsers exactly how you want it to, in-
cluding advanced date and time management. You’ll also find out how to create and
otherwise modify files, including those uploaded by users.

There’s also a comprehensive introduction to XHTML, a markup language that is sim-
ilar to and intended to supersede HTML (and which conforms to the XML syntax used
to store data such as RSS feeds). Together these topics will extend your understanding
of both practical PHP programming and developing to international web standards.

Using printf

You’ve already seen the print and echo functions, which simply output text to the
browser. But a much more powerful function, printf, controls the format of the output
by letting you put special formatting characters in a string. For each formatting char-
acter, printf expects you to pass an argument that it will display using that format. For
instance, the following example uses the %d conversion specifier to display the value 3
in decimal:

printf("There are %d items in your basket", 3);

If you replace the %d with %b, the value 3 will be displayed in binary (11). Table 7-1
shows the conversion specifiers supported.

Table 7-1. The printf conversion specifiers

Specifier Conversion action on argument arg Example (for an arg of 123)
% Display a % character (no arg is required) %

b Display arg as a binary integer 1111011

C Display the ASCII character for the arg {

133

Specifier Conversion action on argument arg Example (for an arg of 123)

d Display arg as a signed decimal integer 123

e Display arg using scientific notation 1.23000e+2
f Display arg as floating point 123.000000
0 Display arg as an octal integer 173

s Display arg as a string 123

u Display arg as an unsigned decimal 123

X Display arg in lowercase hexadecimal 7b

X Display arg in uppercase hexadecimal 7B

You can have as many specifiers as you like in a printf function, as long as you pass a
matching number of arguments and as long as each specifier is prefaced by a % symbol.
Therefore, the following code is valid, and will output “My name is Simon. I'm 33 years
old, which is 21 in hexadecimal”:

printf("My name is %s. I'm %d years old, which is %X in hexadecimal”,
"Simon', 33, 33);

If you leave out any arguments, you will receive a parse error informing you that a right
bracket,), was unexpectedly encountered.

A more practical example of printf sets colors in HTML using decimal. For example,
suppose you know you want a color that has a triplet value of 65 red, 127 green, and
245 blue, but you don’t want to convert this to hexadecimal yourself. An easy solution
is:

printf("Hello", 65, 127, 245);

Check the format of the color specification between the apostrophes (' *) carefully. First
comes the pound sign (#) expected by the color specification. Then come three %X
format specifiers, one for each of your numbers. The resulting output from this com-
mand is:

Hello

Usually, you’ll find it convenient to use variables or expressions as arguments to
printf. For instance, if you stored values for your colors in the three variables $r, $g,
and $b, you could create a darker color with:

printf("Hello", $r-20, $g-20, $b-20);

Precision Setting

Not only can you specify a conversion type, but you can also set the precision of the
displayed result. For example, amounts of currency are usually displayed with only two
digits of precision. However, after a calculation, a value may have a greater precision
than this (e.g., $123.42/12, which results in $10.285). To ensure that such values are

134 | Chapter7: Practical PHP

Download from Wow! eBook <www.wowebook.com>

correctly stored internally, but displayed with only two digits of precision, you can
insert the string “.2” between the % symbol and the conversion specifier:

printf("The result is: $%.2f", 123.42 / 12);

The output from this command is:

The result is $10.29
Butyou actually have even more control than that, because you can also specify whether
to pad output with either zeros or spaces by prefacing the specifier with certain values.
Example 7-1 shows four possible combinations.
Example 7-1. Precision setting
<?php

echo "<pre>"; // Enables viewing of the spaces

// Pad to 15 spaces
printf("The result is $%15f\n", 123.42 / 12);

// Pad to 15 spaces, fill with zeros
printf("The result is $%015f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision
printf("The result is $%15.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with zeros
printf("The result is $%015.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with # symbol
printf("The result is $%'#15.2f\n", 123.42 / 12);
>

The output from this example looks like this:

The result is $ 10.285000
The result is $00000010.285000
The result is $ 10.29

The result is $000000000010.29
The result is S$itHt#Ht##t##10.29

The way it works is simple if you go from right to left (see Table 7-2). Notice that:

* The rightmost character is the conversion specifier. In this case, it is f for floating
point.

* Just before the conversion specifier, if there is a period and a number together, the
precision of the output is specified as the value of the number.

* Regardless of whether there’s a precision specifier, if there is a number, that rep-
resents the amount of characters to which the output should be padded. In the
previous example, this is 15 characters. If the output is already equal to or greater
than the padding length, this argument is ignored.

Using printf | 135

* The leftmost parameter allowed before the % symbol is a 0, which is ignored unless
a padding value has been set, in which case the output is padded with zeros instead
of spaces. If a pad character other than zero or a space is required, you can use any
one of your choice as long as you preface it with a single quotation mark, like this:
#.

* On the left is the % symbol, which starts the conversion.

Table 7-2. Conversion specifier components

Start Pad character ~ Number of pad Display Conversion

conversion characters precision specifier Examples

% 15 f 10.285000

% 0 15 .2 f 000000000010. 29
% # 15 4 f H#iHHHH#10. 2850

String Padding

You can also pad strings to required lengths (just as you can with numbers), select
different padding characters, and even choose between left and right justification.
Example 7-2 shows various examples.

Example 7-2. String padding

<?php
echo "<pre>"; // Enables viewing of the spaces

$h = 'House';

printf("[%s]\n", $h); // Standard string output
printf("[%10s]\n", $h); // Right justify with spaces
printf("[%-10s]\n", $h); // Left justify with spaces
printf("[%010s]\n", $h); // Zero padding

printf("[%'#10s]\n\n", $h); // Use the custom padding character '#'

$d = 'Doctor House';

printf("[%10.8s]\n", $d); // Right justify, cutoff of 8 characters
printf("[%-10.6s]\n", $d); // Left justify, cutoff of 6 characters
printf("[%-'@10.6s]\n", $d); // Left justify, pad '@', cutoff 6 chars
?>

Note how, for the purposes of layout in a web page, I've used the <pre> HTML tag to
preserve all the spaces and the \n newline character after each of the lines to be dis-
played. The output from this example is as follows:

[House]
[House
[House
[00000HoUSE
[#tHHouse

— e

136 | Chapter7: Practical PHP

[Doctor H]
[Doctor]
[Doctor@@@@]

When you specify a padding value, it will be ignored for any string whose length is
equal to or greater than that value, unless a cutoff value is given that shortens the string
back to less than the padding value.

Table 7-3 shows a breakdown of the components available to string conversion
specifiers.

Table 7-3. String conversion specifier components

Start Left/right Padding Number of Conversion

conversion justify character pad characters Cutoff specifier Examples

% 3 [House]

% - 10 3 [House]

% # 8 .4 s [###HHous |
Using sprintf

Often you don’t want to output the result of a conversion but need it to use elsewhere
in your code. This is where the sprintf function comes in. With it, you can send the
output to another variable rather than to the browser.

You might use it simply to make a conversion, as in the following example, which
returns the hexadecimal string value for the RGB color group 65, 127, 245 in $hex
string:

$hexstring = sprintf("%X%X%X", 65, 127, 245);
Or you may wish to store the output so it’s ready to display later:

$out = sprintf("The result is: $%.2f", 123.42 / 12);
echo $out;

Date and Time Functions

To keep track of the date and time, PHP uses standard Unix timestamps, which are
simply the number of seconds elapsed since midnight, January 1, 1970. To determine
the current timestamp, you can use the time function:

echo time();
Because the value is stored as seconds, to obtain the timestamp for this time next week

you would use the following, which adds 7 days x 24 hours x 60 minutes x 60 seconds
to the returned value:

echo time() + 7 * 24 * 60 * 60;

Date and Time Functions | 137

If you wish to create a timestamp for a given date, you can use the mktime function. Its
output is the timestamp 946684800 for the first second of the first minute of the first
hour of the first day of the year 2000:

echo mktime(o, 0, 0, 1, 1, 2000);
The parameters to pass are, in order from left to right:

¢ The number of the hour (0-23)

¢ The number of the minute (0-59)

¢ The number of seconds (0-59)

¢ The number of the month (1-12)

* The number of the day (1-31)

* The year (1970-2038, or 1901-2038 with PHP 5.1.0+ on 32-bit signed systems)

You may ask why you are limited to the years 1970 through 2038. Well,
it’s because the original developers of Unix chose the start of the year
1970 as the base date that no programmer should need to go before!
" Luckily, because as of version 5.1.0 PHP supports systems using a signed
32-bit integer for the timestamp, dates from 1901 to 2038 are allowed
on them. However, a problem even worse than the first comes about
because the Unix designers also decided that nobody would be using
Unix after about 70 years or so, and therefore believed they could get
away with storing the timestamp as a 32-bit value—which will accom-
modate dates only up to January 19, 2038! This will create what has
come to be known as the Y2K38 bug (much like the “millennium bug,”
which was caused by storing years as two-digit values, and which also
had to be fixed). We have to hope it will all be solved well before we get
too close to that date.

To display the date, use the date function. This function supports a plethora of for-
matting options, enabling you to display the date any way you could wish. The format
is as follows:

date($format, $timestamp);
The parameter $format should be a string containing formatting specifiers as detailed
in Table 7-4, and $timestamp should be a Unix timestamp. For the complete list of

specifiers, please see http://tinyurl.com/phpdatefuncs. The following command will out-
put the current date and time in the format “Thursday April 15th, 2010 - 1:38pm”:

echo date("1l F jS, Y - g:ia", time());

138 | Chapter7: Practical PHP

http://tinyurl.com/phpdatefuncs

Table 7-4. The major date function format specifiers

Format Description

Day specifiers

d Day of month, two digits, with leading zeros
D Day of week, three letters

j Day of month, no leading zeros

1 Day of week, full names

N Day of week, numeric, Monday to Sunday

S Suffix for day of month (useful with specifier)
W Day of week, numeric, Sunday to Saturday

z Day of year

Week specifier

W Week number of year

Month specifiers

F Month name

m Month number with leading zeros

M Month name, three letters

n Month number, no leading zeros

t Number of days in given month

Year specifiers

L Leap year

Y Year, four digits

y Year, two digits

Time specifiers

a Before or after midday, lowercase

A Before or after midday, uppercase

g Hour of day, 12-hour format, no leading zeros
G Hour of day, 24-hour format, no leading zeros
h Hour of day, 12-hour format, with leading zeros
H Hour of day, 24-hour format, with leading zeros
i Minutes, with leading zeros

s Seconds, with leading zeros

Returned value

01t031

Mon to Sun

1to31

Sunday to Saturday
1t07

st,nd, rd, orth
0t06

010365

01t052

January to December
01to12

JantoDec

1t012

28,29,30,0r31

1=Yes,0=No
0000 t0 9999
001099

amor pm
AMor PM
1t012

1t024

01to12
01t024
00to59
001059

Date and Time Functions | 139

Date Constants

There are a number of useful constants that you can use with the date command to
return the date in specific formats. For example, date(DATE_RSS) returns the current
date and time in the valid format for an RSS feed. Some of the more commonly used
constants are:

DATE_ATOM
Thisis the format for Atom feeds. The PHP format is “Y-m-d\TH:i:sP” and example
output is “2012-08-16T12:00:00+00:00.

DATE_COOKIE
This is the format for cookies set from a web server or JavaScript. The PHP format
is “l, d-M-y H:i:s T” and example output is “Thursday, 16-Aug-12 12:00:00 UTC”.
DATE_RSS
This is the format for RSS feeds. The PHP formatis “D,d MY H:i:s O” and example
output is “Thu, 16 Aug 2012 12:00:00 UTC”.

DATE_W3C
This is the format for the World Wide Web Consortium. The PHP format is “Y-
m-d\TH:i:sP” and example output is “2012-08-16T12:00:00+00:00”.

The complete list can be found at http://tinyurl.com/phpdates.

Using checkdate

You’ve seen how to display a valid date in a variety of formats. But how can you check
whether a user has submitted a valid date to your program? The answer is to pass the
month, day, and year to the checkdate function, which returns a value of TRUE if the
date is valid, or FALSE if it is not.

For example, if February 30 of any year is input, it will always be an invalid date.
Example 7-3 shows code that you could use for this. As it stands, it will find the given
date invalid.

Example 7-3. Checking for the validity of a date

<?php

$month = 9; // September (only has 30 days)
$day = 31; /] 31st

$year = 2012; // 2012

if (checkdate($month, $day, $year)) echo "Date is valid";
else echo "Date is invalid";
7>

140 | Chapter7: Practical PHP

http://tinyurl.com/phpdates

File Handling

Powerful as it is, MySQL is not the only (or necessarily the best) way to store all data
on a web server. Sometimes it can be quicker and more convenient to directly access
files on the hard disk. Cases in which you might need to do this include for modifying
images, such as uploaded user avatars, or log files that you wish to process.

First, though, a note about file naming. If you are writing code that may be used on
various PHP installations, there is no way of knowing whether these systems are case-
sensitive. For example, Windows and Mac OS X filenames are not case-sensitive, but
Linux and Unix ones are. Therefore, you should always assume that the system is case-
sensitive and stick to a convention such as all-lowercase filenames.

Checking Whether a File Exists

To determine whether a file already exists, you can use the file_exists function, which
returns either TRUE or FALSE and is used like this:

if (file_exists("testfile.txt")) echo "File exists";

Creating a File

At this point testfile.txt doesn’t exist, so let’s create it and write a few lines to it. Type
in Example 7-4 and save it as testfile.php.

Example 7-4. Creating a simple text file

<?php // testfile.php

$fh = fopen("testfile.txt", 'w') or die("Failed to create file");
$text = <<<_END

Line 1

Line 2

Line 3

_END;

furite($fh, $text) or die("Could not write to file");
fclose($fh);

echo "File 'testfile.txt' written successfully";

?>

When you run this in a browser, all being well, you will receive the message “File
‘testfile.txt’ written successfully”. If you receive an error message, your hard disk may
be full or, more likely, you may not have permission to create or write to the file, in
which case you should modify the attributes of the destination folder according to your
operating system. Otherwise, the file testfile.txt should now be residing in the same
folder in which you saved the testfile.php program. Try opening the file in a text or
program editor—the contents will look like this:

File Handling | 141

Line 1
Line 2
Line 3

This simple example shows the sequence that all file handling takes:

1. Always start by opening the file. This is done through a call to fopen.

2. Then you can call other functions; here we write to the file (fwurite), but you can
also read from an existing file (fread or fgets) and do other things.

3. Finish by closing the file (fclose). Although the program does this for you when it
ends, you should clean up yourself by closing the file when you’re finished.

Every open file requires a file resource so that PHP can access and manage it. The
preceding example sets the variable $fh (which I chose to stand for file handle) to the
value returned by the fopen function. Thereafter, each file handling function that ac-
cesses the opened file, such as fwrite or fclose, must be passed $fh as a parameter to
identify the file being accessed. Don’t worry about the content of the $fh variable; it’s
a number PHP uses to refer to internal information about the file—you just pass the
variable to other functions.

Upon failure, fopen will return FALSE. The previous example shows a simple way to
capture and respond to the failure: it calls the die function to end the program and give
the user an error message. A web application would never abort in this crude way (you
would create a web page with an error message instead), but this is fine for our testing
purposes.

Notice the second parameter to the fopen call. It is simply the character w, which tells
the function to open the file for writing. The function creates the file if it doesn’t already
exist. Be careful when playing around with these functions: if the file already exists, the
w mode parameter causes the fopen call to delete the old contents (even if you don’t
write anything new!).

There are several different mode parameters that can be used here, as detailed in Ta-
ble 7-5.

Table 7-5. The supported fopen modes

Mode Action Description

r Read from file start Open for reading only; place the file pointer at the beginning of the file. Return
FALSE if the file doesn’t already exist.

T+ Readfromfilestartandal- Open for reading and writing; place the file pointer at the beginning of the file. Return

low writing FALSE if the file doesn't already exist.
w' Write from file start and Open for writing only; place the file pointer at the beginning of the file and truncate the
truncate file file to zero length. If the file doesn’t exist, attempt to create it.

Write from file start, trun- Open for reading and writing; place the file pointer at the beginning of the file and
catefile, and allow read- truncate the file to zero length. If the file doesn’t exist, attempt to create it.

ing

142 | Chapter7: Practical PHP

Mode Action Description

a Append to file end Open for writing only; place the file pointer at the end of the file. If the file doesn’t exist,
attempt to create it.

'a+' Appendtofileendandal- Openforreadingand writing; place thefile pointeratthe end of thefile. If thefile doesn’t
low reading exist, attempt to create it.
Reading from Files

The easiest way to read from a text file is to grab a whole line through fgets (think of
the final s as standing for “string”), as in Example 7-5.

Example 7-5. Reading a file with fgets

<?php
$th = fopen("testfile.txt", 'r') or
die("File does not exist or you lack permission to open it");
$line = fgets($fh);
fclose($fh);
echo $line;
?>

If you created the file as shown in Example 7-4, you’ll get the first line:
Line 1

Or you can retrieve multiple lines or portions of lines through the fread function, as in
Example 7-6.

Example 7-6. Reading a file with fread

<?php
$th = fopen("testfile.txt", 'r') or
die("File does not exist or you lack permission to open it");
$text = fread($fh, 3);
fclose($fh);
echo $text;
>

I’ve requested three characters in the fread call, so the program displays the following;:
Lin

The fread function is commonly used with binary data, but if you use it on text data
that spans more than one line, remember to count newline characters.

Copying Files

Let’s try out the PHP copy function to create a clone of testfile.txt. Type in Exam-
ple 7-7 and save it as copyfile.php, then call up the program in your browser.

File Handling | 143

Example 7-7. Copying a file

<?php // copyfile.php

copy('testfile.txt', 'testfile2.txt') or die("Could not copy file");
echo "File successfully copied to 'testfile2.txt'";

>

If you check your folder again, you’ll see that you now have the new file testfile2.txt in
it. By the way, if you don’t want your programs to exit on a failed copy attempt, you
could try the alternate syntax in Example 7-8.

Example 7-8. Alternate syntax for copying a file

<?php // copyfile2.php

if (lcopy('testfile.txt', 'testfile2.txt')) echo "Could not copy file";
else echo "File successfully copied to 'testfile2.txt'";

>

Moving a File

To move a file, rename it with the rename function, as in Example 7-9.

Example 7-9. Moving a file

<?php // movefile.php
if (!rename('testfile2.txt', 'testfile2.new'))
echo "Could not rename file";
else echo "File successfully renamed to 'testfile2.new'";
?>

You can use the rename function on directories, too. To avoid any warning messages if

the original file or directory doesn’t exist, you can call the file_exists function first to
check.

Deleting a File

Deleting a file is just a matter of using the unlink function to remove it from the file-
system, as in Example 7-10.

Example 7-10. Deleting a file

<?php // deletefile.php

if (lunlink('testfile2.new')) echo "Could not delete file";
else echo "File 'testfile2.new' successfully deleted";

>

Whenever you access files on your hard disk directly, you must also
always ensure that it is impossible for your filesystem to be compro-
mised. For example, if you are deleting a file based on user input, you

must make absolutely certain that it is a file that can be safely deleted
and that the user is allowed to delete it.

144 | Chapter7: Practical PHP

As with moving a file, a warning message will be displayed if the file doesn’t exist; you
can avoid this by using file exists to first check for its existence before calling unlink.

Updating Files

Often you will want to add more data to a saved file, which you can do in many ways.
You can use one of the append write modes (see Table 7-5), or you can simply open a
file for reading and writing with one of the other modes that supports writing, and
move the file pointer to the place within the file that you wish to write to.

The file pointer is the position within a file at which the next file access will take place,
whether it’s a read or a write. It is not the same as the file handle (as stored in the variable
$fh in Example 7-4), which contains details about the file being accessed.

You can see this in action by typing in Example 7-11, saving it as update.php, then
calling it up in your browser.

Example 7-11. Updating a file

<?php // update.php

$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
$text = fgets($fh);

fseek($th, 0, SEEK_END);

furite($fh, "$text") or die("Could not write to file");
fclose($fh);

echo "File 'testfile.txt' successfully updated";

?>

This program opens testfile.txt for both reading and writing by setting the mode with
'r+', which puts the file pointer right at the start of the file. It then uses the fgets
function to read in a single line from the file (up to the first line feed). After that, the
fseek function is called to move the file pointer right to the file end, at which point the
line of text that was extracted from the start of the file (stored in $text) is then appended
to file’s end and the file is closed. The resulting file now looks like this:

Line 1

Line 2

Line 3
Line 1

The first line has successfully been copied and then appended to the file’s end.

As used here, in addition to the $fh file handle, the fseek function was passed two other
parameters, 0 and SEEK_END. The SEEK_END tells the function to move the file pointer to
the end of the file, and the 0 parameter tells it how many positions it should then be
moved backwards from that point. In the case of Example 7-11, a value of 0 is used
because the pointer is required to remain at the file’s end.

There are two other seek options available to the fseek function: SEEK _SET and
SEEK_CUR. The SEEK_SET option tells the function to set the file pointer to the exact

File Handling | 145

position given by the preceding parameter. Thus, the following example moves the file
pointer to position 18:

fseek($fh, 18, SEEK_SET);

SEEK_CUR sets the file pointer to the current position plus the value of the given offset.
Therefore, if the file pointer is currently at position 18, the following call will move it
to position 23:

fseek($th, 5, SEEK_CUR);

Although this is not recommended unless you have very specific reasons for it, it is even
possible to use text files such as this (but with fixed line lengths) as simple flat file
databases. Your program can then use fseek to move back and forth within such a file
to retrieve, update, and add new records. Records can also be deleted by overwriting
them with zero characters, and so on.

Locking Files for Multiple Accesses

Web programs are often called by many users at the same time. If more than one person
tries to write to a file simultaneously, it can become corrupted. And if one person writes
to it while another is reading from it, the file will be all right but the person reading it
may get odd results. To handle simultaneous users, it’s necessary to use the file locking
function flock. This function queues up all other requests to access a file until your
program releases the lock. Whenever your programs use write access on files that may
be accessed concurrently by multiple users, you should add file locking to them, as in
Example 7-12, which is an updated version of Example 7-11.

Example 7-12. Updating a file with file locking

<?php
$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
$text = fgets($fh);

if (flock($fh, LOCK_EX))

fseek($th, 0, SEEK_END);
furite($fh, "$text") or die("Could not write to file");
flock($fh, LOCK_UN);

}

fclose($fh);
echo "File 'testfile.txt' successfully updated";
>

There is a trick to file locking to preserve the best possible response time for your
website visitors: perform it directly before a change you make to a file, and then unlock
it immediately afterwards. Having a file locked for any longer than this will slow down
your application unnecessarily. This is why the calls to flock in Example 7-12 are di-
rectly before and after the furite call.

146 | Chapter7: Practical PHP

The first call to flock sets an exclusive file lock on the file referred to by $fh using the
LOCK_EX parameter:

flock($fh, LOCK_EX);

From this point onwards, no other processes can write to (or even read from) the file
until the lock is released by using the LOCK_UN parameter, like this:

flock($fh, LOCK _UN);

As soon as the lock is released, other processes are again allowed access to the file. This
is one reason why you should reseek to the point you wish to access in a file each time
you need to read or write data: another process could have changed the file since the
last access.

However, did you notice that the call to request an exclusive lock is nested as part of
an if statement? This is because flock is not supported on all systems, and therefore
it is wise to check whether you successfully secured a lock before you make your
changes, just in case one could not be obtained.

Something else you must consider is that flock is what is known as an advisory lock.
This means that it locks out only other processes that call the function. If you have any
code that goes right in and modifies files without implementing flock file locking, it
will always override the locking and could wreak havoc on your files.

Implementing file locking and then accidentally leaving it out in one section of code
can lead to an extremely hard-to-locate bug.

flock will not work on NFS and many other networked filesystems.
“i% Also, when using a multithreaded server like ISAPI, you may not be able
to rely on flock to protect files against other PHP scripts running in
parallel threads of the same server instance. Additionally, flock is not

supported on any system using the old FAT filesystem, such as older
versions of Windows.

Reading an Entire File

A handy function for reading in an entire file without having to use file handles is
file get contents. It’s very easy to use, as you can see in Example 7-13.

Example 7-13. Using file_get_contents

<?php

echo "<pre>"; // Enables display of line feeds
echo file get contents("testfile.txt");

echo "</pre>"; // Terminates pre tag

>

But the function is actually a lot more useful than that—you can also use it to fetch a
file from a server across the Internet, as in Example 7-14, which requests the HTML

File Handling | 147

from the O’Reilly home page and then displays it as if the page itself had been surfed
to. The result will be similar to the screen grab in Figure 7-1.

Example 7-14. Grabbing the O’Reilly home page

<?php
echo file get contents("http://oreilly.com");
?>
°°|i hitp://localhost/example-14.php L~BCEX H [O 'Reilly Media - Technolog... % L__|

File Edit View Favorites Tools Help

O! RE I LLY‘ Your Account

"2 Shopping Cart -
Spreading the knowledge of innovators. pping

»

m

Home Shop Radar: News & Commentary Answers Safari Books Online Conferences Training School of Technology Community
Popular Topics: Programming JavaScript iPhone Android Python HTML5 & CSS Microsoft Java Perl Linux Data s n 2y B
Search Search

Buy 2, Get the 3™ FREE All orders over $29.% qualify for FREE SHIPPING within the US

13 Shop Our Wide Selection
New & Top Python LS of Books & Videos
Save 50% - One Week Only SHOP NOW
Ruthlessly Efficient. Infinitely Practical.
Python has it all: elegant yet pragmatic, simple yet powerful, Deals of the Day

high-level but it doesn't get between you and your code. It's the
natural choice of programmers who put productivity first. This
week only save 50% on the top Python titles from O'Reilly.

2 Days Left to Save

Entity Framework:
DbContext

Ebook - 57.49
(Save 50%)

Figure 7-1. The O’Reilly home page grabbed with file_get_contents

Uploading Files

Uploading files to a web server is a subject area that seems daunting to many people,
but it actually couldn’t be much easier. All you need to do to upload a file from a form
is choose a special type of encoding called multipart/form-data; your browser will han-
dle the rest. To see how this works, type in the program in Example 7-15 and save it

as upload.php. When you run it, you’ll see a form in your browser that lets you upload
a file of your choice.

Example 7-15. Image uploader (upload.php)

<2php // upload.php

echo <<<_END

<html><head><title>PHP Form Upload</title></head><body>

<form method="post' action="upload.php' enctype='multipart/form-data'>

148 | Chapter7: Practical PHP

Select File: <input type='file' name='filename' size='10' />
<input type='submit' value='Upload' />

</form>

_END;

if ($_FILES)

$name = $ FILES['filename']['name'];
move_uploaded file($_FILES['filename']['tmp_name'], $name);
echo "Uploaded image '$name'
";

}

echo "</body></html>";
>

Let’s examine this program a section at a time. The first line of the multiline echo
statement starts an HTML document, displays the title, and then starts the document’s

body.

Next we come to the form that selects the POST method of form submission, sets the
target for posted data to the program upload.php (the program itself), and tells the web
browser that the data posted should be encoded using the content type multipart/form-
data.

With the form set up, the next lines display the prompt “Select File:” and then request
two inputs. The first input being asked for is for a file, which is done by using an input
type of file and a name of filename. This input field has a width of 10 characters.

The second requested input is just a Submit button that is given the label “Upload”
(replacing the default button text of “Submit Query”). And then the form is closed.

This short program shows a common technique in web programming in which a single
program is called twice: once when the user first visits a page, and again when the user
presses the Submit button.

The PHP code to receive the uploaded data is fairly simple, because all uploaded files
are placed into the associative system array $_FILES. Therefore, a quick check to see
whether $_FILES has anything in it is sufficient to determine whether the user has up-
loaded a file. This is done with the statement if ($_FILES).

The first time the user visits the page, before uploading a file, $ FILES is empty, so the
program skips this block of code. When the user uploads a file, the program runs again
and discovers an element in the $_FILES array.

Once the program realizes that a file was uploaded, the actual name, as read from the
uploading computer, is retrieved and placed into the variable $name. Now all that’s
necessary is to move the uploaded file from the temporary location in which PHP stored
it toamore permanent one. This is done using themove_uploaded_file function, passing
it the original name of the file, with which it is saved to the current directory.

File Handling | 149

Finally, the uploaded image is displayed within an tag, and the result should look
like the screen grab in Figure 7-2.

[@ PHP Form Upload - Mozilla Firefox =ANCE X
File Edit View History Bookmarks Tools Help
@ - P - '._. http://localhost/upload.php T

Seec Fie |

Uploaded image 'smiley . jpg’

m

Done o o @ @

Figure 7-2. Uploading an image as form data

=

Using $_FILES

If you run this program and receive warning messages such as “Permis-
sion denied” for themove_uploaded file function call, you may not have
the correct permissions set for the folder in which the program is
running.

Five things are stored in the $ _FILES array when a file is uploaded, as shown in Ta-
ble 7-6 (where file is the file upload field name supplied by the submitting form).

Table 7-6. The contents of the $_FILES array

Array element Contents

$_FILES['file']['name'] The name of the uploaded file (e.g., smiley.jpg)

$ FILES['file']['type'] The content type of the file (e.g., image/jpeg)

$ FILES['file']['size'] The file’s size in bytes

$ _FILES['file']['tmp_name'] Thename of the temporary file stored on the server
$ FILES['file']['error'] The error code resulting from the file upload

Content types used to be known as MIME (Multipurpose Internet Mail Extension)
types, but because their use later expanded to the whole Internet, they are nowadays
often called Internet media types. Table 7-7 shows some of the more frequently used
types that turn up in $_FILES['file']['type'].

150 | Chapter7: Practical PHP

Table 7-7. Some common Internet media content types

application/pdf image/gif multipart/form-data text/xml

application/zip image/jpeg text/css video/mpeg

audio/mpeg image/png text/html video/mp4

audio/x-wav image/tiff text/plain video/quicktime
Validation

Hopefully it now goes without saying (although I'll do so anyway) that form data val-
idation is of the utmost importance, due to the possibility of users attempting to hack
into your server.

In addition to maliciously formed input data, some of the things you also have to check
are whether a file was actually received and, if so, whether the right type of data was sent.

Taking all these things into account, Example 7-16, upload2.php, is a rewrite of up-
load.php.

Example 7-16. A more secure version of upload.php

<?php // upload2.php
echo <<<_END
<html><head><title>PHP Form Upload</title></head><body>
<form method="'post' action="'upload2.php' enctype='multipart/form-data'>
Select a JPG, GIF, PNG or TIF File:
<input type='file' name='filename' size='10' />
<input type='submit' value='Upload' /></form>
END;

if ($_FILES)
{
$name = $ FILES['filename']['name'];

switch($_FILES['filename']["type'])

{
case 'image/jpeg': $ext = 'jpg'; break;
case 'image/gif': $ext = 'gif'; break;
case 'image/png': $ext = 'png'; break;
case 'image/tiff': $ext = 'tif'; break;
default: $ext = ''; break;

}

if ($ext)

{
$n = "image.$ext";
move_uploaded file($ FILES['filename']['tmp_name'], $n);
echo "Uploaded image '$name' as '$n':
";
echo "";

else echo "'$name' is not an accepted image file";

else echo "No image has been uploaded";

File Handling | 151

echo "</body></html>";
>

The non-HTML section of code has been expanded from the half-dozen lines of Ex-
ample 7-15 to more than 20 lines, starting at: if ($_FILES).

As with the previous version, this if line checks whether any data was actually posted,
but there is now a matching else near the bottom of the program that echoes a message
to screen when nothing has been uploaded.

Within the if statement, the variable $name is assigned the value of the filename as
retrieved from the uploading computer (just as before), but this time we won’t rely on
the user having sent us valid data. Instead, a switch statement is used to check the
uploaded content type against the four types of images this program supports. If a
match is made, the variable $ext is set to the three-letter file extension for that type.
Should no match be found, the file uploaded was not of an accepted type and the

variable $ext is set to the empty string "".

The next section of code then checks the variable $ext to see whether it contains a string
and, if so, creates a new filename called $n with the base name image and the extension
stored in $ext. This means that the program is in full control over the name of the file
to be created, as it can be only one of image.jpg, image.gif, image.png, or image.tif.

Safe in the knowledge that the program has not been compromised, the rest of the PHP
code is much the same as in the previous version. It moves the uploaded temporary
image to its new location and then displays it, while also displaying the old and new
image names.

W

Don’t worry about having to delete the temporary file that PHP creates
during the upload process, because if the file has not been moved or
s renamed, it will be automatically removed when the program exits.

After the if statement there is a matching else, which is executed only if an unsup-
ported image type was uploaded, in which case it displays an appropriate error message.

When you write your own file uploading routines, I strongly advise you to use a similar
approach and have pre-chosen names and locations for uploaded files. That way no
attempts to add pathnames and other malicious data to the variables you use can get
through. If this means that more than one user could end up having a file uploaded
with the same name, you could prefix such files with the user’s name, or save them to
individually created folders for each user.

If, however, you must use a supplied filename, you should sanitize it by allowing only
alphanumeric characters and the period, which you can do with the following com-
mand, using a regular expression (see Chapter 17) to perform a search and replace on
$name:

152 | Chapter7: Practical PHP

$name = preg_replace("/["A-Za-z0-9.]/", "", $name);

This leaves only the characters A—Z, a—z, 0-9 and . in the string $name, and strips out

everything else.

Even better, to ensure that your program will work on all systems (regardless of whether
they are case-sensitive or case-insensitive), instead use the following command, which
changes all uppercase characters to lowercase at the same time:

$name = strtolower(preg replace("/["A-Za-z0-9.]/", "", $name));

L)
)

Sometimes you may encounter the media type image/pjpeg, which in-
dicates a progressive JPEG. You can safely add this to your code as an
s alias of image/jpeg, like this:

case 'image/pjpeg':
case 'image/jpeg': $ext = 'jpg'; break;

System (Calls

Sometimes PHP will not have the function you need to perform a certain action, but
the operating system it is running on may. In such cases, you can use the exec system
call to do the job.

For example, to quickly view the contents of the current directory, you can use a pro-
gram such as the one in Example 7-17. If you are on a Windows system, it will run
as-is using the Windows dir command. On Linux, Unix, or Mac OS X, comment out
or remove the first line and uncomment the second to use the 1s system command.
You may wish to type in this program, save it as exec.php, and call it up in your browser.

Example 7-17. Executing a system command

<?php // exec.php
$cmd = "dir"; // Windows
// $cmd = "1s"; // Linux, Unix & Mac

exec(escapeshellemd($cmd), $output, $status);

if ($status) echo "Exec command failed";
else

{

echo "<pre>";

foreach($output as $line) echo "$line\n";
}

7>

Depending on the system you are using, the result of running this program will look
something like this (from a Windows dir command):

Volume in drive C is HP
Volume Serial Number is E67F-EE11

SystemCalls | 153

Directory of C:\web
20/01/2011 10:34

20/01/2011 10:34

19/01/2011 16:26 236 maketest.php

20/01/2011 10:47 198 exec.php

20/01/2011 08:04 13,741 smiley.jpg

19/01/2011 18:01 54 test.php

19/01/2011 16:59 35 testfile.txt

20/01/2011 09:35 886 upload.php
6 File(s) 15,150 bytes

2 Dir(s) 382,907,748,352 bytes free
exec takes three arguments:

1. The command itself (in the previous case, $cmd)

2. An array in which the system will put the output from the command (in the pre-
vious case, $output)

3. A variable to contain the returned status of the call (in the previous case, $status)

If you wish, you can omit the $output and $status parameters, but you will not know
the output created by the call or even whether it completed successfully.

You should also note the use of the escapeshellcmd function. Itis a good habit to always
use this when issuing an exec call because it sanitizes the command string, preventing
the execution of arbitrary commands should you supply user input to the call.

The system calling functions are typically disabled on shared web hosts,
“% as they pose a security risk. You should always try to solve your prob-
lems within PHP if you can, and go to the system directly only if it is
really necessary. Also be aware that going to the system is relatively slow,

and you’ll need to code two implementations if your application is ex-
pected to run on both Windows and Linux/Unix systems.

XHTML

I’ve used some elements of XHTML (Extensible Hypertext Markup Language) already
in this book, although you may not have realized it. For example, instead of the simple
HTML tag
, I've been using the XHTML
 version. But what’s the difference
between the two markup languages?

Well, not a lot at first glance, but XHTML improves on HTML by clearing up a lot of
little inconsistencies that make it hard to process. HTML requires a quite complex and
very lenient parser, whereas XHTML, which uses standard syntax more like XML (Ex-
tensible Markup Language), is very easily processed with quite a simple parser—a
parser being a piece of code that processes tags and commands and works out what
they mean.

154 | Chapter7: Practical PHP

The Benefits of XHTML

Any program that can handle XML files can quickly process XHTML documents. As
more and more devices such as iPhones, BlackBerries, and Android and Windows
Phone devices (not to mention a plethora of new tablet devices) become web-enabled,
it is increasingly important to ensure that web content looks good on them as well as
on a PC or laptop’s web browser, and the tighter syntax required by XHTML is a big
factor in helping this cross-platform compatibility.

What is happening right now is that browser developers, in order to be able to provide
faster and more powerful programs, are trying to push web developers over to using
XHTML, and the time may eventually come when HTML is superseded by XHTML—
so it’s a good idea to start using it now.

XHTML Versions

The XHTML standard is constantly evolving, and there have been a few versions in
use, but for one reason or another XHTML 1.0 has ended up being the only version
that you need to understand.

While there have been other versions of XHTML (such as 1.1, 1.2, and 2.0) that have
reached proposal stages and even begun to be used, none of them has gained much
traction among web developers—that makes it all the more simple for you and me, as
there’s only one version to master.

What's Different?
The following XHTML rules differentiate it from HTML:

* All tags must be closed by another tag. In cases in which there is no matching
closing tag, the tag must close itself using a space followed by the symbols / and
>. So, for example, a tag such as <input type='submit'> needs to be changed into
<input type='submit' />.In addition, all opening <p> tags now require a closing
</p> tag, too. And no, you can’t replace them with <p />.

* All tags must be correctly nested. Therefore, the string My first name is
<i>Robin</1i> is not allowed, because the opening has been closed before
the <i>. The correct version is My first name is <i>Robin</i>.

* All tag attributes must be enclosed in quotation marks. Instead of using tags such
as <form method=post action=post.php>, you should instead use <form
method="'post' action='post.php'>. You can also use double quotes: <form
method="post" action="post.php">.

* The ampersand (&) character cannot be used on its own. For example, the string
“Batman & Robin” must be replaced with “Batman & Robin”. This means
that URLs require modification, too: the HTML syntax <a href="index.php?

XHTML | 155

Download from Wow! eBook <www.wowebook.com>

page=128item=15"> should be replaced with <a href="index.php?
page=128amp;item=15">.

* XHTML tags are case-sensitive and must be all in lowercase. Therefore, HTML
such as <BODY><DIV ID="heading"> must be changed to the following syntax:
<body><div id="heading">.

* Attributes cannot be minimized any more, so tags such as <option name="bill"
selected> now must be replaced with an assigned value: <option name="bill"
selected="selected">. All other attributes, such as checked and disabled, also need
changing to checked="checked", disabled="disabled", and so on.

e XHTML documents must start with a new XML declaration on the very first line,
like this: <?xml version="1.0" encoding="UTF-8"?>.

* The DOCTYPE declaration has been changed.

* The <html> tag now requires an xmlns attribute.

Let’s take a look at the XHTML 1.0—conforming document in Example 7-18.

Example 7-18. An example XML document

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8" />
<title>XHTML 1.0 Document</title>
</head>
<body>
<p>This is an example XHTML 1.0 document</p>
<h1>This is a heading</h1>
<p>This is some text</p>
</body>
</html>

As previously discussed, the document begins with an XML declaration, followed by
the DOCTYPE declaration and the <html> tag with an xmlns attribute. From there on, it all
looks like straightforward HTML, except that the meta tag is closed properly with />.

HTML 4.01 Document Types

To tell the browser precisely how to handle a document, use the DOCTYPE declaration,
which defines the syntax that is allowed. HTML 4.01 supports three DTDs (document
type declarations), as can be seen in the following examples.

The strict DTD in Example 7-19 requires complete adherence to HTML 4.01 syntax.

156 | Chapter7: Practical PHP

Example 7-19. The HTML 4.01 Strict DTD
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

Theloose DTD in Example 7-20 allows some older elements and deprecated attributes.

(The standards at hitp://w3.0rg/TR/xhtml1 explain which items are deprecated.)

Example 7-20. The HTML 4.01 Transitional DTD

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

Finally, Example 7-21 signifies an HTML 4.01 document containing a frameset.

Example 7-21. The HTML 4.01 Frameset DTD

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

The HTML5 Document Type

For HTMLS5, using document types has become much simpler because there’s now just
one of them, as follows:

<IDOCTYPE html>

Just the simple word html is sufficient to tell the browser that your web page is designed
for HTMLS. Further, because all the latest versions of most popular browsers have
supported most of the HTML5 specification since 2011 or so, this document type is
more and more likely to be the only one you need, unless you choose to cater for older
browsers.

XHTML 1.0 Document Types

You may well have come across one or more of the HTML document types before.
However, the syntax is slightly different when it comes to XHTML 1.0, as shown in
the following examples.

The strict DTD in Example 7-22 rules out the use of deprecated attributes and requires

code that is completely correct.

Example 7-22. The XHTML 1.0 Strict DTD

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The transitional XHTML 1.0 DTD in Example 7-23 allows deprecated attributes and
is the most commonly used DTD.

XHTML | 157

http://w3.org/TR/xhtml1

Example 7-23. The XHTML 1.0 Transitional DTD

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Example 7-24 shows the only XHTML 1.0 DTD that supports framesets.

Example 7-24. The XHTML 1.0 Frameset DTD

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML Validation

To validate your XHTML, visit the W3C validation site at http://validator.w3.org,
where you can validate a document by URL, by file upload, or by typing it in or copying
and pasting it into a web form. Before you code some PHP to create a web page, submit
a sample of the output that you want to create to the validation site. No matter how
carefully you code your XHTML, you will be surprised how many errors you’ve left in.

Whenever a document is not fully compatible with XHTML, you will be given helpful
messages explaining how you can correct it. Figure 7-3 shows that the document in

Example 7-18 successfully passes the XHTML 1.0 Strict validation test.

a- @ http://validator.w3.orgfcheck?uri=http¥3A%2F% O ~ B ¢ X Hm[\/ahd]MarkUp Validation ... ‘ ‘

File Edit View Favorites Tools Help

oo -
o~ 08
¥ &

This document was successfully checked as XHTML 1.0 Strict!

Result: Passed

Address : http://validator.w3.org/
Encoding: utf-3 (detect automatically} [+]
Doctype: XHTML 1.0 Strict (detect automatically} [+]

Root Element: html
Root F hittp:/iwww.w3.0rg/1999/xhtml

The W3C validators are hested on server technology donated by HP, and 3034
I supported by community donations.
Donate and help us build better tools for a better web.

H100% -

Figure 7-3. The document in Example 7-18, having passed validation

W

You will find that your XHTML 1.0 documents are so close to HTML
that even if they are called up on a browser that is unaware of XHTML,
s they should display correctly. The only potential problem is with the
 <script> tag. To ensure compatibility, avoid using the <script
src="script.src" /> syntax and replace it with the following: <script
src="script.src"></script>.

158 | Chapter7: Practical PHP

http://validator.w3.org

This chapter represented another long journey in your task to master PHP. Now that
you have formatting, file handling, XHTML, and a lot of other important concepts
under your belt, the next chapter will introduce you to another major topic, MySQL.

Test Your Knowledge

1.

Which printf conversion specifier would you use to display a floating-point
number?

. What printf statement could be used to take the input string “Happy Birthday”

and output the string “**Happy”?

. To send the output from printf to a variable instead of to a browser, what alter-

native function would you use?

. How would you create a Unix timestamp for 7:11 AM on May 2, 2016?

. Which file access mode would you use with fopen to open a file in write and read

mode, with the file truncated and the file pointer at the start?

. What is the PHP command for deleting the file file.txt?

. Which PHP function is used to read in an entire file in one go, even from across

the Web?

. Which PHP system variable holds the details on uploaded files?
9.
10.

Which PHP function enables the running of system commands?

What is wrong with the following XHTML 1.0 tag: <input type=file name=file
size=10>?

See “Chapter 7 Answers” on page 503 in Appendix A for the answers to these
questions.

Test Your Knowledge | 159

CHAPTER 8
Introduction to MySQL

With well over ten million installations, MySQL is probably the most popular database
management system for web servers. Developed in the mid-1990s, it’s now a mature
technology that powers many of today’s most-visited Internet destinations.

One reason for its success must be the fact that, like PHP, it’s free to use. But it’s also
extremely powerful and exceptionally fast—it can run on even the most basic of hard-
ware, and it hardly puts a dent in system resources.

MySQL is also highly scalable, which means that it can grow with your website. In fact,
in a comparison of several databases by eWEEK, MySQL and Oracle tied for both best
performance and greatest scalability.

MySQL Basics

A database is a structured collection of records or data stored in a computer system
and organized in such a way that it can be searched quickly and information can be
retrieved rapidly.

The SQL in MySQL stands for Structured Query Language. This language is loosely
based on English and is also used on other databases, such as Oracle and Microsoft
SQL Server. It is designed to allow simple requests from a database via commands such
as:

SELECT title FROM publications WHERE author = 'Charles Dickens';

A MySQL database contains one or more tables, each of which contains records or
rows. Within these rows are various columns or fields that contain the data itself. Ta-
ble 8-1 shows the contents of an example database of five publications detailing the
author, title, type, and year of publication.

161

Table 8-1. Example of a simple database

Author Title Type Year
Mark Twain The Adventures of Tom Sawyer Fiction 1876
Jane Austen Pride and Prejudice Fiction 1811
Charles Darwin The Origin of Species Non-Fiction 1856
Charles Dickens The 0ld Curiosity Shop Fiction 1841
William Shakespeare Romeo and Juliet Play 1594

Each row in the table is the same as a row in a MySQL table, and each element within
a row is the same as a MySQL field.

To uniquely identify this database, I'll refer to it as the publications database in the
examples that follow. And, as you will have observed, all these publications are con-
sidered to be classics of literature, so I'll call the table within the database that holds
the details classics.

Summary of Database Terms

The main terms you need to acquaint yourself with for now are:

Database
The overall container for a collection of MySQL data.

Table
A subcontainer within a database that stores the actual data.

Row
A single record within a table, which may contain several fields.

Column
The name of a field within a row.

I should note that I’'m not trying to reproduce the precise terminology used in academic
literature about relational databases, but just to provide simple, everyday terms to help
you quickly grasp basic concepts and get started with a database.

Accessing MySQL via the Command Line

There are three main ways in which you can interact with MySQL: using a command
line, via a web interface such as phpMyAdmin, and through a programming language
like PHP. We’'ll start doing the third of these in Chapter 10, but for now, let’s look at
the first two.

162 | Chapter8: Introduction to MySQL

Starting the Command-Line Interface

The following sections describe relevant instructions for Windows, OS X, and Linux.

Windows users

If you installed the Zend Server CE WAMP as explained in Chapter 2, you will be able
to access the MySQL executable from one of the following directories (the first on 32-
bit computers, and the second on 64-bit machines):

C:\Program Files\Zend\MySQL51\bin
C:\Program Files (x86)\Zend\MySQL51\bin

W N
- If you installed Zend Server CE in a place other than \Program Files (or
\Program Files (x86)), you will need to use that directory instead.

By default, the initial MySQL user will be root and will not have had a password set.
Seeing as this is a development server that only you should be able to access, we won’t
worry about creating one yet.

So, to enter MySQL’s command-line interface, select Start~Run and enter CMD into the
Run box, then press Return. This will call up a Windows Command prompt. From
there, enter one of the following (making any appropriate changes as just discussed):

"C:\Program Files\Zend\MySQL51\bin" -u root
"C:\Program Files (x86)\Zend\MySQL51\bin" -u root

B

N

Note the quotation marks surrounding the path and filename. These

are present because the name contains spaces, which the Command

s prompt doesn’t correctly interpret; the quotation marks group the parts

" of the filename into a single string for the Command program to
understand.

This command tells MySQL to log you in as the user root, without a password. You
will now be logged in to MySQL and can start entering commands. To be sure every-
thing is working as it should be, enter the following—the results should be similar to
Figure 8-1:

SHOW databases;

If this has not worked and you get an error, make sure that you have correctly installed
MySQL along with Zend Server CE (as described in Chapter 2). Otherwise, you are
ready to move on to the following section, “Using the Command-Line Inter-
face” on page 166.

Accessing MySQL via the Command Line | 163

BN C\Windows\system32\cmd.exe | = | (S -

Microsoft Windows [Version 6.8.686811
Copyright (c) 2886 Microsoft Corporation. All rights reserved.

C:sUsers“\Robin>'"Program Files“EasyPHP 2.8blmysglsbin“mysgl" —u root
llelcome to the MySQL monitor. Commands end with ; or .

Your MySQL connection id is 16 to server version: 5.0.27-community—log
Type ‘help;’ or '“h’ for help. Type '“c’ to clear the buffer.

ysgl> show databases

nformation_schema
ysql

[P

m
+
1
i
+
1
i
I
i
I
i
+

in set (B.88 sec)

mysgl> _

Figure 8-1. Accessing MySQL from a Windows Command prompt
0S X users

To proceed with this chapter, you should have installed Zend Server CE as detailed in
Chapter 2. You should also have the web server already running and the MySQL server
started.

To enter the MySQL command-line interface, start the Terminal program (which
should be available in Finder—Ultilities). Then call up the MySQL program, which will
have been installed in the directory /usr/local/zend/mysql/bin.

By default, the initial MySQL user is root and it will have a password of root too. So,
to start the program, type the following:

/usr/local/zend/mysql/bin/mysql -u root
This command tells MySQL to log you in as the user root and not to request your

password. To verify that all is well, type in the following—Figure 8-2 should be the
result:

SHOW databases;

If you receive an error such as “Can’t connect to local MySQL server through socket,”
you haven’t started up the MySQL server, so make sure you followed the advice in
Chapter 2 about configuring MySQL to start when OS X starts.

You should now be ready to move on to the next section, “Using the Command-Line
Interface” on page 166.

Linux users

On a system running a Unix-like operating system such as Linux, you will almost cer-
tainly already have PHP and MySQL installed and running, and you will be able to

164 | Chapter8: Introduction to MySQL

®00 zend — mysqgl.client — 85x24 "

iMac:zend robin$ show databases;

—-bash: show: command not found

iMac:zend robing fusr/local/zend/mysgl/bin/mysgl -u root
Welcome to the MySQL moniteor. Commands end with ; or \g.
Your MyS0L connection id is 2

Server version: 5.1.54 MySOQL Community Server [GPL)

Copyright (c) 20e0@, 2018, Oracle and/or its affiliates. ALl rights reserved.
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to medify and redistribute it under the GPL v2Z license

Type 'help;' or 'wh' for help. Type '“wc' to clear the current input statement.

mysql> show databases;

o mmmm oo +
| Database |
e +
| informatien_schema |
| mysgl |
| test |
Ao mmmm e mm e +

3 rows in set (8.88 sec)

mysql=

Figure 8-2. Accessing MySQL from the OS X Terminal program
enter the examples in the next section. But first, you should type the following to log
in to your MySQL system:

mysql -u root -p
This tells MySQL to log you in as the user root and to request your password. If you
have a password, enter it; otherwise, just press Return.
Once you are logged in, type the following to test the program—you should see some-
thing like Figure 8-3 in response:

SHOW databases;

Figure 8-3. Accessing MySQL using Linux

Accessing MySQL via the Command Line | 165

If this procedure fails at any point, please refer to the section “Installing a LAMP on
Linux” on page 31 in Chapter 2 to ensure that you have MySQL properly installed.
Otherwise, you should now be ready to move on to the following section, “Using the
Command-Line Interface” on page 166.

MySQL on a remote server

If you are accessing MySQL on a remote server, you should telnet (or preferably, for
security, use SSH) into the remote machine, which will probably be a Linux/FreeBSD/
Unix type of box. Once in there, things may be a little different for you, depending on
how the system administrator has set up the server—especially if it’s a shared hosting
server. Therefore, you need to ensure that you have been given access to MySQL and
that you have your username and password. Armed with these, you can then type the
following, where username is the name supplied:

mysql -u username -p

Enter your password when prompted. You can then try the following command, which
should result in something like the screen grab in Figure 8-3:

SHOW databases;
There may be other databases already created, and the test database may not be there.

Bear in mind also that system administrators have ultimate control over everything and
that you can encounter some unexpected setups. For example, you may find that you
are required to preface all database names that you create with a unique identifying
string to ensure that you do not conflict with databases created by other users.

If you have any problems, have a word with your system administrator, who should be
able to sort them out. Let the sysadmin know that you need a username and password,
and request the ability to create new databases or, at a minimum, to have at least one
database created for you ready to use. You can then create all the tables you require
within that database.

Using the Command-Line Interface

From here on out, it makes no difference whether you are using Windows, OS X, or
Linux to access MySQL directly, as all the commands used (and errors you may receive)
are identical.

The semicolon

Let’s start with the basics. Did you notice the semicolon (;) at the end of the SHOW
databases; command that you typed? The semicolon is used by MySQL to separate or
end commands. If you forget to enter it, MySQL will issue a prompt and wait for you
to do so. The required semicolon was made part of the syntax to let you enter multiple-
line commands, which can be convenient, because some commands get quite long. It

166 | Chapter8: Introduction to MySQL

also allows you to issue more than one command at a time by placing a semicolon after
each one. The interpreter gets them all in a batch when you press the Return key and
executes them in order.

W

It’s very common to receive a MySQL prompt instead of the results of
your command; it means that you forgot the final semicolon. Just enter
s the semicolon, press the Return key, and you’ll get what you want.

There are six different prompts that MySQL may present you with (see Table 8-2), so
you will always know where you are during a multiline input.

Table 8-2. MySQL’s six command prompts
MySQL prompt Meaning

mysql> MySQL is ready and waiting for a command

-> Waiting for the next line of a command

> Waiting for the next line of a string started with a single quote
"> Waiting for the next line of a string started with a double quote
> Waiting for the next line of a string started with a backtick

/*> Waiting for the next line of a comment started with /*

Canceling a command

If you are partway through entering a command and decide you don’t wish to execute
it after all, whatever you do, don’t press Ctrl-C! That will close the program. Instead,
you can enter \c and press Return. Example 8-1 shows how to use this command.
Example 8-1. Canceling a line of input

meaningless gibberish to mysql \c

When you type in that line, MySQL will ignore everything you typed and issue a new
prompt. Without the \c, it would have displayed an error message. Be careful, though:
if you have opened a string or comment, you’ll need to close it before using the \c or
MySQL will think the \c is just part of the string. Example 8-2 shows the right way to
do this.

Example 8-2. Canceling input from inside a string

this is "meaningless gibberish to mysql" \c

Also note that using \c after a semicolon will not work, as it is then a new statement.

Accessing MySQL via the Command Line | 167

MySQL Commands

You've already seen the SHOW command, which lists tables, databases, and many other
items. The commands you’ll use most often are listed in Table 8-3.

Table 8-3. A selection of common MySQL commands

Command Parameter(s) Meaning

ALTER database, table Alter database or table
BACKUP table Back up table

\c Cancel input

CREATE database, table (reate database or table
DELETE Expression with table androw Delete rowfrom table
DESCRIBE table Describe the table’s columns
DROP database, table Delete database or table
EXIT (Ctrl-C) Exit

GRANT user details Change user privileges
HELP (\h,\?) item Display help on item
INSERT Expression with data Insert data

LOCK table(s) Lock table(s)

QUIT(\q) Same as EXIT

RENAME table Rename table

SHOW Too many 1tems to list List i ten's details

SOURCE filename Execute commands from £ilename
STATUS (\s) Display current status
TRUNCATE table Empty table

UNLOCK table(s) Unlock table(s)

UPDATE Expression with data Update an existing record
USE database Use database

I'll cover most of these as we proceed, but first, you need to remember a couple of
points about MySQL commands:

* SQL commands and keywords are case-insensitive. CREATE, create, and CrEaTe all
mean the same thing. However, for the sake of clarity, the recommended style is
to use uppercase.

¢ Table names are case-insensitive on Windows, but case-sensitive on Linux and OS
X. So, for portability purposes, you should always choose a case and stick to it.
The recommended style is to use lowercase or mixed upper- and lowercase for table
names.

168 | Chapter8: Introduction to MySQL

Creating a database

If you are working on a remote server and have only a single user account and access
to a single database that was created for you, move on to the next section: “Creating a
table” on page 170. Otherwise, get the ball rolling by issuing the following command
to create a new database called publications:

CREATE DATABASE publications;
A successful command will return a message that doesn’t mean much yet—“Query

OK, 1 row affected (0.00 sec)”—but will make sense soon. Now that you’ve created
the database, you want to work with it, so issue:

USE publications;

You should now see the message “Database changed.” You’re now set to proceed with
the following examples.

Creating users

Now that you’ve seen how easy it is to use MySQL, and created your first database, it’s
time to look at how you create users—you probably won’t want to grant your PHP
scripts root access to MySQL, as it could cause a real headache should you get hacked.

To create a user, issue the GRANT command, which takes the following form (don’t type
this in—it’s not an actual working command):

GRANT PRIVILEGES ON database.object TO 'username'@'hostname' IDENTIFIED BY '‘password’;
This should be pretty straightforward, with the possible exception of the data

base.object part. What this refers to is the database itself and the objects it contains,
such as tables (see Table 8-4).

Table 8-4. Example parameters for the GRANT command

Arguments Meaning
* * All databases and all their objects
database.* Only the database called database and all its objects

database.object Only the database called database and its object called object

So, let’s create a user who can access just the new publications database and all its
objects, by entering the following (replacing the username jim and the password
mypasswd with ones of your choosing):

GRANT ALL ON publications.* TO 'jim'@'localhost' IDENTIFIED BY 'mypasswd’;

What this does is allow the user jim@localhost full access to the publications database
using the password mypasswd. You can test whether this step has worked by entering
QUIT to exit and then rerunning MySQL the way you did before, but instead of entering
-u root -p, type -u jim -p, or whatever the username is that you created. See Table 8-5

Accessing MySQL via the Command Line | 169

for the correct command for your operating system, assuming you installed Zend Server
CE (as outlined in Chapter 2), but modify it as necessary if the mysgl client is installed
in a different directory on your system.

Table 8-5. Starting MySQL and logging in as jim@localhost

0S Example command

Windows 32-bit ~ "C:\Program Files\Zend\MySQL51\bin\mysql" -u jim -p
Windows 64-bit ~ "C:\Program Files (x86)\Zend\MySQL51\bin\mysql" -u jim -p
0S X /usr/local/zend/mysql/bin/mysql -u jim -p

Linux mysql -u jim -p

All you have to do now is enter your password when prompted, and you will be logged
in. By the way, if you prefer, you can place your password immediately following the
-p (without any spaces) to avoid having to enter it when prompted. But this is consid-
ered poor practice, because if other people are logged in to your system, there may be
ways for them to look at the command you entered and find out your password.

N

You can grant only privileges that you already have, and you must also
have the privilege to issue GRANT commands. There are a whole range of
* Qlse privileges you can choose to grant if you are not granting all privileges.
" For further details, please visit the following site, which also covers the
REVOKE command, which can remove privileges once granted: hitp://ti
nyurl.com/mysqlgrant.

Youalso need to be aware that if you create a new user but do not specify
an IDENTIFIED BY clause, the user will have no password, a situation that
is very insecure and should be avoided.

Creating a table

At this point, you should now be logged in to MySQL with ALL privileges granted for
the database publications (or a database that was created for you)—you’re ready to
create your first table. Make sure that database is in use by typing the following (re-
placing publications with the name of your database if it is different):

USE publications;

Now enter the commands in Example 8-3 one line at a time.

Example 8-3. Creating a table called classics

CREATE TABLE classics (
author VARCHAR(128),

title VARCHAR(128),

type VARCHAR(16),

year CHAR(4)) ENGINE MyISAM;

170 | Chapter8: Introduction to MySQL

http://tinyurl.com/mysqlgrant
http://tinyurl.com/mysqlgrant

You could also issue this command on a single line, like this:

CREATE TABLE classics (author VARCHAR(128), title VARCHAR(128),
type VARCHAR(16), year CHAR(4)) ENGINE MyISAM;

but MySQL queries can be long and complicated, so I recommend en-
tering one part of a query per line until you are comfortable with longer
ones.

MySQL should then issue the response “Query OK, 0 rows affected,” along with a note
of how long it took to execute the command. If you see an error message instead, check
your syntax carefully. Every parenthesis and comma counts, and typing errors are easy
to make. In case you are wondering, the ENGINE MyISAMtells MySQL the type of database
engine to use for this table.

To check whether your new table has been created, type:

DESCRIBE classics;

All being well, you will see the sequence of commands and responses shown in Exam-
ple 8-4, where you should particularly note the table format displayed.

Example 8-4. A MySQL session: creating and checking a new table

mysql> USE publications;
Database changed
mysql> CREATE TABLE classics (
-> author VARCHAR(128),
-> title VARCHAR(128),
-> type VARCHAR(16),
-> year CHAR(4)) ENGINE MyISAM;
Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE classics;

B D ittt +------ +----- Fommmmmmmm +------- +
| Field | Type | Null | Key | Default | Extra |
B D ittt +------ +----- Fommmmmmmm +------- +
author	varchar(128)	YES		NULL	
title	varchar(128)	YES		NULL	
type	varchar(16)	YES		NULL	
year	char(4)	YES		NULL	
B D ettt +------ +----- Fommmmmmm - s +

4 rows in set (0.00 sec)

The DESCRIBE command is an invaluable debugging aid when you need to ensure that
you have correctly created a MySQL table. You can also use it to remind yourself about
a table’s field or column names and the types of data in each one. Let’s look at each of
the headings in detail:

Field
The name of each field or column within a table.

Accessing MySQL via the Command Line | 171

Type
The type of data being stored in the field.
Null
Whether the field is allowed to contain a value of NULL.

Key
MySQL supports keys or indexes, which are quick ways to look up and search for
data. The Key heading shows what type of key (if any) has been applied.

Default
The default value that will be assigned to the field if no value is specified when a
new row is created.

Extra
Additional information, such as whether a field is set to autoincrement.

Data Types

In Example 8-3, you may have noticed that three of the table’s fields were given the
data type VARCHAR, and one was given the type CHAR. The term VARCHAR stands for VARi-
able length CHARacter string and the command takes a numeric value that tells MySQL
the maximum length allowed for a string stored in this field.

This data type is very useful, as it allows MySQL to plan the size of a database and
perform lookups and searches more easily. The downside is that if you ever attempt to
assign a string value longer than the length allowed, it will be truncated to the maximum
length declared in the table definition.

The year field, however, has more predictable values, so instead of VARCHAR we use the
more efficient CHAR(4) data type. The parameter of 4 allows for four bytes of data,
supporting all years from =999 to 9999. You could, of course, just store two-digit values
for the year, but if your data is going to still be needed in the following century, or may
otherwise wrap around, it will have to be sanitized first—much like the “millennium
bug” that would have caused dates beginning on January 1, 2000, to be treated as 1900
on many of the world’s biggest computer installations.

B
o)

The reason I didn’t use the YEAR data type in the classics table is because

it supports only the years 0000 and 1901 through 2155. This is because

v MySQL stores the year in a single byte. This is done for reasons of effi-

" ciency, but it means that only 256 years are available, and the publica-
tion years of the titles in the classics table are well before 1901.

Both CHAR and VARCHAR accept text strings and impose a limit on the size of the field.
The difference is that every string in a CHAR field has the specified size. If you put in a
smaller string, it is padded with spaces. A VARCHAR field does not pad the text; it lets the
size of the field vary to fit the text that is inserted. But VARCHAR requires a small amount

172 | Chapter8: Introduction to MySQL

of overhead to keep track of the size of each value, so CHAR is slightly more efficient if
the sizes are similar in all records (whereas VARCHAR is more efficient if the sizes can vary
alotand get large). In addition, the overhead causes access to VARCHAR data to be slightly
slower than to CHAR data.

The CHAR data type

Table 8-6 lists the CHAR data types. All these types offer a parameter that sets the max-
imum (or exact) length of the string allowed in the field. As the table shows, each type
also has a built-in maximum. Types of VARCHAR between 0 and 255 bytes in length incur
a storage overhead of 1 byte, or 2 bytes overhead if 256 bytes or more.

Table 8-6. MySQL’s CHAR data types
Data type Bytes used Examples
CHAR(n) Exactlyn (<=255) CHAR(5): “Hello” uses 5 bytes
CHAR(57): “New York” uses 57 bytes
VARCHAR(n) Upton(<=65535) VARCHAR(100): “Greetings” uses 9 bytes plus 1 byte overhead
VARCHAR(7): “Morning” uses 7 bytes plus 1 byte overhead

The BINARY data type

The BINARY data type is used for storing strings of full bytes that do not have an asso-
ciated character set (see Table 8-7). For example, you might use the BINARY data type
to store a GIF image.

Table 8-7. MySQL’s BINARY data types

Data type Bytes used Examples
BINARY(n) orBYTE(n) Exactlyn(<=255) Asfor CHAR, but contains binary data
VARBINARY (n) Upton (<=65535) Asfor VARCHAR, but contains binary data

The TEXT and VARCHAR data types
The differences between TEXT and VARCHAR are small:
* Prior to version 5.0.3, MySQL removed leading and trailing spaces from VARCHAR
fields, and they could only be up to 256 bytes in length.
* TEXT fields cannot have default values.
* MySQL indexes only the first n characters of a TEXT column (you specify n when

you create the index).

What this means is that VARCHAR is the better and faster data type to use if you need to
search the entire contents of a field. If you will never search more than a certain number
of leading characters in a field, you should probably use a TEXT data type (see Table 8-8).

Accessing MySQL via the Command Line | 173

Table 8-8. MySQL’s TEXT data types

Data type Bytes used Attributes

TINYTEXT(n) Upton (<=255) Treated as a string with a character set

TEXT(n) Upton (<=65535) Treated as a string with a character set

MEDIUMTEXT(n) Upton (<=16777215) Treated as a string with a character set

LONGTEXT(n) Upton (<=4294967295) Treated as a string with a character set
The BLOB data type

The term BLOB stands for Binary Large OBject, and therefore, as you would think, the
BLOB data type is most useful for binary data in excess of 65,536 bytes in size. The main
other difference between the BLOB and BINARY data types is that BLOBs cannot have default
values (see Table 8-9).

Table 8-9. MySQL’s BLOB data types

Data type Bytes used Attributes

TINYBLOB(n) Upton (<=255) Treated as binary data—no character set
BLOB(n) Up ton (<=65535) Treated as binary data—no character set
MEDIUMBLOB(n) Upton (<=16777215) Treated as binary data—no character set
LONGBLOB(n) Upton (<=4294967295) Treated as binary data—no character set

Numeric data types

MySQL supports various numeric data types, from a single byte up to double-precision
floating-point numbers. Although the most memory that a numeric field can use up is
eight bytes, you are well advised to choose the smallest data type that will adequately
handle the largest value you expect. This will help keep your databases small and
quickly accessible.

Table 8-10 lists the numeric data types supported by MySQL and the ranges of values
they can contain. In case you are not acquainted with the terms, a signed number is one
with a possible range from a minus value, through zero, to a positive value, and an
unsigned number has a value ranging from zero to some positive number. They can
both hold the same number of values—just picture a signed number as being shifted
halfway to the left so that half its values are negative and half are positive. Note that
floating-point values (of any precision) may only be signed.

174 | Chapter8: Introduction to MySQL

Table 8-10. MySQL’s numeric data types

Bytes Minimum value Maximum value
Data type used (signed/unsigned) (signed/unsigned)
TINYINT 1 —128 127
0 255
SMALLINT 2 —32768 32767
0 65535
MEDIUMINT 3 —8388608 8388607
0 16777215
4 —2147483648 2147483647
INTor INTEGER 0 4294967295
BIGINT 8 —9223372036854775808 9223372036854775807
0 18446744073709551615
FLOAT 4 —3.402823466E+38 3.402823466E+38
(no unsigned) (no unsigned)
DOUBLE or REAL 8 —1.7976931348623157E+308 1.7976931348623157E+308

(no unsigned) (no unsigned)

To specify whether a data type is signed or unsigned, use the UNSIGNED qualifier. The
following example creates a table called tablename with a field in it called fieldname of
the data type UNSIGNED INTEGER:

CREATE TABLE tablename (fieldname INT UNSIGNED);

When creating a numeric field, you can also pass an optional number as a parameter,

like this:
CREATE TABLE tablename (fieldname INT(4));

But you must remember that, unlike with BINARY and CHAR data types, this parameter
does not indicate the number of bytes of storage to use. It may seem counterintuitive,
but what the number actually represents is the display width of the data in the field
when it is retrieved. It is commonly used with the ZEROFILL qualifier, like this:

CREATE TABLE tablename (fieldname INT(4) ZEROFILL);

What this does is cause any numbers with a width of less than four characters to be
padded with one or more zeros, sufficient to make the display width of the field four
characters long. When a field is already of the specified width or greater, no padding
takes place.

Accessing MySQL via the Command Line | 175

DATE and TIME

The main remaining data types supported by MySQL relate to the date and time and
can be seen in Table 8-11.

Table 8-11. MySQL’s DATE and TIME data types

Data type Time/date format

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00"

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00'

YEAR 0000 (Only years 0000 and 1901 - 2155)

The DATETIME and TIMESTAMP data types display the same way. The main difference is
that TIMESTAMP has a very narrow range (the years 1970 through 2037), whereas DATE
TIME will hold just about any date you’re likely to specify, unless you’re interested in
ancient history or science fiction.

TIMESTAMP is useful, however, because you can let MySQL set the value for you. If you
don’t specify the value when adding a row, the current time is automatically inserted.
You can also have MySQL update a TIMESTAMP column each time you change a row.

The AUTO_INCREMENT data type

Sometimes you need to ensure that every row in your database is guaranteed to be
unique. You could do this in your program by carefully checking the data you enter
and making sure that there is at least one value that differs in any two rows, but this
approach is error-prone and works only in certain circumstances. In the classics table,
for instance, an author may appear multiple times. Likewise, the year of publication is
likely to be duplicated, and so on. It would be hard to guarantee that you have no
duplicate rows.

The general solution is to use an extra column just for this purpose. In a while, we’ll
look at using a publication’s ISBN (International Standard Book Number) to ensure
that the rows in the classics table are unique, but first I'd like to introduce the
AUTO_INCREMENT data type.

As its name implies, a column given this data type will set the value of its contents to
that of the column entry in the previously inserted row, plus 1. Example 8-5 shows how
to add a new column called id to the table classics with autoincrementing.

Example 8-5. Adding the autoincrementing column id

ALTER TABLE classics ADD id INT UNSIGNED NOT NULL AUTO INCREMENT KEY;

176 | Chapter8: Introduction to MySQL

This is your introduction to the ALTER command, which is very similar to CREATE.
ALTER operates on an existing table, and can add, change, or delete columns. Our ex-
ample adds a column named id with the following characteristics:

INT UNSIGNED
Makes the column take an integer large enough for you to store more than four
billion records in the table.

NOT NULL
Ensures that every column has a value. Many programmers use NULL in a field to
indicate that the field doesn’t have a value, but that would allow duplicates, which
would violate the whole reason for this column’s existence. So, we disallow NULL
values.

AUTO_INCREMENT
Causes MySQL to set a unique value for this column in every row, as described
earlier. We don’t really have control over the value that this column will take in
each row, but we don’t care: all we care about is that we are guaranteed a unique
value.

KEY
An autoincrementing column is useful as a key, because you will tend to search for
rows based on this column. This concept will be explained in the section “In-
dexes” on page 181, a little further on in this chapter.

Each entry in the column id will now have a unique number, with the first starting at
1 and the others counting upwards from there. And whenever a new row is inserted,
its id column will automatically be given the next number in the sequence.

Rather than applying the column retroactively, you could have included it by issuing
the CREATE command in slightly different format. In that case, the command in Exam-
ple 8-3 would be replaced with Example 8-6. Check the final line in particular.

Example 8-6. Adding the autoincrementing id column at table creation

CREATE TABLE classics (

author VARCHAR(128),

title VARCHAR(128),

type VARCHAR(16),

year CHAR(4),

id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY) ENGINE MyISAM;

If you wish to check whether the column has been added, use the following command
to view the table’s columns and data types:

DESCRIBE classics;
Now that we’ve finished with it, the id column is no longer needed, so if you created

it using Example 8-5, you should now remove the column using the command in
Example 8-7.

Accessing MySQL via the Command Line | 177

Example 8-7. Removing the id column

ALTER TABLE classics DROP id;

Adding data to a table

To add data to a table, use the INSERT command. Let’s see this in action by populating
the table classics with the data from Table 8-1, using one form of the INSERT command
repeatedly (Example 8-8).

Example 8-8. Populating the classics table

INSERT INTO classics(author, title, type, year)

VALUES('Mark Twain','The Adventures of Tom Sawyer','Fiction','1876');
INSERT INTO classics(author, title, type, year)

VALUES('Jane Austen','Pride and Prejudice','Fiction','1811");

INSERT INTO classics(author, title, type, year)

VALUES('Charles Darwin','The Origin of Species','Non-Fiction','1856');
INSERT INTO classics(author, title, type, year)

VALUES('Charles Dickens','The 0ld Curiosity Shop','Fiction','1841");
INSERT INTO classics(author, title, type, year)

VALUES('William Shakespeare','Romeo and Juliet','Play','1594');

After every second line, you should see a “Query OK” message. Once all lines have
been entered, type the following command, which will display the table’s contents—
the result should look like Figure 8-4:

SELECT * FROM classics;

BN C\Windows\system32\cmd.exe | = | (S -

mysgl> INSERT INTO clas sCauthor,. title, type,. veard
—» UALUES{’Charles win',’'The Origin of Species’.’Non-Fiction’.’'185%6'2>;
Query OK. 1 row affected (B.88 sec)

mysgl> INSERT INTO classics{author, title. type, yeard
—>» UALUES<’ Charles Dickens’.'The 0ld Curiosity Shop’.’'Fiction’.’1841'3;
Query OK. 1 row affected (B.88 sec)

mysgl> INSERT INTO classics{author,. title. type,. yeard
—>» UALUES¢'William Shakespeare’,.’Romeo and Juliet’.’Play’.’1594°>;
Query OK. 1 row affected (B.B0 sec)

Mark Twain Fiction

Jane Austen Pride and Prejudice Fiction

Charles Darwin The Origin of Species Mon—Fiction

Charl The 01d Curiosity Shop Fiction
il1li Romeo and Juliet

Figure 8-4. Populating the classics table and viewing its contents

Don’t worry about the SELECT command for now—we’ll come to it in the upcoming
section “Querying a MySQL Database” on page 187. Suffice it to say that as typed, it
will display all the data you just entered.

178 | Chapter8: Introduction to MySQL

Download from Wow! eBook <www.wowebook.com>

Let’s go back and look at how we used the INSERT command. The first part, INSERT INTO
classics, tells MySQL where to insert the following data. Then, within parentheses,
the four column names are listed—author, title, type, and year—all separated by
commas. This tells MySQL that these are the fields into which the data is to be inserted.

The second line of each INSERT command contains the keyword VALUES followed by
four strings within parentheses, separated by commas. This supplies MySQL with the
four values to be inserted into the four columns previously specified. (As always, my
choice of where to break the lines was arbitrary.)

Each item of data will be inserted into the corresponding column, in a one-to-one
correspondence. If you accidentally listed the columns in a different order from the
data, the data would go into the wrong columns. The number of columns must match
the number of data items.

Renaming a table

Renaming a table, like any other change to the structure or metainformation of a table,
is achieved via the ALTER command. So, for example, to change the name of the table
classics to pre1900, you would use the following command:

ALTER TABLE classics RENAME pre1900;
If you tried that command, you should rename the table back again by entering the
following, so that later examples in this chapter will work as printed:

ALTER TABLE pre1900 RENAME classics;

Changing the data type of a column

Changing a column’s data type also makes use of the ALTER command, this time in
conjunction with the MODIFY keyword. So, to change the data type of the column year
from CHAR(4) to SMALLINT (which requires only two bytes of storage and so will save
disk space), enter the following;:

ALTER TABLE classics MODIFY year SMALLINT;
When you do this, if the data type conversion makes sense to MySQL, it will automat-

ically change the data while keeping its meaning. In this case, it will change each string
toa comparable integer, and so on, as the string is recognizable as referring to an integer.

Adding a new column

Let’s suppose that you have created a table and populated it with plenty of data, only
to discover you need an additional column. Not to worry. Here’s how to add the new
column pages, which will be used to store the number of pages in a publication:

ALTER TABLE classics ADD pages SMALLINT UNSIGNED;

Accessing MySQL via the Command Line | 179

This adds the new column with the name pages using the UNSIGNED SMALLINT data type,
sufficient to hold a value of up to 65,535—hopefully that’s more than enough for any
book ever published!

If you now ask MySQL to describe the updated table using the DESCRIBE command, as
follows, you will see the change has been made (see Figure 8-5):

DESCRIBE classics;

BN C\Windows\system32\cmd.exe | = | (S -
H 8>
varchar(128>

varchar{(i6)
mallint{6>

+ommmm———
+ommmm———

mys=gl> ALTER TABLE classics ADD pages SMALLINT
Query OK. 5 rows affected (B.82 sec)
[Records: 5 Duplicates: @ Warnings: 8

mysgl> DESCRIBE cla:
+-

________ PO ———

author varchar(128>
title varchar(128>
type varchar{i6>
year mallint{6>
11int<{5> unsigned

b ommmmm————
b ommmmm————
b ommmmm————

Figure 8-5. Adding the new pages column and viewing the table

Renaming a column

Looking again at Figure 8-5, you may decide that having a column named type can be
confusing, because that is the name used by MySQL to identify data types. Again, no
problem—Iet’s change its name to category, like this:

ALTER TABLE classics CHANGE type category VARCHAR(16);

Note the addition of VARCHAR(16) on the end of this command. That’s because the
CHANGE keyword requires the data type to be specified, even if you don’t intend to change
it, and VARCHAR(16) was the data type specified when that column was initially created
as type.

Removing a column

You may also decide, upon reflection, that the page count column pages isn’t actually
all that useful for this particular database, so here’s how to remove that column using
the DROP keyword:

ALTER TABLE classics DROP pages;

180 | Chapter8: Introduction to MySQL

Remember that DROP is irreversible. You should always use it with cau-
tion, because you could delete entire tables (and even databases) with
it if you are not careful!

k

Deleting a table

Deleting a table is very easy indeed. But, because I don’t want you to have to reenter
all the data for the classics table, we won’t delete that one. Instead, let’s quickly create
a new table, verify its existence, and then delete it by typing in the commands in
Example 8-9. The result of these four commands should look like Figure 8-6.

Example 8-9. Creating, viewing, and deleting a table

CREATE TABLE disposable(trash INT);
DESCRIBE disposable;

DROP TABLE disposable;

SHOW tables;

BN C\Windows\system32\cmd.exe | = | (S -
i row in set (B.B8 secl

my=gl> CREATE TABLE disposable{trash INI>;
Query OK. B rows affected (B.81 sec)

mysgl> DESCRIBE
+-

_______ [P

Field | Type
—+

mysgl> DROF TABLE disposahble;
Query OK. B rows affected (B.88 sec)

my=gl> SHOW tabl
4~

Figure 8-6. Creating, viewing, and deleting a table

Indexes

As things stand, the table classics works, and MySQL won’t have any problem search-
ing it—until it grows to more than a couple of hundred rows, that is. At that point,
database accesses will get slower and slower with every new row added, because
MySQL has to search through every row whenever a query is issued. This is like search-
ing through every book in a library whenever you need to look something up.

Of course, you don’t have to search libraries that way, because they have either a card
index system or, most likely, a database of their own.

Indexes | 181

And the same goes for MySQL—at the expense of a slight overhead in memory and
disk space, you can create a “card index” for a table that MySQL will use to conduct
lightning-fast searches.

Creating an Index

The way to achieve fast searches is to add an index, either when creating a table or at
any time afterwards. But the decision is not so simple. For example, there are different
index types, such as a regular INDEX, PRIMARY KEY, and FULLTEXT. Also, you must decide
which columns require an index, a judgment that requires you to predict whether you
will be searching any of the data in those columns. Indexes can also get complicated,
because you can combine multiple columns in one index. And even when you’ve gotten
to grips with all of that, you still have the option of reducing index size by limiting the
amount of each column to be indexed.

If we imagine the searches that may be made on the classics table, it becomes apparent
that all of the columns may need to be searched. However, if the pages column created
in the earlier section “Adding a new column” on page 179 had not been deleted, it
would probably not have needed an index, as most people would be unlikely to search
for books by the number of pages they have. Anyway, go ahead and add an index to
each of the columns, using the commands in Example 8-10.

Example 8-10. Adding indexes to the classics table

ALTER TABLE classics ADD INDEX(author(20));
ALTER TABLE classics ADD INDEX(title(20));
ALTER TABLE classics ADD INDEX(category(4));
ALTER TABLE classics ADD INDEX(year);
DESCRIBE classics;

The first two commands create indexes on both the author and title columns, limiting
each index to only the first 20 characters. For instance, when MySQL indexes the fol-
lowing title:

The Adventures of Tom Sawyer

it will actually store in the index only the first 20 characters:

The Adventures of To

This is done to minimize the size of the index, and to optimize database access speed.
I chose the value 20 because it’s likely to be sufficient to ensure uniqueness for most
strings in these columns. If MySQL finds two indexes with the same contents, it will
have to waste time going to the table itself and checking the column that was indexed
to find out which rows really matched.

With the category column, currently only the first character is required to identify a
string as unique (F for Fiction, N for Non-Fiction, and P for Play), but I chose an index
of four characters to allow for future category types that may be unique only after four

182 | Chapter8: Introduction to MySQL

characters. (You can also reindex this column later, when you have a more complete
set of categories.) And finally, I set no limit to the year column’s index, because it’s an
integer, not a string.

The results of issuing these commands (and a DESCRIBE command to confirm that they
worked) can be seen in Figure 8-7, which shows the key MUL for each column. This key
means that multiple occurrences of a value may occur within that column, which is
exactly what we want, as authors may appear many times, the same book title could
be used by multiple authors, and so on.

BN C\Windows\system32\cmd.exe | = | (S -

mysgl> ALTER TABLE classics ADD INDEX(title(28>>;
Query OK. 5 rows affected (B.82 sec)
[Records: 5 Duplicates: @ Warnings: 8

my=gl> ALTER TABLE classics ADD INDER(category{4l);
Query OK. 5 rows affected (B.B83 sec)
[Records: 5 Duplicates: @ Warnings: 8

mys=gl> ALTER TABLE classics ADD INDEX{year>;
Query 0K, 5 rows affected (B.B6 sec)
[Records: 5 Duplicates: @ Warnings: 8

mysgl> DESCRIBE c
+-

+
H
4

varchar(128>

title varchar(128>
category varchar{i6>
o smallint{6>

+ommmm———
+ommmm———
+ommmm———

rows in set (B.81 sec)

Figure 8-7. Adding indexes to the classics table

Using CREATE INDEX

An alternative to using ALTER TABLE to add anindex is to use the CREATE INDEX command.
The two options are equivalent, except that CREATE INDEX cannot be used to create an
index of type PRIMARY KEY (see the section “Primary keys” on page 184 later in this
chapter). The format of this command can be seen in the second line of Example 8-11.

Example 8-11. These two commands are equivalent

ALTER TABLE classics ADD INDEX(author(20));
CREATE INDEX author ON classics (author(20));

Adding indexes when creating tables

You don’t have to wait until after creating a table to add indexes. In fact, doing so can
be time-consuming, as adding an index to a large table can take a very long time.
Therefore, let’s look at a command that creates the table classics with indexes already
in place.

Indexes | 183

Example 8-12 is a reworking of Example 8-3 in which the indexes are created at the
same time as the table. Note that to incorporate the modifications made in this chapter,
this version uses the new column name category instead of type and sets the data type
of year to SMALLINT instead of CHAR(4). If you want to try it out without first deleting
your current classics table, change the word classics in line 1 to something else, like
classicsi, then drop classics1 after you have finished with it.

Example 8-12. Creating the table classics with indexes

CREATE TABLE classics (
author VARCHAR(128),

title VARCHAR(128),
category VARCHAR(16),

year SMALLINT,

INDEX(author (20)),
INDEX(title(20)),
INDEX(category(4)),
INDEX(year)) ENGINE MyISAM;

Primary keys

So far you’ve created the table classics and ensured that MySQL can search it quickly
by adding indexes, but there’s still something missing. All the publications in the table
can be searched, but there is no single unique key for each publication to enable instant
accessing of a row. The importance of having a key with a unique value for each row
(known as the primary key) will become clear when we start to combine data from
different tables (see the section “Primary Keys: The Keys to Relational Databa-
ses” on page 206 in Chapter 9).

The earlier section “The AUTO_INCREMENT data type” on page 176 briefly intro-
duced the idea of a primary key when creating the autoincrementing column id, which
could have been used as a primary key for this table. However, [wanted to reserve that
task for a more appropriate column: the internationally recognized ISBN number.

So, let’s go ahead and create a new column for this key. Now, bearing in mind that
ISBN numbers are 13 characters long, you might think that the following command

would do the job:
ALTER TABLE classics ADD isbn CHAR(13) PRIMARY KEY;

But it doesn’t. If you try it, you’ll get the error “Duplicate entry” for key 1. The reason
is that the table is already populated with some data and this command is trying to add
a column with the value NULL to each row, which is not allowed, as all columns using
a primary key index must be unique. However, if there were no data already in the
table, this command would work just fine, as would adding the primary key index upon
table creation.

In our current situation, we have to be a bit sneaky and create the new column without
an index, populate it with data, and then add the index using the commands in Exam-
ple 8-13. Luckily, each of the years is unique in the current set of data, so we can use

184 | Chapter8: Introduction to MySQL

the year column to identify each row for updating. Note that this example uses the
UPDATE and WHERE keywords, which are explained in more detail in the upcoming section
“Querying a MySQL Database” on page 187.

Example 8-13. Populating the isbn column with data and using a primary key

ALTER TABLE classics ADD isbn CHAR(13);

UPDATE classics SET isbn='9781598184891"' WHERE year='1876";
UPDATE classics SET isbn='9780582506206' WHERE year='1811";
UPDATE classics SET isbn='9780517123201"' WHERE year='1856";
UPDATE classics SET isbn='9780099533474"' WHERE year='1841";
UPDATE classics SET isbn='9780192814968"' WHERE year='1594";
ALTER TABLE classics ADD PRIMARY KEY(isbn);

DESCRIBE classics;

Once you have typed in these commands, the results should look like the screen grab
in Figure 8-8. Note that the keywords PRIMARY KEY replace the keyword INDEX in the
ALTER TABLE syntax (compare Example 8-10 and Example 8-13).

BN C\Windows\system32\cmd.exe | = | (S -
mysgl> UPDATE classics SET ishn='978AB99533474' WHERE year='1841’;

Query 0K, 1 row affected (B.88 sec)
Rows matched: 1 Changed: 1 Warnings: 8

mysgl> UPDATE classics SET isbhn='9788192814968°' WHERE year='1594’;
Query 0K, 1 row affected (B.88 sec)
Rows matched: 1 Changed: 1 Warnings: 8

mysgl> ALTER TABLE classics ADD PRIMARY KEY <(ishn>;
Query OK. 5 rows affected (B.82 sec)
[Records: 5 Duplicates: @ Warnings: 8

+
author varchar(128>
title varchar(128>
category varchar{i6>

smallint{6>
char{i13>

b ommmmm————
b ommmmm————
b ommmmm————

{B.81 sec>

Figure 8-8. Adding a primary key to the classics table

To create a primary key when you created the table classics, you could have used the
commands in Example 8-14. Again, rename classics in line 1 to something else if you
wish to try this example for yourself, and then delete the test table afterwards.

Example 8-14. Creating the table classics with indexes

CREATE TABLE classics (
author VARCHAR(128),
title VARCHAR(128),
category VARCHAR(16),
year SMALLINT,
isbn CHAR(13),
INDEX(author(20)),

Indexes | 185

INDEX(title(20)),
INDEX(category(4)),

INDEX(year),

PRIMARY KEY (isbn)) ENGINE MyISAM;

Creating a FULLTEXT index

Unlike a regular index, a FULLTEXT index in MySQL allows super-fast searches of entire
columns of text. What it does is store every word in every data string in a special index
that you can search using “natural language,” in a similar manner to using a search
engine.

N

Actually, it’s not strictly true that MySQL stores all the words in a

FULLTEXT index, because it has a built-in list of more than 500 words that

Wise it chooses to ignore because they are so common that they aren’t very

" helpful when searching anyway. These words, called stopwords, include
the, as, is, of, and so on. The list helps MySQL run much more quickly
when performing a FULLTEXT search and keeps database sizes down.
Appendix C contains the full list of stopwords.

Here are some things that you should know about FULLTEXT indexes:

* FULLTEXT indexes can be used only with MyISAM tables, the type used by MySQL’s
default storage engine (MySQL supports at least 10 different storage engines). If
you need to convert a table to MyISAM, you can usually use the MySQL command
ALTER TABLE tablename ENGINE = MyISAM;.

* FULLTEXT indexes can be created for CHAR, VARCHAR, and TEXT columns only.

* A FULLTEXT index definition can be given in the CREATE TABLE statement when a
table is created, or added later using ALTER TABLE (or CREATE INDEX).

* For large data sets, it is much faster to load your data into a table that has no
FULLTEXT index and then create the index than it is to load data into a table that
has an existing FULLTEXT index.

To create a FULLTEXT index, apply it to one or more records as in Example 8-15, which
adds a FULLTEXT index to the pair of columns author and title in the table classics
(this index is in addition to the ones already created and does not affect them).

Example 8-15. Adding a FULLTEXT index to the table classics
ALTER TABLE classics ADD FULLTEXT(author,title);

You can now perform FULLTEXT searches across this pair of columns. This feature could
really come into its own if you could now add the entire text of these publications to
the database (particularly as they’re out of copyright protection), as they would be fully
searchable. See the section “MATCH...AGAINST” on page 192 for a description of
searches using FULLTEXT.

186 | Chapter8: Introduction to MySQL

If you find that MySQL is running slower than you think it should be
when accessing your database, the problem is usually related to your
918 indexes. Either you don’t have an index where you need one, or the
" indexes are not optimally designed. Tweaking a table’s indexes will
often solve such a problem. Performance is beyond the scope of this
book, but in Chapter 9 I'll give you a few tips so you know what to look
for.

Querying a MySQL Database

So far we’ve created a MySQL database and tables, populated them with data, and
added indexes to make them fast to search. Now it’s time to look at how these searches
are performed, and the various commands and qualifiers available.

SELECT

As you saw in Figure 8-4, the SELECT command is used to extract data from a table. In
that section, I used its simplest form to select all the data and display it—something
you will never want to do on anything but the smallest tables, because the data will
scroll by at an unreadable pace. Let’s now examine SELECT in more detail.

The basic syntax is:

SELECT something FROM tablename;
The something can be an * (asterisk), as you saw before, to indicate “every column,” or
you can choose to select only certain columns. For instance, Example 8-16 shows how

to select just the author and title columns, and just the title and isbn. The result of
typing these commands can be seen in Figure 8-9.

Example 8-16. Two different SELECT statements

SELECT author,title FROM classics;
SELECT title,isbn FROM classics;

SELECT COUNT

Another option for the something parameter is COUNT, which can be used in many ways.
In Example 8-17, it displays the number of rows in the table by passing * as a parameter,
which means “all rows.” As you’d expect, the result returned is 5, as there are five
publications in the table.

Example 8-17. Counting rows

SELECT COUNT(*) FROM classics;

Indexes | 187

BN C\Windows\system32\cmd.exe | = | (S -
mysql> SELECT author.title FROM c ics;
+

_____________________ el
author

The Adventur of Tom Sawyer
Pride and Prejudice

The Origin of Species

The 01d Curiosity Shop

Romeo and Juliet

of Tom Sawyer 781598184891
Pride and Prejudice 788582506286
The Origin of Species 9788517123201
The 01d Curiosity Shop 9780099533474
Romeo and Juliet 788192814968

in set (B.88 sec)

Figure 8-9. The output from two different SELECT statements
SELECT DISTINCT

This qualifier (and its synonym DISTINCTROW) allows you to weed out multiple entries
when they contain the same data. For instance, suppose that you want a list of all
authorsin the table. If you select just the author column from a table containing multiple
books by the same author, you’ll normally see a long list with the same author names
over and over. But by adding the DISTINCT keyword, you can show each author just
once. Let’s test that out by adding another row that repeats one of our existing authors
(Example 8-18).

Example 8-18. Duplicating data
INSERT INTO classics(author, title, category, year, isbn)
VALUES('Charles Dickens','Little Dorrit','Fiction','1857', '9780141439969');

Now that Charles Dickens appears twice in the table, we can compare the results of
using SELECT with and without the DISTINCT qualifier. Example 8-19 and Figure 8-10
show that the simple SELECT lists Dickens twice, and the command with the DISTINCT
qualifier shows him only once.

Example 8-19. With and without the DISTINCT qualifier

SELECT author FROM classics;
SELECT DISTINCT author FROM classics;

188 | Chapter8: Introduction to MySQL

BN C\Windows\system32\cmd.exe | = | (S -

Darwin
Dickens
. Dickens
William Shak
—

6 rows in set (B.61

e mm———————— =

! Charles Darwin
Charles Dickens
William Shakespeare

+
set (B.68 secl

Figure 8-10. Selecting data with and without DISTINCT

DELETE

When you need to remove a row from a table, use the DELETE command. Its syntax is
similar to the SELECT command and allows you to narrow down the exact row or rows
to delete using qualifiers such as WHERE and LIMIT.

Now that you’ve seen the effects of the DISTINCT qualifier, if you typed in Exam-
ple 8-18, you should remove Little Dorrit by entering the commands in Example 8-20.

Example 8-20. Removing the new entry
DELETE FROM classics WHERE title='Little Dorrit';

This example issues a DELETE command for all rows whose title column contains the
string 'Little Dorrit'.

The WHERE keyword is very powerful, and it’s important to enter it correctly; an error
could lead a command to the wrong rows (or have no effect in cases where nothing

matches the WHERE clause). So now we’ll spend some time on that clause, which is the
heart and soul of SQL.

WHERE

The WHERE keyword enables you to narrow down queries by returning only those where
a certain expression is true. Example 8-20 returns only the rows where the title column
exactly matches the string 'Little Dorrit', using the equality operator =. Exam-
ple 8-21 shows a couple more examples of using WHERE with =.

Indexes | 189

Example 8-21. Using the WHERE keyword

SELECT author,title FROM classics WHERE author="Mark Twain";
SELECT author,title FROM classics WHERE isbn="9781598184891 ";

Given our current table, the two commands in Example 8-21 display the same results.
But we could easily add more books by Mark Twain, in which case the first line would
display all titles he wrote and the second line would continue (because we know the
ISBN is unique) to display only The Adventures of Tom Sawyer. In other words, searches
using a unique key are more predictable. You’ll see further evidence later of the value
of unique and primary keys.

You can also do pattern matching for your searches using the LIKE qualifier, which
allows searches on parts of strings. This qualifier should be used with a % character
before or after some text. When placed before a keyword % means “anything before,”
and after a keyword it means “anything after.” Example 8-22 performs three different
queries, one for the start of a string, one for the end, and one for anywhere in a string.
You can see the results of these commands in Figure 8-11.

Example 8-22. Using the LIKE qualifier

SELECT author,title FROM classics WHERE author LIKE "Charles%";
SELECT author,title FROM classics WHERE title LIKE "%Species";
SELECT author,title FROM classics WHERE title LIKE "%and%";

BN C\Windows\system32\cmd.exe | = | (S -
mysql> SELECT author.title FROM classics WHERE author LIKE "Charlesx';
+

I author

The Origin of Species
The 01d Curi ty Shop
+

Jane Austen Pride and Prejudice
William Shakespeare Romeo and Juliet

in set (H.88 sec)

Figure 8-11. Using WHERE with the LIKE qualifier

The first command outputs the publications by both Charles Darwin and Charles
Dickens, because the LIKE qualifier was set to return anything matching the string
“Charles” followed by any other text. Then just The Origin of Species is returned, be-
cause it’s the only row whose column ends with the string “Species”. Lastly, both Pride
and Prejudice and Romeo and Juliet are returned, because they both matched the string
“and” anywhere in the column.

190 | Chapter8: Introduction to MySQL

The % will also match if there is nothing in the position it occupies; in other words, it
can match an empty string.

LIMIT

The LIMIT qualifier enables you to choose how many rows to return in a query, and
where in the table to start returning them. When passed a single parameter, it tells
MySQL to start at the beginning of the results and just return the number of rows given
in that parameter. If you pass it two parameters, the first indicates the offset from the
start of the results where MySQL should start the display, and the second indicates
how many to return. You can think of the first parameter as saying, “Skip this number
of results at the start.”

Example 8-23 includes three commands. The first returns the first three rows from the
table. The second returns two rows starting at position 1 (skipping the first row). The
last command returns a single row starting at position 3 (skipping the first three rows).
Figure 8-12 shows the results of issuing these three commands.

Example 8-23. Limiting the number of results returned

SELECT author,title FROM classics LIMIT 3;
SELECT author,title FROM classics LIMIT 1,2;
SELECT author,title FROM classics LIMIT 3,1;

BN C\Windows\system32\cmd.exe | = | (S -

my.,ql) SELECT authm title FROM cla

2 rows in set (B 88 secl
my.,ql) SELECT authm title FROM cla

Be careful with the LIMIT keyword, because offsets start at 0, but the
number of rows to return starts at 1. So LIMIT 1,3 means return three
rows starting from the second row.

Indexes | 191

MATCH...AGAINST

The MATCH. . .AGAINST construct can be used on columns that have been given a FULL
TEXT index (see the earlier section “Creating a FULLTEXT index” on page 186). With
it, you can make natural-language searches as you would in an Internet search engine.
Unlike WHERE. .. = or WHERE...LIKE, MATCH...AGAINST lets you enter multiple words in
a search query and checks them against all words in the FULLTEXT columns. FULLTEXT
indexes are case-insensitive, so it makes no difference what case is used in your queries.

Assuming that you have added a FULLTEXT index to the author and title columns, enter
the three queries shown in Example 8-24. The first asks for any of these columns that
contain the word and to be returned. Because and is a stopword, MySQL will ignore it
and the query will always produce an empty set—no matter what is stored in the col-
umns. The second query asks for any rows that contain both of the words old and
shop anywhere in them, in any order, to be returned. And the last query applies the
same kind of search for the words tom and sawyer. The screen grab in Figure 8-13 shows
the results of these queries.

Example 8-24. Using MATCH...AGAINST on FULLTEXT indexes

SELECT author,title FROM classics

WHERE MATCH(author,title) AGAINST('and');

SELECT author,title FROM classics

WHERE MATCH(author,title) AGAINST('old shop');
SELECT author,title FROM classics

WHERE MATCH(author,title) AGAINST('tom sawyer');

BN C\Windows\system32\cmd.exe | = | (S -

mysgl>
mysgl>
mysgl> SELECT author.title FROM classics
—> WHERE MATCH<author,.title> AGAINSTC’ and’>;
Empty set (A.B0 sec)

mysql> SELECT author,.title FROM classics
—>» WHERE MATCH{author.title> AGA T<’o0ld shop’>;
+

—— —_—————
I author

mysql> SELECT author.title FROM clas
—> WHERE MATCH<author.title> AGA

P
author

il

Figure 8-13. Using MATCH...AGAINST on a FULLTEXT index

MATCH. . .AGAINST...IN BOOLEAN MODE

If you wish to give your MATCH. . .AGAINST queries even more power, use Boolean mode.
This changes the effect of the standard FULLTEXT query so that it searches for any com-

192 | Chapter8: Introduction to MySQL

bination of search words, instead of requiring all search words to be in the text. The
presence of a single word in a column causes the search to return the row.

Boolean mode also allows you to preface search words with a + or - sign to indicate
whether they must be included or excluded. If normal Boolean mode says, “Any of
these words will do,” a plus sign means, “This word must be present; otherwise, don’t
return the row.” A minus sign means, “This word must not be present; its presence
disqualifies the row from being returned.”

Example 8-25 illustrates Boolean mode through two queries. The first asks for all rows
containing the word charles and not the word species to be returned. The second uses
double quotes to request that all rows containing the exact phrase “origin of” be re-
turned. Figure 8-14 shows the results of these queries.

Example 8-25. Using MATCH...AGAINST...IN BOOLEAN MODE

SELECT author,title FROM classics

WHERE MATCH(author,title)

AGAINST('+charles -species' IN BOOLEAN MODE);
SELECT author,title FROM classics

WHERE MATCH(author,title)

AGAINST('"origin of"' IN BOOLEAN MODE);

BN C\Windows\system32\cmd.exe | = | (S -

mysgl>

mysgl>

mysgl>

mysgl>

mysgl> SELECT author.title FROM classics
—-> WHERE I"IHTCH(authm titled
-> RGRINST(‘ﬂ:hall

author

Figure 8-14. Using MATCH...AGAINST...IN BOOLEAN MODE

As you would expect, the first request only returns The Old Curiosity Shop by Charles
Dickens; any rows containing the word species have been excluded, so Charles Darwin’s
publication is ignored.

Indexes | 193

There is something of interest to note in the second query: the stopword
of is part of the search string, but it is still used by the search because
s+ the double quotation marks override stopwords.

UPDATE. . .SET

This construct allows you to update the contents of a field. If you wish to change the
contents of one or more fields, you need to first narrow in on just the field or fields to
be changed, in much the same way you use the SELECT command. Example 8-26 shows
the use of UPDATE. . .SET in two different ways. You can see a screen grab of the results
in Figure 8-15.

Example 8-26. Using UPDATE...SET

UPDATE classics SET author='Mark Twain (Samuel Langhorne Clemens)'
WHERE author='Mark Twain';

UPDATE classics SET category='Classic Fiction'

WHERE category="Fiction';

BN C\Windows\system32\cmd.exe | = | (S -
mysgl>

my=gl> UPDATE classics SET author='Mark Twain <(Samuel Langhorne Clemens>’
—» WHERE author='Mark Twain’;

Query 0K, 1 row affected (B.88 sec)

Rows matched: 1 Changed: 1 Warnings: 8

my=gl> UPDATE classics SET category='Classic Fiction’
—» WHERE category='Fiction';

Query OK. 3 rows affected (B.08 sec)

Rows matched: 3 Changed: 3 Warnings: 8

+
Mark Twain (Samuel Langhorne Clemens)
Jane Austen
Charles Darwin
Char Dickens
i Shakespeare

rows in set (B.88 sec)

Figure 8-15. Updating columns in the classics table

In the first query, Mark Twain’s real name (Samuel Langhorne Clemens) was appended
to his pen name in parens, which affected only one row. The second query, however,
affected three rows, because it changed all occurrences of the word Fiction in the cate
gory column to the term Classic Fiction.

When performing an update you can also make use of the qualifiers you have already
seen, such as LIMIT, and the ORDER BY and GROUP BY keywords, discussed next.

194 | Chapter8: Introduction to MySQL

ORDER BY

ORDER BY sorts returned results by one or more columns, in ascending or descending
order. Example 8-27 shows two such queries, the results of which can be seen in
Figure 8-16.

Example 8-27. Using ORDER BY

SELECT author,title FROM classics ORDER BY author;
SELECT author,title FROM classics ORDER BY title DESC;

BN C\Windows\system32\cmd.exe | = | (S -
mysql> SELECT author.title FROM class
4~

s Darwin
Charles Dickens
Jane Austen
Mark Twain (Samuel Langhorne Clemens)
illiam Shakespeare

The Origin of Species

The 01d Curiosity Shop

Pride and Prejudice

The Adventuresz of Tom Sawyer
Romeo and Juliet

+omm e —————

The 01d Curiosity Shop

The Adventures of Tom Sawyer
Romeo and Juliet

Pride and Prejudice
______________________________ +

+ain (Samuel Langhorne Clemens?
illiam Shakespeare
ane Austen

+
1
i
I
i
I
i
I
i
I
i

+

rows in set (B.82 sec)

Figure 8-16. Sorting the results of requests

As you can see, the first query returns the publications by author in ascending alpha-
betical order (the default), and the second returns them by title in descending order.

If you wanted to sort all the rows by author and then by descending year of publication
(to view the most recent first), you would issue the following query:

SELECT author,title,year FROM classics ORDER BY author,year DESC;

This shows that each ascending and descending qualifier applies to a single column.
The DESC keyword applies only to the preceding column, year. Because you allow
author to use the default sort order, it is sorted in ascending order. You could also have
explicitly specified ascending order for that column, with the same results:

SELECT author,title,year FROM classics ORDER BY author ASC,year DESC;

GROUP BY

In a similar fashion to ORDER BY, you can group results returned from queries using
GROUP BY, which is good for retrieving information about a group of data. For example,
if you want to know how many publications there are in each category in the clas
sics table, you can issue the following query:

Indexes | 195

SELECT category,COUNT(author) FROM classics GROUP BY category;

which returns the following output:

Hmm e Hmmmm e +
| category | COUNT(author) |
Hmm e Hmm e +
| Classic Fiction | 3|
| Non-Fiction | 1]
| Play | 1|
Hmm e Hmm e +

3 rows in set (0.00 sec)

Joining Tables Together

[tis quite normal to maintain multiple tables within a database, each holding a different
type of information. For example, consider the case of a customers table that needs to
be able to be cross-referenced with publications purchased from the classics table.
Enter the commands in Example 8-28 to create this new table and populate it with
three customers and their purchases. Figure 8-17 shows the result.

Example 8-28. Creating and populating the customers table

CREATE TABLE customers (

name VARCHAR(128),

isbn VARCHAR(128),

PRIMARY KEY (isbn)) ENGINE MyISAM;
INSERT INTO customers(name,isbn)
VALUES('Joe Bloggs','9780099533474"');
INSERT INTO customers(name,isbn)
VALUES('Mary Smith','9780582506206');
INSERT INTO customers(name,isbn)
VALUES('Jack Wilson','9780517123201");
SELECT * FROM customers;

There’s also a shortcut for inserting multiple rows of data, as in Exam-
ple 8-28, in which you can replace the three separate INSERT INTO queries
W with a single one listing the data to be inserted, separated by commas,
" like this:

INSERT INTO customers(name,isbn) VALUES
("Joe Bloggs', '9780099533474"),

('Mary Smith','9780582506206"),

("Jack Wilson','9780517123201");

Of course, in a proper table containing customers’ details there would also be addresses,
phone numbers, email addresses, and so on, but they aren’t necessary for this
explanation.

While creating the new table, you should have noticed thatit has something in common
with the classics table: a column called isbn. Because it has the same meaning in both

196 | Chapter8: Introduction to MySQL

BN C\Windows\system32\cmd.exe | = | (S -

mysgl> CREATE TABLE customers ¢
—> name UARCHARC128>,
—> isbn UARCHARC128>,
—> PRIMARY KEY (ishn)>;
Query OK. B rows affected (B.82 sec)

mysgl> INSERT INTO customers{name.isbhn)
—» VUALUES<'Joe Bloggs’'.'9?788099533474'>;
Query OK. 1 row affected (B.B2 sec)

mysgl> INSERT INTO customers{name.isbhn)
—>» VUALUES<'Mary Smith’.’97865825686206° >;
Query OK. 1 row affected (B.B8 sec)

mysgl> INSERT INTO customers{name.isbhn)
—>» UALUES<'Jack Wilson’,.’'97885171232681°>;
Query 0K, 1 row affected (B.B8 sec)

mysql> SELECT * FROM customers;
4~ i

Mary Smith 2788582506206
Jack Wilson 3780517123201

+ _— _—
i 2788892533474

Figure 8-17. Creating the customers table

tables (an ISBN refers to a book, and always the same book), we can use this column
to tie the two tables together into a single query, as in Example 8-29.

Example 8-29. Joining two tables into a single SELECT
SELECT name,author,title from customers,classics

WHERE customers.isbn=classics.isbn;

The result of this operation is the following:

Joe Bloggs	Charles Dickens	The 0ld Curiosity Shop
Mary Smith	Jane Austen	Pride and Prejudice
Jack Wilson	Charles Darwin	The Origin of Species
Hmmm e Hmmmmm e Hmmm e +
3 rows in set (0.00 sec)

See how this query has neatly tied both tables together to show the publications from
the classics table purchased by the people in the customers table?
NATURAL JOIN

Using NATURAL JOIN, you can save yourself some typing and make queries a little clearer.
This kind of join takes two tables and automatically joins columns that have the same
name. So, to achieve the same results as from Example 8-29, you would enter:

SELECT name,author,title FROM customers NATURAL JOIN classics;

JOIN...ON

If you wish to specify the column on which to join two tables, use the JOIN...ON con-
struct, as follows, to achieve results identical to those of Example 8-29:

Indexes | 197

SELECT name,author,title FROM customers
JOIN classics ON customers.isbn=classics.isbn;

Using AS

You canalso save yourself some typing and improve query readability by creating aliases
using the AS keyword: follow a table name with AS and the alias to use. The following
code is also identical in action to Example 8-29:

SELECT name,author,title from
customers AS cust, classics AS class WHERE cust.isbn=class.isbn;

The result of this operation is the following;:

| Joe Bloggs | Charles Dickens | The 0ld Curiosity Shop |
| Mary Smith | Jane Austen | Pride and Prejudice

| Jack Wilson | Charles Darwin | The Origin of Species |
dmmmm e o m e T TR +

3 rows in set (0.00 sec)

Aliases can be particularly useful when you have long queries that reference the same
table names many times.

Using Logical Operators

You can also use the logical operators AND, OR, and NOT in your MySQL WHERE queries to
further narrow down your selections. Example 8-30 shows one instance of each, but
you can mix and match them in any way you need.

Example 8-30. Using logical operators

SELECT author,title FROM classics WHERE

author LIKE "Charles%" AND author LIKE "%Darwin";

SELECT author,title FROM classics WHERE

author LIKE "%Mark Twain%" OR author LIKE "%Samuel Langhorne Clemens%";
SELECT author,title FROM classics WHERE

author LIKE "Charles%" AND author NOT LIKE "%Darwin";

I've chosen the first query because Charles Darwin might be listed in some rows by his
full name, Charles Robert Darwin. This query returns any publications for which the
value in the author column starts with Charles and ends with Darwin. The second query
searches for publications written using either Mark Twain’s pen name or his real name,
Samuel Langhorne Clemens. The third query returns publications written by authors
with the first name Charles but not the surname Darwin.

198 | Chapter8: Introduction to MySQL

Download from Wow! eBook <www.wowebook.com>

MySQL Functions

You might wonder why anyone would want to use MySQL functions, when PHP comes
with a whole bunch of powerful functions of its own. The answer is very simple: the
MySQL functions work on the data right there in the database. If you were to use PHP,
you would have to extract the raw data from MySQL, manipulate it, and then perform
the desired database query.

Using the functions built into MySQL substantially reduces the time needed for per-
forming complex queries, as well as their complexity. If you wish to learn more about
the available functions, you can visit the following URLs:

* String functions: http://tinyurl.com/mysqlstrfuncs
* Date and time functions: http://tinyurl.com/mysqldatefuncs

However, to get you started, Appendix D describes a subset of the most useful of these
functions.

Accessing MySQL via phpMyAdmin

Although to use MySQL it is essential to learn these main commands and how they
work, once you have learned them, it can be much quicker and simpler to use a program
such as phpMyAdmin to manage your databases and tables.

The following explanation assumes you have worked through the previous examples
in this chapter and have created the tables classics and customers in the database
publications. Please choose the section relevant to your operating system.

Windows Users

Ensure that you have Zend Server CE up and running so that the MySQL database is
ready, then type the following into the address bar of your browser:

http://localhost/phpMyAdmin

Your browser should now look like Figure 8-18, where you should enter a username
of zend (the default) and no password. You will then be presented with a screen similar
to Figure 8-19. You are now ready to proceed to the section “Using phpMyAd-
min” on page 201.

Accessing MySQL via phpMyAdmin | 199

http://tinyurl.com/mysqlstrfuncs
http://tinyurl.com/mysqldatefuncs

_ (=] O)
a@ ML http://localhost, O ~ B & X s phpMyAdmin | |
File Edit View Favorites Tools Help
php
Welcome to phpMyAdmin

rLanguage

English []

rLogin®

Username: zend

Password:

H100% -

Figure 8-18. Logging in to phpMyAdmin

(IO

s hittp://localhost/phpMyAdmin/indexphp?t 0 ~ B & X

s localhost [localhost | php...

L

Please select a database Log out

MySaL localhost

‘& Create new database

Interface

£ Language @ :
English

@& Theme Style: | Criginal

)

v v

i

-

[=]

-

File Edit View Favorites Tools Help
2 localhost
(Databases f3SQL #Status () Variables [f7]Charsets jgj Engines
g&Privileges || Replication %Processes fZuExport Falmport F3 Synchronize
+ infermation_schema (28)
- mysgl (23) Actions MysSQL
- ftest
& Change password ¥ Server localhost via TCP/IP

Server version: 5.1.50-
community

Protocol version: 10
User: root@localhost

MySQL charset: UTF-8
Unicode (utf8)

Collation [=]
Web server
MySQAL connection collation:
utfe_general_ci] » Apache/2.2.21 (Win32)

mod_ssli2.2.21
OpenSSL/09 80
MySQL client version
mysgind 5.0.8-dev -
20102224 - §Revision:
318113 %

PHP extension: mysqgli

#100%

Figure 8-19. The phpMyAdmin main screen

200 | Chapter8: Introduction to MySQL

0S X Users

Ensure that Zend Server CE is running and that the Apache and MySQL servers are
started, then type the following into your browser:

http://localhost:10081/phpmyadmin/

N

o The number 10081 identifies the Zend server interface port and must
“‘:\ always be entered to call up the interface or any subparts, such as
T 98 phpMyAdmin.

You should see a screen similar to Figure 8-18, where you should enter a username of
zend (the default) and no password. Your browser should now look like Figure 8-19;
you are ready to proceed to the section “Using phpMyAdmin” on page 201.

Linux Users

If you have installed Zend Server CE with MySQL, you should be able to type the
following into your browser to start phpMyAdmin:

https://localhost:10082/phpMyAdmin

Your browser should now look like Figure 8-18. Enter the username zend (the default),
and you should see a screen similar to Figure 8-19. You can now proceed with the next
section.

Using phpMyAdmin

In the lefthand pane of the main phpMyAdmin screen, which should now appear in
your browser, click on the drop-down menu that says “(Databases)” and select the
database publications. This will open the database and display its two tables just be-
low. Click on the classics table, and you’ll see a host of information about it appear
in the righthand frame (see Figure 8-20).

From here you can perform all the main operations for your databases, such as creating
databases, adding tables, creating indexes, and much more. To read the supporting
documentation for phpMyAdmin, visit hitp://www.phpmyadmin.net/documentation/.

Accessing MySQL via phpMyAdmin | 201

http://www.phpmyadmin.net/documentation/

& Iocalhost / localhost / publications / classics | phpMyAdmin 2.9.1.1 - Mozilla Firefox

File Edit View History Bookmarks Iools Help
@B c

Ay [= (4 | hitp//localhost/home/mysql/

& Server: localhost » & Database: pu

ions » E Table:

[EBrowse Structure

2SQL Search #ilnsert [EiExport

Import %% Operations

PhpligAdmin FEEmpty Drop
@I @ Field Type Collation Aftributes Null Default Extra
Database author varchar(128) latin1_swedish_ci Yes NULL E » X
publications (2) - title varchar(128) latin1_swedish_ci Yes NULL it
- category varchar(16) latin1_swedish_ci Yes NULL B » X
publications (2) year smallint(6) Yes NULL B 2 X
B classics isbn char(13) latin1_swedish_ci No E & X
Bl eames 1t Check All/ Uncheck All With selected: # X i

& Print view 5 Propose table structure

F: Add 1 field(s) @ At End of Table) At Beginning of Table « After author ~ \ﬂl
Indexes: Space usage

Keyname Type Cardinality Action Field Type Usage
PRIMARY PRIMARY 5 # X isbn Data 224 BB
author INDEX None " ¥ author 20 Index 7-168 B
title INDEX None #° X title 20 Total 7-5%2 B
category INDEX None . X category 4
year INDEX None # ¥ year
author_2 FULLTEXT None # ¥ author

title
Create an index on 1 culumns

Done

Figure 8-20. The table classics as viewed in phpMyAdmi

n

If you worked with me through the examples in this chapter, congratulations—it’s been
quite a longjourney. You’ve come all the way from creating a MySQL database through
issuing complex queries that combine multiple tables, use Boolean operators, and lev-

erage MySQL’s various qualifiers.

In the next chapter, we’ll start looking at how to approach efficient database design,
advanced SQL techniques, and MySQL functions and transactions.

Test Your Knowledge

1. What is the purpose of the semicolon in MySQL queries?
. Which command would you use to view the available databases or tables?

. How would you create a new MySQL user on the local host called newuser with a
password of newpass and with access to everything in the database newdatabase?

4. How can you view the structure of a table?
5. What is the purpose of a MySQL index?
6. What benefit does a FULLTEXT index provide?

202

| Chapter8: Introduction to MySQL

7. What is a stopword?

8. Both SELECT DISTINCT and GROUP BY cause the display to show only one output row
for each value in a column, even if multiple rows contain that value. What are the
main differences between SELECT DISTINCT and GROUP BY?

9. Using the SELECT...WHERE construct, how would you return only rows containing
the word Langhorne somewhere in the author column of the classics table used
in this chapter?

10. What needs to be defined in two tables to make it possible for you to join them
together?

See “Chapter 8 Answers” on page 504 in Appendix A for the answers to these
questions.

Test Your Knowledge | 203

CHAPTER 9
Mastering MySQL

Chapter 8 provided you with a good grounding in the practice of using relational da-
tabases with SQL. You’ve learned about creating databases and the tables that comprise
them, as well as inserting, looking up, changing, and deleting data.

With that knowledge under your belt, it’s time to look at how to design databases for
maximum speed and efficiency. For example, how do you decide what data to place in
which table? Well, over the years, a number of guidelines have been developed that—
if you follow them—ensure that your databases will be efficient and capable of scaling
as you feed them more and more data.

Database Design

It’s very important that you design a database correctly before you start to create it;
otherwise, you are almost certainly going to have to go back and change it by splitting
up some tables, merging others, and moving various columns about in order to achieve
sensible relationships that MySQL can use easily.

Sitting down with a sheet of paper and a pencil and writing down a selection of the
queries that you think you and your users are likely to ask is an excellent starting point.
In the case of an online bookstore’s database, some of the questions you write down

could be:
* How many authors, books, and customers are in the database?
¢ Which author wrote a certain book?
* Which books did a certain author write?
* What is the most expensive book?
* What is the best-selling book?
* Which books have not sold this year?
* Which books did a certain customer buy?

* Which books have been purchased along with the same other books?

205

Of course, there are many more queries that could be made on such a database, but
even this small sample will begin to give you insights into how to lay out your tables.
For example, books and ISBNs can probably be combined into one table, because they
are closely linked (we’ll examine some of the subtleties later). In contrast, books and
customers should be in separate tables, because their connection is very loose. A cus-
tomer can buy any book, and even multiple copies of a book, yet a book can be bought
by many customers and be ignored by still more potential customers.

When you plan to do a lot of searches on something, it can often benefit by having its
own table. And when couplings between things are loose, it’s best to put them in sep-
arate tables.

Taking into account those simple rules of thumb, we can guess we’ll need at least three
tables to accommodate all these queries:

authors
There will be lots of searches for authors, many of whom will have collaborated
on titles, and many of whom will be featured in collections. Listing all the infor-
mation about each author together, linked to that author, will produce optimal
results for searches—hence an authors table.

books
Many books appear in different editions. Sometimes they change publishers, and
sometimes they have the same titles as other, unrelated books. So, the links between
books and authors are complicated enough to call for a separate table for books.

customers
It’s even more clear why customers should get their own table, as they are free to
purchase any book by any author.

Primary Keys: The Keys to Relational Databases

Using the power of relational databases, we can define information for each author,
book, and customer in just one place. Obviously, what interests us is the links between
them, such as who wrote each book and who purchased it—but we can store that
information just by making links between the three tables. I'll show you the basic prin-
ciples, and then it just takes practice for it to feel natural.

The magic involves giving every author a unique identifier. Do the same for every book
and for every customer. We saw the means of doing that in the previous chapter: the
primary key. For a book, it makes sense to use the ISBN, although you then have to
deal with multiple editions that have different ISBNs. For authors and customers, you
can just assign arbitrary keys, which the AUTO_INCREMENT feature described in the last
chapter makes easy.

206 | Chapter9: Mastering MySQL

In short, every table will be designed around some object that you’re likely to search
for a lot—an author, book, or customer, in this case—and that object will have a pri-
mary key. Don’t choose a key that could possibly have the same value for different
objects. The ISBN is a rare case for which an industry has provided a primary key that
you canrely on to be unique for each product. Most of the time, you’ll create an arbitrary
key for this purpose, using AUTO_INCREMENT.

Normalization

The process of separating your data into tables and creating primary keys is called
normalization. Its main goal is to make sure each piece of information appears in the
database only once. Duplicating data is very inefficient, because it makes databases
larger than they need to be and therefore slows down access. More importantly, the
presence of duplicates creates a strong risk that you’ll update only one row of the du-
plicated data, creating inconsistencies and potentially causing serious errors.

If you list the titles of books in the authors table as well as the books table, for example,
and you have to correct a typographic error in a title, you’ll have to search through both
tables and make sure you make the same change every place the title is listed. It’s better
to keep the title in one place and use the ISBN in other places.

In the process of splitting a database into multiple tables, it is also important not to go
too far and create more tables than is necessary, which can also lead to inefficient design
and slower access.

Luckily, E.F. Codd, the inventor of the relational model, analyzed the concept of nor-
malization and split it into three separate schemas called First, Second, and Third Nor-
mal Form. If you modify a database to satisfy each of these forms in order, you will
ensure that your database is optimally balanced for fast access, and minimum memory
and disk space usage.

To see how the normalization process works, let’s start with the rather monstrous
database in Table 9-1, which shows a single table containing all of the author names,
book titles, and (fictional) customer details. You could consider it a first attempt at a
table intended to keep track of which customers have ordered which books. Obviously
this is an inefficient design, because data is duplicated all over the place (duplications
are highlighted), but it represents a starting point.

In the following three sections, we will examine this database design and you’ll see how
we can improve it by removing the various duplicate entries and splitting the single
table into multiple tables, each containing one type of data.

Normalization | 207

Table 9-1. A highly inefficient design for a database table

Author 1 Author 2
David Sklar Adam

Trachtenberg
Danny
Goodman
Hugh E David Lane
Williams

David Sklar Adam

Trachtenberg
Rasmus Kevin Tatroe
Lerdorf & Peter

Macntyre

Title ISBN
PHP 0596101015
Cookbook

Dynamic 0596527403
HTML

PHP and 0596005436
MysQL

PHP 0596101015
Cookbook

Programming 0596006815
PHP

Price
(USD)

44.99

59.99

44.95

44.99

39.99

Customer
name

Emma
Brown

Darren
Ryder

Earl B.
Thurston

Darren
Ryder

David Miller

Customer
address

1565 Rainbow
Road, Los Angeles,
(A 90014

4758 Emily
Drive,
Richmond, VA
23219

862 Gregory Lane,
Frankfort, KY
40601

4758 Emily
Drive,
Richmond, VA
23219

3647 Cedar Lane,
Waltham, MA
02154

Purch.
date

Mar 03
2009

Dec19
2008

Jun22
2009

Dec19
2008

Jan 16
2009

First Normal Form

For a database to satisfy the First Normal Form, it must fulfill three requirements:

1. There should be no repeating columns containing the same kind of data.

2. All columns should contain a single value.

3. There should be a primary key to uniquely identify each row.

Looking at these requirements in order, you should notice straight away that the Author
1 and Author 2 columns constitute repeating data types. So, we already have a target
column for pulling into a separate table, as the repeated Author columns violate Rule 1.

Second, there are three authors listed for the final book, Programming PHP. In this
table that has been handled by making Kevin Tatroe and Peter MacIntyre share the
Author 2 column, which violates Rule 2—yet another reason to transfer the author
details to a separate table.

However, Rule 3 is satisfied, because the primary key of ISBN has already been created.

Table 9-2 shows the result of removing the Author columns from Table 9-1. Already it
looks a lot less cluttered, although there remain duplications that are highlighted.

208 | Chapter9: Mastering MySQL

Table 9-2. The result of stripping the author columns from Table 9-1

Price
Title ISBN (USD) Customer name Customer address Purchase date
PHP Cookbook 0596101015 44.99 Emma Brown 1565 Rainbow Road, Los Mar 03 2009

Angeles, CA 90014
Dynamic HTML 0596527403 59.99 Darren Ryder 4758 Emily Drive, Richmond, Dec 192008

VA 23219

PHPand MySQL 0596005436 44.95 Earl B. Thurston 862 Gregory Lane, Frankfort, KY ~ Jun 22 2009
40601

PHP Cookbook 0596101015 44.99 Darren Ryder 4758 Emily Drive, Richmond, Dec 192008
VA 23219

Programming 0596006815 39.99 David Miller 3647 Cedar Lane, Waltham, MA Jan 16 2009

PHP 02154

The new Authors table, shown in Table 9-3, is small and simple. It just lists the ISBN
of a title along with an author. If a title has more than one author, additional authors
get their own rows. At first you may feel ill at ease with this table, because you can’t
tell at a glance which author wrote which book. But don’t worry: MySQL can quickly
tell you. All you have to do is tell it which book you want information for, and MySQL
will use its ISBN to search the Authors table in a matter of milliseconds.

Table 9-3. The new Authors table

ISBN Author
0596101015 David Sklar
0596101015 Adam Trachtenberg
0596527403 Danny Goodman
0596005436 Hugh E Williams
0596005436 David Lane
0596006815 Rasmus Lerdorf
0596006815 Kevin Tatroe
0596006815 Peter Maclntyre

As T mentioned earlier, the ISBN will be the primary key for the Books table, when we
get around to creating that table. I mention that here in order to emphasize that the
ISBN is not, however, the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each author would have a key
to uniquely identify him or her.

In the Authors table, the ISBN numbers will appear in a column that (for the purposes
of speeding up searches) we’ll probably make a key, but not the primary key. In fact,

Normalization | 209

it cannot be the primary key in this table, because it’s not unique: the same ISBN appears
multiple times whenever two or more authors have collaborated on a book.

Because we’ll use it to link authors to books in another table, this column is called a
foreign key.

W
. Keys (also called indexes) have several purposes in MySQL. The funda-
"‘:\ mental reason for defining a key is to make searches faster. You’ve seen
T WUay examples in Chapter 8 in which keys are used in WHERE clauses for

searching. But a key can also be useful to uniquely identify an item.
Thus, a unique key is often used as a primary key in one table, and as a
foreign key to link rows in that table to rows in another table.

Second Normal Form

The First Normal Form deals with duplicate data (or redundancy) across multiple col-
umns. The Second Normal Form is all about redundancy across multiple rows. In order
to achieve Second Normal Form, your tables must already be in First Normal Form.
Once this has been done, Second Normal Form is achieved by identifying columns
whose data repeats in different places and removing them to their own tables.

Let’s look again at Table 9-2. Notice that Darren Ryder bought two books, and there-
fore his details are duplicated. This tells us that the customer columns (Customer
name and Customer address) need to be pulled into their own tables. Table 9-4 shows
the result of removing the two Customer columns from Table 9-2.

Table 9-4. The new Titles table

ISBN Title Price
0596101015 PHP Cookbook 44.99
0596527403 Dynamic HTML 59.99
0596005436 PHP and MySQL 44.95
0596006815 Programming PHP 39.99

As you can see, all that’s left in Table 9-4 are the ISBN, Title, and Price columns for
four unique books—this now constitutes an efficient and self-contained table that sat-
isfies the requirements of both the First and Second Normal Forms. Along the way,
we’ve managed to reduce the information in this table to data closely related to book
titles. The table could also include years of publication, page counts, numbers of re-
prints, and so on, as these details are also closely related. The only rule is that we can’t
put in any column that could have multiple values for a single book, because then we’d
have to list the same book in multiple rows, thus violating Second Normal Form. Re-
storing an Author column, for instance, would violate this normalization.

210 | Chapter9: Mastering MySQL

However, looking at the extracted Customer columns, now in Table 9-5, we can see that
there’s still more normalization work to do, because Darren Ryder’s details are still
duplicated. It could also be argued that First Normal Form Rule 2 (all columns should
contain a single value) has not been properly complied with, because the addresses
really need to be broken into separate columns for Address, City, State, and Zip code.

Table 9-5. The Customer details from Table 9-2

ISBN Customername Customer address Purchase date
0596101015 Emma Brown 1565 Rainbow Road, Los Angeles, CA90014 Mar 03 2009
0596527403 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 192008
0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009
0596101015 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 192008
0596006815 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

What we have to do is split this table further to ensure that each customer’s details are
entered only once. Because the ISBN is not and cannot be used as a primary key to
identify customers (or authors), a new key must be created.

Table 9-6 shows the result of normalizing the Customers table into both First and Second
Normal Forms. Each customer now has a unique customer number called CustNo that
is the table’s primary key, and that will most likely have been created using AUTO_INCRE
MENT. All the parts of the customers’ addresses have also been separated into distinct
columns to make them easily searchable and updateable.

Table 9-6. The new Customers table

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road ~ Los Angeles (A 90014
2 Darren Ryder 4758 Emily Drive Richmond VA 23219
3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601
4 David Miller 3647 Cedar Lane Waltham MA 02154

At the same time, in order to normalize Table 9-6, it was necessary to remove the
information on customer purchases, because otherwise there would have been multiple
instances of customer details for each book purchased. Instead, the purchase data is
now placed in a new table called Purchases (see Table 9-7).

Table 9-7. The new Purchases table

CustNo ISBN Date

1 0596101015 Mar 03 2009
2 0596527403 Dec 192008
2 0596101015 Dec 192008

Normalization | 211

CustNo ISBN Date
3 0596005436 Jun 22 2009
4 0596006815 Jan 16 2009

Here, the CustNo column from Table 9-6 is reused as a key to tie the Customers and
Purchases tables together. Because the ISBN column is also repeated here, this table
can be linked with either of the Authors and Titles tables, too.

The CustNo column can be a useful key in the Purchases table, but it’s not a primary
key: a single customer can buy multiple books (and even multiple copies of one book).
In fact, the Purchases table has no primary key. That’s all right, because we don’t expect
to need to keep track of unique purchases. If one customer buys two copies of the same
book on the same day, we’ll just allow two rows with the same information. For easy
searching, we can define both CustNo and ISBN as keys—just not as primary keys.

W
w5 There are now four tables, one more than the three we had initially
ﬁ:\ assumed would be needed. We arrived at this decision through the nor-
o Q18" malization processes, by methodically following the First and Second
" Normal Form rules, which made it plain that a fourth table called Pur
chases would also be required.

The tables we now have are: Authors (Table 9-3), Titles (Table 9-4), Customers (Ta-
ble 9-6), and Purchases (Table 9-7). Each table can be linked to any other using either
the CustNo or the ISBN keys.

For example, to see which books Darren Ryder has purchased, you can look him up in
Table 9-6, the Customers table, where you will see that his CustNo is 2. Armed with this
number, you can now go to Table 9-7, the Purchases table; looking at the ISBN column
here, you will see that he purchased titles 0596527403 and 0596101015 on December
19, 2008. This looks like a lot of trouble for a human, but it’s not so hard for MySQL.

To determine what these titles were, you can then refer to Table 9-4, the Titles table,
and see that the books he bought were Dynamic HTML and PHP Cookbook. Should
you wish to know the authors of these books, you could also use the ISBN numbers
you just looked up on Table 9-3, the Authors table, and you would see that ISBN
0596527403, Dynamic HTML, was written by Danny Goodman, and that ISBN
0596101015, PHP Cookbook, was written by David Sklar and Adam Trachtenberg.

Third Normal Form

Once you have a database that complies with both the First and Second Normal Forms,
it is in pretty good shape and you might not have to modify it any further. However, if
you wish to be very strict with your database, you can ensure that it adheres to the
Third Normal Form, which requires that data that is not directly dependent on the

212 | Chapter9: Mastering MySQL

primary key but that is dependent on another value in the table should also be moved
into separate tables, according to the dependence.

For example, in Table 9-6, the Customers table, it could be argued that the State,
City, and Zip code keys are not directly related to each customer, because many other
people will have the same details in their addresses, too. However, they are directly
related to each other, in that the street Address relies on the City, and the City relies on
the State.

Therefore, to satisfy Third Normal Form for Table 9-6, you would need to split it into
Table 9-8, Table 9-9, Table 9-10, and Table 9-11.

Table 9-8. Third Normal Form Customers table

CustNo Name Address Zip

1 Emma Brown 1565 Rainbow Road 90014
2 Darren Ryder 4758 Emily Drive 23219
3 Earl B. Thurston 862 Gregory Lane 40601
4 David Miller 3647 Cedar Lane 02154

Table 9-9. Third Normal Form Zip codes table

Zp Cityld
90014 1234
82119 5678
40601 4321
02154 8765

Table 9-10. Third Normal Form Cities table

CitylD Name StatelD
1234 LosAngeles 5

5678 Richmond 46

4321 Frankfort 17
8765 Waltham 21

Table 9-11. Third Normal Form States table

StatelD Name Abbreviation
5 (alifornia (A
46 Virginia VA
17 Kentucky KY
21 Massachusetts ~ MA

Normalization | 213

So, how would you use this set of four tables instead of the single Table 9-6? Well, you
would look up the Zip code in Table 9-8, then find the matching CityID in Table 9-9.
Given this information, you could then look up the city Name in Table 9-10 and then
also find the StateID, which you could use in Table 9-11 to look up the state’s Name.

Although using the Third Normal Form in this way may seem like overkill, it can have
advantages. For example, take a look at Table 9-11, where it has been possible to in-
clude both a state’s name and its two-letter abbreviation. Such a table could also contain
population details and other demographics, if you desired.

W
o Table 9-10 could also contain even more localized demographics that
"‘:‘ . could be useful to you and/or your customers. By splitting up these
9l pieces of data, you can make it easier to maintain your database in the
" future, should it be necessary to add additional columns.

Deciding whether to use the Third Normal Form can be tricky. Your evaluation should
rest on what additional data you may need to add at a later date. If you are absolutely
certain that the name and address of a customer is all that you will ever require, you
probably will want to leave out this final normalization stage.

On the other hand, suppose you are writing a database for a large organization such as
the U.S. Postal Service. What would you do if a city were to be renamed? With a table
such as Table 9-6, you would need to perform a global search and replace on every
instance of that city’s name. But if you had your database set up according to the Third
Normal Form, you would have to change only a single entry in Table 9-10 for the change
to be reflected throughout the entire database.

Therefore, I suggest that you ask yourself two questions to help you decide whether to
perform a Third Normal Form normalization on any table:

1. Is it likely that many new columns will need to be added to this table?
2. Could any of this table’s fields require a global update at any point?

If either of the answers is yes, you should probably consider performing this final stage
of normalization.

When Not to Use Normalization

Now that you know all about normalization, 'm going to tell you why you should
throw these rules out of the window on high-traffic sites. Now, 'm not saying you’ve
wasted your time reading the last several pages (you most definitely haven’t), but you
should never fully normalize your tables on sites that will cause MySQL to thrash.

You see, normalization requires spreading data across multiple tables, and this means
making multiple calls to MySQL for each query. On a very popular site, if you have
normalized tables, your database access will slow down considerably once you get

214 | Chapter9: Mastering MySQL

above a few dozen concurrent users, because they will be creating hundreds of database
accesses between them. In fact, I would go so far as to say that you should denormal-
ize any commonly looked-up data as much as you can.

The reason is that if you have data duplicated across your tables, you can substantially
reduce the number of additional requests that need to be made, because most of the
data you want is available in each table. This means that you can simply add an extra
column to a query and that field will be available for all matching results, although (of
course) you will have to deal with the previously mentioned downsides, such as using
up large amounts of disk space and needing to ensure that you update every single
duplicate copy of your data when it needs modifying.

Multiple updates can be computerized, though. MySQL provides a feature called trig-
gers that make automatic changes to the database in response to changes you make.
(Triggers are, however, beyond the scope of this book.) Another way to propagate
redundant data is to set up a PHP program to run regularly and keep all copies in sync.
The program reads changes from a “master” table and updates all the others. (You’ll
see how to access MySQL from PHP in the next chapter.)

However, until you are very experienced with MySQL, I recommend you fully nor-
malize all your tables, as this will instill the habit and put you in good stead. Only when
you actually start to see MySQL logjams should you consider looking at
denormalization.

Relationships

MySQL is called a relational database management system because its tables store not
only data, but the relationships among the data. There are three categories of these
relationships.

One-to-One

A one-to-one relationship between two types of data is like a (traditional) marriage:
each item has a relationship to only one item of the other type. This is surprisingly rare.
For instance, an author can write multiple books, a book can have multiple authors,
and even an address can be associated with multiple customers. Perhaps the best ex-
ample in this chapter so far of a one-to-one relationship is the relationship between the
name of a state and its two-character abbreviation.

However, for the sake of argument, let’s assume that there can only ever be one cus-
tomer at any given address. In such a case, the Customers-Addresses relationship in
Figure 9-1 is a one-to-one relationship: only one customer lives at each address and
each address can have only one customer.

Usually, when two items have a one-to-one relationship, you just include them as col-
umns in the same table. There are two reasons for splitting them into separate tables:

Relationships | 215

Table 9-8a (Customers) Table 9-8b (Addresses)
CustNo Name Address Zip
1 EmmaBrown ----—------—-—---1565 Rainbow Road 90014
2 Darren Ryder 4758 Emily Drive 23219
3 EarlB. Thurston -~ ------—-~-----862 Gregory Lane 40601
4 David Miller-----------=----=----—---3647 Cedar Lane 02154

Figure 9-1. The Customers table, Table 9-8, split into two tables

* You want to be prepared in case the relationship changes later.

* The table has a lot of columns and you think that performance or maintenance
would